
Two-Second Adv
TIBCO iProcess® User
Validation API

User’s Guide

Software Release 11.6
January 2016
antage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR ANY
OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT,
OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT
WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR
CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF
THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR
USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part
of this document may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, Two-Second Advantage, TIBCO ActiveMatrix BusinessWorks, TIBCO Business Studio, TIBCO Enterprise
Message Service, TIBCO Hawk, TIBCO iProcess, TIBCO iProcess Suite, and TIBCO Rendezvous are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition (J2EE), and all
Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation in the U.S. and other
countries.

All other product and company names and marks mentioned in this document are the property of their respective owners and
are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1994-2016 TIBCO Software Inc. All rights reserved.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface .v

Related Documentation . vi
TIBCO iProcess Engine Documentation. vi
Other TIBCO Product Documentation . vi

Typographical Conventions .viii

Connecting with TIBCO Resources . xi
How to Join TIBCOmmunity . xi
How to Access TIBCO Documentation. xi
How to Contact TIBCO Support . xi

Chapter 1 Introduction. .1

What is iProcess User Validation? . 2

System Requirements . 3

Installation . 4
UNIX Platform. 4
Windows Platform. 4

Using the User Validation API . 6

The iProcess Encryption Layer Object. 8

The Header File . 9

Compiling Your UVAPI Package. 10

The TIBCO iProcess User Validation API Sample Application . 11
Build Instructions . 11

Chapter 2 The TIBCO iProcess User Validation API .13

Developing a Replacement User Validation Package . 14
Thread Safety . 14
Internal Function Names . 14
Interface Support . 15
Password Validation on Windows Systems . 15
Creating a Session Handle. 16
Design Issues . 17

API Interfaces . 18
uva_initialise . 19
uva_terminate. 20
uva_next_user . 21
 TIBCO iProcess User Validation API User’s Guide

iv | Contents
uva_next_user_ex . 23
uva_user_info . 25
uva_user_info_ex. 27
uva_change_password . 29
uva_change_password_ex . 31
uva_check_password. 33
uva_check_password_ex. 35
uva_set_user_identity . 37
uva_set_user_identity_ex . 38
uva_get_user_identity . 39

Return Values . 40
TIBCO iProcess User Validation API User’s Guide

| v
Preface

This guide describes how to use the TIBCO iProcess User Validation API (UVAPI)
to create your own user validation system, which you can use with TIBCO
iProcess Engine. The API can be used to create a shared library for UNIX or a DLL
for Windows.

You should read this guide in conjunction with the source code and sample User
Validation package provided as part of the TIBCO iProcess Engine installation.

Topics

• Related Documentation, page vi

• Typographical Conventions, page viii

• Connecting with TIBCO Resources, page xi

This guide is aimed at application developers with a knowledge of C
programming.
 TIBCO iProcess User Validation API User’s Guide

vi | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO iProcess Engine Documentation
The following documents form the TIBCO iProcess Engine documentation set:

• TIBCO iProcess Engine Installation Read this manual for instructions on site
preparation and installation.

• TIBCO iProcess Engine Release Notes Read the release notes for a list of new
and changed features. This document also contains lists of known issues and
closed issues for this release.

• TIBCO iProcess Suite Documentation This documentation set contains all the
manuals for TIBCO iProcess Engine and other TIBCO products in TIBCO
iProcess® Suite. The manuals for TIBCO iProcess Engine are as follows:

— TIBCO iProcess Engine Architecture Guide

— TIBCO iProcess Engine Administrator’s Guides:

TIBCO iProcess Engine Administrator’s Guide

TIBCO iProcess Objects Director Administrator’s Guide

TIBCO iProcess Objects Server Administrator’s Guide

— TIBCO iProcess Engine Database Administrator's Guides:

TIBCO iProcess Engine (DB2) Administrator's Guide

TIBCO iProcess Engine (Oracle) Administrator's Guide

TIBCO iProcess Engine (SQL) Administrator's Guide

— TIBCO iProcess swutil and swbatch Reference Guide

— TIBCO iProcess Engine System Messages Guide

— TIBCO iProcess User Validation API User's Guide

Other TIBCO Product Documentation
You may find it useful to read the documentation for the following TIBCO
products:

• TIBCO ActiveMatrix BusinessWorks™

• TIBCO Business Studio™
TIBCO iProcess User Validation API User’s Guide

Preface | vii
• TIBCO Enterprise Message Service™

• TIBCO Hawk®

• TIBCO Rendezvous®
 TIBCO iProcess User Validation API User’s Guide

viii | Typographical Conventions
Typographical Conventions

TIBCO iProcess Engine can be run on both Microsoft Windows and UNIX/Linux
platforms. In this manual, the Windows convention of a backslash (\) is used. The
equivalent pathname on a UNIX or Linux system is the same, but using the
forward slash (/) as a separator character.

The following typographical conventions are used in this manual

UNIX or Linux pathnames are occasionally shown explicitly, using forward
slashes as separators, where a UNIX or Linux-specific example or syntax is
required.

Any references to UNIX in this manual also apply to Linux unless explicitly stated
otherwise.

Table 1 General Typographical Conventions

Convention Use

SWDIR TIBCO iProcess Engine installs into a directory. This directory is referenced in
documentation as SWDIR. The value of SWDIR depends on the operating system.
For example,

• on a Windows server (on the C: drive)

if SWDIR is set to the C:\swserver\staffw_nod1 directory, then the full
path to the swutil command is in the
C:\swserver\staffw_nod1\bin\swutil directory.

• on a UNIX or Linux server

if SWDIR is set to the /swserver/staffw_nod1 directory, then the full path
to the swutil command is in the /swserver/staffw_nod1/bin/swutil
directory or the $SWDIR/bin/swutil directory.

Note: On a UNIX or Linux system, the environment variable $SWDIR should
be set to point to the iProcess system directory for the root and swadmin users.

IPEADMIN Indicates the operating system account that is used to administer the iProcess
Engine node.

IPESERVICE Indicates the Windows account that is used to run the iProcess Engine node.
(Not used on UNIX.)

IPEBAKGROUND Indicates the UNIX user account that owns most iProcess Engine files and is
used to run the iProcess Engine background processes. (Not used on Windows.)
TIBCO iProcess User Validation API User’s Guide

Preface | ix
code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms. For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use
 TIBCO iProcess User Validation API User’s Guide

x | Typographical Conventions
Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand param1 | param2 | param3

{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}
TIBCO iProcess User Validation API User’s Guide

Preface | xi
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts. It is a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access TIBCO Documentation
Documentation for this and other TIBCO products is available on the TIBCO
Documentation site:

https://docs.tibco.com

Documentation on the TIBCO Documentation site is updated more frequently
than any documentation that might be included with the product. To ensure that
you are accessing the latest available help topics, please visit us at
https://docs.tibco.com.

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, contact
TIBCO Support as follows:

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO iProcess User Validation API User’s Guide

http://www.tibcommunity.com
https://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com
https://docs.tibco.com

xii | Connecting with TIBCO Resources
TIBCO iProcess User Validation API User’s Guide

| 1
Chapter 1 Introduction

The software development kit (SDK) for the TIBCO iProcess User Validation API
contains the following components:

Topics

• What is iProcess User Validation?, page 2

• System Requirements, page 3

• Installation, page 4

• Using the User Validation API, page 6

• The iProcess Encryption Layer Object, page 8

• The Header File, page 9

• Compiling Your UVAPI Package, page 10

• The TIBCO iProcess User Validation API Sample Application, page 11

File Description On Windows On UNIX

Makefile uvapiw32.mak uvapiunx.mak

Header file swuvapi.h swuvapi.h

Encryption object uvapienc.obj uvapienc.o

Sample user
validation application
code

swuvamod.c swuvamod.c

Test application tstuvapi.c, tstuvapi.exe tstuvapi.c, tstuvapi.exe
 TIBCO iProcess User Validation API User’s Guide

2 | What is iProcess User Validation?
What is iProcess User Validation?

The default method of user validation in the TIBCO iProcess Engine requires you
to create operating system accounts for each registered iProcess user. Also, the
login passwords are maintained by the operating system.

If you have different security validation requirements, you can use the User
Validation API to create your own method of user validation to match your
business needs. For example, you might want to create operating system users
but have a different form of password validation. Alternatively, you might want
to completely separate the users and their passwords from the operating system
by maintaining them in a database of your choice.

The User Validation API provides interfaces that you can use to maintain your list
of iProcess users and their passwords. It essentially isolates iProcess from
validating users against the operating system so that you can provide your own
user identity and validation system.

The following core iProcess users are still required as operating system accounts.

O/S Account
Windows (SQL
Server or
Oracle)

UNIX/Oracle UNIX/DB2

 IPEBAKGROUND n/a Required Required

IPEADMIN Required Required Required

IPESERVICE Required n/a n/a

iProcess Engine DB
Schema Owner

n/a n/a Required

iProcess Engine DB user n/a n/a Required
TIBCO iProcess User Validation API User’s Guide

| 3
System Requirements

To use the TIBCO iProcess User Validation API, you need a computer with the
following hardware and software:

• Windows 2003/XP or UNIX platform

• C compiler such as Microsoft Visual Studio.
 TIBCO iProcess User Validation API User’s Guide

4 | Installation
Installation

The TIBCO iProcess User Validation API is installed as part of the TIBCO iProcess
Engine installation. The files are placed the directory SWDIR\sdks\uvapisdk.

UNIX Platform
The following files are installed.

Windows Platform
The following files are installed:

Filename Description

uvapiunx.mak Makefile for example UVAPI package & test utility

uvapienc.o TIBCO supplied encryption/API object

swuvamod.c Source code for implementation of example UVAPI
package

swuvamod.o Source definition object file

tstuvapi.c Source code for test utility

tstuvapi Generated test utility executable

tstuvapi.o Test definition object file

uvapi.so Generated example UVAPI package as a Shared Library

Filename Description

uvapiw32.mak Makefile for example UVAPI package & test utility

uvapienc.obj TIBCO supplied encryption/API object

swuvamod.c Source code for implementation of example UVAPI
package

swuvamod.def Source definition file

swuvapi.h Source header file
TIBCO iProcess User Validation API User’s Guide

| 5
tstuvapi.c Source for test utility

uvapi.dll Generated example UVAPI package as a Dynamic Link
Library

tstuvapi.exe Generated test utility executable

Filename Description
 TIBCO iProcess User Validation API User’s Guide

6 | Using the User Validation API
Using the User Validation API

A generic User Validation interface has been created to enable the TIBCO iProcess
Engine to retrieve a list of iProcess users and to check and change their
passwords. The details of this interface are published in the User Validation API.

The following is a list of functions provided by the API:

• UVAPI package initialization

• List the possible iProcess users

• Validate a user name as a possible iProcess user

• Validate the password for a possible iProcess user, the maximum length of
TIBCO iProcess Engine password is 32768 bytes

• Change the password for a possible iProcess user

• Provide a user identity for the current execution context

• Set a user identity for the current execution context

• UVAPI package termination

The concept of an operating system home directory for iProcess users no longer
exists. The user’s home directory from a iProcess perspective will be
SWDIR\queues\username.
TIBCO iProcess User Validation API User’s Guide

| 7
IMPORTANT!

You must ensure that any user validation package you create using the User
Validation API is threadsafe. This is because within each TIBCO iProcess Engine
process, multiple threads may call the User Validation API interfaces during
normal TIBCO iProcess Engine operation.

To ensure that your user validation package is threadsafe, make sure that you
adhere to the following guidelines:

• Make sure that any modules in your user validation package that use User
Validation API interfaces use threadsafe code.

• Use mutual exclusion locks (mutexes) to prevent multiple threads from
simultaneously executing any critical sections of code that are not threadsafe,
but that access shared data.

• When you build the user validation package, make sure that you use the
appropriate flags (for your chosen operating system and compiler) to link the
application using threadsafe libraries.

Deploying a non-threadsafe user validation package can cause TIBCO iProcess
Engine processes to fail.
 TIBCO iProcess User Validation API User’s Guide

8 | The iProcess Encryption Layer Object
The iProcess Encryption Layer Object

The following encryption objects are provided in the SDK so that you can create
replacement UVAPI packages:

• uvapienc.obj - for Windows 2003/XP

• uvapienc.o - for UNIX

Text strings passed across the UVAPI are encrypted using a proprietary TIBCO
mechanism. You need to use this object when implementing a new UVAPI
package to provide the encryption/decryption of parameter strings.
TIBCO iProcess User Validation API User’s Guide

| 9
The Header File

The header file called swuvapi.h is provided for inclusion by applications using
the UVAPI package. It contains:

• Type definitions

• Literal constants (return codes and flag values)

• Function prototypes (API functions)
 TIBCO iProcess User Validation API User’s Guide

10 | Compiling Your UVAPI Package
Compiling Your UVAPI Package

Any user validation package you create using the User Validation API must be
compiled using the GNU gcc/g++ set of compilers.
TIBCO iProcess User Validation API User’s Guide

| 11
The TIBCO iProcess User Validation API Sample Application

The SDK for the TIBCO iProcess User Validation API provides a sample
application that supports all of the UVAPI interfaces. The package is supplied as a
single module (swuvamod.c) with the swuvapi.h header file and a makefile.

The user database for the example is a text file (exuvapi.dat) which defines the
iProcess users, their descriptions and passwords. There is one entry per line with
fields separated by the \ character. The example text file needs to be located in
your SWDIR\util directory.

Build Instructions
The following sections describe how to build the UVAPI example application and
test application.

UNIX Platforms

To build the example UVAPI package and test utility, enter the following
command in the directory where your files are located:

make -f uvapiunx.mak

This produces the following files:

• uvapi.so (the UVAPI package as a shared library)

• tstuvapi (the test utility executable).

IMPORTANT!

The sample application is intended only as a simple example that demonstrates
the use of the TIBCO iProcess User Validation API interrfaces. It is not a
fully-developed, threadsafe application that is suitable for deployment.

You must ensure that any user validation package you create using the User
Validation API is threadsafe - see page 7 for more information.

Deploying a non-threadsafe user validation package can cause TIBCO iProcess
Engine processes to fail.

The build environment requires modifications for different UNIX platforms. The
uvapiunx.mak makefile contains a section that sets up the environment for the
target platform. Edit this section as appropriate for your target platform.
Examples for Solaris and AIX are given as comments in the makefile.
 TIBCO iProcess User Validation API User’s Guide

12 | The TIBCO iProcess User Validation API Sample Application
To run the test utility, the UVAPI package must be locatable as a shared library
(LD_LIBRARY_PATH environment variable on Solaris, LIBPATH environment
variable on AIX). For the example UVAPI package, the SWDIR environment
variable must also be set, and the file SWDIR/util/exuvapi.dat must exist (see
the UVAPI developers documentation for details of the example UVAPI package).

The test utility only calls the Initialisation and Termination interfaces in the
UVAPI package as all other interfaces require iProcess encrypted strings to be
passed in or returned.

Windows Platforms

To build the example UVAPI package and test utility, set up the environment for
the Microsoft Visual Studio V6 C compiler and enter the following command:

nmake -f uvapiw32.mak

This produces the following files:

• uvapi.dll (the UVAPI package as a Dynamic Link Library)

• tstuvapi.exe (the test utility executable).

To run the test utility, the UVAPI package must be locatable as a DLL (on the
PATH or in the current directory). For the example UVAPI package, the
tstuvapi.exe utility and uvapi.dll components must be located in the util
sub-directory of an iProcess installation. The file SWDIR\util\exuvapi.dat must
exist.

The test utility only calls the Initialisation and Termination interfaces in the
UVAPI package as all other interfaces require iProcess encrypted strings to be
passed in or returned.
TIBCO iProcess User Validation API User’s Guide

| 13
Chapter 2 The TIBCO iProcess User Validation API

The TIBCO iProcess User Validation API is a series of interfaces that are called by
iProcess and are required in the User Validation package. The U nser Validation
API is a C interface and therefore must provide interfaces that can be called from
C.

All functions return an integer variable to indicate the completion status of the
call (with the exception of uva_initialise). The return values can be found in the
swuvapi.h header file and they are also described in Return Values on page 40.

Topics

• Developing a Replacement User Validation Package, page 14

• API Interfaces, page 18

• Return Values, page 40
 TIBCO iProcess User Validation API User’s Guide

14 | Developing a Replacement User Validation Package
Developing a Replacement User Validation Package

The following sections provide important guidelines for developers creating a
new user validation package that uses the TIBCO iProcess User Validation API
interfaces.

Thread Safety

Internal Function Names
When developing a new UVAPI package, you must provide internal functions
that support the external interfaces detailed in this chapter. The internal function
names are based on the external interfaces, but prefixed with “int_”. Therefore,
the internal function to support the uva_initialise interface is called
int_uva_initialise. The return and argument types are the same as the external
interfaces. The only difference is that the external interfaces pass all strings in an
encrypted form but the internal functions receive and return all strings as plain
text.

The supplied iProcess encryption object provides all of the external interface
functions, decrypts/encrypts string parameters and then calls the internal
function supplied by you. System security is enhanced by only passing encrypted
strings between iProcess and the UVAPI package.

IMPORTANT!

You must ensure that any user validation package you create using the User
Validation API is threadsafe - see page 14 for more information.

To ensure that your user validation package is threadsafe, make sure that you
adhere to the following guidelines:

• Make sure that any modules in your user validation package that use User
Validation API interfaces use threadsafe code.

• Use mutual exclusion locks (mutexes) to prevent multiple threads from
simultaneously executing any critical sections of code that are not threadsafe,
but that access shared data.

• When you build the user validation package, make sure that you use the
appropriate flags (for your chosen operating system and compiler) to link the
application using threadsafe libraries.

Deploying a non-threadsafe user validation package can cause TIBCO iProcess
Engine processes to fail.
TIBCO iProcess User Validation API User’s Guide

| 15
Interface Support
If you do not want to support a particular interface (and the default iProcess
action is appropriate) the internal function can return the value
ER_NOTIMPLEMENTED. This causes iProcess to perform its default action using
the internal functionality for that interface. If you do not want iProcess to perform
the default action, you can return the value SW_OK (depending on the interface).

Password Validation on Windows Systems

If the iProcess Engine is running on a machine that is a member of a domain or a
domain controller, it uses the search path provided by the Windows
LookupAccountName function to find the location it should use to validate a
user’s password when they try to log in.

However, there are two ways in which you can override this behavior and
directly specify the location where password validation is to be performed, either
on a per-user basis, or globally for an installation:

1. the SW_DOMAIN user attribute specifies a single valid machine name or
domain name that should be used to validate a particular user’s password
when they attempt to log in to the iProcess Engine. See TIBCO iProcess
Windows (Workspace) Manager’s Guide for more information about this attribute
and how to set it.

2. the LOGON_OS_LOCATION process attribute defines the default location
where passwords should be validated when any user attempts to log in to the
iProcess Engine. See the "Administering Process Attributes" chapter of the
TIBCO iProcess Engine Administrator’s Guide for more information about this
attribute and how to set it.

If you use the SW_DOMAIN or LOGON_OS_LOCATION attributes, your UVAPI
package must be able to receive and return the additional information about a
user’s location, to ensure that their password is checked in that location.

The information in this section is only relevant to the Windows variant of the
iProcess Engine.

Note that:

• If both attributes are set, the SW_DOMAIN value takes precedence over the
LOGON_OS_LOCATION value.

• If the iProcess Engine is running on a standalone machine, passwords are
always validated against local machine accounts. The SW_DOMAIN and
LOGON_OS_LOCATION attributes are ignored even if they are set.
 TIBCO iProcess User Validation API User’s Guide

16 | Developing a Replacement User Validation Package
To facilitate this, the UVAPI includes extended (_ex) versions of the following
interfaces:

• uva_next_user_ex

• uva_user_info_ex

• uva_change_password_ex

• uva_check_password_ex

• uva_set_user_identity_ex

These interfaces can accept (and, in the case of uva_next_user_ex, return) an
iProcess user name in either of the following formats:

If your UVAPI package supports these extended interfaces, they are called instead
of the non-extended interfaces. If these interfaces do not exist or return
ER_NOT_SUPPORTED (see Interface Support on page 15), the non-extended
interfaces are called instead.

You should ensure that you use these extended interfaces if you use the
SW_DOMAIN or LOGON_OS_LOCATION attributes.

Creating a Session Handle
The UVAPI package works on a session which is allocated by the uva_initialise
function. This function must return a session identifier (handle). You need to be
aware that several threads in a iProcess process can be using the UVAPI interfaces
so you must make sure that the session allocation and management is performed
in a thread-safe manner.

Format Description

name name is the iProcess user name.

This format is also supported by the equivalent
non-extended interfaces.

name@location name is the iProcess user name.

location is the value (machine or domain name) provided
by either the user’s SW_DOMAIN user attribute (if
defined), or the value of the LOGON_OS_LOCATION
process attribute.

This format is not supported by the equivalent
non-extended interfaces.
TIBCO iProcess User Validation API User’s Guide

| 17
Design Issues
You should be aware that several different iProcess processes will call the UVAPI
package while the TIBCO iProcess Engine is running. This can cause problems if
the UVAPI package is not designed correctly. The example application provides a
good example of this.

The user information is stored in the text file and each iProcess process that uses
the UVAPI package loads the contents of the text file into a memory cache.
However, these caches are specific to each session and to each iProcess process.
Therefore, when an iProcess user causes its iProcess process to perform a change
password action, that process updates the main text file and the processes’ cache.

This means that other iProcess processes (including the one that validates iProcess
passwords) will still be using the original cached copy of the data in the text file.
Therefore, the example UVAPI does not reflect a changed password until the
iProcess system is shutdown and restarted. This is the only way that all the
processes can re-cache the user information.

To avoid this problem, you need to design the UVAPI package as a set of
interfaces that communicate with a single server process that maintains the user
information, ensuring that any changes to the user information is made available
to all the iProcess processes using the UVAPI package.
 TIBCO iProcess User Validation API User’s Guide

18 | API Interfaces
API Interfaces

The following sections summarize each UVAPI interface. Refer to the source code
and sample application for more information about how they are used.

The available interfaces are:

• uva_initialise

• uva_terminate

• uva_next_user

• uva_next_user_ex

• uva_user_info

• uva_user_info_ex

• uva_change_password

• uva_change_password_ex

• uva_check_password

• uva_check_password_ex

• uva_set_user_identity

• uva_set_user_identity_ex

• uva_get_user_identity
TIBCO iProcess User Validation API User’s Guide

| 19
uva_initialise

Purpose Initializes the user validation package and creates the session handle.

Prototype UV_SH uva_initialise (void)

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface can be used to establish and store connection details about a
connection to the database that is used for subsequent calls before being
terminated.

Value Description

>0 Valid session handle

ER_SYSTEM Generic (undefined) error
 TIBCO iProcess User Validation API User’s Guide

20 | uva_terminate
uva_terminate

Purpose Stops the user validation package and discards the supplied session.

Prototype UV_RCODE uva_terminate (
UV_SH uvsh

);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

Parameter Type Description

uvsh IN Session handle

Value Description

SW_OK Success

ER_HANDLE Invalid session handle

ER_SYSTEM Generic (undefined) error
TIBCO iProcess User Validation API User’s Guide

| 21
uva_next_user

Purpose Returns the encrypted user and encrypted description buffer for the name and
description of the first or subsequent Valid Possible iProcess User (VPIU).

Prototype UV_RCODE uva_next_user (
 UV_SH uvsh,
 UV_FLAG fFirstUser
 UV_PSTR pEncrNameBuf,
 UV_SIZE iNameBufSize,
 UV_PSTR pEncrDescBuf,
 UV_SIZE iDescBufSize
);

Parameters

Return Values

You must use the uva_next_user_ex interface instead of this interface if you use
the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the location
where a user’s password should be validated. See Password Validation on
Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

fFirstUser IN First/next VPIU flag

pEncrNameBuf OUT Pointer to buffer to receive encrypted VPIU name

iNameBufSize IN Maximum length of encrypted VPIU name

pEncrDescBuf OUT Pointer to buffer to receive encrypted VPIU
description

iDescBufSize IN Maximum length of encrypted VPIU description

Value Description

SW_OK Success

SW_EOF No more users available

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error
 TIBCO iProcess User Validation API User’s Guide

22 | uva_next_user
Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is used by iProcess to obtain a list of possible iProcess users
(currently used in the operating system user list of the TIBCO iProcess
Administrator).

On the initial call to this interface the fFirstUser parameter should be set to TRUE
(to return the first VPIU), subsequent calls should set fFirstUser to FALSE. The
order in which VPIUs are returned by this interface is defined by the
implementation of the underlying UVAPI package so the caller should assume no
specific order.

ER_TOOBIG Value is too large for supplied buffer

Value Description
TIBCO iProcess User Validation API User’s Guide

| 23
uva_next_user_ex

Purpose Returns the encrypted user and encrypted description buffer for the name and
description of the first or subsequent VPIU.

Prototype UV_RCODE uva_next_user_ex (
 UV_SH uvsh,
 UV_FLAG fFirstUser

UV_PSTR pOSUserLocations,
 UV_PSTR pEncrNameBuf,
 UV_SIZE iNameBufSize,
 UV_PSTR pEncrDescBuf,
 UV_SIZE iDescBufSize
);

Parameters

Return Values

You must use this interface instead of the uva_next_user interface if you use the
SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the location
where a user’s password should be validated. See Password Validation on
Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

fFirstUser IN First/next VPIU flag

pOSUserLocations IN Value of the OS_USER_LOCATIONS process
attribute.

pEncrNameBuf OUT Pointer to buffer to receive encrypted VPIU
name

iNameBufSize IN Maximum length of encrypted VPIU name

pEncrDescBuf OUT Pointer to buffer to receive encrypted VPIU
description

iDescBufSize IN Maximum length of encrypted VPIU
description

Value Description

SW_OK Success

SW_EOF No more users available
 TIBCO iProcess User Validation API User’s Guide

24 | uva_next_user_ex
Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is an extended version of the uva_next_user interface. It differs
from that interface only in the following ways:

• It supports the passing in and out of user location information from the
SW_DOMAIN user attribute and/or LOGON_OS_LOCATION process
attribute. See Password Validation on Windows Systems on page 15 for more
information.

• It has an additional pOSUserLocations parameter, which allows the value of
the OS_USER_LOCATIONS process attribute to be passed in (for example, if
you want to limit the users that are to be returned by the UVAPI layer). See the
"Administering Process Attributes" chapter of TIBCO iProcess Engine
Administrator’s Guide for more information about this attribute and how to set
it.

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_TOOBIG Value is too large for supplied buffer

Value Description
TIBCO iProcess User Validation API User’s Guide

| 25
uva_user_info

Purpose Decrypts the supplied encrypted user and returns the encrypted description and
bit-encoded flags for the supplied user.

Prototype UV_RCODE uva_user_info (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrDescBuf,
 UV_SIZE iDescBufSize,
 UV_PFLAGS pUserFlags
);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

You must use the uva_user_info_ex interface instead of this interface if you use
the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the location
where a user’s password should be validated. See Password Validation on
Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrDescBuf OUT Pointer to buffer to receive VPIU description

iDescBufSize IN Maximum length of VPIU description

pUserFlags OUT Pointer to returned user information flags value

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_TOOBIG Value is too large for supplied buffer
 TIBCO iProcess User Validation API User’s Guide

26 | uva_user_info
Remarks This interface is used by iProcess to validate a user name as a VPIU, and to
determine system related attributes of the user. The TIBCO iProcess Engine
currently uses a similar validation when adding users during a Restore operation.

The returned UserFlags will be a bit-encoded value, currently the only defined
bits are:

#define SWUV_FLAG_OSUSER 1

If this bit is set for a VPIU, it means there is a corresponding operating system
account for that user.
TIBCO iProcess User Validation API User’s Guide

| 27
uva_user_info_ex

Purpose Decrypts the supplied encrypted user and returns the encrypted description and
bit-encoded flags for the supplied user.

Prototype UV_RCODE uva_user_info_ex (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrDescBuf,
 UV_SIZE iDescBufSize,
 UV_PFLAGS pUserFlags
);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

You must use this interface instead of the uva_user_info interface if you use the
SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the location
where a user’s password should be validated. See Password Validation on
Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrDescBuf OUT Pointer to buffer to receive VPIU description

iDescBufSize IN Maximum length of VPIU description

pUserFlags OUT Pointer to returned user information flags value

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_TOOBIG Value is too large for supplied buffer
 TIBCO iProcess User Validation API User’s Guide

28 | uva_user_info_ex
Remarks This interface is an extended version of the uva_user_info interface. It is identical
to that interface except that it supports the passing in and out of user location
information from the SW_DOMAIN user attribute and/or
LOGON_OS_LOCATION process attribute. See Password Validation on
Windows Systems on page 15 for more information.
TIBCO iProcess User Validation API User’s Guide

| 29
uva_change_password

Purpose Decrypts the supplied encrypted user name and passwords and then change the
password for the supplied user to the supplied password.

Prototype UV_RCODE uva_change_password (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrOldPassword,
 UV_PSTR pEncrNewPassword
);

Parameters

Return Values

You must use the uva_change_password_ex interface instead of this interface if
you use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrOldPassword IN Pointer to encrypted VPIU current
password

pEncrNewPassword IN Pointer to encrypted VPIU new password

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_SECCANTCHNG Cannot change password for this user

ER_SECBADNEWPSWD New password is invalid

ER_SECBADUSER Unknown user
 TIBCO iProcess User Validation API User’s Guide

30 | uva_change_password
Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is currently used in the iProcess Work Queue Manager.

ER_SECUNKNOWN Generic (undefined) security error

ER_SECBADPSWD Password is invalid

ER_SECBADPERMS Permissions are incorrect for this operation

Value Description
TIBCO iProcess User Validation API User’s Guide

| 31
uva_change_password_ex

Purpose Decrypts the supplied encrypted user name and passwords and then changes the
password for the supplied user to the supplied password.

Prototype UV_RCODE uva_change_password_ex (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrOldPassword,
 UV_PSTR pEncrNewPassword
);

Parameters

Return Values

You must use this interface instead of the uva_change_password interface if you
use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrOldPassword IN Pointer to encrypted VPIU current
password

pEncrNewPassword IN Pointer to encrypted VPIU new password

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_SECCANTCHNG Cannot change password for this user

ER_SECBADNEWPSWD New password is invalid

ER_SECBADUSER Unknown user
 TIBCO iProcess User Validation API User’s Guide

32 | uva_change_password_ex
Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is an extended version of the uva_change_password interface. It is
identical to that interface except that it supports the passing in and out of user
location information from the SW_DOMAIN user attribute and/or
LOGON_OS_LOCATION process attribute. See Password Validation on
Windows Systems on page 15 for more information.

ER_SECUNKNOWN Generic (undefined) security error

ER_SECBADPSWD Password is invalid

ER_SECBADPERMS Permissions are incorrect for this operation

Value Description
TIBCO iProcess User Validation API User’s Guide

| 33
uva_check_password

Purpose Decrypt the supplied encrypted user and password and then return a value
indicating whether the password for the supplied user is valid.

Prototype UV_RCODE uva_check_password (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrPassword
);

Parameters

Return Values

You must use the uva_check_password_ex interface instead of this interface if you
use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrOldPassword IN Pointer to encrypted VPIU password

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_SECEXPIRED Password has expired

ER_SECDISABLED This user account is disabled

ER_SECBADUSER Unknown user

ER_SECUNKNOWN Generic (undefined) security error

ER_SECBADPSWD Password is invalid
 TIBCO iProcess User Validation API User’s Guide

34 | uva_check_password
Refer to Return Values on page 40 for a complete list of possible return values.

ER_SECBADPERMS Permissions are incorrect for this operation

ER_USERDISABLED The account has been disabled

ER_SECBADWKSTN Login/Validation is not allowed from this
location

ER_SECBADHOURS Login/Validation is not allowed at this time

ER_SECLOCKOUT The account has been locked

Value Description
TIBCO iProcess User Validation API User’s Guide

| 35
uva_check_password_ex

Purpose Decrypt the supplied encrypted user and password and then return a value
indicating whether the password for the supplied user is valid.

Prototype UV_RCODE uva_check_password_ex (
 UV_SH uvsh,
 UV_PSTR pEncrUserName,
 UV_PSTR pEncrPassword
);

Parameters

Return Values

You must use this interface instead of the uva_check_password interface if you
use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

pEncrOldPassword IN Pointer to encrypted VPIU password

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_SECEXPIRED Password has expired

ER_SECDISABLED This user account is disabled

ER_SECBADUSER Unknown user

ER_SECUNKNOWN Generic (undefined) security error

ER_SECBADPSWD Password is invalid
 TIBCO iProcess User Validation API User’s Guide

36 | uva_check_password_ex
Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is an extended version of the uva_check_password interface. It is
identical to that interface except that it supports the passing in and out of user
location information from the SW_DOMAIN user attribute and/or
LOGON_OS_LOCATION process attribute. See Password Validation on
Windows Systems on page 15 for more information.

ER_SECBADPERMS Permissions are incorrect for this operation

ER_USERDISABLED The account has been disabled

ER_SECBADWKSTN Login/Validation is not allowed from this
location

ER_SECBADHOURS Login/Validation is not allowed at this time

ER_SECLOCKOUT The account has been locked

Value Description
TIBCO iProcess User Validation API User’s Guide

| 37
uva_set_user_identity

Purpose Sets the execution context of the current process to that of the user (or that user's
operating system proxy) whose encrypted name is passed in. On UNIX this
involves setting the UID and GID.

Prototype UV_RCODE uva_set_user_identity (
 UV_SH uvsh,
 UV_PSTR pEncrUserName
);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

Remarks If the user does not map directly to an operating system identity, the UVAPI
package must set the identity of a compatible proxy user. iProcess calls this
interface before running Automatic Step programs or ServerRun programs.

You must use the uva_set_user_identity_ex interface instead of this interface if
you use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error
 TIBCO iProcess User Validation API User’s Guide

38 | uva_set_user_identity_ex
uva_set_user_identity_ex

Purpose Sets the execution context of the current process to that of the user (or that user's
operating system proxy) whose encrypted name is passed in. On UNIX this
involves setting the UID and GID.

Prototype UV_RCODE uva_set_user_identity_ex (
 UV_SH uvsh,
 UV_PSTR pEncrUserName
);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

Remarks This interface is an extended version of the uva_set_user_identity interface. It is
identical to that interface except that it supports the passing in and out of user
location information from the SW_DOMAIN user attribute and/or
LOGON_OS_LOCATION process attribute. See Password Validation on
Windows Systems on page 15 for more information.

You must use this interface instead of the uva_set_user_identity interface if you
use the SW_DOMAIN or LOGON_OS_LOCATION attributes to specify the
location where a user’s password should be validated. See Password Validation
on Windows Systems on page 15 for more information.

Parameter Type Description

uvsh IN Session handle

pEncrUserName IN Pointer to encrypted VPIU name

Value Description

SW_OK Success

ER_NOTFOUND Unknown user

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error
TIBCO iProcess User Validation API User’s Guide

| 39
uva_get_user_identity

Purpose Returns the encrypted VPIU name that relates to the current processes execution
context.

Prototype UV_RCODE uva_get_user_identity (
 UV_SH uvsh,
 UV_PSTR pEncrUserNameBuf,
 UV_SIZE iNameBufSize
);

Parameters

Return Values

Refer to Return Values on page 40 for a complete list of possible return values.

Remarks If there is no direct mapping between the identity of the execution context and a
VPIU, the UVAPI package must supply the name of a compatible VPIU. iProcess
will call this interface to determine if the user executing certain iProcess Engine
hosted utilities has permissions to perform a requested action.

Parameter Type Description

uvsh IN Session handle

pEncrUserNameBuf OUT Pointer to buffer to receive encrypted VPIU
name

iNameBufSize IN Maximum length of encrypted VPIU name

Value Description

SW_OK Success

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_TOOBIG Value is too large for supplied buffer
 TIBCO iProcess User Validation API User’s Guide

40 | Return Values
Return Values

All user validation interfaces (apart from the uva_initialise function) return an
integer return code with the following type:

typedef int UV_RCODE

Return codes are classified as follows:

The following values can be returned. Refer to each interface description to see
which values each interface returns.

Value Description

> 0 Success

0 Failure (but not an error)

<0 Failure (an error condition)

Return Value Description

SW_OK Success

SW_EOF No more users available

ER_HANDLE Invalid session handle

ER_PARAM Invalid parameter(s)

ER_SYSTEM Generic (undefined) error

ER_TOOBIG Value is too large for supplied buffer

ER_NOTFOUND Unknown user

ER_SECCANTCHNG Cannot change password for this user

ER_SECBADNEWPSWD New password is invalid

ER_SECBADUSER Unknown user

ER_SECUNKNOWN Generic (undefined) security error
TIBCO iProcess User Validation API User’s Guide

| 41
ER_SECBADPSWD Password is invalid

ER_SECBADPERMS Permissions are incorrect for this operation

ER_SECEXPIRED Password has expired

ER_SECDISABLED This user account is disabled

ER_SECBADWKSTN Login/Validation is not allowed from this
location

ER_SECBADHOURS Login/Validation is not allowed at this time

ER_SECLOCKOUT The account has been locked

ER_USERDISABLED The account has been disabled

Return Value Description
 TIBCO iProcess User Validation API User’s Guide

42 | Return Values
TIBCO iProcess User Validation API User’s Guide

	TIBCO iProcess® User Validation API
	Contents
	Preface
	Related Documentation
	TIBCO iProcess Engine Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction
	What is iProcess User Validation?
	System Requirements
	Installation
	UNIX Platform
	Windows Platform

	Using the User Validation API
	The iProcess Encryption Layer Object
	The Header File
	Compiling Your UVAPI Package
	The TIBCO iProcess User Validation API Sample Application
	Build Instructions

	Chapter 2 The TIBCO iProcess User Validation API
	Developing a Replacement User Validation Package
	Thread Safety
	Internal Function Names
	Interface Support
	Password Validation on Windows Systems
	Creating a Session Handle
	Design Issues

	API Interfaces
	uva_initialise
	uva_terminate
	uva_next_user
	uva_next_user_ex
	uva_user_info
	uva_user_info_ex
	uva_change_password
	uva_change_password_ex
	uva_check_password
	uva_check_password_ex
	uva_set_user_identity
	uva_set_user_identity_ex
	uva_get_user_identity

	Return Values

