
TIBCO Hawk®
Programmer’s Guide
Version 6.2.2
February 2023

Copyright © 1996-2023. Cloud Software Group, Inc. All Rights Reserved.

TIBCO Hawk® Programmer’s Guide

2 | Contents

Contents
Contents 2

Introduction to TIBCO Hawk Programming 13
Programming Tools and Interfaces 13

REST API 13
Console API 13

Configuration Object API 14

AMI API 14

Security API 14

Console API 15
How the TIBCO Hawk Console API Fits In 15

Monitoring Component 16

Management Component 16

Concepts 17

Structure 17
Monitoring Operations 17

The AgentInstance Class 20

Ensuring Each Agent Instance has a Unique ID 21

Management Operations 21

Microagent Descriptors 22

Invoking Methods 23

Subscribing to Method Results 23

Group Operations 25

Lightweight Console 25

Console Application with Secure Domain 26

MicroAgent Plug-in 26

TIBCO Hawk Console API Class Structure 27

TIBCO Hawk® Programmer’s Guide

3 | Contents

Key to the UML Diagrams 27

Agent Monitoring Classes (Hawkeye) 29

Agent Management Classes 31

API Reference 32

Configuration Object API 34
Overview 34

Configuration Objects 34
How the TIBCO Hawk Configuration Object API Fits In 35

Concepts 36
Configuration Objects 36

Rulebases 36

Schedule 45

RulebaseMap 48

Configuration Object Integrity 51

Dependence on the Console API 51

Configuration Object API Class Structure 52
Key to the UML diagrams 52

Configuration Object API Classes 54

API Reference 62

AMI API 63
AMI Basics 63

An Instrumented Application Looks like a Microagent 63

Connecting AMI Participants 65

The AMI Conversation 65
First AMI Phase: Discovering the Application 66

Second AMI Phase: Describing the Methods 68

Third AMI Phase: Calling the Methods 68

AMI API Objects 69
AMI Session 69

AMI Methods 69

TIBCO Hawk® Programmer’s Guide

4 | Contents

AMI Parameter 72

Error Logging 72

Threading Model 72

AMI API Sample Programs 73
The Sample AMI API Applications 73

Programmer’s Checklist 77

C++ Library Files 77
C Library Files 78

Transport Based Library Files 79

Java AMI API Reference 79

C++ AMI API Reference 80
AmiSession Class 80

Declaration 80

Purpose 80

Remarks 80

Member Summary 81

AmiSession() 83

AmiSession() 85

AmiSession::open() 88

AmiSession::close() 88

AmiSession::versionName() 89

AmiSession::version() 89

AmiSession::versionDate() 89

AmiSession::banner() 90

AmiSession::versionMajor() 90

AmiSession::versionMinor() 91

AmiSession::getTraceLevels() 91

AmiSession::setTraceLevels() 91

AmiSession::enableTraceLevels() 92

AmiSession::disableTraceLevels() 92

AmiSession::announce() 93

TIBCO Hawk® Programmer’s Guide

5 | Contents

AmiSession::get... Accessors 93

AmiSession::sendUnsolicitedMsg() 95

AmiSession::stop() 96

AMI Property Class 96
AmiProperty Class 96

AmiProperty() 97

AmiProperty::() 98

AMI Method Classes 100
AmiMethod Class 100

AmiMethod::setIndexName() 102

AmiMethod::get...() Accessors 103

AmiMethod::onInvoke() 104

AmiAsyncMethod Class 105

AmiAsyncMethod() 106

AmiAsyncMethod::onStart() 108

AmiAsyncMethod::onStop() 109

AmiAsyncMethod::onData() 110

AmiAsyncMethod::sendData() 111

AmiAsyncMethod::sendError() 112

AmiSyncMethod Class 113

AmiSyncMethod() 113

AmiSubscription Class 115

AmiSubscription::getUserData() 117

AmiSubscription::setCallbackInterval() 117

AmiSubscription::setUserData() 118

AmiSubscription::getMethod() 119

AmiSubscription::getArguments() 120

AMI Parameter Classes 120
AmiParameter Class 121

AmiParameter::addChoice() 122

AmiParameter::addLegal() 123

AmiParameter::getStatus() 124

TIBCO Hawk® Programmer’s Guide

6 | Contents

AmiParameterIn Class 124

AmiParameterIn() 125

AmiParameterOut Class 126

AmiParameterOut() 127

AmiParameterList Class 128

AmiParameterListIn Class 129

AmiParameterListIn::getValue() 130

AmiParameterListOut Class 130

AmiParameterListOut() 131

AmiParameterListOut::newRow() 132

AmiParameterListOut::setValue() 132

AMI Error Handling 133
AmiStatus Class 133

AmiStatus() 136

AmiStatus::getAmiError() 137

AmiStatus::setStatus() 137

AmiStatus::setStatusV() 138

AmiStatus::stamp() 139

AmiStatus::getCode() 139

AmiStatus::getText() 140

AmiStatus::getThread() 140

AmiStatus::getFile() 141

AmiStatus::getLine() 141

C AMI API Reference 142
Data Types Summary 142

ami_AlertType 145

ami_Boolean 145

AMI C API Constants 146

ami_DataType 146

ami_Error 147

ami_Method 151

TIBCO Hawk® Programmer’s Guide

7 | Contents

ami_MethodType 152

ami_Parameter 152

ami_ParameterList 153

ami_ParameterListList 153

ami_Session 154

ami_Subscription 154

ami_Property 155

AMI C API Error Functions 156
Error Functions Summary 156

ami_ErrorCreate(), ami_errorCreateV() 156

ami_ErrorDestroy() 158

ami_ErrorStamp() 159

ami_ErrorGet... Accessors 160

Callback Function Types Summary 161

ami_OnInvokeCallback 162

ami_OnStartCallback 163

ami_OnStopCallback 165

ami_TraceHandler 166

Trace Control Functions Summary 167

ami_TraceCode 168

ami_SessionGetTraceLevels() 170

ami_SessionSetTraceLevels() 171

ami_SessionEnableTraceLevels() 172

ami_SessionDisableTraceLevels() 173

Initialization and Termination Functions Summary 174

ami_Version... Accessors 174

ami_Open() 175

ami_Close() 176

AMI C API Session Functions 176
Session Functions Summary 177

ami_SessionCreateUsingProperties() 179

ami_AddProperty() 180

TIBCO Hawk® Programmer’s Guide

8 | Contents

ami_SessionCreate() 182

ami_SessionDestroy() 185

ami_SessionAnnounce() 185

ami_SessionStop() 186

ami_SessionGetName() 187

ami_SessionGetDisplayName() 188

ami_SessionGetHelp() 189

ami_SessionGetUserData() 190

ami_SessionSendData() 191

ami_SessionSendError() 192

ami_SessionOnData() 193

ami_SessionSendUnsolicitedMsg() 194

AMI C API Method Functions 195
Method Functions Summary 195

ami_MethodCreate() 196

ami_AsyncMethodCreate() 198

ami_MethodGetName() 199

ami_MethodGetHelp() 200

ami_MethodGetUserData() 201

ami_MethodSetIndex() 202

AMI C API Subscription Functions 203
Subscription Functions Summary 204

ami_SubscriptionSetUserData() 205

ami_SubscriptionGetUserData() 206

ami_SubscriptionSetCallbackInterval() 208

ami_SubscriptionGetMethod() 209

ami_SubscriptionGetArguments() 209

AMI C API Parameter Functions 210
Parameter Functions Summary 210

ami_ParameterCreateIn() 212

ami_ParameterCreateOut() 214

ami_ParameterListOut() 215

TIBCO Hawk® Programmer’s Guide

9 | Contents

ami_ParameterSetValue() 217

ami_ParameterGetValue() 218

ami_ParameterAddChoice() 219

ami_ParameterAddLegal() 220

ami_ParameterListListDestroy() 221

Security Framework 223
TIBCO Hawk Security Concepts 223

Authentication 223

Certificates 225

Authorization 225

Data Privacy and Integrity 225

Considerations for the TIBCO Hawk System 226

Implementing a Security Policy 226
Creating a Java Security Class 226

Framework Protocol 227

Security Objects 227

Sample Code 228

Common Configuration Object API Methods 238
Microagent and Method Invocation used in ConsequenceAction 238

Interaction with Agent and Repository using the Console API 242

Methods Reference 243

RuleBaseEngine:sendAlertMessage 244
Purpose 244

Type 244

Remarks 244

Arguments 245

Returns 245

RuleBaseEngine:execute 245
Purpose 245

Type 245

TIBCO Hawk® Programmer’s Guide

10 | Contents

Arguments 246

Returns 246

RuleBaseEngine:sendMail 246
Purpose 246

Remarks 246

Type 247

Arguments 247

Returns 247

RuleBaseEngine:addRuleBase 247
Purpose 248

Remarks 248

Type 248

Arguments 248

Returns 248

RuleBaseEngine:deleteRuleBase 249
Purpose 249

Type 249

Arguments 249

Returns 249

RuleBaseEngine:setSchedules 249
Purpose 250

Type 250

Arguments 250

Returns 250

RuleBaseEngine:getSchedules 250
Purpose 251

Type 251

Arguments 251

Returns 251

RuleBaseEngine:getRBMap 251
Purpose 252

Remarks 252

TIBCO Hawk® Programmer’s Guide

11 | Contents

Type 252

Arguments 252

Returns 252

Repository:addRuleBase 253
Purpose 253

Remarks 253

Type 253

Arguments 253

Returns 254

Repository:deleteRuleBase 254
Purpose 254

Type 254

Arguments 254

Returns 254

Repository:setSchedules 255
Purpose 255

Type 255

Arguments 255

Returns 255

Repository:getSchedules 256
Purpose 256

Type 256

Arguments 256

Returns 256

Repository:setRBMap 257
Purpose 257

Type 257

Arguments 257

Returns 257

Repository:getRBMap 258
Purpose 258

Type 258

TIBCO Hawk® Programmer’s Guide

12 | Contents

Arguments 258

Returns 258

Sample Programs 260
Rulebase Samples 260

RBIsample1.java 260

RBIsample2.java 260

RBIsample3.java 261

Schedule Samples 261
ScheduleCreateAndSave.java 262

ScheduleUsingExclusion.java 262

ScheduleWithPeriodGroup.java 262

ScheduleGetAndSet.java 262

Rulebase Map Samples 263
RBMapCreateAndSave.java 263

RBMapUseCommand.java 263

RBMapUseCommand.java 263

Planning Your Instrumented Application 265
Planning an AMI Interface 265

An Example of Planning AMI Methods 266

TIBCO Documentation and Support Services 268

Legal and Third-Party Notices 270

TIBCO Hawk® Programmer’s Guide

13 | Introduction to TIBCO Hawk Programming

Introduction to TIBCO Hawk Programming
TIBCO Hawk software monitors distributed systems and applications.

You can interact with TIBCO Hawk applications through the TIBCO Hawk Console API or
through TIBCO Hawk AMI APIs.

• Programming Tools and Interfaces

Programming Tools and Interfaces

REST API
TIBCO Hawk REST API provide set of HTTP methods to manage and monitor the Hawk
agent. You can use these methods to create your own console, if needed.

After you start the Hawk Console, you can view these REST APIs at the Swagger page URL

http://<Console_host_IP>:<Host_port>/HawkConsole/v1/docs

The Swagger page enables you to view the details of each API, such as model schema,
required parameters, response messages, and so on. Also, you can try out the APIs by
providing the parameters to the API in the Swagger URL.

Console API
The Console API is a comprehensive set of Java interfaces that allow you to manage and
interact with TIBCO Hawk agents and monitor alerts generated by these agents. Both the
TIBCO Hawk Console and TIBCO Hawk Event Service implement the Console API to monitor
and manage agent behavior. Programmers can use the Console API to write custom
applications similar to these applications to monitor agent behavior, subscribe to alert
messages, and invoke microagent methods.

TIBCO Hawk® Programmer’s Guide

14 | Introduction to TIBCO Hawk Programming

Configuration Object API
The Configuration Object API is a Java interface for writing custom rulebases. Rulebases
are used by TIBCO Hawk agents to monitor and manage systems and applications. The
Configuration Object API provides classes to define rules, tests and actions. Instances of
these classes are put together to define a new rulebase.

AMI API
The AMI API allows application to instrument their applications with the Hawk API and
make them manageable using Hawk Agent. AMI APIs are available in Java, C and C++.

Security API
The TIBCO Hawk Security API is used to build security plug-in modules used for secure
agent and console interactions. The security mechanism actually involves two modules,
one that is used by the agent and another that is used by the console. If you use the
Console API to write console applications that will operate in a secure TIBCO Hawk
environment, you must have access to the console-side security plug-in class to be able to
perform management operations on agents. The TIBCO Hawk Console requires a security
plug-in class to manage agents in a secure environment.

TIBCO Hawk® Programmer’s Guide

15 | Console API

Console API
The TIBCO Hawk Console API is a Java language interface for writing programs that can
perform monitoring and management of TIBCO Hawk agents. It provides all the facilities
required to perform discovery, monitoring of agent-alive status, monitoring of agent alerts,
and the monitoring of agent configuration changes. It also allows you interact with agents
and their managed objects through remote method invocations on microagents.

This chapter provides a brief overview of the major components of the TIBCO Hawk
Enterprise Monitor and how the TIBCO Hawk Console API relates to them.

• How the TIBCO Hawk Console API Fits In

• Concepts

• TIBCO Hawk Console API Class Structure

• API Reference

How the TIBCO Hawk Console API Fits In
The TIBCO Hawk Console API allows you to write programs that can monitor the alerts
generated by TIBCO Hawk agents and perform management operations on their
microagents. Applications using this API can be referred to as console applications.

Both the TIBCO Hawk Console and the TIBCO Hawk Event Service use the TIBCO Hawk
Console API to monitor or manage agents, or both. They are thus both good examples of
the types of applications that can be built with this interface.

Applications built with the Console API can monitor every node within a given TIBCO Hawk
domain. However, additional instances of console applications can run simultaneously on
multiple nodes in the network with little or no additional network impact.

Note: The TIBCO Hawk Console API does not provide facilities for the creation of
rulebases.

TIBCO Hawk® Programmer’s Guide

16 | Console API

The TIBCO Hawk software distribution includes sample Console API programs that helps
you to better understand how to use the Console API. These samples can be found in the
following directory:

HAWK_HOME/examples/console_api

These Console API sample applications use the hawk_example.props property file that is
located at :

HAWK_HOME/examples

Monitoring Component
The monitoring component of the TIBCO Hawk Console API provides events that notify your
application when:

• Agents are discovered

• Agents expire

• Alerts and clears are generated by an agent's rules engine

• An agent's list of microagents changes

• An agent's list of rulebases changes

Management Component
The management component allows you to interact with an agent's microagents by:

• Invoking their methods to return management data or perform management
functions

• Subscribing to their management data in a way that produces an updating data
stream of management information

• Performing group operations on multiple Microagents across the network
simultaneously

TIBCO Hawk® Programmer’s Guide

17 | Console API

Concepts
The following sections provides some background information on using the classes.

• Structure

• Monitoring Operations

• The AgentInstance Class

• Management Operations

• Management Operations

• Microagent Descriptors

• Invoking Methods

• Subscribing to Method Results

• Group Operations

• Lightweight Console

• MicroAgent Plug-in

Structure
The TIBCO Hawk Console API is partitioned along the functional lines of monitoring and
management. At the root is the TIBHawkConsole class from which you can access the
AgentMonitor and AgentManager, which encompass the monitoring and management
facilities of the API.

Monitoring Operations
The TIBCO Hawk Console API allows you to monitor all agents simultaneously from a single
program.

For each agent, the APIs monitoring capabilities can be decomposed into four areas:

• Management Operations

• Microagent List Monitoring

TIBCO Hawk® Programmer’s Guide

18 | Console API

• Rulebase List Monitoring

• Alert Monitoring

All monitoring is performed using event notification. Listeners are registered with the
AgentMonitor for the type of monitoring required and the relevant status messages are
delivered as events when they are detected.

A registered listener for a particular type of event will receive notifications for all monitored
agents that generate that event. For example, registering a AgentMonitorEventLister with
the console will allow it to receive AgentMonitorEvents for all agents known to the
console, thus allowing it to track the alive or expired status of every agent.

Agent-Alive Monitoring
The most basic type of monitoring is the monitoring of agent existence. This is achieved by
registering an AgentMonitorListener with the AgentMonitor. When you register an
AgentMonitorListener, it will receive one agent-alive event for every agent the console
can detect.

An agent-alive event is actually represented by the delivery of an AgentMonitorEvent to
the onAgentAlive() method of the listener. This event contains a reference to an
AgentInstance object which identifies which agent it pertains to. As new agents appear in
the network, new agent-alive events will be generated to identify them. When the console
is no longer able to communicate with an agent, it will issue an agent-expired event for
that agent. This is performed by delivering a AgentMonitorEvent to the onAgentExpired()
method of the listener. As before, this event contains a reference to an AgentInstance
object which identifies which agent it pertains to. The console can lose communication
with an agent for several reasons, for example if the agent process is no longer running,
the machine it was running on has crashed, or because of a problem in the underlying
communications infrastructure such as a network outage.

Microagent List Monitoring
Each agent contains a collection of objects called microagents. Microagents have methods
through which monitoring and management is performed. Microagents represent managed
entities such as the operating system's subsystems, log files, event logs, or applications. A
newly launched application instrumented with AMI will dynamically appear as a microagent
on its managing agent (by default, the one located on the same processor). When the
instrumented application terminates, the corresponding microagent will also be removed.

TIBCO Hawk® Programmer’s Guide

19 | Console API

Microagent list monitoring is used to track the dynamic list of microagents in an agent.
Events are delivered when microagents are added and removed.

To perform this type of monitoring you simply register a MicroAgentListMonitorListener
with the AgentMonitor. Events of type MicroAgentListMonitorEvent are then delivered to
either the onMicroAgentAdded() or onMicroAgentRemoved() method of the listener. The
event contains an AgentInstance object, which identifies the agent, and a MicroAgentID
object, which identifies the microagent.

Rulebase List Monitoring
Rulebases direct the monitoring activities of an agent. Each rulebase is a collection of rules
which are usually grouped together to monitor an application or system resource. An agent
may have more than one loaded rulebase and this list can change dynamically.

Rulebase list monitoring is structurally similar to microagent list monitoring. It is used to
monitor the dynamically changing list of rulebases that are loaded on an agent.

To perform this type of monitoring you register a RuleBaseListMonitorListener or
onRulebaseUpdated with the AgentMonitor. Events of type RuleBaseListMonitorEvent are
then delivered to either the onRuleBaseAdded() or onRuleBaseRemoved() method of the
listener. The event contains an AgentInstance object, which identifies the agent, and a
RuleBaseStatus object, which is used to identify the rulebase being added or removed.

The onRulebaseUpdated() listener provides an atomic update callback for rulebase update
events. To receive onRulebaseUpdated(), implement
ExtendedRuleBaseListMonitorListener as per the definition provided in API Reference
section.

Alert Monitoring
One of the actions a rulebase can take is to generate an alert, which is usually done to
signal that a problem condition has been detected. Alerts contain a state, to indicate the
problem severity, and text, which provides the problem description. If the alert condition,
as defined by the rulebase, ceases to exist, the rulebase will generate a clear against that
alert.

Every alert is associated with a particular rulebase and every rulebase is associated with a
particular agent. (Technically, rulebases are said to be associated with the RuleBaseEngine
microagent instance registered with that agent, therefore the association with the agent is
indirect.) The alert state of a rulebase will always be highest alert state of all the active

TIBCO Hawk® Programmer’s Guide

20 | Console API

(non-cleared) alerts associated with it. The alert state of an agent (or its RuleBaseEngine
microagent) is the highest alert state of any of its currently loaded rulebases. Therefore,
alerts and clears can potentially change the state of the rulebase and agent that generated
them.

Alert monitoring is performed by registering an AlertMonitorListener with the
AgentMonitor. Alerts and clears generated by an agent are detected by the console and
delivered as AlertMonitorEvent objects to the listener. Since AlertMonitorEvent is an
abstract class, one of its concrete subclasses is delivered: PostAlertEvent for alerts and
ClearAlertEvent for clears.

Every AlertMonitorEvent contains flags that indicate whether it caused a change in the
state of the RuleBaseEngine or the rulebase it is associated with. It also holds the current
states of those objects after taking into account the current event. Other attributes include
an alert ID, which uniquely identifies an alert, and the time the event was generated.

Because AlertMonitorEvent extends AgentMonitorEvent, it also has an AgentInstance
attribute to identify the agent that generated the event.

The PostAlertEvent class extends AlertMonitorEvent and adds the state of the alert and
the alert text. The ClearAlertEvent class extends AlertMonitorEvent and adds the
reason-cleared text. This string identifies the reason the alert was cleared.

All alert states are represented as integer values that are mapped using the AlertState
interface. A PostAlertEvent with a state of AlertState.NO_ALERT is also called a
notification.

The AgentInstance Class
Common to all monitoring events, and that which relates them to each other, is the agent
instance they pertain to. This agent instance is represented in the TIBCO Hawk Console API
by the AgentInstance class. The following definitions and discussion describe this class,
the related AgentID class, and their role in monitoring.

Agent ID
The agent ID specifies the attributes of an agent process that are used to uniquely identify
it. These attributes are

TIBCO Hawk® Programmer’s Guide

21 | Console API

• Agent name

• Agent domain

• TIBCO Hawk domain name.

Agent Instance
The agent instance is an instantiation of a agent; the actual agent process running on some
machine in the network. If an agent is restarted, the new process represents a new agent
instance. Agent instances have a life span that begins with the starting of an agent process
and ends with its termination. Agent instances are represented by the AgentInstance class.

Ensuring Each Agent Instance has a Unique ID
In order for the TIBCO Hawk system to function correctly, every concurrently running agent
instance must have a unique agent ID. The console will attempt to detect violations of this
condition and produce a warning. However, this may not be detectable in all
circumstances and so the system administrator must insure that every agent has a unique
agent ID.

If a console client is interested in tracking agent status across agent instances or console
agent instances then it may do so using the console agent ID, that is, the AgentID class. If a
agent is restarted several times (without changing its ID attributes) then this will result in
the creation of several distinct instances of AgentInstance in the console. These different
instances, however, will all have equal AgentID values to reflect the fact that they all relate
to the same logical agent. Note that these multiple instances of AgentInstance will never
be referenced simultaneously by the console. This is because the console will never hold
two AgentInstance objects with equal AgentID attributes at any one time.

Management Operations
Management functions are performed by invoking management operations on
microagents. As described in Microagent List Monitoring, each agent contains a collection
of objects called microagents. Microagents have methods through which all monitoring and
management is performed. Microagents represent managed entities such as the operating
system's subsystems, log files, event logs, applications, and even the agent itself.

TIBCO Hawk® Programmer’s Guide

22 | Console API

The AgentManager class is used to interact with microagents. An instance of this class is
obtained by invoking the getAgentManager() method of the TIBHawkConsole class.

The first step in interacting with a microagent is to obtain its descriptor. This descriptor
enumerates the available methods and describes their signature and their return types.
With this information you can then invoke methods and subscribe to method results for an
individual microagent. You can also perform a group operation that simultaneously
performs a method invocation on multiple instances of the same microagent across
multiple agents.

Microagent Descriptors
Descriptors are represented by the MicroAgentDescriptor class. They are obtained by
invoking the describe() method of the AgentManager class. A MicroAgentDescriptor fully
describes a microagent. It contains a list of MethodDescriptor objects that describe each
available method and all that is needed to invoke them.

The methods of a microagent are divided into three categories depending on their impact.
These categories are enumerated by the following static variables of the MethodDescriptor
class:

• IMPACT_ACTION: Methods of type IMPACT_ACTION take some action that can
potentially change the state of the managed object represented by the microagent.

• IMPACT_INFO: Methods of type IMPACT_INFO simply retrieve some information in a
manner that does not change the state of the managed object.

• IMPACT_ACTION_INFO: Methods of type IMPACT_ACTION_INFO return data but may
also change the sate of the managed object.

The describe() method of the AgentManager requires an argument of type MicroAgentID.
There are two general ways to obtain MicroAgentID objects:

• If your application is also performing monitoring then the MicroAgentIDs for
microagents loaded on a particular agent can be obtained from the method
AgentInstance.getStatusMicroAgents(). A registered MicroAgentListMonitor
object also receives MicroAgentIDs in the events delivered to it.

• The method AgentManager.getMicroAgentID() can also be used to obtain
MicroAgentID objects. It takes a microagent name as its argument and returns an
array of all microagents of that name that are currently loaded on all agents the
console can communicate with. This method blocks for a period of time while it
queries the agents on the network. A second version of this method accepts an

TIBCO Hawk® Programmer’s Guide

23 | Console API

integer that indicates the minimum number of desired microagent ids in the return.
This method generally returns more quickly than the first version if the minimum
number specified is less than or equal to the actual number of matching
microagents on the network.

Invoking Methods
Microagent methods are invoked using the invoke() method of the AgentManager. This
method takes a MicroAgentID and a MethodInvocation object. The MicroAgentID may be
obtained as described in Microagent Descriptors. The MethodInvocation can be
constructed using the data provided in the microagent descriptor.

Method invocations return an instance of the MicroAgentData class, which acts as a
container for transmitting invocation results. MicroAgentData objects contain source and
data attributes. The source attribute is a MicroAgentID object identifying the source of the
data. The data attribute contains the actual method invocation results.

Error Handling
Two general types of errors can occur with method invocations:

1. During the delivery of a method invocation to, or the results back from, a
microagent. This condition will cause the invoke() method to throw a
MicroAgentException.

2. During the invocation of the method on the microagent itself. This condition will
cause this method to deliver a MicroAgentException in the data field of the
MicroAgentData return.

Thus, a successful method invocation is one that doesn't throw an exception and does not
deliver a MicroAgentException in the data field of its MicroAgentData return.

If the method invocation is successful, the data field of its MicroAgentData return will
contain the method's return value or null if the method doesn't return a value.

Subscribing to Method Results
The AgentManager also allows you to register a subscription for microagent methods with
its subscribe() method. Registering for a subscription is analogous to registering for an

TIBCO Hawk® Programmer’s Guide

24 | Console API

event. It results in a continuous stream of MicroAgentData return values from the method
being subscribed to. This data is asynchronously delivered to a SubscriptionHandler
object supplied during registration.

In addition to a SubscriptionHandler, the subscribe() method of AgentManager requires
a MicroAgentID, to identify the target, and a MethodSubscription object.

The MethodSubscription Class
The MethodSubscription class extends the MethodInvocation class. A
MethodSubscription should be constructed in accordance with the MethodDescriptor of
the target method.

Registering a subscription returns a Subscription object that can be used to cancel the
subscription and to examine how the subscription was created

Only methods that return data should be subscribed to. This includes methods of type
IMPACT_INFO and IMPACT_ACTION_INFO.

Synchronous and Asynchronous Method Subscriptions

You can use either of two constructors to build a MethodSubscription, depending on
whether you are creating a subscription for a synchronous or asynchronous method. The
MethodDescriptor for a method indicates whether the method is synchronous or
asynchronous. An asynchronous method is analogous to an event source. Listeners that
subscribe to an asynchronous method will receive the method's declared return value each
time a particular event occurs.

The MethodSubscription constructor for synchronous method subscriptions requires an
interval parameter. It is used to specify a desired subscription service rate. Subscriptions
made of synchronous methods will use this value as a hint to determine how often to
deliver data to service a subscription. Most microagents will usually enforce a minimum
rate, which will be used if the supplied value is below their minimum.

The MethodSubscription constructor for asynchronous method subscriptions does not
accept an interval parameter. Asynchronous methods deliver data at a rate determined by
the microagent, typically, whenever it is available.

TIBCO Hawk® Programmer’s Guide

25 | Console API

Error Handling
Two general types of errors can occur with subscriptions:

1. During the registration of the subscription. This condition will cause the
AgentManager.subscribe() method to throw a MicroAgentException.

2. During the servicing of the subscription These errors are delivered to the
SubscriptionHandler.

Group Operations
Group operations are performed with the groupOp() method of the AgentManager. They
are very similar to method invocations. The difference is that they require an array of
MicroAgentID targets and return an array of MicroAgentData values.

A group operation effectively performs a method invocation simultaneously on all of the
specified target microagents. It is useful for affecting a group of microagents in a single
operation.

Lightweight Console
By default, the console monitors and can communicate with every agent in a given TIBCO
Hawk domain. If, however, you are building an application that needs to interact with only
a single agent, you can initialize the console in such a way that limits its communication to
just that agent. This results in a lightweight console instance that uses fewer resources.

Creating a Lightweight Console

Instantiating a lightweight console involves constructing a TIBHawkConsole object with a
fully qualified hawkDomain parameter. A fully qualified hawkDomain narrows down the
domain to a single agent and contains the three parts that uniquely identify an agent, in a
dot-separated format:

 <hawkDomain>.<agentDNS>.<agentName>

• <hawkDomain> is what would be used as the hawkDomain parameter of the
TIBHawkConsole constructor if you were instantiating a console that communicates
with all agents. If an agent is configured without a hawkDomain specification, it uses
the value "default".

TIBCO Hawk® Programmer’s Guide

26 | Console API

• <agentDNS> should match the agentDNS (also called agent domain) parameter with
which the agent was configured. If the agent was not configured with an agentDNS,
it uses the value "none".

• <agentName> must match the agent name. If not set, this defaults to the hostname
the agent is running on. See The AgentInstance Class for more information

Using the Dot and Underscore Characters

None of the three elements may contain the dot '.' character. The dot is used as a
separator in a fully qualified hawkDomain. If any of the three components require a dot
(agentDNS typically does), replace all occurrences with the underscore '_' character. The
agent automatically performs this translation on its end.

For example, if an agent is configured with the following values:

• hawkDomain = testDomain

• agentDNS = myfirm.com (note the dot in the name)

• agentName = host1

the fully qualified hawk domain is:

 testDomain.myfirm_com.host1

Console Application with Secure Domain
To build a console application with secure domain, you need to use a secure transport. You
can connect to TIBCO EMS transport with SSL using Console API for Agent-Console
communication.

Refer to HAWK_HOME/examples/console_api/TestConsoleSSL.java for a sample java
program to demonstrate a console test application which uses SSL parameters to connect
to SSL.

MicroAgent Plug-in
The COM.TIBCO.hawk.agent.nest package is used to write TIBCO Hawk microagents that
run inside the agent. To run as a microagent in the TIBCO Hawk agent, an object must

TIBCO Hawk® Programmer’s Guide

27 | Console API

implement either the MicroAgent or ServiceMicroAgent interface. Note that this package
is dependent on the COM.TIBCO.hawk.console.talon package.

TIBCO Hawk Console API Class Structure
This section contains UML diagrams showing the structure of the following two packages:

COM.TIBCO.hawk.hawkeye: classes used to monitor agents

COM.TIBCO.hawk.talon: classes used to manage agents

• Key to the UML Diagrams

• Agent Monitoring Classes (Hawkeye)

• Agent Management Classes

Key to the UML Diagrams
These class diagrams use a subset of UML notation. Here is a brief key:

Classes and their methods are shown in rectangles:

Some methods and argument names are omitted for clarity. A third part, between the class
name and methods, may be used for class variables. Underlined members are static.

Comments are shown in a rectangle with a turned down corner. A dotted line shows what
the comment applies to.

Associations
Associations are indicated with lines:

TIBCO Hawk® Programmer’s Guide

28 | Console API

TIBCO Hawk® Programmer’s Guide

29 | Console API

Agent Monitoring Classes (Hawkeye)

TIBCO Hawk® Programmer’s Guide

30 | Console API

TIBCO Hawk® Programmer’s Guide

31 | Console API

Agent Management Classes

TIBCO Hawk® Programmer’s Guide

32 | Console API

API Reference
The following link provides access to the TIBCO Hawk Console API Javadocs.

TIBCO Hawk® Programmer’s Guide

33 | Console API

• Console API Javadocs

https://docs.tibco.com/pub/hawk/6.2.2/doc/api/console-api/index.html

TIBCO Hawk® Programmer’s Guide

34 | Configuration Object API

Configuration Object API
The TIBCO Hawk Configuration Object API is a Java language interface which is used to
build and update TIBCO Hawk Agents configuration objects.

When the TIBCO Hawk Configuration Object API is used with the TIBCO Hawk Console API,
you can use the combined APIs to manage configuration objects through remote method
invocations on TIBCO Hawk agents or repositories.

This chapter provides a brief overview and usage of the major components of the TIBCO
Configuration Object API. It includes a summary of the Java packages in the Configuration
Object API and a discussion of related TIBCO Hawk APIs.

• Overview

• Concepts

• Configuration Object API Class Structure

• API Reference

Overview

Configuration Objects
There are three types of configuration objects in TIBCO Hawk:

• Rulebase

• Schedule

• Rulebase Map

A TIBCO Hawk Agent manages and monitors managed objects by processing rulebases. A
rulebase is a named collections of rules that contain management logic. The management
logic in a rule is defined by the tests and actions to be taken from data collected from a
given data source. A rulebase can be loaded on a single agent, on a group of agents, or on
every agent in the network depending on the TIBCO Hawk Agents' configuration mode.

TIBCO Hawk® Programmer’s Guide

35 | Configuration Object API

A schedule defines when a rulebase, rule, test or action is active. If schedule is not
specified in a rulebase, the rulebase is always active when loaded. A schedule contains
inclusion and/or exclusion periods that will determine if a schedule is in-schedule or out-of-
schedule at a specified time.

A rulebase map maps rulebases to TIBCO Hawk Agents on the network. It directs TIBCO
Hawk Agents or groups of agents on the network to load particular rulebases at startup. It
is used by TIBCO Hawk Agents running in either Manual Configuration Mode or Repository
Configuration Mode.

Together with the Console API, these configuration objects can be retrieved and sent to
TIBCO Hawk Agents or Repositories from a Java application.

How the TIBCO Hawk Configuration Object API Fits
In
The TIBCO Configuration Object API provides classes to define configuration objects such
as rulebases, schedules, and rulebase maps. These classes enable you to write programs
that can create and modify rulebases, schedules, and rulebase maps programmatically
without using the editors in the TIBCO Hawk Console. Rulebases, schedules, and rulebase
maps are used by TIBCO Hawk agents to monitor and manage systems and applications.

When using the Rulebase Editor, the context of the rulebase is implied. Using this context,
the Rulebase Editor presents you with the data sources and actions that are available to
the agent. These data sources and actions are in the form of microagents, methods and
arguments. When using the Configuration Object API, rulebase objects specify their data
sources and actions using the MethodSubscription and MethodInvocation classes of the
TIBCO Hawk Console API.

When the TIBCO Hawk Configuration Object API is used with the TIBCO Hawk Console API,
the application can dynamically create or update configuration objects on a TIBCO Hawk
agent or repository.

Note: Any complex tests with valid operators can be built using the rulebase
related classes in Configuration Object API. However, not all the test conditions
built using the Configuration Object API can be modified using the rulebase
editor in TIBCO Hawk Console. In such cases, the rulebase editor will simply
display the test as a string. However, such complex tests can be edited using a
custom-built editor based on the TIBCO Configuration Object API.

TIBCO Hawk® Programmer’s Guide

36 | Configuration Object API

Concepts
This section provides some background information on the configuration objects and the
Configuration APIs.

• Configuration Objects

• Rulebases

• Schedule

• RulebaseMap

• Configuration Object Integrity

• Dependence on the Console API

Configuration Objects
A TIBCO Hawk Agent manages and monitors applications and systems based on
configuration objects such as rulebases, schedules, and a rulebase map loaded on the
Agent.

A rulebase map directs TIBCO Hawk agents or groups of agents on your network to load
particular rulebases at startup. For example, using a rulebase map you can instruct an
agent to load a rulebase designed specifically for the operating system where it runs.

Every rulebase contains rules which are made up of data sources, tests, and actions. Each
rule contains management logic. The management logic in a rule is defined by the tests
and actions to be taken from data collected from a given data source. If a schedule is
specified in a rulebase, rule, test or action, it will determine if these objects should be
active or not at a specified time.

Details of rulebases, schedules, and rulebase maps are described below.

Rulebases
A rulebase is a configuration object that provides the rules for the monitoring activities that
are to be autonomously performed on an agent. At the core of all rulebase monitoring
activity is the collection of data, testing of that data, and taking actions based on the test
results. All monitored data is provided by the agent's microagents through microagent
subscriptions. All actions taken by a rulebase are in the form of method invocations.

TIBCO Hawk® Programmer’s Guide

37 | Configuration Object API

Rulebase objects specify their data sources and actions using the MethodSubscription and
MethodInvocation classes of the Console API. Therefore, understanding these, and related
classes, is a prerequisite for using the Configuration API. For more information on these
classes, refer to Console API .

How Rulebases are interpreted by the RuleBaseEngine

While rulebases are merely configuration objects, it is useful to think of them as having
runtime behavior in order to understand how the RuleBaseEngine processes them. Thus
this section discusses rulebases, rules, tests, and actions as if they contain logic which
carries out their execution.

Structure of a Rulebase
A rulebase object is primarily composed of a set of rule objects. Each rule has a Data
Source and a list of Test objects. Each Test has a TestExpressionOperator object and a list
of ConsequenceAction objects. Thus, a rulebase can be represented as a tree structure with
a single Rulebase object as the root and Action objects as the leaves.

RuleBaseElement Class

The RulebaseElement class is the super class of the following classes:

• Rulebase

• Rule

• Test

• Action

The RulebaseElement class provides common methods to get and set the element's name
and schedule parameters. The Rule, Test and Action classes do not require a name to be
specified in the constructor. Only the Rulebase class requires a name specified in the
constructor. In places where an array of RulebaseElement objects is required, all elements
in the array must have unique names.

These includes the constructors for:

• Rulebase (requires array of Rule)

• Rule (requires array of Test)

TIBCO Hawk® Programmer’s Guide

38 | Configuration Object API

• Test (requires array of Action)

and the following methods:

• Rulebase.setRules()

• Rule.setTests()

• Test.setConsequenceActions()

• Test.setClearActions()

Rule Class

A Rule consists of a data source and a list of tests. The DataSource of a rule specifies a
MethodSubscription, which supplies a stream of data samples to be monitored. The
method used in the MethodSubscription can be either synchronous or asynchronous. Every
new data sample from a Rule Object 's Data Source is distributed to all Test objects
contained within that Rule object.

For more information on MethodSubscription refer to the Console API .

DataSource Class

The data source for a Rule is its source of input data, and is always a method subscription
to a microagent. The data source of a Rule provides information about some condition on
a managed node. After information is received, one or more tests are applied to evaluate it.
The MethodSubscription of a data source provides a stream of data objects.

The microAgentName and the method name used to construct the DataSource can be
obtained from MicroAgentDescriptor and MethodDescriptor, respectively.

The MicroAgentDescriptor which is used to construct the MethodSubscription defines the
type of data the subscription will yield.

This data will be one of the following OpenData types:

• String

• Char

• Boolean

• Byte

• Short

TIBCO Hawk® Programmer’s Guide

39 | Configuration Object API

• Integer

• Long

• Float

• Double

• CompositeData

• TabularData (represents a table composed of rows uniquely indexed by uniformly
structured CompositeData objects)

Test Class

Tests define the tests which are performed on the rule's data source and what actions to
take. Each test uses the data to compute a true or false value which is used in determining
when to trigger actions. Test objects have a state that is either true or false. The initial
state of a new Test object is false. State transitions are caused by evaluating the received
data based on the specified conditions and the policies of the test. The possible Test object
state transitions are:

• false to false (F->F)

• false to true (F->T)

• true to false (T->F)

• true to true (T->T)

All Test object state transitions cause its ConsequenceAction objects to be evaluated. The
policy of the ConsequenceAction objects govern whether an evaluation results in an action
execution. The ClearAction objects are a list of actions that will be executed when the
Test object undergoes the T->F transition.

State transitions resulting from the receipt of data start with an evaluation of the
TestExpressionOperator against the data. The resulting true or false value of the
TestExpression, in conjunction with the Test object's TrueConditionPolicy and
ClearConditionPolicy, determines the type of Test object state transition, as follows:

• F->F and T->T Test Object StateTransitions

If the previous state of the Test object was false and the current evaluation of the
Test Expression is false, then the Test object undergoes a F->F transition.

If the previous state of the Test object was true and the current evaluation of the
TestExpression is true, then the Test object undergoes a T->T transition.

TIBCO Hawk® Programmer’s Guide

40 | Configuration Object API

These two transitions are not affected by the true or clear policy.

• F->T Test Object State Transitions

This transition is governed by the TrueConditionPolicy.

The policy TrueCountThreshold specifies how many sequential true evaluations of
the TestExpression must occur before the Test object transitions F->T.

• T->F Test Object Transitions - "Clearing" the Test object

This transition is governed by the ClearConditionPolicy. This transition is
synonymous with "Clearing" the Test object.

The policy FirstFalse indicates that the T->F transition should occur upon the first
false evaluation of the TestExpression operator. This is the default
ClearConditionPolicy.

The policy ClearTimer indicates the number of seconds which must elapse without a
true evaluation of the TestExpression before the T->F occurs. A T->F transition
caused as a result of a clear timer expiration occurs independently of the Test
object's receipt of data.

The ClearTest policy specifies an additional test expression (clear test expression),
which governs when the T->F transition occurs. The Clear Test Expression receives
data each time the Test object receives data. It will cause a T->F transition of the
Test object if (the current state of the Test object is true and) the clear test
expression evaluates to true.

TestExpressionOperators Class

TestExpressionOperator are created using the Operator class. The static method
Operator.getOperatorDescriptors() returns a list of descriptors describing all available
operators. Using the information in the OperatorDescriptor, you can then build instances of
the Operator class by supplying the operator name and a list of operands. The operands
you supply must be of the same number and type as those specified by the corresponding
descriptor. An operand of an operator may itself be another operator, as long as its stated
return type matches the operand position it occupies. Operators can thus be nested to
form more complex operators.

Although operators can return different types, only those which return a Boolean value
may be used in tests (i.e. as arguments to Test.setTestExpressionOperator()). The other
non-Boolean operators are used only as nested operators.

Test operators access the rule's data source through the
COM.TIBCO.hawk.config.rbengine.rulebase.operators.getRuleData operator. This operator

TIBCO Hawk® Programmer’s Guide

41 | Configuration Object API

takes a name and returns the associated data. As described, if a data source produces
TabularData then that data is decomposed into CompositeData objects before seen by the
tests and thus the getRuleData operator. The name parameter to this operator references
the corresponding data element of the CompositeData object which is then returned by the
getRuleData operator. If the data source produces one of the remaining OpenData types
(String, Char, Boolean, Byte, Short, Integer, Long, Float, Double) then that value is
accessible via the getRuleData operator using the name assigned to the return type in the
MethodDescriptor for this data source.

ConsequenceAction Class

The ConsequenceAction object extends the Action object. The Test object invokes its
ConsequenceAction objects each time the Test object makes a state transition. The type of
transition along with the ConsequenceAction object's PerformActionPolicy and
EscalationPeriod determines whether or not the action is executed.

A True Series of transitions is defined as a series of transitions that begins with F->T and is
followed by one or more T->T transitions. A T->F marks the end of a true series but is not
part of it.

Actions are not enabled during an entire true series. The EscalationPeriod specifies the
number of seconds that must elapse since the start of a true series before the action
becomes enabled. An EscalationPeriod of 0 indicates that the action is always enabled.
Actions may only execute when enabled.

The PerformActionPolicy controls how many times and how often the action executes
during a true series, after the action has been enabled.

The PerformOnceOnly policy causes the action to be executed only once during a true
series. An exception to this rule involves variable substitution. If variable substitution would
result in a different action than the last one that has executed within the current true
series (For example, raise an alert with different text), then the action will also be re-
executed on the current T->T transition.

The PerformAlways policy causes the action to be executed upon every evaluation within a
true series (after the action has become enabled).

The PerformCountOnInterval policy is more involved. It causes the action to be executed at
the start of a true series (or as soon as it becomes enabled), and on subsequent
evaluations within the same series that occur at a time greater than Y seconds since the
last action execution within the current true series. This continues until the action has
executed for a maximum of X times within the current true series.

TIBCO Hawk® Programmer’s Guide

42 | Configuration Object API

Alerts and Clears
Alerts are generated when a ConsequenceAction invokes the sendAlertMessage on the
RulebaseEngine microagent. The method takes a single argument named 'message'. The
value of the argument may be one of the following objects:

• AlertLow

• AlertMedium

• AlertHigh

• Notification

AlertLow, AlertMedium, and AlertHigh correspond to alert with level from low to high. They
are useful for sending non-alert type messages. All methods take a single string argument
called 'alertMsg'. Alerts are cleared when the Test Object (that generated the alert)
transitions T->F.

The following code fragment constructs a valid ConsequenceAction which generates a
medium alert with text "process down":

DataElement[] args =

{new DataElement("message", new AlertMedium("process
down"))};

MethodInvocation mi =

new MethodInvocation("sendAlertMessage", args);

ConsequenceAction ca =

new ConsequenceAction
("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

TIBCO Hawk® Programmer’s Guide

43 | Configuration Object API

Posted Conditions
Posted Conditions are "posted" when a ConsequenceAction object invokes the method
postCondition on the RuleBaseEngine microagent. A posted condition is an internal status
message, similar to an alert message. It takes a single argument called 'condition'. The
following code fragment constructs a valid ConsequenceAction which posts the condition
"disk full":

DataElement[] args =

{new DataElement("condition", new PostedCondition("disk
full"))};

MethodInvocation mi =

new MethodInvocation("postCondition", args);

ConsequenceAction ca =

new ConsequenceAction
("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

new ConsequenceAction("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

A ClearAction may not contain a MethodInvocation with the postCondition method. Posted
Conditions are "cleared" or "unposted" when the enclosing Test object transitions T->F.
Posted conditions provide a mechanism for different rules within the same rulebase to
communicate. One of the restrictions on posted conditions is that no two
ConsequenceAction objects in the same rulebase may post the same condition
(conditionName). This is enforced by the methods that construct and edit Rulebase objects.

Another restriction is that a posted condition may not be referenced (used in a test
operator) from within the same Rule that generates it. (Rules contain tests, tests contain
actions, and actions can post conditions. Thus all posted conditions are posted within the
context of a particular rule but may only be referenced in tests of other rules in the same
rulebase.) This is enforced by the methods that construct and edit Rule objects.

For more information on posted conditions, see the TIBCO Hawk Administrator's Guide.

TIBCO Hawk® Programmer’s Guide

44 | Configuration Object API

Variable Substitution
The string arguments of all action MethodInvocation objects may contain variables which
are evaluated by the rules engine before invocation. By referencing variables, the rulebase
can adapt to changes on multiple machines.

For more information on variable substitution, see the TIBCO Hawk Administrator's Guide.

Legal Characters
A rulebase name may contain any alphanumeric character (letter or digit), or the symbols _
(underscore) or - (dash).

A character is considered to be alphanumeric if and only if it is specified to be a letter or a
digit by the Unicode 2.0 standard (category "Lu", "Ll", "Lt", "Lm", "Lo", or "Nd" in the
Unicode specification data file). The latest version of the Unicode specification data file can
be found at http://www.unicode.org/ucd.

For a more complete specification that encompasses all Unicode characters, see The Java
Language Specification by Gosling, Joy, and Steele.

Overruling
Overruling is a way to have a rule in one rulebase override or overrule a rule in another
rulebase in a way that causes only one to be active. Overruling is a way of setting
precedence among similar rules.

For more information on overruling, see the TIBCO Hawk Administrator's Guide.

Rulebase configuration management
Rulebase use by the agent are maintained in a Rulebase object. Agent stores and retrieves
the each Rulebase to and from a rulebase file. The filename of the rulebase correspond to
name of the rulebase and has an extension of .hrb. If the filename of the rulebase does not
correspond to the name of the rulebase, TIBCO Hawk Agents will not load the rulebase and
an error is logged. When TIBCO Hawk Agents is running in auto config mode, rulebases are
loaded from the autoconfig directory. When TIBCO Hawk Agents is running in repository
config mode, rulebases are loaded from the specified repository.

TIBCO Hawk® Programmer’s Guide

45 | Configuration Object API

Schedule
A Schedule is a configuration object that can be used for determining if a rulebase or part
of the rulebase should be 'in-schedule' or 'out-of-schedule' at a given time. If a schedule is
not specified in a rulebase, then the rulebase is always in-schedule.

Structure of a Schedule
A schedule object is primarily composed of a list of inclusion periods, and a list of exclusion
periods. A schedule is in-schedule if at least one of its inclusion periods is in-schedule and
none of its exclusion periods are in-schedule. Otherwise, the schedule is out-of-schedule.
The inclusion and exclusion periods contain a list of Period objects or PeriodGroup objects.

Period Class
A Period defines the time intervals, days or months that should be included or excluded in
a schedule. It is composed of 4 distinct period components: MinutesInDay, DaysInWeek,
DaysInMonth and MonthsInYear. A Period object is in-schedule only if all of its 4
components are in-schedule. Otherwise, it is out-of-schedule.

MinutesInDay contains a set of 1440 continuous 1-minute intervals in a day. The
MinutesInDay object is in-schedule if the time for checking the schedule is included in the
MinutesInDay.

DaysInWeek contains a set of 7 days in a week. A DaysInWeek is in-schedule if the day of
date for checking the schedule is included in the DaysInWeek.

DaysInMonth contains a set of 31 days in a month. A DaysInMonth is in-schedule if the day
in the date for checking the schedule is included in the DaysInMonth.

MonthsInYear contains a set of 12 months in a year. A MonthsInYear is in-schedule if the
month of the date used for checking the schedule is included in the MonthsInYear.

PeriodGroup Class
A PeriodGroup object is a logical group of Period object useful for defining an abstract
group of periods. Period groups are useful when you use a set of periods regularly in
defining schedules. It also eases the maintenance of those schedules because you can

TIBCO Hawk® Programmer’s Guide

46 | Configuration Object API

make a change in the period group and have it automatically reflected in all the schedules
that use it.

Use of Schedules in Rulebases
Schedules may be used to control when a monitoring activity or action is performed.
Schedules may be applied to a RuleBase, Rule, Test, and Action by specifying the schedule
name in the attribute of these objects. If a RuleBase, Rule, Test, or Action makes use of a
schedule name that is not defined either because the agent couldn't load the Schedule
object or because the Schedule object does not exist then it will be flagged as an error.
However, the rulebase processing will continue as if no schedule was specified for that
component; the component will behave as if always in-schedule

If the schedule name applied to a rulebase component begins with "!" then it refers to the
inverse of a schedule. For example, if the schedule BusinessHours is defined in the
schedules configuration, a rulebase component may use either BusinessHours or
!BusinessHours to refer to it. When using BusinessHours, that component is in-schedule
whenever the BusinessHours schedule is in-schedule. When using !BusinessHours, that
component is in-schedule whenever the BusinessHours schedule is not in-schedule. If the
schedule BusinessHours is not defined in the scheduler then components using either
BusinessHours or !BusinessHours will behave as if no schedule is defined (they both will
always be in-schedule).

A rulebase is a hierarchical structure: rulebases contain rules, rules contain tests, and tests
contain actions. Therefore, a schedule applied to one node in the hierarchy affects all
nodes below it. The following sections describe the behavior of RuleBases, Rules, Tests,
and Actions when valid schedules are applied.

RuleBase

When a rulebase is loaded it is not activated unless its applied schedule is currently in-
schedule. Thereafter, when its applied schedule transitions to an in-schedule state, the
rulebase is activated. When its applied schedule transitions to an out-of-schedule state, the
rulebase is deactivated. Before a rulebase becomes active, no rules are processed no
monitoring is taking place by that rulebase. When a rulebase is activated, its rules are
loaded and monitoring may begin. When a rulebase is deactivated, all of its rules are
unloaded which results in the clearing of outstanding alerts (generated from those rules)
and the cessation of all monitoring by that rulebase.

TIBCO Hawk® Programmer’s Guide

47 | Configuration Object API

Rule

When a rule is loaded it isn't activated unless its applied schedule is currently in-schedule.
Thereafter, when its applied schedule transitions to an in-schedule state, the rule is
activated. When its applied schedule transitions to an out-of-schedule state, the rule is
deactivated. Before a rule becomes active, no tests are processed and no monitoring is
performed by this rule. When a rule is activated, its tests are loaded and monitoring may
begin. When a rule is deactivated, all of its tests are unloaded which results in the clearing
of outstanding alerts (generated from those tests) and the cessation of all monitoring by
that rule. When a rule is inactive, its enclosing rulebase behaves as if that rule is not there.

Test

When a test is loaded it isn't activated unless its applied schedule is currently in-schedule.
Thereafter, when its applied schedule transitions to an in-schedule state, the test is
activated. When its applied schedule transitions to an out-of-schedule state, the test is
deactivated. Before a test becomes active, no actions are loaded and no monitoring is
performed by this test. When a test is activated, its actions are loaded and monitoring
begins. When a test is deactivated, all of its actions are unloaded which results in the
clearing of outstanding alerts (generated from those actions) and the cessation of all
monitoring by that test. When a test is inactive, its enclosing rule behaves as if that test is
not there.

Action

When an action is loaded it isn't activated unless its applied schedule is currently in-
schedule. Thereafter, when its applied schedule transitions to an in-schedule state, the
action is activated. When its applied schedule transitions to an out-of-schedule state, the
action is deactivated. Before an action becomes active, it performs no action and does not
respond in any way to its test's state transitions. When an action is activated, it begins
tracking and responding to its test's state transitions. When an action is deactivated, any
outstanding alert it may have generated is cleared and the action ceases to track and
respond to the state transitions of its test. When an action is inactive, its enclosing test
behaves as if that action is not there.

Schedule Configuration Management
In most respects, configuration management for Schedules is identical to that for rulebases
(when in auto-config mode, the agent will load and store this file from auto-config-dir,

TIBCO Hawk® Programmer’s Guide

48 | Configuration Object API

etc.). However, all schedules use by the agent are maintained in a single Schedules object.
Agent stores and retrieves the Schedules to and from the file schedules.hsf.

Schedules and Agent Performance
Because all schedules are stored in a single file, each agent will load the schedules at
startup. However, the scheduler in the agent will evaluate a schedule only if the agent has
loaded rulebases that reference that schedule. Such schedules are referred to as active
because there is active interest in them.

The scheduler evaluates active schedules at the following times:

• Once each minute, when schedules are resolved.

• When the agent receives a new schedule (such as when using SendTo from the
schedule editor).

• When a schedule first becomes active (such as the first time any rulebase references
it).

In general, having a large number of schedules defined in the schedule file may marginally
affect the size of the agent but it does not affect the CPU performance.

RulebaseMap
RulebaseMap is a configuration object that maps rulebases to agents. It is used when agent
is running in a manual configuration mode to determine which rulebases should be loaded
on the agent.

The RulebaseMap configuration object has three primary components:

• Group mapping - to organize agents into groups for the purpose of rulebase
assignment.

• Rulebase mapping - to map rulebases to agents or groups of agents.

• Command mapping - to delegate the rulebase mapping function to an external
command.

These components are described in the following sections.

TIBCO Hawk® Programmer’s Guide

49 | Configuration Object API

Group Mapping
There are two types of groups in RulebaseMap, user defined and automatic. A user defined
group is a group that a user creates. Automatic groups are groups that agents
automatically belong to. A user can define the names of user-defined groups but not that
of the automatic groups. A user defined group name begin with "+" and automatic group
names begin with "++".

A user defined group can be composed of a number of agents, groups, or a combination of
agents and groups. A user defined group may have both user defined and automatic
groups as elements in its definition.

The OS groups are automatic groups whose names correspond to the operating systems of
the machines the agents are running on. The OS groups have the form "++OSName" where
OSName is the value of the Java system property "os.name". Examples of automatic group
names are ++Windows 2000, ++Solaris, and ++HPUX. Examples of user defined group names
are "+servers" and "+clients".

There is a special automatic group referred to as the ALL group. The ALL group includes
every TIBCO Hawk Agent and is simply named "++".

For example:

 +group1 agent1 agent2 agent3

 +groupX agentX +group1

In the preceding example, agentX and +group1 belong to +groupX. Also, agent1 belongs to
+group1 as well as +groupX.

Rulebase Mapping
Rulebase mapping defines which rulebases are assigned to an agent or a group. It defines
which agents or groups use a particular rulebase. In the following rulebase mapping:

 rulebase agent1 agent2 ++Windows

 rulebase2 +group2

TIBCO Hawk® Programmer’s Guide

50 | Configuration Object API

 rulebase3 agent2 +group2

 rulebase4 ++

agent1 uses rulebase1. Agents in +group2 uses rulebase2 and rulebase3. All agents uses
rulebase4 as rulebase4 maps to "++", the all group. All agents that are running under
Windows operating system will uses rulebase1.

Command Mapping
Command mapping allows an external command or executable (script) to be specified for
an agent or a group. If specified, it is executed and the returned string is parsed on white
space to indicate which rulebases to load. When the executable is invoked, the agent name
and its automatic group name are passed as parameters to the command.

The use of command mapping depends on a setting of one of the attributes of the
RulebaseMap. The command mapping can be used as the only mechanism to generate the
rulebases to be loaded or as a supplement to the groups and rulebases mapping of the
RulebaseMap. It can also be ignored for generating the rulebases.

Agent processing of RulebaseMap
If the agent (more specifically, the RulebaseEngine MicroAgent) is configured in one of the
manual configuration mode, it will attempt to load the RulebaseMap configuration object
after initialization. It will first determine which automatic groups it belongs to. Then it will
read and process the group definition component to determine which user defined groups
it is also a member of. Next it will process the rulebase mapping component to determine
which rulebases it should load. Finally it will use the command mapping mechanism, if one
is specified, to get the names of additional rulebases it should load. Once the RulebaseMap
has been fully processed, the agent will proceed to load the target rulebases.

Note
The -rulebases option supported by the agent (RulebaseEngine
MicroAgent) can be used together with the RulebaseMap to specify
additional rulebases.

TIBCO Hawk® Programmer’s Guide

51 | Configuration Object API

Configuration Object Integrity
When constructing or modifying any of the configuration objects, copies of the supplied
parameters are made and used. When accessing the data of any configuration objects
through one of the get methods, copies of the internal data are returned. This insures the
integrity of the configuration objects and ensures that proper validity checking can be
performed. It also means that changing a configuration object requires that you use one of
the set methods on that component. For example, if you extract the tests from a rule using
the Rule.getTests() method and then modify one of the tests in the array, the change will
not be reflected in the rule until you call Rule.setTests() with the modified test array.

Dependence on the Console API
When a configuration object is created using the corresponding editor on the TIBCO Hawk
Console, the context of the configuration object is implied by the agent or repository for
which the configuration object is defined. For example, when creating rulebases in the
rulebase editor, this context is used when presenting to you the choices for data sources
and actions, in the form of the related microagents, methods and arguments. When
creating rulebases using the Configuration Object API, the microagent name, method name
and the data item names must be passed to the methods. These are obtained from the
following classes of the COM.TIBCO.hawk.talon package of the Console API:

• MethodSubscription

• MethodInvocation

• MicroAgentDescriptor

• MethodDescriptor

• OpenData

The data source of a rule requires a microagent name and a MethodSubscription object.
Actions require a microagent name and a MethodInvocation object.

Microagent names, and the information required to build valid MethodSubscription and
MethodInvocation objects, are available in MicroAgentDescriptor objects. The methods
used as data sources must be Open Methods since the RuleBaseEngine can only process
OpenData.

A MicroAgentDescriptor holds MethodDescriptor objects for all methods of a microagent.
The MethodDescriptor for the method chosen as the data source describes the data the
method returns. This information is needed to construct test expression operators. The

TIBCO Hawk® Programmer’s Guide

52 | Configuration Object API

getRuleData operator is used by test expressions to access a method's data. It requires
the name of a data item. This name needs to be one of the names of the elements in the
method's return which are specified in the MethodDescriptor. Obtaining
MicroAgentDescriptor objects is accomplished with the COM.TIBCO.hawk.hawkeye
package of the Console API.

Retrieving and updating configuration objects on a TIBCO Hawk agent or repository is
accomplished by invoking methods on the RuleBaseEngine or Repository microagents.
This involved both the monitoring and management components of the TIBCO Hawk
Console API as agents and microagents need to be discovered and method invocations are
performed on the required microagents. See Common Configuration Object API Methods,
for commonly used methods on RuleBaseEngine or Repository microagent when using the
Configuration Object API.

See the TIBCO Hawk Console API Reference and the TIBCO Hawk Methods Reference for more
information.

Configuration Object API Class Structure
This section contains UML diagrams showing the structure of the Configuration Object API.

• Key to the UML diagrams

• Configuration Object API Classes

Key to the UML diagrams
These class diagrams use a subset of UML notation. Here is a brief key:

Classes and their methods are shown in rectangles:

Some methods and argument names are omitted for clarity. A third part, between the class
name and methods, may be used for class variables. Underlined members are static.

TIBCO Hawk® Programmer’s Guide

53 | Configuration Object API

Comments are shown in a rectangle with a turned down corner. A dotted line shows what
the comment applies to.

Associations
Associations are indicated with lines:

TIBCO Hawk® Programmer’s Guide

54 | Configuration Object API

Configuration Object API Classes
Figure 1: Package Level

TIBCO Hawk® Programmer’s Guide

55 | Configuration Object API

Figure 2: Base Classes Extended by Rulebase, Schedule, and Rulebase Map Classes

TIBCO Hawk® Programmer’s Guide

56 | Configuration Object API

Figure 3: Rulebase, Rule, and DataSource-related Classes

TIBCO Hawk® Programmer’s Guide

57 | Configuration Object API

Figure 4: Test-Related Classes

TIBCO Hawk® Programmer’s Guide

58 | Configuration Object API

Figure 5: Operator-Related Classes

TIBCO Hawk® Programmer’s Guide

59 | Configuration Object API

Figure 6: Action-Related Classes

TIBCO Hawk® Programmer’s Guide

60 | Configuration Object API

Figure 7: Schedules-Related Classes

TIBCO Hawk® Programmer’s Guide

61 | Configuration Object API

Figure 8: Schedule-Related Classes

TIBCO Hawk® Programmer’s Guide

62 | Configuration Object API

Figure 9: Rulebase Map-Related Classes

API Reference
The following link provides access to the TIBCO Hawk Configuration Object API Javadocs.

• Configuration Object API Javadocs

https://docs.tibco.com/pub/hawk/6.2.2/doc/api/config-api/index.html

TIBCO Hawk® Programmer’s Guide

63 | AMI API

AMI API
This chapter explains the TIBCO Hawk AMI API basics and it’s objects.

• AMI Basics

• The AMI Conversation

• AMI API Objects

• AMI API Sample Programs

• Programmer’s Checklist

• Java AMI API Reference

AMI Basics
This section presents a brief overview of the TIBCO Hawk Application Management
Interface (AMI).

AMI API is an API used to instrument an application in order to make it manageable by the
Hawk System. It is shipped in Java/C/C++ language bindings.

The instrumented application usually connects to the Hawk Agent on the same machine.
However, this is not a requirement. You can connect it to a Hawk agent on another
machine.

However, it is required that one instrumented application instance only connects to one
Hawk Agent.

An Instrumented Application Looks like a
Microagent
You interact with the instrumented application using the TIBCO Hawk agent by calling the
methods of microagents associated with that agent. An AMI-instrumented application
appears and acts as though it were a microagent in the TIBCO Hawk system.

TIBCO Hawk® Programmer’s Guide

64 | AMI API

Interaction with an AMI-instrumented application can use the following means:

• Interactive monitoring using the TIBCO Hawk Console. See Monitoring an
Instrumented Application through the TIBCO Hawk Console for more information on
this.

An example of this might be using the TIBCO Hawk Console to survey many
instances of the instrumented application by means of a network query. Another
example might be to make simultaneous changes to many such instances by
performing a network action.

• Automating monitoring and management of the application by creating rulebases to
be processed by TIBCO Hawk agents.

An example of this might be creating rulebases to monitor the application’s error
state, detect critical conditions, and increase the output of debug information until
the problem is resolved.

Note: An instrumented application is not dependent on the presence of an
TIBCO Hawk agent. The relationship between TIBCO Hawk agent and TIBCO
Hawk instrumented application is completely voluntary. The management
interface might be active only in some instances of the application, or only at
specific times during an instance’s activity.

A management interface can be divided into two major portions:

• The initialization code. This code creates a TIBCO Hawk AMI session, passes on the
address of a callback function through which messages are to be received, and sets
up the functionality to negotiate discovery with a manager.

• A callback function that receives messages from the TIBCO Hawk AMI session. The
callback function examines the message and passes it on to one of several internal
methods for processing.

Monitoring an Instrumented Application through the
TIBCO Hawk Console
The TIBCO Hawk Console is a console application that displays the status of all agents. It is
used to view alerts, interact with agents and their microagents, and edit rulebases and
other configuration objects. A microagent is an object used by a TIBCO Hawk agent to carry
out certain related tasks: to run scripts, to obtain file system information such as free hard
disk space or to retrieve a process table. In the TIBCO Hawk Console, instrumented

TIBCO Hawk® Programmer’s Guide

65 | AMI API

applications appear in the list of microagents, using the name that the application provides
through its AMI interface. See Console API for more information on rulebases and
microagents. Any methods thus made visible appear as if they are microagent methods,
with arguments and results as described.

Interaction with an instrumented application can occur in the following ways:

• Using the TIBCO Hawk Console, you can interact with an instance of your application
from any location in the network.

• Using the TIBCO Hawk Console, you can set up subscriptions to data that your
methods provide and use tables and charts to view the results over time.

• Using the TIBCO Hawk Console, you can interact with all instances of your
application, across a network, by using network query and network action.

• Using the TIBCO Hawk Console and the rulebase editor, you can create rules to
automate monitoring your application from anywhere in the network. Normally, you
will create a special rulebase for a managed application and load it onto all TIBCO
Hawk agents on computers where that application resides.

Connecting AMI Participants
An instrumented application can communicate with AMI manager through TIBCO
Rendezvous transport. Such instrumented application should use a similar AMI transport
configuration to the one being used by its manager.

If you are using a TIBCO Hawk agent as your manager, start the TIBCO Hawk agent with
the same service, network, and daemon options for its primary monitoring session as for
the TIBCO Rendezvous session set up in the application.

You can also configure the agent to use additional TIBCO Rendezvous sessions to monitor
AMI activity. See the TIBCO Hawk Installation, Configuration, and Administration Guide for
details on configuring agents to use additional AMI sessions.

The AMI Conversation
This section describes in detail the three phases involved in communication between an
instrumented application and its manager. The three phases of the AMI conversation are:

• discovery

TIBCO Hawk® Programmer’s Guide

66 | AMI API

• method description

• method invocation

Three Stages of AMI Conversation illustrates the three phases of an AMI conversation.

Figure 10: Three Stages of AMI Conversation

First AMI Phase: Discovering the Application
Discovery between the application and manager can happen in one of two ways,
depending on which entity starts first.

TIBCO Hawk® Programmer’s Guide

67 | AMI API

If the Manager Starts First
If the manager starts before the application, the interaction is as shown in Figure 11.

Figure 11: AMI Discovery When the Manager Starts First

If the Application Starts First
If the application starts before the manager, the interaction is as shown in Figure 12.

Figure 12: AMI Discovery when the Application Starts First

At the end of the discovery phase, the manager and the application have established a
connection that allows them to communicate through the inbox address. However, the
manager is not yet aware of any details of the application’s interface.

TIBCO Hawk® Programmer’s Guide

68 | AMI API

Second AMI Phase: Describing the Methods
After the manager and application have exchanged announcement or discovery messages,
the manager then sends a message asking the application to describe its methods. Every
instrumented application must implement these methods.

Figure 13: AMI Method Description

The message sent to the manager in describe method has nested inside it a series of
messages that describe each method. These are known as method descriptor messages.
Each method descriptor message has messages nested inside it, which describe the types
of arguments and types of returns applicable to each method. This is illustrated in Figure
13. From this description, the manager determines what structure of message to send
when invoking the method, as well as how to interpret the message the application sends
back.

At the end of the method description phase, the manager is aware of all message
exchanges supported by the application and is ready to begin sending messages of the
specified types.

Third AMI Phase: Calling the Methods
After the application has been discovered and the methods have been described, the real
work takes place. Acting either on cues from a human user or by processing the rules in a
rulebase, the manager sends messages to the application invoking the described methods
and awaits its reply. The method invocation messages sent by the manager conform to
descriptions given by the application in the describe method as to which arguments are
appropriate for each method.

The application sends back a message whose contents conform to the structure the
application described to the manager in the describe method.

TIBCO Hawk® Programmer’s Guide

69 | AMI API

When the manager receives the response to its method call, it presents the returned
information to the human user. This scenario repeats itself over and over again until the
session is terminated by either the application or the manager.

Figure 14: AMI Method Invocation

AMI API Objects
The AMI API facilitates the development of AMI applications written in the Java, C++, and C
programming languages. This API makes AMI application development easier and more
foolproof because it takes care of AMI transport details for you. The API also ensures that
your application will be compatible with future releases of TIBCO Hawk and AMI.

AMI Session
The AMI session handles the AMI application's entire interaction with the AMI manager.
Each AMI session manifests itself as a microagent in the associated AMI manager. The API
provides AMI manager with functions, which the AMI manager can invoke, to create the
session, announce it, stop it, and also to exchange data, events, and errors with the AMI
session.

AMI Methods
A method can return data and or perform a task. An AMI application consists of a set of AMI
methods that can be invoked by an AMI manager to monitor and manage the AMI
application. AMI methods can accept input parameters and return output parameters as
required by the method. AMI method provides functions to create and add AMI methods to

TIBCO Hawk® Programmer’s Guide

70 | AMI API

specific AMI session. The AMI session announces AMI methods (sends their descriptions to
an AMI manager) and detects invocations of your AMI methods.

An AMI method can be synchronous or asynchronous. A synchronous AMI method returns
data only when invoked by an AMI manager. An asynchronous AMI method can return data
whenever data becomes available.

Synchronous Methods

Whenever an AMI manager invokes a synchronous AMI method, the AMI API will call an
invocation callback function. You define the invocation callback functions for the
synchronous AMI methods. The AMI API provides the callback function with the values of
any input parameters and a mechanism for returning either output parameter values or an
error. The invocation callback can return data, return no data, or return an error condition.

Asynchronous Methods

For asynchronous AMI methods, an AMI manager informs the AMI method when it should
start or stop sending data. The asynchronous AMI method can define callback functions
that the AMI API calls whenever an AMI manager has requested the AMI method to start or
stop sending data. The AMI API provides the start callback function with a unique context
(a subscription object) which identifies the start request, the values of any input
parameters, and a mechanism for returning an error. The start callback routine can attach
user data to the subscription object. If the start callback function does not return an error
then the subscription is in effect and the asynchronous AMI method is free to return data at
any time. Using the subscription object, the asynchronous AMI method can return data or
error notifications asynchronously to the AMI manager. If the start callback function returns
an error the AMI manager cancels the subscription. The AMI API provides the stop callback
function with the subscription object and a mechanism for returning an error. The stop
callback function can perform any necessary application cleanup. When the stop callback
returns the AMI manager stops (cancels) the subscription.

There are two techniques that you can use to implement asynchronous methods. One
technique is calling AmiAsyncMethod::sendData() for a subscription whenever new data
becomes available. The AMI method, AMI method input parameters and any attached user
data can always be obtained from the subscription object and output parameters can be
constructed using the AMI parameter functions discussed below. Using the start and stop
callback functions you must keep track of subscriptions. There can be multiple
simultaneous subscriptions to a single asynchronous AMI method, potentially, from
multiple AMI managers. Subscription handles are guaranteed to be unique among active
subscriptions within the same AMI session and can, therefore, be used as an index for

TIBCO Hawk® Programmer’s Guide

71 | AMI API

tracking purposes. This technique is often used when a separate thread is created to
service each subscription.

The other technique is calling AmiAsyncMethod::onData() for a method whenever new data
becomes available. This function will call the invocation callback function of the associated
method once for each active subscription to that method. The invocation callback function
is passed the subscription object allowing the callback to get any attached used data
necessary to process the new data. This technique allows the AMI API to do all the work of
tracking subscriptions requiring your application to simply provide the invocation callback.
The invocation callback can return data, return no data, or return an error condition. If
data is returned, it is sent asynchronously to the AMI manager. If no data is returned then
no action takes place. This allows the invocation callback function to decide whether the
new data should be returned for the subscription. If an error is returned, then it is sent
asynchronously to the AMI manager.

Depending on your specific method, this technique may also eliminate the need to supply
a start and stop callback. If the subscription object passed to the invocation callback
function is null (zero), then the method is being called synchronously. You may return data
or an error depending if synchronous invocation is supported by your asynchronous
method.

Auto-Invoke Methods

The AMI API provides a mechanism for creating auto-invoke asynchronous methods. During
the start asynchronous method callback, the application can set an auto-invoke callback
interval for the subscription. If an auto-invoke callback interval is set, the AMI API will call
the invocation callback function repeatedly for the method at the specified interval until
the subscription is stopped. This can be used to turn a synchronous method into a pseudo-
asynchronous method, eliminating the need for the AMI manager to repeatedly invoke the
synchronous method. Typically, a method argument is defined to allow the user to specify
the interval.

This functionality is critical for synchronous methods that require some setup such as
priming counters used to calculate averages, deltas, or percents. Synchronous methods are
required to return data on each invocation, making it impossible to return correct data for
return values requiring two or more samples on the first invocation. The auto-invoke
asynchronous method can return data whenever it is ready. It also has a start and stop
callback to perform setup and clean-up operations, respectively. Since the invocation
callback function has the option of returning no data, it can skip invocations. This is useful
when many data samples are required before accurate data can be returned, or when
perhaps it is waiting for some required service to initialize.

TIBCO Hawk® Programmer’s Guide

72 | AMI API

AMI Parameter
AMI methods accept input parameters and return output parameters. The AMI API provides
functions to define input and output parameters for an AMI method, to set and get the
values of those parameters. The API allows settings of multiple values for output
parameters allowing multiple (tabular) instances to be returned. If multiple instances
(rows) of output parameters are returned then certain output parameters must be defined
as indexes. These index parameters must have unique values across output parameter
instances returned. If more than one index parameter is defined then the defined indexes
are considered a composite index with the primary index specified first.

Error Logging
The AMI API functions can detect and return AMI errors. The AMI error is an object that
identifies the specific error and contains handle-based functions that create, destroy, and
file stamp AMI errors. The file stamp records a file name and line number in the AMI error
to indicate the error source location. Functions are also provided to get the error code,
error description, thread ID, file name, and line number associated with the specific AMI
error.

Java

The AMI Java API provides rolling trace files to log error or debug messages for your AMI
session. The AmiTrace class provides methods to configure and log messages to your trace
log. The AMI Java API has built-in tracing, which can be turned on and off, based on trace
category (for example, INFO, WARNING, DEBUG).

Threading Model
The AMI API is multi-thread safe and uses multiple threads internally (to guarantee timely
processing of AMI protocol related functions). However, it does not impose a threading
model on your AMI application. You are free to use the AMI API in a single or multi-
threaded application.

TIBCO Hawk® Programmer’s Guide

73 | AMI API

AMI API Sample Programs
The TIBCO Hawk software distribution includes sample AMI Java, C++, and C API programs
that will help you to better understand how to use the API. These samples can be found in
the following directories:

• For Java: HAWK_HOME/examples/ami_api/java

• For C++: HAWK_HOME/examples/ami_api/cpp

• For C: HAWK_HOME/examples/ami_api/c.

The Sample AMI API Applications
The TIBCO Hawk AMI API sample applications can be found in the directory:

HAWK_HOME/examples/ami_api directory

This directory contains three sub-directories c, cpp, and java that contain sample
applications for the C, C++, and Java TIBCO Hawk AMI APIs, respectively. These
applications are discussed in the following sections.

TIBCO Hawk AMI C API Sample Applications
To pass the parameters for executing AMI program, use the properties file hawk_
example.props available at HAWK_HOME/examples/hawk_example.props. This properties file
defines the transport to be used and the parameters required to establish the transport
session.

The TIBCO Hawk AMI C API sample directory contains five sample applications. They have
the following filenames and AMI application names, with the numbers 1-5 substituted for
the x:

TIBCO Hawk AMI C API sample x:

— Filename: ami_samplex.c

— Display name: ami_samplex

— Internal name: COM.TIBCO.hawk.ami_api.c.ami_samplex

The five sample applications can be built by following the instructions in the
Makefile.sample file, which is also located in the sample directory.

TIBCO Hawk® Programmer’s Guide

74 | AMI API

• ami_sample1.c

This sample shows how to AMI instrument a user application. The AMI API does all
the Hawk transport work under the covers.

This method limits the number of dispatching threads to one thread. This is the only
thread which will call the user applications AMI API callback functions. As a result,
the users application can be single threaded. If the users application is to be multi-
threaded then the code in this sample would run on a dedicated thread. The users
application would be responsible for thread safety regarding any of its own data
structures.

• ami_sample2.c

This sample shows how to AMI instrument a Rendezvous application. The users
application creates a Rendezvous transport and queue and is responsible for
dispatching that queue.

The users application is free to be single or multiple threaded. The users application
is responsible for synchronizing access to user application data in the multi-
threaded case.

• ami_sample3.c

This sample is identical to ami_sample1.c except that it demonstrates how to create
methods that return tabular data.

• ami_sample4.c

This sample shows how to create an asynchronous AMI method for a synchronous
data source. This technique is used when synchronous data needs to be polled at a
certain rate, possibly calculations performed on the data across samples, and the
results returned at that rate or another rate. This technique makes use of the auto-
invoke feature of the AMI C API.

• ami_sample5.c

This sample shows how to create asynchronous AMI method for a asynchronous
data source. The data source sends data using ami_SessionOnData API to send data
asynchronously to every subscriber.

Executing Sample Programs
• To execute, for example, ami_samplex program, use the following command line:
ami_samplex hawk_example.props

TIBCO Hawk® Programmer’s Guide

75 | AMI API

Using Sample Applications on IBM i5/OS

The names of the TIBCO Hawk AMI C API sample programs have been truncated to fit the
IBM i5/OS name limit. On IBM i5/OS, the sample programs have the following names, with
the numbers 1-4 substituted for the x:

ami_samplex.c

A sample CL program is provided to compile the sample programs. This sample CL
program is included with the HAWKAMI library in QCSRC. The sample CL program assumes
the source for the sample programs is present in TIBHAWK/QCSRC.

To compile the sample programs, execute the following command:

CALL TIBHAWK/AMICMP AMI_SAMPL1

You can execute the TIBCO HAWK AMI C sample programs as a job or from qsh.

To submit a job, execute the following command:

SBMJOB CMD(CALL PGM(TIBHAWK/AMI_SAMPL1)) JOBQ(QUSRNOMAX) MSGQ(*USRPRF)
ALWMLTTHD(*YES)

TIBCO Hawk AMI C++ API Sample Application
The TIBCO Hawk AMI C++ API sample directory contains one sample application, which has
the following filename and AMI application names:

• AmiSample1.cpp

Filename: AmiSample1.cpp

Display name: AmiSample1

Internal name: COM.TIBCO.hawk.ami_api.cpp.AmiSample1

This sample creates an AMI session to support methods that demonstrate how to:

— pass data to an instrumented application,

— receive data from an instrumented application,

— return tabular data,

— return data asynchronously, and

— shutdown an application.

TIBCO Hawk® Programmer’s Guide

76 | AMI API

The sample application can be built by following the instructions in the
Makefile.sample file, also located in the sample directory.

Executing the Sample Program
• To execute AmiSample1 program, use the following command line:
AmiSample1 hawk_example.props

TIBCO Hawk AMI Java API Sample Application
The TIBCO Hawk AMI Java API sample directory contains the following files:

• AmiSample.Java:a sample application designed to illustrate how to
instrument a Java application using the TIBCO Hawk AMI API for Java.

• Spot.java: a simple GUI application using TIBCO Hawk AMI API for Java.

• SpotAmi.java: AMI Java API instrumentation for the Spot application.

This sample demonstrates how an existing application, Spot.java, can be instrumented
with the AMI Java API.

The AMI sample spot.java has the following AMI application names:

• Display name: Spot

• Internal name: COM.TIBCO.hawk.ami_api.java.Spot

Executing the Sample Program

In order to compile and execute this sample, the following must be in your Java
CLASSPATH:

• ami.jar and util.jar from the TIBCO Hawk java directory

• tibrvj.jar from the TIBCO Rendezvous java directory

Note
It is recommended that you use Java 1.7 or higher.

The Spot application is executed with the following command:

java Spot -rvd_session <service> <network> <daemon> hawk_example.props

TIBCO Hawk® Programmer’s Guide

77 | AMI API

Using the Sample Programs
Each sample program represents a separate application. Compile and link them using your
C/C++ development environment.

Do not use any class libraries (such as MFC) in your build; make the application a console
application only.

Programmer’s Checklist

C++ Library Files
TIBCO Hawk C++ programs must link the appropriate library files. Choose the appropriate
files based on operating system platform.

Note
See Transport Based Library Files for appropriate library files based on
the transport type.

The table below lists the appropriate library files for the various TIBCO Hawk platforms.

OS
platform

Compilation Style Libraries to Link

Microsoft
Windows

/MD compiled console
application to be run with
DLL

tibhawkamicpp.lib
tibhawkami.lib

Solaris Shared libraries libtibhawkamicpp.so

libtibhawkami.so

HP-UX Shared libraries For IA64(Itanium):

Libraries to be Linked

TIBCO Hawk® Programmer’s Guide

78 | AMI API

OS
platform

Compilation Style Libraries to Link

libtibhawkamicpp.so

libtibhawkami.so

AIX Shared libraries libtibhawkami.a
libtibhawkamicpp.a

Linux Shared libraries libtibhawkamicpp.so

libtibhawkami.so

Mac OS Mac shared libraries libtibhawkamicpp.dylib
libtibhawkami.dylib

C Library Files
TIBCO Hawk AMI C API programs must link the appropriate library files.

The table below lists the appropriate library files for use on the different TIBCO Hawk
platforms.

OS platform Compilation Style Libraries to link with

Microsoft
Windows

/MD compiled console
application to be run with
DLL

tibhawkami.lib

Solaris Shared libraries libtibhawkami.so

HP-UX Shared libraries For IA64(Itanium):

libtibhawkami.so

AIX Shared libraries libtibhawkami.a

C libraries to be linked

TIBCO Hawk® Programmer’s Guide

79 | AMI API

OS platform Compilation Style Libraries to link with

Linux Shared libraries libtibhawkami.so

Mac OS Mac shared libraries libtibhawkami.dylib

Transport Based Library Files

TIBCO Rendezvous Based Libraries

The table below lists the appropriate library files based on TIBCO Rendezvous for use on
different platforms:

OS platform Compilation Style Libraries to link with

Microsoft Windows /MD compiled
console application
to be run with DLL

librv.lib

tibhawkamirv.lib

Linux/Solaris/HP-UX Shared libraries libtibrv.so

libtibhawkamirv.so

AIX Shared libraries libtibrv.a

libtibhawkamirv.a

Mac OS Mac shared libraries libtibhawkamirv.dylib

libtibrv.dylib

TIBCO Rendezvous based libraries to be linked

Java AMI API Reference
The following link provides access to the TIBCO Hawk AMI API Javadocs.

• AMI API Javadocs

https://docs.tibco.com/pub/hawk/6.2.2/doc/api/ami-api/index.html

TIBCO Hawk® Programmer’s Guide

80 | C++ AMI API Reference

C++ AMI API Reference
This chapter describes the TIBCO Hawk AMI API C++ class reference. It provides detailed
descriptions of each class and method in the TIBCO Hawk.

• AmiSession Class

• AMI Property Class

• AMI Method Classes

• AMI Parameter Classes

• AMI Error Handling

AmiSession Class
Class

Declaration
class AmiSession;

Purpose
An instance of AmiSession represents an interface to the TIBCO Hawk agent and is treated
as a microagent.

Remarks
This class can be used as a base class for an application-specific AMI class. The user can
inherit from this class and populate the AMI session with methods in the constructor.

TIBCO Hawk® Programmer’s Guide

81 | C++ AMI API Reference

The AmiSession class will establish point-to-point communication with a TIBCO Hawk
agent.

Member Summary

Member Descriptio
n

Page

AmiSession() Constructo
r.
Independe
nt of the
transport
being used.

AmiSession Class

AmiSession() Constructo
r.

AmiSession Class

AmiSession::open() Initializes
the AMI API

AmiSession::open()

AmiSession::close() Terminates
the AMI API

AmiSession::close()

AmiSession::versionName
()

Returns
current
version
name

AmiSession::versionName
()

AmiSession::version() Returns
current
version

AmiSession::version()

AmiSession::versionDate
()

Returns
current
version

AmiSession::versionDate()

TIBCO Hawk® Programmer’s Guide

82 | C++ AMI API Reference

Member Descriptio
n

Page

date

AmiSession::banner() Returns
product
banner

AmiSession::banner()

AmiSession::versionMajor
()

Returns
major
version

AmiSession::versionMajor()

AmiSession::versionMinor
()

returns
minor
version

AmiSession::versionMinor()

AmiSession::getTraceLeve
ls()

Returns the
current AMI
session
trace level
settings

AmiSession::getTraceLevel
s()

AmiSession::setTraceLeve
ls()

Resets AMI
session
trace level
settings

AmiSession::setTraceLevel
s()

AmiSession::enableTraceL
evels()

Enables
levels of
race
output.

AmiSession::enableTraceL
evels()

AmiSession::disableTrace
Levels()

Disables
levels of
trace
output

AmiSession::disableTraceL
evels()

AmiSession::announce() Announces AmiSession::announce()

TIBCO Hawk® Programmer’s Guide

83 | C++ AMI API Reference

Member Descriptio
n

Page

existence
of the
microagen
t.

AmiSession::get...
Accessors()

Returns
AmiSession
accessors.

AmiSession::get...
Accessors

AmiSession::sendUnsolici
tedMsg()

Sends
unsolicited
message to
the
monitoring
agent.

AmiSession::sendUnsolicit
edMsg()

AmiSession::stop() Stops the
AMI session

AmiSession::stop()

AmiSession()
Constructor

Declaration
AmiSession(ami_TraceCode traceLevel,

 AmiProperty amiProperty,

 const char * name,

 const char * display,

TIBCO Hawk® Programmer’s Guide

84 | C++ AMI API Reference

 const char * help,

 ami_TraceHandler traceHandler,

 const void * userData);

Purpose
This constructor creates an instance of AmiSession. Each instance corresponds to an
independent microagent.

Parameters

Parameter Description

traceLevel AMI trace levels for this AMI session. Levels can
be:

AMI_ALL. Turns on all trace code levels.

AMI_AMI. Indicates AMI level trace message.

AMI_DEBUG. Logging statement are written into the
trace file if, and only if, the trace level set in the
current ami_Session object has the AMI_DEBUG bit
mask turned on.

AMI_ERROR. Logging statement are written into the
trace file, regardless of whether the AMI_ERROR bit
mask is turned on in the current ami_Session
object.

AMI_INFO. Logging statements are written into the
trace file if, and only if, the trace level set in the
current ami_Session object has the AMI_INFO bit

TIBCO Hawk® Programmer’s Guide

85 | C++ AMI API Reference

Parameter Description

mask turned on.

AMI_STAMP. Adds source file name and line
number to all messages.

AMI_WARNING. Logging statement are written into
the trace file if, and only if, the trace level set in
the current ami_Session object has the AMI_
WARNING bit mask turned on.

amiProperty Object of AmiProperty Class class.

name Internal name of the microagent.

display User friendly name for the microagent. This name
appears in the TIBCO Hawk Console.

help Help text for describing the functions of this
microagent.

traceHandler Error callback function used for this AMI session.

userData User data for this AMI session.

AmiSession()
Constructor

Declaration
AmiSession(ami_TraceCode traceLevel,

 const char * service,

 const char * network,

TIBCO Hawk® Programmer’s Guide

86 | C++ AMI API Reference

 const char * daemon,

 unsigned int rvTransport,

 unsigned int rvQueue,

 const char * name,

 const char * display,

 const char * help,

 ami_TraceHandler traceHandler,

 const void * userData);

Purpose
This constructor creates an instance of AmiSession. Each instance corresponds to an
independent microagent.

Parameters

Parameter Description

traceLevel AMI trace levels for this AMI session. Levels can
be:

AMI_ALL. Turns on all trace code levels.

TIBCO Hawk® Programmer’s Guide

87 | C++ AMI API Reference

Parameter Description

AMI_AMI. Indicates AMI level trace message.

AMI_DEBUG. Logging statement are written into the
trace file if, and only if, the trace level set in the
current ami_Session object has the AMI_DEBUG bit
mask turned on.

AMI_ERROR. Logging statement are written into the
trace file, regardless of whether the AMI_ERROR bit
mask is turned on in the current ami_Session
object.

AMI_INFO. Logging statements are written into the
trace file if, and only if, the trace level set in the
current ami_Session object has the AMI_INFO bit
mask turned on.

AMI_STAMP. Adds source file name and line
number to all messages.

AMI_WARNING. Logging statement are written into
the trace file if, and only if, the trace level set in
the current ami_Session object has the AMI_
WARNING bit mask turned on.

service

network

daemon

TIBCO Rendezvous service, network and daemon
parameters. For information about setting these
parameters, see your TIBCO Rendezvous
documentation.

rvTransport C handle for TIBCO Rendezvous tibrvTransport.

rvQueue C handle for TIBCO Rendezvous tibrvQueue
handle.

name Internal name of the microagent.

display User friendly name for the microagent. This name
appears in the TIBCO Hawk Console.

TIBCO Hawk® Programmer’s Guide

88 | C++ AMI API Reference

Parameter Description

help Help text for describing the functions of this
microagent.

traceHandler Error callback function used for this AMI session.

userData User data for this AMI session.

AmiSession::open()
Method

Declaration
static AmiStatus open();

Purpose
Initializes the AMI API.

AmiSession::close()
Method

Declaration
static AmiStatus close();

TIBCO Hawk® Programmer’s Guide

89 | C++ AMI API Reference

Purpose
Terminates the AMI C++ API and releases associated resources.

AmiSession::versionName()
Method

Declaration
static const char * versionName();

Purpose
Returns the release name of the application.

AmiSession::version()
Method

Declaration
static const char * version();

Purpose
Returns the release version of the application.

AmiSession::versionDate()
Method

TIBCO Hawk® Programmer’s Guide

90 | C++ AMI API Reference

Declaration
static const char * versionDate();

Purpose
Returns the version date of the application.

AmiSession::banner()
Method

Declaration
static const char * banner();

Purpose
Returns the application banner.

AmiSession::versionMajor()
Method

Declaration
static int versionMajor();

Purpose
Returns the major version.

TIBCO Hawk® Programmer’s Guide

91 | C++ AMI API Reference

AmiSession::versionMinor()
Method

Declaration
static int versionMinor();

Purpose
Returns the minor version.

AmiSession::getTraceLevels()
Method

Declaration
AmiStatus getTraceLevels(ami_TraceCode * inpTraceLevel) const;

Purpose
Returns the current AMI session trace level settings.

AmiSession::setTraceLevels()
Method

TIBCO Hawk® Programmer’s Guide

92 | C++ AMI API Reference

Declaration
AmiStatus setTraceLevels(amiTraceCode inTraceLevel);

Purpose
Resets all AMI Session trace level settings to the specified settings.

AmiSession::enableTraceLevels()
Method

Declaration
AmiStatus enableTraceLevels(amiTraceCode inTraceLevel);

Purpose
Enables the specified level(s) of trace output. All other trace levels settings are unaffected.

AmiSession::disableTraceLevels()
Method

Declaration
AmiStatus disableTraceLevels(amiTraceCode inTraceLevel);

TIBCO Hawk® Programmer’s Guide

93 | C++ AMI API Reference

Purpose
Disables the specified level(s) of trace output. All other trace level settings are unaffected.

AmiSession::announce()
Method

Declaration
AmiStatus announce(void) const;

Purpose
Announces the existence of the microagent to the TIBCO Hawk agent.

AmiSession::get... Accessors
Method

Declarations
AmiStatus getName(const char ** name) const;

AmiStatus getDisplayName(const char ** displayName) const;

AmiStatus getHelp(const char ** help) const;

AmiStatus getUserData(void ** userData) const;

TIBCO Hawk® Programmer’s Guide

94 | C++ AMI API Reference

AmiStatus& getStatus();

Purpose
Accessors for AmiSession objects.

Methods
The following table lists the get accessors for AmiSession objects.

Method Description

getName() Gets the name of this microagent.

This name can be different from the display
name, as this is the actual name by which the
microagent is identified in the TIBCO Hawk
system.

getDisplayName() Gets the display name of the microagent. This is
the name as it appears and can be different
from the actual name of the microagent.

The display name is the user-friendly name by
which this interface is to be known, as opposed
to the internal interface identifier. The TIBCO
Hawk Console shows the display name in the list
of discovered microagents/AMI applications.

getHelp() Gets the help text of this microagent.

The returned help text is the optional help text
that is displayed to the user.

getUserData() Returns the user data in the specified AMI
session.

getStatus() Used to check that the session has been created
correctly.

TIBCO Hawk® Programmer’s Guide

95 | C++ AMI API Reference

AmiSession::sendUnsolicitedMsg()
Method

Declaration
AmiStatus sendUnsolicitedMsg(

 ami_AlertType type,

 const char * text,

 int id) const;

Purpose
Sends an unsolicited message to the monitoring agent.

Remarks
An unsolicited message is an application information, warning, or error message that is
sent from the managed application directly to the manager (TIBCO Hawk agent).

Parameters

TIBCO Hawk® Programmer’s Guide

96 | C++ AMI API Reference

Parameter Description

type Alert message type (information, warning,
or error).

text A text message describing the alert
condition.

id An arbitrary identification number defined
by the application.

AmiSession::stop()
Method

Declaration
AmiStatus stop(void) const;

Purpose
Stops the AMI session.

AMI Property Class
An instance of AmiProperty class has to be created while creating AMI session to add
transport specific properties to AMI session.

• AmiProperty Class

AmiProperty Class
Class

TIBCO Hawk® Programmer’s Guide

97 | C++ AMI API Reference

Declaration
class AmiProperty;

Purpose
This class implements the transport properties to be created. These properties are name
value pairs and need to be passed while creating AmiSession.

Member Summary

Member Description Page

AmiProperty() Constructor AmiProperty()

AmiProperty::() Sets the transport
properties

AmiProperty::()

AmiProperty()
Constructor

Declaration
AmiProperty::AmiProperty();

Purpose
This constructor creates an instance of AmiProperty.

TIBCO Hawk® Programmer’s Guide

98 | C++ AMI API Reference

AmiProperty::()
Method

Declaration
AmiProperty::AmiProperty(

 const char * name,

 void * value);

Purpose
Sets the transport properties specified as name value pairs.

The following table provides the supported property names and their default values:

Property Name Mandatory Default Description

hawk_domain No Default The hawk domain.

hawk_transport No tibas Choice of
transport. The
available options
are:

• tibrv

• tibtcp

Properties for TIBCO Rendezvous Transport

Properties List for hawk_transport = tibrv

TIBCO Hawk® Programmer’s Guide

99 | C++ AMI API Reference

Property
Name

Mandatory Default Description

rv_service No 7474 TIBCO Rendezvous
service property.

rv_network No ; TIBCO Rendezvous
network property.

rv_daemon No tcp:7474 TIBCO Rendezvous
daemon property.

rv_queue No Internal-
queue

TIBCO Rendezvous
queue for AMI
session.

rv_transport No Internal-rv-
transports

TIBCO Rendezvous
transport for AMI
session.

Note
When hawk_transport = tibrv and you need to use your own rv_queue
and rv_transport, perform the following steps:

• Explicitly call tibrv_open() method before providing a user
queue (rv_queue).

• Explicitly call tibrv_close() method before application exit.

Refer to TIBCO Rendezvous® documentation for more information.

Properties for TCP Transport for TIBCO Hawk

TIBCO Hawk® Programmer’s Guide

100 | C++ AMI API Reference

Property
Name

Mandatory Default Description

tcp_
session

No localhost:2591
localhost:2571

The TCP session
parameter for
Hawk AMI API.

Properties list for hawk_transport=tibtcp

AMI Method Classes
The methods define the application interface to the TIBCO Hawk agent. When AmiSession
announces itself to the TIBCO Hawk agent, the agent queries for a description of the
available methods. AmiSession creates a description of available AMI method objects based
on implementations of AmiMethod.

AmiMethod class provides a foundation for classes that describe synchronous, and
asynchronous AMI methods.

The AmiAsyncMethod class extends the AmiMethod class to send data whenever it becomes
available. This allows the AMI-instrumented application to actively publish data whenever
data becomes available.

The AmiSyncMethod class extends the AmiMethod class to return synchronous data. With
AmiSyncMethod class, the method returns data only upon request.

The AmiSubcription class encapsulates an asynchronous method subscription.

• AmiMethod Class

• AmiAsyncMethod Class

• AmiSyncMethod Class

• AmiSubscription Class

AmiMethod Class
Class

TIBCO Hawk® Programmer’s Guide

101 | C++ AMI API Reference

Declaration
class AmiMethod

Purpose
This class implements methods.

Remarks
Classes derived from AmiMethod can be registered with AmiSession. The AmiSyncMethod
class extends the AmiMethod class to implement synchronous methods. The
AmiAsyncMethod class extends the AmiMethod class to implement asynchronous methods.

Member Summary

Member Description Page

AmiMethod::setIndexNam
e()

Sets the index
name for this
AmiMethod.

AmiMethod::setIndexNam
e()

AmiMethod::get...()
Accessors

Retrieves
information
from this
AmiMethod
instance.

getStatus()

getName()

getHelp()

getSession()

AmiMethod::get...()
Accessors

TIBCO Hawk® Programmer’s Guide

102 | C++ AMI API Reference

Member Description Page

AmiMethod::onInvoke() Callback on
arrival of a
method
invocation
method from
the
monitoring
agent. See
AmiParameter
Class.

AmiMethod::onInvoke()

AmiMethod::setIndexName()
Method

Declaration
AmiStatus setIndexName(const char * index);

Purpose
Sets the index field when this AmiMethod is to return tabular data. The method can be
invoked multiple times to establish the composite index.

Parameters

Parameter Description

index The index name to be set.

TIBCO Hawk® Programmer’s Guide

103 | C++ AMI API Reference

AmiMethod::get...() Accessors
Accessors

Declaration
AmiStatus getHelp(const char ** help) const;

AmiStatus getName(const char ** name) const;

AmiSession * getSession(void) const;

AmiStatus& getStatus();

Purpose
Accessors for retrieving information from an AmiMethod instance.

Method Description

getHelp() Gets the help text for the method.

getName() Gets the name of the method.

getSession() Gets the AmiSession object this method
belongs to.

getStatus() Used to check if the method object has been
created correctly.

TIBCO Hawk® Programmer’s Guide

104 | C++ AMI API Reference

See Also
AmiSession Class

AmiMethod::onInvoke()
Method

Declaration
virtual AmiStatus onInvoke(AmiSubscription * context,

 AmiParameterListIn * argsIn

 AmiParameterListOut * argsOut) = 0;

Purpose
This is a callback method invoked by the C++ API whenever a method invocation message
arrives from the monitoring agent.

Remarks
Programmers must implement this method to implement the actions to be performed by
the application.

Parameters

TIBCO Hawk® Programmer’s Guide

105 | C++ AMI API Reference

Parameter Description

context AMI context associated with invocation.

argsIn Input parameters list from the TIBCO Hawk agent.

argsOut Output parameters list

See Also
AmiParameterList Class

AmiAsyncMethod Class
Class

Declaration
class AmiAsyncMethod : public AmiMethod Class

Purpose
The AmiAsyncMethod class extends the AmiMethod class to implement asynchronous
methods.

Member Summary

TIBCO Hawk® Programmer’s Guide

106 | C++ AMI API Reference

Member Description Page

AmiAsyncMethod()
Constructor. AmiAsyncMethod()

AmiAsyncMethod::onSt
art()

Optional
virtual
method to
initiate data
flow.

AmiAsyncMethod::onSt
art()

AmiAsyncMethod::onSt
op()

Optional
virtual
method to
halt data
flow.

AmiAsyncMethod::onSt
op()

AmiAsyncMethod::onDa
ta()

Sends data
asynchronou
sly when an
event occurs.

AmiAsyncMethod::onD
ata()

AmiAsyncMethod::send
Data()

Sends data
asynchronou
sly from an
asynchronous
AMI method.

AmiAsyncMethod::send
Data()

AmiAsyncMethod::send
Error()

Reports an
error
condition for
the specified
asynchronous
method
subscription.

AmiSyncMethod Class

AmiAsyncMethod()
Constructor

TIBCO Hawk® Programmer’s Guide

107 | C++ AMI API Reference

Declaration
AmiAsyncMethod(

 AmiSession * session,

 const char * name,

 const char * help,

 ami_MethodType type,

 int inTimeout);

Purpose
Constructs an instance of AmiAsyncMethod class.

Parameters

Parameter Description

session AMI session object.

name Name of the method.

help Help text for the method.

type Type of method. Must be one of AMI_METHOD_INFO,
AMI_METHOD_ACTION or AMI_METHOD_ACTION_INFO.

TIBCO Hawk® Programmer’s Guide

108 | C++ AMI API Reference

Parameter Description

AMI_METHOD_INFO methods collect data. Data sources
in rulebases and method subscriptions in the TIBCO
Hawk Console use this type of method only.

AMI_METHOD_ACTION methods affect the application’s
behavior in some way. They can be invoked in the
TIBCO Hawk Console through interacting with one
agent or through a network action. Action methods
can also be invoked as an action in a rulebase.

AMI_METHOD_ACTION_INFO methods both make a
change to the application and return data. They can be
invoked in the TIBCO Hawk Console through
interacting with one agent or through a network
action.

inTimeout The timeout interval of this AMI method. The default is
10000 milliseconds(10 seconds).

AmiAsyncMethod::onStart()
Method

Declaration
virtual AmiStatus onStart(AmiSubscription * context,

 AmiParameterListIn * args);

Purpose
This method is invoked by the AMI C++ API whenever an asynchronous method
subscription request is made on this method. This method implements the start actions to
be performed by the application on such an event

TIBCO Hawk® Programmer’s Guide

109 | C++ AMI API Reference

Remarks
This method is optional. The default is noop if the application chooses not to implement it.
In this case, the AMI session will track the pertinent context for the purpose of sending
asynchronous data.

Parameters

Parameter Description

context AMI context associated with the invocation.
The context is specific to a subscription
request. The lifetime of this context starts at
the moment this method is invoked and
stops after the AmiAsyncMethod::onStop
method returns.

args Input parameters list from the TIBCO Hawk
agent.

See Also
AmiParameterList Class

AmiAsyncMethod::onStop()

AmiAsyncMethod::onStop()
Method

TIBCO Hawk® Programmer’s Guide

110 | C++ AMI API Reference

Declaration
virtual AmiStatus onStop(AmiSubscription * content);

Purpose
This method is invoked by the AMI C++ API whenever cancellation of asynchronous method
subscription arrives for this method. The method implements the stop actions to be
performed by the application on such an event. this method is optional.

Parameters

context Method context

AmiAsyncMethod::onData()
Method

Declaration
void onData();

Purpose
This method sends data asynchronously when an event occurs.

TIBCO Hawk® Programmer’s Guide

111 | C++ AMI API Reference

Remarks
This method goes through the session context list and sends the data returned by
AmiMethod::onInvoke() to the appropriate subscription based on the varying input
parameters calculated in AmiMethod::onInvoke(). This method tracks the context in a way
that is transparent to the users.

If not interested in the context or subscription, you must not return any data or call to
AmiParamterListOut::newRow() in AmiMethod::onInvoke() . However, the method should
not be suppressed.

It is the user’s responsibility to invoke this method when the event occurs.

AmiAsyncMethod::sendData()
Method

Declaration
AmiStatus sendData(AmiSubscription * context,

 AmiParameterListOut * data);

Purpose
Sends data asynchronously from an asynchronous AMI method.

Parameters

TIBCO Hawk® Programmer’s Guide

112 | C++ AMI API Reference

Parameter Description

context Asynchronous subscription context.

data Reply data to be sent to the subscriber of the
asynchronous AMI method.

AmiAsyncMethod::sendError()
Method

Declaration
AmiStatus sendError(AmiSubscription * context,

 AmiStatus& status);

Purpose
Reports an error condition for the specified asynchronous method subscription.

Parameters

Parameter Description

context Asynchronous subscription context.

status Reported error condition.

TIBCO Hawk® Programmer’s Guide

113 | C++ AMI API Reference

AmiSyncMethod Class
Class

Declaration
class AmiSyncMethod : public AmiMethod Class

Purpose
The AmiSyncMethod class extends the AmiMethod class to implement synchronous methods.

Member Summary

Member Description Page

AmiSyncMethod() Constructor. AmiSyncMethod()

AmiSyncMethod()
Constructor

Declaration
AmiSyncMethod(

TIBCO Hawk® Programmer’s Guide

114 | C++ AMI API Reference

 AmiSession * session,

 const char * name,

 const char * help,

 ami_MethodType type,

 int inTimeout);

Purpose
Constructs an instance of AmiSyncMethod class.

Parameters

Parameter Description

session AMI session object.

name Name of the method.

help Help text for the method.

type Type of method. Must be one of AMI_METHOD_INFO,
AMI_METHOD_ACTION or AMI_METHOD_ACTION_INFO.

AMI_METHOD_INFO methods collect data. Data sources
in rulebases and method subscriptions in the TIBCO
Hawk Console use this type of method only.

AMI_METHOD_ACTION methods affect the application’s

TIBCO Hawk® Programmer’s Guide

115 | C++ AMI API Reference

Parameter Description

behavior in some way. They can be invoked in the
TIBCO Hawk Console through interacting with one
agent or through a network action. Action methods
can also be invoked as an action in a rulebase.

AMI_METHOD_ACTION_INFO methods both make a
change to the application and return data. They can be
invoked in the TIBCO Hawk Console through
interacting with one agent or through a network
action.

inTimeout The timeout interval of this AMI method. The default is
10000 milliseconds(10 seconds).

AmiSubscription Class
class

Declaration
class AmiSubscription;

Purpose
The AmiSubscription class encapsulates an asynchronous method subscription.

Member Summary

TIBCO Hawk® Programmer’s Guide

116 | C++ AMI API Reference

AmiSubscription::getUs
erData()

Allows
retrieval of
application
specific data
from a
particular
asynchronous
method
subscription

AmiSubscription::getUs
erData()

AmiSubscription::setCa
llbackInterval()

Indicates that
for this
subscription
the associated
AmiMethod::o
nInvoke()
callback
should be
invoked
automatically
at the specific
interval.

AmiSubscription::setCall
backInterval()

AmiSubscription::setUs
erData()

Allows
attachment of
application
specific data
to a particular
asynchronous
method
subscription.

AmiSubscription::setUse
rData()

AmiSubscription::getMe
thod()

Allows
retrieval of the
associated AMI
method
object.

AmiSubscription::getMe
thod()

TIBCO Hawk® Programmer’s Guide

117 | C++ AMI API Reference

AmiSubscription::getAr
guments()

Allows
retrieval of the
method
argument
values for a
particular
asynchronous
method
subscription.

AmiSubscription::getArg
uments()

AmiSubscription::getUserData()
Method

Declaration
void * getUserData();

Purpose
Retrieves the application specific data attached to a particular asynchronous method
subscription. This method is usually used in the AmiMethod::onInvoke() callback when
processing asynchronous method invocations to obtain access to the application specific
data associated with that invocation.

AmiSubscription::setCallbackInterval()
Method

TIBCO Hawk® Programmer’s Guide

118 | C++ AMI API Reference

Declaration
AmiStatus setCallbackInterval(int inInterval);

Purpose
Indicates that for this subscription the associated AmiMethod::onInvoke callback should be
invoked automatically at the specified interval.

Remarks
This provides an asynchronous event to trigger what would normally be synchronous
methods so that they can behave as asynchronous methods. A typical scenario is a method
that must calculate (polled) data over a precise time interval and return the calculated
result based on that interval. In this case the method returns data not based on a
synchronous call but on a specified time interval.

Parameters

Parameter Description

inInterval Interval in seconds. Zero disables the interval.

AmiSubscription::setUserData()
Method

TIBCO Hawk® Programmer’s Guide

119 | C++ AMI API Reference

Declaration
AmiStatus setUserData(void * inpUserData);

Purpose
Allows you to attach application specific data to a particular asynchronous method
subscription. This function is usually used in the AmiAsyncMethod::onStart() callback.

Parameters

Parameter Description

inpUserData User data.

AmiSubscription::getMethod()
Method

Declaration
AmiMethod * getMethod();

Purpose
Allows retrieval of the associated AMI method object for a particular asynchronous method
object.

TIBCO Hawk® Programmer’s Guide

120 | C++ AMI API Reference

AmiSubscription::getArguments()
Method

Declaration
AmiParameterListIn * getArguments();

Purpose
Allows retrieval of the method argument values for a particular asynchronous method
subscription.

AMI Parameter Classes
The AmiParameter class is used to implement the data types to be exchanged between the
C++ AMI interface and the TIBCO Hawk agent.

The AmiParameterIn class extends the AmiParameter class to describe input parameters for
the TIBCO Hawk manager’s (agent) invocation.

The AmiParameterOut class extends the AmiParameter class to describe the result
parameters returned from method invocation.

The AmiParameterList class is used to implement the data types to be exchanged between
the C++ AMI interface and the TIBCO Hawk agent.

The AmiParameterListIn class lists the complete set of input parameters for an AMI
method.

The AmiParameterListOut class lists the complete set of output parameters for an AMI
method.

• AmiParameter Class

• AmiParameterIn Class

TIBCO Hawk® Programmer’s Guide

121 | C++ AMI API Reference

• AmiParameterOut Class

• AmiParameterList Class

• AmiParameterListIn Class

• AmiParameterListOut Class

AmiParameter Class
Class

Declaration
class AmiParameter;

Purpose
Implements the data types to be exchanged between the AMI application and the TIBCO
Hawk agent. The parameter can be either AmiParameterIn for input parameters from the
TIBCO Hawk agent or AmiParameterOut for result parameters from method invocations.

Remarks
The methods use these boolean definitions:

AMI_FALSE = 0

AMI_TRUE = 1

Member Summary

TIBCO Hawk® Programmer’s Guide

122 | C++ AMI API Reference

Member Description Page

AmiParameter::addChoi
ce()

Sets the value
choices for this
AmiParameter.

AmiParameter::addChoi
ce()

AmiParameter::addLegal
()

Sets the legal
choices for
AmiParameter.

AmiParameter::addLegal
()

AmiParameter::getStat
us()

Checks if the
parameter
object was
created
correctly.

AmiParameter::getStatus
()

AmiParameter::addChoice()
Method

Declaration
AmiStatus addChoice(void* value);

Purpose
Sets the value choices for this parameter.

Remarks
Value choices can be displayed by the managing application. If value choices are specified
for a parameter, other values are also permitted. For a specified AmiParameterIn object,
set only one of either choice or legal values. If both are set, the legal value takes
precedence.

TIBCO Hawk® Programmer’s Guide

123 | C++ AMI API Reference

Parameters

Parameter Description

value Choice value.

AmiParameter::addLegal()
Method

Declaration
AmiStatus addLegal(void* value);

Purpose
Sets the legal value choices for this parameter.

Remarks
Legal value choices can be enforced and displayed by the managing application. If legal
value choices are specified for a parameter, no other values are permitted. For a specified
AmiParameterIn object, set only one of either choice or legal values. If both are set, the
legal value takes precedence.

Parameters

TIBCO Hawk® Programmer’s Guide

124 | C++ AMI API Reference

Parameter Description

value Legal choice value.

AmiParameter::getStatus()
Method

Declaration
AmiStatus& getStatus();

Purpose
Checks if the parameter object has been created correctly.

See Also:
AmiStatus Class

AmiParameterIn Class
Class

Declaration
class AmiParameterIn : public AmiParameter Class

TIBCO Hawk® Programmer’s Guide

125 | C++ AMI API Reference

Purpose
Describes the input parameter from the TIBCO Hawk agent.

Member Summary

Member Description Page

AmiParameterIn() Constructor. AmiParameterIn()

AmiParameterIn()
Constructor

Declaration
AmiParameterIn(AmiMethod * method,

 const char* name,

 ami_DataType type,

 const char* help);

Purpose
Creates an input parameter for the given method.

TIBCO Hawk® Programmer’s Guide

126 | C++ AMI API Reference

Parameters

Parameter Description

method AmiMethod to which this parameter is set.

name Establishes the name of the AmiParameterIn object.

type Parameter type. One of:

AMI_I32. 32-bit signed integer.

AMI_I64. 64-bit signed integer.

AMI_U64. 64-bit unsigned integer.

AMI_F64. 64-bit floating-point number.

AMI_STRING. Null-terminated character string (UTF8
encoding).

AMI_BOOLEAN. Boolean.

help Establishes the help text describing the purpose of the
AmiParameterIn object.

NULL or empty string values are acceptable. We
strongly recommend you specify meaningful
descriptions when describing AmiMethod input
parameters.

AmiParameterOut Class
Class

Declaration
class AmiParameterOut : public AmiParameter Class

TIBCO Hawk® Programmer’s Guide

127 | C++ AMI API Reference

Purpose
Creates an output parameter to describe the data that the method returns to the agent.

Member Summary

Member Description Page

AmiParameterOut() Constructor. AmiParameterOut()

AmiParameterOut()
Constructor

Declaration
AmiParameterOut(AmiMethod * method,

 const char* name,

 ami_DataType type,

 const char* help);

Purpose
Describes the result parameters returned by the method invocation.

TIBCO Hawk® Programmer’s Guide

128 | C++ AMI API Reference

Parameters

Parameter Description

method AmiMethod to which this parameter is set.

name Establishes the name of the AmiParameterOut object.

Note: The use of curly brackets { } in microagent
method parameter names is not supported. Use of
these characters results in an error.

type Parameter type. One of:

AMI_I32. 32-bit signed integer.

AMI_I64. 64-bit signed integer.

AMI_U64. 64-bit unsigned integer.

AMI_F64. 64-bit floating-point number.

AMI_STRING. Null-terminated character string (UTF8
encoding).

AMI_BOOLEAN. Boolean.

help Establishes the help text describing the purpose of the
AmiParameterOut object.

NULL or empty string values are acceptable. We
strongly recommend you specify meaningful
descriptions when describing AmiMethod output
parameters.

AmiParameterList Class
Class

TIBCO Hawk® Programmer’s Guide

129 | C++ AMI API Reference

Declaration
class AmiParameterList;

Purpose
The AmiParameterList object contains a list of AMI parameters. It is the parent class for
AmiParameterListIn and AmiParamterListOut.

AmiParameterListIn Class
class

Declaration
class AmiParameterListIn;

Purpose
Defines the input parameter list for an AMI method.

Member Summary

Parameter Descriptio
n

AmiParameterListIn::getV
alue()

parameters
for an AMI
method

AmiParameterListIn::getV
alue()

TIBCO Hawk® Programmer’s Guide

130 | C++ AMI API Reference

AmiParameterListIn::getValue()
Method

Declaration
AmiStatus getValue(const char* name, void* value);

Purpose
Gets the value associated with the input parameter name.

Parameters

Parameter Description

name Name of parameter being retrieved.

value Target for the retrieved value.

AmiParameterListOut Class
class

Declaration
class AmiParameterListOut;

TIBCO Hawk® Programmer’s Guide

131 | C++ AMI API Reference

Purpose
Groups AmiParameter objects to define an AMI method complete set of output parameters.

Member Summary

Parameter Descriptio
n

AmiParameterListOut() Constructo
r

AmiParameterListOut()

AmiParameterListOut::new
Row()

Retrieves a
list of
returned
values to
use with
setValue
for method
invocation.

AmiParameterListOut::ne
wRow()

AmiParameterListOut::set
Value()

Sets the
parameter
of the
given
name with
the value.

AmiParameterListOut::set
Value()

AmiParameterListOut()
Constructor

TIBCO Hawk® Programmer’s Guide

132 | C++ AMI API Reference

Declaration
AmiParameterListOut(AmiMethod * method);

Purpose
Creates an AmiParameterListOut object to store the returned data used in
AmiAsyncMethod::sendData().

AmiParameterListOut::newRow()
Method

Declaration
AmiStatus newRow();

Purpose
Gets a list of returned values for the method, the current AmiParameterListOut object,
then can call to AmiParameterListOut::setValue to set the return values for a method
invocation. This function can be called multiple times to return multiple rows of data.

AmiParameterListOut::setValue()
Method

Declaration
AmiStatus setValue(const char * name void * value);

TIBCO Hawk® Programmer’s Guide

133 | C++ AMI API Reference

Purpose
Sets the parameter of the given name with the value

Parameters

Parameter Description

name Name of parameter being set

value Value to set

AMI Error Handling
The AmiStatus class encapsulates information about AmiStatus conditions to aid in error
tracing.

• AmiStatus Class

AmiStatus Class
Class

Declaration
class AmiStatus;

Purpose
Objects of this class also are used to return an error condition to the monitoring TIBCO
Hawk agent.

TIBCO Hawk® Programmer’s Guide

134 | C++ AMI API Reference

Member Summary

Member Purpose Page

AmiStatus() Constructor AmiStatus()

operator ami_Error()
const

Operator to
convert an

ami_Error to
AmiStatus.

—

AmiStatus& operator=
(const AmiStatus&
status)

Assignment
operator.

—

AmiStatus& operator=
(const ami_Error
status)

Assignment
operator.

—

AmiStatus& operator=
(const ami_ErrorCode
errorCode)

Assignment
operator.

—

ami_Boolean operator==
(const AmiStatus&
status)

Comparison
operator.

—

ami_Boolean operator!=
(const AmiStatus&
status)

Comparison
operator.

—

ami_Boolean operator==
(const ami_Error
status)

Comparison
operator.

—

ami_Boolean operator!=
(const ami_Error
status)

Comparison
operator.

—

ami_Boolean operator!()
const

Comparison —

TIBCO Hawk® Programmer’s Guide

135 | C++ AMI API Reference

Member Purpose Page

operator.

ami_Boolean ok(void)
const

Evaluates
whether this
status
object—
indicates an
error state.

—

AmiStatus::getAmiError
()

Returns the C
API error
handle of this
AmiStatus
object.

AmiStatus::getAmiError()

AmiStatus::setStatus() Creates a new
AMI error for
the specified
error code
and
descriptive
text.

AmiStatus::setStatus()

AmiStatus::setStatusV() AmiStatus::setStatusV()

AmiStatus::stamp() Stamps AMI
error for
location ID

AmiStatus::stamp()

AmiStatus::getCode() returns the
AMI C API
error code

AmiStatus::getCode()

AmiStatus::getText() Returns the
textual
description of
the error

AmiStatus::getText()

AmiStatus::getThread() Returns the AmiStatus::getThread()

TIBCO Hawk® Programmer’s Guide

136 | C++ AMI API Reference

Member Purpose Page

thread ID of
the thread
which created
the specified
AMI error

AmiStatus::getFile() Returns
error’s source
file name

AmiStatus::getFile()

AmiStatus::getLine() Returns the
line number
of the error
source

AmiStatus::getLine()

AmiStatus()
Constructor

Declaration
AmiStatus();

AmiStatus(ami_Error status);

AmiStatus(ami_ErrorCode code);

Purpose
Creates an instance of AmiStatus object.

TIBCO Hawk® Programmer’s Guide

137 | C++ AMI API Reference

Parameters

Parameter Description

status Handle to ami_Error.

code AMI C error code.

AmiStatus::getAmiError()
Method

Declaration
ami_Error getAmiError();

Purpose
Gets the AMI C API error handle of this status object.

AmiStatus::setStatus()
Method

Declaration
void setStatus(int errorCode, const char * format, ...);

TIBCO Hawk® Programmer’s Guide

138 | C++ AMI API Reference

Purpose
Creates a new AMI error for the specified error code and descriptive text. Descriptive text is
specified as a template (printf format) and substitution arguments. If error creation fails
then an error describing this failure is returned in place of the specified error.

Parameters

Parameter Description

errorCode AMI C error code.

format Descriptive template.

AmiStatus::setStatusV()
Method

Declaration
void setStatusV(int errorCode, const char * format, va_list args);

Purpose
Creates a new AMI error for the specified error code and descriptive text. Descriptive text is
specified as a template (printf format) and substitution arguments. If error creation fails
then an error describing this failure is returned in place of the specified error.

Parameters

TIBCO Hawk® Programmer’s Guide

139 | C++ AMI API Reference

Parameter Description

errorCode Error code.

format Error description template.

args Error template substitution arguments.

AmiStatus::stamp()
Method

Declaration
void stamp(const char * inpFilename, in inLineNumber);

Purpose
Stamps the specified AMI error with the specified file name and line number.

AmiStatus::getCode()
Method

Declaration
int getCode();

TIBCO Hawk® Programmer’s Guide

140 | C++ AMI API Reference

Purpose
Returns the error code of the specified AMI error.

AmiStatus::getText()
Method

Declaration
const char * getText();

Purpose
Returns the textual description of the specified AMI error.

AmiStatus::getThread()
Method

Declaration
int getThread();

Purpose
Returns the thread ID of the thread which created the specified AMI error.

TIBCO Hawk® Programmer’s Guide

141 | C++ AMI API Reference

AmiStatus::getFile()
Method

Declaration
const char * getFile();

Purpose
Returns the name of the source file which generated the specified AMI error.

AmiStatus::getLine()
Method

Declaration
int getLine();

Purpose
Returns the line number of the source file which generated the specified AMI error.

TIBCO Hawk® Programmer’s Guide

142 | C AMI API Reference

C AMI API Reference
This chapter describes the TIBCO Hawk AMI API C class references. It explains the
constants, error codes, data types and functions related to error handling, tracing,
callbacks and initializing the API.

• Data Types Summary

• AMI C API Error Functions

• AMI C API Session Functions

• AMI C API Method Functions

• AMI C API Subscription Functions

• AMI C API Parameter Functions

Data Types Summary
This table lists the AMI C API data types. These types are described in the following
sections.

Data Type Description Page

ami_AlertType Defines the valid alert
types for unsolicited
messages.

ami_AlertType

ami_Boolean Defines the valid
boolean data types.

ami_Boolean

AMI C API Constants General constants
defined in the AMI C
API.

AMI C API Constants

ami_DataType Defines valid AMI C API ami_DataType

TIBCO Hawk® Programmer’s Guide

143 | C AMI API Reference

Data Type Description Page

parameter data types.

ami_Error Error object handle—
encapsulates all the
information required
to define an AMI C API
error.

ami_Error

ami_Method Method object
handle—Encapsulates
all the information
required to define and
support an AMI C API
method.

ami_Method

ami_MethodType Defines the valid AMI C
API method types.

ami_MethodType

ami_Parameter Parameter object
handle—encapsulates
all the information
required to define and
support an AMI C API
parameter—used to
represent an individual
method input or
output parameter.

ami_Parameter

ami_ParameterList Object handle for
parameter list that
encapsulates all the
information required
to define and support
a list of AMI C API
parameters—used to
group the input or
output parameters of a

ami_ParameterList

TIBCO Hawk® Programmer’s Guide

144 | C AMI API Reference

Data Type Description Page

method.

ami_
ParameterListList

Object handle that
generates a list of
Parameter lists—
encapsulates all the
information required
to define and support
multiple AMI
parameter lists—used
to return multiple
instances of output
parameter values for a
method (i.e. tabular
data).

ami_
ParameterListList

ami_Session Session object
handle—encapsulates
all the information
required to define and
support an AMI
session.

ami_Session

ami_Subscription Encapsulates all the
information required
to define and support
a subscription to an
asynchronous AMI
method.

ami_Subscription

ami_Property Defines the transport
properties specified by
name value pairs and
are added by the ami_
AddProperty.

ami_Property

TIBCO Hawk® Programmer’s Guide

145 | C AMI API Reference

ami_AlertType
Type

Purpose
Alert classifications for unsolicited messages, specifying the supported AMI unsolicited
message types. An unsolicited message is an application information, warning, or error
message that is sent from the managed application directly to the manager. These relate
directly to the TIBCO Hawk alert classifications.

Alert Type

Type Definition

AMI_ALERT_INFO Specifies an informational alert.

AMI_ALERT_WARNING Specifies a warning alert.

AMI_ALERT_ERROR Specifies an error alert.

ami_Boolean
Type

Purpose
This type specifies valid boolean values

Enumeration

TIBCO Hawk® Programmer’s Guide

146 | C AMI API Reference

Declaration Description

AMI_FALSE Boolean value is false

AMI_TRUE Boolean value is true

AMI C API Constants
The next table lists the general AMI C API constants.

Constant Description

AMI_VERSION
The version of the AMI specification
implemented by this version of the
AMI C API.

AMI_METHOD_DEFAULT_
TIMEOUT

AMI method default timeout period
specified in milliseconds. If the
method takes longer than this
timeout period the TIBCO Hawk agent
will reflect a timeout error.

For methods that require a longer
timeout period this can be overridden
by passing the timeout parameter
through the ami_MethodCreate
function The default is 10000
milliseconds.

ami_DataType
Type

TIBCO Hawk® Programmer’s Guide

147 | C AMI API Reference

Purpose
Defines the valid AMI C API parameter data types.

Enumeration

Declaration Description

AMI_I32 32-bit signed integer.

AMI_I64

AMI_F64

AMI_U64 64-bit unsigned integer.

AMI_STRING Null-terminated character string (UTF8 encoding).

AMI_BOOLEAN Boolean.

AMI_INTEGER Use for backwards compatibility with previous AMI C
API versions. AMI_I32 is preferred.

AMI_LONG Use for backwards compatibility with previous AMI C
API versions. AMI_I64 is preferred.

AMI_REAL Use for backwards compatibility with previous AMI C
API versions. AMI_F64 is preferred.

ami_Error
Type

TIBCO Hawk® Programmer’s Guide

148 | C AMI API Reference

Purpose
This is the AMI C API error object handle. It encapsulates all the information required to
define and process errors generated by the AMI C API and for the user's application to pass
errors to the AMI C API.

Remarks
A null ami_Error handle indicates success (i.e. no error). The convenience define AMI_OK is
provided representing an ami_Error indicating success. It is recommended that you use an
expression like the following when testing an ami_Error for success:

ami_Error RC;

RC = ami_Function();

if (RC != AMI_OK)

{

handle error condition

}

A non-null ami_Error indicates an error. The unique error code identifying the error can be
obtained using the ami_ErrorGetCode() function.

The ami_Error is an object handle representing allocated resources and must be destroyed
using the ami_ErrorDestroy() function or memory will be leaked. The AMI C API
application must destroy any ami_Error instances returned by an AMI C API function call. It
must also destroy any ami_Error instance it explicitly creates with the exception of ami_
Error instances returned to the AMI C API from a method invocation callback function.

The unique error codes returned by the ami_ErrorGetCode() function are documented in
the following table.

TIBCO Hawk® Programmer’s Guide

149 | C AMI API Reference

Error Code Description

AMI_AMIERROR_FAILURE Unable to create AMI error due to memory allocation failure

AMI_INSUFFICIENT_MEMORY Insufficient memory to process request

AMI_INVALID_ERROR Specified AMI error handle is invalid

AMI_CORRUPT_ERROR Specified AMI error handle is invalid or corrupted

AMI_MISSING_ARGUMENT Required argument not specified (null)

AMI_INVALID_ARGUMENT Invalid argument specified

AMI_INVALID_SESSION Specified AMI session handle (bad handle) is invalid

AMI_CORRUPT_SESSION Specified AMI session handle (bad handle) is invalid or
corrupted

AMI_INVALID_METHOD Specified AMI method handle (bad handle) is invalid

AMI_CORRUPT_METHOD Specified AMI method handle (bad handle) is invalid or
corrupted

AMI_INVALID_
SUBSCRIPTION

Specified AMI subscription handle (bad handle) is invalid

AMI_CORRUPT_ Specified AMI subscription handle (bad handle) is invalid or
corrupted

TIBCO Hawk® Programmer’s Guide

150 | C AMI API Reference

Error Code Description

SUBSCRIPTION

AMI_INVALID_PARM_TABLE Specified AMI parameter list handle (bad handle) is invalid

AMI_CORRUPT_PARM_TABLE Specified AMI parameter list handle (bad handle) is invalid
or corrupted

AMI_INVALID_PARM_LIST Specified AMI parameter list handle (bad handle) is invalid

AMI_CORRUPT_PARM_LIST Specified AMI parameter list handle (bad handle) is invalid
or corrupted

AMI_INVALID_PARAMETER Specified AMI parameter handle (bad handle) is invalid

AMI_CORRUPT_PARAMETER Specified AMI parameter handle (bad handle) is invalid or
corrupted

AMI_RV_ERROR TIBCO Rendezvous error (RV error number): (RV error text)

AMI_UNKNOWN_INVOCATION Received invocation request for unknown AMI method
(method name)

AMI_UNKNOWN_
PARAMETER

Method (method name) does not have a parameter named
(parameter name)

AMI_LIST_ADD_FAILED
Failed to add object to linked list

TIBCO Hawk® Programmer’s Guide

151 | C AMI API Reference

Error Code Description

AMI_ARGUMENT_GET_
FAILED

TIBCO Rendezvous error (RV error number) occurred
attempting to get value for argument (argument name) of
method (method name). (RV error text)

AMI_UNKNOWN_
SUBSCRIPTION

(Method name) invocation received for unknown
subscription with context (context ID) and reply subject
(subject name)

AMI_SESSION_
ANNOUNCED

Attempt made to announce an AMI session which is already
announced.

AMI_SESSION_STOPPED
Attempt made to stop an AMI session which has not been
announced

ami_Method
Type

Purpose
This is the AMI C API method object handle. It encapsulates all the information required to
define and support an AMI method. It is used to identify a specific AMI method in AMI C API
functions.

Remarks
All ami_Method instances are associated with a specific ami_Session instance and are
destroyed along with the ami_Session when ami_SessionDestroy() is called. There is no
need (or function) to destroy an ami_Method.

TIBCO Hawk® Programmer’s Guide

152 | C AMI API Reference

ami_MethodType
Type

Purpose
Defines the valid AMI C API method types.

Enumeration
.

AMI_METHOD_INFO Returns data

AMI_METHOD_ACTION Performs an action

AMI_METHOD_ACTION_INFO Performs an action and returns data

ami_Parameter
Type

Purpose
This is the AMI C API parameter object handle. It encapsulates all the information required
to define and support an AMI parameter. It is used to identify a specific method input or
output parameter in AMI C API functions.

TIBCO Hawk® Programmer’s Guide

153 | C AMI API Reference

Remarks
All ami_Parameter instances are associated with an ami_ParameterList and are destroyed
along with the ami_ParameterList when it is destroyed. There is no need (or function) to
destroy an ami_Parameter.

ami_ParameterList
Type

Purpose
This is the AMI C API parameter list object handle. It encapsulates all the information
required to define and support a list of AMI parameters. It is used to group parameters for
the purpose of defining the input or output parameters of a method and for setting and
retrieving the values of input and output parameters.

Remarks
All ami_ParameterList instances are associated with an ami_Method or an ami_
ParameterListList and are destroyed along with the ami_Method or ami_
ParameterListList when it is destroyed. There is no need (or function) to destroy an ami_
ParameterList.

ami_ParameterListList
Type

Purpose
This is the AMI C API list of parameter lists object handle. It encapsulates all the
information required to define and support multiple AMI parameter lists. It is used to
return multiple instances of output parameter values for a method (i.e. tabular data).

TIBCO Hawk® Programmer’s Guide

154 | C AMI API Reference

Remarks
An ami_ParameterListList instance is passed to the invocation callback function of a
method to allow that method to return zero or more ami_ParameterList instances
containing the return values for the method invocation. The AMI C API provides functions
for adding ami_ParameterList instances to the ami_ParameterListList instance as
required by the method. On return from the method invocation callback function the AMI C
API sends the output parameter values (if any) associated with the ami_ParameterListList
to the AMI manager and then destroys the ami_ParameterListList.

The AMI C API provides functions to create and destroy ami_ParameterListList instances
for use in asynchronous methods where no method invocation callback is involved. The
AMI C API application is responsible for destroying any ami_ParameterListList instances it
explicitly creates using ami_ParameterCreateOut().

ami_Session
Type

Purpose
This is the AMI C API session object handle. It encapsulates all the information required to
define and support an AMI session.

Remarks
The ami_Session is required on all AMI C API function calls to identify the AMI session. An
AMI C API application may have one or more ami_Session instances, each representing a
different Hawk microagent.

ami_Subscription
Function

TIBCO Hawk® Programmer’s Guide

155 | C AMI API Reference

Purpose
This is the AMI C API subscription object handle. It encapsulates all the information
required to define and support a subscription to an asynchronous AMI method.

Remarks
An asynchronous method sends data whenever it becomes available. An AMI manager
informs (starts) the asynchronous method when it is interested in receiving this data, in
other words, it subscribes to the asynchronous method. The asynchronous method will
send data as long as the subscription is in effect and will no longer send data when that
subscription is terminated (stopped). An AMI C API asynchronous method specifies callback
functions that are called when a subscription is started and when it is stopped. An ami_
Subscription instance is provided in these callbacks to be used by the application to
identify the subscription in AMI C API functions.

ami_Property
Type

Declaration
typedef struct amiProperty{

char* name;

void* value;

struct amiProperty * next;

}ami_Property;

Purpose
This data-structure helps creating AMI Transport properties link-list using ami_AddProperty
AMI API, which will be passed to AMI Session create API.

TIBCO Hawk® Programmer’s Guide

156 | C AMI API Reference

AMI C API Error Functions
This chapter describes the error, callback, trace control, initialization and termination
handling functions.

• Error Functions Summary

• Callback Function Types Summary

• Trace Control Functions Summary

• Initialization and Termination Functions Summary

Error Functions Summary
The following table summarizes the error handling functions. These functions are described
in the following sections.

Function Description Page

ami_ErrorCreate(),
ami_errorCreateV()

Creates a new AMI error for
the specified error code and
descriptive text.

ami_
ErrorCreate(),
ami_
errorCreateV()

ami_ErrorDestroy() Destroys the specified AMI
error.

ami_
ErrorDestroy()

ami_ErrorStamp() Stamps the specified AMI
error.

ami_
ErrorStamp()

ami_ErrorGet...
Accessors

Accessor methods ami_ErrorGet...
Accessors

ami_ErrorCreate(), ami_errorCreateV()
Functions

TIBCO Hawk® Programmer’s Guide

157 | C AMI API Reference

Declaration
ami_Error ami_ErrorCreate(

int inErrorCode,

const char * inpTemplate,

...);

ami_Error ami_ErrorCreateV(

int inErrorCode,

const char * inpTemplate,

va_list inArguments);

Purpose
Creates a new AMI error for the specified error code and descriptive text. Descriptive text is
specified as a template (printf format) and substitution arguments. If error creation fails
then an error describing this failure is returned in place of the specified error.

The ami_Error is an object handle representing allocated resources and must be destroyed
using the ami_ErrorDestroy() function or memory will be leaked. The AMI C API
application must destroy any ami_Error instances returned by an AMI C API function call. It
must also destroy any ami_Error instance it explicitly creates with the exception of ami_
Error instances returned to the AMI C API from a method invocation callback function.

Parameters

TIBCO Hawk® Programmer’s Guide

158 | C AMI API Reference

Parameter Description

inErrorCode Error code.

inpTemplate Error description template.

inArguments Error template substitution arguments.

ami_ErrorDestroy()
Function

Declaration
void ami_ErrorDestroy(

ami_Error inAmiError);

Purpose
Destroys the specified AMI error. Can be called with a NULL handle that is ignored.

Parameters

Parameter Description

inAmiError Handle of AMI error.

TIBCO Hawk® Programmer’s Guide

159 | C AMI API Reference

ami_ErrorStamp()
Function

Declaration
void ami_ErrorStamp(

ami_Error inAmiError,

const char * inpFilename,

int inLineNumber);

Purpose
Stamps the specified AMI error with the specified file name and line number to identify the
location in the code where this error was generated.

Parameters

Parameter Description

inAmiError AMI error object to stamp.

inpFilename Source file name in which error occurred.

inLineNumber Source file line number where error occurred.

TIBCO Hawk® Programmer’s Guide

160 | C AMI API Reference

ami_ErrorGet... Accessors
Function

Declaration
int ami_ErrorGetCode(

ami_Error inAmiError);

const char * ami_ErrorGetText(

ami_Error inAmiError);

int ami_ErrorGetThread(

ami_Error inAmiError);

const char * ami_ErrorGetFile(

ami_Error inAmiError);

int ami_ErrorGetLine(

ami_Error inAmiError);

Accessor Functions

TIBCO Hawk® Programmer’s Guide

161 | C AMI API Reference

Function Description

ami_ErrorGetCode Returns the AMI C API error code of the
specified AMI error handle.

ami_ErrorGetText Returns the textual description of the
specified AMI error. This function always
returns a description (never NULL). If no
description was specified in the create call
then a default message is used which states
that no description is available.

ami_ErrorGetThread Returns the thread ID of the thread which
created the specified AMI error.

ami_ErrorGetFile Returns the name of the source file which
generated the specified AMI error. This
function can return a NULL pointer if the
specified error was not file stamped.

ami_ErrorGetLine Returns the line number of the source file
which generated the specified AMI error.
This function could return zero if the
specified error was not file stamped.

Callback Function Types Summary
The following table summarizes the AMI C API callback function types. These types are
described in the following sections.

Function Description Page

ami_
OnInvokeCallback

Prototype for an AMI
method callback
function.

ami_
OnInvokeCallback

ami_OnStartCallback Prototype for the ami_

TIBCO Hawk® Programmer’s Guide

162 | C AMI API Reference

Function Description Page

optional AMI
asynchronous method
on start callback
function.

OnStartCallback

ami_OnStopCallback Prototype for the
optional AMI
asynchronous method
on stop callback
function.

ami_
OnStopCallback

ami_TraceHandler Prototype for the
optional AMI trace
handler callback.

ami_TraceHandler

ami_OnInvokeCallback
Type

Declaration
typedef ami_Error (*ami_OnInvokeCallback)(

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_Subscription inAmiSubscription,

void * inpUserData,

ami_ParameterList inArguments,

TIBCO Hawk® Programmer’s Guide

163 | C AMI API Reference

ami_ParameterListList * inpReturns);

Purpose
This is the prototype for an AMI method callback function. These functions are invoked
whenever the associated method is executed by TIBCO Hawk. The callback should return
method return values or an ami_Error if the function call fails. When this callback is
executed for an asynchronous method the inAmiSubscription argument is provided. For
synchronous or synchronous invocations of asynchronous methods this argument is NULL.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inAmiSubscription Asynchronous method subscription.

inpUserData User data associated with the method.

inArguments AMI input parameter handle.

inpReturns Target for method return values.

ami_OnStartCallback
Type

TIBCO Hawk® Programmer’s Guide

164 | C AMI API Reference

Declaration
typedef ami_Error (*ami_OnStartCallback)(

ami_Session inAmiSession,

ami_Method inAmiMethod,

void * inpUserData,

ami_Subscription inAmiSubscription,

ami_ParameterList inArguments); /

Purpose
This is the prototype for the optional AMI asynchronous method on start callback function.
These functions are called whenever a new subscription is started. The application should
perform any necessary initialization required to process this new subscription. This
callback should return AMI_OK if no error, otherwise an ami_Error describing the failure.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpUserData User data associated with the method.

TIBCO Hawk® Programmer’s Guide

165 | C AMI API Reference

Parameter Description

inAmiSubscription Asynchronous method subscription.

inArguments AMI input parameter handle.

ami_OnStopCallback
Type

Declaration
typedef void (*ami_OnStopCallback)(

ami_Session inAmiSession,

ami_Method inAmiMethod,

void * inpUserData,

ami_Subscription inAmiSubscription);

Purpose
This is the prototype for the optional AMI asynchronous method on stop callback function.
These functions are called whenever a subscription is stopped. The application should
perform any necessary clean-up required when terminating a subscription. This callback
should return AMI_OK if no error, otherwise an ami_Error describing the failure.

Parameters

TIBCO Hawk® Programmer’s Guide

166 | C AMI API Reference

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpUserData User data associated with the method.

inAmiSubscription Asynchronous method subscription.

ami_TraceHandler
Type

Declaration
typedef void (*ami_TraceHandler)(

ami_Session inAmiSession,

ami_TraceCode inTraceCode,

int inTraceID,

const char * inpText,

void * inpUserData);

TIBCO Hawk® Programmer’s Guide

167 | C AMI API Reference

Purpose
This is the prototype for the optional AMI trace handler callback. This callback is used by
AMI API to report events to the application. These events are classified by ami_TraceCode.
If no trace handler is provided then tracing is disabled. Tracing can be controlled (including
turned off) using the trace control functions.

Parameters

Parameter Description

inAmiSession AMI session handle reporting the trace event.

inTraceCode Category of trace event.

inTraceID Unique ID of trace event.

inpText Textual description of trace event

inpUserData User data associated with the AMI session.

Trace Control Functions Summary
The following table summarizes the AMI C API trace control functions. These functions are
described in the following sections.

Function Description Page

ami_TraceCode AMI C API
trace levels.

ami_TraceCode

TIBCO Hawk® Programmer’s Guide

168 | C AMI API Reference

Function Description Page

ami_
SessionGetTraceLevels()

Returns the
current AMI
session trace
level
settings.

ami_
SessionGetTraceLevels()

ami_
SessionSetTraceLevels()

Resets all
AMI session
trace level
settings to
the specified
settings.

ami_
SessionSetTraceLevels()

ami_
SessionEnableTraceLevels
()

Enables the
specified
level(s) of
trace
output.

ami_
SessionEnableTraceLevel
s()

ami_
SessionDisableTraceLevel
s()

Disables the
specified
level(s) of
trace
output.

ami_
SessionDisableTraceLevel
s()

ami_TraceCode
Type

Declaration
typedef enum

TIBCO Hawk® Programmer’s Guide

169 | C AMI API Reference

{ AMI_INFO = 1,

AMI_WARNING = 2,

AMI_ERROR = 4,

AMI_DEBUG = 8,

AMI_AMI = 16,

AMI_STAMP = 32,

AMI_ALL = 0x7FFFFFFF

} ami_TraceCode;

Purpose
AMI C API trace levels. All trace messages output by the AMI C API are classified under one
of the following trace levels. When a trace message is generated it is passed to the ami_
TraceHandler of the associated AMI session only if the corresponding trace level is
enabled. This allows for programmatic control of the level of tracing performed.

These values may be OR'ed together when used as arguments in functions that take an
ami_TraceCode.

Trace Levels

TIBCO Hawk® Programmer’s Guide

170 | C AMI API Reference

Level Description

AMI_ALL This is a convenience value for enabling or disabling all
levels.

AMI_AMI This trace level enables low level tracing of AMI
operations. This level aids the investigation of problems
related to AMI and should not be enabled under normal
circumstances.

AMI_DEBUG This level increases the detail of information in trace
output to aid in investigation of problems. This level is
for troubleshooting purposes only, and under normal
circumstances should not be enabled.

AMI_ERROR This level enables tracing of error messages. This level
should be enabled at all times.

AMI_INFO This level enables tracing of informational messages.
This level can be enabled at all times.

AMI_STAMP This level adds source file name and line number to
trace messages to determine the exact source of trace
messages. This level is for troubleshooting purposes
only, and under normal circumstances should not be
enabled.

AMI_
WARNING

This level enables tracing of warning messages. This
level can be enabled at all times.

ami_SessionGetTraceLevels()
Function

Declaration
ami_Error ami_SessionGetTraceLevels(

TIBCO Hawk® Programmer’s Guide

171 | C AMI API Reference

ami_Session inAmiSession,

ami_TraceCode * inpTraceLevel);

Purpose
Returns the current AMI session trace level settings.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inpTraceLevel Target for returned trace levels.

ami_SessionSetTraceLevels()

Declaration
ami_Error ami_SessionSetTraceLevels(

ami_Session inAmiSession,

ami_TraceCode inTraceLevel);

TIBCO Hawk® Programmer’s Guide

172 | C AMI API Reference

Purpose
Resets all AMI session trace level settings to the specified settings. If a trace level is not
specified, it is disabled.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace levels to set.

ami_SessionEnableTraceLevels()
Function

Declaration
ami_Error ami_SessionEnableTraceLevels(

ami_Session inAmiSession,

ami_TraceCode inTraceLevel);

Purpose
Enables the specified level(s) of trace output. All other trace level settings are not effected.

TIBCO Hawk® Programmer’s Guide

173 | C AMI API Reference

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace level(s) to enable.

ami_SessionDisableTraceLevels()
Function

Declaration
ami_Error ami_SessionDisableTraceLevels(

ami_Session inAmiSession,

ami_TraceCode inTraceLevel);

Purpose
Disables the specified level(s) of trace output. All other trace level settings are not effected.

Parameters

TIBCO Hawk® Programmer’s Guide

174 | C AMI API Reference

Parameter Description

inAmiSession Handle of AMI session.

inTraceLevel Trace level(s) to disable.

Initialization and Termination Functions Summary
The following table summarizes the AMI C API functions for returning version information
and starting and stopping the API. These functions are described in the following sections.

Function Description Page

ami_Version...
Accessors

These functions return the AMI
C API version information.

ami_
Version...
Accessors

ami_Open() Initializes the AMI C API. ami_Open()

ami_Close() Terminates the AMI C API. ami_Close()

ami_Version... Accessors
Functions

Declaration
const char * ami_VersionName();

const char * ami_Version();

TIBCO Hawk® Programmer’s Guide

175 | C AMI API Reference

const char * ami_VersionDate();

int ami_VersionMajor();

int ami_VersionMinor();

int ami_VersionUpdate();

Purpose
These functions return the AMI C API version information. The version information consists
of a major, minor, and update number formatted left to right, respectively like this 3.1.1.

Accessors

Function Description

ami_VersionName() Returns the product name.

ami_Version() Returns the version string, for example, 3.1.1.

ami_VersionDate() Returns the build date.

ami_VersionMajor() Returns the major version number.

ami_VersionMinor() Returns the minor version number.

ami_VersionUpdate() Returns the update version number.

ami_Open()
Function

TIBCO Hawk® Programmer’s Guide

176 | C AMI API Reference

Declaration
ami_Error ami_Open();

Purpose
Initializes the AMI C API. Must be called prior to calling any other AMI C API functions.

ami_Close()
Function

Declaration
ami_Error ami_Close();

Purpose
Terminates the AMI C API and releases associated resources.

AMI C API Session Functions
This chapter describes the AMI C API session functions. Each AMI session manifests itself as
a microagent in the associated AMI manager. The AMI C API session object (ami_Session)
encapsulates an AMI session. The API provides handle-based functions to create, announce,
stop, and destroy session objects.

• Session Functions Summary

TIBCO Hawk® Programmer’s Guide

177 | C AMI API Reference

Session Functions Summary
This table summarizes the AMI C API session functions. These functions are described in the
following sections.

Function Description Page

ami_
SessionCreateUsingPrope
rties()

Creates a new
AMI session
using transport
properties.

ami_
SessionCreateUsingPrope
rties()ami_
SessionCreateUsingPrope
rties()ami_
SessionCreateUsingPrope
rties()

ami_AddProperty() Adds transport
properties.

ami_AddProperty()

ami_SessionCreate() Creates a new
AMI session.

ami_SessionCreate()

ami_SessionDestroy() Destroys the
AMI session.

ami_SessionDestroy()

ami_SessionAnnounce() Activates the
AMI session.

ami_SessionAnnounce()

ami_SessionStop() Stops
(deactivates) the
AMI session.

ami_SessionStop()

ami_SessionGetName() Gets the name
string of AMI
session
(microagent).

ami_SessionGetName()

ami_
SessionGetDisplayName
()

Get the user-
friendly name
string of AMI

ami_
SessionGetDisplayName()

TIBCO Hawk® Programmer’s Guide

178 | C AMI API Reference

Function Description Page

session
(microagent).

ami_SessionGetHelp() Gets the
descriptive text
string of AMI
session
(microagent).

ami_SessionGetHelp()

ami_SessionGetUserData
()

Returns the user
data of the
specified AMI
session.

ami_SessionGetUserData
()

ami_SessionSendData() Returns data for
the specified
asynchronous
method
subscription.

ami_SessionSendData()

ami_SessionSendError() Reports an error
condition for
the specified
asynchronous
method
subscription.

ami_SessionSendError()

ami_SessionOnData() Calls the ami_
OnInvokeCallba
ck function of
the specified
AMI
asynchronous
method once for
each currently
active
subscription.

ami_SessionOnData()

TIBCO Hawk® Programmer’s Guide

179 | C AMI API Reference

Function Description Page

ami_
SessionSendUnsolicited
Msg()

Send an
unsolicited
message to any
interested
subscribers.

ami_
SessionSendUnsolicitedM
sg()

ami_SessionCreateUsingProperties()
Function

Declaration
ami_Error ami_SessionCreateUsingProperties(

ami_Session * inpAmiSession,

ami_TraceCode inTraceLevel,

ami_Property * inpProperties,

const char * inpName,

const char * inpDisplayName,

const char * inpHelp,

ami_TraceHandler inTraceHandler,

const void * inpUserData);

TIBCO Hawk® Programmer’s Guide

180 | C AMI API Reference

Purpose
Creates a new AMI session using transport properties. Each session represents a single
TIBCO Hawk microagent.

Create property list using the ami_AddProperty() API and pass it to the ami_
SessionCreateUsingProperties() API.

Parameters

Parameter Description

inpAmiSession Target for returned session handle.

inTraceLevel AMI trace levels for this AMI session. See ami_
TraceCode for trace level descriptions.

inpProperties AMI transport properties.

inpName Unique name string for microagent.

inpDisplayName User-friendly name string for microagent.

inpHelp User-friendly microagent description.

inTraceHandler AMI session trace callback function.

inpUserData AMI session user data.

ami_AddProperty()
Function

TIBCO Hawk® Programmer’s Guide

181 | C AMI API Reference

Declaration
ami_Error ami_AddProperty(

const char * inpName,

void * inpValue,

ami_Property ** inpProperties);

Purpose
Creates a linked list defined as ami_Property and adds transport properties to it. The
ami_AddProperty() API allocates memory and creates a linked list for every parameter
added.

Create property list using the ami_AddProperty() API and pass it to ami_
SessionCreateUsingProperties() API.

Parameters

Parameter Description

inpName Name of the parameter.

inpValue Value of the parameter.

ami_Property Reference to the property.

The following table provides the supported property names and their default values:

TIBCO Hawk® Programmer’s Guide

182 | C AMI API Reference

Property Name Mandatory Default Description

hawk_domain No Default The hawk domain.

hawk_transport No tibas Choice of
transport. The
available options
are:

• tibrv

Properties List for hawk_transport = tibrv

Property
Name

Mandatory Default Description

rv_service No 7474 TIBCO Rendezvous
service property.

rv_network No ; TIBCO Rendezvous
network property.

rv_daemon No tcp:7474 TIBCO Rendezvous
daemon property.

rv_queue No Internal-
queue

TIBCO Rendezvous
queue for AMI
session.

rv_transport No Internal-rv-
transports

TIBCO Rendezvous
transport for AMI
session.

ami_SessionCreate()
Function

TIBCO Hawk® Programmer’s Guide

183 | C AMI API Reference

Declaration
ami_Error ami_SessionCreate(

ami_Session * inpAmiSession,

ami_TraceCode inTraceLevel,

const char * inpRvService,

const char * inpRvNetwork,

const char * inpRvDaemon,

unsigned int inRvTransport,

unsigned int inRvQueue,

const char * inpName,

const char * inpDisplayName,

const char * inpHelp,

ami_TraceHandler inTraceHandler,

const void * inpUserData);

Purpose
Creates a new AMI session. Each session represents a single TIBCO Hawk microagent.

TIBCO Hawk® Programmer’s Guide

184 | C AMI API Reference

Parameters

Parameter Description

inpAmiSession Target for returned session handle.

inTraceLevel AMI trace levels for this AMI session. See ami_
TraceCode for trace level descriptions.

inpRvService TIBCO Rendezvous service parameter.

inpRvNetwork TIBCO Rendezvous network parameter.

inpRvDaemon TIBCO Rendezvous daemon parameter.

inRvTransport TIBCO Rendezvous transport for AMI session.

inRvQueue TIBCO Rendezvous queue for AMI session.

inpName Unique name string for microagent.

inpDisplayName User-friendly name string for microagent.

inpHelp User-friendly microagent description.

inTraceHandler AMI session trace callback function.

inpUserData AMI session user data.

Note
If the transport being used is tibrv , you need to perform the following
steps:

• Explicitly call tibrv_open() method before providing a user
queue (rv_queue).

• Explicitly call tibrv_close() method before application exit.

TIBCO Hawk® Programmer’s Guide

185 | C AMI API Reference

Refer to TIBCO Rendezvous® documentation for more information.

ami_SessionDestroy()
Function

Declaration
ami_Error ami_SessionDestroy(

ami_Session inAmiSession);

Purpose
Destroys the AMI session. The AMI session (and associated handle) is no longer valid. If the
AMI session is active it will be stopped prior to being destroyed.

Parameters

Parameter Description

inAmiSession AMI session parameter.

ami_SessionAnnounce()
Function

TIBCO Hawk® Programmer’s Guide

186 | C AMI API Reference

Declaration
ami_Error ami_SessionAnnounce(

ami_Session inAmiSession);

Purpose
Activates the AMI session. All interested Hawk agents are notified that this AMI session is
running and available. These agents will add the associated microagent to their microagent
lists. This AMI session will be active until ami_SessionStop or ami_SessionDestroy is
called.

Parameters

Parameter Description

inAmiSession AMI session parameter.

ami_SessionStop()
Function

Declaration
ami_Error ami_SessionStop(

ami_Session inAmiSession);

TIBCO Hawk® Programmer’s Guide

187 | C AMI API Reference

Purpose
Stops the AMI session. All associated Hawk agents are notified that this AMI session is no
longer running or supported. These agents will remove the associated microagent from
their microagent lists. This AMI session will be inactive until ami_SessionAnnounce is called
to re-activate this session.

Parameters

Parameter Description

inAmiSession AMI session parameter.

ami_SessionGetName()
Function

Declaration
ami_Error ami_SessionGetName(

ami_Session inAmiSession

const char ** inpName);

Purpose
Gets the name string of AMI session (microagent). This string should not be modified.

TIBCO Hawk® Programmer’s Guide

188 | C AMI API Reference

Parameters

Parameter Description

inAmiSession AMI session parameter.

inpName Target for the returned AMI session name.

ami_SessionGetDisplayName()
Function

Declaration
ami_Error ami_SessionGetDisplayName(

ami_Session inAmiSession,

const char ** inpName);

Purpose
Gets the user-friendly name string of AMI session (microagent). This string should not be
modified.

Parameters

TIBCO Hawk® Programmer’s Guide

189 | C AMI API Reference

Parameter Description

inAmiSession AMI session parameter.

inpName Target for the returned display name.

ami_SessionGetHelp()
Function

Declaration
ami_Error ami_SessionGetHelp(

ami_Session inAmiSession,

const char ** inpHelp);

Purpose
Gets the descriptive text string of AMI session (microagent). This string should not be
modified.

Parameters

TIBCO Hawk® Programmer’s Guide

190 | C AMI API Reference

Parameter Description

inAmiSession AMI session parameter.

inpHelp Target for the returned AMI session description.

ami_SessionGetUserData()
Function

Declaration
ami_Error ami_SessionGetUserData(

ami_Session inAmiSession,

void ** inpUserData);

Purpose
Returns the user data of the specified AMI session.

Parameters

Parameter Description

inAmiSession AMI session parameter.

inpUserData Target for the returned user data.

TIBCO Hawk® Programmer’s Guide

191 | C AMI API Reference

ami_SessionSendData()
Function

Declaration
ami_Error ami_SessionSendData(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

ami_ParameterListList inReturns);

Purpose
Returns data for the specified asynchronous method subscription.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiSubscription Asynchronous method subscription.

inReturns Data to be returned.

TIBCO Hawk® Programmer’s Guide

192 | C AMI API Reference

ami_SessionSendError()
Function

Declaration
ami_Error ami_SessionSendError(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

ami_Error inAmiError);

Purpose
Reports an error condition for the specified asynchronous method subscription.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiSubscription Asynchronous method subscription.

inAmiError Error to be reported.

TIBCO Hawk® Programmer’s Guide

193 | C AMI API Reference

ami_SessionOnData()
Function

Declaration
ami_Error ami_SessionOnData(

ami_Session inAmiSession,

ami_Method inAmiMethod);

Purpose
Calls the ami_OnInvokeCallback function of the specified AMI asynchronous method once
for each currently active subscription. This function is typically invoked when new data
becomes available for an asynchronous method. The ami_OnInvokeCallback is called with
the subscriptions argument values allowing the application to properly send the new data
to each subscription.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod AMI Asynchronous method handle.

TIBCO Hawk® Programmer’s Guide

194 | C AMI API Reference

ami_SessionSendUnsolicitedMsg()
Function

Declaration
ami_Error ami_SessionSendUnsolicitedMsg(

ami_Session inAmiSession,

ami_AlertType inType,

const char * inpText,

int inId);

Purpose
Sends an unsolicited message to any interested subscribers.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inType Alert type of message.

inpText Textual description of message.

inId User defined ID of message.

TIBCO Hawk® Programmer’s Guide

195 | C AMI API Reference

AMI C API Method Functions
This chapter describes the AMI C API method functions. A method can return data and or
perform a task. AMI methods can accept input parameters and return output parameters as
required by the method. Handle-based functions are provided to define AMI methods for a
specific AMI session. Through these AMI methods, the AMI manager monitors and manages
your AMI application.

• Method Functions Summary

Method Functions Summary
This table summarizes the AMI C API method functions. These functions are described in
the following sections.

Function Description Page

ami_MethodCreate() Creates a
synchronous AMI
method and adds it
to the specified AMI
session.

ami_MethodCreate()

ami_
AsyncMethodCreate()

Creates an
asynchronous AMI
method and adds it
to the specified AMI
session.

ami_
AsyncMethodCreate()

ami_MethodGetName() Returns the name
of the specified
method.

ami_MethodGetName
()

ami_MethodGetHelp() Returns the textual
description of the
specified method.

ami_MethodGetHelp()

ami_ Returns the user ami_

TIBCO Hawk® Programmer’s Guide

196 | C AMI API Reference

Function Description Page

MethodGetUserData() data of the
specified method.

MethodGetUserData()

ami_MethodSetIndex() Specifies which
return parameters
to use as the index
(es) for methods
that return tabular
data.

ami_MethodSetIndex()

ami_MethodCreate()
Function

Declaration
ami_Error ami_MethodCreate(

ami_Session inAmiSession,

ami_Method * inpAmiMethod,

const char * inpName,

ami_MethodType inType,

const char * inpHelp,

int inTimeout,

TIBCO Hawk® Programmer’s Guide

197 | C AMI API Reference

ami_OnInvokeCallback inOnInvoke,

const void * inpUserData);

Purpose
Allocates and initializes an ami_Method object and returns the handle to the object. The
ami_Method object belongs to the specified ami_Session object and will be destroyed when
the ami_Session is destroyed.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inpAmiMethod Location to store new method handle.

inpName Name of the method for AMI purpose.

inType Type of method.

inpHelp Textual description of method.

inTimeout Timeout period in milliseconds.

inOnInvoke Method invocation callback.

inpUserData (Optional) AMI method user data.

TIBCO Hawk® Programmer’s Guide

198 | C AMI API Reference

ami_AsyncMethodCreate()
Function

Declaration
ami_Error ami_AsyncMethodCreate(

ami_Session inAmiSession,

ami_Method * inpAmiMethod,

const char * inpName,

ami_MethodType inType,

const char * inpHelp,

int inTimeout,

ami_OnInvokeCallback inOnInvoke,

ami_OnStartCallback inOnStart,

ami_OnStopCallback inOnStop,

const void * inpUserData);

TIBCO Hawk® Programmer’s Guide

199 | C AMI API Reference

Purpose
Allocates and initializes an ami_Method object and returns the handle to the object. The
ami_Method object belongs to the specified ami_Session object and will be destroyed when
the ami_Session is destroyed.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inpAmiMethod Location to store new method handle.

inpName Name of the method for AMI purpose.

inType Type of method.

inpHelp Textual description of method.

inTimeout Timeout period in milliseconds.

inOnInvoke Method invocation callback.

inOnStart (Optional) Start subscription callback.

inOnStop (Optional) Stop subscription callback.

inpUserData (Optional) AMI method user data.

ami_MethodGetName()
Function

TIBCO Hawk® Programmer’s Guide

200 | C AMI API Reference

Declaration
ami_Error ami_MethodGetName(

ami_Session inAmiSession,

ami_Method inAmiMethod,

const char ** inpMethodName);

Purpose
Returns the name of the specified method in the specified AMI session. This string should
not be modified.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpMethodName Target for returned method name.

ami_MethodGetHelp()
Function

TIBCO Hawk® Programmer’s Guide

201 | C AMI API Reference

Declaration
ami_Error ami_MethodGetHelp(

ami_Session inAmiSession,

ami_Method inAmiMethod,

const char ** inpMethodHelp);

Purpose
Returns the textual description of the specified method in the specified AMI session. This
string should not be modified.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpMethodHelp Target for returned method help.

ami_MethodGetUserData()
Function

TIBCO Hawk® Programmer’s Guide

202 | C AMI API Reference

Declaration
ami_Error ami_MethodGetUserData(

ami_Session inAmiSession,

ami_Method inAmiMethod,

void ** inpUserData);

Purpose
Returns the user data of the specified method.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpUserData Target for returned user data.

ami_MethodSetIndex()
Function

TIBCO Hawk® Programmer’s Guide

203 | C AMI API Reference

Declaration
ami_Error ami_MethodSetIndex(

ami_Session inAmiSession,

ami_Method inAmiMethod,

const char * inpIndexName);

Purpose
Specifies which return parameter to use as the primary key for methods that return tabular
data. If you need to establish a composite index consisting of multiple parameters, this
method can be called repeatedly, once for each index return parameter, in order of
precedence with primary key first.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpIndexName Return parameter name.

AMI C API Subscription Functions
This section describes the AMI subscription functions.

TIBCO Hawk® Programmer’s Guide

204 | C AMI API Reference

• Subscription Functions Summary

Subscription Functions Summary
This table summarizes the AMI C API subscription functions. These functions are described
in the following sections.

Function Description Page

ami_
SubscriptionSetUserData
()

Allows you
to attach
application
specific
data to a
particular
asynchrono
us method
subscriptio
n.

ami_
SubscriptionSetUserData
()

ami_
SubscriptionGetUserData
()

Allows you
to retrieve
the
application
specific
data
attached to
a particular
asynchrono
us method
subscriptio
n.

ami_
SubscriptionGetUserData
()

ami_
SubscriptionSetCallbackI
nterval()

Indicates
that for this
subscriptio
n the
associated

ami_
SubscriptionSetCallbackI
nterval()

TIBCO Hawk® Programmer’s Guide

205 | C AMI API Reference

Function Description Page

onInvoke
callback
should be
auto-
invoked at
the
specified
interval.

ami_
SubscriptionGetMethod()

Allows user
to retrieve
the
associated
AMI method
object for a
particular
asynchrono
us method
subscriptio
n.

ami_
SubscriptionGetMethod()

ami_
SubscriptionGetArguments
()

Allows user
to retrieve
the method
argument
values for a
particular
asynchrono
us method
subscriptio
n.

ami_
SubscriptionGetArgumen
ts()

ami_SubscriptionSetUserData()
Function

TIBCO Hawk® Programmer’s Guide

206 | C AMI API Reference

Declaration
ami_Error ami_SubscriptionSetUserData(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

void * inpUserData);

Purpose
Allows you to attach application specific data to a particular asynchronous method
subscription. This function is usually used in the onStart callback.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiSubscription Asynchronous method subscription.

inpUserData User data.

ami_SubscriptionGetUserData()
Function

TIBCO Hawk® Programmer’s Guide

207 | C AMI API Reference

Declaration
ami_Error ami_SubscriptionGetUserData(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

void ** inpUserData);/

Purpose
Allows you to retrieve the application specific data attached to a particular asynchronous
method subscription. This function is usually used in the onInvoke callback when
processing asynchronous method invocations to obtain access to the application specific
data associated with that invocation.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiSubscription Asynchronous method subscription.

inpUserData Target for returned user data.

TIBCO Hawk® Programmer’s Guide

208 | C AMI API Reference

ami_SubscriptionSetCallbackInterval()
Function

Declaration
ami_Error ami_SubscriptionSetCallbackInterval(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

int inInterval);

Purpose
Indicates that for this subscription the associated onInvoke callback should be auto-
invoked at the specified interval. This provides a pseudo-asynchronous event to trigger
(what would normally be) synchronous methods so that they can behave as asynchronous
methods.

A typical scenario is a method which must calculate (polled) data over a precise time
interval and return the calculated result based on that interval. In this case the method
returns data not based on a synchronous call but on a specified time interval.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

TIBCO Hawk® Programmer’s Guide

209 | C AMI API Reference

Parameter Description

inAmiSubscription Asynchronous method subscription.

inInterval Interval in seconds. Zero turns off the interval.

ami_SubscriptionGetMethod()
Function

Declaration
ami_Error ami_SubscriptionGetMethod(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

ami_Method * inpAmiMethod);

Purpose
Allows user to retrieve the associated AMI method object for a particular asynchronous
method subscription.

ami_SubscriptionGetArguments()
Function

TIBCO Hawk® Programmer’s Guide

210 | C AMI API Reference

Declaration
ami_Error ami_SubscriptionGetArguments(

ami_Session inAmiSession,

ami_Subscription inAmiSubscription,

ami_ParameterList * inpArguments);

Purpose
Allows user to retrieve the method argument values for a particular asynchronous method
subscription. This ami_ParameterList is only valid while the associated subscription is
valid.

AMI C API Parameter Functions
This section describes the parameter functions. The functions are used to define and
process method parameters and return values.

• Parameter Functions Summary

Parameter Functions Summary
This table summarizes the AMI C API parameter functions. These functions are described in
the following sections.

TIBCO Hawk® Programmer’s Guide

211 | C AMI API Reference

Function Description Page

ami_ParameterCreateIn() Adds the
specified
parameter to
the list of
input
parameters
for the
method.

ami_ParameterCreateIn()

ami_ParameterCreateOut() Adds the
specified
parameter to
the
description
of return
parameters
for that
method.

ami_
ParameterCreateOut()

ami_ParameterListOut() Returns a
handle to a
list of AMI
parameter
lists to be
used to
specify
return values
for a method
invocation.

ami_ParameterListOut()

ami_ParameterSetValue() Sets the
value of an
AMI
parameter in
the specified
AMI
parameter

ami_ParameterSetValue
()

TIBCO Hawk® Programmer’s Guide

212 | C AMI API Reference

Function Description Page

list.

ami_ParameterGetValue() Retrieves the
value of an
AMI
parameter
from the
specified AMI
parameter
list.

ami_ParameterGetValue
()

ami_ParameterAddChoice() Adds a value
choice for
the specified
parameter.

ami_
ParameterAddChoice()

ami_ParameterAddLegal() Adds a legal
choice for
the specified
parameter.

ami_ParameterAddLegal
()

ami_
ParameterListListDestroy
()

Destroys the
specified list
of parameter
lists.

ami_
ParameterListListDestroy
()

ami_ParameterCreateIn()
Function

Declaration
ami_Error ami_ParameterCreateIn(

TIBCO Hawk® Programmer’s Guide

213 | C AMI API Reference

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_Parameter * inpAmiParm,

const char * inpName,

ami_DataType inType,

const char * inpHelp);

Purpose
Adds the specified parameter to the list of input parameters for the method.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParm Target for returned parameter handle.

inpName Name of the parameter for AMI purposes.

inType Type of the parameter.

inpHelp Optional description for the parameter.

TIBCO Hawk® Programmer’s Guide

214 | C AMI API Reference

ami_ParameterCreateOut()
Function

Declaration
ami_Error ami_ParameterCreateOut(

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_Parameter * inpAmiParm,

const char * inpName,

ami_DataType inType,

const char * inpHelp);

Purpose
Adds the specified parameter to the description of return parameters for that method.

Parameters

TIBCO Hawk® Programmer’s Guide

215 | C AMI API Reference

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParm Target for returned parameter handle.

inpName Name of the parameter for AMI purposes.

Note: The use of curly brackets { } in
microagent method parameter names is not
supported. Use of these characters results in an
error.

inType Type of the parameter.

inpHelp Optional description for the parameter.

ami_ParameterListOut()
Function

Declaration
ami_Error ami_ParameterListOut(

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_ParameterListList * inpAmiParmListList,

TIBCO Hawk® Programmer’s Guide

216 | C AMI API Reference

ami_ParameterList * inpAmiParmList);

Purpose
Returns a handle to a list of AMI parameter lists to be used to specify return values for a
method invocation. The first call to this method allocates and returns the list of AMI
parameter lists (ami_ParameterListList) and one parameter list (ami_ParameterList)
member. The application then uses the ami_ParameterSetValue to set the return values
into this parameter list (ami_ParameterList).

To return more than one row of data (i.e. tabular data) this function can be called
repeatedly using the same ami_ParameterListList handle. Each call will add an additional
return row and return a parameter list (ami_ParameterList) to set the return values for
that row.

If the ami_ParameterListList was created by the AMI API (for example, ami_
OnInvokeCallback) then the API is responsible for destroying it. It it was created by the
user’s application, the application must destroy it using ami_ParameterListListDestroy.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inpAmiParmListList List of AMI parameters list.

inpAmiParmList Handle of AMI parameter list.

TIBCO Hawk® Programmer’s Guide

217 | C AMI API Reference

ami_ParameterSetValue()
Function

Declaration
ami_Error ami_ParameterSetValue(

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_ParameterList inAmiParmList,

const char * inpName,

const void * inpValue);

Purpose
Sets the value of an AMI parameter in the specified AMI parameter list.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

TIBCO Hawk® Programmer’s Guide

218 | C AMI API Reference

Parameter Description

inpAmiParmList Set parameter in this parameter list.

inpName Name of parameter being set.

inpValue Value being set.

ami_ParameterGetValue()
Function

Declaration
ami_Error ami_ParameterGetValue(

ami_Session inAmiSession,

ami_Method inAmiMethod,

ami_ParameterList inAmiParmList,

const char * inpName,

void * inpValue);

Purpose
Retrieves the value of an AMI parameter from the specified AMI parameter list.

TIBCO Hawk® Programmer’s Guide

219 | C AMI API Reference

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiMethod Handle of AMI method.

inAmiParmList Get parameter from this parameter list.

inpName Name of parameter being retrieved.

inpValue Target for retrieved value.

ami_ParameterAddChoice()
Function

Declaration
ami_Error ami_ParameterAddChoice(

ami_Session inAmiSession,

ami_Parameter inAmiParm,

const void * inpData);

TIBCO Hawk® Programmer’s Guide

220 | C AMI API Reference

Purpose
Adds a value choice for the specified parameter.

Remarks
Value choices can be displayed by the managing application. If value choices are specified
for a parameter, other values are also permitted. For a specified object, set only one of
either choice or legal values. If both are set, the legal value takes precedence.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiParm Handle of AMI parameter.

inpData Choice value.

ami_ParameterAddLegal()
Function

Declaration
ami_Error ami_ParameterAddLegal(

ami_Session inAmiSession,

TIBCO Hawk® Programmer’s Guide

221 | C AMI API Reference

ami_Parameter inAmiParm,

const void * inpData);

Purpose
Adds a legal choice for the specified parameter.

Remarks
Legal value choices can be enforced and displayed by the managing application. If legal
value choices are specified for a parameter, no other values are permitted. For a specified
object, set only one of either choice or legal values. If both are set, the legal value takes
precedence.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiParm Handle of AMI parameter.

inpData Legal choice value.

ami_ParameterListListDestroy()
Function

TIBCO Hawk® Programmer’s Guide

222 | C AMI API Reference

Declaration
ami_Error ami_ParameterListListDestroy(

ami_Session inAmiSession,

ami_ParameterListList inAmiParmList);

Purpose
Destroys the specified list of parameter lists.

Parameters

Parameter Description

inAmiSession Handle of AMI session.

inAmiParmList Handle of list of parameter lists.

TIBCO Hawk® Programmer’s Guide

223 | Security Framework

Security Framework
The TIBCO Hawk product currently supports the ability to “plug-in” an authorization
module. The TIBCO Hawk Console uses the plug-in module to create identification objects.
The TIBCO Hawk agent guarantees that every request is authorized before execution by
invoking the appropriate plug-in method.

The techniques used to address authentication, authorization, integrity, and privacy with
regard to messaging and communication channels are varied. It is the goal of the
framework to be completely independent of these techniques so that a plug-in is possible
regardless of the tools and techniques chosen for implementation.

Implementation of the Certified Class and Trusted Class security models is discussed in
TIBCO Hawk Installation, Configuration, and Administration Guide.

• TIBCO Hawk Security Concepts

• Implementing a Security Policy

• Sample Code

TIBCO Hawk Security Concepts
A secure environment addresses concerns of data authentication, authorization, privacy,
and integrity.

Authentication
Data authentication is the practice of determining that an entity (such a person or system
process) is who it claims to be. This verification can be performed through use of a shared
secret system, such as requiring a password, or through certificates and digital signatures.

Authentication involves the following interactions.

1. The entity that is to identify itself to a verifying entity provides an identifier to that
verifying entity. The identifier specifies that the originating entity has a particular
identity.

TIBCO Hawk® Programmer’s Guide

224 | Security Framework

2. The verifying entity then receives the identifier from the entity. It uses the verifier to
check the authenticity of the entity’s claim. In some instances, the verifying entity
can be its own verifier.

3. The verifier makes sure that an entity is who it claims it is. This process may or may
not involve communication with the entity making the claim.

The verification can involve different levels of authentication.

Identity Only
In identity-only authentication, the system does not verify that the entity is who it claims it
is, but does pass the entity’s identifier to other parts of the system. This is the lowest level
of authentication, and is useful where costs of a more secure authentication system
preclude higher degrees of security, but identity is still important. This sort of
authentication is useful where non-sensitive data is involved.

Shared Secret
Shared secret authentication is where each entity has a secret, such as a password, that is
shared with the authentication system. Proof that the entity holds the secret can take one
of the following forms.

• The secret is sent from the entity to the verifier. Web browsers using the basic
authentication web paradigm use this method. It is not very secure, as it is possible
to impersonate the entity. More security can be added by encrypting the
conversation.

• The secret is used to encrypt a commonly-known piece of data. The encrypted data
is then sent to the authentication system, which then verifies the identity of the
sender by performing its own data encryption and comparing the result with the
sender’s data.

• A “challenge-response” protocol is used, wherein the verifier provides a piece of
randomly-generated data, which the sending entity encrypts using the shared secret.
The entity sends back the encrypted data, which the verifier then compares with its
own version. If they match, the verifier accepts that the entity is who it claims it is.

TIBCO Hawk® Programmer’s Guide

225 | Security Framework

Certificates
Digital certificates are a means whereby an entity has a public-private key pair, and
registers the public key with a Certificate Authority. The infrastructure required for a public
key system is referred to as a Public Key Infrastructure (PKI), of which the third-party
Certificate Authority is a part. The Certificate Authority issues a certificate, containing
information about the entity and the entity’s public key, and signs it.

To provide authentication of identity, the authentication system challenges the entity in a
similar manner to the challenge-response protocol. The entity signs the challenge using its
private key, and the system verifies this signature by using the entity’s public key.

Further information concerning security certificates can be found in TIBCO Hawk
Installation, Configuration, and Administration Guide.

Authorization
Authorization is generally concerned with operations on which to grant permissions.
Sometimes these permissions are determined by work groups or other concerns. Use of
tickets, such as tibrv.tkt, is an example of authorization. A ticket is used for
authentication and authorization in lieu of other credentials. In other cases, the issue is
whether a certain operation can be performed on a specified system, or by a specified user.

Data Privacy and Integrity
Data privacy and integrity use encryption techniques to make sure unauthorized entities
can’t see or modify sensitive data. These techniques are also used when a principal needs
to prove it originated a message. Encryption can either use the same key to encrypt and
decrypt a message, or use a public-private key pair, where encrypted data using the public
key can only be decrypted using the private key, and vice versa.

Data integrity is maintained by using one-way hash functions. These functions generate
fixed-length output from input. When sending a message, the sender runs the one-way
hash function on the message, encrypts the resulting hash value, and sends the resulting
message identification code (MIC) along with the message. The recipient runs the same
function on the message, decrypts the MIC, and sees if the results match. A match indicates
that the message has not been tampered with.

TIBCO Hawk® Programmer’s Guide

226 | Security Framework

Considerations for the TIBCO Hawk System
The security provisions of the TIBCO Hawk monitoring system are consistent with its
scalable distributed architecture. While a user is not required to trade off scalability for
security, the flexibility of the security framework allows choosing a loss of scalability in
return for high degrees of security. It also provides a modular mechanism for addressing
security, in which the TIBCO Hawk agent can delegate responsibility to the security
module, through the interfaces of the security framework. Because every user has unique
security needs, security is presented as an open framework. You can develop methods that
grant or deny permissions to meet your requirements.

Implementing a Security Policy
The TIBCO Hawk software provides a security framework that you can adapt to your own
security needs. To use a security policy, you create a Java class that implements the
security interface.

Because every system has unique security needs, the security policy provides an open
framework for security implementation, rather than a standardized security policy. You can
develop methods to grant or deny permissions based on your needs.

Creating a Java Security Class
The TIBCO Hawk security system must be implemented as a Java class, though you may
choose to make this class a simple wrapper that uses the Java Native Interface (JNI) to call
other security methods in a C or C++ library. The Java class must implement the
HsConsoleInterface and HsAgentInterface, which are included with the TIBCO Hawk
distribution.

The name of the Java class file for security must be passed to the TIBCO Hawk Console and
the TIBCO Hawk agent as a command-line argument.

Once both of these processes have been started using this argument, the security policy is
in force.

TIBCO Hawk® Programmer’s Guide

227 | Security Framework

Framework Protocol
The security framework supports an agent and a client-side protocol, as shown below. The
client side supports the creation of an identifying object (createid() in the diagram) and
the transformation of the message (pack() in the diagram).

The agent side supports inverse operations for restoring the message’s original format
(unpack()) and validating the identifying object (validateid()).

Figure 15: Security Framework Model

Security Objects
While a sample security framework plug-in is provided later in this section, users may
prefer to write their own security framework implementation. Plug-ins for the security

TIBCO Hawk® Programmer’s Guide

228 | Security Framework

framework are created using the classes listed here. The prefix Hs designates the object as
part of the TIBCO Hawk Security Framework.

The following link provides access the detailed descriptions of security classes you can use
to create plug-ins:

• Security API Javadocs

Sample Code
The following sample code shows an example of a security policy class file in Java.

/*

* Copyright (c) 1997, 1998 TIBCO Software, Inc. All Rights Reserved.

*

* This software is the confidential and proprietary information of

* TIBCO Software Inc.

*/

package COM.TIBCO.hawk.security.test;

import java.lang.*;

import java.io.*;

import COM.TIBCO.hawk.console.security.*;

public class Test implements HsConsoleInterface, HsAgentInterface {

https://docs.tibco.com/pub/hawk/6.2.2/doc/api/console-api/index.html

TIBCO Hawk® Programmer’s Guide

229 | Security Framework

 public void Test() {

 System.out.println("PLUGIN: Test.constructor()");

 }

 public void initialize() throws HsException {

 System.out.println("PLUGIN: Test.initialize()");

 }

 public void shutdown() throws HsException {

 System.out.println("PLUGIN: Test.shutdown()");

 }

 public String initialize(int context) throws HsException {

 System.out.println("PLUGIN: Test.initialize(" + context + ")");

 return null;

 }

 public void shutdown(int context) throws HsException {

TIBCO Hawk® Programmer’s Guide

230 | Security Framework

 System.out.println("PLUGIN: Test.shutdown(" + context + ")");

 }

 public HsIdentifier createId(HsOperation operation)

 throws HsException

{

 if (operation instanceof HsNodeOperation)

 System.out.println("PLUGIN: createId(" +

((HsNodeOperation)operation).microagent() + ":" +

((HsNodeOperation)operation).method() + ")");

 else if (operation instanceof HsGroupOperation)

 System.out.println("PLUGIN: createId(" +

((HsGroupOperation)operation).microagent() + ":" +

((HsGroupOperation)operation).method() + ")");

 else

 System.out.println("PLUGIN: Unknown request");

TIBCO Hawk® Programmer’s Guide

231 | Security Framework

HsIdentifier id = null;

try {

 String name = new String("Test Plug-In");

id = new HsIdentifier(name.getBytes());

} catch (HsFrameworkException hsfe) {

throw new HsException(hsfe.toString());

}

return(id);

 }

 public HsPackedOperation pack(HsIdentifier id, HsOperation operation)

 throws HsException

{

 if (operation instanceof HsNodeOperation)

System.out.println(
 "PLUGIN: pack("+ new String(id.contents)+ ","
+

((HsNodeOperation)operation).microagent() + ":" +

TIBCO Hawk® Programmer’s Guide

232 | Security Framework

((HsNodeOperation)operation).method() + ")");

 else if (operation instanceof HsGroupOperation)

 System.out.println("PLUGIN: pack(" + new String(id.contents)+
"," +

((HsGroupOperation)operation).microagent() + ":" +

((HsGroupOperation)operation).method() + ")");

 else

 System.out.println("PLUGIN: Unknown request");

 TestOperation trustme =

 new TestOperation(id.contents, operation.contents);

 byte[] packed = null;

 try {

 ByteArrayOutputStream buffer = new ByteArrayOutputStream();

 ObjectOutputStream out = new ObjectOutputStream(buffer);

 out.writeObject(trustme);

TIBCO Hawk® Programmer’s Guide

233 | Security Framework

 out.flush();

 out.close();

 packed = buffer.toByteArray();

 } catch (IOException ioe) {

 }

HsPackedOperation packedOperation = null;

try {

packedOperation = new HsPackedOperation(packed);

} catch (HsFrameworkException hsfe) {

throw new HsException(hsfe.toString());

}

return (packedOperation);

 }

 public HsUnpackedOperation unpack(HsPackedOperation operation)

TIBCO Hawk® Programmer’s Guide

234 | Security Framework

 throws HsException

{

 System.out.println("PLUGIN: unpack(operation)");

 TestOperation trustme = null;

 try {

 ByteArrayInputStream buffer =

 new ByteArrayInputStream(operation.contents);

 ObjectInputStream in = new ObjectInputStream(buffer);

 trustme = (TestOperation)in.readObject();

 in.close();

 } catch (ClassNotFoundException cnfe) {

 throw new HsException(cnfe.toString());

 } catch (IOException ioe) {

 throw new HsException(ioe.toString());

 }

TIBCO Hawk® Programmer’s Guide

235 | Security Framework

HsUnpackedOperation unpacked = null;

try {

unpacked = new HsUnpackedOperation

(new HsIdentifier(trustme.id),new HsOperation
(trustme.operation));

} catch (HsFrameworkException hsfe) {

throw new HsException(hsfe.toString());

}

return unpacked;

 }

 public boolean validateId(HsIdentifier id, HsOperation operation)

{

 if (operation instanceof HsNodeOperation)

System.out.println("PLUGIN: validateId("+new String
(id.contents)+","+

((HsNodeOperation)operation).microagent() + ":" +

((HsNodeOperation)operation).method() + ")");

TIBCO Hawk® Programmer’s Guide

236 | Security Framework

 else if (operation instanceof HsGroupOperation)

System.out.println("PLUGIN: validateId("+new String
(id.contents)+","+

((HsGroupOperation)operation).microagent() + ":" +

((HsGroupOperation)operation).method() + ")");

 else

 System.out.println("PLUGIN: Unknown request");

 String name = new String(id.contents);

 if (name.equals("Test Plug-In"))

 return(true);

 else

 return(false);

 }

 public String describe() {

 System.out.println("PLUGIN: Test.describe()");

 return(new String("TIBCO Hawk Test security model."));

TIBCO Hawk® Programmer’s Guide

237 | Security Framework

 }

}

TIBCO Hawk® Programmer’s Guide

238 | Common Configuration Object API Methods

Common Configuration Object API Methods
This chapter describes the common RulebaseEngine and TIBCO Repository microagent
methods that are used with the Configuration Object API.

• Microagent and Method Invocation used in ConsequenceAction

• Interaction with Agent and Repository using the Console API

• RuleBaseEngine:sendAlertMessage

• RuleBaseEngine:execute

• RuleBaseEngine:sendMail

• RuleBaseEngine:addRuleBase

• RuleBaseEngine:deleteRuleBase

• RuleBaseEngine:setSchedules

• RuleBaseEngine:getSchedules

• RuleBaseEngine:getRBMap

• Repository:addRuleBase

• Repository:deleteRuleBase

• Repository:setSchedules

• Repository:getSchedules

• Repository:setRBMap

• Repository:getRBMap

Microagent and Method Invocation used in
ConsequenceAction
A ConsequenceAction in a rulebase executes an action when the condition of the test is
satisfied. The action taken is in the form of method invocation. The following are common

TIBCO Hawk® Programmer’s Guide

239 | Common Configuration Object API Methods

actions performed by a ConsequenceAction of a rulebase:

• send a notification or an alert

• execute a custom command or script

• send an email

Since a ConsequenceAction invokes a method invocation on a specific microagent, any
known method invocation with ACTION or INFO type can be specified. However, caution
must be taken on methods that may potentially take a long time to execute.

When constructing a ConsequenceAction object, two arguments are needed: the name of a
microagent and the method invocation that will be performed on that microagent. Hence,
before constructing a ConsequenceAction, first construct a MethodInvocation. A
MethodInvocation requires a method name. Depending on the method, it may also take
arguments. For a complete list of built-in microagents and their open methods, please refer
to the TIBCO Hawk Microagent Reference.

The follow methods show how the common ConsequenceActions can be created. Note that
the sendAlertMessage method is a proprietary method of the RulebaseEngine microagent
and is not listed in the TIBCO Hawk Microagent Reference.

/**

* Create an alert action.

*/

ConsequenceAction createAlertAction(String state, String alert)

throws RBEConfigObjectException

{

DataElement[] args = new DataElement[1];

TIBCO Hawk® Programmer’s Guide

240 | Common Configuration Object API Methods

if (state.equals("High"))

args[0] = new DataElement("message",

new
COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertHigh(alert));

else if (state.equals("Medium"))

args[0] = new DataElement("message",

new COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertMedium
(alert));

else if (state.equals("Low"))

args[0] = new DataElement("message",

new COM.TIBCO.hawk.config.rbengine.rulebase.util.AlertLow
(alert));

MethodInvocation mi = new MethodInvocation("sendAlertMessage", args);

return new ConsequenceAction
("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

}

/**

* Create an email action

TIBCO Hawk® Programmer’s Guide

241 | Common Configuration Object API Methods

*/

ConsequenceAction createEmailAction(String to, String from, String cc,
String subject, String server, String content) throws
RBEConfigObjectException

{

DataElement[] args = new DataElement[6];

args[0] = new DataElement("To", to);

args[1] = new DataElement("From", from);

args[2] = new DataElement("CC",cc);

args[3] = new DataElement("Subject", subject);

args[4] = new DataElement("Mail Server", server);

args[5] = new DataElement("Content", content);

MethodInvocation mi = new MethodInvocation("sendMail", args);

return new ConsequenceAction
("COM.TIBCO.hawk.microagent.RuleBaseEngine", mi);

}

/**

* Create a custom execute action.

TIBCO Hawk® Programmer’s Guide

242 | Common Configuration Object API Methods

*/

ConsequenceAction createCustomAction(String cmdStr)

throws RBEConfigObjectException

{

DataElement[] args = new DataElement[1];

args[0] = new DataElement("command", cmdStr);

MethodInvocation mi = new MethodInvocation("execute", args);

return new ConsequenceAction("COM.TIBCO.hawk.microagent.Custom", mi);

}

Interaction with Agent and Repository using the
Console API
An application that uses the Configuration Object API often needs to retrieve, update, or
replace such configuration objects. To retrieve and send the configuration objects from the
application to the agent or repository, the application needs to use the Console API.

Note
When an agent is running in the repository configuration mode,
configuration objects (such as a rulebase or schedule) updated on the
agent are not permanent and the rulebase map can only be updated on
a repository.

The following steps illustrate one possible way that an application using the Console API
and Configuration Object API can update a configuration object of an agent or repository.

TIBCO Hawk® Programmer’s Guide

243 | Common Configuration Object API Methods

1. Create a TIBHawkConsole.

2. Listen to AgentMonitorEvent of the AgentMonitor.

3. Wait until the AgentMonitorEvent from the desire agent is received by examining the
AgentInstance of the AgentMonitorEvent.

4. Retrieve the MicroAgentID of the RulebaseEngine or Repository from the
AgentInstance.

5. Retrieve the configuration object from the RulebaseEngine or Repository microagent
using the AgentManager.

6. Update or modified the configuration object.

7. Update the configuration object on the RulebaseEngine or Repository microagent.

For convenience, the rest of this section lists the methods in RulebaseEngine and
Repository microagent that are useful for retrieving and updating Rulebase, Schedule, and
Rulebase Map. The complete list of methods can be found in the TIBCO Hawk Methods
Reference.

For details and code samples, refer to the Java sample descriptions in Sample Programs ,
and the sample Java files described there.

For details on TIBHawkConsole, AgentMonitor, AgentMonitorEvent, AgentInstance, and
other Console API classes, please refer to Console API .

Methods Reference
The following COM.TIBCO.hawk.microagent.RuleBaseEngine methods are commonly use in
ConsequenceActions:

• RuleBaseEngine:sendAlertMessage

• RuleBaseEngine:execute

• RuleBaseEngine:sendMail

The following COM.TIBCO.hawk.microagent.RuleBaseEngine methods are used for
updating configuration objects in the agent:

• RuleBaseEngine:addRuleBase

• RuleBaseEngine:deleteRuleBase

• RuleBaseEngine:setSchedules

TIBCO Hawk® Programmer’s Guide

244 | Common Configuration Object API Methods

• RuleBaseEngine:getSchedules

• RuleBaseEngine:getRBMap

The following COM.TIBCO.hawk.microagent.Repository methods are used for updating
configuration objects in the repository:

• Repository:addRuleBase

• Repository:deleteRuleBase

• Repository:setSchedules

• Repository:getSchedules

• Repository:setRBMap

• Repository:getRBMap

RuleBaseEngine:sendAlertMessage
Method

Purpose
This method sends an alert.

Type
Proprietary, Synchronous, IMPACT_INFO

Remarks
This method can be invoked only from a rulebase action, because an alert is associated
with the rulebase that triggers the alert.

TIBCO Hawk® Programmer’s Guide

245 | Common Configuration Object API Methods

Arguments

Name Type Descriptio
n

comman
d

COM.TIBCO.hawk.config.rbengine.rulebase.util.
AlertHigh

COM.TIBCO.hawk.config.rbengine.rulebase.util.
AlertMedium

COM.TIBCO.hawk.config.rbengine.rulebase.util.
AlertLow

COM.TIBCO.hawk.config.rbengine.rulebase.util.
Notification

The alert
message
to be sent.

Returns
None

RuleBaseEngine:execute
Method

Purpose
This method executes a command and ignores the result.

Type
Open, Synchronous, IMPACT_ACTION

TIBCO Hawk® Programmer’s Guide

246 | Common Configuration Object API Methods

Arguments

Name Type Description

command String The command to execute. External
and Internal variables can be used.

Returns
None

RuleBaseEngine:sendMail
Method

Purpose
This method (on all platforms) sends an email notification.

Remarks
The To and Subject fields are only mandatory fields and all other fields are optional. If
From is not specified, the current host ID is used. If the Content field is blank, the text of
the Subject field is used. If the Mail Server is not specified, then SMTP server configured in
the agent sends email.

Rulebases can send mail upon detecting a specified condition.

TIBCO Hawk® Programmer’s Guide

247 | Common Configuration Object API Methods

Type
Open, Synchronous, IMPACT_ACTION

Arguments

Name Type Description

To String Address of the receiver

CC String CC (carbon copy) recipients of email

BCC String BCC (blind carbon copy) recipients of
email

Subject String Subject of email

Content String Content of email

Mail Server String SMTP mail server used to send
message

From String Address of the sender

Returns
None

RuleBaseEngine:addRuleBase
Method

TIBCO Hawk® Programmer’s Guide

248 | Common Configuration Object API Methods

Purpose
This method adds a rulebase to the agent.

Remarks
Timeout (milliseconds): 10000

Type
Proprietary, Synchronous, IMPACT_ACTION

Arguments

Name Type Descriptio
n

RulebaseX
ML

COM.TIBCO.hawk.config.rbengine.rulebase.R
ulebaseXML

An Object
that
contains
XML
formatted
string that
represent
the
rulebase.

Returns
None

TIBCO Hawk® Programmer’s Guide

249 | Common Configuration Object API Methods

RuleBaseEngine:deleteRuleBase
Method

Purpose
This method deletes a rulebase from the agent.

Type
Open, Synchronous, IMPACT_ACTION

Arguments

Name Type Description

RuleBaseName String The name of the rulebase to be
deleted.

Returns
None

RuleBaseEngine:setSchedules
Method

TIBCO Hawk® Programmer’s Guide

250 | Common Configuration Object API Methods

Purpose
This method replaces the schedules in the agent.

Type
Proprietary, Synchronous, IMPACT_ACTION

Arguments

Name Type Descripti
on

SchedulesX
ML

COM.TIBCO.hawk.config.rbengine.schedule.
SchedulesXML

An Object
that
contains
XML
formatted
string that
represent
the
schedule.

Returns
None

RuleBaseEngine:getSchedules
Method

TIBCO Hawk® Programmer’s Guide

251 | Common Configuration Object API Methods

Purpose
This method returns the currently loaded Schedules.

Type
Proprietary, Synchronous, IMPACT_INFO

Arguments
None

Returns

Name Type Descripti
on

SchedulesX
ML

COM.TIBCO.hawk.config.rbengine.schedule.
SchedulesXML

An Object
that
contains
XML
formatted
string that
represent
the
schedules.

RuleBaseEngine:getRBMap
Method

TIBCO Hawk® Programmer’s Guide

252 | Common Configuration Object API Methods

Purpose
This method returns the currently loaded RBMap.

Remarks
Timeout (milliseconds): 10000

Type
Proprietary, Synchronous, IMPACT_INFO

Arguments
None

Returns

Name Type Descriptio
n

RBMapXM
L

COM.TIBCO.hawk.config.rbengine.rbmap.RB
MapXML

An Object
that
contains
XML
formatted
string that
represent
the
rulebase
map.

TIBCO Hawk® Programmer’s Guide

253 | Common Configuration Object API Methods

Repository:addRuleBase
Method

Purpose
This method adds a rulebase to the repository.

Remarks
Timeout (milliseconds): 10000

Type
Proprietary, Synchronous, IMPACT_ACTION

Arguments

Name Type Descriptio
n

RulebaseX
ML

COM.TIBCO.hawk.config.rbengine.rulebase.R
ulebaseXML

An Object
that
contains
XML
formatted
string that
represent
the
rulebase.

TIBCO Hawk® Programmer’s Guide

254 | Common Configuration Object API Methods

Returns
None

Repository:deleteRuleBase
Method

Purpose
This method deletes a rulebase from the repository.

Type
Open, Synchronous, IMPACT_ACTION

Arguments

Name Type Description

RuleBaseName String The name of the rulebase to be
deleted.

Returns
None

TIBCO Hawk® Programmer’s Guide

255 | Common Configuration Object API Methods

Repository:setSchedules
Method

Purpose
This method set the schedules in the repository.

Type
Proprietary, Synchronous, IMPACT_ACTION

Arguments

Name Type Descripti
on

SchedulesX
ML

COM.TIBCO.hawk.config.rbengine.schedule.
SchedulesXML

An Object
that
contains
XML
formatted
string that
represent
the
schedule.

Returns
None

TIBCO Hawk® Programmer’s Guide

256 | Common Configuration Object API Methods

Repository:getSchedules
Method

Purpose
This method returns the schedules in the repository.

Type
Proprietary, Synchronous, IMPACT_INFO

Arguments
None

Returns

Name Type Descripti
on

SchedulesX
ML

COM.TIBCO.hawk.config.rbengine.schedule.
SchedulesXML

An Object
that
contains
XML
formatted
string that
represent
the
schedule.

TIBCO Hawk® Programmer’s Guide

257 | Common Configuration Object API Methods

Repository:setRBMap
Method

Purpose
This method set the rulebase map in the repository.

Type
Proprietary, Synchronous, IMPACT_ACTION

Arguments

Name Type Descriptio
n

RBMapXM
L

COM.TIBCO.hawk.config.rbengine.rbmap.RB
MapXML

An Object
that
contains
XML
formatted
string that
represent
the
rulebase
map.

Returns
None

TIBCO Hawk® Programmer’s Guide

258 | Common Configuration Object API Methods

Repository:getRBMap
Method

Purpose
This method returns the rulebase map in the repository.

Type
Proprietary, Synchronous, IMPACT_INFO

Arguments
None

Returns

Name Type Descriptio
n

RBMapXM
L

COM.TIBCO.hawk.config.rbengine.rbmap.RB
MapXML

An Object
that
contains
XML
formatted
string that
represent
the
rulebase
map.

TIBCO Hawk® Programmer’s Guide

259 | Common Configuration Object API Methods

TIBCO Hawk® Programmer’s Guide

260 | Sample Programs

Sample Programs
This appendix describes the sample programs provided in the /examples/rulebase_api,
/examples/schedule_api, and /examples/rbmap_api directories.

• Rulebase Samples

• Schedule Samples

• Rulebase Map Samples

Rulebase Samples
The example Java source files in examples/rulebase_api show how to use the Rulebase-
related classes of the Configuration Object API.

For details of the code, refer to the Java source files.

RBIsample1.java
This sample shows how to create a simple rulebase and save it to a file. The rulebase uses
the Spot microagent that is created using the provided sample application.

In the rulebase, the data source is the current color of the Spot microagent. The test in the
rulebase checks the color of the Spot microagent. If the color is blue, it performs an action
that changes the color to green.

RBIsample2.java
This sample extends RBIsample1.java to show how to use a compound test in a rulebase.

In this example, the rulebase created in RBIsample1.java is save to a file. After reading the
rulebase from the file, RBIsample2.java replaces the test with a compound test. The
compound test checks if the current color is either blue or red. If this condition is satisfied,
it performs an action that changes the color to green.

TIBCO Hawk® Programmer’s Guide

261 | Sample Programs

RBIsample3.java
This sample demonstrates how an application can create, add, update, and delete a
rulebase dynamically on an agent using the Configuration Object API and Console API.
Refer to Common Configuration Object API Methods, for methods related to
communication between a Console application and the TIBCO Hawk agent.

When running this sample, the Spot microagent should also be running. This allows you to
see the effect of the action performed by the rulebase after being updated on the TIBCO
Hawk agent.

The sample performs the following steps:

1. Creates a rulebase using the color of the SPOT microagent as the data source, which
changes to green if the current color is blue.

2. Adds the created rulebase to the agent.

3. Changes the color of SPOT to blue. (At runtime, a few second after this call, the
color on the Spot microagent will change to green due to the test in the rulebase.)

4. Retrieves the rulebase, modifies it to change the color of SPOT to green if the
current color is either blue or red, and updates the rulebase on the agent.

5. Sets the color of SPOT on the agent to red. (At runtime, a few second later after this
call, the color on the Spot microagent will change to green due to the test in the
rulebase.)

6. Sets the color of SPOT on the agent to blue. (At runtime, a few second later after
this call, the color on the Spot microagent should change to green due to the test in
the rulebase.)

7. Deletes the rulebase from the agent.

Schedule Samples
The example Java source files in examples/schedule_api show how to use the Schedule-
related classes of the Configuration Object API.

For details of the code, refer to the Java source files.

TIBCO Hawk® Programmer’s Guide

262 | Sample Programs

ScheduleCreateAndSave.java
This sample shows how to create a simple schedule and save it to a file.

The schedule created contains a period which is in-schedule from 8:00am to 5:59pm every
Monday.

ScheduleUsingExclusion.java
This sample creates a schedule named BusinessHourInSummer. The purpose is to show the
use of both inclusion and exclusion periods.

This schedule is in-schedule from Monday to Friday, 8:00 AM to 5:59 PM. The hours
between 12:00 PM and 2:00 PM in June, July and August are excluded.

This schedule definition uses both inclusion and exclusion period even though the same
schedule could be created without using the exclusion period but using a more specific
inclusion period.

ScheduleWithPeriodGroup.java
This sample extends ScheduleUsingExclusion to demonstrate the use of PeriodGroup and
PeriodGroupReference.

The exclusion period in ScheduleWithPeriodGroup.java is replaced by a period group that
specifies the same time period. The resulting schedule contains an exclusion period
equivalent to the one in ScheduleUsingExclusion.

ScheduleGetAndSet.java
This sample demonstrates how an application can get and set schedules dynamically on a
repository using the Configuration Object API and Console API.

The sample performs the following steps:

1. Gets the schedules from the repository.

2. Creates and adds a schedule to the existing schedules.

3. Replaces the schedules in the repository.

TIBCO Hawk® Programmer’s Guide

263 | Sample Programs

Rulebase Map Samples
The example Java source files in examples/rbmap_api show how to use the Rulebase Map-
related classes of the Configuration Object API.

For details of the code, refer to the Java source files.

RBMapCreateAndSave.java
This sample shows how to create a simple Rulebase Map and save it to a file. It also shows
the use of the method getAgentRulebases() to retrieve rulebases maps to an agent in the
Rulebase Map.

Note
Based on the rulebase map, getAgentRulebases() returns a list of
rulebases that an agent should load during startup if the agent is running
in the repository configuration mode. It does not return a rulebase map.

RBMapUseCommand.java
This sample extends RBMapCreateAndSave to include an external command that generates
a list of rulebases for an agent.

Note
This example uses RBMapUseCommand.exe and will run on Microsoft
Windows only.

RBMapUseCommand.java
This sample demonstrates how an application can get and set a Rulebase Map dynamically
on a repository using the Configuration Object API and Console API.

The sample performs the following steps:

1. Gets the Rulebase Map from the repository.

2. Updates the Rulebase Map.

TIBCO Hawk® Programmer’s Guide

264 | Sample Programs

3. Replaces the Rulebase Map in the repository.

TIBCO Hawk® Programmer’s Guide

265 | Planning Your Instrumented Application

Planning Your Instrumented Application
This appendix describes steps of planning your AMI interface.

• Planning an AMI Interface

• An Example of Planning AMI Methods

Planning an AMI Interface
These steps can help you in planning your AMI interface:

1. Examine the samples of AMI code included with the TIBCO Hawk distribution to see
how these requirements are carried out in code.

2. Copy one of the AMI code samples and amend it to add one or two methods.

3. When you are ready to create an interface to your application, consider what data
and methods is to be accessed or changed through the application’s management
interface:

— List the separate data items you want to be able to retrieve.

— List the data items you want to be able to change.

— List the actions you want to be able to carry out.

Each of these items will become a supported method of your AMI interface.

4. For each of these methods, decide what arguments it will use and what results it will
return. If a method uses arguments, consider what course to take if a default
argument is supplied.

5. Using the collected information for each method, create an outline detailing the
message structure to be returned to describe these methods to a manager.

6. Use this outline to write a describer method, which returns a nested message.

7. Set up the code to initialize the TIBCO Hawk AMI session.

TIBCO Hawk® Programmer’s Guide

266 | Planning Your Instrumented Application

8. Write methods that respond to method invocation messages from the manager. In
creating each message, use an outline as you did with the describe method
message, to lay out what information the message will include.

An Example of Planning AMI Methods
Let us suppose you have a transaction-processing application that needs to be monitored
so that its message queue length doesn't grow too large. Instances of this application
might make up a fault-tolerant group with primary/secondary status, which you want to
autonomously monitor but also to interactively control.

Defining these needs, you could list two items:

• The manager should retrieve the application’s queue length on a periodic basis.

• The manager should retrieve the application’s primary/secondary status on a
periodic basis.

You now create these methods:

• getQueueLength, which takes no arguments and returns the queue length.

• getFTStatus, which takes no arguments and returns the fault-tolerant status
(primary or secondary) of the application.

• makePrimary, which takes no arguments and sets the fault-tolerant status of the
application instance to primary.

• makeSecondary, which takes no arguments and sets the fault-tolerant status of the
application instance to secondary.

Since you will be using a TIBCO Hawk agent as the manager, you build a rulebase with two
rules, as follows:

• The first rule has as its data source the getQueueLength method. It raises an alert if
the queue length is greater than 200.

• The second rule has as its data source the getFTStatus method. It sends a
notification each time there is a fault-tolerant state transition.

From the TIBCO Hawk Console, operators can control the fault-tolerant state of any
instance of the application by invoking the makePrimary or makeSecondary methods.

Other possible AMI examples might include:

TIBCO Hawk® Programmer’s Guide

267 | Planning Your Instrumented Application

• Methods to dynamically control trace or debug levels.

• Methods to drop or re-request information from data streams.

• Methods to monitor client connections for server applications.

• Methods to control application backup procedures.

• Methods to extract internal state information used in debugging.

• Methods to change various application configuration parameters.

• Methods that instruct applications to write their new configuration parameters to
configuration files or to the Microsoft Windows registry.

TIBCO Hawk® Programmer’s Guide

268 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than
any other documentation included with the product.

Product-Specific Documentation

Documentation for TIBCO Hawk® is available on the TIBCO Hawk® Product Documentation
page.

The following documents for this product can be found in the TIBCO Documentation site:

l TIBCO Hawk® Release Notes

l TIBCO Hawk® Concepts

l TIBCO Hawk® Installation, Configuration, and Administration

l TIBCO Hawk® Console User Guide

l TIBCO Hawk® Programmer's Guide

l TIBCO Hawk® Admin Agent

l TIBCO Hawk® Plug-in Reference for TIBCO Administrator

l TIBCO Hawk® Microagent Reference

l TIBCO Hawk® Plug-in Reference

l TIBCO Hawk® Security Guidelines

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-hawk

TIBCO Hawk® Programmer’s Guide

269 | TIBCO Documentation and Support Services

How to Contact TIBCO Support

Get an overview of TIBCO Support. You can contact TIBCO Support in the following ways:

l For accessing the Support Knowledge Base and getting personalized content about
products you are interested in, visit the TIBCO Support website.

l For creating a Support case, you must have a valid maintenance or support contract
with TIBCO. You also need a user name and password to log in to TIBCO Support
website. If you do not have a user name, you can request one by clicking Register on
the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature
requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

http://www.tibco.com/services/support
https://support.tibco.com/s/
https://support.tibco.com/s/
https://ideas.tibco.com/
https://community.tibco.com/

TIBCO Hawk® Programmer’s Guide

270 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Hawk, LogLogic, Rendezvous, TIBCO Administrator, and
TIBCO BusinessWorks are either registered trademarks or trademarks of Cloud Software Group, Inc.
in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the readme file for the
availability of this software version on a specific operating system platform.

https://scripts.sil.org/OFL

TIBCO Hawk® Programmer’s Guide

271 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SOFTWARE GROUP, INC. MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT
ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of Cloud Software Group, Inc. may be covered by registered patents. Please
refer to TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 1996-2023. Cloud Software Group, Inc. All Rights Reserved.

https://www.tibco.com/patents

	Contents
	Introduction to TIBCO Hawk Programming
	Programming Tools and Interfaces
	REST API
	Console API
	Configuration Object API
	AMI API
	Security API

	Console API
	How the TIBCO Hawk Console API Fits In
	Monitoring Component
	Management Component

	Concepts
	Structure
	Monitoring Operations
	Agent-Alive Monitoring
	Microagent List Monitoring
	Rulebase List Monitoring
	Alert Monitoring

	The AgentInstance Class
	Agent ID
	Agent Instance

	Ensuring Each Agent Instance has a Unique ID
	Management Operations
	Microagent Descriptors
	Invoking Methods
	Error Handling

	Subscribing to Method Results
	The MethodSubscription Class
	Error Handling

	Group Operations
	Lightweight Console
	Console Application with Secure Domain
	MicroAgent Plug-in

	TIBCO Hawk Console API Class Structure
	Key to the UML Diagrams
	Associations

	Agent Monitoring Classes (Hawkeye)
	Agent Management Classes

	API Reference

	Configuration Object API
	Overview
	Configuration Objects
	How the TIBCO Hawk Configuration Object API Fits In

	Concepts
	Configuration Objects
	Rulebases
	Structure of a Rulebase
	Alerts and Clears
	Posted Conditions
	Variable Substitution
	Legal Characters
	Overruling
	Rulebase configuration management

	Schedule
	Structure of a Schedule
	Period Class
	PeriodGroup Class
	Use of Schedules in Rulebases
	Schedule Configuration Management
	Schedules and Agent Performance

	RulebaseMap
	Group Mapping
	Rulebase Mapping
	Command Mapping
	Agent processing of RulebaseMap

	Configuration Object Integrity
	Dependence on the Console API

	Configuration Object API Class Structure
	Key to the UML diagrams
	Associations

	Configuration Object API Classes

	API Reference

	AMI API
	AMI Basics
	An Instrumented Application Looks like a Microagent
	Monitoring an Instrumented Application through the TIBCO Hawk Console

	Connecting AMI Participants

	The AMI Conversation
	First AMI Phase: Discovering the Application
	If the Manager Starts First
	If the Application Starts First

	Second AMI Phase: Describing the Methods
	Third AMI Phase: Calling the Methods

	AMI API Objects
	AMI Session
	AMI Methods
	AMI Parameter
	Error Logging
	Threading Model

	AMI API Sample Programs
	The Sample AMI API Applications
	TIBCO Hawk AMI C API Sample Applications
	TIBCO Hawk AMI C++ API Sample Application
	TIBCO Hawk AMI Java API Sample Application
	Using the Sample Programs

	Programmer’s Checklist
	C++ Library Files
	C Library Files
	Transport Based Library Files

	Java AMI API Reference

	C++ AMI API Reference
	AmiSession Class
	Declaration
	Purpose
	Remarks
	Member Summary
	AmiSession()
	Declaration
	Purpose
	Parameters

	AmiSession()
	Declaration
	Purpose
	Parameters

	AmiSession::open()
	Declaration
	Purpose

	AmiSession::close()
	Declaration
	Purpose

	AmiSession::versionName()
	Declaration
	Purpose

	AmiSession::version()
	Declaration
	Purpose

	AmiSession::versionDate()
	Declaration
	Purpose

	AmiSession::banner()
	Declaration
	Purpose

	AmiSession::versionMajor()
	Declaration
	Purpose

	AmiSession::versionMinor()
	Declaration
	Purpose

	AmiSession::getTraceLevels()
	Declaration
	Purpose

	AmiSession::setTraceLevels()
	Declaration
	Purpose

	AmiSession::enableTraceLevels()
	Declaration
	Purpose

	AmiSession::disableTraceLevels()
	Declaration
	Purpose

	AmiSession::announce()
	Declaration
	Purpose

	AmiSession::get... Accessors
	Declarations
	Purpose
	Methods

	AmiSession::sendUnsolicitedMsg()
	Declaration
	Purpose
	Remarks
	Parameters

	AmiSession::stop()
	Declaration
	Purpose

	AMI Property Class
	AmiProperty Class
	Declaration
	Purpose
	Member Summary

	AmiProperty()
	Declaration
	Purpose

	AmiProperty::()
	Declaration
	Purpose

	AMI Method Classes
	AmiMethod Class
	Declaration
	Purpose
	Remarks
	Member Summary

	AmiMethod::setIndexName()
	Declaration
	Purpose
	Parameters

	AmiMethod::get...() Accessors
	Declaration
	Purpose
	See Also

	AmiMethod::onInvoke()
	Declaration
	Purpose
	Remarks
	Parameters
	See Also

	AmiAsyncMethod Class
	Declaration
	Purpose
	Member Summary

	AmiAsyncMethod()
	Declaration
	Purpose
	Parameters

	AmiAsyncMethod::onStart()
	Declaration
	Purpose
	Remarks
	Parameters
	See Also

	AmiAsyncMethod::onStop()
	Declaration
	Purpose
	Parameters

	AmiAsyncMethod::onData()
	Declaration
	Purpose
	Remarks

	AmiAsyncMethod::sendData()
	Declaration
	Purpose
	Parameters

	AmiAsyncMethod::sendError()
	Declaration
	Purpose
	Parameters

	AmiSyncMethod Class
	Declaration
	Purpose
	Member Summary

	AmiSyncMethod()
	Declaration
	Purpose
	Parameters

	AmiSubscription Class
	Declaration
	Purpose
	Member Summary

	AmiSubscription::getUserData()
	Declaration
	Purpose

	AmiSubscription::setCallbackInterval()
	Declaration
	Purpose
	Remarks
	Parameters

	AmiSubscription::setUserData()
	Declaration
	Purpose
	Parameters

	AmiSubscription::getMethod()
	Declaration
	Purpose

	AmiSubscription::getArguments()
	Declaration
	Purpose

	AMI Parameter Classes
	AmiParameter Class
	Declaration
	Purpose
	Remarks
	Member Summary

	AmiParameter::addChoice()
	Declaration
	Purpose
	Remarks
	Parameters

	AmiParameter::addLegal()
	Declaration
	Purpose
	Remarks
	Parameters

	AmiParameter::getStatus()
	Declaration
	Purpose
	See Also:

	AmiParameterIn Class
	Declaration
	Purpose
	Member Summary

	AmiParameterIn()
	Declaration
	Purpose
	Parameters

	AmiParameterOut Class
	Declaration
	Purpose
	Member Summary

	AmiParameterOut()
	Declaration
	Purpose
	Parameters

	AmiParameterList Class
	Declaration
	Purpose

	AmiParameterListIn Class
	Declaration
	Purpose
	Member Summary

	AmiParameterListIn::getValue()
	Declaration
	Purpose
	Parameters

	AmiParameterListOut Class
	Declaration
	Purpose
	Member Summary

	AmiParameterListOut()
	Declaration
	Purpose

	AmiParameterListOut::newRow()
	Declaration
	Purpose

	AmiParameterListOut::setValue()
	Declaration
	Purpose
	Parameters

	AMI Error Handling
	AmiStatus Class
	Declaration
	Purpose
	Member Summary

	AmiStatus()
	Declaration
	Purpose
	Parameters

	AmiStatus::getAmiError()
	Declaration
	Purpose

	AmiStatus::setStatus()
	Declaration
	Purpose
	Parameters

	AmiStatus::setStatusV()
	Declaration
	Purpose
	Parameters

	AmiStatus::stamp()
	Declaration
	Purpose

	AmiStatus::getCode()
	Declaration
	Purpose

	AmiStatus::getText()
	Declaration
	Purpose

	AmiStatus::getThread()
	Declaration
	Purpose

	AmiStatus::getFile()
	Declaration
	Purpose

	AmiStatus::getLine()
	Declaration
	Purpose

	C AMI API Reference
	Data Types Summary
	ami_AlertType
	Purpose
	Alert Type

	ami_Boolean
	Purpose
	Enumeration

	AMI C API Constants
	ami_DataType
	Purpose
	Enumeration

	ami_Error
	Purpose
	Remarks

	ami_Method
	Purpose
	Remarks

	ami_MethodType
	Purpose
	Enumeration

	ami_Parameter
	Purpose
	Remarks

	ami_ParameterList
	Purpose
	Remarks

	ami_ParameterListList
	Purpose
	Remarks

	ami_Session
	Purpose
	Remarks

	ami_Subscription
	Purpose
	Remarks

	ami_Property
	Declaration
	Purpose

	AMI C API Error Functions
	Error Functions Summary
	ami_ErrorCreate(), ami_errorCreateV()
	Declaration
	Purpose
	Parameters

	ami_ErrorDestroy()
	Declaration
	Purpose
	Parameters

	ami_ErrorStamp()
	Declaration
	Purpose
	Parameters

	ami_ErrorGet... Accessors
	Declaration
	Accessor Functions

	Callback Function Types Summary
	ami_OnInvokeCallback
	Declaration
	Purpose
	Parameters

	ami_OnStartCallback
	Declaration
	Purpose
	Parameters

	ami_OnStopCallback
	Declaration
	Purpose
	Parameters

	ami_TraceHandler
	Declaration
	Purpose
	Parameters

	Trace Control Functions Summary
	ami_TraceCode
	Declaration
	Purpose
	Trace Levels

	ami_SessionGetTraceLevels()
	Declaration
	Purpose
	Parameters

	ami_SessionSetTraceLevels()
	Declaration
	Purpose
	Parameters

	ami_SessionEnableTraceLevels()
	Declaration
	Purpose
	Parameters

	ami_SessionDisableTraceLevels()
	Declaration
	Purpose
	Parameters

	Initialization and Termination Functions Summary
	ami_Version... Accessors
	Declaration
	Purpose
	Accessors

	ami_Open()
	Declaration
	Purpose

	ami_Close()
	Declaration
	Purpose

	AMI C API Session Functions
	Session Functions Summary
	ami_SessionCreateUsingProperties()
	Declaration
	Purpose
	Parameters

	ami_AddProperty()
	Declaration
	Purpose
	Parameters

	ami_SessionCreate()
	Declaration
	Purpose
	Parameters

	ami_SessionDestroy()
	Declaration
	Purpose
	Parameters

	ami_SessionAnnounce()
	Declaration
	Purpose
	Parameters

	ami_SessionStop()
	Declaration
	Purpose
	Parameters

	ami_SessionGetName()
	Declaration
	Purpose
	Parameters

	ami_SessionGetDisplayName()
	Declaration
	Purpose
	Parameters

	ami_SessionGetHelp()
	Declaration
	Purpose
	Parameters

	ami_SessionGetUserData()
	Declaration
	Purpose
	Parameters

	ami_SessionSendData()
	Declaration
	Purpose
	Parameters

	ami_SessionSendError()
	Declaration
	Purpose
	Parameters

	ami_SessionOnData()
	Declaration
	Purpose
	Parameters

	ami_SessionSendUnsolicitedMsg()
	Declaration
	Purpose
	Parameters

	AMI C API Method Functions
	Method Functions Summary
	ami_MethodCreate()
	Declaration
	Purpose
	Parameters

	ami_AsyncMethodCreate()
	Declaration
	Purpose
	Parameters

	ami_MethodGetName()
	Declaration
	Purpose
	Parameters

	ami_MethodGetHelp()
	Declaration
	Purpose
	Parameters

	ami_MethodGetUserData()
	Declaration
	Purpose
	Parameters

	ami_MethodSetIndex()
	Declaration
	Purpose
	Parameters

	AMI C API Subscription Functions
	Subscription Functions Summary
	ami_SubscriptionSetUserData()
	Declaration
	Purpose
	Parameters

	ami_SubscriptionGetUserData()
	Declaration
	Purpose
	Parameters

	ami_SubscriptionSetCallbackInterval()
	Declaration
	Purpose
	Parameters

	ami_SubscriptionGetMethod()
	Declaration
	Purpose

	ami_SubscriptionGetArguments()
	Declaration
	Purpose

	AMI C API Parameter Functions
	Parameter Functions Summary
	ami_ParameterCreateIn()
	Declaration
	Purpose
	Parameters

	ami_ParameterCreateOut()
	Declaration
	Purpose
	Parameters

	ami_ParameterListOut()
	Declaration
	Purpose
	Parameters

	ami_ParameterSetValue()
	Declaration
	Purpose
	Parameters

	ami_ParameterGetValue()
	Declaration
	Purpose
	Parameters

	ami_ParameterAddChoice()
	Declaration
	Purpose
	Remarks
	Parameters

	ami_ParameterAddLegal()
	Declaration
	Purpose
	Remarks
	Parameters

	ami_ParameterListListDestroy()
	Declaration
	Purpose
	Parameters

	Security Framework
	TIBCO Hawk Security Concepts
	Authentication
	Identity Only
	Shared Secret

	Certificates
	Authorization
	Data Privacy and Integrity
	Considerations for the TIBCO Hawk System

	Implementing a Security Policy
	Creating a Java Security Class
	Framework Protocol
	Security Objects

	Sample Code

	Common Configuration Object API Methods
	Microagent and Method Invocation used in ConsequenceAction
	Interaction with Agent and Repository using the Console API
	Methods Reference
	RuleBaseEngine:sendAlertMessage
	Purpose
	Type
	Remarks
	Arguments
	Returns

	RuleBaseEngine:execute
	Purpose
	Type
	Arguments
	Returns

	RuleBaseEngine:sendMail
	Purpose
	Remarks
	Type
	Arguments
	Returns

	RuleBaseEngine:addRuleBase
	Purpose
	Remarks
	Type
	Arguments
	Returns

	RuleBaseEngine:deleteRuleBase
	Purpose
	Type
	Arguments
	Returns

	RuleBaseEngine:setSchedules
	Purpose
	Type
	Arguments
	Returns

	RuleBaseEngine:getSchedules
	Purpose
	Type
	Arguments
	Returns

	RuleBaseEngine:getRBMap
	Purpose
	Remarks
	Type
	Arguments
	Returns

	Repository:addRuleBase
	Purpose
	Remarks
	Type
	Arguments
	Returns

	Repository:deleteRuleBase
	Purpose
	Type
	Arguments
	Returns

	Repository:setSchedules
	Purpose
	Type
	Arguments
	Returns

	Repository:getSchedules
	Purpose
	Type
	Arguments
	Returns

	Repository:setRBMap
	Purpose
	Type
	Arguments
	Returns

	Repository:getRBMap
	Purpose
	Type
	Arguments
	Returns

	Sample Programs
	Rulebase Samples
	RBIsample1.java
	RBIsample2.java
	RBIsample3.java

	Schedule Samples
	ScheduleCreateAndSave.java
	ScheduleUsingExclusion.java
	ScheduleWithPeriodGroup.java
	ScheduleGetAndSet.java

	Rulebase Map Samples
	RBMapCreateAndSave.java
	RBMapUseCommand.java
	RBMapUseCommand.java

	Planning Your Instrumented Application
	Planning an AMI Interface
	An Example of Planning AMI Methods

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

