
TIBCO iProcess® Web Services
Plug-in

User’s Guide
Software Release 11.3
October 2011

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN TIBCO IPROCESS WEB SERVICES PLUG-IN
INSTALLATION GUIDE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP
END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR
USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE
SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Enterprise Message Service and TIBCO ActiveMatrix are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. PLEASE SEE THE README.TXT FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON
A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 2003-2011 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

| i

B
ac

k
to

 L
ib

ra
ry
Contents

Preface . v

How to Use This Guide . vi

Target Audience . vii

Changes From the Previous Issue. viii
Using Security Profiles to Send iProcess Field Data . viii

Connecting with TIBCO Resources . ix
How to Join TIBCOmmunity . ix
How to Access All TIBCO Documentation . ix

Documentation Conventions . x

Chapter 1 Introduction to the iProcess Web Services Plug-in . 1

What is the iProcess Web Services Plug-in?. 2

Prerequisites for Using the iProcess Web Services Plug-in . 3
Deciding Which Data Transport Mechanism to Use . 3

Using the SOAP/HTTP Data Transport Mechanism . 5
Prerequisites for Using SOAP/HTTP . 5
Web Service Call Styles . 6

Using the XML/JMS Data Transport Mechanism . 7
Prerequisites for Using XML/JMS. 7

Creating Secure Web Service Operations . 8

Chapter 2 Understanding the iProcess Web Services Plug-in Architecture 9

Overview . 10

Understanding Inbound Calls Using SOAP/HTTP. 12

Understanding Outbound Calls Using SOAP/HTTP . 14

Understanding Inbound Calls Using XML/JMS . 16

Understanding Outbound Calls Using XML/JMS. 18

Configuring a High Availability iProcess Web Services Plug-in . 20

About iProcess Web Services Plug-in Deployment . 22
High Availability Deployment . 23
High Availability Message Handling . 23

URL Alias Management . 25
 TIBCO iProcess Web Services Plug-in: User’s Guide

ii | Contents

B
ac

k
to

 L
ib

ra
ry
Chapter 3 Understanding iProcess Web Services Plug-in Security . 27

Overview . 28

About the Security Profile Administrator . 30

Types of Security. 32
Transport Layer Security (SSL) . 32
SOAP Authentication . 34
Digital Signatures and Certificates. 35
Timestamps . 36
Encryption - Ensuring Privacy . 37
Securing iProcess Engine Inbound Web Services . 38

Combining Security Types . 39
Using WS Policy Files . 39
Using the Security Manager . 39

Using Custom Headers . 40
Example of a Custom Header . 40

Using Security Profiles to Send iProcess Field Data . 41

Chapter 4 Creating a Web Services Step . 43

Overview . 44

Defining Basic Web Services Step Information. 45

Defining the Call to the External Application. 46
Select the Data Transport Mechanism and Invocation Style . 48
Select the WSDL Source . 49
Select Web Service Operation. 54
Use the XML Mapper to Define the Input/Output Mappings (Optional) . 56
Select XSLT Files for Input of Data . 59
Select XSLT Files for Output of Data (Optional) . 61
Mark iProcess Fields for Export. 63
Map iProcess Fields to Web Service Fields. 65
Map Web Service Fields to iProcess Fields. 66

Editing an EAI Web Service Step . 67
Deleting a Withdraw Action . 67

Chapter 5 Examples . 69

Overview . 70

About Integrating the iProcess Engine with Business Works . 71

Pre-requisite Tasks . 72
Task 1: Configure TIBCO EMS . 72
Task 2: Import the BusinessWorks Project . 72
Task 3: Review the Schema. 74
Task 4: Review the HTTP and JMS Connections . 75
TIBCO iProcess Web Services Plug-in: User’s Guide

Contents | iii

B
ac

k
to

 L
ib

ra
ry
Task 5: Import the iProcess Procedures. 75
Task 6: Import the Example Security Profiles . 76

Creating Working Examples . 77
Example 1- Calling an Inbound Web Service Operation Using SOAP/HTTP. 77
Example 2- Calling an Inbound Web Service Operation Using SOAP/HTTP and Basic Authentication . . . 80
Example 3- Calling an Inbound Web Service Operation Using XML Over JMS. 84
Example 4- Calling an Outbound Web Service using SOAP/HTTP . 88
Example 5- Calling an Outbound Web Service using XML/JMS . 94

Chapter 6 Web Services Configuration and Administration . 101

Web Services Configuration File . 102
Keystore Location . 102
JDBC Connection details . 102
Date Formats . 103
JMS Message Timeout . 103
SOAP/HTTP Timeout . 104
AXIS Concurrent Connections . 104
Asynchronous With Reply Timeout. 104
Field Cache Timeout . 105
Security Profile Tokenization. 105
Configuring Ports for Web Services . 106
Configuring Encoding . 106
Configuring Pooling . 107

Using the Password Manager . 108

Setting Up and Managing Security Profiles . 111
Starting the Security Profile Administrator . 111
Creating a New Profile . 113
Specifying a WS Policy File . 118
Copying a Profile . 120
Modifying a Profile . 120
Disabling an Inbound Profile. 120

Administering URL Aliases and Security Profiles . 121
The EAIWS_URL_ALIAS Table . 121
The EAIWS_SECURITY_PROFILE Table . 122
Using the Command Line Interface to URL Aliases . 122
Using the Command Line Interface to Security Profiles . 123

Configuring JMS Provider Aliases . 125

Setting Logging Properties . 126

Monitoring the System . 127

Configuring High Availability . 128

Configuring UDDI Repositories . 129
Specifying a Default UDDI Repository . 129
 TIBCO iProcess Web Services Plug-in: User’s Guide

iv | Contents

B
ac

k
to

 L
ib

ra
ry
Adding a New UDDI Repository . 129

Manually Configuring the Location of the Java Executable. 131

Manually Configuring the HTTP Proxy Server Settings . 132

Chapter 7 iProcess Web Service Operations. 133

Accessing the iProcess Web Service Operations . 134

getNodeName . 135

doDelayedRelease . 136

doCaseStart . 139

doSuspend . 140

doGraftCount . 141

doGraft . 142

doSuspendSub . 143

doJumpTo . 144

doActivateSub . 145

doActivate . 146

doEvent . 147

Appendix A Troubleshooting . 149

Log Files . 150

Unable to Look Up Queue. 151

Step Fails to Release Due to Lack of Return Value . 152

EAI Plug-in Not Accessible . 153

Step Fails to Release Due to Missing iProcess Engine Field Data . 154

Appendix B Data Type Mapping . 155

Data Type Mapping Conversion Process . 156

Using iProcess Date and Time Fields in Web Services . 157

Index . 159
TIBCO iProcess Web Services Plug-in: User’s Guide

| v

B
ac

k
to

 L
ib

ra
ry
Preface

This guide explains how to define and use the TIBCO iProcess™ Web Services
Plug-in to integrate external applications with the TIBCO iProcess™ Engine.

Topics

• How to Use This Guide, page vi

• Target Audience, page vii

• Changes From the Previous Issue, page viii

• Connecting with TIBCO Resources, page ix

• http://docs.tibco.com/TibcoDoc, page ix

• Documentation Conventions, page x
 TIBCO iProcess Web Services Plug-in: User’s Guide

vi | Preface

B
ac

k
to

 L
ib

ra
ry
How to Use This Guide

This guide contains the following chapters:

• Chapter 1 provides an overview of the iProcess Web Services Plug-in

• Chapter 2 describes the iProcess Web Services Plug-in architecture,
high-availability configurations and deployment.

• Chapter 3 describes the different types of Web Services security that are
available.

• Chapter 4 describes how to create an iProcess Web Services step in your
iProcess procedure.

• Chapter 5 contains some examples that show how to use the TIBCO iProcess
Web Services Plug-in.

• Chapter 6 describes iProcess Web Services Plug-in configuration files that you
can modify.

• Chapter 7 describes the iProcess Web Services operations that can be called by
third-party applications.

• Appendix A contains information about the WebServicesStaffwareData.xsd
schema that is provided for field mapping to iProcess Engine fields.

• Appendix A describes how to troubleshoot problems using the iProcess Web
Services Plug-in.

• Appendix B describes how iProcess field data is converted to XML data types.
TIBCO iProcess Web Services Plug-in: User’s Guide

Target Audience | vii

B
ac

k
to

 L
ib

ra
ry
Target Audience

This guide is aimed at system integrators and procedure definers who need to
implement web services with iProcess procedures.

It assumes that:

• you have prior knowledge of iProcess concepts. You should be familiar with
the concepts described in the TIBCO iProcess™ Modeler set of guides.

• you have a detailed understanding of Java Message Service (JMS) and how to
administer your JMS Provider as well as web service technologies and Java.

• you have some understanding of Extensible Markup Language (XML) and
Extensible Stylesheet Language Transformations (XSLT).

• (Optional) you have some understanding of TIBCO BusinessWorks™ or other
target applications.
 TIBCO iProcess Web Services Plug-in: User’s Guide

viii | Preface

B
ac

k
to

 L
ib

ra
ry
Changes From the Previous Issue

The major technical change from the information presented in the previous issue
of this guide is:

Using Security Profiles to Send iProcess Field Data
Using the Security Profile Administrator, you can include iProcess field data in
your SOAP header to outbound web services at runtime. For example, you could
use custom headers to send context-sensitive iProcess field data that could be
used in the web service at runtime. This is achieved by inserting a token into any
field in the main dialog of the Security Profile Administrator. The fields can
contain both SOAP and security information, see Using Security Profiles to Send
iProcess Field Data, page 41.
TIBCO iProcess Web Services Plug-in: User’s Guide

Connecting with TIBCO Resources | ix

B
ac

k
to

 L
ib

ra
ry
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
After you join TIBCOmmunity, you can access the documentation for all
supported product versions here:

http://docs.tibco.com/TibcoDoc
 TIBCO iProcess Web Services Plug-in: User’s Guide

http://www.tibcommunity.com
http://docs.tibco.com/TibcoDoc

x | Preface

B
ac

k
to

 L
ib

ra
ry
Documentation Conventions

Because this guide covers both Windows and UNIX versions of the iProcess Web
Services Plug-in, this guide uses the Windows convention of a backslash (\). The
equivalent pathname on a UNIX system is the same, but using the forward
slash (/) as a separator character.

The following typographical conventions are used in this manual.

UNIX pathnames are occasionally shown explicitly, using forward slashes as
separators, where a UNIX-specific example or syntax is required.

Table 1 General Typographical Conventions

Convention Use

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand pathname

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.
TIBCO iProcess Web Services Plug-in: User’s Guide

Documentation Conventions | xi

B
ac

k
to

 L
ib

ra
ry
webservices_serv
er_location

The path you specify during installation in which the iPE Web Services Server
files are installed. For example:

On Windows:

C:\Program Files\TIBCO\iPEWebServicesPlugin\

On UNIX/Linux:

/opt/tibco/iPEWebServicesPlugin/

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use
 TIBCO iProcess Web Services Plug-in: User’s Guide

xii | Preface

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 1

B
ac

k
to

 L
ib

ra
ry
Chapter 1 Introduction to the iProcess Web Services
Plug-in

This chapter provides an introduction to the iProcess Web Services Plug-in and
provides an overview of how it works.

Topics

• What is the iProcess Web Services Plug-in?, page 2

• Prerequisites for Using the iProcess Web Services Plug-in, page 3

• Using the SOAP/HTTP Data Transport Mechanism, page 5

• Using the XML/JMS Data Transport Mechanism, page 7

• Creating Secure Web Service Operations, page 8
 TIBCO iProcess Web Services Plug-in: User’s Guide

2 | Chapter 1 Introduction to the iProcess Web Services Plug-in

B
ac

k
to

 L
ib

ra
ry
What is the iProcess Web Services Plug-in?

The main function of the iProcess Web Services Plug-in is to provide an interface
for both inbound and outbound communication between the iProcess Engine and
external applications:

• Outbound - EAI steps in iProcess procedures make calls to external
applications using Web Services to perform some operation.

• Inbound - External applications make calls to iProcess to perform iProcess
Web Service operations such as starting cases, triggering events or suspending
cases.

The iProcess Web Services Plug-in consists of three components:

• Web Services Engine - this consists of an Inbound Engine (to handle calls from
external applications to iProcess operations using Web Services) and an
Outbound Engine (to handle calls to external web services). Both of these
engines are hosted by Jetty which is used as a JMX/servlet container.

• iProcess Engine Interface Component - This consists of an EAI Plug-in. It
allows the iProcess background processes to communicate with the Web
Services Engine.

• TIBCO iProcess Web Services Client Plug-in - This plug-in needs to be
installed on your client machine that hosts your iProcess Workspace and
iProcess Modeler. This plug-in enables you to define EAI Web Service steps in
your iProcess procedures.

For more information about how these components interact, see Chapter 2.
TIBCO iProcess Web Services Plug-in: User’s Guide

Prerequisites for Using the iProcess Web Services Plug-in | 3

B
ac

k
to

 L
ib

ra
ry
Prerequisites for Using the iProcess Web Services Plug-in

Before using the iProcess Web Services Plug-in, you need to decide which data
transport mechanism you are going to use.

There are two data transport mechanisms you can use to send data between the
iProcess Engine and an external application.

• Simple Object Access Protocol (SOAP) requests over the Hypertext Transfer
Protocol (HTTP) - (SOAP/HTTP)

• Extensible Markup Language (XML) text using a Java Message Server (JMS) -
(XML/JMS).

The main difference between using SOAP/HTTP and XML/JMS is that
SOAP/HTTP uses Web Services Description Language (WSDL) source to
determine how the text is sent. However, when using XML/JMS you must define
your own XML schema for sending data between an iProcess Engine and an
external application. Whether the XML data is validated against any such schema
is optional.

Deciding Which Data Transport Mechanism to Use
There are advantages to using both the SOAP/HTTP and XML/JMS data
transport mechanisms.

Advantages of the SOAP/HTTP Data Transport Mechanism

The advantages to consider when using the SOAP/HTTP data transport
mechancism are:

• It is a more recognised standard than XML/JMS.

• It is simpler to use than the XML/JMS data transport mechanism as it does
not require an XML schema. When using XML/JMS you must define your
own XML schema for sending text whereas using SOAP/HTTP, you use
WSDL source to define how text is sent.

• You can use security profiles with the SOAP/HTTP data transport
mechanism. You cannot use Security profiles with the XML/JMS data
transport mechanism.
 TIBCO iProcess Web Services Plug-in: User’s Guide

4 | Chapter 1 Introduction to the iProcess Web Services Plug-in

B
ac

k
to

 L
ib

ra
ry
Advantages of the XML/JMS Data Transport Mechanism

The advantages to consider when using the XML/JMS data transport mechanism
are:

• Less data is sent using XML/JMS than SOAP/HTTP. This is because when
data is sent using SOAP over HTTP, it is sent in a SOAP container which
consists of two parts, a header and the body. The body is the message payload
and the header contains system level information. However, when using
XML/JMS, although the message still has a header, the amount of information
that is contained in the header is smaller. Therefore, because there is less data,
XML/JMS tends to be a faster data transport mechanism than SOAP/HTTP.

• The XML/JMS data transport mechanism can be more reliable because the
JMS server has transactional capability. This means that if the connection is
lost between the JMS Server and the iProcess Web Services Plug-in, then the
data requests are retried. With SOAP/HTTP, if the connection between the
external application and the iProcess Web Services Plug-in is lost, the SOAP
requests are also lost.

Note that XML/JMS support only applies to queues. Topics are not supported
using the XML/JMS data transport mechanism.
TIBCO iProcess Web Services Plug-in: User’s Guide

Using the SOAP/HTTP Data Transport Mechanism | 5

B
ac

k
to

 L
ib

ra
ry
Using the SOAP/HTTP Data Transport Mechanism

This section describes:

• Prerequisites for Using SOAP/HTTP on page 5

• Web Service Call Styles on page 6

Prerequisites for Using SOAP/HTTP
If you are using SOAP/HTTP, you need to be familiar with using web services
and have access to the appropriate Web Services Definition Language (WSDL)
source for the Web Service you want to call. The WSDL source can be either static,
at a specific URL, or via a UDDI (Universal Description, Discovery and
Integration) repository.

Information about a Web Service is stored in the WSDL source. The WSDL source
describes all the methods that a Web Service exposes (in the form of XML
messages it can accept and send), as well as the protocols over which the Web
Service is available. The WSDL source provides all the information a client
application needs to use the Web Service. For information about calling iProcess
Engine Web Services, see Chapter 7.

The WSDL source contains a set of information linked together in the following
hierarchy:

-Service

--Port

---Binding

----Port Name

-----Operation

The iProcess Web Service Integrator wizard enables you to browse this hierarchy
to choose the operation you want to call from your procedure. For example:
 TIBCO iProcess Web Services Plug-in: User’s Guide

6 | Chapter 1 Introduction to the iProcess Web Services Plug-in

B
ac

k
to

 L
ib

ra
ry
Web Service Call Styles
When a Web Service call is made from iProcess, a message is sent to the Web
Service. There are two types of messages: Remote Procedure Call (RPC) style or
Document style.

• An RPC style message specifies the name of the procedure to call and contains
a set of input parameters for the Web Service. An RPC style output message is
received containing a return value and any output parameters returned from
the Web service. The messages can be defined using an XML schema so that
custom data types can be used.

• Document style messages enable more loosely coupled communication
between two applications in that the sender does not need to know anything
about the implementation of the service. The Web Service determines how to
process the message based on the contents of the message. The format of the
message is defined by XML schema definitions, which can be defined in the
WSDL or in a separate schema.

The style used for your Web Service call is decided when you choose the Web
Service operation from the WSDL source:

• A Document style message is used when a Document style WSDL operation is
selected or custom data types are used.

• A RPC style message is used when there are no custom data types and the
WSDL operation is not Document style.

When the Document style messages are required, iProcess uses Extensible
Stylesheet Language Transformation (XSLT) to generate XML based on iProcess
fields. The resulting XML data is used when calling the Web Service operation.
TIBCO iProcess Web Services Plug-in: User’s Guide

Using the XML/JMS Data Transport Mechanism | 7

B
ac

k
to

 L
ib

ra
ry
Using the XML/JMS Data Transport Mechanism

There are many different JMS Providers that you can use to integrate between the
iProcess Engine and external applications. You need to know how to configure the
iProcess Web Services Plug-in for the JMS providers you want to use.

Prerequisites for Using XML/JMS
If you are using XML/JMS, you need to be familiar with using XML and have
access to the appropriate XML for the external application you want to call. This
means that you must configure the following:

• XML Schema: You need to understand the XML schema of the external
application you are sending data to and define an XML Schema for the data
you are passing between the iProcess Engine and the external application.

• JMS Target Name: You need to identify a JMS target queue name when you
define an iProcess Web Services step in a procedure. The JMS target name is
the alias of a JMS queue that has already been associated with a particular JMS
Provider. You must define aliases for the queues that the client is allowed to
access. This is because you may use more than one JMS provider and each
provider has its own unique way of connecting to its queues. Specifying a JMS
target means you do not have to provide the specific connection details for a
particular JMS provider. See Configuring JMS Provider Aliases on page 125
for more information about creating different JMS targets for different JMS
providers.

• Input/output mappings. You map the input and output data by creating an
XSLT so that the data can be passed correctly between iProcess and the Web
Service operation you are using.

Note that XML/JMS support only applies to queues. Topics are not supported in
iProcess Web Services Plug-in.
 TIBCO iProcess Web Services Plug-in: User’s Guide

8 | Chapter 1 Introduction to the iProcess Web Services Plug-in

B
ac

k
to

 L
ib

ra
ry
Creating Secure Web Service Operations

The TIBCO iProcess Web Services Plug-in supports transport layer security using
Secure Socket Layer (SSL), and SOAP security features.

You can create "security profiles" that contain settings for SOAP security so that
the settings can be reused for different web services steps at design time. The
security profile can also be associated with a URL alias so that at design time,
when you subsequently select the URL alias, the associated security profile is
displayed as well (for more information, see URL Alias Management on page 25).
TIBCO iProcess Web Services Plug-in: User’s Guide

| 9

B
ac

k
to

 L
ib

ra
ry
Chapter 2 Understanding the iProcess Web Services
Plug-in Architecture

This chapter describes the iProcess Web Services Plug-in architecture.

Topics

• Overview, page 10

• Understanding Inbound Calls Using SOAP/HTTP, page 12

• Understanding Inbound Calls Using XML/JMS, page 16

• Configuring a High Availability iProcess Web Services Plug-in, page 20

• About iProcess Web Services Plug-in Deployment, page 22

• URL Alias Management, page 25
 TIBCO iProcess Web Services Plug-in: User’s Guide

10 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Overview

Communication between the iProcess Engine and external applications is enabled
by the iProcess Web Services Plug-in which provides the interface for both
inbound and outbound calls. The data is sent using either of the following data
transport mechanisms:

• a Simple Object Access Protocol (SOAP) request over the HTTP protocol to the
Web Service, or

• as XML text using the JMS Server.

The iProcess Web Services Plug-in is different from other TIBCO plug-ins in
several respects:

• It runs as a standalone process (unlike for example EAI Java, which is in
process with the iProcess Engine background), as well as an iProcess Engine
interface.

• It has an Inbound Engine (to handle calls from external Web Services to
iProcess operations) and an Outbound Engine (to handle calls to external web
services). Both of these engines are hosted by Jetty which is used as a
JMX/servlet container.
TIBCO iProcess Web Services Plug-in: User’s Guide

Overview | 11

B
ac

k
to

 L
ib

ra
ry
The following diagram shows the path for outbound communication in a
traditional EAI Plug-in and in the iProcess Web Services Plug-in. The iProcess
Web Services Plug-in architecture is discussed in more detail in subsequent
sections.
 TIBCO iProcess Web Services Plug-in: User’s Guide

12 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Understanding Inbound Calls Using SOAP/HTTP

The following diagram provides a high level overview of how the components of
the iProcess Web Services Plug-in interact with the other applications during
inbound calls over SOAP/HTTP. The numbers on the diagram correspond to the
subsequent explanations.

1. An external application sends a SOAP request over HTTP.

2. The Web Server hosted inside Jetty receives the request. Jetty is an
open-source Java HTTP Server and Servlet Container. The Web Server sends
TIBCO iProcess Web Services Plug-in: User’s Guide

Understanding Inbound Calls Using SOAP/HTTP | 13

B
ac

k
to

 L
ib

ra
ry
the request to the Axis Server which sends it to the TIBCO Web Service
Objects.

3. The TIBCO Web Service Objects connect to the TIBCO iProcess database using
Java Database Connectivity (JDBC) and run stored procedures to perform
actions (for example, a case start).

Prior to version 10.6, in the WSDL file that the iProcess Web Services Plug-in
presents, the endpoint address for iProcess Web Services Plug-in inbound web
services was http://localhost:8090/axis2/services/WebiPE. This release of
the iProcess Web Services Plug-in has been upgraded to use Axis2, which has
caused the endpoints to change. The new endpoints are:

— for SOAP 1.1;
http://localhost:8090/axis2/services/WebiPE.WebiPEHttpSoap11Endpoi
nt/ for SOAP 1.1

— for SOAP 1.2;
http://localhost:8090/axis2/services/WebiPE.WebiPEHttpSoap12Endpoi
nt/ for SOAP 1.2.

However, you can still access the iProcess Web Services Plug-in using the old
endpoint.
 TIBCO iProcess Web Services Plug-in: User’s Guide

14 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Understanding Outbound Calls Using SOAP/HTTP

The following diagram provides a high level overview of how the components of
the iProcess Web Services Plug-in interact with the other applications during
outbound calls over SOAP/HTTP. The numbers on the diagram correspond to the
subsequent explanations.

1. Asynchronous with Reply - A iProcess Web Services Step communicates with
the EAI Web Services Plug-in Interface, which sends its request to the Socket
Proxy using TCP/IP Sockets.

2. The request is sent to TIBCO Java Management Extensions (JMX) MBeans,
which uses TIBCO Enterprise Message Service/JMS queues for its internal
operations. It is then sent to the Axis client.

3. The Axis client sends the request to the external application using SOAP over
HTTP. The reply is sent back via the same route as described for the outbound
call.

4. Automatic and Manual Delayed Release - the outbound call proceeds in the
same way as previously described for outbound Asynchronous with Reply.
TIBCO iProcess Web Services Plug-in: User’s Guide

Understanding Outbound Calls Using SOAP/HTTP | 15

B
ac

k
to

 L
ib

ra
ry
5. The reply depends on the invocation style:

— For a Manual Delayed Release step, the reply is initiated from an external
application.

— For an Automatic Delayed Release step, the release is accomplished by
using JDBC to connect to the iProcess database to run a stored procedure.

— For an Asynchronous with Reply step, the external application responds
directly to the iProcess background.
 TIBCO iProcess Web Services Plug-in: User’s Guide

16 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Understanding Inbound Calls Using XML/JMS

The following diagram provides a high level overview of how the components of
the iProcess Web Services Plug-in interact with the other applications during
inbound calls using XML/JMS. The numbers on the diagram correspond to the
subsequent explanations.

1. An external application sends XML data using JMS.

2. The request is sent to TIBCO JMX MBeans, which uses TIBCO Enterprise
Message Service™ (EMS)/JMS queues for its internal operations.

If the inbound call contains a correlation ID, the iProcess Web Services Plug-in
includes the correlation ID in the JMS Correlation ID field in the response
message that it sends. This enables you to use a single, permanent response
queue if required, and use the correlation ID to match request messages to
response messages.
TIBCO iProcess Web Services Plug-in: User’s Guide

Understanding Inbound Calls Using XML/JMS | 17

B
ac

k
to

 L
ib

ra
ry
3. TIBCO JMX MBeans connects to the TIBCO iProcess database using JDBC and
run stored procedures to perform actions (for example, a case start).
 TIBCO iProcess Web Services Plug-in: User’s Guide

18 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Understanding Outbound Calls Using XML/JMS

The following diagram provides a high level overview of how the components of
the iProcess Web Services Plug-in interact with the other applications during
outbound calls using XML/JMS. The numbers on the diagram correspond to the
subsequent explanations.

1. Asynchronous with Reply - A iProcess Web Services Step communicates with
the EAI Web Services Plug-in Interface, which sends its request to the Socket
Proxy using TCP/IP Sockets.

2. The request is sent to TIBCO JMX MBeans, which uses EMS/JMS queues for
its internal operations.

3. TIBCO JMX MBeans sends the message containing XML to the external
application’s JMS queue. The reply is sent back via the same route as
described for the outbound call.
TIBCO iProcess Web Services Plug-in: User’s Guide

Understanding Outbound Calls Using XML/JMS | 19

B
ac

k
to

 L
ib

ra
ry
4. Automatic and Manual Delayed Release - the outbound call proceeds in the
same way as previously described for outbound Asynchronous with Reply.

5. The reply for a delayed release step uses TIBCO JMX MBeans to connect to the
TIBCO iProcess database using JDBC and run stored procedures to perform
actions (for example, a case start).
 TIBCO iProcess Web Services Plug-in: User’s Guide

20 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
Configuring a High Availability iProcess Web Services Plug-in

Either during installation or afterwards, you can create a high availability
configuration. This type of configuration uses multiple Jetty servers to provide
redundancy in case one Jetty Server fails.

The iProcess Web Services Plug-in is able to:

• Detect failures.

• Preserve the integrity of in-progress transactions.

• Seamlessly continue working when the Jetty Server returns.

In a high availability configuration, JMS queues are shared by Jetty Servers. This
means that if a failure occurs, another instance of the Jetty Server takes over
immediately with no or minimal impact on service.

The iProcess Web Services Plug-in High Availability configuration does not
support Asynchronous with Reply. When a procedure with these types of steps is
processed, they are treated as Automatic Delayed Release steps.
TIBCO iProcess Web Services Plug-in: User’s Guide

Configuring a High Availability iProcess Web Services Plug-in | 21

B
ac

k
to

 L
ib

ra
ry
The following diagram shows the architecture of a High Availability
configuration. Note that for clarity, the internal working of the Jetty server are not
shown (refer to previous sections) and only two Jetty servers are illustrated (more
can be configured):
 TIBCO iProcess Web Services Plug-in: User’s Guide

22 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
About iProcess Web Services Plug-in Deployment

Because it uses XML/JMS and SOAP/HTTP for data transport, the components
of the iProcess Web Services Plug-in can be deployed on a variety of platforms.
For example:

TIBCO have not tested multi-platform combinations. This means that, although
there are no technical reasons why you could not have, for example, your Jetty on
a Windows server and your iProcess Engine on a Solaris server, TIBCO have not
tested this combination.
TIBCO iProcess Web Services Plug-in: User’s Guide

About iProcess Web Services Plug-in Deployment | 23

B
ac

k
to

 L
ib

ra
ry
High Availability Deployment
In a High Availability configuration, multiple Jetty Servers on separate machines
are employed to provide redundancy. For example:

For more information, see the TIBCO iProcess Web Services Plug-in installation
guide.

High Availability Message Handling
Failed messages can be retried up to a maximum number, after which they are
placed on the SWPoison queue. Your JMS Administrator can configure the
maximum number of retries (see the TIBCO iProcess Web Services Plug-in
installation guide).

There is also a slight possibility that duplicate Web Services calls can be created if
a Jetty server fails before the TIBCO iProcess Engine has committed the call. In
this case, the iProcess Engine retries the call, creating the duplicate. To avoid this
scenario, do the following:

A High Availability configuration automatically provides load balancing among
its multiple Jetty servers.
 TIBCO iProcess Web Services Plug-in: User’s Guide

24 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
1. Monitor the sw_warn and sw_error files, jetty_home/tibco/log.txt file (where
jetty_home is the location where Jetty is installed) and the SWException queue
for any potential problems with Web Services transactions or Jetty servers.

2. If you cannot determine the cause of the failure, check to SWPoison queue for
failed messages. Correct the problem and consider modifying the process to
cater for failed messages.
TIBCO iProcess Web Services Plug-in: User’s Guide

URL Alias Management | 25

B
ac

k
to

 L
ib

ra
ry
URL Alias Management

The TIBCO iProcess Web Services Plug-in allows you to defer the location of the
WSDL used to call the Web Service at runtime. This is achieved using URL
Aliases. The aliases are stored as an entry in a database table which is used to
locate the WSDL URL which will be used at runtime.

The aliases can be configured either with the command line utility or when you
define your Web Services step. This allows you to change the location of the
WSDL file or the WSDL endpoint without having to modify the Web Services
step. For example, when a procedure is migrated from a test environment to a live
environment, the URL alias can be updated to point to the new location of the
WSDL file, see Administering URL Aliases and Security Profiles on page 121.

You can also associate a security profile with a URL alias by selecting the security
profile when you define the step and URL alias. Then, when you next define a
step and select the URL alias, the corresponding security profile is displayed.
 TIBCO iProcess Web Services Plug-in: User’s Guide

26 | Chapter 2 Understanding the iProcess Web Services Plug-in Architecture

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 27

B
ac

k
to

 L
ib

ra
ry
Chapter 3 Understanding iProcess Web Services
Plug-in Security

This chapter describes the iProcess Web Services Plug-in security mechanisms.

Topics

• Overview, page 28

• About the Security Profile Administrator, page 30

• Types of Security, page 32

• Combining Security Types, page 39

• Using Custom Headers, page 40

• Using Security Profiles to Send iProcess Field Data, page 41
 TIBCO iProcess Web Services Plug-in: User’s Guide

28 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
Overview

The TIBCO iProcess Web Services Plug-in supports transport layer security using
Secure Socket Layer (SSL), and SOAP security features.

Security Profiles

You can create "security profiles" that contain settings for SOAP security so that
the settings can be reused for different web services steps at design time. The
security profile can also be associated with a URL alias at design time, so that
when you subsequently select the URL alias, the associated security profile is
displayed as well.

Inbound Web Services

Inbound web services refer to web services provided by the iProcess Engine (see
iProcess Web Service Operations on page 133). When defining a security profile
for inbound web services, the parameters are defined from the perspective of the web
service provider (the iProcess Web Services Plug-in). Therefore, "inflow" security
applies to the request from the external web service to the iProcess Engine, and
"outflow" security applies to the response from the iProcess Web Services Plug-in:
TIBCO iProcess Web Services Plug-in: User’s Guide

Overview | 29

B
ac

k
to

 L
ib

ra
ry
Outbound Web Services

Outbound web services are called by the iProcess Engine. When defining a
security profile for outbound web services, the parameters are defined from the
perspective of the web service invoker (the iProcess Web Services Plug-in). Therefore,
"outflow" security applies to the request from the iProcess Engine to the external
web service, and "inflow" security applies to the response from the external web
service:

In addition to SOAP security, you can edit the SOAP header to include custom
headers to outbound web service calls (see Using Security Profiles to Send
iProcess Field Data on page 41).
 TIBCO iProcess Web Services Plug-in: User’s Guide

30 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
About the Security Profile Administrator

The Security Profile Administrator is an application that allows you to configure
the following types of security for use with the TIBCO iProcess Web Services
Plug-in:

• Security applied to SOAP requests and responses from and to an external web
service.

• iProcess Engine Inbound Web Services security - inflow and outflow security
applied to requests from external web services to the iProcess Web Services
listed in iProcess Web Service Operations on page 133, and responses to those
requests. The security profile for Inbound web services is called Inbound and
is created at installation. Note however that the Inbound profile does not
specify any security by default.

As an advanced alternative to specifying SOAP security settings in the dialog of
the Security Profile Administrator, you can use a WS Policy File to define SOAP
Security settings for your environment. For more information, see Combining
Security Types on page 39.

• You must start the Jetty server before you can run the Security Profile
Administrator.

• The options available differ depending on whether you have Inflow or
Outflow selected.
TIBCO iProcess Web Services Plug-in: User’s Guide

About the Security Profile Administrator | 31

B
ac

k
to

 L
ib

ra
ry
The main dialog of the Security Profile Administrator looks like this:

The profile you create using this dialog is encrypted and saved in the database in
the EAIWS_SECURITY_PROFILE table (see The EAIWS_SECURITY_PROFILE
Table on page 122).

The following sections examine how the different types of web services security
can be achieved in the TIBCO iProcess Web Services Plug-in.
 TIBCO iProcess Web Services Plug-in: User’s Guide

32 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
Types of Security

This section provides an overview of the various types of Web Services security,
which provide the following types of protection:

• Authentication

• Integrity

• Confidentiality

• Non-repudiation

Transport Layer Security (SSL)
Secure Sockets Layer (SSL) allows web browsers and web servers (point-to-point)
to communicate over a secure connection. SSL provides confidentiality because
SSL responses are encrypted so that the data cannot be deciphered by third
parties as it passes between the client and server on a network.

The following is an Inbound example with SSL:

1. The Web Service encrypts the message using the server’s public key. Because
the message is encrypted, a third party cannot intercept it.
TIBCO iProcess Web Services Plug-in: User’s Guide

Types of Security | 33

B
ac

k
to

 L
ib

ra
ry
2. An SSL connection is opened and the encrypted message is sent.

3. The server’s private key is used to decrypt the message.

The iProcess Web Services Plug-in implements SSL security as follows:

• For Outbound calls, iProcess EAI steps call Web Services over SSL, using a
Truststore to obtain a server's public key. This truststore is the same as the
SOAP/SSL Security keystore that you specified when you installed iProcess
Web Services Plug-in.

• For Inbound calls, an SSL server is used (see following dialog) to allow
external web services to connect to iProcess securely.

The Inbound SSL settings are configured during the installation of the TIBCO
iProcess Web Services Client and Server Plug-ins.

When you enable SSL encryption, the alias is automatically selected by Jetty. You
must supply the password here, and the name of the keystore/keystore password
(on the previous dialog in the installation sequence). There should only be one
key in the keystore for SSL encryption, and the alias must be jetty.

For more information see the TIBCO iProcess Web Services Server Plug-in
Installation Guide and TIBCO iProcess Web Services Client Plug-in Installation Guide.
 TIBCO iProcess Web Services Plug-in: User’s Guide

34 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
SOAP Authentication
The purpose of authentication is to verify that the originator of the message is a
trusted partner.

This is done by inserting the following tokens in the SOAP message header:

• Username Password token (basic authentication)

• X.509 certificates

• Digital signature

• Timestamp token

Username - Password Token (Basic Authentication)

This form of authentication consists of a a simple XML description of the
username the service claims to represent, and optionally, a password. The
password can be a plain text password or for better security, a password digest.

<S11:Envelope xmlns:S11="..." xmlns:wsse="...">
 <S11:Header>
 ...
 <wsse:Security>
 <wsse:UsernameToken>
 <wsse:Username>Tibco</wsse:Username>
 <wsse:Password>secure</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 ...
 </S11:Header>
 ...
</S11:Envelope>

Suppose that you specify basic authentication for outflow security (a SOAP
request). When the web service call is made, the token is inserted into the SOAP
header. The recipient of the request will authenticate the username/password
token in the SOAP header, verifying that you are a trusted partner. Similarly if
you specify basic authentication for outflow security (SOAP responses), when the
response comes in, it must have the specified user/password token or it is
rejected.

How to accomplish this with the TIBCO iProcess Web Services Plug-in

Refer to Example 2- Calling an Inbound Web Service Operation Using
SOAP/HTTP and Basic Authentication on page 80 to see how this works in
practice.
TIBCO iProcess Web Services Plug-in: User’s Guide

Types of Security | 35

B
ac

k
to

 L
ib

ra
ry
Digital Signatures and Certificates
The TIBCO iProcess Web Services Plug-in supports the use of SOAP digital
signatures and digital certificates that conform to the X.509 standard. Certificates
are used to verify your identity by means of a trusted third party (for example,
Verisign).The following diagram shows how certificates can be used:

The following figure shows how SOAP digital signatures using public/private
key encryption work.
 TIBCO iProcess Web Services Plug-in: User’s Guide

36 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
How to accomplish this with the TIBCO iProcess Web Services Plug-in

1. Certificates - in a test environment, generate the certificate using your
preferred tool. In a production environment, you should obtain a signed
certificate from a trusted third party. Put the certificate in the SOAP/SSL
Security keystore that you specified when you installed iProcess Web Services
Plug-in. For more information see the TIBCO iProcess Web Services Server
Plug-in Installation Guide and TIBCO iProcess Web Services Client Plug-in
Installation Guide.

Signatures - generate the signature using your preferred tool.

2. Specify the signature or certificate details in the Security Profile Administrator
(see Setting Up and Managing Security Profiles on page 111).

Timestamps
You can insert a timestamp that specifies the creation and expiration of a message.
The receiver of the message can detect whether a message has expired, indicating
possible tampering.

The Java Development Kit (JDK) provides a command line tool called keytool
located in the %JAVA_HOME%/bin directory of the JDK. You can use this
tool to generate and store public/private keys. For more information, see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#security. There
are also several tools available that use graphical interfaces.
TIBCO iProcess Web Services Plug-in: User’s Guide

http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#security

Types of Security | 37

B
ac

k
to

 L
ib

ra
ry
Encryption - Ensuring Privacy
Encryption is used to ensure that no-one except for the intended recipient of a
SOAP message can read it. SOAP message body encryption is done using public
key encryption/decryption:

How to accomplish this with the TIBCO iProcess Web Services Plug-in

The Java Development Kit (JDK) provides a command line tool called keytool
located in the %JAVA_HOME%/bin directory of the JDK. You can use this tool to
generate and store public/private keys. For more information, see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#security. There are
also several tools available that use graphical interfaces.
 TIBCO iProcess Web Services Plug-in: User’s Guide

http://java.sun.com/j2se/1.5.0/docs/tooldocs/index.html#security

38 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
Securing iProcess Engine Inbound Web Services
The Security Profile Administrator allows you to apply security to calls from
external applications to the iProcess Web Services listed in iProcess Web Service
Operations on page 133. This is done by modifying the Inbound profile in the
Security Manager (see Setting Up and Managing Security Profiles on page 111).

Deployment

Inbound web services (iProcess Web Services located on your server) are
implemented by an Axis2 service. The service is deployed to Axis2 in the form of
an .aar archive file.

If you modify inbound security profile using the Security Profile Administrator,
you need to restart Jetty for the changes to take effect.

Deployment in a High Availability Environment

If you have created a high availability environment with multiple Jetty servers,
each would need a re-deployment of the iProcess Engine Web Service. You do not
have to do this manually, the new security profile is picked up automatically
when the Jetty server restarts. For more information see the TIBCO iProcess Web
Services Plug-in Server Installation Guide.
TIBCO iProcess Web Services Plug-in: User’s Guide

Combining Security Types | 39

B
ac

k
to

 L
ib

ra
ry
Combining Security Types

There are two ways that you can combine the security types described in this
chapter: either by using the Security Manager or by using WS Policy files.

Using WS Policy Files
Apache Axis2 Rampart allows SOAP security settings to be customized and
deployed using a special file called a WS Policy File. The WS Policy file defines
the security contract between two web services for both inflow and outflow
security. The specifics of how this contract is implemented is defined by settings
you make in the Security Manager.

Creating a policy file is outside the scope of this document; refer to any of the
available web resources for more information.

Using the Security Manager
If you use the Security Manager to apply various types of security, you should be
aware that tokens are inserted into messages in the following order:

• Timestamp

• Basic authentication

• Encryption

• Digital signatures

When reading a message, the reverse order is enforced.
 TIBCO iProcess Web Services Plug-in: User’s Guide

40 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
Using Custom Headers

The Security Profile Administrator provides a custom header field that you can
use to send any additional data that you want to include in your SOAP header to
outbound web services at runtime. You may want to send user ID or User Type
information as well as the username when authenticating for example.

This is achieved by inserting the data into the custom header field in the main
dialog of the Security Profile Administrator. The field can contain both SOAP and
security information.

Example of a Custom Header
The custom header consists of simple XML descriptions of the data.

<header>
<userId>XYZ0001</userId>
</header>
TIBCO iProcess Web Services Plug-in: User’s Guide

Using Security Profiles to Send iProcess Field Data | 41

B
ac

k
to

 L
ib

ra
ry
Using Security Profiles to Send iProcess Field Data

Using the Security Profile Administrator, you can include iProcess field data in
your SOAP header to outbound web services at runtime. You may want to send
user or organization identity, for example, to allow referencing of a user across
multiple service invocations or you could use custom headers to send
context-sensitive iProcess field data that could be used in the web service at
runtime.

This is achieved by inserting a token into any field in the main dialog of the
Security Profile Administrator. The fields can contain both SOAP and security
information.

By default, the token has the following format %%_customtoken_%% where
customtoken is the name of the custom token you have defined. The format of the
token is stored in the Web Services configuration file (wsconfig.properties) but
you can change it if you wish, see Security Profile Tokenization, page 105. You can
also insert iProcess field names in tokens. For example, if you wanted to include
the username of the user who started the process in the custom header, you could
insert %%_sw_starter_%%.

By creating a security profile for outflow security (a SOAP request), when the web
service call is made, the token is inserted into the SOAP header. The recipient of
the request will take the token from the SOAP header, and use the data in the web
service. For example, you could insert the token %%_SW_STARTER_%% in the
Username field in the Security Profile Administrator dialog and add a password
field to the first step in your process. At runtime, when the web service starts, it
enables the user who has started the web service to enter their password at that
point.

Any iProcess fields used in the Security Profile must be defined in the Export
iProcess Fields dialog, see Mark iProcess Fields for Export, page 63. The iProcess
fields will not be automatically poplulated in the Security Profile Administrator.
You must manually select them. As there is no validation available at designtime,
any errors are only apparent at runtime.
 TIBCO iProcess Web Services Plug-in: User’s Guide

42 | Chapter 3 Understanding iProcess Web Services Plug-in Security

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 43

B
ac

k
to

 L
ib

ra
ry
Chapter 4 Creating a Web Services Step

This chapter describes how to define an iProcess Web Services step in your
iProcess procedure to integrate your procedure with external applications.

Topics

• Overview, page 44

• Defining Basic Web Services Step Information, page 45

• Defining the Call to the External Application, page 46

• Editing an EAI Web Service Step, page 67
 TIBCO iProcess Web Services Plug-in: User’s Guide

44 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
Overview

To create an iProcess Engine Web Services step in your procedure, you need to
perform the following steps:

1. Defining Basic Web Services Step Information (step name, description, type,
deadline and audit trail information).

2. Defining the Call to the External Application. Use the Web Service Integrator
wizard to define the necessary information required for the operation.

You can specify that a web service is invoked as part of a Withdraw action.
Doing so means that after defining the main web service call, the wizard
allows you to perform the same steps to define the web service call for the
Withdraw action.

When you have completed these steps, the step type is defined as an iPE Web
Service step and the following icon is displayed: .

The invocation style: Asynchronous with Reply, Manual Delayed Release or
Automatic Delayed Release is configured using the Web Service Integrator
wizard. The options on the Delayed Release tab in the Step Definition dialog are
grayed out.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining Basic Web Services Step Information | 45

B
ac

k
to

 L
ib

ra
ry
Defining Basic Web Services Step Information

To define the basic iProcess Web Services step information, do the following:

1. Start the iProcess Modeler, click the EAI Step tool and click in the
window where you want to place the EAI Step.

2. In the Step Definition dialog, enter the Name and Description for the step.

3. In the EAI Type drop-down list, select EAI_WEBSERVICES - TIBCO
iProcess Web Services Step Plug-in.

You must select the step type when you first create the step; it cannot be
changed later. The list box displays EAI step types that have been installed as
client EAI plug-ins.

(Optional) Select the Don’t delete work items on withdraw option. If this
option is selected, and the deadline on an outstanding step expires or it is
withdrawn as an action (release or deadline expire) of another step:

— the deadline actions are processed.

— the step remains outstanding (the step remains in the workqueue or the
sub-procedure case is not purged).

4. (Optional) Click the Ignore Case Suspend checkbox if you want the step to
still be processed as normal while a case is suspended.

If Ignore Case Suspend is not checked (the default option), the step is not
processed while the case is suspended.

5. Click the Audit Trail tab to define custom audit trail entry expressions that are
inserted into the audit entry when the step is processed. For more information
about customizing the audit trail, see "Audit Trails" in the TIBCO iProcess
swutil and swbatch Reference Guide.

6. Click the Deadlines button if you want to enter deadline information for this
step. You can also enter the step duration if you are using case prediction.
Refer to “Using Deadlines” in the TIBCO iProcess Modeler - Basic Design Guide
for an explanation of defining deadlines and using case prediction.

7. Click the General tab, then click EAI Call-Out Definition. The Web Service
Integrator wizard is displayed.

When the step is released (or the sub-procedure case completes) the normal
release actions are not processed but the case field data associated with the
release step (e.g. the field values set in a normal step whilst in a work queue or
the output parameters of a sub-case) is applied to the main case data.
 TIBCO iProcess Web Services Plug-in: User’s Guide

46 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
Defining the Call to the External Application

Click the General tab, then click EAI Call-Out Definition. The Web Service
Integrator wizard is displayed. The Web Service Integrator wizard enables you
to define the calls to the external application you want to integrate with to specify
the case data that is passed to the external application and (optionally) the data
that is passed back to the iProcess case.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 47

B
ac

k
to

 L
ib

ra
ry
The following flowchart provides an overview of the steps involved to define
your call. More detailed information about each step can be found using the
hypertext links.

Select the WSDL Source

• static WSDL • Via URL • Via UDDI

Choosing the WSDL Source
From a UDDI Repository

Select Web Service
Operation

Use the XML Mapper to
Define the Input/Output

Mappings (Optional)

Mark iProcess Fields for
Export

Map iProcess Fields to Web
Service Fields

Map Web Service Fields to
iProcess Fields

Web Services Integrator Wizard

Select the Data Transport
Mechanism and Invocation Style

Select XSLT Files for
Input of Data

Select XSLT Files for
Output of Data

(Optional)

Complex
SOAP/HTTP
Operations

XML/JMS or
SOAP/HTTP
mixed call style
Operations

Has the Define Withdraw
action checkbox been
selected?

Yes
 TIBCO iProcess Web Services Plug-in: User’s Guide

48 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
Select the Data Transport Mechanism and Invocation Style
1. Choose which data transport mechanism you want to use, select either:

— SOAP/HTTP

— XML/JMS - If you select XML/JMS, the JMS target field is enabled. Specify
the name of the JMS target you have configured. This should have been
done during installation. For more information about aliases and JMS
targets, see the TIBCO iProcess Web Services Plug-in Installation Guide.

2. Select the Invocation Style:

— Automatic Delayed Release

Once the call has been made, the iProcess background process carries on
processing so that iProcess can continue processing other cases.

The Web Service needs to restart the case when required.

— Manual Delayed Release

Once the call has been made, the iProcess background process carries on so
that iProcess can continue processing other cases.

User intervention is required to restart the case.

— Asynchronous with Reply (Deprecated)

Select this option so that the request and response calls are de-coupled into
separate requests from the iProcess Background process. If a procedure is
designed with multiple, parallel steps, they can be invoked asynchronously
and allowed to run simultaneously but the Background process will be
blocked until all of the responses are received. This means that no other
processing can occur by that Background process. However if the response
time is too slow, then the iProcess Web Services Plug-in will automatically
switch to Delayed Release. For information about setting the timeout value
for the Asynchronous with Reply invocation style, see Asynchronous With
Reply Timeout on page 104.

For more information about invocation styles and transaction scope, refer to
the TIBCO iProcess Modeler - Integration Techniques Guide.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 49

B
ac

k
to

 L
ib

ra
ry
3. Select the Withdraw action:

— Define Withdraw action - selecting this option means that after defining
the main web service, you can define a web service that is invoked when
the step is withdrawn.

— Edit only the Withdraw action - Use this option when editing a step. It
allows you to skip the dialogs related to the main web service and proceed
directly to the dialogs for the Withdraw action web service. For more
information, see Editing an EAI Web Service Step on page 67.

4. Continue with the next section.

Select the WSDL Source
You must select the location of the WSDL source:

Web services invoked from Withdraw actions cannot return data. If you
select a WSDL operation with a return parameter, the wizard displays an
error dialog and you cannot proceed with the next dialog.

If this option is used with the Asynchronous with Reply invocation mode,
the wizard displays a warning that the withdraw action can only be
invoked at run time when a timeout occurs, and the step becomes Delayed
Release. For information about setting the timeout value for the
Asynchronous with Reply invocation style, see Asynchronous With Reply
Timeout on page 104.

Option Use to:

Static WSDL Specify that you have a WSDL template that you
want to use. You can paste the WSDL contents into
the WSDL Data/Location text area (see the
following section).
 TIBCO iProcess Web Services Plug-in: User’s Guide

50 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
Specifying a Static WSDL

1. Select the Static WSDL option.

URL Choose this option if you want to specify the
location of your WSDL code using a URL. You
must then enter the URL of the WSDL template in
the WSDL Data/Location text area. You can leave
the WSDL Data/Location text area empty if you
are planning to use an existing alias for the URL
(see Specifying a URL or Alias on page 51).

You can also acquire the WSDL using SSL. For
example:

https://myserver:8443/axis2/services/Webi
PE?wsdl

This assumes that you specified the location and
password of your key store during the installation.
This is stored in:
eai_websvcs/truststore.properties.

UDDI Select UDDI to select a Web Service from a UDDI
repository. This means you can search for a Web
Service that is listed in the UDDI registry (see
Choosing the WSDL Source From a UDDI
Repository on page 53).

Option Use to:
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 51

B
ac

k
to

 L
ib

ra
ry
2. Paste the WSDL code into the WSDL Data/Location text area. For example:

3. If you are using Web Services security and have set up a security profile that
you want the step to use at run time, select the appropriate Alias Server, and
select a profile from the Security profile list. For more information about
creating security profiles, see Setting Up and Managing Security Profiles on
page 111.

4. Continue with Select Web Service Operation on page 54.

Specifying a URL or Alias

By using the URL option in conjunction with Import URL Data options you can
specify a URL location for the WSDL code that is to be used (either at designtime
or runtime).

You can also associate a security profile with the Web Services step or with the
URL alias by selecting the security profile. When you next define a step and select
the URL alias, the corresponding security profile is displayed.

• Specify an alias that corresponds to a URL for the WSDL code

• Create a new alias for the specified URL

• Modify an existing alias with the new URL information specified
 TIBCO iProcess Web Services Plug-in: User’s Guide

52 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
To specify a URL or alias, do the following:

1. Select the URL option.

2. Depending on what you are trying to do, you may need to enter a URL or an
alias. The following table summarizes the various combinations.

• You must make sure that the URL to the WSDL template can be resolved on
both your client and server machines.

• You can enter a URL that points to a file on your local machine using the
format file://host/path. For example:

file://localhost/E:\WSDL.wsdl
 file:C:\MyTests\WebServices\WSDL.wsdl

URL Specified? Import WSDL
Option Result

Yes Design-Time The WSDL template is derived from
the provided URL when the step
definition is saved.

Yes Run-Time The WSDL template is overwritten
with the new WSDL template that is
derived from the provided URL only
when the case is run and when the
step is processed. You may want to
use this if the host machine specified
in the WSDL may change at run-time.

Yes Run-Time
(Aliased)

Using this option, you must select an
Alias server from the list and then an
alias from the Run-Time aliases list:

• If you select an existing alias, the
WSDL Data/Location field is
updated with the URL stored for
that alias.

• You can create a new alias by
specifying a name and URL.

• You can modify an alias by
selecting an existing name and
modifying the URL.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 53

B
ac

k
to

 L
ib

ra
ry
3. If you are using Web Services security and have set up a security profile that
you want the step to use at run time, select a profile from the Security profile
list. This list of security profiles depends on the Alias server that you have
selected. The security profile that you select will be associated with any
Run-Time aliases that are selected. For more information about creating
security profiles, see Setting Up and Managing Security Profiles on page 111.

4. Continue with Select Web Service Operation on page 54.

Choosing the WSDL Source From a UDDI Repository

1. Choose the UDDI option and click Next.

2. The wizard displays a dialog in which you can locate the WSDL source by
searching a UDDI repository. You can search the UDDI either by the Web
Service name or by a Service provider name.

You can only change the address location/target end point in the new WSDL
template that is being used at run-time.
 TIBCO iProcess Web Services Plug-in: User’s Guide

54 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
3. From the UDDI Registry drop-down list, select the UDDI repository in which
to search for a Web Service or Service Provider.

4. Click the Service or Provider tab accordingly depending on how you want to
search the UDDI. In the Search field enter the name of the service or provider
you want to find. If you only know part of the name, you can use % as a
wildcard. Click Search.

5. The left hand pane displays the Search results for your query. Select the Web
Service you require.

When you click on a service, the right hand pane displays the properties of the
service. You can use the tabs to view the properties.

The chosen WSDL source is displayed in the Selected URL field.

6. If you are using Web Services security and have set up a security profile that
you want the step to use at run time, select the appropriate Alias Server, and
select a profile from the Security profile list. For more information about
creating security profiles, see Setting Up and Managing Security Profiles on
page 111.

7. Continue with Select Web Service Operation on page 54.

Select Web Service Operation
Select the Web Service operation from your WSDL source. The wizard displays a
graphical tree view of the Web Service operations available.

The list of UDDI repositories can be edited using the uddiconfig.xml
configuration file - refer to Configuring UDDI Repositories on page 129 for
more information.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 55

B
ac

k
to

 L
ib

ra
ry
Browse the tree view and select the required operation. In the dialog shown
below, the listAccountDetail operation has been selected.

The wizard determines the type of mapping to be used based on the contents of
the WSDL file and whether you selected XML/JMS as the data transport
mechanism. This affects the subsequent screens that the wizard displays:

• If you are using XML/JMS as the data transport mechanism, continue with
Select XSLT Files for Input of Data on page 59.

• If you are using either XML/JMS or SOAP/HTTP and you are mixing
complex and simple call styles (for example, sending a document/literal style
message and receiving an RPC/encoded style), continue with Select XSLT
Files for Input of Data on page 59.

• If you are using SOAP/HTTP and the selected operation is a document/literal
style, continue with the next section (Use the XML Mapper to Define the
Input/Output Mappings (Optional) on page 56).

If you are using custom types, the Use XML mapper checkbox is enabled. By
default, this checkbox is selected allowing you to use the XML Mapper.
However if you want to manually construct the XSLT as in previous versions
of the iProcess Web Services Plug-in, de-select the XML mapper checkbox and
refer to Select XSLT Files for Input of Data on page 59.
 TIBCO iProcess Web Services Plug-in: User’s Guide

56 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
• If you are using SOAP/HTTP and the selected operation is of the
RPC/encoded style, simple data mapping is used. Continue with Map
iProcess Fields to Web Service Fields on page 65.

Use the XML Mapper to Define the Input/Output Mappings (Optional)
If your Web Service operation uses complex data types using SOAP/HTTP, you
can use the XML Mapper to specify which input and output fields are populated
with data at runtime.

1. The schema mapping dialog is displayed.

2. On the Schema tab, The XML Mapper displays the source schema on the left
(iProcess Engine) and the target schema on the right (Web Service). To map
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 57

B
ac

k
to

 L
ib

ra
ry
fields, expand the fields and simply drag the iProcess Engine field to the Web
Services field to create the mapping.

The XML Mapper automatically generates the XSLT based on the mappings
that you select.

Note the following points that also apply when mapping from a Web Service
to the iProcess Engine:

— Mapping must be completed correctly because if there are any errors you
will not be able to proceed with the next dialog (any errors are displayed in
a dialog when you click Next). The XML Mapper highlights in yellow
mappings that can cause problems at runtime. Similarly, mandatory
elements that have not mapped are shown in red. You can also click the
button to check and repair any errors.

— Elements in iProcess Engine array fields start at 0. However, XML arrays
start at 1. This means that if you map an iProcess Engine array field to a
Web Service field, the 0 array field element from the iProcess Engine array
field is mapped to the 1 array field element in the Web Service field.

— Dates must be entered in XML format and not in iProcess format.

— When mapping date and time iProcess fields, the data mapper will show
these yellow to indicate a possible error. This, and date/time errors in the
Mapper Check and Repair dialog, can be ignored as, at runtime, the
mappings are interpreted correctly.
 TIBCO iProcess Web Services Plug-in: User’s Guide

58 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
When you have a choice of elements in the target schema, it is indicated as
follows:

In this example, you must choose whether you want to map to the Claim,
Payment or Policy Element of the target schema. To do this:

a. Highlight the choice and click the button at the top of the dialog.

b. Select Element from the Statement Type list.

c. Select the required type from the Suggested list.

The elements available for mapping are then displayed.

3. Click the XSLT Template tab to view the XSLT you have created as a result of
the field mappings you have set in the Schema tab.

4. Click Next to continue. If the Web Service operation that you are calling
enables responses, you can define the output data. The Define the Web
Service to iProcess Engine Mappings dialog is displayed.

— The Define the Web Service to iProcess Engine Mappings dialog enables
you to define the output mappings so that data is returned from the Web
Service to the iProcess Engine case. Click the Schema tab to use the XML
Mapper to define the field mappings between the Web Service and the
iProcess Engine procedure. This means that you can specify which iProcess
Engine fields are populated with the return data from the Web Service at
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 59

B
ac

k
to

 L
ib

ra
ry
runtime. To map fields, simply drag the Web Service field to the iProcess
Engine field to create the mapping.

5. Click Next and continue with Map iProcess Fields to Web Service Fields on
page 65.

Select XSLT Files for Input of Data
If your Web Service operation uses mixed call styles or XML/JMS, you need to
use XSLT transformations so that the data can be passed correctly to the Web
Service.
 TIBCO iProcess Web Services Plug-in: User’s Guide

60 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
1. You must select where the XSLT source is derived from. The following table
describes your options:

2. Specify the contents of the XSLT template as either static data or the URL
location of the XSLT template.

Option Use to:

Static XSLT Specify that you have a XSLT template that you
want to use. You can paste the XSLT contents into
the XSLT Data/Location text area.

URL Choose this option if your XSLT code will be
derived from a URL. You must then enter the URL
of the XSLT template in the XSLT Data/Location
text area.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 61

B
ac

k
to

 L
ib

ra
ry
In the XSLT Data/Location text area, enter the XSLT code if you have chosen
the Static XSLT option or enter a URL to specify the location of the XSLT
template.

3. Choose if you want to import the XSLT template from the URL now (design
time) or when a case is run (run-time).

— Design-Time - the XSLT template is derived from the provided URL when
the step definition is saved.

— Run-Time - the XSLT template will be derived from the provided URL only
when the case is run and when the step is processed. You may want to use
this if you know that the XSLT is dynamic and you always want to use the
latest code.

Select XSLT Files for Output of Data (Optional)
If the Web Service operation you are calling enables responses, you can define
output data that can be returned to the case.

You must make sure that the URL to the WSDL template can be resolved on
both your client and server machines.
 TIBCO iProcess Web Services Plug-in: User’s Guide

62 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
1. Choose where the XSLT source is derived from.

2. Specify the contents of the XSLT template as either static data or the URL
location of the XSLT template.

Option Use to:

Static XSLT Specify that you have a XSLT template that you
want to use. You can paste the XSLT contents into
the XSLT Data/Location text area.

URL Choose this option if your XSLT code will be
derived from a URL. You must then enter the URL
of the XSLT template in the XSLT Data/Location
text area.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 63

B
ac

k
to

 L
ib

ra
ry
In the XSLT Data/Location text area, enter the XSLT code if you have chosen
the Static XSLT option or enter a URL to specify the location of the XSLT
template.

3. Choose if you want to import the XSLT template from the URL now (design
time) or when a case is run (run-time).

— Design-Time - the XSLT template is derived from the provided URL when
the step definition is saved.

— Run-Time - the XSLT template will be derived from the provided URL only
when the case is run and when the step is processed. You may want to use
this if you know that the XSLT is dynamic and you always want to use the
latest code.

Mark iProcess Fields for Export
The iProcess fields that you used to define mappings with the XML mapper
should be automatically selected in the Export iProcess Fields dialog. However,
you should confirm that each iProcess field you want to export is selected. The
XSLT fields will be used to generate XML based on the iProcess fields. The
resulting XML definitions are used when calling the Web Service.

You must make sure that the URL to the WSDL template can be resolved on
both your client and server machines.

Any mappings of iProcess fields involving XPath formulas that contain arithmetic
expressions or functions can result in the list of pre-selected fields in the Export
iProcess Fields dialog being incomplete. You should therefore carefully check the
list against your mappings, and manually select any missing fields that you need
to export.

Any iProcess fields used as security profile tokens in the Security Profile must be
defined in the Export iProcess Fields dialog, see Using Security Profiles to Send
iProcess Field Data, page 41. Errors are only identified at runtime, not designtime.
 TIBCO iProcess Web Services Plug-in: User’s Guide

64 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
• If you want to select all the iProcess fields, click Select All.

• To deselect a field, click the checkbox again. To deselect all fields, click Clear
All.

• To export SW_DELAYED_RELEASE as a field to export, click the Export
Delayed Release ID Field box.

• Select the Advanced View checkbox if you want to see the type, length and
number of decimal places for each iProcess field.

• Select Export Delayed Release ID Field to include this field in the list of fields
that are exported.

Proceed as follows:

• If you are defining a Withdraw action web service (you selected the Define
Withdraw action checkbox in Select the Data Transport Mechanism and
Invocation Style dialog), click Next and continue with Select the Data
Transport Mechanism and Invocation Style on page 48 to define the details of
the web service that you want to invoke for the Withdraw action.

• If you are not defining a Withdraw action web service, click Finish to
complete the EAI call-out definition.
TIBCO iProcess Web Services Plug-in: User’s Guide

Defining the Call to the External Application | 65

B
ac

k
to

 L
ib

ra
ry
Map iProcess Fields to Web Service Fields
If you selected an RPC operation, you can use single parameter mapping as
described in this section. Follow the instructions in this section to define the Web
Service fields that will be mapped to the iProcess fields.

The list of input fields from the WSDL definition source is displayed in the Inputs
section. For each field, create a mapping to a iProcess field or a constant. You can
either:

• Click in the Mapping Value text box and select a iProcess field or,

• Click in the Mapping Value text box and type in a constant value or,

• Click in the WSDL Field text box, select a iProcess field from the iProcess
fields list and click Map Input. Select the Advanced View checkbox if you
want to see the type, length and number of decimal places for each iProcess
field.

If the Web Service operation you are calling enables responses, click Next and
continue with the next section.

You can clear all the Input mappings by clicking Clear All.
 TIBCO iProcess Web Services Plug-in: User’s Guide

66 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
If the Web Service operation that you are calling does not enable responses,
proceed as follows:

• If you are defining a Withdraw action web service (you selected the Define
Withdraw action checkbox in Select the Data Transport Mechanism and
Invocation Style dialog), click Next and continue with Select the Data
Transport Mechanism and Invocation Style on page 48 to define the details of
the web service that you want to invoke for the Withdraw action.

• If you are not defining a Withdraw action web service, click Finish to
complete the EAI call-out definition.

Map Web Service Fields to iProcess Fields
(Optional) If the Web Service operation you are calling enables responses, you can
define the output mappings so that data is returned to the case.

In the Outputs section, repeat the mapping process described in Map iProcess
Fields to Web Service Fields on page 65 so that all the Web Service output fields
are mapped to iProcess fields. Then, proceed as follows:

• If you are defining a Withdraw action web service (you selected the Define
Withdraw action checkbox in Select the Data Transport Mechanism and
Invocation Style dialog), click Next and continue with Select the Data
Transport Mechanism and Invocation Style on page 48 to define the details of
the web service that you want to invoke for the Withdraw action.

• If you are not defining a Withdraw action web service, click Finish to
complete the EAI call-out definition.

Calling Web Service operations that supply multiple parameters (parts) as a
response, as per the general conventions for SOAP RPC/encoded invocations, is
not supported in this release. To work around this, you should do the following:

1. Pass the parameters back as a single string using delimiters.

2. Call a iProcess script to parse the string and map the resulting values to
iProcess fields. How you do this depends on your data and application.
TIBCO iProcess Web Services Plug-in: User’s Guide

Editing an EAI Web Service Step | 67

B
ac

k
to

 L
ib

ra
ry
Editing an EAI Web Service Step

To edit an EAI Web Service step, do the following:

1. Double-click the Web Service step in your procedure.

2. The EAI Step Definition dialog is displayed.

3. Click EAI Call-Out Definition.The Web Service Integrator wizard is
displayed.

4. Continue through the wizard and modify any settings as required.

5. Click Finish to save your new settings.

Deleting a Withdraw Action
A Web Service that has been defined for a Withdraw action can be deleted by
simply editing the step as described previously, and deselecting the Define
Withdraw action checkbox. Then, when you save the step, the Web Service
selection for the Withdraw action is deleted.

• If you are editing a step that has a web service defined for a Withdraw action,
you can select the Edit only the Withdraw action checkbox to skip the dialogs
related to the main web service and proceed directly to the dialogs for the
Withdraw action web service. Do not deselect the Define Withdraw action
checkbox unless you want to delete the web service that has been specified for
the Withdraw action (see Deleting a Withdraw Action on page 67).

• If you are editing an EAI Web Service step created with a previous version of
the TIBCO iProcess Web Services Plug-in, it will not contain security
information, to apply SOAP security features, you must re-edit the step and
select a security profile.

If when the step was created, the WSDL was obtained from a UDDI
repository, when you edit the step, the WSDL that was obtained is presented
as a static WSDL. You can re-retrieve the WSDL by selecting UDDI and
searching again. If the WSDL in the repository has changed since the step was
created, the displayed WSDL is updated.
 TIBCO iProcess Web Services Plug-in: User’s Guide

68 | Chapter 4 Creating a Web Services Step

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 69

B
ac

k
to

 L
ib

ra
ry
Chapter 5 Examples

This chapter contains some examples of using the TIBCO iProcess Web Services
Plug-in. The schemas, iProcess procedures, and BusinessWorks processes can all
be found in the examples folder on the TIBCO iProcess Engine Web Services
Server Plug-in product physical media.

Topics

• Overview, page 70

• About Integrating the iProcess Engine with Business Works, page 71

• Pre-requisite Tasks, page 72

• Example 1- Calling an Inbound Web Service Operation Using SOAP/HTTP, page 77

• Example 2- Calling an Inbound Web Service Operation Using SOAP/HTTP and
Basic Authentication, page 80

• Example 3- Calling an Inbound Web Service Operation Using XML Over JMS,
page 84

• Example 4- Calling an Outbound Web Service using SOAP/HTTP, page 88

• Example 5- Calling an Outbound Web Service using XML/JMS, page 94

These examples are subject to change. Checkhttp://www.tibcommunity.com for
updates or to find further examples.
 TIBCO iProcess Web Services Plug-in: User’s Guide

http://www.tibcommunity.com

70 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
Overview

The aim of this chapter is to demonstrate how to make outbound and inbound
web service calls. BusinessWorks is used to host an external web service, and to
call an Inbound web service. Although each integration project is different, the
following sections should provide you with an overview of the integration
process that you can adapt to your own requirements.

The preferred method of integrating the TIBCO iProcess Engine with TIBCO
BusinessWorks is to use the TIBCO BusinessWorks iProcess Connector.

The iProcess BusinessWorks Connector allows applications designed using either
BusinessWorks or the TIBCO iProcess suite of products to communicate easily.
For more information about using the BusinessWorks Connector, see the TIBCO
iProcess BusinessWorks Connector User’s Guide.
TIBCO iProcess Web Services Plug-in: User’s Guide

About Integrating the iProcess Engine with Business Works | 71

B
ac

k
to

 L
ib

ra
ry
About Integrating the iProcess Engine with Business Works

These examples demonstrate the following iProcess Engine and BusinessWorks
integration concepts:

• Outbound - iProcess procedures make calls to BusinessWorks processes.

• Inbound - BusinessWorks makes calls to the iProcess Engine to perform
operations such as starting cases, triggering events or suspending cases.

There are two data transport mechanisms you can use to implement these
integration scenarios:

• Simple Object Access Protocol (SOAP) requests over the Hyper text Transfer
Protocol (HTTP) - (SOAP/HTTP).

• Extensible Markup Language (XML) text using a Java Message Server (JMS) -
(XML/JMS).

For an overview of the components used, the transport protocols involved and
how each component interacts with each other, see Introduction to the iProcess
Web Services Plug-in on page 1.
 TIBCO iProcess Web Services Plug-in: User’s Guide

72 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
Pre-requisite Tasks

You need to perform the following pre-requisite tasks to configure the iProcess
Engine and BusinessWorks for integration:

• Task 1: Configure TIBCO EMS on page 72

• Task 2: Import the BusinessWorks Project on page 72

• Task 3: Review the Schema on page 74

• Task 4: Review the HTTP and JMS Connections on page 75

• Task 5: Import the iProcess Procedures on page 75

Task 1: Configure TIBCO EMS
These examples assume that you are using TIBCO Enterprise Message Service as
your JMS Provider. To configure Enterprise Message Service, you must create the
following in the TIBCO EMS Administration Tool:

1. Create the following queue and a JNDI name for it (the queue is used by the
XML/JMS example):

queue.Bank

2. Ensure that the new queue that you created is configured in the file
jettydirectory/tibco/alias.xml. For example:

<Alias name="Bank" id="ems" topic="false"
topicorqueuename="queue.Bank"/>

3. Restart Jetty.

Task 2: Import the BusinessWorks Project
The TIBCO BusinessWorks Project contains all the necessary BusinessWorks
schemas, processes and connection objects necessary for these examples. Import
the Project as follows:

1. Copy the examples folder from the physical distribution media to a local
directory.

Refer to the documentation supplied with TIBCO EMS for information on how to
do this.
TIBCO iProcess Web Services Plug-in: User’s Guide

Pre-requisite Tasks | 73

B
ac

k
to

 L
ib

ra
ry
2. From the Start Menu, select Programs > TIBCO > TIBCO Designer 5.x >
Designer 5.x.

The following dialog is displayed:

The example BusinessWorks processes were created using TIBCO Designer
5.3. You cannot open the processes in earlier versions. If you open them in a
later version than 5.3, you will be prompted to upgrade the processes to the
later version.
 TIBCO iProcess Web Services Plug-in: User’s Guide

74 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
3. Click Open existing project. The Open Project dialog is displayed.

4. Browse to select the examples\BusinessWorks Project directory (the location
where you copied the examples folder), and click OK. The BusinessWorks
project opens.

5. Expand the DEMO folder.

Task 3: Review the Schema
The sw schema is provided for field mapping to iProcess Engine fields. You use
this schema when writing your own XSLT to integrate with the iProcess Engine. It
is also essential to understand this schema when calling web services using
XML/JMS. For more information about this schema, click schema.html in the
swschema folder on the distribution CDROM or browse the schema in
BusinessWorks:
TIBCO iProcess Web Services Plug-in: User’s Guide

Pre-requisite Tasks | 75

B
ac

k
to

 L
ib

ra
ry
Task 4: Review the HTTP and JMS Connections
For the purposes of this example, the HTTP and JMS connection objects have been
created for you. The HTTP connection object uses localhost and port 8002. If the
Web Services Client and Server Plug-ins and TIBCO EMS are running on the same
machine, you can skip the remainder of this step. If you need to change the HTTP
or JMS Connection, do so as follows:

1. Open the DEMO folder by double clicking on it, and double-click HTTP
Connection to open the connection object.

2. Click the Configuration tab and ensure that Host represents the machine
running the BusinessWorks process, and that Port specifies a port that is not in
use.

3. Click Apply.

4. Double-click JMS Connection to open the connection object.

5. The field JNDI Context URL is configured to tibjmsnaming://localhost:7222.
If TIBCO EMS is configured on a different machine, modify the JNDI Context
URL as necessary. If you have implemented security, enter the User Name and
Password for TIBCO EMS.

Task 5: Import the iProcess Procedures
1. Copy the banksoap.xfr, bankxml.xfr, and inbound.xfr files from the

examples\iProcess Procedures directory to the SWDIR\util directory.

2. Navigate to the SWDIR\util directory and enter the following command:

swutil import

3. Enter BANKSOAP when prompted for the name of the procedure to import.

4. When prompted, accept the default owner (swpro) and enter U to import the
procedure as Unreleased.

5. In the same way, import the BANKXML and INBOUND procedure.

6. Start the TIBCO iProcess Workspace and confirm that the procedures were
imported.

If you changed the hostname or port in the BusinessWorks process, the WSDL
used in the iProcess Engine BANKSOAP procedure must be changed to match the
BusinessWorks WSDL. Ensure that the target endpoint in both WSDLs match.
 TIBCO iProcess Web Services Plug-in: User’s Guide

76 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
Task 6: Import the Example Security Profiles
Import the example security profiles as follows:

1. Copy example_profiles.xml file from the examples folder on the TIBCO
iProcess Engine Web Services Server Plug-in product physical media to the
webservices_server_location/jetty-6.1.25 directory.

2. Navigate to the webservices_server_location/jetty-6.1.25 directory and enter the
following command:

urladmin imp_security example_profiles.xml

You will be prompted to overwrite the Inbound profile. Click Yes to do so.

3. Restart the Jetty server.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 77

B
ac

k
to

 L
ib

ra
ry
Creating Working Examples

This section examines the actual iProcess procedures and BusinessWorks
processes that demonstrate specific scenarios.

Example 1- Calling an Inbound Web Service Operation Using SOAP/HTTP
This section describes:

• Aims of the Example on page 77

• Looking at the getNodeName_SOAP Process on page 78

• How to Run the Example on page 79

Aims of the Example

The aim of this example is for BusinessWorks to call an inbound Web Service
using SOAP/HTTP as the transport. Specifically, it does the following:

1. The BusinessWorks Process getNodeName_SOAP sends a SOAP request
message over HTTP to the TIBCO iProcess Engine.

2. The inbound message from BusinessWorks calls the iProcess web service
operation getNodeName.

3. The operation returns the result of the getNodeName operation to
BusinessWorks by sending a SOAP message over HTTP.

4. The node name is displayed in the console log file.
 TIBCO iProcess Web Services Plug-in: User’s Guide

78 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
Looking at the getNodeName_SOAP Process

1. Start BusinessWorks Designer and open the getNodeName_SOAP process:

2. The SOAP Request Reply activity performs a request (getNodeName) on the
specified Web Service and expects a reply from the Web Service. The
Configuration tab is set up as follows:

3. The Input tab is configured as follows:

4. The Log activity writes the result of the request from the SOAP Request
Reply activity to the log of the process engine that is running the
BusinessWorks process. The actual string is:

concat("Result of getNodeName: ",
$SOAPRequestReply/getNodeNameResponse/getNodeNameReturn)

If you are running Jetty on different machine, you need to edit the WebiPE
WSDL to specify the correct endpoint, then restart TIBCO Designer.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 79

B
ac

k
to

 L
ib

ra
ry
It is configured as follows:

How to Run the Example

To run this example, do the following:

1. Start TIBCO Designer.

2. Start Jetty.

3. On the Project Panel, select the Tester tab.

4. Press F9 to display the Select Processes to Load dialog.

5. Select getNodeName_SOAP and click Load Selected:
 TIBCO iProcess Web Services Plug-in: User’s Guide

80 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
6. Select Windows > Show Console to view the Console Log to verify that the
getNodeName operation has performed correctly. If it has performed
correctly, the log should contain lines similar to the following:

2007 Jul 02 11:58:44:020 GMT +1 BW.WebServices_Examples Info
[BW-Core] BWENGINE-300002 Engine WebServices_Examples started

2007 Jul 02 11:58:46:020 GMT +1 BW.WebServices_Examples User
[BW-User] - Job-32000 [DEMO/getNodeName_SOAP.process/Log]: Result
of getNodeName: staffw_nod1

Example 2- Calling an Inbound Web Service Operation Using SOAP/HTTP and
Basic Authentication

This section describes:

• Aims of the Example on page 77

• Looking at the getNodeName_SOAP Process on page 78

• How to Run the Example on page 79

Aims of the Example

The following example shows a loopback test that demonstrates how basic
authentication works when enabled for both inflow and outflow:

1. The Web Service Client has a security profile callinbound that specifies a
username and password for outflow security. The username - password token
is inserted into the SOAP request to the Server.

2. The Server has a security profile Inbound to deal with SOAP requests. The
username and password in the SOAP Request must match the username and
password specified for Inflow security defined in the Inbound profile.

3. The Server sends the SOAP response with the username - password token
specified for Outflow Security defined in the Inbound profile.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 81

B
ac

k
to

 L
ib

ra
ry
4. The Client receives the SOAP response and compares the received username
and password to those specified for Inflow Security in the callinbound
security profile. The usernames and passwords must match.

Looking at the INBOUND Procedure

1. The INBOUND Procedure has three steps:

2. The first step, RELEASE displays a form stating that the Procedure will next
call Inbound web service getNodeName. The Web Services step GETNODE
performs the call, and OUTPUT displays the result.

3. Double-click GETNODE to see how the call-out is defined.
 TIBCO iProcess Web Services Plug-in: User’s Guide

82 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
4. Note that in the Specify the WSDL definition dialog, the WSDL is obtained
via URL from localhost. If this is not the case for your environment, modify
the URL as necessary. Also make sure that you have the correct Alias server
selected (if you do not, you will not be able to see the example security profile
that you imported in Task 6: Import the Example Security Profiles. Note that
the security profile is defined as callinbound.

5. Examine the callinbound security profile by starting the Security Profile
Administrator - run the JETTY_HOME\securitymanager script (on Windows,
securitymanager.cmd, on UNIX, securitymanager.sh).
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 83

B
ac

k
to

 L
ib

ra
ry
6. The Outflow security of callinbound specifies alice as the username. This
username and password will be applied to the SOAP request from the
INBOUND Procedure to the iProcess Web Service.

7. Now examine the Inflow portion of the Inbound security profile. You can see
that this also specifies alice as the username. This means that if the passwords
match, the SOAP request will be authenticated.

8. The SOAP response (from getNodeName) will have the security specified on
the Outflow portion of the Inbound profile. This specifies bob as the
username.

9. Now examine the Inflow portion of the callinbound security profile. You can
see that this also specifies bob as the username. This means that if the
passwords match, the SOAP response will be authenticated.
 TIBCO iProcess Web Services Plug-in: User’s Guide

84 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
How to Run the Example

To run this example, do the following:

1. Start a case of the INBOUND procedure.

2. Release the first form step.

3. The node name returned by getNodeName is displayed in a form.

4. The Jetty log file (log.txt) located in the following directory shows messages
related to the authentication of the username and password:

SWDIR/jetty-6.1.25/tibco

5. The Case Administrator also shows information about the processing of the
case.

Example 3- Calling an Inbound Web Service Operation Using XML Over JMS
This section describes:

• Aims of the Example on page 84

• Looking at the getNodeName_XML Process on page 85

• How to Run the Example on page 87

Aims of the Example

The aim of this example is for BusinessWorks to call an inbound Web Service
using XML/JMS as the transport. Specifically, it does the following:

1. The BusinessWorks Process getNodeName_XML sends XML text to the
TIBCO iProcess Engine using JMS.

2. The inbound message from BusinessWorks calls the iProcess web service
operation getNodeName.

3. The operation returns the result of the getNodeName operation to
BusinessWorks by sending XML text using JMS.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 85

B
ac

k
to

 L
ib

ra
ry
4. The node name is displayed in the console log file.

Looking at the getNodeName_XML Process

1. Start Business Works Designer and open the getNodeName_XML process:

2. Look at the Parse XML activity. This takes an XML file or an XML string and
processes it, turning it into an XML schema tree based on the XSD or DTD
specified. It should be configured as follows:

a. On the Configuration tab, text is selected from the Input Style:
drop-down list.

b. On the Input tab, the following string is contained in the XMLstring box:

’<Operation><getNodeName/></Operation>’

This is the XML message that instructs the iProcess Engine to perform a
getNodeName operation. This is based on the JMS.XSD schema for
iProcess Engine Inbound web services, which is supplied as part of the
BusinessWorks project. For more information, see getNodeName on
page 135.

3. An example of the Output Editor tab is shown below:

You can see that the JMX.xsd schema is being used.
 TIBCO iProcess Web Services Plug-in: User’s Guide

86 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
4. The JMS Queue Requestor activity is used to send a request to a JMS queue
name (queue.IPE) and receive a response back from the JMS client. The
Configuration tab should be set up as follows:

An example of the Input tab is shown below:

5. The JMS Queue Requestor activity references the JMS schema in both the
Input Editor and Output Editor. This means that the same schema is used for
both the inbound XML request to the iProcess Engine and its reply. You can
see that this has been configured on both the Input Editor and Output Editor
tabs:
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 87

B
ac

k
to

 L
ib

ra
ry
6. The Log activity writes the result of the request from the JMS Queue
Requestor activity to the log of the process engine that is running the
BusinessWorks process. From the Input tab, drill down to
$JMS-Queue-Requester\ActivityOutput\Body\Operation\Response\ in the
Process Data box. You can see that @operation and @response are mapped to
the $Log\ActivityInput\ABC message box in the Activity Input box. The
following string is contained in the ABC Message box.

concat("The result of operation: ",
$JMS-Queue-Requestor/ns1:ActivityOutput/Body/Operation/Response/@o
peration, " is: ",
$JMS-Queue-Requestor/ns1:ActivityOutput/Body/Operation/Response/@r
esult)

An example of the Input tab is shown below:

How to Run the Example

To run this example, do the following:

1. Start TIBCO Designer.

2. Start Jetty.

3. On the Project Panel, select the Tester tab.

4. Press F9 to display the Select Processes to Load dialog.
 TIBCO iProcess Web Services Plug-in: User’s Guide

88 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
5. Select getNodeName_XML and click Load Selected:

6. View the Console Log to verify that the getNodeName operation has
performed correctly. If it has performed correctly the log should contain lines
similar to the following:

2007 Jul 02 12:38:56:927 GMT +1 BW.WebServices_Examples Info
[BW-Core] BWENGINE-300002 Engine WebServices_Examples started 2007

Jul 02 12:38:58:833 GMT +1 BW.WebServices_Examples User [BW-User] -
Job-35000 [DEMO/getNodeName_XML.process/Log]: The result of
operation: getNodeName is: staffw_nod1

Example 4- Calling an Outbound Web Service using SOAP/HTTP
This section describes:

• Aims of the Example on page 89

• Looking at the iProcess BANKSOAP Procedure on page 89

• Looking at the Bank_SOAP Process on page 93

• How to Run the Example on page 93
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 89

B
ac

k
to

 L
ib

ra
ry
Aims of the Example

The aim of this example is for a BANKSOAP procedure on the iProcess Engine to
take some customer details and send them to a Web Service on BusinessWorks.
BusinessWorks then sends an account balance back to the iProcess Engine, which
displays it in a form. Specifically, it does the following:

1. The iProcess Engine Procedure BANKSOAP prompts you to enter the
customer details in a form.

2. When the form is released, the iProcess Engine sends a SOAP request to
BusinessWorks using HTTP.

3. BusinessWorks receives the request and sends a hardcoded value for customer
balance in the SOAP response message using HTTP.

4. The iProcess receives the balance information and displays it in a form.

Looking at the iProcess BANKSOAP Procedure

1. In the iProcess Workspace, open the iProcess BANKSOAP procedure:

2. The INPUT step contains a form in which you enter values for the two
required iProcess fields, USERNAME (NAME) and USERID (ID):
 TIBCO iProcess Web Services Plug-in: User’s Guide

90 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
3. Open the BANK iProcess Web Services step and click EAI Call-Out
Definition. You can see that the step is configured to use the SOAP/HTTP
data transport mechanism with the Asynchronous with reply Invocation
Style.

Click Next.

4. The Specify the WSDL Definition dialog shows the static WSDL that is used
to define the web services operations that you can use. In this case, there is
only one defined, (getAccountDetails).

Click Next.

5. You can see that the getAccountDetails operations has been selected:

Click Next.

If you changed the host in the HTTP connection, you should make sure that
the static WSDL in this dialog is correct. You can copy the WSDL from the
WSDL Source tab of the SOAPEventSource activity of the Bank_SOAP process
(see Looking at the Bank_SOAP Process on page 93). Then paste the WSDL
into this dialog.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 91

B
ac

k
to

 L
ib

ra
ry
6. The following dialog maps the USERNAME and USERID fields to elements in
the target schema specified using the mapper. You can also click the XSLT
Template tab to see the XSLT that the mapper creates.

Click Next.
 TIBCO iProcess Web Services Plug-in: User’s Guide

92 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
7. The following dialog shows how information from the source schema
(AccountNumber and CheckingBalance) will be returned from
BusinessWorks and mapped to the iProcess fields ACCTNUM and
BALANCE:

Click Next.

8. Note that the ACCTNUM, BALANCE, USERNAME, and USERID fields are
both selected for export.

Click Cancel.

9. The OUTPUT step displays the ACCTNUM and BALANCE fields that are
returned from the BANK step.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 93

B
ac

k
to

 L
ib

ra
ry
Looking at the Bank_SOAP Process

1. Start Business Works Designer and open the Bank_SOAP process:

2. Look at the SOAPEventSource activity. This receives the SOAP message from
the TIBCO iProcess Web Services Plug-in.

3. Next, examine the SOAPSendReply activity. This sends the SOAP response
message to the iProcess Engine with the following hard coded values for
AccountNumber and CheckingBalance:

How to Run the Example

To run this example, do the following:

1. Start TIBCO Designer.

2. Start Jetty.

3. On the Project Panel, select the Tester tab.

4. Press F9 to display the Select Processes to Load dialog.

5. Select Bank_SOAP and click Load Selected.

6. Start a case of the Bank procedure and in the form that is generated, enter a
NAME and ID. Release the step.
 TIBCO iProcess Web Services Plug-in: User’s Guide

94 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
7. The iProcess Web Services step sends the customer information to the bank
application and returns a balance. The balance is displayed in a form:

8. Use the Case Administrator to view the audit trail. This should show the Web
Services call-out and the messages associated with the processing of the case:

Example 5- Calling an Outbound Web Service using XML/JMS
This section describes:

• Aims of the Example on page 95

• Looking at the iProcess BANKXML Procedure on page 95

• Looking at the Bank_XML Process on page 98

• How to Run the Example on page 99
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 95

B
ac

k
to

 L
ib

ra
ry
Aims of the Example

The aim of this example is for a BANKXML procedure on the iProcess Engine to
take some customer details and send them to a Web Service on BusinessWorks.
BusinessWorks then sends an account balance back to the iProcess Engine, which
displays it in a form. Communications in both directions uses XML over JMS as
the transport. Specifically, it does the following:

1. The iProcess Engine Procedure BANKXML prompts you to enter the
customer details in a form.

2. When the form is released, the iProcess Engine sends an XML message to
BusinessWorks using JMS.

3. BusinessWorks sends the hardcoded customer balance to the iProcess Engine
in an XML message using JMS.

4. The iProcess Engine receives the balance information and displays it in a
form.

Looking at the iProcess BANKXML Procedure

1. In the iProcess Workspace, open the iProcess BANKXML procedure:

2. The INPUT step contains a form in which you enter values for the two
required iProcess fields, USERNAME (NAME) and USERID (ID):
 TIBCO iProcess Web Services Plug-in: User’s Guide

96 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
3. Open the JMSBANK iProcess Web Services step and click EAI Call-Out
Definition. You can see that the step is configured to use the XML/JMS data
transport mechanism (JMS target Bank), with the Asynchronous with reply
Invocation Style.

Click Next.

4. The Define the Input XSLT dialog shows the XSLT that maps the iProcess
fields to the target schema.

For example:

<ns:UserId>
<xsl:value-of
select="ns0:Web_Services_Tibco_Fields/ns0:Tibco_Field
[ns 0:Name='USERID']/ns0:Value"/>

</ns:UserId>

Click Next.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 97

B
ac

k
to

 L
ib

ra
ry
5. The Define the Output XSLT dialog shows how balance information returned
from BusinessWorks is mapped to iProcess Fields:

For example:

<ns:Web_Services_Tibco_Fields>
<ns:Tibco_Field>

<ns:Name>ACCTNUM</ns:Name>
<ns:Value>

<xsl:value-of
select="ns0:AccountBalance/ns0:AccountNumber"/>

</ns:Value>
</ns:Tibco_Field>
<ns:Tibco_Field>

<ns:Name>BALANCE</ns:Name>
<ns:Value>

<xsl:value-of
select="ns0:AccountBalance/ns0:CheckingBalance"/>

</ns:Value>
</ns:Tibco_Field>

</ns:Web_Services_Tibco_Fields>

Click Next.
 TIBCO iProcess Web Services Plug-in: User’s Guide

98 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
6. Note that the ACCTNUM, BALANCE, USENAME, and USERID fields are
both selected for export.

Click Cancel.

7. The OUTPUT step displays the ACCTNUM and BALANCE fields that are
returned from the JMSBANK step.

Looking at the Bank_XML Process

1. Start BusinessWorks Designer and open the Bank_XML process:

2. Look at the JMS Queue Receiver activity. This receives the JMS message from
the iProcess Engine on the Bank queue.

3. Next, examine the Reply to JMS Message activity. This sends the XML
message to the iProcess Engine with a hardcoded value for CheckingBalance.
This is configured on the Input tab:

4. The Log activity writes the username that was entered in the Input iProcess
form to the BusinessWorks console log.
TIBCO iProcess Web Services Plug-in: User’s Guide

Creating Working Examples | 99

B
ac

k
to

 L
ib

ra
ry
How to Run the Example

To run this example, do the following:

1. Start TIBCO Designer.

2. Start Jetty.

3. On the Project Panel, select the Tester tab.

4. Press F9 to display the Select Processes to Load dialog.

5. Select Bank_XML and click Load Selected

6. Start a case of the Bank procedure and in the form that is generated, enter a
NAME and ID. Release the step.

7. The iProcess Web Services step sends the customer information to the bank
application and returns a balance. The balance is displayed in a form:

8. Use the Case Administrator to view the audit trail. This should show the Web
Services call-out and the messages associated with the processing of the case:

9. You can also view the console log in BusinessWorks to see that the username
entered in the iProcess form is displayed:

2007 Jul 02 15:24:08:769 GMT +1 BW.WebServices_Examples Info
[BW-Core] BWENGINE-300002 Engine WebServices_Examples started

2007 Jul 02 15:24:48:628 GMT +1 BW.WebServices_Examples User
[BW-User] - Job-39000 [DEMO/Bank_XML.process/Log]: username: T.
Smith
 TIBCO iProcess Web Services Plug-in: User’s Guide

100 | Chapter 5 Examples

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 101

B
ac

k
to

 L
ib

ra
ry
Chapter 6 Web Services Configuration and
Administration

This chapter describes aspects of the TIBCO iProcess Web Services Plug-in that
can be configured or changed.

Topics

• Web Services Configuration File, page 102

• Using the Password Manager, page 108

• Setting Up and Managing Security Profiles, page 111

• Administering URL Aliases and Security Profiles, page 121

• Configuring JMS Provider Aliases, page 125

• Setting Logging Properties, page 126

• Monitoring the System, page 127

• Configuring UDDI Repositories, page 129

• Manually Configuring the Location of the Java Executable, page 131

• Manually Configuring the HTTP Proxy Server Settings, page 132
 TIBCO iProcess Web Services Plug-in: User’s Guide

102 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Web Services Configuration File

The Web Services configuration file (wsconfig.properties) allows you to perform
most of the ongoing administration and configuration tasks related to the iProcess
Web Services Plug-in. It is located in:

webservices_server_location\jetty-6.1.25\tibco

Keystore Location
The keystore location is usually specified during the installation; however if you
need to change it, you can do so by modifying the following line:

ServerEngineConfigMBean.KeyStore=

JDBC Connection details
The JDBC connection details are specified during the installation. If you need to,
you can change the settings using the following section of the configuration file:

JDBC Connection URI
DBPoolMBean.ConnectionURI=jdbc:oracle:thin:@host:port:service;Sele
ctMethod=cursor

JDBC Driver Name
DBPoolMBean.DriverName=oracle.jdbc.driver.OracleDriver

JDBC Jar File locations
DBPoolMBean.CustomPath=;C:/Microsoft SQL Server JDBC Driver
3.0/sqljdbc_3.0/enu/sqljdbc4.jar

JDBC User to Connect As
DBPoolMBean.UserName=swpro

JDBC Password for user
NOTE: This entry is encrypted and should only be modified using
the PasswordManager
DBPoolMBean.Password=password

The username used when creating Audit Messages

Take care when editing this file as it is possible to render the iProcess Web
Services Plug-in inoperable by incorrectly editing certain settings. TIBCO
recommends making a backup copy of the configuration file as a safeguard.

Although there is an entry in the configuration file for KeyStorePassword, do not
modify it directly. Use the password manager to change this password (see Using
the Password Manager on page 108).
TIBCO iProcess Web Services Plug-in: User’s Guide

Web Services Configuration File | 103

B
ac

k
to

 L
ib

ra
ry
DelayedReleaseHandler.userName=swadmin

The message used when creating Audit Messages
DelayedReleaseHandler.auditMessage=Web Services

The Database Type
DelayedReleaseHandler.dbType=SQLServer

The schema owner for the iPE Database
DelayedReleaseHandler.dbUserName=swproX15

Date Formats
You can modify the format and separators of the date format used for
communicating with the iProcess Engine by using the following lines:

eaiws.iPEdateFormat dd/mm/yyyy
eaiws.iPEdateSeparator /
eaiws.iPEtimeFormat hh:mm
eaiws.iPEtimeSeparator \:

JMS Message Timeout
Previously, XML over JMS messages did not timeout. This sometimes led to a
situation where if the remote system was not running, or there was an error, a
message remained waiting indefinitely for a response on the replyTo queue.

New timeout functionality has been introduced that can be controlled by setting
the following four parameters (all times are in milliseconds):

• ServerEngineConfigMBean.ResponseTimeout (Default: 20000) - This
timeout controls how long a Web Service response should be awaited before
dropping into one of the scenarios below.

• ServerEngineConfigMBean.ConsumeTimeout (Default: 500) - In a scenario
where a JMS Message fails to respond in a timely fashion (before the
responseTimeout), the outgoing message is reconsumed in an attempt to keep
iProcess Engine and the remote system in sync about which calls have been
made. This timeout controls how long the TIBCO iProcess Web Services
Plug-in waits to reconsume this message.

• ServerEngineConfigMBean.DeadlockTimeout (Default: 240000) - In a
scenario where the outgoing message could not be reconsumed, it is assumed

The format that you specify should be consistent with the format specified in the
SWDIR\etc\staffpms file. For more information, see the TIBCO iProcess Engine
Administrator’s Guide.
 TIBCO iProcess Web Services Plug-in: User’s Guide

104 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
that the remote system is working on the call but is very slow. This timeout
controls how long the response is awaited in this scenario.

• ServerEngineConfigMBean.ExpiryTimeout (Default: 0, off) - As an
additional fail-safe, the outgoing JMS Message can have an expiry set on it,
which will cause it to be removed from the queue if it is not processed by that
time.

SOAP/HTTP Timeout
This property allows you to specify the timeout period for a Web Services call.
The default is 30000 milliseconds, and the provided value must be a multiple of
100:

Axis.SOAPTimeout=30000

AXIS Concurrent Connections

This property allows you to specify the number of concurrent HTTP connections
that Axis can make. Normally, this setting should not need to be changed.
However, in a slow environment it may be necessary to increase this. The default
is:

Axis.maxConcurrentConnections=64

Asynchronous With Reply Timeout
If the response to a callout made with the Asynchronous with Reply invocation
style exceeds the timeout value, the call is converted to Automatic Delayed
Release. The timeout value after which this conversion occurs is set with the
following line in the configuration file:

WSDocumentController.timeout=30000

This functionality requires that the server running Jetty and the JMS Provider
have synchronized clocks. Ignoring this requirement can cause undesirable
behavior.

Do not modify this setting unless you have consulted with TIBCO Support.
TIBCO iProcess Web Services Plug-in: User’s Guide

Web Services Configuration File | 105

B
ac

k
to

 L
ib

ra
ry
Field Cache Timeout
The following property controls how long items are allowed to remain in the Field
Cache before being purged as old (dirty) items. The default value is 600
milliseconds and any provided value should be longer than you expect any
transactions to last, including potential Jetty restarts.

FieldCache.DirtyItemTimeout=600

Security Profile Tokenization
This section controls how security profile tokenization is specified. By specifying
a token in any field in the Security Profile Administrator, you can include static
data in your SOAP header to outbound web services at runtime. You could
include one or more iProcess fields in a token (for example,
%%_SW_CASEDESC_%%). By default, security profile tokenization is enabled.
To disable, modify the following property as shown below:
SecurityProfileDetails.disableTokenization=false

The format of the token is set with the following lines in the configuration file, but
you can change the format of them if you wish:

SecurityProfileDetails.startToken=%%_
SecurityProfileDetails.endToken=_%%

The final property in this section defines a delayed release id token.

SecurityProfileDetails.delayedReleaseIdToken=SW_DELAYED_RELEASE_ID

This means if you inserted the following token %%_SW_DELAYED_RELEASE_ID_%%
in a field in the Security Profile Administrator, the delayed release id would be
passed in the SOAP header to the outbound web services at runtime.

Error Handling for Security Profile Tokenization

The Error Handling Configuration section controls how errors are handled when
defining security profile tokens. There are two paremeters in this section:

• ErrorHandling.continueOnTokenFieldNotFound=false This parameter
allows you to specify whether a web service call should abort if a field token

The following should not be used in a security profile token:

• $

• *

• Anything that can be used as a regular expression.

• A character that is already being used in the header should not be used as a
token.
 TIBCO iProcess Web Services Plug-in: User’s Guide

106 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
used in a Security Profile/Custom Header has not been found. By default this
is set to false.

• ErrorHandling.continueOnsecurityProfileNotFound=true This
parameter allows you to specify whether web service should continue or
abort if the specified security profile cannot be found. By default, this is set to
true.

Configuring Ports for Web Services
There are several ports that must be configured for various features of the
iProcess Web Services Plug-in. If the configuration of these ports changes from
that specified during the installation, you can modify the configuration file as
described in this section.

• RMIConnector.port=10010 - The Security Profile Administrator and
URLAliasManager (iProcess Web Services Client Plug-in) listen on this port.

• SocketProxyMBean.doc0=5555|com.staffware.integration.socketproxy.library.
handlers.WSDocumentController - This string is used to configure the
connection from the Web Services Outbound Engine to the iProcess Engine
Plug-in. The number between the equals sign (=) and the (|) symbol specifies
the port used for the connection (in this example, 5555).

• The following information is used by the Security Profile Administrator to
connect to the Security Profile Administrator service. With the exception of
high availability environments, the port setting is typically the same as that
for RMIConnector.port.

SecurityProfileManager.host=localhost
SecurityProfileManager.port=10010

Configuring Encoding
The following parameter is used to define the Java-compliant encoding scheme
used when communicating with the iProcess Engine:

WSDocumentHandler.Encoding=8859_1
TIBCO iProcess Web Services Plug-in: User’s Guide

Web Services Configuration File | 107

B
ac

k
to

 L
ib

ra
ry
Configuring Pooling

FrameworkProxy.PooledQueueBrowser.maxActiveInPool=10
FrameworkProxy.PooledQueueBrowser.timeBetweenEvictions=100
FrameworkProxy.PooledQueueBrowser.maxIncrementOfPool=2
FrameworkProxy.PooledQueueBrowser.sleepInterval=1000
FrameworkProxy.PooledQueueBrowser.pooledWorkerClassName=com.staffw
are.integration.frameworkproxy.library.FrameworkProxy
FrameworkProxy.PooledQueueBrowser.aliasID=SWOutbound
FrameworkProxy.QueueReader.queueName=SWOutbound
FrameworkProxy.QueueReader.queueBlockInterval=100

DelayedReleaseHandler.PooledQueueBrowser.maxActiveInPool=10
DelayedReleaseHandler.PooledQueueBrowser.timeBetweenEvictions=100
DelayedReleaseHandler.PooledQueueBrowser.maxIncrementOfPool=2
DelayedReleaseHandler.PooledQueueBrowser.sleepInterval=1000
DelayedReleaseHandler.PooledQueueBrowser.pooledWorkerClassName=com
.staffware.integration.delayedrelease.library.handler.DelayedRelea
seHandler
DelayedReleaseHandler.PooledQueueBrowser.aliasID=SWDelayedRelease
DelayedReleaseHandler.QueueReader.queueName=SWDelayedRelease
DelayedReleaseHandler.QueueReader.queueBlockInterval=100

Do not modify the pooling settings unless you have consulted with TIBCO
Support.
 TIBCO iProcess Web Services Plug-in: User’s Guide

108 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Using the Password Manager

The iProcess Web Services Plug-in provides a Password Manager that allows you
to change and manage the various passwords required to use the client and server
plug-ins such as the keystore password, JDBC password, and so on.

To start the Password Manager:

• Server Plug-in - Run the JETTY_HOME\passwordmanager script (on
Windows, passwordmanager.cmd, on UNIX, passwordmanager.sh).

• Client Plug-in - Run the
webservices_client_location\eai_websvcs\passwordmanager.cmd script.

Running the Password Manager from the client allows you to change passwords
for properties and files that pertain to the iProcess Web Services Client Plug-in.
Similarly different files and properties are available when running the Password
Manager on the server.
TIBCO iProcess Web Services Plug-in: User’s Guide

Using the Password Manager | 109

B
ac

k
to

 L
ib

ra
ry
• The main dialog of the Password Manager looks like this:

To change a password, do the following:

1. Select a configuration file from the File drop-down list. The contents of the file
are displayed in the main area of the dialog.

2. Select a Property from those available for the file you selected. The following
table shows the files and properties available for the server.

File Property Purpose

wsconfig.properties

(Server)

DBPoolMBean.Password Specifies the JDBC
password for the user
that connects to the
iProcess Engine
database.
 TIBCO iProcess Web Services Plug-in: User’s Guide

110 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
3. For the selected property, enter a new password and confirm the password in
the fields provided.

4. Click Save.

5. When you have finished changing and saving passwords, click Exit.

6. Restart Jetty.

ServerEngineConfigMBean
.KeyStorePassword

Specifies the password
of the keystore used
for web services
security.

jetty-ssl.xml

(Server)

password Specifies the keystore
password used for
configuring SSL
security with Jetty.

trustPassword Specifies the truststore
password used for
configuring SSL
security with Jetty.

alias.xml

(Server)

jmsprovider Allows you to change
the JNDI password for
each jmsprovider
configured on your
system.

 truststore.properties

(Client)

javax.net.ssl.trustStorePass
word

Allows you to change
the password of the
truststore.

File Property Purpose

You must click Save after entering the new password. If you change the property,
select a different file, or click Exit without clicking Save, the password change will
be lost.
TIBCO iProcess Web Services Plug-in: User’s Guide

Setting Up and Managing Security Profiles | 111

B
ac

k
to

 L
ib

ra
ry
Setting Up and Managing Security Profiles

As mentioned in previous sections, the Security Profile Administrator allows you
to create and manage the SOAP security profiles that you want to use when your
Web Services steps are invoked. This section describes how to create and manage
these profiles.

Starting the Security Profile Administrator
Start the Security Profile Administrator by running the
JETTY_HOME\securitymanager script (on Windows, securitymanager.cmd, on
UNIX, securitymanager.sh).

• You must start the Jetty server before you can run the Security Profile
Administrator.

• Custom headers are not applicable for inbound components of outbound
security profiles.
 TIBCO iProcess Web Services Plug-in: User’s Guide

112 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
The main dialog of the Security Profile Administrator for Outflow security looks
like this:
TIBCO iProcess Web Services Plug-in: User’s Guide

Setting Up and Managing Security Profiles | 113

B
ac

k
to

 L
ib

ra
ry
Clicking the Inflow tab displays the following options:

Creating a New Profile
Create a new security profile as follows:

1. Start the Security Profile Administrator by running the
JETTY_HOME\securitymanager script.
 TIBCO iProcess Web Services Plug-in: User’s Guide

114 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
2. Enter the security options as follows. Note that for each profile you can
specify security options for Outflow security and Inflow security. The profile
for iProcess Engine Inbound Web Services is called Inbound. (The Inbound
security profile is unique from other profiles because it is used to determine
how security is provided for the web services that the iProcess Engine
provides i.e. case start. The Inbound security profile is used when Jetty starts
to determine the security. This is different from how the outbound profiles are
used. See Understanding iProcess Web Services Plug-in Security on page 27
for more information). Additional options for Outflow security are noted.

Option You specify... Effect

Use WS Policy File File name of a XML policy file that specifies the
web services security options that you want to
implement. (see Combining Security Types on
page 39).

Click Import to
browse for an existing
WS Policy file to use
for SOAP security. In
the WS Policy Editor,
select Actions >
Merge to add the
Rampart sections (for
more information, see
Specifying a WS
Policy File on
page 118).

Click Edit to add
security assertions to
an existing policy file.
TIBCO iProcess Web Services Plug-in: User’s Guide

Setting Up and Managing Security Profiles | 115

B
ac

k
to

 L
ib

ra
ry
Basic Authentication

(for an overview, see
Username - Password
Token (Basic
Authentication) on
page 34)

Outflow security

...you can specify the Username, Password, and
Password Type, either Text or Digest.

Inflow security

...the Username, Password.

Outflow: The
specified username -
password token is
inserted into the
SOAP message. For
Outflow security you
can specify whether
the password that is
inserted into the
SOAP message is in
text format or a
password digest.
Password digests are
recommended
because of their
inherent security
advantage.

Inflow: The recipient
of a message must
verify the
username/password
in the received
message against the
username/password
in the Inflow security
profile to establish
that the message
comes from a trusted
partner.

Option You specify... Effect
 TIBCO iProcess Web Services Plug-in: User’s Guide

116 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Digital Signature

(for an overview, see
Digital Signatures and
Certificates on
page 35)

Outflow security

...the Signature key identifier associated with
the digital signature, as well as the Signature
user and Signature password that has been set
up for the signature. The Signature user must
match the Username specified for Basic
authentication.

If Signature Confirmation is selected, the Web
Service verifies the signature of the sender. This
means that the SOAP response message contains
a signature confirmation token. For example:

<wsse11:SignatureConfirmation
wsu:Id="SigConf"
Value="fNa57H35Xm/14dDK3wBJ1pkW6i4=" />

Advanced users can also choose to specify which
parts of the message to digitally sign (Signature
Parts). By default, the following is used for the
signature:

<signatureParts>
{}{http://schemas.xmlsoap.org/soap/envel
ope/}Body
</signatureParts>

You can also specify whether to sign just the
body or the body and headers, by selecting either
Sign body or Sign body and headers (these are
mutually exclusive options).

Inflow security

...the Signature key identifier (the method used
to encode the signature key in the SOAP header).

If Signature Confirmation is selected, the Web
Service verifies the signature of the sender. This
means that the SOAP response message contains
a signature confirmation token.

Outflow security

When the web service
step is invoked by the
specified user, the
associated digital
signature is inserted
in the message. The
receiver of the request
or response must then
verify the message
using the provided
public key.

For the Inbound
security profile, the
Signature
Confirmation
checkbox is only
applicable to the
outflow (response)
direction.

Inflow security

The alias is decoded
from the incoming
message. The
corresponding alias
must exist in the
keystore.

For security profiles
besides Inbound, the
Signature
Confirmation is only
applicable to the
inflow direction. This
means that the external
web service must be
configured to insert the
signature confirmation
token into its response
message.

Option You specify... Effect
TIBCO iProcess Web Services Plug-in: User’s Guide

Setting Up and Managing Security Profiles | 117

B
ac

k
to

 L
ib

ra
ry
3. Once you have specified the security options you want to implement, enter a
New Profile Name for the profile.

4. Click Create.

Encryption

(for an overview, see
Encryption - Ensuring
Privacy on page 37)

Outflow security

...the Encryption user associated with the
encryption key and the Encryption key
identifier (the method used to encrypt the alias).

Advanced users may wish to specify which parts
(Encryption Parts) of the message are to be
encrypted as well as the Key transport algorithm
and Symmetrical transport algorithm.By
default, the following is used for the encryption:

<encryptionParts>
{}{http://schemas.xmlsoap.org/soap/envel
ope/}Body
</encriptionParts>

Inflow security

...the Encryption key identifier (the method
used to encrypt the alias), as well as the
Encryption user and Encryption password that
have been set up for the encryption key.

Outflow security

When the web service
step is invoked by the
specified user, the
SOAP message body
(or the specified Part)
is encrypted. The
receiver of the request
or response must then
decrypt the message
using their private
key.

Inflow security

The alias is decoded
from the incoming
message. The
corresponding alias
and password must
exist in the keystore.
The encryption key is
then used to decrypt
the message.

Timestamp Select the checkbox. Inserts a timestamp in
the message that
indicates the creation
and expiration of the
message. The receiver
can then verify
whether the message
has expired.

Custom Headers ...custom security (not displayed for Inbound
profile or Inflow security)

Allows you to insert
any custom security
you have defined.

Option You specify... Effect
 TIBCO iProcess Web Services Plug-in: User’s Guide

118 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
The profile will now be available in the Selected profile drop-down list when
you define a Web Services step and use the Web Service Integrator wizard.

Specifying a WS Policy File
1. Start the Security Profile Administrator as described previously.

2. Specify the security options you want to implement for Inflow and Outflow.
For example, the following profile has Basic authentication selected for
Outflow security.

The single WS Policy file covers both Inflow and Outflow security; it is not
possible to have different WS Policy files for Inflow and Outflow security.
TIBCO iProcess Web Services Plug-in: User’s Guide

Setting Up and Managing Security Profiles | 119

B
ac

k
to

 L
ib

ra
ry
3. Click Import to locate the WS Policy file that you have created. The following
dialog is displayed.

The top half of the dialog displays the policy file that you imported. The
bottom half displays the Rampart policy that will be included (in this
example, Basic authentication for Outflow security).

4. Select Actions > Merge. The Rampart policy is merged with your WS Policy
file.

5. Click OK. In this example, the Rampart section of the WS Policy file contains
the Outflow username. This username, along with the password gets
transmitted to the server, which then validates the user/password
combination.
 TIBCO iProcess Web Services Plug-in: User’s Guide

120 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
For the response message (inflow), the SOAP message contains the server user
and password. The client's callback handler return a password that is
compared to the one received in the SOAP message. If the password match,
the response message is valid.

Copying a Profile
Copy an existing security profile as follows:

1. Select the security profile that you want to copy from the Selected profile
drop-down list. This populates security options with the settings defined in
the selected profile.

2. Enter the name of the new profile in the New profile name field.

3. Click Create.

Modifying a Profile
Modify an existing security profile as follows:

1. Select the security profile that you want to modify from the Selected profile
drop-down list. This populates security options with the settings defined in
the selected profile.

2. Modify the security options as necessary.

3. Click Save.

Disabling an Inbound Profile
Disable the inbound security profile as follows:

1. Select the Inbound security profile from the Selected profile drop-down list.
This populates security options with the settings defined for the inbound
security profile.

2. Deselect the security options for both inflow and outflow.

3. Click Save.

4. Restart Jetty.

It is not possible to delete the inbound security profile; however you can modify it
to have no effect as shown in this section.
TIBCO iProcess Web Services Plug-in: User’s Guide

Administering URL Aliases and Security Profiles | 121

B
ac

k
to

 L
ib

ra
ry
Administering URL Aliases and Security Profiles

This section describes the structure of the EAIWS_URL_ALIAS and
EAIWS_SECURITY_PROFILE tables and how to use the command line interface
to configure URL aliases and security profiles.

The EAIWS_URL_ALIAS Table
The iProcess Web Services Plug-in allows you to specify the WSDL location using
an alias rather than an explicit URL when creating a Web Services step. The
aliases, their corresponding URLs, and any associated security profiles are stored
in the database table EAIWS_URL_ALIAS, which has the following structure:

You can add and modify aliases when creating a Web Services step (see Specifying
a URL or Alias on page 51). This command line interface described in this
appendix also allows you to add or modify aliases in the EAIWS_URL_ALIAS
table.

Column Datatype Description

ID Integer(10) Unique identifier of the alias used
internally by the software.

Name Varchar(255) User-entered alias name.

URL Varchar(255) URL that corresponds to the alias.

security_profile Integer Refers to the ID column of the
EAIWS_SECURITY_PROFILE table
and indicates the default security
profile (if any) that is associated with
this URL alias.
 TIBCO iProcess Web Services Plug-in: User’s Guide

122 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
The EAIWS_SECURITY_PROFILE Table
This table specifies information about security profiles that are associated with a
URL alias at design time.

Using the Command Line Interface to URL Aliases
You can add, modify or delete rows in the EAIWS_URL_ALIAS table as
described in this section. On Windows, the command script is urladmin.cmd; on
Unix, urladmin.sh and it is located in webservices_server_location\jetty-6.1.25.

Listing the Current Aliases

To obtain a list of the current aliases, enter a command in the following format:

urladmin list_url

Adding an Alias

To add an alias, enter a command in the following format:

urladmin add_url alias url

where:

• alias is the name that you want to use to refer to the WSDL in a Web Services
step (rather than a URL).

• url is the location of the WSDL referred to by the alias.

Changing an Alias

To change the URL for an alias, enter a command in the following format:

urladmin chg_url alias url

Column Datatype Description

ID Integer Unique identifier of the security
profile used internally by the
software.

Alias Varchar(255) Contains the profile name of the
security profile (set using the
Security Profile Administrator).

Profile ntext Contains the encrypted security
profile.
TIBCO iProcess Web Services Plug-in: User’s Guide

Administering URL Aliases and Security Profiles | 123

B
ac

k
to

 L
ib

ra
ry
where:

• alias is name whose URL you want to modify.

• url is the new location of the WSDL referred to by the alias.

Deleting an Alias

To delete an alias, enter a command in the following format:

urladmin del_url alias

where alias is the name that you want to delete.

Exporting Aliases

To export aliases to a text file, enter a command in the following format:

urladmin exp_url [path]filename

where [path]filename is the location where you want to create the text file.

Importing Aliases

To import aliases from a text file, enter a command in the following format:

urladmin imp_url [path]filename

where [path]filename is the location of the text file that contains the aliases. Each
line of the text file must contain an alias name and URL separated by a space.

Using the Command Line Interface to Security Profiles
You can also manipulate security profiles using the urladmin script. On
Windows, the command script is urladmin.cmd; on Unix, urladmin.sh and it is
located in webservices_server_location\jetty-6.1.25.

Listing Security Profiles

To obtain a list of security profiles, enter a command in the following format:

urladmin list_security

The utility displays the ID, Alias, and the Profile (in encrypted form) of each
profile.

You cannot change the security profile associated with a URL using the command
line. You must do this Step Definer.
 TIBCO iProcess Web Services Plug-in: User’s Guide

124 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Exporting Security Profiles

To export security profiles to a text file, enter a command in the following format:

urladmin exp_security [path]filename

where [path]filename is the location where you want to create the text file.

Importing Security Profiles

To import security profiles from a text file, enter a command in the following
format:

urladmin imp_security [path]filename

where [path]filename is the location of the text file that contains the security
profiles. Each line of the text file must contain the alias of the profile and profile in
encrypted form, each separated by a space.
TIBCO iProcess Web Services Plug-in: User’s Guide

Configuring JMS Provider Aliases | 125

B
ac

k
to

 L
ib

ra
ry
Configuring JMS Provider Aliases

The jettydirectory/tibco/alias.xml file is where you specify the provider and
queue information that Jetty requires. You should modify this file if for example
you add a new JMS provider or create new JMS queues on your system. The
Provider information is specified in the following section:

<Providers>
 <Provider id="internal" url="tibjmsnaming://localhost:7222"
factory="com.tibco.tibjms.naming.TibjmsInitialContextFactory"
jar="c:/tibco/ems/5.1/lib/tibjms.jar" jndiuser="" jndipassword=""
extraenv="" />
 </Providers>

If you have multiple providers, they are set up as follows:

<Providers>
<Provider id="internal" url="tcp://localhost:7222"
factory="com.tibco.tibjms.naming.TibjmsInitialContextFactory"
jar="c:/tibco/ems/5.1/lib/tibjms.jar" jndiuser="admin"
jndipassword="" extraenv="" />

<Provider id="external_1" url="tcp://main:7222"
factory="com.tibco.tibjms.naming.TibjmsInitialContextFactory"
jar="c:/tibco/ems/5.1/lib/tibjms.jar" jndiuser="admin"
jndipassword="" extraenv="" />

<Provider id="external_2" url="tcp://backup:7222"
factory="com.tibco.tibjms.naming.TibjmsInitialContextFactory"
jar="c:/tibco/ems/5.1/lib/tibjms.jar" jndiuser="admin"
jndipassword="" extraenv="" />
</Providers>

If you add new JMS queues to the system, add entries to the following section:

<Destinations inbound="default" outbound="SWOutbound">
<Alias name="SWDelayedRelease" id="internal" topic="false"
topicorqueuename="queue.SWDelayedRelease"/>
<Alias name="SWFieldCache" id="internal" topic="false"
topicorqueuename="queue.SWFieldCache"/>
<Alias name="SWInbound" id="internal" topic="false"
topicorqueuename="queue.SWInbound"/>

.

.

.
<Alias name="SWTimeout" id="internal" topic="false"
topicorqueuename="queue.SWTimeout"/>
<Alias name="default" id="internal" topic="false"
topicorqueuename="queue.IPE"/>
<Alias name="XMLOUT1" id="external_1" topic="false"
topicorqueuename="queue.XMLOUT1"/>
<Alias name="XMLOUT2" id="external_2" topic="false"
topicorqueuename="queue.XMLOUT2"/>

</Destinations>
 TIBCO iProcess Web Services Plug-in: User’s Guide

126 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Setting Logging Properties

The following logs are captured by iProcess Web Services Plug-in:

• iProcess Web Services Plug-in Command Tool Logging Information.
Information from the iProcess Web Services Plug-in command tool is located
in webservices_server_location\jetty-6.1.25\tibco\log.txt

• Jetty Logging Information Jetty logging information is located in:
webservices_server_location\jetty-6.1.25\tibco\log.txt

If you are troubleshooting a problem, it can be useful to turn on extra debug
messages. To do this, modify the file log4j.properties (in the same directory as the
log file) and change the line:

log4j.rootLogger=warn, EAIJAVA

to

log4j.rootLogger=debug, EAIJAVA

For more information about Log4j, see
http://logging.apache.org/log4j/docs/index.html.
TIBCO iProcess Web Services Plug-in: User’s Guide

http://logging.apache.org/log4j/docs/index.html

Monitoring the System | 127

B
ac

k
to

 L
ib

ra
ry
Monitoring the System

During normal operation, you should monitor the following files and queues:

1. Monitor the sw_warn and sw_error files and the SWException and
SWPoison queues for any potential problems with Web Services transactions
or Jetty servers.

2. If you cannot determine the cause of the failure, check the SWPoison and
SWException queue for failed messages. Correct the problem and resend the
step using SWDIR\bin\swutil (see the chapter on "Work Items" in the TIBCO
iProcess swutil and swbatch Reference Guide).
 TIBCO iProcess Web Services Plug-in: User’s Guide

128 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Configuring High Availability

The file webservices_server_location\eaiwebsvcs\eaiws.cfg defines whether High
Availability is used, and what servers are included in the configuration.

For example:

ha_mode true

server0 localhost
port0 10000

server1 backup
port1 10000

Setting Values

ha_mode true, false

servern machine name

portn port number
TIBCO iProcess Web Services Plug-in: User’s Guide

Configuring UDDI Repositories | 129

B
ac

k
to

 L
ib

ra
ry
Configuring UDDI Repositories

The Web Service Integrator wizard enables you to select a UDDI repository from
which you can locate a WSDL file. This section describes how to:

• specify a default UDDI repository that is displayed in the Web Service
Integrator wizard.

• add a new UDDI repository so that it is available in the wizard.

UDDI configuration is achieved by editing the following XML file:

iProcessWorkspace\eai_websvcs\uddiconfig.xml

where iProcessWorkspace is the directory in which you have installed the TIBCO
iProcess Workspace.

Specifying a Default UDDI Repository
To specify a UDDI repository that is displayed by default on the UDDI dialog in
the Web Service Integrator wizard, you can edit the Default_Service_ID tag in
the uddiconfig.xml file.

Change Default_Service_ID to the value of the Service_ID tag relating to the
UDDI you want to display by default.

Adding a New UDDI Repository
To add a new UDDI repository to the list available in the Web Service Integrator
wizard, add a new section in the uddiconfig.xml file using the following template
as a guideline.

<Configuration>
<Service_ID>n</Service_ID>
<Name>New Respository Name</Name>
<Search_URL>http://search</Search_URL>
<Publish_URL>http://publish</Publish_URL>
</Configuration>

where:
 TIBCO iProcess Web Services Plug-in: User’s Guide

130 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
• n is a unique value in the uddiconfig.xml file. The Default_Service_ID tag
can cross-reference this number to make it the default UDDI repository
displayed in the wizard.

• new repository name is the name of the UDDI repository.

• http://search is the URL to search for Web Services

• http://publish is the URL of your published UDDI repository site.
TIBCO iProcess Web Services Plug-in: User’s Guide

Manually Configuring the Location of the Java Executable | 131

B
ac

k
to

 L
ib

ra
ry
Manually Configuring the Location of the Java Executable

You can manually configure (or edit an existing configuration) the location of the
Java executable. For example, if you upgrade your JRE, you must modify the
scripts related to web services as described in this section.

• If you are using UNIX, edit the webservices_server_location/jetty-6.1.25/jetty.sh
file in a suitable text editor.

• If you are using Windows, edit the
webservices_server_location\jetty-6.1.25\jetty.cmd file in a suitable text editor.

The following entry can be changed:

JAVA_HOME_BIN=pathname

where pathname is the path to your Java executable. For example, c:/program
files/java/jre1.6.1_25/jre/bin/.

You should also change the urladmin script. On Windows, the command script is
urladmin.cmd; on UNIX, urladmin.sh and it is located in
webservices_server_location\jetty-6.1.25.

The following entry can be changed:

JAVA_BIN=pathname

where pathname is the path to your java executable. For example, c:\program
files\java\jre1.6.1_25\jre\bin\.

You should also edit the Security Manager and Password Manager scripts in a
similar manner as these both refer to Java.
 TIBCO iProcess Web Services Plug-in: User’s Guide

132 | Chapter 6 Web Services Configuration and Administration

B
ac

k
to

 L
ib

ra
ry
Manually Configuring the HTTP Proxy Server Settings

You can manually configure (or edit an existing configuration) the HTTP Proxy
server details that are used for HTTP requests.

• If you are using UNIX, edit the webservices_server_location/jetty-6.1.25/jetty.sh
file in a suitable text editor.

• If you are using Windows, edit the
webservices_server_location\jetty-6.1.25\jetty.cmd file in a suitable text editor.

The following entries can be changed:

PROXY_HOST=-Dhttp.proxyHost=name-Dhttp.proxyPort=portnumber

where:

• name is the machine name of your Proxy server.

• portnumber is the port number for your Proxy server.
TIBCO iProcess Web Services Plug-in: User’s Guide

| 133

B
ac

k
to

 L
ib

ra
ry
Chapter 7 iProcess Web Service Operations

This chapter describes the iProcess Web Service operations that can be called by
third party applications using either Web Service SOAP requests or as XML text
using JMS.

Topics

• Accessing the iProcess Web Service Operations, page 134

• getNodeName, page 135

• doDelayedRelease, page 136

• doCaseStart, page 139

• doSuspend, page 140

• doGraftCount, page 141

• doGraft, page 142

• doSuspendSub, page 143

• doJumpTo, page 144

• doActivateSub, page 145

• doActivate, page 146

• doEvent, page 147
 TIBCO iProcess Web Services Plug-in: User’s Guide

134 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
Accessing the iProcess Web Service Operations

To access the operations described in this appendix, when you create your
iProcess Web Services step, specify the location of the WSDL as a URL:

http://hostname:port/axis2/services/WebiPE?wsdl

where:

• host is the name of the computer where you installed Jetty.

• port is the port number used to access the machine where you installed Jetty.

If you are using SSL, specify https instead of http in the URL.

Examples

http://merlin:8090/axis2/services/WebiPE?wsdl
https://merlin:8443/axis2/services/WebiPE?wsdl

Access to iProcess Web Service operations is either via Axis 1 or Axis2. This was
configured during installation. If you enabled Axis2 support and need to restore
Axis 1 support, see Monitoring the System on page 127. If you use Axis 1, replace
axis2 with axis in the previous example URLs.
TIBCO iProcess Web Services Plug-in: User’s Guide

getNodeName | 135

B
ac

k
to

 L
ib

ra
ry
getNodeName

This operation can be used to check that the correct nodename is being used for
the operations you want to do. If you are not receiving a nodename, it can mean
there are other problems such as a database connection problem.

Input None.

Output getNodeNameResponse

Outputs the result of the getNodeName operation.

Parameter Description

result Indicates the result of the getNodeName
operation, which can either be:

• a text string containing the nodename or,

• an empty string if an error occurs such as
a database connection problem.
 TIBCO iProcess Web Services Plug-in: User’s Guide

136 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
doDelayedRelease

This operation completes a delayed release request.

Input

Parameter Description

delayedReleaseId The unique delayed release identifier.

auditDesc An audit trail description for this delayed release
operation.
TIBCO iProcess Web Services Plug-in: User’s Guide

doDelayedRelease | 137

B
ac

k
to

 L
ib

ra
ry
packData Define the iProcess field names and their values to
send with the request. These are organized as one or
more pairs. A field name/value pair MUST always
start with one of the following delimiter characters ($,
^, !). However, choose a character that does not
conflict with any fieldname/values that follow it. You
must not use currency symbols or characters that form
part of XML such as < or >.

You can also use multi-character delimiter strings.
This means that two of the same characters introduce
the delimiter and the end is marked by the same
matching pair, for example, $$demo$$.

You can also use the default delimiter specified at
installation as a delimiter string. This means you can
have any combination of characters. For example, the
first two characters need not be the same.

The examples below show that a delimiter is also
required between the fieldname and its value. An
example of supplying a single field name and value
would be:

$SW_QPARAM4$myvalue1$

To set multiple fields in one go, enter the
fieldname/value pairs as follows:

$SW_QPARAM4$example$SW_QPARAM2$hello$
Douglas$Adams$

To set iProcess array fields, use the following format:

^MY_ARR[42]^ProductList^

To set the date, use the system date format. By default,
this is "DD/MM/YYYY". For example, 03/04/2010.

packMemo Defines memos to send in the request. They are
treated as strings and are passed just like any other
packData. For example:

!MEMO!abcdefghijklmnopqrstuvwxyz!

The same delimiters are used as for packData.

Parameter Description
 TIBCO iProcess Web Services Plug-in: User’s Guide

138 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
Output doDelayedReleaseResponse

Call this operation to get the response back from the doDelayedRelease operation.

Parameter Description

result Indicates the result of the delayed release request
performed by the doDelayedRelease operation. It
returns either:

• 0 for success

• -1 if an error occurs.
TIBCO iProcess Web Services Plug-in: User’s Guide

doCaseStart | 139

B
ac

k
to

 L
ib

ra
ry
doCaseStart

This operation enables you to start a case of a procedure on the iProcess system.

Input

Output doCaseStartResponse

Get a response back from your case start operation performed by the doCaseStart
operation.

Parameter Description

procName The iProcess procedure name e.g. order.

caseDesc The case description e.g. order hire car.

Note: The case description must be 24
characters or less. If the case description is
more than 24 characters long, then the case
start fails.

startStep Defines the step to start the case at.

packData Refer to the packData description in doDelayed
Release for more information.

packMemo Defines memos to send in the request. They are
treated as strings and are passed just like any
other packData. For example:

!MEMO!abcdefghijklmnopqrstuvwxyz!

The same delimiters are used as for packData.

Parameter Description

result Indicates the result of the case start
request performed by the doCaseStart
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
 TIBCO iProcess Web Services Plug-in: User’s Guide

140 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
doSuspend

Perform a case suspend operation.

Input

Output doSuspendResponse

Get a response back from the doSuspend operation.

Parameter Description

procName Indicates the procedure name.

caseNum The case number of the procedure to be
suspended.

Parameter Description

result Indicates the result of the case suspend
request performed by the doSuspend
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
TIBCO iProcess Web Services Plug-in: User’s Guide

doGraftCount | 141

B
ac

k
to

 L
ib

ra
ry
doGraftCount

Enables the graft count to be set.

Input

Output doGraftCountResponse

Request a response back from the doGraftCount operation.

Parameter Description

procName Procedure name you want to graft to

graftStep Name of the step to graft the
sub-procedure to

caseNum Case number

graftId Unique identifier for this graft step
process

count Graft count value

Parameter Description

result Indicates the result of the doGraftCount
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
 TIBCO iProcess Web Services Plug-in: User’s Guide

142 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
doGraft

Perform the graft of the sub-procedure to your procedure.

Input

Output doGraftResponse

Request a response back from the doGraft operation.

Parameter Description

procname Indicates the name of the procedure you want
to graft the sub-procedure to.

graftStep Name of the step to be grafted

caseNum Case number that will be grafted.

graftId Unique graft step identifier

subProcName Name of the sub-procedure that will be
grafted to your procedure.

packData Refer to packData description in doCaseStart
for more information.

packMemo Defines memos to send in the request. They
are treated as strings and are passed just like
any other packData. For example:

!MEMO!abcdefghijklmnopqrstuvwxyz!

The same delimiters are used as for packData.

Parameter Description

result Indicates the result of the doGraft operation.
It returns either:

• a positive integer, or

• -1 if an error occurs.
TIBCO iProcess Web Services Plug-in: User’s Guide

doSuspendSub | 143

B
ac

k
to

 L
ib

ra
ry
doSuspendSub

Suspend an iProcess sub-procedure or multiple sub-procedures that are the result
of graft steps.

Input

Output doSuspendSubResponse

Request a response back from the doSuspendSub operation.

Parameter Description

procName Parent procedure name you are working
with.

caseNum Number of the main case whose
sub-cases you want to suspend.

subProcName Name of the sub-procedure to call.

subProcStep Name of the step in the parent procedure
that calls the sub-procedure.

Parameter Description

result Indicates the result of the doSuspendSub
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
 TIBCO iProcess Web Services Plug-in: User’s Guide

144 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
doJumpTo

Perform a jump to operation from an active iProcess case to the specified step.

Input

Output doJumpToResponse

Request a response back from the doJumpTooperation.

Parameter Description

procName Procedure name you are working with.

stepName Name of the step in the sub-procedure
you want to jump to.

caseNum Number of the sub-procedure case you
want to jump to.

reason Descriptive comment that is useful to see
why the jump to operation was
performed.

Parameter Description

result Indicates the result of the doJumpTo
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
TIBCO iProcess Web Services Plug-in: User’s Guide

doActivateSub | 145

B
ac

k
to

 L
ib

ra
ry
doActivateSub

Restart a single sub-procedure (or multiple sub-procedures that are the result of
graft steps) that has been suspended by a doSuspendSub operation.

Input

Output doActivateSubResponse

Request a response back from the doActivateSub operation.

Parameter Description

procName Name of the parent procedure you are
working with.

caseNum Case number you want to activate.

subProcName Name of the sub-procedure.

subProcStep Name of the step in the parent procedure
that calls the sub-procedure.

Parameter Description

result Indicates the result of the doActivateSub
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
 TIBCO iProcess Web Services Plug-in: User’s Guide

146 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
doActivate

Restart a procedure that has been suspended by a doSuspend operation.

Input

Output doActivateResponse

Request a response back from the doActivate operation.

Parameter Description

procName Procedure name you are working with.

caseNum Case number you want to activate.

Parameter Description

result Indicates the result of the doActivate
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
TIBCO iProcess Web Services Plug-in: User’s Guide

doEvent | 147

B
ac

k
to

 L
ib

ra
ry
doEvent

Start a iProcess event step in a procedure.

Input

Output doEventResponse

Request a response back from the doEvent operation.

Parameter Description

procName Procedure name that contains the event
step.

caseNum Case number you want to start the event
step for.

stepName Event step name.

packData Refer to the packData description in
doDelayedRelease for more information.

packMemo Defines memos to send in the request.
They are treated as strings and are passed
just like any other packData. For
example:

!MEMO!abcdefghijklmnopqrstuvwxyz!

The same delimiters are used as for
packData.

Parameter Description

result Indicates the result of the doEvent
operation. It returns either:

• a positive integer, or

• -1 if an error occurs.
 TIBCO iProcess Web Services Plug-in: User’s Guide

148 | Chapter 7 iProcess Web Service Operations

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 149

B
ac

k
to

 L
ib

ra
ry
Appendix A Troubleshooting

This appendix describes problems you might encounter when using the iProcess
Web Services Plug-in and recommended courses of action to resolve them.

Topics

• Log Files, page 150

• Unable to Look Up Queue, page 151

• Step Fails to Release Due to Lack of Return Value, page 152

• EAI Plug-in Not Accessible, page 153
 TIBCO iProcess Web Services Plug-in: User’s Guide

150 | Appendix A Troubleshooting

B
ac

k
to

 L
ib

ra
ry
Log Files

Jetty logging information is located in:

webservices_server_location/jetty-6.1.25/tibco/log.txt

If you are troubleshooting a problem, it can be useful to turn on extra debug
messages. To do this, modify the file log4j.properties (in the same directory as the
log file) and change the line:

log4j.rootLogger=warn, EAIJAVA

to

log4j.rootLogger=debug, EAIJAVA
TIBCO iProcess Web Services Plug-in: User’s Guide

Unable to Look Up Queue | 151

B
ac

k
to

 L
ib

ra
ry
Unable to Look Up Queue

Problem New JMS alias (in alias.xml file) created without the corresponding objects in the
JMS provider configuration (queue and JNDI Name). When a case of the
procedure containing the Web Services step is run, an error is written to the Jetty
log file (see Log Files on page 150). For example:

2006-06-23 15:11:27,374 [DEBUG] [Thread-36] FieldCache - Looking up
queue: 'queue.SWFieldCache'
2006-06-23 15:11:27,374 [FATAL] [Thread-36] FieldCache - Unable to
lookup queue

What to do Create the correct queue and JNDI Name in your JMS configuration (in the
preceding example, queue.SWFieldCache).
 TIBCO iProcess Web Services Plug-in: User’s Guide

152 | Appendix A Troubleshooting

B
ac

k
to

 L
ib

ra
ry
Step Fails to Release Due to Lack of Return Value

Problem An EAI Web Services step calls a web service that should provide a return value,
but at runtime, the web service does not provide a return value. The EAI step
does not release and error messages similar to the following are written to the log
file:

org.xml.sax.SAXParseException: Element type "ns0:root" must be
followed by either attribute specifications, ">" or "/>".

What to do Contact the implementer of the web service to ensure that a return value is always
provided.
TIBCO iProcess Web Services Plug-in: User’s Guide

EAI Plug-in Not Accessible | 153

B
ac

k
to

 L
ib

ra
ry
EAI Plug-in Not Accessible

Problem When defining an EAI step, the iProcess Web Services Client Plug-in is not listed
in the EAI Type drop-down list.

What to do Make sure the iProcess Web Services Client Plug-in is located in the following
path:

swclient\eai_plugins\EAI_webservices

where swclient is the location of your iProcess Workspace. Refer to the TIBCO
iProcess Web Services Plug-in Installation Guide for more information about
installing the iProcess Web Services Client Plug-in.

If the plug-in still fails to load, make sure that the path to your jvm.dll is in your
system path. Refer to the TIBCO iProcess Web Services Client Plug-in Installation
Guide for more information.
 TIBCO iProcess Web Services Plug-in: User’s Guide

154 | Appendix A Troubleshooting

B
ac

k
to

 L
ib

ra
ry
Step Fails to Release Due to Missing iProcess Engine Field Data

Problem An EAI Web Services step calls a web service that specifys iProcess Engine field
data in the custom header of the security profile, but at runtime, the web service
does not provide the iProcess Engine field data. The EAI step does not release and
error messages similar to the following are written to the log file:

SecurityProfileTokenizer - Couldn't locate a field required for
substitution, couldn't find field: MYTOKEN

If you have the ErrorHandling.continueOnTokenFieldNotFound property set
to true, the following message is displayed:
tokens were not substituted into the security profile as they were
not found - but due to configuration settings, continuing anyway

If you have the ErrorHandling.continueOnTokenFieldNotFound property set
to False, the following message is displayed:
Some tokens were not substituted as they could not be found -
aborting this transaction

What to do Makes sure that the iProcess Engine field data specified in the custom header exist
in the process.
TIBCO iProcess Web Services Plug-in: User’s Guide

| 155

B
ac

k
to

 L
ib

ra
ry
Appendix B Data Type Mapping

This section describes the data type mapping conversion process that happens
when making calls from iProcess - see Data Type Mapping Conversion Process on
page 156.

Topics

• Data Type Mapping Conversion Process, page 156

• Using iProcess Date and Time Fields in Web Services, page 157
 TIBCO iProcess Web Services Plug-in: User’s Guide

156 | Appendix B Data Type Mapping

B
ac

k
to

 L
ib

ra
ry
Data Type Mapping Conversion Process

When the iProcess Engine makes a call to an external application, iProcess fields
are sent as text strings and these need to be converted to XML data types. The
conversion process happens as follows:

iProcess data being passed to the external application is converted from a text
string to a Java Data Type and then to an XML Data type by Jetty and passed to
the external application. This conversion process depends on the XML schema
data type that is required.

Similarly, data being returned from the external application starts as XML and is
converted to Java and then to a text string for the iProcess Engine to use.

For a full list of XML Schema data types supported, as well as their corresponding
Java datatypes, refer to the following web site:

http://ws.apache.org/axis/java/user-guide.html#XMLJavaDataMappingInAxis

Special consideration is needed for iProcess Date and Time fields (see Using
iProcess Date and Time Fields in Web Services on page 157).

Any datatype that is not currently listed in the XML Schema table is not
supported.
TIBCO iProcess Web Services Plug-in: User’s Guide

http://ws.apache.org/axis/java/user-guide.html#XMLJavaDataMappingInAxis

Using iProcess Date and Time Fields in Web Services | 157

B
ac

k
to

 L
ib

ra
ry
Using iProcess Date and Time Fields in Web Services

iProcess Date and Time fields are text strings that cannot easily be converted to
Java data types because the Java data type requires that a date and time is
concatenated as one field.

If you need to use date and time fields in your external application calls, you can
do the following:

1. Create a third field in iProcess and use a iProcess script to merge the date and
time fields and populate the third field with the results. Therefore you have a
field containing the date and time similar to the Java calendar data type.

2. This field can then be converted to a Java calendar data type (by Jetty).

3. Jetty then converts the Java data type into the required XML data type.

If a date/time is a required result from the external application, you will need to
extract the data from the external application into two separate Date and Time
fields using a script.

• If the mapper is displayed when you create your step, you can use Xpath
expressions to concatenate two fields (for example, yyyy-mm-ddThh:mm).

• You can modify the date format as described in Date Formats on page 103.
 TIBCO iProcess Web Services Plug-in: User’s Guide

158 | Appendix B Data Type Mapping

B
ac

k
to

 L
ib

ra
ry
TIBCO iProcess Web Services Plug-in: User’s Guide

| 159

B
ac

k
to

 L
ib

ra
ry
Index

C

Case suspend 45
Creating an EAI Web Service step 43
customer support ix

D

data types
iProcess and XML 156
Java and XML 156

Date field 157
Deadlines, setting for an EAI Web Service step 45
Defining

basic EAI step information 45
Web Service call details 46

Defining EAI Web Service step deadlines 45
Document style message 6

E

EAI step
prerequisites 5

EAIWS_SECURITY_PROFILE database table 121
EAIWS_URL_ALIAS database table 121
Editing an EAI Web Service step 67

H

High availability configuration 20
 TIBCO iProcess Web Services Plug-in: User’s Guide

160 | Index

B
ac

k
to

 L
ib

ra
ry
I

Ignore case suspend 45
iProcess

mapping Date and Time fields 157
Web Service operations 133

iProcess field
exporting 63

J

Jetty
log file 150

L

log file
for Jetty 150

M

Message handling
in high availability configuration 23

P

Prerequisites for using EAI Web Services steps 5

R

Remote Procedure Call (RPC) style message 6
TIBCO iProcess Web Services Plug-in: User’s Guide

Index | 161

B
ac

k
to

 L
ib

ra
ry
S

support, contacting ix

T

technical support ix
Time field 157

U

UDDI repository
adding 129
default 129

URL alias
configuring 121

Using the Web Service Integrator wizard 46

W

Web Services
call details, defining 46
call styles 6
step, editing 67

Web Services Plug-in
deployment 22

X

XML mapper 56
XSLT file

for input 59
for output 61
 TIBCO iProcess Web Services Plug-in: User’s Guide

	TIBCO iProcess® Web Services Plug-in User's Guide
	Contents
	Preface
	How to Use This Guide
	Target Audience
	Changes From the Previous Issue
	Using Security Profiles to Send iProcess Field Data

	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation

	Documentation Conventions

	Chapter 1 Introduction to the iProcess Web Services Plug-in
	What is the iProcess Web Services Plug-in?
	Prerequisites for Using the iProcess Web Services Plug-in
	Deciding Which Data Transport Mechanism to Use

	Using the SOAP/HTTP Data Transport Mechanism
	Prerequisites for Using SOAP/HTTP
	Web Service Call Styles

	Using the XML/JMS Data Transport Mechanism
	Prerequisites for Using XML/JMS

	Creating Secure Web Service Operations

	Chapter 2 Understanding the iProcess Web Services Plug-in Architecture
	Overview
	Understanding Inbound Calls Using SOAP/HTTP
	Understanding Outbound Calls Using SOAP/HTTP
	Understanding Inbound Calls Using XML/JMS
	Understanding Outbound Calls Using XML/JMS
	Configuring a High Availability iProcess Web Services Plug-in
	About iProcess Web Services Plug-in Deployment
	High Availability Deployment
	High Availability Message Handling

	URL Alias Management

	Chapter 3 Understanding iProcess Web Services Plug-in Security
	Overview
	About the Security Profile Administrator
	Types of Security
	Transport Layer Security (SSL)
	SOAP Authentication
	Digital Signatures and Certificates
	Timestamps
	Encryption - Ensuring Privacy
	Securing iProcess Engine Inbound Web Services

	Combining Security Types
	Using WS Policy Files
	Using the Security Manager

	Using Custom Headers
	Example of a Custom Header

	Using Security Profiles to Send iProcess Field Data

	Chapter 4 Creating a Web Services Step
	Overview
	Defining Basic Web Services Step Information
	Defining the Call to the External Application
	Select the Data Transport Mechanism and Invocation Style
	Select the WSDL Source
	Select Web Service Operation
	Use the XML Mapper to Define the Input/Output Mappings (Optional)
	Select XSLT Files for Input of Data
	Select XSLT Files for Output of Data (Optional)
	Mark iProcess Fields for Export
	Map iProcess Fields to Web Service Fields
	Map Web Service Fields to iProcess Fields

	Editing an EAI Web Service Step
	Deleting a Withdraw Action

	Chapter 5 Examples
	Overview
	About Integrating the iProcess Engine with Business Works
	Pre-requisite Tasks
	Task 1: Configure TIBCO EMS
	Task 2: Import the BusinessWorks Project
	Task 3: Review the Schema
	Task 4: Review the HTTP and JMS Connections
	Task 5: Import the iProcess Procedures
	Task 6: Import the Example Security Profiles

	Creating Working Examples
	Example 1- Calling an Inbound Web Service Operation Using SOAP/HTTP
	Example 2- Calling an Inbound Web Service Operation Using SOAP/HTTP and Basic Authentication
	Example 3- Calling an Inbound Web Service Operation Using XML Over JMS
	Example 4- Calling an Outbound Web Service using SOAP/HTTP
	Example 5- Calling an Outbound Web Service using XML/JMS

	Chapter 6 Web Services Configuration and Administration
	Web Services Configuration File
	Keystore Location
	JDBC Connection details
	Date Formats
	JMS Message Timeout
	SOAP/HTTP Timeout
	AXIS Concurrent Connections
	Asynchronous With Reply Timeout
	Field Cache Timeout
	Security Profile Tokenization
	Configuring Ports for Web Services
	Configuring Encoding
	Configuring Pooling

	Using the Password Manager
	Setting Up and Managing Security Profiles
	Starting the Security Profile Administrator
	Creating a New Profile
	Specifying a WS Policy File
	Copying a Profile
	Modifying a Profile
	Disabling an Inbound Profile

	Administering URL Aliases and Security Profiles
	The EAIWS_URL_ALIAS Table
	The EAIWS_SECURITY_PROFILE Table
	Using the Command Line Interface to URL Aliases
	Using the Command Line Interface to Security Profiles

	Configuring JMS Provider Aliases
	Setting Logging Properties
	Monitoring the System
	Configuring High Availability
	Configuring UDDI Repositories
	Specifying a Default UDDI Repository
	Adding a New UDDI Repository

	Manually Configuring the Location of the Java Executable
	Manually Configuring the HTTP Proxy Server Settings

	Chapter 7 iProcess Web Service Operations
	Accessing the iProcess Web Service Operations
	getNodeName
	doDelayedRelease
	doCaseStart
	doSuspend
	doGraftCount
	doGraft
	doSuspendSub
	doJumpTo
	doActivateSub
	doActivate
	doEvent

	Appendix A Troubleshooting
	Log Files
	Unable to Look Up Queue
	Step Fails to Release Due to Lack of Return Value
	EAI Plug-in Not Accessible
	Step Fails to Release Due to Missing iProcess Engine Field Data

	Appendix B Data Type Mapping
	Data Type Mapping Conversion Process
	Using iProcess Date and Time Fields in Web Services

	Index

