TIBCO Hawk®

Programmer’s Guide

Software Release 5.2.0
June 2015

Two-Second Advantage® I I B C%

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, Two-Second Advantage, TIBCO ActiveMatrix BusinessWorks, TIBCO Hawk, TIBCO Designer, TIBCO
Rendezvous, TIBCO Enterprise Message Service, TIBCO Runtime Agent, TIBCO Administrator, TIBCO
ActiveEnterprise and TIBCO Repository are either registered trademarks or trademarks of TIBCO Software Inc.
in the United States and /or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition
(J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation
in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1996-2015 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
= =T Xi
Changes from the Previous Release of this Guide e Xii
Related Documentation Xiii
TIBCO Hawk Documentation e Xii
Other TIBCO Product Documentation s Xiv
Typographical CoNVENIONSo e e e e e e e XV
Connecting with TIBCO RESOUICESttt e e e e e e e e e e e e XVii
How 10 Join TIBCOMMUNIY o oot e e e e e e e e e e e XVii
How to Access All TIBCO Documentationttt e e XVii
How to Contact TIBCO SUPPOItot e e XVii
Chapter 1 Introduction to TIBCO Hawk Programmingccuiiiiiiirnnnnrnnnnss 1
Programming Tools and Interfaces i 2
CONS0lE AP . . 2
Configuration Object APl 2
AL AP 2
SECUNY AP . 2
Chapter2 Console APlt it e ettt s snananan s essnnnnnneneenennn 3
How the TIBCO Hawk Console API Fits Ino e 4
L0701 =T o) 5
SHTUCHUNE . o o 6
Monitoring OpPerationsttt 6
The Agentinstance Classottt e 9
Ensuring Each Agent Instance hasa Unique ID 9
Management Operations it 10
Microagent DesCriptOrS. o e 11
INVOKING Methodso 12
Subscribing to Method ResuUlts. 13
Group Operationso e 14
Lightweight Consoleo e 15
Console Application with Secure Domain. o 16
MiCroAgeNt PIUG-IN . . . oo e 16
TIBCO Hawk Console API Class Structure e 17
Key to the UML DiagramsS.ttt e e e e e e e e e e e e e e 18
Agent Monitoring Classes (HawWkeye).ot e 19

TIBCO Hawk Programmer’s Guide

iv | Contents

Agent Monitoring Classes (CONt).ot e e 20
Agent Management ClasSesottt 21
Agent Management Classes (CONt).ttt i e e 22
AP REferenCe. . . o 23
Chapter 3 Configuration Object API.t it a st ann e aneenns 25
O IV . . ottt 26
Configuration ObJECtS oot 26
How the TIBCO Hawk Configuration Object APl Fits In 26
(070 T =T o 28
Configuration Objects 29
RUIEDAaSES . . . 29
SChedUleo 37
RulebaseMap. 41
Configuration Object Integrity 43
Dependence on the Console APl 44
Configuration Object APl Class StruCture. o e e e 45
Key to the UML diagrams. oo e e e e e 46
Configuration Object APl ClassSes oottt e 47
APLReference. 56
Chapterd AMI APl i ittt e a e e ans e sansansanannnns 57
AMI BaSICS . . .ottt 58
An Instrumented Application Looks like a Microagent. 58
Monitoring an Instrumented Application through the TIBCO Hawk WebConsole 59
Connecting AMI Participants 60
The AMI CONVEISAtioN o e e e e e e e e 61
First AMI Phase: Discovering the Application e 62
Second AMI Phase: Describing the Methods 63
Third AMI Phase: Calling the Methods e e 63
AMI AP ObDJECES . . o ettt 65
AMI S S SI0N. . . .o 65
AMIMETNOOS . . .o 65
AMI Parameter. . .. 67
Error LOggingot 68
Threading Model 68
AMI APL Sample Programs e e 69
The Sample AMI API Applications. o 69
Programmer’'s Checklist 73
Ct Library Files . ..o 73
CoLibrary Files . .. 74
Transport Based Library Files 75

TIBCO Hawk Programmer’s Guide

Contents | v

Java AMI APl Reference e 76
C++ AMI AP ReferencCeot e e 77
AMISESSION ClaSS . . o .ttt ittt 78
AMISESSION() - v v vttt e e e e 80
AMISESSION() - v v vttt e e e e 82
AMISESSIONIIOPEN() - o v vttt et et e e e e 84
AMISESSIONIICIOSE() -« v vttt 85
AmiSession:VersioNNAME() oo oottt 86
AMISESSIONIIVEISION(). . ¢ o v sttt et e e e e e e e e 87
AMISession:VersioNDate() v ot i e 88
AMISESSION:IDANNEI() . . . o . ot 89
AMISession:VersioNMAaJOr() v v it e e 90
AMISession:VersioNMINOI()o oot e e e e e e 91
AmiSession::getTracelevels()ot 92
AMIiSession::SetTraceleVvelS(). . . . o .ottt e 93
AmiSession::ienableTracelevels(). 94
AmiSession::disableTracelevels()ot 95
AMISESSIONIIANNOUNCE() .+« v vttt ettt et e et e e e e e e e e 96
AMISESSION:IGET... ACCESSOIS . . . o v it ittt e e e e e e e e e e 97
AmiSession::sendUnsolicitedMSg() oot i 98
AMISESSIONIISIOP() -« o v ettt e e 99
AMI Property Classot 100
AMIPTOPErty Classo o 101
AMIPTOPEITY() . v v v et e 102
AMIPTIOPEITY () - - v v et e e e e e 103
AMIMEhOd ClIasSes ot ittt et e e e e e e e 106
AMIMELhOd Classo 107
AmiMethod:isetindexName()ot 108
AmiMethod:iget...() ACCESSOISo ittt et e e e e 109
AMIMethod::onINVOKE(). . . . o .ot 110
AMIASYNCMELhOd Classottt e e e e 111
AMIASYNCMETNOA() ot 112
AmiAsyncMethod:onStart()o oo 113
AMIASYNCMEthOd:ioNStOP() - . o v vttt e 114
AmiAsyncMethod:ionData()o v e ot 115
AmiAsyncMethod::sendData()o ottt e 116
AMIASYNCMEthod:iSENAEITON() . . . v oottt e e e e e e e e 117
AMISYNCMEthod Classot e e 118
AMISYNCMEthOd() . . . o oot 119
AMISUDSCHPtioN Classot 120
AmiSubscription::getUserData()ot 121
AmiSubscription::setCallbackinterval().o 122
AmiSubscription:isetUserData() oot 123
AmiSubscription::getMethod() o 124

TIBCO Hawk Programmer’s Guide

Vi | Contents

AmiSubscription::getArguMENTS()ot 125
AMI Parameter Classesot 126
AmiParameter Classt 127
AmiParameter::addChoiCe() oo e 128
AmiParameter::addlegal(). oo 129
AmiParameter::getStatus()o e 130
AmiParameterin Class.o 131
AmiParameterin().o e e 132
AmiParameterOut Class o e 133
AmiParameterOUL() e e 134
AmiParameterList Classot 135
AmiParameterListin Classo 136
AmiParameterListin::getValue()o 137
AmiParameterListOut Class. it 138
AmiParameterListOut()o 139
AmiParameterListOut:inewROW(). e e 140
AmiParameterListOut:isetValue().o e e 141
AMIError Handlingo e 142
AMISTatUS Class. ot 143
AMISTATUS() .« o v et et e e 145
AmiStatus:igetAMIEITOr().o 146
AMIStatus:isetStatuS() o o ot 147
AMIStatus:isetStatuSV (). . . . o oo 148
AMISTatUSISIAMP() . . o o et 149
AMIStatus:igetCOdE(). . . . oottt e 150
AMIStatUS IGEITEXE(). .« . o oot 151
AmiStatus:getThread() oot 152
AMIStatus i getFile() . . . o oo 153
AMIStatus:igetline()o 154
C AMI API REEreNCE o e e 155
Data TYPeS SUMMEAIY . . .ot ettt et e e e e e e e e e e e e e e e 156
AMI AL T P . . o 158
ami_Boolean 159
AMI C AP CoNStants.ttt e e 160
ami_DataType . .. 161
AMI_EITOr . . 162
ami_Method e 164
aAMi_Method Y . . . o 165
AMI_ParamM e el e 166
ami_Parameterlist. e 167
ami_ParameterListList. e 168
F= 1 LIS Y=Y7] o] o 169
AMI_SUDSCHIPHON 170
AMI_PIOP eI . . o 171

TIBCO Hawk Programmer’s Guide

Contents | vii

AMI C API Error FUNCHONS . . . oo e e e e e e e e 172
Error FUNCHIONS SUMIMaAIY.o oo e e e e e 173
ami_ErrorCreate(), ami_errorCreateV()ottt 174
AMI_ErrorDestroy() . . . oottt 175
AMI_ErrorStamp() . . . oo 176
AMI_ErrOrGet... ACCESSOIS . . o i it ittt e e e e e e 177
Callback Function Types SUMMArYottt e e e e e e e e e 178
ami_ONnINVokeCallback. e e 179
ami_OnStartCallback e 180
ami_ONnStopCallback 181
ami_TraceHandler. e 182
Trace Control FUNCHIONS SUMMArYo e e e e 183
AMI_TraCECOUE. e e 184
ami_SessionGetTracelevels()ot 185
ami_SessionSetTracelevels()ot 186
ami_SessionEnableTracelLevels(). 187
ami_SessionDisableTracelevels()ottt e 188
Initialization and Termination Functions Summary 189
AMI_VEBISION... ACCESSOIS . . v ittt e e e et e e e e e e e e e e e e e e e 190
AMI_OPEN() .« o vttt 191
AMI_CIOSE() .« o vttt 192

AMI C API Session FUNCHONS 194
SesSioN FUNCHONS SUMMANYo e e e e e e 195
ami_SessionCreateUsingProperties() oottt 197
AMI_AAAPIOPEITY() .« . o ot e e 198
AMI_SESSIONCIEATE() .« . v v v oottt et e e 201
AMI_SESSIONDESIIOY() . . . v vttt 203
AMI_SESSIONANNOUNCE() .« . v ottt it ettt e e e e e e e e e 204
AMI_SESSIONSIOP() .+« « o vttt e e e 205
ami_SessioNGetNaME() oot e 206
ami_SessionGetDisplayName() oot 207
ami_SessioNGetHEIP() oot e e 208
ami_SessionGetUserDatal)ot e 209
ami_SessionSendData(). e 210
aAMi_SeSSIONSENAEITON() . . . ottt 211
ami_SessioNONData() oo e e 212
ami_SessionSendUnsolicitedMSg()o vt 213

AMI C API Method Functions 214
Method FUNCLIONS SUMMAY. oo e e e e e e 215
ami_MethodCreate(). oot 216
ami_AsyncMethodCreate(). v v vttt e e 217
ami_MethodGetName() o 218
ami_MethodGetHelp()o 219
ami_MethodGetUserData(). oot 220

TIBCO Hawk Programmer’s Guide

viii | Contents

ami_MethodSetIndeX().ot 221
AMI C APl Subscription FUNCHONS o e e e e e e e e 222
Subscription FUNCLIONS SUMMArYo e 223
ami_SubscriptionSetUserData() e 224
ami_SubscriptionGetUserData()ot e e 225
ami_SubscriptionSetCallbackinterval() e e 226
ami_SubscriptionGetMethod()o e e 227
ami_SubscriptionGetArgumMENts() oot 228
AMI C APl Parameter Functions i 229
Parameter FUNCHIONS SUMMaArYo o e 230
ami_ParameterCreateln()t 231
ami_ParameterCreateOut()ot 232
ami_ParameterListOut(). oot 233
ami_ParameterSetValue()ot 234
ami_ParameterGetValue()ot 235
ami_ParameterAddChoiCe()ttt 236
ami_ParameterAddLegal().ot 237
ami_ParameterListListDestroy().o oot 238
Chapter 5 Security Framework i et a s s e a s 239
TIBCO Hawk Security CONCEPLS.ttt e e e e e e e e 240
AuthentiCation 240
CertifiCateS. . . . oo 241
AUTNOIZatiON . . . 242
Data Privacy and Integrity 242
Considerations for the TIBCO Hawk System. e 242
Implementing @ Security POlICY 243
Creating a Java Security Classt e e 243
Framework ProtoCol. 243
Security ObjeCts.o 244
Sample Code 245
Appendix A Common Configuration Object APIMethodsot 249
Microagent and Method Invocation used in ConsequenceAction. 250
Interaction with Agent and Repository using the Console APl i 252
Methods Reference. oo 253
RuleBaseEngine:sendAlertMessaget 254
RuleBaseENgine:execute 255
RuleBaseEngine:sendMail 256
RuleBaseEngine:addRuleBase 257
RuleBaseEngine:deleteRuleBase 258

TIBCO Hawk Programmer’s Guide

Contents | ix

RuleBaseEngine:setSchedules 259
RuleBaseEngine:getSchedules e 260
RuleBaseENngine:getRBMapot e 261
Repository:addRuleBase 262
Repository:deleteRuleBase e 263
Repository:setSchedules 264
Repository:getSchedules 265
Repository:sSetRBMap 266
Repository:getRBIMapo 267
Appendix B Sample Programsc.iiiiitiitine ittt i a i 269
Rulebase Samples. 270
RBIsampleT Java. e 270
RBISample2.java.o e 270
RBIsample3.java.o e 270
Schedule Samples.o 272
ScheduleCreateAndSave.javaot 272
ScheduleUSINGEXCIUSION.JAVA. oottt e e e e e 272
ScheduleWithPeriodGroup.javaot e e e e e 272
ScheduleGetAndSet.java 272
Rulebase Map Samples. 274
RBMapCreateAndSave.java. oot e 274
RBMapUseComMmMaNd.javaottt et e e et e e e e e e e 274
RBMapUseComMmMaNd.javaottt e e et e e et e e e e e e 274
Appendix C Planning Your Instrumented Application, 275
Planningan AMl Interface 276
An Example of Planning AMI Methods 277
3T = 279

TIBCO Hawk Programmer’s Guide

X | Contents

TIBCO Hawk Programmer’s Guide

Topics

xi

Preface

This manual is intended for use by programmers.

It contains detailed description of Hawk Console API, Hawk Configuration
Object API, and Hawk Application Management Interface (AMI) APL

This manual assumes you are familiar with TIBCO Rendezvous and TIBCO
DataGrid architecture, and the concepts of system monitoring.

¢ Changes from the Previous Release of this Guide, page xii
¢ Related Documentation, page xiii
¢ Typographical Conventions, page xv

¢ Connecting with TIBCO Resources, page xvii

TIBCO Hawk Programmer’s Guide

Xii | Changes from the Previous Release of this Guide

Changes from the Previous Release of this Guide

There are no changes from the previous release of this guide.

TIBCO Hawk Programmer’s Guide

Preface | xiii

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Hawk Documentation

The following documents form the TIBCO Hawk documentation set:

TIBCO Hawk Concepts This manual includes basic descriptions of TIBCO
Hawk concepts.

TIBCO Hawk Installation, Configuration, and Administration Read this book first.
It contains step-by-step instructions for installing TIBCO Hawk software on
various operating system platforms. It also describes how to configure the
software for specific applications, once it is installed. An installation FAQ is
included.

TIBCO Hawk Microagent Reference A reference to the microagents and
methods used by a TIBCO Hawk Agent for system and application
monitoring.

TIBCO Hawk WebConsole User’s Guide This manual includes complete
instructions for using TIBCO Hawk WebConsole.

TIBCO Hawk Programmer’s Guide All programmers should read this manual.
It contains detailed descriptions of Application Management Interface (AMI),
Application Programming Interface (API) concepts, and the TIBCO Hawk
security framework and its classes. It also contains detailed descriptions of
each class and method for the following APlIs:

— AMI API
Java, C++ and C API

— Console API
Java API

— Configuration Object API
Java API

Programmers should refer to the appropriate language reference sections for
the AMI API details. The TIBCO Hawk Application Management Interface
(AMI) exposes internal application methods to TIBCO Hawk.

TIBCO Hawk Plug-in Reference Guide Contains details about the Enterprise
Message Service, Messaging and JVM microagents methods that are used to
administer and monitor the TIBCO Enterprise Message Service server.

TIBCO Hawk Programmer’s Guide

Xiv | Related Documentation

e TIBCO Hawk Plug-ins for TIBCO Administrator Contains detailed descriptions
of the TIBCO Hawk plug-ins accessed via TIBCO Administrator.

e TIBCO Hawk HTTP Adapter User’s Guide Contains information about
performing discovery, monitoring of agent status, monitoring of agent alerts,
method invocation, method subscription, and many more activities on TIBCO
Hawk and third-party products.

* TIBCO Hawk Admin Agent Guide Contains basic configuration details for
TIBCO Hawk Admin Agent Runtime and complete instructions for using the
web interface of TIBCO Enterprise Administrator for TIBCO Hawk.

e TIBCO Hawk Release Notes Read the release notes for a list of new and changed
features. This document also contains lists of known issues and closed issues
for this release.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO
products:

e TIBCO® Enterprise Administrator
— TIBCO Enterprise Administrator User’s Guide
— TIBCO Enterprise Administrator Installation Guide
— TIBCO Enterprise Administrator Developer’s Guide
e TIBCO ActiveSpaces®
— TIBCO ActiveSpaces Developer’s Guide
— TIBCO ActiveSpaces Administration
— TIBCO ActiveSpaces Installtion
— TIBCO ActiveSpaces C Reference
e TIBCO Rendezvous®
— TIBCO Rendezvous Concepts
— TIBCO Rendezvous Administration
— TIBCO Rendezvous Configuration Tools
¢ TIBCO Enterprise Message Service™
— TIBCO Enterprise Message Service Installation
— TIBCO Enterprise Message Service User’s Guide

TIBCO Hawk Programmer’s Guide

Preface | XV

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

ENV_HOME TIBCO products are installed into an installation environment. A product
TIBCO_HOME 1nstall.ed into an 1nsta.llat10n environment c.ioes not access Compor}ents n

other installation environments. Incompatible products and multiple
HAWK_HOME instances of the same product must be installed into different installation
CONFIG_FOLDER environments.

An installation environment consists of the following properties:

* Name Identifies the installation environment. This name is referenced in
documentation as ENV_NAME. On Microsoft Windows, the name is
appended to the name of Windows services created by the installer and is
a component of the path to the product shortcut in the Windows Start >
All Programs menu.

e Path The folder into which the product is installed. This folder is
referenced in documentation as TIBCO_HOME.

TIBCO Hawk installs into a directory within a TIBCO_HOME. This directory is
referenced in documentation as HAWK_HOME. The default value of
HAWK_HOME depends on the operating system. For example on Windows
systems, the default value is C:\tibco\hawk\5. 2.

A TIBCO Hawk configuration folder stores configuration data generated by
TIBCO Hawk. Configuration data can include sample scripts, session data,
configured binaries, logs, and so on. This folder is referenced in
documentation as CONFIG_FOLDER. For example, on Windows systems, the
default value is C:\ProgramData\tibco\cfgmgmt\hawk.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

TIBCO Hawk Programmer’s Guide

XVi | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
bold code font Bold code font is used in the following ways:
* In procedures, to indicate what a user types. For example: Type admin.

* Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command.
For example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

¢ Toindicate a document title. For example: See TIBCO BusinessWorks
Concepts.

¢ To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

¢ Toindicate a variable in a command or code syntax that you must
replace. For example: MyCommand pathname

Key combinations ~ Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after
the other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance,
%} for example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to

\\ilfo
(] apply the information provided in the current section to achieve a specific
result.
The warning icon indicates the potential for a damaging situation, for
A example, data loss or corruption if certain steps are taken or not taken.

TIBCO Hawk Programmer’s Guide

Preface | xvii

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destinaton for TIBCO customers, partners, and
resident experts—a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http:/ /docs.tibco.com/

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO Hawk Programmer’s Guide

http://www.tibcommunity.com
http://docs.tibco.com/
http://www.tibco.com/services/support
https://support.tibco.com

xviii | Connecting with TIBCO Resources

TIBCO Hawk Programmer’s Guide

| 1

Chapter 1 Introduction to TIBCO Hawk Programming
TIBCO Hawk software monitors distributed systems and applications.
You can interact with TIBCO Hawk applications through the TIBCO Hawk
Console API or through TIBCO Hawk AMI APlIs.

Topics

* Programming Tools and Interfaces, page 2

TIBCO Hawk Programmer’s Guide

2 | Chapter 1 Introduction to TIBCO Hawk Programming

Programming Tools and Interfaces

Console API

The Console APl is a comprehensive set of Java interfaces that allow you to
manage and interact with TIBCO Hawk agents and monitor alerts generated by
these agents. Both the TIBCO Hawk WebConsole and TIBCO Hawk Event Service
implement the Console API to monitor and manage agent behavior. Programmers
can use the Console API to write custom applications similar to these applications
to monitor agent behavior, subscribe to alert messages, and invoke microagent
methods.

Configuration Object API

AMI API

Security API

The Configuration Object API is a Java interface for writing custom rulebases.
Rulebases are used by TIBCO Hawk agents to monitor and manage systems and
applications. The Configuration Object API provides classes to define rules, tests
and actions. Instances of these classes are put together to define a new rulebase.

The AMI API allows application to instrument their applications with the Hawk
API and make them manageable using Hawk Agent. AMI APIs are available in
Java, C and C++.

The TIBCO Hawk Security APl is used to build security plug-in modules used for
secure agent and console interactions. The security mechanism actually involves
two modules, one that is used by the agent and another that is used by the
console. If you use the Console API to write console applications that will operate
in a secure TIBCO Hawk environment, you must have access to the console-side
security plug-in class to be able to perform management operations on agents.
The TIBCO Hawk WebConsole requires a security plug-in class to manage agents
in a secure environment.

TIBCO Hawk Programmer’s Guide

Chapter 2

Topics

Console API

The TIBCO Hawk Console APl is a Java language interface for writing programs
that can perform monitoring and management of TIBCO Hawk agents. It
provides all the facilities required to perform discovery, monitoring of agent-alive
status, monitoring of agent alerts, and the monitoring of agent configuration
changes. It also allows you interact with agents and their managed objects
through remote method invocations on microagents.

This chapter provides a brief overview of the major components of the TIBCO
Hawk Enterprise Monitor and how the TIBCO Hawk Console API relates to
them.

¢ How the TIBCO Hawk Console API Fits In, page 4
¢ Concepts, page 5

e TIBCO Hawk Console API Class Structure, page 17
* API Reference, page 23

TIBCO Hawk Programmer’s Guide

4 | Chapter 2 Console API

How the TIBCO Hawk Console API Fits In

S

The TIBCO Hawk Console API allows you to write programs that can monitor the
alerts generated by TIBCO Hawk agents and perform management operations on
their microagents. Applications using this API can be referred to as console
applications.

Both the TIBCO Hawk WebConsole and the TIBCO Hawk Event Service use the
TIBCO Hawk Console API to monitor or manage agents, or both. They are thus
both good examples of the types of applications that can be built with this
interface.

Applications built with the Console API can monitor every node within a given
TIBCO Hawk domain. However, additional instances of console applications can
run simultaneously on multiple nodes in the network with little or no additional
network impact.

The TIBCO Hawk Console API does not provide facilities for the creation of
rulebases.

Monitoring Component

The monitoring component of the TIBCO Hawk Console API provides events that
notify your application when:

* Agents are discovered

* Agents expire

* Alerts and clears are generated by an agent's rules engine
* An agent's list of microagents changes

¢ An agent's list of rulebases changes

Management Component

The management component allows you to interact with an agent's microagents

by:

* Invoking their methods to return management data or perform management
functions

¢ Subscribing to their management data in a way that produces an updating
data stream of management information

¢ Performing group operations on multiple Microagents across the network
simultaneously

TIBCO Hawk Programmer’s Guide

Concepts

Concepts | 5

The following sections provides some background information on using the
classes.

Structure, page 6

Monitoring Operations, page 6
The Agentlnstance Class, page 9
Management Operations, page 10
Management Operations, page 10
Microagent Descriptors, page 11
Invoking Methods, page 12
Subscribing to Method Results, page 13
Group Operations, page 14
Lightweight Console, page 15
MicroAgent Plug-in, page 16

TIBCO Hawk Programmer’s Guide

6 | Chapter 2 Console API

Structure

The TIBCO Hawk Console API is partitioned along the functional lines of
monitoring and management. At the root is the TIBHawkConsole class from
which you can access the AgentMonitor and AgentManager, which encompass
the monitoring and management facilities of the API.

Monitoring Operations

The TIBCO Hawk Console API allows you to monitor all agents simultaneously
from a single program.

For each agent, the APIs monitoring capabilities can be decomposed into four
areas:

* Management Operations

* Microagent List Monitoring
® Rulebase List Monitoring

e Alert Monitoring

All monitoring is performed using event notification. Listeners are registered
with the AgentMonitor for the type of monitoring required and the relevant
status messages are delivered as events when they are detected.

A registered listener for a particular type of event will receive notifications for all
monitored agents that generate that event. For example, registering a
AgentMonitorEventLister with the console will allow it to receive
AgentMonitorEvents for all agents known to the console, thus allowing it to
track the alive or expired status of every agent.

Agent-Alive Monitoring

The most basic type of monitoring is the monitoring of agent existence. This is
achieved by registering an AgentMonitorListener with the AgentMonitor.
When you register an AgentMonitorListener, it will receive one agent-alive
event for every agent the console can detect.

An agent-alive event is actually represented by the delivery of an
AgentMonitorEvent to the onAgentAlive () method of the listener. This event
contains a reference to an AgentInstance object which identifies which agent it
pertains to. As new agents appear in the network, new agent-alive events will be
generated to identify them. When the console is no longer able to communicate
with an agent, it will issue an agent-expired event for that agent. This is
performed by delivering a AgentMonitorEvent to the onAgentExpired()

TIBCO Hawk Programmer’s Guide

Structure | 7

method of the listener. As before, this event contains a reference to an
AgentInstance object which identifies which agent it pertains to. The console can
lose communication with an agent for several reasons, for example if the agent
process is no longer running, the machine it was running on has crashed, or
because of a problem in the underlying communications infrastructure such as a
network outage.

Microagent List Monitoring

Each agent contains a collection of objects called microagents. Microagents have
methods through which monitoring and management is performed. Microagents
represent managed entities such as the operating system's subsystems, log files,
event logs, or applications. A newly launched application instrumented with AMI
will dynamically appear as a microagent on its managing agent (by default, the
one located on the same processor). When the instrumented application
terminates, the corresponding microagent will also be removed.

Microagent list monitoring is used to track the dynamic list of microagents in an
agent. Events are delivered when microagents are added and removed.

To perform this type of monitoring you simply register a
MicroAgentListMonitorListener with the AgentMonitor. Events of type
MicroAgentListMonitorEvent are then delivered to either the
onMicroAgentAdded() or onMicroAgentRemoved () method of the listener. The
event contains an AgentInstance object, which identifies the agent, and a
MicroAgentID object, which identifies the microagent.

Rulebase List Monitoring

Rulebases direct the monitoring activities of an agent. Each rulebase is a collection
of rules which are usually grouped together to monitor an application or system
resource. An agent may have more than one loaded rulebase and this list can
change dynamically.

Rulebase list monitoring is structurally similar to microagent list monitoring. It is
used to monitor the dynamically changing list of rulebases that are loaded on an
agent.

To perform this type of monitoring you register a
RuleBaselistMonitorListener or onRulebaseUpdated with the AgentMonitor.
Events of type RuleBaseListMonitorEvent are then delivered to either the
onRuleBaseAdded() or onRuleBaseRemoved () method of the listener. The event
contains an AgentInstance object, which identifies the agent, and a
RuleBaseStatus object, which is used to identify the rulebase being added or
removed.

TIBCO Hawk Programmer’s Guide

8 | Chapter 2 Console API

Alert Monitoring

The onRulebaseUpdated() listener provides an atomic update callback for
rulebase update events. To receive onRulebaseUpdated(), implement
ExtendedRuleBaseListMonitorListener as per the definition provided in API
Reference, page 23 section.

One of the actions a rulebase can take is to generate an alert, which is usually
done to signal that a problem condition has been detected. Alerts contain a state,
to indicate the problem severity, and text, which provides the problem
description. If the alert condition, as defined by the rulebase, ceases to exist, the
rulebase will generate a clear against that alert.

Every alert is associated with a particular rulebase and every rulebase is
associated with a particular agent. (Technically, rulebases are said to be associated
with the RuleBaseEngine microagent instance registered with that agent,
therefore the association with the agent is indirect.) The alert state of a rulebase
will always be highest alert state of all the active (non-cleared) alerts associated
with it. The alert state of an agent (or its RuleBaseEngine microagent) is the
highest alert state of any of its currently loaded rulebases. Therefore, alerts and
clears can potentially change the state of the rulebase and agent that generated
them.

Alert monitoring is performed by registering an AlertMonitorListener with the
AgentMonitor. Alerts and clears generated by an agent are detected by the
console and delivered as AlertMonitorEvent objects to the listener. Since
AlertMonitorEvent is an abstract class, one of its concrete subclasses is
delivered: PostAlertEvent for alerts and ClearAlertEvent for clears.

Every AlertMonitorEvent contains flags that indicate whether it caused a
change in the state of the RuleBaseEngine or the rulebase it is associated with. It
also holds the current states of those objects after taking into account the current
event. Other attributes include an alert ID, which uniquely identifies an alert, and
the time the event was generated.

Because AlertMonitorEvent extends AgentMonitorEvent, it also has an
AgentInstance attribute to identify the agent that generated the event.

The PostAlertEvent class extends AlertMonitorEvent and adds the state of the
alert and the alert text. The ClearAlertEvent class extends AlertMonitorEvent
and adds the reason-cleared text. This string identifies the reason the alert was
cleared.

All alert states are represented as integer values that are mapped using the
AlertState interface. A PostAlertEvent with a state of AlertState.NO_ALERT
is also called a notification.

TIBCO Hawk Programmer’s Guide

Structure | 9

The Agentinstance Class

Agent ID

Agent Instance

Common to all monitoring events, and that which relates them to each other, is
the agent instance they pertain to. This agent instance is represented in the TIBCO
Hawk Console API by the AgentInstance class. The following definitions and
discussion describe this class, the related AgentID class, and their role in
monitoring.

The agent ID specifies the attributes of an agent process that are used to uniquely
identify it. These attributes are

s Agentname
¢ Agent domain

e TIBCO Hawk domain name.

The agent instance is an instantiation of a agent; the actual agent process running
on some machine in the network. If an agent is restarted, the new process
represents a new agent instance. Agent instances have a life span that begins with
the starting of an agent process and ends with its termination. Agent instances are
represented by the AgentInstance class.

Ensuring Each Agent Instance has a Unique ID

In order for the TIBCO Hawk system to function correctly, every concurrently
running agent instance must have a unique agent ID. The console will attempt to
detect violations of this condition and produce a warning. However, this may not
be detectable in all circumstances and so the system administrator must insure
that every agent has a unique agent ID.

If a console client is interested in tracking agent status across agent instances or
console agent instances then it may do so using the console agent ID, that is, the
AgentID class. If a agent is restarted several times (without changing its ID
attributes) then this will result in the creation of several distinct instances of
AgentInstance in the console. These different instances, however, will all have
equal AgentID values to reflect the fact that they all relate to the same logical
agent. Note that these multiple instances of AgentInstance will never be
referenced simultaneously by the console. This is because the console will never
hold two AgentInstance objects with equal AgentID attributes at any one time.

TIBCO Hawk Programmer’s Guide

10 | Chapter 2 Console API

Management Operations

Management functions are performed by invoking management operations on
microagents. As described in Microagent List Monitoring on page 7, each agent
contains a collection of objects called microagents. Microagents have methods
through which all monitoring and management is performed. Microagents
represent managed entities such as the operating system's subsystems, log files,
event logs, applications, and even the agent itself.

The AgentManager class is used to interact with microagents. An instance of this
class is obtained by invoking the getAgentManager () method of the
TIBHawkConsole class.

The first step in interacting with a microagent is to obtain its descriptor. This
descriptor enumerates the available methods and describes their signature and
their return types. With this information you can then invoke methods and
subscribe to method results for an individual microagent. You can also perform a
group operation that simultaneously performs a method invocation on multiple
instances of the same microagent across multiple agents.

TIBCO Hawk Programmer’s Guide

Structure | 11

Microagent Descriptors

Descriptors are represented by the MicroAgentDescriptor class. They are
obtained by invoking the describe () method of the AgentManager class. A
MicroAgentDescriptor fully describes a microagent. It contains a list of
MethodDescriptor objects that describe each available method and all that is
needed to invoke them.

The methods of a microagent are divided into three categories depending on their
impact. These categories are enumerated by the following static variables of the
MethodDescriptor class:

¢ IMPACT_ACTION: Methods of type IMPACT_ACTION take some action that can
potentially change the state of the managed object represented by the
microagent.

® IMPACT_INFO: Methods of type IMPACT_INFO simply retrieve some
information in a manner that does not change the state of the managed object.

¢ IMPACT_ACTION_INFO: Methods of type IMPACT_ACTION_INFO return data but
may also change the sate of the managed object.

The describe () method of the AgentManager requires an argument of type
MicroAgentID. There are two general ways to obtain MicroAgentID objects:

¢ If your application is also performing monitoring then the MicroAgentIDs for
microagents loaded on a particular agent can be obtained from the method
AgentInstance.getStatusMicroAgents(). A registered
MicroAgentListMonitor object also receives MicroAgentIDs in the events
delivered to it.

e The method AgentManager. getMicroAgentID() can also be used to obtain
MicroAgentID objects. It takes a microagent name as its argument and returns
an array of all microagents of that name that are currently loaded on all agents
the console can communicate with. This method blocks for a period of time
while it queries the agents on the network. A second version of this method
accepts an integer that indicates the minimum number of desired microagent
ids in the return. This method generally returns more quickly than the first
version if the minimum number specified is less than or equal to the actual
number of matching microagents on the network.

TIBCO Hawk Programmer’s Guide

12 | Chapter 2 Console API

Invoking Methods

Error Handling

Microagent methods are invoked using the invoke () method of the
AgentManager. This method takes a MicroAgentID and a MethodInvocation
object. The MicroAgentID may be obtained as described in Microagent
Descriptors on page 11. The MethodInvocation can be constructed using the data
provided in the microagent descriptor.

Method invocations return an instance of the MicroAgentData class, which acts
as a container for transmitting invocation results. MicroAgentData objects
contain source and data attributes. The source attribute is a MicroAgentID object
identifying the source of the data. The data attribute contains the actual method
invocation results.

Two general types of errors can occur with method invocations:

1. During the delivery of a method invocation to, or the results back from, a
microagent. This condition will cause the invoke () method to throw a
MicroAgentException.

2. During the invocation of the method on the microagent itself. This condition
will cause this method to deliver a MicroAgentException in the data field of
the MicroAgentData return.

Thus, a successful method invocation is one that doesn't throw an exception and
does not deliver a MicroAgentException in the data field of its MicroAgentData
return.

If the method invocation is successful, the data field of its MicroAgentData return
will contain the method's return value or null if the method doesn't return a
value.

TIBCO Hawk Programmer’s Guide

Structure | 13

Subscribing to Method Results

The AgentManager also allows you to register a subscription for microagent
methods with its subscribe () method. Registering for a subscription is
analogous to registering for an event. It results in a continuous stream of
MicroAgentData return values from the method being subscribed to. This data is
asynchronously delivered to a SubscriptionHandler object supplied during
registration.

In addition to a SubscriptionHandler, the subscribe () method of
AgentManager requires a MicroAgentID, to identify the target, and a
MethodSubscription object.

The MethodSubscription Class

The MethodSubscription class extends the MethodInvocation class. A
MethodSubscription should be constructed in accordance with the
MethodDescriptor of the target method.

Registering a subscription returns a Subscription object that can be used to
cancel the subscription and to examine how the subscription was created

Only methods that return data should be subscribed to. This includes methods of
type IMPACT_INFO and IMPACT_ACTION_INFO.

Synchronous and Asynchronous Method Subscriptions

You can use either of two constructors to build a MethodSubscription,
depending on whether you are creating a subscription for a synchronous or
asynchronous method. The MethodDescriptor for a method indicates whether
the method is synchronous or asynchronous. An asynchronous method is
analogous to an event source. Listeners that subscribe to an asynchronous method
will receive the method's declared return value each time a particular event
occurs.

The MethodSubscription constructor for synchronous method subscriptions
requires an interval parameter. It is used to specify a desired subscription service
rate. Subscriptions made of synchronous methods will use this value as a hint to
determine how often to deliver data to service a subscription. Most microagents
will usually enforce a minimum rate, which will be used if the supplied value is
below their minimum.

The MethodSubscription constructor for asynchronous method subscriptions
does not accept an interval parameter. Asynchronous methods deliver data at a
rate determined by the microagent, typically, whenever it is available.

TIBCO Hawk Programmer’s Guide

14 | Chapter 2 Console API

Error Handling
Two general types of errors can occur with subscriptions:

1. During the registration of the subscription. This condition will cause the
AgentManager. subscribe () method to throw a MicroAgentException.

2. During the servicing of the subscription These errors are delivered to the
SubscriptionHandler.

Group Operations

Group operations are performed with the groupOp () method of the
AgentManager. They are very similar to method invocations. The difference is that
they require an array of MicroAgentID targets and return an array of
MicroAgentData values.

A group operation effectively performs a method invocation simultaneously on
all of the specified target microagents. It is useful for affecting a group of
microagents in a single operation.

TIBCO Hawk Programmer’s Guide

Structure | 15

Lightweight Console

By default, the console monitors and can communicate with every agent in a
given TIBCO Hawk domain. If, however, you are building an application that
needs to interact with only a single agent, you can initialize the console in such a
way that limits its communication to just that agent. This results in a lightweight
console instance that uses fewer resources.

Creatinga Instantiating a lightweight console involves constructing a TIBHawkConsole
Lightweight ~ object with a fully qualified hawkDomain parameter. A fully qualified
Console hawkDomain narrows down the domain to a single agent and contains the three

parts that uniquely identify an agent, in a dot-separated format:
<hawkDomain>.<agentDNS>.<agentName>

* <hawkDomain> is what would be used as the hawkDomain parameter of the
TIBHawkConsole constructor if you were instantiating a console that
communicates with all agents. If an agent is configured without a
hawkDomain specification, it uses the value "default".

* <agentDNS> should match the agentDNS (also called agent domain)
parameter with which the agent was configured. If the agent was not
configured with an agentDNS, it uses the value "none".

* <agentName> must match the agent name. If not set, this defaults to the
hostname the agent is running on. See The AgentInstance Class on page 9 for
more information

Using the Dotand ~ None of the three elements may contain the dot "' character. The dot is used as a
Underscore separator in a fully qualified hawkDomain. If any of the three components require
Characters a dot (agentDNS typically does), replace all occurrences with the underscore '_'
character. The agent automatically performs this translation on its end.

For example, if an agent is configured with the following values:
¢ hawkDomain = testDomain

* agentDNS = myfirm. com (note the dot in the name)

¢ agentName = hostl

the fully qualified hawk domain is:

testDomain.myfirm_com.hostl

TIBCO Hawk Programmer’s Guide

16 | Chapter 2 Console API

Console Application with Secure Domain

To build a console application with secure domain, you need to use a secure
transport. You can connect to TIBCO EMS transport with SSL using Console API
for Agent-Console communication.

Refer to HAWK_HOME/examples/console_api/TestConsoleSSL. java for a
sample java program to demonstrate a console test application which uses SSL
parameters to connect to SSL.

MicroAgent Plug-in

The COM.TIBCO.hawk.agent.nest package is used to write TIBCO Hawk
microagents that run inside the agent. To run as a microagent in the TIBCO Hawk
agent, an object must implement either the MicroAgent or ServiceMicroAgent
interface. Note that this package is dependent on the
COM.TIBCO.hawk.console.talon package.

TIBCO Hawk Programmer’s Guide

TIBCO Hawk Console API Class Structure | 17

TIBCO Hawk Console API Class Structure

This section contains UML diagrams showing the structure of the following two
packages:

COM.TIBCO.hawk.hawkeye: classes used to monitor agents
COM.TIBCO.hawk. talon: classes used to manage agents

e Key to the UML Diagrams, page 18

* Agent Monitoring Classes (Hawkeye), page 19

* Agent Management Classes, page 21

TIBCO Hawk Programmer’s Guide

18 | Chapter 2 Console API

Key to the UML Diagrams
These class diagrams use a subset of UML notation. Here is a brief key:

Classes and their methods are shown in rectangles:

Class Name

methodl(argName:type,...):methReturnType
method2(argName:type,...):methReturnType

Some methods and argument names are omitted for clarity. A third part, between
the class name and methods, may be used for class variables. Underlined
members are static.

Comments are shown in a rectangle with a turned down corner. A dotted line
shows what the comment applies to.

Associations

Associations are indicated with lines:

Inheritance

Superclass 4 Subclass

Interface <}———— Implementing Class
Navigation
ClassA < ClassB

An instance of Class A can be referenced from an instance of Class B
Aggregation
ClassA >— ClassB

Composite aggregation. An instance of ClassA contains an aggregation of instances of
ClassB. These instances of ClassB belong to only one composite at a time.

TIBCO Hawk Programmer’s Guide

TIBCO Hawk Console API Class Structure | 19

Agent Monitoring Classes (Hawkeye)

TIBCOHawkConsole

<<construnctor>>
TIBCOHawkConsole(licenseFile:String,
hawkDomain:String, rvService:String,
rvNetwork:String, rvDaemon:String)
<<misc>>
getAgentManager():AgentManager
getAgentMonitor():AgentMonitor

AgentMonitor

initialize()

add/removeAgentMonitorListener(:AgentMonitorListener)
add/removeMicroAgentListMonitorListener(:MicroAgentListMonitorListener)
add/removeRuleBaseListMonitorListener(:RuleBaseListMonitorListener)
add/removeAlertMonitorListener(:AlertMonitorListener)

<<interface>> add/removeErrorExceptionListener(:ErrorExceptionListener)
MonitorListener addremove/WarningExceptionListener(:WarningExceptionListener)
shutdown()

<<interface>> AgentMonitorListener

onAgentAlive(:AgentMonitorEvent)
onAgentExpired(:AgentMonitorEvent)

<<interface>> MicroAgentListMonitorListener

| onMicroAgentAdded(:MicroAgentListMonitorEvent)
onMicroAgentRemoved(:MicroAgentListMonitorEvent)

4{ <<interface>> RuleBaseMonitorListener ‘

<<interface>> RuleBaseListMonitorListener

onRuleBaseAdded(:RuleBaseListMonitorEvent)
onRuleBaseRemoved(:RuleBaseListMonitorEvent)

<<interface>> AlertMonitorListener

onAlertMonitorEvent(:AlertMonitorEvent)
onRetransmittedAlert(:AlertMonitorEvent)

<<interface>>
ExceptionListener

<<interface>> ErrorExceptionListener

onErrorExceptionEvent(:ErrorExceptionEvent)

<<interface>> WarningExceptionListener

onWarningExceptionEvent(:WarningExceptionEvent)

TIBCO Hawk Programmer’s Guide

20 | Chapter 2 Console API

Agent Monitoring Classes (Cont)

MonitorEvent |

| getAgentinstance():Agentinstance |

—

AgentMontorEvent |

MicroAgentListMonitorEvent 0
) o COM.TIBCO.hawk.talon. |
getMicroAgentID():MicroAgentiD ——>f MicroAgentiD 1‘
RuleBaseMonitorEvent
RuleBaseStatus |0..*

getRuleBaseStatus():RuleBaseStatus

getName():String
getChecksum():long
getAlertIDs():long[]
getState():int

—{ RuleBaseListMonitorEvent

Agentinstance

getAgentID():AgentiD
getAgentPlatform():AgentPlatform
getAgentVersion():AgentVersion
getCluster():String
getIPAddress():String
getRuleBaseEngineState():int
getStartTime():long
getStatusMicroAgents():MicroAgentID[]
getStatusRuleBases():RuleBaseStatus]]
getUserData():Object
setUserData(:Object)

isValid():boolean

retransmitAlerts(:long[])

Agent ID

AlertMonitorEvent

getAlertID():long
getRuleBaseEngineState():int
ruleBaseStateChanged():boolean

getTimeGenerated():long

ruleBaseEngineStateChanged():boolean

getName(): String
getDns():String
getHawkDomain():String
hashCode():long
equals(:Object):boolean

PostAlertEvent

getAlertState():int
getAlertText():String
getProperties():Properties
isRetransmittedAlert():boolean

Agent Version

getMajorVersion():int
getMinorVersion():int
getUpdateVersion():int

<<interface>>
AlertState

AgentPlatform

ALERT HIGH:int

ClearAlertEvent

ALERT_MED:int

getReasonClearedText():String
match(:PostAlertEvent):boolean

ALERT_ LOW:int
NO_ALERT:int

getOsName():String
getOsVersion():String
getOsArch():String

ExceptionEvent

—{ getConsoleException():ConsoleException

[ErrorExceptionEvent |
getConsoleError():ConsoleError

ConsoleError

ConsoleException
AN

\ WarningExceptionEvent

getConsoleWarning():ConsoleWarning

TIBCO Hawk Programmer’s Guide

ConsoleWarning

ConsolelnitializationException |

Agent Management Classes

TIBCOHawkConsole

<<construnctor>>

TIBCOHawkConsole(licenseFile:String,
hawkDomain:String, rvService:String,
rvNetwork:String, rvDaemon:String)

TIBCO Hawk Console API Class Structure | 21

BN

*These classes are

part of the Hawkeye
package. All other

<<misc>>

getAgentManager():AgentManager
getAgentMonitor():AgentMonitor

management classes
are members of talon.

<<interface>> MicroAgentServer

describe(:MicroAgentID):MicroAgentDescriptor
invoke(:MicroAgentiD,
:MethodInvocation):MicroAgentData
subscribe(:MicroAgentID, :MethodSubscription,
:SubscriptionHandler, handback:Object): Subscription
getMicroAgentIDs(name:String):MicroAgentID[]

MicroAgentData

getSource():MicroAgentID
getData():Object

<<interface>> Subscription

cancel()
getMethodSubscription()
:MethodSubscription
getMicroAgentID():MicroAgentID
getHandback():Object

AgentMonitor

AgentManager

describe(:MicroAgentID):MicroAgentDescriptor

| invoke(:MicroAgentID, :MethodInvocation):MicroAgentData

subscribe(:MicroAgentID, :MethodSubscription,
:SubscriptionHandler, handback:Object):Subscription
getMicroAgentIDs(name:String):MicroAgentID[]
getMicroAgentlDs(name:String, max:int):MicroAgentID[]
groupOp(:MicroAgentID[],
:MethodInvocation):MicroAgentData[]

initialize()

initialize(securitylmpl:String, securityMode:int)
shutdown()

MethodInvocation

<<constructor>>

MethodInvocation(methodName:String,
args:DataElement][])

<<misc>>

getMethodName():String

getArguments():DataElement][]

equals(:Object):boolean

i

MethodSubscription

MicroAgentID

getName():String

MicroAgentDescriptor getDisplayName():String

getinstance():String
getChecksum():long

getAgent():Agent
isService():boolean
hashCode():int
equals(:Object):boolean

Illustrated in next
diagram.

Agent

getName(): String
getDns():String
getHawkDomain():String
getStartTime():long
hashCode():int
equals(:Object):boolean

<<constructor>>

MethodSubscription(methodName:String,
args:DataElement][])

MethodSubscription(methodName:String,
args:DataElement[], interval:long)

<<misc>>

getinterval():long

isAsync():boolean

equals(:Object):boolean

‘ MicroAgentException ‘

<<interface>> SubscriptionHandler

onData(:Subscription, :MicroAgentData)
onError(:Subscription, :MicroAgentException)
onErrorCleared(:Subscription)
onTermination(:Subscription, :MicroAgentException)

TIBCO Hawk Programmer’s Guide

22 | Chapter 2 Console API

Agent Management Classes (Cont)

MicroAgentDescriptor

getName():String
getDisplayName():String
getDescription():String
getChecksum():long

toFormattedString():String
equals(:Object):boolean

getMethodDescriptors():MethodDescriptor|]

\

MethodDescriptor

IMPACT_ACTION:int

IMPACT_ACTION_INFO:int

IMPACT_INFO: int

getName():String
getDescription():String

getimpact():int
getMaxResponseTime():int
isAsync():boolean
isOpenMethod():boolean
toFormattedString():String
equals(:Object):boolean

getReturnDescriptor():DataDescriptor
getArgumentDescriptors():DataDescriptor|]

DataDescriptor

getName():String
getType():String
getDescription():String
getDefault():Object
getValueChoices():Object]]
getLegalValueChoices:Object]]
isOpenData():boolean
equals(:Object):boolean

CompositeDataDescriptor

getElementDescriptors():DataDescriptor]]
isOpenData():boolean
equals(:Object):boolean

TabularDataDescriptor

getColumnNames():String[]
getColumnTypes():String[]
getindexNames():String[]
isOpenData():boolean
equals(:Object):boolean

<<interface>>
OpenData

CompositeData

TabularData

types:String[] =
"java.lang.String"
"java.lang.Character"
"java.lang.Boolean"
"java.lang.Byte"
"java.lang.Short"
"java.lang.Integer"
"java.lang.Long"
"java.lang.Float"
"java.lang.Double"
"COM.TIBCO.hawk.talon.
CompositeData"
"COM.TIBCO.hawk.talon.
TabularData"

getDataElements():DataElements]]
getValue(:String):Object
equals(:Object):boolean

DataElement

getName():String
getValue():Object

getColumnNames():String[]
getColumnTypes():String[]
getindexNames():String[]
getRow(indexes:DataEkenebt[]):
DataElement[]
containsRow(indexes:DataElement[
]):boolean
getAllDataElements():DataElement[] []
getAllData():Object[] []
equals(:Object):boolean

!

equals(:Object):boolean

TIBCO Hawk Programmer’s Guide

API Reference | 23

API Reference

The following link provides access to the TIBCO Hawk Console API Javadocs.

e Console API Javadocs

TIBCO Hawk Programmer’s Guide

https://docs.tibco.com/pub/hawk/5.1.0/doc/api/console-api/index.html

24 | Chapter 2 Console API

TIBCO Hawk Programmer’s Guide

Chapter 3

Topics

|25

Configuration Object API

The TIBCO Hawk Configuration Object APl is a Java language interface which is
used to build and update TIBCO Hawk Agents configuration objects.

When the TIBCO Hawk Configuration Object API is used with the TIBCO Hawk
Console AP, you can use the combined APIs to manage configuration objects
through remote method invocations on TIBCO Hawk agents or repositories.

This chapter provides a brief overview and usage of the major components of the
TIBCO Configuration Object APL It includes a summary of the Java packages in
the Configuration Object API and a discussion of related TIBCO Hawk APIs.

¢ Overview, page 26

¢ Concepts, page 28

* Configuration Object API Class Structure, page 45
* API Reference, page 56

TIBCO Hawk Programmer’s Guide

26 | Chapter 3 Configuration Object API

Overview

Configuration Objects

There are three types of configuration objects in TIBCO Hawk:
* Rulebase

* Schedule

* Rulebase Map

A TIBCO Hawk Agent manages and monitors managed objects by processing
rulebases. A rulebase is a named collections of rules that contain management
logic. The management logic in a rule is defined by the tests and actions to be
taken from data collected from a given data source. A rulebase can be loaded on a
single agent, on a group of agents, or on every agent in the network depending on
the TIBCO Hawk Agents' configuration mode.

A schedule defines when a rulebase, rule, test or action is active. If schedule is not
specified in a rulebase, the rulebase is always active when loaded. A schedule
contains inclusion and/or exclusion periods that will determine if a schedule is
in-schedule or out-of-schedule at a specified time.

A rulebase map maps rulebases to TIBCO Hawk Agents on the network. It directs
TIBCO Hawk Agents or groups of agents on the network to load particular
rulebases at startup. It is used by TIBCO Hawk Agents running in either Manual
Configuration Mode or Repository Configuration Mode.

Together with the Console API, these configuration objects can be retrieved and
sent to TIBCO Hawk Agents or Repositories from a Java application.

How the TIBCO Hawk Configuration Object API Fits In

The TIBCO Configuration Object API provides classes to define configuration
objects such as rulebases, schedules, and rulebase maps. These classes enable you
to write programs that can create and modify rulebases, schedules, and rulebase
maps programmatically without using the editors in the TIBCO Hawk
WebConsole. Rulebases, schedules, and rulebase maps are used by TIBCO Hawk
agents to monitor and manage systems and applications.

TIBCO Hawk Programmer’s Guide

Overview | 27

When using the Rulebase Editor, the context of the rulebase is implied. Using this
context, the Rulebase Editor presents you with the data sources and actions that
are available to the agent. These data sources and actions are in the form of
microagents, methods and arguments. When using the Configuration Object API,
rulebase objects specify their data sources and actions using the
MethodSubscription and MethodInvocation classes of the TIBCO Hawk Console
APL

When the TIBCO Hawk Configuration Object API is used with the TIBCO Hawk
Console API, the application can dynamically create or update configuration
objects on a TIBCO Hawk agent or repository.

Any complex tests with valid operators can be built using the rulebase related
classes in Configuration Object API. However, not all the test conditions built
using the Configuration Object API can be modified using the rulebase editor in
TIBCO Hawk WebConsole. In such cases, the rulebase editor will simply display
the test as a string. However, such complex tests can be edited using a
custom-built editor based on the TIBCO Configuration Object APL

TIBCO Hawk Programmer’s Guide

28 | Chapter 3 Configuration Object API

Concepts

This section provides some background information on the configuration objects
and the Configuration APlIs.

¢ Configuration Objects, page 29

* Rulebases, page 29

® Schedule, page 37

* RulebaseMap, page 41

¢ Configuration Object Integrity, page 43

¢ Dependence on the Console API, page 44

TIBCO Hawk Programmer’s Guide

Concepts | 29

Configuration Objects

Rulebases

A TIBCO Hawk Agent manages and monitors applications and systems based on
configuration objects such as rulebases, schedules, and a rulebase map loaded on
the Agent.

A rulebase map directs TIBCO Hawk agents or groups of agents on your network
to load particular rulebases at startup. For example, using a rulebase map you can
instruct an agent to load a rulebase designed specifically for the operating system
where it runs.

Every rulebase contains rules which are made up of data sources, tests, and
actions. Each rule contains management logic. The management logic in a rule is
defined by the tests and actions to be taken from data collected from a given data
source. If a schedule is specified in a rulebase, rule, test or action, it will determine
if these objects should be active or not at a specified time.

Details of rulebases, schedules, and rulebase maps are described below.

A rulebase is a configuration object that provides the rules for the monitoring
activities that are to be autonomously performed on an agent. At the core of all
rulebase monitoring activity is the collection of data, testing of that data, and
taking actions based on the test results. All monitored data is provided by the
agent's microagents through microagent subscriptions. All actions taken by a
rulebase are in the form of method invocations. Rulebase objects specify their data
sources and actions using the MethodSubscription and MethodInvocation classes
of the Console API. Therefore, understanding these, and related classes, is a
prerequisite for using the Configuration API. For more information on these
classes, refer to Chapter 2, Console APL

How Rulebases are interpreted by the RuleBaseEngine

While rulebases are merely configuration objects, it is useful to think of them as
having runtime behavior in order to understand how the RuleBaseEngine
processes them. Thus this section discusses rulebases, rules, tests, and actions as if
they contain logic which carries out their execution.

Structure of a Rulebase

A rulebase object is primarily composed of a set of rule objects. Each rule has a
Data Source and a list of Test objects. Each Test has a TestExpressionOperator
object and a list of ConsequenceAction objects. Thus, a rulebase can be
represented as a tree structure with a single Rulebase object as the root and Action
objects as the leaves.

TIBCO Hawk Programmer’s Guide

30 | Chapter 3 Configuration Object API

RuleBaseElement Class
The RulebaseElement class is the super class of the following classes:

e Rulebase

e Rule
e Test
e Action

The RulebaseElement class provides common methods to get and set the
element's name and schedule parameters. The Rule, Test and Action classes do
not require a name to be specified in the constructor. Only the Rulebase class
requires a name specified in the constructor. In places where an array of
RulebaseElement objects is required, all elements in the array must have unique
names.

These includes the constructors for:
¢ Rulebase (requires array of Rule)
¢ Rule (requires array of Test)

¢ Test (requires array of Action)
and the following methods:

e Rulebase.setRules()

e Rule.setTests()

e Test.setConsequenceActions()

e Test.setClearActions()

Rule Class

A Rule consists of a data source and a list of tests. The DataSource of a rule
specifies a MethodSubscription, which supplies a stream of data samples to be
monitored. The method used in the MethodSubscription can be either
synchronous or asynchronous. Every new data sample from a Rule Object 's Data
Source is distributed to all Test objects contained within that Rule object.

For more information on MethodSubscription refer to the Chapter 2, Console APIL.

TIBCO Hawk Programmer’s Guide

Concepts | 31

DataSource Class

The data source for a Rule is its source of input data, and is always a method
subscription to a microagent. The data source of a Rule provides information
about some condition on a managed node. After information is received, one or
more tests are applied to evaluate it. The MethodSubscription of a data source
provides a stream of data objects.

The microAgentName and the method name used to construct the DataSource can
be obtained from MicroAgentDescriptor and MethodDescriptor, respectively.

The MicroAgentDescriptor which is used to construct the MethodSubscription
defines the type of data the subscription will yield.

This data will be one of the following OpenData types:

¢ String

e Char

* Boolean
¢ Byte

e Short

¢ Integer
* Long

¢ Float

e Double

e CompositeData

e TabularData (represents a table composed of rows uniquely indexed by
uniformly structured CompositeData objects)

Test Class

Tests define the tests which are performed on the rule's data source and what
actions to take. Each test uses the data to compute a true or false value which is
used in determining when to trigger actions. Test objects have a state that is either
true or false. The initial state of a new Test object is false. State transitions are
caused by evaluating the received data based on the specified conditions and the
policies of the test. The possible Test object state transitions are:

e false to false (F->F)
e false to true (F->T)
e true to false (T->F)

TIBCO Hawk Programmer’s Guide

32 | Chapter 3 Configuration Object API

true to true (T->T)

All Test object state transitions cause its ConsequenceAction objects to be
evaluated. The policy of the ConsequenceAction objects govern whether an
evaluation results in an action execution. The ClearAction objects are a list of
actions that will be executed when the Test object undergoes the T->F transition.

State transitions resulting from the receipt of data start with an evaluation of the
TestExpressionOperator against the data. The resulting true or false value of the
TestExpression, in conjunction with the Test object's TrueConditionPolicy and
ClearConditionPolicy, determines the type of Test object state transition, as
follows:

F->F and T->T Test Object StateTransitions

If the previous state of the Test object was false and the current evaluation of
the Test Expression is false, then the Test object undergoes a F->F transition.

If the previous state of the Test object was true and the current evaluation of
the TestExpression is true, then the Test object undergoes a T->T transition.

These two transitions are not affected by the true or clear policy.
F->T Test Object State Transitions
This transition is governed by the TrueConditionPolicy.

The policy TrueCountThreshold specifies how many sequential true
evaluations of the TestExpression must occur before the Test object transitions
F->T.

T->F Test Object Transitions - "Clearing" the Test object

This transition is governed by the ClearConditionPolicy. This transition is
synonymous with "Clearing" the Test object.

The policy FirstFalse indicates that the T->F transition should occur upon the
first false evaluation of the TestExpression operator. This is the default
ClearConditionPolicy.

The policy ClearTimer indicates the number of seconds which must elapse
without a true evaluation of the TestExpression before the T->F occurs. A T->F
transition caused as a result of a clear timer expiration occurs independently
of the Test object's receipt of data.

The ClearTest policy specifies an additional test expression (clear test
expression), which governs when the T->F transition occurs. The Clear Test
Expression receives data each time the Test object receives data. It will cause a
T->F transition of the Test object if (the current state of the Test object is true
and) the clear test expression evaluates to true.

TIBCO Hawk Programmer’s Guide

Concepts | 33

TestExpressionOperators Class

TestExpressionOperator are created using the Operator class. The static method
Operator.getOperatorDescriptors() returns a list of descriptors describing all
available operators. Using the information in the OperatorDescriptor, you can
then build instances of the Operator class by supplying the operator name and a
list of operands. The operands you supply must be of the same number and type
as those specified by the corresponding descriptor. An operand of an operator
may itself be another operator, as long as its stated return type matches the
operand position it occupies. Operators can thus be nested to form more complex
operators.

Although operators can return different types, only those which return a Boolean
value may be used in tests (i.e. as arguments to
Test.setTestExpressionOperator()). The other non-Boolean operators are
used only as nested operators.

Test operators access the rule's data source through the
COM.TIBCO.hawk.config.rbengine.rulebase.operators.getRuleData operator.
This operator takes a name and returns the associated data. As described, if a data
source produces TabularData then that data is decomposed into CompositeData
objects before seen by the tests and thus the getRuleData operator. The name
parameter to this operator references the corresponding data element of the
CompositeData object which is then returned by the getRuleData operator. If the
data source produces one of the remaining OpenData types (String, Char,
Boolean, Byte, Short, Integer, Long, Float, Double) then that value is accessible via
the getRuleData operator using the name assigned to the return type in the
MethodDescriptor for this data source.

ConsequenceAction Class

The ConsequenceAction object extends the Action object. The Test object invokes
its ConsequenceAction objects each time the Test object makes a state transition.
The type of transition along with the ConsequenceAction object's
PerformActionPolicy and EscalationPeriod determines whether or not the action
is executed.

A True Series of transitions is defined as a series of transitions that begins with
F->T and is followed by one or more T->T transitions. A T->F marks the end of a
true series but is not part of it.

Actions are not enabled during an entire true series. The EscalationPeriod
specifies the number of seconds that must elapse since the start of a true series
before the action becomes enabled. An EscalationPeriod of 0 indicates that the
action is always enabled. Actions may only execute when enabled.

The PerformActionPolicy controls how many times and how often the action
executes during a true series, after the action has been enabled.

TIBCO Hawk Programmer’s Guide

34 | Chapter 3 Configuration Object API

Alerts and Clears

The PerformOnceOnly policy causes the action to be executed only once during a
true series. An exception to this rule involves variable substitution. If variable
substitution would result in a different action than the last one that has executed
within the current true series (For example, raise an alert with different text), then
the action will also be re-executed on the current T->T transition.

The PerformAlways policy causes the action to be executed upon every
evaluation within a true series (after the action has become enabled).

The PerformCountOnlInterval policy is more involved. It causes the action to be
executed at the start of a true series (or as soon as it becomes enabled), and on
subsequent evaluations within the same series that occur at a time greater than Y
seconds since the last action execution within the current true series. This
continues until the action has executed for a maximum of X times within the
current true series.

Alerts are generated when a ConsequenceAction invokes the send AlertMessage
on the RulebaseEngine microagent. The method takes a single argument named
'message'. The value of the argument may be one of the following objects:

e AlertLow

e AlertMedium
¢ AlertHigh

¢ Notification

AlertLow, AlertMedium, and AlertHigh correspond to alert with level from low
to high. They are useful for sending non-alert type messages. All methods take a
single string argument called 'alertMsg'. Alerts are cleared when the Test Object

(that generated the alert) transitions T->F.

The following code fragment constructs a valid ConsequenceAction which
generates a medium alert with text "process down":

DataElement[] args =

{new DataElement("message", new AlertMedium('"process down"))};

MethodInvocation mi =

new MethodInvocation("sendAlertMessage", args);

ConsequenceAction ca =
new ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

TIBCO Hawk Programmer’s Guide

Concepts | 35

Posted Conditions

Posted Conditions are "posted” when a ConsequenceAction object invokes the
method postCondition on the RuleBaseEngine microagent. A posted condition is
an internal status message, similar to an alert message. It takes a single argument
called 'condition'. The following code fragment constructs a valid
ConsequenceAction which posts the condition "disk full":
DataElement[] args =
{new DataElement("condition", new PostedCondition("disk full"))};
MethodInvocation mi =
new MethodInvocation("postCondition", args);
ConsequenceAction ca =
new ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine",
mi);
new ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);
A ClearAction may not contain a MethodInvocation with the postCondition
method. Posted Conditions are "cleared" or "unposted” when the enclosing Test
object transitions T->F. Posted conditions provide a mechanism for different rules
within the same rulebase to communicate. One of the restrictions on posted
conditions is that no two ConsequenceAction objects in the same rulebase may
post the same condition (conditionName). This is enforced by the methods that
construct and edit Rulebase objects.

Another restriction is that a posted condition may not be referenced (used in a test
operator) from within the same Rule that generates it. (Rules contain tests, tests
contain actions, and actions can post conditions. Thus all posted conditions are
posted within the context of a particular rule but may only be referenced in tests
of other rules in the same rulebase.) This is enforced by the methods that
construct and edit Rule objects.

For more information on posted conditions, see the TIBCO Hawk Administrator's
Guide.

Variable Substitution

The string arguments of all action MethodInvocation objects may contain
variables which are evaluated by the rules engine before invocation. By
referencing variables, the rulebase can adapt to changes on multiple machines.

For more information on variable substitution, see the TIBCO Hawk
Administrator's Guide.

Legal Characters

A rulebase name may contain any alphanumeric character (letter or digit), or the
symbols _ (underscore) or - (dash).

TIBCO Hawk Programmer’s Guide

36 | Chapter 3 Configuration Object API

Overruling

A character is considered to be alphanumeric if and only if it is specified to be a
letter or a digit by the Unicode 2.0 standard (category "Lu", "L1", "Lt", "Lm", "Lo",
or "Nd" in the Unicode specification data file). The latest version of the Unicode
specification data file can be found at http://www.unicode.org/ucd.

For a more complete specification that encompasses all Unicode characters, see
The Java Language Specification by Gosling, Joy, and Steele.

Overruling is a way to have a rule in one rulebase override or overrule a rule in
another rulebase in a way that causes only one to be active. Overruling is a way of
setting precedence among similar rules.

For more information on overruling, see the TIBCO Hawk Administrator’s Guide.

Rulebase configuration management

Rulebase use by the agent are maintained in a Rulebase object. Agent stores and
retrieves the each Rulebase to and from a rulebase file. The filename of the
rulebase correspond to name of the rulebase and has an extension of .hrb. If the
filename of the rulebase does not correspond to the name of the rulebase, TIBCO
Hawk Agents will not load the rulebase and an error is logged. When TIBCO
Hawk Agents is running in auto config mode, rulebases are loaded from the
autoconfig directory. When TIBCO Hawk Agents is running in repository config
mode, rulebases are loaded from the specified repository.

TIBCO Hawk Programmer’s Guide

Concepts | 37

Schedule

A Schedule is a configuration object that can be used for determining if a rulebase
or part of the rulebase should be 'in-schedule’ or 'out-of-schedule’ at a given time.
If a schedule is not specified in a rulebase, then the rulebase is always in-schedule.

Structure of a Schedule

A schedule object is primarily composed of a list of inclusion periods, and a list of
exclusion periods. A schedule is in-schedule if at least one of its inclusion periods
is in-schedule and none of its exclusion periods are in-schedule. Otherwise, the
schedule is out-of-schedule. The inclusion and exclusion periods contain a list of
Period objects or PeriodGroup objects.

Period Class

A Period defines the time intervals, days or months that should be included or
excluded in a schedule. It is composed of 4 distinct period components:
MinutesInDay, DaysInWeek, DaysInMonth and MonthsInYear. A Period object is
in-schedule only if all of its 4 components are in-schedule. Otherwise, it is
out-of-schedule.

MinutesInDay contains a set of 1440 continuous 1-minute intervals in a day. The
MinutesInDay object is in-schedule if the time for checking the schedule is
included in the MinutesInDay.

DaysInWeek contains a set of 7 days in a week. A DaysInWeek is in-schedule if the
day of date for checking the schedule is included in the DaysInWeek.

DaysInMonth contains a set of 31 days in a month. A DaysInMonth is in-schedule
if the day in the date for checking the schedule is included in the DaysInMonth.

MonthsInYear contains a set of 12 months in a year. A MonthsInYear is in-schedule
if the month of the date used for checking the schedule is included in the
MonthsInYear.

PeriodGroup Class

A PeriodGroup object is a logical group of Period object useful for defining an
abstract group of periods. Period groups are useful when you use a set of periods
regularly in defining schedules. It also eases the maintenance of those schedules
because you can make a change in the period group and have it automatically
reflected in all the schedules that use it.

TIBCO Hawk Programmer’s Guide

38 | Chapter 3 Configuration Object API

Use of Schedules in Rulebases

Schedules may be used to control when a monitoring activity or action is
performed. Schedules may be applied to a RuleBase, Rule, Test, and Action by
specifying the schedule name in the attribute of these objects. If a RuleBase, Rule,
Test, or Action makes use of a schedule name that is not defined either because
the agent couldn't load the Schedule object or because the Schedule object does
not exist then it will be flagged as an error. However, the rulebase processing will
continue as if no schedule was specified for that component; the component will
behave as if always in-schedule

If the schedule name applied to a rulebase component begins with "!" then it
refers to the inverse of a schedule. For example, if the schedule BusinessHours is
defined in the schedules configuration, a rulebase component may use either
BusinessHours or !BusinessHours to refer to it. When using BusinessHours, that
component is in-schedule whenever the BusinessHours schedule is in-schedule.
When using 'BusinessHours, that component is in-schedule whenever the
BusinessHours schedule is not in-schedule. If the schedule BusinessHours is not
defined in the scheduler then components using either BusinessHours or
'BusinessHours will behave as if no schedule is defined (they both will always be
in-schedule).

A rulebase is a hierarchical structure: rulebases contain rules, rules contain tests,
and tests contain actions. Therefore, a schedule applied to one node in the
hierarchy affects all nodes below it. The following sections describe the behavior
of RuleBases, Rules, Tests, and Actions when valid schedules are applied.

RuleBase

When a rulebase is loaded it is not activated unless its applied schedule is
currently in-schedule. Thereafter, when its applied schedule transitions to an
in-schedule state, the rulebase is activated. When its applied schedule transitions
to an out-of-schedule state, the rulebase is deactivated. Before a rulebase becomes
active, no rules are processed no monitoring is taking place by that rulebase.
When a rulebase is activated, its rules are loaded and monitoring may begin.
When a rulebase is deactivated, all of its rules are unloaded which results in the
clearing of outstanding alerts (generated from those rules) and the cessation of all
monitoring by that rulebase.

Rule

When a rule is loaded it isn't activated unless its applied schedule is currently
in-schedule. Thereafter, when its applied schedule transitions to an in-schedule
state, the rule is activated. When its applied schedule transitions to an
out-of-schedule state, the rule is deactivated. Before a rule becomes active, no
tests are processed and no monitoring is performed by this rule. When a rule is

TIBCO Hawk Programmer’s Guide

Concepts | 39

activated, its tests are loaded and monitoring may begin. When a rule is
deactivated, all of its tests are unloaded which results in the clearing of
outstanding alerts (generated from those tests) and the cessation of all monitoring
by that rule. When a rule is inactive, its enclosing rulebase behaves as if that rule
is not there.

Test

When a test is loaded it isn't activated unless its applied schedule is currently
in-schedule. Thereafter, when its applied schedule transitions to an in-schedule
state, the test is activated. When its applied schedule transitions to an
out-of-schedule state, the test is deactivated. Before a test becomes active, no
actions are loaded and no monitoring is performed by this test. When a test is
activated, its actions are loaded and monitoring begins. When a test is
deactivated, all of its actions are unloaded which results in the clearing of
outstanding alerts (generated from those actions) and the cessation of all
monitoring by that test. When a test is inactive, its enclosing rule behaves as if
that test is not there.

Action

When an action is loaded it isn't activated unless its applied schedule is currently
in-schedule. Thereafter, when its applied schedule transitions to an in-schedule
state, the action is activated. When its applied schedule transitions to an
out-of-schedule state, the action is deactivated. Before an action becomes active, it
performs no action and does not respond in any way to its test's state transitions.
When an action is activated, it begins tracking and responding to its test's state
transitions. When an action is deactivated, any outstanding alert it may have
generated is cleared and the action ceases to track and respond to the state
transitions of its test. When an action is inactive, its enclosing test behaves as if
that action is not there.

Schedule Configuration Management

In most respects, configuration management for Schedules is identical to that for
rulebases (when in auto-config mode, the agent will load and store this file from

auto-config-dir, etc.). However, all schedules use by the agent are maintained in a
single Schedules object. Agent stores and retrieves the Schedules to and from the
file schedules.hsf.

TIBCO Hawk Programmer’s Guide

40 | Chapter 3 Configuration Object API

Schedules and Agent Performance

Because all schedules are stored in a single file, each agent will load the schedules
at startup. However, the scheduler in the agent will evaluate a schedule only if the
agent has loaded rulebases that reference that schedule. Such schedules are
referred to as active because there is active interest in them.

The scheduler evaluates active schedules at the following times:
¢ Once each minute, when schedules are resolved.

¢ When the agent receives a new schedule (such as when using SendTo from the
schedule editor).

¢ When a schedule first becomes active (such as the first time any rulebase
references it).

In general, having a large number of schedules defined in the schedule file may
marginally affect the size of the agent but it does not affect the CPU performance.

TIBCO Hawk Programmer’s Guide

RulebaseMap

Group Mapping

Concepts | 41

RulebaseMap is a configuration object that maps rulebases to agents. It is used
when agent is running in a manual configuration mode to determine which
rulebases should be loaded on the agent.

The RulebaseMap configuration object has three primary components:

¢ Group mapping - to organize agents into groups for the purpose of rulebase
assignment.

* Rulebase mapping - to map rulebases to agents or groups of agents.

¢ Command mapping - to delegate the rulebase mapping function to an
external command.

These components are described in the following sections.

There are two types of groups in RulebaseMap, user defined and automatic. A
user defined group is a group that a user creates. Automatic groups are groups
that agents automatically belong to. A user can define the names of user-defined
groups but not that of the automatic groups. A user defined group name begin
with "+" and automatic group names begin with "++".

A user defined group can be composed of a number of agents, groups, or a
combination of agents and groups. A user defined group may have both user
defined and automatic groups as elements in its definition.

The OS groups are automatic groups whose names correspond to the operating
systems of the machines the agents are running on. The OS groups have the form
"++OSName" where OSName is the value of the Java system property "os.name".
Examples of automatic group names are ++Windows 2000, ++Solaris, and
++HPUX. Examples of user defined group names are "+servers" and "+clients".

There is a special automatic group referred to as the ALL group. The ALL group
includes every TIBCO Hawk Agent and is simply named "++".

For example:

+groupl agentl agent2 agent3
+groupX agentX +groupl

In the preceding example, agentX and +groupl belong to +groupX. Also, agent1
belongs to +group1l as well as +groupX.

TIBCO Hawk Programmer’s Guide

42 | Chapter 3 Configuration Object API

Rulebase Mapping

Rulebase mapping defines which rulebases are assigned to an agent or a group. It
defines which agents or groups use a particular rulebase. In the following
rulebase mapping:

rulebase agentl agent2 ++Windows

rulebase2 +group?2

rulebase3 agent2 +group?2
rulebase4 ++

agentl uses rulebasel. Agents in +group?2 uses rulebase2 and rulebase3. All
agents uses rulebase4 as rulebase4 maps to "++", the all group. All agents that
are running under Windows operating system will uses rulebasel.

Command Mapping

Command mapping allows an external command or executable (script) to be
specified for an agent or a group. If specified, it is executed and the returned
string is parsed on white space to indicate which rulebases to load. When the
executable is invoked, the agent name and its automatic group name are passed
as parameters to the command.

The use of command mapping depends on a setting of one of the attributes of the
RulebaseMap. The command mapping can be used as the only mechanism to
generate the rulebases to be loaded or as a supplement to the groups and
rulebases mapping of the RulebaseMap. It can also be ignored for generating the
rulebases.

Agent processing of RulebaseMap

S

If the agent (more specifically, the RulebaseEngine MicroAgent) is configured in
one of the manual configuration mode, it will attempt to load the RulebaseMap
configuration object after initialization. It will first determine which automatic
groups it belongs to. Then it will read and process the group definition
component to determine which user defined groups it is also a member of. Next it
will process the rulebase mapping component to determine which rulebases it
should load. Finally it will use the command mapping mechanism, if one is
specified, to get the names of additional rulebases it should load. Once the
RulebaseMap has been fully processed, the agent will proceed to load the target
rulebases.

The -rulebases option supported by the agent (RulebaseEngine MicroAgent)
can be used together with the RulebaseMap to specify additional rulebases.

TIBCO Hawk Programmer’s Guide

Concepts | 43

Configuration Object Integrity

When constructing or modifying any of the configuration objects, copies of the
supplied parameters are made and used. When accessing the data of any
configuration objects through one of the get methods, copies of the internal data
are returned. This insures the integrity of the configuration objects and ensures
that proper validity checking can be performed. It also means that changing a
configuration object requires that you use one of the set methods on that
component. For example, if you extract the tests from a rule using the
Rule.getTests() method and then modify one of the tests in the array, the change
will not be reflected in the rule until you call Rule.setTests() with the modified test
array.

TIBCO Hawk Programmer’s Guide

44 | Chapter 3 Configuration Object API

Dependence on the Console API

When a configuration object is created using the corresponding editor on the
TIBCO Hawk WebConsole, the context of the configuration object is implied by
the agent or repository for which the configuration object is defined. For example,
when creating rulebases in the rulebase editor, this context is used when
presenting to you the choices for data sources and actions, in the form of the
related microagents, methods and arguments. When creating rulebases using the
Configuration Object API, the microagent name, method name and the data item
names must be passed to the methods. These are obtained from the following
classes of the COM.TIBCO.hawk.talon package of the Console API:

¢ MethodSubscription

¢ MethodInvocation

* MicroAgentDescriptor
¢ MethodDescriptor

¢ OpenData

The data source of a rule requires a microagent name and a MethodSubscription
object. Actions require a microagent name and a MethodInvocation object.

Microagent names, and the information required to build valid
MethodSubscription and MethodInvocation objects, are available in
MicroAgentDescriptor objects. The methods used as data sources must be Open
Methods since the RuleBaseEngine can only process OpenData.

A MicroAgentDescriptor holds MethodDescriptor objects for all methods of a
microagent. The MethodDescriptor for the method chosen as the data source
describes the data the method returns. This information is needed to construct
test expression operators. The getRuleData operator is used by test expressions to
access a method's data. It requires the name of a data item. This name needs to be
one of the names of the elements in the method's return which are specified in the
MethodDescriptor. Obtaining MicroAgentDescriptor objects is accomplished with
the COM. TIBCO. hawk .hawkeye package of the Console APL

Retrieving and updating configuration objects on a TIBCO Hawk agent or
repository is accomplished by invoking methods on the RuleBaseEngine or
Repository microagents. This involved both the monitoring and management
components of the TIBCO Hawk Console API as agents and microagents need to
be discovered and method invocations are performed on the required
microagents. See Appendix A, Common Configuration Object API Methods, for
commonly used methods on RuleBaseEngine or Repository microagent when
using the Configuration Object API.

See the TIBCO Hawk Console API Reference and the TIBCO Hawk Methods Reference
for more information.

TIBCO Hawk Programmer’s Guide

Configuration Object API Class Structure | 45

Configuration Object API Class Structure

This section contains UML diagrams showing the structure of the Configuration
Object APL

* Key to the UML diagrams, page 46
¢ Configuration Object API Classes, page 47

TIBCO Hawk Programmer’s Guide

46 | Chapter 3 Configuration Object API

Key to the UML diagrams
These class diagrams use a subset of UML notation. Here is a brief key:

Classes and their methods are shown in rectangles:

Class Name

method1(argName:type,...):methReturnType
method2(argName:type,...):methReturnType

Some methods and argument names are omitted for clarity. A third part, between
the class name and methods, may be used for class variables. Underlined
members are static.

Comments are shown in a rectangle with a turned down corner. A dotted line
shows what the comment applies to.

Associations

Associations are indicated with lines:

Inheritance

Superclass <}——— Subclass

Interface Q— — — Implementing Class
Navigation

ClassA ~€&———— ClassB

An instance of Class A can be referenced from an instance of Class B

Aggregation
ClassA <>— ClassB

Composite aggregation. An instance of ClassA contains an aggregation of instances of
ClassB. These instances of ClassB belong to only one composite at a time.

TIBCO Hawk Programmer’s Guide

Configuration Object API Class Structure | 47

Configuration Object API Classes

Figure 1 Package Level

[1

COM.TIBCO.hawk.config.rbengine

A

[1] [1]

COM.TIBCO.hawk.config.rbengine.rulebase Q— COM.TIBCO.hawk.config.rbengine.rulebase.policy

1]

COM.TIBCO.hawk.config.rbengine.schedule

1]

COM.TIBCO.hawk.config.rbengine.rbomap

TIBCO Hawk Programmer’s Guide

48 | Chapter 3 Configuration Object API

Figure 2 Base Classes Extended by Rulebase, Schedule, and Rulebase Map Classes

<<interface>>RBEConfigObject

getName():String RBEConfigObjectException

getFileExtension():String <<constructors>

t0XML (java.io.Writer) RBEConfigObjectException(String)

getChecksum():long

RBEConfigObjectXML

<<constructor>>
RBEConfigObjectXML(RBEConfigObject)

getXMLString():String
getXMLReader():java.io.Reader

<<abstract>>RBEConfigObjectAttributes

getAuthor():String
getLastModification():String
getComment():String

setAuthor(String)
setLastModification(String)
setComment(String)

TIBCO Hawk Programmer’s Guide

Configuration Object API Class Structure | 49

Figure 3 Rulebase, Rule, and DataSource-related Classes

Rulebase RulebaseXML
<<constructor>> < <<constructor>>
Rulebase(String, Rule[]) RulebaseXML(Rulebase)

Rulebase(Reader)

getAuthor():String
getCommands():String[] —_——— RBEConfigObject
getComment():String
getincludedRuleBases():String(]
getLastModification(): String

getRules():Rule[] Rule
setAuthor(String) _ <cconstructors>
setCommands(String]]) :1 | Rule(atasource, Test)

setComment(String)
setincludedRuleBases(String[])
setLastModification(String)
setRules(Rule[])

getDataSource():DataSource
getOverRuling():int
getTests():Test[]
setDataSource(DataSource)
setOverRuling(int)
setTests(Test[])

47 1 01

RulebaseElement

getName():String
getSchedule():String
setName(String)

<l
<l
setSchedule(String) <}—————

Test

Action

RulebaseException 1

<<constructor>> DataSource

RulebaseException(String)

<<constructor>>

DataSource(String, MethodSubscription)

getMethodSubscription():MethodSubscription
getMicroAgentName():String
getDisplayName():String
setMicroAgentName(String)
setDisplayName(String)
setSubscription(MethodSubscription)

TIBCO Hawk Programmer’s Guide

50 | Chapter 3 Configuration Object API

Figure 4 Test-Related Classes

TrueCountThreshold

<<constructor>>
TrueCountThreshold(int)

<<interface>> TrueConditionPolicy <} — — —

getTrueCountThreshold():int

ClearOnFirstFalse ClearTimer
<<constructor>> <<constructor>>
ClearOnFirstFalse() ClearTimer(int interval)

getTimerlnterval():int

Q

| |
Test | |
| |

<<constructor>>
Test(ConsequenceAction[] actions, Operator op) 6 6

getConsequenceActions():ConsequenceAction[] & <<interface>> ClearConditionPolicy

getClearActions():ClearAction[]
getClearConditionPolicy():ClearConditionPolicy 4

getTestExpressionOperator():Operator
getTrueConditionPolicy(): TrueConditionPolicy
setConsequenceActions(ConsequenceAction[]) |
setClearActions(ClearAction[]) |
setClearConditionPolicy(ClearConditionPolicy) ClearTest
setTrueConditionPolicy(TrueConditionPolicy)

<<constructor>>
ClearTest(Operator test)
1 <> 1 getTestExpression():Operator
*
ConsequenceAction Operator
*
ClearAction

TIBCO Hawk Programmer’s Guide

Configuration Object API Class Structure | 51

Figure 5 Operator-Related Classes

Operator OperandDescriptor
<<constructor>> <<constructor>>
Operator(String, Object[]) OperandDescriptor(String, String, String)
<<static>>getOperatorDescriptors():OperatorDescriptor(] 1 % | getDescription():String
evaluate():Object getName():String
setRuleDataContext(RuleDataContext rdc) getType():String

getName():String
getDisplayName():String
getOperands():Object]]

getType():String VariableOperandDescriptor

<<constructor>>
<>— VariableOperandDescriptor
1 * (String, String, String, int, int)
getMax():int
getMin():int
K¢
OperatorException <<interface>>RuleDataContext
<<constructor>> getPostedCondition(String):int
OperatorException(String) getRuleData(String):Object

OperatorDescriptor

<<constructor>>
OperandDescriptor(String, String, String, String, OperandDescriptor[], VariableOperandDescriptor)

getDescription():String

getDisplayName():String
getFixedOperatorDescriptors():OperatorDescriptor][]
getName():String

getType() :String
getVariableOperandDescriptor():VariableOperandDescriptor

TIBCO Hawk Programmer’s Guide

52 | Chapter 3 Configuration Object API

Figure 6 Action-Related Classes

<<abstract>> Action

getMethodlnvocation():MethodInvocation <>—

getMicroAgentName():String

MethodInvocation

getProperties():java.util.Properties
setMethodInvocation(MethodInvocation)
setMicroAgentName(String)

ConsequenceAction(String, MethodInvocation)

getEscalationTime():int

setProperties(java.util.Properties) <7
ConsequenceAction ClearAction
<<constructor>> <<constructor>>

ClearAction(String, MethodInvocation)

getPerformActionPolicy():PerformActionPolicy
setEscalationTime(int);
setPerformActionPolicy(PerformActionPolicy)

PerformOnceOnly

<<constructor>>
é PerformOnceOnly()
PerformAlways
<<interface>> PerformActionPalicy < — — —| <<constructor>>
PerformAlways()
| PerformCountOninterval
| <<constructor>>
- - PerformCountOninterval(int, int)

getCount():int
getinterval():int

TIBCO Hawk Programmer’s Guide

Configuration Object API Class Structure | 53

Figure 7 Schedules-Related Classes

Schedules
Attributes
<<constructor>>
Schedules()
Schedules(Schedule[])
Schedules(Reader)
getAttributes(): Attributes RBEConfigObjectAttributes

setAttributes(Attributes)

addSchedule(Schedule)
removeSchedule(String)
getSchedules():Schedule[]
getScheduleNames():String[]
getSchedule(String):Schedule
setSchedules(Schedule[])

SchedulesException

<<constructor>>
SchedulesException(String)

addPeriodGroup(PeriodGroup) o RBEConfiaObiect
removePeriodGroup(String) — onrigobjec

renamePeriodGroup(String, String)
getPeriodGroups():PeriodGroup[]
setSchedules(Schedule[])

<>— Schedule
1 .

<> PeriodGroup
1 .

Q

SchedulesXML

<<constructor>>
SchedulesXML(Schedules)

RBEConfigObjectXML

TIBCO Hawk Programmer’s Guide

54 | Chapter 3 Configuration Object API

Figure 8 Schedule-Related Classes

Schedule

<<constructor>>
Schedule(String)
Schedule(String, Scheduleable[], Scheduleablel[])

setName(String)
getName():String
setTimeZone(java.lang.String)

getinclusionPeriod():Scheduleable[]
getExclusionPeriod():Scheduleable[]
addInclusionPeriod(Scheduleable)
removelnclusionPeriod(Scheduleable)
addExclusionPeriod(Scheduleable)
removeExclusionPeriod(Scheduleable)

inSchedule(Date):boolean

1

*

Period

<<constructor>>
Period()

include(int, int)

exclude(int, int)

isIncluded(int, int):boolean
isAlwaysExcluded(int, int):boolean
includeAll(int)

excludeAll(int)

v

Scheduleable

inSchedule(java.util. GregorianCalendar):boolean

PeriodGroupReference

<<constructor>>
PeriodGroupReference(String)

setName(String s)
getName():String

inSchedule(GregorianCalendar):boolean

PeriodGroup

c <<constructor>>

PeriodGroup(String)
PeriodGroup(String, Period[])

setName(String s)
getName():String

getPeriods():Period[]
setPeriods(Period[])

Figure 9 Rulebase Map-Related Classes

TIBCO Hawk Programmer’s Guide

RBMap

<<constructor>>
RBMap()
RBMap(Reader)

getAgentRulebases(String, String):String[]

getAttributes():Attributes
setAttributes(Attributes)

getGroups():String[]
getMembersInGroup(String):String[]
setMembersinGroup(String, String[])
removeGroup(String)

getRulebases():String[]
getMembersForRulebase(String):String[]
setMembersForRulebase(String, String[])
removeRulebase(String)

getCommands():String[]
getMembersForCommand(String):String[]
setMembersForCommand(String, String[])
removeCommand(String):

Configuration Object API Class Structure | 55

RBEConfigObject

RBMapException

<<constructor>>
RBMapException(String)

Attributes

setUseCommandMapping(boolean, boolean)

usingCommandMapping():boolean
usingCommandMappingExclusively():boolean

!

<<abstract>>RBEConfigObjectAttributes

RBMapXML

<<constructor>>
RBMapXML(RBMap)

RBEConfigObjectXML

TIBCO Hawk Programmer’s Guide

56 | Chapter 3 Configuration Object API

API Reference

The following link provides access to the TIBCO Hawk Configuration Object API
Javadocs.

e Configuration Object API Javadocs

TIBCO Hawk Programmer’s Guide

https://docs.tibco.com/pub/hawk/5.1.0/doc/api/config-api/index.html

57

Chapter 4 AMI API

This chapter explains the TIBCO Hawk AMI API basics and it’s objects.

Topics

¢ AMI Basics, page 58

¢ The AMI Conversation, page 61

* AMI API Objects, page 65

e AMI API Sample Programs, page 69
* Programmer’s Checklist, page 73

* Java AMI API Reference, page 76

TIBCO Hawk Programmer’s Guide

58 | Chapter 4 AMI API

AMI Basics

This section presents a brief overview of the TIBCO Hawk Application
Management Interface (AMI).

AMI APl is an API used to instrument an application in order to make it
manageable by the Hawk System. It is shipped in Java/C/C++ language
bindings.

The instrumented application usually connects to the Hawk Agent on the same
machine. However, this is not a requirement. You can connect it to a Hawk agent
on another machine.

However, it is required that one instrumented application instance only connects
to one Hawk Agent.

An Instrumented Application Looks like a Microagent

You interact with the instrumented application using the TIBCO Hawk agent by
calling the methods of microagents associated with that agent. An
AMl-instrumented application appears and acts as though it were a microagent in
the TIBCO Hawk system.

Interaction with an AMI-instrumented application can use the following means:

¢ Interactive monitoring using the TIBCO Hawk WebConsole. See Monitoring
an Instrumented Application through the TIBCO Hawk WebConsole on
page 59 for more information on this.

An example of this might be using the TIBCO Hawk WebConsole to survey
many instances of the instrumented application by means of a network query.
Another example might be to make simultaneous changes to many such
instances by performing a network action.

* Automating monitoring and management of the application by creating
rulebases to be processed by TIBCO Hawk agents.

An example of this might be creating rulebases to monitor the application’s
error state, detect critical conditions, and increase the output of debug
information until the problem is resolved.

TIBCO Hawk Programmer’s Guide

AMI Basics |59

Note: An instrumented application is not dependent on the presence of an

% TIBCO Hawk agent. The relationship between TIBCO Hawk agent and TIBCO
Hawk instrumented application is completely voluntary. The management
interface might be active only in some instances of the application, or only at
specific times during an instance’s activity.

A management interface can be divided into two major portions:

* The initialization code. This code creates a TIBCO Hawk AMI session, passes
on the address of a callback function through which messages are to be
received, and sets up the functionality to negotiate discovery with a manager.

¢ A callback function that receives messages from the TIBCO Hawk AMI
session. The callback function examines the message and passes it on to one of
several internal methods for processing.

Monitoring an Instrumented Application through the TIBCO Hawk WebConsole

The TIBCO Hawk WebConsole is a console application that displays the status of
all agents. It is used to view alerts, interact with agents and their microagents, and
edit rulebases and other configuration objects. A microagent is an object used by a
TIBCO Hawk agent to carry out certain related tasks: to run scripts, to obtain file
system information such as free hard disk space or to retrieve a process table. In
the TIBCO Hawk WebCosole, instrumented applications appear in the list of
microagents, using the name that the application provides through its AMI
interface. See Chapter 2, Console API for more information on rulebases and
microagents. Any methods thus made visible appear as if they are microagent
methods, with arguments and results as described.

Interaction with an instrumented application can occur in the following ways:

* Using the TIBCO Hawk WebConsole, you can interact with an instance of
your application from any location in the network.

* Using the TIBCO Hawk WebConsole, you can set up subscriptions to data that
your methods provide and use tables and charts to view the results over time.

* Using the TIBCO Hawk WebConsole, you can interact with all instances of
your application, across a network, by using network query and network
action.

* Using the TIBCO Hawk WebConsole and the rulebase editor, you can create
rules to automate monitoring your application from anywhere in the network.
Normally, you will create a special rulebase for a managed application and

TIBCO Hawk Programmer’s Guide

60 | Chapter 4 AMI API

load it onto all TIBCO Hawk agents on computers where that application
resides.

Connecting AMI Participants

An instrumented application can communicate with AMI manager using either
TIBCO Rendezvous or TIBCO DataGrid as a transport. Such instrumented
application should use a similar AMI transport configuration to the one being
used by its manager.

* AMI Transport TIBCO Rendezvous If you are using a TIBCO Hawk agent as
your manager, start the TIBCO Hawk agent with the same service, network,
and daemon options for its primary monitoring session as for the TIBCO
Rendezvous session set up in the application.

* AMI Transport TIBCO DataGrid If you are using a TIBCO Hawk agent as your
manager, start the TIBCO Hawk agent with the same discovery URL for its
primary monitoring session as for the TIBCO DataGrid session set up in the
application.

You can also configure the agent to use additional TIBCO Rendezvous/TIBCO
DataGrid sessions to monitor AMI activity. See the TIBCO Hawk Installation,
Configuration, and Administration Guide for details on configuring agents to use
additional AMI sessions.

TIBCO Hawk Programmer’s Guide

The AMI Conversation | 61

The AMI Conversation

This section describes in detail the three phases involved in communication
between an instrumented application and its manager. The three phases of the
AMI conversation are:

¢ discovery
¢ method description
¢ method invocation

Figure 10 illustrates the three phases of an AMI conversation.

Figure 10 Three Stages of AMI Conversation

Phase 1: Discovery
(one scenario:
| application starts first)

Send discovery |
request

Reply to
discovery request

Phase 2: Method Description Z
Send method ‘ Q
description request] 5
< | Reply to method jabl
description Q
request D
—
— o o
3 (@) Phase 3: Method Invocation >
@ ® ©
c Request method | 'Q
g invocation “~ 5
| Reply tomethod Q)
| | invocation =
o
Request method ‘ > -
invocation ° i
< | Reply to method
| invocation
Request method |
invocation >
< | Reply to method
‘ invocation

TIBCO Hawk Programmer’s Guide

62 | Chapter 4 AMI API

First AMI Phase: Discovering the Application
Discovery between the application and manager can happen in one of two ways,
depending on which entity starts first.

If the Manager Starts First
If the manager starts before the application, the interaction is as shown in

Figure 11.
Figure 11 AMI Discovery When the Manager Starts First

Manager starts first

Send discovery :>
request |
Receive <: Send
announcement ‘ announcement

S
Manager

uoneolddy

v

If the Application Starts First
If the application starts before the manager, the interaction is as shown in
Figure 12.

Figure 12 AMI Discovery when the Application Starts First

Application starts first
b Send
announcement

Send discovery |

request
v |

At the end of the discovery phase, the manager and the application have
established a connection that allows them to communicate through the inbox
address. However, the manager is not yet aware of any details of the application’s

uoneolddy

awlL

Reply to
discovery request

Manager

interface.

TIBCO Hawk Programmer’s Guide

The AMI Conversation | 63

Second AMI Phase: Describing the Methods

After the manager and application have exchanged announcement or discovery
messages, the manager then sends a message asking the application to describe its
methods. Every instrumented application must implement these methods.

Figure 13 AMI Method Description

1

Send method :>
description >
= g request <: Reply to method 3
3 © description request =i
o) T » 2
S Method description o
=
v Parameter description
Parameter description

The message sent to the manager in describe method has nested inside it a series
of messages that describe each method. These are known as method descriptor
messages. Each method descriptor message has messages nested inside it, which
describe the types of arguments and types of returns applicable to each method.
This is illustrated in Figure 13. From this description, the manager determines
what structure of message to send when invoking the method, as well as how to
interpret the message the application sends back.

At the end of the method description phase, the manager is aware of all message
exchanges supported by the application and is ready to begin sending messages
of the specified types.

Third AMI Phase: Calling the Methods

After the application has been discovered and the methods have been described,
the real work takes place. Acting either on cues from a human user or by
processing the rules in a rulebase, the manager sends messages to the application
invoking the described methods and awaits its reply. The method invocation
messages sent by the manager conform to descriptions given by the application in
the describe method as to which arguments are appropriate for each method.

The application sends back a message whose contents conform to the structure
the application described to the manager in the describe method.

When the manager receives the response to its method call, it presents the
returned information to the human user. This scenario repeats itself over and over
again until the session is terminated by either the application or the manager.

TIBCO Hawk Programmer’s Guide

64 | Chapter 4 AMI API

Figure 14 AMI Method Invocation

Send method
invocation request

S
)
@©

Reply to method
invocation request

Results

awliL

TIBCO Hawk Programmer’s Guide

AMI API Objects | 65

AMI API Objects

AMI Session

AMI Methods

The AMI API facilitates the development of AMI applications written in the Java,
C++, and C programming languages. This API makes AMI application
development easier and more foolproof because it takes care of AMI transport
details for you. The API also ensures that your application will be compatible
with future releases of TIBCO Hawk and AMIL

The AMI session handles the AMI application's entire interaction with the AMI
manager. Each AMI session manifests itself as a microagent in the associated AMI
manager. The API provides AMI manager with functions, which the AMI
manager can invoke, to create the session, announce it, stop it, and also to
exchange data, events, and errors with the AMI session.

A method can return data and or perform a task. An AMI application consists of a
set of AMI methods that can be invoked by an AMI manager to monitor and
manage the AMI application. AMI methods can accept input parameters and
return output parameters as required by the method. AMI method provides
functions to create and add AMI methods to specific AMI session. The AMI
session announces AMI methods (sends their descriptions to an AMI manager)
and detects invocations of your AMI methods.

An AMI method can be synchronous or asynchronous. A synchronous AMI
method returns data only when invoked by an AMI manager. An asynchronous
AMI method can return data whenever data becomes available.

Synchronous Methods

Whenever an AMI manager invokes a synchronous AMI method, the AMI API
will call an invocation callback function. You define the invocation callback
functions for the synchronous AMI methods. The AMI API provides the callback
function with the values of any input parameters and a mechanism for returning
either output parameter values or an error. The invocation callback can return
data, return no data, or return an error condition.

TIBCO Hawk Programmer’s Guide

66 | Chapter 4 AMI API

Asynchronous Methods

For asynchronous AMI methods, an AMI manager informs the AMI method
when it should start or stop sending data. The asynchronous AMI method can
define callback functions that the AMI API calls whenever an AMI manager has
requested the AMI method to start or stop sending data. The AMI API provides
the start callback function with a unique context (a subscription object) which
identifies the start request, the values of any input parameters, and a mechanism
for returning an error. The start callback routine can attach user data to the
subscription object. If the start callback function does not return an error then the
subscription is in effect and the asynchronous AMI method is free to return data
at any time. Using the subscription object, the asynchronous AMI method can
return data or error notifications asynchronously to the AMI manager. If the start
callback function returns an error the AMI manager cancels the subscription. The
AMI API provides the stop callback function with the subscription object and a
mechanism for returning an error. The stop callback function can perform any
necessary application cleanup. When the stop callback returns the AMI manager
stops (cancels) the subscription.

There are two techniques that you can use to implement asynchronous methods.
One technique is calling AmiAsyncMethod::sendData() for a subscription whenever
new data becomes available. The AMI method, AMI method input parameters
and any attached user data can always be obtained from the subscription object
and output parameters can be constructed using the AMI parameter functions
discussed below. Using the start and stop callback functions you must keep track
of subscriptions. There can be multiple simultaneous subscriptions to a single
asynchronous AMI method, potentially, from multiple AMI managers.
Subscription handles are guaranteed to be unique among active subscriptions
within the same AMI session and can, therefore, be used as an index for tracking
purposes. This technique is often used when a separate thread is created to
service each subscription.

The other technique is calling AmiAsyncMethod::onData() for a method whenever
new data becomes available. This function will call the invocation callback
function of the associated method once for each active subscription to that
method. The invocation callback function is passed the subscription object
allowing the callback to get any attached used data necessary to process the new
data. This technique allows the AMI API to do all the work of tracking
subscriptions requiring your application to simply provide the invocation
callback. The invocation callback can return data, return no data, or return an
error condition. If data is returned, it is sent asynchronously to the AMI manager.
If no data is returned then no action takes place. This allows the invocation
callback function to decide whether the new data should be returned for the
subscription. If an error is returned, then it is sent asynchronously to the AMI
manager.

TIBCO Hawk Programmer’s Guide

AMI API Objects | 67

Depending on your specific method, this technique may also eliminate the need
to supply a start and stop callback. If the subscription object passed to the
invocation callback function is null (zero), then the method is being called
synchronously. You may return data or an error depending if synchronous
invocation is supported by your asynchronous method.

Auto-Invoke Methods

The AMI API provides a mechanism for creating auto-invoke asynchronous
methods. During the start asynchronous method callback, the application can set
an auto-invoke callback interval for the subscription. If an auto-invoke callback
interval is set, the AMI API will call the invocation callback function repeatedly
for the method at the specified interval until the subscription is stopped. This can
be used to turn a synchronous method into a pseudo-asynchronous method,
eliminating the need for the AMI manager to repeatedly invoke the synchronous
method. Typically, a method argument is defined to allow the user to specify the
interval.

This functionality is critical for synchronous methods that require some setup
such as priming counters used to calculate averages, deltas, or percents.
Synchronous methods are required to return data on each invocation, making it
impossible to return correct data for return values requiring two or more samples
on the first invocation. The auto-invoke asynchronous method can return data
whenever it is ready. It also has a start and stop callback to perform setup and
clean-up operations, respectively. Since the invocation callback function has the
option of returning no data, it can skip invocations. This is useful when many
data samples are required before accurate data can be returned, or when perhaps
it is waiting for some required service to initialize.

AMI Parameter

AMI methods accept input parameters and return output parameters. The AMI
API provides functions to define input and output parameters for an AMI
method, to set and get the values of those parameters. The API allows settings of
multiple values for output parameters allowing multiple (tabular) instances to be
returned. If multiple instances (rows) of output parameters are returned then
certain output parameters must be defined as indexes. These index parameters
must have unique values across output parameter instances returned. If more
than one index parameter is defined then the defined indexes are considered a
composite index with the primary index specified first.

TIBCO Hawk Programmer’s Guide

68 | Chapter 4 AMI API

Error Logging

The AMI API functions can detect and return AMI errors. The AMI error is an
object that identifies the specific error and contains handle-based functions that
create, destroy, and file stamp AMI errors. The file stamp records a file name and
line number in the AMI error to indicate the error source location. Functions are
also provided to get the error code, error description, thread ID, file name, and
line number associated with the specific AMI error.

Java

The AMI Java API provides rolling trace files to log error or debug messages for
your AMI session. The AmiTrace class provides methods to configure and log
messages to your trace log. The AMI Java API has built-in tracing, which can be
turned on and off, based on trace category (for example, INFO, WARNING,
DEBUG).

Threading Model

The AMI API is multi-thread safe and uses multiple threads internally (to
guarantee timely processing of AMI protocol related functions). However, it does
not impose a threading model on your AMI application. You are free to use the
AMI APl in a single or multi-threaded application.

TIBCO Hawk Programmer’s Guide

AMI API Sample Programs | 69

AMI APl Sample Programs

The TIBCO Hawk software distribution includes sample AMI Java, C++, and C
API programs that will help you to better understand how to use the API. These
samples can be found in the following directories:

e For Java: HAWK_HOME/examples/ami_api/java
e For C++: HAWK_HOME/examples/ami_api/cpp
e For C: HAWK_HOME/examples/ami_api/c.

The Sample AMI API Applications

The TIBCO Hawk AMI API sample applications can be found in the directory:
HAWK_HOME/examples/ami_api directory

This directory contains three sub-directories ¢, cpp, and java that contain sample
applications for the C, C++, and Java TIBCO Hawk AMI APIs, respectively. These
applications are discussed in the following sections.

TIBCO Hawk AMI C API Sample Applications

To pass the parameters for executing AMI program, use the properties file
hawk_example.props available at HAWK_HOME/examples/hawk_example.props.
This properties file defines the transport to be used (TIBCO Rendezvous or
TIBCO DataGrid) and the parameters required to establish the transport session.

The TIBCO Hawk AMI C API sample directory contains five sample applications.
They have the following filenames and AMI application names, with the numbers
1-5 substituted for the x:

TIBCO Hawk AMI C API sample x:
— Filename: ami_samplex.c
— Display name: ami_samplex
— Internal name: COM.TIBCO.hawk. ami_api.c.ami_samplex

The five sample applications can be built by following the instructions in the
Makefile.sample file, which is also located in the sample directory.

e ami_samplel.c

This sample shows how to AMI instrument a user application. The AMI API
does all the TIBCO Rendezvous and TIBCO DataGrid work under the covers.

TIBCO Hawk Programmer’s Guide

70 | Chapter 4 AMI API

This method limits the number of dispatching threads to one thread. This is
the only thread which will call the user applications AMI API callback
functions. As a result, the users application can be single threaded. If the users
application is to be multi-threaded then the code in this sample would run on
a dedicated thread. The users application would be responsible for thread
safety regarding any of its own data structures.

ami_sample2.c

This sample shows how to AMI instrument a Rendezvous application. The
users application creates a Rendezvous transport and queue and is
responsible for dispatching that queue.

The users application is free to be single or multiple threaded. The users
application is responsible for synchronizing access to user application data in
the multi-threaded case.

ami_sample3.c

This sample is identical to ami_samplel.c except that it demonstrates how to
create methods that return tabular data.

ami_sampled.c

This sample shows how to create an asynchronous AMI method for a
synchronous data source. This technique is used when synchronous data
needs to be polled at a certain rate, possibly calculations performed on the
data across samples, and the results returned at that rate or another rate. This
technique makes use of the auto-invoke feature of the AMI C APL

ami_sample5.c

This sample shows how to create asynchronous AMI method for a
asynchronous data source. The data source sends data using
ami_SessionOnData API to send data asynchronously to every subscriber.

Executing Sample Programs

To execute, for example, ami_samplex program, use the following command
line:

ami_samplex hawk_ example.props

Using Sample Applications on IBM i5/0S

The names of the TIBCO Hawk AMI C API sample programs have been truncated
to fit the IBM i5/0S name limit. On IBM i5/0S, the sample programs have the
following names, with the numbers 1-4 substituted for the x:

ami_samplex.c

TIBCO Hawk Programmer’s Guide

AMI API Sample Programs | 71

A sample CL program is provided to compile the sample programs. This sample
CL program is included with the HAWKAMI library in QCSRC. The sample CL
program assumes the source for the sample programs is present in
TIBHAWK/QCSRC.

To compile the sample programs, execute the following command:
CALL TIBHAWK/AMICMP AMI_SAMPL1

You can execute the TIBCO HAWK AMI C sample programs as a job or from gsh.

To submit a job, execute the following command:

SBMJOB CMD(CALL PGM(TIBHAWK/AMI_SAMPL1)) JOBQ(QUSRNOMAX)
MSGQ(*USRPRF) ALWMLTTHD(*YES)

TIBCO Hawk AMI C++ API Sample Application

The TIBCO Hawk AMI C++ API sample directory contains one sample
application, which has the following filename and AMI application names:

* AmiSamplel.cpp
Filename: AmiSamplel.cpp
Display name: AmiSamplel
Internal name: COM.TIBCO.hawk.ami_api.cpp.AmiSamplel

This sample creates an AMI session to support methods that demonstrate how
to:

— pass data to an instrumented application,

— receive data from an instrumented application,
— return tabular data,

— return data asynchronously, and

— shutdown an application.

The sample application can be built by following the instructions in the
Makefile.sample file, also located in the sample directory.

Executing the Sample Program

* To execute AmiSamplel program, use the following command line:
AmiSamplel hawk_example.props

TIBCO Hawk AMI Java APl Sample Application
The TIBCO Hawk AMI Java API sample directory contains the following files:

TIBCO Hawk Programmer’s Guide

72 | Chapter 4 AMI API

* AmiSample.Java:a sample application designed to illustrate how to
instrument a Java application using the TIBCO Hawk AMI API for Java.

* Spot.java: a simple GUI application using TIBCO Hawk AMI API for Java.
® SpotAmi.java: AMI Java API instrumentation for the Spot application.

This sample demonstrates how an existing application, Spot . java, can be
instrumented with the AMI Java APL

The AMI sample spot . java has the following AMI application names:
¢ Display name: Spot

¢ Internal name: COM.TIBCO.hawk.ami_api.java.Spot

Executing the Sample Program

In order to compile and execute this sample, the following must be in your Java
CLASSPATH:

® ami.jarandutil.jar from the TIBCO Hawk java directory

® tibrvj.jar from the TIBCO Rendezvous java directory

It is recommended that you use Java 1.7 or higher.
For TIBCO DataGrid transport,

* On Windows, path to as-common.dll is required in the PATH environment
variable.

¢ On Unix/Linux, modify LD_LIBRARY_PATH to include ascommon.so as
follows:

— LD_LIBRARY_PATH=$TIBCO_HOME/as/2.0/1lib:$1LD_LIBRARY_PATH
— export LD_LIBRARY_PATH

The Spot application is executed with the following command:

java Spot -rvd_session <service> <network> <daemon> hawk_example.props

Using the Sample Programs

Each sample program represents a separate application. Compile and link them
using your C/C++ development environment.

Do not use any class libraries (such as MFC) in your build; make the application a
console application only.

TIBCO Hawk Programmer’s Guide

Programmer’s Checklist | 73

Programmer’s Checklist

C++ Library Files

&

TIBCO Hawk C++ programs must link the appropriate library files. Choose the
appropriate files based on operating system platform.

See Transport Based Library Files on page 75 for appropriate library files based on
the transport type.

The table below lists the appropriate library files for the various TIBCO Hawk
platforms.

Table 2 Libraries to be Linked

OS platform Compilation Style Libraries to Link

Microsoft /MD compiled console tibhawkamicpp.1ib
Windows application to be run with DLL tibhawkami.lib
Solaris Shared libraries libtibhawkamicpp.so

libtibhawkami.so

HP-UX Shared libraries For TA64(Itanium):
libtibhawkamicpp.so

libtibhawkami.so

AIX Shared libraries libtibhawkami.a
libtibhawkamicpp.a

Linux Shared libraries libtibhawkamicpp.so
libtibhawkami. so

Mac OS Mac shared libraries libtibhawkamicpp.dylib
libtibhawkami.dylib

TIBCO Hawk Programmer’s Guide

74 |Chapter4 AMI API

C Library Files
TIBCO Hawk AMI C API programs must link the appropriate library files.

The table below lists the appropriate library files for use on the different TIBCO
Hawk platforms.

Table 3 C libraries to be linked

OS platform Compilation Style Libraries to link with
Microsoft /MD compiled console application =~ tibhawkami.lib
Windows to be run with DLL

Solaris Shared libraries libtibhawkami.so
HP-UX Shared libraries For TA64(Itanium):

libtibhawkami. so

AIX Shared libraries libtibhawkami.a
Linux Shared libraries libtibhawkami. so
Mac OS Mac shared libraries libtibhawkami.dylib

TIBCO Hawk Programmer’s Guide

Programmer’s Checklist | 75

Transport Based Library Files

TIBCO Rendezvous Based Libraries

The table below lists the appropriate library files based on TIBCO Rendezvous for
use on different platforms:

Table 4 TIBCO Rendezvous based libraries to be linked

OS platform Compilation Style Libraries to link with

Microsoft /MD compiled console librv.1ib

Windows application to be run with tibhawkamirv.lib
DLL

Linux/Solaris/H Shared libraries libtibrv.so

P-UX libtibhawkamirv.so

AIX Shared libraries libtibrv.a

libtibhawkamirv.a

Mac OS Mac shared libraries libtibhawkamirv.dylib
libtibrv.dylib

TIBCO Hawk DataGrid Based Libraries

The table below lists the appropriate library files based on TIBCO Hawk DataGrid
for use on different platforms:

Table 5 TIBCO Hawk DataGrid based libraries to be linked

OS platform Compilation Style Libraries to link with
Microsoft /MD compiled console as-common. 1lib
Windows application to be run with DLL. ~ as-core.lib

tibhawkamias.lib

Linux/Solaris/H Shared libraries libas-common.so
P-UX libas-core.so

libtibhawkamias.so

AIX Shared libraries libas-common.a
libas-core.a

libtibhawkamias.a

Mac OS Mac shared libraries libas-common.dylib
libas-core.dylib

libtibhawkamias.dylib

TIBCO Hawk Programmer’s Guide

76 | Chapter 4 AMI API

Java AMI API Reference

The following link provides access to the TIBCO Hawk AMI API Javadocs.
e AMI API Javadocs

TIBCO Hawk Programmer’s Guide

https://docs.tibco.com/pub/hawk/5.1.0/doc/api/ami-api/index.html

77

C++ AMI API Reference

This chapter describes the TIBCO Hawk AMI API C++ class reference. It provides
detailed descriptions of each class and method in the TIBCO Hawk.

* AmiSession Class, page 78

* AMI Property Class, page 100

* AMI Method Classes, page 106

® AMI Parameter Classes, page 126
e AMI Error Handling, page 142

TIBCO Hawk Programmer’s Guide

78|

AmiSession Class

Class

Declaration

Purpose

Remarks

Member
Summary

class AmiSession;

An instance of AmiSession represents an interface to the TIBCO Hawk agent and

is treated as a microagent.

This class can be used as a base class for an application-specific AMI class. The

user can inherit from this class and populate the AMI session with methods in the

constructor.

The AmiSession class will establish point-to-point communication with a TIBCO

Hawk agent.
Member Description Page
AmiSession() Constructor. Independent of 78
the transport being used.
AmiSession() Constructor. 78
AmiSession: :open() Initializes the AMI API 84
AmiSession::close() Terminates the AMI API 85
AmiSession: :versionName () Returns current version name 86
AmiSession: :version() Returns current version 87
AmiSession::versionDate() Returns current version date 88
AmiSession: :banner() Returns product banner 89
AmiSession::versionMajor() Returns major version 90
AmiSession: :versionMinor() returns minor version 91
AmiSession: :getTraceLevels() Returns the current AMI 92
session trace level settings
AmiSession: :setTraceLevels() Resets AMI session trace level 93
settings
AmiSession: :enableTraceLevels() Enables levels of race output. 94
AmiSession::disableTraceLevels() Disables levels of trace output 95

TIBCO Hawk Programmer’s Guide

Member (Cont’d)

AmiSession: :announce ()

AmiSession Class | 79

AmiSession:: Accessors()

Description (Cont’d) Page
Announces existence of the 96
microagent.

Returns AmiSession 97
accessors.

AmiSession: :sendUnsolicitedMsg()

Sends unsolicited messageto 98
the monitoring agent.

AmiSession::

Stops the AMI session 99

TIBCO Hawk Programmer’s Guide

80|

AmiSession()

Constructor

Declaration AmiSession(ami_TraceCode tracelevel,
AmiProperty amiProperty,

s

const char * name,

const char * display,

const char * help,
ami_TraceHandler traceHandler,
const void * userData);

Purpose This constructor creates an instance of AmiSession. Each instance corresponds to
an independent microagent.

Parameters Parameter Description

tracelLevel AMI trace levels for this AMI session. Levels can be:
AMI_ALL. Turns on all trace code levels.
AMI_AMI. Indicates AMI level trace message.

AMI_DEBUG. Logging statement are written into the trace file
if, and only if, the trace level set in the current ami_Session
object has the AMI_DEBUG bit mask turned on.

AMI_ERROR. Logging statement are written into the trace file,
regardless of whether the AMI_ERROR bit mask isturned onin
the current ami_Session object.

AMI_INFO. Logging statements are written into the trace file
if, and only if, the trace level set in the current
ami_Session object hasthe AMI_INFO bit mask turned on.
AMI_STAMP. Adds source file name and line number to all
messages.

AMI_WARNING. Logging statement are written into the trace
file if, and only if, the trace level set in the current
ami_Session object hasthe AMI_WARNING bit mask turned

on.
amiProperty Object of AmiProperty Class class.
name Internal name of the microagent.
display User friendly name for the microagent. This name appears in

the TIBCO Hawk WebConsole.

help Help text for describing the functions of this microagent.

traceHandler Error callback function used for this AMI session.

TIBCO Hawk Programmer’s Guide

AmiSession() | 81

Parameter (Cont’d) Description (Cont’d)

userData User data for this AMI session.

TIBCO Hawk Programmer’s Guide

82|

AmiSession()

Constructor

Declaration AmiSession(ami_TraceCode tracelevel,
const char * service,
const char network,
const char * daemon,
unsigned int rvTIransport,
unsigned int rvQueue,
const char * name,
const char * display,
const char * help,
ami_TraceHandler traceHandler,
const void * userData);

*

Purpose This constructor creates an instance of AmiSession. Each instance corresponds to
an independent microagent.

Parameters Parameter Description

tracelLevel AMI trace levels for this AMI session. Levels can be:
AMI_ALL. Turns on all trace code levels.
AMI_AMI. Indicates AMI level trace message.
AMI_DEBUG. Logging statement are written into the trace file
if, and only if, the trace level set in the current ami_Session
object has the AMI_DEBUG bit mask turned on.
AMI_ERROR. Logging statement are written into the trace file,
regardless of whether the AMI_ERROR bit mask isturned on in
the current ami_Session object.
AMI_INFO. Logging statements are written into the trace file
if, and only if, the trace level set in the current
ami Session object hasthe AMI_INFO bit mask turned on.
AMI_STAMP. Adds source file name and line number to all
messages.
AMI_WARNING. Logging statement are written into the trace

file if, and only if, the trace level set in the current
ami_Session object hasthe AMI_WARNING bit mask turned

on.
service TIBCO Rendezvous service, network and daemon
network parameters. For information about setting these parameters,
see your TIBCO Rendezvous documentation.
daemon
rvTransport C handle for TIBCO Rendezvous tibrvTransport.
rvQueue C handle for TIBCO Rendezvous tibrvQueue handle.

TIBCO Hawk Programmer’s Guide

AmiSession() | 83

Parameter (Cont’d) Description (Cont’d)

name Internal name of the microagent.

display User friendly name for the microagent. This name appears in
the TIBCO Hawk WebConsole.

help Help text for describing the functions of this microagent.
traceHandler Error callback function used for this AMI session.
userData User data for this AMI session.

TIBCO Hawk Programmer’s Guide

84|

AmiSession::open()

Method

Declaration static AmiStatus open();

Purpose Initializes the AMI API.

TIBCO Hawk Programmer’s Guide

AmiSession::close() | 85

AmiSession::close()
Method

Declaration static AmiStatus close();

Purpose Terminates the AMI C++ API and releases associated resources.

TIBCO Hawk Programmer’s Guide

86|

AmiSession::versionName()

Method

Declaration static const char * versionName();

Purpose Returns the release name of the application.

TIBCO Hawk Programmer’s Guide

AmiSession::version() | 87

AmiSession::version()
Method

Declaration static const char * version();

Purpose Returns the release version of the application.

TIBCO Hawk Programmer’s Guide

88|

AmiSession::versionDate()

Method

Declaration static const char * versionDate();

Purpose Returns the version date of the application.

TIBCO Hawk Programmer’s Guide

AmiSession::banner() | 89

AmiSession::banner()
Method

Declaration static const char * banner();

Purpose Returns the application banner.

TIBCO Hawk Programmer’s Guide

90|

AmiSession::versionMajor()

Method

Declaration static int versionMajor();

Purpose Returns the major version.

TIBCO Hawk Programmer’s Guide

AmiSession::versionMinor() | 91

AmiSession::versionMinor()
Method

Declaration static int versionMinor();

Purpose Returns the minor version.

TIBCO Hawk Programmer’s Guide

92|

AmiSession::getTraceLevels()

Method

Declaration AmiStatus getTracelevels(ami_TraceCode * inpTracelevel) const;

Purpose Returns the current AMI session trace level settings.

TIBCO Hawk Programmer’s Guide

AmiSession::setTracelLevels() | 93

AmiSession::setTracelLevels()
Method

Declaration AmiStatus setTracelLevels(amiTraceCode inTracelevel);

Purpose Resets all AMI Session trace level settings to the specified settings.

TIBCO Hawk Programmer’s Guide

94|

AmiSession::enableTracelLevels()

Method

Declaration AmiStatus enableTracelevels(amiTraceCode inTracelevel);

Purpose Enables the specified level(s) of trace output. All other trace levels settings are
unaffected.

TIBCO Hawk Programmer’s Guide

AmiSession::disableTracelLevels() | 95

AmiSession::disableTraceLevels()
Method

Declaration AmiStatus disableTracelevels(amiTraceCode inTracelevel);

Purpose Disables the specified level(s) of trace output. All other trace level settings are
unaffected.

TIBCO Hawk Programmer’s Guide

96|

AmiSession::announce()

Method

Declaration AmiStatus announce(void) const;

Purpose Announces the existence of the microagent to the TIBCO Hawk agent.

TIBCO Hawk Programmer’s Guide

AmiSession::get... Accessors | 97

AmiSession::get... Accessors

Method

Declarations

Purpose

Methods

* %

AmiStatus getName(const char name) const;

* %

AmiStatus getDisplayName(const char displayName) const;
AmiStatus getHelp(const char ** help) const;
AmiStatus getUserData(void ** userData) const;

AmiStatus& getStatus();
Accessors for AmiSession objects.

The following table lists the get accessors for AmiSession objects.

Method Description

getName() Gets the name of this microagent.

This name can be different from the display name, as this is
the actual name by which the microagent is identified in the
TIBCO Hawk system.

getDisplayName() Gets the display name of the microagent. This is the name
as it appears and can be different from the actual name of
the microagent.

The display name is the user-friendly name by which this
interface is to be known, as opposed to the internal
interface identifier. The TIBCO Hawk WebConsole shows
the display name in the list of discovered
microagents/AMI applications.

getHelp() Gets the help text of this microagent.
The returned help text is the optional help text that is
displayed to the user.
getUserData() Returns the user data in the specified AMI session.
getStatus() Used to check that the session has been created correctly.

TIBCO Hawk Programmer’s Guide

98|

AmiSession::sendUnsolicitedMsg()

Method

Declaration

Purpose

Remarks

Parameters

AmiStatus sendUnsolicitedMsg(
ami_AlertType type,
const char * text,
int id) const;

Sends an unsolicited message to the monitoring agent.
An unsolicited message is an application information, warning, or error message

that is sent from the managed application directly to the manager (TIBCO Hawk
agent).

type Alert message type (information, warning, or error).

text A text message describing the alert condition.

id An arbitrary identification number defined by the
application.

TIBCO Hawk Programmer’s Guide

AmiSession::stop() | 99

AmiSession::stop()
Method

Declaration AmiStatus stop(void) const;

Purpose Stops the AMI session.

TIBCO Hawk Programmer’s Guide

100 |

AMI Property Class

An instance of AmiProperty class has to be created while creating AMI session to
add transport specific properties to AMI session.

* AmiProperty Class, page 101

TIBCO Hawk Programmer’s Guide

AMI Property Class | 101

AmiProperty Class

Class
Declaration

Purpose

Member
Summary

class AmiProperty;

This class implements the transport properties to be created. These properties are
name value pairs and need to be passed while creating AmiSession.

Member Description Page
AmiProperty() Constructor 102
AmiProperty:: () Sets the transport properties 103

TIBCO Hawk Programmer’s Guide

102 |

AmiProperty()

Constructor

Declaration AmiProperty: : AmiProperty();

Purpose This constructor creates an instance of AmiProperty.

TIBCO Hawk Programmer’s Guide

AmiProperty::() | 103

AmiProperty::()
Method

Declaration AmiProperty: :AmiProperty(
const char * name,
void * value);

Purpose Sets the transport properties specified as name value pairs.

The following table provides the supported property names and their default

values:

Property Name Mandatory Default Description

hawk_domain No Default The hawk domain.

hawk_transport No tibas Choice of transport. The
available options are:
 tibas
e tibrv

Table 6 Properties List for hawk_transport = tibas
Property Name Mandatory Default Description
agent_name No <hostname> Used to detect if an agent has

joined and needs to match
one specified in
hawkagent . cfg file.

as_listen_url No <host>:5000 TIBCO ActiveSpaces listen
0 parameter.
as_discover_url No tibpgm://(d TIBCO ActiveSpaces
efault :
provided by discover parameter.
AS)
as_invocation_ti No 30000 All internal synchronous
meout communications will use
this default timeout in
milliseconds.
as_receive_buffe No 1000 Internal memory size
r_size

allocation in bytes.

TIBCO Hawk Programmer’s Guide

104 |

Property Name

Mandatory Default

Description

as_virtual node_ No 100 Internal parameter for

count even distribution of data
in seeders.

as_worker_thread No 32 Number of threads used

—count by TIBCO ActiveSpaces
APIL

agent_domain No none

Unique identification of
HMA with given agent.

agent_session_id No

<hawk_domai
n>_<agent_n
ame>_<agent
_domain>_0

Unique session id per
microagent session. This is
useful when a single
process creates multiple
ami sessions. The integer
number at the end starts
from 0 and keeps
increasing for multiple
ami sessions.

Table 7 Properties List for hawk_transport = tibrv

Property Name Mandatory Default

Description

rv_service No 7474 TIBCO Rendezvous service
property.

rv_network No ; TIBCO Rendezvous
network property.

rv_daemon No tcp:7474 TIBCO Rendezvous
daemon property.

rv_queue No Internal-qu TIBCO Rendezvous queue

eue for AMI session.
rv_transport No Internal-rv TIBCO Rendezvous

-transports

transport for AMI session.

TIBCO Hawk Programmer’s Guide

AmiProperty::() | 105

When Hawk_transport = tibrv and you need to use your own rv_queue and
rv_transport, perform the following steps:

e Explicitly call tibrv_open() method before providing a user queue
(rv_gqueue).

Explicitly call tibrv_close () method before application exit.

Refer to TIBCO Rendezvous® documentation for more information.

TIBCO Hawk Programmer’s Guide

106 |

AMI Method Classes

The methods define the application interface to the TIBCO Hawk agent. When
AmiSession announces itself to the TIBCO Hawk agent, the agent queries for a
description of the available methods. Amisession creates a description of
available AMI method objects based on implementations of AmiMethod.

AmiMethod class provides a foundation for classes that describe synchronous, and
asynchronous AMI methods.

The AmiAsyncMethod class extends the AmiMethod class to send data whenever it
becomes available. This allows the AMI-instrumented application to actively
publish data whenever data becomes available.

The AmiSyncMethod class extends the AmiMethod class to return synchronous
data. With AmiSyncMethod class, the method returns data only upon request.

The AmiSubcription class encapsulates an asynchronous method subscription.
* AmiMethod Class, page 107

* AmiAsyncMethod Class, page 111

* AmiSyncMethod Class, page 118

* AmiSubscription Class, page 120

TIBCO Hawk Programmer’s Guide

AMI Method Classes | 107
AmiMethod Class
Class
Declaration class AmiMethod
Purpose This class implements methods.
Remarks Classes derived from AmiMethod can be registered with AmiSession. The
AmiSyncMethod class extends the AmiMethod class to implement synchronous

methods. The AmiAsyncMethod class extends the AmiMethod class to implement
asynchronous methods.

Member Member Description Page
Summary
AmiMethod: : setIndexName () Sets the index name for this 108
AmiMethod.
AmiMethod::get...() Retrieves information from this 109
Accessors AmiMethod instance.
getStatus()
getName ()
getHelp()

getSession()

AmiMethod: :onInvoke () Callback on arrival of a method 110
invocation method from the
monitoring agent. See
AmiParameter Class, page 127.

TIBCO Hawk Programmer’s Guide

108 |

AmiMethod::setindexName()
Method

Declaration AmiStatus setIndexName(const char * index);

Purpose Sets the index field when this AmiMethod is to return tabular data. The method
can be invoked multiple times to establish the composite index.

Parameters Parameter Description

index The index name to be set.

TIBCO Hawk Programmer’s Guide

AmiMethod::get...() Accessors | 109

AmiMethod::get...() Accessors

Accessors

Declaration AmiStatus getHelp(const char ** help) const;

* %

AmiStatus getName(const char name) const;

%

AmiSession getSession(void) const;

AmiStatus& getStatus();

Purpose Accessors for retrieving information from an AmiMethod instance.

Method Description

getHelp() Gets the help text for the method.

getName () Gets the name of the method.

getSession() Gets the AmiSession object this method belongs to.

getStatus() Used to check if the method object has been created
correctly.

See Also AmiSession Class, page 78

TIBCO Hawk Programmer’s Guide

110 |

AmiMethod::oninvoke()

Method

Declaration

Purpose

Remarks

Parameters

See Also

*

virtual AmiStatus onInvoke(AmiSubscription
AmiParameterListIn
AmiParameterListOut

context,
* argsln
argsOut) = 0;

*

This is a callback method invoked by the C++ API whenever a method invocation
message arrives from the monitoring agent.

Programmers must implement this method to implement the actions to be
performed by the application.

Parameter Description

context AMI context associated with invocation.
argsln Input parameters list from the TIBCO Hawk agent.
argsOut Output parameters list

AmiParameterList Class, page 135

TIBCO Hawk Programmer’s Guide

AmiMethod::onlnvoke() | 111

AmiAsyncMethod Class
Class

Declaration class AmiAsyncMethod : public AmiMethod Class

Purpose The AmiAsyncMethod class extends the AmiMethod class to implement
asynchronous methods.

Member JVERITON: Description

Summary ;
AmiAsyncMethod () Constructor. 112
AmiAsyncMethod: :onStart () Optional virtual method to initiate 113
data flow.
AmiAsyncMethod: :onStop() Optional virtual method to halt data 113
flow.
AmiAsyncMethod: :onData() Sends data asynchronously whenan 115

event occurs.

AmiAsyncMethod: : sendData() Sends data asynchronously from an 116
asynchronous AMI method.

AmiAsyncMethod: : sendError() Reports an error condition for the 118
specified asynchronous method
subscription.

TIBCO Hawk Programmer’s Guide

112|

AmiAsyncMethod()

Constructor

Declaration AmiAsyncMethod(
AmiSession * session,
const char * name,
const char * help,
ami_MethodType type,

int inTimeout);

Purpose Constructs an instance of AmiAsyncMethod class.

Parameters
session AMI session object.
name Name of the method.
help Help text for the method.
type Type of method. Must be one of AMI_METHOD_INFO,

AMI_METHOD_ACTION or AMI_METHOD_ACTION_INFO.

AMI_METHOD_INFO methods collect data. Data sources in rulebases
and method subscriptions in the TIBCO Hawk WebConsole use this
type of method only.

AMI_METHOD_ACTION methods affect the application’s behavior in
some way. They can be invoked in the TIBCO Hawk WebConsole
through interacting with one agent or through a network action.
Action methods can also be invoked as an action in a rulebase.

AMI_METHOD_ACTION_INFO methods both make a change to the
application and return data. They can be invoked in the TIBCO
Hawk WebConsole through interacting with one agent or through a
network action.

inTimeout The timeout interval of this AMI method. The default is 10000
milliseconds(10 seconds).

TIBCO Hawk Programmer’s Guide

AmiAsyncMethod::onStart() | 113

AmiAsyncMethod::onStart()

Method

*

Declaration virtual AmiStatus onStart(AmiSubscription context,

AmiParameterListIn * args);

Purpose This method is invoked by the AMI C++ API whenever an asynchronous method
subscription request is made on this method. This method implements the start
actions to be performed by the application on such an event

Remarks This method is optional. The default is noop if the application chooses not to
implement it. In this case, the AMI session will track the pertinent context for the
purpose of sending asynchronous data.

Parameters Parameter Description

context AMI context associated with the invocation. The
context is specific to a subscription request. The
lifetime of this context starts at the moment this
method is invoked and stops after the
AmiAsyncMethod: : onStop method returns.

args Input parameters list from the TIBCO Hawk agent.

See Also AmiParameterList Class, page 135
AmiAsyncMethod::onStop()

TIBCO Hawk Programmer’s Guide

114|

AmiAsyncMethod::onStop()
Method

Declaration virtual AmiStatus onStop(AmiSubscription * content);

Purpose This method is invoked by the AMI C++ API whenever cancellation of
asynchronous method subscription arrives for this method. The method
implements the stop actions to be performed by the application on such an event.
this method is optional.

context Method context

TIBCO Hawk Programmer’s Guide

AmiAsyncMethod::onData() | 115

AmiAsyncMethod::onData()

Method

Declaration void onData();
Purpose This method sends data asynchronously when an event occurs.

Remarks This method goes through the session context list and sends the data returned by
AmiMethod: : onInvoke () to the appropriate subscription based on the varying
input parameters calculated in AmiMethod: : onInvoke (). This method tracks the
context in a way that is transparent to the users.

If not interested in the context or subscription, you must not return any data or
call to AmiParamterListOut: :newRow() in AmiMethod: :onInvoke() . However,
the method should not be suppressed.

It is the user’s responsibility to invoke this method when the event occurs.

TIBCO Hawk Programmer’s Guide

116|

AmiAsyncMethod::sendData()
Method

*

Declaration AmiStatus sendData(AmiSubscription context,
AmiParameterListOut * data);

Purpose Sends data asynchronously from an asynchronous AMI method.

Parameters Parameter Description

context Asynchronous subscription context.
data Reply data to be sent to the subscriber of the asynchronous AMI
method.

TIBCO Hawk Programmer’s Guide

AmiAsyncMethod::sendError() | 117

AmiAsyncMethod::sendError()
Method

Declaration AmiStatus sendError(AmiSubscription * context,
AmiStatus& status);

Purpose Reports an error condition for the specified asynchronous method subscription.

Parameters Parameter Description

context Asynchronous subscription context.

status Reported error condition.

TIBCO Hawk Programmer’s Guide

118 |

AmiSyncMethod Class
Class

Declaration class AmiSyncMethod : public AmiMethod Class

Purpose = The AmiSyncMethod class extends the AmiMethod class to implement synchronous

methods.
Member [EVESITIN Description Page
Summary
AmiSyncMethod () Constructor. 119

TIBCO Hawk Programmer’s Guide

AmiSyncMethod() | 119

AmiSyncMethod()

Constructor

Declaration AmiSyncMethod (
AmiSession * session,
const char * name,
const char * help,
ami_MethodType type,

int inTimeout);

Purpose Constructs an instance of AmiSyncMethod class.

Parameters Parameter Description

session AMI session object.

name Name of the method.

help Help text for the method.

type Type of method. Must be one of AMI_METHOD_INFO,

AMI_METHOD_ACTION or AMI_METHOD_ACTION_INFO.

AMI_METHOD_INFO methods collect data. Data sources in
rulebases and method subscriptions in the TIBCO Hawk
WebConsole use this type of method only.

AMI_METHOD_ACTION methods affect the application’s behavior in
some way. They can be invoked in the TIBCO Hawk WebConsole
through interacting with one agent or through a network action.
Action methods can also be invoked as an action in a rulebase.

AMI_METHOD_ACTION_INFO methods both make a change to the
application and return data. They can be invoked in the TIBCO
Hawk WebConsole through interacting with one agent or through
a network action.

inTimeout The timeout interval of this AMI method. The default is 10000
milliseconds(10 seconds).

TIBCO Hawk Programmer’s Guide

120 |
AmiSubscription Class
class
Declaration class AmiSubscription;

Purpose The AmiSubscription class encapsulates an asynchronous method subscription.

Summary ; -
AmiSubscription::getUserData Allows retrieval of application 121
O specific data from a particular
asynchronous method subscription

AmiSubscription::setCallback Indicates that for this subscription 122
Interval() the associated

AmiMethod: :onInvoke()

callback should be invoked

automatically at the specific interval.

AmiSubscription::setUserData Allows attachment of application 123
O specific data to a particular
asynchronous method subscription.

AmiSubscription::getMethod() Allows retrieval of the associated 124

AMI method object.
AmiSubscription::getArgument Allows retrieval of the method 125
sO) argument values for a particular

asynchronous method subscription.

TIBCO Hawk Programmer’s Guide

AmiSubscription::getUserData() | 121

AmiSubscription::getUserData()
Method

Declaration void * getUserData();

Purpose Retrieves the application specific data attached to a particular asynchronous
method subscription. This method is usually used in the
AmiMethod: : onInvoke () callback when processing asynchronous method
invocations to obtain access to the application specific data associated with that
invocation.

TIBCO Hawk Programmer’s Guide

122 |

AmiSubscription::setCallbackinterval()
Method

Declaration AmiStatus setCallbackInterval(int inInterval);

Purpose Indicates that for this subscription the associated AmiMethod: : onInvoke callback
should be invoked automatically at the specified interval.

Remarks This provides an asynchronous event to trigger what would normally be
synchronous methods so that they can behave as asynchronous methods. A
typical scenario is a method that must calculate (polled) data over a precise time
interval and return the calculated result based on that interval. In this case the
method returns data not based on a synchronous call but on a specified time

interval.
Parameters Parameter Description
inInterval Interval in seconds. Zero disables the interval.

TIBCO Hawk Programmer’s Guide

AmiSubscription::setUserData() | 123

AmiSubscription::setUserData()
Method

Declaration AmiStatus setUserData(void * inpUserData);

Purpose Allows you to attach application specific data to a particular asynchronous
method subscription. This function is usually used in the
AmiAsyncMethod: : onStart () callback.

Parameters Parameter Description

inpUserData User data.

TIBCO Hawk Programmer’s Guide

124 |

AmiSubscription::getMethod()

Method

Declaration AmiMethod * getMethod();

Purpose Allows retrieval of the associated AMI method object for a particular
asynchronous method object.

TIBCO Hawk Programmer’s Guide

AmiSubscription::getArguments() | 125

AmiSubscription::getArguments|()
Method

Declaration AmiParameterListIn * getArguments();

Purpose Allows retrieval of the method argument values for a particular asynchronous
method subscription.

TIBCO Hawk Programmer’s Guide

126 |

AMI Parameter Classes

The AmiParameter class is used to implement the data types to be exchanged
between the C++ AMI interface and the TIBCO Hawk agent.

The AmiParameterIn class extends the AmiParameter class to describe input
parameters for the TIBCO Hawk manager’s (agent) invocation.

The AmiParameterOut class extends the AmiParameter class to describe the result
parameters returned from method invocation.

The AmiParameterList class is used to implement the data types to be exchanged
between the C++ AMI interface and the TIBCO Hawk agent.

The AmiParameterListIn class lists the complete set of input parameters for an
AMI method.

The AmiParameterListOut class lists the complete set of output parameters for
an AMI method.

* AmiParameter Class, page 127

* AmiParameterIn Class, page 131

* AmiParameterOut Class, page 133

* AmiParameterList Class, page 135

* AmiParameterListIn Class, page 136

* AmiParameterListOut Class, page 138

TIBCO Hawk Programmer’s Guide

AMI Parameter Classes | 127

AmiParameter Class
Class

Declaration class AmiParameter;

Purpose Implements the data types to be exchanged between the aMI application and the
TIBCO Hawk agent. The parameter can be either AmiParameterIn for input
parameters from the TIBCO Hawk agent or AmiParameterOut for result
parameters from method invocations.

Remarks The methods use these boolean definitions:

AMI_FAILSE =0

AMI_TRUE =1

Member JVERITON: Description Page
Summary :)
AmiParameter: :addChoice() Sets the value choices for this 128
AmiParameter.
AmiParameter::addLegal () Sets the legal choices for 129
AmiParameter.
AmiParameter: :getStatus() Checks if the parameter object was 130

created correctly.

TIBCO Hawk Programmer’s Guide

128 |

AmiParameter::addChoice()
Method

Declaration AmiStatus addChoice(void* wvalue);
Purpose Sets the value choices for this parameter.

Remarks Value choices can be displayed by the managing application. If value choices are
specified for a parameter, other values are also permitted. For a specified
AmiParameterIn object, set only one of either choice or legal values. If both are
set, the legal value takes precedence.

Parameters Parameter Description

value Choice value.

TIBCO Hawk Programmer’s Guide

AmiParameter::addLegal() | 129

AmiParameter::addLegal()

Method
Declaration
Purpose

Remarks

Parameters

AmiStatus addLegal(void* value);
Sets the legal value choices for this parameter.

Legal value choices can be enforced and displayed by the managing application.
If legal value choices are specified for a parameter, no other values are permitted.
For a specified AmiParameterIn object, set only one of either choice or legal
values. If both are set, the legal value takes precedence.

Parameter Description

value Legal choice value.

TIBCO Hawk Programmer’s Guide

130 |

AmiParameter::getStatus()

Method

Declaration AmiStatus& getStatus();
Purpose Checks if the parameter object has been created correctly.

See Also: AmiStatus Class, page 143

TIBCO Hawk Programmer’s Guide

AmiParameter::getStatus() | 131

AmiParameterln Class
Class

Declaration class AmiParameterIn : public AmiParameter Class

Purpose Describes the input parameter from the TIBCO Hawk agent.

Member JVERITON: Description Page
Summary
AmiParameterIn() Constructor. 132

TIBCO Hawk Programmer’s Guide

132 |

AmiParameterin()

Constructor

Declaration AmiParameterIn(AmiMethod * method,
const char* name,
ami_DataType type,
const char* help);

Purpose Creates an input parameter for the given method.

method AmiMethod to which this parameter is set.
name Establishes the name of the AmiParameterIn object.
type Parameter type. One of:

AMI_T32. 32-bit signed integer.

AMI_TI64. 64-bit signed integer.

AMI_U64. 64-bit unsigned integer.

AMI_F64. 64-bit floating-point number.

AMI_STRING. Null-terminated character string (UTF8 encoding).
AMI_BOOLEAN. Boolean.

help Establishes the help text describing the purpose of the
AmiParameterIn object.

NULL or empty string values are acceptable. We strongly recommend
you specify meaningful descriptions when describing AmiMethod
input parameters.

TIBCO Hawk Programmer’s Guide

AmiParameterin() | 133

AmiParameterOut Class
Class

Declaration class AmiParameterOut : public AmiParameter Class

Purpose Creates an output parameter to describe the data that the method returns to the

agent.
Member Member Description Page
Summary ;
AmiParameterOut() Constructor. 134

TIBCO Hawk Programmer’s Guide

134 |

AmiParameterOut()

Constructor

Declaration AmiParameterOut (AmiMethod * method,
const char* name,
ami_DataType type,
const char* help);

Purpose Describes the result parameters returned by the method invocation.

Parameters

Parameter Description
method AmiMethod to which this parameter is set.
name Establishes the name of the AmiParameterOut object.

Note: The use of curly brackets { } in microagent method parameter
names is not supported. Use of these characters results in an error.

type Parameter type. One of:
AMI_T32. 32-bit signed integer.
AMI_TI64. 64-bit signed integer.
AMI_U64. 64-bit unsigned integer.
AMI_F64. 64-bit floating-point number.
AMI_STRING. Null-terminated character string (UTF8 encoding).
AMI_BOOLEAN. Boolean.

help Establishes the help text describing the purpose of the
AmiParameterOut object.

NULL or empty string values are acceptable. We strongly recommend
you specify meaningful descriptions when describing AmiMethod
output parameters.

TIBCO Hawk Programmer’s Guide

AmiParameterOut() | 135

AmiParameterList Class
Class

Declaration class AmiParameterList;

Purpose = The AmiParameterList object contains a list of AMI parameters. It is the parent
class for AmiParameterListIn and AmiParamterListOut.

TIBCO Hawk Programmer’s Guide

136 |

AmiParameterListin Class

class
Declaration class AmiParameterListIn;

Purpose Defines the input parameter list for an AMI method.

Member Parameter Description
Summary

‘:‘tmif(’?;ll‘ameterLiStIm rgetVa parameters for an AMI method 137
ue

TIBCO Hawk Programmer’s Guide

AmiParameterListin::getValue() | 137

AmiParameterListin::getValue()
Method

Declaration AmiStatus getValue(const char* name, void* value);

Purpose Gets the value associated with the input parameter name.

Parameters Parameter Description

name Name of parameter being retrieved.

value Target for the retrieved value.

TIBCO Hawk Programmer’s Guide

138 |

AmiParameterListOut Class
class

Declaration class AmiParameterListOut;

Purpose Groups AmiParameter objects to define an AMI method complete set of output

parameters.
Member Parameter Description
Summary

AmiParameterListOut() Constructor 139
AmiParameterListOut:: Retrieves a list of returned values to use 140
newRow () with setvalue for method invocation.
AmiParameterListOut:: Sets the parameter of the given name 141
setValue() with the value.

TIBCO Hawk Programmer’s Guide

AmiParameterListOut() | 139

AmiParameterListOut()

Constructor

Declaration AmiParameterListOut(AmiMethod * method);

Purpose Creates an AmiParameterListOut object to store the returned data used in
AmiAsyncMethod: :sendData().

TIBCO Hawk Programmer’s Guide

140 |

AmiParameterListOut::newRow()
Method

Declaration AmiStatus newRow();

Purpose Gets a list of returned values for the method, the current Ami ParameterListOut
object, then can call to AmiParameterListOut: : setValue to set the return values
for a method invocation. This function can be called multiple times to return
multiple rows of data.

TIBCO Hawk Programmer’s Guide

AmiParameterListOut::setValue() | 141

AmiParameterListOut::setValue()
Method

Declaration AmiStatus setValue(const char * name void * value);

Purpose Sets the parameter of the given name with the value

Parameters Parameter Description

name Name of parameter being set

value Value to set

TIBCO Hawk Programmer’s Guide

142 |

AMI Error Handling

The AmiStatus class encapsulates information about AmiStatus conditions to aid
in error tracing.

* AmiStatus Class, page 143

TIBCO Hawk Programmer’s Guide

AMI Error Handling | 143

AmiStatus Class
Class

Declaration class AmiStatus;

Purpose Objects of this class also are used to return an error condition to the monitoring

TIBCO Hawk agent.
Member Member Purpose Page
Summary ;
AmiStatus() Constructor 145
operator ami_Error() const Operator to convert an —
ami_Error to AmiStatus.
AmiStatus& operator=(const Assignment operator. —

AmiStatus& status)

AmiStatus& operator=(const Assignment operator. —
ami_Error status)

AmiStatus& operator=(const Assignment operator. —
ami_ErrorCode errorCode)

ami_Boolean operator==(const Comparison operator. —
AmiStatus& status)

ami_Boolean operator!=(const Comparison operator. —
AmiStatus& status)

ami_Boolean operator==(const Comparison operator. —
ami_Error status)

ami_Boolean operator!=(const Comparison operator. —
ami_Error status)

ami_Boolean operator! () const Comparison operator. —

ami_Boolean ok(void) const Evaluates whether this status —
object— indicates an error state.

AmiStatus::getAmiError() Returns the C API error handle of 146
this AmiStatus object.

AmiStatus::setStatus() Creates a new AMI error for the 147
specified error code and
AmiStatus::setStatusV() descriptive text. 148
AmiStatus::stamp() Stamps AMI error for location ID 149
AmiStatus: :getCode() returns the AMI C API error code 150

TIBCO Hawk Programmer’s Guide

144 |

Member (Cont’d) Purpose (Cont’d)

AmiStatus: :getText() Returns the textual description of 151
the error

AmiStatus::getThread() Returns the thread ID of the 152
thread which created the specified
AMI error

AmiStatus::getFile() Returns error’s source file name 153

AmiStatus::getLine() Returns the line number of the 154

error source

TIBCO Hawk Programmer’s Guide

AmiStatus() | 145

AmiStatus()

Constructor

Declaration AmiStatus();
AmiStatus(ami_Error status);

AmiStatus(ami_ErrorCode code);

Purpose Creates an instance of AmiStatus object.

Parameters Parameter Description

status Handle to ami_Error.

code AMI C error code.

TIBCO Hawk Programmer’s Guide

146 |

AmiStatus::getAmiError()

Method

Declaration ami_Error getAmiError();

Purpose Gets the AMI C API error handle of this status object.

TIBCO Hawk Programmer’s Guide

AmiStatus::setStatus() | 147

AmiStatus::setStatus()
Method

Declaration void setStatus(int errorCode, const char * format, ...);

Purpose Creates a new AMI error for the specified error code and descriptive text.
Descriptive text is specified as a template (printf format) and substitution
arguments. If error creation fails then an error describing this failure is returned in
place of the specified error.

Parameters Parameter Description

errorCode AMI C error code.

format Descriptive template.

TIBCO Hawk Programmer’s Guide

148 |

AmiStatus::setStatusV()
Method

Declaration void setStatusV(int errorCode, const char * format, va_list args);

Purpose Creates a new AMI error for the specified error code and descriptive text.
Descriptive text is specified as a template (printf format) and substitution
arguments. If error creation fails then an error describing this failure is returned in
place of the specified error.

Parameters Parameter Description

errorCode Error code.
format Error description template.
args Error template substitution arguments.

TIBCO Hawk Programmer’s Guide

AmiStatus::stamp() | 149

AmiStatus::stamp()
Method

Declaration void stamp(const char * inpFilename, in inLineNumber);

Purpose Stamps the specified AMI error with the specified file name and line number.

TIBCO Hawk Programmer’s Guide

150 |

AmiStatus::getCode()

Method

Declaration int getCode();

Purpose Returns the error code of the specified AMI error.

TIBCO Hawk Programmer’s Guide

AmiStatus::getText() | 151

AmiStatus::getText()

Method

Declaration const char * getText();

Purpose Returns the textual description of the specified AMI error.

TIBCO Hawk Programmer’s Guide

152 |

AmiStatus::getThread()

Method

Declaration int getThread();

Purpose Returns the thread ID of the thread which created the specified AMI error.

TIBCO Hawk Programmer’s Guide

AmiStatus::getFile() | 153

AmiStatus::getFile()

Method

Declaration const char * getFile();

Purpose Returns the name of the source file which generated the specified AMI error.

TIBCO Hawk Programmer’s Guide

154 |

AmiStatus::getLine()

Method

Declaration int getLine();

Purpose Returns the line number of the source file which generated the specified AMI
€error.

TIBCO Hawk Programmer’s Guide

|155

C AMI API Reference

This chapter describes the TIBCO Hawk AMI API C class references. It explains
the constants, error codes, data types and functions related to error handling,
tracing, callbacks and initializing the APL

¢ Data Types Summary, page 156

AMI C API Error Functions, page 172

e AMI C API Session Functions, page 194

¢ AMI C API Method Functions, page 214

¢ AMI C API Subscription Functions, page 222
e AMI C API Parameter Functions, page 229

TIBCO Hawk Programmer’s Guide

156 |

Data Types Summary

This table lists the AMI C API data types. These types are described in the
following sections.

Data Type Description Page

ami_AlertType Defines the valid alert types for 158
unsolicited messages.

ami_Boolean Defines the valid boolean data types. 159

AMI C API Constants General constants defined in the AMIC 160
APL

ami_DataType Defines valid AMI C API parameter 161
data types.

ami_Error Error object handle—encapsulates all 162
the information required to define an
AMI C API error.

ami_Method Method object handle—Encapsulates 164

all the information required to define
and support an AMI C APl method.

ami_MethodType Defines the valid AMI C API method 165
types.

ami_Parameter Parameter object handle—encapsulates 166
all the information required to define
and support an AMI C API

parameter—used to represent an
individual method input or output
parameter.

ami_ParameterList Object handle for parameter list that 167
encapsulates all the information
required to define and support a list of
AMI C API parameters—used to group
the input or output parameters of a
method.

TIBCO Hawk Programmer’s Guide

Data Types Summary | 157

Data Type (Cont’d) Description (Cont’d) Page

ami_ParameterListList Object handle that generates a list of 168
Parameter lists—encapsulates all the
information required to define and
support multiple AMI parameter
lists—used to return multiple instances
of output parameter values for a
method (i.e. tabular data).

ami_Session Session object handle—encapsulates all 169
the information required to define and
support an AMI session.

ami_Subscription Encapsulates all the information 170
required to define and support a
subscription to an asynchronous AMI
method.

ami_Property Defines the transport properties 171
specified by name value pairs and are
added by the ami_AddProperty.

TIBCO Hawk Programmer’s Guide

158 |

ami_AleriType

Type

Purpose

Alert Type

Alert classifications for unsolicited messages, specifying the supported AMI
unsolicited message types. An unsolicited message is an application information,
warning, or error message that is sent from the managed application directly to
the manager. These relate directly to the TIBCO Hawk alert classifications.

Type Definition

AMI_ALERT_INFO Specifies an informational alert.
AMI_ALERT_WARNING Specifies a warning alert.
AMI_ALERT_ERROR Specifies an error alert.

TIBCO Hawk Programmer’s Guide

ami_Boolean | 159

ami_Boolean
Type

Purpose This type specifies valid boolean values

Enumeration Declaration Description

AMI_FALSE Boolean value is false

AMI_TRUE Boolean value is true

TIBCO Hawk Programmer’s Guide

160 |

AMI C API Constants

The next table lists the general AMI C API constants.

Constant Description

AMI_VERSION The version of the AMI specification
implemented by this version of the AMI C
APL

AMI_METHOD_DEFAULT_TIMEOUT AMI method default timeout period specified
in milliseconds. If the method takes longer
than this timeout period the TIBCO Hawk
agent will reflect a timeout error.

For methods that require a longer timeout
period this can be overridden by passing the
timeout parameter through the
ami_MethodCreate function The default is
10000 milliseconds.

TIBCO Hawk Programmer’s Guide

ami_DataType | 161

ami_DataType

Type
Purpose Defines the valid AMI C API parameter data types.
Enumeration
AMI_T32 32-bit signed integer.
AMI_T64 64-bit signed integer.
AMI_F64 64-bit floating-point number.
AMI_U64 64-bit unsigned integer.
AMI_STRING Null-terminated character string (UTF8 encoding).
AMI_BOOLEAN Boolean.
AMI_INTEGER Use for backwards compatibility with previous AMI C API

versions. AMI_I32 is preferred.

AMI_LONG Use for backwards compatibility with previous AMI C API
versions. AMI_164 is preferred.

AMI_REAL Use for backwards compatibility with previous AMI C API
versions. AMI_F64 is preferred.

TIBCO Hawk Programmer’s Guide

162 |

ami_Error
Type
Purpose This is the AMI C API error object handle. It encapsulates all the information
required to define and process errors generated by the AMI C API and for the
user's application to pass errors to the AMI C APL
Remarks A null ami_Error handle indicates success (i.e. no error). The convenience define

AMI_OK is provided representing an ami_Error indicating success. It is
recommended that you use an expression like the following when testing an

ami_Error for success:
ami_Error RC;

RC = ami_Function();
if (RC != AMI_OK)

handle error condition

}

A non-null ami_Error indicates an error. The unique error code identifying the
error can be obtained using the ami_ErrorGetCode() function.

The ami_Error is an object handle representing allocated resources and must be
destroyed using the ami_ErrorDestroy() function or memory will be leaked.
The AMI C API application must destroy any ami_Error instances returned by an
AMI C API function call. It must also destroy any ami_Error instance it explicitly
creates with the exception of ami_Error instances returned to the AMI C API
from a method invocation callback function.

The unique error codes returned by the ami_ErrorGetCode () function are
documented in the following table.

AMI_AMIERROR_FAILURE Unable to create AMI error due to memory allocation failure
AMI_TINSUFFICIENT_MEMORY Insufficient memory to process request

AMI_TINVALID_ERROR Specified AMI error handle is invalid

AMI_CORRUPT_ERROR Specified AMI error handle is invalid or corrupted
AMI_MISSING_ARGUMENT Required argument not specified (null)
AMI_TINVALID_ARGUMENT Invalid argument specified

AMI_TNVALID_SESSION Specified AMI session handle (bad handle) is invalid
AMI_CORRUPT_SESSION Specified AMI session handle (bad handle) is invalid or corrupted

TIBCO Hawk Programmer’s Guide

ami_Error | 163

Error Code (Cont’d)
AMI_TINVALID_METHOD

Description (Cont’d)
Specified AMI method handle (bad handle) is invalid

AMI_CORRUPT_METHOD

Specified AMI method handle (bad handle) is invalid or corrupted

AMI_TINVALID_SUBSCRIPTION

Specified AMI subscription handle (bad handle) is invalid

AMI_CORRUPT_SUBSCRIPTION

Specified AMI subscription handle (bad handle) is invalid or corrupted

AMI_INVALID_PARM_TABLE

Specified AMI parameter list handle (bad handle) is invalid

AMI_CORRUPT_PARM_TABLE

Specified AMI parameter list handle (bad handle) is invalid or corrupted

AMI_TINVALID_PARM_LIST

Specified AMI parameter list handle (bad handle) is invalid

AMI_CORRUPT_PARM_LIST

Specified AMI parameter list handle (bad handle) is invalid or corrupted

AMI_INVALID_PARAMETER

Specified AMI parameter handle (bad handle) is invalid

AMI_CORRUPT_PARAMETER

Specified AMI parameter handle (bad handle) is invalid or corrupted

AMI_RV_ERROR

TIBCO Rendezvous error (RV error number): (RV error text)

AMI_UNKNOWN_INVOCATION

Received invocation request for unknown AMI method (method name)

AMI_UNKNOWN_PARAMETER

Method (method name) does not have a parameter named (parameter
name)

AMI_LIST ADD_FATLED

Failed to add object to linked list

AMI_ARGUMENT_GET_FAILED

TIBCO Rendezvous error (RV error number) occurred attempting to
get value for argument (argument name) of method (method name). (RV
error text)

AMI_UNKNOWN_SUBSCRIPTION

(Method name) invocation received for unknown subscription with
context (context ID) and reply subject (subject name)

AMI_SESSTON_ANNOUNCED

Attempt made to announce an AMI session which is already announced.

AMI_SESSION_STOPPED

Attempt made to stop an AMI session which has not been announced

TIBCO Hawk Programmer’s Guide

164 |

ami_Method

Type

Purpose This is the AMI C API method object handle. It encapsulates all the information
required to define and support an AMI method. It is used to identify a specific
AMI method in AMI C API functions.

Remarks All ami_Method instances are associated with a specific ami_Session instance

and are destroyed along with the ami_Session when ami_SessionDestroy() is
called. There is no need (or function) to destroy an ami_Method.

TIBCO Hawk Programmer’s Guide

ami_MethodType | 165

ami_MethodType
Type

Purpose Defines the valid AMI C API method types.

AMI_METHOD_INFO Returns data

AMI_METHOD_ACTION Performs an action

AMI_METHOD_ACTION_INFO Performs an action and returns data

TIBCO Hawk Programmer’s Guide

166 |

ami_Parameter

Type

Purpose This is the AMI C API parameter object handle. It encapsulates all the information
required to define and support an AMI parameter. It is used to identify a specific
method input or output parameter in AMI C API functions.

Remarks All ami_Parameter instances are associated with an ami_ParameterList and are

destroyed along with the ami_ParameterList when it is destroyed. There is no
need (or function) to destroy an ami_Parameter.

TIBCO Hawk Programmer’s Guide

ami_ParameterList | 167

ami_ParameterList

Type

Purpose

Remarks

This is the AMI C API parameter list object handle. It encapsulates all the

information required to define and support a list of AMI parameters. It is used to
group parameters for the purpose of defining the input or output parameters of a
method and for setting and retrieving the values of input and output parameters.

All ami_ParameterList instances are associated with an ami_Method or an
ami_ParameterListList and are destroyed along with the ami_Method or
ami_ParameterListList when it is destroyed. There is no need (or function) to
destroy an ami_ParameterList.

TIBCO Hawk Programmer’s Guide

168 |

ami_ParameterListList

Type

Purpose

Remarks

This is the AMI C API list of parameter lists object handle. It encapsulates all the
information required to define and support multiple AMI parameter lists. It is
used to return multiple instances of output parameter values for a method (i.e.
tabular data).

An ami_ParameterListList instance is passed to the invocation callback
function of a method to allow that method to return zero or more
ami_ParameterList instances containing the return values for the method
invocation. The AMI C API provides functions for adding ami_ParameterList
instances to the ami_ParameterListList instance as required by the method. On
return from the method invocation callback function the AMI C API sends the
output parameter values (if any) associated with the ami_ParameterListList to
the AMI manager and then destroys the ami_ParameterListList.

The AMI C API provides functions to create and destroy
ami_ParameterListList instances for use in asynchronous methods where no
method invocation callback is involved. The AMI C API application is responsible
for destroying any ami_ParameterListList instances it explicitly creates using
ami_ParameterCreateOut().

TIBCO Hawk Programmer’s Guide

ami_Session | 169

ami_Session
Type

Purpose This is the AMI C API session object handle. It encapsulates all the information
required to define and support an AMI session.

Remarks The ami_Session is required on all AMI C API function calls to identify the AMI

session. An AMI C API application may have one or more ami_Session
instances, each representing a different Hawk microagent.

TIBCO Hawk Programmer’s Guide

170 |

ami_Subscription

Function

Purpose

Remarks

This is the AMI C API subscription object handle. It encapsulates all the
information required to define and support a subscription to an asynchronous
AMI method.

An asynchronous method sends data whenever it becomes available. An AMI
manager informs (starts) the asynchronous method when it is interested in
receiving this data, in other words, it subscribes to the asynchronous method. The
asynchronous method will send data as long as the subscription is in effect and
will no longer send data when that subscription is terminated (stopped). An AMI
C API asynchronous method specifies callback functions that are called when a
subscription is started and when it is stopped. An ami_Subscription instance is
provided in these callbacks to be used by the application to identify the
subscription in AMI C API functions.

TIBCO Hawk Programmer’s Guide

ami_Property | 171

ami_Property

Type
Declaration typedef struct amiProperty{
char* name;
void* value;
struct amiProperty * next;

}ami_Property;

Purpose This data-structure helps creating AMI Transport properties link-list using
ami_AddProperty AMI API, which will be passed to AMI Session create APL

TIBCO Hawk Programmer’s Guide

172 |

AMI C API Error Functions

This chapter describes the error, callback, trace control, initialization and
termination handling functions.

¢ Error Functions Summary, page 173
e Callback Function Types Summary, page 178
® Trace Control Functions Summary, page 183

® [Initialization and Termination Functions Summary, page 189

TIBCO Hawk Programmer’s Guide

AMI C API Error Functions | 173

Error Functions Summary

The following table summarizes the error handling functions. These functions are
described in the following sections.

Function Description Page
ami_ErrorCreate(), Creates a new AMI error for the specified 174
ami_errorCreateV() error code and descriptive text.
ami_ErrorDestroy() Destroys the specified AMI error. 175
ami_ErrorStamp() Stamps the specified AMI error. 176
ami_ErrorGet. .. Accessor methods 177
Accessors

TIBCO Hawk Programmer’s Guide

174 |

ami_ErrorCreate(), ami_errorCreateV()

Functions
Declaration ami_Error ami_ErrorCreate(
int inErrorCode,
const char * dinpTemplate,
)
ami_Error ami_ErrorCreateV(
int inErrorCode,
const char * dinpTemplate,

va_list inArguments);

Purpose Creates a new AMI error for the specified error code and descriptive text.
Descriptive text is specified as a template (printf format) and substitution
arguments. If error creation fails then an error describing this failure is returned in
place of the specified error.

The ami_Error is an object handle representing allocated resources and must be
destroyed using the ami_ErrorDestroy() function or memory will be leaked.
The AMI C API application must destroy any ami_Error instances returned by an
AMI C API function call. It must also destroy any ami_Error instance it explicitly
creates with the exception of ami_Error instances returned to the AMI C API
from a method invocation callback function.

Parameters Parameter Description

inErrorCode Error code.

iinemplate Error description template.

inArguments Error template substitution arguments.

TIBCO Hawk Programmer’s Guide

ami_ErrorDestroy() | 175

ami_ErrorDestroy()

Function

Declaration void ami_ErrorDestroy(
ami_Error inAmiError);

Purpose Destroys the specified AMI error. Can be called with a NULL handle that is
ignored.

Parameters Parameter Description

inAmiError Handle of AMI error.

TIBCO Hawk Programmer’s Guide

176 |

ami_ErrorStamp()

Function

Declaration void ami_ErrorStamp(

ami_Error inAmiError,
const char * dinpFilename,
int inLineNumber);

Purpose Stamps the specified AMI error with the specified file name and line number to
identify the location in the code where this error was generated.

Parameters Parameter Description

inAmiError AMI error object to stamp.
inpFilename Source file name in which error occurred.
inLineNumber Source file line number where error occurred.

TIBCO Hawk Programmer’s Guide

ami_ErrorGet... Accessors

ami_ErrorGet... Accessors | 177

Function

Declaration

Accessor
Functions

int ami_ErrorGetCode(
ami_Error inAmiError);

const char * ami_ErrorGetText(
ami_Error inAmiError);

int ami_ErrorGetThread(
ami_Error inAmiError);

const char * ami_ErrorGetFile(
ami_Error inAmiError);

int ami_ErrorGetLine(
ami_Error inAmiError);

Function Description

ami_ErrorGetCode Returns the AMI C API error code of the specified
AMI error handle.
ami_ErrorGetText Returns the textual description of the specified AMI

error. This function always returns a description
(never NULL). If no description was specified in the
create call then a default message is used which states
that no description is available.

ami_ErrorGetThread Returns the thread ID of the thread which created the
specified AMI error.
ami_ErrorGetFile Returns the name of the source file which generated

the specified AMI error. This function can return a
NULL pointer if the specified error was not file

stamped.

ami_ErrorGetLine Returns the line number of the source file which
generated the specified AMI error. This function
could return zero if the specified error was not file

stamped.

TIBCO Hawk Programmer’s Guide

178 |

Callback Function Types Summary

The following table summarizes the AMI C API callback function types. These
types are described in the following sections.

Function Description Page

ami_OnInvokeCallback Prototype for an AMI method callback 179
function.

ami_OnStartCallback Prototype for the optional AMI 180
asynchronous method on start callback
function.

ami_OnStopCallback Prototype for the optional AMI 181
asynchronous method on stop callback
function.

ami_TraceHandler Prototype for the optional AMI trace 182
handler callback.

TIBCO Hawk Programmer’s Guide

ami_OnlInvokeCallback | 179

ami_OnlInvokeCallback

Type

Declaration

Purpose

Parameters

typedef ami_Error (*ami_OnInvokeCallback) (

ami_Session inAmiSession,
ami_Method inAmiMethod,
ami_Subscription inAmiSubscription,
void * inpUserData,
ami_ParameterlList inArguments,
ami_ParameterListlList * inpReturns);

This is the prototype for an AMI method callback function. These functions are
invoked whenever the associated method is executed by TIBCO Hawk. The
callback should return method return values or an ami_Error if the function call
fails. When this callback is executed for an asynchronous method the
inAmiSubscription argument is provided. For synchronous or synchronous
invocations of asynchronous methods this argument is NULL.

Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inAmiSubscription Asynchronous method subscription
inpUserData User data associated with the method.
inArguments AMI input parameter handle.
inpReturns Target for method return values.

TIBCO Hawk Programmer’s Guide

180 |

ami_OnStartCallback

Type

Declaration

Purpose

Parameters

typedef ami_Error (*ami_OnStartCallback) (

ami_Session inAmiSession,
ami_Method inAmiMethod,
void * inpUserData,

ami_Subscription inAmiSubscription,
ami_ParameterList inArguments); /

This is the prototype for the optional AMI asynchronous method on start callback
function. These functions are called whenever a new subscription is started. The
application should perform any necessary initialization required to process this
new subscription. This callback should return AMI_OK if no error, otherwise an
ami_Error describing the failure.

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpUserData User data associated with the method.
inAmiSubscription Asynchronous method subscription.
inArguments AMI input parameter handle.

TIBCO Hawk Programmer’s Guide

ami_OnStopCallback | 181

ami_OnStopCallback

Type

Declaration

Purpose

Parameters

typedef void (*ami_OnStopCallback) (

ami_Session inAmiSession,
ami_Method inAmiMethod,
void * inpUserData,

ami_Subscription inAmiSubscription);

This is the prototype for the optional AMI asynchronous method on stop callback
function. These functions are called whenever a subscription is stopped. The
application should perform any necessary clean-up required when terminating a
subscription. This callback should return AMI_OK if no error, otherwise an
ami_Error describing the failure.

Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpUserData User data associated with the method.
inAmiSubscription Asynchronous method subscription.

TIBCO Hawk Programmer’s Guide

182 |

ami_TraceHandler

Type

Declaration

Purpose

Parameters

typedef void (*ami_TraceHandler) (

ami_Session inAmiSession,
ami_TraceCode inTraceCode,
int inTraceID,
const char * inpText,

void * inpUserData);

This is the prototype for the optional AMI trace handler callback. This callback is
used by AMI API to report events to the application. These events are classified
by ami_TraceCode. If no trace handler is provided then tracing is disabled.
Tracing can be controlled (including turned off) using the trace control functions.

inAmiSession AMI session handle reporting the trace event.
inTraceCode Category of trace event.

inTracelID Unique ID of trace event.

inpText Textual description of trace event
inpUserData User data associated with the AMI session.

TIBCO Hawk Programmer’s Guide

ami_TraceHandler | 183

Trace Control Functions Summary

The following table summarizes the AMI C API trace control functions. These
functions are described in the following sections.

Function Description Page
ami_TraceCode AMI C API trace levels. 184
ami_SessionGetTraceLevels() Returns the current AMI 185

session trace level settings.

ami_SessionSetTraceLevels() Resets all AMI session trace 186
level settings to the specified
settings.
ami_SessionEnableTraceLevels() Enables the specified level(s) of 187

trace output.

ami_SessionDisableTraceLevels() Disables the specified level(s) 188
of trace output.

TIBCO Hawk Programmer’s Guide

184 |

ami_TraceCode

Type
Declaration typedef enum

{ AMI_INFO = 1,
AMI_WARNING = 2,
AMI_ERROR = 4,
AMI_DEBUG = 8,
AMI__AMI = 16,
AMI_STAMP = 32,
AMI_ALL = Ox7FFFFFFF

} ami_TraceCode;

Purpose = AMI C APl trace levels. All trace messages output by the AMI C API are classified
under one of the following trace levels. When a trace message is generated it is
passed to the ami_TraceHandler of the associated AMI session only if the
corresponding trace level is enabled. This allows for programmatic control of the
level of tracing performed.

These values may be OR' ed together when used as arguments in functions that
take an ami_TraceCode.

Trace Levels Level Description

AMI_ALL This is a convenience value for enabling or disabling all levels.

AMI_AMT This trace level enables low level tracing of AMI operations. This level
aids the investigation of problems related to AMI and should not be
enabled under normal circumstances.

AMI_DEBUG This level increases the detail of information in trace output to aid in
investigation of problems. This level is for troubleshooting purposes
only, and under normal circumstances should not be enabled.

AMI_ERROR This level enables tracing of error messages. This level should be
enabled at all times.

AMI_INFO This level enables tracing of informational messages. This level
can be enabled at all times.

AMI_STAMP This level adds source file name and line number to trace messages to
determine the exact source of trace messages. This level is for
troubleshooting purposes only, and under normal circumstances
should not be enabled.

AMI_WARNING This level enables tracing of warning messages. This level can
be enabled at all times.

TIBCO Hawk Programmer’s Guide

ami_SessionGetTracelLevels()

ami_SessionGetTracelLevels() | 185

Function
Declaration ami_Error ami_SessionGetTracelevels(
ami_Session inAmiSession,
ami_TraceCode * inpTraceLevel);

Purpose Returns the current AMI session trace level settings.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inpTraceLevel Target for returned trace levels.

TIBCO Hawk Programmer’s Guide

186 |

ami_SessionSetTracelLevels()

Declaration ami_Error ami_SessionSetTracelevels(
ami_Session inAmiSession,
ami_TraceCode inTracelevel);

Purpose Resets all AMI session trace level settings to the specified settings. If a trace level
is not specified, it is disabled.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace levels to set.

TIBCO Hawk Programmer’s Guide

ami_SessionEnableTracelLevels() | 187

ami_SessionEnableTracelLevels()

Function

Declaration ami_Error ami_SessionEnableTracelevels(
ami_Session inAmiSession,
ami_TraceCode inTracelevel);

Purpose Enables the specified level(s) of trace output. All other trace level settings are not
effected.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace level(s) to enable.

TIBCO Hawk Programmer’s Guide

188 |

ami_SessionDisableTracelLevels()

Function

Declaration ami_Error ami_SessionDisableTracelevels(
ami_Session inAmiSession,
ami_TraceCode inTracelevel);

Purpose Disables the specified level(s) of trace output. All other trace level settings are not
effected.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace level(s) to disable.

TIBCO Hawk Programmer’s Guide

ami_SessionDisableTracelLevels() | 189

Initialization and Termination Functions Summary

The following table summarizes the AMI C API functions for returning version
information and starting and stopping the API. These functions are described in
the following sections.

Function Description Page
ami_Version... These functions return the AMI C API 190
Accessors version information.

ami_Open() Initializes the AMI C APL 191
ami_Close() Terminates the AMI C API. 192

TIBCO Hawk Programmer’s Guide

190 |

ami_Version... Accessors

Functions

Declaration

Purpose

Accessors

%

const char ami_VersionName();
const char * ami_Version();

const char * ami_VersionDate();

int ami_VersionMajor();
int ami_VersionMinor();
int ami_VersionUpdate();

These functions return the AMI C API version information. The version
information consists of a major, minor, and update number formatted left to right,
respectively like this 3.1.1.

Function Description

ami_VersionName() Returns the product name.

ami_Version() Returns the version string, for example, 3.1.1.
ami_VersionDate() Returns the build date.

ami_VersionMajor() Returns the major version number.
ami_VersionMinor() Returns the minor version number.
ami_VersionUpdate() Returns the update version number.

TIBCO Hawk Programmer’s Guide

ami_Open() | 191

ami_Open()

Function

Declaration ami_Error ami_Open();

Purpose Initializes the AMI C API. Must be called prior to calling any other AMI C API
functions.

TIBCO Hawk Programmer’s Guide

192 |

ami_Close()

Function

Declaration ami_Error ami_Close();

Purpose Terminates the AMI C API and releases associated resources.

TIBCO Hawk Programmer’s Guide

|193

TIBCO Hawk Programmer’s Guide

194 |

AMI C API Session Functions

This chapter describes the AMI C API session functions. Each AMI session
manifests itself as a microagent in the associated AMI manager. The AMI C API
session object (ami_Session) encapsulates an AMI session. The API provides
handle-based functions to create, announce, stop, and destroy session objects.

® Session Functions Summary, page 195

TIBCO Hawk Programmer’s Guide

Session Functions Summary

AMI C API Session Functions | 195

This table summarizes the AMI C API session functions. These functions are

described in the following sections.

Function Description Page
ami_SessionCreateUsingProperties() Creates a new AMI session 197
using transport properties.
ami_AddProperty() Adds transport properties. 198
ami_SessionCreate() Creates a new AMI session. 201
ami_SessionDestroy() Destroys the AMI session. 203
ami_SessionAnnounce() Activates the AMI session. 204
ami_SessionStop() Stops (deactivates) the AMI 205
session.
ami_SessionGetName () Gets the name string of AMI 206
session (microagent).
ami_SessionGetDisplayName() Get the user-friendly name 207
string of AMI session
(microagent).
ami_SessionGetHelp() Gets the descriptive text 208
string of AMI session
(microagent).
ami_SessionGetUserData() Returns the user data of the 209
specified AMI session.
ami_SessionSendData() Returns data for the 210
specified asynchronous
method subscription.
ami_SessionSendError() Reports an error condition 211
for the specified
asynchronous method
subscription.
ami_SessionOnData() Calls the 212

ami_OnInvokeCallback
function of the specified
AMI asynchronous method
once for each currently
active subscription.

TIBCO Hawk Programmer’s Guide

196 |

Function Description Page
ami_SessionSendUnsolicitedMsg() Send an unsolicited message 213

to any interested

subscribers.

TIBCO Hawk Programmer’s Guide

ami_SessionCreateUsingProperties() | 197

ami_SessionCreateUsingProperties()

Function
Declaration ami_Error ami_SessionCreateUsingProperties(

ami_Session * inpAmiSession,
ami_TraceCode inTracelLevel,
ami_Property * inpProperties,

const char * inpName,

const char * inpDisplayName,

const char * inpHelp,
ami_TraceHandler inTraceHandler,

const void * inpUserData);

Purpose Creates a new AMI session using transport properties. Each session represents a
single TIBCO Hawk microagent.

Create property list using the ami_AddProperty() API and pass it to the

ami_SessionCreateUsingProperties() APL

Parameters Parameter Description
inpAmiSession Target for returned session handle.
inTraceLevel AMI trace levels for this AMI session. See ami_TraceCode

on page 184 for trace level descriptions.

inpProperties AMI transport properties.

inpName Unique name string for microagent.
inpDisplayName User-friendly name string for microagent.
inpHelp User-friendly microagent description.
inTraceHandler AMI session trace callback function.
inpUserData AMI session user data.

TIBCO Hawk Programmer’s Guide

198 |

ami_AddProperty()

Function

Declaration ami_Error ami_AddProperty(
const char * inpName,

s

void * inpValue,
ami_Property ** inpProperties);

Purpose Creates a linked list defined as ami_Property and adds transport properties to
it. The ami_AddProperty() API allocates memory and creates a linked list for
every parameter added.

Create property list using the ami_AddProperty() APIand pass it to
ami_SessionCreateUsingProperties() APL

Parameters Parameter Description

inpName Name of the parameter.
inpValue Value of the parameter.
ami_Property Reference to the property.

The following table provides the supported property names and their default

values:

Property Name Mandatory Default Description

hawk_domain No Default The hawk domain.

hawk_transport No tibas Choice of transport. The
available options are:
« tibas
e tibrv

Table 8 Properties List for hawk_transport = tibas
Property Name Mandatory Default Description
agent_name No <hostname> Used to detect if an agent has

joined and needs to match
one specified in
hawkagent . cfg file.

TIBCO Hawk Programmer’s Guide

ami_AddProperty() | 199

Property Name Mandatory Default Description
as_listen_ url No <host>:5000 TIBCO ActiveSpaces listen
0 parameter.
as_discover_url No tibpgm://(d TIBCO ActiveSpaces
efault :
provided by discover parameter.
AS)
as_invocation ti No 30000 All internal synchronous
meout communications will use
this default timeout in
milliseconds.
as_receive buffe No 1000 Internal memory size
T_size allocation in bytes.
as_virtual node_ No 100 Internal parameter for
count even distribution of data
in seeders.
as_worker_thread No 32 Number of threads used
—count by TIBCO ActiveSpaces
APL
agent_domain No none Unique identification of
HMA with given agent.
agent_session_id No <hawk_domai Unique session id per
N ggzﬁfg microagent session. This is
" domain>. 0 useful when a single

process creates multiple
ami sessions. The integer
number at the end starts
from 0 and keeps
increasing for multiple
ami sessions.

TIBCO Hawk Programmer’s Guide

200 |

Table 9 Properties List for hawk_transport = tibro

Property Name Mandatory Default Description

rv_service No 7474 TIBCO Rendezvous service
property.

rv_network No ; TIBCO Rendezvous

network property.

rv_daemon No tcp:7474 TIBCO Rendezvous
daemon property.

rv_gueue No Internal-qu TIBCO Rendezvous queue
eue for AMI session.

rv_transport No Internal-rv TIBCO Rendezvous
“transports transport for AMI session.

TIBCO Hawk Programmer’s Guide

ami_SessionCreate()

ami_SessionCreate() | 201

Function

Declaration

Purpose

Parameters

ami_Error ami_SessionCreate(

ami_Session *
ami_TraceCode
const char *
const char *
const char
unsigned int
unsigned int
const char *
const char *
const char *
ami_TraceHandler
const void *

*

inpAmiSession,
inTracelLevel,
inpRvService,
inpRvNetwork,
inpRvDaemon,
inRvTransport,
inRvQueue,
inpName,
inpDisplayName,
inpHelp,
inTraceHandler,
inpUserData);

Creates a new AMI session. Each session represents a single TIBCO Hawk

microagent.

Parameter Description

inpAmiSession Target for returned session handle.
inTraceLevel AMI trace levels for this AMI session. See ami_TraceCode

on page 184 for trace level descriptions.
inpRvService TIBCO Rendezvous service parameter.
inpRvNetwork TIBCO Rendezvous network parameter.
inpRvDaemon TIBCO Rendezvous daemon parameter.
inRvTransport TIBCO Rendezvous transport for AMI session.
inRvQueue TIBCO Rendezvous queue for AMI session.
inpName Unique name string for microagent.
inpDisplayName User-friendly name string for microagent.
inpHelp User-friendly microagent description.
inTraceHandler AMI session trace callback function.
inpUserData AMI session user data.

TIBCO Hawk Programmer’s Guide

202 |

% If the transport being used is tibrv , you need to perform the following steps:

e Explicitly call tibrv_open() method before providing a user queue
(rv_gqueue).

Explicitly call tibrv_close () method before application exit.

Refer to TIBCO Rendezvous® documentation for more information.

TIBCO Hawk Programmer’s Guide

ami_SessionDestroy() | 203

ami_SessionDestroy()

Function

Declaration ami_Error ami_SessionDestroy(
ami_Session inAmiSession);

Purpose Destroys the AMI session. The AMI session (and associated handle) is no longer
valid. If the AMI session is active it will be stopped prior to being destroyed.

Parameters Parameter Description

inAmiSession AMI session parameter.

TIBCO Hawk Programmer’s Guide

204 |

ami_SessionAnnounce()

Function

Declaration ami_Error ami_SessionAnnounce(
ami_Session inAmiSession);

Purpose Activates the AMI session. All interested Hawk agents are notified that this AMI
session is running and available. These agents will add the associated microagent
to their microagent lists. This AMI session will be active until ami_SessionStop
or ami_SessionDestroy is called.

Parameters Parameter Description

inAmiSession AMI session parameter.

TIBCO Hawk Programmer’s Guide

ami_SessionStop() | 205

ami_SessionStop()

Function

Declaration ami_Error ami_SessionStop(
ami_Session inAmiSession);

Purpose Stops the AMI session. All associated Hawk agents are notified that this AMI
session is no longer running or supported. These agents will remove the
associated microagent from their microagent lists. This AMI session will be
inactive until ami_SessionAnnounce is called to re-activate this session.

Parameters Parameter Description

inAmiSession AMI session parameter.

TIBCO Hawk Programmer’s Guide

206 |

ami_SessionGetName()

Function
Declaration ami_Error ami_SessionGetName(
ami_Session inAmiSession
const char ** inpName);

Purpose Gets the name string of AMI session (microagent). This string should not be

modified.
Parameters Parameter Description
inAmiSession AMI session parameter.
inpName Target for the returned AMI session name.

TIBCO Hawk Programmer’s Guide

ami_SessionGetDisplayName() | 207

ami_SessionGetDisplayName()

Function

Declaration ami_Error ami_SessionGetDisplayName (
ami_Session inAmiSession,
const char ** inpName);

Purpose Gets the user-friendly name string of AMI session (microagent). This string
should not be modified.

Parameters Parameter Description

inAmiSession AMI session parameter.

inpName Target for the returned display name.

TIBCO Hawk Programmer’s Guide

208 |

ami_SessionGetHelp()

Function

Declaration ami_Error ami_SessionGetHelp(
ami_Session inAmiSession,
const char ** inpHelp);

Purpose Gets the descriptive text string of AMI session (microagent). This string should
not be modified.

Parameters Parameter Description

inAmiSession AMI session parameter.

inpHelp Target for the returned AMI session description.

TIBCO Hawk Programmer’s Guide

ami_SessionGetUserData() | 209

ami_SessionGetUserData()

Function

Declaration ami_Error ami_SessionGetUserData(
ami_Session inAmiSession,
void ** inpUserData);

Purpose Returns the user data of the specified AMI session.

Parameters Parameter Description

inAmiSession AMI session parameter.

inpUserData Target for the returned user data.

TIBCO Hawk Programmer’s Guide

210 |

ami_SessionSendData()

Function

Declaration ami_Error ami_SessionSendData(
ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
ami_ParameterListlList inReturns);

Purpose Returns data for the specified asynchronous method subscription.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inAmiSubscription Asynchronous method subscription.
inReturns Data to be returned.

TIBCO Hawk Programmer’s Guide

ami_SessionSendError() | 211

ami_SessionSendError()

Function
Declaration ami_Error ami_SessionSendError(
ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
ami_Error inAmiError);

Purpose Reports an error condition for the specified asynchronous method subscription.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inAmiSubscription Asynchronous method subscription.
inAmiError Error to be reported.

TIBCO Hawk Programmer’s Guide

212 |

ami_SessionOnData()

Function

Declaration ami_Error ami_SessionOnData(
ami_Session inAmiSession,
ami_Method inAmiMethod) ;

Purpose Calls the ami_OnInvokeCallback function of the specified AMI asynchronous
method once for each currently active subscription. This function is typically
invoked when new data becomes available for an asynchronous method. The
ami_OnInvokeCallback is called with the subscriptions argument values
allowing the application to properly send the new data to each subscription.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod AMI Asynchronous method handle.

TIBCO Hawk Programmer’s Guide

ami_SessionSendUnsolicitedMsg() | 213

ami_SessionSendUnsolicitedMsg()

Function

Declaration

Purpose

Parameters

ami_Error ami_SessionSendUnsolicitedMsg(

ami_Session inAmiSession,
ami_AlertType inType,
const char * inpText,
int inId);

Sends an unsolicited message to any interested subscribers.

Parameter Description

inAmiSession Handle of AMI session.
inType Alert type of message.
inpText Textual description of message.
inId User defined ID of message.

TIBCO Hawk Programmer’s Guide

214 |

AMI C API Method Functions

This chapter describes the AMI C API method functions. A method can return
data and or perform a task. AMI methods can accept input parameters and return
output parameters as required by the method. Handle-based functions are
provided to define AMI methods for a specific AMI session. Through these AMI
methods, the AMI manager monitors and manages your AMI application.

Topics

® Method Functions Summary, page 215

TIBCO Hawk Programmer’s Guide

AMI C API Method Functions |215

Method Functions Summary

This table summarizes the AMI C API method functions. These functions are
described in the following sections.

Function Description

ami_MethodCreate() Creates a synchronous AMI method and 216
adds it to the specified AMI session.

ami_AsyncMethodCreate() Creates an asynchronous AMI method 217
and adds it to the specified AMI session.

ami_MethodGetName () Returns the name of the specified method. 218

ami_MethodGetHelp() Returns the textual description of the 219
specified method.

ami_MethodGetUserData() Returns the user data of the specified 220
method.

ami_MethodSetIndex() Specifies which return parameters touse 221

as the index(es) for methods that return
tabular data.

TIBCO Hawk Programmer’s Guide

216 |

ami_MethodCreate()

Function

Declaration ami_Error ami_MethodCreate(

ami_Session inAmiSession,
ami_Method * inpAmiMethod,
const char * inpName,
ami_MethodType inType,

const char * inpHelp,

int inTimeout,
ami_OnInvokeCallback inOnInvoke,
const void * inpUserData);

Purpose Allocates and initializes an ami_Method object and returns the handle to the
object. The ami_Method object belongs to the specified ami_Session object and
will be destroyed when the ami_Session is destroyed.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inpAmiMethod Location to store new method handle.
inpName Name of the method for AMI purpose.
inType Type of method.

inpHelp Textual description of method.
inTimeout Timeout period in milliseconds.
inOnInvoke Method invocation callback.
inpUserData (Optional) AMI method user data.

TIBCO Hawk Programmer’s Guide

ami_AsyncMethodCreate() | 217

ami_AsyncMethodCreate()

Function

Declaration ami_Error ami_AsyncMethodCreate(

ami_Session inAmiSession,
ami_Method * inpAmiMethod,
const char * inpName,
ami_MethodType inType,

const char * inpHelp,

int inTimeout,

ami_OnInvokeCallback inOnInvoke,
ami_OnStartCallback inOnStart,
ami_OnStopCallback inOnStop,
const void * inpUserData);

Purpose Allocates and initializes an ami_Method object and returns the handle to the
object. The ami_Method object belongs to the specified ami_Session object and
will be destroyed when the ami_Session is destroyed.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inpAmiMethod Location to store new method handle.
inpName Name of the method for AMI purpose.
inType Type of method.

inpHelp Textual description of method.
inTimeout Timeout period in milliseconds.
inOnInvoke Method invocation callback.
inOnStart (Optional) Start subscription callback.
inOnStop (Optional) Stop subscription callback.
inpUserData (Optional) AMI method user data.

TIBCO Hawk Programmer’s Guide

218 |

ami_MethodGetName()

Function

Declaration

Purpose

Parameters

ami_Error ami_MethodGetName (

ami_Session inAmiSession,
ami_Method inAmiMethod,
const char ** inpMethodName) ;

Returns the name of the specified method in the specified AMI session. This
string should not be modified.

Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpMethodName Target for returned method name.

TIBCO Hawk Programmer’s Guide

ami_MethodGetHelp() | 219

ami_MethodGetHelp()

Function

Declaration

Purpose

Parameters

ami_Error ami_MethodGetHelp(

ami_Session inAmiSession,
ami_Method inAmiMethod,
const char ** inpMethodHelp);

Returns the textual description of the specified method in the specified AMI
session. This string should not be modified.

Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpMethodHelp Target for returned method help.

TIBCO Hawk Programmer’s Guide

220 |

ami_MethodGetUserData()

Function

Declaration ami_Error ami_MethodGetUserData(

ami_Session inAmiSession,
ami_Method inAmiMethod,
void ** inpUserData);

Purpose Returns the user data of the specified method.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpUserData Target for returned user data.

TIBCO Hawk Programmer’s Guide

ami_MethodSetindex() | 221

ami_MethodSetindex()

Function

Declaration

Purpose

Parameters

ami_Error ami_MethodSetIndex(

ami_Session inAmiSession,
ami_Method inAmiMethod,
const char * inpIndexName) ;

Specifies which return parameter to use as the primary key for methods that
return tabular data. If you need to establish a composite index consisting of
multiple parameters, this method can be called repeatedly, once for each index
return parameter, in order of precedence with primary key first.

Parameter Description

inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpIndexName Return parameter name.

TIBCO Hawk Programmer’s Guide

222 |

AMI C API Subscription Functions

This section describes the AMI subscription functions.

¢ Subscription Functions Summary, page 223

TIBCO Hawk Programmer’s Guide

AMI C API Subscription Functions | 223

Subscription Functions Summary

This table summarizes the AMI C API subscription functions. These functions are
described in the following sections.

Function Description Page

ami_SubscriptionSetUserData() Allows you to attach 224
application specific
data to a particular
asynchronous method
subscription.

ami_SubscriptionGetUserData() Allows you toretrieve 225
the application
specific data attached
to a particular
asynchronous method
subscription.

ami_SubscriptionSetCallbackInterval() Indicates that for this 226
subscription the
associated onInvoke
callback should be
auto-invoked at the
specified interval.

ami_SubscriptionGetMethod() Allows user to 227
retrieve the associated
AMI method object
for a particular
asynchronous method
subscription.

ami_SubscriptionGetArguments () Allows user to 228
retrieve the method
argument values for a
particular
asynchronous method
subscription.

TIBCO Hawk Programmer’s Guide

224 |

ami_SubscriptionSetUserData()

Function

Declaration

Purpose

Parameters

ami_Error ami_SubscriptionSetUserData(

ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
void * inpUserData);

Allows you to attach application specific data to a particular asynchronous method
subscription. This function is usually used in the onStart callback.

Parameter Description

inAmiSession Handle of AMI session.
inAmiSubscription Asynchronous method subscription.
inpUserData User data.

TIBCO Hawk Programmer’s Guide

ami_SubscriptionGetUserData() | 225

ami_SubscriptionGetUserData()

Function

Declaration ami_Error ami_SubscriptionGetUserDatal(

ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
void ** inpUserData);/

Purpose Allows you to retrieve the application specific data attached to a particular
asynchronous method subscription. This function is usually used in the onInvoke
callback when processing asynchronous method invocations to obtain access to
the application specific data associated with that invocation.

Parameters Parameter Description

inAmiSession Handle of AMI session.
inAmiSubscription Asynchronous method subscription.
inpUserData Target for returned user data.

TIBCO Hawk Programmer’s Guide

226 |

ami_SubscriptionSetCallbackinterval()

Function

Declaration

Purpose

Parameters

ami_Error ami_SubscriptionSetCallbackInterval(

ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
int inInterval);

Indicates that for this subscription the associated onInvoke callback should be
auto-invoked at the specified interval. This provides a pseudo-asynchronous
event to trigger (what would normally be) synchronous methods so that they can
behave as asynchronous methods.

A typical scenario is a method which must calculate (polled) data over a precise
time interval and return the calculated result based on that interval. In this case

the method returns data not based on a synchronous call but on a specified time
interval.

Parameter Description

inAmiSession Handle of AMI session.
inAmiSubscription Asynchronous method subscription.
inInterval Interval in seconds. Zero turns off the interval.

TIBCO Hawk Programmer’s Guide

ami_SubscriptionGetMethod()

ami_SubscriptionGetMethod() | 227

Function

Declaration ami_Error ami_SubscriptionGetMethod(

ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
ami_Method * inpAmiMethod);

Purpose Allows user to retrieve the associated AMI method object for a particular

asynchronous method subscription.

TIBCO Hawk Programmer’s Guide

228 |

ami_SubscriptionGetArguments()

Function

Declaration ami_Error ami_SubscriptionGetArguments (
ami_Session inAmiSession,
ami_Subscription inAmiSubscription,
ami_ParameterList * inpArguments);

Purpose Allows user to retrieve the method argument values for a particular
asynchronous method subscription. This ami_ParameterList is only valid while
the associated subscription is valid.

TIBCO Hawk Programmer’s Guide

AMI C API Parameter Functions | 229

AMI C API Parameter Functions

This section describes the parameter functions. The functions are used to define
and process method parameters and return values.

e Parameter Functions Summary, page 230

TIBCO Hawk Programmer’s Guide

230 |

Parameter Functions Summary

This table summarizes the AMI C API parameter functions. These functions are
described in the following sections.

Function Description Page
ami_ParameterCreateIn() Adds the specified parameter to 231
the list of input parameters for
the method.
ami_ParameterCreateOut() Adds the specified parameter to 232

the description of return
parameters for that method.

ami_ParameterListOut() Returns a handle to a list of 233
AMI parameter lists to be used
to specify return values for a
method invocation.

ami_ParameterSetValue() Sets the value of an AMI 234
parameter in the specified AMI
parameter list.

ami_ParameterGetValue() Retrieves the value of an AMI 235
parameter from the specified
AMI parameter list.
ami_ParameterAddChoice() Adds a value choice for the 236

specified parameter.

ami_ParameterAddLegal() Adds a legal choice for the 237
specified parameter.

ami_ParameterListListDestroy() Destroys the specified list of 238
parameter lists.

TIBCO Hawk Programmer’s Guide

ami_ParameterCreateln() | 231

ami_ParameterCreateln()

Function
Declaration ami_Error ami_ParameterCreateIn(
ami_Session inAmiSession,
ami_Method inAmiMethod,

ami_Parameter * inpAmiParm,

const char * inpName,
ami_DataType inType,
const char * inpHelp);

Purpose Adds the specified parameter to the list of input parameters for the method.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParm Target for returned parameter handle.
inpName Name of the parameter for AMI purposes.
inType Type of the parameter.

inpHelp Optional description for the parameter.

TIBCO Hawk Programmer’s Guide

232 |

ami_ParameterCreateOut()

Function

Declaration

Purpose

Parameters

ami_Error ami_ParameterCreateOut(

ami_Session inAmiSession,
ami_Method inAmiMethod,
ami_Parameter * inpAmiParm,
const char * inpName,
ami_DataType inType,

const char * inpHelp);

Adds the specified parameter to the description of return parameters for that
method.

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParm Target for returned parameter handle.
inpName Name of the parameter for AMI purposes.

Note: The use of curly brackets { } in microagent method
parameter names is not supported. Use of these characters
results in an error.

inType Type of the parameter.

inpHelp Optional description for the parameter.

TIBCO Hawk Programmer’s Guide

ami_ParameterListOut() | 233

ami_ParameterListOut()

Function

Declaration ami_Error ami_ParameterListOut(
ami_Session inAmiSession,
ami_Method inAmiMethod,
ami_ParameterListlList * inpAmiParmListList,
ami_ParameterList * inpAmiParmList);

Purpose Returns a handle to a list of AMI parameter lists to be used to specify return
values for a method invocation. The first call to this method allocates and returns
the list of AMI parameter lists (ami_ParameterListList) and one parameter list
(ami_ParameterList) member. The application then uses the
ami_ParameterSetValue to set the return values into this parameter list
(ami_ParameterList).

To return more than one row of data (i.e. tabular data) this function can be called
repeatedly using the same ami_ParameterListList handle. Each call will add an
additional return row and return a parameter list (ami_ParameterList) to set the
return values for that row.

If the ami_ParameterListList was created by the AMI API (for example,
ami_OnInvokeCallback) then the API is responsible for destroying it. It it was
created by the user’s application, the application must destroy it using
ami_ParameterListListDestroy.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParmListList List of AMI parameters list.

inpAmiParmList Handle of AMI parameter list.

TIBCO Hawk Programmer’s Guide

234 |

ami_ParameterSetValue()

Function
Declaration ami_Error ami_ParameterSetValue(
ami_Session inAmiSession,
ami_Method inAmiMethod,
ami_ParameterlList inAmiParmList,
const char * inpName,
const void * inpValue);
Purpose Sets the value of an AMI parameter in the specified AMI parameter list.
Parameters Parameter Description
inAmiSession Handle of AMI session.
inAmiMethod Handle of AMI method.
inpAmiParmList Set parameter in this parameter list.
inpName Name of parameter being set.
inpValue Value being set.

TIBCO Hawk Programmer’s Guide

ami_ParameterGetValue() | 235

ami_ParameterGetValue()

Function

Declaration

Purpose

Parameters

ami_Error ami_ParameterGetValue (
ami_Session inAmiSession,
ami_Method inAmiMethod,
ami_ParameterlList inAmiParmList,
const char * inpName,
void * inpValue);

Retrieves the value of an AMI parameter from the specified AMI parameter list.

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.
inAmiParmList Get parameter from this parameter list.
inpName Name of parameter being retrieved.
inpValue Target for retrieved value.

TIBCO Hawk Programmer’s Guide

236 |

ami_ParameterAddChoice()

Function

Declaration

Purpose

Remarks

Parameters

ami_Error ami_ParameterAddChoice(

ami_Session inAmiSession,
ami_Parameter inAmiParm,
const void * inpData);

Adds a value choice for the specified parameter.

Value choices can be displayed by the managing application. If value choices are
specified for a parameter, other values are also permitted. For a specified object,
set only one of either choice or legal values. If both are set, the legal value takes
precedence.

Parameter Description

inAmiSession Handle of AMI session.
inAmiParm Handle of AMI parameter.
inpData Choice value.

TIBCO Hawk Programmer’s Guide

ami_ParameterAddLegal() | 237

ami_ParameterAddLegal()

Function

Declaration

Purpose

Remarks

Parameters

ami_Error ami_ParameterAddLegal(

ami_Session inAmiSession,
ami_Parameter inAmiParm,
const void * inpData);

Adds a legal choice for the specified parameter.

Legal value choices can be enforced and displayed by the managing application.
If legal value choices are specified for a parameter, no other values are permitted.
For a specified object, set only one of either choice or legal values. If both are set,
the legal value takes precedence.

Parameter Description

inAmiSession Handle of AMI session.
inAmiParm Handle of AMI parameter.
inpData Legal choice value.

TIBCO Hawk Programmer’s Guide

238 |

ami_ParameterListListDestroy()

Function

Declaration ami_Error ami_ParameterListListDestroy(
ami_Session inAmiSession,
ami_ParameterListList inAmiParmList);

Purpose Destroys the specified list of parameter lists.

Parameters Parameter Description

inAmiSession Handle of AMI session.

inAmiParmList Handle of list of parameter lists.

TIBCO Hawk Programmer’s Guide

Chapter 5

Topics

Security Framework

The TIBCO Hawk product currently supports the ability to “plug-in” an
authorization module. The TIBCO Hawk WebConsole uses the plug-in module to
create identification objects. The TIBCO Hawk agent guarantees that every
request is authorized before execution by invoking the appropriate plug-in
method.

The techniques used to address authentication, authorization, integrity, and
privacy with regard to messaging and communication channels are varied. It is
the goal of the framework to be completely independent of these techniques so
that a plug-in is possible regardless of the tools and techniques chosen for
implementation.

Implementation of the Certified Class and Trusted Class security models is
discussed in TIBCO Hawk Installation, Confiquration, and Administration Guide.

e TIBCO Hawk Security Concepts, page 240
¢ Implementing a Security Policy, page 243
e Sample Code, page 245

TIBCO Hawk Programmer’s Guide

| 239

240 | Chapter 5 Security Framework

TIBCO Hawk Security Concepts

Authentication

Identity Only

Shared Secret

A secure environment addresses concerns of data authentication, authorization,
privacy, and integrity.

Data authentication is the practice of determining that an entity (such a person or
system process) is who it claims to be. This verification can be performed through
use of a shared secret system, such as requiring a password, or through
certificates and digital signatures.

Authentication involves the following interactions.

1. The entity that is to identify itself to a verifying entity provides an identifier to
that verifying entity. The identifier specifies that the originating entity has a
particular identity.

2. The verifying entity then receives the identifier from the entity. It uses the
verifier to check the authenticity of the entity’s claim. In some instances, the
verifying entity can be its own verifier.

3. The verifier makes sure that an entity is who it claims it is. This process may or
may not involve communication with the entity making the claim.

The verification can involve different levels of authentication.

In identity-only authentication, the system does not verify that the entity is who it
claims it is, but does pass the entity’s identifier to other parts of the system. This is
the lowest level of authentication, and is useful where costs of a more secure
authentication system preclude higher degrees of security, but identity is still
important. This sort of authentication is useful where non-sensitive data is
involved.

Shared secret authentication is where each entity has a secret, such as a password,
that is shared with the authentication system. Proof that the entity holds the secret
can take one of the following forms.

e The secret is sent from the entity to the verifier. Web browsers using the basic
authentication web paradigm use this method. It is not very secure, as it is
possible to impersonate the entity. More security can be added by encrypting
the conversation.

TIBCO Hawk Programmer’s Guide

TIBCO Hawk Security Concepts | 241

* The secret is used to encrypt a commonly-known piece of data. The encrypted
data is then sent to the authentication system, which then verifies the identity
of the sender by performing its own data encryption and comparing the result
with the sender’s data.

* A “challenge-response” protocol is used, wherein the verifier provides a piece
of randomly-generated data, which the sending entity encrypts using the
shared secret. The entity sends back the encrypted data, which the verifier
then compares with its own version. If they match, the verifier accepts that the
entity is who it claims it is.

Certificates

Digital certificates are a means whereby an entity has a public-private key pair,
and registers the public key with a Certificate Authority. The infrastructure
required for a public key system is referred to as a Public Key Infrastructure (PKI),
of which the third-party Certificate Authority is a part. The Certificate Authority
issues a certificate, containing information about the entity and the entity’s public
key, and signs it.

To provide authentication of identity, the authentication system challenges the
entity in a similar manner to the challenge-response protocol. The entity signs the
challenge using its private key, and the system verifies this signature by using the
entity’s public key.

Further information concerning security certificates can be found in TIBCO Hawk
Installation, Configuration, and Administration Guide.

TIBCO Hawk Programmer’s Guide

242 | Chapter 5 Security Framework

Authorization

Authorization is generally concerned with operations on which to grant
permissions. Sometimes these permissions are determined by work groups or
other concerns. Use of tickets, such as tibrv. tkt, is an example of authorization.
A ticket is used for authentication and authorization in lieu of other credentials. In
other cases, the issue is whether a certain operation can be performed on a
specified system, or by a specified user.

Data Privacy and Integrity

Data privacy and integrity use encryption techniques to make sure unauthorized
entities can’t see or modify sensitive data. These techniques are also used when a
principal needs to prove it originated a message. Encryption can either use the
same key to encrypt and decrypt a message, or use a public-private key pair,
where encrypted data using the public key can only be decrypted using the
private key, and vice versa.

Data integrity is maintained by using one-way hash functions. These functions
generate fixed-length output from input. When sending a message, the sender
runs the one-way hash function on the message, encrypts the resulting hash
value, and sends the resulting message identification code (MIC) along with the
message. The recipient runs the same function on the message, decrypts the MIC,
and sees if the results match. A match indicates that the message has not been
tampered with.

Considerations for the TIBCO Hawk System

The security provisions of the TIBCO Hawk monitoring system are consistent
with its scalable distributed architecture. While a user is not required to trade off
scalability for security, the flexibility of the security framework allows choosing a
loss of scalability in return for high degrees of security. It also provides a modular
mechanism for addressing security, in which the TIBCO Hawk agent can delegate
responsibility to the security module, through the interfaces of the security
framework. Because every user has unique security needs, security is presented
as an open framework. You can develop methods that grant or deny permissions
to meet your requirements.

TIBCO Hawk Programmer’s Guide

Implementing a Security Policy | 243

Implementing a Security Policy

The TIBCO Hawk software provides a security framework that you can adapt to
your own security needs. To use a security policy, you create a Java class that
implements the security interface.

Because every system has unique security needs, the security policy provides an
open framework for security implementation, rather than a standardized security
policy. You can develop methods to grant or deny permissions based on your
needs.

Creating a Java Security Class

The TIBCO Hawk security system must be implemented as a Java class, though
you may choose to make this class a simple wrapper that uses the Java Native
Interface (JNI) to call other security methods in a C or C++ library. The Java class
must implement the HsConsoleInterface and HsAgentInterface, which are
included with the TIBCO Hawk distribution.

The name of the Java class file for security must be passed to the TIBCO Hawk
WebConsole and the TIBCO Hawk agent as a command-line argument.

Once both of these processes have been started using this argument, the security
policy is in force.

Framework Protocol

The security framework supports an agent and a client-side protocol, as shown
below. The client side supports the creation of an identifying object (createid ()
in the diagram) and the transformation of the message (pack() in the diagram).

The agent side supports inverse operations for restoring the message’s original
format (unpack()) and validating the identifying object (validateid()).

TIBCO Hawk Programmer’s Guide

244 | Chapter 5 Security Framework

Figure 15 Security Framework Model

| Client] {
g
é‘ g -
E £
E validateld()
createld() gl &
3 =
= 7
pack() unpack()
-
@)
7 =4
2 a
@ »
E E

—
—

i

,

S

TIBCO Hawk Transport

Security Objects

While a sample security framework plug-in is provided later in this section, users
may prefer to write their own security framework implementation. Plug-ins for
the security framework are created using the classes listed here. The prefix Hs
designates the object as part of the TIBCO Hawk Security Framework.

The following link provides access the detailed descriptions of security classes
you can use to create plug-ins:

¢ Security API Javadocs

TIBCO Hawk Programmer’s Guide

../api/console-api/index.html

Sample Code | 245

Sample Code

The following sample code shows an example of a security policy class file in
Java.

Vai
* Copyright (c) 1997, 1998 TIBCO Software, Inc. All Rights
Reserved.
* This software is the confidential and proprietary information of
* TIBCO Software Inc.
*/
package COM.TIBCO.hawk.security.test;

import java.lang.*;
import java.io.*;

import COM.TIBCO.hawk.console.security.*;
public class Test implements HsConsoleInterface, HsAgentInterface {

public void Test() {
System.out.println("PLUGIN: Test.constructor()");
¥

public void initialize() throws HsException {
System.out.println("PLUGIN: Test.initialize()");
¥

public void shutdown() throws HsException {
System.out.println("PLUGIN: Test.shutdown()");
¥

public String initialize(int context) throws HsException {
System.out.println("PLUGIN: Test.initialize(" + context +
"y

return null;

}

public void shutdown(int context) throws HsException {
System.out.println("PLUGIN: Test.shutdown(" + context +

"))
¥
public HsIdentifier createId(HsOperation operation)
throws HsException
{
if (operation instanceof HsNodeOperation)
System.out.println("PLUGIN: createId(" +
((HsNodeOperation)operation) .microagent() + ":" +
((HsNodeOperation)operation) .method() + ")");
else if (operation instanceof HsGroupOperation)
System.out.println("PLUGIN: createId(" +

TIBCO Hawk Programmer’s Guide

246 | Chapter 5 Security Framework

((HsGroupOperation)operation) .microagent() +

((HsGroupOperation)operation) .method() + ")");
else
System.out.println("PLUGIN: Unknown request");

HsIdentifier id = null;
try {
String name = new String("Test Plug-In");
id = new HsIdentifier(name.getBytes());
} catch (HsFrameworkException hsfe) {
throw new HsException(hsfe.toString());
¥

return(id) ;

}

public HsPackedOperation pack(HsIdentifier id, HsOperation
operation)
throws HsException
{
if (operation instanceof HsNodeOperation)
System.out.println(
"PLUGIN: pack("+ new
String(id.contents)+ "," +
((HsNodeOperation)operation) .microagent() +
((HsNodeOperation)operation) .method() +

+

"y
else if (operation instanceof HsGroupOperation)
System.out.println("PLUGIN: pack(" + new
String(id.contents)+ "," +
((HsGroupOperation)operation) .microagent() + ":"
+
((HsGroupOperation)operation) .method() + ")");
else

System.out.println("PLUGIN: Unknown request");

TestOperation trustme =
new TestOperation(id.contents, operation.contents);

byte[] packed = null;
try {
ByteArrayOutputStream buffer = new
ByteArrayOutputStream() ;
ObjectOutputStream out = new ObjectOutputStream(buffer);

out.writeObject(trustme);
out.flush();
out.close();

packed = buffer.toByteArray();

} catch (IOException ioe) {
¥

HsPackedOperation packedOperation = null;
try {

TIBCO Hawk Programmer’s Guide

Sample Code | 247

packedOperation = new HsPackedOperation(packed);
} catch (HsFrameworkException hsfe) {

throw new HsException(hsfe.toString());
¥

return (packedOperation);

}

public HsUnpackedOperation unpack(HsPackedOperation operation)
throws HsException

{
System.out.println("PLUGIN: unpack(operation)");

TestOperation trustme = null;
try {
ByteArrayInputStream buffer =
new ByteArrayInputStream(operation.contents);
ObjectInputStream in = new ObjectInputStream(buffer);

trustme = (TestOperation)in.readObject();
in.close();

} catch (ClassNotFoundException cnfe) {
throw new HsException(cnfe.toString());

} catch (IOException ioe) {
throw new HsException(ioe.toString());

HsUnpackedOperation unpacked = null;
try {
unpacked = new HsUnpackedOperation
(new HsIdentifier(trustme.id),new
HsOperation(trustme.operation));
} catch (HsFrameworkException hsfe) {
throw new HsException(hsfe.toString());
}

return unpacked;

}

public boolean validateId(HsIdentifier id, HsOperation
operation)
{
if (operation instanceof HsNodeOperation)
System.out.println("PLUGIN: validateId("+new
String(id.contents)+","+
((HsNodeOperation)operation) .microagent() + ":" +
((HsNodeOperation)operation) .method() + ")");
else if (operation instanceof HsGroupOperation)
System.out.println("PLUGIN: validateId("+new
String(id.contents)+","+
((HsGroupOperation)operation) .microagent() + ":"
+
((HsGroupOperation)operation) .method() + ")");
else
System.out.println("PLUGIN: Unknown request");

String name = new String(id.contents);

TIBCO Hawk Programmer’s Guide

248 | Chapter 5 Security Framework

if (name.equals("Test Plug-In"))
return(true);

else
return(false);

}

public String describe() {
System.out.println("PLUGIN: Test.describe()");

return(new String("TIBCO Hawk Test security model.

TIBCO Hawk Programmer’s Guide

"2);

Appendix A

Topics

| 249

Common Configuration Object APl Methods

This chapter describes the common RulebaseEngine and TIBCO Repository
microagent methods that are used with the Configuration Object APL

* Microagent and Method Invocation used in ConsequenceAction, page 250
* Interaction with Agent and Repository using the Console API, page 252
* RuleBaseEngine:sendAlertMessage, page 254

* RuleBaseEngine:execute, page 255

* RuleBaseEngine:sendMail, page 256

* RuleBaseEngine:addRuleBase, page 257

* RuleBaseEngine:deleteRuleBase, page 258

* RuleBaseEngine:setSchedules, page 259

* RuleBaseEngine:getSchedules, page 260

* RuleBaseEngine:getRBMap, page 261

* Repository:addRuleBase, page 262

* Repository:deleteRuleBase, page 263

* Repository:setSchedules, page 264

* Repository:getSchedules, page 265

* Repository:setRBMap, page 266

* Repository:getRBMap, page 267

TIBCO Hawk Programmer’s Guide

250 | Appendix A Common Configuration Object APl Methods

Microagent and Method Invocation used in ConsequenceAction

A ConsequenceAction in a rulebase executes an action when the condition of the
test is satisfied. The action taken is in the form of method invocation. The
following are common actions performed by a ConsequenceAction of a rulebase:

e send a notification or an alert
e execute a custom command or script
¢ send an email

Since a ConsequenceAction invokes a method invocation on a specific
microagent, any known method invocation with ACTION or INFO type can be
specified. However, caution must be taken on methods that may potentially take a
long time to execute.

When constructing a ConsequenceAction object, two arguments are needed: the
name of a microagent and the method invocation that will be performed on that
microagent. Hence, before constructing a ConsequenceAction, first construct a
MethodInvocation. A MethodInvocation requires a method name. Depending on
the method, it may also take arguments. For a complete list of built-in
microagents and their open methods, please refer to the TIBCO Hawk Microagent
Reference.

The follow methods show how the common ConsequenceActions can be created.
Note that the sendAlertMessage method is a proprietary method of the
RulebaseEngine microagent and is not listed in the TIBCO Hawk Microagent
Reference.

/5‘»‘ *
* Create an alert action.
*/
ConsequenceAction createAlertAction(String state, String alert)
throws RBEConfigObjectException
{
DataElement[] args = new DataElement[1];
if (state.equals("High"))
args[0] = new DataElement("message",
new
COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertHigh(alert));
else if (state.equals("Medium"))
args[0] = new DataElement("message",
new
COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertMedium(alert));
else if (state.equals("Low"))
args[0] = new DataElement("message",
new
COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertLow(alert));

TIBCO Hawk Programmer’s Guide

Microagent and Method Invocation used in ConsequenceAction | 251

MethodInvocation mi = new MethodInvocation("sendAlertMessage",
args);

return new
ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

}

%

*/

ConsequenceAction createEmailAction(String to, String from, String
cc, String subject, String server, String content) throws
RBEConfigObjectException

{

DataElement[] args = new DataElement[6];

args[0] = new DataElement("To", to);

args[1l] = new DataElement("From", from);

args[2] = new DataElement("CC",cc);

args[3] = new DataElement("Subject", subject);

Create an email action

args[4] = new DataElement("Mail Server", server);
args[5] = new DataElement("Content", content);
MethodInvocation mi = new MethodInvocation("sendMail", args);

return new
ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

}

VAL

* Create a custom execute action.

:‘:/
ConsequenceAction createCustomAction(String cmdStr)
throws RBEConfigObjectException

{
DataElement[] args = new DataElement[1];
args[0] = new DataElement("command", cmdStr);

MethodInvocation mi = new MethodInvocation("execute", args);
return new ConsequenceAction("COM.TIBCO.hawk.microagent.Custom",
mi);

}

TIBCO Hawk Programmer’s Guide

252 | Appendix A Common Configuration Object APl Methods

Interaction with Agent and Repository using the Console API

An application that uses the Configuration Object API often needs to retrieve,
update, or replace such configuration objects. To retrieve and send the
configuration objects from the application to the agent or repository, the
application needs to use the Console APL

When an agent is running in the repository configuration mode, configuration
% objects (such as a rulebase or schedule) updated on the agent are not permanent
and the rulebase map can only be updated on a repository.

The following steps illustrate one possible way that an application using the
Console API and Configuration Object API can update a configuration object of
an agent or repository.

1. Create a TIBHawkConsole.
2. Listen to AgentMonitorEvent of the AgentMonitor.

3. Wait until the AgentMonitorEvent from the desire agent is received by
examining the AgentInstance of the AgentMonitorEvent.

4. Retrieve the MicroAgentID of the RulebaseEngine or Repository from the
AgentInstance.

5. Retrieve the configuration object from the RulebaseEngine or Repository
microagent using the AgentManager.

6. Update or modified the configuration object.

7. Update the configuration object on the RulebaseEngine or Repository
microagent.

For convenience, the rest of this section lists the methods in RulebaseEngine and
Repository microagent that are useful for retrieving and updating Rulebase,
Schedule, and Rulebase Map. The complete list of methods can be found in the
TIBCO Hawk Methods Reference.

For details and code samples, refer to the Java sample descriptions in Appendix B,
Sample Programs, and the sample Java files described there.

For details on TIBHawkConsole, AgentMonitor, AgentMonitorEvent,
AgentInstance, and other Console API classes, please refer to Chapter 2, Console
APL

TIBCO Hawk Programmer’s Guide

Methods Reference | 253

Methods Reference

The following COM.TIBCO.hawk.microagent.RuleBaseEngine methods are
commonly use in ConsequenceActions:

* RuleBaseEngine:send AlertMessage, page 254
* RuleBaseEngine:execute, page 255
* RuleBaseEngine:sendMail, page 256

The following COM.TIBCO.hawk.microagent.RuleBaseEngine methods are
used for updating configuration objects in the agent:

* RuleBaseEngine:addRuleBase, page 257

* RuleBaseEngine:deleteRuleBase, page 258
* RuleBaseEngine:setSchedules, page 259

* RuleBaseEngine:getSchedules, page 260

* RuleBaseEngine:getRBMap, page 261

The following COM.TIBCO.hawk.microagent.Repository methods are used for
updating configuration objects in the repository:

* Repository:addRuleBase, page 262

* Repository:deleteRuleBase, page 263
* Repository:setSchedules, page 264

* Repository:getSchedules, page 265

* Repository:setRBMap, page 266

* Repository:getRBMap, page 267

TIBCO Hawk Programmer’s Guide

254 | Appendix A Common Configuration Object APl Methods

RuleBaseEngine:sendAlertMessage

Method
Purpose This method sends an alert.

Type Proprietary, Synchronous, IMPACT_INFO

Remarks This method can be invoked only from a rulebase action, because an alert is

associated with the rulebase that triggers the alert.

Arguments Name Type

command COM.TIBCO.hawk.config.rbengine.rulebase.util.

AlertHigh

COM.TIBCO.hawk.config.rbengine.rulebase.util.

AlertMedium

COM.TIBCO.hawk.config.rbengine.rulebase.util.

AlertLow

COM.TIBCO.hawk.config.rbengine.rulebase.util.

Notification

Description

The alert
message to
be sent.

Returns None

TIBCO Hawk Programmer’s Guide

RuleBaseEngine:execute | 255

RuleBaseEngine:execute

Method
Purpose

Type

Arguments

Returns

This method executes a command and ignores the result.
Open, Synchronous, IMPACT_ACTION

Name Type Description

command String The command to execute. External and
Internal variables can be used.

None

TIBCO Hawk Programmer’s Guide

256 | Appendix A Common Configuration Object APl Methods

RuleBaseEngine:sendMail

Method
Purpose This method (on all platforms) sends an email notification.

Remarks The To and Subject fields are only mandatory fields and all other fields are
optional. If Fromis not specified, the current host ID is used. If the Content field is
blank, the text of the Subject field is used. If the Mail Server is not specified, then
SMTP server configured in the agent sends email.

Rulebases can send mail upon detecting a specified condition.

Type Open, Synchronous, IMPACT_ACTION

Arguments Name Type Description
To String Address of the receiver
CcC String ~ CC (carbon copy) recipients of email
BCC String BCC (blind carbon copy) recipients of email
Subject String Subject of email
Content String Content of email
Mail Server String ~ SMTP mail server used to send message
From String ~ Address of the sender

Returns None

TIBCO Hawk Programmer’s Guide

RuleBaseEngine:addRuleBase | 257

RuleBaseEngine:addRuleBase

Method
Purpose

Remarks

Type

Arguments

Returns

This method adds a rulebase to the agent.
Timeout (milliseconds): 10000

Proprietary, Synchronous, IMPACT_ACTION

Name Type Description
RulebaseXML COM.TIBCO.hawk.config.rbengine. =~ An Object that
rulebase.RulebaseXML contains XML

formatted string that
represent the rulebase.

None

TIBCO Hawk Programmer’s Guide

258 | Appendix A Common Configuration Object APl Methods

RuleBaseEngine:deleteRuleBase

Method
Purpose This method deletes a rulebase from the agent.

Type Open, Synchronous, IMPACT_ACTION

Arguments Name Type Description

RuleBaseName String The name of the rulebase to be deleted.

Returns None

TIBCO Hawk Programmer’s Guide

RuleBaseEngine:setSchedules | 259

RuleBaseEngine:setSchedules
Method

Purpose This method replaces the schedules in the agent.

Type Proprietary, Synchronous, IMPACT_ACTION

Arguments Name Type Description
SchedulesXML COM.TIBCO.hawk.config.rbengine. =~ An Object that
schedule.SchedulesXML contains XML

formatted string that
represent the
schedule.

Returns None

TIBCO Hawk Programmer’s Guide

260 | Appendix A Common Configuration Object APl Methods

RuleBaseEngine:getSchedules

Method
Purpose This method returns the currently loaded Schedules.
Type Proprietary, Synchronous, IMPACT_INFO

Arguments None

Returns Name Type Description
SchedulesXML ~COM.TIBCO.hawk.config.rbengine. = An Object that
schedule.SchedulesXML contains XML
formatted string that
represent the
schedules.

TIBCO Hawk Programmer’s Guide

RuleBaseEngine:getRBMap | 261

RuleBaseEngine:getRBMap

Method
Purpose
Remarks
Type
Arguments

Returns

This method returns the currently loaded RBMap.
Timeout (milliseconds): 10000

Proprietary, Synchronous, IMPACT_INFO

None
Name Type Description
RBMapXML COM.TIBCO.hawk.config.rbengine. ~ An Object that contains
rbmap.RBMapXML XML formatted string
that represent the

rulebase map.

TIBCO Hawk Programmer’s Guide

262 | Appendix A Common Configuration Object APl Methods

Repository:addRuleBase

Method
Purpose This method adds a rulebase to the repository.
Remarks Timeout (milliseconds): 10000

Type Proprietary, Synchronous, IMPACT_ACTION

Arguments Name Type Description
RulebaseXML COM.TIBCO.hawk.config.rbengine. = An Object that
rulebase.RulebaseXML contains XML

formatted string that
represent the rulebase.

Returns None

TIBCO Hawk Programmer’s Guide

Repository:deleteRuleBase

Repository:deleteRuleBase | 263

Method
Purpose

Type

Arguments

Returns

This method deletes a rulebase from the repository.

Open, Synchronous, IMPACT_ACTION

Name Type Description
RuleBaseName String The name of the rulebase to be deleted.
None

TIBCO Hawk Programmer’s Guide

264 | Appendix A Common Configuration Object APl Methods

Repository:setSchedules

Method

Purpose This method set the schedules in the repository.

Type Proprietary, Synchronous, IMPACT_ACTION

Arguments Name Type Description
SchedulesXML COM.TIBCO.hawk.config.rbengine. = An Object that
schedule.SchedulesXML contains XML

formatted string that
represent the
schedule.

Returns None

TIBCO Hawk Programmer’s Guide

Repository:getSchedules | 265

Repository:getSchedules
Method

Purpose This method returns the schedules in the repository.
Type Proprietary, Synchronous, IMPACT_INFO

Arguments None

Returns Name Type Description
SchedulesXML ~ COM.TIBCO.hawk.config.rbengine. =~ An Object that
schedule.SchedulesXML contains XML

formatted string that
represent the
schedule.

TIBCO Hawk Programmer’s Guide

266 | Appendix A Common Configuration Object APl Methods

Repository:setRBMap

Method
Purpose This method set the rulebase map in the repository.

Type Proprietary, Synchronous, IMPACT_ACTION

Arguments Name Type Description
RBMapXML COM.TIBCO.hawk.config.rbengine. ~An Object that contains
rbmap.RBMapXML XML formatted string
that represent the

rulebase map.

Returns None

TIBCO Hawk Programmer’s Guide

Repository:getRBMap | 267

Repository:getRBMap

Method
Purpose
Type
Arguments

Returns

This method returns the rulebase map in the repository.

Proprietary, Synchronous, IMPACT_INFO

None
Name Type Description
RBMapXML COM.TIBCO.hawk.config.rbengine. ~An Object that contains
rbmap.RBMapXML XML formatted string
that represent the

rulebase map.

TIBCO Hawk Programmer’s Guide

268 | Appendix A Common Configuration Object APl Methods

TIBCO Hawk Programmer’s Guide

| 269

AppendixB Sample Programs

This appendix describes the sample programs provided in the
/examples/rulebase_api, /examples/schedule_api, and
/examples/rbmap_api directories.

Topics

* Rulebase Samples, page 270
¢ Schedule Samples, page 272
* Rulebase Map Samples, page 274

TIBCO Hawk Programmer’s Guide

270 | Appendix B Sample Programs

Rulebase Samples

The example Java source files in examples/rulebase_api show how to use the
Rulebase-related classes of the Configuration Object APL

For details of the code, refer to the Java source files.

RBlIsample1.java

This sample shows how to create a simple rulebase and save it to a file. The
rulebase uses the Spot microagent that is created using the provided sample
application.

In the rulebase, the data source is the current color of the Spot microagent. The
test in the rulebase checks the color of the Spot microagent. If the color is blue, it
performs an action that changes the color to green.

RBlIsample2.java

This sample extends RBIsamplel. java to show how to use a compound test in a
rulebase.

In this example, the rulebase created in RBIsamplel. java is save to a file. After
reading the rulebase from the file, RBIsample2. java replaces the test with a
compound test. The compound test checks if the current color is either blue or
red. If this condition is satisfied, it performs an action that changes the color to
green.

RBlIsample3.java

This sample demonstrates how an application can create, add, update, and delete
a rulebase dynamically on an agent using the Configuration Object API and
Console API Refer to Appendix A, Common Configuration Object API Methods,
for methods related to communication between a Console application and the
TIBCO Hawk agent.

When running this sample, the Spot microagent should also be running. This
allows you to see the effect of the action performed by the rulebase after being
updated on the TIBCO Hawk agent.

The sample performs the following steps:

1. Creates a rulebase using the color of the SPOT microagent as the data source,
which changes to green if the current color is blue.

TIBCO Hawk Programmer’s Guide

Rulebase Samples | 271

Adds the created rulebase to the agent.

Changes the color of SPOT to blue. (At runtime, a few second after this call,
the color on the Spot microagent will change to green due to the test in the
rulebase.)

Retrieves the rulebase, modifies it to change the color of SPOT to green if the
current color is either blue or red, and updates the rulebase on the agent.

Sets the color of SPOT on the agent to red. (At runtime, a few second later
after this call, the color on the Spot microagent will change to green due to the
test in the rulebase.)

Sets the color of SPOT on the agent to blue. (At runtime, a few second later
after this call, the color on the Spot microagent should change to green due to
the test in the rulebase.)

Deletes the rulebase from the agent.

TIBCO Hawk Programmer’s Guide

272 | Appendix B Sample Programs

Schedule Samples

The example Java source files in examples/schedule_api show how to use the
Schedule-related classes of the Configuration Object API.

For details of the code, refer to the Java source files.

ScheduleCreateAndSave.java
This sample shows how to create a simple schedule and save it to a file.

The schedule created contains a period which is in-schedule from 8:00am to
5:59pm every Monday.

ScheduleUsingExclusion.java

This sample creates a schedule named BusinessHourInSummer. The purpose is to
show the use of both inclusion and exclusion periods.

This schedule is in-schedule from Monday to Friday, 8:00 AM to 5:59 PM. The
hours between 12:00 PM and 2:00 PM in June, July and August are excluded.

This schedule definition uses both inclusion and exclusion period even though
the same schedule could be created without using the exclusion period but using
a more specific inclusion period.

ScheduleWithPeriodGroup.java

This sample extends ScheduleUsingExclusion to demonstrate the use of
PeriodGroup and PeriodGroupReference.

The exclusion period in ScheduleWithPeriodGroup. java is replaced by a period
group that specifies the same time period. The resulting schedule contains an
exclusion period equivalent to the one in ScheduleUsingExclusion.

ScheduleGetAndSet.java

This sample demonstrates how an application can get and set schedules
dynamically on a repository using the Configuration Object API and Console
APIL.

The sample performs the following steps:

1. Gets the schedules from the repository.

TIBCO Hawk Programmer’s Guide

Schedule Samples | 273

2. Creates and adds a schedule to the existing schedules.

3. Replaces the schedules in the repository.

TIBCO Hawk Programmer’s Guide

274 | Appendix B Sample Programs

Rulebase Map Samples

The example Java source files in examples/rbmap_api show how to use the
Rulebase Map-related classes of the Configuration Object APL

For details of the code, refer to the Java source files.

RBMapCreateAndSave.java

S

This sample shows how to create a simple Rulebase Map and save it to a file. It
also shows the use of the method getAgentRulebases() to retrieve rulebases
maps to an agent in the Rulebase Map.

Based on the rulebase map, getAgentRulebases() returns a list of rulebases that
an agent should load during startup if the agent is running in the repository
configuration mode. It does not return a rulebase map.

RBMapUseCommand.java

‘-

This sample extends RBMapCreateAndSave to include an external command that
generates a list of rulebases for an agent.

This example uses RBMapUseCommand . exe and will run on Microsoft Windows
only.

RBMapUseCommand.java

This sample demonstrates how an application can get and set a Rulebase Map
dynamically on a repository using the Configuration Object API and Console
API.

The sample performs the following steps:

1. Gets the Rulebase Map from the repository.
2. Updates the Rulebase Map.

3. Replaces the Rulebase Map in the repository.

TIBCO Hawk Programmer’s Guide

| 275

Appendix C Planning Your Instrumented Application

This appendix describes steps of planning your AMI interface.

Topics

* Planning an AMI Interface, page 276
* An Example of Planning AMI Methods, page 277

TIBCO Hawk Programmer’s Guide

276 | Appendix C Planning Your Instrumented Application

Planning an AMI Interface

These steps can help you in planning your AMI interface:

1.

Examine the samples of AMI code included with the TIBCO Hawk
distribution to see how these requirements are carried out in code.

Copy one of the AMI code samples and amend it to add one or two methods.

When you are ready to create an interface to your application, consider what
data and methods is to be accessed or changed through the application’s
management interface:

— List the separate data items you want to be able to retrieve.

— List the data items you want to be able to change.

— List the actions you want to be able to carry out.

Each of these items will become a supported method of your AMI interface.

For each of these methods, decide what arguments it will use and what results
it will return. If a method uses arguments, consider what course to take if a
default argument is supplied.

Using the collected information for each method, create an outline detailing
the message structure to be returned to describe these methods to a manager.

Use this outline to write a describer method, which returns a nested message.
Set up the code to initialize the TIBCO Hawk AMI session.

Write methods that respond to method invocation messages from the
manager. In creating each message, use an outline as you did with the
describe method message, to lay out what information the message will
include.

TIBCO Hawk Programmer’s Guide

An Example of Planning AMI Methods | 277

An Example of Planning AMI Methods

Let us suppose you have a transaction-processing application that needs to be
monitored so that its message queue length doesn't grow too large. Instances of
this application might make up a fault-tolerant group with primary/secondary
status, which you want to autonomously monitor but also to interactively control.

Defining these needs, you could list two items:

* The manager should retrieve the application’s queue length on a periodic
basis.

* The manager should retrieve the application’s primary/secondary status on a
periodic basis.

You now create these methods:
® getQueuelLength, which takes no arguments and returns the queue length.

® getFTStatus, which takes no arguments and returns the fault-tolerant status
(primary or secondary) of the application.

* makePrimary, which takes no arguments and sets the fault-tolerant status of
the application instance to primary.

* makeSecondary, which takes no arguments and sets the fault-tolerant status of
the application instance to secondary.

Since you will be using a TIBCO Hawk agent as the manager, you build a rulebase
with two rules, as follows:

e The first rule has as its data source the getQueueLength method. It raises an
alert if the queue length is greater than 200.

e The second rule has as its data source the getFTStatus method. It sends a
notification each time there is a fault-tolerant state transition.

From the TIBCO Hawk WebConsole, operators can control the fault-tolerant state
of any instance of the application by invoking the makePrimary or
makeSecondary methods.

Other possible AMI examples might include:

® Methods to dynamically control trace or debug levels.

® Methods to drop or re-request information from data streams.
¢ Methods to monitor client connections for server applications.
* Methods to control application backup procedures.

¢ Methods to extract internal state information used in debugging.

TIBCO Hawk Programmer’s Guide

278 | Appendix C Planning Your Instrumented Application

* Methods to change various application configuration parameters.

* Methods that instruct applications to write their new configuration
parameters to configuration files or to the Microsoft Windows registry.

TIBCO Hawk Programmer’s Guide

Index

Symbols

~AmiMethod() 108
~AmiParameter() 128
~AmiParameterList() 142
~AmiSession() 84

A

AMI
and TIBCO Hawk security 275
application looks like a microagent 58
basics 58
conversation 61
Three stages of 61
discovery when the application starts first 62
discovery when the manager starts first 62
has two participants 2
method description 63
method invocation 64
methods 275
example of planning 277
participants
connecting 60
programming
guidelines for 278
AMI and TIBCO Hawk security 275
AMI basics 58
AMI C API Constant 160
AMI conversation 61
AMI Methods 65
AMI methods 275
AMI Parameter 67
AMI Session 65
ami_AlertType 158
ami_AsyncMethodCreate 217
ami_Boolean 159

| 279

ami_Close 192
ami_DataType 161
ami_Error 162
ami_ErrorCreate 174
ami_ErrorCreateV 174
ami_ErrorDestroy 175
ami_ErrorGetCode 177
ami_ErrorGetFile 177
ami_ErrorGetLine 177
ami_ErrorGetText 177
ami_ErrorGetThread 177
ami_ErrorStamp 176
ami_Method 164
ami_MethodCreate 216
ami_MethodGetHelp 219
ami_MethodGetName 218
ami_MethodGetUserData 220
ami_MethodSetIndex 221
ami_MethodType 165
ami_OnlInvokeCallback 179
ami_OnStartCallback 180
ami_OnStopCallback 181
ami_Open 191
ami_Parameter 166
ami_ParameterAddChoice 236
ami_ParameterAddLegal 237
ami_ParameterCreateln 231
ami_ParameterCreateOut 232
ami_ParameterGetValue 235
ami_ParameterList 167
ami_ParameterListList 168
ami_ParameterListListDestroy 238
ami_ParameterListOut 233
ami_ParameterSetValue 234
ami_Property 171
ami_Session 169
ami_SessionAnnounce 204
ami_SessionCreate 201
ami_SessionDestroy 203

TIBCO Hawk Programmer’s Guide

280 | Index

ami_SessionDisableTraceLevels 188 AmiSession() 82, 102
ami_SessionEnableTracelLevels 187 AmiStatus 143
ami_SessionGetDisplayName 207 getType() 145
ami_SessionGetHelp 208 setMessage() 145
ami_SessionGetTraceLevels 185 AmiStatus () 145
ami_SessionGetUserData 209 application looks like a microagent
ami_SessionOnData 212 AMI 58
ami_SessionSendData 210 application messages
ami_SessionSendError 211 unsolicited 275
ami_SessionSendUnsolicitedMsg 213 application starts first
ami_SessionSetTraceLevels 186 AMI discovery when the 62
ami_SessionStop 205, 206 if the 62

ami_Subscription 170 Asychronous methods 66
ami_SubscriptionGetArguments 228 asynchronous methods 66
ami_SubscriptionGetMethod 227 authentication 240
ami_SubscriptionGetUserData 225 authorization 242
ami_SubscriptionSetCallbackInterval 226 auto-invoke methods 67

ami_SubscriptionSetUserData 224
ami_TraceCode 184
ami_TraceHandler 182

ami_Version 190 B
ami_VersionDate 190

ami_VersionMajor 190 basics
ami_VersionMinor 190 AMI 58

ami_VersionName 190
ami_VersionUpdate 190
AmiAsyncMethod 111

AmiAsyncMethod() 112, 112, 119 C
AmiMethod 107
getArguments() 110 C++ Programmer’s Checklist 77
getHelp() 110 certificates 241
getName() 110 changes from the previous release xii
getReturns() 110 connecting AMI participants 60
getStatus() 110 considerations for the TIBCO Hawk system 242
getType() 110 conversation
onlnvoke() 110 AMI 61
setindexName() 110 three stages of AMI 61
AmiMethod() 108 creating a Java security class 243
AmiMethodAsync customer support xvii

onStart() 113
onStop() 113, 115
AmiParameter 127, 128

AmiParameterList 135 D
AmiSession 78
announce() 96 data privacy and integrity 242

TIBCO Hawk Programmer’s Guide

describing methods 63

description
AMI method 63

discovery phase 62

discovery when the application starts first
AMI 62

discovery when the manager starts first
AMI 62

E

Error Logging 68
example of planning AMI methods 277, 277

F

first AMI Phase
discovering the application 62
framework protocol 243

G

general steps for programmers 73
guidelines for AMI programming 278

implementation of an authorization module 244
implementing a security policy 243
inclusion of operating systems not supported by
TIBCO Hawk software 58
instrumented application 58
planning 275
invocation
AMI method 64

Index | 281

J

Java Classes and Class Structure 69

L

library files 73
Link to library files 73

manager starts first

AMI discovery 62

if the 62
messages

unsolicited application 275
messaging

AMI uses TIBCO Rendezvous 2
method description

AMI 63
method invocation

AMI 64
methods

AMI 275

describing 63

example of planning AMI 277

optional repeating 275
microagent

AMI application looks like a 58
monitoring an instrumented application through the

TIBCO Hawk Display 59

(o)

onStart() 113

onStop() 114

optional methods 275

optional repeating methods 275

TIBCO Hawk Programmer’s Guide

282 | Index

P

participants
connecting AMI 60
planning AMI methods
example of 277
planning instrumented application 275
programming
guidelines for AMI 278

R

repeating methods
optional 275

S

sample code 245
second AMI phase

describing methods 63
security

AMI and TIBCO Hawk 275
security objects 244
sendData() 116
sendError() 117
stages of AMI conversation 61, 61
support, contacting xvii
synchronous methods 65

T

technical support xvii
third AMI Phase
calling the methods 63
TIBCO Hawk Requirements 1
TIBCO Hawk security
AMI and 275
TIBCO Hawk Security concepts 240

TIBCO Hawk Programmer’s Guide

TIBCO Rendezvous messaging
AMI uses 2
TIBCO_HOME xv

U

unsolicited application messages 275
using a security policy 245
using API with the AMI 278

w

why use a management interface? 58

	TIBCO Hawk®
	Contents
	Preface
	Changes from the Previous Release of this Guide
	Related Documentation
	TIBCO Hawk Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction to TIBCO Hawk Programming
	Programming Tools and Interfaces
	Console API
	Configuration Object API
	AMI API
	Security API

	Chapter 2 Console API
	How the TIBCO Hawk Console API Fits In
	Concepts
	Structure
	Monitoring Operations
	The AgentInstance Class
	Ensuring Each Agent Instance has a Unique ID
	Management Operations
	Microagent Descriptors
	Invoking Methods
	Subscribing to Method Results
	Group Operations
	Lightweight Console
	Console Application with Secure Domain
	MicroAgent Plug-in

	TIBCO Hawk Console API Class Structure
	Key to the UML Diagrams
	Agent Monitoring Classes (Hawkeye)
	Agent Monitoring Classes (Cont)
	Agent Management Classes
	Agent Management Classes (Cont)

	API Reference

	Chapter 3 Configuration Object API
	Overview
	Configuration Objects
	How the TIBCO Hawk Configuration Object API Fits In

	Concepts
	Configuration Objects
	Rulebases
	Schedule
	RulebaseMap
	Configuration Object Integrity
	Dependence on the Console API

	Configuration Object API Class Structure
	Key to the UML diagrams
	Configuration Object API Classes

	API Reference

	Chapter 4 AMI API
	AMI Basics
	An Instrumented Application Looks like a Microagent
	Monitoring an Instrumented Application through the TIBCO Hawk WebConsole
	Connecting AMI Participants

	The AMI Conversation
	First AMI Phase: Discovering the Application
	Second AMI Phase: Describing the Methods
	Third AMI Phase: Calling the Methods

	AMI API Objects
	AMI Session
	AMI Methods
	AMI Parameter
	Error Logging
	Threading Model

	AMI API Sample Programs
	The Sample AMI API Applications

	Programmer’s Checklist
	C++ Library Files
	C Library Files
	Transport Based Library Files

	Java AMI API Reference
	C++ AMI API Reference
	AmiSession Class
	AmiSession()
	AmiSession()
	AmiSession::open()
	AmiSession::close()
	AmiSession::versionName()
	AmiSession::version()
	AmiSession::versionDate()
	AmiSession::banner()
	AmiSession::versionMajor()
	AmiSession::versionMinor()
	AmiSession::getTraceLevels()
	AmiSession::setTraceLevels()
	AmiSession::enableTraceLevels()
	AmiSession::disableTraceLevels()
	AmiSession::announce()
	AmiSession::get... Accessors
	AmiSession::sendUnsolicitedMsg()
	AmiSession::stop()

	AMI Property Class
	AmiProperty Class
	AmiProperty()
	AmiProperty::()

	AMI Method Classes
	AmiMethod Class
	AmiMethod::setIndexName()
	AmiMethod::get...() Accessors
	AmiMethod::onInvoke()
	AmiAsyncMethod Class
	AmiAsyncMethod()
	AmiAsyncMethod::onStart()
	AmiAsyncMethod::onStop()
	AmiAsyncMethod::onData()
	AmiAsyncMethod::sendData()
	AmiAsyncMethod::sendError()
	AmiSyncMethod Class
	AmiSyncMethod()
	AmiSubscription Class
	AmiSubscription::getUserData()
	AmiSubscription::setCallbackInterval()
	AmiSubscription::setUserData()
	AmiSubscription::getMethod()
	AmiSubscription::getArguments()

	AMI Parameter Classes
	AmiParameter Class
	AmiParameter::addChoice()
	AmiParameter::addLegal()
	AmiParameter::getStatus()
	AmiParameterIn Class
	AmiParameterIn()
	AmiParameterOut Class
	AmiParameterOut()
	AmiParameterList Class
	AmiParameterListIn Class
	AmiParameterListIn::getValue()
	AmiParameterListOut Class
	AmiParameterListOut()
	AmiParameterListOut::newRow()
	AmiParameterListOut::setValue()

	AMI Error Handling
	AmiStatus Class
	AmiStatus()
	AmiStatus::getAmiError()
	AmiStatus::setStatus()
	AmiStatus::setStatusV()
	AmiStatus::stamp()
	AmiStatus::getCode()
	AmiStatus::getText()
	AmiStatus::getThread()
	AmiStatus::getFile()
	AmiStatus::getLine()

	C AMI API Reference
	Data Types Summary
	ami_AlertType
	ami_Boolean
	AMI C API Constants
	ami_DataType
	ami_Error
	ami_Method
	ami_MethodType
	ami_Parameter
	ami_ParameterList
	ami_ParameterListList
	ami_Session
	ami_Subscription
	ami_Property

	AMI C API Error Functions
	Error Functions Summary
	ami_ErrorCreate(), ami_errorCreateV()
	ami_ErrorDestroy()
	ami_ErrorStamp()
	ami_ErrorGet... Accessors
	Callback Function Types Summary
	ami_OnInvokeCallback
	ami_OnStartCallback
	ami_OnStopCallback
	ami_TraceHandler
	Trace Control Functions Summary
	ami_TraceCode
	ami_SessionGetTraceLevels()
	ami_SessionSetTraceLevels()
	ami_SessionEnableTraceLevels()
	ami_SessionDisableTraceLevels()
	Initialization and Termination Functions Summary
	ami_Version... Accessors
	ami_Open()
	ami_Close()

	AMI C API Session Functions
	Session Functions Summary
	ami_SessionCreateUsingProperties()
	ami_AddProperty()
	ami_SessionCreate()
	ami_SessionDestroy()
	ami_SessionAnnounce()
	ami_SessionStop()
	ami_SessionGetName()
	ami_SessionGetDisplayName()
	ami_SessionGetHelp()
	ami_SessionGetUserData()
	ami_SessionSendData()
	ami_SessionSendError()
	ami_SessionOnData()
	ami_SessionSendUnsolicitedMsg()

	AMI C API Method Functions
	Method Functions Summary
	ami_MethodCreate()
	ami_AsyncMethodCreate()
	ami_MethodGetName()
	ami_MethodGetHelp()
	ami_MethodGetUserData()
	ami_MethodSetIndex()

	AMI C API Subscription Functions
	Subscription Functions Summary
	ami_SubscriptionSetUserData()
	ami_SubscriptionGetUserData()
	ami_SubscriptionSetCallbackInterval()
	ami_SubscriptionGetMethod()
	ami_SubscriptionGetArguments()

	AMI C API Parameter Functions
	Parameter Functions Summary
	ami_ParameterCreateIn()
	ami_ParameterCreateOut()
	ami_ParameterListOut()
	ami_ParameterSetValue()
	ami_ParameterGetValue()
	ami_ParameterAddChoice()
	ami_ParameterAddLegal()
	ami_ParameterListListDestroy()

	Chapter 5 Security Framework
	TIBCO Hawk Security Concepts
	Authentication
	Certificates
	Authorization
	Data Privacy and Integrity
	Considerations for the TIBCO Hawk System

	Implementing a Security Policy
	Creating a Java Security Class
	Framework Protocol
	Security Objects

	Sample Code

	Appendix A Common Configuration Object API Methods
	Microagent and Method Invocation used in ConsequenceAction
	Interaction with Agent and Repository using the Console API
	Methods Reference
	RuleBaseEngine:sendAlertMessage
	RuleBaseEngine:execute
	RuleBaseEngine:sendMail
	RuleBaseEngine:addRuleBase
	RuleBaseEngine:deleteRuleBase
	RuleBaseEngine:setSchedules
	RuleBaseEngine:getSchedules
	RuleBaseEngine:getRBMap
	Repository:addRuleBase
	Repository:deleteRuleBase
	Repository:setSchedules
	Repository:getSchedules
	Repository:setRBMap
	Repository:getRBMap

	Appendix B Sample Programs
	Rulebase Samples
	RBIsample1.java
	RBIsample2.java
	RBIsample3.java

	Schedule Samples
	ScheduleCreateAndSave.java
	ScheduleUsingExclusion.java
	ScheduleWithPeriodGroup.java
	ScheduleGetAndSet.java

	Rulebase Map Samples
	RBMapCreateAndSave.java
	RBMapUseCommand.java
	RBMapUseCommand.java

	Appendix C Planning Your Instrumented Application
	Planning an AMI Interface
	An Example of Planning AMI Methods

	Index

