
Two-Second Adv
TIBCO iProcess® Engine (SQL)

Administrator's Guide
Software Release 11.6
January 2016
antage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, Two-Second Advantage, TIBCO ActiveMatrix BusinessWorks, TIBCO Business Studio, TIBCO
Enterprise Message Service, TIBCO Hawk, TIBCO iProcess, TIBCO iProcess Suite, and TIBCO Rendezvous are
either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition
(J2EE), and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation
in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 1994-2016 TIBCO Software Inc. All rights reserved.
TIBCO Software Inc. Confidential Information

| i
Contents

Preface .vii

Related Documentation .viii
TIBCO iProcess Engine Documentation. .viii
Other TIBCO Product Documentation .viii

Typographical Conventions . x

Connecting with TIBCO Resources .xiii
How to Join TIBCOmmunity .xiii
How to Access TIBCO Documentation. .xiii
How to Contact TIBCO Support .xiii

Chapter 1 The TIBCO iProcess Engine Node .1

Table Relationships . 2

nodes . 3

Chapter 2 Process Sentinels. .5

Table Relationships . 6

node_cluster . 7

process_config . 9

process_event_log . 11

process_attributes . 13

running_processes . 15

active_logins . 17

checksums . 19

Chapter 3 Mbox Sets and Message Queues .21

Table Relationships . 22

iql_queues . 23

mbox_set . 26

mbox_set_group . 28

Default SQL Database Queue Tables (Test) . 30
sw_db_bgqueue_n . 30
sw_db_wisqueue_n . 32
sw_db_predictqueue_n. 34
 TIBCO iProcess Engine (SQL) Administrator’s Guide

ii | Contents
sw_db_deadqueue. 36

Creating Additional SQL Database Queue Tables . 38
Example. 38

Chapter 4 Sequence Numbers . 41

About Sequence Numbers . 42

Table Relationships . 44

sequences . 45

Chapter 5 Procedures . 47

Table Relationships . 48

proc_index . 49

iap_monitor . 53

iap_field . 54

iap_activity . 55

iap_global . 56

proc_version . 57

procedure_lock . 59

proc_instance . 61

proc_audit . 63

proc_defn . 65

proc_deadline . 68

proc_event . 70

wqd_delta_subscriptions . 73

Chapter 6 Procedure Management . 75

About Procedure Objects . 76

Table Relationships . 77

pm_objects . 78

pm_objects_lock . 81

pmobjects_security . 83

proc_mgt_hierarchy . 85

Chapter 7 Cases . 87

Table Relationships . 88

case_information . 89

outstanding_addr . 93
TIBCO iProcess Engine (SQL) Administrator’s Guide

Contents | iii
wait . 96

wait_step . 98

status . 100

case_data . 102

audit_trail . 104

memo . 107

nmemo . 110

predict . 112

predict_lock . 116

case_deadline_event . 118

case_event . 120

casenum_gaps . 123

Chapter 8 Work Items .125

Table Relationships . 126

staffo . 127

pack_data . 131

pack_memo . 133

pack_nmemo . 136

qaccess . 138

Chapter 9 Case Data Queue Parameters .141

Table Relationships . 142

cdqp_def . 143

cdqp_cfg . 145

Chapter 10 Queue Participation and Redirection .147

Table Relationships . 148

part_defn . 149

part_list . 151

redir_defn . 153

Chapter 11 Administrative Tables .155

Table Relationships . 156

flag_table . 157

version . 160
 TIBCO iProcess Engine (SQL) Administrator’s Guide

iv | Contents
Chapter 12 Users and Work Queues. 161

About User Tables. 162

Table Relationships . 163

user_names . 164

user_attrib . 166

user_setting . 168

user_values . 169

user_memb . 171

leavers . 173

tsys_user_names . 175

tsys_user_attrib . 176

tsys_user_values . 177

tsys_user_memb . 178

Chapter 13 Roles . 179

About Roles . 180

Table Relationships . 181

role_users . 182

tsys_role_users . 184

Chapter 14 TIBCO iProcess Tables. 185

About TIBCO iProcess Tables. 186

Table Relationships . 187

dbs_names . 188

dbs_fields . 190

dbs_values . 192

tsys_dbs_names . 194

tsys_dbs_fields . 195

tsys_dbs_values . 196

str_dbs_names . 197

str_dbs_fields . 198

ttmp_dbs_names . 199

ttmp_dbs_fields . 200

ttmp_dbs_values . 201
TIBCO iProcess Engine (SQL) Administrator’s Guide

Contents | v
Chapter 15 Lists .203

About Lists . 204

Table Relationships . 205

list_names . 206

list_values . 208

tsys_list_names . 210

tsys_list_values . 211

ttmp_list_names . 212

ttmp_list_values . 213

Chapter 16 iProcess Server Plug-ins .215

Table Relationships . 216

eai_registry . 217

Chapter 17 Firewall Port Ranges .219

Table Relationships . 220

port_range . 221

port_range_active . 223

port_range_conf . 225

port_range_nodes . 227

Chapter 18 WQS/WIS Shared Memory .229

Table Relationships . 230

wqs_index . 231

Chapter 19 System Event Logging. .235

Table Relationships . 236

system_event . 237

system_event_conf . 239

Appendix A Views .241

Appendix B SSOLite Stored Procedures .243

Overview . 244

Using SSOLite Stored Procedures . 245
Processing Asynchronous Message. 245
Transactional Processing . 245
 TIBCO iProcess Engine (SQL) Administrator’s Guide

vi | Contents
Handling Exceptions . 245
Processing Queues . 248
Prioritizing Messages. 249

Data Procedures . 251

Command Procedures . 259

Control Procedures . 286

Debug Procedures . 297

Appendix C Database Stored Procedures . 301

Overview . 302

CASENUM_FIND_GAPS . 303

Appendix D Unused Tables . 307
TIBCO iProcess Engine (SQL) Administrator’s Guide

| vii
Preface

This guide describes the TIBCO iProcess Engine (SQL) database schema.

Topics

• Related Documentation, page viii

• Typographical Conventions, page x

• Connecting with TIBCO Resources, page xiii
 TIBCO iProcess Engine (SQL) Administrator’s Guide

viii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO iProcess Engine Documentation
The following documents form the TIBCO iProcess Engine documentation set:

• TIBCO iProcess Engine Installation Read this manual for instructions on site
preparation and installation.

• TIBCO iProcess Engine Release Notes Read the release notes for a list of new
and changed features. This document also contains lists of known issues and
closed issues for this release.

• TIBCO iProcess Suite Documentation This documentation set contains all the
manuals for TIBCO iProcess Engine and other TIBCO products in TIBCO
iProcess® Suite. The manuals for TIBCO iProcess Engine are as follows:

— TIBCO iProcess Engine Architecture Guide

— TIBCO iProcess Engine Administrator’s Guides:

TIBCO iProcess Engine Administrator’s Guide

TIBCO iProcess Objects Director Administrator’s Guide

TIBCO iProcess Objects Server Administrator’s Guide

— TIBCO iProcess Engine Database Administrator's Guides:

TIBCO iProcess Engine (DB2) Administrator's Guide

TIBCO iProcess Engine (Oracle) Administrator's Guide

TIBCO iProcess Engine (SQL) Administrator's Guide

— TIBCO iProcess swutil and swbatch Reference Guide

— TIBCO iProcess Engine System Messages Guide

— TIBCO iProcess User Validation API User's Guide

— LDAPCONF Utility User’s Guide

Other TIBCO Product Documentation
You may find it useful to read the documentation for the following TIBCO
products:

• TIBCO ActiveMatrix BusinessWorks™
TIBCO iProcess Engine (SQL) Administrator’s Guide

Preface | ix
• TIBCO Business Studio™

• TIBCO Enterprise Message Service™

• TIBCO Hawk®

• TIBCO Rendezvous®
 TIBCO iProcess Engine (SQL) Administrator’s Guide

x | Typographical Conventions
Typographical Conventions

TIBCO iProcess Engine can be run on both Microsoft Windows and UNIX/Linux
platforms. In this manual, the Windows convention of a backslash (\) is used. The
equivalent pathname on a UNIX or Linux system is the same, but using the
forward slash (/) as a separator character.

The following typographical conventions are used in this manual

UNIX or Linux pathnames are occasionally shown explicitly, using forward
slashes as separators, where a UNIX or Linux-specific example or syntax is
required.

Any references to UNIX in this manual also apply to Linux unless explicitly stated
otherwise.

Table 1 General Typographical Conventions

Convention Use

SWDIR TIBCO iProcess Engine installs into a directory. This directory is referenced in
documentation as SWDIR. The value of SWDIR depends on the operating system.
For example,

• on a Windows server (on the C: drive)

if SWDIR is set to the C:\swserver\staffw_nod1 directory, then the full path
to the swutil command is in the C:\swserver\staffw_nod1\bin\swutil
directory.

• on a UNIX or Linux server

if SWDIR is set to the /swserver/staffw_nod1 directory, then the full path to
the swutil command is in the /swserver/staffw_nod1/bin/swutil
directory or the $SWDIR/bin/swutil directory.

Note: On a UNIX or Linux system, the environment variable $SWDIR should
be set to point to the iProcess system directory for the root and swadmin users.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.
TIBCO iProcess Engine (SQL) Administrator’s Guide

Preface | xi
bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms. For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

Table 1 General Typographical Conventions (Cont’d)

Convention Use
 TIBCO iProcess Engine (SQL) Administrator’s Guide

xii | Typographical Conventions
| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand param1 | param2 | param3

{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions (Cont’d)

Convention Use
TIBCO iProcess Engine (SQL) Administrator’s Guide

Preface | xiii
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts. It is a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access TIBCO Documentation
Documentation for this and other TIBCO products is available on the TIBCO
Documentation site:

https://docs.tibco.com

Documentation on the TIBCO Documentation site is updated more frequently
than any documentation that might be included with the product. To ensure that
you are accessing the latest available help topics, please visit us at
https://docs.tibco.com.

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, contact
TIBCO Support as follows:

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

http://www.tibco.com/services/support
https://support.tibco.com
http://www.tibcommunity.com
https://docs.tibco.com
https://docs.tibco.com

xiv | Connecting with TIBCO Resources
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 1
Chapter 1 The TIBCO iProcess Engine Node

This chapter describes the table that is used to store information about the TIBCO
iProcess Engine node.

Topics

• Table Relationships, page 2

• nodes, page 3
 TIBCO iProcess Engine (SQL) Administrator’s Guide

2 | Table Relationships
Table Relationships

The following diagram shows how the nodes table is related to other tables in the
schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

proc_index

nodes

user_namesuser_attrib

role_userstsys_role_users

tsys_dbs_namesdbs_names

list_names tsys_list_names ttmp_list_names
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 3
nodes

The nodes table holds information about this iProcess Engine node. A node is a
single logical iProcess Engine, which may be installed either on a single computer,
or spread over several using a node cluster architecture).

Structure The nodes table has the following structure:

TABLE nodes(
node_id INTEGER NOT NULL,
node_name VARCHAR(24) NOT NULL,
dir_name VARCHAR(28) NOT NULL,
mail_addr VARCHAR(149) NULL,
mail_cert VARCHAR(31) NULL,
mail_type INTEGER NOT NULL,
node_public SMALLINT NOT NULL,
node_slave SMALLINT NOT NULL,
node_deleted SMALLINT NOT NULL,
rpc_majvers SMALLINT NOT NULL,
rpc_minvers SMALLINT NOT NULL,
server_majvers SMALLINT NOT NULL,
server_minvers SMALLINT NOT NULL)

Column Description

node_id Unique ID of this iProcess node.

Note: This value is always 1.

node_name Logical name for this node.

dir_name Name of the directory which holds the node's data (SWDIR).

mail_addr Not used. Reserved for possible future use.

mail_cert Not used. Reserved for possible future use.

mail_type Not used. Reserved for possible future use.

node_public Not used. Reserved for possible future use.

node_slave Not used. Reserved for possible future use.

node_deleted Not used. Reserved for possible future use.

rpc_majvers Not used. Reserved for possible future use.

rpc_minvers Not used. Reserved for possible future use.

server_majvers Not used. Reserved for possible future use.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

4 | nodes
Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Table Activity The nodes table contains one row, which is the entry for the iProcess Engine.

Rows are added, updated and deleted in the following situations.

server_minvers Not used. Reserved for possible future use.

Column Description

Key Name Column(s)

pk_nodes node_id

Trigger Name Triggered by Affects Table(s)

tr_nodes DELETE proc_index

user_names

user_attrib

dbs_names

tsys_dbs_names

list_names

tsys_list_names

ttmp_list_names

role_users

tsys_role_users

A row is... When...

added never.

updated never.

deleted never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 5
Chapter 2 Process Sentinels

This chapter describes the tables that are used to store information used by the
Process Sentinels.

Topics

• Table Relationships, page 6

• node_cluster, page 7

• process_config, page 9

• process_event_log, page 11

• process_attributes, page 13

• running_processes, page 15

• active_logins, page 17

• checksums, page 19
 TIBCO iProcess Engine (SQL) Administrator’s Guide

6 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

checksums

process_attributes

process_event_log

running_processes

node_cluster

process_config active_logins

eai_registry
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 7
node_cluster

The node_cluster table defines the server computers that make up this iProcess
Engine node.

Structure The node_cluster table has the following structure:

TABLE node_cluster(
logical_machine_id INTEGER NOT NULL,
physical_machine_nameVARCHAR(256) NOT NULL,
master SMALLINT NOT NULL,
check_error_files SMALLINT NOT NULL,
machine_comment VARCHAR(256) NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Column Description

logical_machine_id Unique ID for this server.

physical_machine_name If a UNIX server, the name of this server (as returned
by the UNIX uname command). If a Windows server,
then the name of this server or the Microsoft
Windows cluster network name.

master Flag that defines whether this computer is acting as
the master server (1) or, if a node-cluster architecture
is being used, as a slave server (0).

check_error_files Flag that defines whether the Process Sentinels on
this server check (1) or do not check (0) for the
creation of SWDIR\logs\sw_error and sw_warn
files.

machine_comment Descriptive comment describing this server.

Key Name Column(s)

pk_node_cluster logical_machine_id

Trigger Name Triggered by Affects Table(s)

tr_node_cluster DELETE eai_registry

process_config

active_logins
 TIBCO iProcess Engine (SQL) Administrator’s Guide

8 | node_cluster
Indexes None.

Table Activity The node_cluster table contains one row for each server computer that is part of
the iProcess Engine node.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a new server is added to the node, either at installation or by using the
SWDIR\util\swadm utility.

updated a server’s details are updated, using the SWDIR\util\swadm utility.

deleted a server is removed from the node, using the SWDIR\util\swadm
utility.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 9
process_config

The process_config table stores information about each process instance that is
defined on the system.

Multiple instances of each server process can be used to optimize iProcess Engine
efficiency - for example, to increase the processing capability on one server, or to
spread the processing load across multiple servers.

Structure The process_config table has the following structure:

TABLE process_config(
logical_machine_id INTEGER NOT NULL,
logical_process_name VARCHAR(10) NOT NULL,
logical_process_instanceINTEGER NOT NULL,
enabled SMALLINT NOT NULL,
persistent SMALLINT NOT NULL,
last_known_status VARCHAR(20) NOT NULL,
status_comment VARCHAR(255) NULL)

Column Description

logical_machine_id ID of the server where this process instance runs, as
defined in the node_cluster table.

logical_process_name Logical name of this process instance.

Note: See "Administering iProcess Engine Server
Processes" in TIBCO iProcess Engine Administrator's
Guide for a list of logical process names.

logical_process_instance Unique ID for this process instance.

enabled Flag that defines whether this process instance
starts automatically (1) when the iProcess Engine
starts, or whether it must be started manually (0).

persistent Flag that defines whether this process instance is
automatically restarted (1) or not (0) when the
iProcess Engine is shut down and restarted.

Note: Any row in which the persistent value is 0 is
deleted when the iProcess Engine starts up.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

10 | process_config
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The process_config table contains one row for each instance of each server
process defined on the system.

Rows are added, updated and deleted in the following situations.

last_known_status Last known status of this process instance, as
reported to the Process Sentinels by the process.

Either: STARTING, RUNNING, PAUSED,
SUSPENDED, SHUTTING DOWN or STOPPED.

Note: The process_event_log table provides an
audit trail of changes to the status of a process
instance.

status_comment Brief explanation of the last_known_status, as
reported to the Process Sentinels by the process.

Column Description

Key Name Column(s)

pk_process_config logical_machine_id
logical_process_name
logical_process_instance

Index Name Column(s) Indexed

idx_process_config_fk logical_machine_id

A row is... When...

added a new process instance is added, either at installation or by using the
SWDIR\util\swadm, SWDIR\util\swsvrmgr utilities or the
iProcess Server Manager.

updated a process instance’s settings or status are updated, either by system
activity, or by using the SWDIR\util\swadm,
SWDIR\util\swsvrmgr utilities or the iProcess Server Manager.

deleted a process instance is deleted, either at installation or by using the
SWDIR\util\swadm, SWDIR\util\swsvrmgr utilities or the
iProcess Server Manager.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 11
process_event_log

The process_event_log table logs all changes in the status of server process
instances.

Structure The process_event_log table has the following structure:

TABLE process_event_log (
logical_machine_id INTEGER NOT NULL,
logical_process_name VARCHAR(10) NOT NULL,
logical_process_instanceINTEGER NOT NULL,
process_id INTEGER NOT NULL,
process_status INTEGER NOT NULL,
process_status_commentVARCHAR(255) NULL,
timestamp DATETIME NOT NULL)

Column Description

logical_machine_id ID of the server where the process instance that this
event applies to is running, as defined in the
node_cluster table.

logical_process_name Logical name of the process that this event applies to.

Note: See "Administering iProcess Engine Server
Processe" in TIBCO iProcess Engine Administrator's
Guide for a list of logical process names.

logical_process_
instance

ID of the process instance that this event applies to,
as defined in the process_config table.

process_id Process ID (PID) of the process instance that this
event applies to.

process_status Status change event that occurred for the specified
process instance. One of the following:

• 3000 - process instance started.

• 3001 - process instance stopping.

• 3002 - process instance stopped.

• 3003 - process instance died.

• 3004 - process instance paused.

• 3005 - process instance unpaused.

process_status_comment Description of the process_status entry, as
reported to the Process Sentinels by the process.

timestamp Date and time that this event occurred.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

12 | process_event_log
Primary Key None.

Triggers None.

Indexes None.

Table Activity The process_event_log table contains one row for each status change event that
has occurred to each instance of a server process.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a process starts, receives a shutdown command, or shuts down.

updated never.

deleted never.

Note: Because rows are never deleted automatically, TIBCO
recommend that you regularly monitor the size of this table and
delete or archive rows manually if you need to.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 13
process_attributes

The process_attributes table stores process attribute definitions, which
provide configuration information for iProcess Engine server processes.

Structure The process_attributes table is structured as follows:

TABLE process_attributes (

logical_machine_id INTEGER NOT NULL,

logical_process_name VARCHAR(10) NOT NULL,

logical_process_instance INTEGER NOT NULL,

attribute_name VARCHAR(50) NOT NULL,
attribute_value VARCHAR(1024) NOT NULL,
attribute_type VARCHAR(2) NOT NULL)

Column Description

logical_machine_id ID of the server where the process instance that this
attribute applies to is running, as defined in the
node_cluster table.

A value of 0 means that this attribute applies to all
servers that are part of this node.

logical_process_name Logical name of the process that this attribute applies
to.

A value of ALL means that this attribute applies to all
processes on the indicated server.

Note: See "Administering iProcess Engine Server
Processes" in TIBCO iProcess Engine Administrator's
Guide for a list of logical process names.

logical_process_
instance

ID of the process instance that this attribute applies to,
as defined in the process_config table.

A value of 0 means that this attribute applies to all
instances of the indicated process.

attribute_name Name of this process attribute.

Note: See "Administering Process Attributes" in
TIBCO iProcess Engine Administrator's Guide for a list of
the available process attributes.

attribute_values Value of this process attribute.

Note: See "Administering Process Attributes" in
TIBCO iProcess Engine Administrator's Guide for a list of
the valid values for each process attributes.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

14 | process_attributes
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The process_attribute table contains one row for each unique definition of a
process attribute on the system.

Rows are added, updated and deleted in the following situations.

attribute_type Type of this process attribute: either I (Integer), C
(Character) or S (String).

Note: All attribute_values are stored as strings in
this table. This value determines how the value is
returned to the SWDIR\bin\swadm interface.

Column Description

Key Name Column(s)

pk_process_attributes logical_machine_id
logical_process_name
logical_process_instance
attribute_name

A row is... When...

added a new process attribute definition is added, either at installation or
by using the SWDIR\util\swadm utility.

updated a process attribute definition is updated, using the
SWDIR\util\swadm utility.

deleted a process attribute definition is deleted, using the
SWDIR\util\swadm utility.

This table can contain orphan rows in which data can exist that does not apply to
any process currently being used.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 15
running_processes

The running_processes table stores information about each process instance
that is currently running on the system.

Structure The running_processes table has the following structure:

TABLE running_processes (
logical_machine_id INTEGER NOT NULL,
logical_process_name VARCHAR(10) NOT NULL,
logical_process_instanceINTEGER NOT NULL,
process_id INTEGER NOT NULL,
port_number INTEGER NOT NULL)

Primary Key None.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The running_processes table contains one row for each instance of an iProcess
Engine server process that is currently running on the system.

Column Description

logical_machine_id ID of the server where this process instance is
running, as defined in the node_cluster table.

logical_process_name Logical name of this process instance.

Note: See "Administering iProcess Engine Server
Processes" in TIBCO iProcess Engine Administrator's
Guide for a list of logical process names.

logical_process_instanc
e

ID of this process instance, as defined in the
process_config table.

process_id Process ID (PID) of this process instance.

port_number Port number that this process instance is running on.

Index Name Column(s) Indexed

idx_running_processes_fk logical_machine_id
logical_process_name
logical_process_instance
 TIBCO iProcess Engine (SQL) Administrator’s Guide

16 | running_processes
Rows are added, updated and deleted in the following situations.

A row is... When...

added a new process instance is started.

updated a process instance is restarted (process_id and port_number are
updated).

deleted a process instance is stopped.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 17
active_logins

The active_logins table stores details of all users who are currently logged in to
this iProcess Engine node.

Structure The active_logins table has the following structure:

TABLE active_logins(
logical_machine_id INTEGER NOT NULL,
logical_process_name VARCHAR(10) NOT NULL,
logical_process_instanceINTEGER NOT NULL,
user_name VARCHAR(64) NOT NULL,
user_id VARCHAR(37) NOT NULL,
process_id INTEGER NOT NULL,
filsh INTEGER NOT NULL,
windows SMALLINT NOT NULL,
station_id VARCHAR(32) NOT NULL)

Primary Key None.

Column Description

logical_machine_id ID of the server where the process that made the login
request is running, as defined in the node_cluster table.

logical_process_na
me

Logical name of this process instance.

Note: See "Administering iProcess Engine Server
Processes" in TIBCO iProcess Engine Administrator's Guide
for a list of logical process names.

logical_process_
instance

ID of this process instance, as defined in the process_config
table.

user_name Name of the user who is logged in, as defined in the
user_names table.

user_id ID of the user who made the login request (for internal use
only).

process_id Process ID (PID) of the process that made the login request.

filsh FIL session handle (for internal use only).

windows Flag that defines whether the login request came from

TIBCO iProcess Objects (0) or from an TIBCO iProcess®
Workspace or other SAL application (1).

station_id Comment that identifies where a user is logged in.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

18 | active_logins
Triggers None.

Indexes The following indexes are defined for this table.

Table Activity The active_logins table contains one row for each user who is currently logged
into this iProcess Engine node.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_active_logins_fk logical_machine_id

idx_active_logins1

1. This is a clustered index.

user_id

A row is... When...

added a user is logged in.

updated never.

deleted a user is logged out or the iProcess Engine shuts down.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 19
checksums

The checksums table is used internally by the iProcess Enginee to provide
security checks on the active_logins and port_range tables.

Structure The checksums table has the following structure:

TABLE checksums (
area_id INTEGER NOT NULL,
area_name VARCHAR(20) NOT NULL,
check_sum VARCHAR(54) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The checksums table contains one row for each checksum used internally bythe
iProcess Engine.

Rows are added, updated and deleted in the following situations.

Column Description

area_id Unique ID of the area using this checksum

area_name Name of the area using this checksum. Currently this is
always PORT RANGING.

check_sum Encrypted checksum for the indicated area.

Key Name Column(s)

pk_checksums area_id

A row is... When...

added the iProcess Engine is started.

updated a login is performed.

deleted never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

20 | checksums
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 21
Chapter 3 Mbox Sets and Message Queues

This chapter describes the tables that are used to control the behavior of the
message queueing system.

It also describes the Default SQL Database Queue Tables (Test), which provide the
underlying message queuing system used by the iProcess message queues.

Topics

• Table Relationships, page 22

• iql_queues, page 23

• mbox_set, page 26

• mbox_set_group, page 28

• Default SQL Database Queue Tables (Test), page 30

• Creating Additional SQL Database Queue Tables, page 38
 TIBCO iProcess Engine (SQL) Administrator’s Guide

22 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

SQL queue tables

mbox_set

mbox_set_group iql_queues
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 23
iql_queues

The iql_queues table defines each message queue that is available on this
iProcess Engine node.

Structure The iql_queues table has the following structure:

TABLE iql_tables (
queue_id INTEGER NOT NULL,
queue_name VARCHAR(24) NOT NULL,
queue_type SMALLINT NOT NULL,
queue_phys_descr VARCHAR(100) NOT NULL)

Format of the SQL Database Queue Table ID

The ID of the SQL database table that is used to hold this message queue (in the
queue_phys_descr column) is specified using the following format:

0003:[database_name.][owner.] queue_table

where:

• 0003 indicates that the remainder of the string uses SQL Server format.

• database_name is the name of the database that holds this queue_table. If this
option is omitted, the iProcess database is used by default.

Column Description

queue_id Unique identifier for this message queue.

queue_name Name of this message queue.

queue_type Message type used by this message queue. This value is
always 1, for local messages.

queue_phys_descr ID of the SQL database queue table that is used to hold this
message queue. See:

Format of the SQL Database Queue Table ID on page 23 for
a description of the format used for this value.

Default SQL Database Queue Tables (Test) on page 30 for
more information about the default SQL database queue
tables, and how to create additional tables.

If you specify a different database, it must reside on the same SQL Server as
the iProcess database.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

24 | iql_queues
• owner is the username of the user that owns this queue_table. If this option is
omitted, the iProcess background user owns the table by default.

• queue_table is the name of the SQL database table used to hold this message
queue. Each individual queue must be held in its own database table.

For example, the entry:
0003:sw_db_bgqueue_1

describes the SQL database table called sw_db_bgqueue_1, which is stored in the
default iProcess database and owned by the iProcess background user.

The entry:
0003:sw.swpro1.sw_db_bgqueue_3

describes the SQL database table called sw_db_bgqueue_3, which is stored in the
sw database (on the SQL Server hosting the iProcess database) and owned by user
swpro1.

Default Message Queues and SQL Database Queue Tables

When the iProcess Engine is installed, the init2Ksql.sql script creates the
following default set of message queues and SQL database queue tables required
by the system.

See Default SQL Database Queue Tables (Test) on page 30 for a detailed
description of these tables.

Primary Key The following primary key is defined for this table.

Queue Name SQL Database Table Queue ID

BGMBOX1 0003:swpro.sw_db_bgqueue_1

BGMBOX2 0003:swpro.sw_db_bgqueue_2

WISMBOX1 0003:swpro.sw_db_wisqueue_1

WISMBOX2 0003:swpro.sw_db_wisqueue_2

DEADQUEUE 0003:swpro.sw_db_deadqueue

PREDICTMBOX1 0003:swpro.sw_db_predictqueue_1

PREDICTMBOX2 0003:swpro.sw_db_predictqueue_2

Key Name Column(s)

pk_iql_queues queue_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 25
Triggers None.

Indexes None.

Table Activity The iql_queues table contains one row for each message queue that is available
on this node.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a new message queue is added to the node, either at installation or
by using the SWDIR\util\swadm utility.

updated a message queue’s details are updated, using the
SWDIR\util\swadm utility.

deleted a message queue is deleted from the node, using the
SWDIR\util\swadm utility.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

26 | mbox_set
mbox_set

The mbox_set table defines the list of Mbox sets that are available on this iProcess
Engine node.

Structure The mbox_set table has the following structure:

TABLE mbox_set (
mbox_set_id INTEGER NOT NULL,
mbox_set_name VARCHAR(32) NOT NULL,

mbox_set_msgtype SMALLINT NOT NULL)

Each row provides the following information about a Mbox set.

Default Mbox Sets and Message Queues

When the iProcess Engine is installed, the init2Ksql.sql script creates the
following default Mbox sets that are required by the system. (The
mbox_set_group table defines which message queues are stored in which Mbox
set.)

Primary Key The following primary key is defined for this table.

Column Description

mbox_set_id Unique identifier for this Mbox set.

mbox_set_name Name of this Mbox set.

mbox_set_msgtype Message type used by this Mbox set. This value is always
1, for local messages.

Mbox Set Contains these message queues

BGMBSET BGMBOX1, BGMBOX2

WMDMBSET WISMBOX1, WISMBOX2

PREDICTMBSET PREDICTMBOX1, PREDICTMBOX2

Key Name Column(s)

pk_mbox_set mbox_set_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 27
Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Table Activity The mbox_set table contains one row for each Mbox set that is available on this
iProcess Engine node.

Rows are added, updated and deleted in the following situations.

Trigger Name Triggered by Affects Table(s)

tr_mbox_set DELETE mbox_set_group

A row is... When...

added a new Mbox set is added to the node, either at installation or by
using the SWDIR\util\swadm utility.

updated an Mbox set’s details are updated, using the SWDIR\util\swadm
utility.

deleted an Mbox set is deleted from the node, using the
SWDIR\util\swadm utility.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

28 | mbox_set_group
mbox_set_group

The mbox_set_group table defines the list of individual message queues that are
stored in each Mbox set.

Structure The mbox_set_group table has the following structure:

TABLE mbox_set_group (
mbox_set_id INTEGER NOT NULL,

mbox_queue_id INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following indexes are defined for this table.

Table Activity The mbox_set_group table contains one row for each message queue that is
available on this node.

Rows are added, updated and deleted in the following situations.

Column Description

mbox_set_id Unique identifier of the Mbox set that contains the
associated message queue, as defined in the mbox_set
table.

mbox_queue_id Unique identifier of the message queue that is included in
the associated Mbox set, as defined in the iql_queues table.

Key Name Column(s)

pk_mbox_set_group mbox_set_id
mbox_queue_id

Index Name Indexed Column(s)

idx_mbox_set_id_fk mbox_set_id

idx_mbox_queue_id_fk mbox_queue_id

A row is... When...

added a new message queue is added to the node, either at installation or
by using the SWDIR\util\swadm utility.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 29
updated never.

deleted a message queue is deleted from the node, using the
SWDIR\util\swadm utility.

A row is... When...
 TIBCO iProcess Engine (SQL) Administrator’s Guide

30 | Default SQL Database Queue Tables (Test)
Default SQL Database Queue Tables (Test)

Each message queue defined in the iql_queues table must be mapped to its own
SQL database queue table.

When the iProcess Engine is installed, the init2Ksql.sql script creates the
default set of queue tables required by the system (see Default Message Queues
and SQL Database Queue Tables on page 24).

This section describes the format of each of the default queue tables.

If you subsequently decide to add additional message queues to your system, you
must manually create the queue tables needed by those message queues. See
Creating Additional SQL Database Queue Tables on page 38 for more information
about how to do this.

sw_db_bgqueue_n
Each sw_db_bgqueue_n (where n is 1 or 2) queue table holds messages intended
for the background processes:

• iProcess processes (for example, WIS, DLMGR or RPC_POOL) enqueue
messages to the table.

• The background processes (BG) dequeue and process messages from the table.

Structure The sw_db_bgqueue_n table has the following structure:

TABLE sw_db_bgqueue_n (
rowid NUMERIC(15) identity(1,1),
last_failed NUMERIC(10) NULL,
failure_count INTEGER NOT NULL,
msg_id uniqueidentifier NOT NULL,
msg_hdr VARCHAR(512) NULL,

Queue Table See

sw_db_bgqueue_1

sw_db_bgqueue_2

sw_db_bgqueue_n

sw_db_wisqueue_1

sw_db_wisqueue_2

sw_db_wisqueue_n

sw_db_predictqueue_1

sw_db_predictqueue_2

sw_db_predictqueue_n

sw_db_deadqueue sw_db_deadqueue
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 31
msg_data VARCHAR(1024) NOT NULL
priority INTEGER NOT NULL)

Primary Key No primary key is defined for this table.

Triggers None.

Indexes The following clustered index is defined for this table.

Column Description

rowid Identifier of the row in the table for this message.

last_failed Number of seconds since January 1st, 1970, when this
message last failed to be processed.

When this value equals or exceeds the value of the
IQL_RETRY_DELAY process attribute, the message is
retried.

failure_count Number of times that this message has failed to be
processed.

When this value equals or exceeds the value of the
IQL_RETRY_COUNT process attribute, the message is
moved to the sw_db_deadqueue.

msg_id Unique identifier of this message.

msg_hdr Header data associated with this message.

msg_data Message data.

priority Message queue priority. The lower this value is, the higher
the message queue priority is.

The default value is 50.

See "Administering Process Attributes" in TIBCO iProcess Engine Administrator's
Guide for more information about the IQL_RETRY_DELAY and IQL_RETRY_COUNT
attributes.

Index Name Indexed Column(s)

idx_sw_db_bgqueue_n row_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

32 | Default SQL Database Queue Tables (Test)
Table Activity Each sw_db_bgqueue_n table contains one row for each enqueued message. Rows
are added, updated and deleted in the following situations.

sw_db_wisqueue_n
Each sw_db_wisqueue_n (where n is 1 or 2) queue table holds messages intended
for the Work Item Server Mbox daemon process:

• The background processes (BG) enqueue messages to the table.

• The Work Item Server Mbox daemon process (WISMBD) dequeues and
processes messages from the table, which it then forwards on to the Work Item
Server (WIS) processes.

Structure The sw_db_wisqueue_n table has the following structure:

TABLE sw_db_wisqueue_n (
rowid NUMERIC(15) identity(1,1),
last_failed NUMERIC(10) NULL,
failure_count INTEGER NOT NULL,
msg_id uniqueidentifier NOT NULL,
msg_hdr VARCHAR(512) NULL,
msg_data VARCHAR(1024) NOT NULL
priority INTEGER NOT NULL)

A row is... When...

added an iProcess process enqueues a message to this table.

updated a BG process dequeues a message from this table but cannot
successfully process it (but the message has not exceeded the
IQL_RETRY_COUNT value).

deleted a BG process dequeues a message from this table and either:

successfully processes it.

cannot successfully process it, and moves it to the
sw_db_deadqueue table because it has exceeded the
IQL_RETRY_COUNT value.

Column Description

rowid Identifier of the row in the table for this message.

last_failed Number of seconds since January 1st, 1970, when this
message last failed to be processed.

When this value equals or exceeds the value of the
IQL_RETRY_DELAY process attribute, the message is
retried.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 33
Primary Key No primary key is defined for this table.

Triggers None.

Indexes The following clustered index is defined for this table.

Table Activity Each sw_db_wisqueue_n table contains one row for each enqueued message.
Rows are added, updated and deleted in the following situations.

failure_count Number of times that this message has failed to be
processed.

When this value equals or exceeds the value of the
IQL_RETRY_COUNT process attribute, the message is
moved to the sw_db_deadqueue.

msg_id Unique identifier of this message.

msg_hdr Header data associated with this message.

msg_data Message data.

priority Message queue priority. The lower this value is, the higher
the message queue priority is.

The default value is 50.

Column Description

See "Administering Process Attributes" in TIBCO iProcess Engine Administrator's
Guide for more information about the IQL_RETRY_DELAY and IQL_RETRY_COUNT
attributes.

Index Name Indexed Column(s)

idx_sw_db_wisqueue_n row_id

A row is... When...

added a BG process enqueues a message to this table.

updated the WISMBD process dequeues a message from this table but cannot
successfully process it (but the message has not exceeded the
IQL_RETRY_COUNT value).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

34 | Default SQL Database Queue Tables (Test)
sw_db_predictqueue_n
Each sw_db_predictqueue_n (where n is 1 or 2) queue table holds messages
intended for the background case prediction server processes:

• iProcess processes (for example, WIS, DLMGR or RPC_POOL) enqueue
messages to the table.

• The background case prediction server processes (BGPREDICT) dequeue and
process messages from the table.

Structure The sw_db_predictqueue_n table has the following structure:

TABLE sw_db_predictqueue_n (
rowid NUMERIC(15) identity(1,1),
last_failed NUMERIC(10) NULL,
failure_count INTEGER NOT NULL,
msg_id uniqueidentifier NOT NULL,
msg_hdr VARCHAR(512) NULL,
msg_data VARCHAR(1024) NOT NULL
priority INTEGER NOT NULL)

deleted the WISMBD process dequeues a message from this table and either:

successfully processes it.

cannot successfully process it, and moves it to the
sw_db_deadqueue table because it has exceeded the
IQL_RETRY_COUNT value.

A row is... When...

Column Description

rowid Identifier of the row in the table for this message.

last_failed Number of seconds since January 1st, 1970, when this
message last failed to be processed.

When this value equals or exceeds the value of the
IQL_RETRY_DELAY process attribute, the message is
retried.

failure_count Number of times that this message has failed to be
processed.

When this value equals or exceeds the value of the
IQL_RETRY_COUNT process attribute, the message is
moved to the sw_db_deadqueue.

msg_id Unique identifier of this message.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 35
Primary Key No primary key is defined for this table.

Triggers None.

Indexes The following clustered index is defined for this table.

Table Activity Each sw_db_predictqueue_n table contains one row for each enqueued message.
Rows are added, updated and deleted in the following situations.

msg_hdr Header data associated with this message.

msg_data Message data.

priority Message queue priority. The lower this value is, the higher
the message queue priority is.

The default value is 50.

Column Description

See "Administering Process Attributes" in TIBCO iProcess Engine Administrator's
Guide for more information about the IQL_RETRY_DELAY and IQL_RETRY_COUNT
attributes.

Index Name Indexed Column(s)

idx_sw_db_predictqueue_n row_id

A row is... When...

added an iProcess process enqueues a message to this table.

updated a BGPREDICT process dequeues a message from this table but
cannot successfully process it (but the message has not exceeded the
IQL_RETRY_COUNT value).

deleted a BGPREDICT process dequeues a message from this table and
either:

successfully processes it.

cannot successfully process it, and moves it to the
sw_db_deadqueue table because it has exceeded the
IQL_RETRY_COUNT value.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

36 | Default SQL Database Queue Tables (Test)
sw_db_deadqueue
The sw_db_deadqueue table holds failed messages from the sw_db_bgqueue_n,
sw_db_wisqueue_n and sw_db_predictqueue_n tables.

Structure The sw_db_deadqueue table has the following structure:

TABLE sw_db_deadqueue (
failed_by varchar(64) NOT NULL
rowid NUMERIC(15) identity(1,1),
last_failed NUMERIC(10) NULL,
failure_count INTEGER NOT NULL,
msg_id uniqueidentifier NOT NULL,
msg_hdr VARCHAR(512) NULL,
msg_data VARCHAR(1024) NOT NULL
priority INTEGER NOT NULL)

Primary Key No primary key is defined for this table.

Triggers None.

Column Description

failed_by Identifies the queue table that this message originates
from. One of the following processes:

BG (for a message from a sw_db_bgqueue_n table).

WIS (for a message from a sw_db_wisqueue_n table).

BGPREDICT (for a message from a sw_db_predictqueue_n
table).

rowid Identifier of the row in the table for this message.

last_failed Number of seconds since January 1st, 1970, when this
message last failed to be processed.

failure_count Number of times that this message has failed to be
processed.

Note: Messages in this table are not retried.

msg_id Unique identifier of this message.

msg_hdr Header data associated with this message.

msg_data Message data.

priority Message queue priority. The lower this value is, the higher
the message queue priority is.

The default value is 50.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 37
Indexes The following clustered index is defined for this table.

Table Activity The sw_db_deadqueue table contains one row for each message that has exceeded
its IQL_RETRY_COUNT threshold value.

Rows are added, updated and deleted in the following situations.

Index Name Indexed Column(s)

idx_sw_db_deadqueue row_id

A row is... When...

added a message is moved to this table from a sw_db_bgqueue_n,
sw_db_wisqueue_n or sw_db_predictqueue_n table, because it has
exceeded the IQL_RETRY_COUNT value.

updated never.

deleted never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

38 | Creating Additional SQL Database Queue Tables
Creating Additional SQL Database Queue Tables

If you decide to add an additional message queue to your system, you need to:
1. manually create the database queue table needed to hold the new message

queue.

2. create the new message queue and map the database queue table to it (using
the SWDIR\bin\swadm utility).

3. add the message queue to the appropriate Mbox set (using the
SWDIR\bin\swadm utility).

Each individual message queue must be held in its own database queue table.

Each database queue table must have the following characteristics:

• the same column definitions as a sw_db_bgqueue_n, sw_db_wisqueue_n, or
sw_db_predictqueue_n table. (Each of these tables has the same structure.)

• no primary key.

• a clustered index on the row_id column.

• the iProcess background user (default swpro) must have at least insert,
select and delete permissions on the table.

• the iProcess foreground user (default swuser) must have at least insert
permissions on the table.

Example
Suppose that the volume of messages handled by your system has increased
significantly, and the default message queues are no longer able to cope. To deal
with the additional load you have decided that you need to add a new BGMBOX3
message queue to the BGMBSET Mboxset. This queue requires a new SQL database
queue table sw_db_bgqueue_3. You store your database queue tables in the
default iProcess database.

To do this:

1. Connect to the SQL Server that holds the iProcess database.

2. Create a new table in the iProcess database called sw_db_bgqueue_3.

For example:

If a table that does not conform to these requirements is used as a message queue,
messages will not be able to be enqueued to or dequeued from that queue, and
the iProcess Engine may not function correctly.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 39
go
create table swpro.sw_db_bgqueue_3
(
rowid NUMERIC(15) identity(1,1),

last_failed NUMERIC(10) NULL,
failure_count INTEGER NOT NULL,
msg_id uniqueidentifierNOT NULL,
msg_hdr VARCHAR(512) NULL,
msg_data VARCHAR(1024)NOT NULL
);
go
grant references, select, insert, delete, update on
swpro.sw_db_bgqueue_3 to swpro,swuser
go
create clustered index idx_sw_db_bgqueue_3 on swpro.sw_db_bgqueue_3 (rowid);

3. Use the SWDIR\util\swadm utility to add a new message queue called
BGMBOX3, which uses the sw_db_bgqueue_3 queue table.

cd SWDIR\util
swadm ADD_QUEUE BGMBOX3 Local 0003:swpro.sw_db_bgqueue_3

4. Add the BGMBOX3 queue to the BGMBSET Mbox set.

swadm ADD_QUEUE_TO_MBOXSET 1 8

1 is the number of the BGMBSET Mboxset (from the swadm SHOW_MBOXSETS
command), and 8 is the number of the message queue (from the swadm
SHOW_QUEUES command).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

40 | Creating Additional SQL Database Queue Tables
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 41
Chapter 4 Sequence Numbers

This chapter describes sequence numbers - unique numbers that are used by TIBCO
iProcess Engine server processes, and the table that is used to generate them.

Topics

• About Sequence Numbers, page 42

• Table Relationships, page 44

• sequences, page 45
 TIBCO iProcess Engine (SQL) Administrator’s Guide

42 | About Sequence Numbers
About Sequence Numbers

A sequence number is simply a unique identifier for an object. TIBCO iProcess
Engine uses six different types of sequence number, as shown in the following
table.

These sequence numbers are generated on an “as required” basis by iProcess
Engine, which calls one of the following stored database procedures:

• sp_cdqp_cfg_sequence

• sp_cdqp_def_sequence

• sp_cnum_sequence

• sp_procid_sequence

• sp_reqid_sequence

• sp_waitid_sequence

• sp_iap_monitor_id_sequence

• sp_eaiws_jms_provider_seq

• sp_eaiws_jms_destination_seq

Sequence Number Stored in table... Unique identifier for a...

o_reqid staffo Work item

casenum case_information Case

proc_id proc_index Procedure

wait_id wait Outstanding Wait

def_id cdqp_def CDQP definition

cfg_id cdqp_cfg CDQP value

monitor_id iap_monitor Procedure that IAP is
monitoring

provider_id eaiws_jms_provider1

1. Only created if TIBCO iProcess Technology Plugins are installed.

JMS provider

destination_id eaiws_jms_destinati
on1

JMS endpoints for for JMS
provider
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 43
The procedure accesses the sequences table, increments the value of the seq_val
column for the appropriate row, identified by the seq_id column, and returns
that value. The returned value is then used as the next sequence number in the
appropriate table.

However, getting sequence numbers directly from the database in this way can
create a performance bottleneck, because while one process is requesting a
number it must block any other process from attempting to do so.

To minimize the effect of this bottleneck, you can assign a cache of a block of
sequence numbers to a process, by using process attributes. The process gets a
sequence number from its cache when it needs one, and only accesses the
database to refresh the cache when it has run out of numbers. For more
information, see "Sequence Caching" in TIBCO iProcess Engine Administrator's
Guide.

For more information about these stored procedures please see the database
creation script (init2Ksql.sql).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

44 | Table Relationships
Table Relationships

The sequences table has no trigger-enforced relationships with other tables.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 45
sequences

The sequences table is used to generate unique sequence numbers for the use of
TIBCO iProcess Engine server processes.

Structure The sequences table has the following structure:

TABLE sequences (
seq_id INTEGER NOT NULL,
seq_val NUMERIC(20) NOT NULL,
seq_name VARCHAR(24) NOT NULL)

Primary Key None.

Triggers None.

Indexes The following clustered index is defined for this table.

Column Description

seq_id Sequence ID of the associated seq_val value. One of the
following values:

1 (o_reqid)

2 (casenum)

3 (proc_id)

4 (wait_id)

5 (def_id)

6 (cfg_id)

seq_val Current sequence number value for the sequence defined by
seq_id.

seq_name Name of the associated seq_id column. One of the following
values:
REQID

CNUM

PROC

WAIT

CDQP_DEF

CDQP

Note: This value is not currently used by the iProcess Suite.

Index Name Column(s) Indexed

idx_sequences seq_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

46 | sequences
Table Activity This table always contains 6 rows—one row for each type of sequence number
used by the iProcess Engine server processes. The table is populated when the
iProcess Engine is installed.

Rows are added, updated and deleted in the following situations.

A row is... When...

added never.

updated when a new sequence number of that type is requested.

deleted never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 47
Chapter 5 Procedures

This chapter describes the tables that are used to store information about iProcess
procedures, sub-procedures and sub-procedure parameter templates.

Topics

• Table Relationships, page 48

• proc_index, page 49

• iap_monitor, page 53

• iap_field, page 54

• iap_activity, page 55

• iap_global, page 56

• proc_version, page 57

• procedure_lock, page 59

• proc_instance, page 61

• proc_audit, page 63

• proc_defn, page 65

• proc_deadline, page 68

• proc_event, page 70

• wqd_delta_subscriptions, page 73
 TIBCO iProcess Engine (SQL) Administrator’s Guide

48 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

procedure_lock

iap_monitor

proc_index

proc_defn

proc_instance

proc_audit

nodes

iap_field

iap_activity iap_global

case_information

proc_deadlineproc_event
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 49
proc_index

The proc_index table holds information that is specific to a procedure (or
sub-procedure or sub-procedure parameter template).

Structure The proc_index table has the following structure:

TABLE proc_index (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
proc_used_count SMALLINT NOT NULL,
proc_name VARCHAR(8) NULL,
proc_desc VARCHAR(24) NULL,
proc_owner VARCHAR(49) NULL,
dir_name VARCHAR(12) NULL,
proc_used SMALLINT NOT NULL,
work_days SMALLINT NOT NULL,
auto_purge SMALLINT NOT NULL,
networked SMALLINT NOT NULL,
cdesc_type SMALLINT NOT NULL,
ignore_blanks SMALLINT NOT NULL,
is_predict SMALLINT NOT NULL,
normalise_data SMALLINT NOT NULL,
delay_purge SMALLINT NOT NULL,
delay_value VARCHAR(512) NULL)

Data that can change between versions or instances of a procedure is not held in
this table. See the proc_version and proc_instance tables instead.

Column Description

node_id ID of the node that this procedure is defined on, as defined in
the nodes table.

proc_id Unique ID of this procedure, generated from the sequences
table.

proc_used_count Not used.

proc_name Name of this procedure.

Note: Internal procedures are prefixed with a dollar sign ($)
character.

proc_desc Description of this procedure.

proc_owner Name of the owner of this procedure, as defined in the
user_names table.

dir_name Not used.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

50 | proc_index
proc_used Flag that defines whether this record is currently free (0) or
being used (1).

work_days Flag that defines whether the procedure uses a 7-day week (0)
or a configurable working week (1) in date calculations.

auto_purge Flag that defines whether (1) or not (0) cases of this procedure
are automatically purged when they are closed.

networked Reserved for possible future use.

cdesc_type Flag that defines whether a case description is Required (0),
Optional (1) or Hidden (2) when a case of this procedure is
started.

ignore_blanks Flag that defines whether or not a blank field is treated as an
error when used as an addressee for a step of this procedure:

• 0 means that the field is treated as an error and the
step is delivered to the undelivered queue.

• 1 means that the field is not treated as an error.

is_predict Flag that defines whether (1) or not (0) case prediction is
enabled for this procedure.

normalise_data Flag that defines whether (1) or not (0) case data normalization
is enabled for this procedure.

delay_purge Flag that defines whether or not to delay the auto-purge
operation.

• 0 means that the auto-purge operation is not
delayed.

• 1 means that the auto-purge operation is delayed.

Column Description
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 51
Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes The following index is defined for this table.

Table Activity The proc_index table contains one row for each procedure defined on the
system.

Rows are added, updated and deleted in the following situations.

delay_value The value of the delay_value column is:

• If the value of the delay_purge column is 0, then the
value of the delay_value column is NULL.

• If the value of the delay_purge column is 1, then the
value of the delay_value column is specified in one
of the following ways:

— The period of the delay in days.

— Delayed date and time expressions:

date expression^time expression

Column Description

Key Name Column(s)

pk_proc_index proc_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_proc_index DELETE case_information

proc_version

proc_instance

Index Name Column(s) Indexed

idx_proc_index_fk node_id

A row is... When...

added a new procedure is created.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

52 | proc_index
updated a procedure’s details are updated.

deleted never.

A row is... When...
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 53
iap_monitor

The iap_monitor table holds the monitor ID records for each procedure and
node. If a procedure or node has any activity monitoring configured, it is assigned
a monitor ID. The monitor ID is then used when correlating between the
iap_activity and iap_field tables.

Structure The iap_monitor table has the following structure:

TABLE iap_monitor(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
monitor_id numeric(10) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The iap_monitor table contains one row for each procedure or node that has
activity monitoring configured for it. Rows are added, updated and deleted in the
following situations.

Column Description

node_id ID of the node that this procedure is defined on, as defined in
the nodes table.

proc_id Unique ID of this procedure, generated from the sequences
table.

monitor_id Unique ID of the record for the procedure or node being
monitored.

Key Name Column(s)

pk_iap_monitor monitor_id

A row is... When...

added a new procedure or node has activity monitoring configured.

updated a procedure or node’s activity monitoring configuration is updated.

deleted never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

54 | iap_field
iap_field

The iap_field table holds the list of fields that will be published for a given
monitor ID.

Structure The iap_field table has the following structure:

TABLE iap_field (
monitor_id numeric(10) NOT NULL,
field_name VARCHAR(31) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

. Table Activity The iap_field table contains one row for each field that will be published for
every activity. Rows are added, updated and deleted in the following situations.

Column Description

monitor_id Unique ID of the record for the procedure or node being
monitored, as defined in the iap_monitor table.

field_name The name of the iProcess Engine field for which data is to be
sent out with the activity event.

Key Name Column(s)

pk_iap_field monitor_id
field_name

A row is... When...

added a new field is created.

updated a field’s details are updated.

deleted never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 55
iap_activity

The iap_activity table holds the activity and steps which are configured for a
given monitor record.

Structure The iap_activity table has the following structure:

TABLE iap_activity(
monitor_id numeric(10) NOT NULL,
activity_id numberic(3) NOT NULL,
step_name varchar(8) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The iap_activity table contains one row for each activity that is being
monitored on a procedure or node. Rows are added, updated and deleted in the
following situations.

Column Description

monitor_id Unique ID of the record for the procedure or node being
monitored, as defined in the iap_monitor table.

activity_id Unique ID which represents the activity that is being
monitored on the specified iProcess Engine procedure or step.

step_name The name of the step in the procedure to be monitored. If the
step name is ALL, it means every step in the procedure.

Key Name Column(s)

pk_iap_activity monitor_id
activity_id
step_name

A row is... When...

added a new activity to be monitored has been configured for a procedure
or node.

updated an activity’s details have been updated for a procedure or node.

deleted never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

56 | iap_global
iap_global

The iap_global table holds the fields that have been allocated globally to the
specified procedure.

Structure The iap_global table has the following structure:

TABLE iap_global(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
field_name VARCHAR(31) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The iap_global table contains one row for each field that has been allocated
globally to the specified procedure. Rows are added, updated and deleted in the
following situations.

Column Description

node_id ID of the node that this procedure is stored on, as defined in
the nodes table.

proc_id Unique ID of this procedure, generated from the sequences
table.

field_name The name of the iProcess Engine field for which data is to be
sent out with the activity event.

Key Name Column(s)

pk_iap_global proc_id
node_id
field_name

A row is... When...

added a new global field has been allocated to the specified procedure.

updated a global field’s details have been updated.

deleted never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 57
proc_version

The proc_version table holds information that is specific to a version of a
procedure (or sub-procedure or sub-procedure parameter template).

Structure The proc_version table has the following structure:

TABLE proc_version(

node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,

major_vers SMALLINT NOT NULL,
minor_vers SMALLINT NOT NULL,
pd_version INTEGER NULL,
pv_status SMALLINT NULL,
pv_user VARCHAR(49) NULL,
pv_comment VARCHAR(128) NULL,
pv_created DATETIME NULL,
pv_modified DATETIME NULL,
pv_released DATETIME NULL,
pv_withdrawn DATETIME NULL,
pv_is_subproc SMALLINT NULL)

Data that is specific to a procedure or to an instance of a procedure is not held in
this table. See the proc_index and proc_instance tables instead.

Column Description

node_id ID of the node that this procedure is stored on, as defined
in the nodes table.

proc_id Procedure number of the procedure associated with this
version, as defined in the proc_index table.

major_vers Major version number of this version.

minor_vers Minor version number of this version.

pd_version Instance number of the procedure definition that
corresponds to this version, as defined in the proc_instance
table.

pv_status Status of this version. Either: Released (0), Incomplete (1),
Unreleased (2), Model (3) or Withdrawn (14).

pv_user Name of the user who created this version, as defined in
the user_names table.

pv_comment Comment describing this version.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

58 | proc_version
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The proc_version table contains one row for every version of every procedure
(or sub-procedure or sub-procedure parameter template) defined on the system.

Rows are added, updated and deleted in the following situations.

pv_created Date and time that this version was created.

pv_modified Date and time that this version was last modified.

pv_released Date and time that this version was released.

pv_withdrawn Date and time that this version was withdrawn.

pv_is_subproc Flag that defines whether (1) or not (0) this version is a
sub-procedure.

Column Description

Key Name Column(s)

pk_proc_version node_id
proc_id
major_vers
minor_vers

A row is... When...

added a new procedure or version is created.

updated a version’s details are updated.

deleted a procedure or version is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 59
procedure_lock

The procedure_lock table holds the locks that are used to control access to
procedures.

Structure The procedure_lock table has the following structure:

TABLE procedure_lock (

node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
lock_state SMALLINT NOT NULL,
lock_owner VARCHAR(24) NULL,
lock_date DATETIME NOT NULL,
lock_reason SMALLINT NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Column Description

node_id ID of the node that this procedure is defined on, as defined
in the nodes table.

proc_id ID of this procedure, as defined in the proc_index table.

lock_state Flag that defines the procedure state: either unlocked (0) or
locked (1).

lock_owner Name of the user who has the procedure definition locked
(if lock_state = 1), as defined in the user_names table.

lock_date Date and time when the procedure lock was created.

lock_reason Defines why the procedure is locked:

• 0 not locked.

• 1 locked by the TIBCO iProcess Modeler.

• 2 locked by SWDIR\bin\swutil IMPORT.

Key Name Column(s)

pk_procedure_lock proc_id
node_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

60 | procedure_lock
Table Activity The procedure_lock table contains one row for each procedure on the system
that is currently being edited.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a procedure is opened (for example, in the iProcess Modeler).

updated Never.

deleted a procedure is closed (for example, in the iProcess Modeler).
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 61
proc_instance

The proc_instance table holds information that is specific to an instance of a
version of a procedure (or sub-procedure or sub-procedure parameter template).

Structure The proc_instance table has the following structure:

TABLE proc_instance(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
major_vers SMALLINT NOT NULL,
minor_vers SMALLINT NOT NULL,
pd_version INTEGER NOT NULL,
pi_first_step VARCHAR(8) NULL,
pi_rpa_start SMALLINT NULL,
pi_rpa_admin SMALLINT NULL,
pi_has_eis_objs SMALLINT NULL,
pi_has_subprocs SMALLINT NULL)

Data that is specific to a procedure or to a version of a procedure is not held in this
table. See the proc_index and proc_version tables instead.

Column Description

node_id ID of the node that this instance is stored on, as defined in
the nodes table.

proc_id Procedure number of the procedure associated with this
instance, as defined in the proc_index table.

major_vers Major version number of the version associated with this
instance, as defined in the proc_version table.

minor_vers Minor version number of the version associated with this
instance, as defined in the proc_version table.

pd_version Instance number of this procedure definition.

pi_first_step Start step for this instance of the procedure.

pi_rpa_start Flag that defines whether (1) or not (0) Remote Procedure
Access (RPA) case start restrictions are set in the procedure
definition.

pi_rpa_admin Flag that defines whether (1) or not (0) Remote Procedure
Access (RPA) administration restrictions are set in the
procedure definition.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

62 | proc_instance
Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Table Activity The proc_instance table contains one row for each instance of each procedure
(or sub-procedure or sub-procedure parameter template) defined on the system.

Rows are added, updated and deleted in the following situations.

pi_has_eis_objs Flag that defines whether (1) or not (0) the procedure
definition contains EIS objects.

pi_has_subprocs Flag that defines whether (1) or not (0) the procedure
definition contains sub-procedure steps or graft steps.

Column Description

Key Name Column(s)

pk_proc_instance node_id
proc_id
pd_version

Trigger Name Triggered by Affects Table(s)

tr_proc_instance DELETE proc_audit

proc_defn

A row is... When...

added a new procedure or version is created, or when an existing
procedure definition is edited.

updated never.

deleted a procedure or version is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 63
proc_audit

The proc_audit table stores audit events for a version of a procedure (or
sub-procedure or sub-procedure parameter template). An audit event occurs
whenever:

• a version is created, updated, released or withdrawn,

• the procedure definition instance associated with the version is updated. (For
example, when a user makes changes to the procedure definition in the
iProcess Modeler but does not change the version number).

Structure The proc_audit table has the following structure:

TABLE proc_audit(

node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
major_vers SMALLINT NOT NULL,
minor_vers SMALLINT NOT NULL,
pd_version SMALLINT NULL,
pa_comment VARCHAR(128) NULL,
pa_event SMALLINT NULL,
pa_date DATETIME NULL,
pa_user VARCHAR(24) NULL)

Column Description

node_id ID of the node that this audit event is stored on, as defined
in the nodes table.

proc_id Procedure number of the procedure associated with this
audit event, as defined in the proc_index table.

major_vers Major version number of the version associated with this
audit event, as defined in the proc_version table.

minor_vers Minor version number of the version associated with this
audit event, as defined in the proc_version table.

pd_version Instance number of the procedure definition associated
with this audit event, as defined in the proc_instance table.

pa_comment Comment describing the audit event.

pa_event The audit event that occurred. Either: Created (0), Updated
(1), Released (2) or Withdrawn (3).

pa_date Date and time that the audit event occurred.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

64 | proc_audit
Primary Key None.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The proc_audit table contains one row for every audit event for every version of
every procedure (or sub-procedure or sub-procedure parameter template)
defined on the system.

Rows are added, updated and deleted in the following situations.

pa_user Name of the user who performed the audit event, as
defined in the user_names table.

Column Description

Index Name Column(s) Indexed

idx_proc_audit_fk node_id
proc_id

A row is... When...

added a version is created, updated, released or withdrawn.

updated never.

deleted a procedure or version is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 65
proc_defn

The proc_defn table holds procedure definitions.

Structure The proc_defn table has the following structure:

TABLE proc_defn (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,

pd_version INTEGER NOT NULL,
pd_type INTEGER NOT NULL,
pd_index INTEGER NOT NULL,
pd_size INTEGER NOT NULL,
pd_directory VARCHAR(25) NOT NULL,
pd_file VARCHAR(25) NOT NULL,
pd_data VARBINARY(MAX) NOT NULL)

Column Description

node_id ID of the node that this procedure definition is defined on, as
defined in the nodes table.

proc_id ID of the procedure that this procedure definition relates to, as
defined in the proc_index table.

pd_version ID of the procedure instance that this row relates to, as defined
in the proc_instance table.

pd_type Type of procedure definition data stored in this row. Either:

• 0 pro data (textual procedure definition)

• 1 lst data (binary procedure definition)

• 2 nod data (not used)

• 3 gwd data (iProcess Modeler layout information)

• 4 nod data (not used)

• 5 VBA project data (VBA project files)
 TIBCO iProcess Engine (SQL) Administrator’s Guide

66 | proc_defn
Primary Key The following primary key is defined for this table.

Triggers None.

pd_index Index number into the set of rows that make up this procedure
definition.

If the procedure definition is longer than 30,000 bytes, multiple
rows (in 30,000 byte chunks) are used to store the data. Each
segment of the procedure definition data is uniquely identified
by its pd_index value.

Note:

• If you have upgraded your system from a
pre-Version i10.0-x(3.0) iProcess Engine, existing
procedure definitions are divided into 2000 byte
chunks.

• However, if a procedure definition is modified, the
new instance is added using 30,000 byte chunks.

pd_size Size (in bytes) of the procedure definition data for the current
row. This is 30,000 bytes (or 2000—see above) for all but the
last row of the procedure definition.

pd_directory If pd_type is 5, contains the sub-directory path (relative to
SWDIR\projects) where any VBA project files related to
this procedure definition are stored. Filenames are stored in
pd_file.

If pd_type is 0 to 4, this field contains a hyphen.

pd_file If pd_type is 5, contains the filename of a VBA project file
related to this procedure definition (if there is one). The file is
physically stored in the location defined by pd_directory.

If pd_type is 0 to 4, this field contains a hyphen.

pd_data Raw data for this (portion of the) procedure definition.

Column Description

Key Name Column(s)

pk_proc_defn proc_id
pd_index
pd_type
node_id
pd_version
pd_directory
pd_file
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 67
Indexes The following index is defined for this table.

Table Activity The proc_defn table contains one or more rows for each instance of each
procedure definition on the system.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_proc_defn proc_id
pd_version
pd_type
node_id

A row is... When...

added a procedure is saved in the iProcess Modeler (thus creating a new
instance), or imported.

updated never.

deleted a procedure is deleted.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

68 | proc_deadline
proc_deadline

The proc_deadline table stores definitions of procedure deadlines.

Structure The proc_deadline table has the following structure:

TABLE proc_deadline(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
major_vers SMALLINT NOT NULL,
minor_vers SMALLINT NOT NULL,
pd_version INTEGER NOT NULL,
dead_name VARCHAR(32) NOT NULL,
event_name VARCHAR(32) NOT NULL,
dead_value VARCHAR(512) NOT NULL)

Column Description

node_id ID of the node that this procedure is defined on, as defined in
the nodes table.

proc_id Unique ID of this procedure, generated from the sequences
table.

major_vers The major version number of the procedure that this case
belongs to, as defined in the proc_version table.

minor_vers The minor version number of the procedure that this case
belongs to, as defined in the proc_version table.

pd_version Instance number of the procedure definition, as defined in the
proc_instance table.

dead_name The name of the case deadline.

event_name The name of the event step that is triggered when the case
deadline expires.

dead_value The value of the case deadline. The value is specified in
one of the following formats:

• If the case deadline is specified as a period, then the
value is in the format:

minutes^hours^days^weeks^months^years

• If the case deadline is specified as an expression, then
the value is in the format:

date expression^time expression
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 69
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The proc_deadline table contains one or more rows for each instance of each
procedure definition on the system. Rows are added, updated, and deleted in the
following situations.

Key Name Column(s)

pk_proc_deadline node_id
proc_id
pd_version
dead_name

Key Name Column(s) Indexed

idx_proc_dl_fk node_id
pro_id
pd_version

A row is... When...

added The deadlines are created.

updated The deadlines are updated.

deleted The deadlines are deleted.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

70 | proc_event
proc_event

The proc_event table stores definitions of procedure events.

Structure The proc_event table has the following structure:

TABLE proc_event(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
major_vers INTEGER NOT NULL,
minor_vers INTEGER NOT NULL,
pd_version INTEGER NOT NULL,
eventname VARCHAR_TYPE(32) NOT NULL,
user_event_name VARCHAR_TYPE(32) NOT NULL)

Column Description

node_id ID of the node that this case is hosted on, as defined in the nodes
table.

proc_id ID of the procedure that this event belongs to, as defined in the
proc_index table.

major_vers Major version number of the procedure version that this case
belongs to, as defined in the proc_version table.

minor_vers Minor version number of the procedure version that this case
belongs to, as defined in the proc_version table.

pd_version Instance number of the procedure definition, as defined in the
proc_instance table.

eventname The name of the procedure event. The value of this column is
one of the following:

• BeforePurge

• BeforeClose

• AfterClose

• BeforeResurrect

• AfterResurrect

• BeforeSuspend

• AfterSuspend

• BeforeResume

• AfterResume
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 71
Primary Key The following primary key is defined for this table.

Triggers None.

Index The following index is defined for this table.

Table Activity The proc_event table contains one or more rows for each instance of each
procedure definition on the system. Rows are added, updated, and deleted in the
following situations.

user_event_name The name of the event step which you set for the procedure
event.

Column Description

Key Name Column(s)

pk_proc_event node_id
proc_id
pd_version
eventname

Index Name Column(s) Indexed

idx_proc_event_fk node_id
proc_id
pd_version

A row is... When...

added If one of the following conditions occurred:

• A new procedure event is added.

• A procedure event is modified.

Note: When updating a procedure event, the record
related to this event is deleted and then a new record
with the event changes is added in the table.

• A new version of a procedure is released.

updated Never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

72 | proc_event
deleted If one of the following conditions occurred:

• A procedure event is deleted.

• A procedure event is modified.

Note: When updating a procedure event, the record
related to this event is deleted and then a new record
with the event changes is added in the table.

• The version of this procedure is deleted.

A row is... When...
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 73
wqd_delta_subscriptions

The wqd_delta_subscriptions table holds a list of the work queues, JMS topics
and WQDIDs that are currently in use for Work Queue Delta subscriptions
published via JMS. It provides a permanent store of subscription details if a WIS
process is restarted. See TIBCO iProcess Engine Administrator’s Guide for details of
Work Queue Delta publication via JMS.

Structure The wqd_delta_subscriptions table has the following structure:

TABLE wqd_delta_subscriptions(
wis_process_instance numeric(5) NOT NULL,
queue_name varchar(51) NOT NULL,
wqdid varchar(36) NOT NULL
jms_topic_name varchar(1024)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Column Description

wis_process_inst
ance

The instance of the WIS process that is responding to
Work Queue Delta publication requests.

queue_name The name of the work queue being monitored.

wqdid The unique ID of the subscription.

jms_topic_name The name of the JMS topic being used for publication.

Key Name Column(s)

pk_wqd_delta_sub wqdid
 TIBCO iProcess Engine (SQL) Administrator’s Guide

74 | wqd_delta_subscriptions
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 75
Chapter 6 Procedure Management

This chapter describes the tables that are used to store information about the
iProcess procedure objects that are stored in the Procedure Management library.

Topics

• About Procedure Objects, page 76

• Table Relationships, page 77

• pm_objects, page 78

• pm_objects_lock, page 81

• pmobjects_security, page 83

• proc_mgt_hierarchy, page 85
 TIBCO iProcess Engine (SQL) Administrator’s Guide

76 | About Procedure Objects
About Procedure Objects

Information is stored in these tables about the following types of procedure
object:

• libraries

• procedures

• sub-procedures

• sub-procedure parameter templates

• shortcuts.

Information about procedure versions is stored in other tables - see Procedures on
page 47 for more information.

Shortcuts are not real procedure objects. They are simply placeholders that
allow you to access a procedure object from different locations in the
Procedure Management library. Data on shortcuts is only stored in the
proc_mgt_hierarchy table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 77
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

pm_objects

pm_objects_lock

pmobjects_security

proc_mgt_hierarchy
 TIBCO iProcess Engine (SQL) Administrator’s Guide

78 | pm_objects
pm_objects

The pm_objects stores information about each procedure object (except
shortcuts) in the Procedure Management library.

Structure The pm_objects table has the following structure:

TABLE pm_objects (
object_guid VARCHAR(36) NOT NULL,
object_type SMALLINT NOT NULL,
object_name VARCHAR(64) NOT NULL,
version_major INTEGER NULL,
version_minor INTEGER NULL,
icon_mod_time DATETIME NOT NULL,
icon_binary VARBINARY(MAX) NULL,
icon_size INTEGER NOT NULL,
object_url VARCHAR(1000) NULL,
author VARCHAR(64) NULL,
object_create_time DATETIME NOT NULL,
object_mod_time DATETIME NOT NULL,
release_id VARCHAR(64) NULL,
security_all SMALLINT NOT NULL,
proc_id INTEGER NOT NULL,
proc_status SMALLINT NULL)

Column Description

object_guid Globally unique, system-generated identifier for this
procedure object.

The row defining the Procedure Management library root
has the value ROOT_LIBRARY_GUID.

object_type Procedure object type. Either: library (0), procedure (1),
sub-procedure (2) or sub-procedure parameter template
(3).

object_name Name of this procedure object.

Note: The object’s description (if defined) is also included
as part of this field, in brackets following the name.

version_major Major version number of the version associated with this
procedure object, as defined in the proc_version table.

This value is always 0 if the object is a library.

version_minor Minor version number of the version associated with this
procedure object, as defined in the proc_version table.

This value is always 0 if the object is a library.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 79
Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

icon_mod_time Time that the icon associated with this procedure object
was last modified.

icon_binary Binary form of the icon associated with this procedure
object.

icon_size Size (in bytes) of the icon associated with this procedure
object.

object_url Usage URL associated with this procedure object.

author Value of the Author extended property for this procedure
object.

object_create_time Value of the Date Created extended property for this
procedure object, showing the time that this object was
created.

object_mod_time Value of the Date Modified extended property for this
procedure object, showing the time that this procedure
object was last modified.

release_id Value of the Release Identification extended property for
this procedure object.

security_all Flag that defines whether (1) or not (0) the OEM lock is set
for this procedure object.

proc_id Procedure number of the procedure associated with this
procedure object, as defined in the proc_index table.

This value is always -1 if the object is a library.

proc_status For internal use only.

Column Description

Key Name Column(s)

pk_pm_objects object_guid

Trigger Name Triggered by Affects Table(s)

tr_pm_objects DELETE pmobjects_security
 TIBCO iProcess Engine (SQL) Administrator’s Guide

80 | pm_objects
Indexes None.

Table Activity The pm_objects table contains one row for each procedure object (except
shortcuts) in the Procedure Management library.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a procedure object is created.

updated a procedure object is modified.

deleted a procedure object is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 81
pm_objects_lock

The pm_objects_lock table stores information about every procedure object that
is currently locked.

Structure The pm_objects_lock table has the following structure:

TABLE pm_objects_lock (
object_guid VARCHAR(36) NOT NULL,
lck_state INTEGER NULL,
lck_owner VARCHAR(24) NULL,
lck_time DATETIME NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The pm_objects_lock table contains one row for each procedure object that is
currently locked.

Rows are added, updated and deleted in the following situations.

Column Description

object_guid ID for this procedure object, as defined in the pm_objects
table.

lck_state Flag that defines (1) that this procedure object is locked.

lck_owner Name of the user who has this procedure object locked, as
defined in the user_names table.

lck_time Time that the lock was set on this procedure object.

Key Name Column(s)

pk_pm_objects_lock object_guid

A row is... When...

added a procedure object is locked.

updated never.

deleted a procedure object is unlocked.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

82 | pm_objects_lock
Unlocking Incorrectly Locked Procedure Objects

A procedure object is normally shown as locked in the Procedure Manager when
it is open in the TIBCO iProcess Modeler. However, an object may also be locked if
it was not closed properly from a previous TIBCO iProcess Modeler session - for
example, if the system failed while the procedure was open.

If this happens the object cannot be accessed again until the locks in the
proc_index and pm_objects tables are released. To do this:

1. Log in to SQL Server as the background user.

2. In SQL Query Analyzer, use the following query to delete all locks associated
with the locked procedure (where procedure_name is the name of the locked
procedure):

delete procedure_lock where proc_id = (select proc_id from proc_index where
proc_name = ’procedure_name’)
delete pm_objects_lock where object_guid = (select object_guid from pm_objects
where object_name like ’proc_name%’)

3. Commit the transaction.

The object should now appear unlocked in Procedure Manager. (You may
need to refresh the display first.)

The like statement requires a % sign prefixed or suffixed to the procedure_name.
However, this will select similarly-named procedures - for example, ’TEST%’
would select procedures named TEST1, TEST2, TEST3, even if only TEST4
needed to be cleared.

You are recommended to ensure that the procedure name is complete - in the
case in the previous paragraph, specify ’TEST4%’ - so that the % character only
covers the option procedure description.

TIBCO also recommend that you ensure you are connected to the correct
database and table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 83
pmobjects_security

The pmobjects_security table stores the encrypted security settings for every
procedure object (except shortcuts) in the Procedure Management library.

Structure The pmobjects_security table has the following structure:

TABLE pmobjects_security (
object_guid VARCHAR(36) NOT NULL,
security_id INTEGER NOT NULL,
attrib_expr VARCHAR(260) NOT NULL,
security_level VARCHAR(8) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The pmobjects_security table contains one row for each procedure object
(except shortcuts) in the Procedure Management library.

Column Description

object_guid ID for this procedure object, as defined in the pm_objects
table.

security_id Internal identifier for this procedure object.

attrib_expr Encrypted security attribute expression for this procedure
object.

security_level Encrypted security level for this procedure object.

Key Name Column(s)

pk_pmobjects_security object_guid
security_id

Index Name Column(s) Indexed

idx_pmobjects_security_fk object_guid
 TIBCO iProcess Engine (SQL) Administrator’s Guide

84 | pmobjects_security
Rows are added, updated and deleted in the following situations.

A row is... When...

added a procedure object is created.

updated a procedure object’s security settings are modified.

deleted a procedure object is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 85
proc_mgt_hierarchy

The proc_mgt_hierarchy table stores a set of hierarchy records, which define the
hierarchical structure of the Procedure Management library. Each record defines
the location of a procedure object in the library.

Structure The proc_mgt_hierarchy table has the following structure:

TABLE proc_mgt_hierarchy(

parent_guid VARCHAR(36) NOT NULL,

object_guid VARCHAR(36) NOT NULL,
is_shortcut SMALLINT NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The proc_mgt_hierarchy table contains one row for every procedure object in
the Procedure Management library (except for the root Procedure Management
library).

Column Description

parent_guid ID for the parent library, as defined in the pm_objects table.

object_guid ID for this procedure object, as defined in the pm_objects
table.

Note: If is_shortcut is 1, this value is the identifier of the
procedure object pointed to by the shortcut.

is_shortcut Flag that defines whether this hierarchy record is for a real
procedure object (0) or for a shortcut (1).

Key Name Column(s)

pk_proc_mgt_hier parent_guid
object_guid

Index Name Column(s) Indexed

idx_proc_mgt_hierarchy_fk object_guid
 TIBCO iProcess Engine (SQL) Administrator’s Guide

86 | proc_mgt_hierarchy
Rows are added, updated and deleted in the following situations.

A row is... When...

added a procedure object is created, copied or moved.

updated never.

deleted a procedure object is deleted or moved.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 87
Chapter 7 Cases

This chapter describes the tables that are used to store information about iProcess
cases.

Topics

• Table Relationships, page 88

• case_information, page 89

• outstanding_addr, page 93

• wait, page 96

• wait_step, page 98

• status, page 100

• case_data, page 102

• audit_trail, page 104

• memo, page 107

• nmemo, page 110

• predict, page 112

• predict_lock, page 116

• case_deadline_event, page 118

• case_event, page 120

• casenum_gaps, page 123
 TIBCO iProcess Engine (SQL) Administrator’s Guide

88 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

case_information

outstanding_addr

wait_step

status

case_data

audit_trail

memo

wait

predictpredict_lock

proc_index

1 1

case_deadline_event

case_event

nmemo
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 89
case_information

The case_information table holds information about every case and sub-case
that has been started and not yet purged on the system.

Structure The case_information table has the following structure:

TABLE case_information (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
starter VARCHAR(49) NOT NULL,
casedesc VARCHAR(24) NULL,
procflags SMALLINT NOT NULL,
next_deadline DATETIME NULL,
is_subcase SMALLINT NOT NULL,
is_dead SMALLINT NOT NULL,
is_suspended SMALLINT NOT NULL,
major_vers INTEGER NOT NULL,
minor_vers INTEGER NOT NULL,
proc_precedence INTEGER NOT NULL,
started DATETIME NOT NULL,
started_usecs NUMERIC(10) NOT NULL)
using_blob NUMERIC(10) NOT NULL)

Column Description

node_id ID of the node that this case is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this case belongs to, as defined in the
proc_index table.

casenum Unique case number for this case, generated from the
sequences table.

Note: If the system has been upgraded from a Version 9
Process Engine, any cases that were started before the upgrade
do not have a unique case number. (They have a number that
is unique to that procedure.)

starter Name of the user who started this case, as defined in the
user_names table.

casedesc Case description supplied when the case was started.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

90 | case_information
procflags The procedure flags that were set at the time the case was
started. For internal use only.

Note: These flags are stored to allow consistent operation of
the case if the procedure changes status during the lifetime of
the case. For example, if the procedure is unreleased when the
case is started, but changes to released before the case
completes, the case can continue using the original procedure
flags.

next_deadline Date and time that the next deadline expires on this case.

If no deadline is set this value appears as 12/31/3000
11:15:00 PM.

is_subcase Flag that defines whether this case is a main case (0) or a
sub-case (1).

is_dead Flag that defines whether (1) or not (0) this case has
completed.

is_suspended Flag that defines whether (1) or not (0) the case is currently
suspended (from a TIBCO iProcess Objects or SAL
application).

major_vers Major version number of the version of the procedure that this
case belongs to, as defined in the proc_version table.

minor_vers Minor version number of the version of the procedure that this
case belongs to, as defined in the proc_version table.

proc_precedence Stores the procedure precedence settings for opening
sub-cases. One of:

• 32 - Released only.

• 64 - Unreleased > Released.

• 96 - Model > Released.

• 128 - Unreleased > Model > Released.

• 160 - Model > Unreleased > Released.

started Date and time that the case was started, to the resolution of a
second.

Note: The started_usecs column can be combined with this
column to provide resolution to a microsecond.

started_usecs Number of microseconds since the start of the seconds value
specified in the started column.

Column Description
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 91
Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes The following indexes are defined for this table.

Table Activity The case_information table contains one row for every open and closed case
and sub-case on the system.

Rows are added, updated and deleted in the following situations.

using_blob Decides to use the old memo data table or the new one.

Column Description

Key Name Column(s)

pk_case_information casenum
proc_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_case_information DELETE audit_trail

outstanding_addr

wait

status

case_data

memo

predict_lock

Index Name Column(s) Indexed

idx_case_information_fk proc_id
node_id

A row is... When...

added a new case or sub-case is started.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

92 | case_information
updated any of the following occur:

• a case or sub-case is closed.

• a deadline on a case or sub-case is set or expires.

• a case or sub-case is suspended or re-opened.

• a new version of a procedure is released and the option is
chosen to migrate cases (and sub-cases) that use the previously
released version to the new version.

deleted a case is purged.

A row is... When...
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 93
outstanding_addr

The outstanding_addr table holds information about each outstanding step on
the system.

Structure The outstanding_addr table has the following structure:

TABLE outstanding_addr (
rowid UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL,

node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
sentdate DATETIME NOT NULL,
deadline SMALLINT NOT NULL,
deadline_exprired SMALLINT NOT NULL,
sub_procedure SMALLINT NOT NULL,
deaddate DATETIME NOT NULL,
stepname VARCHAR(8) NOT NULL,
user_name VARCHAR(64) NOT NULL,
reqid NUMERIC(20) NOT NULL,
item_suspended SMALLINT NOT NULL,
item_withdrawn SMALLINT NOT NULL,
array_idx INTEGER NOT NULL)

Column Description

rowid Unique identifier for this row

node_id ID of the node that this outstanding step is hosted on, as
defined in the nodes table.

proc_id ID of the procedure that this outstanding step belongs to, as
defined in the proc_index table.

casenum Number of the case that this outstanding step belongs to, as
defined in the case_information table.

sentdate Date and time that this outstanding step was sent to the
user_name queue.

deadline Flag that defines whether (1) or not (0) this outstanding step
has a deadline defined.

deadline_expired Flag that defines whether (1) or not (0) the deadline (if
defined) has expired and been processed.

sub_procedure Flag that defines whether (1) or not (0) this outstanding step is
a sub-procedure call.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

94 | outstanding_addr
Primary Key None.

Triggers None.

Indexes The following index is defined for this table.

The following clustered index is defined for this table.

deaddate Date and time that the deadline (if defined) expires on this
outstanding step.

If no deadline is set this value appears as 12/31/3000
11:15:00 PM.

stepname Stepname of this outstanding step.

user_name Name of the queue that this outstanding step has been sent to,
as defined in the user_names table.

reqid Unique ID for this work item, generated from the sequences
table.

item_suspended Flag that defines whether (1) or not (0) this outstanding step is
currently suspended.

Note: item_suspended is only set if the case is suspended
and the ignore suspend attribute is not set on the step.

item_withdrawn Flag that defines whether (1) or not (0) this outstanding step is
withdrawn.

array_idx Either:

• The array element index number of the sub-procedure that
generated this outstanding step, if the sub-procedure was
called from either a graft step or a dynamic sub-procedure
call step.

• -1, otherwise.

Column Description

Index Name Column(s) Indexed

idx_deadline_date deaddate

Index Name Indexed Column(s)

idx_outstanding_addr rowid
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 95
Table Activity The outstanding_addr table contains one row for each outstanding step on the
system.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a new step is sent out.

Note:

• if a step has multiple addressees one row is added per
addressee.

• for a dynamic sub-procedure, one row is added per called
sub-procedure.

• for a graft step, one row is added per grafted sub-procedure or
external step.

updated any of the following occur:

• a deadline on an outstanding step expires.

• a case is suspended or re-opened.

• an outstanding step is withdrawn.

deleted the background processes a release, withdraw, close or purge
operation that affects an outstanding step.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

96 | wait
wait

The wait table holds information about each outstanding wait on the system.

Structure The wait table has the following structure:

TABLE wait (
wait_id NUMERIC(10) NOT NULL,
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
parentstep VARCHAR(8) NULL,
expression VARCHAR(200) NULL,
type SMALLINT NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Column Description

wait_id Unique ID for this wait, generated from the sequences table.

node_id ID of the node that this wait is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this wait belongs to, as defined in the
proc_index table.

casenum Case number that this wait belongs to, as defined in the
case_information table.

parentstep Step name of the parent step for this wait.

expression Not used. Reserved for possible future use.

type Wait type. Currently the only supported type is a Step wait (1),
that is, the step is waiting for one or more other steps to be
released.

Key Name Column(s)

pk_wait wait_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_wait DELETE wait_step
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 97
Indexes The following indexes are defined for this table.

Table Activity The wait table contains one row for each outstanding wait on the system. An
associated record exists in the wait_step table for each step being waited for.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_wait_fk casenum
proc_id
node_id

idx_wait casenum
proc_id

A row is... When...

added a new wait is triggered.

updated never.

deleted a wait is processed.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

98 | wait_step
wait_step

The wait_step table holds information about each step that is currently being
waited for by a wait defined in the wait table.

Structure The wait_step table has the following structure:

TABLE wait_step (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
wait_id NUMERIC(10) NOT NULL,
step_id NUMERIC(10) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following indexes are defined for this table.

Table Activity The wait_step table contains one row for each for each step currently being
waited for.

Column Description

node_id ID of the node that the wait is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that the wait belongs to, as defined in the
proc_index table.

wait_id ID of the wait, as defined in the wait_step table.

step_id Number of the step that is being waited for, as defined (by the
step_num column) in the status table.

Key Name Column(s)

pk_wait_step wait_id
step_id

Index Name Column(s) Indexed

idx_wait_step_fk wait_id
node_id

idx_wait_step wait_id
proc_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 99
Rows are added, updated and deleted in the following situations.

A row is... When...

added a new wait is triggered.

updated never.

deleted a step that is being waited for is released or withdrawn.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

100 | status
status

The status table holds the current status of each step of each case on the system.

Structure The status table has the following structure:

TABLE status (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
step_num INTEGER NOT NULL,
step_status INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Column Description

node_id ID of the node that this step is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this step belongs to, as defined in the
proc_index table.

casenum Case number that this step belongs to, as defined in the
case_information table.

step_num Place number for this step (a unique ID that does not change
between edits of a procedure). For internal use only.

step_status Step status. Either: Not processed (0), Released (1),
Outstanding (2) or Withdrawn (3).

Key Name Column(s)

pk_status casenum
proc_id
step_num
node_id

Index Name Column(s) Indexed

idx_status_fk casenum
proc_id
node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 101
Table Activity The status table contains one row for each step of each case (open or closed) on
the system. Rows are added, updated and deleted in the following situations.

A row is... When...

added a step is sent out, or a case is started.

updated a step’s status changes.

deleted a case is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

102 | case_data
case_data

The case_data table holds the central copy of the field name and value of each
assigned field in each case on the system.

When a work item is sent out to a queue, field data is copied from the case_data
table to the pack_data table. The client uses the field values in the pack_data table
to fill out the form correctly. When the form is kept any changed fields are
updated in the pack_data table. When a work item is released field data is moved
from the pack_data table to the case_data table.

Structure The case_data table has the following structure:

TABLE case_data (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
field_name VARCHAR(31) NOT NULL,
field_value VARCHAR(255) NULL,
field_value_N VARCHAR(255) NULL)

Column Description

node_id ID of the node that this field is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this field belongs to, as defined in the
proc_index table.

casenum Case number that this field belongs to, as defined in the
case_information table.

field_name Name of this field.

field_value Value of this field.

field_value_N “Normalized” value of the field_value value. That is:

• Date values are stored as YYYY-MM-DD.

• Numeric values are stored as padded strings.

• Time and String values are not changed.

Note: This value is stored to make case data searching easier,
so that the database can do simple string comparisons, instead
of having to do type conversions.

Case data can be normalized either when
installing/upgrading the iProcess Engine, or by using the Case
Data Normalization Utility - see TIBCO iProcess Engine
Administrator's Guide.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 103
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following indexes are defined for this table.

Table Activity The case_data table contains n rows for each open case on the system, where n is
the number of fields in the case that have assigned data values. Rows are added,
updated and deleted in the following situations.

Key Name Column(s)

pk_case_data casenum
proc_id
node_id
field_name

Index Name Column(s) Indexed

idx_case_data_fk casenum
proc_id
node_id

idx_case_data_cnum_procid_fname_fvalue1

1. This index can impact purge performance. If a large number of purges are being
made at the same time TIBCO recommends that you delete this index before per-
forming the purge, then recreate it when the purge has completed.

field_name
field_value_N

casenum
proc_id

A row is... When...

added a field has a value assigned to it.

updated a field’s value is changed.

deleted a field becomes unassigned (blank) or when the parent case is
purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

104 | audit_trail
audit_trail

The audit_trail table holds information about each event that has happened to
each case on the system.

Structure The audit_trail table has the following structure:

TABLE audit_trail (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
type_id INTEGER NOT NULL,
audit_date DATETIME NOT NULL,
stepdesc VARCHAR(24) NULL,
user_name VARCHAR(64) NULL,
stepname VARCHAR(8) NULL,
audit_usecs NUMERIC(10) NOT NULL,
major_vers INTEGER NOT NULL,
minor_vers INTEGER NOT NULL)

Column Description

node_id ID of the node that this audit event is hosted on, as defined in
the nodes table.

proc_id ID of the procedure that this audit event belongs to, as defined
in the proc_index table.

casenum Case number that this audit event belongs to, as defined in the
case_information table.

type_id ID of the audit event that occurred. Either:

• a system-defined audit event (<=255), as defined in the
SWDIR\etc\language.lng\audit.mes file.

• a custom, application-defined event (256-999), as defined
in the SWDIR\etc\language.lng\auditusr.mes file.

Note: See "Defining Audit Trail Entries" in TIBCO iProcess
swutil and swbatch Reference Guide for more information about
system-defined and application-defined audit trail entries.

audit_date Date and time that this audit event occurred.

Note: The audit_usecs column can be combined with this
column to provide resolution to a microsecond.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 105
Primary Key None.

Triggers None.

Indexes The following clustered index is defined for this table.

stepdesc If type_id is:

• <= 255, the step description of the step that this audit
event occurred to.

• => 256, a user-defined string, containing for example the
description of this audit event.

user_name If type_id is:

• <= 255, the name of the user who performed this audit
event, as defined in the user_names table.

• => 256, a user-defined string, containing for example the
name of the user who performed this audit event.

stepname Name of the step that this audit event occurred for.

For internal use only.

audit_usecs Number of microseconds since the start of the seconds value
specified in the audit_date column.

Note: On systems that have been upgraded from Version 9, for
any existing cases the 6 least significant digits of the at_id
column are copied into this column to ensure that audit trail
entries remain in the correct order.

major_vers Major version number of the version of the procedure that this
audit event belongs to, as defined in the proc_version table.

minor_vers Minor version number of the version of the procedure that this
audit event belongs to, as defined in the proc_version table.

Column Description

Index Name Column(s) Indexed

idx_audit_trail_fk casenum
proc_id
node_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

106 | audit_trail
Table Activity The audit_trail table contains one or more rows for each step of each case on
the system. Rows are added, updated and deleted in the following situations.

A row is... When...

added an audit event occurs.

updated never.

deleted a case is purged.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 107
memo

The memo table stores the case memo data before upgrading to iProcess Engine
11.6. Since iProcess Engine 11.6, all the new case memo data is stored in the
VARBINARY(MAX)data type in the nmemo table.

You can migrate case memo data in the memo table to the nmemo table when
upgrading to iProcess Engine 11.6 or migrate them by using the swutil
MIGRATEMEMOS command after the upgrades.

Structure The memo table has the following structure:

TABLE memo (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
memo_id INTEGER NOT NULL,
memo_index INTEGER NOT NULL,
memo_size INTEGER NOT NULL,
memo_data VARBINARY(MAX) NOT NULL,
array_idx INTEGER NOT NULL)

A copy of a memo is kept in the pack_memo table if the memo is marked on an
outstanding form.

Column Description

node_id ID of the node that this memo is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this memo belongs to, as defined in
the proc_index table.

casenum Case number that this memo belongs to, as defined in the
case_information table.

memo_id Unique (for this case) ID of this memo.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

108 | memo
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

memo_index Index number into the set of rows that make up this memo.

If a memo is longer than 30,000 bytes multiple rows (in 30,000
byte chunks) are used to store the memo data. Each segment of
the memo data is uniquely identified by its memo_index
value.

Note:

• If you have upgraded your system from a pre-Version
i10.0-x(3.0) , existing memos are divided into 2,000 byte
chunks.

However, if a memo is modified, the existing rows are deleted
and then re-added using 30,000 byte chunks.

memo_size Size (in bytes) of the memo data for this row.

memo_data Memo data.

array_idx Either:

• The array element index number of the memo.

• -1, if the memo is not an array memo field.

Column Description

Key Name Column(s)

pk_memo casenum
memo_id
memo_index
proc_id
node_id
array_idx

Index Name Column(s) Indexed

idx_memo_fk
casenum
proc_id
node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 109
Table Activity The memo table contains one or more rows for each memo on the system. Rows are
added, updated and deleted in the following situations.

A row is... When...

added either:

• a memo field is first assigned.

• a memo field is modified. (All rows for the memo are deleted
and then re-added.)

updated never.

deleted either:

• a memo field is modified. (All rows for the memo are deleted
and then re-added.)

• a case is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

110 | nmemo
nmemo

The nmemo table stores the case memo data after upgrading to iProcess Engine
11.6. Since iProcess Engine 11.6, all the new case memo data is stored in the data
type in the nmemo table.

You can migrate case memo data in the memo table to the nmemo table when
upgrading to iProcess Engine 11.6 or migrate them by using the swutil
MIGRATEMEMOS command after the upgrades.

Structure The nmemo table has the following structure:

TABLE nmemo (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
memo_id INTEGER NOT NULL,
memo_index INTEGER NOT NULL,
memo_size INTEGER NOT NULL,
memo_data VARBINARY(MAX) NOT NULL,
array_idx INTEGER NOT NULL)

A copy of a memo is kept in the pack_nmemo table if the memo is marked on an
outstanding form.

Column Description

node_id ID of the node that this memo is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this memo belongs to, as defined in
the proc_index table.

casenum Case number that this memo belongs to, as defined in the
case_information table.

memo_id Unique (for this case) ID of this memo.

memo_index Index number into the set of rows that make up this memo.

This value is always 1.

memo_size Size (in bytes) of the memo data for this row.

memo_data Memo data.

array_idx Either:

• The array element index number of the memo.

• -1, if the memo is not an array memo field.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 111
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The nmemo table contains one row for each memo on the system. Rows are added,
updated and deleted in the following situations.

Key Name Column(s)

pk_nmemo casenum
memo_id
memo_index
proc_id
node_id
array_idx

Index Name Column(s) Indexed

idx_nmemo_fk
casenum
proc_id
node_id

A row is... When...

added either:

• a memo field is first assigned.

• a memo field is modified.

updated never.

deleted either:

• a memo field is modified.

• a case is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

112 | predict
predict

The predict table stores the prediction data for all expected work items currently
defined on the system.

Structure The predict table has the following structure:

TABLE predict (
node_id INTEGER NOT NULL,
proc_num NUMERIC(5) NOT NULL,
case_num NUMERIC(20) NOT NULL,
parent_proc_num NUMERIC(5) NOT NULL,
parent_case_num NUMERIC(20) NOT NULL,
main_proc_num NUMERIC(5) NOT NULL,
main_case_num NUMERIC(20) NOT NULL,
step_name VARCHAR(8) NOT NULL,
step_desc VARCHAR(24) NULL,
step_desc2 VARCHAR(24) NULL,
step_addr VARCHAR(49) NOT NULL,
step_durn_secs NUMERIC(10) NULL,
step_durn_usecs NUMERIC(10) NULL,
step_start DATETIME NOT NULL,
step_start_usecs NUMERIC(10) NOT NULL,
step_end DATETIME NOT NULL,
step_end_usecs NUMERIC(10) NOT NULL,
field_name VARCHAR(31) NULL,
field_value VARCHAR(255) NULL)

Column Description

node_id ID of the node that this predicted work item is hosted on, as
defined in the nodes table.

proc_num ID of the procedure associated with this predicted work item,
as defined in the proc_index table.

case_num Either:

• Case number of the case associated with this predicted
work item, as defined in the case_information table.

• 0, if this is a predicted work item in a future sub-case,
rather than in a currently outstanding sub-case.

parent_proc_num ID of the parent procedure associated with this predicted work
item, as defined in the proc_index table, if proc_num is a
sub-procedure.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 113
parent_case_num Either:

• ID of the parent case associated with this predicted work
item, as defined in the case_information table, if
case_num is a sub-case.

• 0, if this is a predicted work item in a future sub-case,
rather than a currently outstanding sub-case, that was
itself started from a predicted future sub-case.

main_proc_num ID of the procedure associated with the main case that
generated this predicted work item, as defined in the
proc_index table.

main_case_num ID of the main case that generated this predicted work item, as
defined in the case_information table.

step_name Stepname of the step associated with this predicted work item.

step_desc Step description of the step associated with this predicted
work item.

step_desc2 Additional description of the step associated with this
predicted work item.

step_addr Queue name that this predicted work item will be delivered to.

step_durn_secs Expected duration (in seconds) between this predicted work
item being delivered to and released from the step_addr
queue.

Note: The step_durn_usecs column can be combined with
this column to provide resolution to a microsecond.

step_durn_usecs Number of microseconds to be added to the value specified in
the step_durn_secs column.

step_start Date and time that this predicted work item is expected to
arrive in the step_addr queue, to the resolution of a second.

Note: The step_start_usecs column can be combined
with this column to provide resolution to a microsecond.

step_start_usecs Number of microseconds since the start of the seconds value
specified in the step_start column.

Column Description
 TIBCO iProcess Engine (SQL) Administrator’s Guide

114 | predict
Primary Key None.

Triggers None.

Indexes None.

Table Activity The predict table contains one or more rows for each predicted work item
generated by each step of each case of each procedure that currently has
prediction data defined for it.

If a predicted work item contains one or more fields that have CDQPs assigned to
them, duplicate rows are added for each CDQP. In the first row, the field_name
and field_value columns are blank. Each subsequent row contains the
field_name and field_value entries for one assigned CDQP. For example, if a
predicted work item contains 5 fields that have CDQPs assigned to them, it will
have 6 rows in this table.

Rows are added, updated and deleted in the following situations.

step_end Date and time that this predicted work item is expected to be
released from the step_addr queue, to the resolution of a
second.

Note: The step_end_usecs column can be combined with
this column to provide resolution to a microsecond.

step_end_usecs Number of microseconds since the start of the seconds value
specified in the step_end column.

field_name Name of the field that has a CDQP assigned to it for this
predicted work item.

field_value Value of the CDQP assigned to the field_name field for this
predicted work item.

Column Description

A row is... When...

added background prediction is enabled on the iProcess Engine, and
anything occurs that causes prediction data for a case to be
calculated or recalculated. For example, when a case is started, a
work item is kept or released, a deadline expires or an event occurs.

Note: One row is added for each step in the procedure that can
occur on the currently predicted path(s).

updated never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 115
deleted background prediction is enabled on the iProcess Engine, and
anything occurs that causes prediction data for a case to be
recalculated. For example, when a work item is kept or released, a
deadline expires or an event occurs.

Note: All rows for a given main case number are deleted for each
step in the procedure that can no longer occur on the currently
predicted path(s).

A row is... When...

Case prediction can be enabled and disabled using the ENABLE_CASE_PREDICTION
process attribute. See TIBCO iProcess Engine Administrator's Guide for more
information.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

116 | predict_lock
predict_lock

The predict_lock table stores the locks that are used to control access to the
predict table.

Structure The predict_lock table has the following structure:

TABLE predict_lock (
node_id INTEGER NOT NULL,
proc_num NUMERIC(5) NOT NULL,
case_num NUMERIC(20) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Column Description

node_id ID of the node that this prediction lock is hosted on, as defined
in the nodes table.

proc_num ID of the procedure that this prediction lock applies to, as
defined in the proc_index table.

case_num Case number of the main case that this prediction lock applies
to, as defined in the case_information table.

Key Name Column(s)

pk_predict_lock node_id
proc_num
case_num

Trigger Name Triggered by Affects Table(s)

tr_predict_lock DELETE predict
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 117
Table Activity The predict_lock table contains one row for every main case on the system that
currently has prediction data defined in the predict table. Rows are added,
updated and deleted in the following situations.

A row is... When...

added background prediction is enabled on the iProcess Engine, and a case
that has prediction enabled is started.

Note: Case prediction can be enabled and disabled using the
ENABLE_CASE_PREDICTION process attribute. See TIBCO iProcess
Engine Administrator's Guide for more information.

updated never.

deleted a case that has prediction enabled is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

118 | case_deadline_event
case_deadline_event

The case_deadline_event table stores information about case deadlines when
the case is running.

Structure The case_deadline_event table has the following structure:

TABLE case_deadline_event (
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
dead_id VARCHAR(32) NOT NULL,
dead_name VARCHAR(32) NOT NULL,
event_name VARCHAR(32) NOT NULL,
dead_value VARCHAR(32) NOT NULL)

Column Description

node_id ID of the node that this procedure is defined on, as defined in
the nodes table.

proc_id Unique ID of this procedure, generated from the sequences
table.

casenum The number of the case that this case deadline belongs to, as
defined in the case_information table.

dead_id For internal use only. This column is referenced from the
stepname column in the outstanding_addr table.

dead_name The name of the case deadline.

event_name The name of the event step.

dead_value The value of the case deadline when the case is running.
The value is specified in one of the following formats:

• If the case deadline is specified as a period, then the
value is in the format:

minutes^hours^days^weeks^months^years

• If the case deadline is specified as an expression, then
the value is in the format:

date expression^time expression
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 119
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The case_deadline_event table contains one or more rows for each instance of
each procedure definition on the system. Rows are added, updated, and deleted
in the following situations.

Key Name Column(s)

pk_case_dl_event node_id
proc_id
casenum
dead_id

Index Name Column(s) Indexed

idx_case_dl_fk casenum
proc_id
node_id

A row is... When...

added If one of the following conditions occurs:

• A case is starting and its deadline is defined in the
procedure.

• The CreateCaseDeadline expression is called in the EAI
step.

updated The UpdateCaseDeadline expression is called in the EAI
step.

deleted If one of the following conditions occurs:

• The DeleteCaseDeadline expression is called in the EAI
step.

• The case deadline expired and an event is triggered.

• The case is closed.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

120 | case_event
case_event

The case_event table stores information about cases that are interrupted by
triggered events when processing the purge, close, resurrect, suspend, or resume
operation. The case information is recorded in this table only when the BG process
is handling the delayed release EAI steps, which are defined in the triggered
event. After finishing the event, the case resumes execution and fetches the
temporary case data from this table.

Structure The case_event table has the following structure:

TABLE case_event(
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
major_vers INTEGER NOT NULL,
minor_vers INTEGER NOT NULL,
eventname VARCHAR(32) NOT NULL,
user_event_name VARCHAR(32) NOT NULL,
casenum NUMERIC(20) NOT NULL,
state INTEGER NOT NULL,
actionparameter VARCHAR(256))

Column Description

node_id ID of the node that this case is hosted on, as defined in the
nodes table.

proc_id ID of the procedure that this procedure event belongs to, as
defined in the proc_index table.

major_vers Major version number of the procedure version that this case
belongs to, as defined in the proc_version table.

minor_vers Minor version number of the procedure version that this case
belongs to, as defined in the proc_version table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 121
eventname The name of the procedure event. The value of this column is
one of the following:

• BeforePurge

• BeforeClose

• AfterClose

• BeforeResurrect

• AfterResurrect

• BeforeSuspend

• AfterSuspend

• BeforeResume

• AfterResume

user_event_name The name of the event step which you set for the procedure
event.

casenum ID of the case that this event belongs to, as defined in the
case_information table.

state Flag that defines the state of the procedure event after the
event is triggered. The meaning for each flag is:

• 2 the triggered event is in the processing state.

• 3 the triggered event is finished.

• 4 the triggered event is cancelled.

• -1 the triggered event failed.

actionparameter When an event is triggered, the processing purge, close,
resurrect, suspend, or resume operation is interrupted. This
column saves case data of the processing operation when the
BG process is handling the delayed release EAI steps, which are
defined in the triggered event. After finishing the event, the
case resumes execution of the operation and fetches the
temporary case data from this column.

Column Description
 TIBCO iProcess Engine (SQL) Administrator’s Guide

122 | case_event
Primary Key The following primary key is defined for this table.

Triggers None.

Index The following index is defined for this table.

Table Activity The case_event table contains one or more rows for each instance of each
procedure definition on the system. Rows are added, updated, and deleted in the
following situations.

Key Name Column(s)

pk_case_event node_id
proc_id
casenum
eventname

Index Name Column(s) Indexed

idx_case_event_fk casenum
proc_id
node_id

A row is... When...

added The procedure event enters the processing state.

updated The procedure event changes from processing to failed or
to cancelled.

deleted If one of the following conditions occurred:

• The case is purged.

• The procedure event is finished.

• The procedure event failed.

• The procedure event is cancelled.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 123
casenum_gaps

The casenum_gaps table holds the free case number gaps.

If the case number or the subcase number generated from the sequence table
reaches the maximum case number, 4294967295, then the following cases cannot
be started. This table is used to create more available case numbers by reusing
previous blocks of case numbers, which are no longer exist. The free case numbers
are available either because the case numbers have never been used or from the
original cases that have been purged.

TIBCO iProcess Engine checks the casenum_gaps table to find out whether there
are any free case numbers available for reuse before allocating a sequence from
the end of the case numbers.

The CASENUM_FIND_GAPS stored procedure adds a list of free case number gaps to
the casenum_gaps table, it scans a range of case numbers and create available
blocks of free case numbers for reuse. See CASENUM_FIND_GAPS for more
information.

Structure The casenum_gaps table has the following structure:

TABLE casenum_gaps(
casenum_min bigint NOT NULL,
casenum_max bigint NOT NULL)

Primary Key The following primary key is defined for this table.

Foreign Keys None.

Triggers None.

Indexes None.

This table is not populated by the system and it remains empty unless the
CASENUM_FIND_GAPS stored procedure is running to populate it.

Column Description

casenum_min The minimum case number in a gap.

casenum_max The maximum case number in a gap.

Key Name Column(s)

pk_casenum_gaps casenum_min
 TIBCO iProcess Engine (SQL) Administrator’s Guide

124 | casenum_gaps
Table Activity The casenum_gaps table contains one or more rows for each instance of each
procedure definition on the system. Rows are added, updated, and deleted in the
following situations.

See Also CASENUM_FIND_GAPS

A row is... When...

added running the CASENUM_FIND_GAPS stored procedure.

updated running TIBCO iProcess Engine.

deleted running TIBCO iProcess Engine.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 125
Chapter 8 Work Items

This chapter describes the tables that are used to store information about work
item data - the combination of fields and their values that are held in iProcess
forms (also known as “pack data”).

Topics

• Table Relationships, page 126

• staffo, page 127

• pack_data, page 131

• pack_memo, page 133

• pack_nmemo, page 136

• qaccess, page 138
 TIBCO iProcess Engine (SQL) Administrator’s Guide

126 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

pack_memo

pack_data

staffo

qaccess

pack_nmemo
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 127
staffo

The staffo table holds information about outstanding steps, that is, steps that have
been delivered to work queues but not yet released (or otherwise removed).

Structure The staffo table is structured as follows:

TABLE staffo(
o_flags INTEGER NULL,
o_queuename VARCHAR(24) NULL,
o_locker VARCHAR(24) NULL,
o_username VARCHAR(49) NULL,
o_startname VARCHAR(49) NULL,
o_dirname VARCHAR(12) NOT NULL,
o_dirdesc VARCHAR(24) NULL,
o_procname VARCHAR(8)NOT NULL,
o_procdesc VARCHAR(24)NULL,
o_casedesc VARCHAR(24) NULL,
o_casenum NUMERIC(20) NULL,
o_placeno INTEGER NULL,
o_dirflags INTEGER NULL,
o_procflags INTEGER NULL,

o_host VARCHAR(24) NOT NULL,
o_pnum INTEGER NOT NULL,
o_pnumcount INTEGER NOT NULL,
o_caseptr NUMERIC(20) NULL,
o_reqidhost VARCHAR(24) NOT NULL,
o_reqid NUMERIC(20)NOT NULL,
o_deadline DATETIMENULL,
o_reqstamp DATETIME NULL,
o_qparam1 VARCHAR(24) NULL,
o_qparam2 VARCHAR(24) NULL,
o_qparam3 VARCHAR(12) NULL,
o_qparam4 VARCHAR(12) NULL,
o_itempriority VARCHAR(24) NULL,
o_priority_changed DATETIMENULL,
o_majorvers INTEGERNOT NULL,
o_minorvers INTEGERNOT NULL)

Column Description

o_flags Flags associated with this work item. For internal use only.

o_queuename Queue name of the user or group queue that contains this
work item, as defined in the user_names table.

o_locker Name of the user who has locked the queue (if it is locked),
as defined in the user_names table.

Note: This column is not written to or updated unless the
WIS_WRITELOCKS parameter in the
SWDIR\etc\staffcfg file is set.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

128 | staffo
o_username Queue name of the user or group queue that contains this
work item, as defined in the user_names table.

o_startname Username of the user who started the case that this work
item belongs to, as defined in the user_names table.

o_dirname Step name of the step that generated this work item.

o_dirdesc Step description of the step that generated this work item.

o_procname Procedure name of the procedure that generated this work
item, as defined in the proc_index table.

o_procdesc Procedure description of the procedure that generated this
work item, as defined in the proc_index table.

o_casedesc Case description of the case that this work item belongs to,
as defined in the case_information table.

o_casenum Case number of the case that this work item belongs to, as
defined in the case_information table.

o_placeno Step mark number. For internal use only.

o_dirflags Step flags. For internal use only.

o_procflags Procedure flags. For internal use only.

o_host ID of the node that this work item is associated with, as
defined in the nodes table.

o_pnum Procedure number of the procedure that generated this
work item, as defined in the proc_index table.

o_pnumcount Version count of procedure. For internal use only.

o_caseptr Case control record number. For internal use only.

o_reqidhost Nodename of the node where the o_reqid is generated,
as defined in the nodes table.

o_reqid Unique ID for this work item, generated from the
sequences table.

o_deadline Date and time that the deadline (if defined) expires on this
work item.

If no deadline is set this value appears as 12/31/3000
11:15:00 PM.

Column Description
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 129
Primary Key The following primary key is defined for this table.

Triggers None.

o_reqstamp Timestamp when this work item was delivered to the
queue.

o_qparam1 Value of work queue parameter 1 for this work item.

o_qparam2 Value of work queue parameter 2 for this work item.

o_qparam3 Value of work queue parameter 3 for this work item.

o_qparam4 Value of work queue parameter 4 for this work item.

o_itempriority Priority definition for this work item, in the format:

base:increment:number:period:type

where:

• base is the base priority value for this work item.

• increment is the amount that will be added to the item’s
priority value whenever the period expires.

• number is the number of increments that will be added
to the item’s priority value.

• period is the time period, in the units specified in type,
which must expire before the item’s priority value is
incremented.

• type is the unit of measure of the period, either “M” or
“m” for minutes, “H” or “h” for hours or “D” or “d” for
days.

o_priority_changed Timestamp when the priority value for this work item was
last changed.

o_majorvers Major version number of the procedure that generated this
work item, as defined in the proc_version table.

o_minorvers Minor version number of the procedure that generated this
work item, as defined in the proc_version table.

Column Description

Key Name Column(s)

pk_staffo o_reqid
o_reqidhost
 TIBCO iProcess Engine (SQL) Administrator’s Guide

130 | staffo
Indexes The following index is defined for this table.

Table Activity The staffo table contains one row for every outstanding step on the system.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_staffo o_queuename

idx_staffo_rowid1

1. UNIQUE index

rowid

A row is... When...

added a work item is sent out to a queue.

updated any of the following occur:

• a work item is kept and any changes have been made.

• a work item’s priority value changes.

• a work item is opened and the WIS_WRITELOCKS parameter in
the SWDIR\etc\staffcfg file is set.

deleted either:

• a work item is released or withdrawn.

• a case is closed or purged.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 131
pack_data

The pack_data table holds the field name and value of every assigned field in
every outstanding step on the system.

When a work item is sent out to a queue, field data is copied from the case_data
table to the pack_data table. The client uses the field values in the pack_data table
to fill out the form correctly. When the form is kept any changed fields are
updated in the pack_data table. When a work item is released field data is moved
from the pack_data table to the case_data table.

Structure The pack_data table has the following structure:

TABLE pack_data (
reqid NUMERIC(20) NOT NULL,
node_id INTEGER NOT NULL,
proc_id INTEGER NOT NULL,
casenum NUMERIC(20) NOT NULL,
field_name VARCHAR(31) NOT NULL,
field_value VARCHAR(255) NULL,
field_flags INTEGER NOT NULL)

Column Description

reqid ID of the work item that this field belongs to, as defined in
the staffo table.

node_id ID of the node that this field is associated with, as defined
in the nodes table.

proc_id Number of the procedure that this field belongs to, as
defined in the proc_index table.

casenum Case number that this field belongs to, as defined in the
case_information table.

field_name Name of the field, as defined in the case_data table.

field_value Value of the field.

Note: A memo field has a value of 1. The associated memo
data is stored in the pack_memo table.

field_flags Status of the field. For internal use only.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

132 | pack_data
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The pack_data table contains one record for every assigned field that contains
data (i.e. that has a value other than SW_NA) in every outstanding step on the
system.

Rows are added, updated and deleted in the following situations.

Key Name Column(s)

pk_pack_data reqid
node_id
field_name

A row is... When...

added Either:

• a step is sent out.

• a field is assigned a value on a keep or release.

updated An assigned field has its value changed on a keep or release.

deleted any of the following occur:

• a release instruction for a work item is processed by the
background process.

• a work item is withdrawn.

• a case is purged.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 133
pack_memo

The pack_memo table stores memo data associated with memo fields in the
pack_data table before upgrading to iProcess Engine 11.6.

Since iProcess Engine 11.6, all the new memo data associated with the memo
fields is stored in the VARBINARY(MAX)data type in the pack_nmemo table.

You can migrate case memo data in the pack_memo table to the pack_nmemo
table when upgrading to iProcess Engine 11.6 or migrate them by using the
swutil MIGRATEMEMOS command after the upgrades.

When a work item is sent out to a queue, memo data is copied from the memo
table to the pack_memo table. The client uses the memo data in the pack_memo
table to fill out the form correctly. When the form is kept any changed memo data
is updated in the pack_memo table. When a work item is released memo data is
moved from the pack_memo table to the memo table.

Structure The pack_memo table is structured as follows:

TABLE pack_memo (
reqid NUMERIC(20)NOT NULL,
node_id INTEGERNOT NULL,
proc_id INTEGERNOT NULL,
casenum NUMERIC(20)NOT NULL,
memo_id INTEGERNOT NULL,
memo_index INTEGERNOT NULL,
memo_size INTEGERNOT NULL,
memo_data VARBINARY(MAX)NOT NULL,
array_idx INTEGERNOT NULL)

Column Description

reqid ID of the work item that this memo belongs to, as defined
in the staffo table.

node_id ID of the node that this memo is associated with, as
defined in the nodes table.

proc_id Number of the procedure that this memo belongs to, as
defined in the proc_index table.

casenum Case number that this memo belongs to, as defined in the
case_information table.

memo_id Unique (for this case) ID of this memo.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

134 | pack_memo
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The pack_memo table contains one or more rows for every assigned memo field
that contains data (i.e. that has a value other than SW_NA) in every outstanding
step on the system.

memo_index Index number into the set of rows that make up this memo.

If a memo is longer than 30,000 bytes multiple rows (in
30,000 byte chunks) are used to store the memo data. Each
segment of the memo data is uniquely identified by its
memo_index value.

Note:

• If you have upgraded your system from a pre-Version
i10.0-x(3.0) iProcess Engine, existing memos are
divided into 2000 byte chunks.

• However, if a memo is modified, the existing rows are
deleted and then re-added using 30,000 byte chunks.

memo_size Size (in bytes) of the memo data for this row.

memo_data Memo data.

array_idx Either:

• The array element index number of the memo.

• -1, if the memo is not an array memo field.

Column Description

Key Name Column(s)

pk_pack_memo reqid
node_id
casenum
memo_id
memo_index
array_idx
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 135
Rows are added, updated and deleted in the following situations.

A row is... When...

added Either:

• a step containing memo data is sent out.

• a memo field is assigned a value on a keep or release.

updated An assigned memo field has its data changed on a keep or release.

deleted any of the following occur:

• a release instruction for a work item containing memo data is
processed by the background process.

• a work item containing memo data is withdrawn.

• a case containing memo data is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

136 | pack_nmemo
pack_nmemo

The pack_nmemo table stores memo data associated with memo fields in the
pack_data table after upgrading to iProcess Engine 11.6.

Since iProcess Engine 11.6, all the new memo data associated with the memo
fields is stored in the VARBINARY(MAX)data type in the pack_nmemo table.

You can migrate case memo data in the pack_memo table to the pack_nmemo table
when upgrading to iProcess Engine 11.6 or migrate them by using the swutil
MIGRATEMEMOS command after the upgrades.

When a work item is sent out to a queue, memo data is copied from the nmemo
table to the pack_nmemo table. The client uses the memo data in the
pack_nmemo table to fill out the form correctly. When the form is kept any
changed memo data is updated in the pack_nmemo table. When a work item is
released memo data is moved from the pack_nmemo table to the nmemo table.

Structure The pack_nmemo table is structured as follows:

TABLE pack_nmemo (
reqid NUMERIC(20)NOT NULL,
node_id INTEGERNOT NULL,
proc_id INTEGERNOT NULL,
casenum NUMERIC(20)NOT NULL,
memo_id INTEGERNOT NULL,
memo_index INTEGERNOT NULL,
memo_size INTEGERNOT NULL,
memo_data VARBINARY(MAX)NOT NULL,
array_idx INTEGERNOT NULL)

Column Description

reqid ID of the work item that this memo belongs to, as defined
in the staffo table.

node_id ID of the node that this memo is associated with, as
defined in the nodes table.

proc_id Number of the procedure that this memo belongs to, as
defined in the proc_index table.

casenum Case number that this memo belongs to, as defined in the
case_information table.

memo_id Unique (for this case) ID of this memo.

memo_index Index number into the set of rows that make up this memo.

This value is always 1.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 137
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The pack_nmemo table contains one row for every assigned memo field that
contains data (for example, that has a value other than SW_NA) in every
outstanding step on the system.

Rows are added, updated and deleted in the following situations.

memo_size Size (in bytes) of the memo data for this row.

memo_data Memo data.

array_idx Either:

• The array element index number of the memo.

• -1, if the memo is not an array memo field.

Column Description

Key Name Column(s)

pk_pack_nmemo reqid
node_id
casenum
memo_id
memo_index
array_idx

A row is... When...

added Either:

• a step containing memo data is sent out.

• a memo field is assigned a value on a keep or release.

updated An assigned memo field has its data changed on a keep or release.

deleted any of the following occur:

• a release instruction for a work item containing memo data is
processed by the background process.

• a work item containing memo data is withdrawn.

• a case containing memo data is purged.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

138 | qaccess
qaccess

The qaccess table stores details of any non-default sort, filter and display criteria
used by iProcess users to access their iProcess queues.

Structure The qaccess table has the following structure:

TABLE qaccess (

user_name VARCHAR(64) NOT NULL,

access_type VARCHAR(8) NOT NULL,
queue_name VARCHAR(51) NOT NULL,
access_str VARCHAR(1024) NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Column Description

user_name Name of the user that this row applies to, as defined in the
user_names table.

access_type Type of access criteria defined in this row. Any of the
following:

• SORT defines how work items in the specified queue
are sorted.

• FILTER defines how work items in the specified
queue are filtered.

• DISPLAY defines how work items in the specified
queue are displayed.

• QVERS defines when the queue was last accessed. For
internal use only.

queue_name Name of the (user or group) queue that this row applies to,
as defined in the proc_version table.

Note: Test queues have the suffix /t.

access_str Access criteria. For internal use only.

Key Name Column(s)

pk_qaccess user_name
queue_name
access_type
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 139
Indexes None.

Table Activity The qaccess table contains one row per set of non-default access criteria defined
per user per queue.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a set of non-default access criteria is saved for a user.

updated a set of non-default access criteria is updated for a user.

deleted a user reverts to using the default criteria.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

140 | qaccess
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 141
Chapter 9 Case Data Queue Parameters

This chapter describes the tables that are used to store information about Case
Data Queue Parameters (CDQPs).

Topics

• Table Relationships, page 142

• cdqp_def, page 143

• cdqp_cfg, page 145
 TIBCO iProcess Engine (SQL) Administrator’s Guide

142 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

cdqp_cfgcdqp_def
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 143
cdqp_def

The cdqp_def table holds information about each field that is defined as a Case
Data Queue Parameter (CDQP).

Structure The cdqp_def table has the following structure:

TABLE cdqp_def (
def_id NUMERIC(10) NOT NULL,
field_name VARCHAR(31) NOT NULL,
data_size NUMERIC(5) NOT NULL,
description VARCHAR(40) NOT NULL,
is_predict SMALLINT NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Column Description

def_id Unique identifier for this CDQP, generated from the sequences
table.

field_name Name of the iProcess field assigned to this CDQP, as defined
in the case_data table.

data_size Maximum size, in characters, of this CDQP.

description Name used to represent this CDQP in Work Queue Manager
dialogs.

is_predict Flag that defines whether (1) or not (0) this CDQP is used for
case prediction.

Key Name Column(s)

pk_cdqp_def def_id

Trigger Name Triggered by Affects Table(s)

tr_cdqp_def DELETE cdqp_cfg
 TIBCO iProcess Engine (SQL) Administrator’s Guide

144 | cdqp_def
Table Activity The cdqp_def table contains one row for each field on the system that is currently
defined as a CDQP.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a field is first defined as a CDQP.

updated an existing CDQP definition is updated.

deleted an existing CDQP definition is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 145
cdqp_cfg

The cdqp_cfg table holds the details of each mapping of a CDQP to a queue.

Structure The cdqp_cfg table has the following structure:

TABLE cdqp_cfg (
cfg_id NUMERIC(10) NOT NULL,
def_id NUMERIC(10) NOT NULL,
queue_name VARCHAR(48) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The cdqp_cfg table contains one row for each mapping of a CDQP to a queue that
is defined on the system. For example, if CDQP1 is mapped to 6 queues, and CDQP2
is mapped to 4 queues, the cdqp_cfg table contains 10 rows.

Rows are added, updated and deleted in the following situations.

Column Description

cfg_id Unique ID for this CDQP/queue mapping generated from the
sequences table.

def_id ID of the CDQP that is mapped to the queue_name queue, as
defined in the cdqp_def table.

queue_name Name of the iProcess queue that the CDQP defined in def_id
is mapped to, as defined in the user_names table.

Key Name Column(s)

pk_cdqp_cfg cfg_id

A row is... When...

added a field (that is already defined as a CDQP) is mapped to a queue.

updated never.

deleted an existing CDQP mapping is deleted.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

146 | cdqp_cfg
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 147
Chapter 10 Queue Participation and Redirection

This chapter describes the tables that are used to store information about iProcess
participation and redirection records.

Topics

• Table Relationships, page 148

• part_defn, page 149

• part_list, page 151

• redir_defn, page 153
 TIBCO iProcess Engine (SQL) Administrator’s Guide

148 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

redir_defn

part_defn part_list
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 149
part_defn

The part_defn table holds all the participation records defined on the system. A
participation record defines the dates and times that users are allowed to
participate in a particular queue. (The part_list table defines what users are
allowed to use a particular participation record.)

Structure The part_defn table has the following structure:

TABLE part_defn (
part_id INTEGER NOT NULL,
queue_name VARCHAR(24) NOT NULL,
days_mask VARCHAR(7) NOT NULL,
start_time SMALLINT NOT NULL,
end_time SMALLINT NOT NULL,
style VARCHAR(24) NULL,
start_date INTEGER NOT NULL,
end_date INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Column Description

part_id Unique ID for this participation record.

queue_name Name of the queue that this participation record allows users
to participate in, as defined in the user_names table.

days_mask Days of the week that users can participate in the specified
queue_name. For example, -TWT-SS indicates every day
except Monday or Friday.

start_time Time of day when participation starts.

end_time Time of day when participation ends.

style Not used. Reserved for possible future use.

start_date Date on which participation starts.

end_date Date on which participation ends.

Key Name Column(s)

pk_part_defn part_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

150 | part_defn
Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes None.

Table Activity The part_defn table contains one row for each participation record defined on
the system.

Rows are added, updated and deleted in the following situations.

Trigger Name Triggered by Affects Table(s)

tr_part_defn DELETE part_list

A row is... When...

added a new participation record is added.

updated an existing participation record is updated.

deleted an existing participation record is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 151
part_list

The part_list table holds the names of all users who are currently allowed to
participate in other queues.

Structure The part_list table has the following structure:

TABLE part_list (
part_id INTEGER NOT NULL,
user_name VARCHAR(64) NOT NULL)

Primary Key None.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The part_list table contains one record for each user designated as a participant
in each participation record on the system.

Rows are added, updated and deleted in the following situations.

Column Description

part_id ID of the participation record that this participant is a member
of, as defined in the part_defn table.

user_name Name of the user who is allowed to participate (according to
the participation definition identified by the part_id value),
as defined in the user_names table.

Index Name Column(s) indexed

idx_part_list_fk part_id

A row is... When...

added Either:

• a new participation record is added.

• an existing participation record is updated (if a user is added as
part of the update).

updated never.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

152 | part_list
deleted Either:

• an existing participation record is deleted.

• an existing participation record is updated (if a user is deleted
as part of the update).

A row is... When...
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 153
redir_defn

The redir_defn table holds information about which queues are being redirected
and which queues they are being redirected to.

Structure The redir_defn table has the following structure:

TABLE redir_defn (
redir_id INTEGER NOT NULL,
start_time SMALLINT NOT NULL,
start_date INTEGER NOT NULL,
end_time SMALLINT NOT NULL,
end_date INTEGER NOT NULL,
queue_name VARCHAR(24) NOT NULL,
destination VARCHAR(49) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The redir_defn table contains one record for each redirection record defined on
the system.

Column Description

redir_id Unique ID for this redirection record.

start_time Time that this queue redirection starts.

start_date Date that this queue redirection starts.

end_time Time that this queue redirection ends.

end_date Date that this queue redirection ends.

queue_name Name of the queue from which work items are to be
redirected, as defined in the user_names table.

destination Name of the queue to which work items are to be redirected,
as defined in the user_names table.

Key Name Column(s)

pk_redir_defn redir_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

154 | redir_defn
Rows are added, updated and deleted in the following situations.

A row is... When...

added a queue is redirected.

updated the details of an existing redirection are updated.

deleted redirection for a queue is turned off.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 155
Chapter 11 Administrative Tables

This chapter describes the tables that are used to store administrative information
about the iProcess system.

Topics

• Table Relationships, page 156

• flag_table, page 157

• version, page 160
 TIBCO iProcess Engine (SQL) Administrator’s Guide

156 | Table Relationships
Table Relationships

The flag_table and version tables have no trigger-enforced relationships with each
other or with any other tables.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 157
flag_table

The flag_table table provides a locking mechanism which controls access to the
four areas of iProcess administrative data - users, lists, roles and TIBCO iProcess
Engine tables. iProcess administrative data is maintained in two sets of tables:

• The main system data, which iProcess references during normal operation, is
stored in tables without a prefix (for example, user_names or dbs_fields).

• A copy of this data, containing users’ edits that have not yet been released for
use by the system, is stored in identical tables which have the same name
prefixed by tsys_ (for example, tsys_user_names or tsys_dbs_fields).

The flag_table table contains a row for each area of iProcess administrative
data, and is used to prevent multiple users from editing the same data at the same
time.

When a user edits the data in a particular row (for example, using User Manager
to edit user data), the area_locked flag is set while editing takes place. On
completion of the edit, the area_locked flag is cleared. If changes have been
made, the area_changed flag is set.

When a user requests a Move System Information, the move_req flag is set on any
rows that have the area_changed flag set. When the background process sees a
row with move_req flagged that is not locked, it locks the area and updates the
main system data tables from the tsys_ tables. When the Move System
Information operation completes, all the flags are cleared.

Structure The flag_table table has the following structure:

TABLE flag_table (
area_id INTEGER NOT NULL,
area_locked INTEGER NOT NULL,
area_changed INTEGER NOT NULL,
move_req INTEGER NOT NULL,
user_name VARCHAR(64) NULL)

Column Description

area_id Unique ID of this area of iProcess administrative data: Either
Users (1), iProcess Tables (2), Lists (3) or Roles (4).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

158 | flag_table
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The flag_table table always contains 4 rows - one row for each area of iProcess
administrative data (users, lists, roles and TIBCO iProcess Engine tables).

The table is populated when the iProcess Engine is installed.

Rows are added, updated and deleted in the following situations.

area_locked Flag that defines whether (1) or not (0) the specified area_id
is locked. The flag is set by:

• an editor (for example, User Manager) when a user is
editing the specified area, to prevent other users from
editing the same data.

• the background process while it is updating the system
data, to prevent any users from editing the same data.

area_changed Flag that defines whether (1) or not (0) the tsys_ tables for
the specified area_id contain modified data.

move_req Flag that defines whether (1) or not (0) the specified area_id
needs to be updated by a Move System Information operation.

user_name Name of the user currently altering data in the given area, as
defined in the user_names table. This is either:

• the name of the user doing the editing, or

• swpro if the background process has the area locked.

Column Description

Key Name Column(s)

pk_flag_table area_id

A row is... When...

added never.

updated either:

• a Move System Information operation either starts or completes.

• an edit of a data area either starts or completes.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 159
deleted never.

A row is... When...
 TIBCO iProcess Engine (SQL) Administrator’s Guide

160 | version
version

The version table contains version information on system data: currently either
CDQP or user data. Processes that hold user details query this table to determine
if their internal cache is up to date or not.

Structure The version table has the following structure:

TABLE version (
version_type VARCHAR(20) NOT NULL,
version_value INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The version table always contains a single row. The table is populated when the
iProcess Engine is installed.

Rows are added, updated and deleted in the following situations.

Column Description

version_type Data type: either cdqp or user.

version_value Number that is incremented whenever the data is changed.

Key Name Column(s)

pk_version version_type

A row is... When...

added never.

updated a Move System Information operation is performed and data for
users, groups or attributes has been modified (that is, if the
move_req flag for the Users data area in the flag_table is set to 1).

deleted never.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 161
Chapter 12 Users and Work Queues

This chapter describes the tables that are used to store information about iProcess
user and group queues.

Topics

• About User Tables, page 162

• Table Relationships, page 163

• user_names, page 164

• user_attrib, page 166

• user_setting, page 168

• user_values, page 169

• user_memb, page 171

• leavers, page 173

• tsys_user_names, page 175

• tsys_user_attrib, page 176

• tsys_user_values, page 177

• tsys_user_memb, page 178
 TIBCO iProcess Engine (SQL) Administrator’s Guide

162 | About User Tables
About User Tables

Note that there are two sets of user tables:

• The tables prefixed with user_ hold the main system data, which TIBCO
iProcess Engine references during normal operation.

• The tables prefixed with tsys_user_ hold a copy of this data, containing
users’ edits that have not yet been released for use by the system.

The tsys_user_ tables are purged and rewritten whenever a user edits user data
(either by saving changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil USERINFO, or by using
TIBCO iProcess Objects).

The user_ tables are purged and rewritten with the updated information from the
tsys_user_ tables when a Move System Information is performed - if the
flag_table indicates that the appropriate data area has been modified.

Access to the user_ and tsys_user_ tables is controlled by a locking mechanism
provided by the flag_table table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 163
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

user_memb

nodes

tsys_user_memb

user_names

user_values

user_attrib

tsys_user_names

tsys_user_values

tsys_user_attrib
leavers
 TIBCO iProcess Engine (SQL) Administrator’s Guide

164 | user_names
user_names

The user_names table holds the names of all iProcess user and group queues
registered on the system.

Structure The user_names table has the following structure:

TABLE user_names (
node_id INTEGER NOT NULL,
user_id INTEGER NOT NULL,
user_name VARCHAR(64) NOT NULL,
user_type VARCHAR(1) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE triggers are defined for this table.

Column Description

node_id ID of the node that this (user or group) queue is registered on,
as defined in the nodes table.

user_id Unique ID for this (user or group) queue.

Note: Users and groups have separate ID sequences, as
defined in the user_type column, so both a user and a group
can have the same user_id value.

user_name Name of this (user or group) queue.

user_type Queue type: user (U) or group (G).

Key Name Column(s)

pk_user_names user_id
user_type
node_id

Trigger Name Triggered by Affects Table(s)

tr_user_names DELETE user_values

tr_user_memb_del DELETE user_memb
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 165
Indexes The following indexes are defined for this table.

Table Activity The user_names table contains one row for each user or group queue defined on
the system.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_user_names_fk node_id

idx_user_names user_name

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

166 | user_attrib
user_attrib

The user_attrib table holds the definitions of all iProcess attributes defined on
the system.

Structure The user_attrib table has the following structure:

TABLE user_attrib (
node_id INTEGER NOT NULL,
attribute_id INTEGER NOT NULL,
attribute_name VARCHAR(15) NOT NULL,
attribute_type VARCHAR(1) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes The following indexes are defined for this table.

Column Description

node_id ID of the node that this attribute is defined on, as defined in
the nodes table.

attribute_id Unique ID for this attribute.

attribute_name Name of this attribute.

attribute_type Attribute type: Either ASCII (A), Numeric (R), Date (D) or Time
(T).

Key Name Column(s)

pk_user_attrib attribute_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_user_attrib DELETE user_values

Index Name Column(s) Indexed

idx_user_attrib_fk node_id

idx_user_attrib attribute_name
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 167
Table Activity The user_attrib table contains one or more rows for each iProcess attribute
defined on the system. If an attribute’s maximum length is defined as:

• 24 characters or less, one row is created for the attribute.

• 25 characters or more, one row is created for each 24 characters of the
attribute’s maximum length, and a number is appended to the
attribute_name entry for each row.

The following example illustrates this:

• DESCRIPTION is a system-defined attribute of type ASCII with a maximum
length of 24 characters; one row is therefore added to the table.

• QSUPERVISORS is a system-defined attribute of type ASCII with a maximum
length of 48 characters; two rows are therefore added to the table -
QSUPERVISORS_01 and QSUPERVISORS_02, each with a unique attribute_id.

• JOBDESC is a user-defined attribute of type ASCII with a maximum length of
60 characters; two rows are therefore added to the table - JOBDESC_01 and
JOBDESC_02, each with a unique attribute_id.

node_id attribute_id attribute_name attribute_type
------- ------------ -------------- --------------
1 1 DESCRIPTION A
1 2 LANGUAGE A
1 3 MENUNAME A
1 4 SORTMAIL A
1 5 USERFLAGS A
1 6 QSUPERVISORS_01 A
1 7 QSUPERVISORS_02 A
1 9 JOBDESC_01 A
1 10 JOBDESC_02 A

Rows are added, updated and deleted in the following situations.

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

168 | user_setting
user_setting

The user_setting table holds the settings that a given user has defined in the
iProcess Workspace (Browser). This enables a user to keep the same settings when
working on any machine.

Structure The user_setting table has the following structure:

TABLE user_setting (
username varchar(32) NOT NULL,
userkey varchar(128) NOT NULL
valindex integer NOT NULL,
vallen integer NOT NULL
uservalue varbinary(max) NULL

Primary Key The following primary key is defined for this table.

Column Description

username The name of the user whose preferences these are, as defined
in the user_names table.

userkey The key of the user.

valindex The index number into the set of rows that make up the user
value.

If the user value is longer than 30,000 bytes, multiple rows (in
30,000 byte chunks) are used to store the user value. Each
segment of the user value is uniquely identified by its
vaindex value.

Note: Since iProcess Engine 11.6, the volume of a row is
upgraded. The value of valindex might always be 1.

vallen The size (in bytes) of the memo data for this row.

uservalue The value of the particular user identified by userkey.

Key Name Column(s)

pk_usersetting username
userkey
valindex
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 169
user_values

The user_values table holds the values for all attributes defined for all users and
groups on the system.

Structure The user_values table has the following structure:

TABLE user_values (
node_id INTEGER NOT NULL,
user_id INTEGER NOT NULL,
attribute_id INTEGER NOT NULL,
attribute_value VARCHAR(24) NULL,
user_type VARCHAR(1) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Column Description

node_id ID of the node that this attribute is defined on, as defined in
the nodes table.

user_id ID of the (user or group) queue that this attribute value is
associated with, as defined in the user_names table.

attribute_id ID of the attribute that this attribute value is associated with,
as defined in the user_attrib table.

attribute_value Value of this attribute.

Note: If an attribute value is longer than 24 characters multiple
rows are used to store the value. Each segment of the value is
uniquely identified by its attribute_id value, as defined in
the user_attrib table.

user_type Type of the (user or group) queue that this attribute value is
associated with, as defined in the user_names table.

Key Name Column(s)

pk_user_values user_id
attribute_id
user_type
node_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

170 | user_values
Indexes The following indexes are defined for this table.

Table Activity The user_values table contains one or more rows per assigned attribute per
(user or group) queue on the system. If an attribute value’s length is:

• 24 characters or less, one row is created for the attribute value.

• more than 24 characters, one row is created for each 24 characters of the
attribute value.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_user_values_fk1 node_id
user_id
user_type

idx_user_values_fk2 attribute_id
node_id

idx_user_values attribute_id

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 171
user_memb

The user_memb table defines users’ membership of groups.

Structure The user_memb table has the following structure:

TABLE user_memb (
node_id INTEGER NOT NULL,
user_id INTEGER NOT NULL,
group_id INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Column Description

node_id ID of the node that this user/group combination is defined on,
as defined in the nodes table.

user_id ID of the user who belongs to the group, as defined in the
user_names table.

group_id ID of the group that the user belongs to, as defined in the
user_names table.

Key Name Column(s)

pk_user_memb user_id
node_id
group_id

Index Name Column(s) Indexed

idx_user_memb user_id
group_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

172 | user_memb
Table Activity The user_memb table contains one row for every user/group member relationship
defined on the system. For example, if a user is a member of three different
groups, there are three rows for that user in this table.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Users data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_user_names table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 173
leavers

The leavers table stores information about the recently deleted users.

Structure The leavers table has the following structure:

TABLE leavers (
node_id INTEGER NOT NULL,
user_name VARCHAR(64) NOT NULL,
destination VARCHAR(64) NOT NULL,
timestamp NUMERIC(20) NOT NULL,
status INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Column Description

node_id ID of the node that this (user or group) queue is registered on,
as defined in the nodes table.

user_name Name of this deleted user.

destination Description of this deleted user.

timestamp When the current status is set.

status Status of the redirection performed on the leaver. One of the
following values:

• 0 (LEAVER_WILL_BE_REDIRECTED) The leaver will be
redirected.

• 1 (LEAVER_IS_BEING_REDIRECTED) The leaver is being
redirected.

• 2 (LEAVER_FINISH_REDIRECTION) The leaver has been
redirected.

Key Name Column(s)

pk_leavers user_name
node_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

174 | leavers
Table Activity The leavers table contains one row for each recently deleted user.

Rows are added, updated, and deleted in the following situations.

A row is... When...

added a user is deleted.

updated one of the following conditions is met:

• the iProcess Engine is started,

• the status of the deleted user is changed.

deleted all of the following conditions are met:

• the status field is set to 2 (LEAVER_FINISH_REDIRECTION),

• the time length definied by the WQS_LEAVER_PERIOD process
attribute has passed since the status field was set to 2,

• the iProcess Engine is shut down, or a Move System
Information operation is performed.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 175
tsys_user_names

The tsys_user_names table is a copy of the user_names table. It is identical to the
user_names table except for the following:

• The primary key name is pk_tsys_user_names.

• No indexes are defined.

• The following DELETE CASCADE triggers are defined.

• The table is purged and rewritten when a user edits user data, either by saving
changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil USERINFO, or by
using TIBCO iProcess Objects. (The flag_table is also updated to indicate that
the Users data area has been modified.)

Trigger Name Triggered by Affects Table(s)

tr_tsys_user_names DELETE tsys_user_values

tr_tsys_user_membd DELETE tsys_user_memb
 TIBCO iProcess Engine (SQL) Administrator’s Guide

176 | tsys_user_attrib
tsys_user_attrib

The tsys_user_attrib table is a copy of the user_attrib table. It is identical to the
user_attrib table except for the following:

• The primary key name is pk_tsys_user_attrib.

• No indexes are defined.

• The following DELETE CASCADE trigger is defined.

• The table is purged and rewritten when a user edits user data, either by saving
changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil USERINFO, or by
using TIBCO iProcess Objects. (The flag_table is also updated to indicate that
the Users data area has been modified.)

Trigger Name Triggered by Affects Table(s)

tr_tsys_user_attrib DELETE tsys_user_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 177
tsys_user_values

The tsys_user_values table is a copy of the user_values table. It is identical to
the user_values table except for the following:

• The primary key name is pk_tsys_user_values.

• The index names are idx_tsys_user_values_fk1 and
idx_tsys_user_values_fk2.

• The table is purged and rewritten when a user edits user data, either by saving
changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil USERINFO, or by
using TIBCO iProcess Objects. (The flag_table is also updated to indicate that
the Users data area has been modified.)
 TIBCO iProcess Engine (SQL) Administrator’s Guide

178 | tsys_user_memb
tsys_user_memb

The tsys_user_memb table is a copy of the user_memb table. It is identical to the
user_memb table except for the following:

• The primary key name is pk_tsys_user_memb.

• The index name is idx_tsys_user_memb.

• The table is purged and rewritten when a user edits user data, either by saving
changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil USERINFO, or by
using TIBCO iProcess Objects. (The flag_table is also updated to indicate that
the Users data area has been modified.)
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 179
Chapter 13 Roles

This chapter describes the tables that are used to store information about iProcess
roles.

Topics

• About Roles, page 180

• Table Relationships, page 181

• role_users, page 182

• tsys_role_users, page 184
 TIBCO iProcess Engine (SQL) Administrator’s Guide

180 | About Roles
About Roles

Note that:

• The role_users table holds the main system data, which TIBCO iProcess
Engine references during normal operation.

• The tsys_role_users holds a copy of this data, containing users’ edits that have
not yet been released for use by the system.

The tsys_role_users table is purged and rewritten whenever a user edits role data
(either by saving changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil ROLEINFO, or by using
TIBCO iProcess Objects).

When a Move System Information is performed, if the tsys_role_users table has
been changed, the role_users table is purged and rewritten with the updated
information from the tsys_role_users table.

Access to the role_users and tsys_role_users tables is controlled by a locking
mechanism provided by the flag_table table.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 181
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

nodes

role_userstsys_role_users
 TIBCO iProcess Engine (SQL) Administrator’s Guide

182 | role_users
role_users

The role_users table holds information about which roles are defined on the
system, and which queues are assigned to them.

Structure The role_users table has the following structure:

TABLE role_users (
node_id INTEGER NOT NULL,
role_id INTEGER NOT NULL,
role_name VARCHAR(15) NOT NULL,
usernode_name VARCHAR(49) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The role_users table contains one row for each role defined on the system.

Column Description

node_id ID of the node that this role is registered on, as defined in the
nodes table.

role_id Unique ID for this role.

role_name Name of this role.

usernode_name Name of the (user or group) queue that the role is assigned to,
as defined in the user_names table.

Key Name Column(s)

pk_role_users role_id
node_id

Index Name Column(s) Indexed

idx_role_users_fk node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 183
Rows are added, updated and deleted in the following situations.

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Roles data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_role_users table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Roles data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_role_users table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

184 | tsys_role_users
tsys_role_users

The tsys_role_users table is a copy of the role_users table. It is identical to the
role_users table except for the following:

• The primary key name is pk_tsys_role_users.

• The index name is idx_tsys_role_users_fk.

• The table is purged and rewritten when a user edits role data, either by saving
changes made in the User Manager utility in the TIBCO iProcess
Administrator, importing data with SWDIR\bin\swutil ROLEINFO, or by
using TIBCO iProcess Objects. (The flag_table is also updated to indicate that
the Roles data area has been modified.)
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 185
Chapter 14 TIBCO iProcess Tables

This chapter describes the tables that are used to store information about TIBCO
iProcess tables.

Topics

• About TIBCO iProcess Tables, page 186

• Table Relationships, page 187

• dbs_names, page 188

• dbs_fields, page 190

• dbs_values, page 192

• tsys_dbs_names, page 194

• tsys_dbs_fields, page 195

• tsys_dbs_values, page 196

• str_dbs_names, page 197

• str_dbs_fields, page 198

• ttmp_dbs_names, page 199

• ttmp_dbs_fields, page 200

• ttmp_dbs_values, page 201

This chapter uses the term TIBCO iProcess table to mean an iProcess table, and table
to mean a SQL Server table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

186 | About TIBCO iProcess Tables
About TIBCO iProcess Tables

Note that there are four sets of related tables, as follows:

The tsys_dbs_ tables are purged and rewritten whenever a user edits TIBCO
iProcess Engine table data (either by saving changes made in the Table Manager
utility in the TIBCO iProcess Administrator, modifying data with
SWDIR\bin\swutil IMPORT or DELTAB, or by using TIBCO iProcess Objects).

When a Move System Information is performed, if the tsys_dbs_ tables have
been changed, the dbs_ and/or str_dbs_ tables are purged and rewritten with
the updated information from the tsys_dbs_ tables.

Access to the dbs_ and tsys_dbs_ tables is controlled by a locking mechanism
provided by the flag_table table.

Prefix Description

dbs_ Hold the main system data on installed TIBCO iProcess tables,
which iProcess references during normal operation.

str_dbs_ Hold the main system data on uninstalled TIBCO iProcess tables,
which iProcess references during normal operation.

Note: There is no str_dbs_values table, because no data is
associated with uninstalled TIBCO iProcess tables.

tsys_dbs_ Hold a copy of the main (dbs_ and str_dbs_) system data,
containing users’ edits that have not yet been released for use by
the system.

ttmp_dbs_ Temporary tables used only when importing TIBCO iProcess
Engine tables (using SWDIR\bin\swutil IMPORT).
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 187
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

nodes
str_dbs_names

str_dbs_fields

ttmp_dbs_names

ttmp_dbs_values

ttmp_dbs_fields

tsys_dbs_names

tsys_dbs_values

tsys_dbs_fields

dbs_names

dbs_values

dbs_fields
 TIBCO iProcess Engine (SQL) Administrator’s Guide

188 | dbs_names
dbs_names

The dbs_names table holds the names of all installed TIBCO iProcess Engine
tables.

Structure The dbs_names table has the following structure:

TABLE dbs_names (
node_id INTEGER NOT NULL,
dbs_id INTEGER NOT NULL,
dbs_name VARCHAR(15) NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Indexes The following index is defined for this table.

Column Description

node_id ID of the node that this iProcess Engine table is defined on, as
defined in the nodes table.

dbs_id Unique ID for this iProcess Engine table.

dbs_name Name of this iProcess Engine table.

Key Name Column(s)

pk_dbs_names dbs_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_dbs_names DELETE dbs_fields

Index Name Column(s) Indexed

idx_dbs_names_fk node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 189
Table Activity The dbs_names table contains one row for each installed TIBCO iProcess table on
the system.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_names table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

190 | dbs_fields
dbs_fields

The dbs_fields table holds the field definitions for every field in every installed
iProcess table.

Structure The dbs_fields table has the following structure:

TABLE dbs_fields (
node_id INTEGER NOT NULL,
dbs_id INTEGER NOT NULL,
field_id INTEGER NOT NULL,
field_name VARCHAR(15) NOT NULL,
field_type VARCHAR(1) NOT NULL,
field_length SMALLINT NOT NULL,
field_decimals SMALLINT NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Column Description

node_id ID of the node that this field is defined on, as defined in the
nodes table.

dbs_id ID of the table that this field is defined in, as defined in the
dbs_names table.

field_id Unique ID for the field in this TIBCO iProcess Engine table.

field_name Name of this field.

field_type Field type: Either ASCII (A), Numeric (R), Date (D) or Time (T).

field_length Length of this field, in characters.

field_decimals Number of characters after the decimal place in this field
(relevant only for Numeric fields).

Key Name Column(s)

pk_dbs_fields dbs_id
field_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_dbs_fields DELETE dbs_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 191
Indexes The following indexes are defined for this table.

Table Activity The dbs_fields table contains one row for each field in each installed TIBCO
iProcess table.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_dbs_fields_fk dbs_id
node_id

idx_dbs_fields field_id
dbs_id

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_fields table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_fields table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

192 | dbs_values
dbs_values

The dbs_values table holds all field values for all installed TIBCO iProcess Engine
tables.

Structure The dbs_values table has the following structure:

TABLE dbs_values (
node_id INTEGER NOT NULL,
dbs_id INTEGER NOT NULL,
record_id INTEGER NOT NULL,
field_id INTEGER NOT NULL,
field_value VARCHAR(30) NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following indexes are defined for this table.

Column Description

node_id ID of the node that this field value is stored on, as defined in
the nodes table.

dbs_id ID of the table that this field value is stored in, as defined in the
dbs_names table.

record_id Unique ID for this record in the iProcess Engine table.

field_id ID of the field held in this record, as defined in the dbs_fields
table.

field_value Value of the field in this record.

Key Name Column(s)

pk_dbs_values dbs_id
record_id
field_id
node_id

Index Name Column(s) Indexed

idx_dbs_values_fk dbs_id
field_id
node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 193
Table Activity The dbs_values table contains one row for each field of each record in each
installed TIBCO iProcess table on the system.

Rows are added, updated and deleted in the following situations.

idx_dbs_values record_id
field_id
dbs_id

Index Name Column(s) Indexed

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_values table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Tables data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_dbs_values table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

194 | tsys_dbs_names
tsys_dbs_names

The tsys_dbs_names table is a copy of the dbs_names table. It is identical to the
dbs_names table except for the following:

• The primary key name is pk_tsys_dbs_names.

• The following DELETE CASCADE trigger is defined.

• The index name is idx_tsys_dbs_names_fk.

• The table is purged and rewritten when a user edits iProcess Engine table
data, either by saving changes made in the Table Manager utility in the TIBCO
iProcess Administrator, modifying data with SWDIR\bin\swutil IMPORT or
DELTAB, or by using TIBCO iProcess Objects. (The flag_table is also updated to
indicate that the Tables data area has been modified.)

Trigger Name Triggered by Affects Table(s)

tr_tsys_dbs_names DELETE tsys_dbs_fields
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 195
tsys_dbs_fields

The tsys_dbs_fields table is a copy of the dbs_fields table. It is identical to the
dbs_fields table except for the following:

• The primary key name is pk_tsys_dbs_fields.

• The following DELETE CASCADE trigger is defined.

• The index names are idx_tsys_dbs_fields_fk and idx_tsys_dbs_fields.

• The table is purged and rewritten when a user edits iProcess Engine table
data, either by saving changes made in the Table Manager utility in the
TIBCO iProcess Administrator, modifying data with SWDIR\bin\swutil
IMPORT or DELTAB, or by using TIBCO iProcess Objects. (The flag_table is also
updated to indicate that the Tables data area has been modified.)

Trigger Name Triggered by Affects Table(s)

tr_tsys_dbs_fields DELETE tsys_dbs_values
 TIBCO iProcess Engine (SQL) Administrator’s Guide

196 | tsys_dbs_values
tsys_dbs_values

The tsys_dbs_values table is a copy of the dbs_values table. It is identical to the
dbs_values table except for the following:

• The primary key name is pk_tsys_dbs_values.

• The index names are idx_tsys_dbs_values_fk and idx_tsys_dbs_values.

• The table is purged and rewritten when a user edits iProcess Engine table
data, either by saving changes made in the Table Manager utility in the TIBCO
iProcess Administrator, modifying data with SWDIR\bin\swutil IMPORT or
DELTAB, or by using TIBCO iProcess Objects. (The flag_table is also updated to
indicate that the Tables data area has been modified.)
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 197
str_dbs_names

The str_dbs_names table is a copy of the dbs_names table. It is identical to the
dbs_names table except for the following:

• It holds the names of all uninstalled TIBCO iProcess Engine tables.

• The primary key name is pk_str_dbs_names.

• No indexes are defined.

• It contains one row for each uninstalled TIBCO iProcess table on the system.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

198 | str_dbs_fields
str_dbs_fields

The str_dbs_fields table is a copy of the dbs_fields table. It is identical to the
dbs_fields table except for the following:

• It holds the field definitions for every field in every uninstalled TIBCO iProcess
table.

• The primary key name is pk_str_dbs_fields.

• The index name is idx_str_dbs_fields.

• It contains one row for each field in each uninstalled TIBCO iProcess table on
the system.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 199
ttmp_dbs_names

The ttmp_dbs_names table is a temporary copy of the dbs_names table. It is
identical to the dbs_names table except for the following:

• The primary key name is pk_ttmp_dbs_names.

• No indexes are defined.

• In most situations the number of rows in the table should be zero.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

200 | ttmp_dbs_fields
ttmp_dbs_fields

The ttmp_dbs_fields table is a temporary copy of the dbs_fields table. It is
identical to the dbs_fields table except for the following:

• The primary key name is pk_ttmp_dbs_fields.

• No indexes are defined.

• In most situations the number of rows in the table should be zero.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 201
ttmp_dbs_values

The ttmp_dbs_values table is a temporary copy of the dbs_values table. It is
identical to the dbs_values table except for the following:

• The primary key name is pk_ttmp_dbs_values.

• No indexes are defined.

• In most situations the number of rows in the table should be zero.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

202 | ttmp_dbs_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 203
Chapter 15 Lists

This chapter describes the tables that are used to store information about iProcess
lists.

Topics

• About Lists, page 204

• Table Relationships, page 205

• list_names, page 206

• list_values, page 208

• tsys_list_names, page 210

• tsys_list_values, page 211

• ttmp_list_names, page 212

• ttmp_list_values, page 213
 TIBCO iProcess Engine (SQL) Administrator’s Guide

204 | About Lists
About Lists

Note that there are three sets of related tables, as follows:

The tsys_list_ tables are purged and rewritten whenever a user edits iProcess
lists data (either by saving changes made in the List Manager utility in the TIBCO
iProcess Administrator, modifying data with SWDIR\bin\swutil IMPORT, or by
using TIBCO iProcess Objects).

The list_ tables are purged and rewritten with the updated information from the
tsys_list_ tables when a Move System Information is performed - if the
flag_table indicates that the Lists data area has been modified

Access to the list_ and tsys_list_ tables is controlled by a locking mechanism
provided by the flag_table table.

Prefix Description

list_ Hold the main system data on iProcess lists, which iProcess
Engine references during normal operation.

tsys_list_ Hold a copy of the main system data, containing users’ edits that
have not yet been released for use by the system.

ttmp_list_ Temporary tables used only when importing iProcess lists (using
SWDIR\bin\swutil IMPORT).
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 205
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many
nodes

list_names

list_values

tsys_list_names

tsys_list_values

ttmp_list_names

ttmp_list_values
 TIBCO iProcess Engine (SQL) Administrator’s Guide

206 | list_names
list_names

The list_names table holds the names and definitions of all iProcess lists defined
on the system.

Structure The list_names table has the following structure:

TABLE list_names (
node_id INTEGER NOT NULL,
list_id INTEGER NOT NULL,
list_name VARCHAR(15) NOT NULL,
list_type VARCHAR(1) NOT NULL,
list_length INTEGER NOT NULL,
list_decimals INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers The following DELETE CASCADE trigger is defined for this table.

Column Description

node_id ID of the node that this list is stored on, as defined in the nodes
table.

list_id Unique ID for this list.

list_name Name of this list.

list_type List type: Either ASCII (A), Numeric (R), Date (D) or Time (T).

list_length Length of this list, in characters.

list_decimals Number of characters after the decimal place in this list
(relevant only for Numeric lists).

Key Name Column(s)

pk_list_names list_id
node_id

Trigger Name Triggered by Affects Table(s)

tr_list_names DELETE list_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 207
Indexes The following index is defined for this table.

Table Activity The list_names table contains one row for each iProcess list on the system.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_list_names_fk node_id

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Lists data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_list_names table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Lists data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_list_names table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

208 | list_values
list_values

The list_values table holds the value of every item in every iProcess list on the
system.

Structure The list_values table has the following structure:

TABLE list_values (
node_id INTEGER NOT NULL,
list_id INTEGER NOT NULL,
record_id INTEGER NOT NULL,
list_value VARCHAR(30) NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes The following index is defined for this table.

Table Activity The list_values table contains one row for each iProcess list item defined on the
system.

Column Description

node_id ID of the node that this list item is stored on, as defined in the
nodes table.

list_id ID of the list that this list item is stored in, as defined in the
list_names table.

record_id Unique ID for this list item.

list_value Value of this list item.

Key Name Column(s)

pk_list_values list_id
record_id
node_id

Index Name Column(s) Indexed

idx_list_values_fk list_id
node_id
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 209
Rows are added, updated and deleted in the following situations.

A row is... When...

added a Move System Information is performed, if the flag_table indicates
that the Lists data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_list_values table.

updated never.

deleted a Move System Information is performed, if the flag_table indicates
that the Lists data area has been modified.

Note: The table is purged and rewritten using the values from the
tsys_list_values table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

210 | tsys_list_names
tsys_list_names

The tsys_list_names table is a copy of the list_names table. It is identical to the
list_names table except for the following:

• The primary key name is pk_tsys_list_names.

• The following DELETE CASCADE trigger is defined.

• The index name is idx_tsys_list_names_fk.

• The table is purged and rewritten when a user edits iProcess list data, either
by saving changes made in the List Manager utility in the TIBCO iProcess
Administrator, modifying data with SWDIR\bin\swutil IMPORT, or by using
TIBCO iProcess Objects. (The flag_table is also updated to indicate that the
Lists data area has been modified.)

Trigger Name Triggered by Affects Table(s)

tr_tsys_list_names DELETE tsys_list_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 211
tsys_list_values

The tsys_list_values table is a copy of the list_values table. It is identical to the
list_values table except for the following:

• The primary key name is pk_tsys_list_values.

• The index name is idx_tsys_list_values_fk.

• The table is purged and rewritten when a user edits iProcess list data, either
by saving changes made in the List Manager utility in the TIBCO iProcess
Administrator, modifying data with SWDIR\bin\swutil IMPORT, or by using
TIBCO iProcess Objects. (The flag_table is also updated to indicate that the
Lists data area has been modified.)
 TIBCO iProcess Engine (SQL) Administrator’s Guide

212 | ttmp_list_names
ttmp_list_names

The ttmp_list_names table is a temporary copy of the list_names table. It is
identical to the list_names table except for the following:

• The primary key name is pk_ttmp_list_names.

• The following DELETE CASCADE trigger is defined.

• The index name is idx_ttmp_list_names_fk.

• In most situations the number of rows in the table should be zero.

Trigger Name Triggered by Affects Table(s)

tr_ttmp_list_names DELETE ttmp_list_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 213
ttmp_list_values

The ttmp_list_values table is a temporary copy of the list_values table. It is
identical to the list_values table except for the following:

• The primary key name is pk_ttmp_list_values.

• The index name is idx_ttmp_list_values_fk.

• In most situations the number of rows in the table should be zero.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

214 | ttmp_list_values
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 215
Chapter 16 iProcess Server Plug-ins

This chapter describes the table that is used to store information about iProcess
server plug-ins that are installed on this iProcess Engine.

Topics

• Table Relationships, page 216

• eai_registry, page 217
 TIBCO iProcess Engine (SQL) Administrator’s Guide

216 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

1 Many

node_cluster

eai_registry
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 217
eai_registry

The eai_registry table stores information about each iProcess server plug-in
that is installed on this iProcess Engine. The background process reads this table
to determine which iProcess server plug-ins to start.

Structure The eai_registry table has the following structure:

TABLE eai_registry(

eai_type VARCHAR(20) NOT NULL,
logical_machine_id INTEGER NOT NULL,
release_version VARCHAR(32) NOT NULL,
plugin_library VARCHAR(256) NOT NULL,
init_params VARCHAR(1024) NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Column Description

eai_type Short name for the EAI Step type that this iProcess server
plug-in supports. For example, one of the following:

• EAIDB EAI Database

• EAISCR EAI Script

• EAIWEBSERVICES EAI Web Services

logical_machine_i
d

ID of the computer that this iProcess server plug-in is
installed on, as defined in the node_cluster table.

Note: If a node cluster architecture is in use, the iProcess
server plug-in must be installed on each server in the cluster
that is configured to run a background process.

release_version Version number of this iProcess server plug-in (for example,
i10.0-x(3.0)).

plugin_library Pathname (on this logical_machine_id) where this EAI
server plug-in is installed.

init_params Startup parameters used by this iProcess server plug-in.

Key Name Column(s)

pk_eai_registry eai_type
logical_machine_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

218 | eai_registry
Indexes The following index is defined for this table.

Table Activity The eai_registry table contains one row for each iProcess server plug-in that is
installed on each server in this iProcess Engine node.

Rows are added, updated and deleted in the following situations.

Index Name Column(s) Indexed

idx_eai_registry_fk logical_machine_id

A row is... When...

added an iProcess server plug-in is installed.

updated an iProcess server plug-in is upgraded or amended.

deleted an iProcess server plug-in is deleted.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 219
Chapter 17 Firewall Port Ranges

This chapter describes the tables that store the port range data that is used when
the iProcess Engine is used in a firewalled environment.

Topics

• Table Relationships, page 220

• port_range, page 221

• port_range_active, page 223

• port_range_conf, page 225

• port_range_nodes, page 227

For more information see:

• "Using the iProcess Engine in a Firewalled Environment" in TIBCO iProcess
Engine Architecture Guide.

• "Administering Firewall Port Ranges" in TIBCO iProcess Engine Administrator's
Guide.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

220 | Table Relationships
Table Relationships

The following diagram shows how the tables described in this chapter are related
to each other and to other tables in the schema. Note that:

• Only trigger-enforced relationships are shown.

• Logical relationships, that is, those used by iProcess, are not shown.

port_range port_range_nodes

1 Many

port_range_conf port_range_active
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 221
port_range

The port_range table contains the firewall data about individual port/RPC
numbers that lie within port range configurations defined on this iProcess Engine.

Structure The port_range table has the following structure:

TABLE port_range (
port_range_id NUMERIC(10) NOT NULL,
slot_number NUMERIC(10) NOT NULL,
rpc_number NUMERIC(10) NOT NULL,
port_number NUMERIC(10) NOT NULL,
status NUMERIC(10) NOT NULL,
logical_machine_id NUMERIC(10) NULL,
logical_process_name VARCHAR(10) NULL,
logical_process_instanceNUMERIC(10) NULL)

Column Description

port_range_id Unique ID of the port range configuration that this
port/RPC number belongs to, as defined in the
port_range_conf table.

slot_number Internal slot in memory used by this port/RPC number.

rpc_number RPC number.

port_number Port number.

status Defines whether this port/RPC number is available or in
use by a process. One of the following values:

• -2 Reserved for future use.

• -1 Unobtainable. (A process tried to use the port but
found that it was already in use.)

• 0 Unallocated.

• 1 Allocated to the process defined by the
logical_machine_id,
logical_process_name and
logical_process_instance columns.

logical_machine_id Either:

• ID of the server where the process instance that this
port/RPC number has been allocated to runs, as
defined in the node_cluster table.

• 0, if the port/RPC number has not been allocated to
a process.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

222 | port_range
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The port_range table contains one row per port/RPC number used by the
iProcess Engine (if you are using iProcess on a network with a firewall and using
port range filtering or RPC filtering).

Rows are added, updated and deleted in the following situations.

logical_process_name Logical name of the process instance that this port/RPC
number has been allocated to.

logical_process_inst
ance

Unique ID of the process instance that this port/RPC
number has been allocated to.

Column Description

Key Name Column(s)

pk_port_range port_range_id, slot_number

A row is... When...

added a user defines a new port range configuration, that is, a new record
in the port_range_conf table, or modifies the range of an existing
port range configuration, using the SWDIR\util\swadm utility.

updated a process is assigned a slot, or frees up a slot.

deleted a user deletes a port range configuration, that is, a record in the
port_range_conf table, using the SWDIR\util\swadm utility.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 223
port_range_active

The port_range_active table lists what port/RPC numbers are being actively
used to provide RPC services by iProcess Engine processes.

Structure The port_range_active table has the following structure:

TABLE port_range_active (
logical_machine_id INTEGERNOT NULL,
logical_process_name VARCHAR(10)NOT NULL,
logical_process_instanceINTEGERNOT NULL,
process_id INTEGERNOT NULL,
port_number INTEGERNOT NULL,
rpc_number INTEGERNOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

The table only lists processes that provide RPC services. These processes are
RPC_TCP_LI, RPC_UDP_LI, RPC_POOL, RPC_SWIP, WQS and WIS.

Column Description

logical_machine_id ID of the server where this process instance runs, as
defined in the node_cluster table.

logical_process_name Logical name of this process instance.

Note: See "Administering iProcess Engine Server
Processes" in TIBCO iProcess Engine Administrator's
Guide for a list of logical process names.

logical_process_insta
nce

Unique ID for this process instance.

process_id Operating system process ID of this process instance.

port_number Port number being used by this process instance.

rpc_number RPC number being used by this process instance.

Key Name Column(s)

pk_port_range_active logical_machine_id,
logical_process_name,
logical_process_instance
 TIBCO iProcess Engine (SQL) Administrator’s Guide

224 | port_range_active
Indexes None.

Table Activity The port_range_active table contains one row per port/RPC number that is
being actively used by the iProcess Engine.

Rows are added, updated and deleted in the following situations.

A row is... When...

added an iProcess Engine process allocates itself a port/RPC number from
either the port_range table or the operating system.

updated never.

deleted an iProcess Engine process stops using its assigned port/RPC
number, that is, is shut down.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 225
port_range_conf

The port_range_conf table defines the available port range configuration(s) for
this iProcess Engine, for use with a firewall.

Structure The port_range_conf table has the following structure:

TABLE port_range_conf (
port_range_id INTEGER NOT NULL,
range_mode SMALLINT NOT NULL,
range_size INTEGER NOT NULL,
port_start INTEGER NOT NULL,
rpc_start INTEGER NOT NULL)

In pre-10.4 iProcess Engine versions this information was defined in the RNGMODE
parameter of the SWDIR\etc\staffcfg file.

Column Description

port_range_id Unique ID of this particular port range configuration.

range_mode Mode used by this port range configuration. One of the
following values:

• 0 No Port or RPC ranging. A process uses the next
available port number assigned by the operating system,
and an RPC number based on the process ID.

• 1 Port ranging. A process uses a port number allocated
from within the defined range, and an RPC number based
on the process ID.

• 2 RPC ranging. A process uses the next available port
number assigned by the operating system, and an RPC
number allocated from within the defined range.

• 3 Port and RPC ranging. A process uses both a port
number and an RPC number allocated from within the
defined ranges.

range_size The number of port and RPC numbers allowed in the port
number and RPC number ranges.

port_start The first number in the defined range of port numbers. (The
last number = port_start + range_size.)

rpc_start The first number in the defined range of RPC numbers. (The
last number = rpc_start + range_size.)
 TIBCO iProcess Engine (SQL) Administrator’s Guide

226 | port_range_conf
Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

Table Activity The port_range_conf table contains one row per defined port range
configuration.

Rows are added, updated and deleted in the following situations.

Key Name Column(s)

pk_port_range_conf port_range_id

A row is... When...

added a user defines a new port range configuration using the
SWDIR\util\swadm utility.

updated a user changes an existing port range configuration, that is, either
mode, range size or starting port/RPC number is changed, using
the SWDIR\util\swadm utility.

deleted a user deletes an existing port range configuration using the
SWDIR\util\swadm utility.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 227
port_range_nodes

The port_range_nodes table lists which port range configurations (as defined in
the port_range_conf table) are being used by which machines in the iProcess
Engine node (as defined in the node_cluster table).

Structure The port_range_nodes table has the following structure:

TABLE port_range_nodes (
port_range_id INTEGER NOT NULL,
logical_machine_id INTEGER NOT NULL)

Primary Key The following primary key is defined for this table.

Triggers None.

Indexes None.

It is not mandatory for each machine in an iProcess Engine node to have to sit
behind the same firewall. Different machines may use different firewalls, or no
firewall.

Column Description

port_range_id ID of a particular port range configuration, as defined in the
port_range_conf table.

logical_machine_i
d

ID of the server using this port range configuration, as
defined in the node_cluster table.

Key Name Column(s)

pk_port_range_nodes port_range_id,
logical_machine_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

228 | port_range_nodes
Table Activity The port_range_nodes table contains one row per server that sits behind a
firewall (port range configuration) defined in the port_range table.

Rows are added, updated and deleted in the following situations.

A row is... When...

added a user adds a machine to the list of servers that sit behind a
particular port range configuration, using the
SWDIR\util\swadm utility.

updated a user moves a machine from sitting behind one particular port
range configuration to another, using the SWDIR\util\swadm
utility.

deleted a user removes a machine from the list of servers that sit behind a
particular port range configuration, using the
SWDIR\util\swadm utility.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 229
Chapter 18 WQS/WIS Shared Memory

This chapter describes the wqs_index table.

Topics

• Table Relationships, page 230

• wqs_index, page 231
 TIBCO iProcess Engine (SQL) Administrator’s Guide

230 | Table Relationships
Table Relationships

The wqs_index table has no trigger-enforced relationships with other tables.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 231
wqs_index

The wqs_index table holds the information about each work queue on the system
that is stored in shared memory by the WQS/WIS processes.

Structure The wqs_index table has the following structure:

TABLE wqs_index(
logical_machine_id INTEGERNOT NULL,
logical_process_instanceINTEGERNOT NULL,
queue_name VARCHAR(24)NOT NULL,
total_items NUMERIC(20)NULL,
last_cache_time NUMERIC(20)NULL,
new_items NUMERIC(20)NULL,
deadline_items NUMERIC(20)NULL,
urgent_items NUMERIC(20)NULL,
redir_queue_name VARCHAR(24)NULL,
is_cached SMALLINTNOT NULL,
is_group SMALLINTNOT NULL,
is_test SMALLINTNOT NULL,
is_redirected SMALLINTNOT NULL,

is_disabled SMALLINTNOT NULL)

Column Name Description

logical_machine_id ID of the server where the WIS process that is handling
this work queue is running, as defined in the
node_cluster table.

logical_process_insta
nce

ID of the instance of the WIS process that is handling
this work queue, as defined in the process_config table.

queue_name Name of the work queue.

total_items Total number of items in this work queue.

Note: When the iProcess Engine starts up the WIS
processes use this value to determine whether or not
each work queue should be cached. See "Configuring
When WIS Processes Cache Their Queues" in TIBCO
iProcess Engine Administrator’s Guide for more
information.

last_cache_time Either:

• Time taken to cache the work queue (in
milliseconds) when it was last cached, either when
the WIS process first started up or when the work
queue was first accessed.

• -1, if the work queue has not yet been cached.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

232 | wqs_index
new_items Number of new, unopened items in this work queue.

deadline_items Number of items in this work queue that have
deadlines.

urgent_items Number of items in this work queue that have an urgent
priority.

redir_queue_name Either:

• the name of the work queue that this queue is
currently being redirected to, if the queue is
currently being redirected (is_redirected = 1).

• empty, if the queue is currently not being redirected
(is_redirected = 0).

is_cached Indicates whether the queue is currently cached by the
WIS process. Either:

• 1, if the queue is cached.

• 0, if the queue is not cached.

is_group Indicates whether the queue is a Group queue. Either:

• 1, if the queue is a Group queue.

• 0, if the queue is a User queue.

is_test Indicates whether the queue is a Test queue. Either:

• 1, if the queue is a Test queue.

• 0, otherwise.

is_redirected Indicates whether the queue is currently being
redirected to redir_queue_name. Either:

• 1, if the queue is currently redirected.

• 0, otherwise.

is_disabled Indicates whether the queue is disabled. Either:

• 1, if the queue is currently disabled.

• 0, otherwise.

Column Name Description
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 233
Primary Key The following primary key is defined for this table.

Triggers None

Indexes None

Table Activity The wqs_index table contains one row for each work queue on the system that is
handled by a WIS process.

Rows are added, updated and deleted in the following situations.

Key Name Column(s)

pk_wqs_index queue_name
is_test

A row is... When...

added a new work queue is allocated to a WIS process by the WQS process.

updated • an existing work queue is re-allocated to a different WIS process
by the WQS process.

• a MOVESYSINFO has been processed by the WQS process.

• the update thread in the WQS process writes the contents of the
WQS/WIS shared memory to the database. This update occurs
every WQS_PERSIST_SHMEM seconds.

Note: See "Administering Process Attributes" in TIBCO iProcess
Engine Administrator’s Guide for more information about the
WQS_PERSIST_SHMEM process attribute.

deleted a WIS is started as the first time the WIS persists the current shared
memory to the database it clears out all existing rows and then
writes the shared memory to the database table.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

234 | wqs_index
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 235
Chapter 19 System Event Logging

This chapter describes the tables that are used to store information about system

event logging.

Topics

• Table Relationships, page 236

• system_event, page 237

• system_event_conf, page 239
 TIBCO iProcess Engine (SQL) Administrator’s Guide

236 | Chapter 19 System Event Logging
Table Relationships

The following diagram shows how the tables described in this chapter are related

to each other and to other tables in the schema. Note that:

• Only database-enforced relationships, that is, foreign keys are shown.

• Logical relationships, that is, those used by iProcess, are not shown.
TIBCO iProcess Engine (SQL) Administrator’s Guide

system_event | 237
system_event

The system_event table contains information about system events.

Structure The system_event table has the following structure:
TABLE system_event (

type_id number(5) NOT NULL,
user_name varchar(255) NOT NULL,
audit_date date NOT NULL,
audit_usecs number(6) NOT NULL,

details varchar(512) NOT NULL,

Primary Key None.

Foreign Keys None.

Indexes The following index is defined for this table.

Table Activity The system_event table contains one row for each system event that is audited.

Column Description

type_id IID of an audit event. It is defined in the

SWDIR\etc\language.lng\sysevents.cfg file.

user_name Name of the user who performed the audit event, as
defined in the user_names table.

audit_date Date and time when the event occurred.

Note: The audit_usecs column can be combined with this
column to provide resolution to a microsecond.

audit_usecs Number of microseconds since the start of the seconds value

specified in the audit_date column.

details Extra details of the event.

Index Name Column(s) Indexed

idx_sys_event_fk type_id

user_name

audit_date
 TIBCO iProcess Engine (SQL) Administrator’s Guide

238 | Chapter 19 System Event Logging
Rows are added and deleted in the following situations:

A row is... When...

added a new system event is audited.

deleted using the swadm delete_system_event command to
delete system event information or clean system event
information that is earlier than a specified period. See
TIBCO iProcess Engine Administrator’s Guide for more
information about the swadm delete_system_event
command.
TIBCO iProcess Engine (SQL) Administrator’s Guide

system_event_conf | 239
system_event_conf

The system_event_conf table holds the configuration information of system
events. The information specifies which system event will be audited and
published.

Structure The system_event_conf table has the following structure:
TABLE system_event_conf (

type_id number(5) NOT NULL,
audited number(5) NOT NULL,
published number(5) NOT NULL,

event_desc varchar(256) NOT NULL

Primary Key The following primary key is defined for this table.

Foreign Keys None.

Indexes None.

Table Activity The system_event_conf table contains one row for the configuration of each
system event.

Column Description

type_id IID of an audit event. It is defined in the

SWDIR\etc\language.lng\sysevents.cfg file.

audited Whether to audit the system event.

published Whether to publish the system event.

event_desc Description of the system event.

Key Name Column(s)

pk_event_conf type_id
 TIBCO iProcess Engine (SQL) Administrator’s Guide

240 | Chapter 19 System Event Logging
Rows are added and deleted in the following situations:

A row is... When...

added a new system event configuration is imported to iProcess
Engine by using the IMPEVENTCONF command. See TIBCO
iProcess swutil and swbatch Reference Guide for more
information about the IMPEVENTCONF command.

updated a system event is updated in the configuration file
imported by the IMPEVENTCONF command.

deleted a system event is deleted from the configuration file
imported by the IMPEVENTCONF command.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 241
Appendix A Views

The following database views are defined for internal use:

• dbs_nm_fld

• tsys_dbs_nm_fld

• ttmp_dbs_nm_fld

• str_dbs_nm_fld

• lst_nm_val

• tsys_lst_nm_val

• ttmp_lst_nm_val

For more information about these views please see the database creation script
(init2Ksql.sql).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

242 | Views
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 243
Appendix B SSOLite Stored Procedures

This appendix describes the SSOLite stored procedures.

Topics

• Overview, page 244

• Using SSOLite Stored Procedures, page 245

• Data Procedures, page 251

• Command Procedures, page 259

• Control Procedures, page 286

• Debug Procedures, page 297
 TIBCO iProcess Engine (SQL) Administrator’s Guide

244 | Overview
Overview

SSOLite is a set of stored procedures, available in the iProcess database, that
provide applications with direct access to a limited subset of iProcess
functionality.

An application can use SSOLite stored procedures to issue instructions directly to
the iProcess background processes (by inserting messages into the iProcess
message queues) to perform the following iProcess operations:

• start a case.

• trigger an event.

• graft a sub-procedure to a procedure (at run-time).

• jump a case to a different point in the procedure.

• suspend a case.

• re-activate a suspended case.

There are four different categories of SSOLite procedure:

• Data Procedures are used to create (or clear) any pack data that is required for
a particular operation.

• Command Procedures are used to perform the iProcess operations described
above.

• Control Procedures can be used to control the operation of the other SSOLite
procedures. Their use is optional.

• Debug Procedures can be used to provide debug information about the
operation of data and command procedures, if required.

Because of a change in the format of background (BG) process messages, the
SSOLite Stored Procedures supplied with this release of the iProcess Engine will
not work on versions of the server prior to 10.6.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 245
Using SSOLite Stored Procedures

The following sections discuss some general issues that you need to be aware of
when designing an application to use SSOLite stored procedures:

• Processing Asynchronous Message, page 245

• Transactional Processing, page 245

• Handling Exceptions, page 245

• Processing Queues, page 248

• Prioritizing Messages, page 249

Processing Asynchronous Message
SSOLite stored procedures work by sending a message to a database queue,
which is processed by one or more background (BG) processes. This means that:

• there is a short delay between an SSOLite stored procedure completing and
the BG process processing the instruction.

• even if an SSOLite procedure has completed successfully, the instruction that
is processed by the BG may still fail.

Transactional Processing
The BG process will not process any instructions issued by SSOLite stored
procedures until the SSOLite transaction has been committed. You can therefore
scope transactions according to the requirements of your particular application:

• A transaction can be defined as a single instruction, such as a case start. (If the
call to SW_CASESTART succeeds then a commit is immediately performed.)

• Several instructions can be processed as part of a single transaction. For
example, a transaction can add pack data, issue an event, add more pack data
and then start several cases, and is only committed if all these operations
complete successfully.

Handling Exceptions
SSOLite stored procedures raise a SQL level 16 error message if any procedure
fails. Note that:

• The error text is always preceded by the string (SWERROR).
 TIBCO iProcess Engine (SQL) Administrator’s Guide

246 | Using SSOLite Stored Procedures
• Each error has a unique ID, which is displayed at the end of the error text.

It is the application’s responsibility to handle any such database exceptions, and
issue a rollback if appropriate.

The following table describes the different errors (and their unique IDs) that may
be returned by the SSOLite stored procedures.

Some of the stored procedures listed in the table are not described in this chapter.
These are lower level stored procedures that may be called by some or all of the
stored procedures that are described in this chapter.

Stored Procedure SQL Error Error Text

SW_GET_SEQUENCE_TRANS 50000 Invalid sequence type (seq_type) (ID:001000)

50000 Unable to create DMO connection, check user is
system administrator (ID:001001)

50000 Unable to set connection type (ID:001002)

50000 Unable to connect to server errno (Error)
(ID:001003)

Error is a description of the error returned by
the SQL Server sp_OAMethod system stored
procedure.

50000 Unable to verify connection (Return)
(ID:001004)

50000 Failed to execute sequences - Source (ID:001005)

Source is a description of the source of the error.

50000 Failed to retrieve sequence number - Source
(ID:001006)

Source is a description of the source of the error.

SW_GET_NODE_DETAILS 50000 Node details not found in database (ID:001007)

50000 MBox Queue Name(s) not found in database
(ID:001008)

SW_GET_SEQUENCE 50000 Failed to find case number (ID:001009)
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 247
SW_GET_PROCEDURE 50000 Procedure details not found in database for
procedure name=proc_name (ID:001010)

50000 Procedure version not found in database for
procedure name=proc_name, Case
Num=case_num (ID:001011)

50000 Latest Released or Unreleased Procedure
version not found in database for procedure
name=proc_name (ID:001012)

50000 Procedure version not found in database for
procedure name=proc_name major_version
minor_version (ID:001013)

SW_SUSPEND 50000 Suspend type (suspend_type) is invalid, expected
2 (suspend) or 0 (activate) (ID:001014)

50000 Case (case_num) is already active (ID:001036)

50000 Case (case_num) is dead (ID:001037)

50000 Case (case_num) is already suspended
(ID:001038)

50000 Procedure and case information does not match
(ID:001042)

SW_GET_SUBPROC_DETAILS 50000 Sub-Proc casenum not found in database for
Procedure proc_name, Case Number case_num,
Step Name step_name, Sub-proc sub_proc_name
(ID:001018)

SW_DELAYED_RELEASE_ERR 50000 Failed to get node ID (ID:001022)

SW_GETCASE_STATUS 50000 Failed to find case information for case:
case_num (ID:001019)

SW_PURGE 50000 Procedure and case information does not match
(ID:001041)

SW_CLOSE 50000 Case (case_num) is dead (ID:001039)

50000 Procedure and case information does not match
(ID:001042)

Stored Procedure SQL Error Error Text
 TIBCO iProcess Engine (SQL) Administrator’s Guide

248 | Using SSOLite Stored Procedures
SQL Distributed Management Objects (SQL-DMO)

SSOLite stored procedures access the sequences table to obtain work item and
case number sequence numbers. This locks the table, preventing other iProcess
processes from accessing it, for the duration of the transaction.This could cause a
problem if, for example, you were batch starting a large number of cases as part of
a single transaction.

To prevent this, SSOLite stored procedures use SQL-DMO to connect back to the
iProcess database as a separate transaction when obtaining sequence numbers.

The use of SQL-DMO means that, when using SSOLite stored procedures, the
SQL Server login used to connect to the iProcess database must:

1. use Windows Authentication to validate the connection to the iProcess database.

2. have the Server Administrators SQL Server Role assigned.

Processing Queues
SSOLite stored procedures write messages to the BG processes using the default
background message queues, using a round-robin allocation on a per-session
basis. This means that every time a new database session is started the first
defined queue (BGMBOX1) is used first. As a result, BGMBOX1 can become
overloaded if database sessions are not persisted.

You can override this default behavior for specific transactions by using the
SW_SET_QUEUE and SW_UNSET_QUEUE control procedures.

Alternatively, you can dedicate specific message queues to handling requests
from your SSOLite stored procedure calls. To do this:

1. Create a new Mbox set named SSOLITE. (The Mbox set can use either existing
message queues or new ones.)

2. Set the MBSET_WRITE_BG process attribute for your application to assign the
SSOLITE1 queue to it. All messages posted to a BG process by the SSOLite
stored procedures will now use the SSOLITE Mbox set.

The following example shows a series of commands that you could use to do this.

Add a new SSOLITEQ1 message queue. (Remember to create the
sw_db_ssolite physical queue first.)
#
swadm add_queue SSOLITEQ1 Local 0003:swpro.sw_db_ssolite

Add a new SSOLITE Mbox set.
#
swadm add_mboxset SSOLITE Local

Add the SSOLITEQ1 message queue to the SSOLITE Mbox set (6 is the
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 249
Mboxset ID of the SSOLITE Mboxset).
#
swadm add_queue_to_mboxset 6 SSOLITE1

Set MBSET_WRITE_BG so that calls from the application’s SSOLITE
stored procedures use the SSOLITE Mbox set to write messages to the
BG processes.
#
swadm set_attribute 1 SSOLITE 0 MBSET_WRITE_BG 6
#
#Set background processes to read from the queue
#
swadm add_process 1 BG Y
swadm set_attribute 1 BG 5 MBSET_READ_BG 6

For more information about message queue configuration, see:

• Mbox Sets and Message Queues on page 21.

• "Administering Message Queues and Mbox Sets" in TIBCO iProcess Engine
Administrator's Guide.

Prioritizing Messages
You can now set priorities ranging from 1 to 999 (where 1 is the highest priority)
for internal message queues when passing messages between iProcess processes
such as from the background and the WISes, or from SSOLite to the BG processes.
The default message queue priority is 50.

Use the SW_SET_PRIORITY control procedure to set the internal message queue
priorities and the SW_UNSET_PRIORITY control procedure to restore the default
message queue priorities.

The messages with higher internal message queue priorities are processed earlier
than those with lower priorities, and the message with the highest priority will
automatically be the next message processed, even if there is a backlog in the
queue.

Because the SSOLite stored procedures cache queue information, you must shut
down and restart all database connections if you change your message queue
configuration in this way.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

250 | Using SSOLite Stored Procedures
If the internal message queue priorities are not set, the messages will be processed
in the order of SW_CP_VALUE or SW_IP_VALUE when using iProcess Workspace
(Windows) to process work items.

When using SSOLite stored procedures to start a case or to trigger an event, the
following rules determine which message queue priority settings should be used
for processing messages:

• If the value of the SW_CP_VALUE field is set, the message will be processed in
the order of SW_CP_VALUE regardless of the message queue priority that is set
by using the SW_SET_PRIORITY control procedure.

• If the SW_CP_VALUE field is not set, the message will be processed in the order
of the message queue priority that is set using the SW_SET_PRIORITY control
procedure.

• If both the SW_CP_VALUE field and the SW_SET_PRIORITY control procedure
are not set for the message priority, the message priority will be set to the
default value of the SW_CP_VALUE field, 50.

See TIBCO iProcess Modeler Advanced Design for more information about the
SW_CP_VALUE field.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 251
Data Procedures

The following data procedures are available:

• SW_ADD_PACK_DATA

• SW_ADD_PACK_MEMO

• SW_CLEAR_PACK_CACHE

• SW_MODIFY_CASEDATA
 TIBCO iProcess Engine (SQL) Administrator’s Guide

252 | SW_ADD_PACK_DATA
SW_ADD_PACK_DATA

The SW_ADD_PACK_DATA procedure defines an item of pack data (a field
name/value pair) that will be passed to iProcess with the next command
procedure that is called.

Syntax SW_ADD_PACK_DATA (
field_name varchar(31),
field_value varchar(255))

where:

• field_name is a string that specifies the name of the iProcess field that is to be
set.

• field_value is a string that specifies the value to be set for field_name.

Notes SW_ADD_PACK_DATA allows pack data to be passed to iProcess when a command
procedure is called:

• You must call SW_ADD_PACK_DATA to specify the pack data immediately before
calling the desired command procedure.

• A call to SW_ADD_PACK_DATA defines a single item of pack data. If you wish to
define multiple items of pack data, you must make a SW_ADD_PACK_DATA call
for each piece of data before calling the desired command procedure.

• The pack data is only valid for the next command procedure that is called.

Examples In the following example, two SW_ADD_PACK_DATA calls are used to define data
values for the F1 and F2 fields, which are passed to iProcess when Case1 is started
(using SW_CASESTART). The second SW_CASESTART call, starting Case2, does
not have any data values.

EXEC owner.SW_ADD_PACK_DATA 'F1', 'DataItem1'
EXEC owner.SW_ADD_PACK_DATA 'F2', 'DataItem2'
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Case1', 'user35', '', 0, 0
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Case2', 'user35', '', 0, 0

If you want to specify pack data for the F1 and F2 fields for Case2 as well, you
must call SW_ADD_PACK_DATA again before calling SW_CASESTART, as shown
below.

Although the value is always passed as a string, it must be in the correct format
for the type of field. No validation is performed on either the field name or field
value.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 253
EXEC owner.SW_ADD_PACK_DATA 'F1', 'DataItem1'
EXEC owner.SW_ADD_PACK_DATA 'F2', 'DataItem2'
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Case1', 'user35', '', 0, 0
EXEC owner.SW_ADD_PACK_DATA 'F1', 'DataItem1'
EXEC owner.SW_ADD_PACK_DATA 'F2', 'DataItem2'
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Case2', 'user35', '', 0, 0

These examples do not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

254 | SW_ADD_PACK_MEMO
SW_ADD_PACK_MEMO

The SW_ADD_PACK_MEMO procedure defines an item of pack memo data (a field
name/value pair) that will be passed to iProcess with the next command
procedure that is called.

Syntax SW_ADD_PACK_MEMO (
memo_name varchar(31),
memo_length integer,
memo_data varbinary(max),
array_idx integer =0)

where:

• memo_name is the name of the iProcess memo field (or memo array field).

• memo_length is the number of bytes contained in the memo data.

• memo_data is a raw data field that holds the actual memo data.

• array_idx (optional) can be specified if memo_name is a memo array field; it
identifies the specific element in the memo array to be used. If array_idx is
not explicitly set, it defaults to a value of 0.

If memo_name is not a memo array field, you should either not set array_idx, or
set it to 0. (If array_idx contains any other value, no memo data will be
found; an error message will be written to the SWDIR\logs\sw_warn file.)

Notes SW_ADD_PACK_MEMO allows pack memo data to be passed to iProcess when a
command procedure is called:

• You must call SW_ADD_PACK_MEMO to specify the pack memo data immediately
before calling the desired command procedure.

• A call to SW_ADD_PACK_MEMO defines a single item of pack memo data. If you
wish to define multiple items of pack memo data, you must make a
SW_ADD_PACK_MEMO call for each piece of memo data before calling the desired
command procedure.

• The pack memo data is only valid for the next command procedure that is
called.

Example In the following example, two SW_ADD_PACK_MEMO calls are used to define memo
data values for the two fields, which are passed to iProcess when Case1 is started.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 255
begin
declare @mvalue as varbinary(max)
declare @aa as varchar(max)
set @aa = '111111'
set @mvalue = cast(@aa as varbinary(max))
EXEC swpro1.SW_ADD_PACK_MEMO 'MEMO1',6, @mvalue,0
EXEC swpro1.SW_ADD_PACK_MEMO 'MEMO2',6, @mvalue,0
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Case1', 'user35', '', 0, 0
end

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

256 | SW_CLEAR_PACK_CACHE
SW_CLEAR_PACK_CACHE

The SW_CLEAR_PACK_CACHE procedure clears any items of pack data or pack
memo data that have been added using SW_ADD_PACK_DATA or
SW_ADD_PACK_MEMO calls, prior to calling a command procedure.

Syntax SW_CLEAR_PACK_CACHE ()

Notes Use SW_CLEAR_PACK_CACHE if added data is no longer required.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 257
SW_MODIFY_CASEDATA

The SW_MODIFY_CASEDATA procedure allows you to modify the data of an existing
case. Use an SW_ADD_PACK_DATA procedure to specify the data to be modified.
Then, an immediately following SW_MODIFY_CASEDATA posts an instruction to the
BG process to carry out the change. You can use the SW_MODIFY_CASEDATA
procedure to set case data for main procedures and sub-procedures.

This event is audited, using audit message 058. See TIBCO iProcess Engine
Administrator’s Guide for details of audit messages.

Syntax SW_MODIFY_CASEDATA (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20),
reason varchar(24),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to modify a case of.

• proc_maj_ver is either the major version number of the proc_name
procedure, or -1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name
procedure, or -1. See the notes below.

• case_number is the case number of the main procedure for which the data is
to be modified.

• reason is a reason for the case data modification, used in the audit trail.

• user_id is the name of the iProcess user who is performing the modification.

Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver
parameters as -1. If you do this, iProcess will use the version number of the
procedure that the case was originally started with or, that it has subsequently
been migrated to (if a subsequent version has been released while the case is still
in progress).

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

258 | SW_MODIFY_CASEDATA
Example This example modifies data for case 876 of the Transfer procedure. The
SW_ADD_PACK_DATA statement changes the value of the TEXT1 field to "New
customer name". The SW_MODIFY_CASEDATA call then identifies the procedure
and case to be changed, and provides the "Modified For Graft" message which
will be displayed in the audit trail.

EXEC swpro.SW_ADD_PACK_DATA 'TEXT1', 'New customer name'
EXEC swpro.SW_MODIFY_CASEDATA 'Transfer', -1, -1, 876, 'Modified For Graft',
'swadmin'
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 259
Command Procedures

The following command procedures are available:

• SW_AUDIT

• SW_CASEREOPEN

• SW_CASESTART

• SW_CLOSE

• SW_CLOSE_WITHOUT_EVENT

• SW_DELAYED_RELEASE_ERR

• SW_EVENT

• SW_EVENT_UPDATE_PACK

• SW_GETCASE_STATUS

• SW_GRAFT

• SW_GRAFTCOUNT

• SW_JUMPTO

• SW_JUMPTO_MULTI

• SW_PURGE

• SW_PURGE_WITHOUT_EVENT

• SW_SUSPEND

• SW_ACTIVATE
 TIBCO iProcess Engine (SQL) Administrator’s Guide

260 | SW_AUDIT
SW_AUDIT

The SW_AUDIT procedure instructs the iProcess Engine background (BG) process
to create the specified audit trail message for the specified case.

Syntax SW_AUDIT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_num numeric(20) output,
Audit_id integer
Audit_step varchar(8)
Audit_desc varchar(24)
User_id varchar(255))

where:

• proc_name is the name of the procedure that you want to create an audit
message for.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_num (input) is the name of a variable, defined in the calling program, into
which SW_AUDIT will return the case number of the started case. If this
information is not required, specify this parameter as 0.

• Audit_id is the numeric value of the audit message required. User audit
messages will be values greater than 256, as listed in the
SWDIR/etc/english.lng/auditusr.mes file. See "Understanding Audit
Trails" in TIBCO iProcess Engine Administrator’s Guide for details.

• Audit_step is the stepname of this audit. If the step is not required for this audit
message, specify this parameter as a null string (‘’) instead.

• Audit_desc is the description to be added to the audit message.

• User_id is the username that will be added to the audit trail entry.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 261
Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

Example This example creates an audit message 131 for the CARPOOL procedure.

EXEC swpro.SW_AUDIT 'CARPOOL', -1, -1, 99999, 131, '', 'BW Activity', 'BW User'

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

262 | SW_CASEREOPEN
SW_CASEREOPEN

The SW_CASEREOPEN procedure resurrects a case.

Syntax SW_CASEREOPEN (
proc_name varchar(8),
user_id varchar(24),
step_name varchar(8),
case_num numeric(20))

where:

• proc_name is the name of the procedure that you want to resurrect.

• user_id is the name of the iProcess user who is resurrecting the case.

• step_name is the name of the case step that you want to resurrect.

• case_num is the number of the case that you want to resurrect.

Notes After a case is closed, all the deadlines of the case are removed. If the case is
reopened, you can reset the deadlines by running the CreateCaseDeadline
function. For more information about the CreateCaseDeadline function, see
TIBCO iProcess Expressions and Functions Reference Guide.

Example This example resurrects step STEP1 of case 101 of procedure CUSTREQ.

EXEC ssolite.SW_CASEREOPEN 'CUSTREQ', 'user35','STEP1',101
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 263
SW_CASESTART

The SW_CASESTART procedure starts a case of a procedure.

Syntax SW_CASESTART (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_desc varchar(24),
user_id varchar(24),
step_name varchar(8),
case_num numeric(20) output,
request_id numeric(20) output)

where:

• proc_name is the name of the procedure that you want to start a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_desc is a suitable description for this case.

• user_id is the name of the iProcess user who is starting the case.

• step_name is the name of the step at which the case should start. If you want to
use the default start step, specify this parameter as a null string (‘’).

• case_num (output) is the name of a variable, defined in the calling program,
into which SW_CASESTART will return the case number of the started case. If
this information is not required, specify this parameter as 0.

• request_id (output) is the name of a variable, defined in the calling program,
into which SW_CASESTART will return the REQ ID of the work item that is sent
out when the case is started. If this information is not required, specify this
parameter as 0.

Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will determine which version of the procedure to use
according to the following rules:

1. the current precedence settings defined for the user who is starting the case
(user_id) or, if these are not defined,

2. the latest released version of the procedure or, if no released version exists,
 TIBCO iProcess Engine (SQL) Administrator’s Guide

264 | SW_CASESTART
3. the latest unreleased version of the procedure.

Example This example starts a case of the CUSTREQ procedure. Note that pack data values
for the CustName and CustID fields are provided by separate calls to
SW_ADD_PACK_DATA immediately before the SW_CASESTART call.

EXEC owner.SW_ADD_PACK_DATA 'CustName', 'Allsop, J.A'
EXEC owner.SW_ADD_PACK_DATA 'CustID', '478163'
EXEC owner.SW_CASESTART 'CUSTREQ', -1, -1, 'Refund request', 'user35', '', 0, 0

If you specify one version number parameter as -1, you must specify
the other one as -1 as well.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 265
SW_CLOSE

The SW_CLOSE procedure closes an active case of a procedure.

If an event is set for the OnBeforeClose event, the event will be triggered when the
case is about to close but before the case is actually closed. If an event is set for the
OnAfterClose event, the event will be triggered after closing the case.

Syntax SW_CLOSE (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to close a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_num is the number of the case that is to be closed.

• user_id is the name of the iProcess user who is closing the case.

Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

Example This example closes the 103 case of the CUSTREQ procedure.

EXEC owner.SW_CLOSE 'CUSTREQ', -1, -1, 103, 'swadmin'

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

266 | SW_CLOSE
This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 267
SW_CLOSE_WITHOUT_EVENT

The SW_CLOSE_WITHOUT_EVENT procedure closes an active case of a procedure
without triggering the events that are set for the OnBeforeClose event or the
OnAfterClose event.

Syntax SW_CLOSE_WITHOUT_EVENT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to close a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_num is the number of the case that is to be closed.

• user_id is the name of the iProcess user who is closing the case.

Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

Example This example closes the 103 case of the CUSTREQ procedure without triggering an
event.

EXEC owner.SW_CLOSE_WITHOUT_EVENT 'CUSTREQ', -1, -1, 103, 'swadmin'

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

268 | SW_DELAYED_RELEASE_ERR
SW_DELAYED_RELEASE_ERR

The SW_DELAYED_RELEASE_ERR procedure takes a BG action when a delayed
release error occurs.

Syntax SW_DELAYED_RELEASE_ERR (
delayed_release_id varchar(256),
audit_desc varchar(255),
user_id varchar(24),
err_code varchar(20),
err_message varchar(255),
bg_action integer)

where:

• delayed_release_id is the ID of the delayed release.

• audit_desc is the description of the delayed release audit.

• user_id is the user ID.

• err_code is the error code.

• err_message is the error message.

• bg_action is the BG action to handle the delayed release error.

Notes If a delayed release error occurs, TIBCO BusinessWorks returns an error code, an
error message, and a BG action to TIBCO iProcess Engine. The BG process take
the following actions according to BG action:

• Just log the error and do nothing.

• Log the error and requeue the transaction again.

• Log the error and progress the iProcess case, as if it has been released.

See TIBCO iProcess Connector for ActiveMatrix BusinessWorks User’s Guide for more
information about the delayed release error.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 269
SW_EVENT

The SW_EVENT procedure triggers a specific event on a case of a procedure.

Syntax SW_EVENT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
step_name varchar(8),
case_num numeric(20),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to trigger the event on.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• step_name is the name of the event step that you want to trigger.

• case_num is the number of the case that you want to trigger the event on.

• user_id is the name of the iProcess user who is triggering the event.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as
-1. If you do this, iProcess will use the version number of the procedure that the
case was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information about events and how to use them, see TIBCO iProcess
Modeler Integration Techniques.

Example This example issues an event, as user swadmin, on step STEP1 of case 101 of the
CUSTREQ procedure.

EXEC owner.SW_EVENT 'CUSTREQ', -1, -1, 'STEP1', 101, 'swadmin'

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

270 | SW_EVENT
This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 271
SW_EVENT_UPDATE_PACK

The SW_EVENT_UPDATE_PACK procedure is the same as
SW_DELAYED_RELEASE_ERR, but when it triggers a specific event on a case of a
procedure it refreshes the data of any work items that are outstanding for that
case.

Syntax SW_EVENT_UPDATE_PACK (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
step_name varchar(8),
case_num numeric(20),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to trigger the event on.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• step_name is the name of the event step that you want to trigger.

• case_num is the number of the case that you want to trigger the event on.

• user_id is the name of the iProcess user who is triggering the event.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information about events and how to use them, see TIBCO iProcess
Modeler Integration Techniques.

Example This example issues an event, as user swadmin, on step STEP1 of case 101 of the
CUSTREQ procedure, and refreshes oustanding wortk items.

EXEC owner.SW_EVENT_UPDATE_PACK 'CUSTREQ', -1, -1, 'STEP1', 101, 'swadmin'

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

272 | SW_EVENT_UPDATE_PACK
This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 273
SW_GETCASE_STATUS

The SW_GETCASE_STATUS procedure returns the status of a case of a procedure.

Syntax SW_GETCASE_STATUS (
case_num numeric(20),
case_status varchar(10) output,
proc_type varchar(10) output,
case_started datetime output)

where:

• case_num is the number of the case that you want to get the status of.

• case_status (output) is the name of a variable, defined in the calling program,
into which SW_GETCASE_STATUS will return the status of the specified case.

• proc_type (output) is the name of a variable, defined in the calling program, into
which SW_GETCASE_STATUS will return the procedure type of the specified
case (for example, Main or Sub).

• case_started (output) is the name of a variable, defined in the calling program,
into which SW_GETCASE_STATUS will return the date and time that the case
was started.

Example This example displays the status of case 8.

Declare @case_status as varchar(10)
Declare @proc_type as varchar(10)
Declare @case_started as datetime
EXEC owner.SW_GETCASE_STATUS 8, @case_status output, @proc_type output,
@case_started output
print 'Case status :'+@case_status
print 'Proc Type :'+@proc_type
print 'Case started : '+ cast(@case_started as varchar)

This results in output displaying the status of the case. For example:

Case status :Active
Proc type :Main
Case started : MAY 25 2005 3:36PM
 TIBCO iProcess Engine (SQL) Administrator’s Guide

274 | SW_GRAFT
SW_GRAFT

The SW_GRAFT procedure grafts a sub procedure onto a graft step in a main
procedure. The case data is added to the sub-procedure.

Syntax SW_GRAFT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20) output,
graft_step_name varchar(8),
graft_proc_name varchar(8),
graft_proc_maj_ver integer,
graft_proc_min_ver integer,
graft_id varchar(49))

where:

• proc_name is the name of the parent procedure that you want to graft a
sub-procedure to.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_number is the number of the case that you want to graft a sub-procedure to.

• graft_step_name is the name of the graft step in the proc_name procedure that the
sub-procedure is to be grafted to.

• graft_proc_name is the name of the sub-procedure that is to be grafted to the
proc_name parent procedure.

• graft_proc_maj_ver is either the major version number of the graft_proc_name
procedure, or -1. See the notes below

• graft_proc_min_ver is either the minor version number of the graft_proc_name
procedure, or -1. See the notes below

• graft_id is a unique identifier for this instance of the graft_step_name graft step.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 275
Notes Instead of using the specific major and/or minor version number of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information about graft steps and how to use them, see TIBCO iProcess
Modeler Integration Techniques.

Example This example uses SW_GRAFT to graft the SUBPROC1 sub-procedure to step
GRAFT01 of case 101 of the CUSTREQ procedure. It then uses SW_GRAFTCOUNT to
specific that a single item is to be grafted to the UNIQUEID instance of the graft
step.

EXEC owner.SW_GRAFT 'CUSTREQ', -1, -1, 101, 'GRAFT01', 'SUBPROC1', -1, -1,
'UNIQUEID'
EXEC owner.SW_GRAFTCOUNT 'CUSTREQ', -1, -1, 101, 'GRAFT01', 'UNIQUEID', 1

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

276 | SW_GRAFTCOUNT
SW_GRAFTCOUNT

The SW_GRAFTCOUNT procedure specifies how many items are to be grafted to the
specified instance of the graft step.

Syntax SW_GRAFTCOUNT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20) output,
graft_step_name varchar(8),
graft_id varchar(49),
graft_count integer)

where:

• proc_name is the name of the parent procedure that you want to graft a
sub-procedure to.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_number is the case number of the main procedure that the sub-procedure is
to be grafted to.

• graft_step_name is the name of the graft step in the proc_name procedure that the
sub-procedure is to be grafted to.

• graft_id is a unique identifier for this instance of the graft_step_name graft step.

• graft_count is the number of items that are to be grafted to the graft_step_name
graft step.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information bout graft steps and how to use them, see TIBCO iProcess
Modeler Integration Techniques.

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 277
Example See SW_GRAFT.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

278 | SW_JUMPTO
SW_JUMPTO

The SW_JUMPTO procedure jumps a case from its current step to another step in the
procedure, ignoring the procedure logic.

Syntax SW_JUMPTO (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
jump_step varchar(8),
case_number numeric(20),
jump_reason varchar(24),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to jump a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• jump_step is the name of the step that the case is to jump to.

• case_number is the case number of the main procedure that is to jump.

• jump_reason is a reason for this jump, used in the audit trail

• user_id is the name of the iProcess user who is performing the jump.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

If a SW_JUMPTO procedure specifies an invalid jump_step, the transaction is rolled
back. A warning message is generated and an Invalid Step message is written to
the audit trail.

For more information about jumps and how to use them, please see the TIBCO
iProcess Objects and TIBCO iProcess Server Objects programmer guides.

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 279
Example This example jumps case 102 of the CUSTREQ procedure from its current position
in the workflow to STEP5. The reason for the jump will be displayed in the audit
trail as “Administrator-initiated Jump”.

EXEC owner.SW_JUMPTO 'CUSTREQ', -1, -1, 'STEP5', 102, 'Administrator-initiated
Jump', 'swadmin'

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

280 | SW_JUMPTO_MULTI
SW_JUMPTO_MULTI

The SW_JUMPTO_MULTI procedure is similar to SW_JUMPTO except that it can
process, that is, jump to, more than one step. It allows the withdrawal of either a
single step or all steps. In addition it allows setting of case data using the existing
SW_ADD_PACK_DATA interface.

Syntax SW_JUMPTO_MULTI (
tgt_proc_name varchar(8),
tgt_proc_maj_ver integer,
tgt_proc_min_ver integer,
src_step_name varchar(8),
tgt_step_name varchar(1024),
case_number numeric(20),
jump_reason varchar(24),
user_id varchar(24))

where:

• tgt_proc_name is the name of the procedure that you want to jump a case of.

• tgt_proc_maj_ver is either the major version number of the tgt_proc_name
procedure, or -1. See the notes below.

• tgt_proc_min_ver is either the minor version number of the tgt_proc_name
procedure, or -1. See the notes below.

• src_step_name is the name of the step to be withdrawn. Specifying * withdraws
all outstanding steps.

• tgt_step_name is the name of the step that the case is to jump to. Use a
comma-separated list of step names to jump to more than one step.

• case_number is the case number of the main procedure that is to jump.

• jump_reason is a reason for this jump, used in the audit trail.

• user_id is the name of the iProcess user who is performing the jump.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 281
If a SW_JUMPTO_MULTI procedure specifies an invalid jump_step, the transaction is
rolled back. A warning message is generated and an Invalid Step message is
written to the audit trail.

For more information about jumps and how to use them, please see the TIBCO
iProcess Objects and TIBCO iProcess Server Objects programmer guides.

Example This example jumps case 110 of the CARPOOL procedure to the ALLOCATE steps
and REFUSED. The REQUEST step is withdrawn. The reason for the jump will be
displayed in the audit trail as “Request Refused”.

EXEC owner.SW_JUMPTO_MULTI 'CARPOOL', -1, -1, 'REQUEST', ’ALLOCATE,REFUSED’, 110,
'Request Refused', 'swadmin'

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

282 | SW_PURGE
SW_PURGE

The SW_PURGE procedure purges the specified case of a procedure (permanently
deleting it from the system). If events are set for the OnBeforePurge event, the
events will be triggered when the case is about to purge but before the case is
actually purged.

Syntax SW_PURGE (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20))

where:

• proc_name is the name of the procedure that you want to purge a case of. The
case must be either active or closed.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_num is the number of the case that is to be purged.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

Example This example purges case 103 of the CUSTREQ procedure.

EXEC owner.SW_PURGE 'CUSTREQ', -1, -1, 103

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 283
SW_PURGE_WITHOUT_EVENT

The SW_PURGE_WITHOUT_EVENT procedure purges the specified case of a
procedure (permanently deleting it from the system) without triggering the
events that are set for the OnBeforePurge event.

Syntax SW_PURGE_WITHOUT_EVENT (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20))

where:

• proc_name is the name of the procedure that you want to purge a case of. The
case must be either active or closed.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_num is the number of the case that is to be purged.

Notes Instead of using the specific major or minor version number of the procedure, or
both, you can specify both the proc_maj_ver and proc_min_ver parameters as -1. If
you do this, iProcess uses the version number of the procedure that the case was
originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

284 | SW_SUSPEND
SW_SUSPEND

The SW_SUSPEND procedure suspends a case of a procedure.

Syntax SW_SUSPEND (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20),
user_id varchar(24),
suspend_type integer)

where:

• proc_name is the name of the procedure that you want to suspend a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_number is the number of the case that is to be suspended.

• user_id is the name of the iProcess user who is suspending the case.

• suspend_type defines the type of suspend action. This should always be 2.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information about how to suspend and re-activate a case, please see the
TIBCO iProcess Objects and TIBCO iProcess Server Objects programmer guide.

Example This example suspends case 103 of the CUSTREQ procedure.

EXEC owner.SW_SUSPEND 'CUSTREQ', -1, -1, 103, 'swadmin', 2

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 285
SW_ACTIVATE

The SW_ACTIVATE procedure re-activates a previously suspended case of a
procedure.

Syntax SW_ACTVATE (
proc_name varchar(8),
proc_maj_ver integer,
proc_min_ver integer,
case_number numeric(20),
user_id varchar(24))

where:

• proc_name is the name of the procedure that you want to reactivate a case of.

• proc_maj_ver is either the major version number of the proc_name procedure, or
-1. See the notes below.

• proc_min_ver is either the minor version number of the proc_name procedure, or
-1. See the notes below.

• case_number is the number of the suspended case that is to be reactivated.

• user_id is the name of the iProcess user who is re-activating the case.

Notes Instead of using the specific major or minor version number or both of the
procedure, you can specify both the proc_maj_ver and proc_min_ver parameters as -1.
If you do this, iProcess will use the version number of the procedure that the case
was originally started with or, that it has subsequently been migrated to (if a
subsequent version has been released while the case is still in progress).

For more information about how to suspend and re-activate a case, please see the
TIBCO iProcess Objects and TIBCO iProcess Server Objects programmer guide.

Example This example re-activates case 103 of the CUSTREQ procedure.

EXEC owner.SW_ACTIVATE 'CUSTREQ', -1, -1, 103, 'swadmin'

If you specify one version number parameter as -1, you must specify the other
one as -1 as well.

This example does not have any explicit transaction control, so will be committed
immediately if using Transact-SQL.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

286 | Control Procedures
Control Procedures

The following control procedures are available:

• SW_ENABLECACHING

• SW_DISABLECACHING

• SW_SET_MBOX

• SW_SET_PRIORITY

• SW_SET_QUEUE

• SW_UNSET_MBOX

• SW_UNSET_PRIORITY

• SW_UNSET_QUEUE

• SW_INIT_TABLES
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 287
SW_ENABLECACHING

The SW_ENABLECACHING procedure enables the caching of work item (reqid) and
case number (casenum) sequence numbers for the current database session.

Syntax SW_ENABLECACHING ()

Notes Caching reqid and casenum sequence numbers can be used to enhance batch
SQL performance in appropriate situations.

When sequence number caching is enabled, the first transaction in the session
retrieves its sequence numbers from the database, but subsequent transactions in
the same session retrieve their sequences from the cache. (The size of the cache is
set to 50 in the SW_ENABLECACHING procedure).

Unused sequence numbers in the cache are discarded when the database session
terminates. This can result in gaps in the value of the sequence numbers if caching
is used inappropriately. For example, if you enable caching for a session that
simply starts a single case, all the unused iProcess case numbers will be lost.

Sequence number caching is enabled by default when a database session is
started. Use the SW_DISABLECACHING procedure to disable sequence number
caching.

For more information about sequence number caching, see "Sequence Number
Caching" in TIBCO iProcess Engine Administrator's Guide.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

288 | SW_DISABLECACHING
SW_DISABLECACHING

The SW_DISABLECACHING procedure disables the caching of work item (reqid)
and case number (casenum) sequence numbers for the current database session.

Syntax SW_DISABLECACHING ()

Notes Sequence number caching is enabled by default when a database session is
started.

See the SW_ENABLECACHING procedure for more information about the use of
sequence number caching, and when you should enable or disable it.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 289
SW_SET_MBOX

The SW_SET_MBOX procedure tells the current SSOLite session to use a different
Mbox set from the default one.

Syntax SW_SET_MBOX (
 mbox_set_id integer)

where:

• mbox_set_id is a unique identifier for the Mbox set you want to use.

Notes This procedure is useful to partition messages for the purpose of performance or
service levels. The procedure can be used in many ways, including for separating
out bulk operations, such as purging or starting cases. Other sessions will still use
the default Mbox set for operations such as delayed releases.

Use the SW_UNSET_MBOX procedure to restores using the default Mbox set for all
operations.

Example The following example shows how to set another Mbox set BGMBSETB for bulk
operations. Remember to create the sw_db_bgqueue_3 and sw_db_bgqueue_4
physical queues first. For more information about queue processing and Mbox set
creation, see Processing Queues on page 248.

Step 1. Add two new message queues.
#
swadm add_queue BGMBOX3 Local 0003:swpro.sw_db_bgqueue_3
swadm add_queue BGMBOX4 Local 0003:swpro.sw_db_bgqueue_4

Step 2. Add a new Mbox set.
#
swadm add_mboxset BGMGSETB Local

Step 3. View Mbox and queue IDs.
#
swadm show_mboxsets v
swadm show_queues

Step 4. Add the BGMBOX3 and BGMBOX4 message queues to the BGMGSETB Mbox set (
6 is the Mboxset ID of the BGMGSETB Mbox set,
8 is the queue ID of the BGMBOX3 message queue, and
9 is the queue ID of the BGMBOX4 message queue.)
#
swadm add_queue_to_mboxset 6 8
swadm add_queue_to_mboxset 6 9

Step 5. Set the BGMGSETB Mbox set for bulk case starts.
#
EXEC swpro.SW_SET_MBOX 6
 TIBCO iProcess Engine (SQL) Administrator’s Guide

290 | SW_SET_MBOX
Step 6. Start the bulk cases.
#
EXEC swpro.SW_ADD_PACK_DATA 'CustName', 'Allsop, J.A'
EXEC swpro.SW_ADD_PACK_DATA 'CustID', '478163'
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Refund request', 'user35', '', 0, 0

Step 7. Restore using the default Mbox set.
#
EXEC swpro.SW_UNSET_MBOX
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 291
SW_SET_PRIORITY

The SW_SET_PRIORITY procedure sets the internal message queue priorities. The
procedure only changes the priority of the messages SSOLite sends. It does not
change the SW_CP_VALUE and SW_IP_VALUE. So any subsequent messages for that
case will remain at the default level or will be processed in the order of
SW_CP_VALUE or SW_IP_VALUE when using iProcess Workspace (Windows) to
process work items.

Syntax SW_SET_PRIORITY (
 message_priority integer)

where:

• message_priority is the priority value.

You can set priorities ranging from 1 to 999, where 1 is the highest priority, for
internal message queues when passing messages between iProcess processes
such as from the Background process to WIS processes, or from SSOLite to the
Background process. Its default value is 50. See Prioritizing Messages on
page 249 for more information.

Notes Use the SW_UNSET_PRIORITY procedure to restore the default message queue
priorities.

Example The following example sets the SW_CASESTART priority of Case1 and Case2 to 70,
Case3 and Case4 to 100, and Case5 to the default priority.

begin
EXEC swpro.SW_SET_PRIORITY 70
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Case1', 'user35', '', 0, 0
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Case2', 'user35', '', 0, 0
EXEC swpro.SW_SET_PRIORITY 100
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Case3', 'user35', '', 0, 0
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Case4', 'user35', '', 0, 0
EXEC swpro.SW_UNSET_PRIORITY
EXEC swpro.SW_CASESTART 'CUSTREQ', -1, -1, 'Case5', 'user35', '', 0, 0
end
 TIBCO iProcess Engine (SQL) Administrator’s Guide

292 | SW_SET_QUEUE
SW_SET_QUEUE

The SW_SET_QUEUE procedure forces all messages posted in the current database
session to use the same background queue.

Syntax SW_SET_QUEUE ()

Notes By default, SSOLite stored procedures write messages to the BG processes using
the default background message queues, using a round-robin allocation on a
per-session basis. This allows the message load to be spread evenly across all of
the available background queues. (See Processing Queues on page 248 for more
information.)

If required, you can use the SW_SET_QUEUE procedure to force all messages that
are subsequently posted in the current session to use the same background queue.

After the SW_SET_QUEUE procedure has been called, the next message that is
posted uses the next available background queue (as per normal round-robin
allocation). Subsequent messages are then posted to the same queue, until either:

• the SW_UNSET_QUEUE procedure is called, after which messages are again
allocated on the default round-robin basis, or

• the database session is terminated.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 293
SW_UNSET_MBOX

The SW_UNSET_MBOX procedure restores using the default Mbox set for all
operations.

Syntax SW_UNSET_MBOX ()

Notes Use the SW_SET_MBOX procedure to tell SSOLite to use a different Mbox set for
bulk purges or bulk case starts.

Example See the example of SW_SET_MBOX.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

294 | SW_UNSET_PRIORITY
SW_UNSET_PRIORITY

The SW_SET_PRIORITY procedure restores the default message queue priorities.

Syntax SW_UNSET_PRIORITY ()

Note You can set priorities for internal message queues when passing messages
between iProcess processes such as from SSOLite to the BG process. See
Prioritizing Messages on page 249 for more information.

Use the SW_SET_PRIORITY procedure to set the internal message queue priorities.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 295
SW_UNSET_QUEUE

The SW_SET_QUEUE procedure forces the use of round-robin queue allocation for
messages posted in the current database session.

Syntax SW_UNSET_QUEUE ()

Notes The SW_UNSET_QUEUE procedure cancels the effect of a previous SW_SET_QUEUE
procedure call. See the SW_SET_QUEUE procedure for more information.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

296 | SW_INIT_TABLES
SW_INIT_TABLES

The SW_INIT_TABLES procedure creates the temporary tables needed to store data
for the current database session.

Syntax SW_INIT_TABLES ()

Notes The SW_INIT_TABLES procedure can be useful when a single database transaction
is expected to run for a considerable period of time, because creating temporary
tables during a transaction can block other SSOLite transactions.

You need only call SW_INIT_TABLES once per database session, although multiple
calls will not affect performance.

Example

EXEC owner.SW_INIT_TABLES-- Called outside of the transaction
-- to avoid unnecessary database
-- blocking.
begin transaction-- Start the tansaction.
EXEC swpro.SW_CASESTART ...-- Multiple SSOLite procedure calls.
EXEC ...
EXEC ...
.
.
commit-- Commit the transaction
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 297
Debug Procedures

The following debug procedures are available:

• SW_SET_DEBUG

• SW_GET_DEBUG

• SW_CLEAR_DEBUG

Debug output data is stored in the following temporary table:

##SSOLITE_DEBUG_DATA (
spid integer,
message varchar(255));

The table simply holds the debug message text in inserted order. If an application
has enabled debugging, a simple select * from
SESSION.SSOLITE_DEBUG_DATA statement can be used to display the debug data.

Because this table is global you must store the database session id (spid) of the
session that wrote this data. If multiple database sessions have debugging
enabled, the data should be selected on the spid.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

298 | SW_SET_DEBUG
SW_SET_DEBUG

The SW_SET_DEBUG procedure turns debugging on or off.

Syntax SW_SET_DEBUG(
enable integer)

where enable is a flag that turns debugging on or off. Specify:

• 1 to enable debugging (and create the SSOLITE_DEBUG_DATA temporary table
for the session).

• 0 to disable debugging. Note that the SESSION.SSOLITE_DEBUG_DATA table is
dropped and any existing data in the table lost.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 299
SW_GET_DEBUG

SW_GET_DEBUG returns the number of rows of debug data available in the
SSOLITE_DEBUG_DATA table, or -1 if debugging is not enabled.

Syntax SW_GET_DEBUG() returns integer

Notes Using SW_GET_DEBUG is optional.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

300 | SW_CLEAR_DEBUG
SW_CLEAR_DEBUG

Calling SW_CLEAR_DEBUG clears all existing debug data and resets the
SSOLITE_DEBUG_DATA temporary table.

Syntax SW_CLEAR_DEBUG()

Notes Use of this procedure is optional, as the use of temporary tables to hold debug
data ensures that data is cleared anyway.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 301
Appendix C Database Stored Procedures

This appendix describes the package of database stored procedures.

Topics

• Overview, page 302

• CASENUM_FIND_GAPS, page 303
 TIBCO iProcess Engine (SQL) Administrator’s Guide

302 | Overview
Overview

Database stored procedures are available in the iProcess database and you can
find them in the Oracle script file, init2Kora_tok.sql.

Sequence numbers can be generated by calling the stored procedures. See
Chapter 4, Sequence Numbers, on page 41 for more information.

The database stored procedures include:

• sp_cdqp_cfg_sequence

• sp_cdqp_def_sequence

• sp_cnum_sequence

• sp_procid_sequence

• sp_reqid_sequence

• sp_waitid_sequence

• sp_iap_monitor_id_sequence

• sp_eaiws_jms_provider_seq

• sp_eaiws_jms_destination_seq

• casenum_find_gaps
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 303
CASENUM_FIND_GAPS

The CASENUM_FIND_GAPS stored procedure adds a list of free case number gaps to
the casenum_gaps table.

If the case number or the subcase number generated from the sequence table
reaches the maximum case number, 4294967295, then the following cases cannot
be started. This stored procedure is used to scan a range of case numbers and
create available blocks of free case numbers for reuse. It operates across a case
range and only allocates free case numbers. The free case numbers are available
either because the case numbers have never been used or from the original cases
that have been purged.

The casenum_gaps table is used to holds the free case number gaps that are
created by the CASENUM_FIND_GAPS stored procedure. See casenum_gaps for more
information.

Syntax CASENUM_FIND_GAPS (
v_casenum_min IN NUMBER,
v_casenum_max IN NUMBER,
v_gap_size IN NUMBER)

where:

• v_casenum_min specifies the minimum case number of the range.

• v_casenum_max specifies the maximum case number of the range.

• v_gap_size specifies the minimum size of a gap that contains only free case
numbers.

How to Reuse Free Case Numbers

Perform the following steps to reuse the free case numbers:

1. Shut down TIBCO iProcess Engine.

2. Periodically run the CASENUM_FIND_GAPS stored procedure as the database
administrator.

To do this, you can create a SQL script as shown in the following example, and
use SQL*Plus to run the script.

TIBCO recommends that you shut down iProcess Engine before running
CASENUM_FIND_GAPS. If you want to run the procedure against a running system,
you must ensure that the case range supplied does not overlap with the ranges
currently being used, as there is the possibility of overlapping gaps with duplicate
case numbers being created.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

304 | CASENUM_FIND_GAPS
exec swpro.casenum_find_gaps 1, 24, 1;

In the example, CASENUM_FIND_GAPS (100, 500, 20) looks for the gaps of at
least 20 free case numbers from case number 100 to 500. If the range has three
gaps: 130 - 140, 240 - 270, and 430 - 480, only the last two gaps will be listed in
the casenum_gaps table for iProcess Engine to allocate case numbers.

3. Restart TIBCO iProcess Engine.

When TIBCO iProcess Engine wants to cache a new batch of sequences, it will
first use the case numbers in the casenum_gaps table that are listed by the
CASENUM_FIND_GAPS stored procedure and then allocate the unused new case
numbers when the case numbers in the table are used up.

Notes Before running the stored procedure, note that:

• Running the CASENUM_FIND_GAPS stored procedure may take a long time. It is
only of benefit in the areas where the density of the occupied case numbers is
low enough to have many gaps in between. This is typically in the lower
range of case numbers, as these are older cases and more likely to have been
closed and purged. The area close to the most recently started cases is likely to
be densely populated, because all these cases are new and less likely to be
closed and purged.

• It is recommended to have a good purge strategy to ensure that there are
plenty of available case numbers for reuse.

• TIBCO recommends that you do not run CASENUM_FIND_GAPS repeatedly on
the same case number range. Check the values in the casenum_gaps table for
the listed gaps and run the procedure on a range outside of the highest and
lowest figures in the table.

• The performance of CASENUM_FIND_GAPS is proportional not to the size of the
range, but to the number of actual cases in the range. For instance, when
running it on a range from 0 to 100 million, if there are only 5000 cases in that
range, it will be very fast and might only take a few seconds. While running it
on a range from 100 million to 105 million, if there are close to 5 million cases
in that range, it will take considerably longer. To find how many cases are in
the intended range, run the following SQL:

• SELECT COUNT(*) FROM CASE_INFORMATION WHERE CASENUM >

v_casenum_min AND CASENUM < v_casenum_max

• Based on previous runs and recorded timings, it should be possible to predict
the time CASENUM_FIND_GAPS will take for any given range with a reasonable
amount of accuracy.
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 305
See Also casenum_gaps
 TIBCO iProcess Engine (SQL) Administrator’s Guide

306 | CASENUM_FIND_GAPS
TIBCO iProcess Engine (SQL) Administrator’s Guide

| 307
Appendix D Unused Tables

The following tables are created by the database creation script (init2Ksql.sql),
but are not currently used by the iProcess Engine:

• pack_attach

• process_invqueue

• prounqid

• attachment

Do not delete these tables. They are reserved for possible future use.
 TIBCO iProcess Engine (SQL) Administrator’s Guide

308 | Unused Tables
TIBCO iProcess Engine (SQL) Administrator’s Guide

	TIBCO iProcess® Engine (SQL)
	Contents
	Preface
	Related Documentation
	TIBCO iProcess Engine Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 The TIBCO iProcess Engine Node
	Table Relationships
	nodes

	Chapter 2 Process Sentinels
	Table Relationships
	node_cluster
	process_config
	process_event_log
	process_attributes
	running_processes
	active_logins
	checksums

	Chapter 3 Mbox Sets and Message Queues
	Table Relationships
	iql_queues
	mbox_set
	mbox_set_group
	Default SQL Database Queue Tables (Test)
	sw_db_bgqueue_n
	sw_db_wisqueue_n
	sw_db_predictqueue_n
	sw_db_deadqueue

	Creating Additional SQL Database Queue Tables
	Example

	Chapter 4 Sequence Numbers
	About Sequence Numbers
	Table Relationships
	sequences

	Chapter 5 Procedures
	Table Relationships
	proc_index
	iap_monitor
	iap_field
	iap_activity
	iap_global
	proc_version
	procedure_lock
	proc_instance
	proc_audit
	proc_defn
	proc_deadline
	proc_event
	wqd_delta_subscriptions

	Chapter 6 Procedure Management
	About Procedure Objects
	Table Relationships
	pm_objects
	pm_objects_lock
	pmobjects_security
	proc_mgt_hierarchy

	Chapter 7 Cases
	Table Relationships
	case_information
	outstanding_addr
	wait
	wait_step
	status
	case_data
	audit_trail
	memo
	nmemo
	predict
	predict_lock
	case_deadline_event
	case_event
	casenum_gaps

	Chapter 8 Work Items
	Table Relationships
	staffo
	pack_data
	pack_memo
	pack_nmemo
	qaccess

	Chapter 9 Case Data Queue Parameters
	Table Relationships
	cdqp_def
	cdqp_cfg

	Chapter 10 Queue Participation and Redirection
	Table Relationships
	part_defn
	part_list
	redir_defn

	Chapter 11 Administrative Tables
	Table Relationships
	flag_table
	version

	Chapter 12 Users and Work Queues
	About User Tables
	Table Relationships
	user_names
	user_attrib
	user_setting
	user_values
	user_memb
	leavers
	tsys_user_names
	tsys_user_attrib
	tsys_user_values
	tsys_user_memb

	Chapter 13 Roles
	About Roles
	Table Relationships
	role_users
	tsys_role_users

	Chapter 14 TIBCO iProcess Tables
	About TIBCO iProcess Tables
	Table Relationships
	dbs_names
	dbs_fields
	dbs_values
	tsys_dbs_names
	tsys_dbs_fields
	tsys_dbs_values
	str_dbs_names
	str_dbs_fields
	ttmp_dbs_names
	ttmp_dbs_fields
	ttmp_dbs_values

	Chapter 15 Lists
	About Lists
	Table Relationships
	list_names
	list_values
	tsys_list_names
	tsys_list_values
	ttmp_list_names
	ttmp_list_values

	Chapter 16 iProcess Server Plug-ins
	Table Relationships
	eai_registry

	Chapter 17 Firewall Port Ranges
	Table Relationships
	port_range
	port_range_active
	port_range_conf
	port_range_nodes

	Chapter 18 WQS/WIS Shared Memory
	Table Relationships
	wqs_index

	Chapter 19 System Event Logging
	Table Relationships
	system_event
	system_event_conf

	Appendix A Views
	Appendix B SSOLite Stored Procedures
	Overview
	Using SSOLite Stored Procedures
	Processing Asynchronous Message
	Transactional Processing
	Handling Exceptions
	Processing Queues
	Prioritizing Messages

	Data Procedures
	Command Procedures
	Control Procedures
	Debug Procedures

	Appendix C Database Stored Procedures
	Overview
	CASENUM_FIND_GAPS

	Appendix D Unused Tables

