
TIBCO iProcess® Server Objects (.NET)

Programmer’s Guide
Software Release 11.4.1
April 2014

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE
LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT
FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE
AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR
INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE
“LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.
TIBCO, TIBCO iProcess, and Two-Second Advantage are either registered trademarks or trademarks of TIBCO Software Inc. in the
United States and/or other countries.
Enterprise Java Beans (EJB), Java Platform Enterprise Edition (Java EE), Java 2 Platform Enterprise Edition (J2EE), and all Java-based
trademarks and logos are trademarks or registered trademarks of Oracle Corporation in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their respective owners and are
mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL OPERATING SYSTEM
PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME TIME. SEE THE README FILE FOR THE
AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF
THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND
"READ ME" FILES.
Copyright © 2004-2014 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

TIBCO iProcess Server Objects (.NET) Programmer’s Guide i

Table of Contents

Preface .xi
Introduction .xi
Product Name Changes .xi
Knowledge Level . xii
Documentation Set . xii

Revision History . xiii

Chapter 1 — Introduction . 1
Introduction . 1
Procedures . 1
TIBCO iProcess Server Objects Design . 3

Available Solutions. 3
XML Interface. 3
Managed Objects for Local Solutions . 4
Remote .NET Solutions. 5

TIBCO Process / iProcess Engine. 6
Engine and Server Version Numbers . 6

SWDIR - The System Directory. 7
TIBCO iProcess Objects Server . 7
TIBCO iProcess Objects Director. 7

Chapter 2 — Naming Conventions . 8
Naming Conventions Used in TIBCO iProcess Server Objects (.NET). 8

Chapter 3 — Object Types. 10
Object Types . 10

Server Objects . 11
What is a User Session? . 12
Disconnecting User Sessions . 13

Sharing User Sessions . 13
Server Object Parameters . 14
Garbage Collection . 14

Value Objects . 15
Multiple Value Objects . 15
Constructing Value Objects . 16

Are TIBCO iProcess Server Objects (.NET) Objects Reentrant? . 16

Chapter 4 — Node Management . 17
Introduction . 17
Constructing a vNodeId Object. 18
Sending a Directed UDP Message . 19

Specifying a UDP Port . 19
Multiple Instances of the TIBCO iProcess Objects Server / Director . 20

Sending a UDP Broadcast. 20
Setting the UDP Broadcast Interval . 20

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide ii

Specifying a UDP Port . 21
Multiple Instances of the TIBCO iProcess Objects Server / Director . 21
What if a Known Node is not Answering the UDP Broadcast?. 22

Configuring the TIBCO iProcess Objects Server TCP Port . 23
Configuring the TCP Port on a Windows System . 23

Configuring the TCP Port on a UNIX System . 24
Using TIBCO iProcess Server Objects Through a Firewall? . 25
Database Configuration. 26

Database Configuration Access . 26
Activity Publication . 27

Activity Publication Access . 27
Configuring Activity Publication . 27

Using the sIPEConfig Object . 28
Configuration Example . 28

Chapter 5 — Procedures . 31
Introduction . 31
Managing Procedures . 31
Procedure Version Control . 33

Procedure Status . 33
Accessing the Procedure Version Number . 34

Procedure Version Number in the Audit Trail . 34
Procedure Version Details . 35
Listing Versions of a Procedure . 35
Accessing a Specific Procedure Version . 35
Procedure Audit Trails . 36

Sub-Procedures . 37
Sub-Procedure Call Steps . 37

Accessing Sub-Procedure Call Step Definitions . 38
Sub-Procedure Start Precedence . 38

Dynamic Sub-Procedure Call Steps . 38
Accessing Dynamic Sub-Procedure Call Step Definitions . 41

Passing Data between a Main and Sub-Procedure . 41
The Sub-Case Object . 42

SubProcPath to a Sub-Case . 42
Public Steps. 44

Public Fields . 45
Retrieving Public Field Objects . 45

Chapter 6 — Case Management . 46
Starting a Case . 46

Case Description. 47
Keeping/Releasing the Start Step . 47
Validating Markings on the Start Step (iProcess Modeler Forms Only) . 48
Sub-Procedure Precedence . 49
Why isn’t the Started Case Appearing in the Work Queue?. 50
Obtaining the Case Number of a Case that was just Started . 50

Determining Who Can Start a Case . 51
Which Procedures can a User Start?. 51

Obtaining Lists of Cases . 51
Determining the Number of Cases in a Procedure . 52

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide iii

Auditing Cases . 53
Determining who can Audit Cases of a Procedure. 53
Which Procedures can a User Audit? . 54
Audit Step Objects . 54

Getting Audit Step Objects . 56
Configuring Audit Trail Strings . 57
Auditing Sub-Procedures . 58

Grouping Sub-Cases in the Audit Trail. 58
Filtering Audit Data . 59

Creating an Audit Filter Expression . 59
Adding User-defined Audit Trail Entries . 64

Custom Audit Trail Message Templates . 65
Withdraw Outstanding Items / Jump To New Steps. 65

Determining Outstanding Items . 66
ProcPath to Outstanding Items . 67

Triggering Events . 69
Predicting Cases . 69

Defining Case Prediction . 70
Step Duration. 70
Conditional Actions for Case Predictions . 71

Performing Case Prediction . 71
Background Case Prediction . 71
Live Case Prediction . 72
Case Simulation. 72

Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction . 72
Sub-Procedure Call Steps . 72
Dynamic Sub-Procedure Call Steps and Graft Steps . 73

Including Case Data Queue Parameter Data in Prediction Results . 73
Filtering and Sorting Predicted Items. 74

Using Graft Steps . 75
Defining Graft Steps. 75
Starting a Graft Task. 76
Setting the Task Count . 77
Outstanding Graft Items . 78
Return Statuses . 79
Deleting a Task . 79
Completing a Graft Step . 80
Error Processing . 80

Transaction Control Steps . 82
The vTransactionControlStep Object . 82
Type of Transaction Control Step. 82
Outstanding Transaction Control Steps . 83
Retrying Failed Transactions . 83
Audit Trail Messages . 84

Suspending Cases . 85
Reactivating a Suspended Case . 85
Ignoring Case Suspension . 86

Closing Cases . 86
Resurrecting a Closed Case . 86

Purging Cases . 86

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide iv

Chapter 7 — Managing Work Queues . 88
Introduction . 88

Work Queue Objects. 88
Work Item Objects . 88
Test vs. Released Work Queues . 88

Retrieving Work Queues. 89
Filtering Content when Retrieving Work Queues . 91

Retrieving Work Items . 91
Filtering and Sorting Work Items . 92
Filtering Content when Accessing Work Items . 93
Work Queue Deltas. 94

Work Queue Deltas With Pageable Lists . 94
Delta Status . 96

Work Queue Deltas Via a JMS Topic . 96
JMS Deltas When Using Pageable Lists — JBase or RMI Interface . 97
JMS Deltas When Using Single-Block Item Access — JBase or RMI Interface 99
JMS Deltas When Using Single-Block Item Access — XML Interface 100
Work Queue Delta JMS Messages . 103

Processing Work Items . 105
Locking Work Items . 105

Controlling Fields Returned when Locking Work Items . 105
What’s the Difference Between a “Lock” and a “Long Lock”? . 106
Locking the First Available Work Item in a List . 106

Pageable Lists . 107
Single-Block Item Access Lists . 107

Unlocking a Work Item. 107
Discarding Changes made to a Locked Work Item. 108
Has a Work Item been Locked/Opened?. 108
Determining who Locked a Work Item. 108
Executing a Command when a Work Item is Locked. 108

Keeping Work Items. 108
Executing a Command when a Work Item is Kept . 109

Releasing Work Items. 109
Validating Markings . 109
Executing a Command when a Work Item is Released . 110
Automatically Releasing the Start Step. 110
What is an Orphaned Work Item?. 110
Determining if a Work Item could not be Delivered to the Addressee. 110
Is the Work Item Directly Releasable? . 110

Errors Resulting from Processing Work Items . 111
Work Item Deadlines . 111

Deadline Withdrawal . 111
Filtering and Sorting on Deadline Information . 112
Dynamically Recalculating Deadlines . 112

Keeping a Work Item that is Withdrawn . 113
Participating in Another User’s Work Queue . 113

Participation Schedules . 114
Modifying Existing Participation Schedules. 114
Creating Participation Schedules . 114
Removing Participation Schedules . 114

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide v

Using the vDate and vTime Objects in Participation Schedules. 115
Forwarding/Redirecting Work Items to Another Work Queue . 115

Manually Forwarding Work Items . 115
Determining the Work Queues to which a Work Item can be Forwarded 116

Automatic Forwarding/Redirecting Work Items . 117
Redirection Schedules . 117

Modifying an Existing Redirection Schedule . 117
Cancelling a Redirection Schedule . 117
Using the vDateTime Object in Redirection Schedules . 118

Work Queue Supervisors . 119
Adding Work Queue Supervisors . 119
Removing Work Queue Supervisors . 119

External Work Items . 120
Releasing an External Work Item. 120

Chapter 8 — Working with Lists . 121
Introduction . 121
Using Single-Block Item Access . 121

Making a List . 122
Make<type>List Method Input Parameters. 122

From the XML Interface: . 122
From the Base Interface: . 122

Make<type>List Method Return Values. 123
From the XML Interface: . 123
From the Base Interface: . 124

Fetching a List . 124
Fetch<type>List Method Input Parameters. 125

From the XML Interface: . 125
From the Base Interface: . 125

Fetch<type>List Method Return Values . 126
From the Base Interface: . 126

Fetch “If Changed” Methods. 126
List State Objects . 127

Base Object . 127
Filter and Sort Criteria Information . 128
Content Information . 128
Summary Information . 129
Work Item Status Information. 130
Requested Items . 130

Using Pageable Lists . 131
Using Pageable Lists with Work Items. 132

Refreshing a Pageable List of Work Items . 134
Refresh Status . 134

Using a Director or Multiple Instances of the TIBCO iProcess Objects Server 135
Using Pageable Lists with Cases, WorkQs, Groups, Users, and OSUsers . 136
Held Pageable Lists. 138

The IsReturnAllFields Flag is always False on Held Pageable Lists . 138
Access Permissions . 139
Freeing a Held Pageable List . 139

Pageable List Counts. 140
Controlling System Resources . 141

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide vi

Server Resources . 141
Client Resources . 141

Setting the Size of the Blocks . 141
Automatically Clearing Blocks . 142
Explicitly Clearing Blocks . 142

Chapter 9 — Retrieving Dependent Objects . 143
Introduction . 143
Content Request Objects . 144

Using Content Request Objects . 145
Retrieving Dependent Objects . 145
Controlling Case Data . 146
Controlling Fields Returned when Locking Work Items . 146

Chapter 10 — iProcess Fields . 148
What is a iProcess Field? . 148
Case Data vs. Work Item Data . 149

Including Field Data when Starting a Case . 149
Setting Case Data . 150
Checking/Setting Uninitialized Fields . 150
Parallel Steps . 150

Retrieving Field Data from the Server . 150
Including Field Data when Retrieving Cases . 151
Including Field Data when Retrieving Work Items . 151
Including Field Data when Locking Work Items . 151

Case Data Queue Parameter Fields . 152
Passing Field Data when Keeping/Releasing Work Items . 152
What are Markings? . 153
Type Validation on Fields/Markings . 153
Accessing Memo Fields . 154
Accessing Attachments . 154
Accessing System Fields. 154
Array Fields. 155

Array Field Indexes . 156
Using Array Fields in Filter Expressions . 157
Requesting, Returning, and Setting All Array Field Elements . 158

Requesting All Array Field Elements . 158
Returned Array Field Elements. 158

SWFieldType Enumerations Used With Array Fields. 159
Setting All Array Field Elements . 159
Example. 160

Setting Array Field Values to SWEmptyField in XML . 160
Date Format. 161
Character Encoding. 161

Chapter 11 — User Administration . 162
Introduction . 162

Types of Users . 162
MOVESYSINFO Function . 163

iProcess Users . 164
Creating an iProcess User. 164

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide vii

Deleting an iProcess User. 165
Is an O/S User needed for every iProcess User? . 165
Changing the User’s Password . 165

User Groups . 166
Creating a User Group . 166
Deleting a User Group . 167
Adding and Removing Users to/from a Group. 167

Roles . 167
Creating a Role . 168
Deleting a Role . 168

User Attributes . 168
Modifying an Existing Attribute Value . 170
Creating an Attribute Definition. 170
Deleting an Attribute . 170

Why isn’t the new User, Group, Role or Attribute Available?. 171
User Authority. 171
User Preference Data . 173

Chapter 12 — Filtering Work Items and Cases (No Enhancements) . 174
Introduction . 175
Specifying Filter Criteria . 175
Defining Filter Expressions . 176

Number of Cases or Work Items in a Filtered Pageable List . 177
Filtering/Sorting in an Efficient Manner. 178

Filtering/Sorting Work Items . 178
Getting Case Data . 180
Can the WIS Perform the Filter Operation? . 180

Work Item Server vs. TIBCO iProcess Objects Server Example . 182
Can the WIS Perform the Sort Operation? . 182

Filtering/Sorting Cases . 182
Getting Case Data . 184
Filtering Cases on the TIBCO iProcess Objects Server . 184

Efficiently Filtering Cases on the TIBCO iProcess Objects Server. 185
Sorting Cases on the TIBCO iProcess Objects Server . 185
Getting Audit Data . 186

Filter Criteria Format . 186
System Fields used in Filtering . 188
Data Types used in Filter Criteria . 190

Data Type Conversions. 191
Filtering on Case Data Fields . 191

Using Case Data Queue Parameter Fields . 192
Type of Data in CDQPs . 192

Using Work Queue Parameter Fields . 193
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 194

Using Regular Expressions . 195
Using Escape Characters in the Filter Expression . 196
Filtering on Empty Fields . 196
How to Specify Ranges of Values . 197

Specifying Multiple Ranges . 197
Closing/Purging Cases Based on Filter Criteria . 198

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide viii

Default Filter Criteria . 199

Chapter 13 — Filtering Work Items and Cases (with WIS Work Item Filtering) 201
Introduction . 202
Specifying Filter Criteria . 202
Defining Filter Expressions . 203

Number of Cases or Work Items in a Filtered Pageable List . 204
Filtering/Sorting in an Efficient Manner. 205

Filtering/Sorting Work Items . 205
Getting Case Data . 207
Work Items are Filtered by the WIS . 207
Can the WIS Perform the Sort Operation? . 208

Filtering/Sorting Cases . 208
Getting Case Data . 210
The TIBCO iProcess Objects Server Filters Cases . 210

Efficiently Filtering Cases on the TIBCO iProcess Objects Server. 211
The TIBCO iProcess Objects Server Sorts Cases . 211
Getting Audit Data . 212

Filter Criteria Format . 212
System Fields used in Filtering . 214
Data Types used in Filter Criteria . 216

Data Type Conversions. 217
Filtering Work Items on the WIS . 217
Filtering Cases on the TIBCO iProcess Objects Server . 217

Filtering on Case Data Fields . 218
Using Case Data Queue Parameter Fields . 218

CDQPs Contain Work Item Data . 219
Using Work Queue Parameter Fields . 219
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 220

Using Regular Expressions . 221
Regular Expressions with Work Item Filtering . 221
Regular Expressions with Case Filtering . 222

Using Escape Characters in the Filter Expression . 223
Filtering on Empty Fields . 224
How to Specify Ranges of Values . 224
Closing/Purging Cases Based on Filter Criteria . 225
Default Filter Criteria . 225

Chapter 14 — Filtering Work Items and Cases (with WIS Work Item and Database Case Filtering) 227
Introduction . 228
Specifying Filter Criteria . 228
Defining Filter Expressions . 229

Length of Filter Expressions . 230
Number of Cases or Work Items in a Filtered Pageable List . 230

Filtering/Sorting in an Efficient Manner. 231
Filtering/Sorting Work Items . 231

Getting Case Data . 232
Work Items are Filtered by the WIS . 233
Can the WIS Perform the Sort Operation? . 234

Filtering/Sorting Cases . 234
Getting Case Data . 236

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide ix

The Database Filters Cases . 236
The Database Sorts Cases . 237
Getting Audit Data . 237

Filter Criteria Format . 237
System Fields used in Filtering . 239
Data Types used in Filter Criteria . 241

Data Type Conversions. 242
Filtering on Case Data Fields . 242

Using Case Data Queue Parameter Fields . 242
CDQPs Contain Work Item Data . 243

Using Work Queue Parameter Fields . 243
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 244

Using Regular Expressions . 245
Regular Expressions with Work Item Filtering . 245
Regular Expressions with Case Filtering . 246

Using Escape Characters in the Filter Expression . 247
Filtering on Empty Fields . 247
How to Specify Ranges of Values . 247
Closing/Purging Cases Based on Filter Criteria . 248
Default Filter Criteria . 248

Chapter 15 — Sorting Work Items and Cases . 251
Introduction . 251
Specifying Sort Criteria . 251
Sorting in an Efficient Manner . 252
System Fields used in Sorting. 253
Sorting on Case Data Fields . 255

Using Case Data Queue Parameter Fields . 255
Using Work Queue Parameter Fields . 256

Setting Default Sort Criteria . 257
Sorting as a Specified Data Type . 258

Chapter 16 — Error Handling . 259
Introduction . 259

Chapter 17 — Client Configuration . 261
Client Log . 261

Client Log Overview . 261
Controlling the Client Log . 263

The sClientLog Object . 263
Registry Settings . 263

Name and Location of the Client Log . 264
Log File Name. 264
Log File Directory. 264
Construction of Client Log Name and Directory . 265

Activating / Deactivating the Client Log . 265
Filtering the Client Log . 266

Setting the Log Level . 266
Filtering by Category . 266

Enabling and Disabling Categories . 267
Filtering by Message . 267

Table of Contents

TIBCO iProcess Server Objects (.NET) Programmer’s Guide x

Enabling and Disabling Messages . 268
Adding Entries to the Client Log . 268
Setting the Size of the Client Log. 268
Resetting the Client Log. 269

Message Wait Time . 270
Character Encoding Using ICU Conversion Libraries . 271

Chapter 18 — XML Interface . 272
Introduction . 272
XML Server Objects . 272
Using the XML Interface . 273

Constructing the xSession Object. 273
XML Results . 273

Example XML Data . 274
Returning Lists of Items . 276
Dates and Times . 276

Error Handling . 277
Schemas . 280
Serialize/Deserialize Functions. 280

Index. 281

TIBCO iProcess Server Objects (.NET) Programmer’s Guide xi

Preface

Introduction

The TIBCO iProcess Server Objects (.NET) Programmer’s Guide describes the technical aspects of
the TIBCO iProcess Server Objects (.NET), a set of programming objects used to build applications
that automate business processes.

This document provides descriptions of the functionality of the TIBCO iProcess Server Objects
(.NET). For details about the syntax for the methods used to provide that functionality, see the on-line
help provided with the product.

The Revision History page (see page xiii) shows the version number of TIBCO iProcess Server
Objects (.NET) for each issue of this document. If you are using an older version of TIBCO iProcess
Server Objects (.NET), you may experience functionality that is different than what is described in
this document.

For the latest product information, please refer to the TIBCO Support Services website at
http://www.tibco.com/services/support.

Product Name Changes

Staffware, the original producer of this product, was purchased by TIBCO Software Inc. in 2004. As a
result of this purchase, product names have undergone a change. The table below shows how product
names have changed from Staffware to TIBCO.

Although the name "Staffware" has been removed from the product names, these products are all part
of a suite of products called the "TIBCO Staffware Process Suite".

You may still see references to Staffware, SPO, and SSO in the software (e.g., file and directory
names) and documentation.

Staffware Name TIBCO Name

Staffware Process Objects (SPO) Server TIBCO iProcess® Objects Server

Staffware Process Objects (SPO) Director TIBCO iProcess® Objects Director

Staffware Server Objects (SSO) for .NET TIBCO iProcess® Server Objects (.NET)

Staffware Server Objects (SSO) for EJB TIBCO iProcess® Server Objects (Java)

Staffware iProcess Engine TIBCO iProcess® Engine

Staffware Process Definer (SPD) TIBCO iProcess® Modeler

http://www.tibco.com/services/support

Preface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide xii

Also note that some products that were referred to as “clients” have recently undergone a name
change, as follows:

Knowledge Level

The intended audience of this document is programmers and technical consultants who are using the
objects that comprise TIBCO iProcess Server Objects (.NET) to create client applications for TIBCO
customers or the customers of TIBCO partners.

Documentation Set

In addition to this document, the following make up the documentation set for this product:

• TIBCO iProcess Server Objects (.NET) On-Line Help - This provides syntax information for all
objects, properties, and methods available to programmers. This is an HTML-based help sys-
tem that can be started by pointing your browser to InstallDir\SSOHelp\start.htm.

• TIBCO iProcess Server Objects (.NET) Object Model Graphic - This provides a graphical rep-
resentation of the objects that comprise the TIBCO iProcess Server Objects (.NET).

• TIBCO iProcess Server Objects (.NET) Installation Guide - This guide provides the steps you
need to follow to successfully install your TIBCO iProcess Server Objects (.NET) software.

• TIBCO iProcess Server Objects (.NET) Release Notes - The release notes provide information
about changes that have occurred in each release of TIBCO iProcess Server Objects (.NET). It
may also include information about last-minute changes that are not included in the help system
or programmer's guide.

• TIBCO iProcess Objects Server Administrator’s Guide - This guide provides information about
starting, stopping, and configuring the TIBCO iProcess Objects Server, which is used in con-
junction with the TIBCO iProcess Server Objects (.NET). It also includes information about
how to set up the TIBCO iProcess Objects Server log.

• TIBCO iProcess Objects Director Administrator’s Guide - This guide provides information
about how to use and configure the TIBCO iProcess Objects Director, which can be used to
manage connections between your client application and TIBCO iProcess Objects Servers.

Previous Name New Name

TIBCO iProcess® Client (Windows) TIBCO iProcess® Workspace (Windows)

TIBCO iProcess® Client (Browser) TIBCO iProcess® Workspace (Browser)

TIBCO iProcess Server Objects (.NET) Programmer’s Guide xiii

Revision History

Issue Date

Current Version
of TIBCO

iProcess Server
Objects (.NET)

Summary of Changes

Issue 1 July 2004 10.0(5.0) Initial release.

n/a August 2005 10.2.3 Added information about using the TIBCO iProcess Objects
Director, running multiple instances of the TIBCO iProcess
Objects Server on Windows (configuration utility changes),
transaction control steps, etc.

Also note that the issue number was removed from the title page
to reflect the standard used by TIBCO — the title page now con-
tains the month and year the document was issued, as well as
the version number of TIBCO iProcess Server Objects (.NET) at
time of issue.

n/a Oct. 2005 10.3.0 Added information about activity publication. Removed informa-
tion about the TIBCO iProcess Objects Server (starting/stopping,
configuration parameters, logging, etc.) — for this information,
see the TIBCO iProcess Objects Server Administrator’s Guide.
Also removed information about the TIBCO iProcess Objects
Director — for this information, see the TIBCO iProcess Objects
Director Administrator’s Guide.

n/a March 2006 10.3.1 Added XML Interface chapter to describe using the XML inter-
face. Also changed the name of the Working with Pageable Lists
chapter to Working with Lists, and added information about
using the new “single-block item access” lists.

n/a July 2006 10.5.0 Added information about dynamically recalculating deadlines
and work queue deltas.

n/a May 2007 10.6.0 Removed references to swadmin and swpro (changed to
IPEADMIN user).

n/a December
2007

10.6.1 No functional changes to iProcess Server Objects (.NET). Minor
corrections in this document.

n/a May 2008 11.0.0 Added new “Fetch” methods that return work items only if there
has been a change in work items on the list since you originally
obtained it.

Added information about obtaining work queue deltas via a JMS
topic.

Added information about object model changes to allow you to
set, get, and delete user preference data as a text string in the
iProcess Engine database.

Revision History

TIBCO iProcess Server Objects (.NET) Programmer’s Guide xiv

n/a Jan. 2009 11.1.0 Added MaxCnt property to the vACaseContent object, as well as
OverMaxCnt to the vSummary object.

Added info throughout concerning markings only being applica-
ble to iProcess Modeler-produced forms.

Added new table that lists all possible audit trail filter types,
including the numeric values and equates that represent each
type.

n/a Feb. 2010 11.2.0 Added information about new “lock first available work item”
methods: LockFirstItem, LockFirstWorkItem, and
LockFirstAWorkItem.

n/a Oct. 2010 11.3.0 No new functionality in 11.3.0. Minor corrections.

n/a April 2012 11.4.0 Minor changes.

n/a April 2014 11.4.1 Minor changes.

Issue Date

Current Version
of TIBCO

iProcess Server
Objects (.NET)

Summary of Changes

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 1

1
Introduction

Introduction

TIBCO iProcess Server Objects (.NET) comprise a set of classes that are used to build applications
that automate business processes. TIBCO iProcess Server Objects (.NET) consists of an object model
that provides access to the information and functionality needed in these applications.

The objects in the TIBCO iProcess Server Objects (.NET) object model can be used to start cases,
present information on screens to users, manipulate work items, remind users when actions need to be
taken, and monitor and control the flow through the business process.

Procedures

TIBCO refers to a business process as a “procedure.” Procedures are defined with a tool called TIBCO
Business Studio. A procedure consists of a number of “steps,” including manual steps (which require
user action), automatic steps (which are executed automatically by the server), and condition steps
(which branch based on the result of a condition). An example of a simple procedure is shown below.

Example of a Procedure

Before describing the underlying architecture of TIBCO iProcess Server Objects (.NET), it’s impor-
tant to understand the terminology used with procedures. The following table provides definitions of
some of the key terms that are used throughout this document.

Term Definition

Procedure Represents the definition of a business process, which ensures that information
flows in a consistent and timely manner through the system. A procedure is defined
using TIBCO Business Studio. An example is shown in the illustration above.

Case This is a particular instance of a procedure. A case is created when a procedure is
started, and remains in existence until that instance of the procedure is purged from
the system.

Step A procedure is made up of a number of steps, which define the activities that take
place within the flow of a procedure. Each step defines what must be done, who
must do it, and, optionally, a deadline by which it must be done.

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 2

All of the properties and functionality associated with these items (cases, steps, etc.) are exposed by
TIBCO iProcess Server Objects (.NET). Client applications have use of those properties and function-
ality in the business processes they automate.

Work Item A work item represents an action item listed in a work queue (see below). It relates
to a step in an active case. A user manages work items by performing some sort of
action upon them, such as entering data on a form, forwarding the item to another
user or group, “keeping” it (placing it back in the work queue for further action at a
later time), or “releasing” it (completing the required action and sending it on to the
next step in the procedure).

Work Queue This is a list of work items that are awaiting action. A work queue can belong to an
individual user or to a group of users. If it is a group work queue, any user that
belongs to that group has access to the work items in that group queue.

Node A node represents a TIBCO iProcess Objects Server. Each node “owns” its own
users, groups, procedures, work queues, etc. To the procedures that it owns, the
node is known as the “hosting node.”

User A user is an individual who has been defined on a node, giving that user access
privileges to log in to that node. Each user has a work queue with the same name
as the user name defined on the node.

Group A group represents a collection of users. Each group has a work queue that has the
same name as the group name defined on the node. All users that are members of
the group have access to the group work queue.

Term Definition

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 3

TIBCO iProcess Server Objects Design

TIBCO iProcess Server Objects (.NET) is designed to be used in server-side application architectures.
The TIBCO iProcess Server Objects (.NET) object model has been designed to accommodate these
types of applications by incorporating the following features:

• A “flat” object hierarchy - Being able to reach the desired data without having to traverse a
“deep” object hierarchy reduces the resources needed and the time required to reach the desired
data.

• A very granular interface - Because of the communications overhead of a distributed system, a
very granular interface is called for. This results in fewer method calls moving more data per
call to the client.

• Efficient data grouping - This prevents the moving of unnecessary data and provides a more
responsive system.

• Very little state storage - The only state maintained in the TIBCO iProcess Server Objects
(.NET) Server Objects is connection state; they maintain no workflow state.

• Efficient login - Login is performed quickly using a cached user session.

Client applications make use of TIBCO iProcess Server Objects (.NET) objects by making method
calls that either retrieve or modify data. These method calls cause messages to be sent to a TIBCO
iProcess Objects Server. The TIBCO iProcess Objects Server acts as a gateway between the client
application and the TIBCO iProcess Engine, where the actual processing and storage of data occurs.
The TIBCO iProcess Engine manages all data, routing work items and updating the appropriate work
queues.

Note - There are two “types” of engines: the TIBCO Process Engine and the TIBCO iProcess
Engine. The TIBCO iProcess Server Objects object model can be used with either of these engines.
However, there are some functionality differences between the engines. These differences are noted in
the on-line help system. For more information, see TIBCO Process / iProcess Engine on page 6.

Available Solutions

TIBCO iProcess Server Objects (.NET) is available in the following two object-oriented solutions:

• Managed objects for local solutions - This solution provides a CLR-managed object interface.

• Remote .NET solutions - This solution provides an interface to remote CLR clients. It uses
Microsoft’s .NET remoting architecture, which accommodates various channel options.

These forms of TIBCO iProcess Server Objects (.NET) are shown in the illustrations on the following
pages.

XML Interface

An XML interface is also available that allows you to retrieve all data from the TIBCO iProcess
Engine as an XML data stream rather than in the form of objects. For more information about the
XML interface, see XML Interface on page 272.

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 4

Managed Objects for Local Solutions

This TIBCO iProcess Server Objects (.NET) solution exposes a CLR-managed object interface,
allowing you to use any CLR-compliant language. This results in the interface being viewable through
Visual Studio IDE’s object browser, and will work with Microsoft’s IntelliSence features.

The implementation of the Server Objects is in managed C++. The Server Objects make the transition
between the managed interface and the underlying unmanaged C++ objects.

Customer Local
Client

Value
Objects

Server Objects

C++ Layer

Messages Layer

TIBCO iProcess
Objects Server

Managed
Code

Unmanaged
Code

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 5

Remote .NET Solutions

This TIBCO iProcess Server Objects (.NET) solution exposes the interface to remote CLR clients. It
uses the Microsoft .NET remoting architecture, which accommodates various channel options.

This architecture supports the binary serialization of objects (which is efficient, safe, and fast) or
XML serialization. It also supports the maintenance of object state in a remote process. State data is
delivered to the remote interface in the form of Value Objects. This allows you to create and maintain
objects across multiple method calls, accommodating the more traditional distributed application
architectures.

Customer Local
Client

Value
Objects

Server Objects (Remotable)

C++ Layer

Messages Layer

Managed
Code

Unmanaged
Code

Server Proxies

TIBCO iProcess
Objects Server

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 6

TIBCO Process / iProcess Engine

The “engine” manages all TIBCO data, routing work items and updating the appropriate work queues.

There are actually two “types” of engines:

• TIBCO iProcess Engine - This type of engine is required for some of the newer functionality
of TIBCO iProcess Server Objects. If you are using a TIBCO iProcess Engine, you will also be
using a TIBCO iProcess Objects Server that supports the functionality provided by the TIBCO
iProcess Engine.

• TIBCO Process Engine - If you are using this type of engine, some of the newer functionality
of TIBCO iProcess Server Objects is not available to you. If you are using a TIBCO Process
Engine, you will also be using a TIBCO iProcess Objects Server that supports the functionality
provided by the TIBCO Process Engine.

TIBCO iProcess Server Objects (.NET) will work with both “types” of engines described above —
the difference is the amount of functionality available from the engine. The on-line help system pro-
vides information about which functionality is available only from the TIBCO iProcess Engine.

Engine and Server Version Numbers

As we are transitioning from "Staffware" to "TIBCO," the version numbers of the engines and servers
are changing as well. Staffware version numbers included major, minor, maintenance release, and
patch numbers, with parentheses (e.g., 10.2(0.0)). TIBCO version numbers include major, minor, and
maintenance release numbers, without parentheses (e.g., 10.2.0). Hotfix numbers (the equivalent to a
"patch") are not shown in the product version number.

A Staffware version number may also be preceded by an "i" (e.g., i10.0(0.0)), indicating that it is an
"iProcess" Engine or a TIBCO iProcess Objects Server that supports the functionality offered by iPro-
cess Engines.

Moving forward from version 10.2.0, all new releases of engines, TIBCO iProcess Objects Servers,
and TIBCO iProcess Server Objects will use the 3-digit TIBCO version numbering system. The ver-
sion number will also not include an "i" to indicate that it is an iProcess Engine or a TIBCO iProcess
Objects Server that supports the functionality of an iProcess Engine; by default, all engines from
10.2.0 forward are iProcess Engines, and all TIBCO iProcess Objects Servers from 10.2.0 forward
support the functionality of iProcess Engines.

You can determine whether you are using a TIBCO Process Engine or a TIBCO iProcess Engine by
looking at the version number. The version number can be found in the first line of the SWDIR\swdefs
(Windows) or $SWDIR/swdefs (UNIX) file.

TIBCO
Process /
iProcess
Engine

TIBCO
iProcess
Objects
Server

TIBCO
iProcess
Server
Objects

Introduction

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 7

SWDIR - The System Directory

The directory where the TIBCO Process/iProcess Engine is installed is known as the system directory.
It is referred to in this guide as SWDIR.

On UNIX systems, the environment variable $SWDIR should be set up to point to the system direc-
tory for the root and “system administrator” users.

Note - The “system administrator” user can be designated as any iProcess user when the TIBCO
iProcess Engine is installed; it defaults to the user installing the iProcess Engine. This user is known
as the “IEPADMIN” user.

TIBCO iProcess Objects Server

The TIBCO iProcess Objects Server acts as a gateway to pass data between the TIBCO iProcess
Server Objects and the TIBCO Process/iProcess Engine. Note that only certain versions of the TIBCO
iProcess Objects Server can be used with each of the different types of TIBCO Process/iProcess
Engines:

• If you are using a TIBCO iProcess Engine, you must use a TIBCO iProcess Objects Server that
supports the functionality provided by the TIBCO iProcess Engine.

• If you are using a TIBCO Process Engine, you must use a TIBCO iProcess Objects Server that
supports the functionality provided by the TIBCO Process Engine.

For information about starting/stopping and configuring the TIBCO iProcess Objects Server, see the
TIBCO iProcess Objects Server Administrator’s Guide.

TIBCO iProcess Objects Director

The TIBCO iProcess Objects Director is a standalone program that maintains a list of TIBCO iProcess
Objects Servers that are configured in a node cluster. When a client application needs access to a
TIBCO iProcess Objects Server, it first establishes a connection to the TIBCO iProcess Objects Direc-
tor. The TIBCO iProcess Objects Director then decides, based on a “pick method,” which TIBCO
iProcess Objects Server the client should connect to.

The list of known TIBCO iProcess Objects Servers is updated dynamically as TIBCO iProcess
Objects Server instances are started and stopped. The TIBCO iProcess Objects Director maintains this
list by checking the process_config table of the iProcess Engine to which it is associated.

For information about using and configuring the TIBCO iProcess Objects Director, see the TIBCO
iProcess Objects Director Administrator’s Guide.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 8

2
Naming Conventions

Naming Conventions Used in TIBCO iProcess Server Objects (.NET)

The following naming conventions have been used in the TIBCO iProcess Server Objects (.NET)
product:

Object Names

Note - Terms such as “Server Objects” and “Value Objects” are used through this documentation to
refer to both the classes that are distributed with TIBCO iProcess Server Objects (.NET), and the
objects that are created from those classes.

• All non-XML Server Object names begin with “s” (e.g., sNodeManager).

• All XML Server Objects name begin with “x” (e.g., xNodeManager).

• All Value Object names begin with “v” (e.g., vCase). Another naming convention used with
Value Objects indicate the amount of information returned by the object:

- v<type>Id - Returns enough data to identify the object instance (e.g., vNodeId).

- v<type> - Returns the data most commonly required by the user of the object (e.g.,
vNode).

- vA<type> - Returns all data available for the object (e.g., vANode).

• Value Objects whose names end in “Def” reference “metadata”, i.e., static data that contains the
definition of the object (for instance, the definition of a procedure (vProcDef)).

• The names of Enumeration Type Objects begin with “SW” and end with “Type” — for exam-
ple, SWAttributeType.

• Error Objects use the naming convention “vEx<type>”, where <type> is the type of object that
was either being passed as a parameter or returned by the method when the error occurred —
for example, vExAttribute.

• Content Request Objects use the naming convention “v<type>Content”, where <type> is the
type of object whose content you are specifying — for example, vCaseContent.

• “List state” objects use the naming convention “v<type>ListState”, where <type> is the type of
object in the list. List state objects are returned by the single-block access list methods
(make<type>List and fetch<type>List methods).

Method/Property Names

• Method names that begin with “Get” return a Value Object (e.g., GetANode)

• Method names beginning with “Get” and ending in “s” (plural) return an array of Value Objects
(e.g., GetWorkItemFields).

Naming Conventions

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 9

• Method names beginning with “Get” and ending in “List” return a pageable list (e.g.,
GetWorkItemList). See Working with Lists on page 121 for more information about pageable
lists.

• Method names beginning with “Get” and ending in “ListHeld” return a “held” pageable list
(e.g., GetWorkItemListHeld). See Held Pageable Lists on page 138 for more information about
held pageable lists.

• Method and property names ending in “Cnt” return a “count” (e.g., DeadlineCnt).

• Property names that begin with “Is” return a Boolean value (e.g., IsOutstanding).

Parameter Names

• Parameter names begin with “a” (for “argument”) (e.g., aWorkQTag).

• Parameters that are followed by “[]” indicate that an array is expected as input
(e.g., aWorkQTags[]).

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 10

3
Object Types

Object Types

TIBCO iProcess Server Objects (.NET) comprises the following types of objects:

Note - Terms such as “Server Objects” and “Value Objects” are used through this documentation to
refer to both the classes that are distributed with TIBCO iProcess Server Objects (.NET), and the
objects that are created from those classes.

• Server Objects - These objects implement the methods the client uses to request data (in Value
Objects) and to initiate changes within the TIBCO iProcess Engine. Server Objects contain only
methods — they do not contain any data.

The names of Server Objects begin with “s” — for example, sUser.

• XML Server Objects - These objects allow you to retrieve all data from the TIBCO iProcess
Engine as an XML data stream, rather than in object format. For more information, see XML
Interface on page 272.

• Value Objects - These are data objects. They return data from the TIBCO iProcess Engine to
the application when a request is made for the data through a method call on a Server Object.
Some Value Objects can also be user-instantiated for use as an input parameter to a Server
Object method (see Constructing Value Objects on page 16 for more information).

The names of Value Objects begin with “v” — for example, vWorkItem.

• Content Request Objects - These objects are used to specify how much “content”, in the form
of dependent objects, to return with requested Value Objects. For example, the vGroupContent
object contains the IsWithAttributes flag. This flag specifies whether or not vAttribute
objects are returned with the requested vGroup objects. This allows you to prevent data from
being retrieved from the server if you don’t need it. See Retrieving Dependent Objects on page
143 for more information about using Content Request Objects.

Content Request Objects use the naming convention “v<Object>Content”, where <Object> is
the name of the object whose content you are specifying — for example, vCaseContent.

• Error Objects - These objects are used to handle errors that may occur as a result of a method
call that either passes multiple objects as parameters, or returns multiple objects. The Error
Objects provide a means for the method to continue processing when an error occurs with one
or more of the items, without having to abort the entire operation. See Error Handling on page
259 for more information.

Error Objects use the naming convention “vEx<Object>”, where <Object> is the name of the
object that is either being passed as a parameter or returned by the method when the error
occurred — for example, vExAttribute.

• Criteria Objects - There are two criteria objects: vACaseCriteria and vWICriteria. These
objects are used to specify filter and sort criteria when requesting work items or cases from the
server. They allow you to limit the number of items returned, as well as specify the order in
which they are returned. For more information, see the appropriate Filtering Work Items and

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 11

Cases chapter on page 174, page 201, or page 227 and Sorting Work Items and Cases on page
251.

• Enumeration Type Objects - These are custom types that have been well defined. These pro-
vide the ability for “readable words” to be used in code, rather than numbers or characters. For
example, the SWAuditActionType Enumeration Type Object equates swStartCase to 0, swPro-
cessedTo to 1, and so on. In code, “swStartCase” can be used instead of “0”, which provides for
more readable code. Enumerations are passed as parameters, returned by properties/methods,
and used in object constructors.

The names of Enumeration Type Objects begin with “SW” and end with “Type” — for exam-
ple, SWAttributeType.

The following subsections provide more detail about the Server and Value Objects.

Server Objects

Server Objects format requests from the client to the TIBCO iProcess
Objects Server. These objects basically act as a pass-through for data from
the TIBCO iProcess Objects Server to the client, and vice versa. The name of
all Server Objects begin with a lower-case “s”.

Server Objects expose a CLR-managed object interface. The client applica-
tion instantiates the desired Server Object so that methods can be called to
obtain one or more Value Objects, or to perform a function, such as starting a
case.

Server objects are not serializable. They generally contain only methods —
they maintain little state and hold no data (although they do hold “session”
data, maintaining a user session with the server). Client applications make
calls to the methods on Server Objects. The Server Object passes on the
request to the TIBCO iProcess Objects Server, which may return data in the
form of a Value Object.

Note - There are a couple of exceptions to the rule above. The sPageableList
and sPageableListR objects contain a number of properties that hold data —
these objects, however, are not directly instantiated; they are created only by
other objects. Also, the sBase object also contains a couple of properties —
this object is also not directly instantiated; it is inherited by other Server
Objects that you instantiate.

The Server Objects have been divided into logical areas of functionality.
Most of them can be constructed publicly — some, however, are constructed
only by other objects (e.g., sPageableList). The following is a list of the
Server Objects that have public constructors:

• sNodeManager - This is used for server discovery — it uses the UDP broadcast mechanism to
locate and identify available TIBCO iProcess Objects Servers.

• sNode - This is used to configure elements of a node, such as users, groups, attributes, roles,
etc.

• sProcManager - This provides access to procedure definitions, including definitions of the ele-
ments of procedures, such as steps, forms, and fields.

sWorkQ

GetWorkItemList

StartCase

LockItems

KeepItems

ReleaseItems

UndoItems

ForwardItems

UnlockItems

AddCaseAuditEntry

GetWorkItems

GetWorkQ

GetDefaultCriteria

GetAWorkItemList

GetAWorkItems

ChangeDefaultCriteria

ClearDefaultCriteria

sBase

sBase

GetForm

GetAWorkItemListHeld

GetWorkItemListHeld

GetForwardToWorkQIds

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 12

• sUser - This provides access to information that is relevant to a particular user. For example,
you can access a user’s work queue, determine which procedures the user has authority to start
and audit, change the user’s password, etc.

• sCaseManager - This allows you to list currently active cases, as well as perform functions on
those cases, such as closing and purging.

• sWorkQ - This provides methods used to perform work queue functions, such as locking, keep-
ing, and releasing work items in a work queue.

• sWorkQManager - This provides access to work queues on a node, to configure access to a
work queue, and to set up work queue redirection and participation.

• sSession - This is used to create other Server Objects using the same TCP socket as the Server
Object from which the “create” method was called. This allows you to share the TCP connec-
tion among multiple Server Objects, rather than have a TCP connection for every Server Object
that is created (see Sharing User Sessions on page 13).

The Server Objects have been designed to provide you with the information needed (in the form of
Value Objects) to perform a particular task or function.

Note that each of the Server Objects has an equivalent “XML” Server Object that returns data in an
XML data stream rather than in an object format. For more information, see XML Interface on page
272.

What is a User Session?

All of the Server Objects (with the exception of sNodeManager sPageableList, and sClientLog)
cause a user session to be started when they are instantiated. The user session represents a connection
between a Server Object and a TIBCO iProcess Objects Server. For every user session, there is a TCP
connection along with a user login to the TIBCO iProcess Objects Server.

The public constructor for each of the Server Objects that starts a user session requires a vNodeId
Value Object, a user name, and a password. For example:

sWorkQManager(vNodeId aNodeId,

string aUserName,

string aPassword)

This provides the TIBCO iProcess Objects Server with the information it needs to establish a TCP
connection and user login to a specific node (TIBCO iProcess Objects Server).

The sBase object, which is inherited by those Server Objects that start
user sessions, provides a Disconnect method that should be called to close
the TCP connection and optionally log the user out of the node (i.e., free
server resources) when that session is no longer needed — see Discon-
necting User Sessions on page 13. Sessions are expected to be short lived.
Server Objects should be used in the context of a single web page and re-
created on each web page as needed to access the TIBCO iProcess Objects
Server. After calling Disconnect, you should also call Dispose to suppress
the finalizer, which improves the performance of garbage collection.

The SessionId property returns the user session ID, for information pur-
poses only. This ID, which is the authentication token for the Server
Object, cannot be passed to any other Server Object to bypass the authentication process performed at
object creation. The sClientLog object does not use a user session (i.e., no TCP or login). The sNode-

sBase

Disconnect

SessionId

GetNodeId

Dispose

Log

GetNode

ClientMsgInterfaceVer

ServerMsgInterfaceVer

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 13

Manager object creates a user session when in methods SetSrvLogOptions, ResetSrvLog and
GetANode. The sPageableList object shares the user session from the Server Object where the
method used to create the pageable list is called.

Disconnecting User Sessions

When a user session is no longer needed, you should call the Disconnect method on sBase to close
the TCP connection, as follows:

• call Disconnect() or Disconnect(False) (i.e., with no parameter or with the releaseAllResources
parameter set to False). This closes the TCP connection (socket) between the Server Object and
the TIBCO iProcess Objects Server. It is strongly recommended that Disconnect(False) be
called explicitly since TCP connections will remain open until the finalization is run in the gc
thread. Since it may take some time for an object to be garbage collected/finalized, idle TCP
connections are unavailable for re-use. This could end up a large number depending on the
application and the efficiency of the garbage collection. The user's context on the TIBCO iPro-
cess Objects Server is preserved and efficiently re-attached on subsequent client connections
(creation of Server Objects).

• call Disconnect(True) (i.e., with the releaseAllResources parameter set to True). This releases
both client-side and server-side resources. This should only be done when a user is no longer
using an application. This should NOT be called as part of releasing Server Objects on each
web page, as performance would be adversely affected due to the overhead of creating a new
user login session on the TIBCO iProcess Object Server. Held pageable lists associated with the
user session will be released.

Sharing User Sessions
The sSession Server Object is provided to allow you to share user sessions
within the context of one end-user. For example, if multiple Server
Objects are needed in the context of a web page, the sSession object would
be used for creating the Server Objects used on the web page. This mini-
mizes the number of login requests and TCP connections used within a
web page. If an sSession object is persisted at the Application level, it
should always be associated with a particular end-user. sSession objects
should NOT be pooled or used to share logins/TCP connections among
multiple end-users. Sharing sSession objects between different end-users
will adversely affect performance since all work is being done on behalf of
a single user login to the TIBCO iProcss Object Server.

The sSession object contains “create” methods that are used to create mul-
tiple Server Objects that all share the same TCP connection and login to the TIBCO iProcess Obects
Server node. For example, calling the Create_sUser method causes an sUser object to be created that
will share the user session with the existing sSession object. Any additional Server Objects that are
created from that sSession object will also share the same user session/connection.

Note that if multiple Server Objects share a session, calling Disconnect closes the TCP connection to
the TIBCO iProcess Objects Server for ALL Server Objects that are sharing the session. If Discon-
nect is not explicitly called, the TCP connection will be closed when the last Server Object using it is
destructed.

There is one other place where you can share a user session: the sUser object contains a
Create_sWorkQ method that does the same thing as the methods on sSession — it creates an
sWorkQ object that shares a user session with the sUser object from which it was called.

sSession

Create_sWorkQ

Create_sUser

Create_sWorkQManager

Create_sProcManager

Create_sCaseManager

Create_sNode

sBase

sBase

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 14

Server Object Parameters

Many of the method calls from Server Objects require that parameters be passed with the call. The fol-
lowing conventions are used in the TIBCO iProcess Server Objects (.NET) documentation to describe
these parameters.

• By convention, method parameters begin with an “a” to identify them as arguments that require
an input value. The example below shows a method that requires two arguments, aWorkQTag
(which requires a string) and aRedirection (which requires a vRedirection object).

void ChangeRedirection(string aWorkQTag,

vRedirection aRedirection)

• A “[]” in an input or return parameter specifies that an array of items is required as input or
returned, respectively. Note that methods that expect an array of Value Objects as input are not
prototyped to accept a single instance. To pass a single object, it must be placed on an array, then
the array containing the single object can be passed as a parameter. The example below shows a
method that expects an array of strings as an input parameter, and returns an array of
vWorkItem objects.

vWorkItem[] GetWorkItems(string[] aWorkItemTags,

vWIContent aWIContent)

Garbage Collection

To improve the performance of garbage collection, the sBase.Dispose method should be called by the
application whenever it is finished using a Server Object. The Dispose method causes the finalizer to
be suppressed for the Server Object, which improves performance of garbage collection. If the applica-
tion does not explicitly call Dispose, it will be called from the finalizer.

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 15

Value Objects

Value Objects provide a snap-shot of data that was returned from the TIBCO iProcess Objects Server.
There is no means of “refreshing” the Value Object’s data. To get a new snap-shot of the data, the cli-
ent must request another Value Object by making another method call. The name of all Value Objects
begin with a lower-case “v”.

Value objects are “pure” CLR objects; they contain no unmanaged code. They are also serializable.

Value Objects use inheritance — the object model graph-
ics provided with TIBCO iProcess Server Objects (.NET)
illustrate which subclasses inherit their superclasses, as
shown in the illustration on the right.

The client can limit the amount of data returned in the
Value Objects to only the amount of data needed to per-
form the required task. Requesting unneeded data
affects the performance of the application. The naming
conventions used for Value Objects identify the type and
amount of data that is returned in the object:

• v<Object>Id - Returns enough data to identify the
object instance.

• v<Object> - Returns the data that is most com-
monly requested by the user.

• vA<Object> - Returns all data available for the
object.

Note that using the “content” parameters when requesting
data also allows you to limit the amount of data that is
retrieved from the server. See Retrieving Dependent
Objects on page 143 for more information.

Multiple Value Objects

If a method call results in multiple Value Objects being
returned to the client, they will be returned in one of two
ways:

• An Array - If the method name begins with “Get” and ends in an “s”, it will return either an
array of strings or an array of Value Objects. Examples are shown below:

string[] GetSupervisorNames(string aWorkQTag)

vParticipation[] GetParticipations(string aWorkQTag)

Arrays are used when the number of Value Objects expected to be returned is typically not a
large number.

• A Pageable List - If the method name begins with “Get” and ends with “List”, it returns a
“pageable list”, which is a special Server Object (sPageableListR) that is used to handle poten-
tially large numbers of objects.

sPageableListR GetWorkItemList()

vWorkQ inherits
vWorkQId

vAWorkQ inherits
vWorkQ vAWorkQ

vWorkQ

vWorkQId

UrgentCnt

WorkQParam4Name

WorkQParam3Name

WorkQParam2Name

WorkQParam1Name

WorkItemCnt

DeadlineCnt

Description

FirstDeadline

HostingNode

IsGroup

IsReleased

UnopenedCnt

Name

Tag

Participations

Redirection

SupervisorNames

CDQPDefs

MakeTag

Object Types

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 16

The pageable list is used when the number of Value Objects expected to be returned can be very
large. It contains methods that allow you to retrieve a specified number of Value Objects, rather
than all available objects. (See Working with Lists on page 121 for more information.)

Constructing Value Objects

Many of the methods on Server Objects require a Value Object or an array of Value Objects to be
passed as input parameters. For this reason, many of the Value Objects have public constructors. For
example, the ChangeAttributes method (shown below) requires an array of vAttribute objects as an
input parameter:

void ChangeAttributes(string[] aUserNames,

vAttribute[] aChangedAttributes)

Therefore, the vAttribute object has a public constructor that allows you to create the object:

public vAttribute(string aName,

System.Object aValue,

SWAttributeType aType)

All data must be passed on the constructor. Value Objects contain getters, but no setters — once the
object is created, its values cannot be changed.

The on-line help system provides constructor information for those Value Objects whose constructors
are public.

Some Value Objects do not have public constructors. You are expected to obtain these Value Objects
by making a method call on a Server Object that returns the desired Value Object. The on-line help
system also contains cross-reference information about which methods return each of the Value
Objects.

Are TIBCO iProcess Server Objects (.NET) Objects Reentrant?

Since TIBCO iProcess Server Objects (.NET) was designed to support web-based applications, there
is no state held except the connection information in the Server Objects. Therefore, all Server Objects
(except the pageable list objects, sPageableList and sPageableListR, and the sSesssion object) and all
Value Objects are reentrant. Since each method on the Server Objects creates its own message to the
TIBCO iProcess Objects Server, sharing them between threads should not be a problem.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 17

4
Node Management

Introduction

Instantiating one of the Server Objects requires that you provide the information needed to connect to
a specific node (TIBCO iProcess Objects Server). At a minimum, this includes providing a vNodeId
object, a user name, and a password when constructing the desired Server Object. The following
example shows the constructor for the sUser object.

sUser(vNodeId aNodeId,

String aUserName,

String aPassword)

Note - If the TIBCO iProcess Objects Server is configured to not require a user password, an empty
string can be passed for the aPassword parameter. For information about turning on/off password
checking by the TIBCO iProcess Objects Server, see the SEOPasswordRequired configuration
parameter in the TIBCO iProcess Objects Server Administrator’s Guide.

Note - You can alternatively construct a vNodeCtx object (which was added to the object model when
the XML interface was added). The vNodeCtx object contains the context information needed for a
connection to the server (vNodeId, username, and password).

The vNodeId object that is passed in the Server Object constructor contains the physical connection
information needed — name of the TIBCO iProcess Objects Server, IP address, TCP port, etc. The
user name and password must be of a user who is currently defined on the node (TIBCO iProcess
Objects Server) to which you are connecting.

Obtaining the vNodeId object needed to instantiate a Server Object can be accomplished in the fol-
lowing ways:

• Construct the vNodeId object - This requires that you know the name of the TIBCO iProcess
Objects Server, name of the computer on which the TIBCO iProcess Objects Server software is
installed, IP address, and the TCP port.

• Send a directed UDP message to the node - This verifies that a specific node exists and is
available for use.

• Send a UDP broadcast - This is done to determine which nodes are on the LAN segment and
available for use.

• Use a TIBCO iProcess Objects Director - You may also choose to use the TIBCO iProcess
Objects Director to decide which TIBCO iProcess Objects Server to connect to. The TIBCO
iProcess Objects Director is a standalone program that maintains a list of TIBCO iProcess
Objects Servers that are currently available in a node cluster. When a client (actually, a Server
Object) needs access to a TIBCO iProcess Objects Server, it first establishes a connection to the
TIBCO iProcess Objects Director. The TIBCO iProcess Objects Director then decides, based
on a “pick method,” which TIBCO iProcess Objects Server the client should connect to. For

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 18

more information about using TIBCO iProcess Objects Directors, see the TIBCO iProcess
Objects Director Administrator’s Guide.

Also note that the descriptions in the following sections that discuss creating vNodeId objects
and sending UDP messages/broadcasts apply to both TIBCO iProcess Objects Servers and
TIBCO iProcess Objects Directors; clients obtain a vNodeId object for a TIBCO iProcess
Objects Director in the same way as for a TIBCO iProcess Objects Server.

These are described in the following subsections.

Constructing a vNodeId Object

The vNodeId object can be manually constructed if the following information is known:

• The Computer name on which the TIBCO iProcess Objects Server or TIBCO iProcess Objects
Director resides.

• The node name of the TIBCO iProcess Objects Server or TIBCO iProcess Objects Director.

• The IP address of the TIBCO iProcess Objects Server or TIBCO iProcess Objects Director.
Note that this can be the host name, as long as the name resolves to the IP address of the
machine on which the iProcess Objects Server or Director is running.

• The TCP port being used by the TIBCO iProcess Objects Server or TIBCO iProcess Objects
Director.

The following is an example of constructing the vNodeId object, then using that Value Object to con-
struct an sUser object.

vNodeId oNodeId;

String userName=”swadmin”;

String password=””;

String nodeName=”Helga”;

String computerName=”Olga”;

String ipAddr=”10.20.30.118”;

int tcpPort=12345;

boolean isDirector=false;

.

.

oNodeId = new vNodeId(nodeName, computerName, ipAddr, tcpPort, isDirector);

.

.

sUser oUser = new sUser(oNodeId, userName, password);

.

.

You can now call methods on the sUser object to retrieve the desired Value Objects.

Note - The ipAddr attribute in the vNodeId constructor supports the use of IPv6 addressing if the
TIBCO iProcess Objects Server or Director uses an IPv6 address (an example IPv6 address is:
he80::c531:b7a1:8922:ab12%13).

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 19

Sending a Directed UDP Message

You can send a directed User Datagram Protocol (UDP) message to a known node (TIBCO iProcess
Objects Server or TIBCO iProcess Objects Director) to verify that the node is available. To send a
directed UDP message, you must know the following:

• The node name of the TIBCO iProcess Objects Server or TIBCO iProcess Objects Director.

• Either the computer name on which the TIBCO iProcess Objects Server/Director resides, or its
IP address. If the computer name is given, the client machine must be configured for TCP name
resolution, typically either DNS or local host file.

To send a directed UDP message, construct an sNodeManager object, then call the VerifyNode
method. If the UDP message is successfully received by the node, and it responds to the message, a
vNode object is returned from the method. This vNode object can then be cast to a vNodeId object
and used in the constructor for the desired Server Object.

Note - A directed UDP message is also sent under the following conditions: If you call the GetANode
method on sNodeManager when you are using a TIBCO iProcess Objects Server that does not sup-
port the DLS message (which was added to support the TIBCO iProcess Objects Director), the
method detects that it’s an older server and sends a directed UDP message to the server instead of the
DLS message. After receiving a reply from the server, the method will return a vANode object.

Specifying a UDP Port

By default, UDP messages are issued by the client on port 55666. You can use the read/write UDP-
PortNumbers property on the sNodeManager object to specify the port on which UDP messages
will be issued.

By default:

• TIBCO iProcess Objects Servers listen for UDP messages on port 55666; for information
about how to specify the port on which TIBCO iProcess Objects Servers listen, see the
UDPServiceName configuration parameter in the TIBCO iProcess Objects Server Administra-
tor’s Guide

• TIBCO iProcess Objects Directors listen on port 28001; for information about specifying the
port on which TIBCO iProcess Objects Directors listen, see the UDP_SERVICE_NAME pro-
cess attribute in the TIBCO iProcess Objects Director Administrator’s Guide.

It may be necessary to send out the directed UDP message on multiple ports when running more than
one TIBCO iProcess Objects Server/Director on the same machine. Some implementations of the
TCP/IP stack will only deliver the UDP message to one service. In this case, each TIBCO iProcess
Objects Server/Director must be configured to use its own port. The client must then be configured to
send the UDP message on each of those ports — the setUDPPortNumbers method allows for speci-
fying multiple UDP ports.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 20

Multiple Instances of the TIBCO iProcess Objects Server / Director

When running multiple instances of the TIBCO iProcess Objects Server / Director on a single
machine, each instance must use a unique UDP port.

The vNode object returned by an TIBCO iProcess Objects Server / Director responding to a UDP
message contains an instance number to identify that specific instance of the TIBCO iProcess Objects
Server / Director. This number is available in the Instance property on vNode. For TIBCO iProcess
Objects Servers that don’t support multiple instances, or when only a single instance is running on a
machine, the Instance property returns a 1.

• You can configure the UDP port on which a TIBCO iProcess Objects Server listens for UDP
broadcasts by using the UDPServiceName configuration parameter. For more information
about running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iPro-
cess Objects Server Administrator’s Guide.

• You can configure the UDP port on which a TIBCO iProcess Objects Director listens for UDP
broadcasts by using the UDP_SERVICE_NAME process attribute. For more information
about running multiple instances of the TIBCO iProcess Objects Director, see the TIBCO iPro-
cess Objects Director Administrator’s Guide.

Sending a UDP Broadcast

Sending a User Datagram Protocol (UDP) broadcast is done for the purpose of auto-discovering avail-
able nodes (TIBCO iProcess Objects Servers or TIBCO iProcess Objects Directors) on the LAN seg-
ment. The UDP broadcast requests that all TIBCO iProcess Objects Servers or TIBCO iProcess
Objects Directors on the LAN segment return a message identifying themselves. The information they
return can then be used to construct a Server Object and establish a user session with the TIBCO iPro-
cess Objects Server, or to have a TIBCO iProcess Objects Director connect the client to a TIBCO
iProcess Objects Server.

A UDP broadcast is issued on the LAN segment using the following two methods:

• sNodeManager.GetNodes - A UDP broadcast is issued the first time you call this method and
only if the Refresh method (see below) had not been called prior to calling this method. The
GetNodes method returns a vNode object for each node that the Node Manager knows about.

Subsequent calls to GetNodes return a vNode object for each node that the Node Manager cur-
rently knows about — it does NOT issue another broadcast (use the Refresh method to re-
broadcast).

• sNodeManager.Refresh - This refreshes the sNodeManager’s cache of known nodes by issu-
ing another UDP broadcast. After the re-broadcast, get the new list of known nodes by calling
the GetNodes method.

Setting the UDP Broadcast Interval

Occasionally, machines that are listening on the network miss the auto-discovery UDP broadcast. This
is the nature of the UDP broadcast mechanism — there is no guarantee that available nodes will hear
and respond to the broadcast. To compensate for this, you can specify the number of UDP broadcasts
that are issued by using the aPollCnt parameter when constructing the sNodeManager object:

sNodeManager(short aPollCnt)

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 21

Broadcasts are issued once per second, with the total number of broadcasts equaling the value of
PollCnt.

Note that PollCnt defaults to 5 if you use the sNodeManager constructor with no parameters.

Specifying a UDP Port

By default, UDP messages are issued by the client on port 55666. You can use the read/write UDP-
PortNumbers property on the sNodeManager object to specify the port on which UDP messages
will be issued.

By default:

• TIBCO iProcess Objects Servers listen for UDP broadcasts on port 55666; for information
about how to specify the port on which TIBCO iProcess Objects Servers listen, see the
UDPServiceName configuration parameter in the TIBCO iProcess Objects Server Administra-
tor’s Guide;

• TIBCO iProcess Objects Directors listen on port 28001; for information about specifying the
port on which TIBCO iProcess Objects Directors listen, see the UDP_SERVICE_NAME pro-
cess attribute in the TIBCO iProcess Objects Director Administrator’s Guide.

It may be necessary to send out the UDP broadcast on multiple ports when running more than one
TIBCO iProcess Objects Server / Director on the same machine. Some implementations of the TCP/IP
stack will only deliver the UDP broadcast to one service. In this case, each TIBCO iProcess Objects
Server / Director must be configured to use its own port. The client must then be configured to send
the UDP broadcast on each of those ports — the UDPPortNumbers property allows for specifying
multiple UDP ports.

Multiple Instances of the TIBCO iProcess Objects Server / Director

When running multiple instances of the TIBCO iProcess Objects Server / Director on a single
machine, each instance must use a unique UDP port.

The vNode object returned by an TIBCO iProcess Objects Server / Director responding to a UDP
broadcast contains an instance number to identify that specific instance of the TIBCO iProcess
Objects Server / Director. This number is available in the Instance property on vNode. For TIBCO
iProcess Objects Servers that don’t support multiple instances, or when only a single instance is run-
ning on a machine, the Instance property returns a 1.

• You can configure the UDP port on which a TIBCO iProcess Objects Server listens for UDP
broadcasts by using the UDPServiceName configuration parameter. For more information
about running multiple instances of the TIBCO iProcess Objects Server, and setting the
UDPServiceName configuration parameter, see the TIBCO iProcess Objects Server Adminis-
trator’s Guide.

• You can configure the UDP port on which a TIBCO iProcess Objects Director listens for UDP
broadcasts by using the UDP_SERVICE_NAME process attribute. For more information
about running multiple instances of the TIBCO iProcess Objects Director, and setting the
UDP_SERVICE_NAME process attribute, see TIBCO iProcess Objects Director Administra-
tor’s Guide.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 22

What if a Known Node is not Answering the UDP Broadcast?

There are a number of possible reasons this may be occurring:

• The most common reason is because the TIBCO iProcess Objects Server / Director is on the
other side of a router (routers usually don’t allow UDP broadcasts through) and didn’t hear the
broadcast. If this is the case, your options are:

- Move the TIBCO iProcess Objects Server / Director to the other side of the router.

- Create the vNodeId object. This, of course, requires that you know all of the pertinent
information about the node. See Constructing a vNodeId Object on page 18.

- Use the VerifyNode method. A directed UDP message can go across a router, where the
broadcast can’t. See Sending a Directed UDP Message on page 19.

• The broadcast interval may be set too small. Try increasing the interval by using the PollCnt
parameter when constructing the sNodeManager object. See Setting the UDP Broadcast Inter-
val on page 20.

• It’s also possible that the TIBCO iProcess Objects Server’s / Director’s service is not running.
Ensure that the service is started on the machine on which it’s installed.

• The wrong UDP port may be specified on the client. You can check this with the UDPPort-
Numbers property. See Specifying a UDP Port on page 21.

• If there are multiple TIBCO iProcess Objects Servers/Directors running on a single machine,
the UDP message may only be delivered to one of the TIBCO iProcess Objects Servers/Direc-
tors. To remedy this, each TIBCO iProcess Objects Server / Director must be configured to use
its own UDP port. For information about how to specify the port on which TIBCO iProcess
Objects Servers listen, see the UDPServiceName configuration parameter in the TIBCO iPro-
cess Objects Server Administrator’s Guide; for information about specifying the port on which
TIBCO iProcess Objects Directors listen, see the UDP_SERVICE_NAME process attribute in
the TIBCO iProcess Objects Director Administrator’s Guide. To cause UDP broadcast go out
on multiple ports, specify multiple ports using the UDPPortNumbers property.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 23

Configuring the TIBCO iProcess Objects Server TCP Port

Server Objects communicate with the TIBCO iProcess Objects Server via TCP/IP. This requires that a
TCP port be configured on the TIBCO iProcess Objects Server. The TCP port on the TIBCO iProcess
Objects Server can be configured either as dynamic (also called ephemeral) or static, depending on
the method you are using to locate nodes on the network:

• Dynamic - This assignment (which is the default) causes the O/S to dynamically assign the
TCP port number when the TIBCO iProcess Objects Server starts. Use this assignment if you
are either issuing a UDP broadcast or a directed UDP to a specific node. (Note that starting and
stopping the TIBCO iProcess Objects Server usually results in a different TCP port being
assigned each time.)

• Static - This assignment causes the TCP port number to always remain the same for that server.
Use this assignment if you are manually creating the vNodeId object. This is required because
you must specify the TCP port number in a parameter when you construct the vNodeId object.
Therefore, you must know the TCP port the server is going to be using.

Note that all TIBCO iProcess Objects Servers that want to make use of the TIBCO iProcess
Objects Director must use a static TCP port. This allows the TIBCO iProcess Objects Director
to be configured with those port numbers so it knows the TCP port number to use when estab-
lishing a connection between a Server Object and a TIBCO iProcess Objects Server. For more
information, see the TIBCO iProcess Objects Server TCP Port Configuration section in the
TIBCO iProcess Objects Director Administrator’s Guide.

Note - For information about specifying the TCP ports on which the TIBCO iProcess Objects Servers
listen when running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iProcess
Objects Server Administrator’s Guide.

Configuring the TCP Port on a Windows System

To configure the TCP port number on a TIBCO iProcess Objects Server running Windows, follow
these steps:

1. Run the TIBCO iProcess Objects Server Configuration Utility control panel applet (for infor-
mation about using this utility, see the TIBCO iProcess Objects Server Administrator’s Guide) and
click on the TCP tab (as shown below).

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 24

2. To configure the TCP port as dynamic, enter DEFAULT in the field in the TCP Port section, then
click OK.

To configure the TCP port as static, do one of the following:

i. Enter the desired TCP port number in the field in the TCP Port section, then click OK, or

ii. Enter a “service name” in the field in the TCP Port section. This service name will be used to
map to the TCP port number. If you use a service name, you must also edit the %system-
root%\system32\drivers\etc\services file to add the service name and the desired TCP port
number. The service name can be any name that is unique within the services file. The port
number can be any number between 1024 - 65535 that is not already used in the services file.
An example services file entry for a TCP port is shown below:

ichiro 6666/tcp # TCP port assignment

After entering the service name in the field in the TCP Port section, click OK.

3. Stop, then restart the TIBCO iProcess Objects Server. For information about stopping and starting
the TIBCO iProcess Objects Server, see the TIBCO iProcess Objects Server Administrator’s
Guide.

Configuring the TCP Port on a UNIX System

To configure the TCP port number on a TIBCO iProcess Objects Server running UNIX, follow these
steps:

1. As the root user, open the $SWDIR/seo/data/swentobjsv.cfg file with a text editor and find the
TCPServiceName entry (where $SWDIR is the directory in which the TIBCO iProcess Engine is
installed).

2. Ensure the # symbol is removed to enable the TCPServiceName entry.

3. To configure the TCP port as dynamic, set TCPServiceName equal to DEFAULT.

To configure the TCP port as static, do one of the following:

i. Set TCPServiceName to the desired TCP port number, or

ii. Set TCPServiceName to a “service name.” This service name will be used to map to the TCP
port number. If you use a service name, you must also edit the /etc/services file to add the ser-
vice name and the desired TCP port number. The service name can be any name that is unique
within the services file. The port number can be any number between 1024 - 65535 that is not
already used in the services file. An example services file entry for a TCP port is shown below:

ichiro 6666/tcp # TCP port assignment

4. Save the edited $SWDIR/seo/data/swentobjsv.cfg file.

5. Stop, then restart the TIBCO iProcess Objects Server. For information about stopping and starting
the TIBCO iProcess Objects Server, see the TIBCO iProcess Objects Server Administrator’s
Guide.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 25

Using TIBCO iProcess Server Objects Through a Firewall?

TIBCO iProcess Server Objects can be used through a firewall. To do so, you must:

• Assign the TIBCO iProcess Objects Server or TIBCO iProcess Objects Director a static TCP
port (for information about assigning a static TCP port for the TIBCO iProcess Objects Server,
see Configuring the TIBCO iProcess Objects Server TCP Port on page 23; for information
about assigning a static TCP port for the TIBCO iProcess Objects Director, see the
TCP_SERVICE_NAME process attribute in the TIBCO iProcess Objects Director Adminis-
trator’s Guide).

• Manually construct a vNodeId object that represents the desired TIBCO iProcess Objects
Server or TIBCO iProcess Objects Director (the vNodeId object is used in the construction of
the desired Server Object).

• On the firewall, open up the TCP port used by the TIBCO iProcess Objects Server or TIBCO
iProcess Objects Director to communicate with the client.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 26

Database Configuration

The vDatabaseConfig object exposes database configuration informa-
tion on the iProcess Engine. This object can be obtained by calling the
GetDatabaseConfig method on the sIPEConfig object. The vDatabas-
eConfig object provides the following properties to obtain database con-
figuration information:

• Provider - The name of the database provider, which defaults to
one of the following, depending on the type of database:

- ORACLE

- SQL_SERVER

- DB2

• ComputerName - The machine name on which the database is installed.

• TCPPort - The TCP port number used to connect to the database.

• ConnectionId - The database ID, which defaults to the following, depending on the database
provider:

- Oracle - Either the Oracle SID (for direct connections) or the TNS (Transparent Network
Substrate) connection name (for TNS connections).

- SQL Server - ODBC connection name.

- DB2 - DB2 alias name.

• UserName - The iProcess Engine database foreground user name, which defaults to "swuser".

• Password - The iProcess Engine database foreground user's password.

• AdminName - The iProcess Engine IPEADMIN user name. (Note - The IPEADMIN user is
the iProcess Engine system administrator. This user is designated when the TIBCO iProcess
Engine is installed. It defaults to the user installing the iProcess Engine, but can be specified as
any iProcess user.)

• AdminPassword - The iProcess Engine IPEADMIN user’s password.

Database Configuration Access

The TIBCO iProcess Objects Server contains a configuration parameter (DBConnectionAccess) that
is used to specify whether or not to allow access to the database configuration information. It can be
set to:

• allow access to all users,

• allow access to only System Administrators (for information about System Administrator
authority, see User Authority on page 171),

• disable access so database configuration information is not available.

For more information about this configuration parameter, see the TIBCO iProcess Objects Server
Administrator’s Guide.

vDatabaseConfig

Provider

Password

TCPPort

AdminPassword

ComputerName

ConnectionId

UserName

AdminName

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 27

Activity Publication

The TIBCO iProcess Engine can be enabled to publish iProcess Engine activity information to exter-
nal applications. Any activity (i.e., anything that generates an audit trail message, for example, a case
start or deadline expiration) can be monitored and enabled for publication. This can be configured per
procedure or for all procedures, depending on your requirements. This means that an external applica-
tion can monitor important business events during the processing of cases.

The Background process identifies if activity publication has been enabled for an activity as it is being
processed. If activity publication has been enabled, the Background process outputs Java Message
Service (JMS) messages containing details of the published activities. These JMS messages are sent to
the IAP JMS Library (Introspection and Activity Publication JMS Library).

The IAP JMS library sends the JMS messages to a specified JMS topic or queue name, from which the
external application can read the JMS messages.

For more information about introspection and activity publication, see the Monitoring Activities chap-
ter in the TIBCO iProcess Engine Administrator’s Guide.

Activity Publication Access

The TIBCO iProcess Objects Server contains a configuration parameter (IAPConfigAccess) that is
used to specify whether or not to allow access to activity publication configuration information. It can
be set to:

• allow access to all users,

• allow access to only System Administrators (for information about System Administrator
authority, see User Authority on page 171),

• disable access so activity publication configuration information is not available.

For more information about this configuration parameter, see the TIBCO iProcess Objects Server
Administrator’s Guide.

Configuring Activity Publication

Configuration information for activity publication is stored in the database. To configure activity pub-
lication information for your iProcess Engine, you must do the following:

• Generate your activity publication configuration information as XML in the form of a Message
Event Request (MER) message. You can do this using any available XML tool. The MER
message must conform to the SWMonitorList.xsd schema (which is written to the
SWDIR\schemas directory when the iProcess Engine is installed).

• Once you have generated an MER message according to your requirements, there are two ways
to update the activity publication configuration information in the database with the activity
publication configuration information in the new MER message:

- Using the swutil IMPMONITOR command — for information about this command, see
the Activity Monitoring chapter in the TIBCO iProcess swutil and swbatch Reference
Guide.

- Using the sIPEConfig object — use of this object is described below.

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 28

- Using the Manage Monitor Event Request tool in the TIBCO iProcess Workspace
(Browser) application. This tool provides an interface that allows you to create a new MER
message, or edit an existing MER on the TIBCO iProcess Engine.

The TIBCO iProcess Workspace (Browser) also provides an IPC Tools method
(ipcManageMER) and a WCC Tools method (manageMER) to access the Manage Moni-
tor Event Request interface from custom applications.

For more information, see the TIBCO iProcess Workspace (Browser) documentation.

Using the sIPEConfig Object

The sIPEConfig object contains two methods that allow you to either
get or set the activity publication configuration for the iProcess Engine
to which you connected when the sIPEConfig object was constructed.
It contains the following methods:

• GetActivityPub - This method returns an XML string contain-
ing the activity publication configuration for the engine. You
can specify that you want the configuration information for all
procedures or a specific procedure.

• SetActivityPub - This method sets the activity publication con-
figuration based on the MER message (XML string) sent in the
method call. The XML string must conform to the SWMonitorList.xsd schema. An example
MER message is shown in the next subsection.

Configuration Example

An example MER message (which conforms to the SWMonitorList.xsd schema) generated to config-
ure activity publication for a procedure called BANK01 is shown below. The table summarizes the con-
figuration generated in the MER message. The table shows:

• the activities to be monitored

• the activity number (this relates to the audit trail number — see SWAuditActionType on
page 54— an activity number of -1 means monitor all activities)

• the steps on which activities are to be monitored (ALL means all steps in the specified proce-
dure(s))

• the field data to be published when the activity occurs.

Activity
Activity
Number

Step Name Field Name

Case start 0 ALL ACCNO

SURNAME

LOAN_AMOUNT

All -1 MTGACC01 ACCNO

SURNAME

LOAN_AMOUNT

Deadline expired 3 ALL ACCNO

sIPEConfig

SetActivityPub

GetActivityPub

sBase

sBase

GetDatabaseConfig

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 29

The MER message generated to represent this configuration is shown below:

<ProcedureMonitor xmlns="http://bpm.tibco.com/2004/IAP/MER"
xmlns:ns2="http://bpm.tibco.com/2004/IAP/1.0/SWTypes"
xmlns:ns1="http://bpm.tibco.com/2004/IAP/1.0/procedureProperties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://bpm.tibco.com/2004/IAP/MER:\Projects\1439\Docs\schemas\SWMonitorL-
ist.xsd">

<SchemaVersion>001</SchemaVersion>
<MessageType>MER</MessageType>
<FullImport>true</FullImport>

<MonitorDetail>
<Procedure Name="BANK01">

<NodeName>SWNOD1</NodeName>
</Procedure>
<GlobalFieldList>

<Field Name="REQUEST_ID"/>
<Field Name="REQUEST_DATE"/>
<Field Name="REQUEST_STS"/>

</GlobalFieldList>
<MonitorList>

<Monitor>
<ActivityList>

<Activity Num="0"/>
</ActivityList>
<StepList>

<Step Name="ALL"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>

</FieldList>

</Monitor>
<Monitor>

SURNAME

LOAN_AMOUNT

DEAD_REASON

DEAD_DATE

Case terminated 9 ALL ACCNO

SURNAME

LOAN_AMOUNT

DECISION

CLOSED_DATE

Activity
Activity
Number

Step Name Field Name

Node Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 30

<ActivityList>
<Activity Num="-1"/>

</ActivityList>
<StepList>

<Step Name="MTGACC01"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>

</FieldList>

</Monitor>
<Monitor>

<ActivityList>
<Activity Num="3"/>

</ActivityList>
<StepList>

<Step Name="MTGACC01"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>
<Field Name="DEAD_REASON"/>
<Field Name="DEAD_DATE"/>

</FieldList>

</Monitor>
<Monitor>

<ActivityList>
<Activity Num="9"/>

</ActivityList>
<StepList>

<Step Name="ALL"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>
<Field Name="DECISION"/>
<Field Name="CLOSE_DATE"/>

</FieldList>

</Monitor>
</MonitorList>

</MonitorDetail>
</ProcedureMonitor>

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 31

5
Procedures

Introduction

A business process that is automated is referred to as a “procedure.” Procedures are defined with a tool
called the “TIBCO Business Studio”. A procedure consists of a number of “steps,” including manual
steps (which require user action), automatic steps (which are executed automatically by the server),
and condition steps (which branch based on the result of a condition). An example of a simple proce-
dure is shown below.

Managing Procedures

The sProcManager Server Object is used to manage procedures. This
object allows you to retrieve Value Objects from the server that repre-
sent procedures, as well as the components that make up procedures
(fields, steps, and forms).

For information about accessing instances of procedures (e.g., starting a
case of a procedure), see “Case Management” on page 46.

For information about accessing procedure definition information, see
the following subsections.

sProcManager

GetAProcs

GetProcIds

GetProcs

GetFieldDefs

GetProcDefs

GetStepIds

sBase

sBase

GetForm

GetFormMarkings

GetPublicSteps

GetSteps

GetProcVersions

SimulateCase

GetExternalForm

GetPluginForm

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 32

Increasing amounts of information about a partic-
ular procedure is available in the vProcId, vProc,
and vAProc Value Objects. These objects can be
retrieved from the server by calling the Get-
ProcIds, GetProcs, and GetAProcs methods, on
sProcManager. These objects provide access to
information such as the procedure name and num-
ber, how many active and closed cases of that pro-
cedure exist, etc. Notice that this is mostly
“runtime” (dynamic) data.

Procedure definitions are represented by the
vProcDef object. The vProcDef object contains
properties that provide procedure definition infor-
mation, such as whether the procedure is defined
as a main or sub-procedure (IsSubProc property),
who the owner is (Owner property), the steps that
are defined in the procedure (GetStepIds), etc.
Notice that this is mostly “configuration” (static)
data.

TIBCO iProcess Server Objects (.NET) provides
read-only access to the properties associated with
procedures. Therefore, access is provided to the
definition of procedures, but they may only be
defined and modified using TIBCO Business Stu-
dio, and not through TIBCO iProcess Server
Objects (.NET).

Procedure definitions can be obtained by calling
the GetProcDefs method on sProcManager. This
method returns an array of vProcDef objects. You can specify which procedure definitions you want
by including a procedure tag in the method call. All procedure definitions are returned unless specific
procedure tags are passed as a parameter.

When retrieving vProcDef objects, you can specify how much dependent
data (steps, audit data, etc.) you want included with the procedure defini-
tions. This is done with the vProcDefContent object (see “Retrieving
Dependent Objects” on page 143 for information about using the “content
objects”).

vAProc

IsIgnoreBlank

ExtraPNumCnt

vProc

IsSubProc

IsNetworked

vProcId

Description

Tag

Name

StartStepName

ProcNumber

Status

CaseDescOpt

vProcDef

IsIgnoreBlank

IsAutoPurge

NetworkNodeNames

IsWorkDays

IsSubProc

IsNetworked

Owner

AdminByUserRef

StartByUserRef

StepIds

FieldDefs

vProc

vProcId

HostingNode

IsAutoPurge

IsWorkDays

Description

Tag

Name

HostingNode

StartStepName

ProcNumber

Status

CaseDescOpt

MakeTagMakeTag

DateModified

DateWithdrawn

DateReleased

DateCreated

LastUpdateUser

VersionComment

ProcAudits

IsPrediction

Duration

MajorVersion

MinorVersion

MajorVersion

MinorVersion

ProcSummary

vProcDefContent

IsWithAdminBy

IsWithStartBy

IsWithStepIds

IsWithNetworkNodes

vContentRequest

IsWithFieldDefs

IsWithAuditData

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 33

Procedure Version Control

Procedure version control provides the ability to create and track multiple versions of procedures.
This allows you to develop and test a modified procedure while a live version is still in use. It also
allows you to revert to a previous version if you need to. (Note - Procedure version control is only
supported on TIBCO iProcess Objects Servers version i10 or newer.)

When a procedure is created using TIBCO Business Studio, it is given a unique version number in the
form:

<MajorVersion#>.<MinorVersion#>

For example, 1.0, 1.1, 1.2, 2.1, and so on.

There can be many versions of a particular procedure on your system at one time. All versions are
saved until you explicitly delete them.

Procedure Status

Each version of a procedure also has a procedure status associated with it. The status dictates how the
procedure can be used.

• swReleased - Procedures with an swReleased status are used in live production environments.
Cases can be started, with work items being processed to user’s work queues.

• swUnreleased - New and changed procedures default to a status of swUnreleased. Work items
from cases of procedures with a status of swUnreleased go to a “test” work queue for the user or
group who is the addressee of the step. These test queues are only visible to the user who started
the case of the unreleased procedure. This allows the new/changed procedure to be tested/eval-
uated prior to releasing it.

• swModel - This is the status a released procedure has after being imported. This status allows
new versions of a procedure to be imported without overwriting an existing released or unre-
leased version. Work items from cases of procedures with a status of swModel go to a “test”
work queue for the user or group who is the addressee of the step. This allows the new version
to be tested/evaluated prior to adopting it on the target system.

• swWithdrawn - Procedures with this status are no longer used in a production environment.
Cases cannot be started against a withdrawn procedure. When a procedure is given a status of
withdrawn, existing cases of the procedure are run to completion. Procedure versions are set to
swWithdrawn when a new version of the procedure is released.

• swIncomplete - A procedure with this status cannot be run because it has required information
missing — for example, a step without an addressee, or a step without a connection from a pre-
vious step. This procedure status is not supported in TIBCO iProcess Server Objects (.NET),
i.e., procedures with this status are not returned by the TIBCO iProcess Objects Server.

• swWithdrawnIncomplete - An incomplete procedure that has been withdrawn. This procedure
status is not supported in TIBCO iProcess Server Objects (.NET), i.e., procedures with this sta-
tus are not returned by the TIBCO iProcess Objects Server.

Notice that for any particular procedure, there can only be:

• one swReleased version,

• one swModel version,

• one swUnreleased version, and

• any number of swWithdrawn versions.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 34

You can determine a procedure’s status by accessing the vProc.Status property. They are enumerated
in SWProcStatusType.

If multiple versions of a procedure exist, one of those versions is considered the "current" version.
The "current" version is defined as the version with the highest status (vProc.Status), according to the
following status hierarchy:

swReleased -> swUnreleased -> swModel -> swWithdrawn (most recent)

For example, if a particular procedure has a version with a status of swReleased, that is the "current"
version. If the procedure doesn't have a version with a status of swReleased, but has one with a status
of swUnreleased, that is the "current" version, and so on.

Some methods act upon or list only the "current" version of a procedure (e.g., the GetProcs method
only returns the “current” version of each procedure).

Accessing the Procedure Version Number

To allow access to the procedure version number, the following properties are available on the
vProcId objects:

• MajorVersion - This returns an integer indicating the <MajorVersion#> portion of the proce-
dure's version number.

• MinorVersion - This returns an integer indicating the <MinorVersion#> portion of the proce-
dure's version number.

These properties tell you the version number of that procedure definition.

Procedure Version Number in the Audit Trail

When entries are written to the audit trail, the procedure version number is part of the entry. This is
done because the version number may change mid-case, i.e., the case may be migrated to a new ver-
sion of the procedure, resulting in steps (work items) of a case having different version numbers.
(When a new version is created using TIBCO Business Studio, it asks you if you want existing cases
of that procedure "migrated" to the new version, or whether they should be completed under the exist-
ing version.)

The vAuditStep object contains the following properties to determine the procedure version number
when the action represented by the vAuditStep object was performed:

• ProcMajorVersion - This returns an integer indicating the <MajorVersion#> portion of the
procedure's version number when the audit action was performed.

• ProcMinorVersion - This returns an integer indicating the <MinorVersion#> portion of the
procedure's version number when the audit action was performed.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 35

Procedure Version Details

The vAProc object contains a number of properties that provide details about the version of the proce-
dure:

• DateReleased - This returns the date and time the procedure was released. If it has not been
released, this property returns 12/31/3000 11:15:00 PM.

• DateCreated - This returns the date and time this version of the procedure was created.

• DateModified - This returns the date and time this version of the procedure was last modified.
If this version of the procedure has not been modified, it returns 12/31/3000 11:15:00 PM.

• DateWithdrawn - This returns the date and time this version of the procedure was withdrawn.
If this version of the procedure has not been withdrawn, this returns 12/31/3000 11:15:00 PM.

• LastUpdateUser - This returns the name of the user who last updated this version of the proce-
dure.

• VersionComment - This returns the comment that was entered by the user who last updated the
procedure.

Listing Versions of a Procedure

If you are operating with a TIBCO iProcess Objects Server that supports procedure versions (version
i10 or newer), the GetProcs method will return a list containing the "current" version of each proce-
dure on the node. See “Procedure Status” on page 33 for information about "current" versions. (With
earlier versions of the TIBCO iProcess Objects Server, the GetProcs method returned all procedures,
regardless of their Status (except swIncomplete and swWithdrawnIncomplete, which are not sup-
ported by TIBCO iProcess Server Objects (.NET)).)

With procedure version control, you can also obtain a list of ALL versions of a specified procedure
using the following method:

• sProcManager.GetProcVersions - This method returns a list of vAProc objects, each repre-
senting a specific version of the procedure. This allows you to list all versions of the procedure,
rather than just the current version.

Accessing a Specific Procedure Version

There are a number of methods that require a “procedure tag” (aProcTag argument) to identify the
procedure. This tag contains a version number component that identifies the specific version of the
procedure, as there could be multiple versions of the procedure.

To accommodate the version number component in the tag, the MakeTag method on vProcId
requires that the version number be included in the method call:

string MakeTag(string aNode,

string aProcName,

int aMajorVersion,

int aMinorVersion)

Note - You can specify the “current” version of the procedure by passing -1 in the aMajorVersion and
aMinorVersion parameters.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 36

Procedure Audit Trails

When procedure definitions are modified using TIBCO Business Studio, information about the modi-
fication is written to an audit trail. This procedure audit trail information is available using the follow-
ing property on vProcDef:

• ProcAudits - This property returns an array of vProcAudit objects, each representing a spe-
cific modification to the procedure definition.

When you get the vProcDef objects from the server, you must set the IsWithAuditData parameter on
the procedure definition content object (vProcDefContent) to True so that the procedure audit data
(vProcAudit objects) is also returned from the server. (If a NULL is returned, the audit data was not
requested; if an empty array is returned, the audit data was requested, but there was none.)

The vProcAudit object contains the following properties, which provide information about the proce-
dure modification:

• Action - Describes the modification made to the procedure — these actions are defined in the
enumeration type SWProcAuditActionType.

• Comment - User comments concerning modifications made to the procedure.

• Date - The date and time the modification occurred.

• ProcMajorVersion - The "major" portion of the procedure version number when the procedure
definition is modified.

• ProcMinorVersion - The "minor" portion of the procedure version number when the procedure
definition is modified.

• User - The name of the user who made the modifications.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 37

Sub-Procedures

Sub-procedures provide the ability for a case of one procedure to start a case of another procedure as
one of its steps. When the case of the child procedure has completed, the actions of the sub-procedure
call step in the parent case are processed just as for a normal step.

When a sub-procedure is started, flow is halted along that particular path of the calling procedure until
the sub-procedure has completed.

When a procedure is defined using TIBCO Business Studio, you specify that it is either a “main” pro-
cedure or a “sub-procedure”. A main procedure is started directly with the StartCase method. An
instance (sub-case) of a sub-procedure can only be started by one of the follow types of steps in a pro-
cedure:

• Sub-procedure call step - This type of call step (also called a “static” sub-procedure call step)
starts a single case of a sub-procedure. When the sub-procedure call step is defined using
TIBCO Business Studio, you specify the sub-procedure that will be started when the process
flow reaches the sub-procedure call step. See “Sub-Procedure Call Steps” on page 37 for more
information.

• Dynamic sub-procedure call step - This type of call step allows you to dynamically start one
or more sub-procedures. When the dynamic sub-procedure call step is defined using TIBCO
Business Studio, rather than specifying the sub-procedures to start, you specify the name of an
array field. At run-time, the customer application will write the names of sub-procedures into
the elements of the array field. When the process flow reaches the dynamic sub-procedure call
step, the sub-procedures specified in the elements of the array field are started. See “Dynamic
Sub-Procedure Call Steps” on page 38 for more information.

• Graft steps - This type of call step is similar to a dynamic sub-procedure call step in that it
allows you to dynamically start one or more sub-procedures. The way in which it differs is that
it allows the application to start multiple sub-procedures as part of a “task”. A task can also
involve starting external processes, and you can start multiple tasks. See “Using Graft Steps” on
page 75 for more information.

Note that sub-procedures can be many levels deep, i.e., a sub-procedure can also contain a sub-proce-
dure call step, and the sub-procedure started by that call step can contain a graft step, and so on.

Also, a sub-procedure case cannot be directly closed or purged — although the main case from which
the sub-procedure was called can be closed or purged.

TIBCO iProcess Server Objects (.NET) provides read-only access to the properties associated with
sub-procedures. Therefore, access is provided to the definition of sub-procedures, but they may only
be defined and modified using TIBCO Business Studio, and not through TIBCO iProcess Server
Objects (.NET).

Sub-Procedure Call Steps
When a sub-procedure call step (also called a “static” sub-procedure call step) is defined using
TIBCO Business Studio, you specify the name of the sub-procedure to start when the process flow
reaches the sub-procedure call step. This name is available in the SubProcName property on the
vSubProcCallStep object that represents the sub-procedure call step.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 38

When a sub-procedure call step is defined, you can also specify a start step other than the default start
step. The name of this alternative start step is available in the SubProcStartStep property on the
vSubProcCallStep object that represents the sub-procedure call step. If a start step other than the
default start step was not specified, the SubProcStartStep property will return an empty string.

Accessing Sub-Procedure Call Step Definitions

To access the definition of a sub-procedure call step in a procedure, call sProcManager.GetStep or
access vProcDef.StepIds to get an array of vStepId objects, one for each step in the procedure. Use
the Type property to identify the sub-procedure call step (SWStepType = swSubProcCall), then cast
it to a vSubProcCallStep object.

Sub-Procedure Start Precedence

When you start a main procedure with the StartCase method, you can also specify an aSubProcPre-
cedence parameter that allows you to specify the “precedence” of sub-procedure statuses (released,
unreleased, or model) that are launched from the main procedure. In other words, you are telling it
which status to look for first, second, then third. For example, you can specify that it look for unre-
leased, then model, then released statuses. The default is to start only released sub-procedures. See
“Sub-Procedure Precedence” on page 49 for more information.

Dynamic Sub-Procedure Call Steps

A "static" sub-procedure call step always starts a case of the same sub-procedure, whereas a
“dynamic” sub-procedure call step allows you to specify at run-time the names of one or more sub-
procedures to start. When a dynamic sub-procedure call step is processed (as an action of another
step), all of the sub-procedures specified are started. The engine will keep track of all of the sub-pro-
cedures that were started — when they have all completed, it will process the dynamic sub-procedure
call step's release actions.

Dynamic sub-procedure call steps work in the same way as static sub-procedure calls, with the follow-
ing exceptions:

• Sub-Procedures to Start - When a dynamic sub-procedure call step is defined using TIBCO
Business Studio, you do not specify the sub-procedures that will be started when the step is pro-
cessed. Instead, you specify an "array field", which can contain multiple elements that are
accessed by index. At run-time, the customer application must write the names of the sub-pro-
cedure to start in the elements of the array field before the dynamic sub-procedure call step is
processed. When the step is processed, the named sub-procedures are started.

The name of the array field containing the names of the sub-procedures to start is available in
the vDynamicSubProcCallStep.SubProcNameFld property.

If no elements of the "sub-procedures to start" array field are assigned when the process flow
reaches the dynamic sub-procedure call step, the step is immediately released and its release
actions are performed.

See “Array Fields” on page 155 for information about how array fields are used with dynamic
sub-procedure call steps.

• Sub-Procedure Start Steps - When a dynamic sub-procedure call step is defined using TIBCO
Business Studio, you can specify an array field whose elements will contain alternative start
steps at which each sub-procedure will be started. At run-time, the application can write the
names of the start steps into the elements of the array field. The elements in the “start step”

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 39

array field must correspond to the sub-procedures in the array field identified in the SubProc-
Name property.

The name of the array field containing the names of the start steps on which to start is available
in the vDynamicSubProcCallStep.SubProcStartStepFld property.

If an element that corresponds to one of the sub-procedures is empty when the step is pro-
cessed, that sub-procedure will start on its default start step.

See “Array Fields” on page 155 for information about how array fields are used with dynamic
sub-procedure calls.

• Return Status - When a dynamic sub-procedure call step is defined using TIBCO Business
Studio, you can specify an array field, whose elements will contain a return status for each cor-
responding sub-procedure that is started by the dynamic sub-procedure call step. The name of
the array field containing the return statuses is available in the ReturnStatusFld property on
vDynamicSubProcCallStep. The elements of the array field will return an
SWSubProcStatusType enumeration, identifying each sub-procedure's current status (whether
it's started, completed, encountered an error, etc.), as follows:

The return status for each sub-procedure that is started by the dynamic sub-procedure call step
is also available in the ReturnStatus property on the vSubProcCase object that represents the
sub-procedure that was started by the dynamic sub-procedure call step.

• Error Processing - Dynamic sub-procedure call step definitions provide options that allow the
definer to specify how continued processing will occur if an error is encountered during pro-
cessing. These options are accessible with the following properties on vDynamicSubProcCall-
Step:

- IsHaltOnSubProc - Returns True if processing should be halted when the "sub-procedures
to start" array field contains elements that specify non-existent sub-procedures.

- IsHaltOnTemplate - Returns True if processing should be halted when the "sub-procedures
to start" array field contains elements that specify sub-procedures that do not use the same
parameter template. (Parameter templates are used when defining procedures to ensure that
the same input and output parameters are used when starting multiple sub-procedures from a
dynamic sub-procedure call step — for information about parameter templates, see the
TIBCO Business Studio documentation.)

- IsHaltOnTemplateVer - Returns True if processing should be halted when the "sub-proce-
dures to start" array field contains elements that specify sub-procedures that do not use the
same version of parameter template.

SWSubProcStatusType

swNoAttempt 0

swStarted 1

swCompleted 2

swErrSubProc -1

swErrTemplate -2

swErrInTemplateVer -3

swErrOutTemplateVer -4

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 40

These options for halting processing on specific error conditions have the following affects:

Errors during initial processing (when the dynamic sub-procedure step is processed as an action
of another step):

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
engine. (This is specified with a background attribute: IQL_RETRY_COUNT = the num-
ber of times the message will be retried; IQL_RETRY_DELAY = the number of seconds
between retries.) If the message retries do not result in a successful initial processing, the
following apply:

• Processing of the entire step is halted at this point — it will always be left "waiting"
for the sub-case that's in error to be completed.

• All sub-procedures that have been started from the step are rolled back.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The other valid sub-procedures specified in the SubProcNameFld array field will be
started as usual.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Errors during completion processing of one of the sub-cases:

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
engine. (This is specified with a background attribute: IQL_RETRY_COUNT = the num-
ber of times the message will be retried; IQL_RETRY_DELAY = the number of seconds
between retries.) If the message retries do not result in a successful completion process-
ing, the following apply:

• Processing of the entire step is halted at this point — it will always be left "waiting"
for the sub-case that's in error to be completed.

• The "sub-case completed" transaction for the sub-case in error is aborted — this
does not cause transactions from other valid sub-case completions to be aborted.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The "sub-case completed" transaction for the sub-case in error is ignored (including
returned output parameter data).

- The status of the sub-case is set to "complete" so that the step can be released when all
other sub-cases complete.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 41

Note that if none of the “halt on” selections are selected using TIBCO Business Studio, and one of the
error conditions are encountered (e.g., sub-procedures using different templates), the process will con-
tinue, which could possibly result in errors in case data.

Accessing Dynamic Sub-Procedure Call Step Definitions

To access the definition of a dynamic sub-procedure call step in a procedure, call sProcManager.Get-
Steps to get an array vStepId objects, one for each step in the procedure. Use the Type property to
identify the dynamic sub-procedure call step (SWStepType = swDynamicSubProcCall), then cast it to
a vDynamicSubProcCallStep object.

Passing Data between a Main and Sub-Procedure

Field values can be exchanged between main procedures and sub-procedures at the time a sub-proce-
dure is started, and again when it completes. The list of fields, passed to and from the child case, is
specified when the sub-procedure call step or dynamic sub-procedure call step is defined using
TIBCO Business Studio.

The vSubProcCallStep and vDynamicSubProcCallStep objects contain the following properties to
access the list of fields that are passed to and from the child case (if such fields have been specified in
the call step):

• InFromFldNames - Returns an array of source fields, from the parent case, whose values are
passed to the sub-case when it starts.

• InToFldNames - Returns an array of destination fields, in the sub-case, that receive values at
sub-case start.

• OutFromFldNames - Returns an array of source fields, from the sub-case, whose values are
passed to the parent case when the sub-case terminates.

• OutToFldNames - Returns an array of destination fields, in the parent case, that receive values
from the sub-case when it terminates.

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 42

The Sub-Case Object

Every sub-procedure that is started by a sub-procedure call step, dynamic sub-procedure call step, or
graft step results in a vSubProcCase object. This object represents an instance of the sub-procedure
that was started.

On an outstanding sub-procedure call step
(vSubProcCallItem object), accessing the
SubProcCase property returns the vSubProc-
Case object that represents the single sub-
procedure that was started when the process
flow reached the sub-procedure call step.

On an outstanding dynamic sub-procedure
call step (vDynamicSubProcItem object),
accessing the SubProcCases property returns
an array of vSubProcCase objects, one for
each sub-procedure that was started when the
process flow reached the dynamic sub-proce-
dure call step. Note that SubProcCases will
return vSubProcCase objects for all of the
sub-procedures that are started for the
dynamic sub-procedure call step, whether
they have completed or not. To determine if a
particular sub-procedure is still “outstanding”
(has not completed yet), access the IsOut-
standing property on the vSubProcCase
object that represents the sub-procedure in
question.

On an outstanding graft step (vGraftItem
object), accessing the SubProcCases prop-
erty returns an array of vSubProcCase objects, one for each sub-procedure that was started when the
StartGraftTask method was called for the graft step. Note that SubProcCases will return
vSubProcCase objects for all of the sub-procedures that are started for the graft step, whether they
have completed or not. To determine if a particular sub-procedure is still “outstanding” (has not com-
pleted yet), access the IsOutstanding property on the vSubProcCase object that represents the sub-
procedure in question.

SubProcPath to a Sub-Case

The “SubProcPath” is a string that provides the path from the main procedure to an outstanding sub-
procedure in the case family. This can be used in the WithdrawList parameter when calling the
JumpTo method (withdrawing an outstanding sub-procedure causes all outstanding items in that sub-
procedure to be withdrawn — see “Withdraw Outstanding Items / Jump To New Steps” on page 65
for more information).

Note - You can also determine the “ProcPath” from the main procedure to any outstanding item/step
in the case family — see “ProcPath to Outstanding Items” on page 67 for more information.

The SubProcPath property on vSubProcCase returns the SubProcPath to the sub-procedure repre-
sented by the vSubProcCase object. The illustration below shows example SubProcPath strings
returned by the SubProcPath property for a variety of sub-procedures.

vGraftItem

SubProcCases

ExternalGraftProcesses

IsWithdrawn

IsOutstanding

IsTaskCntSet

TaskCnt

vOutstandingItem

vOutstandingItem

GraftId

vDynamicSubProcItem

SubProcCases

vSubProcCallItem

vOutstandingItem

vOutstandingItem

vOutstandingItem

vOutstandingItem

SubProcCase

vSubProcCase

ProcNode

ProcName

CaseNumber

CaseTag

ProcMajorVersion

ProcMinorVersion

IsOutstanding

StartIndex

ReturnStatus

SubCaseId

SubProcPath

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 43

If the sub-procedure is started by a sub-procedure call step that is in the main procedure, the SubProc-
Path will simply consist of the name of the sub-procedure call step (see SubProcA in the example).

If the sub-procedure was started by a sub-procedure call step located in another sub-procedure, the
SubProcPath string will consist of the name of each sub-procedure call step leading to the sub-proce-
dure, each separated by a vertical bar (see SubProcB in the example).

If the case family contains dynamic sub-procedure call steps or graft steps that start multiple sub-pro-
cedures (see the Dynamic and Graft steps in the example), the name of the dynamic sub-procedure
call step or graft step in the SubProcPath will include a StartIndex in square brackets. The StartIndex
(which is zero based) indicates the sequential order in which the sub-procedure was started by the
engine for that dynamic sub-procedure call step or graft step.

In addition to appearing in the SubProcPath as illustrated above, you can also determine the
StartIndex for any particular sub-procedure that was started by a dynamic sub-procedure call step or
graft step by accessing the StartIndex property on the vSubProcCase object that represents that sub-
procedure.

The StartIndex is not applicable to sub-procedures that are started from sub-procedure call steps. If the
sub-procedure was started from a sub-procedure call step (rather than a dynamic sub-procedure call
step or graft step), accessing the StartIndex property on the vSubProcCase object that represents that
sub-procedure will return -1.

Sub-Procedure SubProcPath

SubProcA “SubCallA”

SubProcB “SubCallA|SubCallB”

SubProcC “Dynamic[0]”

SubProcD “Dynamic[0]|Graft[0]”

SubProcE “Dynamic[1]”

SubProcF “Dynamic[0]|Graft[1]”

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 44

Public Steps

When a step is defined with TIBCO Business Studio, the step can be designated a “public step.” Pub-
lic steps provide the ability to specify that those steps can be used as "start case at" or "trigger event
on" steps. This facility allows an application to limit case starting and event triggering to only those
steps that have been designated as valid steps for those functions if it wishes to do so. TIBCO iProcess
Server Objects (.NET) does NOT enforce this limitation — it is the responsibility of the application to
enforce this limitation if it so desires.

Note - Public steps are available only if you are using a TIBCO iProcess Engine.

The following table lists the types of steps that can be designated public steps when they are defined
with TIBCO Business Studio:

Step types that cannot be public steps derive from the
vStepId Value Object (see vScriptStep in the illustra-
tion). Step types that can be public steps derive from the
vPublicStep Value Object (see vComplexRouterStep in
the illustration).

The vStepId object has an IsPublic property that returns
True if the step has been defined as a public step using
TIBCO Business Studio.

You can determine all of the public steps in a procedure
by calling the GetPublicSteps method on sProcMan-
ager. This method returns an array of vPublicStep
objects, one for each step in the procedure that has been
defined as a public step.

The vPublicStep object provides access to information
that was defined when the step was designated as a public step using TIBCO Business Studio:

• PublicFields - This property returns an array of vPublicField objects, one for each field that has
been designated as a public field on that public step. See the “Public Fields” section below for
more information.

Can be Public Step

(derive from vPublicStep)

Cannot be Public Step

(derive from vStepId)

vNormalStep vEISStep

vComplexRouterStep vScriptStep

vEventStep vAutoStepa

a. Not available if using a TIBCO iProcess Objects Server version i10 or
newer.

vEAIStep vOpenClientStep
a

vSubProcCallStep

vDynamicSubProcCallStep

vGraftStep

vScriptStep

vStepId

Name

Description

Type

IsPublic

Script

vComplexRouterStep

Actions

Conditionals

vPublicStep

PublicFields

PublicDescription

UsageURL

vStepId

Name

Description

Type

IsPublic

Procedures

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 45

• PublicDescription - Description of the public step (which may differ from the vStepId descrip-
tion). This is entered using TIBCO Business Studio when the step is designated a public step.

• UsageURL - A URL that may be used as a link for additional information about the public step.
(This may hold a string that can be used for any purpose desired by the procedure designer.)

Public Fields

For a step that has been designated as a public step, you can also specify
fields as being “public fields”. For each field on a public step that has been
designated as a public field, an vPublicField object is created.

Public Fields are provided so that an application can identify mandatory
and optional input fields (based on the vPublicField.IsMandatory flag).
Again, it is up to the application to enforce whether data input into a public
field is mandatory. TIBCO iProcess Server Objects (.NET) does NOT enforce this requirement, nor
return errors if data is not entered into mandatory fields.

The vPublicField object contains the following properties:

• Name - Returns the name given the public field.

• Description - Returns a description of the public field.

• IsMandatory - Flag indicating whether or not this public field is mandatory. As described above,
data entry in public fields that are flagged as mandatory is not enforced by TIBCO iProcess Server
Objects (.NET). It is up to the application to enforce this requirement.

Retrieving Public Field Objects

The vPublicField object is a dependent object on the vPublicStep object. Therefore, to retrieve vPub-
licField objects from the server when step objects are retrieved (with either GetSteps or GetPublic-
Steps on sProcManager), you must pass True in the aIsWithPublicFields parameter on the
vStepContent object when calling GetSteps or GetPublicSteps.

vPublicField

Name

Description

IsMandatory

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 46

6
Case Management

Starting a Case

A case is defined as an instance of a procedure. Therefore, starting a case means to create an instance
of a procedure. This is done with the StartCase method (available on both the sUser and sWorkQ
objects). This method takes the form:

string StartCase(string aProcTag,

string aDescription,

SWSubProcPrecedenceType aSubProcPrecedence,

string aStartStepName,

bool aReleaseItem,

bool aValidateFields,

vField[] aFields)

Note - This is only one of the available signatures for StartCase — see the on-line help system for all
of the variations.

By default, the case starts on the first step defined in the procedure — the name of this step is available
with the vProc.StartStepName property. However, you can optionally cause the procedure to start on
a step other than the one specified in the procedure definition — this is done by providing the aStart-
StepName parameter when calling the StartCase method.

Note - You cannot directly start a case (with StartCase) of a procedure that is defined as a sub-proce-
dure (if it is a sub-procedure, the IsSubProc property on vAProc will return True). Sub-procedures
can only be started from a sub-procedure call step, dynamic sub-procedure call step, or graft step. See
“Sub-Procedures” on page 37 for more information.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 47

Case Description

The procedure definition (defined with TIBCO Business Studio) specifies whether or not a description
must be specified when a case of the procedure is started.

This also determines if a description must be passed in the aDescription parameter when the Start-
Case method is called, as follows:

• If the procedure definition specifies that the description is required (vProc.CaseDescOpt =
swRequiredDesc), the aDescription parameter must contain a string.

• If the procedure definition specifies that the description is optional or hidden
(vProc.CaseDescOpt = swOptionalDesc or swHiddenDesc), the aDescription parameter can
contain an empty string (“”).

Keeping/Releasing the Start Step

The StartCase method provides an aReleaseItem parameter that allows you to specify that the start
step be automatically released when the case is started. Note that this parameter is relevant only if the
user starting the case is the addressee of the start step. Also, the aReleaseItem flag is ignored if you
specify a start step (with the aStartStepName parameter) other than the first step in the procedure.

The addressee must be defined in one of the following ways on the Step Definition Addressee Tab
using TIBCO Business Studio:

• Explicitly - The user’s name is entered in the Users column.

• SW_STARTER is listed in the Users column.

• A role name is listed in the Roles column, and the user starting the case is assigned to that role.

The aReleaseItem parameter is ignored if the user starting the case is not the addressee of the start
step, or if the Fields column is used to specify the addressee of the start step.

• If aReleaseItem = True (the default), when the case is started, the start step is automatically
released at the same time the case is started. This causes the case to automatically proceed to
the second step, resulting in the work item for the second step appearing in the work queue of
the addressee of the second step (see the illustration below).

vProc

CaseDescOpt

Procedure Definition
in TIBCO Business Studio

SWDescOptionType
 swOptionalDesc = 'O'
 swRequiredDesc = 'R'
 swHiddenDesc = 'H'

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 48

• If aReleaseItem = False, the work item representing the start step is placed in the work queue of
the addressee of the start step. This is always the behavior if the addressee is not the user start-
ing the case.

Validating Markings on the Start Step (iProcess Modeler Forms Only)

[The TIBCO iProcess Modeler was used to create procedures and forms prior to TIBCO Business Stu-
dio being available.]

When an iProcess form is created with iProcess
Modeler, the markings that are included on the
form are given a “type” designation, indicating
whether data in that field/marking is required,
optional, calculated, etc. For example, the form
might have a First Name field that is required,
and a Middle Name field that is optional.

The type designation that is assigned to the field when it is added to the form using TIBCO Business
Studio is available in the vFMarking.Type property for that particular marking on the form. The
types for a marking are enumerated in SWMarkingType, as shown below.

The StartCase method has a aValidateFields parameter that allows you to specify whether or not to
validate the fields/markings on the iProcess form in the start step, based on the marking types defined
on the iProcess form:

Case
Start

Addressee
= JPublic

Step1

Addressee
= SMoore

Step2

Release
= True

Case
Start

Addressee
= JPublic

Step1

Addressee
= SMoore

Step2

Work Queue
for JPublic

Step1

Release
= False

Work Queue
for SMoore

Step2

SWMarkingType
 swOptional = 'O'
 swRequired = 'R'
 swHidden = 'H'
 swDisplay = 'D'
 swCalculated = 'C'
 swEmbedded = 'E'

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 49

• If aValidateFields = True, the case start will validate that the markings designated as
swRequired on the iProcess form of the start step have values and are sent to the server (using
the aFields parameter). It also verifies that no fields marked as swDisplay on the iProcess form
are sent to the server. The marking's type designation can be obtained in the vFMarking.Type
property. They are defined by the enumeration type SWMarkingType.

• If aValidateFields = False (the default), it bypasses the enforcement of marking types on the
iProcess form.

This is probably most relevant when you are starting a case with field data (field values are passed in
the aFields parameter) and the aReleaseItem flag is set to True (see the previous sections).

Note -The aValidateFields parameter is only applicable if you are using iProcess Modeler-produced
forms (it validates markings, which are only applicable on iProcess Modeler forms).

Sub-Procedure Precedence

The StartCase method provides an aSubProcPrecedence parameter that allows you to specify the
order in which sub-procedure statuses are looked for when sub-procedures are launched from the
main procedure. The sub-procedure precedence is enumerated in the SWSubProcPrecedenceType
enumeration, as shown below:

This enumeration allows you to specify that sub-procedure statuses be looked for in a specific order:

• swPrecedenceR - Released version only

• swPrecedenceUR - Unreleased > Released

• swPrecedenceMR - Model > Released

• swPrecedenceUMR - Unreleased > Model > Released

• swPrecedenceMUR - Model > Unreleased > Released

For example, if swPrecedenceUR is passed in the aSubProcPrecedence parameter, the engine will
look for an unreleased status of the sub-procedure to start. If there isn’t an unreleased status, it will
look for a released status.

The default is to only look for released sub-procedures. Therefore, if a StartCase method signature
that does not include the aSubProcPrecedence parameter is used, only sub-procedures with a released
status will be started.

If the specified (or default) statuses of a sub-procedure cannot be found, the error message “Sub-case
started of a procedure that isn’t a sub-procedure” is written to the sw_warn file.

SWSubProcPrecedenceType
swPrecedenceR = ‘0’
swPrecedenceUR = ‘1’
swPrecedenceMR = ‘2’
swPrecedenceUMR = ‘3’
swPrecedenceMUR = ‘4’

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 50

Why isn’t the Started Case Appearing in the Work Queue?

After starting a case, the work item representing the case you just started may not immediately appear
in the work queue. This is because the work item is processed by the background process in the
TIBCO iProcess Engine. Until the TIBCO iProcess Engine has completed its processing, the work
item will not appear in the work queue.

Obtaining the Case Number of a Case that was just Started

When a case is started with StartCase, it is assigned a “case number” that can be used for purposes
such as tracking, filtering, sorting, etc. This number is available in the following ways:

• It is returned by the StartCase method

• In the vCaseId.CaseNumber property

• In the SW_CASENUM system field

The availability of the case number depends on which engine you are using:

• TIBCO iProcess Engine - With this engine, the case number is available immediately after the
case is started.

• TIBCO Process Engine - With this engine, the case number is not available immediately. The
work item that appears in the user’s work queue will initially show a case number of 0 (zero). It
will remain 0 for an indeterminate period of time. The case number is generated by the back-
ground process, so the amount of time it takes to generate it is determined by how frequently
the background process “wakes up” and processes instructions from the TIBCO iProcess
Objects Server. After the background process generates the case number, it is then available in
the CaseNumber property.

If you are in a situation where you need the case number before the background process can
provide it, the following can be used as a work around: A "case number synchronization" step
could be added to the procedure definition just after the procedure start step. The addressee for
the "case number synchronization" step could be a user such as "CaseAdmin". When the start
case has been processed by the background, a work item will appear on the CaseAdmin’s work
queue. Application code could then be written to get (and lock) the work item from
CaseAdmin’s work queue to get the case number (vCaseId.CaseNumber) and do whatever
processing is necessary, then release the work item so it will go to the next step.

Another alternative is to add a custom field that has a unique identifier provided by the user or
some external system. Then display or search on this number. After the case start has com-
pleted and the work item has reached a queue, then you can associate the case number to the
customer's unique number.

For more information about the two types of engines, see “TIBCO Process / iProcess
Engine” on page 6.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 51

Determining Who Can Start a Case

By default, when a procedure is created on a node, all users on the node have the authority to start
cases against that procedure (assuming the procedure is “released”).

You can specify the users who can start a case of a procedure using TIBCO Business Studio.

If a user name or role is specified using TIBCO Business Studio, case-start access to this procedure is
limited to only the users, groups, or roles specified, or to the users for which the expression(s) evalu-
ate to True. If no one is designated as having access through this function, it defaults to giving every-
one access.

Note - If a procedure is “unreleased” (vProc.Status = “swUnreleased”), it can only be started by the
procedure owner or the IPEADMIN user. It must have a status of “swReleased” for other users to be
able to start cases of that procedure. If the procedure’s status is “swIncomplete” or “swWithdrawn”,
no one, not even the IPEADMIN user, can start cases of that procedure. (For information about the
IPEADMIN user, see “User Authority” on page 171.)

You can determine which users, groups, or roles have permission to start a procedure by accessing the
StartByUserRef property on vProcDef. (This cannot be set through the TIBCO iProcess Server
Objects; it can only be set through TIBCO Business Studio.)

The StartByUserRef method returns a vAccessUserRef object, which contains the following proper-
ties:

• UserNames - Returns an array of the users or groups who have authority to start a case of the
procedure.

• RoleNames - Returns an array of the roles that have authority to start a case of the procedure.

• Expressions - Returns an array of expressions that indicate the attribute values the user must
have to be able to start the case. In the example above, if the user’s DEPARTMENT attribute is
“legal” or “hr”, that user has authority to start a case of the procedure.

If all three of these arrays are empty, all users have authority to start a case of the procedure.

Which Procedures can a User Start?

You can also determine the procedures for which a user can start a case by calling the GetStart-
ProcIds method on the sUser object. This returns an array of vProcId objects, one for each procedure
the user is authorized to start. From the vProcId object, you can access the Tag property to obtain the
tag for the procedure, then use that as an input parameter with the StartCase method.

Obtaining Lists of Cases

As cases of a procedure are started and finished, a list of these cases (both active and completed) is
maintained by the TIBCO iProcess Engine. The sCaseManager Server Object contains a number of
methods that allow you to access these cases in different ways. They are:

• GetACases - This returns an array of vACase objects. This method is typically used if you are
interested in only one or a few of the cases for a particular procedure, as you must provide the
case numbers for the cases you want returned.

• GetACaseList - This returns a pageable list of vACase objects. This method is used to obtain a
list for all cases of a procedure. It provides parameters that allow you to filter and/or sort the list

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 52

of cases returned, as well as specify that the list be “held” so that it can be retrieved at a later
time with the GetACaseListHeld method (see below).

Note - Lists of cases obtained with the GetACaseList method always includes cases from all
versions of the procedure. There currently is no means of filtering the list to include only cases
from a specific version of the procedure.

• GetACaseListHeld - This returns a pageable list of vACase objects that you had previously
obtained and held with the GetACaseList method (see above). It requires you to provide a
“held ID” to identify the pageable list of cases.

The GetACases and GetACaseList methods both require that you pass a procedure “tag” in the
aProcTag parameter. This identifies the particular procedure from which you want to obtain cases.
The procedure tag is available by accessing the Tag property on the vProcId object (the MakeTag
method can also be used to construct a tag if you know all of the components that make up the tag).
The vProcId object can be obtained in the following ways:

• vCase.ProcId - Identifies the procedure of which the case is an instance.

• sUser.GetStartProcIds - Identifies the procedures the user can start.

• sUser.GetAuditProcIds - Identifies the procedures the user can audit.

• sProcManager.GetProcIds - Returns vProcId objects for either all procedures on the node, or
for specific procedures.

• sCaseManager.GetProcIds - Returns vProcId objects for all procedures on the node.

Determining the Number of Cases in a Procedure

There are a number of properties available that tell you how many cases there are of a procedure.
These properties are available on the vProcSummary object, which you can get by accessing the
vAProc.ProcSummary property. The properties available are:

• vProcSummary.CaseCnt - The total number of cases in the procedure, both active and closed.

• vProcSummary.ActiveCnt - The number of active cases (vACase.IsActive=True) in the pro-
cedure.

• vProcSummary.ClosedCnt - The number of closed cases (vACase.IsActive=False) in the
procedure.

You can also determine the number of cases in a procedure that will satisfy a specific filter expression.
This can be used to determine the number of cases before calling a method that would return the cases
in a pageable list. This can be done using the following method:

• sCaseManager.GetCaseCnt - Returns the total number of cases that satisfy the specified filter
expression.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 53

Auditing Cases

The system maintains an “audit trail” or “case history” that provides information about a case’s prog-
ress through a procedure, that is, which steps in the procedure have been processed and who processed
them. An example of how this information might be presented to the user is shown below (this exam-
ple is from the TIBCO iProcess Workspace (Browser)):

The entries that are shown in blue are the steps that are currently outstanding.

There are two types of audit trail entries:

• System-defined - These are added to the audit trail by the system each time an action of some
sort is performed on the step in the case. These messages are pre-defined in SWDIR\etc\lan-
guage.lng\audit.mes (Windows) or $SWDIR/etc/language.lng/audit.mes (UNIX). An excerpt
from the audit.mes file is shown below:

The three-digit number on the left is the MsgId of the audit trail message. The system reserves
MsgIds 000-255 for system use.

• User-defined - These are added to the audit trail of a live case when you invoke the AddCase-
AuditEntry method, which is available from the sUser and sWorkQ objects. These messages
must be predefined in SWDIR\etc\language.lng\auditusr.mes (Windows) or $SWDIR/etc/lan-
guage.lng/auditusr.mes (UNIX). For information about adding user-defined audit entries, see
“Adding User-defined Audit Trail Entries” on page 64.

Determining who can Audit Cases of a Procedure

By default, when a procedure is created on a node, all users on the node have the authority to audit
cases of that procedure.

You can specify the users who can audit cases of the procedure by using TIBCO Business Studio.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 54

You can specify who has Case Administration authority. If a user, group, or role name is specified, the
ability to audit this procedure is limited to only the users, groups, or roles specified, or the users for
which the expression(s) evaluates to True. Note that having system administrator authority (MENUN-
AME = ADMIN) does NOT automatically give you access to audit trail data — if users are given
access through this dialog, users with a MENUNAME of ADMIN must be explicitly listed to have
access. (The IPEADMIN user always has access to the audit trail of any procedure. (For information
about the IPEADMIN user, see “User Authority” on page 171.) If no one is designated as having
access through this function, it defaults to giving everyone access.

You can determine which users, groups, or roles have permission to audit cases of a procedure by
accessing the AdminByUserRef property on vProcDef. (This cannot be set through TIBCO iProcess
Server Objects; it can only be set through TIBCO Business Studio.)

The AdminByUserRef property returns a vAccessUserRef object, which contains the following
properties:

• UserNames - Returns an array of the users or groups who have authority to audit cases of the
procedure.

• RoleNames - Returns an array of the roles that have authority to audit cases of the procedure.

• Expressions - Returns an array of expressions that indicate the attribute values the user must
have to be able to audit cases. In the example above, if the user’s DEPARTMENT attribute is
“legal” or “hr”, that user has authority to audit cases of the procedure.

If all three of these arrays are empty, all users have authority to audit cases of the procedure.

Which Procedures can a User Audit?

You can determine which procedures a user can audit by calling the GetAuditProcIds method on
sUser. This method returns an array of vProcId objects, one for each procedure the user has permis-
sion to audit.

Audit Step Objects

Information about the progress of processing steps in a case (considered “audit data” or the “audit
trail”) is maintained on the TIBCO iProcess Engine. This information is available in the form of
vAuditStep objects.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 55

As a case is being processed, one “audit step” is
generated each time an action is performed in
that case.

The audit step action (available in the Action
property) indicates what type of action
occurred. These are enumerated by the
SWAuditActionType object.

The first action is always the “start case” action
(swStartCase). The swProcessedTo action
indicates that the step has been “processed to”
the addressee of the step. Typically, this means
that a work item for that step has been sent to
the work queue of the addressee.

The Message property on vAuditStep returns
the actual message that appears in the audit
trail. This message will have any %USER and
%DESC variables resolved that are part of the
message in the audit.mes or auditusr.mes files
(see page 53 for information about these files).
For example, if the message in audit.mes is:

%DESC processed to %USER

the string returned by Message would be
(assuming a step description of "Final
Approval" and a user name of susieq):

"Final Approval" processed to susieq

The %DESC and %USER variables are
replaced with the step description and the name
of the user who performed the action, respec-
tively.

The IsOutstanding property on vAuditStep
allows you to determine if the step is outstand-
ing, meaning the step has been “processed to,”
but it has not been released.

vAuditStep

Action

Date

Description

SubCaseId

IsOutstanding

TimeOffset

Name

User

Message

ProcMajorVersion

ProcMinorVersion

SWAuditActionType
 swStartCase = 0
 swProcessedTo = 1
 swReleasedBy = 2
 swDeadlineExp = 3
 swForwarded = 4
 swProcessedFor = 5
 swError = 6
 swTermAbnormal = 7
 swTermPremature = 8
 swTermNORMAL = 9
 swRevisedBy = 10
 swReleasedMBox = 11
 swModifiedBy = 12
 swDeadlineWdl = 13
 swResent = 14
 swEventIssued = 15
 swSubCaseStart = 16
 swSubCaseComp = 17
 swSubCaseTerm = 18
 swSubCaseExpired = 19
 swSubCaseWithdrawn = 20
 swRedirectedTo = 21
 swSuspendedBy = 22
 swResumedBy = 23
 swCaseJumpBy = 24
 swDynaGraftCaseStart = 25
 swTaskCountSet = 26
 swTaskDeleted = 27
 swSubCaseGrafted = 28
 swExtProcessGrafted = 29
 swGraftInitiated = 30
 swExtProcessReleased = 31
 swGraftReleased = 32
 swDynamicReleased = 33
 swCaseMigrated = 34
 swGraftWithdrawn = 35
 swDynaGraftDeadlineExp = 36
 swDynamicWithdrawn = 37
 swKeepOnWithdraw = 38
 swReleasedNoAddressees = 39
 swReleasedNoSubProcs = 40
 swForwardedBy = 41
 swEAICallInitiated = 50
 swEAICallComplete = 51
 swEAICallExpired = 52
 swEAICallWithdrawn = 53
 swTransProcessed = 54
 swTransStarted = 55
 swTransRestart = 56
 swCasePurged = 57
 swCDModified = 58
 swWIOpenedBy = 59
 swWIKeptBy = 60
 swTriggered = 61
 swCaseDeadline = 62
 swEAICallFailed = 80
 swErrMaxActions = 81
 swErrGenericTransfail = 82
 swEAINoPlugin = 83
 swErrBadSubProc = 84
 swErrDiffTemplate = 85
 swErrDiffTemplateVer = 86
 swTransAborted = 87
 swDeliveredToExchange = 128
 swReleasedFromExchange = 129
 swWithdrawnFromExchange = 130
 swBWActivity = 131
 swCaseDataByUser = 133

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 56

The audit information in the vAuditStep objects is used to present the “audit trail” to the user. For
example:

The entries that are shown in blue are the steps that are currently outstanding.

Some of the entries in the audit trail may represent steps in a sub-procedure. For information about
auditing sub-procedures, see “Auditing Sub-Procedures” on page 58.

Getting Audit Step Objects

You can get audit step objects in one of two ways:

• sCaseManager.GetAuditSteps - This method causes a message to be sent to the TIBCO iPro-
cess Objects Server, requesting an array of vAuditStep objects for the specified case.

• vACase.AuditSteps - This property returns an array of vAuditStep objects from the local
vACase object. As the vAuditStep objects are dependent objects on vACase (see the illustra-
tion below), you must use a “content” object, vACaseContent, to request that the vAuditStep
objects also be retrieved from the server when the vACase object is retrieved.

The vACaseContent content request object constructor has an aIsWithAuditData parameter
that is used to specify whether or not audit data (vAuditStep objects) are also returned when
vACase objects are retrieved:

vACaseContent(bool aIsWithAuditData,
bool aIsAuditAscending,
string aAuditFilterExpression)

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 57

Passing True in the aIsWithAuditData
parameter requests that audit data be
returned.

You can also specify, using the aIsAuditAs-
cending parameter on the vACaseContent
object, that the audit data be listed in
ascending order (the swStartCase action is
listed first) or descending order (the last
action processed is listed first).

See “Retrieving Dependent Objects” on
page 143 for more information about using
content request objects.

Once you have retrieved vACase objects
with the dependent vAuditStep objects,
accessing the vACase.AuditSteps property
returns the audit steps requested for that
case.

Configuring Audit Trail Strings

Part of the text that appears in the audit trail message is obtained from the step description and the
name of the user who performed the action. However, some actions don’t have corresponding steps
from which a description can be obtained (e.g., case suspension). Also, some actions are performed by
the system (e.g., case termination/closure); these actions do not have a corresponding user name that
can be written to the audit trail message. Because of this, TIBCO iProcess Objects Server configura-
tion parameters are provided that contain default values that are written to the Description, Name,
and User properties on vAuditStep for these types of actions. You can change these default values to
fit your particular needs.

The table below lists the audit actions that have configuration parameters:

vACase

vCase

vAuditStep

Action

Date

Description

IsOutstanding

Name

User

TimeOffset

SubCaseId

vCaseId

CaseReference

ComputerName

Description

ProcId

IsActive

StartedBy

CaseFields

AuditSteps

getTag

CaseNumber

TimeStarted

makeTag

Tag

MakeTag

Message

IsSuspended

ProcMajorVersion

ProcMinorVersion

TimeStartedOffset

TimeTerminated

Action Configuration Parameter
Written to this
vAuditStep Property

Default

swStartCase StartCaseDescription Description “Case Start”

StartCaseStepName Name “Case Start”

swTermNORMAL TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

TerminationUser User “System”

swTermAbnormal TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

TerminationUser User “System”

swTermPremature TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 58

Note that the configuration parameters that pertain to case suspension, resume, and jump to, are appli-
cable only if you are using a TIBCO iProcess Engine. For more information about using configuration
parameters, see the TIBCO iProcess Objects Server Administrator’s Guide.

Auditing Sub-Procedures

There are a number of audit action types (SWAuditActionType) that are specific to sub-procedures.
They are:

Grouping Sub-Cases in the Audit Trail

The SubCaseId property returns a system-generated string that can be used to group audit steps by
case when steps from both main procedures and sub-procedures are being processed simultaneously.
This property is available on both the vAuditStep and vSubProcCase objects. By comparing the
string returned by the SubCaseId property from both of these objects, you can group together the audit
steps from a particular sub-case.

If the audit step is in the main procedure, the SubCaseId property returns an empty string.

swSuspendedBy SuspendedDescription Description “Case Suspended”

SuspendedStepName Name “Case Suspended”

swResumedBy ResumedDescription Description “Case Activated”

ResumedStepName Name “Case Activated”

swCaseJumpBy JumpToStepName Name “Jump To”

Action Configuration Parameter
Written to this
vAuditStep Property

Default

SWAuditActionType Value Description

swSubCaseStart 16 Sub-case has been started.

swSubCaseComp 17 Sub-case has completed.

swSubCaseTerm 18 Sub-case has terminated prematurely.

swSubCaseExpired 19 Sub-case deadline has expired.

swSubCaseWithdrawn 20 Sub-case has been withdrawn.

swDynamicReleased 33 Dynamic sub-procedure call step has been released.

swDynamicWithdrawn 37 Dynamic sub-procedure call step has been withdrawn.

swErrBadSubProc 84 Error - Invalid sub-procedure.

swErrDiffTemplate 85 Error - Different templates.

swErrDiffTemplateVer 86 Error - Different template versions.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 59

Filtering Audit Data

Filtering audit data allows you to minimize the amount of audit data that is retrieved from the server,
making your client application more efficient. This is accomplished by creating a filter criteria expres-
sion, then passing this string in the aAuditFilterExpression parameter when constructing the
vACaseContent object.

If the aIsWithAuditData parameter is set to True, only vAuditStep objects that satisfy the filter
expression are returned from the server with the vACase object.

Creating an Audit Filter Expression

When creating an audit filter expression, you can AND together the following criteria to create a filter
expression:

• AUDIT_TYPE - A list of audit-entry types to return or not return, depending on the operator
used (= or !=).

• USER_NAME - A list of user names (or sub-case IDs).
• STEP_NAME - A list of step names.
• STEP_DESC - A list of step descriptions.
• DATE_RANGE - A range of dates.
• FILTER_FLAGS - Special condition flags.

Details about these criteria are provided below.

• AUDIT_TYPE - A list of audit entry types to return or not return, depending on the operator
used (= or !=).

AUDIT_TYPE=[type1|type2|type3|....|typen]

--or--

AUDIT_TYPE!=[type1|type2|type3|....|typen]

where type identifies the type of each audit trail entry you want to appear in the audit trail. Note
that the iProcess Objects Server provides equates for some of the audit types, but not all of
them. Each audit type also has a numeric value defined that can be used in AUDIT_TYPE.
When specifyng the type(s) in AUDIT_TYPE, you can use either the equates, the numeric val-
ues, or a combination of both.

The following table lists all available audit type numeric values, and equates where available.

Numeric
Value

Audit Trail Message Description Equates

0 Case started by %USER Case started AT_START

1 "%DESC" processed to %USER Work item sent to queue AT_SENT

2 "%DESC" released by %USER Work item released AT_RELEASED

3 Deadline for "%DESC" expired for
%USER

Work item deadline expired AT_EXPIRED

4 "%DESC" forwarded to %USER Work item forwarded AT_FORWARD

5 "%DESC" processed on behalf of
%USER

Autostep processed AT_AUTOSTEP

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 60

6 Error - "%DESC" not found Error - step not found AT_NOTFOUND

7 Case terminated abnormally Case terminated abnormally AT_BADTERM

8 Case terminated prematurely by
%USER

Case terminated prematurely AT_CLOSED

9 Case terminated normally Case terminated normally AT_NORMTERM

10 "%DESC" revised by %USER Case data revised AT_REVISED

11 "%DESC" released from queue by
%USER

Work item released directly from
queue

AT_QRELEASED

12 n/a Work item modified n/a

13 "%DESC" withdrawn from %USER Work item withdrawn from queue n/a

14 "%DESC" resent to %USER Work item resent to queue AT_RESENT

15 "%DESC" event issued by %USER Event triggered AT_EVENT

16 Sub-Case started from "%DESC" Sub-case started AT_SUBSTART

17 Sub-case started from "%DESC" com-
pleted

Sub-case terminated normally AT_SUBEND

18 Sub-case started from "%DESC" termi-
nated abnormally

Sub-case terminated abnormally AT_SUBBADEND

19 Deadline for sub-case started from
"%DESC" expired

Sub-case deadline expired AT_SUBEXPIRED

20 Sub-case started from "%DESC"
closed

Sub-case closed prematurely AT_SUBCLOSED

21 "%DESC" redirected to %USER Work item redirected AT_REDIRECTED

22 Case Suspended by %USER Case suspended n/a

23 Case Resumed by %USER Case activated/resumed n/a

24 "%DESC" Case Jump by %USER Case jumped n/a

25 "%DESC" Sub-Case started (using
array element %STEPNAME)

Sub-case started using array element n/a

26 Task count '%STEPNAME' received for
"%DESC"

Task count received n/a

27 Task count decremented for "%DESC" Task count decremented n/a

28 Sub-Case grafted to "%DESC" Sub-case grafted n/a

29 External process "%USER" grafted to
"%DESC"

External process grafted n/a

30 "%DESC" initiated Graft step initiated n/a

31 External process "%USER" released Grafted external process released n/a

32 "%DESC" released, all tasks complete Graft step released - all tasks com-
plete

n/a

Numeric
Value

Audit Trail Message Description Equates

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 61

33 "%DESC" released, all sub-cases com-
plete

All cases started from multi sub-pro-
cedure call step complete

n/a

34 Case migrated from Procedure
v%STEPNAME to v%DESC by
"%USER"

Case migrated to new procedure ver-
sion

n/a

35 Sub-cases, grafted to "%DESC",
closed

Grafted sub-cases closed n/a

36 Deadline for "%DESC" expired Graft step or multi sub-procedure
step deadline expired

n/a

37 Sub-cases, started from "%DESC",
closed

Graft step or multi sub-procedure
step closed or withdrawn

n/a

38 "%DESC" withdrawn, outstanding
items not deleted

Graft step or multi sub-procedure
step withdrawn, outstanding items not
deleted

n/a

39 No addressees defined for step
"%DESC" - automatically released

No addressees defined for step -
automatically released

n/a

40 No sub-procedures defined for step
"%DESC" - automatically released

No sub-procedures defined for step -
automatically released

n/a

50 "%DESC" EAI call-out initiated
("%USER")

EAI step initiated n/a

51 "%DESC" EAI call-out completed
("%USER")

EAI step completed n/a

52 Deadline for EAI Step "%DESC"
expired

EAI step deadline expired n/a

53 EAI Step "%DESC" withdrawn EAI step withdrawn n/a

54 Commit Point "%DESC" reached Transaction commit step reached n/a

55 New Transaction started from
"%DESC"

Transaction commit step started n/a

56 New Transaction start retried from
"%DESC"

Transaction commit step retried n/a

57 Case Purged Case deleted from system n/a

58 "%DESC" Case data modified by
%USER

Case data modified n/a

59 "%DESC" opened by %USER Work item opened n/a

60 "%DESC" kept by %USER Work item kept n/a

61 %DESC" Triggered: "%STEPNAME"
event issued by %USER

Trigger event issued n/a

62 %DESC" case deadline event issued
by %USER

Case deadline event issued n/a

Numeric
Value

Audit Trail Message Description Equates

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 62

Note that type in AUDIT_TYPE can also be a numeric value that identifies a user-defined
audit trail message (see “Adding User-defined Audit Trail Entries” on page 64 for informa-
tion about how user-defined messages are defined).

or, type can be one of the following:
AT_SWTYPES - Include only TIBCO-defined audit entries.
AT_APPTYPES - Include only application-defined (custom) audit entries.

• USER_NAME - A list of up to five user names or sub-case IDs for which audit entries are to be
returned. Note that wildcard characters * and ? can be used. A * indicates zero or more charac-
ters of any value at the position it appears. A ? indicates one character of any value at the posi-

80 "%DESC" EAI call-out failed
("%USER")

EAI step failed n/a

81 Workflow may have an infinite loop (at
"%DESC") - reached max actions per
transaction (%USER)

EAI step possible infinite loop -
reached maximum number of actions

n/a

82 Error, workflow transaction aborted
because of a system failure - check
sw_warn/sw_error logs

Error - transaction aborted because
of system failure

n/a

83 The run-time plug-in for EAI Type
"%USER" (used by step "%DESC") not
registered on all servers or failed to
load/initialise correctly.

EAI step runtime plugin failed to load n/a

84 Invalid sub-procedure "%USER" speci-
fied for "%DESC" - check
sw_warn/sw_error logs

Invalid sub-procedure n/a

85 "%DESC" and sub-procedure
"%USER" are not based on the same
parameter template - check
sw_warn/sw_error logs

Parameter template name mismatch n/a

86 "%DESC" and sub-procedure
"%USER" are not based on the same
version of parameter template - check
sw_warn/sw_error logs

Parameter template version mis-
match

n/a

87 Transaction Aborted at "%DESC" Transaction commit step aborted n/a

128 %DESC" delivered to Exchange recipi-
ent %USER

Delivered to Exchange recipient n/a

129 %DESC" release received from
Exchange recipient %USER

Release received from Exchange
recipient

n/a

130 %DESC" withdrawn from Exchange
recipient %USER

Withdrawn from Exchange recipient n/a

131 BusinessWorks Activity Audit
"%DESC" processed by "%USER"

BusinessWorks activity audit n/a

133 Case data changed by %USER Case data changed by user n/a

Numeric
Value

Audit Trail Message Description Equates

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 63

tion it appears. Character matching is also case insensitive. Note that sub-case IDs can also be
used with this criteria because the user name for a sub-procedure call step is a sub-case Id (see
the SubCaseId property).

USER_NAME=[username1|username2|....|username5]

--or--

USER_NAME=[sub-caseid1|sub-caseid2|....|sub-caseid5]

where:
username is a valid iProcess user name, in the format <UserName>@<NodeName>. The user
name can be specified with or without quotes.

sub-caseid is a valid sub-case ID.

• STEP_NAME - A list of up to five step names for which audit entries are to be returned. Note
that wildcard characters * and ? can be used. A * indicates zero or more characters of any value
at the position it appears. A ? indicates one character of any value at the position it appears.
Character matching is also case insensitive.

STEP_NAME=[stepname1|stepname2|....|stepname5]

where:
stepname is a valid step name. The step name can be specified with or without quotes.

• STEP_DESC - A list of up to five step descriptions for which audit entries are to be returned.
Note that wildcard characters * and ? can be used. A * indicates zero or more characters of any
value at the position it appears. A ? indicates one character of any value at the position it
appears. Character matching is also case insensitive.

STEP_DESC=[stepdesc1|stepdesc2|....|stepdesc5]

where:
stepdesc is a valid step description. The step description can be specified with or without
quotes.

• DATE_RANGE - The DateTime value specifying a "from" and "to" range for audit entry
dates. The range is inclusive of the "from" and "to" dates. If the from_DateTime parameter is
omitted, the beginning of time is assumed. If the to_DateTime parameter is omitted, the current
date and time is assumed. If either parameter is omitted, the hyphen must still be entered.

DATE_RANGE=[from_DateTime - to_DateTime]

where:
from_DateTime = DateTime specifying the beginning of the date range. This is specified as a
string. For example:

"17/08/2000 01:00"

to_DateTime = DateTime specifying the end of the date range. This is specified as a string.
For example:

"20/08/2000 05:00"

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 64

Note - The order of the month and day in the date is specified in the staffpms file (“Date
Format” on page 161 for more information).

• FILTER_FLAGS - Flags that specify special conditions that are outside of the usual realm of
the filter criteria above.

FILTER_FLAGS=[flag1|flag2]

where:
flag = AF_OUTSTANDING_ONLY and/or AF_ALL_SUBSTART

AF_OUTSTANDING_ONLY = Include only "processed to" (or equivalent) entries for
steps that are currently outstanding.

AF_ALL_SUBSTART = Always return sub-case started entries regardless of whether or
not they match other filter criteria.

Example Audit Filter Expression

("AUDIT_TYPE!=[AT_START|AT_SENT] AND STEP_DESC=[\"new case\"] AND
DATE_RANGE=[- \"17/08/2000 01:30\"]")

Note - The filter criteria names (AUDIT_TYPE, USER_NAME, etc.) are case insensitive if your TIBCO
iProcess Objects Server has CR 16694 implemented; if your TIBCO iProcess Objects Server does not
include CR 16694, the filter criteria names must be all uppercase. Also, the values following each crite-
ria must be enclosed in square brackets [].

Adding User-defined Audit Trail Entries

TIBCO iProcess Server Objects (.NET) provide the ability to add user-defined audit trail entries to a
live case by invoking the AddCaseAuditEntry method, which is available on both the sUser and
sWorkQ objects. Using the AddCaseAuditEntry method requires that you have either system adminis-
trator authority or case administration authority (see “User Authority” on page 171 for more informa-
tion).

User-defined audit trail messages must be predefined in SWDIR\etc\language.lng\auditusr.mes (Win-
dows) or $SWDIR/etc/language.lng/auditusr.mes (UNIX). You must create (or add to) this file if you
want to specify user-defined audit trail messages with the AddCaseAuditEntry method.

User-defined audit trail messages must be in the format:

msg_num:msg_description

where:

msg_num is a decimal number in the range 256-999 that identifies the message. This number is
used in the MsgId parameter with the AddCaseAuditEntry method.

msg_description is a string that describes the event. It can contain the strings %USER and
%DESC, which are replaced by the UserName and StepDesc strings, respectively, that are sup-
plied with the AddCaseAuditEntry method.

Below is an example of a user-defined audit trail message in the auditusr.mes file:

256:"%DESC" being worked on by %USER

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 65

Once the user-defined message is added to the auditusr.mes file, it can be added to the audit trail
using the AddCaseAuditEntry method. (Note - If you make a change to the auditusr.mes file, you
must restart the iProcess Objects Server before the change will be recognized.)

For syntax details for AddCaseAuditEntry, see the on-line help system.

Be aware that entries you add via the AddCaseAuditEntry method may seemingly appear out of
order when compared to system-added entries. This is because system-added entries are added by the
background process, possibly causing a delay in their entry, whereas entries added with the AddCase-
AuditEntry method are added directly to the database.

Custom Audit Trail Message Templates

You can obtain information about custom audit trail messages that have been added to the
auditusr.mes file. The GetCustomAuditMsgDefs method (available on sUser and sWorkQ) returns
an array of vAuditMsgDef objects, one for each message that has been defined in the auditusr.mes
file.

The vAuditMsgDef object contains the following properties:

• MsgNumber - This returns the identifying number of the custom audit trail message represented
by the vAuditMsgDef object.

• MsgTemplate - This returns the “template” (i.e., the actual message) for the custom audit trail
message represented by the vAuditMsgDef object.

Withdraw Outstanding Items / Jump To New Steps

You can specify that one or more outstanding items in a case family (a main case and all of its sub-
cases) be “withdrawn” and that the process “jump to” one or more other steps in the case family, mak-
ing those steps outstanding items. (To perform this functionality, you must be using a TIBCO iProcess
Engine.)

Note - Outstanding items represent the steps at which the process flow is currently sitting. Normal
steps (swNormal) that are outstanding result in a work item appearing in one or more work queues.
All other step types (event steps, sub-procedure call steps, etc.), result in some other action, such as an
external program being triggered, a sub-procedure being started, etc. These step types do not result in
a work item appearing in a work queue, although they are still considered outstanding because the
process flow is halted along that path of the process flow until whatever action was started by that
step is complete.

A withdrawal / jump-to operation is performed with the JumpTo method on the sCaseManager
object. The JumpTo method allows you to:

• Specify the set of outstanding items to withdraw. These items may be in the main case or any sub-
case. See the “Determining Outstanding Items” section below for information about determining
the currently outstanding items in the case. (You can also specify a “*” wildcard in the withdraw
list to withdraw all outstanding steps in the case family.)

• Specify the set of steps to “jump to”, making these steps the new outstanding items. These steps
may be in the main case or any sub-case. You can also optionally override the new outstanding
item’s default addressee, specifying one or more new addressees.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 66

• Update case data when the withdrawal / jump to is performed. You can also optionally specify that
work item data be updated in all outstanding items. (See “Case Data vs. Work Item Data” on
page 149 for information about the difference between these types of data.)

Note that if you are updating case data when performing a withdrawal / jump-to operation, the
fields you want to update may reside in a sub-case. For details about identifying the field(s) in the
sub-case, see the jumpTo method in the on-line help system.

You can withdraw / jump to any of the following types of steps:

• Normal (swNormal)

• Event (swEvent)

• EAI (swEAI)

• Sub-procedure (swSubProcCall)

• Dynamic sub-procedure (swDynamicSubProcCall)

You cannot withdraw an outstanding item representing a transaction control step, although you can
jump to a transaction control step.

You cannot withdraw an outstanding item representing a graft step, nor jump to a graft step.

Determining Outstanding Items

The TIBCO iProcess Server Objects (.NET) object model provides an “Item” class corresponding to
each of the step types that can result in an outstanding item. Obtaining a list of the current outstanding
items in a case family allows you to determine the items that are available for withdrawal by the
JumpTo method.

The outstanding item objects are:

• vNormalItem - Normal step

• vEventItem - Event step

• vEAIItem - EAI step

• vSubProcCallItem - Sub-procedure call step

• vDynamicSubProcItem - Dynamic sub-procedure call step

• vGraftItem - Graft step (Note that graft steps can result in outstanding items, although you
cannot withdraw this type of outstanding item.)

• vTransactionControlItem - Transaction control step (Note that transaction control steps can
result in outstanding items, although you cannot withdraw this type of outstanding item.)

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 67

All of the outstanding item objects listed above derive from the vOutstand-
ingItem Value Object (an example — vNormalItem — is shown on the
right).

In order to determine which work items are currently outstanding, for
potential withdrawal, the GetOutstandingItems method on sCaseMan-
ager is used. This method returns an array of vOutstandingItem objects,
one for each step that is currently outstanding in the case family (the main
case and all of its sub-cases).

The GetOutstandingItems method provides a couple of parameters that
allow you to limit the amount and type of outstanding items that are
returned by the method. They are:

• aOutstandingItemContent - This parameter allows you to specify the
types (vNormalItem, vEventItem, etc.) of outstanding item objects to
return. This requires that you construct a vOutstandingItemCon-
tent object and pass it in the method call.

• aIncludeSubProcs - This Boolean parameter allows you to specify
whether or not to include outstanding items that are in sub-proce-
dures that have been started from the main case.

After obtaining the array of vOutstandingItem objects with the GetOut-
standingItems method, determine which of those outstanding items you
want to withdraw. On the vOutstandingItem object for each item you want
to withdraw, access the ProcPath property. This returns the path to that par-
ticular outstanding item, which can then be used in the “withdraw list”
when calling the JumpTo method. See the next section for more informa-
tion about the ProcPath

Note - You can also include the ProcPath to an outstanding sub-procedure in the JumpTo withdraw
list. This causes all outstanding items in that sub-procedure to be withdrawn. See “SubProcPath to a
Sub-Case” on page 42 for information about obtaining the ProcPath to a sub-procedure.

ProcPath to Outstanding Items

Every outstanding item contains a “ProcPath” that provides a path from the main procedure to that
specific outstanding item. This ProcPath can be used in the WithdrawList parameter with the JumpTo
method to identify the outstanding items you want to withdraw.

The ProcPath for an outstanding item is obtained by accessing the ProcPath property on the vOut-
standingItem object that represents the outstanding item you would like to withdraw. This property
returns a string that provides the path from the main procedure to the outstanding item.

vNormalItem

IsDeadline

IsDeadlineExp

IsForwardable

IsLocked

IsReleaseable

IsLongLocked

IsSuspended

IsUnopened

IsUrgent

IsWorkQReleased

LockedBy

MailId

RequestId

RequestIdHost

WorkQName

WorkItemTag

vOutstandingItem

ProcMajorVersion

ProcPath

ProcName

getCaseNumberCaseTag

Arrived

Deadline

StepName

ProcMinorVersion

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 68

The illustration below shows how the ProcPath is constructed for a variety of outstanding items that
are several levels below the main procedure.

If the outstanding item is in the main procedure,
the ProcPath string will simply consist of the
name of the step for that outstanding item (see the
NormalA step in the example above).

If the outstanding item is located in a sub-proce-
dure, the ProcPath string will consist of the name
of each sub-procedure call step leading to that
outstanding item, followed by the step name, each
separated by a vertical bar (see SubCallB in the
example).

If the case family contains dynamic sub-proce-
dure call steps or graft steps that start multiple
sub-procedures (see the Dynamic and Graft steps
in the example), the name of the dynamic sub-pro-
cedure call step and graft step in the ProcPath will

include a StartIndex in square brackets. The StartIndex (which is zero based) indicates the sequential
order in which the sub-procedure was started by the engine for that dynamic sub-procedure call step
or graft step. It is used in the ProcPath to be able to identify the path through multiple sub-procedures
to the desired outstanding item.

Step ProcPath

NormalA “NormalA”

NormalB “Dynamic[0]|NormalB”

NormalC “SubCallA|SubCallB|NormalC”

EventA “Dynamic[1]|EventA”

EventB “Dynamic[1]|Graft[1]|EventB”

EAI “Dynamic[1]|Graft[0]|EAI”

Dynamic “Dynamic”

Graft “Dynamic[1]|Graft”

SubCallA “SubCallA”

SubCallB “SubCallA|SubCallB”

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 69

Triggering Events

An Event step is a step that is processed by calling the TriggerEvent method on sCaseManager. You
can call TriggerEvent for a particular Event step:

• before the process flow has reached the Event step,

• after the process flow has halted at the Event step, or

• after the Event step has been processed.

When the TriggerEvent method is called, the process flow will proceed from the Event step in the pro-
cedure.

You can also call TriggerEvent on the same Event step multiple times. This reactivates that portion of
the procedure each time it is called.

When an Event step is triggered with the TriggerEvent method, you can optionally pass vField objects
that identify fields whose case data you want to update. You can also specify that the new data over-
write both “case data” and “work item data”. See “Case Data vs. Work Item Data” on page 149 for
information about the difference between case data and work item data. (Note that if you are updating
case data when performing a TriggerEvent operation, the fields you want to update may reside in a
sub-case. For details about identifying the fields in the sub-case, see the TriggerEvent method in the
on-line help system.)

The TriggerEvent method also allows you to “resurrect” (make active again) a closed case by passing
True in the Resurrect parameter.

See the on-line help for syntax details about the TriggerEvent method.

Predicting Cases

Case prediction provides the means for predicting the
expected outcome of an actual or an imaginary case.
Running a case prediction function causes a list of
"predicted work items" (vPredictedItem objects) to
be returned that represent the work items that are cur-
rently due (outstanding work items), as well as the
work items that are expected to be due in the future.

Note - To be able to use case prediction functions, you
must be using a TIBCO iProcess Engine.

Included with the work items returned is information
about the expected times the work items are predicted
to start and end, providing information that can be
used to predict the outcome of the case. This can be
used to improve work forecasting and estimate the expected completion of cases.

The prediction process moves through the designated procedure(s) step-by-step using live or simu-
lated case data to decide which path to take in the procedure. Each step uses an expected duration
(decided at design time) to calculate a start and end processing time for each step as it progresses
through the prediction process. When the process is complete, you can use these end processing times
to predict the outcome of the case(s).

vPredictedItem

AddrToName

CPQPs

CaseReference

ProcName

StepName

StepDescription

StepDescriptionEx

TimeEnded

TimeEndedOffset

StepDuration

TimeStarted

TimeStartedOffset

vCDQP

FieldName

Value

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 70

During the prediction process, initial and release scripts are executed, deadlines are processed, and
withdrawal actions are performed, where appropriate.

There are two primary types of case prediction:

• Background case prediction, which allows you to predict the outcome of all active cases across
all (enabled) procedures on the node. This type of case prediction is performed using the Get-
PredictedItemList method. See “Background Case Prediction” on page 71 for more informa-
tion.

• Ad-hoc case prediction, which is sub-divided into the following two operations:

- Live case prediction, which allows you to predict the process path and duration of an
active case. This type of case prediction is performed using the PredictCase method. See
“Live Case Prediction” on page 72 for more information.

- Case simulation, which allows you to simulate the processing of an imagined case (with
simulated case data), to predict its expected outcome. This type of case prediction is per-
formed using the SimulateCase method. See “Case Simulation” on page 72 for more
information.

Defining Case Prediction

The following subsections describe how case prediction is defined for a procedure using TIBCO Busi-
ness Studio.

Step Duration

As you are defining a procedure using TIBCO Business Studio, a "duration" is defined for each step in
the procedure. The duration is the expected time interval between when the work item will become
"active" and when it will be released. This is defined on the Deadline/Step Duration Definition dia-
log in TIBCO Business Studio. The step's duration is represented by a vDuration object, which is
returned by the Duration property on each of the following step objects: vNormalStep, vEventStep,
vEAIStep, vSubProcCallStep, vDynamicSubProcCallStep, and vGraftStep.

The vDuration object contains properties that allow you to determine the duration definition that was
specified when the step was defined:

• Type - This returns the type of duration that is defined for the step. It may be defined as: no
duration, a duration expression (dynamic), a duration period (static), or that the deadline
defined for the step be used as its duration. These are defined in the SWDurationType enumer-
ation.

• DurationValues - This property returns a list of vDurationValue objects, which provide access
to the values that were entered in the Deadline/Step Duration Definition dialog for that step.

Note that if the step deadline is used for the duration (vDuration.Type = swDurationDeadline), the
duration value will NOT be returned by the vDurationValue.Value property. Rather, it will be
returned by the vDeadlineValue.Value property.

On the Deadline/Step Duration Definition dialog, you can also specify that the duration definition
be used in the prediction calculation, but to exclude the step (work item) from the list of work items
that are returned when case prediction is performed. This option allows you to specify that only the
work items that are processed manually be included in the prediction output, excluding "broker type"
steps and EAI steps. The setting of this option is available in the IsPrediction property on each of the
step objects that can be used in case prediction (vNormalStep, vEventStep, vEAIStep, vSubProcCall-

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 71

Step, vDynamicSubProcCallStep, and vGraftStep) — the IsPrediction property returns True if the step
is excluded from the prediction results, but the step's duration definition is still used in the prediction
calculation.

The Procedure Status dialog also includes a Duration button, which displays a dialog that allows
you to set a duration for the procedure. This is intended to be used to assign a duration to a sub-proce-
dure, allowing you to assign a duration for the entire sub-procedure rather than each step in the sub-
procedure. If a duration is assigned for the sub-procedure, it takes precedence over a duration that is
defined for the sub-procedure call step. If a duration is defined for the sub-procedure, it is accessible
in the vProcDef.Duration property.

Conditional Actions for Case Predictions

The "conditional" definition for a step in TIBCO Business Studio includes a "predicted condition."
When a "conditional action" is encountered in a step as the prediction process moves from step to
step, the "prediction condition" specifies how the conditional action is to be handled by the prediction
process. It can handle it in one for the following three ways:

• Evaluate - The conditional expression will be evaluated to determine the path to take.

• Default to True - The conditional expression will default to True.

• Default to False - The conditional expression will default to False.

The definition given the "predicted condition" in TIBCO Business Studio is available in the vCondi-
tional.PredictedCondition property. This property returns an enumeration constant (SWCondition-
PredictType) that identifies how the "prediction condition" was defined using TIBCO Business
Studio.

Performing Case Prediction

As stated earlier, there are two primary types of case prediction: background and ad-hoc. Ad-hoc case
prediction is further sub-divided into live case prediction and case simulation. The methods of per-
forming each of these types of case prediction are described below.

Background Case Prediction

Background case prediction allows you to predict the outcome of all active cases across all (enabled)
procedures on a node (see below for information about enabling a procedure for background predic-
tion). This type of case prediction is performed by calling the GetPredictedItemList method on
sCaseManager. The GetPredictedItemList method returns a pageable list of vPredictedItem objects,
one for each current and future outstanding work item, for all active cases, on all procedures on the
node (for which prediction is enabled).

A procedure must be enabled to take part in a background case prediction operation. When a proce-
dure is defined using TIBCO Business Studio, the Prediction flag on the Procedure Status dialog
must be checked to enable prediction on this procedure. This flag can be accessed in the IsPrediction
property on vProcDef. This property returns True if prediction has been enabled for the procedure.

The vPredictedItem objects returned by the GetPredictedItemList method can be filtered and/or sorted
by passing in a vPredictionCriteria object with the method call. The vPredictionCriteria object con-
tains filter and sort criteria for the predicted items. See “Filtering and Sorting Predicted Items” on
page 74 for more information. You can also filter or sort on case data in CDQP fields in the prediction
results, provided the CDQP fields have been configured for prediction (see “Including Case Data
Queue Parameter Data in Prediction Results” on page 73 for more information).

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 72

You can also persist the pageable list returned by the GetPredictedItemList method. This is done by
saving the “HeldId” for that pageable list, then using that HeldId as an input parameter on the GetPre-
dictedItemListHeld method at a later time. This returns that same pageable list of vPredictedItem
objects as the original call to GetPredictedItemList.

Live Case Prediction

Live case prediction allows you to predict the process path and duration of an active case. This type of
case prediction is performed by calling the PredictCase method on sCaseManager. The PredictCase
method returns an array of vPredictedItem objects, one for each work item that was outstanding
when the method was called, and one for each work item that is expected to be outstanding in the
future.

Note that the procedure from which the live case was started does not need to have case prediction
enabled using TIBCO Business Studio (i.e., the Prediction flag on the Procedure Status dialog does
not need to be set) to run a case prediction operation on the live case.

Case Simulation

Case simulation allows you to simulate the processing of an imagined case. This type of case predic-
tion allows you to provide case data that is used in the simulation of an imagined case. The case data
is used to decide which path to take when there are conditional actions in the steps of the procedure.
This type of case prediction is performed by calling the SimulateCase method on sProcManager.

This method returns an array of vPredictedItem objects, one for each work item that is expected to be
processed in the imagined case.

The SimulateCase method provides a StepNames parameter that allows you to specify the step(s) from
which the simulated case is to start. If omitted, the simulation will start at the start step of the proce-
dure.

Note that the procedure on which you want to run a case simulation does not need to have case predic-
tion enabled in TIBCO Business Studio (i.e., the Prediction flag on the Procedure Status dialog does
not need to be set).

Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction

The following summarizes the way in which the prediction methods handle sub-procedure call steps,
dynamic sub-procedure call steps, and graft steps.

Sub-Procedure Call Steps

• PredictCase and GetPredictedItemList
- vPredictedItem objects will be returned for sub-procedure call steps that have not yet been

processed (the process flow has not reached the step).

- vPredictedItem objects will NOT be returned for sub-procedure call steps that are currently
outstanding (the process flow has reached the step and its sub-procedure has been started).
However, a vPredictedItem object will be returned for each outstanding item in the sub-pro-
cedure that has been started by the sub-procedure call step.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 73

• SimulateCase
- vPredictedItem objects will NOT be returned for sub-procedure call steps. However, a vPre-

dictedItem object will be returned for each of the outstanding steps predicted to be outstand-
ing in the sub-procedure started by the sub-procedure call step of the simulated case.

Dynamic Sub-Procedure Call Steps and Graft Steps

• PredictCase and GetPredictedItemList
- vPredictedItem objects will be returned for dynamic sub-procedure call steps and graft steps

that have not yet been processed (the process flow has not reached the steps).

- vPredictedItem objects will NOT be returned for dynamic sub-procedure call steps nor graft
steps that have been processed (the process flow has reached the steps). Also note that vPre-
dictedItem objects will NOT be returned for any outstanding items in sub-procedures that
are started by dynamic sub-procedure call steps or graft steps — that’s because the predic-
tion operation only looks at the definition of the procedure; it does not look at the contents
of the array field to determine which sub-procedures have been started by the dynamic sub-
procedure call step or graft step.

• SimulateCase
- vPredictedItem objects will be returned for dynamic sub-procedure call steps and graft steps

predicted to be outstanding in the simulated case. Note, however, that since it’s a simulated
case, no sub-procedures are actually started by dynamic sub-procedure call steps or graft
steps, therefore there can be no predicted items for sub-procedures started by those steps
(and there is no means to simulate starting sub-procedures from dynamic sub-procedure call
steps and graft steps).

Including Case Data Queue Parameter Data in Prediction Results

When Case Data Queue Parameter (CDQP) fields are defined with the swutil utility, an attribute may
be set specifying whether or not the CDQP field is to be included in prediction results (it defaults to
False). The setting of this attribute is available in the IsPrediction property on vCDQPDef for each
CDQP field.

If this attribute is set to True for a specific CDQP
field, and that CDQP field is encountered in the pre-
diction process, a vCDQP object representing the
CDQP field is returned on the vPredictedItem object.
All CDQP fields returned are available from vPre-
dictedItem in the CPQPs property.

Note that certain conditions must be met for CDQP
fields to be returned in the prediction results. They
are:

• Only CDQP fields that have prediction
enabled in their definition will be returned.

• vCDQP objects are returned only on vPredict-
edItem objects that represent normal steps.

• vCDQP objects are returned only if the CDQP field is defined on the work queue for the user /
group who is the addressee of the step.

vPredictedItem

AddrToName

CPQPs

CaseReference

ProcName

StepName

StepDescription

StepDescriptionEx

TimeEnded

TimeEndedOffset

StepDuration

TimeStarted

TimeStartedOffset

vCDQP

FieldName

Value

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 74

• If the SimulateCase method is called, CDQP fields will NOT be returned on work items if the
addressee of the step is a variable (such as sw_starter). They will be returned if the addressee is
a role or has been defined explicitly. (CDQPs will be returned on work items if the addressee is
a variable when PredictCase or GetPredictedItemList is called.)

The vCDQP objects returned by the CPQPs property provide access to the case data in those CDQP
fields, as well as the ability to filter and sort on that case data when prediction is run using the
GetPredictedItemList method (which returns a pageable list; filtering and sorting can't be performed
on the vPredictedItem objects that are returned by the PredictCase and SimulateCase methods).

Filtering and Sorting Predicted Items

You can filter and/or sort the results of the GetPredictedItemList method, which are returned in a
pageable list. This is done by passing a vPredictionCriteria object in the method call. Note that
because predicted items are stored in the database, filtering them works in the same way as filtering
cases when you have the database case filtering enhancement; this includes the limitation that the only
special characters that can be used when using regular expressions are ‘*’ and ‘?’ — these work as
wildcard characters, where the asterisk matches zero or more of any character, and the question mark
matches any single character. See the Filtering Work Items and Cases chapter on page 227 for more
information. Also see the Sorting Work Items and Cases chapter on page 251 for information about
how to sort items that are returned in a pageable list.

The Filtering Work Items and Cases and the Sorting Work Items and Cases chapters provide lists of
system fields that can be used when filtering / sorting. Note, however, that when filtering and sorting
vPredictedItem objects, you are restricted to using the system fields listed in the table below. The
“Filter” and “Sort” columns indicate whether you can filter or sort using that system field.

System Field Filter Sort Data Type

SW_STEPNAME X X string

SW_STEPDESC X X string

SW_STEPDESC2 X X string

SW_CASENUM X numeric

SW_MAIN_CASENUM X numeric

SW_PARENT_CASENUM X numeric

SW_PRONUM X numeric

SW_PARENT_PROCNUM X numeric

SW_CASEREF X numeric

SW_STEPDURN_SECS X numeric

SW_STEPDURN_USECS X numeric

SW_ADDRESSEE X X string

SW_ARRIVALDATE X string

(“YYYY-MM-DD HH:MM:SS”)*

SW_ARRIVALDATE_USECS X numeric

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 75

* The hour component is in 24-hour format.

You can also filter on CDQP fields that are in the predicted work items returned by GetPredictedItem-
List, as long as they have been configured for case prediction.

If no sort criteria are specified, the arrival date and time are used to sort the predicted items.

Note - When filtering predicted items, if an invalid system field is used in your filter expression, an
error is not produced. Instead, the filter operation will not return any items.

Using Graft Steps

A "graft step" allows an external application to inform the client application at run-time how many
"tasks" it intends to "graft" to that step. For each task that it will graft to the graft step, the external
application can specify any number of sub-procedures and/or external processes to start. You can graft
multiple tasks to one graft step.

For example, a financial application determines that a credit check and a transfer of funds are required
as part of the main procedure. When another case is started, it determines that only a transfer of funds
is required. This means that the procedure is dynamic and cannot be decided at procedure definition
time. One of the processes is a sub-procedure and the other is an external process run by the financial
system. They can be specified as a task at run-time and attached to a graft step for processing.

A graft step is considered complete (i.e., its "release" actions are processed), when:

• It has been processed as an action of another step (i.e., the process flow has reached the graft
step), and

• the application has informed the graft step how many tasks it needs to complete (i.e., the graft
step’s task count has been set — IsTaskCntSet = True), and

• the graft step's task count (TaskCnt) has reached zero (the task count is decremented when a
task has been started or if you delete a task), and

• all of the sub-procedures and/or external processes started for the graft step have completed.

Defining Graft Steps
Graft steps are defined using TIBCO Business Studio. A graft step is represented by the vGraftStep
object. The following are elements of a graft step definition:

• Sub-Procedures / External Processes to Start - When a graft step is defined using TIBCO
Business Studio, you do not specify the names of sub-procedures and/or external processes that
will be started for the graft step; those are specified at run-time by the external application.
Instead, you specify a text "array field". At run-time, the external application will write the
names of the sub-procedures and external processes to start into the elements of the array field.

The vGraftStep.SubProcNameFld property returns the name of the array field that was speci-
fied when the graft step was defined.

SW_LEAVE_DATE X string

(“YYYY-MM-DD HH:MM:SS”)*

SW_LEAVE_DATE_USECS X numeric

System Field Filter Sort Data Type

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 76

See “Array Fields” on page 155 for information about how array fields are used with graft steps.

• Return Status - When a graft step is defined using TIBCO Business Studio, you can specify a
numeric array field, whose elements will contain a return status for each corresponding sub-pro-
cedure and/or external process in the SubProcNameFld array field. See “Return Statuses” on
page 79 for information about the return status.

Starting a Graft Task

A graft task is started with the StartGraftTask method on sCaseManager. This method call requires
that you first construct a vGraftSubTask object for each sub-procedure and/or external process you
want initiated from the graft step. You must then pass an array of vGraftSubTask objects in the Start-
GraftTask method call. The names of the sub-procedures and external processes that are being initiated
from the graft step are written to elements of the array field that was specified in the graft step defini-
tion.

• If sub-procedures are started with the StartGraftTask method, the engine will keep track of
which sub-procedures have completed.

• If external processes are started with the StartGraftTask method, the customer application must
keep track of when each of the external processes has completed. The application must inform
the engine by calling the ExternalGraftProcessComp method for each external process as it
completes. (Note that calling the StartGraftTask method does not actually start an external
process. It is merely providing the names of external processes that must be completed before
the graft task is considered complete.)

Calling the StartGraftTask method causes the graft step's task count to be decremented by one. See
“Setting the Task Count” below for more information.

When a graft task is started with the StartGraftTask method, a "graft ID" must be specified. This ID is
user-supplied and must be unique to this instance of the graft step. All other methods that can impact
this graft step must include this ID to ensure they are impacting the appropriate graft step. The graft ID
may be initially established with either the StartGraftTask or the SetGraftTaskCnt method, as either
one may be the first method called for a particular instance of a graft step. (You could establish the
graft ID for a graft step by calling the DeleteGraftTask method first, but it really doesn't make any
sense to delete a graft task before starting one or setting the count.)

Note that when sub-procedures are started with the StartGraftTask method, the sub-procedures are
started with the same precedence at which the parent case was started. That is, you cannot specify a
separate sub-procedure precedence for sub-procedures started with the StartGraftTask method.

For any given graft step, the StartGraftTask method can be called multiple times (using the same graft
ID). The sub-procedures and/or external processes specified in each subsequent call are appended to
the existing sub-procedure / external process names in the array field in the graft step definition.

Case data may also be supplied when calling the StartGraftTask method. This allows you to specify
field values to be passed to sub-procedures that are started by the StartGraftTask method. To pass case
data, you must construct an array of vField objects that identify the fields/values, then include those
objects when constructing the vGraftSubTask that identifies the sub-procedure to start when calling
the StartGraftTask method.

The field names should be preceded by the index into the array of sub-cases being grafted. Normally,
only one case is grafted at a time, in which case, all the sub-case field names should be preceded by
'$1|', for example:

$1|ADD_TIME_VALUE,24

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 77

$1|ALERTID,22

$1|BRANCHNAME,RSSI_GIMS

$1|CONFIDENTIALITY,C1

$1|DESTRSSI,RSSI_GIMS

$1|RISKID,9

$1|SEVERITY,1

$1|SRT_NUMBER,RIS-[RSSI_GIMS]-[SRT[06]-20]

If two cases were being started, you might have the following data:

$1|ADD_TIME_VALUE,24

$1|ALERTID,22

$1|BRANCHNAME,RSSI_GIMS

$1|CONFIDENTIALITY,C1

$1|DESTRSSI,RSSI_GIMS

$1|RISKID,9

$1|SEVERITY,1

$1|SRT_NUMBER,RIS-[RSSI_GIMS]-[SRT[06]-20]

$2|ADD_TIME_VALUE,26

$2|ALERTID,33

$2|BRANCHNAME,RSSI_DIMS

$2|CONFIDENTIALITY,C2

$2|DESTRSSI,RSSI_GIMS

$2|RISKID,7

$2|SEVERITY,2

$2|SRT_NUMBER,RIS-[RSSI_DIMS]-[SRT[06]-20]

Setting the Task Count

The customer application must inform the engine how many tasks must be completed for this graft
step for it to be considered complete.

Setting the graft step's task count is done with the SetGraftTaskCnt method. Calling this method
causes the IsTaskCntSet flag to be set to True, and increments the graft step's task count (available in
the TaskCnt property) by the number specified in the SetGraftTaskCnt method. (Note that the task
count may be negative if you start one or more tasks before you call the SetGraftTaskCnt method.)

Note that this count is the number of “tasks” that have to be completed for the graft step to be
released; it is not the number of sub-procedures or external processes that are being started by the
graft task — each graft task can start multiple sub-procedures and external processes.

The task count is automatically decremented by one each time the StartGraftTask or DeleteGraft-
Task method is called. So the current task count tells you the number of tasks that are remaining to be
completed.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 78

Outstanding Graft Items

A graft step becomes “outstanding” when the
graft task is initiated either with the StartGraft-
Task or SetGraftTaskCnt methods, or the pro-
cess flow has reached the graft step.

When the graft step becomes outstanding, a
vGraftItem object representing the outstand-
ing graft item will be returned from GetOut-
standingItems on sCaseManager. (The
GetOutstandingItems method actually returns
vOutstandingItem objects — the vGraftItem
object is derived from vOutstandingItem.)

Note that although the graft item is considered
“outstanding” (because it is returned when you
call GetOutstandingItems), the IsOutstanding
property on vGraftItem returns True only if the
process flow has reached the graft step in the
procedure. It does not return True if the graft
item is outstanding because it was initiated
with StartGraftTask or SetGraftTaskCnt.

You can determine the sub-procedures and/or external processes that were started by the outstanding
graft item by accessing the following properties on vGraftItem:

• SubProcCases - Returns an array of vSubProcCase objects, one for each sub-procedure that
was started by the graft item. This tells you ALL sub-procedures that were started, whether they
have completed or not. You can determine whether or not the sub-procedure has completed by
accessing the IsOutstanding property on vSubProcCase; this property returns True if the sub-
procedure is still outstanding (it hasn’t completed yet).

See “The Sub-Case Object” on page 42 for more information about vSubProcCase objects.

• ExternalGraftProcesses - Returns an array of vExternalGraftProcess objects, one for each
external process that was initiated by the graft item. This tells you ALL external processes that
were initiated by the graft step, whether they have completed or not. You can determine
whether or not the external process has completed by accessing the IsOutstanding property on
vExternalGraftProcess; this property returns True if the external process is still outstanding
(hasn’t completed yet). It is flagged as completed when the application calls the External-
GraftProcessComp method.

vGraftItem

SubProcCases

ExternalGraftProcesses

IsWithdrawn

IsOutstanding

IsTaskCntSet

TaskCnt

vExternalGraftProcess

ExternalProcessName

vOutstandingItem

vOutstandingItem

GraftId

StartIndex

IsOutstanding

ReturnStatus

vSubProcCase

ProcNode

ProcName

CaseNumber

CaseTag

ProcMajorVersion

ProcMinorVersion

IsOutstanding

StartIndex

ReturnStatus

SubCaseId

SubProcPath

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 79

Return Statuses

A “return status” is available that provides status information for the sub-procedures and external pro-
cesses that are initiated/completed for a graft step. This status is available by accessing the Return-
Status property on vSubProcCase (for sub-procedures) or vExternalGraftProcess (for external
processes). These are described below:

• Sub-Procedures - The ReturnStatus property on vSubProcCase returns an integer that indi-
cates the current status of the sub-procedure. The status for sub-procedures is set by the system.

The integers returned by ReturnStatus are defined in the SWSubProcStatusType enumera-
tion, as follows:

• External Processes - The return status is only applicable to external processes after they have
completed.

When the ExternalGraftProcessComp method is called to tell the engine that the external pro-
cess is complete, a user-defined status can be specified in the vGraftSubTask object that is
passed in the ExternalGraftProcessComp method call. This Status parameter can be any integer
the user chooses.

The ReturnStatus property on vExternalGraftProcess returns the integer that was specified
when the ExternalGraftProcessComp method was called.

Note - You can also get the return status by using the ReturnStatus array field (ReturnStatusFld) that
was specified in the graft step definition (vGraftStep). The elements of the ReturnStatus array field
contain the status codes for the corresponding sub-procedures or external processes named in the
SubProcNameFld (SubProcNameFld on vGraftStep).

Deleting a Task

After starting a graft task with the StartGraftTask method, you may decide you don't want to complete
that task and would like to delete it from the list of tasks the graft step needs to complete. This can be
done by calling the DeleteGraftTask method.

Calling DeleteGraftTask causes the task count (TaskCnt property) to be decremented by one.

SWSubProcStatusType

swNoAttempt 0

swStarted 1

swCompleted 2

swErrSubProc -1

swErrTemplate -2

swErrInTemplateVer -3

swErrOutTemplateVer -4

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 80

Completing a Graft Step

A graft step is considered complete, and is subsequently released, when:

• the process flow has reached the graft step — vGraftItem.IsOutstanding = True

• the graft step's task count has been set — vGraftItem.IsTaskCntSet = True

• the graft step's task count has reached zero (the task count is decremented when a task has been
started or if you delete a task) — vGraftItem.TaskCnt = 0

• all of the sub-procedures and/or external processes started for the graft step have completed (the
engine keeps track of when the sub-procedures have completed; the customer application must
inform the engine when each external process has completed by calling the ExternalGraftPro-
cessComp method)

When all of these conditions are met, the release actions for the graft step are executed.

Error Processing

Graft step definitions provide options that allow the definer to specify whether or not to halt process-
ing if an error is encountered during processing of the sub-procedures that are started by the graft step.
These options are available with the following properties on vGraftStep:

• IsHaltOnSubProc - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify non-existent sub-procedures.

• IsHaltOnTemplate - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify sub-procedures that do not use the same param-
eter template. (Parameter templates are used when defining procedures to ensure that the same
input and output parameters are used when starting multiple sub-procedures from a graft step;
for information about parameter templates, see TIBCO Business Studio Advanced Design
Guide.)

• IsHaltOnTemplateVer - Returns True if processing should be halted when the "sub-proce-
dures to start" array field contains elements that specify sub-procedures that do not use the
same version of parameter template.

These options for halting processing on specific error conditions have the following affects:

Errors during initial processing (when the graft step is processed as an action of another step):

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
engine. (This is specified with a background attribute: IQL_RETRY_COUNT = the num-
ber of times the message will be retried; IQL_RETRY_DELAY = the number of seconds
between retries.) If the message retries do not result in a successful initial processing, the
following apply:

• Processing of the entire step is halted at this point -- it will always be left "waiting"
for the sub-case that's in error to be completed.

• All sub-procedures that have been started from the step are rolled back.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 81

• If an error is encountered and the step is defined to NOT halt:

- The other valid sub-procedures specified in the SubProcName array field will be started as
usual.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Errors during completion processing of one of the sub-cases:

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
engine. (This is specified with a background attribute: IQL_RETRY_COUNT = the number
of times the message will be retried; IQL_RETRY_DELAY = the number of seconds
between retries.) If the message retries do not result in a successful completion processing,
the following apply:

• Processing of the entire step is halted at this point -- it will always be left "waiting"
for the sub-case that's in error to be completed.

• The "sub-case completed" transaction for the sub-case in error is aborted -- this does
not cause transactions from other valid sub-case completions to be aborted.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The "sub-case completed" transaction for the sub-case in error is ignored (including
returned output parameter data).

- The status of the sub-case is set to "complete" so that the step can be released when all other
sub-cases complete.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Note that if none of the “halt on” selections are selected in TIBCO Business Studio when the graft step
is defined, and one of the error conditions are encountered (e.g., sub-procedures using different tem-
plates), the process will continue, which could possibly result in errors in case data.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 82

Transaction Control Steps

Transaction control steps provide a mechanism, within a procedure, to allow more transaction granu-
larity within a sequence of EAI steps (transaction control steps can only be used in conjunction with
EAI steps).

By default, the Background process groups a series of connected EAI steps into one transaction. If a
failure occurs in any EAI step in the series, the entire transaction is rolled back. A transaction control
step can be placed within the series of EAI steps to break the transaction into multiple transactions.
When the process flow reaches the transaction control step, the current transaction can be either com-
mitted and a new transaction started, or the current transaction can be aborted, depending on how the
transaction control step has been defined using TIBCO Business Studio.

For information about creating transaction control steps, see the TIBCO Business Studio documenta-
tion.

The vTransactionControlStep Object

The definition of a transaction control step is represented by the vTransac-
tionControlStep object.

This object is available by using either GetSteps or StepIds to get vStepId
objects, then use the Type property to identify the step as a transaction con-
trol step (Type = swTransactionControl), then cast it to a
vTransactionControlStep object.

Type of Transaction Control Step

When a transaction control step is defined using TIBCO Business Studio, it is configured to be one of
the following three types:

• Commit and Continue - This type specifies that the current transaction be committed, and that
a new transaction be started for subsequent steps using the same Background process. The ben-
efit of choosing this option is that it is faster, as the same process starts the new transaction.

• Commit and Concede - This type specifies that the current transaction should be committed,
and that a new transaction be started for subsequent steps, except a different Background pro-
cess will be used for the second transaction.

The Background process processes the first transaction and updates the database. It then sends a
message back to the Mbox where the messages are stored. Processing of the next transaction
proceeds when the Background process (either the same one that processed the first transaction,
or another one) reads the message from the Mbox and processes it. The benefit of choosing this
option is that it enables load balancing because a different Background process can process the
second transaction.

• Abort - This option causes the abortion and rollback of the current transaction when the pro-
cess flow reaches the transaction control step. This option is typically used with a Conditional.
This allows you to specify a condition on which the transaction should be rolled back. After the

vTransactionControlStep

Actions

TransactionType

Conditionals

RetryDelay

vStepId

Name

Description

Type

IsPublic

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 83

aborted transaction is rolled back, it will be retried using the normal Mbox queue message retry
behavior.

This type of transaction control step can be useful where a mixture of transactional and non-
transactional EAI steps are used in a procedure. The Conditional can check for an error state, a
corrective action can be performed in the non-transactional EAI step, then the abort transac-
tional control step will roll back the transaction.

The transaction control step type can be accessed using the TransactionType property on the vTrans-
actionControlStep object. This method returns one of the following constants:

These constants are defined in the SWTransactionType enumeration.

Outstanding Transaction Control Steps

The vTransactionControlItem object represents an "outstanding" trans-
action control step. A transaction control step becomes outstanding when
the process flow reaches the step. The transaction control step is no longer
outstanding when the transaction controlled by the transaction control
step is either committed or aborted.

The GetOutstandingItems method on sCaseManager returns an array
of vOutstandingItem objects, one for each outstanding step in the case
family. Use the aOutstandingItemContent parameter to specify that you would like outstanding trans-
action control steps returned (set isWithTransactionControlItems to True).

See “Determining Outstanding Items” on page 66 for more information about obtaining and using
outstanding items.

Retrying Failed Transactions

If a transaction that is controlled from a “commit and continue” transaction control step fails, the
failed transaction will be retried after a specified period of time. TIBCO iProcess Server Objects
(.NET) provide the following methods to reflect this retry delay/time:

• vTransactionControlStep.RetryDelay - This property returns the number of minutes in which
a failed transaction will be retried (only applicable for "commit and continue" transaction con-
trol steps). This value is specified when the transaction control step is defined.

• vTransactionControlItem.RetryDateTime - This property returns the date and time that the
failed transaction will be retried. This date/time is calculated from the time the transaction
failed, using the number of minutes specified when the transaction control step was defined
(see RetryDelay above).

Constant Description Value

swContinue Commit and continue transaction control step. ‘C’

swConcede Commit and concede transaction control step. ‘D’

swAbort Abort transaction control step. ‘A’

vTransactionControlItem

vOutstandingItem

vOutstandingItem

RetryDateTime

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 84

If a transaction that is controlled from a “commit and continue” transaction control step fails for any
reason, the Deadline Manager will retry the failed transaction in the period of time specified when the
step was defined. The RetryDateTime property will return the date/time of this one-time retry. This
one-time retry by the Deadline Manager is for the purpose of allowing the reason for the failure to cor-
rect itself so that the transaction can then be successfully processed.

Note, however, that if a failed transaction failed for some reason that is not corrected in the specified
delay time, the transaction may be continually retried by the standard Mbox message queue process
(the default is to retry 12 times, once every 5 minutes). These subsequent retries are not managed by
the Deadline Manager. Therefore, the date/time returned by the RetryDateTime property does not
reflect these additional retries — it will only contain the date/time of the initial retry — the one con-
trolled by the Deadline Manager.

Audit Trail Messages

The following are the messages that are written to the audit trail when an action is performed
against a transaction control step. These are available in the vAuditStep.Action property.

These constants are defined in the SWAuditActionType enumeration.

Constant Description Value

swTransProcessed Transaction Control Step Processed 54

swTransStarted Transaction Control Step - New Transaction Started 55

swTransRestart Transaction Control Step - Retry Time Expired 56

swTransAborted Transaction Control Step Processed - Transaction
Aborted

87

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 85

Suspending Cases

TIBCO iProcess Server Objects (.NET) provide the ability to suspend activity in a case family (a main
case and all of its sub-cases). This is done with the SetCaseSuspended method on sCaseManager.
Suspending a case family has the following effects:

• Normal Steps - You cannot lock any work items in the case family. If a work item is already
locked when its state is changed to "suspended," the work item may still be released, and the
release instructions will be carried out. Any new work items as a result of the release will
immediately become suspended, unless they are flagged to ignore suspensions (described
below). If the work item is kept, it will immediately become suspended, and it cannot be locked
again until the suspended state is removed.

• Deadlines will continue to expire, however, if one expires while the case family is suspended,
no action will be carried out until the suspended state is removed. Once the suspended state is
removed, the process flow will proceed as usual.

• Event steps do not support case suspension, i.e., an event can be triggered on a case that is sus-
pended. However, subsequent steps are suspended, unless they are flagged to ignore case sus-
pension (described below).

• Withdrawals do not support case suspension. For example, if you suspend a case then trigger an
event (see above), if the subsequent action is to withdraw an outstanding item, the withdrawal
will be processed.

Note - You must be using a TIBCO iProcess Engine to use this functionality.

Setting the state of a case family to suspended causes the IsSuspended flag on the vACase, vNor-
malItem, and vWorkItem objects to be set to True. Unsuspending the case family causes this flag to
be set to False.

When calling the SetCaseSuspended method, you can optionally pass vField objects to identify fields
whose case data you want to update. You can also specify that the new data be written to both "case
data" and "work item data" (using the aUpdateOutstanding parameter on SetCaseSuspended). (See
the on-line help system for syntax details.)

When a case is suspended, the following audit action (SWAuditActionType) is written to the audit
log:

• swSuspendedBy - The case family is set to “suspended.”

Reactivating a Suspended Case

To reactivate a suspended case, call the SetCaseSuspended method on sCaseManager, passing False
in the aSuspend parameter.

When a suspended case is reactivated, the following audit action (SWAuditActionType) is written to
the audit log:

• swResumedBy - The case family is set to “active.”

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 86

Ignoring Case Suspension

When a procedure is created with TIBCO Business Studio, normal, EAI, sub-procedure call steps,
dynamic sub-procedure call steps, and graft steps can be flagged to ignore suspensions. If flagged to
ignore suspensions, a step is processed normally even if the case in which it is located is suspended.
This flag is reflected in the IsIgnoreCaseSuspend flag on the vNormalStep, vEAIStep, and vSub-
ProcCallStep, vDynamicSubProcCallStep, and vGraftStep object for the particular step.

Closing Cases

To close cases using any of the methods described here, the user must have system administrator
authority (MENUNAME = ADMIN) — see “User Attributes” on page 168 for information about the
MENUNAME attribute.

Active cases of a procedure can be closed using the following methods:

• sCaseManager.CloseCases - This method allows you to close one or more cases.

• sCaseManager.CloseCasesByCriteria - This method allows you to close cases based on a fil-
ter criteria expression. Only those cases that match the criteria expression are closed. The filter
criteria allowed is the same as the criteria used when filtering a list of cases. For information
about the allowable filter criteria, see the appropriate Filtering Work Items and Cases chapter
on page 174, page 201, or page 227.

The close cases methods also provide an optional aDoEvent parameter that when set to true causes a
procedure-level event to be triggered when the cases are closed. The procedure can be defined to catch
the event, then perform business logic either before or after the cases are closed. This parameter is
only relevant when an iProcess Engine version 11.4.0 or newer is being used. For earlier versions, this
parameter is ignored. Default = true.

The close cases methods also provide an optional aPriority parameter that can be used to increase the
case close processing in the background. You can increase or decrease the priority at which cases are
closed using the aPriority parameter. See the help system for details about the aPriority parameter.

After closing a case, the vACase.IsActive property will return False to indicate it is no longer active.

Resurrecting a Closed Case

A closed case can be “resurrected” (i.e., its status changed to “active”) using the TriggerEvent
method on sCaseManager. Call TriggerEvent and pass True in the aResurrect parameter (you must be
using a TIBCO iProcess Engine to use this parameter). The case will now become active, and the pro-
cess flow will proceed from the Event step that was triggered by the TriggerEvent method.

Purging Cases

To purge cases using any of the methods described here, the user must have system administrator
authority (MENUNAME = ADMIN) — see “User Attributes” on page 168 for information about the
MENUNAME attribute.

Purging cases permanently deletes them from the system. You can purge cases using the following
methods:

• sCaseManager.PurgeCases - This method purges one or more cases.

Case Management

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 87

• sCaseManager.PurgeCasesByCriteria - This method purges cases based on a filter criteria
expression. Only those cases that match the criteria expression are purged. The filter criteria
allowed is the same as the criteria used when filtering a view or XList of cases. For information
about the allowable filter criteria, see the appropriate Filtering Work Items and Cases chapter
on page 174, page 201, or page 227.

• sCaseManager.PurgeAndReset - This method purges ALL cases of the procedure and resets
the case counter to 0 (you can get the case count using the GetCaseCnt method on sCaseMan-
ager or the CaseCnt property on vProcSummary).

The purge cases methods also provide an optional aDoEvent parameter that when set to true causes a
procedure-level event to be triggered when the cases are purged. The procedure can be defined to
catch the event, then perform business logic before the cases are purged. This parameter is only rele-
vant when an iProcess Engine version 11.4.0 or newer is being used. For earlier versions, this parame-
ter is ignored. Default = true.

The purge cases methods also provide an optional aPriority parameter that can be used to increase the
case purge processing in the background. You can increase or decrease the priority at which cases are
purged using the aPriority parameter. See the help system for details about the aPriority parameter.

Both active and closed cases can be purged.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 88

7
Managing Work Queues

Introduction

A work queue represents a list of work items that are
awaiting action. A work queue can belong to an
individual user or to a group of users. If it is a group
work queue, all users that belong to that group have
access to the work items in the work queue.

Work Queue Objects

Work queues are represented by the vWorkQId,
vWorkQ, and vAWorkQ objects. These work
queue objects provide access to information about a
specific work queue, e.g., whether or not it’s a group
work queue (IsGroup property), how many work
items are in the work queue (WorkItemCnt prop-
erty), etc.

Work Item Objects

A work item represents an individual item in a work
queue. Work items are represented by the
vWorkItemId, vWorkItem, and vAWorkItem
objects. These objects provide access to information
about that specific work item, e.g., whether or not
the work item is locked (IsLocked property), the
deadline for the work item (Deadline property), etc.

As work queue and work item objects are “Value
Objects,” they must be acquired by calling a method
on a Server Object. The following subsections
describe the methods used to get one or more work
queue or work item objects from the server.

Test vs. Released Work Queues

Whenever a user or group is added, both a “test” and
“released” work queue is automatically defined for
the user or group. Both of these work queues are
returned when you retrieve lists of work queues (see
the next section for information about retrieving
work queues). Note, however, that neither the test

vAWorkItem

ExtraReqId

ExtraPNumCnt

ExtraPackFile

ExtraCaseCtlRec

IsAutoPurge

ExtraStepNum

IsDeadlineAWD

IsEditable

IsNetworked

IsWorkDays

IsUndelivered

vWorkItem

vWorkItemId

vCase

vCase

Tag

MailId

CaseTag

MakeTag

ForwardToWorkQIds

AddrToName

IsForwardable

IsDeadlineExp

IsDeadline

Deadline

Arrived

IsUnopened

IsReleasable

IsOrphaned

IsLongLocked

IsLocked

Priority

LockedBy

IsUrgent

CDQPs

StepDescription

StepName

WorkQParam4

WorkQParam3

WorkQParam2

WorkQParam1

IsKeepOnWithdrawal

IsSuspended

DeltaStatus

vAWorkQ

vWorkQ

vWorkQId

UrgentCnt

WorkQParam4Name

WorkQParam3Name

WorkQParam2Name

WorkQParam1Name

WorkItemCnt

DeadlineCnt

Description

FirstDeadline

HostingNode

IsGroup

IsReleased

UnopenedCnt

Name

Tag

Participations

Redirection

SupervisorNames

CDQPDefs

MakeTag

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 89

nor the released work queue for a user or group is “officially” created until a work item is sent to the
work queue. If you attempt to access a work queue (either test or released) prior to it containing a
work item, a “Queue not found” error is thrown.

Work items that result from cases of procedures that have a status of swReleased (see the Status prop-
erty on vProc) are sent to the “released” work queue for the user or group that is the addressee of the
step. Released work queues are accessible only by the user or group for whom the work queue was
created, and by users that have been given “participation” access (see “Participating in Another User’s
Work Queue” on page 113).

Work items that result from cases of procedures that have a status of swUnreleased or swModel are
sent to the “test” work queue for the user or group that is the addressee of the step. Note, however, that
test work queues CANNOT be seen by the user or group that is the addressee of the step; they can
only be seen by the user that started the case of the test procedure (which is the owner/definer of the
unreleased procedure as only the owner/definer can start cases of an unreleased procedure). The test
work queues are given the names of the addressees of the steps, but are not visible by those users. For
instance, if user1 starts a case of an unreleased procedure, and the first step’s addressee is user2, the
work item is routed to user2’s test work queue, but that queue is only visible by user1, not user2. This
allows the definer of the procedure to ensure that the process flow is occurring as intended before
releasing the procedure without having to log in and out as different users.

You can determine whether a work queue is a test or released queue by accessing the IsReleased
property on vWorkQId (you can access vWorkQId only after a work item has been sent to the work
queue). (The IsWorkQReleased property is available on vNormalItem to determine if the outstanding
item is located in a test or released work queue.)

Retrieving Work Queues

There are four Server Objects that contain methods used to retrieve work queues from the server:

• sUser - This Server Object is used when you want to work with a work queue from the perspec-
tive of a user. You can retrieve the work queues that the user is authorized to administer, or
retrieve one or more work queues assigned to the user.

• sWorkQ - This Server Object is used to obtain a specific work queue that is identified in the
sWorkQ constructor. Once you have this Server Object, you can perform functions such as
retrieving work items from that work queue, processing work items (lock, keep, release, etc.),
etc.

• sWorkQManager - This Server Object is used to perform administrative functions on one or
more work queues.

• sNode - This Server Object is used to obtain a list of all work queues on the node.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 90

The following table summarizes the methods available from these Server Objects for obtaining work
queues from the server.

As you can see from the table above, the Server Object methods provide a variety of ways to retrieve
vWorkQId, vWorkQ, and vAWorkQ objects. Which of these Value Objects are needed depends on
the type of function you want to perform:

• vWorkQId - This object is typically retrieved so the work queue’s unique identifying informa-
tion or tag can be obtained (with the Tag property). The tag is then used as an input parameter
with another method (e.g, aWorkQTag is a parameter on the ChangeParticipation method), or
as a parameter when constructing a Server Object (e.g., aWorkQTag is a parameter on the
sWorkQ object constructor). (Note that a tag can also be constructed with the MakeTag
method if you know all of the components that make up the tag.)

• vWorkQ - This object provides access to additional information about the work queue, such as
its first deadline, the number of unopened work items in the work queue, etc.

• vAWorkQ - This object provides access to the work queue’s participation and redirection
schedules, the names of users who can administer this work queue, and the definitions of Case
Data Queue Parameter (CDQP) fields defined for the work queue. This information, which is
available on dependent lists, is typically used to administer the work queue. Requesting these
dependent lists of information results in additional messages being sent to the TIBCO iProcess
Objects Server.

Server Object Method Retrieves from Server

sUser GetSupervisedQIds An array of vWorkQId objects, one for each work queue that the
user can supervise (for the purpose of defining participation and
redirection schedules).

GetWorkQIds An array of vWorkQId objects, one for each work queue for which
the user is a member.

GetWorkQs One or more specified vWorkQ objects.

sWorkQ GetWorkQ A vWorkQ object for the work queue represented by the sWorkQ
object.

sWorkQManager GetWorkQIds An array of vWorkQId objects, one for each specified work
queue.

GetWorkQIdList A pageable list of vWorkQId objects, one for each work queue on
the node.

GetWorkQs An array of vWorkQ objects, one for each specified work queue.

GetWorkQList A pageable list of vWorkQ objects.

GetWorkQListHeld A pageable list of vWorkQ objects that had been previously held
with the Hold method.

GetAWorkQs An array of vAWorkQ objects, one for each specified work queue.

GetAWorkQList A pageable list of vAWorkQ objects.

GetAWorkQListHeld A pageable list of vAWorkQ objects that had been previously held
with the Hold method.

sNode GetWorkQIdList A pageable list of vWorkQId objects, one for each work queue on
the node.

GetWorkQIdListHeld A pageable list of vWorkQId objects that had been previously
held with the Hold method.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 91

Filtering Content when Retrieving Work Queues

When retrieving vAWorkQ objects from the server with the GetAWorkQs or GetAWorkQList
methods, you can limit the amount of “content” that is returned from the server by using the aWorkQ-
Content parameter on these methods.

vAWorkQ[] GetAWorkQs(string[] aWorkQTags,

vAWorkQContent aWorkQContent)

sPageableList GetAWorkQList(vAWorkQContent aWorkQContent,

int aItemsPerBlock)

The aWorkQContent parameter allows you to specify whether or not vParticipation, vRedirection,
supervisor names, and vCDQPDef objects are also returned from the server with the vAWorkQ
objects. To do this you must construct a vAWorkQContent object with the desired parameters
(aIsWithParticipation, aIsWithRedirection, etc.) set to True, then pass that Value Object with your
GetAWorkQs or GetAWorkQList method.

See “Retrieving Dependent Objects” on page 143 for more information about filtering content.

Retrieving Work Items

There are two Server Objects that contain methods used to retrieve work items from the server:

• sUser - This Server Object contains the GetWorkItems method, which will return an array of
vWorkItems based on the work item tags passed in the method.

• sWorkQ - This Server Object contains a number of methods that allow you to retrieve the work
items from the work queue represented by the sWorkQ object.

The following table summarizes the methods available from these Server Objects for obtaining work
items from the server.

Server Object Method Retrieves from Server

sUser GetWorkItems An array of vWorkItem objects, one for each work item iden-
tified by the aWorkItemTag parameter.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 92

As you can see from the table above, the Server Object methods provide a variety of ways to retrieve
vWorkItem and vAWorkItem objects. Which of these Value Objects are needed depends on the type
of function you want to perform:

• vWorkItem - This object contains properties that are used to determine the work item’s current
state (IsLocked, IsUnopened, etc.), or to obtain the work item’s tag (with the Tag property).
The tag can be used as an input parameter on another method (e.g, aWorkItemTags is a parame-
ter on the LockItems method). (Note that a tag can also be constructed with the MakeTag
method if you know all of the components that make up the tag.)

• vAWorkItem - This object provides access to information about the work item that would be
used for administrative purposes.

Note - There are no methods that return vWorkItemId objects. To use the properties on vWorkItemId
(e.g., Tag), retrieve vWorkItem objects, which derive from vWorkItemId.

Filtering and Sorting Work Items

TIBCO iProcess Server Objects (.NET) provide the ability to filter the arrays and lists of work items
that are returned from the server. For instance, you may only want to return the work items that have a
certain priority. This improves efficiency by retrieving only those work items needed. For information
about filtering, see the appropriate Filtering Work Items and Cases chapter on page 174, page 201, or
page 227.

You can also specify that the work items returned be sorted in a specific way. For instance, you may
want all work items in the work queue to be sorted by priority, in ascending order. Details about sort-
ing are provided in “Sorting Work Items and Cases” on page 251.

sWorkQ GetWorkItems An array of vWorkItem objects, one for each work item iden-
tified by the aWorkItemTag parameter.

GetWorkItemList A pageable list of vWorkItem objects.

GetWorkItemListHeld A pageable list of vWorkItem objects that had been previ-
ously held with the Hold method.

GetAWorkItems An array of vAWorkItem objects, one for each work item
identified by the aWorkItemTag parameter.

GetAWorkItemList A pageable list of vAWorkItem objects.

GetAWorkItemListHeld A pageable list of vAWorkItem objects that had been previ-
ously held with the Hold method.

GetAWorkItemListJMS A pageable list that is used to obtain IDs for the purpose of
obtaining work queue deltas via a JMS topic. For information,
see “Work Queue Deltas Via a JMS Topic” on page 96.

GetAWorkItemListJMSHeld A pageable list of vAWorkItem objects that had been previ-
ously held with the Hold method. This method is used in con-
junction with the GetAWorkItemListJMS method (see
above).

Server Object Method Retrieves from Server

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 93

Filtering Content when Accessing Work Items

When retrieving vWorkItem objects from the server with the GetWorkItems or GetWorkItemList
methods, you can limit the dependent objects that are also returned from the server. This is known as
filtering “content”. Filtering content is accomplished with the use of the aWIContent parameter on
these methods:

vWorkItem[] GetWorkItems(string[] aWorkItemTags,

vWIContent aWIContent)

sPageableListR GetWorkItemList(vWICriteria aWICriteria,

vWIContent aWIContent,

int aItemsPerBlock)

There are two types of content that can be filtered:

• Case Data fields - These represent the fields in the case. (Note that these fields and their
respective data are not accessible from the vWorkItem object itself; rather they are accessible
from the vCase object using the CaseFields property — the vWorkItem object is derived from
the vCase object.)

• Case Data Queue Parameter (CDQP) fields - These represent fields in work items that are
used for filtering and sorting purposes. (See the “Using Case Data Queue Parameter Fields”
section in the appropriate “Filtering Work Items and Cases” chapter on page 192, page 218, or
page 242 for information about using CDQP fields for filtering, and “Using Case Data Queue
Parameter Fields” on page 255 for information about using CDQP fields for sorting.)

To filter work items for content, you must construct a
vWIContent object, then pass that object as a param-
eter with the GetWorkItems or GetWorkItemList
method.

The following vWIContent parameters are used to
filter Case Data fields:

• aCaseFieldNames - This parameter allows you
to pass in an array of strings identifying the
Case Data fields you want returned with the work items.

• aIsReturnAllFields - This Boolean parameter allows you to specify that you want all Case Data
fields returned with the work item (rather than having to list them all in the aCaseFieldNames
parameter). Use the aIsReturnAllFields parameter with caution, however, as it can result in a
significant amount of data being sent across the network.

The following vWIContent parameters are used to filter CDQP fields:

• aCDQPNames - This parameter allows you to pass in an array of strings identifying the CDQP
fields you want returned with the work items.

• aIsReturnAllCDQPs - This Boolean parameter allows you to specify that you want all CDQP
fields returned with the work item (rather than having to list them all in the aCDQPNames
parameter).

See “Retrieving Dependent Objects” on page 143 for more information about filtering for content.

vWIContent

vContentRequest

IsReturnAllFields

string

CaseFieldNames

CDQPNames

IsReturnAllCDQPs

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 94

Work Queue Deltas

The “work queue deltas” feature allows you to retrieve only the work items that have changed (i.e.,
the delta) on the work queue since the last refresh.

This feature allows you to determine the “delta count”, i.e., the number of work items that have
changed since the last refresh. You can use this count to determine whether you want to retrieve only
the delta work items, or if you want to retrieve the entire list. For each of the retrieved work items, you
can also determine their “delta status”. This status tells you how the work item has changed, i.e.,
whether it’s been added to the queue, deleted from the queue, or has been modified.

The way in which you retrieve changed work items depends on whether you are using pageable lists
or single-block item access (i.e., the “Make<type>List” and “Fetch<type>List” methods), as
described in the following subsections.

Note - There are two process attributes in the engine that specify the maximum number and percent-
age of the work item list that will be returned when requesting delta items. They are
WIS_QCHANGE_MAX_CHANGES and WIS_QCHANGE_MAX_PCT. By default, all delta items
requested are returned, regardless the number or percentage. However, if one or both of these attri-
butes is changed from the default, the server will return an swDeltaTooBigErr if the number or per-
centage exceeds the value specified in these attributes.

Note - This section describes obtaining delta work items via the iProcess Server Objects interface. You
can also obtain delta work items via a JMS topic publish/subscribe mechanism. For information, see
“Work Queue Deltas Via a JMS Topic” on page 96. Note, however, that these two methods of obtain-
ing work queue deltas work totally independent of one another (i.e., work queue deltas via a JMS
topic does NOT make use of the process attributes mentioned above).

Work Queue Deltas With Pageable Lists

The Refresh method on sPageableListR contains an aRefreshAction parameter that specifies how the
pageable list should be refreshed. This parameter can be used to specify that you want to refresh the
list, and that you may want to retrieve only the changed (delta) work items from the pageable list. The
following SWPLRefreshType enumeration value is passed in the aRefreshAction parameter to spec-
ify that you want to refresh the list “with delta”:

• swUpdateWithDelta - This causes the Refresh method to refresh the list “with delta”, allow-
ing you to then get the “delta count” and to retrieve the work items that have changed in the
pageable list since the last refresh.

Note - The SWPLRefreshType enumeration contains other values that do not pertain to work queue
deltas. For more information, see “Refreshing a Pageable List of Work Items” on page 134.

The Refresh method returns a status indicator that tells you whether or not the new pageable list is
different from the one you had. The pageable list status is enumerated by SWPLStatusType. The pos-
sible status values are:

• swPLNoChange - The work items in the pageable list have not changed.

• swPLStatusOnly - Only the status of the items in the pageable list have changed.

• swPLChanged - Items in the pageable list are different.

• swPLOrphaned - The pageable list is in a transition state between items being moved from
one work queue to another.

If the return status is either swPLStatusOnly or swPLChanged, there are delta work items that can
be retrieved.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 95

Once you have refreshed the held pageable list of work items and there are delta items, you can use
the following property/method on the sPageableListR object to determine the number of changed
work items, and to retrieve the changed work items:

• DeltaCnt - This property returns the number of work items that have changed on the work
queue since the last refresh. This number can be used to determine if you want to retrieve only
the delta work items or the entire list. (This property returns -1 if a delta had not been requested
on the previous refresh, or if you are using an older iProcess Objects Server that doesn’t support
deltas.)

• GetNextDeltaItem - The first time this method is called after a refresh “with delta”, the first
delta work item (a vWorkItem object) is returned. The application can then loop on GetNext-
DeltaItem for “delta count” iterations (obtained with DeltaCnt) to get all changed work items.
Alternatively, the application can loop on GetNextDeltaItem with no count; the error swNot-
FoundErr will be returned when there are no more changed items.

If the application calls this method when a delta was not requested on the refresh, the iProcess
Objects Server will return an error indicating there is no delta (swNoDeltaInfoErr).

One delta item is returned at a time so the application can start processing the changes as it
receives them.

Note - If the pageable list contains vAWorkItem objects, each vWorkItem object will need to be cast to
a vAWorkItem object.

Work Queue Deltas With Single-Block Item Access

The following methods are available on sWorkQ and xWorkQ to return the work items that have
changed in the previously held work item list (the held work item list must have previously been cre-
ated with the MakeWorkItemList or MakeAWorkItemList method):

• FetchWorkItemListDelta - This method refreshes the currently held list of work items
(vWorkItem objects), and determines which work items have changed since the last refresh. A
“state” object (vWorkItemListState) is returned by this method — the delta items are available
on this state object.

• FetchAWorkItemListDelta - This method refreshes the currently held list of work items
(vAWorkItem objects), and determines which work items have changed since the last refresh.
A “state” object (vAWorkItemListState) is returned by this method — the delta items are
available on this state object.

These methods contain an aMaxCount parameter that specifies the maximum number of changed
work items (either vWorkItem or vAWorkItem objects) to return. If the number of changed work items
exceeds the number specified in the aMaxCount parameter, a null array of work items is returned (in
the vWorkItemListState or vAWorkItemListState object). If -1 is passed in the aMaxCount param-
eter, all changed work items are returned.

The vWorkItemListState and vAWorkItemListState objects returned by the FetchWorkItemList-
Delta and FetchAWorkItemListDelta methods contain a DeltaCnt property that returns the number of
changed work items in the list.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 96

Delta Status

The vWorkItem (and derived vAWorkItem) objects that are returned by GetNextDeltaItem, Fetch-
WorkItemListDelta, or FetchAWorkItemListDelta contain a DeltaStatus property that indicates
how the work item has changed. The DeltaStatus property returns one of the following (which are
emunerated in SWDeltaStatusType):

• swNotDeltaItem - This is returned by DeltaStatus if the work item was not returned by one of
the aforementioned methods (i.e., it is not a delta item).

• swDeleted - The work item was deleted from the work queue, i.e., it was released or forwarded
to another work queue.

• swAdded - The work item is new to the work queue.

• swModified - The work item’s status has changed, i.e., it has been locked, unlocked, or its
deadline has expired.

Work Queue Deltas Via a JMS Topic

iProcess applications can also request that work queue deltas be obtained via a subscription to a topic
in a JMS implementation (e.g., TIBCO Enterprise Message Service™ (EMS)).

Using this method, the application must first subscribe to a topic in JMS, then after getting the base-
line list of work items in a work queue, all subsequent inserts, deletions, and updates to the work
queue are published to the JMS topic by the WIS, which are then sent to the subscribing application.

The following diagram illustrates the general process of obtaining work queue deltas via a JMS topic.

Note - Work queue deltas via a JMS topic works independently from the work queue delta functional-
ity described in “Work Queue Deltas” on page 94 (i.e., obtaining work queue deltas via a JMS topic
does NOT make use of the WIS_QCHANGE_MAX_CHANGES and WIS_QCHANGE_MAX_PCT
iProcess Engine process attributes).

The specific objects, methods, and properties you use to accomplish this depends on whether you are
using pageable lists or single-block item access (“Make” and “Fetch” methods) in your application, as
well as the interface from which you are programming. The following scenarios are described:

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 97

• JMS Deltas When Using Pageable Lists — JBase or RMI Interface

• JMS Deltas When Using Single-Block Item Access — JBase or RMI Interface

• JMS Deltas When Using Single-Block Item Access — XML Interface

Each of these scenarios is described in the following subsections.

JMS Deltas When Using Pageable Lists — JBase or RMI Interface

This section describes obtaining work queue deltas via a JMS topic when you are using pageable lists
and programming to either the JBase or RMI interface. Reference the illustration on page 96.

1. The iProcess application sets up work queue delta publication by calling one of the following two
method signatures on the sWorkQ object:

• sPageableListJ GetAWorkItemListJMS(String aTopicName)

• sPageableListJ GetAWorkItemListJMS(vWICriteria aWICriteria,
int aItemsPerBlock,
String aTopicName)

The GetAWorkItemListJMS method requires that you pass in a JMS topic name. This topic name
will be used by the application when subscribing to the JMS topic, and by the WIS when publish-
ing to the JMS topic.

Note that the GetWorkItemsListJMS method does not actually start the publication — it only
tells the WIS that you are going to be retrieving deltas via a JMS topic and that you want it to gen-
erate IDs that will be used to coordinate the process.

Note - There are also GetAWorkItemListJMSHeld methods available to allow you to retrieve a
“held” sPageableListJ. For information about held pageable lists, see “Held Pageable Lists” on
page 138.

2. The GetAWorkItemListJMS method returns an sPageableListJ object. This object contains two
IDs that are returned by the WIS: WorkQDeltaId and WorkQSyncId. These IDs are needed by
the application when calling the StartWorkQDeltaJMSPublish method to start JMS delta publi-
cation from the WIS (see step 4). (The WorkQDeltaId is also needed for filtering the delta stream if
multiple work queue deltas are on one topic.)

Note that the primary purpose of the GetAWorkItemListJMS method is to set up the JMS publi-
cation by the WIS. It is not to obtain the work item list — in fact, the WIS not does return a valid
work item list when you call the GetAWorkItemListJMS method. After starting JMS publication
by calling the StartWorkQDeltaJMSPublish method, you can then get the baseline list of work
items off of the sPageableListJ object.

Also note that the counts on the sPageableListJ object are not valid at this point — after calling
the StartWorkQDeltaJMSPublish method, they become valid. The sPageableListJ object also
does not contain a Refresh method. Refreshing the list in this context does not make sense as the
application is receiving any changes to the list via JMS messages.

3. The iProcess application must establish a subscription to the JMS topic using the topic name
passed in the GetAWorkItemListJMS method (see step 1).

For information about how to do this, refer to the documentation for your JMS implementation
(e.g., TIBCO EMS).

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 98

4. Start publication by calling the following method on the sPageableListJ object and passing the
IDs that were returned by the WIS:

void StartWorkQDeltaJMSPublish(String aWorkQDeltaId,
String aWorkQSyncId)

The StartWorkQDeltaJMSPublish method tells the WIS to:

• establish the baseline list of work items, and

• start publishing the work queue deltas to the JMS topic.

Starting the publication process is a one-time event; you cannot start, then stop and start again. You
can only start publication, then terminate it by destroying the work item list.

After the StartWorkQDeltaJMSPublish method is called, you can get the baseline list of work
items from the sPageableListJ object.

5. The iProcess application must read the messages containing deltas as they are sent from JMS, then
merge them into the baseline list. For information about the JMS messages, see “Work Queue
Delta JMS Messages” on page 103.

6. Note that by default the WIS session will timeout after 8 hours of inactivity. This means that any
iProcess application that has opened a queue for publication must periodically ensure some work is
sent to the WIS by calling the following method on the sSession object:

void KeepAliveWorkQDeltaJMSPublications()

This tells the WIS that the application is still there and waiting to be informed of work queue
deltas.

7. You must also do one of the following to prevent the iProcess Objects Server from destroying the
work item list for which deltas are being published:

- Maintain the original reference to the work item list - As long as you keep a reference to the
work item list (that is, you don’t set it to ‘null’, nor let it go out of scope), the list will never be
garbage collected. This prevents the iProcess Objects Server from ever beginning to time out
the list.

As long as you keep a reference to the work item list, you will not have to do anything else to
maintain the list on the server (besides calling KeepAliveWorkQDeltaJMSPublications peri-
odically -- see step above).

- Use the held ID to maintain a reference to the work item list - If you cannot maintain a ref-
erence to the work item list, you can also use the held ID to reacquire the reference.

Get the held ID:

String HeldId = WorkItemList.Hold(true);

Save the held ID somewhere, then release the reference to the list. When garbage collection
occurs, the iProcess Objects Server will start the time-out of the list. Before the list times out on
the server, you must use the held ID to reacquire the reference to the list:

sPageableListJ WorkItemList = oWorkQ.GetAWorkItemListJMSHeld(HeldId);

This restarts the time-out of the list on the server, so you need to continue to do this periodically,
for as long as you need the JMS deltas to continue to be published.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 99

Note - If a swSAL_FileIOErr error is returned from one of the methods related to work queue deltas
via a JMS topic, it is because the iProcess Engine is no longer publishing deltas to the JMS topic.

For more information about the JMS delta methods and their parameters, see the iProcess Server
Objects (.NET) on-line help system.

JMS Deltas When Using Single-Block Item Access — JBase or RMI Interface

This section describes obtaining work queue deltas via a JMS topic when you are using single-block
item access and you are programming to either the JBase or RMI interface. Reference the illustration
on page 96.

1. The iProcess application sets up work queue delta publication by calling the following method on
the sWorkQ object:

vAWorkItemListState MakeAWorkItemListJMS(vWICriteria aWICriteria,

String aTopicName)

The MakeAWorkItemListJMS method requires that you pass in a JMS topic name. This topic
name will be used by the application when subscribing to the JMS topic, and by the WIS when
publishing to the JMS topic.

Note that the MakeAWorkItemListJMS method does not actually start the publication — it only
tells the WIS that you are going to be retrieving deltas via a JMS topic and that you want it to gen-
erate IDs that will be used to coordinate the process.

2. The MakeAWorkItemListJMS method returns a vAWorkItemListState object, which contains
three IDs that are returned by the WIS: HeldId, WorkQDeltaIdDeltaId and WorkQSyncId.
These IDs are needed by the application when calling the StartWorkQDeltaJMSPublish method
to start JMS delta publication from the WIS (see step 4). (The WorkQDeltaId is also needed for fil-
tering the delta stream if multiple work queue deltas are on one topic.)

Note that the primary purpose of the MakeAWorkItemListJMS method is to set up the JMS pub-
lication by the WIS. It is not to obtain the work item list — in fact, the WIS does not return a valid
work item list when you call the MakeAWorkItemListJMS method. After starting JMS publica-
tion by calling the StartWorkQDeltaJMSPublish method, you can then call the
FetchAWorkItemListJMS method to get the valid baseline list of work items.

Also note that the counts on the vAWorkItemListState object are not valid at this point — after
calling the StartWorkQDeltaJMSPublish method, they become valid.

3. The iProcess application must establish a subscription to the JMS topic using the topic name
passed in the MakeAWorkItemListJMS method (see step 1).

For information about how to do this, refer to the documentation for your JMS implementation
(e.g., TIBCO EMS).

4. Start publication by calling the following method on the sWorkQ object and passing the IDs that
were returned by the WIS:

vAWorkItemListState StartWorkQDeltaJMSPublish(String aHeldId,

String aWorkQDeltaId,

String aWorkQSyncId)

The StartWorkQDeltaJMSPublish method tells the WIS to:

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 100

• establish the baseline list of work items, and

• start publishing the work queue deltas to the JMS topic.

Starting the publication process is a one-time event; you cannot start, then stop and start again. You
can only start publication, then terminate it by destroying the work item list.

After the StartWorkQDeltaJMSPublish method is called, you can get the baseline list of work
items by calling the following method on the sWorkQ object:

vAWorkItemListState FetchAWorkItemListJMS(String aHeldId,

int aStartIndex,

int aReturnCount)

5. The iProcess application must read the messages containing deltas as they are sent from JMS, then
merge them into the baseline list. For information about the JMS messages, see “Work Queue
Delta JMS Messages” on page 103.

6. Note that by default the WIS session will time out after 8 hours of inactivity. This means that any
iProcess application that has opened a queue for publication must periodically ensure some work is
sent to the WIS by calling the following method on the sSession object:

void KeepAliveWorkQDeltaJMSPublications()

This tells the WIS that the application is still there and waiting to be informed of work queue
deltas.

7. You must also call the sWorkQ.FetchAWorkItemListJMS method periodically to prevent the
iProcess Objects Server from destroying the work item list.

The iProcess Objects Server will destroy the work item list and stop publishing deltas to the JMS
topic unless it receives a call on that list periodically. By default, the iProcess Objects Server will
destroy the list after 15 minutes unless it receives a call on that list. You can prevent it from
destroying the list by calling the sWorkQ.FetchAWorkItemListJMS method periodically. (Call-
ing the KeepAliveWorkQDeltaJMSPublications method prevents the WIS from timing out — it
will not prevent the iProcess Objects Server from destroying the work item list.) The 15-minute
default in which the iProcess Objects Server will destroy the list is configurable using the iProcess
Objects Server WQSAbandonedPeriod configuration parameter.

Also note that when you call the sWorkQ.FetchAWorkItemListJMS method, it will return the
list. You probably won't need the list that is returned by that method — it is only for the purpose of
maintaining the list on the server.

Note - If a swSAL_FileIOErr error is returned from one of the methods related to work queue deltas
via a JMS topic, it is because the iProcess Engine is no longer publishing deltas to the JMS topic.

For more information about the JMS delta methods and their parameters, see the iProcess Server
Objects (.NET) on-line help system.

JMS Deltas When Using Single-Block Item Access — XML Interface

This section describes obtaining work queue deltas via a JMS topic when you are using the XML
interface. Reference the illustration on page 96.

1. The iProcess application sets up work queue delta publication by calling the following method on
the xWorkQ object:

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 101

vWorkQDeltaJMSId MakeAWorkItemListJMS(String aId,

vWICriteria aWICriteria,

String aTopicName)

The MakeAWorkItemListJMS method requires that you pass in a JMS topic name. This topic
name will be used by the application when subscribing to the JMS topic, and by the WIS when
publishing to the JMS topic.

Note that the MakeAWorkItemListJMS method does not actually start the publication — it only
tells the WIS that you are going to be retrieving deltas via a JMS topic and that you want it to gen-
erate IDs that will be used to coordinate the process.

2. A vWorkQDeltaJMSId object is returned by the MakeAWorkItemListJMS method call. This
object contains three IDs that are returned by the WIS: HeldId, WorkQDeltaId and
WorkQSyncId. These IDs are needed by the application when calling the
StartWorkQDeltaJMSPublish method to start JMS delta publication from the WIS (see step 4).
(The WorkQDeltaId is also needed for filtering the delta stream if multiple work queue deltas are
on one topic.)

Note that the primary purpose of the MakeAWorkItemListJMS method is to set up the JMS pub-
lication by the WIS. It is not to obtain the work item list. To get the work item list, you must first
start JMS publication by calling the StartWorkQDeltaJMSPublish method, then you can call the
FetchAWorkItemListJMS method to get the valid baseline list of work items (see step 4).

3. The iProcess application must establish a subscription to the JMS topic using the topic name
passed in the MakeAWorkItemListJMS method (see step 1).

For information about how to do this, refer to the documentation for your JMS implementation
(e.g., TIBCO EMS).

4. Start publication by calling the following method on the xWorkQ object and passing the IDs that
were returned by the WIS:

void StartWorkQDeltaJMSPublish(String aId,

String aHeldId,

String aWorkQDeltaId,

String aWorkQSyncId)

The StartWorkQDeltaJMSPublish method tells the WIS to:

• establish the baseline list of work items, and

• start publishing the work queue deltas to the JMS topic.

Starting the publication process is a one-time event; you cannot start, then stop and start again. You
can only start publication, then terminate it by destroying the work item list.

After the StartWorkQDeltaJMSPublish method is called, you can get the baseline list of work
items by calling the following method on the xWorkQ object:

void FetchAWorkItemListJMS(String aId,

String aHeldId,

int aStartIndex,

int aReturnCount)

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 102

5. The iProcess application must read the messages containing deltas as they are sent from JMS, then
merge them into the baseline list. For information about the JMS messages, see “Work Queue
Delta JMS Messages” on page 103.

6. Note that by default the WIS session will timeout after 8 hours of inactivity. This means that any
iProcess application that has opened a queue for publication must periodically ensure some work is
sent to the WIS by calling the following method on the xSession object:

void KeepAliveWorkQDeltaJMSPublications()

This tells the WIS that the application is still there and waiting to be informed of work queue
deltas.

7. You must also call the xWorkQ.FetchAWorkItemListJMS method periodically to prevent the
iProcess Objects Server from destroying the work item list.

The iProcess Objects Server will destroy the work item list and stop publishing deltas to the JMS
topic unless it receives a call on that list periodically. By default, the iProcess Objects Server will
destroy the list after 15 minutes unless it receives a call on that list. You can prevent it from
destroying the list by calling the xWorkQ.FetchAWorkItemListJMS method periodically. (Call-
ing the KeepAliveWorkQDeltaJMSPublications method prevents the WIS from timing out — it
will not prevent the iProcess Objects Server from destroying the work item list.) The 15-minute
default in which the iProcess Objects Server will destroy the list is configurable using the iProcess
Objects Server WQSAbandonedPeriod configuration parameter.

Also note that when you call the xWorkQ.FetchAWorkItemListJMS method, it will return the
list in the XML results. You probably won't need the list that is returned by that method — it is
only for the purpose of maintaining the list on the server. However, you will probably want to call
GetXMLResults and pass True in the aClear parameter, otherwise the XML array will continue to
grow.

Note - If a swSAL_FileIOErr error is returned from one of the methods related to work queue deltas
via a JMS topic, it is because the iProcess Engine is no longer publishing deltas to the JMS topic.

For more information about the JMS delta methods and their parameters, see the iProcess Server
Objects (.NET) on-line help system.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 103

Work Queue Delta JMS Messages

The following is provided as an example of obtaining useful information from work queue delta JMS
messages. Refer to the documentation for your specific JMS implementation provider.

• The following code sets up JMS subscription:

using TIBCO.EMS;

TopicConnectionFactory factory = new TIBCO.EMS.
TopicConnectionFactory(JMSserverUrl);

TopicConnection connection = factory.CreateTopicConnection(JMSuserName,
JMSpassword);

TopicSession topicSession = connection.CreateTopicSession(false,
SessionMode.AutoAcknowledge);

Topic topic = topicSession.CreateTopic(JMStopicName);

TopicSubscriber subscriber = topicSession.CreateSubscriber(topic);

connection.Start();

• The following code gets the JMS message:

// 10 second timeout on receive

TextMessage message = (TextMessage)subscriber.Receive(10000);

• This code prints the JMS Destination:

Debug.WriteLine("\nReceived message: Destination = '" + message.Destination
+ "'");

Example:

Destination = 'Topic[topic.doug.1]'

• This code prints the WorkQID:

Debug.WriteLine("\nReceived message: Property.WQDID = '" + message.
GetStringProperty("WQDID") + "'");

Example:

Property.WQDID = '76F0923A-E65D-11DC-8557-001560ED88C8'

The following table provides a list of available properties followed by example values:

Property Name Example Value

WQDQueueName swadmin@v11

IAPMessageType WQD

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 104

• This code prints the message "Text" (the XML of the WQ Delta):

Debug.WriteLine("\nReceived message: Text = '" + message.Text + "'");

IAPComputerName corpServer

IAPProcedureName CARPOOL

WQDID 76F0923A-E65D-11DC-8557-001560ED88C8

IAPNodeName v11

Property Name Example Value

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 105

Processing Work Items

Processing work items that are in a work queue involves the following concepts:

• Locking a work item gives you exclusive use of that work item so that you can modify it (it is
also referred to as “opening” a work item).

• Keeping a work item causes changes that have been made to the locked work item to be saved.
The work item is unlocked, then kept in the same work queue.

• Releasing a work item causes changes that have been made to the locked work item to be
saved. The work item is unlocked, then released, which causes the work item to be removed
from the work queue. The case advances to the next step in the procedure.

The following subsections describe the details of locking, keeping, and releasing work items.

Locking Work Items

Locking a work item gives you exclusive use of that work item so that you can perform some action
upon it. Note that “locking” a work item and “opening” a work item are synonymous.

The LockItems method on sWorkQ is used to lock one or more work items. This method requires an
array of work item tags to identify the work items you want to lock.

You can also lock the first available work item in a list using the LockFirstItem, LockFirst-
WorkItem, and LockFirstAWorkItem methods. For more information, see “Locking the First Avail-
able Work Item in a List” on page 106.

For each work item that is locked, a vWIFieldGroup
object is returned. The vWIFieldGroup object represents
the set of fields on the work item. The vWIFieldGroup
object contains a WorkItemFields property, which allows
you to access the individual fields for modification. It also
has a WorkItemTag property to allow you to identify the
work item the fields are associated with.

Controlling Fields Returned when Locking Work Items

When you lock work items with the LockItems, LockFirstItem, LockFirstWorkItem, or
LockFirstAWorkItem method, it returns an array of vWIFieldGroup objects, one for each work
item that was locked. The vWIFieldGroup objects contain dependent vField objects, one for each
field defined in that group of fields.

You can control which fields are returned from the server when a work item is locked by using the
vWIFGContent object when calling LockItems, LockFirstItem, LockFirstWorkItem, or
LockFirstAWorkItem.

The vWIFGContent object has the following parameters to control work item fields:

• aWIFieldNames - This parameter allows you to pass in an array of strings identifying the work
item fields you want returned with the work items.

Note that the work item fields returned when locking the work items contain “Work Item Data.”
See “Case Data vs. Work Item Data” on page 149 for information about the difference between
Work Item Data and Case Data.

vWIFieldGroup

WorkItemTag

WorkItemFields

vField

Name

Value

Type

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 106

• aFieldsOption - This parameter uses the SWFieldsOptionType enumeration to identify the
option you have chosen for returning the work item fields upon locking a work item. The
options are:

- ssoFormMarkings - Return only visible markings on the form (based on conditional
statements on the form).

- ssoAllMarkings - Return all markings on the form (whether visible or not).

- ssoFieldList - This isn’t applicable when locking work items (to return a list of fields
when locking work items, use the vWIFGContent object constructor with the
aWIFieldNames parameter). This enumeration is returned in the FieldsOption property
if you view the content object after locking work items, and you passed in a fields list.

If the vWIFGContent object is constructed with no parameters, it defaults to returning all visible
markings on the form.

Note - If you are using iProcess Modeler-produced forms, you can use any of the three constructors
for vWIFGContent shown in the online-help system. However, if you are using a different type of
form, you must use the constructor in which you pass in the array of field names; using the constructor
with no parameters with a non-iProcess Modeler-produced form causes an empty list to be returned
from the server. The constructor with the SWFieldsOptionType enumeration is only applicable to
markings, which are only applicable to iProcess Modeler forms.

What’s the Difference Between a “Lock” and a “Long Lock”?

There are two types of locks possible for a work item:

• A lock is one that is established from the Work Queue Manager (for those that are using the
TIBCO iProcess Workspace (Windows)). If the work item is locked in this way, the
vWorkItem.IsLocked property will return True. This type of lock is not persistent — if the cli-
ent exits, the work item is automatically unlocked.

• A long lock is one that is established using one of the following TIBCO iProcess Server
Objects methods: LockItems, LockFirstItem, LockFirstWorkItem, and LockFirstA-
WorkItem.. If the work item is locked in this way, the vWorkItem.IsLongLocked property
will return True. This type of lock is persistent — if the client exits, the work item will remain
locked.

The two types of locks are mutually exclusive — IsLocked and IsLongLocked cannot both be True.
If a work item has been locked in the Work Queue Manager, and you attempt to lock it using TIBCO
iProcess Server Objects (.NET), an error is returned telling you the work item is already locked. The
same is true if it is already locked using TIBCO iProcess Server Objects (.NET) and you attempt to
lock it in the Work Queue Manager.

Locking the First Available Work Item in a List

Methods are available that allow you to lock the first available work item in a list. (Note - To be able
to use the methods described in this section, you must be using an iProcess Objects Server that has
implemented MR 38404.)

The methods you use to lock the first available work item in a list depend on whether you are using
pageable lists or single-block item access lists (for information about the difference in these list types,
see “Working with Lists” on page 137), as follows:

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 107

Pageable Lists
The sPageableListR object provides the LockFirstItem method to lock the first available work item
in the pageable list.

The LockFirstItem method contains a aStartIndex parameter, which allows you to specify that the
search for an available (i.e., not currently locked) work item begin at the top of the pageable list, or at
a specified index (zero based). When it finds the first available work item, the method locks the work
item, then returns a vWILocked object, which provides properties that allow you to obtain the locked
work item, associated field data, and the index at which the locked work item was located in the page-
able list.

An aWIFGContent parameter is used to specify which work item fields are to be returned on the
vWILocked object.

For more details about the LockFirstItem method, see the on-line help system.

Single-Block Item Access Lists
The sWorkQ and xWorkQ objects provide the following methods to lock the first available work
item in a single-block item access list:

• LockFirstWorkItem - This method is used to lock the first available work item in a list of
vWorkItem objects when you are using "single-block item access" lists (i.e., the
MakeWorkItemList method was used to create the list of vWorkItem objects).

• LockFirstAWorkItem - This method is used to lock the first available work item in a list of
vAWorkItem objects when you are using "single-block item access" lists (i.e., the
MakeAWorkItemList method was used to create the list of vAWorkItem objects).

With both of these methods, the aStartIndex parameter allows you to specify that the search for an
available (i.e., not currently locked) work item beginning at a specified index (zero based), or at the
top of the list. When it finds the first available work item, the method locks the work item, then
returns a vWILocked object, which provides methods that allow you to obtain the locked work item,
associated field data, and the index at which the locked work item was located in the list.

An aWIFGContent parameter is used to specify which work item fields are to be returned on the
vWILocked object.

For more details about the LockFirstWorkItem and LockFirstAWorkItem methods, see the on-line
help system.

Unlocking a Work Item

A work item is automatically unlocked when it is “kept” or “released” (described later in this chapter).

TIBCO iProcess Server Objects (.NET) also provide the sWorkQ.UnlockItems method to unlock
one or more long-locked work items. This method causes all changes that have been made to the work
items since they were locked to be discarded and unlocks the work items (the IsLongLocked flag is
set to False).

Any user can unlock a work item they have locked, but you must have system administrator authority
(MENUNAME = ADMIN) to unlock a work item that another user has locked. That is the primary
purpose of the UnlockItems method — to allow a System Administrator to unlock another user’s
work items. (See “User Attributes” on page 168 for information about the MENUNAME attribute.)

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 108

Discarding Changes made to a Locked Work Item

The sWorkQ.UndoItems method is provided to discard changes that have been made to long-locked
work items. This method causes all changes that have been made to the work items since the work
items were locked to be discarded and unlocks the work items (the IsLongLocked flag is set to
False).

Has a Work Item been Locked/Opened?

When a work item is added to a work queue, its IsUnopened flag is set to True, indicating that it has
not been worked on yet. If you lock the work item (either through the Work Queue Manager or
TIBCO iProcess Server Objects (.NET)), then keep it in the same work queue, its IsUnopened flag is
changed to False, indicating that it has been opened and worked on (but not necessarily modified).

The vWorkQ object also contains an UnopenedCnt property, which returns the number of work
items in the queue that have not been opened yet (i.e., the number that are new).

Determining who Locked a Work Item

You can determine the name of the user who currently has a work item locked by accessing the
vWorkItem.LockedBy property.

Executing a Command when a Work Item is Locked

When a procedure is defined with TIBCO Business Studio, you can specify that a “command” be exe-
cuted when the step (work item) is locked. If this has been defined in the procedure, the name of the
command can be obtained with the vCommand.InitialExpr property. The command may consist of
any script or valid expression (for information about valid expressions, see the TIBCO iProcess
Expressions and Functions Reference Guide).

Keeping Work Items

Keeping a work item causes data changes that have been made to the work item to be saved. The work
item is then kept in the same work queue.

The KeepItems method on sWorkQ is used to keep one or more work items. This method requires an
array of vWIFieldGroup objects to identify the work items to keep, as well as provide updated work
item data to save. (The LockItems method returns these vWIFieldGroup objects when the work
items are locked — see “Locking Work Items” on page 105. Note however, if you are locking a work
item with the LockFirstItem, LockFirstWorkItem, or LockFirstAWorkItem method, you can get
the vWIFieldGroup object from the vWILocked object that is returned from these lock methods.)

Note that the vWIFieldGroup objects returned from the LockItems method cannot be modified.
Instead, a new array of vWIFieldGroup objects must be created, identifying the fields that have been
changed; this array is then passed to the KeepItems method. This is to prevent the client from asking
for lots of data, simply changing a single field, then returning all of the fields to the server. (It also
supports the TIBCO iProcess Server Objects (.NET) design that does not allow data to be altered on a
Value Object (hence, no “set” methods) — all data must be passed in the Value Object constructors.)

When you keep a work item, data associated with that work item is written to “Work Item Data” (also
known as “pack data”). This is an intermediate storage area for work items that are in work queues.
See “Case Data vs. Work Item Data” on page 149 for more information.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 109

Executing a Command when a Work Item is Kept

When a procedure is defined with TIBCO Business Studio you can specify that a “command” be exe-
cuted when the step (work item) is kept. If this has been defined in the procedure, the name of the
command can be obtained with the vCommand.KeepExpr property. The command may consist of
any script or valid expression (for information about valid expressions, see the TIBCO iProcess
Expressions and Functions Reference Guide).

Releasing Work Items

Releasing a work item causes changes that have been made to the work item to be saved. The work
item is then released, which causes the work item to be removed from work queue and the case to
advance to the next step in the procedure.

The ReleaseItems method on sWorkQ is used to release one or more work items. This method
requires an array of vWIFieldGroup objects to identify the work items to release, as well as provide
updated work item data to save. (The LockItems method returns these vWIFieldGroup objects when
the work items are locked — see “Locking Work Items” on page 105. Note however, if you are lock-
ing a work item with the LockFirstItem, LockFirstWorkItem, or LockFirstAWorkItem method,
you can get the vWIFieldGroup object from the vWILocked object that is returned from these lock
methods.)

Note that the vWIFieldGroup objects returned from the LockItems method cannot be modified.
Instead, a new array of vWIFieldGroup objects must be created, identifying the fields that have been
changed; this array is then passed to the ReleaseItems method. This is to prevent the client from ask-
ing for lots of data, simply changing a single field, then returning all of the fields to the server. (It also
supports the TIBCO iProcess Server Objects (.NET) design that does not allow data to be altered on a
Value Object (hence, no “set” methods) — all data must be passed in the Value Object constructors.)

When you release a work item, the “work item data” is written to “Case Data.” This is the permanent
storage area for data associated with the case. See “Case Data vs. Work Item Data” on page 149 for
more information.

Validating Markings

The ReleaseItems method provides an aValidateFields parameter that does the following.

• If aValidateFields = True: This validates that the client application sends non-empty values for
all required markings (swRequired) on the form. Note, however, if a required marking contains
a non-empty value that came from a previous step, the client application does not have to send
that value to the server. It also validates that display markings (swDisplay) are not sent to the
server.

• If aValidateFields = False (the default), it bypasses the enforcement of marking types on the
iProcess form.

Note - The aValidateFields parameter is only applicable if you are using iProcess Modeler-produced
forms (it validates markings, which are only applicable on iProcess Modeler forms).

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 110

Executing a Command when a Work Item is Released
When a procedure is defined with TIBCO Business Studio you can specify that a “command” be exe-
cuted when the step (work item) is released. If this has been defined in the procedure, the name of the
command can be obtained with the vCommand.ReleaseExpr property. The command may consist of
any script or valid expression (for information about valid expressions, see the TIBCO iProcess
Expressions and Functions Reference Guide).

Automatically Releasing the Start Step
The StartCase method provides an aReleaseItem parameter that allows you to specify that the start
step be automatically released when the case is started. Setting this parameter to True causes the case
to automatically proceed to the second step, resulting in the work item for the second step appearing in
the work queue of the addressee of the second step. (Note that the aReleaseItem parameter is only rel-
evant if the user starting the case is the addressee of the start step (or the addressee is defined as
SW_STARTER).)

See “Keeping/Releasing the Start Step” on page 47 for more information.

What is an Orphaned Work Item?
When a work item is released, the vWorkItem.IsOrphaned flag on that work item is set to True on
the local client copy. The released work item will still appear in the work queue to prevent having to
re-index the work items in the work queue after every release. The released work item will be
removed from the local copy of the work queue when it is refreshed. The IsOrphaned flag allows you
to see which work items have been released without refreshing the work queue list.

Note that other clients cannot view the IsOrphaned flag for work items that you release. That is, if
another client had acquired a copy of the work queue (due to participation or if it's a group work
queue) before you released the work item, the other client will not see the IsOrphaned flag set to True
after you release the work item. If they attempt to do any work item operation (lock, keep, release,
etc.), they will get an "item not found" error. At this point, the other client needs to refresh their work
queue to get the current work items (and their updated status).

Remember that a work queue is a "snapshot" of the work items in that queue at the time you acquire
it. If other clients make changes to that work queue, those changes are not reflected in your view of
the work queue until you refresh the queue.

Determining if a Work Item could not be Delivered to the Addressee
When a work item is released, the case advances to the next step in the procedure. The work item’s
“addressee” specifies to whom the next work item in the case is to be sent. If the work item cannot be
delivered to that addressee, the vAWorkItem.IsUndelivered flag is set to True and the work item is
placed in the $undeliv work queue (you must be logged in as the IPEADMIN user to access this work
queue — for information about the IPEADMIN user, see “User Authority” on page 171).

Possible reasons for the work item not being able to be sent to the addressee is that the user or group
specified as the addressee may no longer exist, or the addressee is specified as a field that evaluates to
a user or group that does not exist.

Is the Work Item Directly Releasable?
A work item is considered “directly releasable” if there are no input fields on its form. Input fields
include fields of type Required and Optional. Fields of type Display, Calculated, Hidden, and Embed-
ded are not considered input fields.

If the work item is directly releasable, the vWorkItem.IsReleasable flag is set to True.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 111

Note that even if a work item is directly releasable, it must still be locked before it can be released.

Errors Resulting from Processing Work Items
When calling methods on the sWorkQ object to lock, unlock, keep, release, or undo multiple work
items, the operation could possibly fail for one or more of the work items in the queue. Rather than
totally backing out of the operation, a custom exception class is used to return two arrays, one for
items that succeed and one for items that generated an error. See “Error Handling” on page 259 for
information about handling errors.

Work Item Deadlines

When a step is defined using TIBCO Business Studio, a deadline may be specified on that step. If a
deadline is defined, and the deadline expires, the process follows a “deadline link” to another step in
the procedure, which is typically a notification to someone that the deadline has expired.

The actual definition of the deadline is part of the step definition. The Deadline property on the appli-
cable step object (vNormalStep, vSubProcCallStep, etc.) returns a vDeadline object, which contains
deadline dates, times, criteria, etc.

If a work item has a deadline defined, the vWorkItem.IsDeadline flag is set to True.

Once a work item is in a work queue, the following properties are available to provide information
about the deadline on that work item:

• vWorkItem.Deadline - Returns the date and time the deadline expires. This property will
return the date and time “12/31/3000 11:15:00 PM” if a deadline has not been defined, or if a
deadline has been defined but a condition in the deadline definition has not been satisfied.

• vWorkItem.IsDeadlineExp - Returns a Boolean value that indicates whether or not the dead-
line has expired. This property also returns False if a deadline has not been specified for the
work item.

The vWorkQ object also contains a FirstDeadline property that returns the date and time of the earli-
est deadline in the work queue.

Deadline Withdrawal

Part of the deadline definition specifies whether or not the work item is withdrawn (removed) from
the work queue when the deadline expires. (It’s common for the work item to remain in the work
queue so that the required action on the work item can still be performed.) If the Withdraw form
from queue on expiry box on the deadline definition dialog is checked when the deadline is created
in TIBCO Business Studio, the work item represented by the step with the deadline is removed from
the work queue if the deadline expires. In the example above, if this option is selected, when the dead-
line expires in the Review Application step, the process flows to the Manager Notification step, and
the work item for the Review Application is withdrawn from the work queue.

The deadline withdrawal option can be determined by accessing the following property on the
vAWorkItem object for the work item with the deadline:

• IsDeadlineAWD - Returns True if the Withdraw form from queue on expiry box on the
deadline definition dialog is checked.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 112

Filtering and Sorting on Deadline Information

The following system fields are available for filtering and sorting work items on deadline information:

• SW_HASDEADLINE - Deadline set flag (1 - has deadline, 0 - does not have deadline)

• SW_DEADLINE - Deadline date and time

• SW_DEADLINEDATE (filtering only) - Deadline date

• SW_DEADLINETIME (filtering only) - Deadline time

• SW_EXPIRED - Deadline expired flag (1 - has expired, 0 - does not have expired deadline)

For information about using these system fields when filtering and sorting, see the appropriate Filter-
ing Work Items and Cases chapter on page 188, page 214, or page 239 and “System Fields used in
Sorting” on page 253.

Dynamically Recalculating Deadlines

A deadline (with or without a condition) is evaluated and/or calculated when a work item is sent to a
work queue. It then remains in force until either the work item is released or the deadline expires.

In some situations, however, you may want to reset a deadline on a work item while it is still outstand-
ing. For example, you may have used a deadline to set a review date for a customer’s case in 6
month’s time, but then for some reason want to bring that review date forward to 3 month’s time.

You can force the iProcess Engine to re-calculate deadlines on all outstanding work items for a case
by triggering an event on a particular step of the case using the TriggerEvent method. The Trigger-
Event method must also update one or more field values used in setting the deadline — either in the
expression that is used to calculate the deadline, or in an expression that is used to determine whether
or not a deadline is set.

The TriggerEvent method signature used to recalculate deadlines contains an aDeadlineCalculate
parameter used to specify how deadlines are recalculated. The options, which are enumerated using
SWDeadlineCalculateType, are as follows:

• swNoReCalc - Do not recalculate. This would be used when using TriggerEvent to update
outstanding work items, but you are not recalculating deadlines (the same method signature
contains both the aUpdateOutstanding and aDeadlineCalculate parameters).

• swCaseOnly - Recalculate deadlines in the main case only.

• swIncludeSubCases - Recalculate deadlines in the main case and all sub-cases.

The way in which the iProcess Engine recalculates deadlines depends on whether or not a deadline
condition has been defined, and whether it is an expression or period deadline, as follows:

Condition Type Expression deadline is... Period deadline is...

No condition. Re-evaluated and set to the
new value.

Not recalculated.

Condition now eval-
uates as true.

Re-evaluated and set to the
new value.

Calculated as a period from the
original date that the work
item was sent out.

Condition now eval-
uates as false.

Removed. Removed.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 113

Note that you cannot use TriggerEvent to recalculate a Period deadline that is not triggered by a con-
dition, because no field values are involved in the deadline’s calculation. The only way to force a re-
calculation of such a deadline is to build logic into your procedure allowing you to withdraw the step
and then resend it with the new deadline. However, if you do this any changes made to the work item
while it has been in the user’s queue will be lost.

Keeping a Work Item that is Withdrawn

There are two ways in which you can specify that a work item be withdrawn from a work queue:

• When a deadline defined on the step expires. This is explained earlier in this chapter in “Dead-
line Withdrawal” on page 111.

• A “withdraw link” can be drawn when the step is defined using TIBCO Business Studio.

The step definition allows you to specify that under either of the conditions above, the work item
should be kept in the queue instead of withdrawn. To specify this, on the Step Definition Status dialog
in TIBCO Business Studio, check the Don’t delete work items on withdraw box. You can determine
whether or not this option has been checked by accessing the IsKeepOnWithdrawal property on the
applicable step object (e.g., vNormalStep, vEventStep, etc.), or the vWorkItem object in a live case.

If the Don’t delete work items on withdraw box is checked, and the work item would normally be
withdrawn (because of a deadline expiration or release action of another step), the following occur
instead:

• the work item is still considered “outstanding” (it is returned if you call GetOutstandingItems
on sCaseManager).

• the work item remains in the work queue (it is not “deleted”).

When the work item is released (or sub-procedure case completes — if the step is a sub-procedure
call), the following occurs:

• the normal release actions are NOT processed (as is normal for withdrawn work items).

• work item data in that work item is still written to case data upon release.

Participating in Another User’s Work Queue

Allowing a user to “participate” in another user’s or groups’s work queue is called “participation.”
Participation allows the participating user to have access to the work items in the other user’s work
queue.

To be a participant of a work queue, a user who has been designated as an administrative supervisor of
the work queue must create a “participation schedule” for the participant user. The participation
schedule specifies the users and duration of the participation in the work queue.

To define a participation schedule, a user must be designated as a supervisor of the work queue. See
“Work Queue Supervisors” on page 119.

Note - Users with system administrator authority can access work queues of other users without being
a “participant” user. This, however, comes at a cost. When a work queue is accessed without partici-
pation, a SAL session is automatically started for the user whose queue is being accessed, and that
user is logged in internally. Note, however, that that user is not logged off automatically (the session

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 114

will timeout automatically in the number of seconds specified in the SALSessionTimeout parameter).
This overhead is not incurred if you use participation to give the user access to another user’s work
queue.

Participation Schedules

A participation schedule is represented by the vParticipation object. This
object contains the following participation elements:

• Names of the users who can participate in the work queue
• Dates to start and end the participation
• Times to start and end the participation each day
• Days of the week to allow participation

Each work queue can have multiple (or zero) participation schedules, and
each participation schedule can have multiple users assigned to it who can
participate during the period specified in the schedule.

You can determine the participation schedules that currently exist for a work
queue using the following:

• sWorkQManager.GetParticipations - This method sends a message
to the server to retrieve an array of vParticipation objects, one for each
participation schedule that has been defined for the specified work queue.

• vAWorkQ.Participations - This property returns an array of vParticipation objects, one for
each participation schedule defined for the work queue represented by the local vAWorkQ
Value Object.

Modifying Existing Participation Schedules

To make a change to an existing participation schedule, use the following method:

• sWorkQManager.ChangeParticipation - This method allows you to make a change to an
existing participation schedule on the specified work queue. It requires that you construct a
vParticipation object that specifies the new participation schedule, then pass it in the method.

Creating Participation Schedules

To create a new participation schedule, you must construct a vParticipation object, then pass it as a
parameter to the following method:

• sWorkQManager.CreateParticipations - This method sends the provided participation
schedule to the server to take effect on the specified work queue.

Removing Participation Schedules

To remove/delete a participation schedule from a work queue, use the following method:

• sWorkQManager.RemoveParticipations - This method removes one or more participation
schedules from the specified work queue. You must provide a vParticipation object identifying
the participation schedule to remove.

vParticipation

Index

EndDate

QName

IsSunday

IsMonday

IsTuesday

IsWednesday

IsThursday

IsFriday

IsSaturday

Name

StartDate

StartTime

UserNames

EndTime

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 115

Using the vDate and vTime Objects in Participation Schedules

The vDate and vTime objects are used in participation schedules to hold the starting and ending
date/time. They can also be used to specify an “empty” date or time, which has various meanings,
depending on the context.

Both vDate and vTime have two public constructors:

• One allows you to pass in a DateTime object to specify the starting or ending date/time.

public vDate(DateTime aDate)

public vTime(DateTime aTime)

• The other constructor, with no parameters, creates an “empty” vDate or vTime object:

public vDate()

public vTime()

If these objects are set to “empty,” they take on the following meanings:

• StartingDate - Causes participation to begin on the next date allowed by the IsSunday-IsSatur-
day parameters.

• EndingDate - Causes participation to last indefinitely.

• StartingTime - Causes participation to start directly after midnight on the days that participation
is allowed (according to the other parameters).

• EndingTime - Causes participation to end at midnight on the days that participation is allowed
(according to the other parameters).

Forwarding/Redirecting Work Items to Another Work Queue

You can forward work items to another user’s or group’s work queue. Forwarding can be done in the
following ways:

• Manually Forwarding - This allows you to forward one or more work items to a specified
work queue.

• Automatic Forwarding/Redirecting - This allows you to set up a schedule so work items are
automatically forwarded to another work queue during a specified time period. This is called
“redirection.”

These are described in detail in the following subsections.

Manually Forwarding Work Items

The sWorkQ object contains a ForwardItems method that allows you to forward work items to a
specified work queue. The following factors determine whether or not you can forward work items
using ForwardItems:

• Work Queue Access - To call the ForwardItems method, you must have access to the work
queue from which the work items are being forwarded.

• The step’s Forward Permission - This is specified when the step is defined using TIBCO
Business Studio. There is a Forward radio button on the step’s Step Status dialog that specifies
whether or not that step is forwardable (by default the step is forwardable). The step’s forward
permission is reflected in the IsForwardable flag (which is available in the step definition,

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 116

vPermission, as well as the work item object, vWorkItem). The step’s forward permission is
used in conjunction with the user’s forward permission (described below) to determine whether
or not a user can manually forward a work item.

• The User’s Forward Permission - The user’s forward permission is specified in the USER-
FLAGS attribute. This permission specifies whether or not work items can be forwarded from
this user’s (or group’s) work queue. Note that it is not the USERFLAGS attribute for the user
that is calling ForwardItems that is used. Internally, the system logs in as the user who owns
the work queue — it’s that user who must have the forwarding permission. You are really for-
warding the work item on behalf of the owner of the work queue.

The USERFLAGS attribute can have the following values/meanings:

- “ ” - (Empty string) Work items from this user’s work queue can be forwarded if the step’s
forward permission has been set. This is the default value. (This is called Step Forward
in the User Manager.)

- “F” - Any work item from this user’s work queue can be forwarded, even if the step’s for-
ward permission has not been set. (This is called Forward Any in the User Manager.)

- “R” - Work items from this user’s work queue cannot be forwarded, even if the step’s for-
ward permission is set. (This is called Forward None in the User Manager.)

See “User Attributes” on page 168 for information about modifying the value of the USER-
FLAGS attribute.

To manually forward a work item, call the ForwardItems method and pass the tags for the work
items you wanted forwarded, and a tag for the destination work queue.

Determining the Work Queues to which a Work Item can be Forwarded

You can determine the work queues to which a work item can be manually forwarded by using the fol-
lowing:

• sWorkQ.GetForwardToWorkQIds - This method, returns an array of vWorkQId objects,
one for each work queue to which the specified work item can be forwarded.

• vAWorkItem.ForwardToWorkQIds - This property, returns an array of vWorkQId objects,
one for each work queue to which the work item represented by the local Value Object can be
forwarded.

If you are accessing the ForwardToWorkQIds property from vAWorkItem, you must use the fol-
lowing content object to specify that the “forward to work queue IDs” be returned from the server
when the vAWorkItem objects are retrieved:

• vAWIContent - This content object can be created and passed as an input parameter with the
GetAWorkItems and GetAWorkItemList methods. It specifies how much “content” (dependent
objects) to return from the server with the work items. This content object inherits the
vWIContent object.

This content object has one property: IsWithForwardToWorkQIds. This property allows you to
determine how the forward to work queue ID flag was set when the content object was created.

Note that the list of “forward to work queue IDs” returned by GetForwardToWorkQIds and
ForwardToWorkQIds is not totally definitive; it provides a list of “available” work queues. Whether
a work item can actually be forwarded to one of the work queues listed depends on the permissions
described in the previous section, “Manually Forwarding Work Items”.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 117

Automatic Forwarding/Redirecting Work Items

Automatically forwarding work items to another work queue is called “redirection.” Redirection
allows you to “redirect” one user’s or group’s work items to the work queue of another user or group
for a specified period of time.

To redirect work items, a user who has been designated as an administrative supervisor of the work
queue must create a “redirection schedule.” The redirection schedule specifies to whom the work
items are being redirected, as well as the date and time the redirection is to start and end.

To define a redirection schedule, a user must be designated as a supervisor of the work queue. See
“Work Queue Supervisors” on page 119.

Redirection Schedules

A redirection schedule is represented by the vRedirection object. This object
contains the following redirection elements:

• Name of the user or group to whom the work items are being redirected
(WorkQName)

• Date and time to start the redirection (StartDateTime)

• Date and time to end the redirection (EndDateTime)

When a work queue is created, a redirection schedule is automatically created with empty values (i.e.,
the work queue is not redirected to another user or group). There is only one redirection schedule per
work queue.

You can access a work queue’s redirection schedule with the following:

• sWorkQManager.GetRedirection - This method sends a message to the server to retrieve the
work queue’s redirection schedule (vRedirection object).

• vAWorkQ.Redirection - This property returns the redirection schedule (vRedirection object)
for the work queue represented by the local vAWorkQ Value Object.

Modifying an Existing Redirection Schedule

Note that there is no method to “create” a redirection schedule since a schedule is automatically cre-
ated when a work queue is created.

To modify a redirection schedule, use the following method:

• sWorkQManager.ChangeRedirection - This method allows you to change the redirection
schedule for the specified work queue. It requires you to construct a vRedirection object, then
pass it as a parameter in the method call.

Cancelling a Redirection Schedule

To cancel an existing redirection schedule, use the following method:

• sWorkQManager.CancelRedirection - This cancels the redirection, causing work items to no
longer be redirected to another user’s work queue. Note that this does not remove the redirec-
tion schedule; it merely removes the values in the schedule.

vRedirection

StartingDateTime

EndingDateTime

WorkQName

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 118

Using the vDateTime Object in Redirection Schedules

The vDateTime object is used in redirection schedules to hold the starting and ending DateTime. It
can also be used to specify an “empty” DateTime, which has various meanings, depending on the con-
text.

The vDateTime object has two public constructors:

• One allows you to pass in a DateTime object to specify the starting or ending DateTime:

public vDateTime(DateTime aDateTime)

• The other constructor, with no parameters, creates an “empty” vDateTime object:

public vDateTime()

If this object is set to “empty,” it takes on the following meanings:

• StartingDateTime - Causes the redirection to start immediately.

• EndingDateTime - Causes redirection to last indefinitely.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 119

Work Queue Supervisors

To define a participation or redirection schedule, a user must be designated as a supervisor of the work
queue. You can determine who the current supervisors are for a work queue using the following:

• sWorkQueueManager.GetSupervisorNames - This method sends a message to the server to
retrieve the names of the users who can supervise the specified work queue.

• vAWorkQ.SupervisorNames - This property returns the names of the users who can supervise
the work queue represented by the local vAWorkQ Value Object.

Note that the same list of user names returned by the GetSupervisorNames method and the Supervi-
sorNames property can be obtained from the QSUPERVISORS user attribute. See “User
Attributes” on page 168 for information about QSUPERVISORS.

From the standpoint of a user, you can also determine which work queues the user has been authorized
to supervise by calling the following method:

• sUser.GetSupervisedQIds - This method returns an array of vWorkQId objects, one for each
work queue for which the user is a supervisor.

Adding Work Queue Supervisors

To add a new supervisor to a work queue, use the following method:

• sWorkQManager.AddSupervisors - This method allows you to specify that one or more users
is a supervisor for one or more work queues. To add supervisors using this method, the user
must have system administrator authority (MENUNAME = ADMIN) — see “User
Attributes” on page 168 for information about the MENUNAME attribute.

Removing Work Queue Supervisors

To remove a supervisor from a work queue, use the following method:

• sWorkQManager.RemoveSupervisors - This method allows you to remove one or more users
from the list of supervisors for the designated work queues. To remove supervisors using this
method, the user must have system administrator authority (MENUNAME = ADMIN) — see
“User Attributes” on page 168 for information about the MENUNAME attribute.

Managing Work Queues

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 120

External Work Items

An external work item refers to a work item that is the result of a step that does not send a work item
to a work queue, but rather passes the work item to an external third-party application. An example is
an EAI step, which causes the TIBCO iProcess Engine to pass field data, the form definition, and a
unique ID that identifies the external work item, to a third-party application. The third-party applica-
tion uses the unique ID to pass the process flow back when it is finished.

The form definition that the engine passes to the third-party application is available by calling the
GetExternalForm method on the sProcManager object.

Once the EAI step is outstanding, there is a vEAIItem object generated
that represents the outstanding external work item. This object contains
an ExternalId property, which returns the external ID generated by the
engine that identifies the external work item. This external ID is sent to
the third-party application when the EAI step becomes outstanding.

Releasing an External Work Item

The third-party application releases an outstanding EAI step using the ReleaseEAIItem method on
the sCaseManager object. This method requires that the external ID that was passed to the third-party
application be passed as a parameter in the ReleaseEAIItem method to identify the specific outstand-
ing EAI step (there could be multiple EAI steps outstanding at one time).

When the ReleaseEAIItem method is called, you can optionally specify that the process flow proceed
to a step that is different from the one defined to follow the EAI step in the procedure. This is done
using the aNextStep parameter. If you specify an alternative next step with the aNextStep parameter,
you can also use the aDoActions parameter to specify how the process flow should advance from the
EAI step, as follows:

• If the aDoActions parameter is True, the actions defined for the work item being released are
processed. This results in the process advancing to the next step as defined in the procedure, as
well as the step specified in the aNextStep parameter.

• If the aDoActions parameter is False (the default), the process only advances to the step speci-
fied in the aNextStep parameter, but not the next step defined in the procedure.

You can also pass field data from the third-party application to be written to case data in the proce-
dure.

vEAIItem

ExternalId

vOutstandingItem

vOutstandingItem

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 121

8
Working with Lists

Introduction

There are two methods of accessing lists of items on the server:

• Single-block Item Access - This newer method of accessing lists allows you to access a spe-
cific block of items in a list. Each access requires you to specify the size of the block and the
starting index. This method of accessing lists is available in both the Base and XML interfaces.
For more information, see Using Single-Block Item Access on page 121.

• Pageable Lists - This older method of accessing lists is only available in the Baser interface; it
is not available in the XML interface. For more information, see Using Pageable Lists on page
131.

Using Single-Block Item Access

This method of accessing lists of items on the server allows you to access a specific block of items in
a list. Each access requires you to specify the size of the block and the starting index. This method of
accessing lists is available in both the Base and XML interfaces.

This method of accessing records on the server is accomplished by using the “Make<type>List” and
“Fetch<type>List” methods:

• the Make<type>List method creates a static list of the requested items on the server, and
returns the requested number of items, starting at the specified index.

• the Fetch<type>List method is used to get additional items from the static list created with the
Make<type>List method. This method is used only if you need to get additional items from the
same list.

Note - This section is written from an object-oriented point of view. When the “Make<type>List” and
“Fetch<type>List” methods are used in the Base interface, data is returned in the form of objects;
when they are used in the XML interface, data is returned in the form of an XML representation of
those objects. If you are programming to the XML interface, and the text states “an object is
returned”, realize that for you the XML representation of the object is returned.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 122

Making a List

The following Make<type>List methods are available:

Each of the Make<type>List methods returns the object type indicated in the method name. For
instance, MakeAWorkItem returns a list of vAWorkItem objects.

Make<type>List Method Input Parameters

At a minimum, all Make<type>List methods require that you pass parameters specifying a start
index, size of the block to return, and a “hold” flag. If called from the XML interface, a results ID is
also required, as shown below.

From the XML Interface:

String MakeWorkQIdList(String aId,

int aStartIndex,

int aReturnCount,

bool aHold)

From the Base Interface:

vWorkQIdListState MakeWorkQIdList(int aStartIndex,

int aReturnCount,

bool aHold)

where:

• aId specifies a results ID, which is a locator reference for the caller. Every call to an XML
Server Object method takes a results ID as a parameter; that ID is reflected back in the Id attri-
bute of the <vResult> tag in the XML data (see the example in the Example XML Data on page
274). (Note that if a NULL is passed in the aId parameter, the results ID defaults to the name of
the method call — in this example, it would be “MakeWorkQIdList”.)

Server Object “Make” Method
Returns List of
these Objects

List State Object

sNode / xNode MakeAGroupList vAGroup vAGroupListState

MakeOSUserList vOSUser vOSUserListState

MakeUserList vUser vUserListState

MakeWorkQIdList vWorkQId vWorkQIdListState

sWorkQ / xWorkQ MakeWorkItemList vWorkItem vWorkItemListState

MakeAWorkItemList vAWorkItem vAWorkItemListState

sWorkQManager /
xWorkQManager

MakeWorkQIdList vWorkQId vWorkQIdListState

MakeWorkQList vWorkQ vWorkQListState

MakeAWorkQList vAWorkQ vAWorkQListState

sCaseManager /
xCaseManager

MakeACaseList vACase vACaseListState

MakePredictedItemList vPredictedItem vPredictedItemListState

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 123

• aStartIndex specifies the index number (zero based) of the first item to be returned from the
static list.

• aReturnCount is the number of items you want returned from the static list, starting at the index
number specified in aStartIndex (up to the number of items in the list — e.g., you may ask for
20 items, but only 15 exist).

• aHold is a flag that specifies whether or not to hold the static list after this method call. Pass
True in this parameter if you are going to call the Fetch<type>List method to get additional
items off of the list. Pass False in this parameter if you are making a one-time request with the
Make<type>List method call. If False is passed in this parameter, the held ID returned by the
Make<type>List method is an empty string.

In addition to the parameters described above, some of the make<type>List methods also provide
“criteria” and/or “content” parameters, as in the example below:

String MakeWorkItemList(String aId,

vWICriteria aWICriteria,

vWIContent aWIContent,

int aStartIndex,

int aReturnCount

bool aHold)

where:

• aWICriteria specifies filter and sort criteria for the list. (The specific criteria object passed in
this parameter will depend on the type of objects in the list — this example is for work items,
hence a “vWICriteria” object is passed.) For more information about filter and sort criteria, see
Filtering Work Items and Cases on page 227.

• aWIContent specifies how much content (i.e., which dependent objects) to also return with the
objects in the list. (The specific content object passed in this parameter will depend on the type
of objects in the list — this example is for work items, hence a “vWIContent” object is passed.)
For more information about content, see Retrieving Dependent Objects on page 143.

When filter and sort criteria is specified, the static list of objects created on the server will contain
only the objects that satisfy the filter criteria, sorted in the order specified. The list state object
returned by the Make<type>List and Fetch<type>List methods contains a count that tells you how
many objects satisfied the filter criteria. (If you later call the Fetch<type>List method, with
aRefresh=True, the list is recreated using the same criteria and content information passed in on the
original Make<type>List method. The held ID remains the same if the list is refreshed.)

Make<type>List Method Return Values

The values returned by the Make<type>List methods depend on the interface from which the method
is called, as follows:

From the XML Interface:

• A Held ID (String) - This is directly returned by the method call so that it can be used as an
input parameter to the Fetch<type>List method to identify the list that is held on the server. An
empty string is returned for the held ID if False is passed in the aHold parameter (i.e., there is
no need for a held ID if the list is not kept on the server).

• “List State” Information - This is returned internally in the form of a “list state” object, which
provides count and other “state” information about the list. You must call the GetXMLResults

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 124

method to get the XML representation of the list state object. For information about the list
state objects, see List State Objects on page 127).

• The Block of Items Requested - This is returned internally in the form of the object type
requested. You must call the GetXMLResults method to get the XML representation of the
objects.

Note that unlike the Base interface, the block of items is not returned as part of the list state
object. Instead, in the XML interface, the returned objects are a sibling to the list state object.
(This is so that the returned items are located in the XML in the same location as items that are
returned by method calls that are not associated with lists.)

From the Base Interface:

• A “List State” Object - This object reflects counts and other “state” information about the list.

Note that the held ID (which you will need if you want to call the Fetch(type)List method) can
be obtained from the list state object.

The requested block of items is also contained in the list state object. Every list state object has
a method call that returns the block of requested objects.

For more information about list state objects see, List State Objects on page 127.

Fetching a List

The following Fetch<type>List methods are available:

Each Fetch<type>List method returns the object type indicated in the method name. For instance,
FetchAWorkItemList returns a block of vAWorkItem objects.

XML Server Object “Fetch” Method
Returns List of
these Objects

List State Object

sNode / xNode FetchAGroupList vAGroup vAGroupListState

FetchOSUserList vOSUser vOSUserListState

FetchUserList vUser vUserListState

FetchWorkQIdList vWorkQId vWorkQIdListState

sWorkQ / xWorkQ FetchWorkItemList vWorkItem vWorkItemListState

FetchAWorkItemList vAWorkItem vAWorkItemListState

sWorkQManager /
xWorkQManager

FetchWorkQIdList vWorkQId vWorkQIdListState

FetchWorkQList vWorkQ vWorkQListState

FetchAWorkQList vAWorkQ vAWorkQListState

sCaseManager /
xCaseManager

FetchACaseList vACase vACaseListState

FetchPredictedItemList vPredictedItem vPredictedItemListState

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 125

Fetch<type>List Method Input Parameters

At a minimum, all Fetch<type>List methods require that you pass parameters specifying a held ID, a
start index, size of the block to return, and a “hold” flag. If called from the XML interface, a results ID
is also required, as shown below.

From the XML Interface:

void FetchWorkQIdList(String aId,

String aHeldId,

int aStartIndex,

int aReturnCount,

bool aHold)

From the Base Interface:

vWorkQIdListState FetchWorkQIdList(String aHeldId,

int aStartIndex,

int aReturnCount,

bool aHold)

where:

• aId specifies a results ID, which is a locator reference for the caller. Every call to an XML
Server Object method takes a results ID as a parameter; that ID is reflected back in the Id attri-
bute of the <vResult> tag in the XML data (see the example in the Example XML Data on page
274). (Note that if a NULL is passed in the aId parameter, the results ID defaults to the name of
the method call — in this example, it would be “FetchWorkQIdList”.)

• aHeldId identifies the list on the server. This ID was returned by the corresponding method call
that created the list (e.g., MakeWorkQIdList).

• aStartIndex specifies the index number (zero based) of the first item you want returned from the
static list.

• aReturnCount is the number of items you want returned from the static list, starting at the index
number specified in aStartIndex (up to the number of items in the list — e.g., you may ask for
20 items, but only 15 exist).

• aHold is a flag that specifies whether or not to hold the list on the server after this method call.
Pass True in this parameter if you are going to fetch more items from the list; pass False if you
are done with the list and will not be fetching any more items from it.

In addition to the parameters above, the Fetch<type>List methods that return work items
(FetchAWorkItemList and FetchWorkItemList) also contain an aRefresh parameter, for example:

void FetchWorkItemList(String aId,

String aHeldId,

int aStartIndex,

int aReturnCount,

bool aHold,

bool aRefresh)

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 126

where:

• aRefresh is a flag that specifies whether or not to refresh (i.e., rebuild) the list of work items,
using the same criteria and content passed in the Make<type>List method that was used to
originally create the list, before returning the requested work items. This allows you to ensure
that the list will contain work items that have been added to the work queue since the list was
originally created, and will not contain work items that have been released from the work queue
since the original list was created. The held ID remains the same if the list is refreshed.

Also, the list state object returned by the Fetch<type>List method contains a “list status” that
tells you whether or not there was a change in the work item list after refreshing it (for more
information, see Work Item Status Information on page 130).

Fetch<type>List Method Return Values

The values returned by the Fetch<type>List methods depend on the interface from which the method
is called, as follows:

From the XML Interface:

• “List State” Information - This is returned internally in the form of “list state” objects, which
provide count and other “state” information about the list. You must call the GetXMLResults
method to get the XML representation of the list state object. For information about the list
state objects, see List State Objects on page 127).

• The Block of Items Requested - This is returned internally in the form of the object type
requested. You must call the GetXMLResults method to get the XML representation of the
objects.

Note that unlike in the Base interface, the block of items is not returned as part of the list state
object. Instead, in the XML interface, the returned objects are a sibling to the list state object.
(This is so that the returned items are located in the XML in the same location as items that are
returned by method calls that are not associated with lists.)

From the Base Interface:

• A “List State” Object - This object reflects counts and other “state” information about the list.

The requested block of items is also contained in the list state object. Every list state object has
a method call that returns the block of requested objects.

For more information about list state objects see, List State Objects on page 127.

Fetch “If Changed” Methods

Two “Fetch” methods are available that return work items only if there has been a change in work
items on the list since you originally obtained it. The following methods are available on both the
sWorkQ and xWorkQ objects:

• FetchWorkItemListIfChanged

• FetchAWorkItemListIfChanged

Both of these methods always refresh the list (there is no Refresh parameter — it is assumed to be
True), and they return the requested work items only if any items in the entire list have changed (not
just the specified range) since the list was originally created (with the MakeWorkItemList or
MakeAWorkItemList method). If no work items in the list have changed since it was originally cre-
ated, the returned list is zero length.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 127

List State Objects

All Make<type>List and Fetch<type>List methods return list state information about the list.

In the Base interface, this is returned as an object; in the XML interface, this is returned in the form of
the XML representation of the list state object.

The list state objects have the naming convention, v<type>ListState, where <type> is the type of
object in the list. The following are the available list state objects:

• vACaseListState

• vAGroupListState

• vAWorkItemListState

• vAWorkQListState

• vOSUserListState

• vPredictedItemListState

• vUserListState

• vWorkItemListState

• vWorkQIdListState

• vWorkQListState

Base Object

The vListState object is the base object from which all other list state
objects are derived. This base object contains the following informa-
tion:

• Type - Identifies the type of object in the list. This is enumerated
using the SWPageableListType custom type. See the on-line
help system for a list of the constants available in
SWPageableListType.

• Available Count - This is the number of available objects in the static list on the server. If filter
criteria was passed in the Make<type>List method, only the objects that satisfied the filter cri-
teria are included in this count.

• Held ID - This is used to identify the specific static list on the server. This held ID is returned
by the Make<type>List method, and is used as an input parameter to the Fetch<type>List
method to identify the list from which you want to fetch items. This will be an empty string if
False was passed in the aHold parameter of the Make<type>List method.

vListState

AvailableCnt

HeldId

Type

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 128

Filter and Sort Criteria Information

If the Make<type>List or
Fetch<type>List method returns cases,
work items, or predicted work items, the
list state object will contain filter and sort
criteria.

Filter and sort criteria is specified with
the “Criteria” input parameter when you
call the Make<type>List method.

The following list state objects contain
filter/sort criteria:

• vACaseListState

- ACaseCriteria

• vAWorkItemListState

- WICriteria

• vPredictedItemListState

- PredictionCriteria

• vWorkItemListState

- WICriteria

The methods on these list state objects allow you to determine the filter/sort criteria that was specified
(if any) when the list was created.

Content Information

Many of the Make<type>List methods con-
tain a “Content” input parameter that allows
you to specify which dependent objects to
also return with the requrested objects.

The list state objects returned by these meth-
ods also contain the content information.

The following list state objects contain con-
tent information:

• vACaseListState

- ACaseContent

• vAGroupListState

- AGroupContent

• vAWorkItemListState

- AWIContent

• vAWorkQListState

- AWorkQContent

• vUserListState

- UserContent

vACaseListState

ACaseContent

ACaseCriteria

Summary

ACases

vListState

vListState

vACaseCriteria

vCriteriaRequest *

FilterExpression

SortFields

MaxCnt

vACaseListState

ACaseContent

ACaseCriteria

Summary

ACases

vListState

AvailableCnt

HeldId

Type

vACaseContent

CaseFieldNames

IsWithAuditData

AuditFilterExpression

IsAuditAscending

vContentRequest

IsReturnAllFields

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 129

• vWorkItemListState

- WIContent

The methods on these list state objects allow you to determine the content that was specified (if any)
when the list was created.

Summary Information

If the Make<type>List or Fetch<type>List
method you call returns cases, work items, or
predicted work items, the list state object will
contain summary information.

Summary information provides counts for
the cases / work items in the list.

The following list state objects contain sum-
mary information:

• vACaseListState

- Summary

• vAWorkItemListState

- WISummary

• vPredictedItemListState

- Summary

• vWorkItemListState

- WISummary

All of the case / work item list state objects
contain the vSummary object, which
includes various counts for the objects on the
list.

The list state objects for lists containing work
items contain a vWISummary object, which
includes additional counts for urgent, dead-
line, and unopened work items.

vACaseListState

ACaseContent

ACaseCriteria

Summary

ACases

vListState

AvailableCnt

HeldId

Type

vAWorkItemListState

AWIContent

WICriteria

AWorkItems

PLStatus

WISummary

vListState

AvailableCnt

HeldId

Type

vSummary

ExcludeCnt

InvalidCnt

OverMaxCnt

vWISummary

DeadlineCnt

UnopenedCnt

vSummary

ExcludeCnt

InvalidCnt

UrgentCnt

OverMaxCnt

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 130

Work Item Status Information

The work item list state objects (vAWorkItemListState and
vWorkItemListState) contain a PLStatus property that allows you to
determine if the work items in the list have changed since it was cre-
ated.

Note that this status information is only applicable when you call the
FetchAWorkItemList or FetchWorkItemList method, and pass in
True for the aRefresh parameter. It is telling you, after the refresh, if the
work items in the list have change (i.e., if there are any new work items
or if any work items that were in the list are no longer there). (If you
pass False in the aRefresh parameter when calling
FetchAWorkItemList or FetchWorkItemList, a status of
swPLChanged is always returned.)

The following list state objects contain status information:

• vAWorkItemListState

- PLStatus

• vWorkItemListState

- PLStatus

The PLStatus property returns one of the following SWPLStatusType enumerations:

• swPLNoChange - There is no change in the work items.

• swPLStatusOnly - Only the status of one or more of the work items in the list has changed
(i.e., some work items in the list have been locked and/or unlocked, but the same work items are
in the list).

• swPLChanged - The work items in the list have changed.

Note - The “PL” in these names is for “Pageable Lists”. The SWPLStatusType enumerations are also
used with pageable lists.

Requested Items

If you are programming to the Base interface, the requested items are
returned in the list state object. For example, the vWorkItemListState
object contains a WorkItems property that returns an array of
vWorkItem objects.

If you are programming to the XML interface, the requested items are
returned as an XML representation of the objects when you call the
GetXMLResults method. For more information, see Example XML
Data on page 274.

vAWorkItemListState

AWIContent

WICriteria

AWorkItems

PLStatus

WISummary

vListState

AvailableCnt

HeldId

Type

DeltaCnt

SWPLStatusType
 swPLNoChange = '0'
 swPLStatusOnly = '1'
 swPLChanged = '2'
 swPLOrphaned = '3'

vWorkItemListState

WIContent

WICriteria

WorkItems

PLStatus

WISummary

vListState

AvailableCnt

HeldId

Type

DeltaCnt

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 131

Using Pageable Lists

“Pageable lists” allow you to access lists, or “pages”, of items from the server. This method of access-
ing lists is available only in the Base interface. It is not available in the XML interface. You must use
the “Make<type>List” and “Fetch<type>List” methods when programming to the XMLinterface;
see Using Single-Block Item Access on page 121.)

Normally, Server Objects only act as a pass-through for data to and from
the TIBCO iProcess Objects Server. The one exception is the “pageable
list” object. (There are actually two pageable list objects, as shown in the
illustration — sPageableListR derives from sPageableList.) These are
special Server Objects that are used when dealing with potentially large
lists of objects. They allow single-item access while maintaining contin-
ued access to the list of objects. The object’s user can control the number
of Value Objects that are created and held within a pageable list. This
allows control over resource usage when dealing with a large number of
objects.

Note - There is also an sPageableListJ object that is used specifically
when requesting work queue deltas via a subscription to a topic in a JMS
implementation. For information about using the sPageableListJ object,
see Work Queue Deltas Via a JMS Topic on page 96..

All methods whose name begins with “Get” and ends in “List” return a
pageable list. Some examples are:

sPageableList GetWorkQIdList()

sPageableListR GetWorkItemList(vWICriteria aWICriteria,

vWIContent aWIContent,

int aItemsPerBlock)

The basic concept behind the pageable list is that instead of returning potentially thousands of objects
(for example, vWorkItem objects) when a method is called, it instead returns “blocks” of objects as
they are needed, significantly improving response time.

Pageable lists are used with the following types of items:

Item Type Methods that return a pageable list Value Object in Pageable List

Work items sWorkQ.GetWorkItemList vWorkItem

sWorkQ.GetAWorkItemList vAWorkItem

Work queues sWorkQManager.GetWorkQIdList vWorkQId

sNode.GetWorkQIdList vWorkQId

sWorkQManager.GetWorkQList vWorkQ

sWorkQManager.GetAWorkQList vAWorkQ

Cases sCaseManager.GetACaseList vACase

Groups sNode.GetAGroupList vAGroup

Users sNode.GetUserList vUser

sPageableListR

sPageableList

Summary

LocalCnt

Hold

HeldId

ItemsPerBlock

AvailableCnt

Type

GetItem

IsKeepLocalItems

Clear

ContentRequest

CriteriaRequest

Dispose

Refresh

DeltaCnt

GetNextDeltaItem

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 132

These are the object types that are most likely to be in very large numbers on the TIBCO iProcess
Objects Server, especially work items and cases.

Pageable lists containing work items work somewhat different than pageable lists containing other
types of objects. The differences are described in the following sections.

Using Pageable Lists with Work Items

The following graphic illustrates how pageable lists are created when they contain work items or pre-
dicted work items:

1. When a method is called on a Server Object that returns a pageable list of work items, a message is
sent to the TIBCO iProcess Objects Server requesting the work items.

2. The TIBCO iProcess Objects Server sends a message to the TIBCO Process/iProcess Engine
(where the actual data is maintained) requesting the work item data.

OSUsers sNode.GetOSUserList vOSUser

Predicted Items sCaseManager.GetPredictedItemList vPredictedItem

Item Type Methods that return a pageable list Value Object in Pageable List

GetWorkItemList

TIBCO iProcess
Objects Server

Indexed
Collection

TIBCO
Process/
iProcess
Engine

Message Buffers

TCP/IP

5ii

sPageableListR

sPageableList

Summary

LocalCnt

Hold

HeldId

ItemsPerBlock

AvailableCnt

Type

GetItem

IsKeepLocalItems

Clear

ContentRequest

CriteriaRequest

Dispose

Refresh

DeltaCnt

GetNextDeltaItem

5i

.

.

.

Internal
Blocks of
Objects

Block 1

Block 2

Block n

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 133

3. The Work Item Server on the Process/iProcess Engine compiles an indexed collection of the
requested work items and sends it to the TIBCO iProcess Objects Server.

If filter, content, or sort criteria were passed in the method call on step 1, the work items in the
indexed collection will only contain the items that satisfy the criteria, sorted in the order specified
in the sort criteria.

The indexed collection of work items is maintained on the TIBCO iProcess Objects Server until
you either explicitly release it or it times out. See Controlling System Resources on page 141 for
more information.

At this point, no work items have been sent to the client — they are held in the indexed collection
on the TIBCO iProcess Objects Server until you request a specific item.

4. An sPageableListR object is created and returned to the client. This object contains information
about the indexed collection of work items on the TIBCO iProcess Objects Server, such as counts,
status, and type.

Note that the sPageableListR object acts somewhat like a Value Object in that it contains data
(counts, status, etc.). It does not maintain its own session with the TIBCO iProcess Objects Server,
but shares the user session of the original Server Object on which the method was called to create
the sPageableListR.

5. From the sPageableListR object, you can call the GetItem method to request a specific work
item, providing the index number of the desired item.

i. The first time the GetItem method is called, a message is sent to the TIBCO iProcess Objects
Server to request the work item. A “block” of work items containing the requested work item is
sent to the sPageableListR, where the block is internally maintained. (The size of the block is
controlled with the aItemsPerBlock parameter on the Get<ObjectClass>List method you
called to create the pageable list.) The requested work item is then returned to the client.

ii. All subsequent calls to GetItem cause it to first look in the internally held block(s) of work
items to see if it already has the requested object. If it has it in its internal block(s), it returns
that work item to the client. If the requested work item is not being held locally, a message is
sent to the TIBCO iProcess Objects Server to retrieve the block containing the desired work
item. The requested work item is then returned to the client.

Note that the IsKeepLocalItems flag on sPageableList controls whether or not more than one
block will be held locally. If this flag is set to True, multiple blocks can be held locally. If it’s set
to False, when another block is sent from the TIBCO iProcess Objects Server, the previous
block is automatically removed, thereby minimizing the use of local memory. See Client
Resources on page 141 for more information.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 134

Refreshing a Pageable List of Work Items

You can “refresh” a pageable list containing work items, i.e., rebuild the pageable list so that it:

• no longer includes work items that have been released from the work queue since you created
your pageable list,

• includes new work items that have been added to the work queue since you created your page-
able list, and

• includes the current status of each of the work items in the work queue.

The Refresh method causes the pageable list to be "refreshed" using the same filter and sort criteria as
the original list, then report back on whether the work items in the list have changed. A message is
sent to the server to request that the indexed collection of work items on the TIBCO iProcess Objects
Server be updated with the most recent work item data from the TIBCO iProcess Engine, i.e., new
work items in the queue are added to the collection, and released work items are removed. This also
causes any internal blocks of objects in the sPageableListR on the client to be cleared, and the counts
on the sPageableListR object to be updated.

The Refresh method contains an aRefreshAction parameter that is used to specify how to refresh the
list of work items. The values that can be passed in this parameter are enumerated using
SWPLRefreshType. This possible values are:

• swUpdate - This causes the list to be updated (i.e., refreshed) if there has been a change in the
list. (This is the default — there is a method signature that does not require a parameter.)

• swRecreate - This forces the list to be recreated, regardless of whether or not there has been a
change in the list. Note that when this value is passed, the status returned by the method is
always swPLChanged (for information about the return status, see the Refresh Status section
below). This is applicable in situations when you are keeping or releasing work items from your
own work queue, and there is no outside activity occurring (i.e., no new work items arriving).
Because no outside activity has occurred, the status on the pageable list will indicate there’s
been no change. If you attempt to refresh the list using swUpdate, it will not be recreated
because the server thinks there hasn’t been any change — this value allows you to force the
refresh in these situations.

• swUpdateWithDelta - This causes the list of work items to be refreshed “with delta”. This
causes the server to make available to you all of the work items that have changed. This allows
you to retrieve the work items that have been added to or deleted from the list, or those whose
status has changed. For more information about retrieving delta work items, see Work Queue
Deltas on page 94.

Refresh Status

The Refresh method returns a status indicator that tells you whether or not the refreshed pageable list
is different from the one you had. The refresh status is enumerated by SWPLStatusType. The possi-
ble status values are:

• swPLNoChange - The work items in the pageable list have not changed.

• swPLStatusOnly - Only the status of the items in the pageable list have changed (i.e., some
work items in the list have been locked and/or unlocked, or deadlines have expired, but the
same work items are still in the list).

• swPLChanged - Work items in the pageable list are different.

• swPLOrphaned - The pageable list is in a transition state between items being moved from
one work queue to another.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 135

Note - There’s an important distinction between calling Refresh and calling the Get<Object-
Class>List method again to get a new list of work items. If you call Refresh, you are using the same
user session and the same sPageableListR on the client. If you call the Get<ObjectClass>List method
again to re-acquire the pageable list of work items, a new user session is started and a new sPagea-
bleListR object is created — this is less efficient than calling Refresh.

Using a Director or Multiple Instances of the TIBCO iProcess Objects Server

If you are using a TIBCO iProcess Objects Director to connect to a TIBCO iProcess Objects Server,
or you are using multiple instances of the TIBCO iProcess Objects Server, be aware that a pageable
list of work items or predicted work items is tied to a specific instance of the TIBCO iProcess Objects
Server. If a pageable list of work items or predicted work items is created, that list can only be
accessed on the specific instance of the TIBCO iProcess Objects Server where it was created. This is
not just limited to getting the work items on the pageable list, but also to the method calls on work
items obtained from the pageable list. This is because the list holds state to the Work Item Server.

Use the GetNodeId method to get the vNodeId object for the particular instance of the TIBCO iPro-
cess Objects Server to which you are connected so you can connect to that same instance at a later
time.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 136

Using Pageable Lists with Cases, WorkQs, Groups, Users, and OSUsers

The following graphic illustrates how pageable lists are created when they contain cases, work
queues, groups, users, or OSUsers:

1. When a method is called on a Server Object that returns a pageable list containing cases, work
queues, groups, users, or OSUsers, a message is sent to the TIBCO iProcess Objects Server
requesting the objects.

2. The TIBCO iProcess Objects Server calls a function on the TIBCO Process/iProcess Engine
(where the actual data is maintained) requesting the data.

3. The TIBCO Process/iProcess Engine compiles an indexed collection of the requested objects and
sends it to the TIBCO iProcess Objects Server.

If the method called is requesting a pageable list of cases, the method call may contain filter and
sort criteria. If so, the cases in the indexed collection will only contain the cases that satisfy the cri-
teria, sorted in the order specified in the sort criteria. (Filter and sort criteria don’t apply to work
queues, groups, users, and OSUsers.)

The indexed collection of items is maintained on the TIBCO iProcess Objects Server until you
either explicitly release it or it times out. See Controlling System Resources on page 141 for more
information.

At this point, no items have been sent to the client — they are held in the indexed collection on the
TIBCO iProcess Objects Server until you request a specific item.

sPageableList

CriteriaRequest

Summary

ItemsPerBlock

GetItem

LocalCnt

Clear

HeldId

IsKeepLocalItems

ContentRequest

Type

AvailableCnt

Hold

Dispose

GetWorkQList

TIBCO iProcess
Objects Server

Indexed
Collection

TIBCO
Process/
iProcess
Engine

Message Buffers

.

.

.

TCP/IP

5ii

Internal
Blocks of
Objects

Block 1

Block 2

Block n

5i

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 137

4. An sPageableList object is created and returned to the client. This object contains information
about the indexed collection of items on the TIBCO iProcess Objects Server, such as counts, sta-
tus, and type.

Note that the sPageableList object acts somewhat like a Value Object in that it contains data
(counts, status, etc.). It also does not maintain its own session with the TIBCO iProcess Objects
Server — it shares the user session of the original Server Object on which the method was called
that created the sPageableList.

5. From the sPageableList object, you can call the GetItem method to request a specific case, work
queue, group, user, or OSUser, providing the index number of the desired item.

i. The first time the GetItem method is called, a message is sent to the TIBCO iProcess Objects
Server to request the item. ALL items in the indexed collection on the TIBCO iProcess Objects
Server are sent to the message buffers. A “block” of items containing the requested object is
created from the data in the message buffers, which is then sent to the sPageableList, where the
block is internally maintained. (The size of the block is controlled with the aItemsPerBlock
parameter on the Get<ObjectClass>List method you called to create the pageable list.) The
requested object is then returned to the client.

Note that because all of the items in the indexed collection on the TIBCO iProcess Objects
Server are sent to the message buffers the first time you access one of them, the first access may
be slow if there is a large number of items in the indexed collection. All subsequent accesses
will be very fast.

ii. All subsequent calls to GetItem cause it to first look in the internally held block(s) of objects
to see if it already has the requested object. If it has it in its internal block(s), it returns that
object to the client. If the requested object is not being held locally, another block of objects is
created from the data in the messages buffers. The new block is sent to the sPageableList and
the requested object is then returned to the client.

Note that the IsKeepLocalItems flag controls whether or not more than one block will be held
locally. If this property is set to True, multiple blocks can be held locally. If it’s set to False,
when another block of objects is created from the message buffer data, the previous block is
automatically removed. See Client Resources on page 141 for more information.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 138

Held Pageable Lists

You can specify that a pageable list be “held,” which allows an application to disconnect from the
TIBCO iProcess Objects Server, then reconnect at a later time and have access to the same collection
of objects (same pageable list).

To hold a pageable list, call the Hold method on sPageableList and pass True in the aHoldList param-
eter. This causes a “held ID” to be generated that identifies that specific pageable list. The held ID is
returned by the Hold method (it is also available by accessing the HeldId property on the
sPageableList object, but the Hold method must have been previously called). You are responsible
for saving the held ID (typically as a cookie) so that it can be used at a later time as an input parameter
to a method to retrieve the held pageable list. For example:

sPageableListR GetWorkItemListHeld(string aHeldId)

There is a Get<ObjectClass>ListHeld method for each of the object types found on a pageable list.
The “<ObjectClass>” portion of the method name tells you the type of object in the held pageable list,
as follows:

Note that held pageable lists containing work items and predicted work items are actually held by the
TIBCO iProcess Objects Server, whereas held pageable lists containing other types of objects (cases,
work queues, etc.) are actually held by the client. This means that if the TIBCO iProcess Objects
Server should crash, you will lose any held pageable lists containing work items or predicted work
items. And if the client should crash, you will lose any held pageable lists containing the other types
of objects.

The IsReturnAllFields Flag is always False on Held Pageable Lists

If you call GetACaseList, GetAWorkItemList, or GetWorkItemList, and pass a vACaseContent
or vWIContent object that has the aIsReturnAllFields parameter set to True, the pageable list that is
returned will contain all available fields and show IsReturnAllFields=True (which you can obtain
from sPageableList.ContentRequest). The content and criteria objects are echoed directly back so
that you can see the content/criteria that the pageable list was created with. However, if you "hold"
this pageable list of cases or work items, then later retrieve the held list, the list that is returned will
show IsReturnAllFields=False (even though the list still contains the same fields from the original

Server Object Held List Retrieval Method

sNode GetAGroupListHeld

GetOSUserListHeld

GetUserListHeld

GetWorkQIdListHeld

sWorkQManager GetWorkQListHeld

GetAWorkQListHeld

sWorkQ GetWorkItemListHeld

GetAWorkItemListHeld

sCaseManager GetACaseListHeld

GetPredictedItemListHeld

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 139

list). This is because when a list is held, the server resolves some values for efficiency reasons. In this
case, "all fields" is resolved into a list of fields, so when the held pageable list is retrieved, it is not pos-
sible to determine if the original request was for a list of fields or a request for all fields.

Access Permissions

Only the user who creates a held pageable list (with a Get<ObjectClass>List method) can re-access
that list with a Get<ObjectClass>ListHeld method, with the following exception:

• If the pageable list contains work items, and the list of work items is from a group work queue,
any member of that group can re-access the held pageable list.

Freeing a Held Pageable List

A held pageable list is freed in one of the following ways:

• By calling the Hold method and passing False in the aHoldList parameter. This releases the page-
able list. Future attempts to access the pageable list with the held ID will not be successful.

• By calling the Disconnect method and passing True in the aReleaseAllResources parameter. This
immediately releases all pageable lists being held on behalf of the user being disconnected.

• Automatically by timing out. The timeout mechanism used depends on where the held pageable
list is being held — held pageable lists containing work items or predicted work items are held by
the TIBCO iProcess Objects Server; held pageable lists containing cases, work queues, groups,
users, or OS users are held by the client:

- Held by the client - Each pageable list that is held by the client has a timer that defaults to
900 seconds (15 minutes). When this timer times out, the held pageable list is destructed.
The timer is reset whenever a held pageable list is accessed, either with the GetItem method
or by calling the Get<ObjectClass>ListHeld method.

If you would like to change this timer from the default value of 900 seconds, you must add a
Registry key (Windows) or an environment variable (UNIX).

The Windows Registry key is:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SSO Client\PLHeldTimeOut

The UNIX environment variable is:

SSOClient_PLHeldTimeOut

The timeout value is defined in seconds. The minimum it can be set to is 30 seconds; if set to
a lower value, it will revert to 30 seconds. The maximum is 43,200 seconds (12 hours).

Neither the Registry key nor the environment variable are automatically created for you.
You must create them if you want to configure this value.

Note - If the software is installed on a 64-bit machine, the Registry path will include "Wow6432Node"
as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Staffware plc\...

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 140

- Held by the TIBCO iProcess Objects Server - Each pageable list that is held by the
TIBCO iProcess Objects Server has a timer that defaults to 900 seconds (15 minutes).
When this timer times out, the held pageable list is destructed. The timer is started when
you disconnect from the TIBCO iProcess Objects Server.

This timer is configured using the WQSAbandonedPeriod TIBCO iProcess Objects
Server configuration parameter. For more information, see the TIBCO iProcess Objects
Server Administrator’s Guide.

Pageable List Counts

There are a number of properties available that provide information about the number of items on a
pageable list. They are:

On sPageableList:

• Available Count (AvailableCnt) - This returns the total number of items available in the
indexed collection on the TIBCO iProcess Objects Server. If the list contains work items or
cases, and filter criteria was specified when the pageable list was created, this count will
include only the work items or cases that satisfy the filter criteria.

• Local Count (LocalCnt) - This returns the number of objects currently being held in the local
bock(s) on the sPageableList. If IsKeepLocalItems has been set to False, this count will always
be less than or equal to the number of items per block (ItemsPerBlock).

On vSummary:
These counts are applicable only if the pageable list contains cases or work items.

• Exclude Count (ExcludeCnt) - This returns the number of cases or work items that did not sat-
isfy the specified filter criteria, and therefore, were not included in the pageable list. (Note -
This count may or may not be available, depending on which filtering enhancements have been
implemented in your TIBCO iProcess Objects Server. See the appropriate Filtering Work Items
and Cases chapter on page 174, page 201, or page 227.)

• Invalid Count (InvalidCnt) - This returns the number of cases or work items that did not sat-
isfy the filter criteria because the filter expression was invalid within the context of the item.
For example, the filter expression references a field name that is not defined on all work items
or cases. (Note - This count may or may not be available, depending on which filtering
enhancements have been implemented in your TIBCO iProcess Objects Server. See the appro-
priate Filtering Work Items and Cases chapter on page 174, page 201, or page 227.)

• Over Maximum Count (OverMaxCnt) - This returns the number of cases that were not
returned from the server because the number returned was limited using the aMaxCnt parame-
ter on the vACaseCriteria constructor when retrieving a list of cases. This is applicable only
when retreiving cases.

On vWISummary:
These counts are applicable only if the pageable list contains work items.

• Urgent Count (UrgentCnt) - This returns the number of work items on the pageable list that
are marked as urgent. A work item is marked as urgent if its priority value
(vWorkItem.Priorty) is less than or equal to a specific value. By default, the value is 10,
although it can be modified in the staffcfg file.

• Deadline Count (DeadlineCnt) - This returns the number of work items on the pageable list
that have deadlines.

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 141

• Unopened Count (UnopenedCnt) - This returns the number of work items on the pageable list
that have not been opened (locked)

Controlling System Resources

Mechanisms are provided for controlling resources on both the TIBCO iProcess Objects Server and
the client when working with pageable lists. Using these features to free up resources may result in
improved performance. The mechanisms available are described below.

Server Resources

All pageable lists that are being held on behalf of a user can be released by calling:

sBase.Disconnect(aReleaseAllResources)

and passing True in the aReleaseAllResources parameter. This immediately releases all held pageable
lists from the TIBCO iProcess Objects Server that were held by the user.

Note - Calling the Disconnect method and passing True in the aReleaseAllResources parameter also
closes the user session and the Work Queue Server session that are currently open for the Server
Object, thereby releasing all resources in use by the Server Object.

Held pageable lists are also automatically released after a specified period of inactivity. If you do not
access the held list in the specified period of time in the held pageable list timer, the list is automati-
cally released (see Freeing a Held Pageable List on page 139).

Client Resources

The internal blocks of objects maintained in the sPageableList object consume local memory as they
are added to the pageable list. Several mechanisms are provided to allow you to control this memory
usage:

• Setting the size of the blocks

• Automatically clearing blocks

• Explicitly clearing blocks

Setting the Size of the Blocks

The number of objects in each block that is retrieved from the TIBCO iProcess Objects Server (for
work items) or created from the data in the message buffers (for cases, work queues, groups, users,
and OSUsers) can be controlled by setting the aItemsPerBlock parameter on the Get<Object-
Class>List method to the desired number:

sPageableListR GetWorkItemList(vWICriteria aWICriteria,

vWIContent aWIContent,

int aItemsPerBlock)

The default number of items per block is 20.

You can view the current number of items per block by calling:

sPageableList.ItemsPerBlock

Working with Lists

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 142

Automatically Clearing Blocks

As each new block of objects is added to the internally held blocks in the sPageableList, you can
cause a previous block to be automatically removed by setting the IsKeepLocalItems flag to False.
This ensures that only one block at a time is kept internally on the sPageableList object. This prop-
erty defaults to False.

Explicitly Clearing Blocks

When the objects in the internal blocks are no longer needed, you should free up local memory by
calling:

sPageableList.Clear

These local resources will also be automatically freed up when the pageable list is destroyed.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 143

9
Retrieving

Dependent Objects

Introduction

Many of the Value Objects that are retrieved from the TIBCO iProcess Objects Server with the
Get<ObjectClass> or Get<ObjectClass>List methods have “dependent objects” that can also be
returned with the primary object class. For example, the vUser object shown below has several depen-
dent objects — vWorkQ objects, role and group names (both strings), and vAttribute objects.

When you call the GetUsers or GetUserList method, you can include a “content” parameter
(aUserContent in this particular case) that specifies how much content (i.e., dependent objects) to
include with the vUser objects that are returned:

vUser[] GetUsers(string[] aUserNames,

vUserContent aUserContent)

sPageableList GetUserList(vUserContent aUserContent,

int aItemsPerBlock)

The content parameter requires you to pass a “content” Value Object (vUserContent in the examples
above) that identifies how much content to return.

vUser vWorkQ

vWorkQvUserId

Name

Description

MenuName

WorkQs

RoleNames

GroupNames

Attributes

string

vAttribute

Name

Value

Type

Dependent
Objects

Retrieving Dependent Objects

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 144

Content Request Objects

The following is a list of the available content request objects, as well as information about the content
that can be filtered using the content request objects.

Content Request Object
Value Object Retrieved
from Server

Dependent Objects

vACaseContent vACase • vAuditStep (audit data)

• vField (case data)

vAGroupContent vAGroup • vAttribute (group attributes)

• string (user names -- members of group)

vAProcContent vAProc • vProcSummary (dynamic counts for live cases of
procedure)

vAWIContent vAWorkItem • vWorkQId (forwardable work queues)

vAWorkQContent vAWorkQ • vParticipation (participation schedules)

• vRedirection (redirection schedule)

• string (supervisor names)

• vCDQPDef (CDQP definitions)

vGroupContent vGroup • vAttribute (group attributes)

vOutstandingItemContent vOutstandingItem • vNormalItem

• vEventItem

• vEAIItem

• vSubProcCallItem

• vDynamicSubProcItem

• vGraftItem

vProcDefContent vProcDef • vAccessUserRef (users with admin authority)

• vAccessUserRef (users with start authority)

• string (nodes to which procedure is networked)

• vStepId (steps in procedure)

• vFieldDef (fields in procedure)

vStepContent vStep • vAction, vConditional, vDeadline, vAd-
dressUserRef, vCommand, vPermission, vPriority

(routing information)a

• vFMarking (form marking data)

vUserContent vUser • vAttribute (user attributes)

• string (group names -- to which user belongs)

• string (role names -- to which user belongs)

• vWorkQ (work queues -- to which user is
assigned)

Retrieving Dependent Objects

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 145

Using Content Request Objects

Most of the content request objects contain Boolean “IsWith” parameters that allow you to specify
whether or not the dependent object represented by the “IsWith” parameter should be included when
retrieving the primary object class from the server.

For example, the vGroupContent object has an IsWithAttributes parameter that specifies whether or
not to include dependent vAttribute objects with the vGroup objects retrieved from the server. See
the vGroupContent constructor below:

vGroupContent(bool aIsWithAttributes)

To include the dependent vAttribute objects, construct the vGroupContent object with aIsWithAt-
tributes set to True, then use that object as an input parameter with the sUser.GetGroups method.

Retrieving Dependent Objects

Once you have called a Server Object method that retrieves one or more Value Objects that contain
dependent objects, a property is accessed on the Value Object to retrieve the desired dependent
objects. This indicates the presence of the dependent objects.

Using the vUser object as an example, accessing
vUser.Attributes, results in one of the following
being returned:

• An array of vAttribute objects. Obviously,
the dependent vAttribute objects were
asked for when retrieving the vUser objects.

• An empty array of vAttribute objects. The
dependent vAttribute objects were asked
for when retrieving the vUser objects, but
there aren’t any.

• A NULL. This indicates that the dependent
vAttribute objects were not asked for when
the vUser objects were retrieved.

vWIContent vWorkItem • vField (Case Data - actually on the vCase object
from which vWorkItem is derived)

• vCDQP (CDQP data)

vWIFGContent vWIFieldGroup • vField (Work Item Data)

a. Note that all of the dependent objects listed do not apply to all step types.

Content Request Object
Value Object Retrieved
from Server

Dependent Objects

vUser vWorkQ

vWorkQvUserId

Name

Description

MenuName

WorkQs

RoleNames

GroupNames

Attributes

string

vAttribute

Name

Value

Type

Retrieving Dependent Objects

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 146

Controlling Case Data

When using the content request objects to control content on work items and cases, you can also spec-
ify which Case Data (i.e., the fields that contain the Case Data) to return with the work items and
cases.

The constructors for the vWIContent and vACaseContent objects both have the following parame-
ters, which are used to control Case Data returned with the work items and cases:

• aCaseFieldNames - This parameter allows you to pass in an array of strings identifying the
Case Data fields you want returned with the work items or cases.

• aIsReturnAllFields - This Boolean parameter allows you to specify that you want all Case Data
fields returned with the work item or case (rather than having to list them all in the aCaseField-
Names parameter).

Use the aIsReturnAllFields parameter with caution, however, as it can result in a significant amount of
data being sent across the network.

The vWIContent object also has similar parameters for specifying the Case Data Queue Parameter
(CDQP) fields you want returned with the work items:

• aCDQPNames - This parameter allows you to pass in an array of strings identifying the CDQP
fields you want returned with the work items.

• aIsReturnAllCDQPs - This Boolean parameter allows you to specify that you want all CDQP
fields returned with the work item (rather than having to list them all in the aCDQPNames
parameter).

Controlling Fields Returned when Locking Work Items

When you lock one or more work items with the LockItems method, it returns an array of
vWIFieldGroup objects, one for each work item that was locked.

When you lock the first available work item in a list with the LockFirstItem, LockFirstWorkItem,
or LockFirstAWorkItem method, a vWILocked object is returned, which provides access to a
vWIFieldGroup object for the work item that was locked.

The vWIFieldGroup objects contain dependent vField objects, one for each field defined in that
group of fields.

You can control which fields are returned from the server when a work item is locked by using the
vWIFGContent object when calling LockItems.

The vWIFGContent object has the following parameters to control work item fields:

• aWIFieldNames - This parameter allows you to pass in an array of strings identifying the work
item fields you want returned with the work items.

Note that the work item fields returned when locking the work items contain “Work Item Data.”
See Case Data vs. Work Item Data on page 149 for information about the difference between
Work Item Data and Case Data.

• aFieldsOption - This parameter uses the SWFieldsOptionType enumeration to identify the
option you have chosen for returning the work item fields upon locking a work item. The
options are:

- ssoFormMarkings - Return only visible markings on the form (based on conditional
statements on the form).

Retrieving Dependent Objects

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 147

- ssoAllMarkings - Return all markings on the form (whether visible or not).

- ssoFieldList - This isn’t applicable when locking work items (to return a list of fields
when locking work items, use the vWIFGContent object constructor with the
aWIFieldNames parameter). This enumeration is returned in the FieldsOption property
if you view the content object after locking work items, and you passed in a fields list.

Note - If you are using iProcess Modeler-produced forms, you can use any of the three constructors
for vWIFGContent shown in the on-line help system. However, if you are using a different type of
form, you must use the constructor in which you pass in the array of field names; using the constructor
with no parameters with a non-iProcess Modeler-produced form causes an empty list to be returned
from the server. The constructor with the SWFieldsOptionType enumeration is only applicable to
markings, which are only applicable to iProcess Modeler forms.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 148

10
iProcess Fields

What is a iProcess Field?

An iProcess field represents a field that is defined in an iProcess procedure. Before a field can be
placed on a form, the field must be defined in the procedure using TIBCO Business Studio.

iProcess fields are represented by the following two Value Objects:

• vFieldDef - This represents a field definition, as defined in TIBCO
Business Studio. It includes the name and type of field (numeric,
ASCII text, date, etc.), as well as the length and decimal place count
definition. Since this object represents the definition of the field, it
does not contain data — the Value property will return the
SWEmptyField object.

Field definitions can be accessed using the following:

- sProcManager.GetFieldDefs - This method sends a mes-
sage to the server to retrieve an array of vFieldDef objects,
one for each field defined in the procedure.

- vProcDef.FieldDefs - This property returns an array of vFieldDef objects, one for each
field defined in the procedure represented by the local Value object.

• vField - This represents a field in the context of a live case. These Value Objects will contain a
value if data has been entered into the field. There are two properties that can be used to obtain
vField objects:

- CaseFields - This property on vCase returns an array of vField objects, one for each
field in the live case represented by the case Value Object.

The data in the fields returned by this property is considered “Case Data”. See “Case
Data vs. Work Item Data” on page 149 for more information.

- WorkItemFields - This property on vWIFieldGroup returns an array of vField objects,
one for each field in the work item.

The data in the fields returned by this property is considered “Work Item Data”. See
“Case Data vs. Work Item Data” on page 149 for more information.

Note that the vField objects that are returned by CaseFields and WorkItemFields may have
been limited by content filtering when the vCase or vWIFieldGroup object was retrieved from
the server. In other words, they may not include all fields in the case or work item; it depends on
how many fields were requested when the vCase and vWIFieldGroup objects were retrieved
from the server. For more information, see “Retrieving Field Data from the Server” on
page 150.

vFieldDef

Length

DecimalPlaceCnt

vField

Name

Value

Type

IsArrayField

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 149

Case Data vs. Work Item Data

There are two types of data associated with a live case — Case Data and Work Item Data.

• Case Data is the “official” data for the case. This data is updated only when a work item is
released. If there is another step in the procedure that results in another work item being added
to another work queue, this data is copied to the next work item (where it becomes “Work Item
Data” — see the illustration below).

You can obtain Case Data by accessing the CaseFields property, then accessing the Value prop-
erty on the desired vField object.

• Work Item Data is a copy of the Case Data that is taken when a work item is moved to a queue.
This is a temporary holding area for the data associated with this work item that is maintained as
long as the work item is kept in the work queue. When the work item is released, the data is
written to Case Data. (Work item data is sometimes called “pack data” or “packfile” data.)

You can obtain Work Item Data by accessing the WorkItemFields property, then accessing the
Value property on the desired field. (Note that you must first lock the work item(using the
LockItems, LockFirstItem, LockFirstWorkItem, or LockFirstAWorkItem method), which
returns a vWIFieldGroup object, from which WorkItemFields can be called. In other words,
Work Item Data is only accessible from locked work items.)

Including Field Data when Starting a Case

If you start a case “with field data” (i.e., you are passing field names in the aFields parameter on the
StartCase method), you also have the option of “keeping” or “releasing” the step when the case is
started (using the aReleaseItem parameter on the StartCase method). The effect this has on Case Data
and Work Item Data is described below:

• If you “keep” the start step when the case is started (the StartCase aReleaseItem parameter =
False), the data that is passed with StartCase is copied to the Work Item Data of the first step.
The Case Data will remain empty until the first step is released.

• If you “release” the start step when the case is started (the StartCase aReleaseItem parameter =
True), the data that is passed with StartCase is copied to the Case Data and the flow moves to
the next step. This is equivalent to doing a “keep,” then a “release” on the first step.

Note - If a field has been defined as a numeric field on the iProcess form, and you are passing a value
into that field when starting a case, you MUST pass in a Double, otherwise an exception is thrown.

Case
Start

Step1

Case Data

Work Item
Data1

Release

Keep

Step2

Work Item
Data2

Release

Keep

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 150

Setting Case Data

You can modify the Case Data for one or more fields in the case using the SetCaseData method on
sCaseManager. This method requires you to pass in an array of vField objects that contain the names
of the fields and the values you want assigned to those fields:

void SetCaseData(string aCaseTag,

vField[] aFields)

Note - You must be using a TIBCO iProcess Engine to use the SetCaseData method.

Checking/Setting Uninitialized Fields

An iProcess field can have a value of SW_NA. This means the value has never been set, therefore, it
is uninitialized.

The iProcess Server Objects interface supports this concept of uninitialized field through the special
SWEmptyField object. The vField.Value property returns an object, therefore if the iProcess field
value is SW_NA, the vField.Value method will return the SWEmptyField object.

Assigning an SWEmptyField object to a field resets the iProcess field to the uninitialized state.

Parallel Steps

Because each step has its own Work Item Data, this can create problems if your procedure has parallel
steps that change a common field. As each step is released, it copies its changed Work Item Data to
the Case Data, overwriting the data that was written to Case Data by any previous parallel steps. Any
other parallel steps that have not been released yet, do not see the new Case Data — they still only see
the Work Item Data that belongs to that step. (Note that to overwrite any previous case data, the field
must actually be sent to the server when you release the work item with the releaseItems method. For
more information, see “Passing Field Data when Keeping/Releasing Work Items” on page 152.)

In the end, the value of the common changed field in the Case Data will be the value from the last par-
allel step to be released.

Retrieving Field Data from the Server

To provide more control over resource usage, field data (i.e., vField objects) is not returned from the
TIBCO iProcess Objects Server unless it is specifically requested. This minimizes network traffic and
provides a faster response.

You must specify which fields you want returned from the server when you:

• retrieve cases

• retrieve work items

• lock work items

This is accomplished with the vACaseContent, vWIContent, and vWIFGContent objects, respec-
tively. These “content” objects are used as input parameters on methods used to retrieve cases and
work items, and lock work items.

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 151

Including Field Data when Retrieving Cases

To include fields when retrieving cases from the server, do the following:

1. Construct a vACaseContent object, specifying the desired fields in the aCaseFieldNames parame-
ter, or pass True for the aIsReturnAllFields parameter to request all fields to be returned.

2. Pass the vACaseContent object as an input parameter with either the GetACases or
GetACaseList method. These methods return vACase objects.

3. Use the CaseFields property to get the vField objects that were returned from the server.

Including Field Data when Retrieving Work Items

Remember that when you retrieve a work item from the server, you also receive the vCase base class.
It’s this base class from which fields on the work item are available. Note, however, that even though
the fields are from a work item, they contain Case Data. The Work Item Data is not available until you
lock the work item — see the next subsection.

To include fields when retrieving work items from the server, do the following:

1. Construct a vWIContent object, specifying the desired fields in the aCaseFieldNames parameter,
or pass True for the aIsReturnAllFields parameter to request all fields to be returned.

2. Pass the vWIContent object as an input parameter with either the GetWorkItems,
GetWorkItemList, or GetAWorkItemList method. These methods return either vWorkItem or
vAWorkItem objects.

3. Use the CaseFields property to get the vField objects that were returned from the server. (The
CaseFields property is on vCase — the work item objects are derived from vCase.)

Including Field Data when Locking Work Items

Locking work items results in an array of vWIFieldGroup objects being returned, each representing a
group of fields on a work item. When you lock work items, you specify which fields are to be
returned, and therefore, represented by the vWIFieldGroup object.

To specify which fields are to be returned from the server when locking work items, do the following:

1. Construct a vWIFGContent object, specifying the desired fields in the aWIFieldNames parame-
ter. You can also use the aFieldsOption parameter to specify that you want, for example, only visi-
ble fields returned, or all fields returned, etc. See the SWFieldsOptionType enumeration in the
on-line help for more information about the options available.

2. Pass the vWIFGContent object as an input parameter with the LockItems, LockFirstItem,
LockFirstWorkItem, or LockFirstAWorkItem method.

If you are using the LockItems method, an array of vWIFieldGroup objects are returned, one for
each work item that was locked.

If you are using the LockFirstItem, LockFirstWorkItem, or LockFirstAWorkItem method, a
vWILocked object is returned, from which you can obtain a vWIFieldGroup object for the work
item that was locked.

3. Use the WorkItemFields property to get the vField objects that were returned from the server.
These vField objects contain Work Item Data.

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 152

Note - For more information about content request objects, see “Retrieving Dependent Objects” on
page 143.

Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering and sorting on
the value of fields in work items. To make use of this functionality, you must first pre-designate the
fields you want to filter/sort on as CDQP fields. Fields are designated as CDQP fields with the utility,
swutil. This utility is used to create a list, on the TIBCO Process/iProcess Engine, of the case data
fields that are available to use for filtering and sorting. For information about using swutil, see the
TIBCO iProcess swutil and swbatch Reference Guide.

For information about using CDQP fields for filtering, see the Using Case Data Queue Parameter
Fields section in the appropriate Filtering Work Items and Cases chapter on page 192, page 218, and
page 242.

For information about using CDQP fields for sorting, see “Using Case Data Queue Parameter
Fields” on page 255.

Passing Field Data when Keeping/Releasing Work Items

When keeping work items (KeepItems method) or releasing work items (ReleaseItems method), you
can specify which fields to send to the server. This allows you to limit the amount of field data that is
being sent from the client to the server.

To specify which fields are to be sent to the server when keeping or releasing work items, do the fol-
lowing:

1. Construct an array of vWIFieldGroup objects, specifying the work item fields you would like sent
to the server.

2. Pass the vWIFieldGroup object as an input parameter with the KeepItems or ReleaseItems
method.

Note - If a field has been defined as a numeric field on the iProcess form, and you are passing a value
into that field when keeping or releasing the work item, you MUST pass in a Double, otherwise an
exception is thrown.

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 153

What are Markings?

A “marking” is a field that is associated with a specific step on an iProcess Modeler-produced form.
Placing the field on a form makes the association.

Note - Markings are applicable only for iProcess Modeler forms — they do not apply to other types of
forms. The TIBCO iProcess Modeler was used to create procedures and forms prior to TIBCO Busi-
ness Studio being available.

Markings are represented by the vFMarking and vAFMarking objects.
These objects represent the marking as it is defined on an iProcess form at
design time. They have properties that define the physical characteristics of
the field/marking on the form, but they do not have a Value property, i.e.,
markings do not contain data.

You can retrieve the vAMarking objects for an entire procedure or for a par-
ticular form:

• Procedure - Calling the GetFormMarkings method returns an array
of vAFMarking objects, one for each marking in the specified proce-
dure.

• Form - Each form (vForm object) contains an FRows property that
returns an array of vFRow objects, one for each row on the form. The
vFRow objects have an AFMarkings property that returns an array of
vAFMarking objects, one for each marking in that row.

The information available from these objects can be used to represent an
iProcess form using other UI tools.

Type Validation on Fields/Markings

There are a couple of different type properties associated with fields and markings. These are accessi-
ble with the following properties:

• vField.Type

• vFMarking.FieldType

Both of these properties return the type of data (e.g., numeric, date, ASCII text, etc.) that can be
placed in the field/marking. These types are enumerated by the SWFieldType enumeration.

Note - The vFMarking object also has a Type property. However, unlike vField.Type, it identifies the
data-entry requirements for the marking on the form (optional, required, etc.). These are enumerated
in the SWMarkingType enumeration.

Note - Markings are applicable only for iProcess Modeler forms — they do not apply to other types of
forms. The TIBCO iProcess Modeler was used to create procedures and forms prior to TIBCO Busi-
ness Studio being available.

When the value of a field is set, the type of the variable passed is validated against the type specified
by vFMarking.FieldType. If the types do not match, an attempt is made to convert the data (details of
what can be converted can be found in the Value topic in the on-line help system). If the types do not
match, and the data cannot be converted, a “type mismatch error” is generated.

vAFMarking

vFMarking

ExprValidations

Font

Help

ListNames

Length

Name

Row

Type

FieldType

Column

DecimalPlaceCnt

IsArrayField

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 154

Accessing Memo Fields

Fields of type swMemo can be accessed through the Value property on the vField object (note that
your TIBCO iProcess Objects Server must have CR 8427 implemented to be able to access memo
fields). Also, all methods that have field names and field values as input parameters support the use of
fields of type swMemo as input parameters.

Because the TIBCO iProcess Engine must perform file I/O to store memo data, the length of time
between when the client requests that a memo value be stored on the server, and the time when the cli-
ent receives a reply that the data was successfully stored, can be several seconds. Because of this, you
may have a desire to configure your system so that if a specified period of time elapses waiting for a
response from the server, the client will timeout and generate an error. To configure this “message
wait time,” you must add a Registry entry (Windows) or environment variable (UNIX), and set it to
the number of milliseconds you would like the client to wait before timing out.

For information about setting the message wait time, see “Message Wait Time” on page 270.

Accessing Attachments

You cannot directly access the data in fields of type swAttachment. The data in this type of field is
the TIBCO-generated name and path to the file on the server containing the data. You would have to
locate the file, then read and parse the contents of the file yourself. They are not moved to the client
machine.

Accessing System Fields

The built-in system fields (e.g., SW_CASE, SW_STARTER, etc.) provide the TIBCO iProcess
Engine with references to information about work items and cases. These fields are primarily used
when performing filtering and sorting functions.

The information that is available to the TIBCO iProcess Engine through the system fields is also
available to the client through properties on various Value Objects. For example, SW_CASENUM is
available to the client with the vCaseId.CaseNumber property, SW_PRIORITY is available to the
client with the vWorkItem.Priority property, etc. The TIBCO iProcess Engine, however, doesn’t
have access to the Value Objects, so those properties can’t be used in filter and sort expressions —
instead, you must use the system field names in your expressions. For example, when constructing the
vWICriteria object, the aFilterExpression parameter could be set to the following string:

“SW_CASENUM=5”

This evaluates to a Boolean expression — the work items for which this is True (where case number
equals 5) will be returned.

For lists of the system fields that can be used when filtering and sorting, see the appropriate Filtering
Work Items and Cases chapter on page 188, page 214, or page 239 and “System Fields used in
Sorting” on page 253.

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 155

Array Fields

Array fields are defined using TIBCO Business Studio's Field Definition dialog in the same way as
standard single-instance fields. An option on the Field Definition dialog allows you to designate the
field as either a single-instance field or an array field. If designated as an array field, the field can hold
up to 99,999 data elements, each identified by an index (the field name followed by an index number
in brackets "[]").

For example, the array field CUSTNAME would be referenced by:

CUSTNAME[0]

CUSTNAME[1]

CUSTNAME[2]

...and so on. See “Array Field Indexes” on page 156 for more information about indexes.

Array fields can be used in the same way as single-instance iProcess fields, i.e., they can be used on
iProcess forms and in scripts. They are also used with both dynamic sub-procedure call steps and graft
steps. These types of steps allow an arbitrary number of sub-procedure cases to be started from, or
grafted to, a parent case. Array fields provide the ability to dynamically create variable length sets of
data elements that may be passed between the parent and sub-procedures.

You can determine whether a field is a single-instance field or an array field using the following prop-
erty:

• ArrayField - This Boolean flag, available on vFieldDef and vFMarking returns True if the
field is defined as an array field. It returns False if the field is defined as a single-instance field.

When used with dynamic sub-procedure call steps and graft steps, array fields are used in the follow-
ing ways:

• To identify the sub-procedures to start - When a dynamic sub-procedure call step or graft
step is defined in a procedure, instead of specifying the names of the sub-procedures (or exter-
nal processes) to start from that step, a text array field is specified. For dynamic sub-proce-
dures, the customer application is responsible for assigning the names of the sub-procedures it
wishes to have started to the elements of the array field. For graft steps, the StartGraftTask
method is called, which specifies the sub-procedures / external processes to start — these
names are automatically written to the elements of the array field.

For example, suppose a dynamic sub-procedure call step specifies SPROCS as the array field
that will contain the names of the sub-procedures to start. If the application wants sub-proce-
dures SUB1, SUB5, and SUB7 to be started, it must assign to the elements of SPROC the fol-
lowing prior to the step being processed:

vField[] startProcs = new vField[3];

startProcs[0] = new vField("SPROCS[0]", "SUB1", SWFieldType.swText);

startProcs[1] = new vField("SPROCS[1]", "SUB5", SWFieldType.swText);

startProcs[2] = new vField("SPROCS[2]", "SUB7", SWFieldType.swText);

Note that the array field elements do NOT have to have contiguous indexes. For example, they
could appear as follows::

vField[] startProcs = new vField[3];

startProcs[0] = new vField("SPROCS[0]", "SUB1", SWFieldType.swText);

startProcs[1] = new vField("SPROCS[2]", "SUB5", SWFieldType.swText);

startProcs[2] = new vField("SPROCS[3]", "SUB7", SWFieldType.swText);

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 156

They also don’t have to be in order. For example:

vField[] startProcs = new vField[3];

startProcs[0] = new vField("SPROCS[0]", "SUB1", SWFieldType.swText);

startProcs[1] = new vField("SPROCS[2]", "SUB5", SWFieldType.swText);

startProcs[2] = new vField("SPROCS[1]", "SUB7", SWFieldType.swText);

• To identify the start steps - When a dynamic sub-procedure call step is defined in a procedure,
a non-default "start step" may also be defined for each of the sub-procedures to be started (this
functionality is not available for graft steps). These are also specified in a text array field. The
step to start each sub-procedure is taken from the specified array field using the same element
index as the "sub-procedure to start" array field.

For example, continuing from the example in the bullet item above, suppose a dynamic sub-
procedure call step specifies STARTSTP as the array field that will contain the names of the
non-default start steps for the sub-procedures that are started by that dynamic sub-procedure
call step. If the application wants sub-procedure SUB1 to start at STEP1, SUB5 to start at
STEP2, and SUB7 to start at STEP5, it must assign to the elements of STARTSTP the follow-
ing values prior to the step being processed:

vField[] startSteps = new vField[3];

startSteps[0] = new vField("STARTSTP[0]", "STEP1", SWFieldType.swText);

startSteps[1] = new vField("STARTSTP[1]", "STEP2", SWFieldType.swText);

startSteps[2] = new vField("STARTSTP[2]", "STEP5", SWFieldType.swText);

If the "start step" array field (STARTSTP in this example) element that corresponds to the same
index as the "sub-procedure to start" array field is unassigned, the sub-procedure case is started
at that sub-procedure's default start step.

Array Field Indexes

As described in the above subsections, array field elements can be referenced using an index number
enclosed in brackets. They may also be referenced using just the field name without a specified index.
In this case, the value returned is dependent on two system fields that specify the array element that is
to be used as the data source. These system fields are:

• IDX_<Array Field Name> - For example, if an array field is called CUSTNAME, its corre-
sponding index system field is "IDX_CUSTNAME". Each array field has a corresponding
index system field, which is automatically created when the array field is defined in TIBCO
Business Studio. Whenever an array field is referenced by only its name without an index iden-
tifier, the index number from this system field is used (if it has been assigned).

An example of using this index system field in a script to assign values to three elements of the
array field CUSTNAME is shown below :

IDX_CUSTNAME := 0
CUSTNAME := "John Doe"
IDX_CUSTNAME := 1
CUSTNAME := "Jane Doe"
IDX_CUSTNAME := 2
CUSTNAME := "Danny Doe"

• SW_GEN_IDX - If the "IDX_<Array Field Name>" system field is not currently assigned for
an array field, the array element index is taken from this generic index system field. This is use-

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 157

ful if the application requires several different array fields to hold data sets across fields with
the same index, it can simply ensure that all of the individual system index fields are set to
unassigned (SW_NA), then set SW_GEN_IDX to the desired index. See the example below:

IDX_CUSTNAME := SW_NA

IDX_ACCOUNT := SW_NA

SW_GEN_IDX := 0

CUSTNAME := "John Doe"

ACCOUNT := 11111

SW_GEN_IDX := 1

CUSTNAME := "Jane Doe"

ACCOUNT := 55555

SW_GEN_IDX := 2

CUSTNAME := "Danny Doe"

ACCOUNT := 77777

If neither the index system field for an array field, nor the generic index system field, are assigned, the
index defaults to 0 (zero).

When an array field is "marked" on an iProcess form during procedure definition, it is identified only
by its field name. No element index is specified.

Using Array Fields in Filter Expressions

Array fields can be used in filter expressions.

You can include array fields with an index in brackets in filter expressions when filtering cases (e.g.,
NAME[0] = “abcd”). Note, however, that the index value must be a constant (i.e., a single number); it
cannot be a variable or expression.

Array fields with an index in square brackets cannot be used when filtering work items. When filter-
ing work items, you can use array fields without an index — the WIS uses the default index number,
either “IDX_<array_field_name>” or “SW_GEN_IDX”.

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 158

Requesting, Returning, and Setting All Array Field Elements

This section describes how to request, return, and set all of the array field elements at one time, rather
than individually.

Requesting All Array Field Elements

As described in the previous subsections, individual array field elements can be requested by specify-
ing the field name and the element index in the following format:

FieldName[ElementIndex]

However, the values of all of the array's elements can be requested by including an asterisk as the ele-
ment index:

FieldName[*]

Note, however, that this method of requesting all array field elements is intended for use only when
locking work items and when getting cases. The following table shows the methods in which
FieldName[*] may be used, as well as the content objects (in which you specify the fields to return)
used by those methods:

You should not use FieldName[*] when calling the GetWorkItems and GetWorkItemList meth-
ods. When used with these methods, the expected array will not be returned.

Returned Array Field Elements

When you request that all array field elements be returned by using FieldName[*], the requested
array field is returned as a vField object. The vField object contains the following information:

vField.Name = Name of array field

vField.Type = SWFieldType constant

vField.Value = Array of objects

where:

- Name of the array field is the name of the field with no brackets.

- SWFieldType constant identifies the type of data in the array field elements. For a list of the
possible SWFieldType constants when using array fields, see the “SWFieldType Enumerations
Used With Array Fields” section below.

- Array of objects is a system array of the values in all of the elements of the array field. The
array element with the largest index that has a value assigned is treated as the last element in the
array. All data elements from zero to this element index are returned. For example, if the array
field LASTNAME has been assigned the following values ...

Method Content Object

LockItems vWIFGContent

GetACases

GetACaseList

MakeACaseList

vACaseContent

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 159

LASTNAME[0] = Miller
LASTNAME[3] = Thomas
LASTNAME[6] = Gunderson

... all elements 0 through 6 are returned. Elements 0, 3, and 6 will contain the values assigned to
those elements — these values will be in the form of System.Object objects, whose type is
determined by the field’s assigned type. For example, if the field type is swArrayOfText,
vField.Value will return an array of system objects, with System.String object values assigned
to those elements that contain a value. Elements that have not been assigned a value will con-
tain an SWEmptyField object. The type of System.Object returned for each possible SWField-
Type is shown in the table in the “SWFieldType Enumerations Used With Array Fields” section
below.

For example, if all of the array field elements for a numeric array field named COUNT were
requested, the returned vField would look as follows:

vField.Name = COUNT

vField.Type = swArrayOfNumeric

vField.Value = System.Double[]

The array of system objects returned in vField.Value will have System.Double object values assigned
to the array field elements (with possible SWEmptyField objects).

SWFieldType Enumerations Used With Array Fields
The table below shows the SWFieldType enumerations that are used with array fields:

Setting All Array Field Elements

To set all elements of an array field:

1. Create an array of System.Object objects to represent the data that is to be set for the array field.

2. Assign the system array to the Value property of vField.

3. Set the Type property of vField to the corresponding swArrayOfxxx type listed in section
“SWFieldType Enumerations Used With Array Fields”.

4. Set the Name property of vField to the array field name (with no index specified).

Constant Type of Array System.Objects Returned

swArrayOfComma Array of comma-separated
numerics

System.Double

swArrayOfDate Array of dates System.DateTime

swArrayOfMemo Array of memos System.String

swArrayOfNumeric Array of numerics (real numbers) System.Double

swArrayOfText Array of ASCII text values System.String

swArrayOfTime Array of times System.DateTime

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 160

Example
Object[] ArrayOfText = new Object[]{"Text1", "Text2", new SWEmptyField(), "Text3"};

Object[] ArrayOfNumeric = new Object[]{(System.Double)(12.3), new SWEmptyField(),
(System.Double)(2.5)};

Object[] ArrayOfDate = new Object[]{new System.DateTime(2003, 3, 3), new SWEmpty-
Field(), new System.DateTime(2004, 4, 4), new System.DateTime(2005, 5, 5)};

Object[] ArrayOfTime = new Object[]{new System.DateTime(2002, 2, 1, 10, 10, 10),
new SWEmptyField(), new System.DateTime(2002, 2, 1, 23, 23, 23)};

Object[] ArrayOfMemo = new Object[]{"Memo1 is a small memo.", "Memo2 is small too?",
new SWEmptyField(), "Memo3 is a smallest memo.", "Memo4 is smaller memo."};

vField[] Fields = new vField[]{

new vField(ArrayTextName + "[0]", new SWEmptyField(), SWFieldType.swText),

new vField(ArrayNumericName + "[0]", new SWEmptyField(), SWFieldType.swNumeric),

new vField(ArrayDateName + "[0]", new SWEmptyField(), SWFieldType.swDate),

new vField(ArrayTimeName + "[0]", new SWEmptyField(), SWFieldType.swTime),

new vField(ArrayMemoName + "[0]", new SWEmptyField(), SWFieldType.swMemo),

new vField(ArrayTextName, ArrayOfText, SWFieldType.swArrayOfText),

new vField(ArrayNumericName, ArrayOfNumeric, SWFieldType.swArrayOfNumeric),

new vField(ArrayDateName, ArrayOfDate, SWFieldType.swArrayOfDate),

new vField(ArrayTimeName, ArrayOfTime, SWFieldType.swArrayOfTime),

new vField(ArrayMemoName, ArrayOfMemo, SWFieldType.swArrayOfMemo)

};

Setting Array Field Values to SWEmptyField in XML

This section describes how to set array field elements to SWEmptyField when you are constructing
XML (for example, using custom JavaScript).

Note that it is admissible to not include the Value attribute in the XML for a non-array field:

This works for a non-array field because the Value field in the vField object takes on its default value,
which is SWEmptyField.

However, when you are using array fields, you must include the Value attribute in the XML — the
array field elements do not take on a default value.

<sso:vField>

<sso:Name>GRPS</sso:Name>

<sso:FieldType>swText</sso:FieldType>
</sso:vField>

iProcess Fields

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 161

For example, assuming an array field with two elements, to set the value of those elements to
SWEmptyField, the XML must look like the following:

This produces a vField object with a value that is an array of size two, with each element of the array
having the value SWEmptyField (note that the value of an array field must be an array).

For more information about SWEmptyField, see “Checking/Setting Uninitialized Fields” on
page 150.

Date Format

Fields that contain a date, by default, use the format dd/mm/yyyy. This format is specified using char-
acters 27-29 (dmy) of line 5 of the SWDIR\etc\staffpms (Windows) or $SWDIR/etc/staffpms (UNIX)
file, as follows:

%2d/%2d/%4d\/\%s%s %s, %s\dmy\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

In addition, the first 11 characters determine how many characters to allow for each part of the date.
The default is to use two characters for the day and month, and four characters for the year. You can
change the order of these, but not the number of characters, i.e., the day and month must always be
two characters, and the year must always be four characters.

Example 1:

To change the date format to mm/dd/yyyy:

%2d/%2d/%4d\/\%s%s %s, %s\mdy\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

Example 2:

To change the date format to yyyy/mm/dd:

%4d/%2d/%2d\/\%s%s %s, %s\ymd\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

Character Encoding

ICU conversion libraries can be used to specify the desired character encoding.

To use the ICU conversion libraries, you must create the following Registry entry and set it to the
name of the converter you wish to use.

— TISOUnicodeConverterName

For more information about creating this Registry value, see “Character Encoding Using ICU
Conversion Libraries” on page 271.

<sso:vField>

<sso:Name>GRPS</sso:Name>

<sso:FieldType>swArrayOfText</sso:FieldType>

<sso:Value>[com.staffware.sso.data.SWEmptyField]|

[com.staffware.sso.data.SWEmptyField]</sso:Value>
</sso:vField>

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 162

11
User Administration

Introduction

User administration tasks can be performed in two ways:

• using the User Manager, or

• through methods on TIBCO iProcess Server Objects.

The User Manager is part of the TIBCO iProcess Administrator suite of utilities. It is used to
administer users, groups, roles, and attributes, which are all associated with iProcess users.

All of the user administration functions that can be performed using the User Manager can also be
done using methods on TIBCO iProcess Server Objects. For information about using the User Man-
ager, see the TIBCO iProcess Workspace (Windows) Manager’s Guide.

The remainder of this chapter describes performing user administration tasks by using the properties
and methods on TIBCO iProcess Server Objects.

Types of Users

TIBCO iProcess Server Objects (.NET) makes use of the following types of users:

• O/S User - This is a user that has been created in the operating system. When creating an iPro-
cess user (see below), the user may or may not have to be an existing O/S user, depending on
the value of a TIBCO iProcess Objects Server configuration parameter. See “Is an O/S User
needed for every iProcess User?” on page 165 for more information.

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 163

• iProcess User - This is a user that has been created for the purpose of “using” a client applica-
tion — this is the user whose user ID and password will be passed as parameters when a Server
Object is constructed. An iProcess user is created using the CreateUser method on the sNode
object.

MOVESYSINFO Function

Whenever you perform a function that affects a user, group, role, attribute, or queue supervisor defini-
tion, a MOVESYSINFO function must be performed to “commit” the change that you’ve made.
There are a number of ways the MOVESYSINFO function can be performed:

• Implicitly - This means that the MOVESYSINFO function will be performed automatically, in
background, after a user, group, role, attribute, or queue supervisor definition is changed. Note
that this can tie up the background and WIS/WQS processes for long periods of time if there are
lots of users.

To specify that the MOVESYSINFO function is to be implicitly performed, set the Implicit-
MoveSysInfo TIBCO iProcess Objects Server configuration parameter to 1 (UNIX), or check
the appropriate box on the TIBCO iProcess Objects Server Configuration Utility Users tab
(Windows). For more information, see ImplicitMoveSysInfo in the TIBCO iProcess Objects
Server Administrator’s Guide.

• Explicitly - This means that the MOVESYSINFO function will NOT be performed automati-
cally after a user, group, role, attribute, or queue supervisor definition is changed. Instead, the
client application must make a method call to cause the MOVESYSINFO function to be per-
formed. This allows you to more closely control this functionality.

To specify that the MOVESYSINFO function is to be explicitly performed, set the Implicit-
MoveSysInfo TIBCO iProcess Objects Server configuration parameter to 0 (UNIX), or
uncheck the appropriate box on the TIBCO iProcess Objects Server Configuration Utility
Users tab (Windows). For more information, see ImplicitMoveSysInfo in the TIBCO iProcess
Objects Server Administrator’s Guide. The actual MOVESYSINFO function can then be exe-
cuted by calling the MoveSysInfo method on sNode. (You must have system administrator
authority (MENUNAME = ADMIN) to call the MoveSysInfo method. See “User
Attributes” on page 168 for information about the MENUNAME attribute.) See your on-line
help for information about this method.

• Using swutil - If changes to a large number of users, groups, roles, attributes, or queue supervi-
sor definitions need to be made, your best option might be to use the swutil “Update User Infor-
mation” function:

swutil USERINFO filename

For more information about using swutil, see the TIBCO iProcess swutil and swbatch Refer-
ence Guide.

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 164

iProcess Users

iProcess users are represented by the vUserId
and vUser objects. These local Value Objects
provide access to information about the user,
such as the work queues assigned to the user, the
groups the user is a member of, etc.

Each node (TIBCO iProcess Objects Server)
maintains a list of iProcess users that have been
created on that node. This list of users can be
retrieved from the server by calling the following
methods on sNode:

• GetUsers - The method returns an array of
vUser objects, one for each user specified
by the aUserNames parameter.

• GetUserList - This method returns a pageable list of vUser objects, one for each user defined
on the node.

• GetUserListHeld - This method returns a pageable list of users that had been previously held.

When vUser objects are retrieved from the server using one of the methods listed above, you can con-
trol whether or not dependent objects (vWorkQ objects, etc.) are also retrieved from the server by
passing a vUserContent object with the method call (see “Retrieving Dependent Objects” on
page 143 for information). Whether or not you will also retrieve dependent objects will depend on
how you are going to use the vUser objects after they are retrieved.

Two special iProcess users are automatically created when the TIBCO iProcess Engine is installed:

• swuser - This user is used to run the Process Invocator service.

• The IPEADMIN user - The IPEADMIN user (for iProcess Engine Administrator) has complete
access privileges. This user can be designated as any iProcess user when the TIBCO iProcess
Engine is installed. It defaults to the user installing the iProcess Engine.

Creating an iProcess User

An iProcess user is created on a specific node with the sNode.CreateUser method.

Note - The user being created may have to already exist in the operating system, depending on the set-
ting of the CheckOSUser configuration parameter. See the “Is an O/S User needed for every iProcess
User?” section below for more information.

The CreateUser method allows you to optionally specify groups to add the user to, and attribute val-
ues to assign to the user when the user is created. Note that the user name should not exceed 23 char-
acters. Doing so may result in errors from the TIBCO iProcess Objects Server when functions are
performed against that user’s work queue.

When an iProcess user is created, a corresponding directory for that user is added on the node at
SWDIR\queues\username (Windows) or $SWDIR/queues/username (UNIX). If you are using a
TIBCO Process Engine, this username directory will contain a staffo file, which contains all of the
work item data sent to the user. If you are using a TIBCO iProcess Engine, the work item data is
stored in the staffo database table.

vUser vWorkQ

vWorkQvUserId

Name

Description

MenuName

WorkQs

RoleNames

GroupNames

Attributes

string

vAttribute

Name

Value

Type

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 165

Creating a user also causes both a “test” and “released” work queue for the user to be created. See
“Test vs. Released Work Queues” on page 88 for more information.

You must have system administrator authority (MENUNAME = ADMIN) to create a user. See “User
Attributes” on page 168 for information about the MENUNAME attribute.

Deleting an iProcess User

One or more iProcess users can be deleted from the node with the sNode.DeleteUsers method.

When a iProcess user is deleted, that user’s corresponding directory at SWDIR\queues\username
(Windows) or $SWDIR/queues/username (UNIX) is NOT deleted. If you have a desire to remove
directories associated with deleted users, this must be done through the operating system.

Prior to deleting a user, an administrator should unlock any work items that the user may have locked.
If the user is deleted, then another user attempts to unlock a work item that was locked by the deleted
user, a “Work Queue not found” error message is returned.

Important - Before deleting a user, ensure that there are no work items in the user’s work queue, or
that that user is not the addressee of a step, because after the user is deleted, their work queue is no
longer accessible

You must have system administrator authority (MENUNAME = ADMIN) to delete a user. See “User
Attributes” on page 168 for information about the MENUNAME attribute.

Is an O/S User needed for every iProcess User?

The system can be configured to either require or not require that a user must first be a valid O/S user
prior to that user being created on the system with the createUser method. When createUser is
called, the iProcess Objects Server checks the following:

• DISABLE_USER_CHECK - If this engine process attribute is set to 1, the user does not have
to be a valid O/S user before adding that user with the createUser method, regardless of the
other settings described below.

• CheckOSUser - If this iProcess Objects Server configura-
tion parameter is set to 0, the user does not have be a valid
O/S user before adding that user with the createUser
method. Note, however, that if you set this parameter to 0,
you must also disable password checking in the engine (if
password checking is not disabled, the CheckOSUser
parameter is ignored). To enable/disable password check-
ing, modify the $SWDIR/etc/staffpms (UNIX) or
SWDIR\etc\staffpms (Windows) file. This is none by speci-
fying a “Y” or “N” in the 4th character of the 4th line in the
staffpms file.

Changing the User’s Password

An iProcess user’s password can be changed with the sUser.ChangePassword method.

iProcess users can change only their own password. Even System Administrators cannot change
another user’s password. The only way to change a password of another user is by using tools avail-
able through the operating system.

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 166

User Groups

A user group represents a collection of iProcess users. For each group that is created, a work queue is
automatically created with the same name as the group name. The purpose of the group work queue is
to allow all users that are members of the group to work on the collection of work items in the group
queue.

Groups are represented by the vGroupId,
vGroup, and vAGroup objects. These local Value
Objects provide access to information about a
group, such as the attributes assigned to the group,
and the names of the users belonging to the group.

A group is specific to the node (TIBCO iProcess
Objects Server) on which it is created. Each node
maintains a list of groups that have been created
on that node. This list of groups can be retrieved
from the server by calling the following methods
on sNode:

• GetAGroups - The method returns an array
of vAGroup objects, one for each group specified by the aGroupNames parameter.

• GetAGroupList - This method returns a pageable list of vAGroup objects, one for each group
defined on the node.

• GetAGroupListHeld - This method returns a pageable list of groups that had been previously
held.

When vAGroup objects are retrieved from the server using one of the methods listed above, you can
control whether or not dependent objects (e.g., vAttribute objects, etc.) are also retrieved from the
server by passing a vAGroupContent object with the method call (see “Retrieving Dependent
Objects” on page 143 for information). Whether or not you will also retrieve dependent objects will
depend on how you are going to use the vAGroup objects after they are retrieved.

The sUser object also has a GetGroups method that retrieves from the server a list of all of the groups
to which that specific user belongs.

Creating a User Group

Groups can be created on a specific node with the sNode.CreateGroups method.

The CreateGroups method has optional parameters that allow you to specify attributes/values for the
group, and provide the names of users to be members of the new group. Note that the group name
should not exceed 23 characters. Doing so may result in errors from the TIBCO iProcess Objects
Server when functions are performed against that group’s work queue.

When a group is created, a corresponding directory for that group is added at SWDIR\queues\group-
name (Windows) or $SWDIR/queues/groupname (UNIX). If you are using a TIBCO Process Engine,
this groupname directory will contain a staffo file, which contains all of the work item data sent to the
group. If you are using a TIBCO iProcess Engine, the work item data is stored in the staffo database
table.

Creating a group also causes both a “test” and “released” work queue for the group to be created. See
“Test vs. Released Work Queues” on page 88 for more information.

vAGroup

string

vGroup

vGroupId

UserNames

Name

Description

Attributes

vAttribute

Name

Value

Type

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 167

You must have system administrator authority (MENUNAME = ADMIN) to create a user group. See
“User Attributes” on page 168 for information about the MENUNAME attribute.

Deleting a User Group

One or more groups can be deleted from the node with the sNode.DeleteGroups method.

When a group is deleted, its corresponding directory at SWDIR\queues\groupname (Windows) or
$SWDIR/queues/groupname (UNIX) is NOT deleted. If you have a desire to remove directories asso-
ciated with deleted groups, this must be done through the operating system.

Important - Before deleting a group, ensure that there are no work items in the group’s work queue, or
that that group is not the addressee of a step, because after the group is deleted, its work queue is no
longer accessible.

You must have system administrator authority (MENUNAME = ADMIN) to delete a user group. See
“User Attributes” on page 168 for information about the MENUNAME attribute.

Adding and Removing Users to/from a Group

Once a user group is created with the CreateGroups method (or through the User Manager), you can
add users to the group with the sNode.AddUsersToGroups method. Users can be removed from a
group with the RemoveUsersFromGroups method.

You must have system administrator authority (MENUNAME = ADMIN) to add or remove users
to/from a user group. See “User Attributes” on page 168 for information about the MENUNAME
attribute.

Roles

A role is a job title or function, such as Account Manager. One iProcess user is assigned to the role.
Within a procedure, the addressee of a step can be specified as the role. That way if the person
assigned to that job title changes, all you have to do is change the user assigned to the role. The proce-
dure definition does not have to change.

Roles are represented by the vRole object. This local Value Object has
properties that allow you to determine the name of the role and the name of
the user assigned to that role.

Roles are specific to the node (TIBCO iProcess Objects Server) on which
they are created. Each node maintains a list of the roles that have been cre-
ated on that node. This list of roles can be retrieved from the server by calling the following method
on sNode:

• GetRoles - This method returns an array of vRole objects. You can either specify specific roles,
or retrieve all roles that are defined on that node.

The sUser object also has a GetRoleNames method that contains a list of all of the roles to which that
specific user belongs.

vRole

Name

UserName

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 168

Creating a Role

One or more roles can be created on a specific node with the sNode.CreateRoles method. This
method requires that you construct an array of vRole objects, then pass that array as a parameter to the
CreateRoles method.

You must have system administrator authority (MENUNAME = ADMIN) to create a role. See “User
Attributes” on page 168 for information about the MENUNAME attribute.

Deleting a Role

One of more roles can be deleted from the node with the sNode.DeleteRoles method. Note that there
is no facility to delete all roles with one method call — you must delete each one individually.

You must have system administrator authority (MENUNAME = ADMIN) to delete a role. See “User
Attributes” on page 168 for information about the MENUNAME attribute.

User Attributes

User attributes are properties/characteristics of an iProcess user or group. There are two types of user
attributes:

• Customizable - You can create attributes that can hold any type of characteristic of the
user/group. Some examples are an employee number, purchasing authority, etc.

• Pre-defined - Every iProcess user and group that is created is assigned each of the six pre-
defined attributes shown in the table below.

Attribute Description

DESCRIPTION If the user or group was created with the CreateUser or CreateGroups method, this
defaults to the name of the user or group. If the user or group was created with the
User Manager, this is the value that was entered in the Description field.

LANGUAGE This specifies the language in which user messages are displayed. It defaults to the
language that is set in the regional settings on the system on which the user or group is
created.

MENUNAME This specifies the user’s access authority (the name is derived from “the menus to
which the user has access”). This attribute is only applicable to users (not groups). The
possible values are:

• USER - This is for ordinary users. With this access authority, the user can
access work queues and start cases. This is the default value.

• MANAGER - This has no affect on access authority — it is the same as USER.
(If using the Work Queue Manager, this gives access to Case Administration for
the purpose of viewing an audit trail.)

• PRODEF - This is for procedure definers. This user has the authority to access
TIBCO Business Studio for the purpose of defining procedures.

• ADMIN - This is the system administrator authority. Users with this MENUN-
AME have authority to perform administrative-type functions. See “User
Authority” on page 171 for a list of the functions a system administrator can per-
form.

Note that the user’s MENUNAME attribute is also available with the
vUserId.MenuName and vActiveUser.Menu properties.

Note - You cannot change the value of this attribute for the “IPEADMIN user“ (see
page 171).

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 169

Attributes are represented by the vAttribute and vAttributeDef objects.

Attributes are specific to the node (TIBCO iProcess Objects Server) on
which they are defined. All users and groups on that node take on those
attributes (but each user might have different values for the attributes).
When a new user or group is created on the node, they automatically
acquire the attributes that are defined on the node.

Each node maintains a list of the attributes that have been defined on that
node. This list of attributes can be retrieved from the server by calling the
following methods:

• sNode.GetUserAttributes - This method retrieves an array of vAttribute objects, one for each
attribute defined for the specified user.

• sNode.GetGroupAttributes - This method retrieves an array of vAttribute objects, one for
each attribute defined for the specified group.

• sNode.GetAttributeDefs - This method retrieves an array of vAttributeDef objects. You can
either request specific attributes, or request all attributes defined on the node.

QSUPERVISORS This attribute specifies the users who can supervisor this user’s/group's work queue.
This is for the purpose of performing participation and redirection functions for the work
queue. The list of queue supervisors is also available with the GetSupervisorNames
method on sWorkQManager or the SupervisorNames property on vAWorkQ. See
“Work Queue Supervisors” on page 119 for more information.

SORTMAIL Specifies the sequence in which work items are sorted in the user’s or group’s work
queue. The possible values are:

• PROCEDURE - Work items are sorted by Case Reference number. This is the
default.

• ASCENDING ARRIVAL - Work items are listed according to their arrival time —
oldest first, followed by newest.

• DESCENDING ARRIVAL - Work items are listed according to their arrival time
— newest first, followed by oldest.

• ASCENDING DEADLINE - Work items with deadlines are listed first (in order
by: expired, first to expire, last to expire), followed by work items without dead-
lines.

• DESCENDING DEADLINE - Work items without deadlines are listed first, fol-
lowed by work items with deadlines (in order by: last to expire, first to expire,
expired).

USERFLAGS This attribute is used in conjunction with the step’s forward permission (defined in the
step definition) to determine if work items can be forwarded from this user’s work
queue:

• “ ” - (Empty string) Work items from this user’s work queue can be forwarded if
the step’s forward permission has been set. This is the default value. (This is
called Step Forward in the User Manager.)

• “F” - Any work item from this user’s work queue can be forwarded, even if the
step’s forward permission has not been set. (This is called Forward Any in the
User Manager.)

• “R” - Work items from this user’s work queue cannot be forwarded, even if the
step’s forward permission is set. (This is called Forward None in the User Man-
ager.)

Attribute Description

vAttributeDef

Length

DecimalPlaceCnt

vAttribute

Name

Value

Type

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 170

• sUser.GetAttributes - This method retrieves an array of vAttribute objects, one for each attri-
bute defined for the user represented by the sUser object.

You can also get the attributes that have been defined for a particular user or group from their respec-
tive local Value Objects using the following properties:

• vUser.Attributes

• vGroup.Attributes

To be able to use these properties, of course, the dependent vAttribute objects must have been
included when the local Value Objects were retrieved from the server (using the vUserContent and
vAGroupContent objects).

Because the MENUNAME attribute is needed often to determine the user’s access authority, the value
of this attribute for the user is directly available in the following properties:

• vUserId.MenuName

• vActiveUser.Menu

Modifying an Existing Attribute Value

The following method can be used to modify or assign a value to an existing attribute:

• sNode.ChangeAttributes - This method allows you to change one or more attribute values for
one or more users.

This method requires that you construct an array of vAttribute objects, one for each attribute you
want to modify, and pass it as a parameter to the method call.

You must have system administrator authority (MENUNAME = ADMIN) to modify an attribute
value. See “User Attributes” on page 168 for information about the MENUNAME attribute.

Creating an Attribute Definition

An attribute definition is created on a specific node with the sNode.CreateAttributeDefs method.

When an attribute is added to the node, it is automatically assigned to each existing user and group on
that node.

You must have system administrator authority (MENUNAME = ADMIN) to create an attribute defi-
nition. See “User Attributes” on page 168 for information about the MENUNAME attribute.

Deleting an Attribute

One or more attributes can be deleted from the node with the sNode.DeleteAttributeDefs method.

This method is an exception to the way error handling is performed; if an error is detected in one or
more of the attribute names passed in, none of the attributes specified are deleted, and there is no
information about which parameters were in error in vException.ExceptionDetails. The message
"Attribute not found" is returned.

You must have system administrator authority (MENUNAME = ADMIN) to delete an attribute defi-
nition. See “User Attributes” on page 168 for information about the MENUNAME attribute.

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 171

Caution - The system will allow you to delete the pre-defined attributes that it needs to function
properly.

Why isn’t the new User, Group, Role or Attribute Available?

iProcess users, groups, roles, and attributes are created by the background process, so there is a delay
between when the method is called and when the new user, group, role, or attribute is available.

User Authority

Throughout this document references are made to the user/access authority you need to perform par-
ticular functions. This section summarizes these authorities.

There are two primary administrator-level authority designations:

• System Administrator Authority - This authority allows the user to perform administrative-
type functions that the typical user would normally not be able to perform, such as
creating/removing users, closing/purging cases, etc. See below for comprehensive lists of the
functions you can perform with system administrator authority.

A user is given system administrator authority by setting their MENUNAME attribute to
ADMIN. This is done using the ChangeAttributes method on sNode. See “User
Attributes” on page 168 for more information about user attributes.

Note - To ensure that there is always a user that has system administrator authority, there is a
special IPEADMIN user. The IPEADMIN user (for iProcess Engine Administrator) can be des-
ignated as any iProcess user when the TIBCO iProcess Engine is installed. It defaults to the
user installing the iProcess Engine.

• Case Administration Authority - This authority allows the user to perform functions that are
specific to cases of a procedure, such as viewing lists of cases, rebuilding a case, auditing cases,
etc. See below for comprehensive lists of the functions you can perform with Case Administra-
tion authority.

A user is given Case Administration authority as part of the procedure definition (using TIBCO
Business Studio). Note that by default, when a procedure is defined using TIBCO Business Stu-
dio, everyone is given Case Administration authority unless you specifically give certain users
Case Administration authority for that procedure; then only those users have that authority. See
“Determining who can Audit Cases of a Procedure” on page 53 for information about how
users are given this authority for a procedure.

The following tables list functions that can be performed with each user authority.

• You must have system administrator authority to perform the following functions:

Function Methods

Close cases CloseCases
CloseCasesByCriteria

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 172

• You must have case administration authority to perform the following functions:

• You must have either system administrator or case administration authority to perform the
following functions:

Purge cases PurgeCases
PurgeCasesByCriteria
PurgeAndReset

Create/delete users CreateUser
DeleteUsers

Create/delete groups CreateGroups
DeleteGroups

Modify group membership AddUsersToGroups
RemoveUsersFromGroups

Create/delete/modify attributes CreateAttributeDefs
DeleteAttributeDefs
ChangeAttributes

Create/delete roles CreateRoles
DeleteRoles

Unlock work item locked by another user

(Note - Any user can unlock a work item that
they have locked.)

UnlockItems

Add/remove queue supervisors AddSupervisors
RemoveSupervisors

Change TIBCO iProcess Objects Server log
settings

ResetSrvLog
SetSrvLogOptions

Forward work items from other user’s work
queues

(Note - For information about the permission
requirements to forward work items from
your own work queue, see page 115.)

ForwardItems

Move system information
(MOVESYSINFO function)

MoveSysInfo

Function Methods

Retrieve audit data for cases of the proce-
dure

GetAuditSteps

Function Methods

Retrieve cases for any procedure on the
node

GetACases
GetACaseList

Function Methods

User Administration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 173

User Preference Data

The TIBCO iProcess Server Objects (.NET) object model contains objects, methods, and properties
that allow you to set, get, and delete user preference data as a text string in the iProcess Engine data-
base.

The following object, methods, and properties provide this functionality:

• The vPreference object holds a name/value pair that represents the user preference data. This
object must be constructed, then passed in the SetUserPreference method to save a user’s user
preference data. This object is returned by the GetUserPreference method. This object con-
tains the following properties:

- Name - Returns the name (key) given to the preference data when it is saved in the data-
base.

- Value - Returns the user preference data.

• The sNode, xNode, sUser, and xUser objects contain the following methods to support this
functionality:

- SetUserPreference - Saves the user preference data in the database. You must pass in
the name of the user for whom you are saving user preference data, and a vPreference
object, which contains a preference name (key) and the data.

- GetUserPreference - Returns a vPreference object containing the user preference data.
You must pass in the name of the user and the preference name (key) to identify the user
preference data in the database.

- DeleteUserPreference - Deletes the specified user preference data from the database.

The length of the user preference data (aValue on the vPreference object) is limited to 128K because
of database limitations. There is no limitation on the number of uniquely named preferences (aName
on the vPreference object) for a given user.

Note that you should not use a preference key (i.e., aName on the vPreference object) that begins
with “com.tibco.bpm”, as user preference keys beginning with those characters are reserved for use by
TIBCO products.

Users can modify their own user preference data (using the methods on sUser/xUser). Only adminis-
trators can modify user preference data for other users (using the methods on sNode/xNode).

Retrieve case data for any procedure CaseFields

Get the filtered case count for any proce-
dure

GetCaseCnt

Function Methods

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 174

12
Filtering Work Items and Cases

Without Filtering Enhancements

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously
provided by the TIBCO iProcess Objects Server can now be performed by the WIS when filter-
ing work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <>
operators, etc.). Since the WIS has the work items cached, and has direct access to case data,
this provides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select state-
ment, which is used to create the result set from the cases in the database. The result set is then
sorted. Because of the indexing ability of the database, this provides for very efficient filtering
and sorting of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server -
CR 13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 12

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 13

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 14

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 175

Introduction

The TIBCO iProcess Server Objects provide the ability to filter work items and cases, allowing you to
filter out all those you aren’t currently interested in. For example, you may only be interested in the
work items that arrived in the work queue today, in which case you could specify a filter expression that
filters out all work items other than those that arrived today:

“SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and server need to do. When the result set from the filter
operation results in fewer work items or cases, this reduces the work load on the client and server.

Specifying Filter Criteria

The TIBCO iProcess Server Objects provides three “criteria” objects that are used to specify filter crite-
ria:

• vACaseCriteria (for cases)

• vWICriteria (for work items)

• vPredictionCriteria (for predicted work items) (Note that since predicted items are stored in the
database, they are filtered in the same way as cases when you have the database case filtering
enhancement — see Filtering Work Items and Cases on page 227 for more information.)

Note that these criteria objects are used for both
filtering and sorting work items and cases — see
“Sorting Work Items and Cases” on page 251 for
information about sorting.

Work items and cases that can be filtered are
always returned in pageable lists (sPageableList,
sPageableListR, or sPageableListJ objects) —
see “Working with Lists” on page 121 for infor-
mation about using pageable lists after the filtered
work items or cases have been returned from the
server.

vWICriteria

vCriteriaRequest *

FilterExpression

SortFields

vACaseCriteria

vCriteriaRequest *

vSortField

FieldName

SortTypeAs

IsAscendingFilterExpression

SortFields

vPredictionCriteria

vCriteriaRequest *

FilterExpression

SortFields

MaxSubProc

MaxStepLoop

MaxCnt

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 176

The methods that return filtered work items and cases are summarized in the table below.

To specify filter criteria for a pageable list of work items or cases, follow these steps:

1. Construct a vACaseCriteria, vWICriteria, or vPredictionCriteria object, setting the
aFilterExpression parameter to the desired filter expression string — see the “Defining Filter
Expressions” section below for specifics about creating these strings.

2. Pass the vACaseCriteria, vWICriteria, or vPredictionCriteria object as an input parameter with
one of the methods listed in the table above, depending on the type of object you want returned in
the pageable list.

Defining Filter Expressions

To filter work items, cases, or predicted work items, you must define a filter expression string, which
is passed in the aFilterExpression parameter with the applicable criteria object (see the previous sub-
section). The filter expression string is evaluated against each work item or case you are requesting,
returning either True or False. If it returns True, the work item/case is included in the pageable list; if
it returns False, the work item/case is not included in the pageable list. For example, you may choose
to filter the list to include only work items with the urgent flag set (“SW_URGENT = True”).

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc.
Details about filter expressions is described in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Example 1:
To define a filter for work items matching all new items from procedure LOANS, set the filter expres-
sion to the following string:

"SW_NEW=1 AND SW_PRONAME=\"LOANS\""

Example 2:
To define a filter for all work items that arrived after June 20, 2001 (assuming mm/dd/yyyy date locale
setting), set the filter expression to the following string:

"SW_ARRIVALDATE > !06/20/2001!"

Method Uses this Criteria Object
Returns Pageable
List of this Object

sWorkQ.GetWorkItemList vWICriteria vWorkItem

sWorkQ.GetAWorkItemList vWICriteria vAWorkItem

sCaseManager.GetACaseList vACaseCriteria vACase

sCaseManager.GetPredictedItemList vPredictionCriteria vPredictedItem

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 177

Example 3:

To define a filter for all cases with field LOAN_AMT having a value greater than 100000, set the fil-
ter expression to the following string:

"LOAN_AMT > 100000"

Number of Cases or Work Items in a Filtered Pageable List

There are a number of properties available that provide information about the number of cases or
work items on a filtered pageable list. They are:

On sPageableList:

• Available Count (AvailableCnt) - This returns the total number of items available in the
indexed collection on the TIBCO iProcess Objects Server. This count includes only the work
items or cases that satisfy the filter criteria.

• Local Count (LocalCnt) - This returns the number of cases or work items currently being held
in the local bock(s) on the sPageableList. If IsKeepLocalItems has been set to False, this count
will always be less than or equal to the number of items per block (ItemsPerBlock).

Note - The counts above require an understanding of how an indexed collection is created on the
TIBCO iProcess Objects Server, and how blocks of objects are held locally in the pageable list.
See “Working with Lists” on page 121 for information.

On vSummary:

• Exclude Count (ExcludeCnt) - This returns the number of cases or work items that did not sat-
isfy the specified filter criteria, and therefore, were not included in the pageable list.

• Invalid Count (InvalidCnt) - This returns the number of cases or work items that did not sat-
isfy the filter criteria because the filter expression was invalid within the context of the item.
For example, the filter expression references a field name that is not defined on all work items
or cases.

• Over Maximum Count (OverMaxCnt) - This returns the number of cases that were not
returned from the server because the number returned was limited using the aMaxCnt parame-
ter on the vACaseCriteria constructor when retrieving a list of cases. This is applicable only
when retreiving cases.

On vWISummary:
These counts are applicable only if the pageable list contains work items.

• Urgent Count (UrgentCnt) - This returns the number of work items on the pageable list that
are marked as urgent. A work item is marked as urgent if its priority value
(vWorkItem.Priorty) is less than or equal to a specific value. By default, the value is 10,
although it can be modified in the staffcfg file.

• Deadline Count (DeadlineCnt) - This returns the number of work items on the pageable list
that have deadlines.

• Unopened Count (UnopenedCnt) - This returns the number of work items on the pageable list
that have not been opened (locked).

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 178

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed — works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items can be filtered by either the WIS or the TIBCO iProcess Objects Server, depending
on how you write your filter expressions. Ideally, you should write them so they are evaluated
by the WIS because the WIS has work items cached in memory, allowing it to evaluate filter
expressions for work items very quickly. The TIBCO iProcess Objects Server, however, pro-
vides additional filter criteria that the WIS does not provide. Using this additional criteria
causes the expression to be evaluated by the TIBCO iProcess Objects Server, which requires
that the server retrieve all of the work items from the queue to perform the evaluation, making
the filter operation less efficient. See the tables in “Can the WIS Perform the Filter
Operation?” on page 180 for a list of the filter expression elements that can be evaluated by the
WIS and the TIBCO iProcess Objects Server, respectively.

• If you “get case data” in your application, this causes the filter processing to be less efficient
because the TIBCO iProcess Objects Server must retrieve case data from the TIBCO iProcess
Engine. See “Getting Case Data” on page 184 for more information.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation, because if the TIBCO iProcess Objects Server performs the sort, it must hold
all of the work items in the result set in memory. See “Can the WIS Perform the Sort
Operation?” on page 182 for more information.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 179

The diagram shown below illustrates the decision process that takes place when filtering and sorting
work items.

As shown in the illustration, there are three actions that will cause the filter/sort operation to be less
efficient when filtering and sorting work items:

• Getting case data
• Performing the filter operation on the TIBCO iProcess Objects Server
• Performing the sort operation on the TIBCO iProcess Objects Server

Additional information about these actions is provided in the subsections that follow.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 180

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a work item “content” object (vWIContent), the server will
explicitly retrieve the data in those fields from the engine. There is always a performance hit
when you ask for case data in this way, whether the filter/sort operation is performed by the
WIS or the TIBCO iProcess Objects Server. See “Retrieving Field Data from the Server” on
page 150 for information about the use of the aCaseFieldNames parameter.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

Can the WIS Perform the Filter Operation?

Work items can be filtered by either the WIS or the TIBCO iProcess Objects Server, depending on
how you write your filter expression). If your filter expression contains only WIS-compatible criteria,
the WIS will evaluate the expression. If your filter expression contains any of the expanded filter cri-
teria provided by the TIBCO iProcess Objects Server, the TIBCO iProcess Objects Server will evalu-
ate the expression.

The WIS has work items cached in memory, allowing it to evaluate filter expressions for work items
very quickly. If the TIBCO iProcess Objects Server must perform the filtering operation, it must
retrieve all work items from the work queue. Depending on the number of work items in the work
queue, this can have a very significant impact on the performance of the filtering operation.

The following tables lists the elements that can be included in your work item filter expressions. If
your filter expression contains any of the additional criteria provided by the TIBCO iProcess Objects
Server, the entire expression is evaluated by the TIBCO iProcess Objects Server.

Filter Criteria the WIS can Evaluate

Element Description

Comparison Operator =

Logical Operator AND

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 181

The TIBCO iProcess Objects Server can evaluate the filter criteria listed in the table above, as well as
those listed in the table below.

The following example filter expression can be evaluated by the WIS because it contains the ‘=’
equality operator, and the SW_PRIORITY system field is WIS-compatible:

“SW_PRIORITY = 50”

System Fields System fields that are “WIS-compatible” (see the WIS-compatible columns in the
table of system fields used for filtering — page 188) (They must also be applica-
ble to filtering work items — see the Applies To column.)

Case Data Fields Case data fields that have been defined as CDQPs. See “Filtering on Case Data
Fields” on page 191 for information.

Wildcardsa The wildcard characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax — see “How to Specify Ranges of Values” on page 197 for infor-
mation.

a. If the entire expression is WIS-compatible, the ‘*’ and ‘?’ are both interpreted as wildcards, as described above.
However, if any part of the expression is NOT WIS-compatible, the ‘*’ and ‘?’ characters are interpreted literally by
the TIBCO iProcess Objects Server (i.e., as asterisks and question marks), with the following exception — if the
expression contains a ‘?’ equality operator (e.g., SW_CASENUM ? “1*”), that part of the expression is evaluated
separately. The part of the expression that contains the ‘?’ equality operator CAN include the ‘*’ and ‘?’ wildcard
characters (as in the SW_CASENUMBER ? “1*” example).

Additional Filter Criteria the TIBCO iProcess Objects Server can Evaluate

Element Description

Comparison Operators <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 195.)

Logical Operator OR

System Fields System fields that are NOT “WIS-compatible” (see the WIS-compatible columns
in the table of system fields used for filtering — page 188) (They must also be
applicable to filtering work items — see the Applies To column.)

Case Data Fields Case data fields that have NOT been defined as CDQPs. See “Filtering on Case
Data Fields” on page 191 for information.

Regular Expressions Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 195.

Filter Criteria the WIS can Evaluate

Element Description

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 182

The following example filter expression must be evaluated by the TIBCO iProcess Objects Server
because it contains the ‘>’ comparison operator:

“LOAN_AMT > 100000”

Work Item Server vs. TIBCO iProcess Objects Server Example
The following example illustrates the efficiency differences between the Work Item Server and the
TIBCO iProcess Objects Server evaluating a filter expression. These filter expressions were run with
3,000 work items:

• “SW_CASENUM = 1 OR SW_CASENUM = 90” - This is evaluated by the TIBCO iProcess
Objects Server because of the OR in the expression. It ran in 1450 ms.

• “SW_CASENUM = [1 | 90]” - This is evaluated by the Work Item Server. It ran in 20 ms.

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See “Sorting Work Items and Cases” on page 251 for information about setting up sort criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the TIBCO iProcess Objects Server. To filter cases, the TIBCO
iProcess Objects Server must retrieve all cases (both active and closed) from the procedure to
be able to filter them. This can take a significant amount of time, depending on the number of
cases. The TIBCO iProcess Objects Server can, however, efficiently filter on case number
(SW_CASENUM) or case reference number (SW_CASEREF) (see “Efficiently Filtering Cases

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 255 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 255 for more information.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 183

on the TIBCO iProcess Objects Server” on page 185 for more information). The elements you
are allowed to use in your filter expressions to filter cases are listed below.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Cases are always sorted by the TIBCO iProcess Objects Server. This, however, requires that the
server hold in memory all of the cases in the result set.

The following flow diagram shows the decision process that takes place when filtering and sorting
cases:

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 184

As shown in the illustration, there are some actions that will cause the filter/sort operation to be less
efficient when filtering and sorting cases:

• Getting case data
• Performing the filter operation on the TIBCO iProcess Objects Server
• Performing the sort operation on the TIBCO iProcess Objects Server
• Getting audit data

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a case “content” object (vACaseContent), the server will explic-
itly retrieve the data in those fields from the engine. See “Retrieving Field Data from the
Server” on page 150 for information about the use of the aCaseFieldNames parameter.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

Filtering Cases on the TIBCO iProcess Objects Server

Cases can be filtered only by the TIBCO iProcess Objects Server. This limits your options to perform
an efficient filter operation because the TIBCO iProcess Objects Server must always retrieve all cases
(both active and closed) from the engine to be able to determine if they satisfy the filter expression.
For large numbers of cases this can take a significant amount of time.

The following table lists the elements that can be used in filter expressions when filtering cases:

Element Description

Logical
Operators

AND, OR

Comparison
Operators

=, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expressions — see
“Using Regular Expressions” on page 195.)

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 185

The following is an example of a filter expression for filtering cases:

• To define a filter expression for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting), set the filter expression to:

"SW_STARTEDDATE <= !03/01/2003!"

Efficiently Filtering Cases on the TIBCO iProcess Objects Server
The Filtering and Sorting Cases flow diagram shows that if you are filtering cases, you can bypass the
performance hit normally caused by filtering on the TIBCO iProcess Objects Server by filtering on
either SW_CASENUM or SW_CASEREF.

Cases are indexed by case number (SW_CASENUM) and case reference number (SW_CASEREF).
Therefore, if your filter expression contains one (and only one) of these system fields, the TIBCO
iProcess Objects Server is able to perform the filtering operation very quickly. When using these sys-
tem fields, the server does not have to retrieve all of the cases from the procedure.

The following are example filter expression strings using the case number and case reference number:

"SW_CASENUM = 150"

"SW_CASEREF = \"2-6\""

Note - Case number is an integer; case reference number is a text string.

This exception for cases does not allow for any compound expressions; you can only filter on a single
case number or a single case reference number.

Sorting Cases on the TIBCO iProcess Objects Server

As described earlier and shown in the Filtering and Sorting Cases illustration, cases are always sorted
by the TIBCO iProcess Objects Server. This is not real efficient because the TIBCO iProcess Objects
Server must hold in memory all work items in the filter result set. If the result set from the filter
operation is very large, this can consume a significant amount of memory.

System Fields All system fields that are applicable to cases (see the Applies To column in the table of sys-
tem fields used for filtering — page 188)

Case Data Fields Case data fields can be included in your filter expressions, although it causes you to take a
performance hit because the TIBCO iProcess Objects Server must get case data from the
engine.

Wildcards Note that the ‘*’ and ‘?’ characters are NOT interpreted as wildcard characters when filtering
cases on the TIBCO iProcess Objects Server. They are interpreted literally, i.e., as an aster-
isk and question mark. (This applies when using the ‘=’ equality operator. You can use ‘*’ and
‘?’ as wildcard characters when using the ‘? equality operator (i.e., with regular expressions
— see below).)

Regular Expres-
sions

Regular expressions can be used when filtering cases, allowing you to do complex pattern
matching. See “Using Regular Expressions” on page 195.

Element Description

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 186

The table below shows the sort criteria you can use when sorting cases.

See “Sorting Work Items and Cases” on page 251 for specific information about setting up sort crite-
ria.

Getting Audit Data

If audit data is requested on the cases in the pageable list, this causes the TIBCO iProcess Objects
Server to retrieve the audit data from the engine for each case on which it’s requested. This impacts
the performance of a case filter operation. (See “Getting Audit Step Objects” on page 56 for informa-
tion about how audit data is requested.) For efficiency reasons, only include audit data in cases in
which it is really needed.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 188 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 253.

• Case data fields can be included in your sort criteria, although it causes you to take a performance hit
because the TIBCO iProcess Objects Server must get case data from the engine.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 187

<time>
#<hour>:<min>#

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 188

<alphanums>
<alphanum> [<alphanums>]

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the engine through the system fields is also
available to the application though properties on work item and case objects. For example,
SW_CASENUM is available to the client in the vCaseId.CaseNumber property. The TIBCO iPro-
cess Engine, however, doesn’t have access to those properties, so the property names can’t be used in
filter and sort criteria — instead, the system field names need to be used in your expressions. For
example:

“SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns). The WIS-compatible column tells you if the system
field is Work Item Server-compatible — see “Can the WIS Perform the Filter Operation?” on
page 180 for more information.

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X X

Arrival date SW_ARRIVALDATE Date 10 X X

Arrival time SW_ARRIVALTIME Time 5 X X

Case description SW_CASEDESC Text 24 X X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X X

Case reference number SW_CASEREF Text 20 X X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - all work items)

SW_EXPIRED Numeric 1 X X

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 189

Deadline set flag
(1 - has deadline;
0 - all work items)

SW_HASDEADLINE Numeric 1 X X

Deadline time SW_DEADLINETIME Time 5 X

Forwardable work item flag
(1 - forwardable;
0 - all work items)

SW_FWDABLE Numeric 1 X X

Host name SW_HOSTNAME Text 24 or 8a X X X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Mail ID SW_MAILID String or

Numeric b
45 (String)

7 (Numeric)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 3 X X

Procedure description SW_PRODESC Text 24 X X X

Procedure name SW_PRONAME Text 8 X X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no
input fields) (1 - releasable;
0 - all work items)

SW_RELABLE Numeric 1 X X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” -
active; “C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X X

Step (work item) name SW_STEPNAME Text 8 X X

Step (work item) number in
procedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended) (only
available on TIBCO iProcess
Engines)

SW_SUSPENDED Numeric 1 X

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 190

Note - The System Fields that can be set to 1 and 0 work in the following manner: When set to 1, only
the respective work items are displayed; when set to 0, all work items are displayed. For example, if
SW_FWDABLE is set to 1, this means "display only the forwardable work items". If it's set to 0, this
means "don't display only the forwardable work items, instead, display all of them."

Data Types used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Terminated date and time of
the case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - all work items)

SW_NEW Numeric 1 X X

Urgent flag (1- urgent;
0 - all work items)

SW_URGENT Numeric 1 X X

Work queue parameter 1 SW_QPARAM1 Text 24 X X

Work queue parameter 2 SW_QPARAM2 Text 24 X X

Work queue parameter 3 SW_QPARAM3 Text 12 X X

Work queue parameter 4 SW_QPARAM4 Text 12 X X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is an integer of length 7; if using a TIBCO iProcess Engine,
SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance, if your fil-
ter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases that ARE termi-
nated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Data Type Description

Numeric Numeric numbers are simply entered in the expression.

Examples: 36 or 425.00

Text Text must be enclosed within double quotes.

Example: "Smith"

Date Dates must be enclosed in exclamation marks. The ordering of the day, month and year is
specified in the staffpms file (see “Date Format” on page 161).

Example: !12/25/1997!

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 191

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Data Type Conversions

If you specify a filter expression that compares values of different types, both types will be converted
to strings and compared as strings. For example, assume NUM_FIELD is an iProcess field of type
numeric with a value of 275. The filter:

NUM_FIELD < "34"

will result in being True because NUM_FIELD will be converted to a string before the comparison is
made ("275" < "34").

The expression:

!06/03/1999! < 34

will be converted to:

"06/03/1999" < "34"

Filtering on Case Data Fields

You can filter work items in a work queue based on the values in the fields of the work item (referred
to as "case data" fields).

There are two ways in which you can filter on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlim-
ited number of case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field in filter or sort criteria. These fields have been superseded by CDQP fields as they were
considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the staff-
pms file (see “Date Format” on page 161).

Example: "12/25/1997 10:30"

Data Type Description

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 192

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available
to use for filtering. For information about using swutil, see the TIBCO iProcess swutil and swbatch
Reference Guide.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Once you have created the list of CDQP fields with swutil, this list of fields is
available with the GetCDQPDefs method on sWorkQManager, or the
CDQPDef property on vAWorkQ. These return vCDQPDef objects, which
provide the CDQP definitions. If GetCDQPDefs is called from sWorkQ-
Manager, it sends a message to the server to retrieve an array of vCDQPDef
objects, one for each CDQP field defined on the specified work queue. If
CDQPDef is accessed from vAWorkQ, it returns an array of vCDQPDef
objects, one for each CDQP field defined on the work queue represented by the local Value Object.

Once you have retrieved a work item Value Object (vWorkItem), the CDQP
fields that are being used in that work item are available in the CDQPs prop-
erty. This property returns an array of vCDQP objects, one for each CDQP
field that is being used in the work item. The vCDQP objects provide access
to the values in the CDQP fields.

Your filter expressions can include any of the CDQP fields that have been defined on the work queue.
For example, assuming LOAN_AMT is listed as one of the CDQP fields for the work queue, the fol-
lowing is a valid filter expression:

"LOAN_AMT = 500000"

Type of Data in CDQPs

If the WIS is performing the filter or sort operation, and you are using CDQP fields in your filter
expression or sort criteria, the evaluation is performed using the “Work Item Data” in the CDQP.
Work Item Data reflects “keeps” that have been done on the work item.

If the TIBCO iProcess Objects Server is performing the filter or sort operation, and you are using
CDQP fields in your filter expression or sort criteria, the server may perform the evaluation using
either “Work Item Data” or “Case Data”, depending on whether or not your TIBCO iProcess Objects
Server has implemented CR 12425. If CR 12425 has been implemented in your server, it will evaluate
Work Item Data; if CR 12425 has not been implemented in your server, it will evaluate Case Data.
Work Item Data reflects “keeps” that have been performed on the work item; Case Data does not
reflect “keeps”. (See your TIBCO iProcess Objects Server release notes to determine if CR 12425 is
implemented in your server.)

See “Case Data vs. Work Item Data” on page 149 for more information about the difference between
Work Item Data and Case Data.

vCDQPDef

Description

FieldName

Length

IsPrediction

vCDQP

FieldName

Value

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 193

Using Work Queue Parameter Fields

Note - Previous versions of the TIBCO iProcess Objects Server provided “Work Queue Parameter”
fields that could be used for filtering and sorting work items based on the value of case data. Work
Queue Parameter fields, however, did not provide the flexibility required by some customers. There-
fore, a new method of filtering on case data fields has been implemented using “Case Data Queue
Parameter” fields (see the previous section). New development should use Case Data Queue Parame-
ter fields instead of the Work Queue Parameter fields (Work Queue Parameter fields will continue to
be supported, however).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name starting with 'A' through 'M', the filter expression can be set as
follows:

"SW_QPARAM1?\"[a-m]*\""

This would be much more efficient than filtering on the LAST_NAME field.

The vWorkItem object contains properties that provide access to the values in the Work Queue
Parameter fields — they are WorkQParam1 - WorkQParam4. These properties return the values
you place in the system fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The vWorkQ object contains four properties that return a name for each of the Work Queue Parame-
ter fields — they are WorkQParam1Name - WorkQParam4Name. If you use the TIBCO iProcess
Workspace (Windows), these names appear in the column headers if you display the Work Queue
Parameter fields in the Work Queue Manager. For information about modifying these names, see the
TIBCO iProcess Workspace (Windows) Manager’s Guide.

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 194

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 195

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases.

Regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE.

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself. For example, an RE of “a” will match all constants/fields that match “a” exactly.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

*, ?, [, and \ Asterisk, question mark, left square bracket, and backslash, respectively. These are
always special, except when they appear within square brackets ([]; see Item 5
below).

3. An asterisk (*) is a one-character RE that matches zero or more of any character.

4. A question mark (?) is a one-character RE that matches any character except new-line.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters *, ?, [, and \ stand for themselves within such a string of characters.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 196

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” exactly.

Using Escape Characters in the Filter Expression

Filter expressions require a string value. Therefore, if within the string value, you are required to pro-
vide another string, you must use an escape character to provide the quoted string within a string.

Use the back slash to indicate that the next character is a special character. In the example below, the
back slashes indicate that the quotes that follow them are quoting the string "LOAN", and are not the
ending quotes for the filter expression string.

"SW_PRONAME=\"LOAN\""

Filtering on Empty Fields

To filter on an empty field, compare the field with SW_NA, which checks to see if the field is "not
assigned." For example:

"SOC_SEC_NUM=SW_NA"

This returns only work items in which the SOC_SEC_NUM field is empty.

Comparing the field with an empty set of quotes (SOC_SEC_NUM="") will cause all work items to
be returned. Here's why: The TIBCO iProcess Objects Server determines that this is a filter that the
Work Item Server can perform. The Work Item Server views the filter from the perspective of the
Work Queue Manager. When you set up filter criteria from within the Work Queue Manager, if you
leave a filter field blank, it means "match all items." That's essentially what you are doing when you
compare one of the Work Queue Manager-defined filter criteria to an empty set of quotes.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 197

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 161).

Times are specified as:

#mm:hh#

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Specifying Multiple Ranges

When setting up a range filter, if you are filtering on criteria that can be filtered through the Work
Queue Manager, you are limited to five ranges in the expression if you want the Work Item Server to
evaluate the expression (which is what you want — the Work Item Server processes filter expressions
much faster than the TIBCO iProcess Objects Server). For instance, if you are filtering on the case
number, you can specify up to five case number ranges in your filter expression:

SW_CASENUM=[50-100|110|125-150|180-200|225-250]

The reason for this is because the TIBCO iProcess Objects Server always first determines if the filter
expression is something the Work Item Server can handle. If it is, the TIBCO iProcess Objects Server
sends it to the Work Item Server to evaluate the filter expression; otherwise the TIBCO iProcess
Objects Server will evaluate it. When the filter assignment is sent to the Work Item Server, you must

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 198

abide by the rules/limitations of filtering through the Work Queue Manager. One of the limitations is
that when defining filter ranges in the Work Queue Manager, there are only five range filter fields in
which you can enter filter criteria.

If you exceed five ranges in your filter expression, the TIBCO iProcess Objects Server must evaluate
the expression, which is a lot less efficient than the Work Item Server.

The following is a list of the filter criteria for which you can enter ranges in the Work Queue Manager.
Each of these is limited to five separate ranges:

• Host Name (SW_HOSTNAME)
• Procedure Name (SW_PRONAME)
• Procedure Description (SW_PRODESC)
• Case Number (SW_CASENUM)
• Case Description (SW_CASEDESC)
• Form Name (SW_STEPNAME)
• Form Description (SW_STEPDESC)
• Deadline (SW_DEADLINE)
• Priority (SW_PRIORITY)
• WQ Parameter 1 (SW_QPARAM1)
• WQ Parameter 2 (SW_QPARAM2)
• WQ Parameter 3 (SW_QPARAM3)
• WQ Parameter 4 (SW_QPARAM4)

Closing/Purging Cases Based on Filter Criteria

The sCaseManager object contains methods that allow you to close or purge cases based on filter cri-
teria. These methods are:

• CloseCasesByCriteria - This method closes cases that match the specified filter criteria. You
must have case administration privilege to close a case (defined in TIBCO Business Studio).
You also cannot close a case from a slave node.

• PurgeCasesByCriteria - This method purges cases that match the specified filter criteria. You
must have case administration privilege to purge a case (defined in TIBCO Business Studio).
You also cannot purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

Closing and purging cases require that the user have system administrator authority (MENUNAME =
ADMIN). See “User Attributes” on page 168 for information about the MENUNAME attribute.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 199

Default Filter Criteria

The TIBCO iProcess Server Objects provide the ability to set default work item filter and sort criteria
for a work queue.

Default criteria is a feature of the TIBCO iProcess Objects Server that allows you to save a specific
criteria that persists for the work queue. Note, however, that the default criteria is not automatically
applied to a pageable list of work items that is created for that work queue. Filter criteria must always
be passed in the form of a vWICriteria Value Object when the list is requested. To apply the default
criteria, you must call the GetDefaultCriteria method (which returns a vWICriteria object repre-
senting the default criteria), then pass the vWICriteria object to the GetWorkItemList or GetA-
WorkItemList method when requesting the pageable list.

Note - If you use the TIBCO iProcess Workspace (Windows), filter criteria that are defined on the
Work Queue Manager Work Item List Filter dialog become the default filter criteria for that work
queue. The default filter criteria defined on this dialog can be viewed and/or affected by the methods
described below.

The sWorkQ object contains methods that allow you to affect the default filter criteria (note that at
the same time these methods are affecting the default sort criteria for the work queue — see “Setting
Default Sort Criteria” on page 257):

• ChangeDefaultCriteria - This method sets the default criteria for the work queue based on the
vWICriteria object passed in the method call. These filter criteria will persist on this work
queue until changed again with this method or cleared with the ClearDefaultCriteria method.
(Note that this method is also setting the default sort criteria based on sort fields that are
included in the vWICriteria object passed in the method call.)

• ClearDefaultCriteria - This method clears the default filter criteria that were set either through
the Work Queue Manager or by using the ChangeDefaultCriteria method. (Note that this also
clears any default sort criteria that have been defined.)

• GetDefaultCriteria - This method returns a vWICriteria object, indicating the currently set
default criteria for the work queue. To apply default criteria, you must call this method to obtain
the vWICriteria object, then pass that Value Object with the GetWorkItemList or
GetAWorkItemList method when requesting the pageable list of work items.

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you execute ChangeDefaultCriteria. The following are the filter
criteria that are supported by the Work Queue Manager.

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 200

Also note the when using the ChangeDefaultCriteria method, your filter expressions must conform
to the following guidelines:

• The only equality operator you can use is ‘=’.

• You cannot use any of the following equality operators: ‘?’,’<‘, ‘<=’, ‘>’, ‘>=’, and ‘<>’.

• You cannot use the OR logical operator.

• And since ‘?’ is not allowed, no regular expression syntax can be used.

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

System Field Description

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 201

13
Filtering Work Items and Cases

With WIS Work Item Filtering

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously
provided by the TIBCO iProcess Objects Server can now be performed by the WIS when filter-
ing work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <>
operators, etc.). Since the WIS has the work items cached, and has direct access to case data,
this provides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select state-
ment, which is used to create the result set from the cases in the database. The result set is then
sorted. Because of the indexing ability of the database, this provides for very efficient filtering
and sorting of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server -
CR 13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 12

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 13

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 14

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 202

Introduction

The TIBCO iProcess Server Objects provide the ability to filter work items and cases, allowing you to
filter out all those you aren’t currently interested in. For example, you may only be interested in the
work items that arrived in the work queue today, in which case you could specify a filter expression
that filters out all work items other than those that arrived today:

“SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and the server need to do. When the result set from the
filter operation results in fewer work items or cases, this reduces the work load on the client and
server.

Specifying Filter Criteria

The TIBCO iProcess Server Objects provide “criteria” objects that are used to specify filter criteria:

• vACaseCriteria (for cases)

• vWICriteria (for work items)

• vPredictionCriteria (for predicted work items) (Note that since predicted items are stored in
the database, they are filtered in the same way as cases when you have the database case filter-
ing enhancement — see Filtering Work Items and Cases on page 227 for more information.)

Note that these criteria objects are used for
both filtering and sorting work items and cases
— see “Sorting Work Items and Cases” on
page 251 for information about sorting.

Work items and cases that can be filtered are
always returned in pageable lists
(sPageableList, sPageableListR, or sPagea-
bleListJ objects) — see “Working with
Lists” on page 121 for information about using
pageable lists after the filtered work items or
cases have been returned from the server.

vWICriteria

vCriteriaRequest *

FilterExpression

SortFields

vACaseCriteria

vCriteriaRequest *

vSortField

FieldName

SortTypeAs

IsAscendingFilterExpression

SortFields

vPredictionCriteria

vCriteriaRequest *

FilterExpression

SortFields

MaxSubProc

MaxStepLoop

MaxCnt

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 203

The methods that return filtered work items and cases are summarized in the table below.

To specify filter criteria for a pageable list of work items or cases, follow these steps:

1. Construct a vACaseCriteria, vWICriteria, or vPredictionCriteria object, setting the
aFilterExpression parameter to the desired filter expression string — see the “Defining Filter
Expressions” section below for specifics about creating these strings.

2. Pass the vACaseCriteria, vWICriteria, vPredictionCriteria object as an input parameter with
one of the methods listed in the table above, depending on the type of object you want returned in
the pageable list.

Defining Filter Expressions

To filter work items, cases, or predicted work items, you must define a filter expression string, which
is passed in the aFilterExpression parameter with the applicable criteria object (see the previous sub-
section). The filter expression string is evaluated against each work item or case you are requesting,
returning either True or False. If it returns True, the work item/case is included in the pageable list; if
it returns False, the work item/case is not included in the pageable list. For example, you may choose
to filter the list to include only work items with the urgent flag set (“SW_URGENT = True”).

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc.
Details about filter expressions is described in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Example 1:
To define a filter for work items matching all new items from procedure LOANS, set the filter expres-
sion to the following string:

"SW_NEW=1 AND SW_PRONAME=\"LOANS\""

Example 2:
To define a filter for all work items that arrived after June 20, 2001 (assuming mm/dd/yyyy date locale
setting), set the filter expression to the following string:

"SW_ARRIVALDATE > !06/20/2001!"

Method Uses this Criteria Object
Returns Pageable
List of this Object

sWorkQ.GetWorkItemList vWICriteria vWorkItem

sWorkQ.GetAWorkItemList vWICriteria vAWorkItem

sCaseManager.GetACaseList vACaseCriteria vACase

sCaseManager.GetPredictedItemList vPredictionCriteria vPredictedItem

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 204

Example 3:

To define a filter for all cases with field LOAN_AMT having a value greater than 100000, set the fil-
ter expression to the following string:

"LOAN_AMT > 100000"

Number of Cases or Work Items in a Filtered Pageable List

There are a number of properties available that provide information about the number of cases or
work items on a filtered pageable list. They are:

On sPageableList:

• Available Count (AvailableCnt) - This returns the total number of items available in the
indexed collection on the TIBCO iProcess Objects Server. This count includes only the work
items or cases that satisfy the filter criteria.

• Local Count (LocalCnt) - This returns the number of cases or work items currently being held
in the local bock(s) on the sPageableList. If IsKeepLocalItems has been set to False, this count
will always be less than or equal to the number of items per block (ItemsPerBlock).

Note - The counts above require an understanding of how an indexed collection is created on the
TIBCO iProcess Objects Server, and how blocks of objects are held locally in the pageable list.
See “Working with Lists” on page 121 for information.

On vSummary:

• Exclude Count (ExcludeCnt) - This returns the number of cases or work items that did not sat-
isfy the specified filter criteria, and therefore, were not included in the pageable list.

• Invalid Count (InvalidCnt) - When filtering cases, this returns the number of cases not
included in the pageable list because they were invalid within the context of the filter criteria
(e.g., the filter expression references a field name not defined in the procedure).

When filtering work items, this property is no longer applicable (it returns -1 if the pageable list
contains work items).

• Over Maximum Count (OverMaxCnt) - This returns the number of cases that were not
returned from the server because the number returned was limited using the aMaxCnt parame-
ter on the vACaseCriteria constructor when retrieving a list of cases. This is applicable only
when retreiving cases.

On vWISummary:
These counts are applicable only if the pageable list contains work items.

• Urgent Count (UrgentCnt) - This returns the number of work items on the pageable list that
are marked as urgent. A work item is marked as urgent if its priority value
(vWorkItem.Priorty) is less than or equal to a specific value. By default, the value is 10,
although it can be modified in the staffcfg file.

• Deadline Count (DeadlineCnt) - This returns the number of work items on the pageable list
that have deadlines.

• Unopened Count (UnopenedCnt) - This returns the number of work items on the pageable list
that have not been opened (locked).

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 205

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed— works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items are always filtered by the Work Item Server (WIS). The WIS has work items
cached in memory, allowing it to evaluate filter expressions for work items very quickly. The
elements you are allowed to use in your filter expressions are listed in “Work Items are Filtered
by the WIS” on page 207.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation. This is explained in detail below.

The following flow diagram shows the decision process that takes place when filtering and sorting
work items.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 206

As shown in the illustration, there are a couple of actions that will cause the filter/sort operation to be
less efficient when filtering and sorting work items:

• Getting case data
• Performing the sort operation on the TIBCO iProcess Objects Server

Additional information about these actions is provided in the subsections that follow.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 207

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a work item “content” object (vWIContent), the server will
explicitly retrieve the data in those fields from the engine. See “Retrieving Field Data from the
Server” on page 150 for information about the use of the aCaseFieldNames parameter.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if the sort operation is
being handled by the TIBCO iProcess Objects Server, and you sort on a customer-defined field
(i.e., any field on a form that is not a system field (SW_PRIORITY, SW_PRONAME, etc.)),
the TIBCO iProcess Objects Server must retrieve the data in that field from the engine,
adversely affecting performance.

Note that although the flow diagram shows that there are two different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you explicitly retrieve case data and the TIBCO iProcess Objects Server is
sorting on customer-defined fields; the TIBCO iProcess Objects Server only has to get case data once
for the entire operation.

Work Items are Filtered by the WIS

As shown in the Filtering and Sorting Work Items illustration, work items are always filtered by the
WIS. The WIS has work items cached in memory, allowing it to evaluate filter expressions for work
items very quickly.

The following table lists the elements that can be used in filter expressions when filtering work items:

Element Description

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 221.)

Logical Operators AND, OR

System Fields All system fields that are applicable to work items (see the Applies To column in
the table of system fields used for filtering — page 214)

Case Data Fields Case data fields can be included in your filter expressions ONLY if they are first
defined as CDQPs. If your filter expression references a field that is not a CDQP,
the WIS will return a syntax error, which causes the entire filter operation to fail.
See “Filtering on Case Data Fields” on page 218 for information.

Wildcards The wildcard characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax — see “How to Specify Ranges of Values” on page 224 for infor-
mation.

Regular Expressions Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 221.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 208

The following is an example of a filter expression for filtering work items:

• To define a filter for all unopened work items, set the filter expression to:

"SW_NEW = 1"

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See “Sorting Work Items and Cases” on page 251 for information about setting up sort criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the TIBCO iProcess Objects Server. To filter cases, the TIBCO
iProcess Objects Server must retrieve all cases (both active and closed) from the procedure to
be able to filter them. This can take a significant amount of time, depending on the number of
cases. The TIBCO iProcess Objects Server can, however, efficiently filter on case number
(SW_CASENUM) or case reference number (SW_CASEREF) (see “Efficiently Filtering Cases
on the TIBCO iProcess Objects Server” on page 211 for more information). The elements you
are allowed to use in your filter expressions to filter cases are listed below.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Cases are always sorted by the TIBCO iProcess Objects Server. This, however, requires that the
server hold in memory all of the cases in the result set.

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 255 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 255 for more information.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 209

The following flow diagram shows the decision process that takes place when filtering and sorting
cases.

As shown in the illustration, there are some actions you should avoid, if possible, when filtering and
sorting cases:

• Getting case data
• Performing the filter operation on the TIBCO iProcess Objects Server
• Performing the sort operation on the TIBCO iProcess Objects Server
• Getting audit data

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 210

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a case “content” object (vACaseContent), the server will explic-
itly retrieve the data in those fields from the engine. See “Retrieving Field Data from the
Server” on page 150 for information about the use of the aCaseFieldNames parameter.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

The TIBCO iProcess Objects Server Filters Cases

Cases can be filtered only by the TIBCO iProcess Objects Server. This limits your options to perform
an efficient filter operation because the TIBCO iProcess Objects Server must always retrieve all cases
(both active and closed) from the engine to be able to determine if they satisfy the filter expression.
For large numbers of cases this can take a significant amount of time.

The following table lists the elements that can be used in filter expressions when filtering cases:

Element Description

Logical Operators AND, OR

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 221.)

System Fields All system fields that are applicable to cases (see the Applies To column in the
table of system fields used for filtering — page 214)

Case Data Fields Case data fields can be included in your filter expressions, although it causes you
to take a performance hit because the TIBCO iProcess Objects Server must get
case data from the engine.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 211

The following is an example of a filter expression for filtering cases:

• To define a filter for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting), set the filter expression to:

"SW_STARTEDDATE <= !03/01/2003!"

Efficiently Filtering Cases on the TIBCO iProcess Objects Server
The Filtering and Sorting Cases flow diagram shows that if you are filtering cases, you can bypass the
performance hit normally caused by filtering on the TIBCO iProcess Objects Server by filtering on
either SW_CASENUM or SW_CASEREF.

Cases are indexed by case number (SW_CASENUM) and case reference number (SW_CASEREF).
Therefore, if your filter expression contains one (and only one) of these system fields, the TIBCO
iProcess Objects Server is able to perform the filtering operation very quickly. When using these sys-
tem fields, the server does not have to retrieve all of the cases from the procedure.

The following are example filter expression strings using the case number and case reference number:

"SW_CASENUM = 150"

"SW_CASEREF = \"2-6\""

Note - Case number is an integer; case reference number is a text string.

This exception for cases does not allow for any compound expressions; you can only filter on a single
case number or a single case reference number.

The TIBCO iProcess Objects Server Sorts Cases

As described earlier and shown in the Filtering and Sorting Cases illustration, cases are always sorted
by the TIBCO iProcess Objects Server. This is not real efficient because the TIBCO iProcess Objects
Server must hold in memory all work items in the filter result set. If the result set from the filter
operation is very large, this can consume a significant amount of memory.

The table below shows the sort criteria you can use when sorting cases.

Wildcards Note that the ‘*’ and ‘?’ characters are NOT interpreted as wildcard characters
when filtering cases on the TIBCO iProcess Objects Server. They are interpreted
literally, i.e., as an asterisk and question mark. (This applies when using the ‘=’
equality operator. You can use ‘*’ and ‘?’ as wildcard characters when using the ‘?
equality operator (i.e., with regular expressions — see below).)

Regular Expressions Regular expressions can be used when filtering cases, allowing you to do com-
plex pattern matching. See “Using Regular Expressions” on page 221.

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 253.

• Case data fields can be included in your sort criteria, although it causes you to take a performance hit
because the TIBCO iProcess Objects Server must get case data from the engine.

Element Description

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 212

See “Sorting Work Items and Cases” on page 251 for specific information about setting up sort crite-
ria.

Getting Audit Data

If audit data is requested on the cases in the pageable list, this causes the TIBCO iProcess Objects
Server to retrieve the audit data from the engine for each case on which it’s requested. This impacts
the performance of a case filter operation. (See “Getting Audit Step Objects” on page 56 for informa-
tion about how audit data is requested.) For efficiency reasons, only include audit data in cases in
which it is really needed.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 214 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

<time>
#<hour>:<min>#

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 213

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

<alphanums>
<alphanum> [<alphanums>]

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 214

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the engine through the system fields is also
available to the application though properties on work item and case objects. For example,
SW_CASENUM is available to the client in the vCaseId.CaseNumber property. The TIBCO iPro-
cess Engine, however, doesn’t have access to those properties, so the property names can’t be used in
filter and sort criteria — instead, the system field names need to be used in your expressions. For
example:

“SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns).

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X

Arrival date SW_ARRIVALDATE Date 10 X

Arrival time SW_ARRIVALTIME Time 5 X

Case description SW_CASEDESC Text 24 X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X

Case reference number SW_CASEREF Text 20 X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - all work items)

SW_EXPIRED Numeric 1 X

Deadline set flag
(1 - has deadline;
0 - all work items)

SW_HASDEADLINE Numeric 1 X

Deadline time SW_DEADLINETIME Time 5 X

Forwardable work item flag
(1 - forwardable;
0 - all work items)

SW_FWDABLE Numeric 1 X

Host name SW_HOSTNAME Text 24 or 8a X X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 215

Mail ID SW_MAILID String or

Numeric b
7 (integer)

45 (string)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 3 X

Procedure description SW_PRODESC Text 24 X X

Procedure name SW_PRONAME Text 8 X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no input
fields) (1 - releasable;
0 - all work items)

SW_RELABLE Numeric 1 X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” - active;
“C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X

Step (work item) name SW_STEPNAME Text 8 X

Step (work item) number in pro-
cedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended)

(only available on TIBCO iPro-
cess Engines)

SW_SUSPENDED Numeric 1 X

Terminated date and time of the
case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - all work items)

SW_NEW Numeric 1 X

Urgent flag (1- urgent;
0 - all work items)

SW_URGENT Numeric 1 X

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 216

Note - The System Fields that can be set to 1 and 0 work in the following manner: When set to 1, only
the respective work items are displayed; when set to 0, all work items are displayed. For example, if
SW_FWDABLE is set to 1, this means "display only the forwardable work items". If it's set to 0, this
means "don't display only the forwardable work items, instead, display all of them."

Data Types used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Work queue parameter 1 SW_QPARAM1 Text 24 X

Work queue parameter 2 SW_QPARAM2 Text 24 X

Work queue parameter 3 SW_QPARAM3 Text 12 X

Work queue parameter 4 SW_QPARAM4 Text 12 X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is a numeric field of length 7; if using a TIBCO iProcess
Engine, SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance,
if your filter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases
that ARE terminated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Data Type Description

Numeric Constant numbers are simply entered in the expression.

Example: 425.00

Text Text constants must be enclosed within double quotes.

Example: "Smith"

Date Date constants must be enclosed in exclamation marks. The ordering of the day, month and
year is specified in the staffpms file (see “Date Format” on page 161).

Example: !12/25/1997!

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the staff-
pms file (see “Date Format” on page 161).

Example: "12/25/1997 10:30"

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 217

Data Type Conversions

If you specify a filter expression that compares values of data with different types, the following con-
version takes place:

Filtering Work Items on the WIS
If comparing data of different types when filtering work items, the WIS will do the following:

• If comparing a string to any other data type (e.g., string = numeric, string = date, etc.), the WIS
will attempt to convert the string to the non-string data type, then the comparison is performed.
If the string cannot be converted to the non-string data type (for example, you are comparing a
string to a Date, but the string value does not fit in the Date format), a syntax error is thrown.

• If comparing any other mismatched data types (e.g., numeric = date, Time = date, etc.), the
comparison will return a False.

Filtering Cases on the TIBCO iProcess Objects Server
If comparing data of different types when filtering cases, the TIBCO iProcess Objects Server will con-
vert both data types to strings and compare their string values. See the examples below.

Example 1:
The expression:

!06/03/1999! < 34

will be converted to:

"06/03/1999" < "34"

Example 2:

Assume NUM_FIELD is an iProcess field of type Numeric with a value of 275. The filter:

NUM_FIELD < "34"

will result in being true because NUM_FIELD will be converted to a string before the comparison is
made ("275" < "34").

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 218

Filtering on Case Data Fields

You can filter work items in a work queue based on the values in the fields of the work item (referred
to as "case data" fields).

There are two ways in which you can filter on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlim-
ited number of case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field in filter or sort criteria. These fields have been superseded by CDQP fields as they were
considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Note - With the WIS work item filtering enhancement, case data fields can be included in filter expres-
sions only if they are defined as Case Data Queue Parameter (CDQP) fields. If your filter expression
references a field that is not a CDQP for the queue, the WIS will return a syntax error, which causes
the entire filter operation to fail. (The filter expression can also reference the Work Queue Parameter
fields, which are essentially system fields — their names begin with “SW”, e.g., SW_QPARAM1.)

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available to
use for filtering. For information about using swutil, see the TIBCO iProcess swutil and swbatch Ref-
erence Guide.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Once you have created the list of CDQP fields with swutil, this list of fields is
available with the GetCDQPDefs method on sWorkQManager, or the
CDQPDef property on vAWorkQ. These return vCDQPDef objects, which
provide the CDQP definitions. If GetCDQPDefs is called from sWorkQMan-
ager, it sends a message to the server to retrieve an array of vCDQPDef
objects, one for each CDQP field defined on the specified work queue. If
CDQPDef is accessed from vAWorkQ, it returns an array of vCDQPDef
objects, one for each CDQP field defined on the work queue represented by the local Value Object.

Once you have retrieved a work item Value Object (vWorkItem), the CDQP
fields that are being used in that work item are available in the CDQPs prop-
erty. This property returns an array of vCDQP objects, one for each CDQP
field that is being used in the work item. The vCDQP objects provide access to
the values in the CDQP fields.

Your filter expressions can include any of the CDQP fields that have been defined on the work queue.
For example, assuming LOAN_AMT is listed as one of the CDQP fields for the work queue, the fol-
lowing is a valid filter expression:

"LOAN_AMT = 500000"

vCDQPDef

Description

FieldName

Length

IsPrediction

vCDQP

FieldName

Value

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 219

CDQPs Contain Work Item Data

An important thing to understand is that when you filter (or sort) on the values in CDQPs, it’s actually
“work item data” in the CDQP (as opposed to “case data”). Work item data reflects any “keeps” that
have been processed on the work item. In other words, if a user changes the value of a field, then
keeps the work item, the CDQP for that field will reflect the changes the user made to the field. The
“case data” is only updated when the work item is released.

See “Case Data vs. Work Item Data” on page 149 for more information.

Using Work Queue Parameter Fields

Note - Previous versions of the TIBCO iProcess Objects Server provided “Work Queue Parameter”
fields that could be used for filtering and sorting work items based on the value of case data. Work
Queue Parameter fields, however, did not provide the flexibility required by some customers. There-
fore, a new method using “Case Data Queue Parameter” fields has been implemented (see the previ-
ous section). New development should use Case Data Queue Parameter fields to filter on case data
instead of the Work Queue Parameter fields (Work Queue Parameter fields will continue to be sup-
ported, however).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name of Miller, the FilterExpression property is set as follows:

"SW_QPARAM1?\"Miller\""

This would be much more efficient then filtering on the LAST_NAME field.

The vWorkItem object contains properties that provide access to the values in the Work Queue
Parameter fields — they are WorkQParam1 - WorkQParam4. These properties return the values
you place in the system fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 220

The vWorkQ object contains four properties that return a name for each of the Work Queue Parame-
ter fields — they are WorkQParam1Name - WorkQParam4Name. If you use the TIBCO iProcess
Workspace (Windows), these names appear in the column headers if you display the Work Queue
Parameter fields in the Work Queue Manager. For information about modifying these names, see the
TIBCO iProcess Workspace (Windows) Manager’s Guide.

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 221

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases. However, the way in which some regular
expression special characters are evaluated differs between work items and cases. See the subsections
below for information about the special characters that can be used with regular expressions when fil-
tering work items and cases.

Note - If using a regular expression when filtering predicted work items (vPredictedItem objects), the
only special characters that can be used are the asterisk and question mark. They both work as wild-
card characters, where the asterisk matches zero or more of any character, and the question mark
matches any single character.

All regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

Regular Expressions with Work Item Filtering

The following describes how regular expressions are evaluated when filtering work items (the Work
Item Server (WIS) evaluates all work item filter expressions).

Note - If you are moving from an TIBCO iProcess Objects Server that does not have the WIS work
item filtering enhancement (CR 12744) to one that does (see page 201 for more information), the way
in which some regular expression special characters are evaluated will be different. This can result in
a different set of work items being returned using the same filter expression.

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE. The REs allowed are:

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself anywhere in the constant/field. For example, an RE of “a” will match all con-
stants/fields that contain “a”.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

., *, [, and \ Period, asterisk, left square bracket, and backslash, respectively. These are always
special, except when they appear within square brackets ([]; see Item 4 below).

^ Caret or circumflex, which is special at the beginning of an entire RE, or when it
immediately follows the left bracket of a pair of square brackets ([]) (see Item 4
below).

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 222

$ Dollar sign, which is special at the end of an entire RE. The character used to bound
(i.e., delimit) an entire RE, which is special for that RE.

3. A period (.) is a one-character RE that matches any character except new-line.

4. A one-character RE followed by an asterisk (*) is an RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest, leftmost string that permits a match is
chosen.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters ., *, [, and \ stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” anywhere in the constant/field.

An entire RE may be constrained to match only an initial segment or final segment of a line (or both):

1. A circumflex (^) at the beginning of an entire RE constrains that RE to match an initial segment of
a line.

2. A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment of a line.

3. The construction ^entire RE$ constrains the entire RE to match the entire line.

Regular Expressions with Case Filtering

The following describes how regular expressions are evaluated when filtering cases (the TIBCO iPro-
cess Objects Server evaluates all case filter expressions).

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE.

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself. For example, an RE of “a” will match all constants/fields that match “a” exactly.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 223

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

*, ?, [, and \ Asterisk, question mark, left square bracket, and backslash, respectively. These are
always special, except when they appear within square brackets ([]; see Item 5
below).

3. An asterisk (*) is a one-character RE that matches zero or more of any character.

4. A question mark (?) is a one-character RE that matches any character except new-line.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters *, ?, [, and \ stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” exactly.

Using Escape Characters in the Filter Expression

Filter expressions require a string value. Therefore, if within the string value, you are required to pro-
vide another string, you must use an escape character to provide the quoted string within a string.

Use the back slash to indicate that the next character is a special character. In the example below, the
back slashes indicate that the quotes that follow them are quoting the string "LOAN", and are not the
ending quotes for the filter expression string.

"SW_PRONAME=\"LOAN\""

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 224

Filtering on Empty Fields

To filter on an empty field, you can use either of the following:

• compare the field with SW_NA, which checks to see if the field is "not assigned." For example:

"SOC_SEC_NUM=SW_NA"

• compare the field to an empty set of quotes. For example:

"SOC_SEC_NUM=\"\""

Note - See the previous section for information about using escape characters.

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 161).

Times are specified as:

#mm:hh#

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 225

Closing/Purging Cases Based on Filter Criteria

The sCaseManager object contains methods that allow you to close or purge cases based on filter cri-
teria. These methods are:

• CloseCasesByCriteria - This method closes cases that match the specified filter criteria. You
must have case administration privilege to close a case (defined in TIBCO Business Studio).
You also cannot close a case from a slave node.

• PurgeCasesByCriteria - This method purges cases that match the specified filter criteria. You
must have case administration privilege to purge a case (defined in TIBCO Business Studio).
You also cannot purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

Closing and purging cases require that the user have system administrator authority (MENUNAME =
ADMIN). See “User Attributes” on page 168 for information about the MENUNAME attribute.

Default Filter Criteria

The TIBCO iProcess Server Objects provide the ability to set default work item filter and sort criteria
for a work queue.

Default criteria is a feature of the TIBCO iProcess Objects Server that allows you to save a specific
criteria that persists for the work queue. Note, however, that the default criteria is not automatically
applied to a pageable list of work items that is created for that work queue. Filter criteria must always
be passed in the form of a vWICriteria Value Object when the list is requested. To apply the default
criteria, you must call the GetDefaultCriteria method (which returns a vWICriteria object repre-
senting the default criteria), then pass the vWICriteria object to the GetWorkItemList or GetA-
WorkItemList method when requesting the pageable list.

Note - If you use the TIBCO iProcess Workspace (Windows), filter criteria that are defined on the
Work Queue Manager Work Item List Filter dialog become the default filter criteria for that work
queue. The default filter criteria defined on this dialog can be viewed and/or affected by the methods
described below.

The sWorkQ object contains methods that allow you to affect the default filter criteria (note that at
the same time these methods are affecting the default sort criteria for the work queue — see “Setting
Default Sort Criteria” on page 257):

• ChangeDefaultCriteria - This method sets the default criteria for the work queue based on the
vWICriteria object passed in the method call. These filter criteria will persist on this work
queue until changed again with this method or cleared with the ClearDefaultCriteria method.
(Note that this method is also setting the default sort criteria based on sort fields that are
included in the vWICriteria object passed in the method call.)

• ClearDefaultCriteria - This method clears the default filter criteria that were set either through
the Work Queue Manager or by using the ChangeDefaultCriteria method. (Note that this also
clears any default sort criteria that have been defined.)

• GetDefaultCriteria - This method returns a vWICriteria object, indicating the currently set
default criteria for the work queue. To apply default criteria, you must call this method to obtain
the vWICriteria object, then pass that Value Object with the GetWorkItemList or
GetAWorkItemList method when requesting the pageable list of work items.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 226

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you execute ChangeDefaultCriteria. The following are the filter
criteria that are supported by the Work Queue Manager.

Also note the when using the ChangeDefaultCriteria method, your filter expressions must conform
to the following guidelines:

• The only equality operator you can use is ‘=’.

• You cannot use any of the following equality operators: ‘?’,’<‘, ‘<=’, ‘>’, ‘>=’, and ‘<>’.

• You cannot use the OR logical operator.

• And since ‘?’ is not allowed, no regular expression syntax can be used.

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 227

14
Filtering Work Items and Cases

With WIS Work Item and Database Case Filtering

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously
provided by the TIBCO iProcess Objects Server can now be performed by the WIS when filter-
ing work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <>
operators, etc.). Since the WIS has the work items cached, and has direct access to case data,
this provides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select state-
ment, which is used to create the result set from the cases in the database. The result set is then
sorted. Because of the indexing ability of the database, this provides for very efficient filtering
and sorting of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server -
CR 13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 12

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 13

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 14

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 228

Introduction

The TIBCO iProcess Server Objects provide the ability to filter work items and cases, allowing you to
filter out all those you aren’t currently interested in. For example, you may only be interested in the
work items that arrived in the work queue today, in which case you could specify a filter expression
that filters out all work items other than those that arrived today:

“SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and the server need to do. When the result set from the
filter operation results in fewer work items or cases, this reduces the work load on the client and
server.

Specifying Filter Criteria

The TIBCO iProcess Server Objects provide “criteria” objects that are used to specify filter criteria:

• vACaseCriteria (for cases)

• vWICriteria (for work items)

• vPredictionCriteria (for predicted work items) (Note that since predicted items are stored in
the database, they are filtered in the same way as cases when you have the database case filter-
ing enhancement — see “Filtering/Sorting Cases” on page 234 for more information.)

Note that these criteria objects are used for both
filtering and sorting work items and cases — see
“Sorting Work Items and Cases” on page 251 for
information about sorting.

Work items and cases that can be filtered are
always returned in pageable lists
(sPageableList, sPageableListR, or
sPageableListJ objects) — see “Working with
Lists” on page 121 for information about using
pageable lists after the filtered work items or
cases have been returned from the server.

vWICriteria

vCriteriaRequest *

FilterExpression

SortFields

vACaseCriteria

vCriteriaRequest *

vSortField

FieldName

SortTypeAs

IsAscendingFilterExpression

SortFields

vPredictionCriteria

vCriteriaRequest *

FilterExpression

SortFields

MaxSubProc

MaxStepLoop

MaxCnt

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 229

The methods that return filtered work items and cases are summarized in the table below.

To specify filter criteria for a pageable list of work items or cases, follow these steps:

1. Construct a vACaseCriteria, vWICriteria, or vPredictionCriteria object, setting the
aFilterExpression parameter to the desired filter expression string — see the “Defining Filter
Expressions” section below for specifics about creating these strings.

2. Pass the vACaseCriteria, vWICriteria, vPredictionCriteria object as an input parameter with
one of the methods listed in the table above, depending on the type of object you want returned in
the pageable list.

Defining Filter Expressions

To filter work items, cases, or predicted work items, you must define a filter expression string, which
is passed in the aFilterExpression parameter with the applicable criteria object (see the previous sub-
section). The filter expression string is evaluated against each work item or case you are requesting,
returning either True or False. If it returns True, the work item/case is included in the pageable list; if
it returns False, the work item/case is not included in the pageable list. For example, you may choose
to filter the list to include only work items with the urgent flag set (“SW_URGENT = True”).

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc.
Details about filter expressions is described in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Example 1:
To define a filter for work items matching all new items from procedure LOANS, set the filter expres-
sion to the following string:

"SW_NEW=1 AND SW_PRONAME=\"LOANS\""

Example 2:
To define a filter for all work items that arrived after June 20, 2001 (assuming mm/dd/yyyy date locale
setting), set the filter expression to the following string:

"SW_ARRIVALDATE > !06/20/2001!"

Method Uses this Criteria Object
Returns Pageable
List of this Object

sWorkQ.GetWorkItemList vWICriteria vWorkItem

sWorkQ.GetAWorkItemList vWICriteria vAWorkItem

sCaseManager.GetACaseList vACaseCriteria vACase

sCaseManager.GetPredictedItemList vPredictionCriteria vPredictedItem

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 230

Example 3:

To define a filter for all cases with field LOAN_AMT having a value greater than 100000, set the fil-
ter expression to the following string:

"LOAN_AMT > 100000"

Length of Filter Expressions

The exact length that you can make filter expressions is not well defined, although some approxima-
tions are provided below. The filter expression length depends on whether you are filtering work items
or cases, as follows:

• Work Items - The filter expression is converted into a SAL-compatible expression. The maxi-
mum size after conversion is 2K bytes. Note, however, that the conversion can increase the size
of the expression. Tests have shown that a 1700-byte expression increases to approximately 2K
bytes during the conversion. The amount of increase depends on the operators used in the
expression.

• Cases - Filter expressions for cases are also converted into a SAL-compatible expression as
described above for work items. These filter expressions then undergo another conversion to
SQL Select statements. This second conversion can dramatically increase the size of the
expression by anywhere between two to four times. The maximum size of the expression after
the conversion to the SQL Select statement is 4K bytes.

If an expression filtering cases exceeds the maximum size after the conversion to a SQL Select
statement, an “Error in expression syntax” is returned to the client. (Note that the message is not
descriptive of the problem.)

Number of Cases or Work Items in a Filtered Pageable List

There are a number of properties available that provide information about the number of cases or
work items on a filtered pageable list. They are:

On sPageableList:

• Available Count (AvailableCnt) - This returns the total number of items available in the
indexed collection on the TIBCO iProcess Objects Server. This count includes only the work
items or cases that satisfy the filter criteria.

• Local Count (LocalCnt) - This returns the number of cases or work items currently being held
in the local bock(s) on the sPageableList. If IsKeepLocalItems has been set to False, this count
will always be less than or equal to the number of items per block (ItemsPerBlock).

Note - The counts above require an understanding of how an indexed collection is created on the
TIBCO iProcess Objects Server, and how blocks of objects are held locally in the pageable list.
See “Working with Lists” on page 121 for information.

On vSummary:

• Exclude Count (ExcludeCnt) - When filtering work items, this property returns the number of
work items that did not satisfy the Boolean expression specified in the filter expression, and
therefore, were not included in the pageable list.

When filtering cases, this property is no longer applicable (it returns -1 if the pageable contains
cases). Since the filter processing is being handled in the database, determining an invalid count
would require the database to determine the row count, which would decrease the performance
improvement gained by the database creating the result set.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 231

• Invalid Count (InvalidCnt) - This property is no longer applicable when filtering work items
or cases (it always returns -1).

• Over Maximum Count (OverMaxCnt) - This returns the number of cases that were not
returned from the server because the number returned was limited using the aMaxCnt parame-
ter on the vACaseCriteria constructor when retrieving a list of cases. This is applicable only
when retreiving cases.

On vWISummary:
These counts are applicable only if the pageable list contains work items.

• Urgent Count (UrgentCnt) - This returns the number of work items on the pageable list that
are marked as urgent. A work item is marked as urgent if its priority value
(vWorkItem.Priorty) is less than or equal to a specific value. By default, the value is 10,
although it can be modified in the staffcfg file.

• Deadline Count (DeadlineCnt) - This returns the number of work items on the pageable list
that have deadlines.

• Unopened Count (UnopenedCnt) - This returns the number of work items on the pageable list
that have not been opened (locked).

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed — works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items are always filtered by the Work Item Server (WIS). The WIS has work items
cached in memory, allowing it to evaluate filter expressions for work items very quickly. The
elements you are allowed to use in your filter expressions are listed in “Work Items are Filtered
by the WIS” on page 233.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation. This is explained in detail below.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 232

The following flow diagram shows the decision process that takes place when filtering and sorting
work items.

As shown in the illustration, there are a couple of actions that will cause the filter/sort operation to be
less efficient when filtering and sorting work items:

• Getting case data
• Performing the sort operation on the TIBCO iProcess Objects Server

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a work item “content” object (vWIContent), the server will

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 233

explicitly retrieve the data in those fields from the engine. See “Retrieving Field Data from the
Server” on page 150 for information about the use of the aCaseFieldNames parameter.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if the sort operation is
being handled by the TIBCO iProcess Objects Server, and you sort on a customer-defined field
(i.e., any field on a form that is not a system field (SW_PRIORITY, SW_PRONAME, etc.)),
the TIBCO iProcess Objects Server must retrieve the data in that field from the engine,
adversely affecting performance.

Note that although the flow diagram shows that there are two different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you explicitly retrieve case data and the TIBCO iProcess Objects Server is
sorting on customer-defined fields; the TIBCO iProcess Objects Server only has to get case data once
for the entire operation.

Work Items are Filtered by the WIS

As shown in the Filtering and Sorting Work Items illustration, work items are always filtered by the
WIS. The WIS has work items cached in memory, allowing it to evaluate filter expressions for work
items very quickly.

The following table lists the elements that can be used in filter expressions when filtering work items:

Element Description

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 245.)

Logical Operators AND, OR

System Fields All system fields that are applicable to work items (see the Applies To column in
the table of system fields used for filtering — page 239)

Parentheses Parentheses can be used to construct more complex filter expressions, or to
make your expressions more readable.

Case Data Fields Case data fields can be included in your filter expressions ONLY if they are first
defined as CDQPs. If your filter expression references a field that is not a CDQP,
the WIS will return a syntax error, which causes the entire filter operation to fail.
See “Filtering on Case Data Fields” on page 242 for information.

Wildcards The wildcard characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax — see “How to Specify Ranges of Values” on page 247 for infor-
mation.

Regular Expressions Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 245.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 234

The following are examples of filter expressions for filtering work items:

• To define a filter for all unopened work items:

"SW_NEW = 1"

• To define a filter for work items that either arrived in the work queue after 03/01/2005, or that
arrived on or before 02/20/2005 and have not been opened yet:

"SW_ARRIVALDATE > !03/01/2005! OR (SW_ARRIVALDATE <= !02/20/2005! AND
SW_NEW = 1)"

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See “Sorting Work Items and Cases” on page 251 for information about setting up sort criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the database. The filter expression is translated into an SQL select
statement, which is used to create the result set from the cases in the database. Because of the
indexing ability of the database, this provides for very efficient filtering of cases. The elements
you are allowed to use in your filter expressions to filter cases are listed in “The Database Fil-
ters Cases” on page 236.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 255 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 253. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 255 for more information.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 235

• Cases are always sorted by the database. The result set from the filter operation (if performed)
is sorted in the database. See the table in “The Database Sorts Cases” on page 237 for the sort
criteria that can be used when sorting cases.

The following flow diagram shows the decision process that takes place when filtering and sorting
cases.

As shown in the illustration, there are some actions you should avoid, if possible, when filtering and
sorting cases:

• Getting case data

• Getting audit data

Additional information about these actions is provided in the subsections that follow.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 236

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following action causes the TIBCO iProcess Objects Server to get case data:

• Explicitly Retrieving Case Data - If you explicitly ask for case data using the aCaseFieldNames
parameter when constructing a case “content” object (vACaseContent), the server will explic-
itly retrieve the data in those fields from the engine. See “Retrieving Field Data from the
Server” on page 150 for information about the use of the aCaseFieldNames parameter.

The Database Filters Cases

Cases are always filtered by the database. The filter expression is translated into an SQL select state-
ment, which is used to create the result set from the cases in the database. Because of the indexing
ability of the database, this provides for very efficient filtering of cases.

The following table lists the elements that can be used in filter expressions when filtering cases:

The following are examples of filter expressions for filtering cases:

• To define a filter for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting), set the filter expression to:

"SW_STARTEDDATE <= !03/01/2003!"

• To define a filter for cases with a case number of 1, or a case number of 2 and a case description
of “Test”:

"SW_CASENUM = 1 OR (SW_CASENUM = 2 AND SW_CASEDESC = \"Test\")"

Element Description

Logical Operators AND, OR

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 245.)

System Fields All system fields that are applicable to cases (see the Applies To column in the
table of system fields used for filtering — page 239)

Parentheses Parentheses can be used to construct more complex filter expressions, or to
make your expressions more readable.

Case Data Fields Case data fields can be included in your filter expressions (although field-to-field
comparisons are not supported, e.g., FIELD1 = FIELD2, FIELD2 < FIELD3, etc.).

Wildcards The wildcard characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Regular Expression Regular expressions can be used when filtering cases. However, when using the
regular expression equality operator (?) in your filter expression, the regular
expression string can include the * and ? wildcard characters, but none of the
other regular expression special characters (the database is not able to interpret
the other special characters). See “Using Regular Expressions” on page 245.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 237

The Database Sorts Cases

When sorting cases in the database, the following sort criteria can be used:

See “Sorting Work Items and Cases” on page 251 for specific information about setting up sort criteria.

Getting Audit Data

If audit data is requested on the cases in the pageable list, this causes the TIBCO iProcess Objects
Server to retrieve the audit data from the engine for each case on which it’s requested. This impacts the
performance of a case filter operation. (See “Getting Audit Step Objects” on page 56 for information
about how audit data is requested.) For efficiency reasons, only include audit data in cases in which it is
really needed.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 239 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

<time>
#<hour>:<min>#

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 251).

• Case data fields can be included in your sort criteria when sorting cases.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 238

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

<alphanums>
<alphanum> [<alphanums>]

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 239

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the engine through the system fields is also
available to the application though properties on work item and case objects. For example,
SW_CASENUM is available to the client in the vCaseId.CaseNumber property. The TIBCO iPro-
cess Engine, however, doesn’t have access to those properties, so the property names can’t be used in
filter and sort criteria — instead, the system field names need to be used in your expressions. For
example:

“SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns).

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X

Arrival date SW_ARRIVALDATE Date 10 X

Arrival time SW_ARRIVALTIME Time 5 X

Case description SW_CASEDESC Text 24 X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X

Case reference number SW_CASEREF Text 20 X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - no expired
deadline)

SW_EXPIRED Numeric 1 X

Deadline set flag
(1 - has deadline;
0 - no deadline)

SW_HASDEADLINE Numeric 1 X

Deadline time SW_DEADLINETIME Time 5 X

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 240

Forwardable work item flag
(1 - forwardable;
0 - not forwardable)

SW_FWDABLE Numeric 1 X

Host name SW_HOSTNAME Text 24 or 8a X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Mail ID SW_MAILID String or

Numeric b
7 (integer)

45 (string)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 3 X

Procedure description SW_PRODESC Text 24 X X

Procedure name SW_PRONAME Text 8 X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no input
fields) (1 - releasable;
0 - not releasable)

SW_RELABLE Numeric 1 X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” - active;
“C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X

Step (work item) name SW_STEPNAME Text 8 X

Step (work item) number in pro-
cedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended)

(only available on TIBCO iPro-
cess Engines)

SW_SUSPENDED Numeric 1 X

Terminated date and time of the
case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 241

Data Types used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - have been opened)

SW_NEW Numeric 1 X

Urgent flag (1- urgent;
0 - not flagged urgent)

SW_URGENT Numeric 1 X

Work queue parameter 1 SW_QPARAM1 Text 24 X

Work queue parameter 2 SW_QPARAM2 Text 24 X

Work queue parameter 3 SW_QPARAM3 Text 12 X

Work queue parameter 4 SW_QPARAM4 Text 12 X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is a numeric field of length 7; if using a TIBCO iProcess
Engine, SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance,
if your filter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases
that ARE terminated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Data Type Description

Numeric Constant numbers are simply entered in the expression.

Example: 425.00

Text Text constants must be enclosed within double quotes.

Example: "Smith"

Date Date constants must be enclosed in exclamation marks. The ordering of the day, month and
year is specified in the staffpms file (see “Date Format” on page 161).

Example: !12/25/1997!

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the staff-
pms file (see “Date Format” on page 161).

Example: "12/25/1997 10:30"

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 242

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Data Type Conversions

If you specify a filter expression that compares values of data with different types, the following con-
version takes place (this applies to both work items and cases that are filtered by either the WIS or the
database):

• If comparing a string to any other data type (e.g., string = numeric, string = date, etc.), the
WIS/database will attempt to convert the string to the non-string data type, then the comparison
is performed. If the string cannot be converted to the non-string data type (for example, you are
comparing a string to a Date, but the string value does not fit in the Date format), a syntax error
is thrown.

• If comparing any other mismatched data types (e.g., numeric = date, Time = date, etc.), the
comparison will return a False.

Filtering on Case Data Fields

When filtering cases, you can include case data field names in your filter expression. Note that the
values in these fields contain “case data” (as opposed to “work item data”). “Case data” is updated
with the values that have been entered into the fields of a work item only when you “release” that
work item. For more information about case data and work item data, see “Case Data vs. Work Item
Data” on page 149.

When filtering work items, you can include case data fields in your filter expression only if they have
been designated as one of the following:

• Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition than
Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlimited
number of case data fields that appear in work items on your work queue.

• Work Queue Parameter Fields - These fields are used by assigning a case data field value to
one of the pre-defined work queue parameter fields, then using the Work Queue Parameter field
in filter or sort criteria. These fields have been superseded by CDQP fields as they were consid-
ered too limiting since there are only four of them.

If your filter expression references a field that is not a CDQP or a Work Queue Parameter field, the
WIS will return a syntax error, which causes the entire filter operation to fail.

More about CDQP and work queue parameter fields are described in the following subsections.

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available
to use for filtering. For information about using swutil, see the TIBCO iProcess swutil and swbatch
Reference Guide.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 243

Once you have created the list of CDQP fields with swutil, this list of fields is
available with the GetCDQPDefs method on sWorkQManager, or the
CDQPDef property on vAWorkQ. These return vCDQPDef objects, which
provide the CDQP definitions. If GetCDQPDefs is called from sWorkQ-
Manager, it sends a message to the server to retrieve an array of vCDQPDef
objects, one for each CDQP field defined on the specified work queue. If
CDQPDef is accessed from vAWorkQ, it returns an array of vCDQPDef
objects, one for each CDQP field defined on the work queue represented by the local Value Object.

Once you have retrieved a work item Value Object (vWorkItem), the CDQP
fields that are being used in that work item are available in the CDQPs prop-
erty. This property returns an array of vCDQP objects, one for each CDQP
field that is being used in the work item. The vCDQP objects provide access to
the values in the CDQP fields.

Your filter expressions can include any of the CDQP fields that have been defined on the work queue.
For example, assuming LOAN_AMT is listed as one of the CDQP fields for the work queue, the fol-
lowing is a valid filter expression:

"LOAN_AMT = 500000"

CDQPs Contain Work Item Data

An important thing to understand is that when you filter (or sort) on the values in CDQPs, it’s actually
“work item data” in the CDQP (as opposed to “case data”). Work item data reflects any “keeps” that
have been processed on the work item. In other words, if a user changes the value of a field, then
keeps the work item, the CDQP for that field will reflect the changes the user made to the field. The
“case data” is only updated when the work item is released.

See “Case Data vs. Work Item Data” on page 149 for more information.

Using Work Queue Parameter Fields

Note - Previous versions of the TIBCO iProcess Objects Server provided “Work Queue Parameter”
fields that could be used for filtering and sorting work items based on the value of case data. Work
Queue Parameter fields, however, did not provide the flexibility required by some customers. There-
fore, a new method using “Case Data Queue Parameter” fields has been implemented (see the previ-
ous section). New development should use Case Data Queue Parameter fields to filter on case data
instead of the Work Queue Parameter fields (Work Queue Parameter fields will continue to be sup-
ported, however).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

vCDQPDef

Description

FieldName

Length

IsPrediction

vCDQP

FieldName

Value

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 244

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name of Miller, the FilterExpression property is set as follows:

"SW_QPARAM1?\"Miller\""

This would be much more efficient then filtering on the LAST_NAME field.

The vWorkItem object contains properties that provide access to the values in the Work Queue
Parameter fields — they are WorkQParam1 - WorkQParam4. These properties return the values
you place in the system fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The vWorkQ object contains four properties that return a name for each of the Work Queue Parameter
fields — they are WorkQParam1Name - WorkQParam4Name. If you use the TIBCO iProcess
Workspace (Windows), these names appear in the column headers if you display the Work Queue
Parameter fields in the Work Queue Manager. For information about modifying these names, see the
TIBCO iProcess Workspace (Windows) Manager’s Guide.

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Name Type Length Description

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 245

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases. However, the way in which some regular
expression special characters are evaluated differs between work items and cases. See the subsections
below for information about the special characters that can be used with regular expressions when fil-
tering work items and cases.

Note - If using a regular expression when filtering predicted work items (vPredictedItem objects), the
only special characters that can be used are the asterisk and question mark. They both work as wild-
card characters, where the asterisk matches zero or more of any character, and the question mark
matches any single character.

All regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

Regular Expressions with Work Item Filtering

The following describes how regular expressions are evaluated when filtering work items (the Work
Item Server (WIS) evaluates all work item filter expressions).

Note - If you are moving from a TIBCO iProcess Objects Server that does not have the WIS work item
filtering enhancement (CR 12744) to one that does (see page 227 for more information), the way in
which some regular expression special characters are evaluated will be different. This can result in a
different set of work items being returned using the same filter expression.

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE. The REs allowed are:

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself anywhere in the constant/field. For example, an RE of “a” will match all con-
stants/fields that contain “a”.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

., *, [, and \ Period, asterisk, left square bracket, and backslash, respectively. These are always
special, except when they appear within square brackets ([]; see Item 4 below).

^ Caret or circumflex, which is special at the beginning of an entire RE, or when it
immediately follows the left bracket of a pair of square brackets ([]) (see Item 4
below).

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 246

$ Dollar sign, which is special at the end of an entire RE. The character used to bound
(i.e., delimit) an entire RE, which is special for that RE.

3. A period (.) is a one-character RE that matches any character except new-line.

4. A one-character RE followed by an asterisk (*) is an RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest, leftmost string that permits a match is
chosen.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters ., *, [, and \ stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” anywhere in the constant/field.

An entire RE may be constrained to match only an initial segment or final segment of a line (or both):

1. A circumflex (^) at the beginning of an entire RE constrains that RE to match an initial segment of
a line.

2. A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment of a line.

3. The construction ^entire RE$ constrains the entire RE to match the entire line.

Regular Expressions with Case Filtering

Regular expressions can be used when filtering cases, however, the only special characters that can be
used are the asterisk and question mark. They both work as wildcard characters, where the asterisk
matches zero or more of any character, and the question mark matches any single character.

The reason only the asterisk and question mark can be used when filtering cases is that cases are fil-
tered by the database, which cannot interpret the other special characters.

If you are moving from a TIBCO iProcess Objects Server that does not have the database case filter-
ing enhancement (CR 13182) to one that does (see page 227 for more information), the way in which
some regular expression special characters are evaluated will be different. This can result in a differ-
ent set of cases being returned using the same filter expression.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 247

Using Escape Characters in the Filter Expression

Filter expressions require a string value. Therefore, if within the string value, you are required to pro-
vide another string, you must use an escape character to provide the quoted string within a string.

Use the back slash to indicate that the next character is a special character. In the example below, the
back slashes indicate that the quotes that follow them are quoting the string "LOAN", and are not the
ending quotes for the filter expression string.

"SW_PRONAME=\"LOAN\""

Filtering on Empty Fields

To filter on an empty field, you can use either of the following:

• compare the field with SW_NA, which checks to see if the field is "not assigned." For example:

"SOC_SEC_NUM=SW_NA"

• compare the field to an empty set of quotes. For example:

"SOC_SEC_NUM=\"\""

Note - See the previous section for information about using escape characters.

The primary purpose of SW_NA is to determine if fields have been assigned a value. However, it can
also be used to determine if system fields have been assigned a value when you are filtering work
items (e.g., “SW_CASEDESC=SW_NA”). Note, however, you cannot use SW_NA when filtering
cases — the database is not able to interpret it.

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 161).

Times are specified as:

#mm:hh#

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 248

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Closing/Purging Cases Based on Filter Criteria

The sCaseManager object contains methods that allow you to close or purge cases based on filter cri-
teria. These methods are:

• CloseCasesByCriteria - This method closes cases that match the specified filter criteria. You
must have case administration privilege to close a case (defined in TIBCO Business Studio).
You also cannot close a case from a slave node.

• PurgeCasesByCriteria - This method purges cases that match the specified filter criteria. You
must have case administration privilege to purge a case (defined in TIBCO Business Studio).
You also cannot purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

Closing and purging cases require that the user have system administrator authority (MENUNAME =
ADMIN). See “User Attributes” on page 168 for information about the MENUNAME attribute.

Default Filter Criteria

The TIBCO iProcess Server Objects provide the ability to set default work item filter and sort criteria
for a work queue.

Default criteria is a feature of the TIBCO iProcess Objects Server that allows you to save a specific
criteria that persists for the work queue. Note, however, that the default criteria is not automatically
applied to a pageable list of work items that is created for that work queue. Filter criteria must always
be passed in the form of a vWICriteria Value Object when the list is requested. To apply the default
criteria, you must call the GetDefaultCriteria method (which returns a vWICriteria object repre-
senting the default criteria), then pass the vWICriteria object to the GetWorkItemList or GetA-
WorkItemList method when requesting the pageable list.

Note - If you use the TIBCO iProcess Workspace (Windows), filter criteria that are defined on the
Work Queue Manager Work Item List Filter dialog become the default filter criteria for that work
queue. The default filter criteria defined on this dialog can be viewed and/or affected by the methods
described below.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 249

The sWorkQ object contains methods that allow you to affect the default filter criteria (note that at
the same time these methods are affecting the default sort criteria for the work queue — see “Setting
Default Sort Criteria” on page 257):

• ChangeDefaultCriteria - This method sets the default criteria for the work queue based on the
vWICriteria object passed in the method call. These filter criteria will persist on this work
queue until changed again with this method or cleared with the ClearDefaultCriteria method.
(Note that this method is also setting the default sort criteria based on sort fields that are
included in the vWICriteria object passed in the method call.)

• ClearDefaultCriteria - This method clears the default filter criteria that were set either through
the Work Queue Manager or by using the ChangeDefaultCriteria method. (Note that this also
clears any default sort criteria that have been defined.)

• GetDefaultCriteria - This method returns a vWICriteria object, indicating the currently set
default criteria for the work queue. To apply default criteria, you must call this method to obtain
the vWICriteria object, then pass that Value Object with the GetWorkItemList or
GetAWorkItemList method when requesting the pageable list of work items.

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you execute ChangeDefaultCriteria. The following are the filter
criteria that are supported by the Work Queue Manager.

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 250

Also note the when using the ChangeDefaultCriteria method, your filter expressions must conform
to the following guidelines:

• The only equality operator you can use is ‘=’.

• You cannot use any of the following equality operators: ‘?’,’<‘, ‘<=’, ‘>’, ‘>=’, and ‘<>’.

• You cannot use the OR logical operator.

• And since ‘?’ is not allowed, no regular expression syntax can be used.

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

System Field Description

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 251

15
Sorting Work Items and Cases

Introduction

The TIBCO iProcess Server Objects provide the ability to sort work items and cases so they can be
presented to the user in a desired order. For example, you may want all work items in the work queue
sorted by priority (SW_PRIORITY), in ascending order.

You can also sort using multiple criteria. For example, you may want all work items that are flagged as
urgent (SW_URGENT) to be listed first in the queue, and also sort the same work items in ascending
order according to the date and time they arrived in the work queue (SW_ARRIVED).

Specifying Sort Criteria

The TIBCO iProcess Server Objects provide “criteria” objects that are used to specify sort criteria:

• vWICriteria (for work items)

• vACaseCriteria (for cases)

• vPredictionCriteria (for predicted work items)

Note that these criteria objects are used for
both sorting and filtering work items and cases
— see the appropriate Filtering Work Items
and Cases chapter on page 174, page 201, or
page 227 for information about filtering.

Work items and cases that can be sorted are
always returned in pageable lists
(sPageableList, sPageableListR, or sPagea-
bleListJ objects) — see “Working with
Lists” on page 121 for information about using
pageable lists after the sorted work items or
cases have been returned from the server.

vWICriteria

vCriteriaRequest *

FilterExpression

SortFields

vACaseCriteria

vCriteriaRequest *

vSortField

FieldName

SortTypeAs

IsAscendingFilterExpression

SortFields

vPredictionCriteria

vCriteriaRequest *

FilterExpression

SortFields

MaxSubProc

MaxStepLoop

MaxCount

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 252

The methods that return sorted work items and cases are summarized in the table below.

To specify sort criteria for a pageable list of work items or cases, follow these steps:

1. Construct vSortField objects, one for each field on which you want to sort the work items or cases.
The vSortField objects can specify either of the following types of fields:

• System Fields - These are symbolic references to information about the case or work item.
For example, its priority (SW_PRIORITY), the case number (SW_CASENUM), etc. See
“System Fields used in Sorting” on page 253 for more information.

• Case Data Fields - These are the fields displayed on the iProcess form. You can sort accord-
ing to the value of these fields. See “Sorting on Case Data Fields” on page 255 for more
information.

Note - Field names that are added to the SortFields list that are not valid system fields or case data
fields are silently ignored.

2. Construct a vACaseCriteria, vWICriteria, or vPredictionCriteria object, passing an array of the
vSortField objects constructed in step 1, which specify the fields on which the cases or work items
are to be sorted.

3. Pass the vACaseCriteria, vWICriteria, or vPredictionCriteria object as an input parameter with
one of the methods listed in the table above, depending on the type of object you want returned in
the pageable list.

Sorting in an Efficient Manner

Sorting and filtering take place in a single operation — the Work Item Server (WIS), TIBCO iProcess
Objects Server, or database (whichever is performing the filter/sort operation) evaluates the filter
expression to obtain a result set, then that result set is sorted.

To perform this filter/sort operation in an efficient manner, there are a number of things you need to be
concerned with. These include things such as whether the server needs to “get case data”. The effi-
ciency of the filter/sort operation can be greatly affected by these. See the Filtering Work Items and
Cases chapter that is applicable to you (depending on the filtering enhancements in your TIBCO iPro-
cess Objects Server) for more information about how to ensure an efficient filter/sort operation. These
chapters are on page 174, page 201, and page 227.

Method Uses this Criteria Object
Returns Pageable
List of this Object

sWorkQ.GetWorkItemList vWICriteria vWorkItem

sWorkQ.GetAWorkItemList vWICriteria vAWorkItem

sCaseManager.GetACaseList vACaseCriteria vACase

sCaseManager.GetPredictedItemList vPredictionCriteria vPredictedItem

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 253

System Fields used in Sorting

The built-in system fields (e.g., SW_CASE, SW_STARTER, etc.) provide the TIBCO iProcess
Engine with references to information about work items and cases. These fields are primarily used by
the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering and sort-
ing functions.

The information that is available to the TIBCO iProcess Engine through the system fields is also
available to the application through properties on various Value Objects. For example,
SW_CASENUM is available to the client in the vCaseId.CaseNumber property, SW_PRIORITY
is available to the client in the vWorkItem.Priority property, etc. The TIBCO iProcess Engine, how-
ever, doesn’t have access to the Value Objects, so those properties can’t be used to specify sort criteria
— instead, the system field names need to be used.

The system fields that are available for sorting are listed in the table below. Note that some system
fields are only applicable to sorting on work items, some only for sorting on cases, and some are
applicable to both (see the “Applies to” columns).

The “WIS-compatible” column tells you if the Work Item Server (WIS) can process that particular
system field. This is applicable only when sorting work items (cases are always sorted by either the
TIBCO iProcess Objects Server or the database). See “Can the WIS Perform the Sort Operation?” on
page 182 and page 208 for more information.

Sort Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Arrival date and time SW_ARRIVAL DateTime 16 X X

Case description SW_CASEDESC Text 24 X X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X X

Case reference number SW_CASEREF Text 20 X X

Deadline date and time SW_DEADLINE DateTime 16 X X

Deadline time SW_DEADLINETIMEa Time 5 X X

Deadline expired flag (1 -
expired; 0 - does not have
expired deadline)

SW_EXPIRED Numeric 1 X X

Deadline set flag (1 - has
deadline; 0 - does not have
deadline)

SW_HASDEADLINE Numeric 1 X X

Forwardable work item flag
(1 - forwardable; 0 - not for-
wardable)

SW_FWDABLE Numeric 1 X X

Host name SW_HOSTNAME Text 24 or 8b X X

Locker of the work item
(username)

SW_LOCKERa Text 24 or 8b Xc X

Mail ID SW_MAILID String or

Numeric d
7 (integer)

45 (string)

X

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 254

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 3 X X

Procedure description SW_PRODESC Text 24 X X X

Procedure name SW_PRONAME Text 8 X X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no
input fields) (1 - releasable;
0 - not releasable)

SW_RELABLE Numeric 1 X X

Started date and time of the
case

SW_STARTED DateTime 16 X

Starter of the case
(username@node)

SW_STARTERa Text 24 or 8b X X

Status of the case (“A” -
active; “C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X X

Step (work item) name SW_STEPNAME Text 8 X X

Step (work item) number in
procedure

SW_STEPNUM Numeric 7 X

Terminated date and time of
the case

SW_TERMINATED DateTime 16 X

Unopened work item (1 -
unopened; 0 - has been
opened)

SW_NEW Numeric 1 X X

Urgent flag (1- urgent; 0 - not
flagged as urgent)

SW_URGENT Numeric 1 X X

Work queue parameter 1 SW_QPARAM1 Text 24 X X

Work queue parameter 2 SW_QPARAM2 Text 24 X X

Work queue parameter 3 SW_QPARAM3 Text 12 X X

Work queue parameter 4 SW_QPARAM4 Text 12 X X

a. SW_DEADLINETIME, SW_LOCKER, and SW_STARTER are inherently inefficient — they may slow the sort process.
b. This has a length of 24 for long-name systems, or 8 for short-name systems.
c. SW_LOCKER is WIS-compatible only if your TIBCO iProcess Objects Server has implemented CR 13397.
d. If using a TIBCO Process Engine, SW_MAILID is an integer of length 7; if using a TIBCO iProcess Engine,

SW_MAILID is a string of length 45.

Sort Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 255

Sorting on Case Data Fields

You can sort cases using any case data field in the case. Note, however, that the values in these fields
contain “case data” (as opposed to “work item data”). “Case data” is updated with the values that have
been entered into the fields of a work item only when you “release” that work item. For more informa-
tion about case data and work item data, see “Case Data vs. Work Item Data” on page 149.

You can sort work items using case data fields only if they have been designated as one of the follow-
ing:

• Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition than
Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlimited
number of case data fields that appear in work items on your work queue.

• Work Queue Parameter Fields - These fields are used by assigning a case data field value to
one of the pre-defined work queue parameter fields, then using the Work Queue Parameter field
in filter or sort criteria. These fields have been superseded by CDQP fields as they were consid-
ered too limiting since there are only four of them.

These are described in the following subsections.

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of sorting on the value of
fields in your client application. To make use of this functionality, you must first pre-designate the
fields as fields that can be sorted on — once designated, these fields are called "Case Data Queue
Parameter" fields. (The TIBCO iProcess Objects Server will still sort on case data fields that have not
been designated as Case Data Queue Parameter fields, but it will be much less efficient.)

Note - Case Data Queue Parameter fields are also used for efficiently filtering on case data. See the
appropriate Filtering Work Items and Cases chapter on page 174, page 201, or page 227.

Fields are designated as Case Data Queue Parameter fields with the utility, swutil. This utility is used
to create a list, on the TIBCO iProcess Engine, of the case data fields that are available to use for sort-
ing. For information about using swutil, see the TIBCO iProcess swutil and swbatch Reference Guide.

Once you have created the list of CDQP fields with swutil, this list of fields is
available with the GetCDQPDefs method on sWorkQManager, or the
CDQPDef property on vAWorkQ. These return vCDQPDef objects, which
provide the CDQP definitions. If GetCDQPDefs is called from sWorkQMan-
ager, it sends a message to the server to retrieve an array of vCDQPDef
objects, one for each CDQP field defined on the specified work queue. If
CDQPDef is accessed from vAWorkQ, it returns an array of vCDQPDef
objects, one for each CDQP field defined on the work queue represented by the local Value Object.

Once you have retrieved a work item Value Object (vWorkItem), the CDQP
fields that are being used in that work item are available in the CDQPs prop-
erty. This property returns an array of vCDQP objects, one for each CDQP
field that is being used in the work item. The vCDQP objects provide access
to the values in the CDQP fields.

When constructing the vSortField objects that will be used in your criteria object (vWICriteria), you
will use the CDQP field name for the aFieldName parameter.

vCDQPDef

Description

FieldName

Length

IsPrediction

vCDQP

FieldName

Value

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 256

Using Work Queue Parameter Fields

Note - Previous versions of the TIBCO iProcess Objects Server provided “Work Queue Parameter”
fields, which could be used for filtering and sorting work items based on the value of case data in the
Work Queue Parameter fields. Work Queue Parameter fields, however, did not provide the flexibility
required by some customers. Therefore, a new method using “Case Data Queue Parameter” fields
has been implemented in the TIBCO iProcess Objects Server (see the previous section). New develop-
ment should use Case Data Queue Parameter fields to sort on case data instead of the Work Queue
Parameter fields (Work Queue Parameter fields will continue to be supported, however).

“Work Queue Parameter” fields allow you to sort work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for filtering on case data — see
the appropriate Filtering Work Items and Cases chapter on page 174, page 201, or page 227.)

If you have case data you want to sort on (e.g., customer name, loan amount, etc.), it is much more
efficient to assign the field value to one of the Work Queue Parameter fields, then sort on that field,
instead of directly sorting on the application field. There are four work queue parameter fields avail-
able:

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Your application would use the Work Queue Parameter field name when constructing a vSortField
object that will be used when constructing the criteria object (vWICriteria). This would be much
more efficient than sorting directly on the LAST_NAME field.

The vWorkItem object contains properties that provide access to the values in the Work Queue
Parameter fields — they are WorkQParam1 - WorkQParam4. These properties return the values
you place in the system fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The vWorkQ object contains four properties that return a name for each of the Work Queue Parame-
ter fields — they are WorkQParam1Name - WorkQParam4Name. If you use the TIBCO iProcess
Workspace (Windows), these names appear in the column headers if you display the Work Queue
Parameter fields in the Work Queue Manager. For information about modifying these names, see the
TIBCO iProcess Workspace (Windows) Manager’s Guide.

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 257

Setting Default Sort Criteria

The TIBCO iProcess Server Objects provide the ability to set default work item filter and sort criteria
for a work queue.

Default criteria is a feature of the TIBCO iProcess Objects Server that allows you to save a specific
criteria that persists for the work queue. Note, however, that the default criteria is not automatically
applied to a pageable list of work items that it is created for that work queue. Filter criteria must
always be passed in the form of a vWICriteria Value Object when the list is requested. To apply the
default criteria, you must call the GetDefaultCriteria method (which returns a vWICriteria object
representing the default criteria), then pass the vWICriteria object to the GetWorkItemList or
GetAWorkItemList method when requesting the pageable list.

Note - If you use the TIBCO iProcess Workspace (Windows), sort criteria that are defined on the Work
Queue Sort Criteria dialog become the default sort criteria for that work queue. The default sort crite-
ria defined on this dialog can be viewed and/or affected by the methods described below.

The sWorkQ object contains methods that allow you to affect the default sort criteria (note that at the
same time these methods are affecting the default filter criteria for the work queue — see the “Default
Filter Criteria” section in the appropriate “Filtering Work Items and Cases” chapter on page 199,
page 225, or page 248):

• ChangeDefaultCriteria - This method sets the default sort criteria for the work queue based on
the vWICriteria object passed in the method call. This sort criteria will persist on this work
queue until changed again with this method or cleared with the ClearDefaultCriteria method.
(Note that this method is also setting the default filter criteria based on the filter expression that
is included in the vWICriteria object passed in the method call.)

• ClearDefaultCriteria - This method clears the default sort criteria that were set either through
the Work Queue Manager or by using the ChangeDefaultCriteria method. (Note that this also
clears any default filter criteria that have been defined.)

• GetDefaultCriteria - This method returns a vWICriteria object, indicating the currently set
default criteria for the work queue. To apply default criteria, you must call this method to obtain
the vWICriteria object, then pass that Value Object with the GetWorkItemList or
GetAWorkItemList method when requesting the pageable list of work items.

You can only persist sort criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you execute ChangeDefaultCriteria.

The following are the sort criteria that are supported by the Work Queue Manager. These criteria can
be persisted with the ChangeDefaultCriteria method:

System Field Description

SW_ARRIVAL Arrival date and time

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

Sorting Work Items and Cases

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 258

Sorting as a Specified Data Type

When constructing vSortField objects, the aSortTypeAs parameter allows you to specify that the sort
fields be converted to the specified data type before the sort comparison is performed.

When sorting work items, sorting by a specified type is only applicable when sorting on:

• Work Queue Parameter fields (SW_QPARAM1-4) - see “Using Work Queue Parameter
Fields” on page 256

• Case Data Queue Parameter fields - see “Using Case Data Queue Parameter Fields” on
page 255

• Case Description (SW_CASEDESC)

When sorting cases, you can sort on a specified data type for any field.

The data types that can be specified with the aSortTypeAs parameter are enumerated in SWSortType.

The TIBCO iProcess Objects Server will convert
the value of the sort field to the specified sort
type before doing the sorting. For example, text
fields containing numeric information could be
sorted as numbers by setting the sort type
accordingly. Note, however, that if the sort field
does not contain something readily convertible
to the specified type, the sort results may be
unexpected. For example, if sorting text as a
numeric field but some of the text fields contain
non-numeric data, the results of the conversion
are not defined, so the sort results may not be
what you expected.

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

System Field Description

SWSortType

Constant Description Value

swDateSort Sort as date ‘D’

swDateTimeSort Sort as date/time ‘B’

swNumericSort Sort as real number ‘R’

swTextSort Sort as text ‘A’

swTimeSort Sort as time ‘T’

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 259

16
Error Handling

Introduction

Many of the methods on the Server Objects take arrays as parameters. This is to allow the user to sub-
mit a group of items for processing rather than having to make multiple calls with each call referenc-
ing a single item. For example:

vWIFieldGroup[] LockItems(string[] aWorkItemTags,

vWIFGContent aWIFGContent)

The LockItems method accepts an array of work item tags, identifying the work items to process. The
method attempts to lock all work items referenced in the array.

It is possible that the server will be able to lock some of the items, but fail to lock others. For exam-
ple, some of the work items might already be locked or perhaps an invalid tag is passed in. The error
handling is designed to address those instances where multiple items are submitted for processing and
some succeed but others fail.

Methods on the TIBCO iProcess Server Objects will throw an error if they are unable to process ALL
of the work requested, but at the same time, as much work as possible will be completed. This is espe-
cially important with functions like locking work items or creating users, where we may have already
processed a good portion of the items when one signals an error. We do not want to have to back out
of the valid work we have already done.

When all processing completes normally, the method returns any results as an array. The problem is
that if we throw an error, then we cannot also return a result to the method. If an error is thrown, the
result value is not assigned to the client variable.

To provide the capability to throw an error and
also return valid data, we use a custom exception
class (shown in the illustration). This class has
the capability of returning two arrays, one for
items that succeed and one for items that gener-
ated errors.

This custom exception class is derived from the
System.Exception object. The use of this class
is described below.

There are three levels of errors that may occur
on methods:

• The first level of error is generated by
the method as a whole — this is, it was generated for a reason other than parameters that could
not be processed. For example:

vProcId[] GetStartProcIds()

vEx<ObjectClass>

vExceptionDetail

ParameterInfo

ErrorCode

Message

vException

System.Exception

ExceptionDetails

ErrorCode

Message

ArrayIndex

ErrorGroup

ErrorGroup

SuccessDetails

v<ObjectClass>

Error Handling

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 260

Since this method does not have parameters, if it fails, it will throw a vException error. Note
that even methods that include parameters may fail with a vException if it fails for a reason
other than an invalid parameter.

The vException object provides ErrorCode and ErrorGroup properties to determine what
caused the error. The ExceptionDetails property does not return anything for this type of error.

• The second level of error is generated by methods that pass in parameter arrays but do not
expect data to be returned. For example:

void ChangeAttributes(string[] aUserNames,

vAttribute[] aChangedAttributes)

This level of error occurs when one or more of the parameters being passed in fails to process
correctly. It causes a vException to be thrown. Unlike the first level of error, however, this
level also provides details about the exception in the form of vExceptionDetail objects. One
vExceptionDetail object is added to the ExceptionDetails array for each parameter that failed
to process properly.

The vExceptionDetail object provides details about each failure that occurred, including the
message returned from the server (in the Message property). The ParameterInfo property
returns information that can be used to help determine the cause of the failure. Depending on
the particular method that caused the exception, the ParameterInfo property may return the
value of the parameter that failed, or a property that helps identify an object that was passed in
as a parameter that failed (typically, the name of the object). The ArrayIndex property pro-
vides an index value into the array that caused the error. This can be used to pinpoint the
parameter in the input array.

• The third level of error is generated on methods where you are passing in parameters to be
processed, and that return an array of data in response to the method call. For example:

vProc[] GetProcs(string[] aProcTags)

If all items process successfully, an array of results is returned from the call. If any of the items
fail to process successfully, a vExProc error is thrown (the generic name of this error excep-
tion is vEx<Object Class>, where <Object Class> is the object class being returned by the
method call).

If a vEx<ObjectClass> exception is thrown, details of the exception are provided in the
ExceptionDetails array (exactly as in the second level of error as described above).

If a vEx<ObjectClass> exception is thrown, results are not returned to the call. For every item
that succeeded, the results are returned on the SuccessDetails array, one v<ObjectClass> for
each successful object. These are of the same type that would have been returned by the
method call.

Since we want to be able to process the method results and the SuccessDetails in the same
way, both arrays need to look the same to the calling program. Because of strong type check-
ing, there is a unique error object for every type of object that may be returned by a method,
i.e., the vEx<ObjectClass> is thrown for methods that return arrays of type <ObjectClass>.
For example, GetAttributes returns an array of vAttribute objects; if one of the attributes
requested is invalid, GetAttributes will throw a vExAttribute error and the SuccessDetails
array will return an array of vAttributes that processed correctly.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 261

17
Client Configuration

This chapter provides information about the following items that can be configured in the client:

• Client Log - This log records messages generated by base objects. For more information, see
“Client Log” on page 261.

• Message Wait Time - This specifies the amount of time the client will wait for a response from
the server. For more information, see “Message Wait Time” on page 270.

• Encoding Using ICU Conversion Libraries - ICU conversion libraries can be used to specify
the desired character encoding. For more information, see “Character Encoding Using ICU
Conversion Libraries” on page 271.

Client Log

The client log records messages generated from base objects. These messages are useful for debug-
ging purposes. Typically, this log is used by development engineers to assist in debugging a cus-
tomer’s client application. Only ONE client log exists per JVM process.

Note that the following logs are also available:

• TIBCO iProcess Objects Server Log - This log records messages generated by the TIBCO
iProcess Objects Server. The server log can be configured and reset using sNodeManager. For
more information, see the TIBCO iProcess Objects Server Administrator’s Guide.

• Audit Log - This log records information about administrative functions that are performed
(e.g., adding/removing users, changing passwords, etc.). For more information, see the TIBCO
iProcess Objects Server Administrator’s Guide.

Refer to the appropriate document for information about the other logs listed above.

Client Log Overview

When TIBCO iProcess Server Objects attempt to log a message, if the log exists, the new message is
appended to the existing log. If the log does not exist, a new log is created, then a header is written to
the log, followed by the message.

By default, only swLogError-level messages are written to the log. These are errors not expected by
the client application. So if no errors are occurring, no log is created.

The client log contains one line for each message, in the following format:

f|pppppppp|tttttttt|hhhhhhhh|dd/dd/dddd dd:dd:dd.ddd|cccccccc|mmmmmmmm|llll|UserMsg

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 262

where:

Hood ID
Log messages that have a common source or a natural affinity are said to be from a common hood.
The Hood ID identifies that relationship. For example, all log messages generated in the process of
receiving TIBCO iProcess Objects Server messages are from the receive thread hood (00000001), and
all messages generated by the client log code are from the sClientLog hood (00000000).

Logging on to a server generates a new Hood ID. All objects in the hierarchy below this node are in
the same hood (0000000B and above).

User Message
The user message is the text that comes out of the object when the log message is generated. The user
message should adhere to the following format (adhering to this format is important for the log to be
properly read by the Client Log reader program):

<Module/Class>.<Routine>:<Text Message> (Relevant Data)

where:

f Line format (B - Basic, M - Contains memory values)

pppppppp Process ID

tttttttt Thread ID

hhhhhhhh Hood ID, where:
00000000 = Msg from sClientLog
00000001 = Msg from receive thread
00000002 = (not used)
00000003 = (not used)
00000004 = JNI boundary error
00000005 = Timer thread usage
00000006 = Shared function (usually swrtns.cpp)
00000009 = Undefined hood
0000000A & above = Logged into new user session (new Server Object created)

dd/dd/dddd dd:dd:dd.ddd Date and time

cccccccc Log category (hex format)

llll Log level (ERR, WARN, INFO, DEBG)

mmmmmmmm Message type (see SWLogMessageType on page 267)

UserMsg User message

Module/Class The source module or class file from which the message originates.

"." A period separator.

Routine The specific property, method or routine in the Module/Class.

":" A colon separator.

Text Message Generic text message (should not contain instance or error-specific data).

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 263

An example message written to the client log is shown below:

B|00000076|0000015C|00000001|06/05/2003 08:27:43.752|7FFFFFFF|ERR |RcvThread.main: Socket Prob-
lem on Read,(WSAGetLastError = 10054, sockfd = 568)

Note - These messages are always logged as swLogInformation (log level) and swCatSEOUser (cate-
gory). So you must ensure this level and category are enabled.

Controlling the Client Log

The client log can be programmatically controlled. For instance, you can turn the log on or off, specify
the location of the log, specify the categories of messages that will be written to the log, etc. Typically,
these settings are modified only upon the request of an engineer. The log can be controlled using the
following methods:

• using the sClientLog Server Object (dynamic)

• through Registry settings (read when the JVM process is started)

The sClientLog Object

The sClientLog Server Object provides
methods that allow configuration and con-
trol of the client log from the client applica-
tion. It allows you to define the location of
the log file, the level of logging, the size of
the log, etc. It also contains the GetClient-
Log method, which allows you to retrieve a
vClientLog Value Object, providing access
to the current log file settings.

The controls provided through the methods
on the sClientLog object are described in
the subsections that follow. Note - If multi-
ple clients modify the log setting, the last
modification is the one that takes effect.

Registry Settings

When the client log is initially created, it attempts to obtain its property values from the Registry. If
the Registry entries exist, those values are used. If the Registry entries do not exist, a Registry key is
created at the path shown below.

HKEY_CURRENT_USER
SOFTWARE

Staffware plc
Staffware SSO Client

Logs
SWClient_processname

(Relevant Data) Instance or error-specific data. This is the only place where you can insert C-lan-
guage format specifications or values of variables into the message. This data is
enclosed in parentheses.

sClientLog

EnableCategory

Categories

Active

LogDirectory

LogLevel

MaxSize

LogId

DisableCategory

Messages

EnableMessage

DisableMessage

GetClientLog

Log

ResetLog

vClientLog

Messages

Categories

IsActive

LogDirectory

LogLevel

MaxSize

LogId

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 264

Note, however, that the Registry path is slightly different if running from IIS. Instead of
HKEY_CURRENT_USER, the Registry location is HKEY_USERS\.DEFAULT. The “.DEFAULT”
portion of the Registry path when running IIS is used after initial install. However, if IIS is upgraded,
that portion of the Registry path may change to a Security Identifier (SID) for the NT AUTHOR-
ITY\Network Service user. Microsoft TechNet provides a tool called psgetsid that can be used to
determine a user’s SID. It can be found here: http://technet.microsoft.com/en-us/sysinter-
nals/bb897417.aspx. An example of using psgetsid:

C:\psTools\psgetsid “NT AUTHORITY\Network Service”

Use the SID returned by psgetsid in the Registry path.

When the Registry entries are created, the following default values are written into the Registry:

• Active = “1” (true)
• Categories = “7FFFFFF3” (all categories except swCatConstDestr (object constructors/destruc-

tors) and swCatReceiveThread — if you need this information in the log, you can use the
Categories property to set it to swCatAll, or use the EnableCategory method to enable the
swCatConstDestr and/or swCatReceiveThread category)

• LogDirectory = [See “Log File Directory” on page 264]
• LogLevel = “1” (Error level — the lowest level)
• MaxSize = “15”
• LogId = “SWClient_processname”
• Messages = “7FFFFFFF” (All messages)

Since the client log always tries to obtain its property values from the Registry upon creation, you can
use the Registry to configure and control the client log by setting the Registry values prior to log cre-
ation. You can also prevent a client log file from ever being created by ensuring the entries have been
added to the Registry, then setting the Active flag to “0” (false).

Name and Location of the Client Log

Log File Name

The name of the client log defaults to “SWClient_processname”.

You can change the name of the client log by either using the sClientLog.LogId property, or via the
LogId Registry entry. This name is used in combination with the log file directory (see below), to cre-
ate the path and filename of the log file in the file system (with a ".log" extension).

Log File Directory

The default directory in which the client log is written depends on the version of Windows. For exam-
ple, on Windows 7, it is:

C:\Users\UserName\AppData\Local\Temp\

where UserName is the logged-in user.

Note - If you install 32-bit software on a 64-bit machine, the Registry path will include
"Wow6432Node" as follows:

HKEY_CURRENT_USER\SOFTWARE\Wow6432Node\Staffware plc\...

http://technet.microsoft.com/en-us/sysinternals/bb897417.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897417.aspx

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 265

Note that the machine on which the client log file is written will be the machine on which the Server
Factory is running.

You can change the directory in which the client log will be saved using the sClientLog.LogDirec-
tory property. Note, however, if you specify a directory with the LogDirectory property, the directory
must exist. If the specified directory does not exist, an entry is written to the log file (in the default
directory) concerning the non-existent directory specified in the LogDirectory property.

Construction of Client Log Name and Directory

The client log file directory/name is constructed in the following way:

LogDirectory + ['\'] + LogId + ".log"

where:

• LogDirectory is the path to the directory where the log file will be created. This path must
already exist; the logger will not create non-existent directories.

• The ‘\’ is appended to the directory only if LogDirectory was missing a terminating slash.

• LogId is the log filename.

• The extension ".log" is always appended to the LogId.

If there is an error when creating or writing to the log file, the logger will always revert to the default
path/filename:

- C:\Users\UserName\AppData\Local\Temp\SWClient_processname.log

Also note that if the log directory/filename is valid and the logger is successfully writing to it, then
you use the logger API to change the directory/filename to an incorrect value, the logger reverts to the
default value (see above), not to the previous correct value you had set; it does not remember the pre-
vious correct value.

Activating / Deactivating the Client Log

The sClientLog.Active property specifies whether or not messages are written to the client log. This
includes “always log” messages (category swCatAlwaysLog). This property allows you to turn off
logging without having to clear the category and message filter settings (which are described in the
next section). This property also sets the IsActive flag on the vClientLog object. The default setting
for IsActive is true — logging is enabled.

Setting IsActive to False does not inhibit writing the client log properties to the registry; it merely
causes all messages to be filtered out.

You can use the IsActive flag to prevent the client log from ever being created. Before the client log is
created (prior to instantiating a Server Object), set the Active entry in the registry to “0” (False).
When the client log is created, it will obtain its default values from the registry, including setting the
IsActive flag to False (based on the setting of the Active entry in the registry).

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 266

Filtering the Client Log

The sClientLog object contains a number of properties and methods that allow you to specify the cat-
egories and types of messages that are written to the client log. The subsections below describe these
filtering functions.

Setting the Log Level

The log level is used to filter the amount of information that is written to the client log. You can set the
log level using the sClientLog.LogLevel property. The SWLogLevelType enumerations can be used
to specify the amount of information to record:

The log levels are hierarchical, from the least amount of information to the most, with each higher
level including the information from the levels below it.

Setting the log level to swLogDebug causes ALL categories except swCatConstDestr (object con-
structors/destructors) to be written to the log (see the next section for information about categories).

Filtering by Category

“Categories” of messages have been defined that allow you to filter according to broad areas of func-
tionality. For example, there are categories that have to do with UDP, WinSock, constructors/destruc-
tors, etc. You can filter the client log according to these categories using the sClientLog.Categories
property.

The SWLogCategoryType enumeration type lists the categories that can be written to the log. Note,
however, that you cannot use the enumeration strings to specify categories with the Categories prop-
erty. It expects an int as a parameter, therefore, you must pass a number. You can combine the values
shown in SWLogCategoryType to cause multiple categories to be written to the log.

SWLogLevelType Value
Amount of
Information

swLogError 1 Least (default)

swLogWarning 2

swLogInformation 3

swLogDebug 4 Most

SWLogCategoryType Value

swCatAll 0x7FFFFFFF

swCatAlwaysLog 0x00000001

swCatSEOUser 0x00000002

swCatConstDestr 0x00000004

swCatReceiveThread 0x00000008

swCatMessages 0x00000010

swCatMsgSend 0x00000020

swCatMsgReceive 0x00000040

swCatUDP 0x00000080

swCatWinSock 0x00000100

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 267

The category setting defaults to 0x7FFFFFF3, which includes all categories except swCatConstDestr
(object constructors/destructors) and swCatReceiveThread. If you need object constructor/destructor
or receive thread information in the log, you can use the Categories property to set the category to
swCatAll, or use the EnableCategory method to enable the swCatConstDestr and/or
swCatReceiveThread category — see the next section for information about the EnableCategory
method.

Enabling and Disabling Categories
The sClientLog object provides methods that allow you to enable or disable a single message cate-
gory. They are:

• EnableCategory(Category) - This method adds the specified category to the list of categories
that are written to the client log. The specified category must belong to the SWLogCategory-
Type enumeration.

• DisableCategory(Category) - This method removes the specified category from the list of cat-
egories that are written to the client log. The specified category must belong to the SWLogCat-
egoryType enumeration. Other enabled categories remain enabled.

Filtering by Message

This functionality allows you to filter messages that are generated when messages are sent to the
TIBCO iProcess Objects Server. This is done by using the sClientLog.Messages property. (Note that
this is applicable only if the swCatMessages category is enabled; see the previous section.)

The SWLogMessageType enumeration type lists the message types that can be written to the log.
Note, however, that you cannot use the enumeration strings to specify message types with the Mes-
sages property. It expects an int as a parameter, therefore, you must pass a number. You can combine
the values shown in SWLogMessageType to cause multiple message types to be written to the log.

swCatConversion 0x00000200

swCatTiming 0x00000400

swCatMethodCalls 0x00000800

swCatObjectWrapping 0x00001000

swCatMemory 0x00002000

SWLogMessageType Value

swMsgAll 0x7FFFFFFF

swMsgTCP 0x00000001

swMsgUDP 0x00000002

swMsgLogin 0x00000004

swMsgPassword 0x00000008

swMsgUser 0x00000010

swMsgAttribute 0x00000020

swMsgRole 0x00000040

swMsgGroup 0x00000080

swMsgProcedure 0x00000100

SWLogCategoryType Value

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 268

The default is swMsgAll — all message types are written to the log.

Enabling and Disabling Messages
The sClientLog object provides methods that allow you to easily enable or disable a single message
type. They are:

• EnableMessage(Message) - This method adds the specified message type to the list of message
types that are written to the client log. The specified message type must belong to the SWLog-
MessageType enumeration.

• DisableMessage(Message) - This method removes the specified message type from the list of
message types that are written to the client log. The specified message type must belong to the
SWLogMessageType enumeration. Other enabled message types remain enabled.

Adding Entries to the Client Log

The sClientLog.Log method allows you to add text messages to the client log from the customer
application. Text message will appear in the User Message part of the client log message — see “User
Message” on page 262.

User-entered messages are classified as category type swCatSEOUser and level type swLogInforma-
tion. Therefore, swCatSEOUser and swLogInformation must be enabled for these messages to be
written to the log.

Setting the Size of the Client Log

You can specify the maximum size of the client log, in megabytes, using the sClientLog.MaxSize
property. When the log exceeds the specified maximum size, it is cleared and restarted (rolled over). A
message is written to the log indicating this has occurred.

The default maximum size is 15MB.

swMsgProcedureQuery 0x00000200

swMsgProcedureDefinition 0x00000400

swMsgQueueAccess 0x00000800

swMsgQueueQuery 0x00001000

swMsgCase 0x00002000

swMsgNode 0x00004000

swMsgEvent 0x00008000

swMsgWorkItem 0x00010000

swMsgForwarding 0x00020000

swMsgInstrumentation 0x00040000

swMsgMemoAttachment 0x00080000

swMsgForm 0x00100000

swMsgTable 0x00200000

swMsgListValidation 0x00400000

SWLogMessageType Value

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 269

Resetting the Client Log

The sClientLog.ResetLog method can be used to clear the client log. This method causes a flag to be
set so that the next time a log record is written, the log file is first cleared and initial header messages
are written to the file before the log record is written to the file.

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 270

Message Wait Time

You can configure the client so that if a specified period of time elapses waiting for a response from
the server, the client will timeout and generate an error. (This is sometimes used when storing memo
data — because the TIBCO iProcess Engine must perform file I/O to store memo data, the length of
time between when the client requests that a memo value be stored on the server, and the time when
the client receives a reply that the data was successfully stored, can be several seconds. Because of
this, you may have a desire to configure a message wait time.)

By default, clients timeout in 30 seconds. If you want the timeout value to be different, you must con-
figure the message wait time, as described in this section.

To configure the message wait time, you must add a Registry DWORD value and set it to the number
of milliseconds you would like the client to wait before timing out.

The following is the Registry DWORD value that must be added:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SSO Client\MessageWaitTime

If the number of milliseconds specified by MessageWaitTime is exceeded, the client will generate an
swTimeoutErr error.

The minimum value you can set MessageWaitTime is 500 (milliseconds) — smaller values will auto-
matically be changed to 500. An exception to the minimum value is the special value of 0 (zero) — if
MessageWaitTime is set to 0, the client will not timeout.

Be aware that the user under which the client is running must have read access to the MessageWait-
Time Registry value, otherwise it will silently ignore the setting (if you are running under IIS, by
default, the user does not have access). Use the regedit utility to grant access to the Registry value.

MessageWaitTime is a global setting — all programs will use this single setting. There is no means to
set a message wait time for individual programs.

Also note that if you view message wait times in the client log, they are shown in the log as “Message
Segment Wait Time(value)”.

Note - If you install 32-bit software on a 64-bit machine, the Registry path will include
"Wow6432Node" as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Staffware plc\...

Client Configuration

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 271

Character Encoding Using ICU Conversion Libraries

ICU conversion libraries can be used to specify the desired character encoding.

To use the ICU conversion libraries, you must create the following Registry entry and set it to the
name of the converter you wish to use.

— TISOUnicodeConverterName

The Registry entry must be located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SSO Client\

For a list of converter names, and information about each converter, see the following website:

http://demo.icu-project.org/icu-bin/convexp

Note that when using the ICU libraries, the converter you use must reserve positions 00 through 1F
for the standard single-byte ASCII control characters. This ensures that the control characters do not
otherwise occur in the byte stream. (The UTF-16 converter, for example, does not satisfy this
requirement, and therefore, cannot be used.)

If the TISOUnicodeConverterName Registry entry does not exist, or is set to an invalid value, the
ICU libraries are not used. In this case, the system looks for the TISOMultiChar Registry entry in the
following path:
HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SSO Client\

If the TISOMultiChar Registry entry exists and is set to 1, UTF-8 (multi-byte) encoding is used,
otherwise extended ASCII (single-byte) encoding is used. The system will only look at the
TISOMultiChar Registry entry if the TISOUnicodeConverterName Registry entry does not exist or is
set to an invalid converter name.

For more information about ICU, see:

http://icu.sourceforge.net/

Note - If you install 32-bit software on a 64-bit machine, the Registry path will include
"Wow6432Node" as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Staffware plc\...

Note - If you install 32-bit software on a 64-bit machine, the Registry path will include
"Wow6432Node" as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Staffware plc\...

http://demo.icu-project.org/icu-bin/convexp
http://icu.sourceforge.net/

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 272

18
XML Interface

Introduction

The TIBCO iProcess Server Objects (.NET) provides an XML interface to allow you to retrieve all
data from the TIBCO iProcess Engine as an XML data stream.

The XML Server Objects are thin wrappers around the “non-XML” Server Objects. Each time you
make a method call on an XML Server Object, the xSession object will receive the results, and add
them to an array of vResult objects, one for each method call. Upon request, the array is serialized,
getting back an XML data stream. The output is routed to the data stream object that was passed to the
xSession.GetXMLResults method as a parameter. By using the data stream, the caller has complete
control over the destination of the XML data.

This is described in more detail in the following subsections.

XML Server Objects

The following “XML Server Objects” are available to perform the same functionality as the “non-
XML Server Objects”:

• xSession - This object must be instantiated first — all of the other XML Server Objects are then
created from it (with the exception of xNodeManager, which is not created via the xSession
object). For more information, see Using the XML Interface on page 273.

• xCaseManager - Used to manage cases.

• xNode - Provides access to information stored on the node (users, groups, roles, etc.).

• xNodeManager - Used for node discovery and log settings.

• xProcManager - Provides access to procedure definitions.

• xUser - Provides access to a user’s work queue and work items.

• xWorkQ - Used to access and process work items in a work queue.

• xWorkQManager - Used to manage work queues.

• xIPEConfig - Provides access to database and activity monitoring configurations.

These XML Server Objects contain most of the same methods and return the same data as their non-
XML-equivalent Server Objects. One exception is that the XML Server Objects do not contain meth-
ods that return pageable lists; new “Make” and “Fetch” methods have been added to provide list
access. For more information, see Returning Lists of Items on page 276.

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 273

Using the XML Interface

To retrieve XML data from the TIBCO iProcess Engine, you must
first instantiate an xSession object. From there, you can then create
the other XML Server Objects using the
“Create_<xmlServerObject>” methods. The other Server Objects in
the XML interface cannot be instantiated directly.

You must pass a “node context” object (vNodeCtx) as a parameter in
the xSession object constructor. The vNodeCtx object identifies the
TIBCO iProcess Object Server you will be connecting to, as well as
the user name and password you will be connecting as. Therefore,
each xSession object represents a single connection to the server.

Constructing the xSession Object

The following constructor is provided for the xSession object:

xSession(vNodeCtx aNodeCtx)

where:

• aNodeCtx identifies the TIBCO iProcess Objects Server to connect to, as well as the user name
and password used to connect to the server. You must construct this object prior to constructing
the xSession object.

XML Results

When using the XML interface, individual method calls do not directly return XML data, nor do they
throw errors. Instead, the results from method calls (including exceptions) are added to an array of
vResult objects internal to the xSession object. Notice that all method calls on the XML Server
Objects return void.

All methods expect a “results ID” (aId parameter) as an input parameter. For example:

void GetStartProcIds(String aId)

The results ID is a locator reference for the caller. This ID is reflected back in the <vResult> tag Id
attribute in the XML data (see the example in the Example XML Data on page 274). (Note that if a
NULL is passed in the aId parameter, the results ID defaults to the name of the method call — in this
example, it would be “GetStartProcIds”.)

To get the XML data stream, you must call the GetXMLResults method on xSession, passing in a
stream object to which you would like the XML data stream written:

void GetXMLResults(Stream aStream,

bool aWithInput,

bool aClear)

xSession

Create_xProcManager

Create_xWorkQManager

Create_xCaseManager

Create_xUser

Create_xWorkQ

Create_xNode

Create_xIPEConfig

GetXMLResults

Disconnect

ssoSerializeXML

ssoDeserializeXML

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 274

where:

• aStream specifies the data stream object to which you would like the results routed. This can be
a memory stream, a file stream, or whatever type of stream is appropriate.

• aWithInput specifies whether or not to include the <InParam> tag, and its corresponding input
data, in the XML output data stream. Pass True in this parameter to include the input parame-
ters in the XML data; pass False to exclude it.

• aClear specifies whether or not to clear the array of vResult objects on the server after return-
ing the results.

Note - The GetXMLResults method is also available on the xNodeManager object so you can get
results from calls to methods on xNodeManager (the xNodeManager object is not created via
xSession).

Example XML Data

The XML data is returned to the output stream with a single root tag: <vSSOData>.

Every <vSSOData> tag has as its first level of children:

• a <NodeId> tag

• a <LoggedInUserName> tag

• a <Results> tag

The <Results> tag contains a <vResult> tag for each method called on the XML Server Object.

The <vResult> tag has an Id attribute that contains the results ID passed in on the method call. This is
a locator reference for the caller. Every call to an XML Server Object takes a results ID as a parame-
ter; that ID is reflected back in the <vResult> tags’ Id attribute.

The <vResult> tag may also have an <InParam> tag that contains the input parameters to the method
call. If the method took no parameters, there will be no <InParam> tag. Also note that the
<InParam> tag is included in the XML data only if the aWithInput parameter is True when the GetX-
MLResults method is called.

Following is an example of XML data that would be returned by the XML interface. It requests work
queue information for two specified work queues (see WorkQTags in input data at end of data):

<?xml version="1.0"?>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">

 <sso:NodeId>

 <sso:Name>i2tagtest</sso:Name>

 <sso:ComputerName>ozquadling</sso:ComputerName>

 <sso:IPAddress>10.97.8.55</sso:IPAddress>

 <sso:TCPPort>58002</sso:TCPPort>

 <sso:IsDirector>false</sso:IsDirector>

 </sso:NodeId>

 <sso:LoggedInUserName>swadmin</sso:LoggedInUserName>

 <sso:Results>

 <sso:vResult Id="MyRequestId">

 <sso:AWorkQs>

 <sso:vAWorkQ>

 <sso:Name>user0002</sso:Name>

 <sso:Description>User 0002</sso:Description>

 <sso:HostingNode>i2tagtest</sso:HostingNode>

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 275

 <sso:Tag>i2tagtest|user0002|R</sso:Tag>

 <sso:IsGroup>false</sso:IsGroup>

 <sso:IsReleased>true</sso:IsReleased>

 <sso:FirstDeadline>3000-12-31T23:15:00.0000000</sso:FirstDeadline>

 <sso:DeadlineCnt>0</sso:DeadlineCnt>

 <sso:UnopenedCnt>9</sso:UnopenedCnt>

 <sso:UrgentCnt>0</sso:UrgentCnt>

 <sso:WorkItemCnt>11</sso:WorkItemCnt>

 <sso:WorkQParam1Name>WQ Parameter1</sso:WorkQParam1Name>

 <sso:WorkQParam2Name>WQ Parameter2</sso:WorkQParam2Name>

 <sso:WorkQParam3Name>WQ Parameter3</sso:WorkQParam3Name>

 <sso:WorkQParam4Name>WQ Parameter4</sso:WorkQParam4Name>

 <sso:Redirection>

 <sso:StartingDateTime>

 <sso:IsValueSet>false</sso:IsValueSet>

 <sso:DateTime>0001-01-01T00:00:00.0000000</sso:DateTime>

 </sso:StartingDateTime>

 <sso:EndingDateTime>

 <sso:IsValueSet>false</sso:IsValueSet>

 <sso:DateTime>0001-01-01T00:00:00.0000000</sso:DateTime>

 </sso:EndingDateTime>

 <sso:WorkQName />

 </sso:Redirection>

 </sso:vAWorkQ>

 <sso:vAWorkQ>

 <sso:Name>user0001</sso:Name>

 <sso:Description>Staffware user</sso:Description>

 <sso:HostingNode>i2tagtest</sso:HostingNode>

 <sso:Tag>i2tagtest|user0001|R</sso:Tag>

 <sso:IsGroup>false</sso:IsGroup>

 <sso:IsReleased>true</sso:IsReleased>

 <sso:FirstDeadline>3000-12-31T23:15:00.0000000</sso:FirstDeadline>

 <sso:DeadlineCnt>0</sso:DeadlineCnt>

 <sso:UnopenedCnt>0</sso:UnopenedCnt>

 <sso:UrgentCnt>0</sso:UrgentCnt>

 <sso:WorkItemCnt>0</sso:WorkItemCnt>

 <sso:WorkQParam1Name>WQ Parameter1</sso:WorkQParam1Name>

 <sso:WorkQParam2Name>WQ Parameter2</sso:WorkQParam2Name>

 <sso:WorkQParam3Name>WQ Parameter3</sso:WorkQParam3Name>

 <sso:WorkQParam4Name>WQ Parameter4</sso:WorkQParam4Name>

 <sso:Redirection>

 <sso:StartingDateTime>

 <sso:IsValueSet>false</sso:IsValueSet>

 <sso:DateTime>0001-01-01T00:00:00.0000000</sso:DateTime>

 </sso:StartingDateTime>

 <sso:EndingDateTime>

 <sso:IsValueSet>false</sso:IsValueSet>

 <sso:DateTime>0001-01-01T00:00:00.0000000</sso:DateTime>

 </sso:EndingDateTime>

 <sso:WorkQName>Tellers</sso:WorkQName>

 </sso:Redirection>

 </sso:vAWorkQ>

 </sso:AWorkQs>

 <sso:InParam>

 <sso:AWorkQContent>

 <sso:IsWithParticipation>false</sso:IsWithParticipation>

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 276

 <sso:IsWithRedirection>true</sso:IsWithRedirection>

 <sso:IsWithSupervisorNames>false</sso:IsWithSupervisorNames>

 <sso:IsWithCDQPDefs>false</sso:IsWithCDQPDefs>

 </sso:AWorkQContent>

 <sso:WorkQTags>

 <sso:string>i2tagtest|user0002|R</sso:string>

 <sso:string>i2tagtest|user0001|R</sso:string>

 </sso:WorkQTags>

 </sso:InParam>

 </sso:vResult>

 </sso:Results>

</sso:vSSOData>

Returning Lists of Items

When using the XML interface, you can access lists (i.e., blocks) of items on the server using the
Make<type>List and Fetch<type>List methods. (“Pageable lists” — an older method of accessing
lists of items on the server — are not available in the XML interface.)

For information about the using Make<type>List and Fetch<type>List methods, see Using Single-
Block Item Access on page 121.

When you call the Make<type>List and Fetch<type>List methods, the requested block of items is
returned internally to the xSession object — you must call the GetXMLResults method to send the
block of items to the XML data stream. For more information, see XML Results on page 273.

Dates and Times

Properties that return dates and times (e.g., vACase.TimeStarted, vDateTime.DateTime, etc.) return
them in the following serialized format in the XML interface:

"yyyy'-'mm'-'dd'T'hh':'mm':'ss'.0000000'"

For example:

2005-06-29T10:30:28.0000000

Notes about dates:

• The milliseconds are always 0000000.

• There is no time zone indicator.

• For values objects, the seconds are not preserved.

• The date and time will be what is stored on the server — no adjustments for caller locale are
made.

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 277

Error Handling

The methods on the XML server classes do not throw exceptions. The results of all XML method
calls, whether successful or not, are returned as part of the XML stream. All server functions are
defined as returning void, with the exception of the Make<xxx>List methods, which return the
HeldId as a string (if there was an error creating the list, the error will be in the XML and the HeldId
returned will be an empty string).

The reason that all results, successful or not, are returned in the XML stream is because:

• There might be multiple method calls before the serialized response is requested. Some of these
calls might be successful and some might not. Trying to handle exceptions outside the XML
stream would be complicated.

• The code making the XML request may not be the code that needs the result. Therefore, it is not
in the proper program context to deal with errors.

If the XML method call encounters an exception in the call to the function, that exception will be
returned in the <Exception> element within the <vResult> for that call. (Calls can be matched to
their results using the Result's "Id" attribute.)

Below is an example of the GetFieldDefs call returning a “Procedure name not found” exception.

<?xml version="1.0" encoding="UTF-8"?>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">

 <sso:NodeId>

 <sso:Name>i2tagtest</sso:Name>

. . .

 </sso:NodeId>

 <sso:LoggedInUserName>swadmin</sso:LoggedInUserName>

 <sso:Results>

 <sso:vResult Id="GetFieldDefs">

 <sso:Exception>

 <sso:ExceptionDetails/>

 <sso:ErrorGroup>swSEOServerException</sso:ErrorGroup>

 <sso:ErrorCode>swNoProcErr</sso:ErrorCode>

 <sso:Message>Procedure name not found. </sso:Message>

 <sso:StackTrace></sso:StackTrace>

 </sso:Exception>

 </sso:vResult>

 </sso:Results>
</sso:vSSOData>

In more complex methods where an array of parameter values are passed, each of which is acted on
individually, the result is more complicated:

• If there were no errors, the results are serialized as regular data and no <Exception> element is
returned.

• If any parameter generates an error, a vEx<objectClass> exception is created.

See the examples below.

In the following example, we see the work queues, “user0001” and “user0002” being successfully
requested. The results are returned within the <AWorkQs> element.

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 278

<?xml version="1.0"?>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">

 <sso:NodeId>

 <sso:Name>i2tagtest</sso:Name>

. . .

 </sso:NodeId>

 <sso:LoggedInUserName>swadmin</sso:LoggedInUserName>

 <sso:Results>

 <sso:vResult Id="MyRequestId">

 <sso:AWorkQs>

 <sso:vAWorkQ>

 <sso:Name>user0002</sso:Name>

. . .

 </sso:vAWorkQ>

 <sso:vAWorkQ>

 <sso:Name>user0001</sso:Name>

. . .

 </sso:vAWorkQ>

 </sso:AWorkQs>

 </sso:vResult>

 </sso:Results>
</sso:vSSOData>

However, if the work queues could not be accessed, an <Exception> tag is returned. Each parameter
that generates an error will be returned within its own <vExceptionDetail> element. Below we see
that the first parameter in the array “<ArrayIndex>0” was an invalid work queue name
(“yada_yada_yada”) and that the second parameter in the array had a length of 0 (an empty string).

Since there was no valid data, the <AWorkQs> element is empty.

<?xml version="1.0"?>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">

 <sso:NodeId>

 <sso:Name>i2tagtest</sso:Name>

. . .

 </sso:NodeId>

 <sso:LoggedInUserName>swadmin</sso:LoggedInUserName>

 <sso:Results>

 <sso:vResult Id="MyRequestId">

 <sso:AWorkQs />

 <sso:Exception>

 <sso:ExceptionDetails>

 <sso:vExceptionDetail>

 <sso:ArrayIndex>0</sso:ArrayIndex>

 <sso:ErrorCode>swInvalidParamErr</sso:ErrorCode>

 <sso:ErrorGroup>swParameterException</sso:ErrorGroup>

 <sso:ParameterInfo>yada_yada_yada</sso:ParameterInfo>

 <sso:Message>Invalid Parameter. Invalid WorkQ Name in Tag</sso:Message>

 </sso:vExceptionDetail>

 <sso:vExceptionDetail>

 <sso:ArrayIndex>1</sso:ArrayIndex>

 <sso:ErrorCode>swInvalidParamErr</sso:ErrorCode>

 <sso:ErrorGroup>swParameterException</sso:ErrorGroup>

 <sso:ParameterInfo />

 <sso:Message>Invalid Parameter. WorkQ Tag length is 0</sso:Message>

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 279

 </sso:vExceptionDetail>

 </sso:ExceptionDetails>

 <sso:ErrorGroup>swParameterException</sso:ErrorGroup>

 <sso:ErrorCode>swItemErrErr</sso:ErrorCode>

 <sso:Message>One of the items in the array returned an error. </sso:Message>

 <sso:StackTrace></sso:StackTrace>

 </sso:Exception>

 </sso:vResult>

 </sso:Results>
</sso:vSSOData>

In the situation where the parameters of the call generate some good results and some errors, you get
an XML result like the example below.

The first work queue tag has the unknown work queue name “yada_yada_yada” and generates an
<Exception> element with a single <vExceptionDetail> below it. The second work queue tag
“user0001” returns the valid work queue data found beneath the <vAWorkQ> element. The
<ArrayIndex> identifies the element in the input parameter array that caused the error.

<?xml version="1.0"?>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">

 <sso:NodeId>

 <sso:Name>i2tagtest</sso:Name>

. . .

 </sso:NodeId>

 <sso:LoggedInUserName>swadmin</sso:LoggedInUserName>

 <sso:Results>

 <sso:vResult Id="MyRequestId">

 <sso:AWorkQs>

 <sso:vAWorkQ>

 <sso:Name>user0001</sso:Name>

. . .

 </sso:vAWorkQ>

 </sso:AWorkQs>

 <sso:Exception>

 <sso:ExceptionDetails>

 <sso:vExceptionDetail>

 <sso:ArrayIndex>0</sso:ArrayIndex>

 <sso:ErrorCode>swInvalidParamErr</sso:ErrorCode>

 <sso:ErrorGroup>swParameterException</sso:ErrorGroup>

 <sso:ParameterInfo>yada_yada_yada</sso:ParameterInfo>

 <sso:Message>Invalid Parameter. Invalid WorkQ Name in Tag</sso:Message>

 </sso:vExceptionDetail>

 </sso:ExceptionDetails>

 <sso:ErrorGroup>swParameterException</sso:ErrorGroup>

 <sso:ErrorCode>swItemErrErr</sso:ErrorCode>

 <sso:Message>One of the items in the array returned an error. </sso:Message>

 <sso:StackTrace></sso:StackTrace>

 </sso:Exception>

 </sso:vResult>

 </sso:Results>
</sso:vSSOData>

XML Interface

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 280

Schemas

When TIBCO iProcess Server Objects (.NET) is installed, an InstallDir\XML directory is created that
contains an XML schema file (schema1.xsd) that describes the structure of the TIBCO iProcess
Server Objects (.NET) XML interface.

The schema1.xsd file can be used by someone who wants to program directly to the XML interface (it
is also used internally by the Action Processor if you are using the TIBCO iProcess Workspace
(Browser) product).

Serialize/Deserialize Functions

The normal way to use the TIBCO iProcess Server Objects XML interface is to allow the xSession
object to accumulate Value Objects returned from calls to Server Object method calls. However, you
may have a need to serialize and deserialize Value Objects for some other reason. To accommodate
this need, the following Static utility functions are available on the xSession object:

• ssoSerializeXML - This takes in a Value Object and writes the XML serialized object to the
passed in data stream.

• ssoDeserializeXML - This takes in a data stream that contains iProcess Server Objects-com-
patible XML, and returns it deserialized into a Value Object.

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 281

Symbols
‘?’ character 62
‘*’ character 62, 222, 246
’^’ character 221, 245
’?’ (question mark), in REs 195, 223
’.’ (period), in REs 222, 246
’*’ (asterisk), in REs 195, 223
’$’ character 222, 246
%DESC 55, 64
%USER 55, 64
$SWDIR environment variable 7
$undeliv work queue 110

A
Abort, transaction control step 82
aCaseFieldNames parameter 146, 180, 207, 232
Access

another user’s work queue 113
authority 54, 168
field definitions 148
permissions 139

aCDQPNames parameter 146
Action property 55
Activating/deactivating

client log 265
Active cases 52
Active property 265
ActiveCnt property 52
Activity monitoring 27
AddCaseAuditEntry method 64
Adding

entries to the client log 268
user-defined audit trail entries 64
users to group 167
work queue supervisors 119

Addressee of work item 188, 214, 239
AddSupervisors method 119
AddUsersToGroups method 167
ADMIN access 168
Admin name 26
AdminByUserRef property 54
AF_ALL_SUBSTART 64
AF_OUTSTANDING_ONLY 64
aFieldsOption parameter 106, 146
AFMarkings property 153
aHoldList parameter 138, 139

aIsReturnAllCDQPs parameter 93, 146
aIsReturnAllFields parameter 93, 146
aIsWithAuditData parameter 56
AND operator 176, 203, 229
aReleaseAllResources parameter 139, 141
Arguments, in method calls 14
Array fields 155
Arrays 15
Arrival date and time 188, 214, 239, 253
ASCENDING ARRIVAL sort order 169
ASCENDING DEADLINE sort order 169
Asterisk, in REs 222, 246
Attachments 154
"Attribute not found" error 170
Attributes 145

creating definition 170
deleting 170
modifying value 170
property 145, 170
user 168

Audit
data

getting when filtering cases 186, 212,
237

data filtering 59
procedure versions 36
step objects 54
sub-procedures 58

AUDIT_TYPE filter criteria 59
audit.mes file 53
AuditFilterExpr property 59
Auditing cases 53
AuditSteps property 56
auditusr.mes file 53, 64
Authority

system administrator 168
user, general 171

AvailableCnt property 140, 177, 204, 230
aWIFieldNames parameter 105, 146

B
Block size, pageable lists 141
Buffers, message 137

C
Cancelling

Index

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 282

a redirection schedule 117
CancelRedirection method 117
Case 1

administration authority 171
auditing 53
closed, make active 86
closing 86
data 109

controlling 146
fields 93
filtering on 191, 218, 242
getting, impact of 180, 207, 232
setting 150
vs. work item data 149

data fields
sorting on 255

description 47, 188, 214, 239, 253
family 85
history 53
management 46
number, obtaining 50
prediction 69
purging 86
reference number 188, 214, 239, 253
start authority 51
starting 46
suspending 85

Case Data Queue Parameter fields
See CDQP fields

CaseCnt property 52
CaseDescOpt property 47
CaseFieldNames parameter 93, 146, 180, 207,

232
CaseFields property 148, 149
CaseNumber property 50
Cases

active 52
closed 52
determining number of 52
getting list of 51
retrieving 136
sorting 251

Categories property 266
CDQP fields

defined 152
filtering on 93, 192, 218, 242
sorting on 255
specifying in work item content 93, 146

CDQPDef property 192, 218, 243, 255
CDQPNames parameter 93, 146

CDQPs property 192, 218, 243, 255
ChangeAttributes method 170
ChangeDefaultCriteria method 199, 225, 249,

257
ChangeParticipation method 114
ChangeRedirection method 117
Changing

user’s password 165
Character encoding 161, 271
CheckOSUser configuration parameter 165
Clear method 142
ClearDefaultCriteria method 199, 225, 249, 257
Clearing blocks 142
Client log 261

activating/deactivating 265
adding entries to 268
filtering 266
location 264
resetting 269
setting size 268

CloseCases method 86
CloseCasesByCriteria method 86, 198, 225, 248
Closed cases 52
ClosedCnt property 52
Closing cases 86

based on filter criteria 198, 225, 248
Commit and Concede 82
Commit and Continue 82
Comparison operators 180, 184, 207, 210, 233,

236
Completing a graft step 80
Computer name 18
Configuring

TCP port 23
Connection ID, database 26
Connection, TCP 12
Constructing

Server Objects 12
Value Objects 16
vDate and vTime objects 115
vDateTime objects 118
vNodeId objects 18
vSortField objects 252

Content filtering
when retrieving work items 93
when retrieving work queues 91

Content Request Objects 10, 144
Controlling

Case Data 146
fields returned when locking work items 146

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 283

system resources 141
Conversions, data type when filtering 191, 217,

242
Counts, for pageable lists 140, 177, 204, 230
CPQPs property 73
CreateAttributeDefs method 170
CreateGroups method 166
CreateParticipations method 114
CreateRoles method 168
CreateUser method 164
Creating

attribute definition 170
iProcess user 164
participation schedules 114
role 168
Server Objects 13
user group 166

Criteria
objects 10, 175, 202, 228

D
Data type

conversions, filtering 191, 217, 242
sorting by 258
used in filtering 190, 216, 241
validation 153

Database
case filtering 174, 201, 227
configuration 26

Date
data type 190, 216, 241
format 161

in XML interface 276
in filter expressions 197, 224, 247
released, procedure version 35

DATE_RANGE filter criteria 63
DateCreated property 35
DateModified property 35
DateReleased property 35
DateTime

data type 191, 216, 241
in filter expressions 197, 224, 248

DateWithdrawn property 35
DBConnectionAccess 26
Deadline 111

count 140, 177, 204, 231
date and time 188, 214, 239, 253
expired flag 188, 214, 239, 253
property 111
recalculating 112

set flag 189, 214, 239, 253
time 253

Default
filter criteria 199, 225, 248
sort criteria 257

Defining filter expressions 176, 203, 229
DeleteAttributeDefs method 170
DeleteGraftTask method 79
DeleteGroups method 167
DeleteRoles method 168
deleteUserPreference method 173
DeleteUsers method 165
Deleting

iProcess user 165
role 168
user attribute 170
user group 167
work item on withdrawal 113

Delta
count 95
status 96

DeltaCnt property 95
DeltaStatus property 96
Dependent objects, retrieving 145
DESCENDING ARRIVAL sort order 169
DESCENDING DEADLINE sort order 169
DESCRIPTION attribute 168
Deserialize function 280
Directed UDP Message 19
Director 7
Directory

client log file 265
system 7

DISABLE_USER_CHECK process attribute 165
DisableCategory method 267
DisableMessage method 268
Disconnect method 12, 139, 141
Dispose method 12, 14
Duration property 70, 71
DurationValues property 70
Dynamic

sub-procedure call step
outstanding 66

sub-procedures 38
TCP port 23

E
EAI steps 82

outstanding 66
Empty

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 284

array is returned 145
dates and times 115, 118
fields, in filtering 196, 224, 247

EnableCategory method 267
EnableMessage method 268
Encoding, character 161, 271
EndDateTime property 117
Enumeration Type Objects 11
Error

handing 259
in XML interface 277

objects 10
processing

dynamic sub-procedures 39
graft steps 80

result of processing work item 111
ErrorCode property 260
Escape characters, in filter expressions 196, 223,

247
Event

publishing 27
step, outstanding 66
triggering 69

Exception element, XML 277
ExceptionDetails property 260
Exceptions 259
ExcludeCnt property 140, 177, 204, 230
Executing command

on work item keep 109
on work item release 110

Expired deadline 111
Expressions property 51, 54
External

processes 76, 79
work items 120

ExternalGraftProcessComp method 76, 79
ExternalGraftProcesses property 78
ExternalId property 120

F
FetchAWorkItemListDelta method 95
FetchAWorkItemListJMS method 100, 101
FetchList method 121
FetchWorkItemListDelta method 95
Field

data, retrieving from the server 150
definitions, accessing 148
uninitialized 150
validations 153

Fields

iProcess 148
passing to/from sub-procedure 41

FieldsOption parameter 106, 146
FieldType property 153
FILTER_FLAGS filter criteria 64
Filtering 175, 202, 228

audit steps 59
cases in database 174, 201, 227
client log 266
content

when accessing work items 93
when retrieving work queues 91

data types 190, 216, 241
expression format 186, 212, 237
expression length 230
for dependent objects 143
on case data 191, 218, 242
on deadline information 112
on empty fields 196, 224, 247
on ranges of values 197, 224, 247
predicted items 74
using system fields 188, 214, 239
work items 92
work items in WIS 174, 201, 227

Firewall, using with SSO 25
FirstDeadline property 111
Form

markings 153
Format, of date 161
Forwardable work item flag 189, 214, 240, 253
Forwarding

permission 116
work queues 115

ForwardItems method 115
ForwardToWorkQIds property 116
Freeing a held pageable list 139
FRows property 153

G
GetACaseList method 51, 176, 203, 229, 252
GetACaseListHeld method 52, 138
GetACases method 51
GetActivityPub method 28
GetAGroupList method 166
GetAGroupListHeld method 138, 166
GetAGroups method 166
GetAttributeDefs method 169
GetAttributes method 170
GetAuditProcIds method 52
GetAuditProcs method 54

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 285

GetAuditSteps method 56
GetAWorkItemList method 92, 131, 176, 203,

229, 252
GetAWorkItemListHeld method 92, 138
GetAWorkItemListJMS method 97
getAWorkItemListJMS method 92
getAWorkItemListJMSHeld method 92
GetAWorkItems method 92
GetAWorkQList method 90
GetAWorkQListHeld method 90, 138
GetAWorkQs method 90
GetCaseCnt method 52
GetCDQPDefs methods 192, 218, 243, 255
GetClientLog method 263
GetCustomAuditMsgDefs method 65
GetDatabaseConfig method 26
GetDefaultCriteria method 199, 225, 249, 257
GetExternalForm method 120
GetFieldDefs method 148
GetFormMarkings method 153
GetForwardToWorkQIds 116
GetGroupAttributes method 169
GetGroups method 166
GetItem method 133
GetNextDeltaItem method 95
GetNodeId method 135
GetNodes method 20
GetOSUserList method 132
GetOSUserListHeld method 138
GetOutstandingItems method 67, 78, 113
GetParticipations method 114
GetPredictedItemList method 71, 176, 203, 229,

252
GetPredictedItemListHeld method 138
GetProcDefs method 32
GetProcIds method 52
GetProcVersions method 35
GetPublicSteps method 44
GetRedirection method 117
GetRoleNames method 167
GetRoles method 167
GetStartProcIds method 51, 52
GetSupervisedQIds method 90, 119
GetSupervisorNames method 119, 169
GetUserAttributes method 169
GetUserList method 131, 164
GetUserListHeld method 138, 164
getUserPreference method 173
GetUsers method 164
GetWorkItemList method 92, 131, 176, 203,

229, 252
GetWorkItemListHeld method 92, 138
GetWorkItems method 91
GetWorkQ method 90
GetWorkQIdList method 90, 131
GetWorkQIdListHeld method 90, 138
GetWorkQIds method 90
GetWorkQList method 90, 131
GetWorkQListHeld method 90, 138
GetWorkQs method 90
GetXMLResults method 272
Graft steps 75

outstanding 66
Groups 2, 166

retrieving 136

H
Held

ID 138
pageable lists 138, 142

HeldId property 138
Hidden case description 47
Hold method 138, 139
HoldList parameter 138
Hood ID 262
Hosting node 2

I
IAP JMS library 27
IAPConfigAccess 27
ICU conversion libraries 161, 271
IDX_ 156
ImplicitMoveSysInfo parameter 163
IMPMONITOR command 27
Indexed collection 133, 136
Indexes, array fields 156
InFromFldNames property 41
Inheritance 15
InitialExpr property 108
InParam tag 274
Instance property 20, 21
Instantiating

Server Objects 12
Value Objects 16

InToFldNames property 41
InvalidCnt property 140, 177, 204, 231
IP address 18
IPEADMIN user 26, 164, 171
iProcess

fields 148

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 286

user 163
iProcess Engine 6
IsActive property 52, 265
IsArrayField property 155
IsAuditAscending parameter 57
IsDeadline property 111
IsDeadlineAWD property 111
IsDeadlineExp property 111
IsHaltOnSubProc property 39, 80
IsHaltOnTemplate property 39, 80
IsHaltOnTemplateVer property 39, 80
IsIgnoreCaseSuspend flag 86
IsKeepLocalItems flag 133, 137, 140, 142, 177,

204, 230
IsKeepOnWithdrawal property 113
IsLocked property 106
IsLongLocked property 106
IsMandatory property 45
IsOrphaned property 110
IsOutstanding property 55, 78
IsPrediction property 71
IsPublic property 44
IsReleasable property 110
IsReleased property 89
IsReturnAllCDQPs parameter 93, 146
IsReturnAllFields parameter 93, 138, 146
IsSuspended flag 85
IsTaskCntSet property 77
IsUndelivered property 110
IsUnopen property 108
"IsWith" parameters 145
IsWithAuditData parameter 56
IsWithForwardToWorkQIds 116
IsWorkQReleased property 89
ItemsPerBlock parameter 137, 141
ItemsPerBlock property 140, 141, 177, 204, 230

J
Java Message Service (JMS) 27
JMS topic, work queue deltas 96
JumpTo method 65
JumpToStepName parameter 58

K
KeepAliveWorkQDeltaJMSPublications method

98, 100, 102
KeepExpr property 109
Keeping

start step 47
work item 2, 108

and passing field data 152
KeepItems method 108, 152

L
LANGUAGE attribute 168
LastUpdateUser property 35
Length, of filter expressions 230
List state objects 127
Lists

single-block item access 121
Lists, pageable 131
Local

count 140, 177, 204, 230
LocalCnt property 140, 177, 204, 230
Lock vs. long lock 106
LockedBy property 108
Locker of the work item 189, 214, 240, 253
LockFirstAWorkItem method 107
LockFirstWorkItem method 107
Locking work items 105

with field data 151
LockItems method 105, 146
Log level

client log 266
Log method 268
LogDirectory property 265
Logging

client 261
client messages 261

Logical operators 180, 184, 207, 210, 233, 236
LogId property 264
LogLevel property 266

M
Major version number 34
MajorVersion property 34
MakeAWorkItemListJMS method 99, 101
MakeList method 121
MakeTag method 35, 52
MANAGER access 168
Managing

cases 46
work queues 88

Markings 153
types 48
validating 48

MaxSize property 268
Memo fields 154
Menu property 168, 170
MENUNAME attribute 168, 170

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 287

MenuName property 168, 170
Message buffers 137
Message Event Request (MER) 27
Message, audit trail 55
Messages property 267
MessageWaitTime 270
Minor version number 34
MinorVersion property 34
Model procedure status 33
Modifying

a redirection schedule 117
participation schedules 114
user attribute value 170

Monitoring activities 27
MOVESYSINFO function 163
MoveSysInfo method 163
MsgNumber property 65
MsgTemplate property 65
Multi-byte encoding 271

N
Naming

conventions 8
New work item flag 190, 215, 241, 254
Node

management 17
name of SPO Server 18

Normal step, outstanding 66
NULL 145
Number of

cases 52
Numeric data type 190, 216, 241

O
O/S user 162
Object Types 10
ODBC connection name 26
Operators

comparison 180, 184, 207, 210, 233, 236
logical 180, 184, 207, 210, 233, 236

Optional case description 47
OR operator 176, 203, 229
Oracle SID 26
Orphaned work item 110
OSUsers

retrieving 136
OutFromFldNames property 41
Outstanding

graft items 78
items

determining 66

withdrawing 65
step 55

OutToFldNames property 41
OverMaxCnt 140, 177, 204, 231

P
Pack data 108, 149
Pageable list 131

counts 140, 177, 204, 230
held 138
refreshing 134

Parallel steps 149
Parameter templates 39, 80
ParameterInfo property 260
Parameters, used in method calls 14
Participating in another user’s work queue 113
Participation schedule 114
Participations property 114
Password

changing 165
database user 26

Permission
to access held pageable lists 139
to audit 53

Persisting
filter criteria 199, 226, 249
sort criteria 257

PLHeldTimeOut 139
PollCnt parameter 20, 22
Precedence, starting sub-procedures 49
PredictCase method 72
PredictedCondition property 71
Predicting cases 69
Prediction flag 71
Priority of work item 189, 215, 240, 254
ProcAudits property 36
Procedure 1, 31

audit trail 36
determining who can audit 53
name 189, 215, 240, 254
number of cases of 52
status 33
sub-cases of 37
version control 33
which can user start 51

PROCEDURE sort order 169
Process

Engine 6
Invocator service 164

ProcId property 52
ProcMajorVersion property 34

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 288

ProcMinorVersion property 34
ProcPath property 67
PRODEF access 168
Provider, database 26
Public steps 44
PublicDescription property 45
PublicFields property 44
Publishing events 27
PurgeAndReset method 87
PurgeByCriteria method 198, 225, 248
PurgeCases method 86
PurgeCasesByCriteria method 87
Purging cases 86

based on filter criteria 198, 225, 248

Q
QSUPERVISOR attribute 119, 169
Queue not found error 89

R
Range filtering 197, 224, 247
Rebuilding a pageable list 134
Recalculating deadlines 112
Redirecting work items 117
Redirection property 117
Redirection schedule 117

canceling 117
changing 117

Reentrant 16
Refresh method 20, 94, 134
Refreshing a pageable list 134
Registry

client log 263
Regular expressions 195, 221, 245
Releasable

work item flag 110, 189, 215, 240, 254
ReleaseAllResources parameter 139, 141
Released work queue 88
ReleaseEAIItem method 120
ReleaseExpr property 110
ReleaseItems method 109, 152
Releasing

start step 47
the start step 110
work item 2, 109

RemoveParticipations method 114
RemoveSupervisors method 119
RemoveUsersFromGroups method 167
Removing

participation schedules 114
users from group 167

work queue supervisors 119
Required case description 47
ResetLog method 269
Resetting

case counter 87
the client log 269

Resources, controlling 141
ResumedDescription parameter 58
ResumedStepName parameter 58
Retrieving

cases, work queues, users from the server 136
dependent objects 145
field data from the server 150
work items from server 91, 132
work queues 89

RetryDateTime property 83
RetryDelay property 83
Return status

graft step 79
sub-procedures 39, 44

ReturnStatus property 79
ReturnStatusFld property 39
RoleNames property 51, 54
Roles 167
root user

access to system directory 7
Router 22

S
sBase object 12
sCaseManager 12
Schedule

participation 114
redirection 117

schema1.xsd 280
Schemas 280
sClientLog 263
Script, running when

keeping work item 109
locking work item 108
releasing work item 110

Sending
directed UDP messages 19
UDP broadcast 20

Serialize function 280
Server

Objects 10, 11
resources 141

services file 24
SessionId property 12
Sessions 12

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 289

SetActivityPub method 28
SetCaseData method 150
SetCaseSuspended method 85
SetGraftTaskCnt method 77
setUserPreference method 173
Sharing between threads 16
Sharing user sessions 13
SimulateCase method 72
Single-block item access lists 121
Single-byte encoding 271
sIPEConfig 26
sIPEConfig object 27
Size of

blocks, pageable lists 141
client log 268

sNode 11
sNodeManager 11, 19

constructing 20
Sort criteria 182, 186, 208, 211, 234, 237
Sorting

on Case Data fields 255
predicted items 74
work items and cases 251

SORTMAIL attribute 169
SortTypeAs parameter 258
sPageableList 131
sPageableListJ object 97
sPageableListR 131
Specifying filter criteria 175, 202, 228
SPO Server

service 22
sProcManager 11, 31, 44
SQL select statement 174, 201, 227
sSession 12, 13
ssoAllMarkings 106, 147
ssoDeserializeXML 280
ssoFieldList 106, 147
ssoFormMarkings 106, 146
ssoSerializeXML 280
staffo file/database table 164, 166
staffpms file 161, 165
Start step

for sub-procedures 38
keeping/releasing 47, 110

StartByUserRef property 51
StartCase method 46, 149
StartCaseDescription parameter 57
StartCaseStepName parameter 57
StartDateTime property 117
Started date and time of the case 189, 215, 240,

254
Starter of the case 189, 215, 240, 254
StartGraftTask method 76
StartIndex 43, 68
StartIndex property 43
Starting

a case 46
who has access 51
with field data 149

a graft task 76
StartStepName property 46
StartWorkQDeltaJMSPublish method 98, 99,

101
startWorkQDeltaJMSPublish method 98
Static TCP port 23
Status

delta 96
of pageable list 134
of the case 189, 215, 240, 254
property 34, 51
sub-procedures 44

Step 1
duration 70
Forward 116
parallel 149
public 44

STEP_DESC filter criteria 63
STEP_NAME filter criteria 63
SubCaseId property 58
Sub-Cases 37
SubProcCases property 42, 78
Sub-procedure

auditing 58
dynamic 38
outstanding 66
precedence 49
start steps 38

Sub-procedures 37
SubProcName property 37
SubProcNameFld property 38, 75
SubProcPath property 42
SubProcStartStep property 38
SubProcStartStepFld property 39
SuccessDetails property 260
SupervisorNames property 119, 169
Supervisors

adding 119
of work queues 119
removing 119

sUser 12

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 290

SuspendedDescription parameter 58
SuspendedStepName parameter 58
Suspending cases 85
SW_CASENUM 50
SW_DEADLINE 112
SW_DEADLINEDATE 112
SW_DEADLINETIME 112
SW_EXPIRED 112
SW_GEN_IDX 156
SW_HASDEADLINE 112
SW_NA 150, 196, 224, 247
SW_QPARAM1-4 193, 219, 243
SW_QPARAMn fields 256
SW_STARTER 110
swAdded 96
swAttachment field types 154
SWAuditActionType 28, 55, 58, 85
swCaseOnly 112
SWConditionPredictType 71
swDateSort 258
swDateTimeSort 258
SWDeadlineCalculateType 112
swDeleted 96
swDeltaTooBigErr 94
SWDescOptionType 47
SWDIR, system directory 7
swDurationDeadline 70
SWDurationType 70
swDynamicReleased 58
swDynamicWithdrawn 58
SWEmptyField 148, 150
swErrBadSubProc 58
swErrDiffTemplate 58
swErrDiffTemplateVer 58
SWFieldsOptionType 106
SWFieldType 153
swHiddenDesc 47
swIncludeSubCases 112
swIncomplete 33, 51
SWLogCategoryType 266
SWLogMessageType 267
SWMarkingType 48
swMemo field types 154
swModel 33
swModified 96
SWMonitorList.xsd schema 27, 28
swNoReCalc 112
swNotDeltaItem 96
swNumericSort 258
swOptionalDesc 47

sWorkQ 12
sWorkQManager 12
SWPageableListType 127
swPLChanged 134
swPLNoChange 134
swPLOrphaned 134
SWPLRefreshType 134
swPLStatusOnly 134
SWPLStatusType 134
SWProcAuditActionType 36
swProcessedTo 55
SWProcStatusType 34
swRecreate 134
swReleased 33, 51
swRequiredDesc 47
SWSortType 258
swStartCase 55
swSubCaseComp 58
swSubCaseExpired 58
swSubCaseStart 58
swSubCaseTerm 58
swSubCaseWithdrawn 58
SWSubProcPrecedenceType 49
SWSubProcStatusType 39, 79
swTextSort 258
swTimeSort 258
SWTransactionType 83
swUnreleased 33, 51
swUpdate 134
swUpdateWithDelta 94, 134
swuser user 164
swutil function 255
swWithdrawn 33, 51
swWithdrawnIncomplete 33
System

Administrator 168, 171
fields 154

list of for sorting 253
used in filtering 188, 214, 239
using in sorting 253

resources, controlling 141
System directory 7
System.Exception 259
System-defined audit trail messages 53

T
Tag property 52
Tag, getting/making 52
TaskCnt property 77
TCP

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 291

connection 12
port 18

configuring 23
for database 26

Templates, audit trail messages 65
Terminated date and time of the case 190, 215,

240, 254
TerminationDescription parameter 57
TerminationStepName parameter 57
TerminationUser parameter 57
Test work queue 88
Text data type 190, 216, 241
Third-party application 120
Threads, sharing objects 16
TIBCO

iProcess Engine 6
iProcess Objects Director 7
iProcess Objects Server 7
Process Engine 6

TIBCO Business Studio 1
Time

data type 191, 216, 241
format in XML 276
in filter expressions 197, 224, 247

Timeout, server reply 270
TISOUnicodeConverterName 161, 271
TNS connection 26
Transaction control steps 82

outstanding 66
TransactionType property 83
Transparent Network Substrate (TNS) 26
TriggerEvent method 69

recalculating deadlines 112
resurrect case with 86

Troubleshooting 259
Type

property 48, 70, 153
validation 153

"type mismatch error" 153
Types of users 162

U
UDP

broadcast 20
message 19
port 19, 21

UDP_SERVICE_NAME process attribute 19, 21,
22

UDPPortNumbers property 19, 21
UDPServiceName Parameter 19, 21, 22

Undelivered work item 110
Undoing work item changes 108
UndoItems method 108
Uninitialized field 150
Unlocking a work item 107
UnlockItems method 107
Unopened work item flag 190, 215, 241, 254
UnopenedCnt property 108, 141, 177, 204, 231
Urgent

count 140, 177, 204, 231
work item flag 190, 215, 241, 254

UsageURL property 45
User 2

access authority 168
administration 162
attributes 168

creating 170
deleting 170
modifying value 170

authority 171
creating 164
Datagram Protocol (UDP) 19, 20
deleting 165
groups 166
iProcess 163
message, in client log 262
preference data 173
session 12
types 162

USER access 168
User Manager 162
USER_NAME filter criteria 62
User-defined audit trail messages 53
USERFLAGS attribute 169
USERINFO 163
UserNames property 51, 54
Users

add/remove from group 167
retrieving 136

UTF-8 271

V
vACaseContent 56, 144, 146, 150
vACaseCriteria 10, 175, 202, 228, 251
vAccessUserRef 51, 54
vAFMarking 153
vAGroup 166
vAGroupContent 144, 166
Validating

fields/markings 48, 109, 153

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 292

Value Objects 10, 15
constructing 16

vAProcContent 144
vAttribute 169
vAttributeDef 169
vAuditMsgDef 65
vAuditStep 54
vAWIContent 116, 144
vAWorkItem 92
vAWorkQ 90
vAWorkQContent 91, 144
vCDQP 192, 218, 243, 255
vCDQPDef 91, 192, 218, 243, 255
vClientLog 263
vDatabaseConfig 26
vDate 115
vDateTime 118
vDeadline 111
vDuration 70
vDurationValue 70
vDynamicSubProcItem 66
vEAIItem 66, 120
VerifyNode method 19, 22
Version control, procedures 33
VersionComment property 35
vEventItem 66
vException 260
vExceptionDetail element 278
vExternalGraftProcess 78, 79
vField 148
vFieldDef 148
vFMarking 153
vFRow 153
vGraftItem 66, 78
vGraftStep 75
vGraftSubTask 76
vGroup 166
vGroupContent 144
vGroupId 166
vListState 127
vListState objects 127
vNode 20
vNodeCtx 273
vNodeCtx object 17
vNodeId 18
vNormalItem 66
vOutstandingItem 67
vOutstandingItemContent 67, 144
vParticipation 91, 114
vPredictedItem 69

vPredictionCriteria 74, 175, 202, 228, 251
vPreference object 173
vProcAudit 36
vProcDef 32
vProcDefContent 32, 36, 144
vProcSummary 52
vPublicField 45
vPublicStep 44
vRedirection 91, 117
vResult 273
vRole 167
vSortField 252
vSSOData tag 274
vStepContent 45, 144
vStepId 44
vSubProcItem 66, 78
vSummary 129
vTime 115
vTransactionControlItem 66, 83
vTransactionControlStep 82
vUser 164
vUserContent 144
vWIContent 93, 145, 146, 150, 180, 207, 232
vWICriteria 10, 175, 199, 202, 225, 228, 248,

251, 257
vWIFGContent 105, 145, 146, 150
vWIFieldGroup 105, 146, 151
vWILocked object 107
vWISummary 129
vWorkItem 92
vWorkItemId 92
vWorkQ 90
vWorkQId 90, 144

W
WIContent 93
WIFieldNames parameter 105, 146
Wild card characters

audit data filtering 62
filtering cases 185
filtering work items 181

Wildcard 233, 236
wildcard 62
Wildcard characters

filtering cases 211, 236
filtering work items 207, 233

Wildcards 181
WIS work item filtering 174, 201, 227
WIS_QCHANGE_MAX_CHANGES 94, 96
WIS_QCHANGE_MAX_PCT 94, 96

Index

TIBCO iProcess Server Objects (.NET) Programmer’s Guide 293

WIS-compatible 188, 253
Withdrawing

outstanding items 65
work item 111, 113

Work item 2
changes 94
data 108, 192, 219, 243

vs. case data 149
deadlines 111
deltas 94
determining if new (unopened) 108
determining who locked 108
errors 111
external 120
filtering and sorting 92
forwarding 115
keeping 108
locking 105
orphaned 110
processing 105
releasable 110
releasing 109
retrieving 91, 132
sorting 251
undelivered 110
undoing changes 108
unlocking 107
withdrawing 113

Work queue 2
deltas 94

via JMS topic 96
forwarding 115
manager

filter criteria 199, 226, 249
managing 88
parameter fields

for filtering 193, 219, 243
sorting on 256

participating 113
redirecting 117
retrieving 89, 136
supervisor 119
test/released 88

"Work Queue not found" error message 165
WorkItemFields property 105, 148
WorkItemTag property 105
WorkQContent 91
WorkQName property 117
WorkQParam#Name property 256

X
xCaseManager 272
xIPEConfig 272
XML interface 272
xNode 272
xNodeManager 272
xProcManager 272
xSession 272
xUser 272
xWorkQ 272
xWorkQManager 272

	TIBCO iProcess Server Objects (NET) Programmer's Guide
	Preface
	Introduction
	Product Name Changes
	Knowledge Level
	Documentation Set

	Revision History
	Introduction
	Introduction
	Procedures
	TIBCO iProcess Server Objects Design
	Available Solutions
	XML Interface
	Managed Objects for Local Solutions
	Remote .NET Solutions

	TIBCO Process / iProcess Engine
	Engine and Server Version Numbers
	SWDIR - The System Directory

	TIBCO iProcess Objects Server
	TIBCO iProcess Objects Director

	Naming Conventions
	Naming Conventions Used in TIBCO iProcess Server Objects (.NET)

	Object Types
	Object Types
	Server Objects
	What is a User Session?
	Disconnecting User Sessions
	Server Object Parameters
	Garbage Collection

	Value Objects
	Multiple Value Objects
	Constructing Value Objects

	Are TIBCO iProcess Server Objects (.NET) Objects Reentrant?

	Node Management
	Introduction
	Constructing a vNodeId Object
	Sending a Directed UDP Message
	Specifying a UDP Port
	Multiple Instances of the TIBCO iProcess Objects Server / Director

	Sending a UDP Broadcast
	Setting the UDP Broadcast Interval
	Specifying a UDP Port
	Multiple Instances of the TIBCO iProcess Objects Server / Director
	What if a Known Node is not Answering the UDP Broadcast?

	Configuring the TIBCO iProcess Objects Server TCP Port
	Configuring the TCP Port on a Windows System
	Configuring the TCP Port on a UNIX System

	Using TIBCO iProcess Server Objects Through a Firewall?
	Database Configuration
	Database Configuration Access

	Activity Publication
	Activity Publication Access
	Configuring Activity Publication
	Using the sIPEConfig Object
	Configuration Example

	Procedures
	Introduction
	Managing Procedures
	Procedure Version Control
	Procedure Status
	Accessing the Procedure Version Number
	Procedure Version Number in the Audit Trail

	Procedure Version Details
	Listing Versions of a Procedure
	Accessing a Specific Procedure Version
	Procedure Audit Trails

	Sub-Procedures
	Sub-Procedure Call Steps
	Accessing Sub-Procedure Call Step Definitions
	Sub-Procedure Start Precedence

	Dynamic Sub-Procedure Call Steps
	Accessing Dynamic Sub-Procedure Call Step Definitions

	Passing Data between a Main and Sub-Procedure
	The Sub-Case Object
	SubProcPath to a Sub-Case

	Public Steps
	Public Fields
	Retrieving Public Field Objects

	Case Management
	Starting a Case
	Case Description
	Keeping/Releasing the Start Step
	Validating Markings on the Start Step (iProcess Modeler Forms Only)
	Sub-Procedure Precedence
	Why isn’t the Started Case Appearing in the Work Queue?
	Obtaining the Case Number of a Case that was just Started

	Determining Who Can Start a Case
	Which Procedures can a User Start?

	Obtaining Lists of Cases
	Determining the Number of Cases in a Procedure
	Auditing Cases
	Determining who can Audit Cases of a Procedure
	Which Procedures can a User Audit?
	Audit Step Objects
	Getting Audit Step Objects

	Configuring Audit Trail Strings
	Auditing Sub-Procedures
	Grouping Sub-Cases in the Audit Trail

	Filtering Audit Data
	Creating an Audit Filter Expression

	Adding User-defined Audit Trail Entries
	Custom Audit Trail Message Templates

	Withdraw Outstanding Items / Jump To New Steps
	Determining Outstanding Items
	ProcPath to Outstanding Items

	Triggering Events
	Predicting Cases
	Defining Case Prediction
	Step Duration
	Conditional Actions for Case Predictions

	Performing Case Prediction
	Background Case Prediction
	Live Case Prediction
	Case Simulation

	Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction
	Sub-Procedure Call Steps
	Dynamic Sub-Procedure Call Steps and Graft Steps

	Including Case Data Queue Parameter Data in Prediction Results
	Filtering and Sorting Predicted Items

	Using Graft Steps
	Defining Graft Steps
	Starting a Graft Task
	Setting the Task Count
	Outstanding Graft Items
	Return Statuses
	Deleting a Task
	Completing a Graft Step
	Error Processing

	Transaction Control Steps
	The vTransactionControlStep Object
	Type of Transaction Control Step
	Outstanding Transaction Control Steps
	Retrying Failed Transactions
	Audit Trail Messages

	Suspending Cases
	Reactivating a Suspended Case
	Ignoring Case Suspension

	Closing Cases
	Resurrecting a Closed Case

	Purging Cases

	Managing Work Queues
	Introduction
	Work Queue Objects
	Work Item Objects
	Test vs. Released Work Queues

	Retrieving Work Queues
	Filtering Content when Retrieving Work Queues

	Retrieving Work Items
	Filtering and Sorting Work Items
	Filtering Content when Accessing Work Items
	Work Queue Deltas
	Work Queue Deltas With Pageable Lists
	Delta Status

	Work Queue Deltas Via a JMS Topic
	JMS Deltas When Using Pageable Lists — JBase or RMI Interface
	JMS Deltas When Using Single-Block Item Access — JBase or RMI Interface
	JMS Deltas When Using Single-Block Item Access — XML Interface
	Work Queue Delta JMS Messages

	Processing Work Items
	Locking Work Items
	Controlling Fields Returned when Locking Work Items
	What’s the Difference Between a “Lock” and a “Long Lock”?
	Locking the First Available Work Item in a List
	Unlocking a Work Item
	Discarding Changes made to a Locked Work Item
	Has a Work Item been Locked/Opened?
	Determining who Locked a Work Item
	Executing a Command when a Work Item is Locked

	Keeping Work Items
	Executing a Command when a Work Item is Kept

	Releasing Work Items
	Validating Markings
	Executing a Command when a Work Item is Released
	Automatically Releasing the Start Step
	What is an Orphaned Work Item?
	Determining if a Work Item could not be Delivered to the Addressee
	Is the Work Item Directly Releasable?

	Errors Resulting from Processing Work Items

	Work Item Deadlines
	Deadline Withdrawal
	Filtering and Sorting on Deadline Information
	Dynamically Recalculating Deadlines

	Keeping a Work Item that is Withdrawn
	Participating in Another User’s Work Queue
	Participation Schedules
	Modifying Existing Participation Schedules
	Creating Participation Schedules
	Removing Participation Schedules
	Using the vDate and vTime Objects in Participation Schedules

	Forwarding/Redirecting Work Items to Another Work Queue
	Manually Forwarding Work Items
	Determining the Work Queues to which a Work Item can be Forwarded

	Automatic Forwarding/Redirecting Work Items
	Redirection Schedules
	Modifying an Existing Redirection Schedule
	Cancelling a Redirection Schedule
	Using the vDateTime Object in Redirection Schedules

	Work Queue Supervisors
	Adding Work Queue Supervisors
	Removing Work Queue Supervisors

	External Work Items
	Releasing an External Work Item

	Working with Lists
	Introduction
	Using Single-Block Item Access
	Making a List
	Make<type>List Method Input Parameters
	Make<type>List Method Return Values

	Fetching a List
	Fetch<type>List Method Input Parameters
	Fetch<type>List Method Return Values
	Fetch “If Changed” Methods

	List State Objects
	Base Object
	Filter and Sort Criteria Information
	Content Information
	Summary Information
	Work Item Status Information
	Requested Items

	Using Pageable Lists
	Using Pageable Lists with Work Items
	Refreshing a Pageable List of Work Items
	Refresh Status

	Using a Director or Multiple Instances of the TIBCO iProcess Objects Server

	Using Pageable Lists with Cases, WorkQs, Groups, Users, and OSUsers
	Held Pageable Lists
	The IsReturnAllFields Flag is always False on Held Pageable Lists
	Access Permissions
	Freeing a Held Pageable List

	Pageable List Counts
	Controlling System Resources
	Server Resources
	Client Resources
	Setting the Size of the Blocks
	Automatically Clearing Blocks
	Explicitly Clearing Blocks

	Retrieving Dependent Objects
	Introduction
	Content Request Objects
	Using Content Request Objects
	Retrieving Dependent Objects
	Controlling Case Data
	Controlling Fields Returned when Locking Work Items

	iProcess Fields
	What is a iProcess Field?
	Case Data vs. Work Item Data
	Including Field Data when Starting a Case
	Setting Case Data
	Checking/Setting Uninitialized Fields
	Parallel Steps

	Retrieving Field Data from the Server
	Including Field Data when Retrieving Cases
	Including Field Data when Retrieving Work Items
	Including Field Data when Locking Work Items

	Case Data Queue Parameter Fields
	Passing Field Data when Keeping/Releasing Work Items
	What are Markings?
	Type Validation on Fields/Markings
	Accessing Memo Fields
	Accessing Attachments
	Accessing System Fields
	Array Fields
	Array Field Indexes
	Using Array Fields in Filter Expressions
	Requesting, Returning, and Setting All Array Field Elements
	Requesting All Array Field Elements
	Returned Array Field Elements
	Setting All Array Field Elements
	Example

	Setting Array Field Values to SWEmptyField in XML

	Date Format
	Character Encoding

	User Administration
	Introduction
	Types of Users
	MOVESYSINFO Function

	iProcess Users
	Creating an iProcess User
	Deleting an iProcess User
	Is an O/S User needed for every iProcess User?
	Changing the User’s Password

	User Groups
	Creating a User Group
	Deleting a User Group
	Adding and Removing Users to/from a Group

	Roles
	Creating a Role
	Deleting a Role

	User Attributes
	Modifying an Existing Attribute Value
	Creating an Attribute Definition
	Deleting an Attribute

	Why isn’t the new User, Group, Role or Attribute Available?
	User Authority
	User Preference Data

	Filtering Work Items and Cases - Without Filtering Enhancements
	Introduction
	Specifying Filter Criteria
	Defining Filter Expressions
	Number of Cases or Work Items in a Filtered Pageable List

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Can the WIS Perform the Filter Operation?
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	Filtering Cases on the TIBCO iProcess Objects Server
	Sorting Cases on the TIBCO iProcess Objects Server
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types used in Filter Criteria
	Data Type Conversions

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	Type of Data in CDQPs

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Specifying Multiple Ranges

	Closing/Purging Cases Based on Filter Criteria
	Default Filter Criteria

	Filtering Work Items and Cases - With WIS Work Item Filtering
	Introduction
	Specifying Filter Criteria
	Defining Filter Expressions
	Number of Cases or Work Items in a Filtered Pageable List

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Work Items are Filtered by the WIS
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	The TIBCO iProcess Objects Server Filters Cases
	The TIBCO iProcess Objects Server Sorts Cases
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types used in Filter Criteria
	Data Type Conversions
	Filtering Work Items on the WIS
	Filtering Cases on the TIBCO iProcess Objects Server

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	CDQPs Contain Work Item Data

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Regular Expressions with Work Item Filtering
	Regular Expressions with Case Filtering

	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Closing/Purging Cases Based on Filter Criteria
	Default Filter Criteria

	Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering
	Introduction
	Specifying Filter Criteria
	Defining Filter Expressions
	Length of Filter Expressions
	Number of Cases or Work Items in a Filtered Pageable List

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Work Items are Filtered by the WIS
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	The Database Filters Cases
	The Database Sorts Cases
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types used in Filter Criteria
	Data Type Conversions

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	CDQPs Contain Work Item Data

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Regular Expressions with Work Item Filtering
	Regular Expressions with Case Filtering

	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Closing/Purging Cases Based on Filter Criteria
	Default Filter Criteria

	Sorting Work Items and Cases
	Introduction
	Specifying Sort Criteria
	Sorting in an Efficient Manner
	System Fields used in Sorting
	Sorting on Case Data Fields
	Using Case Data Queue Parameter Fields
	Using Work Queue Parameter Fields

	Setting Default Sort Criteria
	Sorting as a Specified Data Type

	Error Handling
	Introduction

	Client Configuration
	Client Log
	Client Log Overview
	Controlling the Client Log
	The sClientLog Object
	Registry Settings

	Name and Location of the Client Log
	Log File Name
	Log File Directory
	Construction of Client Log Name and Directory

	Activating / Deactivating the Client Log
	Filtering the Client Log
	Setting the Log Level
	Filtering by Category
	Filtering by Message

	Adding Entries to the Client Log
	Setting the Size of the Client Log
	Resetting the Client Log

	Message Wait Time
	Character Encoding Using ICU Conversion Libraries

	XML Interface
	Introduction
	XML Server Objects
	Using the XML Interface
	Constructing the xSession Object
	XML Results
	Example XML Data

	Returning Lists of Items
	Dates and Times

	Error Handling
	Schemas
	Serialize/Deserialize Functions

	Index

