
TIBCO iProcess™ Engine

Architecture Guide
Software Release 11.1
September 2009

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIB, TIBCO, TIBCO Software, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, TIBCO
iProcess are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or
other countries.

EJB, Java EE, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms for
a specific software version are released at the same time. Please see the readme.txt file for the availability of this
software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 1994-2009 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| i

B
ac

k
to

 L
ib

ra
ry
Contents

About This Guide . vii

How to Use This Guide . viii

Target Audience . ix

Changes from the Previous Issue of this Guide. x

Where You Can Find More Information . xi

Documentation Conventions . xii

Chapter 1 Introduction to TIBCO iProcess Products . 1

TIBCO Product Overview 1 . 2

TIBCO Product Overview 2 . 3

TIBCO Business Studio™ . 4

TIBCO BusinessWorks™. 5

TIBCO Enterprise Message Service™ . 6

TIBCO Hawk®. 7

TIBCO iProcess™ Analytics . 8

TIBCO iProcess™ Analytics Export. 9

TIBCO iProcess™ Conductor . 10

TIBCO iProcess™ Decisions Server . 11

TIBCO iProcess™ Decision Studio . 12

TIBCO iProcess™ Engine . 13

TIBCO iProcess™ Insight . 15

TIBCO iProcess™ Objects Server. 16

TIBCO iProcess™ Objects Director. 17

TIBCO iProcess™ Server Objects. 18

TIBCO iProcess™ Technology Plug-ins . 19

TIBCO iProcess™ Web Services Plug-in . 21

TIBCO iProcess™ Workspace (Browser) . 22

TIBCO iProcess™ Workspace Plug-ins. 23

TIBCO iProcess™ Workspace (Windows). 24

TIBCO Rendezvous®. 26
 TIBCO iProcess Engine Architecture Guide

ii | Contents

B
ac

k
to

 L
ib

ra
ry
Chapter 2 Introduction to the TIBCO iProcess Engine . 27

TIBCO iProcess Engine Architecture . 28

The Role of the TIBCO iProcess Engine. 29

iProcess Physical Architecture . 30
Installing the iProcess Engine on a Single Server . 30
Installing the iProcess Engine on a Node Cluster . 30
TIBCO iProcess Workspace and TIBCO iProcess Engine Communication . 31

TIBCO iProcess Engine Process Structure . 33
Process Sentinels . 33
Foreground Processes. 34
Mbox Sets . 34
Background Processes . 35
Event Handling. 35

Where is TIBCO iProcess Engine Case Data Stored? . 37

How Do Work Items Appear in Work Queues?. 38
Sending Instructions From the TIBCO iProcess Workspace to the TIBCO iProcess Engine 38
Mbox Sets . 39
User Access to iProcess Engine Work Queues. 40

24*7 TIBCO iProcess Engine Operation . 42
The iProcess Engine and Hardware Clustering . 42

Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment. 45

Overview . 46

Globalization Options in the iProcess Suite . 48
Advantages of UTF-8 Encoding. 48
Issues with UTF-8 Encoding . 49
iProcess Names. 49

Recommendations . 51

Configuring the iProcess Suite Using UTF-8 . 52
TIBCO iProcess Engine. 52
iProcess Clients . 53
The LDAPCONF Utility . 54
TIBCO Business Studio . 54
iProcess Plug-ins . 54

Globalization Support Using Native Encoding . 56
Using iProcess Suite in a Single-Byte Native Encoding Environment . 56
Using iProcess Suite With a Multi-Byte Character Encoding Environment . 57
Implementing iProcess Suite in an International Environment with Native Encoding 58

Chapter 4 TIBCO iProcess Engine Processes. 59

Foreground Processes . 60
TIBCO iProcess Engine Architecture Guide

Contents | iii

B
ac

k
to

 L
ib

ra
ry
Work Queue Server . 61
Allocation of Work Queues to WIS Processes . 63
RPC Pool Server . 64
RPC Listeners . 64
Work Item Server . 65
WIS Mbox Daemon. 65

Mbox Sets and Message Queues . 68
Transaction Control of Messages . 69

Background Processes . 70
Background. 71
Case Prediction Processor(s) . 71
Database Queue Daemon . 72
Deadline Manager . 72
IAPJMS Process. 73
RPC Background Process . 74

Chapter 5 Introduction to Transactional Business Process Automation 75

Overview . 76

What is a Local Transaction? . 77
Example of a Local Transaction . 78

What is a Distributed Transaction? . 79

Transaction Scope . 80
Oracle Server Transaction Scope . 80
DB2 Transaction Scope . 80
SQL Server Transaction Scope . 80
Using Distributed Transactions with MSDTC . 81

Using Enterprise Application Integration Steps in Procedures . 82

What is MSDTC? . 83

Examples of Transaction Control . 84
Case Data Updates to the SQL Server using MSDTC . 84
External Updates Using EAI Steps. 85

Transaction Failures and Rollbacks . 86
Poison Transactions . 86

Chapter 6 iProcess Mbox Sets . 87

Overview . 88
What are iProcess Messages?. 88
Definition of Mbox Sets. 89
Configuring Mbox Sets . 89

Transaction Management of Messages . 90
UNIX Oracle Transaction Implementation. 90
 TIBCO iProcess Engine Architecture Guide

iv | Contents

B
ac

k
to

 L
ib

ra
ry
Windows SQL Server Transaction Implementation . 90
UNIX DB2 Transaction Implementation . 90

Chapter 7 Monitoring Activities . 91

Overview . 92
Activity Publishing . 92
Work Queue Delta Publication. 93

How Messages are Processed From the BG Process to the IAPJMS Process . 94

How Activity Messages are Processed From the IAPJMS Process to the External Application. 95

How Messages are Processed From the WIS Process to the IAPJMS Process . 96

How Work Queue Delta Messages are Processed From the IAPJMS Process to the External Application. 97

Understanding the Message Types. 98
IAP Message Types . 98
WQD Message Types . 99

Chapter 8 Database Failure and Failover . 101

Overview . 102

TIBCO iProcess Engine Behavior . 103

TIBCO iProcess Workspace Behavior . 105

iProcess Objects and iProcess Server Objects Behavior . 106

TIBCO iProcess Engine Configuration Requirements . 107
Oracle (UNIX or Linux). 107
Oracle (Windows), SQL Server and DB2 (UNIX or Linux). 108

Chapter 9 Process Management . 109

Responsibilities of the Process Sentinels . 110
Distribution and Hierarchy of Process Sentinels . 110
Master and Slave Responsibilities . 111

How Processes are Controlled by the Process Sentinels . 113

Starting the TIBCO iProcess Engine Processes. 114
Determining Where Processes Run . 116

Restarting Failed Processes . 117
Restarting Failed Process Sentinels . 117

Shutting Down Processes . 119

Configuring the Process Sentinels . 120

Chapter 10 Network Communication . 123

TIBCO iProcess Workspace and TIBCO iProcess Engine Network Communication . 124
Function of a Portmapper . 124
TIBCO iProcess Engine Architecture Guide

Contents | v

B
ac

k
to

 L
ib

ra
ry
The TIBCO iProcess Engine RPC Service. 125
TCP/IP . 125

TIBCO iProcess Engine to TIBCO iProcess Engine Network Communication in a Node Cluster 127

Using the TIBCO iProcess Engine in a Firewalled Environment . 128
What is a Firewall? . 128
iProcess RPC and Firewall Access . 128
Port/RPC Number Resource Logging. 129
Using Oracle Events Through a Firewall . 129
Using JMX Through a Firewall . 130

Chapter 11 Point-to-Point Data Flow Models. 131

User Starts a New Case . 132
Case Starter is Addressee of the First Step . 132
Case Started by Non-Addressee of the First Step . 134

User Opens a Work Item . 135
Accessing Memos . 137

User Keeps a Work Item . 138

Background Sends a Work Item to a Work Queue . 139

User Releases a Work Item. 140
 TIBCO iProcess Engine Architecture Guide

vi | Contents

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Architecture Guide

| vii

B
ac

k
to

 L
ib

ra
ry
About This Guide

This guide describes the architecture of the TIBCO iProcess Engine, and how each
server process works and interacts with other processes. It also provides
information about how the TIBCO iProcess Engine interacts with other
applications such as databases and transaction control applications. You can use
this information to help plan and implement your system, debug system
problems and trace performance problems to specific processes.

The point-to-point models on page 131 describe the full flow of one case of a
procedure through each of the server processes. This shows what happens when a
case is released through to it appearing in the next user’s work queue.
 TIBCO iProcess Engine Architecture Guide

viii | About This Guide

B
ac

k
to

 L
ib

ra
ry
How to Use This Guide

Refer to the following chapters for the information you need:

• Chapter 1, Introduction to TIBCO iProcess Products provides an overview of
the products in the TIBCO iProcess™ Suite and other TIBCO products that
interact with the TIBCO iProcess Suite.

• Chapter 2, Introduction to the TIBCO iProcess Engine provides an overview
of the TIBCO iProcess Engine architecture and the server processes that are
involved to process business process information.

• Chapter 3, Using the TIBCO iProcess Suite in a Multilingual Environment
describes how internationalization is supported by TIBCO iProcess Suite and
what are the implications of deciding to support UTF-8 encoding in your
iProcess database.

• Chapter 4, TIBCO iProcess Engine Processes describes all of the server processes
in more detail.

• Chapter 5, Introduction to Transactional Business Process Automation provides an
overview of how the TIBCO iProcess Engine provides transaction control.

• Chapter 6, iProcess Mbox Sets describes how the TIBCO iProcess Engine uses
messaging to provide reliable, transactional message queuing.

• Chapter 7, Monitoring Activities describes how messages are processed
between the BG process, the IAPJMS process and the external application
when activity monitoring is enabled on the TIBCO iProcess Engine.

• Chapter 8, describes how the TIBCO iProcess Engine handles database failure
or failover.

• Chapter 9, Process Management describes the role of the TIBCO iProcess Engine
Process Sentinels and how they manage the starting, stopping and running of
all the server processes.

• Chapter 10, Network Communication explains how the TIBCO iProcess Engine
and TIBCO iProcess™ Workspace communicate with each other and how
servers in a cluster installation communicate with each other.

• Chapter 11, Point-to-Point Data Flow Models explains how case data is
processed by all the TIBCO iProcess Engine processes for a number of
different scenarios such as starting a case and releasing a case.
TIBCO iProcess Engine Architecture Guide

Target Audience | ix

B
ac

k
to

 L
ib

ra
ry
Target Audience

This guide is aimed at the following types of user of the TIBCO iProcess Suite:

• System integrators

• Application developers

• Server administrators

• Support.
 TIBCO iProcess Engine Architecture Guide

x | About This Guide

B
ac

k
to

 L
ib

ra
ry
Changes from the Previous Issue of this Guide

Major technical changes from the information presented in the previous issue of
this guide are:

• TIBCO iProcess Engine now supports UTF-8 encoding. See Chapter 3, Using
the TIBCO iProcess Suite in a Multilingual Environment, on page 45.

• Messages produced by the IAPJMS process can optionally be generated in an
extended format to provide more information. See The Monitor Event Detail
Message (MED) on page 98.
TIBCO iProcess Engine Architecture Guide

Where You Can Find More Information | xi

B
ac

k
to

 L
ib

ra
ry
Where You Can Find More Information

You can find more information about the TIBCO iProcess Engine from the
following sources:

• The installation guide, supplied with the software, explains how to install the
software.

• A Readme file, supplied with the software, provides any last-minute and
version-specific information that could not be included in the main
documentation.

• Detailed information about using the TIBCO iProcess Suite™ can be found on
the TIBCO iProcess Suite: Documentation Library CD.

• For more information about iProcess database tables, see the following guides:

— TIBCO iProcess Engine (SQL) Administrator's Guide

— TIBCO iProcess Engine (Oracle) Administrator's Guide

— TIBCO iProcess Engine (DB2) Administrator's Guide

• For the latest TIBCO iProcess Suite product information, please refer to the
TIBCO Support web site at http://www.tibco.com/services/support
 TIBCO iProcess Engine Architecture Guide

http://www.staffware.com/tech
http://www.staffware.com/tech

xii | About This Guide

B
ac

k
to

 L
ib

ra
ry
Documentation Conventions

Because this guide covers both Windows, UNIX and Linux versions of the TIBCO
iProcess Engine, this guide uses the Windows convention of a backslash (\). The
equivalent pathname on a UNIX or Linux system is the same, but using the
forward slash (/) as a separator character.

The following conventions are used throughout this guide.

UNIX or Linux pathnames are occasionally shown explicitly, using forward
slashes as separators, where a UNIX/Linux-specific example or syntax is
required.

Any references to UNIX in this guide also apply to Linux unless explicitly stated
otherwise.

Convention Description

SWDIR Indicates the iProcess system directory where the TIBCO iProcess Engine
is installed. For example, if SWDIR is set to \swserver\staffw_nod1 then
the full path to the swutil command would be:

• on a Windows server (on the c: drive):

c:\swserver\staffw_nod1\bin\swutil

• on a UNIX or Linux server:

/swserver/staffw_nod1/bin/swutil

or

$SWDIR/bin/swutil

On a UNIX or Linux system, the environment variable $SWDIR
should be set up to point to the iProcess system directory for the root
and swadmin users.

italics Indicates emphasis, variables and manual titles.

monospace text Indicates code samples, commands and their options, directories and
filenames. Any text that you must enter from the keyboard is displayed as
monospace text.

monospace italic text Indicates variables in commands.

{ } Indicates a set of choices in a syntax line. The braces should not be entered.
TIBCO iProcess Engine Architecture Guide

Documentation Conventions | xiii

B
ac

k
to

 L
ib

ra
ry
[] Indicates optional items in a syntax line. The brackets should not be
entered. For example:

SHOW_ALL_ATTRIBUTES [attribute]

| Indicates mutually exclusive choices in a syntax line i.e. you enter only
one of the given choices. You should not enter the symbol itself.

Convention Description
 TIBCO iProcess Engine Architecture Guide

xiv | About This Guide

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Architecture Guide

| 1

B
ac

k
to

 L
ib

ra
ry
Chapter 1 Introduction to TIBCO iProcess Products

This chapter provides an overview of the products in the TIBCO iProcess™ Suite
and other TIBCO products that interact with the TIBCO iProcess Suite. It gives a
brief description of each product and explains how they interact with each other.
The following products are described:

• TIBCO Business Studio™

• TIBCO BusinessWorks™

• TIBCO Enterprise Message Service™

• TIBCO Hawk®

• TIBCO iProcess™ Analytics

• TIBCO iProcess™ Analytics Export

• TIBCO iProcess™ Conductor

• TIBCO iProcess™ Decisions Server

• TIBCO iProcess™ Decision Studio

• TIBCO iProcess™ Engine

• TIBCO iProcess™ Insight

• TIBCO iProcess™ Objects Server

• TIBCO iProcess™ Objects Director

• TIBCO iProcess™ Server Objects

• TIBCO iProcess™ Technology Plug-ins

• TIBCO iProcess™ Web Services Plug-in

• TIBCO iProcess™ Workspace (Browser)

• TIBCO iProcess™ Workspace Plug-ins

• TIBCO iProcess™ Workspace (Windows)

• TIBCO Rendezvous®

All Java-based TIBCO iProcess Suite components (for example, TIBCO iProcess
Java Server Plug-in and TIBCO iProcess BusinessWorks Server Plug-in) must be
run using a 32-bit JVM.
 TIBCO iProcess Engine Architecture Guide

2 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO Product Overview 1

Click on a product to find out more information

Key

TIBCO products can
be used together

Product delivered
with iProcess Engine

TIBCO iProcess
Web Services Client

Plug-in

TIBCO iProcess
Web Services
Server Plug-in.

TIBCO iProcess™
Decisions Server

TIBCO iProcess™
Decision Studio

TIBCO iProcess™
Workspace (Windows)

(TIBCO iProcess
Modeler/TIBCO

iProcess Administrator)

TIBCO iProcess™
Workspace Plug-ins

TIBCO iProcess™
Technology Plug-ins

TIBCO iProcess™
Conductor

TIBCO
BusinessWorksTIBCO iProcess™ Engine

(DB2/Oracle/SQL)

TIBCO Hawk®

TIBCO Rendezvous®

External Web
Service

Java
applications

COM
applications

Database
applications

Email/SMTP
applications

TIBCO
BusinessWorks™
TIBCO iProcess Engine Architecture Guide

TIBCO Product Overview 2 | 3

B
ac

k
to

 L
ib

ra
ry

T

TIBCO Product Overview 2

IBCO iProcess™
Insight

TIBCO iProcess™
Workspace (Windows)

(TIBCO iProcess
Modeler/ TIBCO

iProcess Administrator)

TIBCO iProcess Windows
(Browser) or

TIBCO iProcess Client

TIBCO iProcess™ Server
Objects (JAVA/.Net)

TIBCO iProcess™
Analytics Export

TIBCO iProcess™ Engine

(DB2, Oracle, SQL)JMS Provider

TIBCO Enterprise Message
Service™

TIBCO iProcess™
Workspace (Browser)

TIBCO Enterprise Message
Service™

TIBCO Business
Studio™

TIBCO iProcess™ Objects
Server

TIBCO iProcess™ Objects

TIBCO iProcess™
Analytics

Export File

TIBCO iProcess
Objects COM (Windows)

/
Objects Java (UNIX)

Customer
Applications

Click on a product to find out more information

Key

Products that can be used together

Products delivered with the TIBCO iProcess
 TIBCO iProcess Engine Architecture Guide

4 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO Business Studio™

Description TIBCO Business Studio enables business analysts to implement business
processes. It provides a standards-based modelling environment that supports
both Business Process Modeling Notation (BPMN) and XML Process Definition
Language (XPDL).

If you are using native service calls (database or email) or general service calls
(such as web services), you can augment the process with execution details in
TIBCO Business Studio and deploy it directly to the TIBCO iProcess Engine.
However, if you need to make other types of service calls (for example, EAI Java),
you must augment and implement the Process using another product such as
TIBCO iProcess Modeler.

TIBCO Business Studio also enables business analysts to simulate processes that
have been developed in Business Studio. This is useful to identify areas of the
process that can be improved such as bottlenecks and areas of high cost or
reduced service levels.

TIBCO Business Studio can be used instead of iProcess Workspace (Windows) to
design business processes for use with the iProcess Engine.

For Information For information about TIBCO Business Studio, see the following:

• TIBCO Business Studio Modelling Guide

• TIBCO Business Studio Simulation Guide
TIBCO iProcess Engine Architecture Guide

TIBCO BusinessWorks™ | 5

B
ac

k
to

 L
ib

ra
ry
TIBCO BusinessWorks™

Description TIBCO BusinessWorks is a scalable, extensible, and easy to use integration
platform that allows you to develop integration projects. TIBCO BusinessWorks
includes a graphical user interface (GUI) for defining business processes and an
engine that executes the process.

TIBCO BusinessWorks also works with TIBCO Administrator, a web-based GUI
for monitoring and managing run-time components.

The TIBCO iProcess BusinessWorks Connector enables the TIBCO iProcess
Engine to interact with TIBCO BusinessWorks and vice versa. For example,
BusinessWorks processes can be invoked from iProcess Engine procedures and
iProcess Engine cases can be started from BusinessWorks.

For Information For information about TIBCO BusinessWorks, see the TIBCO Technical
Publications Document Library.

For information about the TIBCO iProcess BusinessWorks Connector, see the
TIBCO iProcess BusinessWorks Connector User’s Guide.
 TIBCO iProcess Engine Architecture Guide

6 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO Enterprise Message Service™

Description TIBCO Enterprise Message Service implements JMS and integrates support for
connecting other message services, such as TIBCO Rendezvous and TIBCO
SmartSockets.

Java Message Service 1.1 (JMS) is a Java framework specification for messaging
between applications. Sun Microsystems developed this specification, in
conjunction with TIBCO and others, to supply a uniform messaging interface
among enterprise applications.

Using a message service allows you to integrate the applications within an
enterprise. For example, you may have several applications: one for customer
relations, one for product inventory, and another for raw materials tracking. Each
application is crucial to the operation of the enterprise, but even more crucial is
communication between the applications to ensure the smooth flow of business
processes. Message-oriented-middleware (MOM) creates a common
communication protocol between these applications and allows you to easily
integrate new and existing applications in your enterprise computing
environment.

TIBCO Enterprise Message Service is delivered with the TIBCO iProcess Engine
to enable the iProcess Engine to communicate with other TIBCO products (for
example, TIBCO BusinessWorks and TIBCO iProcess Insight) using a JMS
protocol.

For Information For information about TIBCO Enterprise Message Service, see the TIBCO
Technical Publications Document Library.
TIBCO iProcess Engine Architecture Guide

TIBCO Hawk® | 7

B
ac

k
to

 L
ib

ra
ry
TIBCO Hawk®

Description TIBCO Hawk is a monitoring system that monitors systems and applications on a
specific computer. It consists of the following components:

• TIBCO Hawk Agent. A TIBCO Hawk agent is an autonomous process that
resides on each computer and monitors systems and applications on that
computer. Agents run independently of the TIBCO Hawk Display. Agents
operate autonomously and are active whenever the operating system they
monitor is active. Agents use sets of rules, called rulebases, to configure
system management, status, and automation tasks. A TIBCO Hawk agent
must be installed on each computer you wish to monitor.

• TIBCO Hawk Microagent. A TIBCO Hawk Microagent (HMA) is a partner
process to the TIBCO Hawk agent and provides the local agent with methods
for monitoring the host operating system. Like the agent, a TIBCO Hawk
Microagent is generally installed on each computer you wish to monitor.

• TIBCO Hawk Display Program. The TIBCO Hawk Display program is used
by system administrators to view network health and to create rulebases (sets
of rules that automate monitoring activities). A TIBCO Hawk Display should
be installed on any computers you wish to use for monitoring the network or
for building rulebases.

• TIBCO Hawk Event Service. The TIBCO Hawk Event Service is a process that
records TIBCO Hawk alerts and changes in agent status. When
communication with an agent is lost, the Event Service can invoke a
user-provided script. Alerts and notifications can be recorded to log files or a
database. Typically, the TIBCO Hawk Event Service is installed on a minimal
number of computers in the network.

TIBCO Hawk is delivered with the TIBCO iProcess Engine to enable you to use it
to monitor the TIBCO iProcess Engine server processes. For example, you can use
TIBCO Hawk to check what iProcess Engine server processes are running or stop
and start them.

For Information For information about TIBCO Hawk, see the TIBCO Technical Publications
Document Library.

For information on configuring TIBCO Hawk for use with the TIBCO iProcess
Engine, see the TIBCO iProcess Engine Administrator’s Guide.
 TIBCO iProcess Engine Architecture Guide

8 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Analytics

Description TIBCO iProcess™ Analytics is a tool that enables organizations to analyze,
evaluate and monitor business processes, providing insight into the performance
of key processes and the knowledge needed to continuously improve them.
iProcess Analytics combines current and historical process data and presents this
data via intuitive dashboard views. An integrated early-warning system monitors
all running instances and triggers alerts when deviations against planned values
occur, thus enabling organizations to react quickly and take rapid corrective
action.

iProcess Analytics uses a SQL RDBMS as the repository that saves all
configurations and data. It is developed in Java as a client/server application.

TIBCO iProcess Analytics, in conjunction with TIBCO iProcess™ Analytics
Export, is used to analyze the performance of iProcess procedures. iProcess
Analytics Export is used to export the data from the iProcess Engine to prepare it
for import into iProcess Analytics. Data from multiple sources can be analyzed
providing data from iProcess is part of that data.

For Information For information about iProcess Analytics, see the following:

• TIBCO iProcess Analytics System Architecture Guide

• TIBCO iProcess Analytics LDAP User’s Guide

• TIBCO iProcess Analytics Advanced User’s Guide

• TIBCO iProcess Analytics ARIS Toolset Interface Guide

• TIBCO iProcess Analytics CTK Quick Start Guide

• TIBCO iProcess Analytics Performance Cockpit Customizing Guide

• TIBCO iProcess Analytics Delta Notes

• TIBCO iProcess Analytics Customization Guide

• TIBCO iProcess Analytics Data Import Guide
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Analytics Export | 9

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Analytics Export

Description TIBCO iProcess Analytics Export is a utility that is used to export cases from
iProcess procedures. It generates an XML file that can be imported into TIBCO
iProcess™ Analytics.

TIBCO iProcess Analytics Export, in conjunction with TIBCO iProcess™
Analytics, is used to analyze the performance of iProcess procedures.

For Information For information about iProcess Analytics Export, see the following:

• TIBCO iProcess Analytics Export (Java) User's Guide

• TIBCO iProcess Analytics Export (Windows) User's Guide
 TIBCO iProcess Engine Architecture Guide

10 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Conductor

Description The TIBCO iProcess Conductor supports complex business process management
(BPM) by abstracting timing and resource requirements into a dependency
mapping layer that maximizes reusability of process components. The TIBCO
iProcess Conductor packages TIBCO iProcess Engine processes as independent
process components that are combined to create an execution plan. Process
components can be reused, coordinated, individually monitored, dynamically
modified — even completely remodeled — during runtime to enable
goal-oriented BPM.

This enables the flexibility and control of business processes. TIBCO iProcess
Conductor coordinates business processes that are executed in TIBCO iProcess
Engine. It enables business users to select templates or create processes –
including resource requirements and timing dependencies – immediately prior to
run-time from re-usable process components.

The TIBCO iProcess Conductor fosters a goal-oriented approach to BPM because
processes are designed in terms of goals, with each step toward the goal achieved
by process components. Processes are monitored at the sub-goal level, but within
the context of the larger goal. If a sub-goal is not met in a timely manner and
jeopardizes the overall goal, users are notified and can ameliorate the problem.
Processes can be modified during execution. If a new goal is identified, a process
can be rolled back to the last process component in common between the old and
new goal.

For Information For information about iProcess Conductor, see the following:

• TIBCO iProcess Conductor Concepts Guide

• TIBCO iProcess Conductor Implementation Guide

• TIBCO iProcess Conductor User's Guide

• TIBCO iProcess Conductor Administrator's Guide

• TIBCO iProcess Conductor Utility Framework Guide

• TIBCO iProcess Execution Plan Interfaces Developer's Guide
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Decisions Server | 11

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Decisions Server

Description The TIBCO iProcess Decisions Server enables you to define and use TIBCO
iProcess Decisions steps in your iProcess procedures. iProcess Decisions Service
steps extend the functionality of your business process by enabling you to
integrate with a powerful rules engine. See TIBCO iProcess™ Decision Studio.

iProcess data can be sent to the TIBCO iProcess Decisions Server to be processed
by a set of business rules and the resulting data can then be passed back to
iProcess.

For Information For information about the TIBCO iProcess Decisions Server, see the TIBCO
iProcess Decisions Plug-in: User's Guide
 TIBCO iProcess Engine Architecture Guide

12 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Decision Studio

Description The TIBCO iProcess Decision Studio is used to build Rule Sets. Once deployed to
the TIBCO iProcess™ Decisions Server, a rule set becomes a Decision Service.

A Decision Service automates a discrete decision-making task. It is implemented
as a set of business rules and exposed as a Web Service (or Java Service). By
definition, the rules within a Decision Service are complete and unambiguous; for
a given set of inputs, the Decision Service addresses every logical possibility
uniquely, ensuring “decision integrity”.

Using an iProcess Decisions Service step in your iProcess procedure enables you
to interact with a decision service in the TIBCO iProcess™ Decisions Server.

This means that you can:

• send iProcess case data to the TIBCO iProcess™ Decisions Server where it can
process the case data against the decision service rules.

• capture the resulting data from the decision service back in iProcess.

For Information For information about the TIBCO iProcess Decision Studio, see the following:

• TIBCO iProcess Decisions Start Here

• TIBCO iProcess Decisions DB Access Tutorial

• TIBCO iProcess Decisions Studio Quick Reference Guide

• TIBCO iProcess Decisions Rule Language Guide

• TIBCO iProcess Decisions Rule Modeling Guide

• TIBCO iProcess Decisions Rule Modeling Tutorial

• TIBCO iProcess Decisions Sample Application Guide

• TIBCO iProcess Decisions Server Integration & Deployment Guide

• TIBCO iProcess Decisions Server Deployment Tutorial
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Engine | 13

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Engine

Description The TIBCO iProcess Engine is the core of iProcess and is responsible for the
execution of business processes. In response to various input, for example. case
start, completion of steps, events being triggered, deadlines expiring and data
being modified, coupled with knowledge of the business process, it makes the
next activity or step in the process available for execution. This might be the
dispatching of a work item to a user queue or the invocation of an application or
task via an EAI step.

When a case of a procedure is started by an individual from a TIBCO iProcess
Workspace (Windows) computer, a number of processes are used to process the
information contained in one step before the next step can be performed.

The TIBCO iProcess Engine maintains the list of work items in a user’s work
queue for all the active cases to be processed. If the first step was opened,
completed and released, the TIBCO iProcess Engine determines the subsequent
actions for the step and updates the necessary case data in the database.

The iProcess Engine enables dynamic processing and knowledge-based
interaction with iProcess procedures. This means iProcess procedures can be
processed based on events as they occur and that may not be known about at
procedure definition time. This feature is available using graft steps. A graft step
enables an external application to graft (attach) one or more sub-procedures to a
particular point in your procedure at run-time. Therefore, when a case of the main
procedure is started, the external application can start a number of sub-processes
which are attached to the main procedure via the graft step. For example, a
financial application determines that a credit check and a transfer of funds are
required as part of the main procedure. When another case is started, it
determines that only a transfer of funds is required. This means that the
procedure is dynamic and cannot be decided at procedure definition time. One of
the processes is an iProcess sub-procedure and the other is a process run by the
financial system.

iProcess procedures can be defined in TIBCO Business Studio or TIBCO iProcess
Modeler.

All the TIBCO iProcess Engine case data such as fields and their values are stored
in a TIBCO iProcess Engine database instance. An iProcess Engine database
instance can be a SQL Server, Oracle or DB2 database.

The TIBCO iProcess Engine is a 32-bit application but can be used on both 32-bit
and 64-bit operating systems, and against a 32-bit or 64-bit database.
 TIBCO iProcess Engine Architecture Guide

14 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
The iProcess Engine (in conjunction with other iProcess products, for example, the
iProcess Technology Plug-ins, iProcess Server Objects, and iProcess Web Services
Plug-in) enables connectivity to external applications. This means that iProcess
procedures can integrate with other systems in your business process. iProcess
case data can be sent to external applications using whatever communication
method is required. Data can also be passed back from the application to iProcess.

For Information For information about the TIBCO iProcess Engine, see the following:

• TIBCO iProcess Engine: Architecture Guide

• TIBCO iProcess Engine Administrator's Guide

• TIBCO iProcess Engine (SQL) Administrator's Guide

• TIBCO iProcess Engine (Oracle) Administrator's Guide

• TIBCO iProcess Engine (DB2) Administrator's Guide

• TIBCO iProcess swutil and swbatch Reference Guide

• TIBCO iProcess Engine System Messages Guide

• TIBCO iProcess User Validation API: Reference Guide
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Insight | 15

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Insight

Description TIBCO iProcess Insight is a process monitoring product from TIBCO that adds
BAM capabilities to TIBCO’s business process management (BPM) systems to
support proactive management of users, tasks, operations and exceptions. TIBCO
iProcess Insight accomplishes this by introspecting processes to discover
registered procedures/sub-procedures and steps.

Using TIBCO iProcess Insight, you can monitor the execution of the automated
processes and hence identify whether or not the execution of business processes is
efficient. You can specifically check for the following points:

• whether processes are efficient in real-time (Are our procedures doing what
they are supposed to?)

• whether a resource bottleneck exists (Where can we optimize?)

• whether performance targets are being met (How are we doing as a
company?)

• what volume of work is being performed?

After gathering the above information, you can optimize your business processes
and deploy the resources in a better fashion. It will lead to an improved
performance and efficiency which in turn means improved advantage and a
reduced timeline to realize Return On Investment (ROI).

You can use the TIBCO Enterprise Message Service (which is delivered with the
iProcess Engine) or an external JMS Provider to interact with TIBCO iProcess
Insight. The TIBCO iProcess Engine can publish events with process data as XML
documents on a JMS queue, as they occur. iProcess Insight can consume these
XML documents real-time. It uses this information to perform its analysis. It does
this using a wizard that allows you to select the processes and activities to be
monitored, along with the data and reports that you are interested in. It includes a
supervisor capsule that allows a supervisor to take remedial actions to react to
events that occur during the execution of the processes.

For Information For information about TIBCO iProcess Insight, see the TIBCO Technical
Publications Document Library.
 TIBCO iProcess Engine Architecture Guide

16 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Objects Server

Description The TIBCO iProcess Objects Server acts as a gateway between iProcess client
applications developed with TIBCO iProcess Server Objects (Java or .NET), and
the TIBCO iProcess Engine.

After communication is established between the client application and the TIBCO
iProcess Objects Server, the TIBCO iProcess Objects Server waits for request
messages from the client. When the TIBCO iProcess Objects Server receives a
request message, it in turn makes calls to the TIBCO iProcess Engine to perform
functions such as locking work items, moving work items to other work queues,
writing data to the database, etc.

For Information For more information about the iProcess Objects Server, see the TIBCO iProcess
Objects Server Administrator’s Guide.

The TIBCO iProcess Workspace (Browser) is an example client application that
sends requests to the iProcess Engine through the iProcess Objects Server. For
more information about this client application, see TIBCO iProcess™ Workspace
(Browser).
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Objects Director | 17

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Objects Director

Description The TIBCO iProcess Objects Director is a standalone program that maintains a list
of TIBCO iProcess Objects Servers that are configured in a node cluster. When a
client application needs access to a TIBCO iProcess Objects Server, it first
establishes a connection to the TIBCO iProcess Objects Director. The TIBCO
iProcess Objects Director then decides, based on a “pick method,” which TIBCO
iProcess Objects Server the client should connect to.

The list of known TIBCO iProcess Objects Servers is updated dynamically as
TIBCO iProcess Objects Server instances are started and stopped. The TIBCO
iProcess Objects Director maintains this list by checking the process_config table
of the iProcess Engine to which it is associated.

For Information For information about using and configuring the TIBCO iProcess Objects Director,
see the TIBCO iProcess Objects Director Administrator’s Guide.
 TIBCO iProcess Engine Architecture Guide

18 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Server Objects

Description TIBCO iProcess Server Objects is an Application Programming Interface for
iProcess. It provides access to all of the information and functionality required to
write either a BPM user oriented client application or a batch oriented broker
application.

It comprises a set of objects that are used to build applications that automate
business processes. TIBCO iProcess Server Objects consists of an object model that
provides access to the information and functionality needed in these applications.

The objects in the TIBCO iProcess Server Objects object model can be used to start
cases, present information on screens to users, manipulate work items, remind
users when actions need to be taken, and monitor and control the flow through
the business process.

TIBCO iProcess Server Objects is designed to be used in server-side application
architectures.

Client applications make use of the objects in the TIBCO iProcess Server Objects
by making method calls that either retrieve or modify data. These method calls
cause messages to be sent to a TIBCO iProcess Objects Server. The TIBCO iProcess
Objects Server acts as a gateway between the client application created with
TIBCO iProcess Server Objects, and the TIBCO iProcess Engine, where the actual
processing and storage of data occurs. The TIBCO iProcess Engine manages all
data, routing work items and updating the appropriate work queues.

There are two types of implementation available for iProcess Server Objects:

• TIBCO iProcess Server Objects (.NET)

• TIBCO iProcess Server Objects (Java)

For Information For information about TIBCO iProcess Server Objects, see the following:

• TIBCO iProcess Server Objects (JAVA): Programmer's Guide

• TIBCO iProcess Server Objects (.NET): Programmer's Guide

Both 32-bit and 64-bit variants of TIBCO iProcess Server Objects (.NET) and
TIBCO iProcess Server Objects (Java) are available. These variants allow
customers to write applications that can interface with TIBCO iProcess Suite on
32-bit and/or 64-bit Windows platforms as required.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Technology Plug-ins | 19

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Technology Plug-ins

The TIBCO iProcess Technology Plug-ins is a package that includes a number of
individual products. These products have been grouped together to ease their
installation.

The TIBCO iProcess Technology Plug-ins include the following individual
plug-ins1:

• TIBCO iProcess Java Server Plug-in - This plug-in enables the iProcess
Engine to process EAI Java steps that have been added to the iProcess
procedure. An EAI Java step enables you to design an iProcess procedure so
that you can call out to a custom Java object to perform some additional work.
For example, you can create a custom Java object to call business methods in
Enterprise Java Beans (EJBs), call a database via a JDBC connection, or post a
message on a Java Message Service (JMS) queue.

• TIBCO iProcess BusinessWorks Server Plug-in - This plug-in provides a way
of initiating a BusinessWorks process from the TIBCO iProcess Engine. It
provides the communication mechanism that allows the iProcess Engine to
make calls to TIBCO BusinessWorks.Enabling the iProcess Engine to integrate
with BusinessWorks provides a highly performant and versatile way of
integrating with other applications and technologies.

• TIBCO BusinessWorks iProcess Plug-in - This plug-in provides a set of
resources that allow a TIBCO BusinessWorks process to communicate with the
TIBCO iProcess Engine. For example, a BusinessWorks process can start or
suspend a case of an iProcess Engine procedure. The BusinessWorks iProcess
Plug-in includes facilities that enable you to create a form using TIBCO
BusinessWorks FormBuilder, and then provide it to the iProcess Workspace
(Browser).

• TIBCO iProcess Conductor Server Plug-ins - These consist of the following
plug-ins:

— TIBCO iProcess Conductor Order Server Plug-in - This plug-in
provides an interface that notifies the TIBCO iProcess Conductor of
the status of the order. It also enables you to update order data from
the TIBCO iProcess Conductor in the TIBCO iProcess Engine and vice
versa.

1. To improve the installation process, a new assembly-based combined installer was introduced
in Version 10.6, giving a standard installation process for all the iProcess Technology Plug-ins.
Previously, these products were installed separately.
 TIBCO iProcess Engine Architecture Guide

20 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
— TIBCO iProcess Conductor Orchestration Server Plug-in - This
plug-in provides the communication mechanism that allows the
iProcess Conductor to pass iProcess data to the TIBCO iProcess
Conductor and for the TIBCO iProcess Conductor to process the data
before sending the resulting data back to the TIBCO iProcess Engine.

• TIBCO iProcess Conductor XML Transform Server Plug-in - This plug-in
provides the facility to transform XML to/from iProcess field data and/or a
designated URL. For example, an EAI Transform step could be used to take
XML data from an iProcess memo field, apply a transformation to the data,
and pass the result to another memo field. Equally, XML data can be parsed
and mapped onto discrete iProcess fields.

For Information For information about the TIBCO iProcess Technology Plug-ins, see the following:

• TIBCO iProcess Java Plug-in: User's Guide

• TIBCO iProcess BusinessWorks Connector User's Guide

• TIBCO iProcess Conductor: Implementation Guide

• TIBCO Business Studio Modeling: User's Guide
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Web Services Plug-in | 21

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Web Services Plug-in

Description The main function of the iProcess Web Services Plug-in is to provide an interface
for both inbound and outbound communication between the iProcess Engine and
external applications:

• Outbound - iProcess procedures make calls to external applications to
perform some operation.

• Inbound - External applications make calls to iProcess to perform operations
such as starting cases, triggering events or suspending cases.

The iProcess Web Services Plug-in consists of three components:

• TIBCO iProcess Web Services Server Plug-in.

This consists of:

— Jetty - This is a Java HTTP Server and Servlet Container that runs on a Java
Virtual Machine (JVM) and the components contained in Jetty handle
communication for both inbound and outbound calls.

— iProcess Engine Interface - This consists of an EAI Plug-in. It allows the
iProcess background processes to communicate with Jetty.

• TIBCO iProcess Web Services Client Plug-in

This plug-in needs to be installed on your client machine that hosts your
iProcess Workspace (Windows) and iProcess Modeler. This plug-in enables
you to define EAI Web Service steps in your iProcess procedures.

For Information For information about the TIBCO iProcess Web Services Plug-in, see the TIBCO
iProcess Web Services Plug-in: User's Guide.
 TIBCO iProcess Engine Architecture Guide

22 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Workspace (Browser)

Description The TIBCO iProcess Workspace (Browser) is a client application that enables users
to participate in business processes. It enables users to view and perform the
work that has been assigned to them. This means that the movement of
data/information is automated through your business process, whatever your
business may be. For example, it may automate the process of filing an insurance
claim, a loan application, or any process that has multiple steps.

The TIBCO iProcess Workspace (Browser) application is run in a browser (e.g.,
Microsoft Internet Explorer). You connect to a TIBCO iProcess Engine over the
internet or an intranet by entering a web address that is determined by the
location at which your TIBCO software is installed.

The type of functions you can perform are:

• Open and view work queues

• Apply filter and/or sort parameters to a work queue so only the desired work
items are listed in the desired order.

• Open and view work items

• Enter information into forms that are displayed when you open a work item.

• Either “keep” a work item, which closes it and places it back in the work
queue, or “release” a work item, which causes the case to advance to the next
step in the procedure.

• Forward work items to a different work queue (user or group).

• Start a case of a procedure.

• Suspend or reactivate a case.

• View the history of a case.

• Allow temporary access to your personal work queue to another user.

• Temporarily redirect work items from your work queue to another work
queue.

For Information For information about the TIBCO iProcess Workspace (Browser), see the
following:

• TIBCO iProcess Workspace (Browser) User's Guide

• TIBCO iProcess Workspace (Browser) Configuration and Customization Guide

• TIBCO iProcess Workspace (Browser) Action Processor Reference Guide
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Workspace Plug-ins | 23

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Workspace Plug-ins

The TIBCO iProcess Workspace Plug-ins is a package that includes a number of
individual products. These products have been grouped together to ease their
installation.

The iProcess Workspace Plug-ins include the following individual plug-ins1:

• iProcess Java Client Plug-in - This plug-in enables the iProcess Engine to
define EAI Java steps to be added to an iProcess procedure. An EAI Java step
enables you to design an iProcess procedure so that you can call out to a
custom Java object to perform some additional work. For example, you can
create a custom Java object to call business methods in Enterprise Java Beans
(EJBs), call a database via a JDBC connection, or post a message on a Java
Message Service (JMS) queue.

• iProcess BusinessWorks Client Plug-in - This plug-in enables you to define
EAI BusinessWorks steps in an iProcess procedure. EAI BusinessWorks steps
allow an iProcess Engine procedure to invoke a TIBCO BusinessWorks
process definition.

• iProcess Conductor Client Plug-ins (Order and Orchestration) - The
Orchestration plug-in enables you to define Orchestration steps in your
iProcess procedures. The Order plug-in enables you to define Order steps in
your iProcess procedures.

• iProcess Conductor XML Transform Client Plug-in - This plug-in enables
you to define Transform steps in your iProcess procedures.

For Information: For information about the TIBCO iProcess Workspace Plug-ins, see the following:

• TIBCO iProcess Java Plug-in: User's Guide

• TIBCO iProcess BusinessWorks Connector User's Guide

• TIBCO iProcess Conductor Implementation Guide

1. To improve the installation process, a new assembly-based combined installer was introduced
in Version 10.6, giving a standard installation process for all the iProcess Workspace Plug-ins.
Previously, these products were installed separately.
 TIBCO iProcess Engine Architecture Guide

24 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess™ Workspace (Windows)

TIBCO iProcess Workspace (Windows) is provides the ability to define and
manage procedures.

The TIBCO iProcess Workspace (Windows) consists of:

• The Work Queue Manager

• The Procedure Manager

The Work Queue Manager displays users’ queues and work items and the
Procedure Manager displays all of the procedures currently available. From the
Procedure Manager, you can:

• create and edit procedures. The TIBCO iProcess Modeler is started from
TIBCO iProcess Workspace (Windows).

• organize and manage your procedures as a hierarchical structure of procedure
libraries, in the same way as, for example, you manage files and directories.

TIBCO iProcess Workspace (Windows) includes:

• TIBCO iProcess Modeler - gives you a visual representation of your business
process that is easy to follow and that can be enhanced or amended at any
time. The TIBCO iProcess Modeler builds on the familiar flowchart metaphor
to show in an unambiguous manner, the flow of work for a particular business
process. The rules that you define graphically are stored by the iProcess
Engine and can then be deployed across a wide ranging hardware
architecture.

The TIBCO iProcess Modeler is automatically started by TIBCO iProcess
Workspace (Windows) when you want to create or edit procedures. From the
TIBCO iProcess Modeler you can access the Step Definer, which enables you
to design the forms for each step in your procedure. The forms are the part of
the step seen by the person who receives the work item in their queue. The
forms contain text and fields into which users can enter information for a
particular case, or instance, of a procedure.

• TIBCO iProcess Administrator - The TIBCO iProcess Administrator enables
you to perform the tasks involved to administer iProcess Workspace
(Windows), such as managing users, cases and work queues. It is a graphical
utility that can be used on any iProcess Workspace (Windows) to perform
common administration functions on the TIBCO iProcess Engine.

Business processes can also be modelled in TIBCO Business Studio. See
TIBCO Business Studio™ on page 4 for more information.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess™ Workspace (Windows) | 25

B
ac

k
to

 L
ib

ra
ry
For Information For information about TIBCO iProcess Workspace (Windows), see the following:

• TIBCO iProcess Workspace (Windows) User's Guide

• TIBCO iProcess Workspace (Windows) Manager's Guide

• TIBCO iProcess Modeler - Getting Started

• TIBCO iProcess Modeler - Basic Design

• TIBCO iProcess Modeler - Advanced Design

• TIBCO iProcess Modeler - Procedure Management

• TIBCO iProcess Modeler - Integration Techniques

• TIBCO iProcess Expressions and Functions Reference Guide
 TIBCO iProcess Engine Architecture Guide

26 | Chapter 1 Introduction to TIBCO iProcess Products

B
ac

k
to

 L
ib

ra
ry
TIBCO Rendezvous®

Description Rendezvous software makes it easy to create distributed applications that
exchange data across a network. You get software support for network data
transport and network data representation. Rendezvous software supports many
hardware and software platforms, so programs running on many different kinds
of computers on a network can communicate seamlessly.

From the programmer’s perspective, the Rendezvous software suite includes two
main components—a Rendezvous programming language interface (API) and the
Rendezvous daemon.

Rendezvous software includes several programming language interfaces, which
are efficient, easy to use, and compatible with most other libraries (including
window systems).

The Rendezvous daemon runs on each participating computer on your network.
All information that travels between program processes passes through the
Rendezvous daemon as the information enters and exits host computers. The
daemon also passes information between program processes running on the same
host.

Rendezvous programs are programs that use Rendezvous software to
communicate over a network.

A Rendezvous distributed application system is a set of Rendezvous programs
that cooperate to fulfill a mission.

TIBCO Rendezvous is delivered with the TIBCO iProcess Engine to enable the
iProcess Engine to communicate with other TIBCO products, for example, TIBCO
BusinessWorks and TIBCO iProcess Insight.

For More
Information

For more information about TIBCO Rendezvous, see the TIBCO Technical
Publications Document Library.

For information on configuring TIBCO Rendezvous for use with the TIBCO
iProcess Engine, see the TIBCO iProcess Engine Administrator’s Guide.
TIBCO iProcess Engine Architecture Guide

| 27

B
ac

k
to

 L
ib

ra
ry
Chapter 2 Introduction to the TIBCO iProcess Engine

This chapter provides an overview of the TIBCO iProcess Engine architecture and
the server processes that are involved to process business process information. It
also contains some important TIBCO iProcess Engine concepts, which you need to
be familiar with when administering the TIBCO iProcess Engine. This chapter
describes:

• the role of the TIBCO iProcess Engine - see page 29.

• the physical architecture of the TIBCO iProcess Engine - see page 30.

• how TIBCO iProcess Workspace communicates with the TIBCO iProcess
Engine - see page 31.

• the basic process structure of the TIBCO iProcess Engine - see page 33.

• the role of the TIBCO iProcess Engine Process Sentinels -see page 33.

• the concepts of work items and messages - see page 38.
 TIBCO iProcess Engine Architecture Guide

28 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Architecture

Click on a process to find out more information

Key

Single instance of
a process

Multiple instances
of a process

Message Layer

Mbox Set 1 Mbox Set 2

TIBCO iProcess

Workspace

RPC Pool Server

Work Item
Server

WIS Mbox
Daemon

Process
Sentinels

Deadline
Manager

RPC Listeners

Case Prediction
Processor(s)

Background

RPC
Background

Process

Work Queue
Server

IAPJMS Process

TIBCO
iProcess

Engine DB
Schema

FOREGROUND

BACKGROUND

MBOX
SET
TIBCO iProcess Engine Architecture Guide

The Role of the TIBCO iProcess Engine | 29

B
ac

k
to

 L
ib

ra
ry
The Role of the TIBCO iProcess Engine

The following example demonstrates the role of the TIBCO iProcess Engine in the
business process automation environment. In a typical business process where an
item is purchased from an office supplies company you would go through a
number of steps:

1. Obtain authorization.

2. Allocate requisition number.

3. Submit expense claim.

When a case of the procedure is started by an individual from a computer
running TIBCO iProcess Workspace, a number of processes are used to process
the information contained in one step before the next step can be performed.

The TIBCO iProcess Engine maintains the list of work items in a user’s work
queue for all the active cases to be processed. If the first step was opened,
completed and released, the TIBCO iProcess Engine determines the subsequent
actions for the step and updates the necessary case data in the database.

In this example, after the Authorization step is released, the TIBCO iProcess
Engine reads the procedure definition and determines that the next step is the
Allocate Requisition Number. The addressee of this step is determined and a
work item with the relevant form is sent back to the appropriate work queue for
the TIBCO iProcess Workspace to display.
 TIBCO iProcess Engine Architecture Guide

30 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
iProcess Physical Architecture

The following section describes:

• installing the TIBCO iProcess Engine on a single server

• installing the TIBCO iProcess Engine on mulitple servers

Installing the iProcess Engine on a Single Server
A TIBCO iProcess Engine installation on one server is known as a TIBCO
iProcess Engine node. All the iProcess Engine processes are run on a single
server.

The following diagram shows a TIBCO iProcess Engine (node) that comprises of
one server.

.

Installing the iProcess Engine on a Node Cluster
Installing the TIBCO iProcess Engine on multiple servers that all use the same
database instance is known as a node cluster architecture. You can convert from a
single-server to a node cluster at any time simply by adding another server to the
installation. In the node cluster architecture, you can have a number of TIBCO
iProcess Engine processes running on different servers, but they act as though
they are a single iProcess Engine. Node clusters improve load balancing and
performance. However, all the TIBCO iProcess Engine case data such as fields and
their values in forms will be stored in one TIBCO iProcess Engine database
instance.

iProcess Engine
Processes

Server

 TIBCO iProcess Engine (Node)

iProcess
Engine

Database
Instance
TIBCO iProcess Engine Architecture Guide

iProcess Physical Architecture | 31

B
ac

k
to

 L
ib

ra
ry
The following diagram illustrates a TIBCO iProcess Engine (node cluster) that
uses two servers to run TIBCO iProcess Engine processes. They can all access
iProcess case data from the same TIBCO iProcess Engine database instance.

Note that:

• A complete installation of the iProcess Engine needs to be performed on each
machine in the node cluster.

• All the iProcess Engines point to a single database instance. Within the
database there is a single engine configuration that specifies which
executables are configured to run on each server.

• The iProcess sentinels are configured to run on each machine. One server in
the cluster is designated as the master server and the iProcess Sentinels on this
server co-ordinate the startup, shutdown and management of the processes on
all machines in the cluster.

• The iProcess Sentinels on the slave servers manage the executables designated
to run on that machine.

• All servers that form part of the node cluster are required to provide full
operation. See The iProcess Engine and Hardware Clustering on page 42 for
information about failover capabililty for the iProcess Engine.

TIBCO iProcess Workspace and TIBCO iProcess Engine Communication
The TIBCO iProcess Engine uses a client/server model for communication where
there is a two way communication path between each TIBCO iProcess Workspace
client and TIBCO iProcess Engine server. The communication protocol used for
this communication is called Remote Procedure Call (RPC).

iProcess Engine
Processes

Server

iProcess Engine
Processes

Server

 TIBCO iProcess Engine (Node Cluster)

iProcess
Engine

Database
Instance
 TIBCO iProcess Engine Architecture Guide

32 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
Information keyed in at the client needs to be passed to the TIBCO iProcess
Engine for processing, for example when completing an insurance claim form, the
new or updated data needs to be processed, stored, or updated so that subsequent
steps can use the information. Information also needs to be passed from the
TIBCO iProcess Engine to one of the TIBCO iProcess Workspaces, for example to
tell the client what the next step in the business process is or show previous
details about a work item that has already been entered.

Refer to Network Communication on page 123 for more information about
TIBCO iProcess Workspace and TIBCO iProcess Engine communication.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Engine Process Structure | 33

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Process Structure

In order to understand the flow of data through the TIBCO iProcess Engine and
the relationship of TIBCO iProcess Engine processes, you can think of the TIBCO
iProcess Engine as being split into the following four areas.

An TIBCO iProcess Engine process operates in either the foreground or
background layer. The Mbox set provides the communication link between the
foreground and background processes. This is the Messaging layer where
instructions are sent from the foreground to the background and vice versa.

The foreground area deals with the user interaction, list of queues and their
contents. The background processes perform the case processing.

The Process Sentinels keep control of all the processes to make sure they are
always running.

Process Sentinels
The Process Sentinels (SWDIR\etc\procmgr) are responsible for controlling all
the TIBCO iProcess Engine processes. If a node cluster architecture is used, then
the Process Sentinels will exist on each server to manage the processes running on
that server. This process operates in different ways depending on whether you are
using a third party transaction processing monitor.

In a node cluster, the Process Sentinels have a master process on one of the
servers, which manages and controls slave Process Sentinels on all the other
servers in the node cluster.

The Process Sentinels control the safe start up and shut down of processes on one
or multiple servers i.e. making sure processes are started in the correct sequence.

Foreground

Background

Mbox Set

Process Sentinels
 TIBCO iProcess Engine Architecture Guide

34 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
The Process Sentinels can also monitor processes to check that they are running
and can automatically restart them if they fail. It can also detect if
SWDIR\logs\sw_error and SWDIR\logs\sw_warn files have been created and
sends a work item to the administrator to inform them that these files have been
created.

Refer to Process Management on page 109 for more information about the Process
Sentinels.

Foreground Processes
These processes are responsible for communicating with the TIBCO iProcess
Workspaces and for passing any TIBCO iProcess Workspace requests such as
released work items to the background area for processing.

The following table shows the processes that operate in the foreground:

Refer to Foreground Processes on page 60 for more information about what these
processes do.

Mbox Sets
The Mbox Sets are responsible for communicating information between the
foreground and background processes. It is essentially the messaging system that
stores and processes messages from TIBCO iProcess Workspace or TIBCO
iProcess Engine requests. Mbox sets comprise of one or more message queues.

The messaging system used is:

• in the UNIX Oracle and Windows Oracle versions, Oracle AQ. This is a
transactional messaging system provided by the Oracle database.

Process Description Logical Process Name

Work Queue Server WQS

Work Item Server WIS

WIS Mbox Daemon WISMBD

RPC listeners RPC_TCP_LI and RPC_UDP_LI

RPC pool server RPC_POOL

All of the foreground processes must operate on the master server. See
Determining Where Processes Run on page 116 for more information.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Engine Process Structure | 35

B
ac

k
to

 L
ib

ra
ry
• in the UNIX DB2 and Windows SQL Server versions, the iProcess Suite’s own
transactional messaging system, which uses database tables provided by the

DB2 or Microsoft® SQL Server database.

The messaging system provides the ability to store messages in tables. This means
that message queues are highly scalable and have a guaranteed delivery
mechanism.

See iProcess Mbox Sets on page 87 for more information about the Mbox sets.

Background Processes
The background processes are responsible for processing message instructions
received from the clients such as releasing a step or forwarding a step. They also
monitor and process any deadlines that have been set up in the procedure and
manage case prediction.

The following processes operate in the background:

Refer to Background Processes on page 70 for more information about what these
processes do.

Event Handling
The TIBCO iProcess Engine uses a publish/subscribe event mechanism to handle
the following inter-process tasks:

• notifying processes to update caches.

• synchronization of process startup and shutdown.

Process Description Logical Process Name

Background BG

Case Prediction BGPREDICT

Database Queue Daemon DBQDa

a. This process is only present on the DB2 version of the TIBCO iProcess Engine.

Deadline Manager DLMGR

IAPJMS IAPJMS

RPC Background RPCBG
 TIBCO iProcess Engine Architecture Guide

36 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
The event handling mechanism used depends on the TIBCO iProcess Engine
variant used, as follows:

• UNIX Oracle version. Events are handled using Oracle AQ’s publish/subscribe
interface.

• Windows Oracle and Windows SQL Server versions. Events are handled using the
Staffware Events COM+ application, which is installed with the TIBCO
iProcess Engine. All processes that want to subscribe to events register with
the Staffware Events COM+ application.

• UNIX DB2 version. Events are handled using iProcess event/notification
daemons.

The event daemon is a single thread created by the Process Sentinel watcher
process. The event daemon:

— tracks which processes have subscribed to which events. (It maintains this
information both in memory and in the sw_subscription_list database
table.)

— receives events when they are published.

— forwards notification of an event to the notification daemon in each
subscribed process.

A notification daemon is a thread created by any TIBCO iProcess Engine
process that wishes to receive event notifications.

If you are using a node cluster architecture, the Staffware Events COM+
application runs by default on the machine on which you installed the master
server. If performance is or becomes an issue, TIBCO recommend that you
dedicate a separate server, which is not running any TIBCO iProcess Engine
processes, as the event server. This will reduce the load on the master server.

The name of the event server is stored in the Windows registry, so you will
need to change this if you move the COM+ application to a new server. (See
the TIBCO iProcess Engine Administrator’s Guide for more information.)
TIBCO iProcess Engine Architecture Guide

Where is TIBCO iProcess Engine Case Data Stored? | 37

B
ac

k
to

 L
ib

ra
ry
Where is TIBCO iProcess Engine Case Data Stored?

All iProcess case data (the information provided by users in forms such as
customer details, orders, etc.) is stored in the TIBCO iProcess Engine database
instance. This means that all important iProcess data can be backed up and
restored as part of your regular database backup policy.
 TIBCO iProcess Engine Architecture Guide

38 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
How Do Work Items Appear in Work Queues?

For any work item to appear in a user’s work queue, a work item record has to
exist on the server for the TIBCO iProcess Workspace to know about it. The record
contains information about the work item such as its case number, where in the
database the fields and values are stored, the addressee and procedure, etc.

The WIS process contains work item records that define what work items are in
the queue. The WIS reads the staffo database table which contains all the work
item records where one row in the table represents one work item record. Each
work item entry in the table contains specific information about the work item
such as its case number, unique identifier, case description, name and node of case
starter, etc. The TIBCO iProcess Workspace also calls the RPC server which makes
requests to the database tables to retrieve fields and their values and any memos
and attachments.

Sending Instructions From the TIBCO iProcess Workspace to the TIBCO
iProcess Engine

When a user processes a work item by either Keeping or Releasing it, the TIBCO
iProcess Workspace creates a package of instructions that are sent to the TIBCO
iProcess Engine. This package contains all the information about the work item,
such as what fields and data are shown on the form, what fields may have
changed, and the instruction to be performed.

The message is sent from the TIBCO iProcess Workspace to the TIBCO iProcess
Engine in packets via RPC calls. The package is split up into its various
components so that an instruction message is sent to the background and any case
data updates are made by updating the database. The instruction message is
enqueued to a Mbox message queue where it waits to be processed by one of the
background processes.

The Background process reads the message queues for new messages so it
dequeues the message from the queue and then processes the case instructions.
The Background performs the necessary actions such as update the changed
fields in the database and determine what the next step is and who to send it to.
TIBCO iProcess Engine Architecture Guide

How Do Work Items Appear in Work Queues? | 39

B
ac

k
to

 L
ib

ra
ry
Mbox Sets
The message system is able to distribute messages across physical Mbox queues,
which means that high volumes of messages can be handled. The Mbox queues
are grouped into logical sets (Mbox sets) with each set configured for a specific
purpose. Different processes require access to different Mbox sets, for example the
instruction processor requires write access to a background Mbox, and WIS
Mbox.

Message Queues

All TIBCO iProcess messages are posted to a central queue repository (Mbox).
This is hosted by:

• in the UNIX Oracle or Windows Oracle versions, a set of tables using Oracle
Advanced Queues (Oracle AQ).

• in the UNIX DB2 or Windows SQL Server versions, a set of iProcess queue tables
in the database.

The Mbox can be configured to be a number of queues in a number of database
tables, and even split across physical disks. Therefore, even though the Mbox
appears as a single queue, it could consist of multiple queues in multiple tables
across multiple disks.

The messaging system provides an assured delivery mechanism for instruction
and request messages between the foreground and background.

The SQL Server database queue tables can be created in the same database as
iProcess, or a different database on the same SQL Server. Refer to the TIBCO
iProcess Engine Installation Guide for more information about the location of
database queue tables.
 TIBCO iProcess Engine Architecture Guide

40 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
User Access to iProcess Engine Work Queues
The total number of work queues a single iProcess user can have access to is
32,767.

If the number of work queues a iProcess user has access to exceeds 32,767, the
iProcess user is not able to login to the iProcess Engine and the following error
message is displayed:

Sal Queues Interface 'sal_queues_count()' returned fatal error -n. Called by
wqsess_lcreat_folder.

Abort WorkQs?

where n is the total number of work queues.

This only affects the single user who has access to too many work queues. All
other iProcess users will be able to log in to the iProcess Engine without any
problems.

An iProcess user can have access to the following work queues:

• Their Personal Queue which only they can access.

• Any Group Queues that they are a member of.

• Any Test User Queues or Test Group Queues, if the user is allowed to define
procedures.

An iProcess user can also be given access to work queues in the following ways:

• By being a supervisor of a work queue.

• By being a participant of a work queue.
TIBCO iProcess Engine Architecture Guide

How Do Work Items Appear in Work Queues? | 41

B
ac

k
to

 L
ib

ra
ry
For example, the following table illustrates the total number of work queues a
user called swusr001 has access to:

From the example above, you can see that the number of work queues a user can
have access to can quickly increase if that user is a member of several groups and
is a supervisor or participant of several queues.

This means it is important to plan in advance the number of work queues you
want to create and how many supervisors and participants you are going to need.
For example, if you want to create 17,000 work queues on your TIBCO iProcess
Engine, you could not make a single user both a supervisor and a participant of
all 17,000 work queues. This is because that user would then have access to 34,000
work queues which would exceed the limit.

If you do want to create a large number of work queues and you want to have
supervisors and participants for them, you would have to split them between
more than one user. For example, if you had 17,000 work queues you could make:

• swusr001 a participant of all 17,000 work queues

• swusr002 a supervisor of all 17,000 work queues.

Work Queues that swusr001 has access to:

Personal Queue swusr001

Group Queue group1

Test User Queue swusr001

Test Group Queue group1

Supervisor of swusr002,
swusr003

Participant of swusr002

Total number of work queues that swusr001 has access to: 7
 TIBCO iProcess Engine Architecture Guide

42 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
24*7 TIBCO iProcess Engine Operation

The TIBCO iProcess Engine is designed to continue running non-stop even when
administration tasks need to be performed. This is achieved by:

• all case data being stored in a database. Online backup and restore is
performed via your database tools.

• automatically restarting TIBCO iProcess Engine processes if they fail at any
time. This is achieved by the TIBCO iProcess Engine Process Sentinels
monitoring all the processes that are running to make sure they are running
and if not, restart them.

• TIBCO Hawk, supplied with the iProcess Engine, a monitoring system that
enables you to monitor the TIBCO iProcess Engine server processes. For
example, you can use TIBCO Hawk to check what iProcess Engine server
processes are running or stop and start them.

• New or updated procedures and processes can be deployed without affecting
work in progress.

The iProcess Engine and Hardware Clustering
To cater for the loss of a physical server, the iProcess Engine can be deployed with
a hardware cluster. The following section describes:

• Deploying the iProcess Engine in a hardware cluster for UNIX

• Deploying the iProcess Engine in a hardware cluster for Windows
TIBCO iProcess Engine Architecture Guide

24*7 TIBCO iProcess Engine Operation | 43

B
ac

k
to

 L
ib

ra
ry
Deploying the iProcess Engine in a Hardware Cluster for UNIX

There are two methods of deploying a hardware cluster, active-active and cold
standby. The iProcess Engine is not supported in an active-active hardware
cluster. However, it is supported in a cold standby hardware cluster. An example
of a cold standby hardware cluster is shown below:

Each server is built in exactly the same way. Servers A and B are up and running
and server C is a cold standby. If server A or B fails, server C is started and takes
the place of the failed server.

To deploy the iProcess Engine in a cold standby hardware cluster:

• An iProcess Engine should be installed on each server in the cluster.

• If Server A or B fails, start the cold standby server and use SWDIR\swadm
move_server to move the iProcess Engine processes from the failed to server
to the cold standby server. See "Administering Servers" in the TIBCO iProcess
Engine Administrator’s Guide for more information about the SWDIR\swadm
move_server command.

Server A

iProcess
Engine

Server B

iProcess
Engine

Server C
(Cold Standby)

iProcess
Engine

iProcess
Database

This can be done automatically by writing a script that uses the
SWDIR\swadm move_server command.
 TIBCO iProcess Engine Architecture Guide

44 | Chapter 2 Introduction to the TIBCO iProcess Engine

B
ac

k
to

 L
ib

ra
ry
Deploying the iProcess Engine in a Hardware Cluster for Windows

The iProcess Engine can be used with Microsoft Server Clustering when deployed
in a Windows environment. Microsoft define a cluster as "a group of independent
computers that work together collectively to provide a common set of services".
When combining an iProcess node cluster with a Microsoft Server Cluster, each
iProcess Engine node is contained within its own virtual server. Each virtual
server is run on its own physical server. The iProcess Engine is installed on a
shared disk that is accessible to all servers in the cluster. It is configured to work
within the virtual server at installation by specifying a Cluster Network Name. If
a physical server fails, the Microsoft Server Cluster automatically relocates the
virtual server onto a secondary physical server and restarts the iProcess Engine.

To install the iProcess Engine in a Microsoft Windows Cluster, see either the
TIBCO iProcess Engine (Oracle) for Windows Installation or the TIBCO iProcess
Engine (SQL) for Windows Installation guide, depending on the version of the
database you are using.
TIBCO iProcess Engine Architecture Guide

| 45

B
ac

k
to

 L
ib

ra
ry
Chapter 3 Using the TIBCO iProcess Suite in a
Multilingual Environment

This chapter describes how globalization is supported by TIBCO iProcess Suite. It
also describes the steps you should follow to implement TIBCO iProcess Suite in
an international environment and the advantages and costs of the different ways
in which TIBCO iProcess Suite can support globalization.
 TIBCO iProcess Engine Architecture Guide

46 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
Overview

TIBCO iProcess Suite consists of many different products. A typical environment
could be made up of any number or combination of iProcess products.

The diagram below illustrates how data is transmitted between products in the
iProcess Suite.

Note that:

• The diagram indicates that some components, including the iProcess Engine
can use either native encoding or UTF-8. Depending on the encoding used by
other components in the iProcess Suite, the iProcess Engine performs the
necessary data conversions. For information about setting the encoding
attributes for iProcess components, refer to the documentation supplied with
the components.
TIBCO iProcess Engine Architecture Guide

Overview | 47

B
ac

k
to

 L
ib

ra
ry
• The iProcess database can use either UTF-8 or native encoding. This is a choice
that you can specify when you install or upgrade the iProcess Engine.

— If you choose to use UTF-8 for the iProcess database, the iProcess Engine
also operates in UTF-8.

— If you choose not to use UTF-8 for the iProcess database, the iProcess
Engine uses native encoding.

See the TIBCO iProcess Installation guide for your operating system for setting
this option. Before deciding on an encoding, make sure you understand the
issues discussed in this chapter.

• Each component that communicates with an external application must use the
same character set as the external application. See Implementing iProcess
Suite in an International Environment with Native Encoding on page 58.
 TIBCO iProcess Engine Architecture Guide

48 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
Globalization Options in the iProcess Suite

From version 11.1, the TIBCO iProcess Suite supports Unicode (UTF-8) character
encoding. At installation time, you can enable UTF-8 support, or continue to use
native encoding. See the TIBCO iProcess Engine Installation guide for your
operating system for information on setting this option.

Advantages of UTF-8 Encoding
TIBCO iProcess Suite’s support for UTF-8 (or UCS-2 in the case of SQL Server)
enables you to work not simply in an international, but in a multi-national
environment, using more than one multi-byte character set simultaneously.

This means that one TIBCO iProcess site can host multiple regions. For example,
an enterprise operating globally could support data in Chinese, Japanese, Russian
and English character sets in the same database. Work can be partitioned so that
an end user working in this installation will normal see only work in his or her
language:

This is not possible without UTF-8 support because an iProcess Engine
installation can support only one native character set. This option also simplifies
using external UTF-8 applications. The conversions described in Globalization
Support Using Native Encoding on page 56 are not necessary if the iProcess
Engine supports UTF-8.

In this example, you must ensure that users of the Japanese and Korean
application do not receive each other’s work items because the characters will not
display correctly.
TIBCO iProcess Engine Architecture Guide

Globalization Options in the iProcess Suite | 49

B
ac

k
to

 L
ib

ra
ry
An additional advantage of using UTF-8 is that WIS searches using wildcard
characters are also more consistent. For example, the expected results for filtering
work items with the expression a?c would be items such as aac, abc, acc, and so
on. However, searches are performed by a comparison of bytes, not characters, so
actual results could include a, followed by a Japanese character that includes c in
its byte representation, followed by c. This situation is avoided when the iProcess
Engine uses UTF-8.

Issues with UTF-8 Encoding
While UTF-8 encoding is more versatile than alternatives, there are some issues of
which you should be aware when deciding whether to use this encoding:

• Some other multi-byte character encoding systems are more efficient than
UTF-8, in terms of the number of bytes they use per character. This means that
converting from such a system, for example from Big5 encoding of Chinese
characters to UTF-8, will result in a larger database. Perhaps more
importantly, some items may overflow the space designed for them. For
example, an increase from using 2 bytes to represent a character to 3 bytes
means that a case description limited to 24 bytes can only contain 8 characters
rather than 12 characters.

• The TIBCO iProcess Workspace (Windows) client does not itself use UTF-8
encoding. It converts data from the native character encoding for its locale to
UTF-8 to send to the iProcess Engine, and similarly converts data it receives
from the iProcess Engine from UTF-8. It is therefore possible that the same
issue of space mentioned in the previous point could arise. Data entered in a
native character encoding could end up being stored in the iProcess database
as a larger number of bytes.

For these reasons, if you are using UTF-8 encoding, TIBCO recommends using
TIBCO Business Studio for modeling processes, and either TIBCO iProcess
Workspace (Browser), or an application that utilizes SSO for processing work
items.

• With multiple TIBCO iProcess Workspace (Windows) clients that use different
locales, you must ensure that you do not address work items to users in
different locales as unpredictable results can occur.

iProcess Names
Some internal names are supported in iProcess Engine only as 7-bit ASCII. These
names are not normally seen by end-users, and generally do not exceed eight
bytes in length. This affects the following items:

• Procedure name
 TIBCO iProcess Engine Architecture Guide

50 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
• Field name

• Node name

• List name

• Table name

• Step name

• Attribute name

• Role name

If you access these internal names, do not use them to store data that exceeds 7-bit
ASCII.

UserName is not affected by this limitation.
TIBCO iProcess Engine Architecture Guide

Recommendations | 51

B
ac

k
to

 L
ib

ra
ry
Recommendations

You should consider carefully whether you want to support UTF-8 encoding.
While circumstances differ between individual cases, TIBCO recommends that:

• New iProcess Engine installations should always opt to use UTF-8 encoding.
This enables your installation to convert to supporting multiple multi-byte
character sets even if you don’t need it now, at little cost.

• Existing iProcess Engine installations should upgrade based on the type of
character encoding currently in use:

— Existing iProcess Engine installations that use a single-byte character set
should in most cases opt to use UTF-8 encoding. This ensures that you can
convert to supporting multiple languages should it become necessary at a
later date.

— Existing iProcess Engine installations that already use a multi-byte native
character set should not use UTF-8, because of the likely increase in database
size and in the length of individual items, as well as the risk of data
truncation in the conversion process (see Issues with UTF-8 Encoding on
page 49).
 TIBCO iProcess Engine Architecture Guide

52 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
Configuring the iProcess Suite Using UTF-8

When implementing an iProcess Suite installation in an multi-national
environment using UTF-8 encoding, you need to consider the flow of data
between the individual products that make up the iProcess Suite. Some products
need particular settings configured in order to communicate with the UTF-8
character set.

Identify which parts of the iProcess Suite you are using and the physical locations
of those products. The components that require consideration are:

• iProcess clients

• IAPJMS process

• LDAPCONF Utility

• iProcess Plug-ins

• TIBCO Business Studio

TIBCO iProcess Engine
The following configuration needs to be done on the TIBCO iProcess Engine:

• The IAPJMS process on the TIBCO iProcess Engine needs to be configured to
use UTF-8 by setting the IAPJMS_LANGUAGE process attribute. Use the
SWDIR\util\swadm utility as follows:

swadm set_attribute 0 ALL 0 IAPJMS_LANGUAGE UTF-8

• On Oracle and DB2, the following environment variable must be set to specify
the character set of the database:

— Oracle If iProcess Engine is used with a database supporting UTF-8, set the
variable NLS_LANG to AL32UTF8.

— DB2 If iProcess Engine is used with a database supporting UTF-8, set the
variable DB2CODEPAGE to 1208.

• Non-XML files (such as XFR or Abox files) are converted from the value
specified in the environment variable SW_FILE_ENCODING or, if that is
blank, from the encoding specified by the system locale. In most cases the
encoding will conform to that specified by the system locale, so this
environment variable can be safely left blank. However, in a situation where
multiple iProcess Engine installations exist on the same machine and serve
users with different language requirements, you may want override the locale
TIBCO iProcess Engine Architecture Guide

Configuring the iProcess Suite Using UTF-8 | 53

B
ac

k
to

 L
ib

ra
ry
setting using the environment variable. For example, depending on your
platform, you can set SW_FILE_ENCODING to UTF-8 as follows:

— In Windows
C:\> set SW_FILE_ENCODING=UTF-8

— In UNIX Korn Shell
$ export SW_FILE_ENCODING=UTF-8

— In UNIX C Shell
$ setenv SW_FILE_ENCODING UTF-8

— In UNIX Bourne Shell
$ SW_FILE_ENCODING=UTF-8;export SW_FILE_ENCODING

iProcess Clients
Any iProcess Clients, both iProcess Workspace (Windows) and iProcess
Workspace (Browser), send to and receive from iProcess Engine data encoded in
UTF-8. Any necessary conversions are carried out by the client.

TIBCO iProcess Workspace (Windows)

Using iProcess Workspace (Windows), no configuration is necessary. Conversions
take place automatically, as follows:

• Sending data to iProcess Engine, iProcess Workspace (Windows) converts it
from native encoding to UTF-8.

• Receiving data from iProcess Engine, iProcess Workspace (Windows) converts
it from UTF-8 to native encoding.

TIBCO iProcess Workspace (Windows) determines the native encoding to use
from the system locale to which it is set.

TIBCO iProcess Workspace (Browser)

If you are using iProcess Workspace (Browser), you must:

• On a UNIX system, set the TISOUnicodeConverterName environment
variable to UTF-8.

• On a Windows system, set the TISOUnicodeConverterName registry entry
(HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SSO
Client\) to UTF-8.

TIBCO iProcess Workspace (Browser) uses the TISOUnicodeConverterName
value to determine what encoding to use for communications with iProcess
Engine.
 TIBCO iProcess Engine Architecture Guide

54 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
The LDAPCONF Utility
If you use the LDAPCONF Utility and the system default encoding is not UTF-8,
ensure that option [10] Enable Attribute Value Translation from UTF-8 option is
deselected. If selected, this enables the conversion between the UTF-8 format used
by LDAP and the system locale of the iProcess Engine. If iProcess Engine is using
UTF-8, this conversion is redundant.

See "Setting up the Connection" in the LDAPCONF Utility User’s Guide for details
of this menu option.

TIBCO Business Studio
If you use TIBCO Business Studio, data sent from TIBCO Business Studio to
iProcess Engine is converted to the encoding specified in the process attribute
DEPLOY_XSL_OUT_ENCODING. Therefore you must:

• Set the iProcess Engine process attribute DEPLOY_XSL_OUT_ENCODING
to UTF-8 by using the SWDIR\util\swadm utility as follows:

swadm set_attribute 0 ALL 0 DEPLOY_XSL_OUT_ENCODING
UTF-8

(The default is ISO-8859-1.)

iProcess Plug-ins
All iProcess Plug-ins send data to and receive it from the iProcess Engine in UTF-8
encoding. Any necessary conversion is carried out by the Plug-in.

iProcess BusinessWorks Plug-in

The defaultEncoding attribute in the SWDIR/eaijava/encoding.properties file
must be set to the encoding used by the iProcess Engine. Therefore:

• Set the defaultEncoding attribute in the SWDIR/eaijava/encoding.properties
file to UTF-8.

iProcess Web Services plug-in

The WSDocumentHandler.Encoding attribute in the wsconfig.properties file
must be set to the encoding used by the iProcess Engine. Therefore:

Some iProcess Plug-ins do not require configuration for UTF-8 support; only
those that require configuration are listed in this section.
TIBCO iProcess Engine Architecture Guide

Configuring the iProcess Suite Using UTF-8 | 55

B
ac

k
to

 L
ib

ra
ry
• Set the attribute WSDocumentHandler.Encoding in the
WebServiceHome/jetty-6.1.1/staffware/wsconfig.properties file to UTF-8.

iProcess Email Plug-in

The Charset attribute in the eai_mail.cfg file must be set to the encoding used by
the iProcess Engine. The iProcess Email plug-in embeds this attribute in the
encoded-words streams for the MIME header fields subject, to address, cc
address, from address and others. Therefore:

• Set the attribute Charset in the SWDIR/lib/eai_mail.cfg file to UTF-8 for the
Windows platform.

• Set the attribute Charset in the SWDIR/libs/eai_mail.cfg file to UTF-8 for
UNIX platform
 TIBCO iProcess Engine Architecture Guide

56 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
Globalization Support Using Native Encoding

The following sections describe how an iProcess Suite installation that uses native
encoding rather than UTF-8 encoding. This type of environment supports either
of the following:

• a single-byte native character encoding environment

• a multi-byte native character encoding environment

Using iProcess Suite in a Single-Byte Native Encoding Environment
The following diagram shows iProcess Suite in an international environment that
uses a single-byte native character encoding environment (in this example,
Latin-1).

In this example:

• When text is entered, in either Spanish or French, into the external
applications, the data is encoded using UTF-8. UTF-8 is used to send the data
from the external applications to the web server.

• The web server converts the data from UTF-8 to Latin-1 and sends the data to
iProcess Engine.

• iProcess Engine inserts the data into the iProcess Database.

• The iProcess Database stores the data as Latin-1.

Note that:

• iProcess Engine supports a variety of character sets as its native character
encoding. However, iProcess Engine still needs to handle data in other
encodings. Therefore, iProcess Engine provides the functionality to convert
different character encodings into its native character encoding.

Some native multi-byte character sets are referred to as double-byte character sets
(such as BIG-5 or Shift-JIS).
TIBCO iProcess Engine Architecture Guide

Globalization Support Using Native Encoding | 57

B
ac

k
to

 L
ib

ra
ry
• It does not matter if the machines hosting the iProcess Database, iProcess
Engine, and iProcess Web Services Server and Client Plug-ins are all in
separate locations to the machines hosting the external applications.

Using iProcess Suite With a Multi-Byte Character Encoding Environment
The following diagram shows the iProcess Suite in an environment that uses one
multi-byte native character set.

In this example:

• When text is entered in Japanese into the external application the data is
encoded using UTF-8. UTF-8 is used to send the data from the external
application to the web server.

• The web server converts the data from UTF-8 to Shift-JIS (native encoding)
and sends the data to iProcess Engine.

• The iProcess Engine inserts the data into the iProcess Database.

• The iProcess Database stores the data as Shift-JIS (native encoding).

Note that:

• iProcess Engine supports a variety of character sets as its native character
encoding. However, iProcess Engine still needs to handle data in other
encodings. Therefore, iProcess Engine provides the functionality to convert
different character encodings into its native character encoding.

• It does not matter if the machines hosting the iProcess Database, iProcess
Engine, and iProcess Web Services Server and Client Plug-ins are all in
separate locations to the machines hosting the external applications.
 TIBCO iProcess Engine Architecture Guide

58 | Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment

B
ac

k
to

 L
ib

ra
ry
Implementing iProcess Suite in an International Environment with Native
Encoding

When implementing the iProcess Suite in an international environment, you need
to consider the flow of data between the individual iProcess products that make
up the iProcess Suite. Each iProcess product that needs to communicate with an
external application needs to be configured to use the same character set as the
external application.

An overview of steps you need to follow is:

1. Identify which iProcess products you are using and the physical locations of
those products. The components that require configuration for encoding are:

— your host system locale

— iProcess Engine database encoding

— iProcess Email Plug-in

— iProcess Workspace (Browser)

— iProcess Technology Plug-ins

— iProcess Web Services Plug-in

— LDAPCONF Utility

2. On the machines that are hosting the iProcess product components, check that
host system locales are using the correct character sets.

3. Set the encoding attributes for each component. Refer to the Installation or
user guides supplied with each component for information on how to do this.

4. 4. Non-XML files (such as XFR or Abox files) are always converted from the
encoding specified by the system locale. The environment variable
SW_FILE_ENCODING does not work in native mode.
TIBCO iProcess Engine Architecture Guide

| 59

B
ac

k
to

 L
ib

ra
ry
Chapter 4 TIBCO iProcess Engine Processes

This chapter provides detailed information about the TIBCO iProcess Engine
processes and how they interact with each other. The iProcess Engine Process
Sentinels are responsible for starting and stopping these processes and making
sure that they keep running. The Process Sentinels are described in Chapter 9 on
page 109.
 TIBCO iProcess Engine Architecture Guide

60 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
Foreground Processes

The following table summarizes the function of each foreground process.

Process
Description

Logical Process
Name

Process
Executable Function

Work Queue
Server

WQS wqsrpc The WQS is responsible for providing a
complete list of work queues on the
system, along with the RPC addresses
(RPC number and machine name) of the
WIS that handles each queue. It contains
the list of all the users and groups and
controls who has access to each queue.
Refer to page 61.

Work Item
Server

WIS wisrpc The WIS processes cache the contents of
the work queues and provide lists of
work items to TIBCO iProcess
Workspace.

The WIS processes concurrently produce
messages (under transaction control) to
be placed in the background Mbox set.
Each WIS process receives messages from
the WISMBD. These will be stored
temporarily in an in-memory buffer (per
physical work queue) for later retrieval
when the WIS performs an update from
the in-memory Mbox. Refer to page 65.

WIS MBOX
Daemon

WISMBD wismbd These are responsible for
dequeuing/reading the messages from
the WIS Mbox sets and passing them to
the appropriate WIS that is handling the
item. Refer to page 71.

RPC Pool
Servers

RPC_POOL swrpcsvr These manage and allocate the RPC
connections. For each user that logs into
iProcess using the TIBCO iProcess
Workspace, a connection to a swrpcsvr
pool process is allocated by the listener.
Each pool process maintains a pool of
connections.
TIBCO iProcess Engine Architecture Guide

Foreground Processes | 61

B
ac

k
to

 L
ib

ra
ry
Work Queue Server
The iProcess work queues, which contain all the user’s work items, are managed
by the following processes:

• Work Queue Server (WQS), which handles the listing of queues. This process
is run by SWDIR\etc\wqsrpc. There is only a single wqsrpc process running
at any time.

• Work Item Server (WIS), which handles the listing of work items in the
queues. This process is run by SWDIR\etc\wisrpc. The number of wisrpc
processes running is configured by the Process Sentinels (process_attribute
table).

The work queue processes are started automatically when the other TIBCO
iProcess Engine processes (such as the RPC pool servers) are started, and stopped
when the other TIBCO iProcess Engine processes are stopped. The Process
Sentinels start (and stop) processes in a specific sequence to make sure that
processes have all their dependent processes running.

When a TIBCO iProcess Workspace logs in to the TIBCO iProcess Engine, the
following sequence of events occur:

1. The TIBCO iProcess Workspace communicates with the RPC listener process
(RPC_TCP_LI or RPC_UDP_LI).

2. The RPC listener process provides the RPC number of a pool server (it can
start a new pool server if required).

3. The TIBCO iProcess Workspace connects to the pool server.

RPC Listener
(UDP)

RPC_UDP_LI swrpcudp For each user that logs into iProcess using
the TIBCO iProcess Workspace, a
connection to a swrpcsvr pool process is
allocated by the listener.RPC Listener

(TCP)
RPC_TCP_LI swrpcsvr

All of the foreground processes must operate on the master server. See
Determining Where Processes Run on page 116 for more information.

Process
Description

Logical Process
Name

Process
Executable Function

The WQS process handles what is displayed in the left hand pane of the Work
Queue Manager (the queue list) and the WIS process handles the contents of the
right hand pane (the work items list).
 TIBCO iProcess Engine Architecture Guide

62 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
4. The RPC listener provides the RPC number of the Work Queue Server that the
TIBCO iProcess Workspace then connects to.

5. The TIBCO iProcess Workspace communicates with the WQS.

6. The WQS provides the RPC numbers of the Work Items Servers that serve the
work queues in the TIBCO iProcess Workspace.

The TIBCO iProcess Workspace communicates with the WQS and the WIS via
RPC.

Refer to TIBCO iProcess Workspace and TIBCO iProcess Engine Network
Communication on page 124 for more information about RPC calls and how the
TIBCO iProcess Workspace and TIBCO iProcess Engine communicate over the
network.

The Work Queue Server controls which user and group queues a user will see on
their TIBCO iProcess Workspace and which WIS process is handling the queue.
The WQS provides a mapping to the appropriate work queues that are held in the
WIS processes. Each TIBCO iProcess Engine instance runs with one WQS process.

Shared memory is used for caching this information. This memory is released
when the instance has finished.

Work Queue Server (manages queue lists)

Work Item Servers (manage work item lists)

1 2

Q1 Q2

Q3 Q4

TIBCO iProcess Workspace

The TIBCO iProcess
Workspace can communicate
directly with the WIS and WQS
after the initial connection has
been made.
TIBCO iProcess Engine Architecture Guide

Foreground Processes | 63

B
ac

k
to

 L
ib

ra
ry
The WQS allocates work queues to the WIS processes that are running using
either round robin or on-demand allocation. You can configure which allocation
method is used by modifying the WQS_ROUND_ROBIN parameter in
SWDIR\etc\staffcfg.

Allocation of Work Queues to WIS Processes
The WQS process performs the work queue allocation. The WQS reads the list of
users and groups from the database and sorts them alphabetically and allocates
them to a particular WIS. The WQS allocates which WIS a work queue is sent to in
one of two ways.

Round Robin Queue Allocation

The WQS allocates a work queue to each WIS alphabetically, cycling round until
all the work queues are allocated. For example, if a system has 5 WIS processes
and 15 work queues (A-O) then the following allocation is performed:

• Queues A,F,K are allocated to WIS 1

• Queues B,G,L are allocated to WIS 2

• Queues C,H,M are allocated to WIS 3

• Queues D,I,N are allocated to WIS 4

• Queues E,J,O are allocated to WIS 5

This method of allocation takes no account of queue size so it is best used when
queues are evenly distributed with work items and user access is evenly spread.

On-Demand Queue Allocation

This method allocates work queues alphabetically but only to the first available
WIS. Therefore if a WIS is allocated a large work queue, it will take some time
before it is ready to accept another queue. This means that other WIS processes
that have smaller queues can accept more queues.

The effect of using on-demand allocation is that a more even distribution of work
is achieved. However, the initial allocation is based upon the initial loading size of
each queue so it may not be representative of the amount of requests to that work
queue.

As both methods allocate work queues alphabetically, it is possible to have some
control over queue allocation by careful naming of your queues. For example, if
all the larger queues are first alphabetically, the early WIS processes will start
getting these and the later WIS processes can pick up the smaller queues.
 TIBCO iProcess Engine Architecture Guide

64 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
Controlling the Assignment of Queues to WIS Processes

There are two additional methods you can use to customize the assignment
process to better reflect your system requirements, and so optimize performance.

• Use different WIS processes to handle user queues and group queues.

User queues and group queues frequently have different characteristics, in
terms of the amount of load they carry. For example, if group queues are far
more active than user queues on your system, you may want to give them
higher priority for WIS allocation.

• Assign a queue explicitly to a WIS process

If you have certain queues that are very large or very busy, you may find it
useful to dedicate specific WIS processes to handling only those queues
(leaving the remaining queues to be dynamically assigned to the remaining
WIS processes).

Refer to “Administering the Work Queue Server and Work Items Server” in the
TIBCO iProcess Engine: Administrator's Guide for more information.

RPC Pool Server
This process is responsible for handling RPC requests from a TIBCO iProcess
Workspace to access and update data in the iProcess Engine instance.

A number of RPC pool servers can be created by the RPC Listener when the
TIBCO iProcess Engine is started and each RPC server will be responsible for a
configured pool of TIBCO iProcess Workspace connections. You can set up a
number of pool servers that are pre-loaded if you have lots of TIBCO iProcess
Workspaces logging in quickly. You do this by defining the
PRE_LOAD_POOL_SERVERS parameter in the SWDIR\etc\staffcfg file. TIBCO
iProcess Workspaces can be allocated to pool servers using either a round robin or
load balanced method.

The RPC Pool servers are started by the RPC TCP Listener. The number of users
that each pool server can support is configured using the
MAX_USERS_PER_PROCESS parameter in the SWDIR\etc\staffcfg file.

RPC Listeners
The RPC Listeners are started by the Process Sentinels and are the first TIBCO
iProcess Engine foreground server processes to be started. A listener is started for
both TCP and UDP protocols. The RPC number for the Listener process is the
same for TCP and UDP and is a start-up configuration parameter for the TIBCO
iProcess Engine. Line 11 of the SWDIR\swdefs file defines this RPC number.
TIBCO iProcess Engine Architecture Guide

Foreground Processes | 65

B
ac

k
to

 L
ib

ra
ry
This RPC number is the published initial connection port for a TIBCO iProcess
Engine for use by any client applications built using a TIBCO iProcess Workspace
interface (e.g. the iProcess Applications Layer).

Work Item Server
The WIS handles the listing of work items in the queues. The process executable is
SWDIR\etc\wisrpc. A number of WIS processes can be run and this is controlled
by the Process Sentinels.

A WIS process is one instance of a Work Item Server and caches work queues that
the WQS has allocated to it. Every iProcess work queue is hosted by a WIS process
and each WIS can process more than one work queue. The iProcess Engine runs
two WIS processes by default but you can increase or decrease this number using
the SWDIR\util\swadm utility.

The WIS processes are multi-threaded processes. Different threads are used to
perform different tasks - for example, responding to RPC requests, caching queue
information, filtering queues or updating CDQP information.

There are many work queue performance issues related to the number of WIS
processes you have, how many work queues they process, how many threads
they use for different tasks and so on. Refer to “Administering the Work Queue
Server and Work Item Servers” in the TIBCO iProcess Engine: Administrator's Guide
for more information.

The WIS processes maintain a cache of the information they contain (which is the
user’s work queue). This cache is synchronized with the same information stored
in the user or group’s work queue (staffo database table). You can view the
information in this table using SWDIR\util\plist -m.

WIS Mbox Daemon
This process (WISMBD) operates between the WIS Mbox set and the WISRPC
processes forwarding messages from one to the other. The executable is
SWDIR\etc\wismbd.

Version 10.4 of the TIBCO iProcess Engine introduced multi-threaded WIS
processes. This improved WIS performance significantly, making it possible to
reduce the default number of WIS processes from 6 (the pre-Version 10.4 default)
to 2.

The WISRPC processes do not write outgoing messages via the WISMBD, they go
straight to the Background Mbox set.
 TIBCO iProcess Engine Architecture Guide

66 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
The WISMBD process is configured to read from a configurable number of
physical WIS Mbox sets in a round-robin manner and it will deliver the messages
to the appropriate WIS process.

BG

Work
QUEUE_1

Cache

 WIS MBOX
for

QUEUE_*

 WIS MBOX
for

QUEUE_*

BG

WISMBD

WIS

WISMBD

WIS

Work
QUEUE_2

Cache

Work
QUEUE_3

Cache

Work
QUEUE_4

Cache

RPC
TIBCO iProcess Engine Architecture Guide

Foreground Processes | 67

B
ac

k
to

 L
ib

ra
ry
When the WIS Mbox sets are empty, the WISMBD will sleep for a configurable
amount of time. This is defined by the EMPTYMBOXSLEEP,
EMPTYMBOXSLEEP_INC and EMPTYMBOXSLEEP_MAX process attributes.
Refer to “Administering Process Attributes” in the TIBCO iProcess Engine:
Administrator's Guide.

The WISMBD sends synchronous RPC requests to the WIS that maintains the
work queue to which the message is addressed.

The WISMBD is initially set to read from the following Mbox sets:

• MBSET_READ_WIS - This is used to read Mbox messages

• MBSET_WRITE_BG - This is used to forward undelivered work items back to
the local background for locally hosted procedures.

The WQS and WIS processes are started up before the WISMBD processes so that
no work queues will receive messages until ALL the WIS processes have started.
 TIBCO iProcess Engine Architecture Guide

68 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
Mbox Sets and Message Queues

The foreground and background processes communicate with each other using
messages. Messages contain information about the iProcess case and instructions
about what to do with the case (such as release, keep or forward it.) A message is
processed by the case instruction processors. Mbox set is the generic name used
for a container in which these messages are stored. Processes can dequeue
messages from a Mbox set as and when resources are available.

The messages are stored and managed in the following way:

• in the UNIX Oracle and Windows Oracle versions, using Oracle AQ. Oracle AQ
uses message queues, which are defined as Oracle AQ tables.

• in the UNIX DB2 and Windows SQL Server version, using iProcess database
tables that are managed by the database server.

The TIBCO iProcess Engine uses a logical and physical grouping for queues to
help improve message throughput. The physical message queues are grouped
together as logical Mbox sets.

An Mbox set can be used for different purposes, for example two Mbox sets can
be created for the Backgrounds. The Deadline Manager (DLMGR) can write to
one set while other processes could write to the second set. The relative priority of
processing the work can be changed by assigning different numbers of
background processes to dequeue the messages in the different Mbox sets.

Processes can be configured to enqueue or dequeue messages to/from a specific
Mbox set rather than to/from a single Mbox queue. The sets can be changed as
the performance demands change in your system environment. Multiple queues
in an Mbox set enable processes to distribute messages in a round robin manner
resulting in an even distribution of messages on the queues.

Refer to Chapter 6 on page 87 for more information about Mbox sets.

Please see the appropriate TIBCO iProcess Engine Database Administrator guide
for more information about the format of the AQ or database tables that are used
to hold the message queues.
TIBCO iProcess Engine Architecture Guide

Mbox Sets and Message Queues | 69

B
ac

k
to

 L
ib

ra
ry
Transaction Control of Messages
The Mbox provides a message repository so that processes can post messages and
continue with their own processing without having to wait for a reply. The
messages are stored persistently and are processed only once. Messages have to
be processed exactly once to preserve the data integrity of a transaction. For
example, if a message instruction is to debit an amount from a bank account then
this has to happen once only even if the systems fail. This is achieved using
transaction control.

The messages in the database tables provides a reliable messaging system because
the message queues are under transaction control. For example, if a message is
delivered to the background case instruction processor but the server goes offline
for a while, the message instruction is still persisted in the queue and is retried at
a later time.
 TIBCO iProcess Engine Architecture Guide

70 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
Background Processes

The following table summarizes the background processes:

Process
Description

Logical Process
Name

Process
Executable Function

Background BG swbgmd This is the core background process that
interprets the business rules that have
been defined in the iProcess Modeler. It
performs the case instructions such as
working out what the next step is in the
procedure, updating the database with
new information and checking for
deadlines.

This process is also responsible for
dequeuing messages from the Mbox
sets. There can be multiple background
processes concurrently dequeuing
messages. This process can be
configured to read a specific Mbox set as
defined by the process_attribute table.

Case Prediction BGPREDICT swbgmd This process is responsible for updating
prediction data (stored in the database).

Database Queue
Daemon

DBQDa n/a This process:

• caches a configurable number of
messages from the database for each
available queue.

• processes RPC requests to dequeue
messages for the BG and WISMBD
processes.

Deadline Manager DLMGR dlmgr This process is responsible for
monitoring deadlines in cases of
procedures.
TIBCO iProcess Engine Architecture Guide

Background Processes | 71

B
ac

k
to

 L
ib

ra
ry
Background
This process retrieves messages (containing case instructions) from the Mbox sets
and then processes the case instructions in the messages. There can be multiple
Background processes all concurrently dequeuing messages from an Mbox set
and processing case instructions

The number of Background processes is controlled by the Process Sentinels. The
Process Sentinels read the process_config table to see how many instances of the
process to run and on which computers.

Each message contains the case instructions from which the Background can
determine what actions to take. The Background interprets the business rules
defined in the procedure (such as the addressee of the next step) and routes work
items to the necessary work queues or external applications. The process makes
decisions based upon the iProcess data and procedure definition instructions as to
what happens in the business process next.

Case Prediction Processor(s)
This process (SWDIR\etc\bgpredict) receives messages from the iProcess
Background processes. When a case instruction that results in a change to a case
has been processed, the iProcess Background processes notify the Case Prediction
processes so that the prediction data (stored in the database) can be updated.
There can be multiple case prediction processes running concurrently.

Each message contains information about the case that has changed and the
procedure and instruction that caused the change. The process will read messages
from the queue(s) and update the predict table so that it contains the latest
prediction information about the case that the queued message was for.

IAPJMS IAPJMS iapjms This process is responsible for receiving
messages containing activity monitoring
information from the BG process, and
Work Queue Delta publication messages
from the WIS process, and routing these
to the specified JMS topic.

RPC Background RPCBG staffrpcbg This process handles the Jump To and
Case Suspend features in the iProcess
Suite.

a. This process is only present in the DB2 version of the TIBCO iProcess Engine.

Process
Description

Logical Process
Name

Process
Executable Function
 TIBCO iProcess Engine Architecture Guide

72 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
The process attempts to determine a valid addressee for each step, so that
SW_USER:attribute (where attribute is a user attribute, for example,
DESCRIPTION) resolves to something valid. If there are multiple addressees on a
step then the first one is taken, which is resolved in the following order:

1. First the process checks the user and group addressees and uses the first one
in the list. If it finds a group it gets the first member listed in the group.

2. If no user or group was found it next checks the field addressees.

3. Finally it checks the roles.

If no addressee can be determined, if a group has no members, or a field or role
contains an invalid user, then the process defaults to using the system
administrator user (by default, swadmin).

Database Queue Daemon

This process (SWDIR\etc\swdbqd) processes RPC requests from the BG and
WISMBD processes to dequeue messages from the database queue tables.

It caches a configurable number of messages from the database for each available
queue. When a request to dequeue a message arrives, the process returns a
message from the cache. If the cache is empty, the process first refills the cache
from the database queue tables.

The number of messages to be cached is determined by the
DBQD_MAX_CACHED_MESSAGES process attribute.

Deadline Manager
This single process manages the deadlines that have been defined in a procedure
using the iProcess Modeler.

At defined intervals (deadline processing interval), the Deadline Manager checks
the outstanding_addressee table for expired deadlines. If deadlines have expired,
the Deadline Manager sends an Mbox instruction to the background Mbox set so
that the case instruction process can process the deadlines for the case.

You can define a limit to the number of Mbox instructions the Deadline Manager
sends. This is to avoid the Deadline Manager sending out duplicate Mbox
instructions for the same unprocessed, expired deadlines. There are two process
attributes that enable you to configure this:

This process is only currently used on the DB2 version of the TIBCO iProcess
Engine.
TIBCO iProcess Engine Architecture Guide

Background Processes | 73

B
ac

k
to

 L
ib

ra
ry
• The UNPROCESSED_DL_POST_LIMIT process attribute sets a limit on the
number of messages for expired deadlines that the Deadline Manager allows
in the mbox queue at any one time.

• The MAX_AGE_BEFORE_RESETPOST specifies the time period before the
Deadline Manager resets its internal marked of the last deadline it has
processed to 0 (beginning of time).

Refer to “Administering Process Attributes” in the TIBCO iProcess Engine:
Administrator's Guide for more information about process attributes.

When all the deadlines have been processed, the Deadline Manager “sleeps” until
the deadline processing interval has expired. This interval can be set as an
absolute or repeating value, for example:

• Absolute intervals are used to process deadlines once a day at a specific time.

• Repeating intervals are used to process deadlines at regular intervals and at
set times throughout the day relative to midnight each day. The time is
defined on the local computer on which the deadline manager is running.

• For example, an interval of five hours would set deadlines to be processed at
5.00am, 10.00am, 3.00pm and 8.00pm on Day 1 and 5.00 am, 10.00 am etc. on
Day 2.

The deadline processing interval is set in the process_attribute database table. If
the table does not contain an initial value, the Deadline Manager defaults to one
minute.

IAPJMS Process
If activity monitoring is enabled on your TIBCO iProcess Engine, the BG process
sends out a message when any of the TIBCO iProcess Engine activities that you
have configured to monitor occur. This process (SWDIR\etc\iapjms) is
responsible for receiving messages from the BG process and routing these to the
JMS topic or queue.

If Work Queue Delta publication is in use, the WIS process similarly publishes
messages to the IAPJMS process giving details of changes in monitored work
queues.

See Monitoring Activities on page 91 for more information and see "Activity
Monitoring and Work Queue Delta Configuration" in the TIBCO iProcess Engine:
Administrator’s Guide for more information about configuring activity monitoring
and Work Queue Delta publication.
 TIBCO iProcess Engine Architecture Guide

74 | Chapter 4 TIBCO iProcess Engine Processes

B
ac

k
to

 L
ib

ra
ry
RPC Background Process
This process (SWDIR\etc\rpcbg) handles synchronous RPC calls from the Jump
To and Case Suspend features in the TIBCO iProcess Workspace.
TIBCO iProcess Engine Architecture Guide

| 75

B
ac

k
to

 L
ib

ra
ry
Chapter 5 Introduction to Transactional Business
Process Automation

This chapter provides an overview of the transaction management capabilities
provided when using the iProcess Engine.
 TIBCO iProcess Engine Architecture Guide

76 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Overview

Typically, a business process involves a number of transactions such as looking up
information from a customer database, taking an order, adding a new order to a
database, updating prices, etc. To guarantee that all parts of the business process
are completed, a resource manager is used to keep track of each step (or
transaction) to make sure it is completed.

If all the steps can be completed successfully, then the complete process will be
committed. This means that any updates to external systems and iProcess case
data will be performed and committed in a single transaction.

However, if one or more parts of the process cannot be completed for any reason
(such as a database being offline), no parts of the process are committed. This
means that all the external systems such as databases, document management
systems and legacy systems are left in the same state as when the process was
started i.e. no data updates are performed.

There are two types of transaction scope: local and distributed. The difference
between them is the number of resource managers used to control the transaction.
A local transaction uses just one resource manager and a distributed transaction
involves using more than one resource manager. Both of these are described in the
following sections.
TIBCO iProcess Engine Architecture Guide

What is a Local Transaction? | 77

B
ac

k
to

 L
ib

ra
ry
What is a Local Transaction?

A local transaction is where a number of business operations are under the
control of a single resource manager (typically the database resource manager).
The TIBCO iProcess Engine process will be under the control of the resource
manager so that the entire process will either be committed to the database or
rolled back if one of the operations fail. The following diagram illustrates a
procedure using EAI Database steps to update data in the local database.

Figure 1 A Local Transaction

EAI Step 2

Add order entry
to database

Update customer
details

Single Transaction

EAI Step 3EAI Step 1
 TIBCO iProcess Engine Architecture Guide

78 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Example of a Local Transaction
The following is an example of how a business procedure is designed so that all
the steps are either committed or not committed using the local resource manager.

In a banking environment you want to make sure that all the accounts are
updated correctly so that the balances are totalled. The ideal scenario is where all
the processes are committed in one go so that money is deducted from one
account and added to another. For example, if money is to be transferred from a
savings account to a current account, two accounts will need updating. Both
accounts need to be changed accordingly. It would cause serious problems if only
one account was updated.

If the update to the savings account was successful but the update to the current
account failed, there would be a discrepancy in the totals. However, because the
step is part of the local transaction, the whole transaction will fail and the
accounts are rolled back to their original state.
TIBCO iProcess Engine Architecture Guide

What is a Distributed Transaction? | 79

B
ac

k
to

 L
ib

ra
ry
What is a Distributed Transaction?

A distributed transaction is where a number of related business operations
(individual transactions) are grouped together so that they are put under the
control of a transaction manager program (such as MSDTC). The integrity of the
business data is maintained because all external systems being used (databases,
document management systems, etc.) are either updated with information or left
in their previous state if one or more of the steps fails.

If all the business operations (transactions) are successful, they can all be
committed in one go. The information is stored in memory until the final
transaction is reached when all the updates can be committed.
 TIBCO iProcess Engine Architecture Guide

80 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Transaction Scope

The following sections describe the scope of transactions on the different versions
of the TIBCO iProcess Engine.

Oracle Server Transaction Scope
The Oracle version of the TIBCO iProcess Engine enables you to use one local
resource manager (provided by the Oracle resource manager).

Because the TIBCO iProcess Engine uses Oracle Advanced Queues to store its
internal instruction messages and Oracle tables to store case data, transaction
management can be controlled by the internal Oracle database transaction
manager.

This means that if updates to the Oracle database fail, the resource manager can
roll back the updates and restore the database and case data to its original state.

DB2 Transaction Scope
The DB2 version of the TIBCO iProcess Engine enables you to use the local DB2
resource manager.

This means that if updates to the DB2 database fail, the resource manager can roll
back the updates and restore the database and case data to its original state.

SQL Server Transaction Scope
When using the iProcess Suite with the Microsoft SQL Server, all transactions are
managed by the SQL Server resource manager. SQL Server provides the following
transaction functionality:

• Locking facilities that ensure transactional integrity.

• Logging facilities that ensure transaction durability. For example, if the
hardware, operating system, or SQL Server fails, SQL Server uses the
transaction logs, upon restart, to automatically roll back any uncompleted
transactions to the point of the system failure.

• Transaction management features that enforce transaction atomicity and
consistency. After a transaction has started, it must be successfully completed,
or SQL Server undoes all of the data modifications made since the transaction
started. Refer to the SQL Server documentation for more information about
how SQL Server transactions work.
TIBCO iProcess Engine Architecture Guide

Transaction Scope | 81

B
ac

k
to

 L
ib

ra
ry
When all the processes use the local resource manager on the SQL Server, this is
called a local transaction. If some processes use an external resource manager
such as the EAI COM step, then this is known as a distributed transaction because
more than one resource manager is used. A slightly different architecture is used
for distributed transactions because a transaction manager program is used to
control the resource managers. Refer to Using Distributed Transactions with
MSDTC on page 81 for more information.

Using Distributed Transactions with MSDTC
Windows has a built in transaction manager component called Microsoft
Distributed Transaction Coordinator (MSDTC). The MSDTC controls resource
managers from distributed sources such as SQL Server and COM.

The transaction scope provided with this architecture allows distributed
transactions involving many resource managers to be controlled by the MSDTC.
Some server EAI plug-ins such as EAI COM+ may require a distributed
transaction and therefore need to use MSDTC. You can set the TIBCO iProcess
Engine to use MSDTC by setting the EAI_NEEDS_MSDTC process attribute -
refer to “Administering Process Attributes” in the TIBCO iProcess Engine:
Administrator's Guide for more information about setting process attributes.
 TIBCO iProcess Engine Architecture Guide

82 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Using Enterprise Application Integration Steps in Procedures

To keep control of external transactions with third party applications and to keep
the transactions under the control of the transaction manager, you can use EAI
steps in your procedure definition. There are different types of EAI step used to
communicate with different types of external system. For example:

• The EAI Database step is used to communicate with database stored
procedures so you can use existing business logic in your procedures. Refer to
the TIBCO iProcess™ Modeler - Integration Techniques Guide for more
information about installing and using EAI Database steps.

• The COM+ EAI step is used so that iProcess can communicate with a COM+
application. Refer to the TIBCO iProcess™ COM Plug-in: User’s Guide for more
information about installing and using the COM EAI step.

An EAI step causes the iProcess background to call-out to an application defined
sub-system in order to perform some work. In the MSDTC version, this work may
be included within the current distributed transaction, hence combining data
updates performed by that work with the data updates performed as part of the
workflow case processing.

Refer to “Using Enterprise Application Integration Steps” in the TIBCO iProcess
Modeler - Integration Techniques Guide for more information about using EAI steps.
TIBCO iProcess Engine Architecture Guide

What is MSDTC? | 83

B
ac

k
to

 L
ib

ra
ry
What is MSDTC?

The Microsoft Distributed Transaction Coordinator is the transaction manager
program built into the Windows 2003 Server. This runs as a service on Windows
and coordinates transactions between distributed data stores.

The iProcess Suite integrates with the MSDTC by creating and controlling
distributed transactions. This means that iProcess can start a transaction by
sending a request to the MSDTC and then other resources (such as databases) can
enlist in the transaction as required by communicating with the MSDTC.

The MSDTC can be administered using the Component Services Console (as
shown in the following example).

You can configure iProcess to use MSDTC by setting the EAI_NEEDS_MSDTC
process attribute - refer to “Administering Process Attributes” in the TIBCO
iProcess Engine: Administrator's Guide for more information about setting process
attributes.This means that instead of the transaction being controlled by the local
resource manager, the MSDTC is notified of the transaction and other distributed
resource managers can enlist in the transaction.

Refer to the Microsoft documentation for more information about administering
and monitoring MSDTC transactions.
 TIBCO iProcess Engine Architecture Guide

84 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Examples of Transaction Control

The following section provides some examples of iProcess transaction control.

Case Data Updates to the SQL Server using MSDTC
In a simple process where iProcess case data is being updated in the SQL database
and an external database using an EAI plug-in, the transaction process involves
the following:

1. The iProcess Engine starts a transaction by notifying the MSDTC.

2. The SQL Server resource manager enlists itself as part of the transaction with
the MSDTC.

3. The external database resource manager also enlists itself as part of the
transaction with the MSDTC.

4. If all the case updates are successful, the MSDTC performs a two phase
commit operation with all resources that are enlisted as part of the transaction.
TIBCO iProcess Engine Architecture Guide

Examples of Transaction Control | 85

B
ac

k
to

 L
ib

ra
ry
External Updates Using EAI Steps
The Enterprise Application Integration (EAI) steps can be used in procedures to
control updates to third party applications and iProcess case data under
transaction control. If the external applications operate in the same TPM
environment as iProcess, all business operations in a single procedure can be
completed as one global transaction.

Application
defined
data

iProcess
case state

data

EAI Step Non-EAI Step

EAI Plug-in

Enqueue new
work item to
WISMBOX.

Dequeue case
start or release
from MBOX.

Single Transaction
 TIBCO iProcess Engine Architecture Guide

86 | Chapter 5 Introduction to Transactional Business Process Automation

B
ac

k
to

 L
ib

ra
ry
Transaction Failures and Rollbacks

In the transaction example in Figure 1 on page 77, all the external data updates
and iProcess case data updates are saved to memory until the case has been
processed at which time all the updates are written to the database. This is known
as the Commit process.

However, if one or more steps in the transaction are not possible (such as the
database is not available), none of the updates are committed and the data is left
in the same state as when the transaction started. This is known as the rollback
process. Similarly, if the connection to the database is broken, any outstanding
transactions are rolled back.

If the instruction is received by the Background but one of the steps it processes
subsequently fails (such as a COM+ EAI step calling an application that is not
running), then the resource manager returns an error to the Mbox daemon. The
Mbox daemon aborts the transaction while the resource manager ensures that all
of the steps involved in the transaction are rolled back to their initial state.

Poison Transactions
If a transaction is continually failing and being retried, this can have a serious
impact on system performance. It is possible to restrict the number of times a
transaction will be retried and to be notified of this failed transaction.

The iProcess installation process sets the message queues to have:

• a retry count of twelve (defined using the IQL_RETRY_COUNT process
attribute).

• a retry delay of five minutes (defined using the IQL_RETRY_DELAY process
attribute).

See “Administering Process Attributes” in the TIBCO iProcess Engine:
Administrator's Guide for more information about setting process attributes.
TIBCO iProcess Engine Architecture Guide

| 87

B
ac

k
to

 L
ib

ra
ry
Chapter 6 iProcess Mbox Sets

This chapter describes how:

• TIBCO iProcess Workspaces communicate with the Background process.

• Mbox sets are used to help in the distribution of messages on the system.

• the middleware message queuing system is implemented for the TIBCO
iProcess Engine.
 TIBCO iProcess Engine Architecture Guide

88 | Chapter 6 iProcess Mbox Sets

B
ac

k
to

 L
ib

ra
ry
Overview

One of the core components of the iProcess Engine is the messaging system. This
is used to deliver instructions from:

• all the TIBCO iProcess Workspaces to the Background process

• the Background process to the foreground processes

Because of the potentially high volumes of transactions in a TIBCO iProcess
Engine system, there can be many thousands of instructions trying to be passed
from TIBCO iProcess Workspaces to the Background to be processed. To prevent
messages being lost or messages being held up for long periods of time, a
message queuing system is used so that all messages sent from TIBCO iProcess
Workspaces or the Background can be sent to a message queue. Once it is in the
queue, the message has an assured delivery mechanism where it will be
dequeued as system resources permit.

The message queues also makes sure that a message instruction is only processed
once (unless a transaction rollback occurs - see Transaction Management of
Messages on page 90) and is processed even if system resources fail because it is
retried when the system is running again. For example, in the case for banking
transactions, a message to update a bank account must only be performed once
and must be performed at some point even if the system has failed.

The iProcess Suite currently supports two message queuing systems:

• iProcess database queues (for the UNIX DB2 and Windows SQL Server
versions)

• Oracle AQ (for the UNIX Oracle and Windows Oracle versions)

Both control the delivery and storage of iProcess messages.

What are iProcess Messages?
A message consists of the business data captured by the information entered into
iProcess forms such as what fields and values exist. A message also contains
instructions so that the iProcess Engine knows what to do with the message such
as release or forward the message. It can also contain control information used to
manage the message. A message is delivered (enqueued) to the message queue
and consumed (dequeued) by recipients.

The message queues and their messages are stored in database tables that operate
as message queues.

The iProcess Engine is set up to use the Local message type, which is used for
communication between the foreground and background processes.
TIBCO iProcess Engine Architecture Guide

Overview | 89

B
ac

k
to

 L
ib

ra
ry
Definition of Mbox Sets
The iProcess Engine uses a number of message queues to enable high volumes of
transactions to be processed. iProcess uses a logical grouping of physical queues
called Mbox sets in which processes read or write messages. An Mbox set can be
defined as having one or more queues in which messages are posted in a round
robin method. For example, an Mbox set can comprise a number of physical
database tables operating as message queues.

There are many performance factors related to this design such as spreading
queues over multiple disks. Instead of a process writing or reading messages from
a specific queue, it can be configured to use an Mbox set. The Mbox set enables
you to dynamically configure the queues used in a set as system resources
change.

For example, two Mbox sets can be configured as follows:

MBOX_SET = queue_1, queue_2

MBOX_SET2 = queue_1

Each iProcess Engine process is configured to use a particular Mbox set and has a
process attribute type set for it. This information is configured in the
process_attribute table.

Configuring Mbox Sets
You can dynamically configure the Mbox sets using the SWDIR\util\swadm
utility. For example, you can create Mbox sets, add queues to Mbox sets and
remove queues.

Different processes require access to different types of Mbox set, for example, the
Background process needs to have write access to a background Mbox set and a
WIS Mbox set.

The process_attribute table specifies the access type for each process and which
Mbox set is used.

The Mbox set tables contain the necessary information for each Mbox set such as
the logical names of all the queues in the set. Multiple queues in a set enable
iProcess to post messages on a round-robin basis through the queues.

A physical queue can be included in multiple Mbox sets but can only be included
once in the same Mbox set.
 TIBCO iProcess Engine Architecture Guide

90 | Chapter 6 iProcess Mbox Sets

B
ac

k
to

 L
ib

ra
ry
Transaction Management of Messages

For a queuing technology to be transactional it must be under the control of a
Resource Manager. The resource manager ensures that its resources, the queues,
are always in a consistent state. Any updates, i.e. the sending or receiving of
messages, made during a transaction will either all succeed or all fail.

UNIX Oracle Transaction Implementation
When using the UNIX Oracle version of an iProcess Engine, all resources are
updated in an iProcess transaction as one unit of work. This is because the
message queues are maintained in the database and can therefore be controlled by
the Oracle Resource Manager. Transactions are limited to the scope of this
database as the resource manager only controls this database.

Refer to the Oracle Database documentation for more information about how
Oracle handles resource management.

Windows SQL Server Transaction Implementation
The TIBCO iProcess Engine uses the Microsoft SQL Server database to store
iProcess messages. The SQL Server makes sure the queues are in a consistent state
and will make sure that all resources updated during a transaction are committed
as one unit of work.

UNIX DB2 Transaction Implementation
When using the UNIX DB2 version of an iProcess Engine, all resources are
updated in an iProcess transaction as one unit of work. This is because the
message queues are maintained in the database and can therefore be controlled by
the DB2 Resource Manager. Transactions are limited to the scope of this database
as the resource manager only controls this database.
TIBCO iProcess Engine Architecture Guide

| 91

B
ac

k
to

 L
ib

ra
ry
Chapter 7 Monitoring Activities

The TIBCO iProcess Engine can be enabled to publish:

• TIBCO iProcess Engine activity information, and

• TIBCO iProcess Engine Work Queue Deltas,

to external applications. This chapter describes how messages are processed
between the TIBCO iProcess Engine and the external application. It:

• provides an overview of activity monitoring - see page 92

• describes how activity monitoring messages are processed from the BG
process to the IAPJMS process - see page 94.

• describes how activity monitoring messages are processed from the IAPJMS
process to the external application - see page 97.

• describes how Work Queue Delta messages are processed from the WIS
process to the IAPJMS process - see page 96

• describes the types and possible formats of the messages - see page 98.
 TIBCO iProcess Engine Architecture Guide

92 | Chapter 7 Monitoring Activities

B
ac

k
to

 L
ib

ra
ry
Overview

The TIBCO iProcess Engine can be enabled to publish both TIBCO iProcess
Engine activity information and TIBCO iProcess Engine Work Queue Deltas to
external applications, using JMS topics.

Both types of publication use the IAPJMS (Introspection Activity Publication
JMS) process, but they differ in detail.

Activity Publishing
An activity is any instruction in the TIBCO iProcess Engine that creates an audit
trail entry, for example, Case started or Event issued. You can configure any
combination of step and/or activity to be monitored. This enables an external
application to monitor important business events during the processing of cases.

The BG process can identify if a step is being processed and if activity monitoring
has been configured for it. The BG process then sends details of the configured
activities, in XML format to the IAPJMS Process.

The IAPJMS process sends the XML message to a specified JMS topic, from which
an external application can receive the XML format message.
TIBCO iProcess Engine Architecture Guide

Overview | 93

B
ac

k
to

 L
ib

ra
ry
The following diagram demonstrates Activity Publishing message processing
between the TIBCO iProcess Engine and the IAPJMS process.

Work Queue Delta Publication
Work Queue Delta Publication enables an external application to monitor an
iProcess work queue and to retrieve only those work items in a given work queue
that have changed since monitoring began.

If any data in a monitored work queue changes - for example if an existing work
item is modified, an existing work item is removed from the work queue or a new
item is added to the work queue - the Work Item Server (WIS) process sends the
modified data in XML format to the IAPJMS process. The IAPJMS process then
sends the XML message on to a specified JMS topic (either a default topic, or one
specified by the subscribing application), from which an external application can
receive the XML message.

Work Queue Delta Publication functionality can only be accessed by using
iProcess Server Objects (Java) or iProcess Server Objects (.NET).
 TIBCO iProcess Engine Architecture Guide

94 | Chapter 7 Monitoring Activities

B
ac

k
to

 L
ib

ra
ry
How Messages are Processed From the BG Process to the IAPJMS
Process

Once the BG process has been configured to enable audited activities to be
published (defined in the IAPJMS_PUBLISH process attribute), it sends out
messages whenever an audited activity occurs.

The messages are published to the IAPJMS process using a configurable port
number (defined in the IAPJMS_PORTNO process attribute). The BG process has
two delivery methods for publishing messages, synchronous and asynchronous
(defined in the IAPJMS_SYNCHRONOUS process attribute).

• SYNCHRONOUS - When the message is sent, a receipt is requested. The BG
process waits until the IAPJMS process has confirmed the message has been
published. If the message is not published, an error is written to the
SWDIR/logs/sw_error file. With the SYNCHRONOUS method the BG
process has to block until a response/timeout occurs which could impact
throughput. This means the SYNCHRONOUS method is slower than the
ASYNCHRONOUS method.

• ASYNCHRONOUS - The message is assumed to have been processed
correctly if the message was sent successfully to the IAPJMS process. The
ASYNCHRONOUS method is faster than the SYNCHRONOUS method
because it does not have to wait for a receipt.
TIBCO iProcess Engine Architecture Guide

How Activity Messages are Processed From the IAPJMS Process to the External Application | 95

B
ac

k
to

 L
ib

ra
ry
How Activity Messages are Processed From the IAPJMS Process to
the External Application

The IAPJMS process listens for activity messages from the BG process. When it
receives an activity message from the BG process it routes this to a configurable
JMS topic (defined in the IAPJMS_TOPIC process attribute). The IAPJMS process
does not need to know anything about the contents of the message. It simply
passes it to the JMS topic.

The external application is configured to listen to the same JMS topic that is
defined in the IAPJMS_TOPIC process attribute.

For information on how to configure and administer activity monitoring see
"Monitoring Activities" in the TIBCO iProcess Engine: Administrator’s Guide.
 TIBCO iProcess Engine Architecture Guide

96 | Chapter 7 Monitoring Activities

B
ac

k
to

 L
ib

ra
ry
How Messages are Processed From the WIS Process to the IAPJMS
Process

A user application - either using iProcess Server Objects (Java) or iProcess Server
Objects (.NET) - subscribes to a work queue, creating an initial connection to the
published queue. The application specifies a JMS topic name and subscribes to
that topic (or, if no topic is specified at subscription time, the
WQDJMS_TOPICNAME process attribute is used; see the TIBCO iProcess Engine
Administrator’s Guide for details of this attribute and of other process attributes
involved), and then can start receiving JMS messages.

The first message sent is always a Work Queue Synchronization (DSY) Message.
This informs the listening application that it now needs to begin processing on
other messages received from this Work Queue.

Messages are published to the IAPJMS process using a configurable port number
(defined in the WQDJMS_PORTNO process attribute).

The data passed in JMS messages may be restricted by other components of the
system. For example, the maximum length of work queue parameter fields that
can be published is limited by the WIS process: see the section "Using Work
Queue Parameter Fields in Procedures" in the TIBCO iProcess Modeler - Advanced
Design guide.
TIBCO iProcess Engine Architecture Guide

How Work Queue Delta Messages are Processed From the IAPJMS Process to the External Application | 97

B
ac

k
to

 L
ib

ra
ry
How Work Queue Delta Messages are Processed From the IAPJMS
Process to the External Application

The IAPJMS process listens for Work Queue Delta messages from the WIS
processes. When it receives a message from a WIS process it sends this to the
appropriate JMS topic. By default, this is the topic defined in the
WQDJMS_TOPICNAME process attribute; but this default can be overridden if
the subscribing application specifies a different topic. The IAPJMS process does
not need to know anything about the contents of the message, it simply passes it
to the JMS topic.

The external application must be set up and configured to listen to the same JMS
topic to which the IAPJMS process sends the messages.

The first time that a subscribing application opens a work queue, it uses iProcess
Server Objects interfaces to open the queue and to retrieve all the existing work
items for that queue.

Whenever any change is made to the work queue after that - a new work item
added, an existing work item modified or removed - the change is published to
the appropriate JMS topic. If more than one application is subscribed to a given
work queue, and they do not use the default topic specified by
WQDJMS_TOPICNAME, the JMS message must be published to each topic used
by a subscribing application.
 TIBCO iProcess Engine Architecture Guide

98 | Chapter 7 Monitoring Activities

B
ac

k
to

 L
ib

ra
ry
Understanding the Message Types

Activity Monitoring (IAP) uses two message types, and Work Queue Delta
publication (WQD) uses three types.

IAP Message Types
There are two types of message:

• The Monitor Event Detail message (MED). A BG process sends this message.
The message is addressed to the JMS topic configured in the
IAPJMS_TOPICNAME process attribute.

• The Monitor Event Request message (MER). The MER message is sent to the
iProcess database to update the activity monitoring configuration
information. It can be sent by SSO or by using the SWDIR\bin\swutil
IMPMONITOR command.

The Monitor Event Detail Message (MED)

Every MED message sent from the IAPJMS process to the external application
consists of:

• a message header

• message properties

• message body. The message body contains the detailed XML for the events
that are being monitored. The MED XML format is defined by the
SWAuditMessage.xsd schema.

These messages can be sent in either a basic format or an extended format. You
can specify which format is used by setting the IAPSCHEMA parameter in the
SWDIR\etc\staffcfg configuration file. See the section "Tuning the TIBCO
iProcess Engine Using SWDIR\etc\staffcfg Parameters" in the TIBCO iProcess
Engine: Administrator’s Guide for details of this parameter.

The extended format provides the following additional information in the
message body:

• Description and type of the audit user. The basic format identifies the audit
user; in the extended format the description and type of the audit user can be
specified.

• Addressee. The basic format contains no addressee information. The extended
format identifies the name, description and type of the addressee of the step
for OPEN, KEEP, RELEASE and FORWARD actions.
TIBCO iProcess Engine Architecture Guide

Understanding the Message Types | 99

B
ac

k
to

 L
ib

ra
ry
• Main procedure of a sub-case. The basic format contains no information about
the main procedure of a sub-case. The extended format identifies the
procedure name and description.

• Parent procedure of a sub-case. The basic format identifies the parent
procedure. The extended format adds a procedure description.

For examples of these IAPJMS messages, see the section "Examples of
Configuring Activity Monitoring Information" in the TIBCO iProcess™ Modeler
Integration Techniques guide.

Filtering Message Event Request (MER) Messages

Every MER message sent to the iProcess database to update the activity
monitoring configuration information consists of XML requesting the events to
monitor. The MER XML format is defined by the SWMonitorList.xsd schema.

WQD Message Types
There are three types of message:

• The Work Queue Delta message (WQD). The WIS process sends this message.

• The Work Queue Synchronization message (DSY). This contains the unique
synchronization ID for the queue.

• The Work Queue Invalid message (DER). This informs the subscribing
application that the work queue should be closed and re-opened.

Work Queue Delta (WQD) Message

Every WQD message sent from the WIS process consists of:

• a message header

• message properties

• the message body containing details of the Work Queue Delta. The WQD
XML format is defined by the apSSOTypes.xsd schema. See the section
"Schemas" in the TIBCO iProcess™ Client (Browser) Action Processor Reference
guide for more information on this schema.

Whenever an item is added, modified or deleted from a monitored work queue, a
WQD message is published by the WIS to the IAPJMS process.

Work Queue Synchronization (DSY) Message

Every DSY message consists of.
 TIBCO iProcess Engine Architecture Guide

100 | Chapter 7 Monitoring Activities

B
ac

k
to

 L
ib

ra
ry
• a message header

• message properties

• the message body containing the unique synchronization ID, which will be
published when the work queue has been fully loaded and JMS publication is
to begin.

A DSY message is sent once the initial queue has been built. It is published to
subscribing applications so that the subscriber knows it needs to begin processing
any Work Queue Deltas for the specified Work Queue Delta ID.

Work Queue Invalid (DER) Message

Every DER message consists of.

• a message header

• message properties

• an empty message body.

The message type is an exception message sent to all applications subscribing to
the work queue on which an error occurs. It tells the subscribing applications that
the Work Queue Deltas for this queue are now invalid and that this work queue
must be closed and re-opened.

See the TIBCO iProcess Server Objects (.NET) Programmer's Guide and the TIBCO
iProcess Server Objects (Java) Programmer's Guide for more detail on Work Queue
Delta publication via JMS and how it works.
TIBCO iProcess Engine Architecture Guide

| 101

B
ac

k
to

 L
ib

ra
ry
Chapter 8 Database Failure and Failover

This chapter describes how the TIBCO iProcess Engine handles database failure
or failover. It describes:

• an overview of database failure/failover - see page 102.

• TIBCO iProcess Engine behavior in the event of a failure/failover - see
page 103.

• TIBCO iProcess Workspace behavior in the event of a failure/failover - see
page 105.

• TIBCO iProcess™ Objects and TIBCO iProcess™ Server Objects behavior in
the event of a failure/failover - see page 106.

• TIBCO iProcess Engine configuration requirements for failure/failover
support - see page 107.
 TIBCO iProcess Engine Architecture Guide

102 | Chapter 8 Database Failure and Failover

B
ac

k
to

 L
ib

ra
ry
Overview

The TIBCO iProcess Engine stores all iProcess data in its database (Oracle, SQL
Server or DB2). It therefore relies on the availability of that database to be able to
process work. If the database fails, the TIBCO iProcess Engine can do nothing
until the database returns.

Database failover capability exists when the database is configured in such a way
that if a failure occurs, a standby instance of the database takes over immediately
with no or minimal impact on service. Failover capability can be provided in
many ways, depending on the hardware, operating system and database systems
you are using. Failover capability is therefore an essential component of any
high-availability, production-level system involving the TIBCO iProcess Engine.

If a database failure or failover occurs, the TIBCO iProcess Engine is able to:

• detect that the failure has occurred.

• guarantee the integrity of any in-progress transactions.

• seamlessly continue working when the database connection returns (whether
that connection is to the original database or a failover database).
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Engine Behavior | 103

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Behavior

The following table shows how different TIBCO iProcess Engine components
behave in the event of a database failure or failover.

TIBCO iProcess
Engine Component Behavior When Failure or Failover Occurs

Server processes On SQL and DB2: Each TIBCO iProcess Engine process clears down any
database connections it already has (as they are used) and attempts to
re-establish a new connection. If necessary, the process retries the
connection attempt until the database becomes available again, when the
attempt succeeds.

On Oracle: The server processes use the Oracle Client to establish and
maintain database connections. The Oracle Client therefore attempts to
re-establish the database connection. If necessary, it retries the connection
attempt until the database becomes available again, when the attempt
succeeds.

Database transactions Any in-progress Write transaction is rolled back. When the database
becomes available again:

• Read-only transactions continue and complete as normal.

• Write transactions are retried.

This means that transactional integrity is maintained; no transaction or
workflow operation is left in an indeterminate state. Operations either
succeed and are committed or fail and are rolled back.

Process Sentinels Any processing that requires a connection to the database hangs until the
database connection is restored.

For example, if you use SWDIR\util\swsvrmgr to issue a Restart event
for a process when the database has failed, the process is not restarted
until the database connection is restored.

Note - On the Oracle (UNIX/Linux) TIBCO iProcess Engine the event
system used by the Process Sentinels is provided by the database. This
means that the use of Oracle’s Transparent Application Failover (TAF)
feature is required to provide failure or failover support. See page 107
for more information.
 TIBCO iProcess Engine Architecture Guide

104 | Chapter 8 Database Failure and Failover

B
ac

k
to

 L
ib

ra
ry
System messages Any TIBCO iProcess Engine process that attempts to contact the database
will fail (until the connection is restored), causing it to write a database
connection failure error to the SWDIR\logs\sw_error file.

For example:

2005/04/25 15:41(BG:1:2496:pro::7.1:4352): 0-lcase_add()
Unable to execute statement (Statement ID - 49) (S1002 -
[Microsoft][ODBC SQL Server Driver]Invalid Descriptor Index)
lcase_add() Unable to execute statement (37000 - Statement
failed due to database FAILOVER)

Command line
utilities

Any command that requires a connection to the database hangs until the
database connection is restored.

For example, if you have a SWDIR\util\swadm session open when the
database fails, and you then try to add a BG process, the command hangs
until the database connection is restored. As soon as the database is
available again, the command completes and the new BG process is
added.

TIBCO iProcess
Engine Component Behavior When Failure or Failover Occurs
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Workspace Behavior | 105

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Workspace Behavior

Existing TIBCO iProcess Workspace sessions may be unaffected by a database
failure or failover, as many TIBCO iProcess Workspace operations - such as
retrieving information about a work item from the WIS cache - do not require
access to the database.

TIBCO iProcess Workspace behavior is only affected when an operation that
requires access to the database is performed - for example, opening a procedure.
The TIBCO iProcess Workspace then passes a request to the TIBCO iProcess
Engine, which in turn tries to access the database. The request therefore hangs
until the database connection returns. If this period exceeds the TIBCO iProcess
Workspace’s timeout period (by default, 25 seconds), a timeout dialog is
displayed to the user. The user has the option to abort or retry the operation.
 TIBCO iProcess Engine Architecture Guide

106 | Chapter 8 Database Failure and Failover

B
ac

k
to

 L
ib

ra
ry
iProcess Objects and iProcess Server Objects Behavior

The following table shows how different TIBCO iProcess Objects and TIBCO
iProcess Server Objects components behave in the event of a database failure or
failover.

iProcess
Objects/iProcess
Server Objects
Components

Behavior When Failure or Failover Occurs

iProcess Objects
Server

From the viewpoint of a database failure or failover, the iProcess Objects
Server is a TIBCO iProcess Engine server process. As such, its behavior is
the same as any other TIBCO iProcess Engine server process - see Server
processes on page 103.

iProcess Objects
Clients and iProcess
Server Objects Clients

Existing iProcess Objects/iProcess Server Objects client sessions may be
unaffected by a database failure or failover, as many client operations -
such as retrieving information about a work item from the WIS cache - do
not require access to the database.

iProcess Objects/iProcess Server Objects client behavior is only affected
when an operation that requires access to the database is performed - for
example, opening a procedure. The client passes a request to the iProcess
Objects Server, which passes it to the TIBCO iProcess Engine, which in
turn tries to access the database. The request therefore hangs until the
database connection returns. If this period exceeds the iProcess Objects
Server’s RPC timeout period (by default, 25 seconds), a timeout exception
is returned to the iProcess Objects/iProcess Server Objects client. It is the
iProcess Objects/iProcess Server Objects client’s responsibility to handle
that exception.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Engine Configuration Requirements | 107

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Configuration Requirements

The following sections describe what you need to do to provide failure/failover
support on the TIBCO iProcess Engine.

Oracle (UNIX or Linux)

The TIBCO iProcess Engine Process Sentinels are event driven. On the Oracle
(UNIX/Linux) variant of the TIBCO iProcess Engine, the event system is
provided using Oracle AQ’s publish/subscribe mechanism. This means that if the
database connection fails, the Process Sentinels cannot receive events, and so
appear to hang. To avoid this problem you need to configure TAF so that the
connection can be restored. Once the connection is restored, all connections are
recovered and normal operation is resumed.

To enable the use of TAF with the TIBCO iProcess Engine, you need to configure
TAF support for the service name that you intend to use to connect to the Oracle
database. See the TIBCO iProcess Engine (Oracle9i) for UNIX or Linux Installation
Guide for more information about how to do this.

TAF involves manual configuration of a net service name that includes the
FAILOVER_MODE parameter included in the CONNECT_DATA section of the
connect descriptor. For more information about TAF, and how to set up and
configure it, please see your Oracle documentation.

To provide failure/failover support on the Oracle (UNIX/Linux) variant of the
TIBCO iProcess Engine, you MUST configure the use of Oracle’s Transparent
Application Failover (TAF) feature. Oracle TAF enables an application user (such
as the iProcess Engine) to automatically reconnect to a database if the connection
fails.

If you are running parallel servers, using TAF allows iProcess to switch to an
alternative instance if the instance that it is currently using fails.

If you are not running parallel servers, using TAF still means that although
iProcess will not function while the database is down, it can recover immediately
and automatically when the database is recovered.
 TIBCO iProcess Engine Architecture Guide

108 | Chapter 8 Database Failure and Failover

B
ac

k
to

 L
ib

ra
ry
Oracle (Windows), SQL Server and DB2 (UNIX or Linux)
Database failure support is provided automatically. You do not need to configure
the TIBCO iProcess Engine in any way - it recovers immediately and
automatically when the database connection is restored.

Database failover support is provided automatically provided that you have
configured your database system to provide failover capability. For example, by
implementing failover clustering in SQL Server, or by using DB2’s high
availability disaster recovery (HADR) database replication feature. (Failover
capability can be provided in many ways, depending on the hardware, operating
system and database systems you are using. Please see your SQL Server or DB2
documentation for more information about how to do this.) You do not need to
configure the TIBCO iProcess Engine in any way - it recovers immediately and
automatically when the failover completes and the database connection is
restored.

Event handling is provided by the Staffware Events COM+ application on
Windows variants, and by iProcess event/notification daemons on the UNIX DB2
variant. Consequently, the event system has no dependency on the database as it
does in the UNIX/Linux Oracle variant.
TIBCO iProcess Engine Architecture Guide

| 109

B
ac

k
to

 L
ib

ra
ry
Chapter 9 Process Management

This chapter explains the concepts of how the TIBCO iProcess Engine processes
are managed by the Process Sentinels to make sure that the TIBCO iProcess
Engine can operate on a 24*7 basis. If the TIBCO iProcess Engine is installed
across multiple servers (a node cluster), processes can operate on the various
servers within the node cluster. This means that each server in the cluster requires
its own Process Sentinels to control the processes that are running on that server -
see below.
 TIBCO iProcess Engine Architecture Guide

110 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
Responsibilities of the Process Sentinels

The following list describes the responsibilities of the Process Sentinels:

• Start processes during a server start up or upon a system administrator
request. It will control the order in which the processes are started.

• Detect failed processes and restart them automatically (or manually using the
command line SWDIR\util\swsvrmgr utility or the iProcess Server
Manager).

• Shut down processes when the system is shut down or when the
administrator requests a sub-set of the system to be stopped.

• Pause the entire system, a group of processes or a single process.

• Detect SWDIR\logs\sw_error and SWDIR\logs\sw_warn files and send a
work item to the system administrator (swadmin) informing them that the file
has been created and on which server.

• Check that there is enough disk space using the SWDIR\fspart file (you can
configure which partitions to check). If there is not enough space, a work item
is sent to the administrator informing them of the situation.

• Monitor other Process Sentinels and restart them if they fail - see Restarting
Failed Process Sentinels on page 117.

• Provide interfaces for integration with TIBCO Hawk® - See the TIBCO iProcess
Engine: Administrator’s Guide for more information.

• Maintain the list of all active user logins.

Distribution and Hierarchy of Process Sentinels
In a distributed TIBCO iProcess Engine node cluster where there are a number of
servers running, it is necessary to have Process Sentinels running on each server.
To keep the system processes synchronized, the Process Sentinels are designed so
that there are master Process Sentinels running on one server and slave Process
Sentinels running on all the other servers. See TIBCO iProcess Engine to TIBCO
iProcess Engine Network Communication in a Node Cluster on page 127 for more
information about how process sentinels communicate between servers.

The following diagram shows that the Master process controls the slave processes
in a hierarchical model. The master and slave processes have different
responsibilities, which are described in Master and Slave Responsibilities on
page 111.
TIBCO iProcess Engine Architecture Guide

Responsibilities of the Process Sentinels | 111

B
ac

k
to

 L
ib

ra
ry
Master and Slave Responsibilities
The master and slave processes have different responsibilities for tasks that they
can perform. There are also some tasks that are common across master and slave
processes.

Common Process Sentinel Tasks

The following operations are performed by both the master and slave Process
Sentinels:

• Starting and stopping processes on the local computer

• Detecting the failure of processes on the local computer and restarting them

• Maintaining the process_config table to store the status of processes.

• Check that there is enough disk space using the SWDIR\fspart file (you can
configure which partitions to check). If there is not enough space, a work item
is sent to the administrator informing them of the situation.

• Control the sequence of processes during a system start-up or shutdown.

• Check for SWDIR\logs\sw_error and sw_warn files. If any are detected, a
work item is sent to the system administrator.

Master
Process
Sentinels

Slave Process
Sentinels

Slave Process
Sentinels

Master Server

Slave ServerSlave Server
 TIBCO iProcess Engine Architecture Guide

112 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
Master Process Sentinel Tasks

The master Process Sentinels can perform all of the above tasks but the following
task is only performed by the master Process Sentinels.

• Report the status of the node/node cluster by publishing an event, for
example, if the server processes are running or have been stopped.

The startup and shutdown requests for server processes are broadcast by the
SWDIR\util\swsvrmgr utility. The master Process Sentinels will record the new
system status when the shutdown or startup is complete.
TIBCO iProcess Engine Architecture Guide

How Processes are Controlled by the Process Sentinels | 113

B
ac

k
to

 L
ib

ra
ry
How Processes are Controlled by the Process Sentinels

The following table lists all the processes that are controlled by the Process
Sentinels and show how they operate.

Process Description Startup Shutdown Restart
Can Be
Paused
Manually

Paused
Automatically By
Process Sentinels

Background x x x x

Database Queue
Daemon

x x x x

Deadline Manager x x x x

IAPJMSa x x x x

Prediction x x x x

RPC Background x x x

RPC Pool Server x x x

iProcess Objects Server x x x x

WIS Mbox Daemon x x x x x

Work Item Server x x x x x

Work Queue Server x x x x

a. This process is disabled unless you have chosen to enable it when installing the TIBCO iProcess Engine.
 TIBCO iProcess Engine Architecture Guide

114 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
Starting the TIBCO iProcess Engine Processes

The Process Sentinels are responsible for starting all the TIBCO iProcess Engine
processes. This can either be starting the complete system or starting individual
processes as requested. The Process Sentinels make sure that the processes are
started in the correct sequence.

Many processes require that dependent processes are already running, for
example, the WQS needs to be started before the WIS processes can be started.
The Process Sentinels make sure that all process dependencies are satisfied before
starting a process.

All Process Sentinels (master and slaves) maintain a complete list of all processes
running in the TIBCO iProcess Engine node cluster. Each server hosts their own
Process Sentinels, which are only responsible for processes running on its
computer. When the Process Sentinels attempt to start processes, they know if all
the process dependencies are satisfied across all the TIBCO iProcess Engines in
the node cluster.

For example, if a system is configured to have 1 WQS, 5 WIS, 5 WISMBD, the
processes would be started in the following order:

• Start the WQS processes

• Start all the WIS processes

• Start all the WISMBD processes.

The following diagram illustrates the order in which the Process Sentinels start
the TIBCO iProcess Engine processes. All processes are started by the Process
Sentinels apart from the RPC pool servers, which are started by the RPC TCP
Listener process

The DBQD process is currently only present on the DB2 version of the TIBCO
iProcess Engine.
TIBCO iProcess Engine Architecture Guide

Starting the TIBCO iProcess Engine Processes | 115

B
ac

k
to

 L
ib

ra
ry
Process Sentinels

Deadline Manager
(DLMGR)

Background
(BG)

RPC Listeners
(RPC_TCP_LI and

RPC_UDP_LI)

Work Queue
Server (WQS)

Work Item Server -
(WIS)

RPC Pool Server -
(RPC_POOL)

WIS Mbox Daemon
(WISMBD)

RPC Background-
(RPCBG)

Predict
(BGPREDICT)

TIBCO iProcess
Objects (SPO)

Database Queue
Daemon (DBQD)

IAPJMS (IAPJMS)
 TIBCO iProcess Engine Architecture Guide

116 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
Determining Where Processes Run
The process_config table determines on which computers
individual processes will run and how many instances of those processes are
started. There are a number of rules about where processes can be run:

• All of the foreground processes must operate on the master server. See
Foreground Processes on page 34 for a list of these processes.

• The background processes can operate on any server and can be distributed
across several servers, for example you might run a background server
instance on each of your servers if you are using a node cluster architecture.
See Background Processes on page 35.
TIBCO iProcess Engine Architecture Guide

Restarting Failed Processes | 117

B
ac

k
to

 L
ib

ra
ry
Restarting Failed Processes

To make sure that the TIBCO iProcess Engine is always running, the Process
Sentinels are constantly monitoring for any processes that fail. Each of the Process
Sentinels operating in the node will monitor all processes running on the same
server. If a process fails, the Process Sentinels will start a new copy of the process.
In many cases, there can be many instances of a process running such as 5
Background processes and the Process Sentinels will make sure that the correct
instance of the process is restarted.

The process_attribute table is responsible for the configuration of how processes
are restarted. You can specify whether you want the process to be manually
restarted, restarted a set number of times, and the minimum time a process must
run before it can be restarted. Settings can be applied to the node, a single server
in the node, a type of process, or an individual instance of a process.

Restarting Failed Process Sentinels
Process Sentinels consist of two processes: a worker process and a watcher
process. On each server in an TIBCO iProcess Engine cluster, these two processes
are started. This architecture is designed so that each process can monitor the
other one and restart it if it fails. This makes sure that the Process Sentinels are
always running. The watcher and worker processes perform different tasks:

Watcher Process

After starting the worker process and establishing a two way communication
channel with the worker process, the watcher process monitors the worker
process and can restart it upon a failure. If any errors occur, an error message is
logged in the SWDIR\logs\sw_error file.

On the DB2 version, the watcher process also runs the iProcess event daemon (see
Event Handling on page 35).

Worker Process

The worker process performs the process monitoring of the TIBCO iProcess
Engine processes and monitors and restarts them if they fail. The worker process
also monitors the watcher process to make sure that it is always running and will
restart it if it fails. The following is the start-up routine for the worker process:

1. Initialize process by processing its command line arguments.

2. Establish a communication channel with its watcher process.
 TIBCO iProcess Engine Architecture Guide

118 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
3. Connect to the database and read the node_cluster table to determine if the
server is configured to be part of the TIBCO iProcess Engine. It can also
determine if it needs to operate as a master or slave.

If there is no entry for this server in the node_cluster table, an error message is
logged to the operating system event log (syslogd). The worker process will
shut down and also shutdown the watcher process.

4. Read the process_config table to build an in memory process hierarchy
model.

5. Start process monitoring.
TIBCO iProcess Engine Architecture Guide

Shutting Down Processes | 119

B
ac

k
to

 L
ib

ra
ry
Shutting Down Processes

Processes are shut down by the Process Sentinels in the opposite sequence to
when they were started.
 TIBCO iProcess Engine Architecture Guide

120 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
Configuring the Process Sentinels

There are several areas of configuration information related to the Process
Sentinels:

• The Process Sentinels command line utility (SWDIR\util\swsvrmgr)

This utility enables system administrators to control the functions of the
Process Sentinels such as setting which computer runs the master process.

Refer to “Using swsvrmgr to Administer Server Processes” in the TIBCO
iProcess Engine: Administrator's Guide for more information.

• The iProcess Server Manager

This graphical tool allows you to control the functions of the Process Sentinels
in much the same way as with SWDIR\util\swsvrmgr. Refer to "Using the
iProcess Server Manager to Administer Server Processes" in the TIBCO
iProcess Engine: Administrator's Guide for more information.

• SWDIR\etc\staffpms file

When the Process Sentinels start, it uses the database connection information
in this file to establish the database connection.

Refer to “Using the TIBCO iProcess Engine Configuration Files” in the TIBCO
iProcess Engine: Administrator's Guide.

• node_cluster table

After the Process Sentinels have connected to the database, it reads this table
to see if the computer on which it has been started is part of the TIBCO
iProcess Engine node cluster. If it is not, the Process Sentinels will shut down.

Refer to the appropriate TIBCO iProcess Engine Database Administrator’s Guide.

• process_config table

The Process Sentinels read this table to determine which processes should be
running on which computer. A process hierarchy model is created in memory,
which is used to start and stop the processes in the correct sequence.

Refer to the appropriate TIBCO iProcess Engine Database Administrator’s Guide.

• process_attribute table

The Process Sentinels read this table to find out how processes should be
restarted, for example if they should be restarted automatically or manually.
This table also defines how long the Process Sentinels are idle for before
checking for SWDIR\logs\sw_error and sw_warn files and disk space.

Refer to the appropriate TIBCO iProcess Engine Database Administrator’s Guide.
TIBCO iProcess Engine Architecture Guide

Configuring the Process Sentinels | 121

B
ac

k
to

 L
ib

ra
ry
• You can use the TIBCO iProcess Engine Configuration utility
SWDIR\util\swadm to administer the Process Sentinels and server processes.
You can perform tasks such as setting the server on which to run the master
Process Sentinels, adding a new server to the node cluster or enabling and
disabling processes. This utility directly reads and updates the iProcess
database tables.

Refer to “Administering Servers” in the TIBCO iProcess Engine: Administrator's
Guide.
 TIBCO iProcess Engine Architecture Guide

122 | Chapter 9 Process Management

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Architecture Guide

| 123

B
ac

k
to

 L
ib

ra
ry
Chapter 10 Network Communication

This chapter describes how:

• TIBCO iProcess Workspace communicates with the iProcess Engine. See
TIBCO iProcess Workspace and TIBCO iProcess Engine Network
Communication on page 124.

• TIBCO iProcess Engines communicate when they are in a node cluster. See
TIBCO iProcess Engine to TIBCO iProcess Engine Network Communication
in a Node Cluster on page 127.

• The iProcess Engine works when a firewall is implemented on your network.
See Using the TIBCO iProcess Engine in a Firewalled Environment on
page 128.
 TIBCO iProcess Engine Architecture Guide

124 | Chapter 10 Network Communication

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Workspace and TIBCO iProcess Engine Network
Communication

This section provides a brief overview of how the TIBCO iProcess Workspace and
TIBCO iProcess Engine communicate with each other via the network.

The TIBCO iProcess Workspace makes Remote Procedure Calls (RPC) to the server
using ports. This means the TIBCO iProcess Workspace makes calls to the TIBCO
iProcess Engine to find out information such as what work queues and work
items it needs to display. It also means that procedures can be started from one
computer but actually be running on another computer on the network. There are
a number of reasons why this might happen:

• The local computer is not able to provide the functionality required.

• The requested service is shared amongst many clients but centralized
arbitration, synchronization and communication is required.

• You want to use the superior performance of a remote computer.

• You want to balance the processing load across the network.

Any program that offers functions that can be remotely accessed via RPC must
have a unique RPC number. The RPC number for a service is either pre-defined
(fixed) or allocated dynamically.

All RPC numbers need to be bound to network ports before remote clients can
communicate with the RPC servers. This is because the port is the fundamental
method of communication between computers.

The allocation of ports, similar to the allocation of RPC numbers, can be fixed or
dynamic and is determined by the program providing the RPC service and the
operating system. Therefore, it is important to know the distinction between RPC
ports and numbers.

Function of a Portmapper
The connection between the RPC client computers and RPC servers is serviced by
a program known as the portmapper (or rpcbind). The portmapper provides a
directory for the RPC services on the computer on which it runs.

A client application can request a connection to an RPC service by passing the
portmapper the RPC number. The portmapper responds by sending back the
actual port number that the service is bound to. The client can then connect
directly to the service using the service’s port.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Workspace and TIBCO iProcess Engine Network Communication | 125

B
ac

k
to

 L
ib

ra
ry
The TIBCO iProcess Engine RPC Service
The process that monitors the RPC calls that request a connection to the TIBCO
iProcess Engine is known as the RPC listener. This has a pre-defined RPC number
- by default it is 391875. If a TIBCO iProcess Engine is communicating with
another TIBCO iProcess Engine, the default port is 391870. The SWDIR\swdefs
file contains the RPC numbers.

When the iProcess Engine starts:

1. The RPC TCP listener process starts and requests the operating system to
allocate it a port.

2. It binds a TCP socket to this port.

3. It then contacts the portmapper and requests that its RPC number (391875) is
registered on the port that the operating system has allocated it.

4. The portmapper makes an entry in an internal table of the RPC number and
port.

5. The iProcess Engine starts a number of other RPC servers but with
dynamically allocated RPC numbers. These servers bind to a port
dynamically allocated by the operating system and then registers the
relationship between the RPC number and port with the portmapper.

The following describes what happens when an TIBCO iProcess Workspace
connects to an iProcess Engine:

1. The TIBCO iProcess Workspace connects to the portmapper program.

2. The TIBCO iProcess Workspace requests details of the port to which the client
RPC listener is bound. The request specifies the RPC number (the default is
391875).

3. The TIBCO iProcess Workspace connects to the client RPC listener using the
port details and then requests details of the RPC numbers of the other RPC
servers the TIBCO iProcess Workspace needs.

4. For each of the RPC numbers obtained, the TIBCO iProcess Workspace:

a. Contacts the portmapper.

b. Requests details of the port to which the RPC number is bound.

TCP/IP
The RPC listeners and TIBCO iProcess Workspace use the TCP/IP protocol to
communicate. In order for the TIBCO iProcess Workspace to communicate with
the RPC listener processes, the TIBCO iProcess Workspace must be able to
perform HOST name resolution. This means that data packets are sent to a host
 TIBCO iProcess Engine Architecture Guide

126 | Chapter 10 Network Communication

B
ac

k
to

 L
ib

ra
ry
name such as HERCULES rather than to an IP address such as 10.10.56.202 and
the TCP/IP stack looks up the correct IP address. A typical way of setting this up
is to use a HOSTS file on each computer which provides a simple look up table for
a host name and its IP address.
TIBCO iProcess Engine Architecture Guide

TIBCO iProcess Engine to TIBCO iProcess Engine Network Communication in a Node Cluster | 127

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine to TIBCO iProcess Engine Network
Communication in a Node Cluster

This section provides a brief overview of how TIBCO iProcess Engines
communicate with each other when configured as part of a node cluster.

The only processes that communicate with each other between nodes in a cluster
are the Process Managers and the SWDIR\util\swsvrmgr process. The swsvrmgr
process tells the process managers what actions to perform. They communicate
via the TIBCO iProcess Engine event mechanism by publishing and subscribing
to events.

For example when you start the system by running SWDIR\bin\swstart, the
swsvrmgr START utility publishes an event to say that the system needs to start
up something. All the process managers on all the nodes in the cluster should
receive that event and start up any processes that are configured to run on that
node. Similarly on shutdown, a shutdown event is published and each machine's
process manager should receive the event and shutdown any appropriate
processes.
 TIBCO iProcess Engine Architecture Guide

128 | Chapter 10 Network Communication

B
ac

k
to

 L
ib

ra
ry
Using the TIBCO iProcess Engine in a Firewalled Environment

In many enterprise network models, a firewall is used to link logical networks
together to provide access security into the protected network. The following
section describes how the iProcess Engine can be configured to work in a firewall
environment.

What is a Firewall?
A firewall is a computer that links two logical networks together and re-routes
data between the two networks as required. The firewall computer also contains a
filter. This filter only allows data to pass through it that is requesting a particular
service (using a variety of filtering methods defined by the firewall
administrator).

A typical use of a firewall is for Web servers. A Web server needs to be accessed
by remote computers outside of the logical network so they can access the web
service. However, these computers should not be able to access other services on
that server that are more likely to be a security risk.

A firewall can vary in the way that they restrict access to the network, they can:

• only allow access to and from certain computers.

• analyze the port number the client is requesting and compare it to a list of port
numbers allowed.

• analyze the data that is being sent and only allow it through if it conforms to
some pre-determined rules that have been set up.

Within the data being sent (known as packets), many firewalls can obtain the RPC
number requested for RPC calls and only allow data through if it is requesting a
particular RPC number and therefore a particular RPC service.

iProcess RPC and Firewall Access
When an iProcess Workspace and the iProcess Engine are separated by a firewall,
the iProcess Suite can fail because its communication method (remote procedure
calls - RPC) is stopped by the firewall filter. Because iProcess Engine RPC services
are allocated dynamically, the firewall filter is not set up to open all ports that the
iProcess Engine is using. Not all the ports will be open because the firewall
administrator has set up certain restrictions to enable security on the network.
TIBCO iProcess Engine Architecture Guide

Using the TIBCO iProcess Engine in a Firewalled Environment | 129

B
ac

k
to

 L
ib

ra
ry
The RPC numbers are allocated dynamically so there is no fixed set of RPC
numbers for a firewall administrator to add to the filter. If the ports used are not
opened up on the firewall, the iProcess Workspace and iProcess Engine cannot
communicate because data requests are denied by the firewall. In order for the
iProcess Engine to operate in this environment, the firewall administrator needs
to know what ports the iProcess Engine is using so that iProcess RPC calls can be
filtered through.

You can set up the iProcess Engine to use a specific range of ports and/or RPC
numbers so that the firewall administrator has a range of port numbers to add to
the firewall filter. You can use one or both of the following methods to do this:

• Port range filtering

• RPC number filtering.

You use the SWDIR\util\swadm utility to configure port range and/or RPC
number filtering. Refer to “Administering Firewalls” in the TIBCO iProcess Engine:
Administrator's Guide for more information.

Port/RPC Number Resource Logging
When Port/RPC numbering is enabled, a log file containing resource allocation
and release operations is stored in SWDIR\logs\rpcport.log. This is a text file
containing entries for the following events:

• Start-up of the Port/RPC resource allocation service

• Shutdown of the Port/RPC resource allocation service

• Allocation of a Port/RPC number

• Release of a Port/RPC number

• Failure to re-bind a released port

• Successful re-bind of a previously failed port

• Errors in allocations/release of port/RPC number.

Using Oracle Events Through a Firewall
You can specify a range of AQ port numbers to be used in iProcess for
communication through the firewall with Oracle Events.

You must ensure that you specify enough AQ ports for iProcess system processes.
On a typical system, you should specify a minimum of 7 ports for iProcess
(sentinel and utility processes), plus an additional port for each process defined in
the process_config database table.
 TIBCO iProcess Engine Architecture Guide

130 | Chapter 10 Network Communication

B
ac

k
to

 L
ib

ra
ry
In addition to configuring the AQ port range in iProcess, you must also ensure
that your firewall is configured to allow access for the iProcess AQ port range as
well as the iProcess RPC port range, and any required Oracle ports (such as the
default port 1521).

The following two tables are provided:

aq_port_range_conf: this records port ranges including the start port
number and the count of the ports.

aq_port_range: this records the state of every port in every range.

You use the SWDIR\util\swadm utility to configure the aq port range. Refer to
“Administering Firewalls” in the TIBCO iProcess Engine Administrator's Guide for
more information.

Using JMX Through a Firewall
JMX relies on a JAVA technology called RMI. which uses dynamic ports to be able
to communicate between a client and a server. Firewalls cannot handle dynamic
ports as they need to know the port number. iProcess overcomes this problem by
statically assigning a listening port for the RMI server.

Refer to the Post Installation tasks in TIBCO iProcess Installation for more
information.
TIBCO iProcess Engine Architecture Guide

| 131

B
ac

k
to

 L
ib

ra
ry
Chapter 11 Point-to-Point Data Flow Models

This chapter explains in detail what happens to workflow data when users:

• start a new case of a procedure - see page 132.

• open a work item - see page 135.

• keep a work item - see page 138.

• release a work item - see page 140.

A point-to-point data flow model is shown for each example to identify the flow
of information between processes in the iProcess system.

These models can help you understand the TIBCO iProcess Engine so that you
can identify any problems to specific areas of the system.

The following descriptions apply to the TIBCO iProcess Workspace accessing the
TIBCO iProcess Engine. It does not describe how the TIBCO iProcess Objects
Server accesses the TIBCO iProcess Engine.
 TIBCO iProcess Engine Architecture Guide

132 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
User Starts a New Case

This section describes a step-by-step example of the data flow between processes
when starting a new case using the TIBCO iProcess Workspace. The flow is
different if the user who is starting the case:

• is the addressee of the first step

• is not the addressee of the first step.

Both examples are described in the following sections.

Case Starter is Addressee of the First Step
If the user starting the case is the addressee of the first step:

1. From the TIBCO iProcess Workspace, the user selects a procedure and starts a
new case.

The TIBCO iProcess Workspace queries the form definition to see what form
to display. This is either read from:

— memory (if the procedure has previously been accessed).

— the TIBCO iProcess Workspace cache (for example, on Windows 2003 this
is in c:\Documents and Settings\user\Application
Data\iProcess\nodename.n\procname.p

— the server database procedure definition table (proc_defn).

2. The TIBCO iProcess Workspace calls the WIS process via an RPC call to
generate the NEWCASE instruction.

3. The WIS process adds a new entry to the staffo database table. Because a new
row is added, a case number and reqid number are generated by the database
sequencing feature.

4. A message containing the NEWCASE instruction, case number and reqid
number is posted to the appropriate Mbox set.

5. The BG process polls the Mbox set, reads the new message and sends it to one
of the BG processes.

6. The BG processes the case instruction and starts the case including the
generation of audit messages. Work items are only sent to queues if the start
step is addressed to other users besides the case starter.
TIBCO iProcess Engine Architecture Guide

User Starts a New Case | 133

B
ac

k
to

 L
ib

ra
ry
The following diagram shows this data flow.

iProcess
Workspace

RPC

WIS Add rowAdd

Enqueue message containing
"NEWCASE" instruction

WIS cache staffo table

mbox
 TIBCO iProcess Engine Architecture Guide

134 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
Case Started by Non-Addressee of the First Step
If the case starter is not the addressee of the first step, the TIBCO iProcess
Workspace calls the RPC Pool server instead of the WIS. This is because the WIS is
responsible for managing Work Queue lists. If the first step is not the user, the BG
handles the case start and sends a request to the appropriate queue. The RPC Pool
server is used to send the request to reduce the load on the WIS.

In this case, the RPC server sends a NEWCASE instruction to the Mbox set. A case
number is added to the instruction but no reqid is required.
TIBCO iProcess Engine Architecture Guide

User Opens a Work Item | 135

B
ac

k
to

 L
ib

ra
ry
User Opens a Work Item

When a TIBCO iProcess Workspace requests the WIS to open a work item it:

• requests, via RPC, that the appropriate WIS should lock the work item. This is
performed in the in-memory caches (and if configured using the
WIS_WRITELOCKS parameter in SWDIR\etc\staffcfg, the lock is written to
the staffo table). The WIS returns the information about the work item in its
cache to the TIBCO iProcess Workspace.

• reads the procedure definition from the RPC Pool server. The TIBCO iProcess
Workspace queries the form definition to see what form to display. This is
either read from:

— memory (if the procedure has previously been accessed).

— the TIBCO iProcess Workspace cache (for example, on Windows 2003 this
is in c:\Documents and Settings\user\Application
Data\iProcess\nodename.n\procname.p

— the server database procedure definition table (proc_defn).

• reads pack data from the pool server.
 TIBCO iProcess Engine Architecture Guide

136 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
When a user opens a work item in the Work Item Server, the WIS locks the work
item on behalf of the TIBCO iProcess Workspace by setting a lock flag in the staffo
database table. The WIS contains the skeleton details of the work item and gets
the field/value data from the pack_data table. The WIS accesses the case data by
communicating directly with the database. The following diagram shows the flow
of information.

iProcess
WorkSpace

RPC

WIS staffo table

pack_data

RPC server

Reads Data
TIBCO iProcess Engine Architecture Guide

User Opens a Work Item | 137

B
ac

k
to

 L
ib

ra
ry
Accessing Memos
If the work item has a memo in the form, the TIBCO iProcess Workspace accesses
the database to retrieve the memo data from pack_memo. The TIBCO iProcess
Workspace does this via RPC and converts the data to a local file on the TIBCO
iProcess Workspace. Any further access to the memo data can then be performed
via this file.

For example, if a user opens a work item from the Fred1 queue and opens a memo
field in the form, the memo file would be located in the following location:

c:\Documents and Settings\user_name\Application
Data\iProcess\nodename.n\procname.p

where:

• user_name is the name of the Windows user currently logged in

• nodename represents the name for the procedure’s host node.

• procname is the name of the procedure.
 TIBCO iProcess Engine Architecture Guide

138 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
User Keeps a Work Item

If a user keeps a work item rather than releasing it, the TIBCO iProcess Workspace
stores any changed information (changed fields and their data and the operation
to perform i.e. KEEP) in memory. This is stored in an in memory package that is
sent via RPC calls to the WIS process. The WIS processes the changed information
and updates the staffo, pack_memo and pack_data database tables in a single
transaction.

iProcess
WorkSpace

RPC

WIS update staffo

pack_data

WIS cache

update

update
TIBCO iProcess Engine Architecture Guide

Background Sends a Work Item to a Work Queue | 139

B
ac

k
to

 L
ib

ra
ry
Background Sends a Work Item to a Work Queue

When the Background process sends a new request, a new entry is added to the
staffo table and any pack data is added to the pack_data table and memos to the
pack_memo table. The REQUEST instruction is sent to the WIS Mbox set, which
is dequeued by the WIS Mbox Daemon. This process sends the message via RPC
to the relevant WIS process. The WIS process adds an entry to the cache for the
queue that the instruction was sent to.

background

WIS

staffo

pack_data

WIS cache adds entry

WIS Mbox Set

WIS Mbox
Daemon

insert

sends "REQUEST"
instruction

dequeues message

sends RPC "REQUEST"

pack_memo
 TIBCO iProcess Engine Architecture Guide

140 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
User Releases a Work Item

The data flow for this process is similar to what happens when a user keeps a
work item. The TIBCO iProcess Workspace identifies any changes made to the
form and creates a data package of the changes (stored in memory). This is sent
via RPC calls to the relevant WIS process. The WIS breaks up the package and
processes it.

The WIS updates the pack data table, deletes the work item entry in the staffo
table, deletes the relevant work item in the WIS’s cache and sends a RELEASE
instruction to the Background Mbox set for a Background to process.

The Background process works out what to do next in the procedure and either
terminates the case or sends the next step to the work queue.

iProcess
WorkSpace

RPC

WIS delete staffo

pack_data

WIS cache

update

delete

Mbox

enqueue
"RELEASE"

message
TIBCO iProcess Engine Architecture Guide

User Releases a Work Item | 141

B
ac

k
to

 L
ib

ra
ry
The RELEASE instruction informs the Background that the step has been released
and the background can update the case data in the database with the new data.
The audit trail is updated to show that it has been released. The Background can
read the procedure definition to determine what will happen next i.e. terminate
the case or process the next step to the foreground.

When the Background sends out a new work item it writes:

• a record to the staffo database table

• field and value name pairings to the pack_data database table.

• memos to the pack_memo table.

Each message references the field/value name pairings in the table by a unique
identifier (reqid).
 TIBCO iProcess Engine Architecture Guide

142 | Chapter 11 Point-to-Point Data Flow Models

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Engine Architecture Guide

	TIBCO iProcess™ Engine Architecture Guide
	About This Guide
	How to Use This Guide
	Target Audience
	Changes from the Previous Issue of this Guide
	Where You Can Find More Information
	Documentation Conventions

	Chapter 1 Introduction to TIBCO iProcess Products
	TIBCO Product Overview 1
	TIBCO Product Overview 2
	TIBCO Business Studio™
	TIBCO BusinessWorks™
	TIBCO Enterprise Message Service™
	TIBCO Hawk®
	TIBCO iProcess™ Analytics
	TIBCO iProcess™ Analytics Export
	TIBCO iProcess™ Conductor
	TIBCO iProcess™ Decisions Server
	TIBCO iProcess™ Decision Studio
	TIBCO iProcess™ Engine
	TIBCO iProcess™ Insight
	TIBCO iProcess™ Objects Server
	TIBCO iProcess™ Objects Director
	TIBCO iProcess™ Server Objects
	TIBCO iProcess™ Technology Plug-ins
	TIBCO iProcess™ Web Services Plug-in
	TIBCO iProcess™ Workspace (Browser)
	TIBCO iProcess™ Workspace Plug-ins
	TIBCO iProcess™ Workspace (Windows)
	TIBCO Rendezvous®

	Chapter 2 Introduction to the TIBCO iProcess Engine
	TIBCO iProcess Engine Architecture
	The Role of the TIBCO iProcess Engine
	iProcess Physical Architecture
	Installing the iProcess Engine on a Single Server
	Installing the iProcess Engine on a Node Cluster
	TIBCO iProcess Workspace and TIBCO iProcess Engine Communication

	TIBCO iProcess Engine Process Structure
	Process Sentinels
	Foreground Processes
	Mbox Sets
	Background Processes
	Event Handling

	Where is TIBCO iProcess Engine Case Data Stored?
	How Do Work Items Appear in Work Queues?
	Sending Instructions From the TIBCO iProcess Workspace to the TIBCO iProcess Engine
	Mbox Sets
	Message Queues

	User Access to iProcess Engine Work Queues

	24*7 TIBCO iProcess Engine Operation
	The iProcess Engine and Hardware Clustering
	Deploying the iProcess Engine in a Hardware Cluster for UNIX
	Deploying the iProcess Engine in a Hardware Cluster for Windows

	Chapter 3 Using the TIBCO iProcess Suite in a Multilingual Environment
	Overview
	Globalization Options in the iProcess Suite
	Advantages of UTF-8 Encoding
	Issues with UTF-8 Encoding
	iProcess Names

	Recommendations
	Configuring the iProcess Suite Using UTF-8
	TIBCO iProcess Engine
	iProcess Clients
	TIBCO iProcess Workspace (Windows)
	TIBCO iProcess Workspace (Browser)

	The LDAPCONF Utility
	TIBCO Business Studio
	iProcess Plug-ins
	iProcess BusinessWorks Plug-in
	iProcess Web Services plug-in
	iProcess Email Plug-in

	Globalization Support Using Native Encoding
	Using iProcess Suite in a Single-Byte Native Encoding Environment
	Using iProcess Suite With a Multi-Byte Character Encoding Environment
	Implementing iProcess Suite in an International Environment with Native Encoding

	Chapter 4 TIBCO iProcess Engine Processes
	Foreground Processes
	Work Queue Server
	Allocation of Work Queues to WIS Processes
	Round Robin Queue Allocation
	On-Demand Queue Allocation
	Controlling the Assignment of Queues to WIS Processes

	RPC Pool Server
	RPC Listeners
	Work Item Server
	WIS Mbox Daemon

	Mbox Sets and Message Queues
	Transaction Control of Messages

	Background Processes
	Background
	Case Prediction Processor(s)
	Database Queue Daemon
	Deadline Manager
	IAPJMS Process
	RPC Background Process

	Chapter 5 Introduction to Transactional Business Process Automation
	Overview
	What is a Local Transaction?
	Example of a Local Transaction

	What is a Distributed Transaction?
	Transaction Scope
	Oracle Server Transaction Scope
	DB2 Transaction Scope
	SQL Server Transaction Scope
	Using Distributed Transactions with MSDTC

	Using Enterprise Application Integration Steps in Procedures
	What is MSDTC?
	Examples of Transaction Control
	Case Data Updates to the SQL Server using MSDTC
	External Updates Using EAI Steps

	Transaction Failures and Rollbacks
	Poison Transactions

	Chapter 6 iProcess Mbox Sets
	Overview
	What are iProcess Messages?
	Definition of Mbox Sets
	Configuring Mbox Sets

	Transaction Management of Messages
	UNIX Oracle Transaction Implementation
	Windows SQL Server Transaction Implementation
	UNIX DB2 Transaction Implementation

	Chapter 7 Monitoring Activities
	Overview
	Activity Publishing
	Work Queue Delta Publication

	How Messages are Processed From the BG Process to the IAPJMS Process
	How Activity Messages are Processed From the IAPJMS Process to the External Application
	How Messages are Processed From the WIS Process to the IAPJMS Process
	How Work Queue Delta Messages are Processed From the IAPJMS Process to the External Application
	Understanding the Message Types
	IAP Message Types
	The Monitor Event Detail Message (MED)
	Filtering Message Event Request (MER) Messages

	WQD Message Types
	Work Queue Delta (WQD) Message
	Work Queue Synchronization (DSY) Message
	Work Queue Invalid (DER) Message

	Chapter 8 Database Failure and Failover
	Overview
	TIBCO iProcess Engine Behavior
	TIBCO iProcess Workspace Behavior
	iProcess Objects and iProcess Server Objects Behavior
	TIBCO iProcess Engine Configuration Requirements
	Oracle (UNIX or Linux)
	Oracle (Windows), SQL Server and DB2 (UNIX or Linux)

	Chapter 9 Process Management
	Responsibilities of the Process Sentinels
	Distribution and Hierarchy of Process Sentinels
	Master and Slave Responsibilities
	Common Process Sentinel Tasks
	Master Process Sentinel Tasks

	How Processes are Controlled by the Process Sentinels
	Starting the TIBCO iProcess Engine Processes
	Determining Where Processes Run

	Restarting Failed Processes
	Restarting Failed Process Sentinels
	Watcher Process
	Worker Process

	Shutting Down Processes
	Configuring the Process Sentinels

	Chapter 10 Network Communication
	TIBCO iProcess Workspace and TIBCO iProcess Engine Network Communication
	Function of a Portmapper
	The TIBCO iProcess Engine RPC Service
	TCP/IP

	TIBCO iProcess Engine to TIBCO iProcess Engine Network Communication in a Node Cluster
	Using the TIBCO iProcess Engine in a Firewalled Environment
	What is a Firewall?
	iProcess RPC and Firewall Access
	Port/RPC Number Resource Logging
	Using Oracle Events Through a Firewall
	Using JMX Through a Firewall

	Chapter 11 Point-to-Point Data Flow Models
	User Starts a New Case
	Case Starter is Addressee of the First Step
	Case Started by Non-Addressee of the First Step

	User Opens a Work Item
	Accessing Memos

	User Keeps a Work Item
	Background Sends a Work Item to a Work Queue
	User Releases a Work Item

