
TIBCO iProcess™ Objects
Programmer’s Guide

Version 10.4

May 2010

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE
LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT
FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE
AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR
INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN LICENSE.PDF) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE”
FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE
HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of TIBCO Software Inc.
TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, TIBCO ActiveMatrix BusinessWorks, and TIBCO
iProcess are either registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
EJB, Java EE, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their respective owners and are
mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL OPERATING SYSTEM
PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME TIME. SEE THE README.TXT FILE FOR THE
AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF
THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND
"READ ME" FILES.
Copyright © 2000-2010 TIBCO Software Inc. ALL RIGHTS RESERVED.

TIBCO Software Inc. Confidential Information

TIBCO iProcess Objects Programmer’s Guide iii

Table of Contents

Preface .xiv
Introduction .xiv
Product Name Changes .xiv
Knowledge Level . xv
Documentation Set . xv

Revision History .xvi

Chapter 1 — Introduction . 1
Introduction . 1
Procedures . 1
TIBCO iProcess Objects Configurations . 3
TIBCO iProcess Objects Components . 4

TIBCO Process / iProcess Engine . 5
Engine and Server Version Numbers . 5
SWDIR - The System Directory . 6
Engine Processes . 6

TIBCO iProcess Objects. 7
Client-to-Server Communications. 7

TIBCO iProcess Objects Server . 7
TIBCO iProcess Objects Director . 8

JVM Finalization and Garbage Collection . 8
Solution Strategy . 9

Implementation . 9
Configuration . 10

FinalizeMonitor Log Example . 13

Chapter 2 — The Object Model . 14
Introduction . 14

Chapter 3 — Naming Conventions . 17
Overview. 17

Differences between COM, Java, and C++ Naming Conventions . 17

Chapter 4 — Getting Started. 19
Creating the SWEnterprise Object . 19

Do I Create One or Many SWEnterprise Objects?. 19
When Should the SWEnterprise Object be Destructed? . 19

Accessing Nodes on the Network . 20
Automatic Discovery (UDP Broadcast) on a LAN Segment . 22

Configuring the UDP Broadcast . 23
Multiple Instances of the TIBCO iProcess Objects Server/Director. 23
What if a Known Node is not Answering the UDP Broadcast? . 24
Example — Auto-Discovery UDP Broadcast . 24

Directed UDP to a Specific Node. 25
Specifying the UDP Port Number. 25

TIBCO iProcess Objects Programmer’s Guide iv

Example — Directed UDP Broadcast . 26
Manually Create an SWNodeInfo Object. 26

Example — Connecting to a Specific Node . 27
Configuring the TIBCO iProcess Objects Server TCP Port. 27

Configuring the TCP Port on a Windows System. 28
Configuring the TCP Port on a UNIX System . 29

Can I use TIBCO iProcess Objects through a Firewall?. 30
Creating Enterprise Users . 31
Logging In. 32

Turning On/Off Password Checking . 33
Logging In When Using Multiple Instances of the TIBCO iProcess Objects Server 33
Login Failures. 33
Logging in Using a TIBCO iProcess Objects Director . 34

Logging Out . 34
How often should Users be Logged In and Out? . 34
When Should I use Anonymous Logins? . 35

Database Configuration. 36
Database Configuration Access . 36

Activity Publication . 37
Avtivity Publication Access . 37
Configuring Activity Publication . 37

Using the SWIPEConfig Object . 38
Configuration Example . 38

Chapter 5 — Procedures . 41
Introduction . 41
Procedure Version Control . 42

Accessing the Procedure Version Number . 42
Procedure Status . 43
Listing Versions of a Procedure . 44
Accessing a Specific Procedure Version . 44
Making Different Versions of Procedures . 44

Using the Tag Property to Make Specific Versions . 45
Procedure Version Details . 45
Procedure Audit Trails . 46

Sub-Procedures . 46
Sub-Procedure Call Steps . 47

Sub-Procedure Start Precedence . 47
Dynamic Sub-Procedure Call Steps . 48
Passing Data between a Main and Sub-Procedure . 50
Outstanding Sub-Procedures / Sub-Procedure Call Steps . 50

Sub-Procedure Proc Path. 51
Public Steps. 53

Chapter 6 — Working with Lists . 55
Types of Lists Available . 55

How to Determine the Type of Object in a List . 56
Lists are Filled Asynchronously . 57

How to Force Synchronous Behavior . 57
Determining the Number of Objects in a List or View . 58

TIBCO iProcess Objects Programmer’s Guide v

What about SWXLists? . 58
SWLists . 59

How SWLists are Created and Populated at the Client . 59
What Causes Raw Data to be Sent to the Client? . 60
What Causes Objects to be Created and Added to an SWList? . 61
Why do Item and ItemByKey return a Variant (COM only)? . 61

When Should I Rebuild an SWList? . 62
How to Rebuild Subordinate Lists . 62

SWLocLists. 63
How to Add Objects/Strings to Local Lists . 63
How to Access Objects/Strings on Local Lists . 64

Why do Item and ItemByKey return a Variant (COM only)? . 64
SWViews . 65

The “Default” Views of Cases and Work Items . 65
How SWViews are Created and Populated at the Client . 66

What Causes Raw Data to be Sent to the Client? . 66
What Causes Objects to be Created and Added to an SWView? . 68

When should a View be Rebuilt? . 69
How to Rebuild Subordinate Views . 70

When should I Create an Alternate View? . 70
Implied Sort on Alternate Views. 71

Determining the Total Number of Items Available . 71
How do I Limit the Number of Work Items/Cases in a View?. 72
How to Include Audit Data in a View . 72

SWXLists . 73
What types of Objects can be found in an XList? . 73
Accessing the “Default” XLists of Objects . 74
Creating Additional XLists. 75
How XLists are Created . 75

Controlling Resources . 77
Populating an XList of Work Items . 77
SWXLists of Work Items When Using Multiple Instances of the Server 79
Populating an XList of Cases . 79
Populating an XList of Groups, Users, or OSUsers . 80

Determining the Number of Items in an XList. 80
Work Item-Specific Counts. 81
Why do Item and ItemByKey return a Variant (COM only)? . 81

Working with Persisted XLists . 81
Using Multiple Instances of the Server or Director . 82
How to Include Audit Data in an XList . 83

CIList (Java Only). 83
Using an SWCIList. 83

Object Keys. 84

Chapter 7 — Fields & Markings . 86
What is a Staffware Field? . 86
What are Markings? . 88

Type Validation on Fields/Markings. 89
User-Created Markings. 90

Type Validation on User-Created Markings . 90
Case Data vs. Work Item Data . 91

TIBCO iProcess Objects Programmer’s Guide vi

Where do I find Case Data and Work Item Data? . 91
Setting Case Data . 92
Keeping/Releasing the Start Step . 92
Parallel Steps . 92

Case Data Queue Parameter Fields . 93
Accessing Memo Fields . 93
Accessing Attachments . 93
Accessing System Fields. 94
Array Fields. 94

Array Field Indexes . 95
Using Array Fields in Filter Expressions . 96

Date Format. 97

Chapter 8 — Filtering Work Items and Cases (without Filtering Enhancements) 98
Introduction . 99
How Filtering Differs Between Views and XLists . 100

Defining Filter Expressions on SWView . 100
Number of Work Items or Cases in the Filtered View . 100

Defining Filter Expressions on SWXList. 101
Number of Work Items or Cases in the Filtered XList . 102

Filtering/Sorting in an Efficient Manner. 103
Filtering/Sorting Work Items . 103

Getting Case Data . 105
Can the WIS Perform the Filter Operation? . 105
Can the WIS Perform the Sort Operation? . 107

Filtering/Sorting Cases . 107
Getting Case Data . 109
Filtering Cases on the TIBCO iProcess Objects Server . 109
Sorting Cases on the TIBCO iProcess Objects Server . 110
Getting Audit Data . 111

Filter Criteria Format . 111
System Fields used in Filtering . 113
Data Types Used in Filter Criteria . 116

Data Type Conversions. 116
Filtering on Case Data Fields . 117

Using Case Data Queue Parameter Fields . 117
Type of Data in CDQPs . 118

Using Work Queue Parameter Fields . 118
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 119

Using Regular Expressions . 120
Using Escape Characters in the Filter Expression . 121
Filtering on Empty Fields . 121
How to Specify Ranges of Values . 122

Specifying Multiple Ranges . 122
Closing/Purging Cases Based on Filter Criteria . 123
How to Persist (Default) Filter Criteria. 124

Chapter 9 — Filtering Work Items and Cases (with WIS WorkItem Filtering) 126
Introduction . 127
How Filtering Differs Between Views and XLists . 128

TIBCO iProcess Objects Programmer’s Guide vii

Defining Filter Expressions on SWView . 128
Number of Work Items or Cases in the Filtered View . 128

Defining Filter Expressions on SWXList. 129
Number or Work Items or Cases in the Filtered XList . 130

Filtering/Sorting in an Efficient Manner. 131
Filtering/Sorting Work Items . 131

Getting Case Data . 133
Work Items are Filtered by the WIS . 133
Can the WIS Perform the Sort Operation? . 134

Filtering/Sorting Cases . 134
Getting Case Data . 136
The TIBCO iProcess Objects Server Filters Cases . 136
The TIBCO iProcess Objects Server Sorts Cases . 137
Getting Audit Data . 138

Filter Criteria Format . 138
System Fields used in Filtering . 140
Data Types used in Filter Criteria . 142

Data Type Conversions. 143
Filtering Work Items on the WIS . 143
Filtering Cases on the TIBCO iProcess Objects Server . 143

Filtering on Case Data Fields . 144
Using Case Data Queue Parameter Fields . 144

CDQPs Contain Work Item Data . 145
Using Work Queue Parameter Fields . 145
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 146

Using Regular Expressions . 147
Regular Expressions with Work Item Filtering . 147

Using Escape Characters in the Filter Expression . 148
Filtering on Empty Fields . 149
How to Specify Ranges of Values . 149
Closing/Purging Cases Based on Filter Criteria . 150
How to Persist (Default) Filter Criteria. 150

Chapter 10 — Filtering Work Items and Cases (with WIS WorkItem & Database Case Filtering). 152
Introduction . 153
How Filtering Differs Between Views and XLists . 154

Defining Filter Expressions on SWView . 154
Number of Work Items or Cases in the Filtered View . 154

Defining Filter Expressions on SWXList. 155
Number or Work Items or Cases in the Filtered XList . 156

Length of Filter Expressions . 156
Large Filter Expressions May Require Larger Stack Size in UNIX . 157

Filtering/Sorting in an Efficient Manner. 157
Filtering/Sorting Work Items . 157

Getting Case Data . 159
Work Items are Filtered by the WIS . 159
Can the WIS Perform the Sort Operation? . 160

Filtering/Sorting Cases . 160
Getting Case Data . 162
The Database Filters Cases . 162
The Database Sorts Cases . 163

TIBCO iProcess Objects Programmer’s Guide viii

Getting Audit Data . 163
Filter Criteria Format . 163
System Fields used in Filtering . 165
Data Types used in Filter Criteria . 168

Data Type Conversions. 168
Filtering on Case Data Fields . 169

Using Case Data Queue Parameter Fields . 169
CDQPs Contain Work Item Data . 170

Using Work Queue Parameter Fields . 170
Work Queue Parameter Fields vs. Case Data Queue Parameter Fields . 171

Using Regular Expressions . 172
Regular Expressions with Work Item Filtering . 172
Regular Expressions with Case Filtering . 173

Using Escape Characters in the Filter Expression . 174
Filtering on Empty Fields . 174
How to Specify Ranges of Values . 175
Closing/Purging Cases Based on Filter Criteria . 176
How to Persist (Default) Filter Criteria. 176

Chapter 11 — Sorting Work Items and Cases . 178
Introduction . 178
How Sorting Differs Between Views and XLists . 178

Defining Sort Criteria on SWView. 178
Defining Sort Criteria on SWXList . 179

Specifying Sort Criteria . 180
Sorting in an Efficient Manner . 182
System Fields used in Sorting. 182
Sorting on Case Data Fields . 184

Using Case Data Queue Parameter Fields . 184
CDQPs Contain Work Item Data . 185

Using Work Queue Parameter Fields . 185
Setting Default Sort Criteria . 186
Implied Sort Fields for Multiple Views/XLists . 188
Sorting as a Specified Data Type . 188

Chapter 12 — Managing Work Queues . 189
Introduction . 189

Work Queue Objects. 189
Test vs. Released Work Queues . 190

Accessing Work Items on a Work Queue . 190
Accessing Work Items in SWViews. 191
Accessing Work Items in SWXLists . 192

Determining the Number of Work Items in a Work Queue . 192
Determining the Number of Work Items in a Work Queue on an SWView. 192
Determining the Number of Work Items in a Work Queue on an XList . 193

Processing Work Items . 194
Locking Work Items . 194

Getting Markings When Locking Work Items . 194
What’s the Difference Between a “Lock” and a “Long Lock”? . 195
Unlocking a Work Item. 195
Discarding Changes made to a Locked Work Item. 195

TIBCO iProcess Objects Programmer’s Guide ix

Has a Work Item been Locked/Opened?. 196
Determining who Locked a Work Item. 196
Executing a Command when a Work Item is Locked. 196

Keeping Work Items. 196
Executing a Command when a Work Item is Kept . 197

Releasing Work Items. 197
Validating Markings . 197
Executing a Command when a Work Item is Released . 197
Automatically Releasing the Start Step. 198
What is an Orphaned Work Item?. 198
Determining if a Work Item could not be Delivered to the Addressee. 198
Is the Work Item Directly Releasable? . 198

Errors Resulting from Processing Work Items . 198
Forwarding Work Items to Another Work Queue . 199

Manually Forwarding Work Items . 199
Auto Forwarding/Redirecting Work Items . 200

Redirection of Work Items . 200
Creating a Redirection Schedule . 201
Using the SWDate Object (Java and C++ Clients Only) . 202

Granting Access to a Work Queue . 203
View-Only Access to a Work Queue . 203
Participation Access to a Work Queue . 204

Creating a Participation Schedule . 205
Using the SWDate Object (Java and C++ Clients Only) . 205
The TIBCO iProcess Objects Server Maintains an Index of the Participation Schedules 207

Work Queue Supervisors . 208
Adding Work Queue Supervisors . 208
Removing Work Queue Supervisors . 208

Work Item Deadlines . 209
Withdrawing Work Item on Deadline. 209
Deadline Counts . 210
Filtering and Sorting on Deadline Information . 210

Keeping a Work Item that is Withdrawn . 211
External Work Items . 212

Releasing an External Work Item. 212

Chapter 13 — User Administration . 214

Introduction . 214
Types of Users . 215
MOVESYSINFO Function . 215

Staffware Users . 216
Creating a Staffware User. 216
Deleting a Staffware User. 217
Is an O/S User needed for every Staffware User? . 217
Changing the User’s Password . 217

User Groups . 218
Creating a User Group . 218
Deleting a User Group . 219
Adding and Removing Users to/from a Group. 219

Roles . 220

TIBCO iProcess Objects Programmer’s Guide x

Creating a Role . 220
Deleting a Role . 220

User Attributes . 221
Creating an Attribute . 223
Deleting an Attribute . 224
Modifying an Attribute. 224

Why isn’t the new User, Group, Role or Attribute Appearing in the List? . 224
Determining which Procedures a User can Audit . 225
Determining the Procedures for which the User can Start a Case . 226
User Authority. 227

Chapter 14 — Case Management . 230
Starting a Case . 230

Case Description. 230
Keeping/Releasing the Start Step . 231
Starting a Case with Field Data . 232
Validating Markings on the Start Step . 232
Sub-Procedure Precedence . 233
Why isn’t the Started Case Appearing in the Work Queue?. 233
Obtaining the Case Number of a Case that was just Started . 233

Determining Who Can Start a Case . 234
Which Procedures can a User Start?. 235

Obtaining the “Default” View / XList of Cases . 236
Status of Cases . 237

Creating an “Alternate” View / XList of Cases . 237
Alternate SWViews . 237

Implied Sort on Alternate Views. 237
Alternate SWXLists . 238
Status of Cases . 238

Determining the Number of Cases in a Procedure . 238
Auditing Case Data . 239

Determining the Procedures a User can Audit . 240
Populating a Case with Audit Data . 241
The SWAuditStep Object . 242
Configuring Audit Trail Strings . 242
Auditing Sub-Procedures . 243
Filtering Audit Data . 245

Setting AuditFilterExpr . 245
Adding User-defined Audit Trail Entries . 246

Predicting Cases . 247
Defining Case Prediction . 248

Step Duration. 248
Conditional Actions for Case Predictions . 249

Performing Case Prediction . 249
Background Case Prediction . 249
Live Case Prediction . 249
Case Simulation. 250

Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction . 250
Sub-Procedure Call Steps . 250
Dynamic Sub-Procedure Call Steps and Graft Steps . 250

Including Case Data Queue Parameter Data in Prediction Results . 251

TIBCO iProcess Objects Programmer’s Guide xi

Filtering and Sorting Predicted Items. 252
Triggering Events . 253
Suspending Cases . 254

Reactivating a Suspended Case . 254
Ignoring Suspended Cases . 255

Jumping To New Outstanding Step in a Case. 255
Determining Outstanding Items . 256

ProcPath to Outstanding Items . 257
Using Graft Steps . 259

Defining Graft Steps. 259
Starting a Graft Task. 260
Setting the Task Count . 261
Outstanding Graft Items . 261
Return Statuses . 262
Other Status Information on an Outstanding Graft Item . 263
Deleting a Task . 263
Completing a Graft Step . 263
Error Processing . 263

Transaction Control Steps . 265
Step Type . 265
Type of Transaction Control Step. 266
Outstanding Transaction Control Steps . 267
Retrying Failed Transactions . 267
Transaction Control Step Audit Trail Messages. 268

Closing Cases . 268
Resurrecting a Closed Case . 268

Purging Cases . 269

Chapter 15 — Stateless Programming . 270
Introduction . 270
Logging Out vs. Disconnecting . 270
Stateless Objects . 271

Single-Parameter Methods . 272
Using the Tag Property . 272

Passing an Empty Object in the Make Methods (C++ only) . 273
Persisted XLists. 274

Chapter 16 — Optimizing Your Applications . 275
Introduction . 275
Handling Large Lists of Work Items, Cases, Users, OS Users, Groups . 275
Clear Blocks on Client when using XLists . 276
Optimizing Communications between Client and Server. 276
Filtering and Sorting in an Efficient Manner . 277
How Getting Case Data affects Application Efficiency . 277

Getting Case Data on View/XList vs. Case . 277
Looping Through Items in an SWList or SWView . 278
Locking, Keeping, Releasing Multiple Items . 278
Optimizing VB Application Performance. 279
Accessing a Single Object. 279
Clear Unneeded Views and XLists . 279
Case Indexing . 279

TIBCO iProcess Objects Programmer’s Guide xii

Chapter 17 — Client Configuration . 280
Client Log . 280

Controlling the Client Log . 282
The SWLog Object . 282
Registry Settings (Windows only) . 283
Environment Variables (UNIX Only) . 283

Name and Location of the Client Log . 284
Log File Name. 284
Log File Directory. 284

Activating / Deactivating the Client Log . 284
Filtering the Client Log . 285

Setting the Log Level . 285
Filtering by Category . 285
Filtering by Message . 287

Displaying Memory Information in the Client Log (Windows only). 288
Adding Entries to the Client Log . 288
Setting the Size of the Client Log. 288
Resetting the Client Log. 288
Testing the Client Log . 289

Message Wait Time . 290
Character Encoding Using ICU Conversion Libraries . 291

Chapter 18 — Error Handling . 292
TIBCO iProcess Objects (COM) . 292

Error Constants . 292
Error Trapping in Visual Basic . 293

TIBCO iProcess Objects (Java) . 294
Error Constants . 295

TIBCO iProcess Objects (C++) . 296
Handling Multiple Work Item Operation Errors. 296
Debugging Problems with ASP . 297
Error Messages . 298

“An Exception of Type java.lang.UnsatisfiedLinkError was not handled” . 298
“Authentication Request Failed” . 298
“Error 2140: An internal Windows NT error occurred”. 298
“Error 2140: An internal Windows NT error occurred”. 299
“Error 2140: An internal Windows NT error occurred”. 299
“Error 2140: An internal Windows NT error occurred”. 301
“Error 2140: An internal Windows NT error occurred”. 302
“Error 5: Access is denied” . 302
“Error Calling CreateDataSource Interface for SWAutoFwdQ” . 302
“Error Initializing AutoFwd/QView Database” . 302
“Error creating mutex” . 303
“Error in sal_frm_putdata call” . 304
“One of the items in the array returned an error” . 304
“The memory could not be ‘written’” . 304
“Unable to locate DLL” . 304
“/usr/lib/dld.sl exists - can't open shared library: /oracle8/lib/libclntsh.sl no such file or directory” 305
“Work Item is not accessible” . 305

TIBCO iProcess Objects Programmer’s Guide xiii

Chapter Appendix A — Code Examples . 306
Introduction . 306
Auto-Discovery UDP Broadcast . 307

Visual Basic . 307
Using the “For Each” Iteration:. 307
Using a While loop:. 307

Java . 308
Using “Enumeration”: . 308
Using a While Loop: . 308

C++. 309
Using a While Loop: . 309

Resulting Output. 310
Directed UDP Broadcast . 311

Visual Basic . 311
Java . 311
C++. 312

Connecting to a Specific Node, Creating Enterprise Users, Login, Logout . 312
Visual Basic . 312
Java . 315
C++. 318
Resulting Output. 321

Working with Staffware Lists — SWLists, SWViews, and SWLocLists . 322
Visual Basic . 322
Java . 326
C++. 331
Resulting Output. 336

Working with Staffware Lists — SWXLists . 339
Visual Basic . 339
Java . 343
C++. 348
Resulting Output. 353

Index. 357

TIBCO iProcess Objects Programmer’s Guide xiv

Preface

Introduction

The TIBCO iProcess Objects Programmer’s Guide describes the technical aspects of the TIBCO iPro-
cess™ Objects, a set of programming objects used to build applications that automate business pro-
cesses.

This document provides descriptions of the functionality of TIBCO iProcess Objects. For details
about the syntax for the properties and methods used to provide that functionality, see the on-line help
provided with your TIBCO iProcess Objects.

The Revision History page (see page xvi) shows the version number of TIBCO iProcess Objects for
each issue of this document. If you are using an older version of TIBCO iProcess Objects, you may
experience functionality that is different than what is described in this document.

For the latest TIBCO Staffware Process Suite product information, please refer to the TIBCO Support
Services website at http://www.tibco.com/services/support.

Product Name Changes

Staffware, the original producer of this product, was purchased by TIBCO Software Inc. in 2004. As a
result of this purchase, product names have undergone a change. The table below shows how product
names have changed from Staffware to TIBCO.

Although the name "Staffware" has been removed from the product names, these products are all part

of a suite of products called the "TIBCO® Staffware Process Suite."

You may still see references to Staffware and SPO in the software (e.g., file and directory names) and
documentation.

Staffware Name TIBCO Name

Staffware Process Objects (SPO) COM Client TIBCO iProcess™ Objects (COM)a

a. Collectively, these are referred to as the “TIBCO iProcess Objects”.

Staffware Process Objects (SPO) Java Client TIBCO iProcess™ Objects (Java)a

Staffware Process Objects (SPO) C++ Client TIBCO iProcess™ Objects (C++)a

Staffware Process Objects (SPO) Server TIBCO iProcess™ Objects Server

Staffware Process Objects (SPO) Director TIBCO iProcess™ Objects Director

Staffware iProcess Engine TIBCO iProcess™ Engine

Staffware Process Definer (SPD) TIBCO iProcess™ Modeler

http://www.tibco.com/services/support

Preface

TIBCO iProcess Objects Programmer’s Guide xv

Knowledge Level

The intended audience of this document is programmers and technical consultants who are using the
objects that comprise TIBCO iProcess Objects to create client applications for TIBCO customers or
the customers of TIBCO partners.

Documentation Set

In addition to this document, the following make up the documentation set for this product:

• TIBCO iProcess Objects On-Line Help - This provides syntax information for all objects,
properties, and methods available to programmers.

• TIBCO iProcess Objects Object Model Graphic - This provides a graphical representation of
the objects that comprise the TIBCO iProcess Objects.

• TIBCO iProcess Objects Installation Guide - This guide provides the steps you need to fol-
low to successfully install your TIBCO iProcess Objects software.

• TIBCO iProcess Objects Release Notes - The release notes provide information about
changes that have occurred in each release of TIBCO iProcess Objects. It may also include
information about last-minute changes that are not included in the help system or programmer's
guide.

• TIBCO iProcess Objects Server Administrator’s Guide - This provides information about
starting, stopping, and configuring the TIBCO iProcess Objects Server, which is used in con-
junction with the TIBCO iProcess Objects. It also includes information about how to set up the
TIBCO iProcess Objects Server log.

• TIBCO iProcess Objects Director Administrator’s Guide - This provides information about
how to use and configure the TIBCO iProcess Objects Director, which can be used to manage
connections between your client application and TIBCO iProcess Objects Servers.

TIBCO iProcess Objects Programmer’s Guide xvi

Revision History

Issue Date
Current Version
of the TIBCO
iProcess Objects

Summary of Changes

Issue 1 Mar. 2002 9.0(0.0) Initial issue

Issue 2 Mar. 2002 9.0(0.0) Added “SPO” to the title of the document. Also includes minor
additions/corrections.

Issue 3 Feb. 2003 10.0(0.0) New filtering information added to Filtering Work Items and Cases
chapter. Also miscellaneous changes throughout.

Issue 4 Mar. 2003 10.0(0.0) Added Procedures chapter. Added sections for predicting cases,
suspending cases, jumping to new outstanding step, using graft
steps, plus miscellaneous corrections.

Issue 5 May 2003 10.0(0.0) The Filtering Work Items and Cases chapter was split into three
separate chapters. The reader will use the appropriate chapter,
depending on which filtering enhancements have been incorpo-
rated into their TIBCO iProcess Objects Server.

Issue 6 Sep. 2003 10.0(1.0) Added information about the new outstanding item objects
(SWEventStep, SWGraftStep, etc.), sub-proc precedence on
StartCase, plus miscellaneous changes throughout.

Issue 7 Sep. 2003 10.0(1.0) Removed references to the TIBCO iProcess Objects Director (as
it is not available yet).

Issue 8 Dec. 2003 10.0(2.0) Added information concerning running multiple instances of the
TIBCO iProcess Objects Server and using in-memory logging.

Issue 9 June 2004 10.0(4.2) Additional information added about running multiple instances of
the TIBCO iProcess Objects Server on Windows (configuration
utility changes), MoveSysInfo method, AddNodeEx and MakeNo-
deInfoEx methods, MaxCnt property, etc.

Issue 10 Feb. 2005 10.2.0 Added information about transaction control steps, TIBCO iPro-
cess Objects Director, as well as new methods used to specify
specific case fields, CDQPs, and markings when creating, lock-
ing, and accessing work items (MakeWorkItemEx, Make-
WorkItemByTagEx, MakeXListItemsEx, LockItemMarkings,
LockItemsMarkings, and CDQPNames).

n/a June 2005 10.2.1 Updated information about the TIBCO iProcess Objects Director
to reflect changes made during testing of the software.

Also note that the issue number was removed from the title page
to reflect the standard used by TIBCO — the title page now con-
tains the month and year the document was issued, as well as the
version number at time of issue.

Revision History

TIBCO iProcess Objects Programmer’s Guide xvii

n/a Oct. 2005 10.3.0 Added information about activity publication and database config-
uration access. Removed information about the TIBCO iProcess
Objects Server (starting/stopping, configuration parameters, log-
ging, etc.) — for this information, see the TIBCO iProcess Objects
Server Administrator’s Guide. Also removed information about the
TIBCO iProcess Objects Director — for this information, see the
TIBCO iProcess Objects Director Administrator’s Guide.

n/a May 2010 10.4.0 Added UTF-8 support on all platforms.

Issue Date
Current Version
of the TIBCO
iProcess Objects

Summary of Changes

TIBCO iProcess Objects Programmer’s

1
Introduction

Introduction

TIBCO iProcess Objects comprise a set of objects that are used to build applications that automate
business processes. TIBCO iProcess Objects consist of an object model that provides access to the
information and functionality used in these applications.

The objects in the object model can be used to start cases, present information on screens to users,
manipulate work items, remind users when actions need to be taken, and monitor and control the flow
through the business process.

Procedures

A business process that is automated with TIBCO software is referred to as a “procedure.” Procedures
are defined with a TIBCO tool called the TIBCO iProcess Modeler. A procedure consists of a number
of “steps,” including manual steps (which require user action), automatic steps (which are executed
automatically by the server), and condition steps (which branch based on the result of a condition). An
example of a simple procedure is shown below.

Example Procedure

Before describing the underlying architecture of TIBCO iProcess Objects, it’s important to understand
the terminology used with procedures. The following table provides definitions of some of the key
terms that are used throughout this document.

Term Definition

Procedure Represents the definition of a business process, which ensures that information
flows in a consistent and timely manner through the system. A procedure is defined
using the TIBCO iProcess Modeler. An example is shown in the illustration above.

Case This is a particular instance of a procedure. A case is created when a procedure is
started, and remains in existence until that instance of the procedure is purged
from the system.

Introduction

TIBCO iProcess Objects Programmer’s

All of the properties and functionality associated with these items (cases, steps, etc.) are exposed by
TIBCO iProcess Objects, allowing client applications to make use of that information and functional-
ity in the business processes they automate.

Step A procedure is made up of a number of steps, which define the activities that take
place within the flow of a procedure. Each step defines what must be done, who
must do it, and, optionally, a deadline by which it must be done.

Work Queue This is a list of work items (see below) that are awaiting action. A work queue can
belong to an individual user or to a group of users. If it is a group work queue, any
user that belongs to that group has access to the work items in that group queue.

Work Item A work item represents one of the action items listed in a work queue. It relates to a
step in an active case. A user manages the work items in their work queue by per-
forming some sort of action upon them, such as entering data on a form, forwarding
the item to another user or group, “keeping” it (placing it back in the work queue for
further action at a later time), or “releasing” it (completing the required action and
sending it on to the next step in the procedure).

Node A node represents a TIBCO iProcess Objects Server. Each node “owns” its own
users, groups, procedures, work queues, etc. To the procedures that it owns, the
node is known as the “hosting node.”

User A user is an individual who has been defined on a node, giving that user access
privileges to log in to that node. Each user has a work queue that has the same
name as the user name given that person when they were defined on the node.

Group A group represents a collection of users. Each group has a work queue that has
the same name as the name given that group when it was defined on the node. All
users that are members of the group have access to the group work queue.

Term Definition

Introduction

TIBCO iProcess Objects Programmer’s

TIBCO iProcess Objects Configurations

TIBCO iProcess Objects systems are designed to operate in a client/server configuration. Client appli-
cations making use of objects exposed by TIBCO iProcess Objects communicate via TCP/IP to a
TIBCO iProcess Objects Server. The TIBCO iProcess Objects Server acts as a gateway to a TIBCO
iProcess Engine, which manages work queues and case data for the client application.

Clients and Servers can run on a variety of platforms, which can be mixed and matched in any config-
uration (see the following illustration).

TIBCO iProcess Objects Configuration

The platforms currently supported are as follows:

• TIBCO iProcess Objects (COM):

- Windows XP

- Windows Server 2003

• TIBCO iProcess Objects (Java) and TIBCO iProcess Objects (C++):

- Windows XP

- Windows Server 2003

- Solaris

- HP-UX

- AIX

• TIBCO iProcess Objects Server:

- Windows XP

- Windows Server 2003

- Sun Solaris

- HP-UX

- IBM AIX

- Linux

TIBCO iProcess Engine/

Windows XP

Windows 2003

Solaris

Solaris

HP-UX

(Windows or UNIX)

 Client

TIBCO iProcess Objects Server

 Client

 Client

 Client

 Client

Introduction

TIBCO iProcess Objects Programmer’s

TIBCO iProcess Objects Components

The diagram below illustrates how particular components of a TIBCO iProcess Objects system inter-
act in a Windows environment.

The following subsections describe the components in a typical installation.

TIBCO iProcess

Database
Oracle
SQL
Classic

wqsrpc.exe

Work Queue Services
- Maintains all work queues
- Work queue access info swpro.exe

Background Processing
- All case processing
- Admin. data

wisrpc.exe

Work Item Services
- Handles access to queues
- Queue contents cached

swrpcsrv.exe

RPC Services
- One process for each
logged-in user

staffli.exe
- Login daemon

Mbox

Mbox

Mbox

TCP/IP

Threads
Auto Fwd

Thrd
Message

Thrds
UDP
Thrd

TCP
Thrd

Flat File
System

Work Qs
Work Items

TIBCO
RPC

(Work Queue Manager)

TIBCO iProcess Engine

The “Engine”

Client

Process Invocator
- Runs auto steps

swuser.exe

(Pre-version i9.0)

iProcess Client

Objects Server

Introduction

TIBCO iProcess Objects Programmer’s

TIBCO Process / iProcess Engine

The “engine” manages all TIBCO data, routing work items and updating the appropriate work queues.

There are actually two “types” of engines:

• TIBCO iProcess Engine - This type of engine is required for some of the newer functionality
of TIBCO iProcess Objects. If you are using a TIBCO iProcess Engine, you will also be using a
TIBCO iProcess Objects Server that supports the functionality provided by the TIBCO iProcess
Engine.

• TIBCO Process Engine - If you are using this type of engine, some of the newer functionality
of TIBCO iProcess Objects is not available to you. If you are using a TIBCO Process Engine,
you will also be using a TIBCO iProcess Objects Server that supports the functionality pro-
vided by the TIBCO Process Engine.

TIBCO iProcess Objects will work with both “types” of engines described above — the difference is
the amount of functionality available from the engine. The on-line help system provides information
about which functionality is available only from the TIBCO iProcess Engine.

Engine and Server Version Numbers

As we are transitioning from "Staffware" to "TIBCO," the version numbers of the engines and servers
are changing as well. Staffware version numbers included major, minor, maintenance release, and
patch numbers, with parentheses (e.g., 10.2(0.0)). TIBCO version numbers include major, minor, and
maintenance release numbers, without parentheses (e.g., 10.2.0). Hotfix numbers (the equivalent to a
"patch") are not shown in the product version number.

A Staffware version number may also be preceded by an "i" (e.g., i10.0(0.0)), indicating that it is an
"iProcess" Engine or a TIBCO iProcess Objects Server that supports the functionality offered by iPro-
cess Engines.

Moving forward from version 10.2.0, all new releases of engines, TIBCO iProcess Objects Servers,
and TIBCO iProcess Objects will use the 3-digit TIBCO version numbering system. The version num-
ber will also not include an "i" to indicate that it is an iProcess Engine or a TIBCO iProcess Objects
Server that supports the functionality of an iProcess Engine; by default, all engines from 10.2.0 for-
ward are iProcess Engines, and all TIBCO iProcess Objects Servers from 10.2.0 forward support the
functionality of iProcess Engines.

You can determine whether you are using a TIBCO Process Engine or a TIBCO iProcess Engine by
looking at the version number. The version number can be found in the first line of the SWDIR\swdefs
(Windows) or $SWDIR/swdefs (UNIX) file.

TIBCO
Process /
iProcess
Engine

TIBCO
iProcess
Objects
Server

TIBCO
iProcess
Objects

Introduction

TIBCO iProcess Objects Programmer’s

SWDIR - The System Directory

The directory where the TIBCO Process/iProcess Engine is installed is known as the system directory.
It is referred to in this guide as SWDIR.

On UNIX systems, the environment variable $SWDIR should be set up to point to the system directory
for the root and swadmin users.

Engine Processes

There are a number of processes that run on the engine that perform the tasks necessary to process
cases. They include:

• Background Process (swpro.exe in Windows; nodename.bkg in UNIX) - Retrieves, routes, and
processes data according to the instruction set received through the mbox file (for information
about the mbox file, see the TIBCO iProcess Objects Server Administrator’s Guide).

A special user account by the name of swpro must exist in the O/S. This account is used by the
TIBCO iProcess Engine to run the background process. The swpro user must be an administra-
tor and needs the advanced user right of “Act as part of the operating system.” This user must
also be a member of the Staffware Users Group.

• Work Queue Server (wqsrpc.exe in Windows; wqsrpc in UNIX) - Handles all of the user and
group work queues, and controls access to those queues. There is only a single wqsrpc process
running at any time for a TIBCO iProcess Engine.

• Work Item Server (wisrpc.exe in Windows; wisrpc in UNIX) - Controls all of the work items
in the work queues, and maintains a cache of all information in those queues. There can be mul-
tiple wisrpc processes running at one time, with five as the default. (This is configurable with
the WQS_WIS_COUNT parameter in the SWDIR\etc\staffcfg file.)

• RPC Server (swrpcsrv.exe in Windows; swrpcsrv in UNIX) - Monitors Remote Procedure
Calls (RPC) on the TIBCO iProcess Engine.

• Login Daemon (staffli.exe in Windows; Pstaffli in UNIX) - Monitors and controls the number
of licensed users allowed to login to the TIBCO iProcess Engine.

• Process Invocator (swuser.exe) - The process that runs auto-steps (execution of external pro-
grams) from within procedures.

A special user account by the name of swuser is used to run the Process Invocator service. This
user must be a member of the Staffware Users Group.

Each of these processes run as a service on Windows, and a daemon on UNIX systems.

Also notice in the illustration on page 4 that the Work Item Server is linked to the flat file system. All
work queue data (i.e., which work items are in each of the user and group work queues) is stored in flat
files (SWDIR\queues\user\staffo), one for each user and group on the system. The Work Item Server
maintains a cache of this information and uses it to present work items on the work queues. All other
data (procedure definitions, user/group definitions, field definitions, case data, etc.), is stored in the
database (Oracle, SQL, or Classic). (Note - If you are using a TIBCO iProcess Engine, all data is
stored in database tables rather than in flat files. For information about these tables, see the TIBCO
iProcess Engine Administrator’s Guide.)

Introduction

TIBCO iProcess Objects Programmer’s

The TIBCO iProcess Client is an out-of-the-box client application that allows the viewing and pro-
cessing of work items. The TIBCO iProcess Client does not use TIBCO iProcess Objects. It talks
directly to the TIBCO iProcess Engine (as shown in the illustration on page 4). Client applications
developed with TIBCO iProcess Objects, and the TIBCO iProcess Client, can perform operations that
affect work queues and work items when viewed by the other application.

TIBCO iProcess Objects

TIBCO iProcess Objects expose the interfaces of the objects provided in the object model. TIBCO
iProcess Objects make requests to the TIBCO iProcess Objects Server on behalf of the controlling
application to access and control data on the TIBCO iProcess Engine. Communication between the
TIBCO iProcess Objects and the TIBCO iProcess Objects Server is via direct TCP/IP sockets.

The publicly exposed objects in the TIBCO iProcess Objects are available in a number of flavors:

• TIBCO iProcess Objects (COM) - The TIBCO iProcess Objects (COM) can be used in any
COM container (Visual Basic, ASP, etc.). TIBCO iProcess Objects are available for Windows
XP and 2003. They are implemented as an in-process DLL, sharing process space with the cli-
ent application. Therefore, each client application that uses TIBCO iProcess Objects (COM)
will have a copy of the DLL as part of its process address space.

• TIBCO iProcess Objects (Java) - The TIBCO iProcess Objects (Java) is based on Java bind-
ings wrapping C++ classes. You can use any appropriate Java development tool to access the
objects via these Java classes. The TIBCO iProcess Objects (Java) are available for Windows
XP and 2003, as well as three versions of UNIX (HP-UX, IBM AIX, and Sun Solaris).

• TIBCO iProcess Objects (C++) - The TIBCO iProcess Objects (C++) provide public C++
classes. Development with this product can be performed with any C++ development tool, such
as Visual C++. This client is available for Windows XP and 2003, as well as three versions of
UNIX (HP-UX, IBM AIX, and Sun Solaris).

Client-to-Server Communications

TIBCO iProcess Objects communicate with TIBCO iProcess Objects Servers over TCP/IP. You have
a number of configuration options for establishing this communication. These options are described in
detail in “Accessing Nodes on the Network” on page 20.

TIBCO iProcess Objects Server

The TIBCO iProcess Objects Server acts as a gateway to pass data between the TIBCO iProcess
Server Objects and the TIBCO Process/iProcess Engine. Note that only certain versions of the TIBCO
iProcess Objects Server can be used with each of the different types of TIBCO Process/iProcess
Engines:

• If you are using a TIBCO iProcess Engine, you must use a TIBCO iProcess Objects Server that
supports the functionality provided by the TIBCO iProcess Engine.

• If you are using a TIBCO Process Engine, you must use a TIBCO iProcess Objects Server that
supports the functionality provided by the TIBCO Process Engine.

For information about starting/stopping and configuring the TIBCO iProcess Objects Server, see the
TIBCO iProcess Objects Server Administrator’s Guide.

Introduction

TIBCO iProcess Objects Programmer’s

TIBCO iProcess Objects Director

The TIBCO iProcess Objects Director is a standalone program that maintains a list of TIBCO iProcess
Objects Servers that are configured in a node cluster. When a client application needs access to a
TIBCO iProcess Objects Server, it first establishes a connection to the TIBCO iProcess Objects Direc-
tor. The TIBCO iProcess Objects Director then decides, based on a “pick method,” which TIBCO
iProcess Objects Server the client should connect to.

The list of known TIBCO iProcess Objects Servers is updated dynamically as TIBCO iProcess
Objects Server instances are started and stopped. The TIBCO iProcess Objects Director maintains this
list by checking the process_config table of the iProcess Engine to which it is associated.

For information about using and configuring the TIBCO iProcess Objects Director, see the TIBCO
iProcess Objects Director Administrator’s Guide.

JVM Finalization and Garbage Collection

This section is only applicable to TIBCO iProcess Objects (Java).

Because of a deficiency in how the Java Virtual Machine (JVM) handles finalization and garbage col-
lection, Java Finalization Monitoring classes have been added to TIBCO iProcess Objects.

TIBCO iProcess Objects (Java) objects require finalization because they use JNI to wrap native C
code objects. Finalization provides the mechanism to free the system memory held by the C objects
once the wrapping Java objects are no longer being referenced.

The finalization problem arises when the JVM is operating under a heavy load (i.e., many threads con-
currently creating large numbers of objects). The rate at which objects are finalized does not keep up
with the rate at which objects are freed to be garbage collected. The finalize method of these objects
must run before:

• The C memory held by the object is released.

• The objects can be garbage collected.

As a result, both the JVM heap memory and the system memory used on the C side continue to grow
until one or the other runs out of memory. Which runs out of memory first depends on the JVM heap
size and the available system memory. In either case, the process fails with an out of memory condi-
tion.

The JVM settings that control garbage collection behavior do not provide a comprehensive way of
controlling this problem. These settings can be adjusted in ways that prolong the length of time before
the process fails, but extensive testing clearly shows that garbage collection can fall behind on final-
ization under heavy loads regardless of the JVM settings used.

Java provides the following two methods that can be used in conjunction with garbage collection.

• System.runFinalization()

• System.gc()

These methods, however, are not deterministic as to what extent they will satisfy the request. In prac-
tice, calls to System.runFinalization() are not effective under load because the thread that runs final-
ization is not given enough processing time to keep up with the demand. Calls to System.gc() are
expensive and serve little purpose when dereferenced objects cannot be reclaimed because they have
not yet been finalized.

Introduction

TIBCO iProcess Objects Programmer’s

Solution Strategy

Several strategies are combined in order to overcome this problem with minimum impact on overall
process throughput:

• The number of objects created and finalized is monitored.

• The priority of the finalization thread is set to the maximum value.

• A range is specified (minThreshold, maxThreshold) for the number of objects that are pending
finalization (i.e., the difference between the number created and the number finalized). Within
this range, actions are initiated to ensure finalization does not fall behind.

• Impact on throughput is kept to a minimum by applying controls to program threads only when
needed based on the minThreshold / maxThreshold range specified.

• Program threads that create new objects while the finalization thread is running are induced to
yield more control to the finalization thread by introducing a short Thread.sleep() delay.

• If the load increases to a point where the object count is near the maximum threshold value,
program threads are forced to yield control to the finalization thread by blocking their actions
until finalization can bring the object count back down below the maximum level.

Implementation

The FinalizeMonitor class implements the strategy for this solution. An additional class,
FinalizePrioritySetter, is used to set the finalization thread priority. Both classes are in the SWEntObj
package. FinalizeMonitor is a singleton with two public static methods used in tracking objects cre-
ated and objects finalized. These are:

• FinalizeMonitor.incCreated()

• FinalizeMonitor.incFinalized()

Each Java class with a finalize() method calls incCreated() in each of its constructor methods and inc-
Finalized() in its finalize() method.

FinalizeMonitor is initialized with one of the following methods:

• setMaxThreshold(int maxThreshold) (default minThreshold = 60% maxThreshold)

• setThresholdRange(int minThreshold, int maxThreshold)

Based on the threshold range specified, a modulus value is set that controls how frequently checks are
made. On each call to incCreated(), the number of objects pending finalization is compared to the
modulus value. On hitting the modulus value, a separate thread (started by the FinalizeMonitor) is
notified, which performs the following actions:

• Compares number of objects pending finalization to the minThreshold value. If below this
threshold, no actions are taken.

• Compares number of objects pending finalization to a bypassThreshold value. This value is a limit
near the maxThreshold value (maxThreshold - modulus). At object counts below this value, pro-
gram threads creating new objects are subject to a 5 msec delay. Above this value, program
threads creating new objects are blocked until the object count falls below the maxThreshold
value.

• System.runFinalization is called.

Introduction

TIBCO iProcess Objects Programmer’s

• If the count has reached the maxThreshold value, a loop is entered that calls System.runFinaliza-
tion up to four times and then calls System.gc() if required. This loop exits when the count falls
below the maxThreshold value.

Note that if you are running the FinalizeMonitor, you must explicitly stop the FinalizeMonitor thread
before stopping the client application. If the FinalizeMonitor is still running when the client applica-
tion is stopped, the client application will not exit as expected. To explicitly stop the FinalizeMonitor
thread, use the following static method:

• FinalizeMonitor.stop()

You can also use the following static method to determine the current operating status of the Finalize-
Monitor:

• FinalizeMonitor.checkThreadStatus()

This method returns one of the following statuses: “Not running”, “Running”, or “Stopped”.

Configuration

• JVM Heap Size

In order to make effective use of available memory, the JVM heap size needs to be balanced with
the remaining system memory needed by the C objects. The system memory used by the C objects
is proportionally higher compared to the memory used by the Java wrapper objects. A 10:1 ratio is
a good starting point, with adjustments made based on the specific application (e.g., java -
Xmx125m would be appropriate if total available memory = 1.25 GB).

- In Windows, use either the Task Manager or the Performance Monitor (available under Admin-
istrative Tools) to monitor the amount of system memory used by the Java process.

- In UNIX, the command-line program, "top", can be used to monitor the amount of system
memory used by the Java process (774M in the example top output below):

>top

…

Memory: 2048M real, 290M free, 2680M swap in use, 327M swap free

 PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND

 20451 system 58 59 8 774M 717M cpu/1 5:12 30.72% java

 4810 system 14 34 8 58M 12M sleep 140:38 0.19% rmiregistry

- The JVM memory can be monitored using the -verbose:gc JVM command-line argument. In
the example below, Java was started with:

java -Xms125m -Xmx125m -verbose:gc …

This generates system output similar to:

Full GC 98057K->64950K(118784K), 3.2819178 secs

Introduction

TIBCO iProcess Objects Programmer’s

• FinalizeMonitor

- The FinalizeMonitor is initialized with one of the static methods:

FinalizeMonitor.setMaxThreshold(int maxThreshold)

(default minThreshold = 60% maxThreshold)

FinalizeMonitor.setThresholdRange(int minThreshold, int maxThreshold)

See the Client Main Example below for an example of a client main method that initializes the
FinalizeMonitor using command-line arguments.

- Details on FinalizeMonitor actions can be logged to the standard output using:

FinalizeMonitor.setVerbose(true) (default = false)

Sample output:

event elapsedTime created bypass final pending obj/sec

FM1 1034.875 2012667 6955 1599219 420403 2750

event elapsedTime created bypass final pending obj/sec

FM2 1041.348 2012667 7145 1689112 330700 2750

• Determining the maxThreshold Value

The maxThreshold value should be set to the maximum number of objects that can be pending final-
ization without running out of system or JVM memory. This can be determined using the test mode of
the FinalizeMonitor. Set the test mode using:

FinalizeMonitor.setTestMode(int objectCount)

where objectCount specifies the number of objects created between each log message output.

In the test mode, the FinalizeMonitor finalization actions are disabled, but the number of objects cre-
ated, finalized, and pending finalization is tracked and this is logged to the standard output with data
similar to the example below:

event elapsedTime created bypass final pending obj/sec

FMTest 1782.1 RMI_TCP_Conn17 2030001 1404522 625479 2612

The test should be run under load (i.e., many threads concurrently creating large numbers of objects)
that would be similar to the maximum operational loads expected.

The count of objects pending finalization will continue to grow until either the system or JVM mem-
ory is exceeded. The maxThreshold value should be set to no more than 85% of the number of objects
pending finalization just before running out of memory. In the example above, the objects pending
finalization = 625479. A setting of approximately 85% of this (maxThreshold = 530000) would be a
good initial setting.

Introduction

TIBCO iProcess Objects Programmer’s

The minThreshold setting can be set to any value greater than zero and less than or equal to the max-
Threshold value. This affects when the FinalizeMonitor begins taking actions. The best setting will
depend on the specific operational characteristics of the running system:

- A lower setting would result in finalization running more frequently and for shorter durations.

If a system typically has a relatively small number of objects referenced at a given time, a lower
minThreshold value would potentially free memory sooner.

- A higher setting would result in finalization running less frequently and for longer durations.

If a system typically has a relatively large number of objects referenced at a given time, a
higher minThreshold value would delay attempts at running finalization until a point where it is
more likely that objects would be available to be finalized.

• Client Main Example

A client main method could initialize the FinalizeMonitor using command-line arguments similar to
the example below:

public static void main(String[] args) {
…
 int minThreshold = -1;
 for (int i = 0; i < args.length; i++) {
 String arg = args[i];
 if (arg.equals("-verbose:fm")) {
 FinalizeMonitor.setVerbose(true);
 }
 if (arg.length() > 14 && arg.substring(0, 14).equals("testModeCount=")) {
 FinalizeMonitor.setTestMode(Integer.parseInt(arg.substring(14)));
 }
 if (arg.length() > 13 && arg.substring(0, 13).equals("minThreshold=")) {
 minThreshold = Integer.parseInt(arg.substring(13));
 }
 if (arg.length() > 13 && arg.substring(0, 13).equals("maxThreshold=")) {
 int maxThreshold = Integer.parseInt(arg.substring(13));
 if (minThreshold != -1) {
 FinalizeMonitor.setThresholdRange(minThreshold, maxThreshold);
 }
 else {
 FinalizeMonitor.setMaxThreshold(maxThreshold);
 }
 }
 }
…
}

Introduction

TIBCO iProcess Objects Programmer’s

FinalizeMonitor Log Example

The following example shows a typical log output from the FinalizeMonitor:

event elapsedTime created bypass final pending obj/sec

FM1 39.212 45018 12 37521 7509 1148

FMEX 39.212

where:

• event: This represents an event and will be one of the following:

- FMTest - Indicates running in test mode. Information logged, but no actions taken.

- FM1 - Starting a finalization check.

If action is taken to do finalization (i.e., pending >= check threshold). Note: # indicates a loop
count:

- FMFB# - Before call to induce finalization. (if required)

- FMFA# - After call to induce finalization. (if required)

- FMGB# - Before call to do Garbage Collection. (if required)

- FMGA# - After call to do Garbage Collection. (if required)

- FM2 - Logged at completion of a check if action is taken to do finalization.

- FMEX - Logged when exiting a finalization check if no action taken.

- << - This is a line resulting from a call to printStatus().

• elapsedTime: The number of seconds the process has been running.

• created: The total number of objects created (less those created by bypass).

- created + bypass (all objects created) = final + pending

• bypass: These are objects created by threads while the checkThread is active.

• final: The number of objects that have been finalized.

• pending: The number of objects that have not been finalized.

• obj/sec: The overall average number of objects created / second (total created + bypass / elapsed-
Time)

TIBCO iProcess Objects Programmer’s Guide 14

2
The Object Model

Introduction

The TIBCO iProcess Objects object model defines the hierarchy and relationship between the objects
that comprise TIBCO iProcess Objects. The illustration below shows the relationship between some
of the primary objects. (Note that there are many other objects that perform secondary roles to those
shown in the illustration — the objects shown here, however, illustrate the primary flow of informa-
tion through the object model.)

Note - An “object model graphic” that shows the entire object model is included on the TIBCO iPro-
cess Objects distribution CD. Refer to that graphic for a comprehensive illustration of the object
model for your specific TIBCO iProcess Objects (COM, Java, or C++).

A summary of each of the primary objects shown in the illustration is provided below.

• SWEnterprise - This object is the root of the object model. It provides an enterprise-wide view
of the entire installation. SWEnterprise is one of only four objects that can be directly created
(the others are SWMarking, SWSortField, and SWDate). All other objects in the object model
are internally instantiated and returned by other objects.

See “Creating the SWEnterprise Object” on page 19 for information about how to create the
SWEnterprise object.

SWEnterprise

SWNodeInfoSWEntUser

SWNode

SWProcSWUser

SWCaseSWWorkQ

SWWorkItem

SWGroup

The Object Model

TIBCO iProcess Objects Programmer’s Guide 15

• SWNodeInfo - This object contains information about the nodes
(TIBCO iProcess Objects Servers) that are available for the client to
communicate with. There will be one SWNodeInfo object for each
available TIBCO iProcess Objects Server. This list of SWNodeInfo
objects is stored in the NodeInfos property on SWEnterprise.

For information about how the client determines available TIBCO
iProcess Objects Servers, see “Accessing Nodes on the
Network” on page 20.

• SWEntUser - This object represents an Enterprise User. The
enterprise user object conceptually represents a single Staffware
user throughout the enterprise (across multiple nodes). This object
contains information about a Staffware user in the enterprise,
including common logon information and the nodes that the user is
logged onto in the enterprise. The list of SWEntUser objects is
stored in the EntUsers property on SWEnterprise.

For more information about the SWEntUser object, see “Creating
Enterprise Users” on page 31.

• SWNode - This object represents a specific node (TIBCO iProcess
Objects Server) in the enterprise. The SWNode object contains
information about the procedures, users, groups, work queues, etc.,
that belong to the node. For every node that an enterprise user is
logged into, one SWNode object is added to the list of SWNode
objects in the LoggedInNodes property on the SWEntUser object.

For more information, see “Logging In” on page 32.

• SWProc - This object represents a procedure. It contains methods
that are used to start, close, and purge cases (instances of proce-
dures), and properties that contain information about the proce-
dure. The AuditProcs and StartProcs properties on SWUser
contain lists of procedures (SWProc objects) that the logged in user
has permission to audit and start.

For information about starting a case of a procedure, see “Starting a
Case” on page 230.

• SWCase - This object represents a specific instance of a procedure.
It contains information such as a unique case reference number, the
name of the procedure for which it was started, who started it, etc. It
also contains audit information, which is used to track the progress
through the steps in the case. The SWProc object contains two
properties that return a list of the currently active cases for that pro-
cedure: one is the Cases property, which returns a “view” of
SWCase objects, and the other is the CasesX property, which
returns an “XList” of SWCase objects (for information about views
and XLists, see the Working with Lists chapter on page 55).

SWEnterprise

NodeInfos

SWNodeInfo

SWNodeInfo

SWNodeInfo

SWEnterprise

EntUsers

SWEntUser

SWEntUser

SWEntUser

SWEntUser

LoggedInNodes

SWNode
SWNode

SWNode

SWUser

AuditProcs

SWProc

SWProc

SWProc
StartProcs

SWProc

Cases

SWCase

SWCase

SWCase

CasesX

The Object Model

TIBCO iProcess Objects Programmer’s Guide 16

The SWWorkItem object has a Case property that contains the
SWCase object that represents the case to which the work item
belongs.

• SWUser - This object represents a Staffware user. It contains
properties that define things such as the procedures the user can
start, groups to which the user belongs, etc. The LoggedInUser
property on SWNode contains an SWUser object for the person
logged into the node.

For more information, see “User Administration” on page 214.

• SWGroup - This object represents a collection of users. The
Groups property on SWUser contains a list of the groups
(SWGroup objects) to which the user belongs.

For more information, see “User Administration” on page 214.

• SWWorkQ - This object represents either a personal work queue
(one owned by an individual user) or a group work queue (one
that is shared among several users). It contains methods that are
used to process (lock, keep, release, etc.) multiple work items that
are in the work queue. The WorkQs property on the SWUser
object contains a list of the work queues to which the user has
access, i.e., the work queues on which he will perform work.

Note that the list of work queues available from the SWNode
object are used for administrative and reporting purposes.

• SWWorkItem - This object represents a single work item that is
listed in a work queue, awaiting some sort of action by a user. It
contains many Boolean properties that indicate the work item’s
current state (e.g., locked, unopened, urgent, etc.). It also provides
methods that are used to process (lock, keep, release, etc.) this
particular work item. The SWWorkQ object contains two proper-
ties that return a list of work items that are currently in that work
queue: one is the WorkItems property, which returns a “view” of
SWWorkItem objects, and the other is the WorkItemsX property,
which returns an “XList” of SWWorkItem objects (for informa-
tion about views and XLists, see the Working with Lists chapter
on page 55).

SWUser

WorkQs

SWWorkQ

SWWorkQ

SWWorkQ

SWUser

Groups

SWGroup

SWGroup

SWGroup

SWWorkQ

WorkItems

SWWorkItem

SWWorkItem

SWWorkItem

WorkItemsX

SWWorkItem

Case
SWCase

SWNode

SWUser

LoggedInUser

TIBCO iProcess Objects Programmer’s Guide 17

3
Naming Conventions

Overview

The following naming conventions have been incorporated into the TIBCO iProcess Objects:

• If the property or method name ends in “Cnt”, it is a counter and will be returned as an integer
or a long, depending on the expected maximum size of the value.

• If the property or method name ends in “Names”, it is a list of strings rather than a list of
objects.

• If the property or method name ends in an “s” (but not “Names”), it is a List, Local List, View,
or XList containing objects. The name of the property/method also tells you the name of the
object that is returned when you invoke the property/method. For example, Groups returns
SWGroup objects; Fields returns SWField objects.

• If the property or method name ends in an “X”, it is an XList containing objects.

• If the property or method name begins with “Is”, it is a boolean value.

• If the property/method name ends in an “Ex”, it means one of two things:

- It is a property or method that provides “extended” functionality. The property/method
names that use this convention are StartCaseEx and NodeInfoEx (which returns an
SWNodeInfoEx object).

- It is a method that performs actions upon work items in an XList (LockItemsEx,
KeepItemsEx, etc.).

Differences between COM, Java, and C++ Naming Conventions

Note that this document primarily uses the COM convention of naming items. For instance, it men-
tions an object’s “properties.” This is specific to COM — objects in Java and C++ don’t have proper-
ties — they only have “methods.”

Also, in COM, some properties have read/write attributes, so there is a single property that you can
use to read or set the value. In Java and C++, methods don’t have read/write attributes — instead they
have corresponding “get” and “set” methods to “read” and “write” the value, respectively. The follow-
ing are a few examples of this:

COM Property Java/C++ Methods

PollCnt getPollCnt / setPollCnt

FieldName getFieldName / setFieldName

Naming Conventions

TIBCO iProcess Objects Programmer’s Guide 18

Boolean properties/methods are an exception to the above naming convention. For a COM Boolean
property that is readable and writable, again there is a single property (beginning with “Is”). In Java
and C++, the method that “reads” the Boolean value begins with “is” (lowercase); the method that is
used to “write” the value begins with “set”. Some examples:

Looking on the object model graphics provided on the distribution CD will show how these naming
conventions were used throughout all three of the object models (COM, Java, and C++).

COM Property Java/C++ Methods

IsRebuildAll isRebuildAll / setRebuildAll

IsWaitForAll isWaitForAll / setWaitForAll

TIBCO iProcess Objects Programmer’s Guide 19

4
Getting Started

Creating the SWEnterprise Object

The first thing that needs to be done in a TIBCO iProcess Objects client
application is to create the SWEnterprise object — the root of the
object hierarchy. The SWEnterprise object provides an enterprise-wide
view of the entire installation. The connection information for all nodes
(TIBCO iProcess Objects Servers) in the enterprise is stored in the
SWEnterprise object. It is created in the following manner:

COM Application
Dim oEnterprise As SWEnterprise
Set oEnterprise = New SWEnterprise

C++ Application
SWEnterprise *pEnterprise;
pEnterprise = new SWEnterprise;

Java Application
SWEnterprise oEnterprise;
oEnterprise = new SWEnterprise();

Do I Create One or Many SWEnterprise Objects?

Typically, in a thick client application you’ll only create one SWEnterprise object, and its object han-
dle is stored in a global variable for use throughout the application. However, if multiple threads are
being used, it is recommended that an SWEnterprise object be created for each thread (this is an exam-
ple of a broker). Because objects add state, they are not intended to be passed between threads.

In a web-based environment, a new SWEnterprise object will need to be created for each web page
(typically the state is not saved between pages because of performance reasons). For information
about the “stateless” objects, see the Stateless Programming chapter on page 270.

When Should the SWEnterprise Object be Destructed?

Since nearly all other objects are dependent on the SWEnterprise object, it should not be deleted
(destructed) until the client application no longer needs to access data on the TIBCO iProcess Engine.
If the SWEnterprise object is deleted prior to the destruction of other objects, the other objects can
continue to be used, but no new logins can be done since the SWEnterprise object holds the connec-
tion information about the nodes available in the enterprise.

SWEnterprise

* AddNodeEx

* CreateEntUsers

* DeleteEntUsers

* MakeNodeInfo

* MakeNodeInfoEx

* MakeNodeInfoByTag

* AddNode

< ClientLog

< EntUsers

<> IsBroadcast

< NodeInfos

<> PollCnt

< ReceiveLog

<> UDPPort

< UDPPortNumbers

< ClassId

L

LL

UPD

UDP

LL

UPD

Getting Started

TIBCO iProcess Objects Programmer’s Guide 20

Accessing Nodes on the Network

Once the SWEnterprise object is created, you need to determine which TIBCO iProcess Objects Serv-
ers are available on the network so that you can connect to one of them. This can be done in the fol-
lowing ways:

• Automatic Discovery (UDP Broadcast) on the LAN Segment - This is the default method of
finding nodes on the network. It is typically used when you don’t know any information about
the nodes that are available. One limitation of this method is that UDP broadcasts will not go
across routers. See “Automatic Discovery (UDP Broadcast) on a LAN Segment” on page 22
for details of using this method.

• Directed UDP to a Specific Node - This method (using either the AddNode or AddNodeEx
method) employs a directed UDP message. It can be used if you know the name or IP address
of the machine running the TIBCO iProcess Objects Server of interest. This method can be
used across routers. See “Directed UDP to a Specific Node” on page 25 for details of using this
method.

• Manually Create an SWNodeInfo Object- This method (using either the MakeNodeInfo or
MakeNodeInfoEx method) requires that you know everything about the node — computer
name, node name, IP address, and TCP port number. This is the method that you would use in a
web-based/ASP environment. See “Manually Create an SWNodeInfo Object” on page 26 for
details of using this method. (Note - The MakeNodeInfoByTag method is also available — see
“Stateless Programming” on page 270 for more information.)

• TIBCO iProcess Objects Director - You may also choose to use the TIBCO iProcess Objects
Director to decide which TIBCO iProcess Objects Server to connect to. The TIBCO iProcess
Objects Director is a standalone program that maintains a list of TIBCO iProcess Objects Serv-
ers that are currently available in a node cluster. When a client needs access to a TIBCO iPro-
cess Objects Server, it first establishes a connection to the TIBCO iProcess Objects Director.
The TIBCO iProcess Objects Director then decides, based on a “pick method,” which TIBCO
iProcess Objects Server the client should connect to. For more information about using TIBCO
iProcess Objects Directors, see the TIBCO iProcess Objects Director Administrator’s Guide.

Also note that the descriptions in the following sections that discuss creating SWNodeInfo
objects and sending UDP broadcasts/messages apply to both TIBCO iProcess Objects Servers
and TIBCO iProcess Objects Directors; clients obtain an SWNodeInfo object for a TIBCO
iProcess Objects Director in the same way as for a TIBCO iProcess Objects Server.

These methods are not mutually exclusive — depending upon the architecture of your system, you
may choose to use one, two, or even all three methods to access nodes.

Some factors you need to look at when deciding the method to use for accessing nodes are:

• Length of the login
• Whether you are on a LAN or a WAN
• How much information you know about the available nodes
• Verification of the node

These factors are described in the subsections that follow. Following these descriptions is a table that
summarizes the choices you have depending on various factors.

Length of the Login
A major deciding factor in which method(s) you use is whether your logins are long-lived (thick cli-
ent, where logins are typically of a long duration — hours, or even days in length) or short-lived (web-
based client, where logins are commonly very short — sometimes only seconds, or minutes in length).

Getting Started

TIBCO iProcess Objects Programmer’s Guide 21

Latency is a prime concern when you are working in a web-based environment (short-lived logins)
because a login occurs on every web page access. It isn’t a concern in thick clients (long-lived logins)
because the user will typically login once and be around for a long duration.

This factor also dictates how the TCP port on the TIBCO iProcess Objects Server is configured — as
static or dynamic (see “Configuring the TIBCO iProcess Objects Server TCP Port” on page 27 for
information about how to configure the TIBCO iProcess Objects Server TCP port).

• Short-lived - This type of login implies frequent logins such as in a web-based environment
where it is desirable to login on each web page. In this environment, you can’t afford much
latency, therefore a UDP broadcast or directed UDP can’t be used. The “manually create an
SWNodeInfo object” method (MakeNodeInfo or MakeNodeInfoEx) must be used instead.

Since you are using MakeNodeInfo / MakeNodeInfoEx with a short-lived login, the TIBCO
iProcess Objects Server will need to be configured with a static TCP port so you know what
port number to use with the MakeNodeInfo/MakeNodeInfoEx method.

• Long-lived - This login implies a thick client. In other words, the user is using a client-side
application where the user may stay logged in for long durations, such as hours or all day. In
this environment, latency is not an issue, therefore you can use any one of the three accessing
methods.

With a long-lived login, you can configure the TCP port either dynamic or static.

• Both Long-lived and Short-lived - This is an environment where you have both web-based
clients and thick clients using the same TIBCO iProcess Objects Server. The web-based clients
will use the “manually create an SWNodeInfo object” method (MakeNodeInfo/MakeNodeIn-
foEx), and the thick clients can use any one of the three methods.

In this mixed environment, the TIBCO iProcess Objects Server will need to be configured with
a static TCP port so the web-based clients can specify the TCP port number in the MakeNo-
deInfo/MakeNodeInfoEx method. The TIBCO iProcess Objects Server will still respond to
UDP broadcasts and directed UDPs with the static TCP port number.

LAN or WAN

• LAN - Across a LAN, you can use any of the three accessing methods. The auto-discovery
UDP broadcast can be used across a LAN segment.

• WAN - The auto-discovery UDP broadcast may not be able to be used across a WAN, therefore,
in this environment, you should use either the directed UDP (AddNode/AddNodeEx method)
or the “manually create an SWNodeInfo object” method (MakeNodeInfo/MakeNodeInfoEx).

Amount of Information you know about the Available Nodes
Which method(s) you choose may be determined by the amount of information you know about the
available nodes — with the UDP broadcast requiring the least amount of information and the “manu-
ally create an SWNodeInfo object” method requiring the most.

• Auto-discovery (UDP) broadcast doesn’t require that you know anything about the available
nodes — the nodes that are available will respond.

• Directed UDP requires that you know the IP address or computer name of the node.

• The Manually Create an SWNodeInfo Object method requires that you know the computer
name, node name, IP address, and TCP port number of the node.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 22

Verification of the Node
If a verification of the node is required, you must use either the UDP broadcast or directed UDP. The
“manually create an SWNodeInfo object” method does not verify the validity of the information
passed in the MakeNodeInfo/MakeNodeInfoEx method until the login method on SWEntuser is
called. If any of the information provided is incorrect, an swWINSOCKErr is returned.

The table below shows the access methods that are possible based on various criteria.

Automatic Discovery (UDP Broadcast) on a LAN Segment

This is the default method of determining the TIBCO iProcess Objects Servers that are available on
the network. Note that if you are using a TIBCO iProcess Objects Director to choose a TIBCO iPro-
cess Objects Serverfor you, this mechanism can also be used to determine the available TIBCO iPro-
cess Objects Directors.

To auto-discover nodes (TIBCO iProcess Objects Servers or TIBCO iProcess Objects Directors), a
User Datagram Protocol (UDP) broadcast is issued by the client, requesting all TIBCO iProcess
Objects Servers/Directors on the LAN segment to return a message identifying themselves. The infor-
mation they return is then used to create SWNodeInfo objects, one for each node that responds to the
broadcast. These SWNodeInfo objects are added to the list in the NodeInfos property on SWEnter-
prise.

The IsBroadcast property must be set to true (the default) for UDP broadcast to be enabled.

What actually causes the UDP broadcast to be issued? One of two
things:

• Accessing the NodeInfos list for the first time after creating an
SWEnterprise object, or

• executing the Rebuild method on the NodeInfos list.

The NodeInfos list can also be rebuilt (with the Rebuild method) at a
later time to update the list of TIBCO iProcess Objects Servers/Direc-
tors.

LAN WAN Web App Broker

Requires
computer

name or IP
address

Requires
TCP port
number

Verify
server

info

UDP Broadcast X X

Directed UDP X X X X X

Manually Create
an SWNodeInfo
Object

X X X X X X

SWEnterprise

NodeInfos

SWNodeInfo

SWNodeInfo

SWNodeInfo

Getting Started

TIBCO iProcess Objects Programmer’s Guide 23

Configuring the UDP Broadcast

The SWEnterprise object contains two methods that are used to configure the UDP broadcast — one
sets the interval of the UDP broadcast and the other specifies the port number on which the broadcast
is issued.

• Set the Broadcast Interval - Occasionally, machines that are listening on the network miss the
auto-discovery broadcasts. This is the nature of the auto-discovery broadcast mechanism —
there is no guarantee that available nodes will hear and respond to the broadcast. To compen-
sate for this, the SWEnterprise object can be configured to set the number of UDP broadcasts
the client will issue. That value is held in the PollCnt property of SWEnterprise. Broadcasts are
made once per second, with the total number of broadcasts equaling the value in PollCnt.

A PollCnt of 2 may be sufficient for many installations — this allows the nodes that don’t hear
the first broadcast to hear the second one. A PollCnt of 2 may be too small, however, if your
LAN experiences a high latency; it may take longer than 2 seconds for the response to return
from the node. In this case, the default value of 5 may be a better option.

• Specify the Broadcast Port Number - By default, UDP messages are issued by the client on
port 55666. You can use the SWEnterprise.UDPPort property to specify the port on which
UDP messages will be issued.

By default:

• TIBCO iProcess Objects Servers listen for UDP messages on port 55666; for information
about how to specify the port on which TIBCO iProcess Objects Servers listen, see the
UDPServiceName configuration parameter in the TIBCO iProcess Objects Server Adminis-
trator’s Guide

• TIBCO iProcess Objects Directors listen on port 28001; for information about specifying
the port on which TIBCO iProcess Objects Directors listen, see the
UDP_SERVICE_NAME process attribute in the TIBCO iProcess Objects Director Admin-
istrator’s Guide.

It may be necessary to send out the directed UDP message on multiple ports when running
more than one TIBCO iProcess Objects Server/Director on the same machine. Some implemen-
tations of the TCP/IP stack will only deliver the UDP message to one service. In this case, each
TIBCO iProcess Objects Server/Director must be configured to use its own port. The client
must then be configured to send the UDP message on each of those ports — the UDPPort-
Numbers property allows for specifying multiple UDP ports. Note that this property is a local
list, requiring you to use the UDPPortNumbers.Add method to add port numbers to it.

Note - If the UDPPort property value is > 0, and there is a list specified in UDPPortNumbers,
the UDP broadcast will be sent to both.

Multiple Instances of the TIBCO iProcess Objects Server/Director

When running multiple instances of the TIBCO iProcess Objects Server / Director on a single
machine, each instance must use a unique UDP port.

The SWNodeInfo object returned by an TIBCO iProcess Objects Server / Director responding to a
UDP message contains an instance number to identify that specific instance of the TIBCO iProcess
Objects Server / Director. This number is available in the InstanceNumber property on SWNodeInfo.
For TIBCO iProcess Objects Servers that don’t support multiple instances, or when only a single
instance is running on a machine, the InstanceNumber property returns a 1.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 24

• You can configure the UDP port on which a TIBCO iProcess Objects Server listens for UDP
broadcasts by using the UDPServiceName configuration parameter. For more information
about running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iPro-
cess Objects Server Administrator’s Guide.

• You can configure the UDP port on which a TIBCO iProcess Objects Director listens for UDP
broadcasts by using the UDP_SERVICE_NAME process attribute. For more information
about running multiple instances of the TIBCO iProcess Objects Director, see the TIBCO iPro-
cess Objects Director Administrator’s Guide.

What if a Known Node is not Answering the UDP Broadcast?

There are a number of possible reasons this may be occurring:

• The most common reason is because the TIBCO iProcess Objects Server/Director is on the
other side of a router (routers don’t allow UDP broadcasts through) and didn’t hear the broad-
cast. If this is the case, your options are:

- Move the TIBCO iProcess Objects Server/Director to the other side of the router.

- Use either the AddNode/AddNodeEx or MakeNodeInfo/MakeNodeInfoEx method.
See “Directed UDP to a Specific Node” on page 25 and “Manually Create an SWNo-
deInfo Object” on page 26 for information about these methods.

• The broadcast interval may be set too small. Try increasing the interval by setting the PollCnt
property on SWEnterprise.

• It’s also possible that the TIBCO iProcess Objects Server’s/Director’s service is not running.
Ensure that the service is started on the machine on which it’s installed.

• The wrong UDP port may be specified on the client. Check the values in the UDPPort or UDP-
PortNumbers properties.

• If there are multiple TIBCO iProcess Objects Servers/Directors running on a single machine,
the UDP message may only be delivered to one of the TIBCO iProcess Objects Servers/Direc-
tors. To remedy this, each TIBCO iProcess Objects Server/Director must be configured to use
its own UDP port. For information about how to specify the port on which TIBCO iProcess
Objects Servers listen, see the UDPServiceName configuration parameter in the TIBCO iPro-
cess Objects Server Administrator’s Guide; for information about specifying the port on which
TIBCO iProcess Objects Directors listen, see the UDP_SERVICE_NAME process attribute in
the TIBCO iProcess Objects Director Administrator’s Guide. To cause UDP broadcast go out
on multiple ports, specify multiple ports using the UDPPortNumbers property.

Example — Auto-Discovery UDP Broadcast

See page 307 for a comprehensive example.

Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo

On Error GoTo Err_RunSample

Set oEnterprise = New SWEnterprise
oEnterprise.PollCnt = 2 'Broadcast for 2 sec

For Each oNodeInfo In oEnterprise.NodeInfos
 ' Display names in intermediate window

Getting Started

TIBCO iProcess Objects Programmer’s Guide 25

 Debug.Print "NodeInfo Key = " & oNodeInfo.Key & vbCrLf _
 & " IP Address= " & oNodeInfo.IPAddr
Next
Exit Sub

Directed UDP to a Specific Node

A directed UDP can be issued to a specific TIBCO iProcess Objects Server to determine if it’s avail-
able. And if you are using a TIBCO iProcess Objects Director to choose a TIBCO iProcess Objects
Server for you, you can also send a directed UDP message to the TIBCO iProcess Objects Director to
determine if it’s available.

A directed UDP is issued with the AddNode or AddNodeEx method on SWEnterprise. These meth-
ods can be used over a LAN, WAN, or across a router where auto-discovery broadcasts can’t be used:

• The AddNode and AddNodeEx methods allow you to provide either the computer name or the
IP address of the machine to which you are directing the UDP message. If you provide the com-
puter name instead of the IP address, the client machine must be configured for TCP name res-
olution, typically either DNS or local host file.

• The AddNodeEx method provides an optional InstanceNumber parameter that allows you to
specify that the UDP message be directed to a specific instance of the TIBCO iProcess Objects
Server/Director when multiple instances of a TIBCO iProcess Objects Server/Director are
being run on a single machine (for more information about running multiple instances of the
TIBCO iProcess Objects Server, see the TIBCO iProcess Objects Server Administrator’s
Guide; for more information about running multiple instances of the TIBCO iProcess Objects
Director, see the TIBCO iProcess Objects Director Administrator’s Guide). If the InstanceNum-
ber is specified, it is added to the Key of the SWNodeInfo object that is returned. If the Instan-
ceNumber is omitted, it defaults to instance number 1.

Note - If you are issuing a directed UDP to a specific TIBCO iProcess Objects Server or TIBCO iPro-
cess Objects Director, and you do not want a UDP broadcast to also go out, be sure to set the
IsBroadcast property on SWEnterprise to False to turn off the default auto-discovery broadcast.

If there is no reply from the directed UDP, an swWINSOCKErr is returned.

If the AddNode/AddNodeEx method adds an SWNodeInfo object to the NodeInfos list that is already
in the list, an swLLDupErr is returned.

Specifying the UDP Port Number

By default, UDP messages are issued by the client on port 55666. You can use the SWEnter-
prise.UDPPort property to specify the port on which UDP messages will be issued.

By default:

• TIBCO iProcess Objects Servers listen for UDP messages on port 55666; for information
about how to specify the port on which TIBCO iProcess Objects Servers listen, see the
UDPServiceName configuration parameter in the TIBCO iProcess Objects Server Administra-
tor’s Guide

• TIBCO iProcess Objects Directors listen on port 28001; for information about specifying the
port on which TIBCO iProcess Objects Directors listen, see the UDP_SERVICE_NAME pro-
cess attribute in the TIBCO iProcess Objects Director Administrator’s Guide.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 26

It may be necessary to send out the directed UDP message on multiple ports when running more than
one TIBCO iProcess Objects Server/Director on the same machine. Some implementations of the
TCP/IP stack will only deliver the UDP message to one service. In this case, each TIBCO iProcess
Objects Server/Director must be configured to use its own port. The client must then be configured to
send the UDP message on each of those ports — the UDPPortNumbers property allows for specify-
ing multiple UDP ports. Note that this property is a local list, requiring you to use the UDPPortNum-
bers.Add method to add port numbers to it.

Multiple Instances of the TIBCO iProcess Objects Server/Director
When running multiple instances of the TIBCO iProcess Objects Server / Director on a single
machine, each instance must use a unique UDP port.

The SWNodeInfo object returned by an TIBCO iProcess Objects Server / Director responding to a
UDP message contains an instance number to identify that specific instance of the TIBCO iProcess
Objects Server / Director. This number is available in the InstanceNumber property on SWNodeInfo.
For TIBCO iProcess Objects Servers that don’t support multiple instances, or when only a single
instance is running on a machine, the InstanceNumber property returns a 1.

• You can configure the UDP port on which a TIBCO iProcess Objects Server listens for UDP
broadcasts by using the UDPServiceName configuration parameter. For more information
about running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iPro-
cess Objects Server Administrator’s Guide.

• You can configure the UDP port on which a TIBCO iProcess Objects Director listens for UDP
broadcasts by using the UDP_SERVICE_NAME process attribute. For more information
about running multiple instances of the TIBCO iProcess Objects Director, see the TIBCO iPro-
cess Objects Director Administrator’s Guide.

Example — Directed UDP Broadcast

See page 311 for a comprehensive example.

Set oEnterprise = New SWEnterprise
oEnterprise.IsBroadcast = False 'No Broadcast

oEnterprise.AddNode "swdoug2", "doug1" 'add a node

Manually Create an SWNodeInfo Object

If you know all of the required information, you can manually created an SWNodeInfo that represents
the desired TIBCO iProcess Objects Server. And if you are using a TIBCO iProcess Objects Director
to choose a TIBCO iProcess Objects Server for you, you can also manually create an SWNodeInfo
object that represents the TIBCO iProcess Objects Director.

The MakeNodeInfo or MakeNodeInfoEx methods are used to manually create an SWNodeInfo
object and add it to the NodeInfos list. These methods require that you know the machine name, the
node name of the TIBCO iProcess Objects Server/Director, the IP address, and the TCP port number
used by the TIBCO iProcess Objects Server/Director. You must be certain the parameters are correct,
as these methods do not verify their validity. If any of them are incorrect, an swLoginFailErr error is
returned when the Login method on SWEntUser is called.

This method is used for the following reasons:

• TIBCO iProcess Objects are being used in a web-based environment where the latency
involved in a UDP broadcast or a directed UDP is an issue.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 27

• This method of adding an SWNodeInfo object to the NodeInfos list can be used in situations
where you want to define TIBCO iProcess Objects Servers/Directors that will be available on the
network, even though they may not be available at this particular time.

• This method can also be used if there are multiple TIBCO iProcess Objects Servers/Directors
running on a single machine. In this environment, the UDP message may only be delivered to one
of the TIBCO iProcess Objects Servers/Directors. To remedy this, you could use the MakeNo-
deInfo or MakeNodeInfoEx method to manually add each of the TIBCO iProcess Objects Serv-
ers/Directors to the NodeInfos list. (Or you could configure each of the servers with its own UDP
port, then issue a UDP broadcast over multiple ports — see “Configuring the UDP Broadcast” on
page 23 for more information.)

When manually creating an SWNodeInfo object, the TIBCO iProcess Objects Server’s/Director’s TCP
port must have a static assignment since you are specifying the specific port number in an argument
with the MakeNodeInfo / MakeNodeInfoEx method. For information about configuring the TCP port on
a TIBCO iProcess Objects Server, see “Configuring the TIBCO iProcess Objects Server TCP Port” on
page 27. For information about configuring the TCP port on a TIBCO iProcess Objects Director, see the
TCP_SERVICE_NAME process attribute in the TIBCO iProcess Objects Director Administrator’s
Guide.

The MakeNodeInfoEx method provides an optional InstanceNumber parameter that allows you to spec-
ify a specific instance of the TIBCO iProcess Objects Server/Director when multiple instances of a
TIBCO iProcess Objects Server/Director are being run on a single machine (for more information about
running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iProcess Objects
Server Administrator’s Guide; for more information about running multiple instances of the TIBCO
iProcess Objects Director, see the TIBCO iProcess Objects Director Administrator’s Guide). If the
InstanceNumber is specified, it is added to the Key of the SWNodeInfo object that is created. If the
InstanceNumber is omitted, it defaults to instance number 1.

Note - If you are manually creating an SWNodeInfo object, and you do not want a UDP broadcast to
also go out, be sure to set the IsBroadcast property on SWEnterprise to false to turn off the default auto-
discovery broadcast.

If you use MakeNodeInfo or MakeNodeInfoEx to add an SWNodeInfo object to the NodeInfos list that
is already in the list, an swLLDupErr is returned.

Example — Connecting to a Specific Node

See page 311 for a comprehensive example.

Set oEnterprise = New SWEnterprise
 oEnterprise.IsBroadcast = False 'no broadcast
 Set oNodeInfo = oEnterprise.MakeNodeInfo("seosun2", "swipe", _
 "10.20.30.112", 34567)

Configuring the TIBCO iProcess Objects Server TCP Port

The TIBCO iProcess Objects communicate with the TIBCO iProcess Objects Server via TCP/IP. This
requires that a TCP port be configured on the TIBCO iProcess Objects Server. The TCP port on the
TIBCO iProcess Objects Server needs to be configured either dynamic (also called ephemeral) or
static, depending on the method you are using to locate nodes on the network.

• Dynamic - This assignment (which is the default) causes the O/S to dynamically assign the TCP
port number when the TIBCO iProcess Objects Server starts. Use this assignment if you are either
issuing a UDP broadcast or a directed UDP message to a specific node.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 28

• Static - This assignment causes the TCP port number to always remain the same for that server.
Use this assignment if you are manually adding a node to the NodeInfos list. This is required
because you must specify the TCP port as an argument to the MakeNodeInfo / MakeNodeIn-
foEx method. Therefore, you must know the TCP port the server is going to be using.

Note that all TIBCO iProcess Objects Servers that want to make use of the TIBCO iProcess
Objects Director must use a static TCP port. This allows the TIBCO iProcess Objects Director
to be configured with those port numbers so it knows the TCP port number to use when estab-
lishing a connection between a client and TIBCO iProcess Objects Server. For more informa-
tion, see the TIBCO iProcess Objects Server Administrator’s Guide.

Note - For information about specifying the TCP ports on which TIBCO iProcess Objects Servers lis-
ten when running multiple instances of the TIBCO iProcess Objects Server, see the TIBCO iProcess
Objects Server Administrator’s Guide.

Configuring the TCP Port on a Windows System

To configure the TCP port number on a TIBCO iProcess Objects Server running Windows, follow
these steps:

1. Run the TIBCO iProcess Objects Server Configuration Utility control panel applet and click on
the TCP tab (as shown below).

Note - For information about using the configuration utility, see the TIBCO iProcess Objects Server
Administrator’s Guide.

2. To configure the TCP port as dynamic, enter DEFAULT in the field in the TCP Port section, then
click OK.

To configure the TCP port as static, do one of the following:

i. Enter the desired TCP port number in the field in the TCP Port section, then click OK, or

ii. Enter a “service name” in the field in the TCP Port section. This service name will be used to
map to the TCP port number. If you use a service name, you must also edit the %system-
root%\system32\drivers\etc\services file to add the service name and the desired TCP port
number. The service name can be any name that is unique within the services file. The port
number can be any number between 1024 - 65535 that is not already used in the services file.
An example services file entry for a TCP port is shown below:

ichiro 6666/tcp # TCP port assignment

Getting Started

TIBCO iProcess Objects Programmer’s Guide 29

After entering the service name in the field in the TCP Port section, click OK.

3. Stop, then restart the TIBCO iProcess Objects Server. For information about stopping and starting
the TIBCO iProcess Objects Server, see the TIBCO iProcess Objects Server Administrator’s
Guide.

Configuring the TCP Port on a UNIX System

To configure the TCP port number on a TIBCO iProcess Objects Server running UNIX, follow these
steps:

1. As the root user, open the $SWDIR/seo/data/swentobjsv.cfg file with a text editor and find the
TCPServiceName entry (where $SWDIR is the directory in which the TIBCO iProcess Engine is
installed).

2. Ensure the # symbol is removed to enable the TCPServiceName entry.

3. To configure the TCP port as dynamic, set TCPServiceName equal to DEFAULT.

To configure the TCP port as static, do one of the following:

i. Set TCPServiceName to the desired TCP port number, or

ii. Set TCPServiceName to a “service name.” This service name will be used to map to the TCP
port number. If you use a service name, you must also edit the /etc/services file to add the ser-
vice name and the desired TCP port number. The service name can be any name that is unique
within the services file. The port number can be any number between 1024 - 65535 that is not
already used in the services file. An example services file entry for a TCP port is shown below:

ichiro 6666/tcp # TCP port assignment

4. Save the edited $SWDIR/seo/data/swentobjsv.cfg file.

5. Stop, then restart the TIBCO iProcess Objects Server. For information about stopping and starting
the TIBCO iProcess Objects Server, see the TIBCO iProcess Objects Server Administrator’s
Guide.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 30

Can I use TIBCO iProcess Objects through a Firewall?

TIBCO iProcess Objects can be used through a firewall. To do so, you must:

• Assign the TIBCO iProcess Objects Server or TIBCO iProcess Objects Director a static TCP
port (for information about assigning a static TCP port for the TIBCO iProcess Objects Server,
see “Configuring the TIBCO iProcess Objects Server TCP Port” on page 27; for information
about assigning a static TCP port for the TIBCO iProcess Objects Director, see the
TCP_SERVICE_NAME process attribute in the TIBCO iProcess Objects Director Adminis-
trator’s Guide)

• Use the MakeNodeInfo or MakeNodeInfoEx method to manually add the TIBCO iProcess
Objects Server or TIBCO iProcess Objects Director to the NodeInfos list.

• On the firewall, open up the TCP port used by the TIBCO iProcess Objects Server or TIBCO
iProcess Objects Director to communicate with the client.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 31

Creating Enterprise Users

The second of the two “Enterprise” objects is the SWEntUser object. This
object contains information about a person using TIBCO iProcess Objects
across the enterprise (this person may actually have different Staffware user
names and/or passwords on each node). The SWEntUser object contains
methods that are used to log in and out of nodes (TIBCO iProcess Objects
Servers) in the enterprise. It also includes information about the nodes that the
user is currently logged into in the enterprise. When a user is logged into mul-
tiple nodes across the enterprise, this object provides a single point of access
to the case and work item data that the user can access on any of the logged-in
nodes.

Creating an enterprise user should be done right after creating the SWEnter-
prise object. It is done by calling the CreateEntUsers method on the SWEn-
terprise object. This creates one or more SWEntUser objects and adds them to
the EntUsers local list on SWEnterprise. Once the SWEntUser objects are
created for the enterprise users, the Login method on SWEntUser can be used to log the users into one
or more nodes.

This example shows the creation of three SWEntUser objects, one each for users Edgar, Jay, and Car-
los (see page 312 for a comprehensive example):

' Create a Enterprise user
 Set oEntUserAdmin = oEnterprise.CreateEntUsers("AdminUser")

' Create multiple Enterprise users with a single method call
 UserArray(0) = "Edgar"
 UserArray(1) = "User1"
 UserArray(2) = "Carlos"

 oEnterprise.CreateEntUsers UserArray

SWEntUser

< Key

< LoggedInNodes

< Name

< ClassId

* Login

* Logout

* MakeViewCases

* MakeViewItems

* Disconnect

LL

Getting Started

TIBCO iProcess Objects Programmer’s Guide 32

Logging In

After an SWEntUser object has been created for an enterprise user, the user can be logged into one or
more nodes (TIBCO iProcess Objects Servers). This is done by calling the Login method on
SWEntUser.

Note - For information about logging in to a TIBCO iProcess Objects Server via a TIBCO iProcess
Objects Director, see the TIBCO iProcess Objects Director Administrator’s Guide.

The Login method requires parameters that identify the node(s) the person is to be logged into, the
person’s login password, and optionally, the user name the person is known by on the node on which
he is logging into. If the person is being logged into more than one node with a single Login method
call, his user name and password must be the same on all of the nodes. If the person is being logged
into multiple nodes, and his user name differs on each node, the Login method must be called multiple
times.

In Windows systems, the password parameter provided with the Login method is authenticated
against the user’s O/S password in the domain in which the node is located. (See “Turning On/Off
Password Checking” on page 33 for information about turning off password checking.)

For each node that the user is successfully logged into, an SWNode object
is added to the LoggedInNodes local list on the user’s SWEntUser object.
Each SWNode object contains information about work queues, work
items, groups, attributes, etc., that belong to that node.

Login Example — Single Node

See page 312 for a comprehensive example.

' Login AdminUser to "swipe" as user "swadmin"
 Set oNodeSwipe = oEntUserAdmin.Login(oNodeInfo.Key, "staffware", "swadmin")

Login Example — Multiple Nodes

See page 312 for a comprehensive example.

' Login AdminUser to 2 more nodes (user is swadmin, password ="staffware")
 NodeKeys(0) = oNodeInfoAIX.Key
 NodeKeys(1) = "swdoug2|doug1"
 oEntUserAdmin.Login NodeKeys, "staffware", "swadmin"

SWEntUser

LoggedInNodes

SWNode

SWNode

Getting Started

TIBCO iProcess Objects Programmer’s Guide 33

Turning On/Off Password Checking

Password checking can be turned on and off at two levels — at the TIBCO iProcess Engine and the
TIBCO iProcess Objects Server.

• TIBCO Process/iProcess Engine - The $SWDIR/etc/staff-
pms (UNIX) and SWDIR\etc\staffpms (Windows) file can be
modified to enable or disable O/S password checking. This is
none by specifying a “Y” or “N” in the 4th character of line 4 in
the staffpms file.

• TIBCO iProcess Objects Server - The TIBCO iProcess
Objects Server SEOPasswordRequired configuration parame-
ter allows you to override password checking if it’s required by
the TIBCO iProcess Engine (this parameter has no affect if
password checking is NOT required by the TIBCO iProcess
Engine). For information about this parameter, see the TIBCO iProcess Objects Server Admin-
istrator’s Guide.

A property is provided on the SWNode object that allows you to determine if the user’s password has
expired. The IsUserPwdExp property returns True if the user’s password has expired; it returns False
if the user’s password has not expired. (This flag is applicable only if password checking is enabled
using the methods described above.)

Logging In When Using Multiple Instances of the TIBCO iProcess Objects Server

If you are running multiple instances of the TIBCO iProcess Objects Server, the Key property on the
SWNodeInfo object identifies the instance of that server. This allows you to log into a specific
instance of the TIBCO iProcess Objects Server.

If you used the MakeNodeInfoEx method to create the SWNodeInfo object, the Login method will
validate that the instance number of the server that is being logged into matches the instance number
that was specified in the MakeNodeInfoEx method. It is possible that the server at the TCPPort spec-
ified in MakeNodeInfoEx does not have the same instance number specified in the InstanceNumber
parameter. If the instance number of the server being logged into does not match the instance in the
NodeKey, swLoginFailErr is thrown with extended text stating "server instance number mismatch".

Login Failures

Whenever there is a login error, it is always returned as an swLoginFailErr type exception. The spe-
cific details of why the login failed are in the error message string.

There is no way to return more than one error. Since you can login to more than one node with a single
login, specific reasons for the login failure is written to the error message string.

You can parse the error message string (or display or log it) to see the specific errors that occurred for
each specified key. You can also parse for the error-specific text (it starts with ": err ="). The example
below shows the error message text that is displayed if the login failed because of a WINSOCK error:

SWClient Error: Logins failed on.
seosun2|i3test|N|1 : err = Winsock problem, see Client log.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 34

Logging in Using a TIBCO iProcess Objects Director

Once the client has an SWNodeInfo object that represents a TIBCO iProcess Objects Director, the key
from that object can be passed in the NodeKeys parameter of the Login method:

Login (NodeKeys, Password, [UserName])

If the NodeKey represents a TIBCO iProcess Objects Director (IsDirector = Y), the TIBCO iProcess
Objects Director will use the “pick method” specified when the Director was configured to determine
which TIBCO iProcess Objects Server the client should connect to. Internally, a TCP connection is
established between the client and the TIBCO iProcess Objects Server that the Director selected.
From the user’s standpoint, the selection and connection to the TIBCO iProcess Objects Server is
transparent. All future transmissions while that user is logged in are made directly to the TIBCO iPro-
cess Objects Server instance.

For more information about using the TIBCO iProcess Objects Director, see the TIBCO iProcess
Objects Director Administrator’s Guide.

Logging Out

Users log out using the Logout method on SWEntUser. When a user is logged out of a node, that
node’s respective SWNode object is removed from the LoggedInNodes local list on SWEntUser.
(The Logout method allows you to log a user out of one or more nodes at a time.)

Calling the Logout method closes both the connection to the TIBCO iProcess Objects Server and the
SAL session for the user. This has implications you should consider, depending on whether you are
developing a thick client or a web-based client — see the “How often should Users be Logged In and
Out?” section below for more information.

Logout Example — Single Node

See page 312 for a comprehensive example.

' logout swadmin from swipe node
 oEntUserAdmin.Logout "seosun2|swipe"

Logout Example — All Nodes at Once

See page 312 for a comprehensive example.

' logout swadmin from all nodes
 oEntUserAdmin.Logout

How often should Users be Logged In and Out?

The answer to this question depends on the type of application you are designing.

In a thick application, users will typically log in at the start of the client application and log out when
the application is terminated. To minimize network traffic, and to optimize object re-use, thick appli-
cations should not be written so that the user is repeatedly logged in and out.

In a thin, web-based application, users should not be logged out each time they leave a web page.
When a user initially logs into a node, the TIBCO iProcess Objects Server starts a SAL session for the
user. Starting the SAL session, which maintains the state of the user throughout the session, is very
time intensive for the TIBCO iProcess Objects Server. When the user leaves the web page, they

Getting Started

TIBCO iProcess Objects Programmer’s Guide 35

should be disconnected (by calling the SWEntUser.Disconnect method), but not logged out (i.e.,
don’t call SWEntUser.Logout). The Disconnect method releases all of the user’s local object refer-
ences, but does not close their SAL session. When the user returns to the web page, a login is per-
formed, but a SAL session for the user does not need to be started since there is already one open for
that user. This causes all subsequent logins to be very fast. See “Stateless Programming” on page 270
for more information.

When Should I use Anonymous Logins?

Anonymous logins allow a user to login as a certain Staffware user, without requiring the user to enter
a password. This capability was added to support web-based applications. If the application has a need
to allow unknown users to log in, anonymous logins can be used to map an anonymous user to a valid
Staffware user. This means that the same Staffware user is being used by multiple people, and there-
fore, the application must manage any conflicts which might arise from this.

By default, anonymous logins are disabled. You can enable and configure them using the Server Con-
figuration Utility (Windows) or the swentobjsv.cfg file (UNIX). The Anonymous tab from the Server
Configuration Utility is shown below.

This utility is used to specify anonymous usernames, the Staffware usernames they map to, whether
the anonymous users inherit the admin privileges of the Staffware user, and the number of SAL ses-
sions to pool for each anonymous user.

All access as an anonymous user is handled as if accessed by a single user. Therefore, if you want to
track the person on the other end of the connection via the audit trail, you will need to use custom
fields on the procedure to store their identity, or use the user-defined audit trail.

See “Anonymous Parameters” on page 312 for more information about configuring the anonymous
user parameters. Also see the Stateless Programming chapter on page 270 for information about using
TIBCO iProcess Objects in a web-based environment.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 36

Database Configuration

The SWDatabaseConfig object exposes database configuration informa-
tion on the iProcess Engine. This object can be obtained by calling the
getDatabaseConfig method on the SWIPEConfig object.

Note - At the time of publication of this document, this functionality is
available only in the TIBCO iProcess Objects (Java) client (not COM or
C++).

The SWDatabaseConfig object provides the following methods to obtain
database configuration information:

• getProvider - The name of the database provider, which defaults to
one of the following, depending on the type of database:

- ORACLE

- SQL_SERVER

- DB2

• getComputerName - The machine name on which the database is installed.

• getTCPPort - The TCP port number used to connect to the database.

• getConnectionId - The database ID, which defaults to the following, depending on the data-
base provider:

- Oracle - Either the Oracle SID (for direct connections) or the TNS (Transparent Network
Substrate) connection name (for TNS connections).

- SQL Server - ODBC connection name.

- DB2 - DB2 alias name.

• getUserName - The iProcess Engine database foreground user name, which defaults to
"swuser".

• getPassword - The iProcess Engine database foreground user's password.

• getAdminName - The iProcess Engine database background user name, which defaults to
"swpro".

• getAdminPassword - The iProcess Engine database background user’s password.

Database Configuration Access

The TIBCO iProcess Objects Server contains a configuration parameter (DBConnectionAccess) that
is used to specify whether database configuration information is available through the
SWDatabaseConfig object. It can be set to:

• allow access to all users,

• allow access to only System Administrators (for information about System Administrator
authority, see “User Authority” on page 227),

• disable access so database configuration information is not available.

For more information about this configuration parameter, see the TIBCO iProcess Objects Server
Administrator’s Guide.

SWDatabaseConfig

getProvider

getPassword

getTCPPort

getAdminPassword

getComputerName

getConnectionId

getUserName

getAdminName

Getting Started

TIBCO iProcess Objects Programmer’s Guide 37

Activity Publication

The TIBCO iProcess Engine can be enabled to publish iProcess Engine activity information to exter-
nal applications. Any activity (i.e., anything that generates an audit trail message, for example, a case
start or deadline expiration) can be monitored and enabled for publication. This can be configured per
procedure or for all procedures, depending on your requirements. This means that an external applica-
tion can monitor important business events during the processing of cases.

Note - At the time of publication of this document, this functionality is available only in the TIBCO
iProcess Objects (Java) client (not COM or C++).

The Background process identifies if activity publication has been enabled for an activity as it is being
processed. If activity publication has been enabled, the Background process outputs Java Message
Service (JMS) messages containing details of the published activities. These JMS messages are sent to
the IAP JMS Library (Introspection and Activity Publication JMS Library).

The IAP JMS library sends the JMS messages to a specified JMS topic or queue name, from which
the external application can read the JMS messages.

For more information about introspection and activity publication, see the Monitoring Activities chap-
ter in the TIBCO iProcess Engine Administrator’s Guide.

Avtivity Publication Access

The TIBCO iProcess Objects Server contains a configuration parameter (IAPConfigAccess) that is
used to specify whether or not to allow access to activity publication configuration information. It can
be set to:

• allow access to all users,

• allow access to only System Administrators (for information about System Administrator
authority, see “User Authority” on page 227),

• disable access so activity publication configuration information is not available.

For more information about this configuration parameter, see the TIBCO iProcess Objects Server
Administrator’s Guide.

Configuring Activity Publication

Configuration information for activity publication is stored in the database. To configure activity pub-
lication information for your iProcess Engine, you must do the following:

• Generate your activity publication configuration information as XML in the form of a Message
Event Request (MER) message. You can do this using any available XML tool. The MER
message must conform to the SWMonitorList.xsd schema (which is written to the
SWDIR\schemas directory when the iProcess Engine is installed).

• Once you have generated an MER message according to your requirements, there are two ways
to update the activity publication configuration information in the database with the activity
publication configuration information in the new MER message:

- using the swutil IMPMONITOR command — for information about this command, see
the Activity Monitoring chapter in the TIBCO iProcess swutil and swbatch Reference
Guide.

- using the SWIPEConfig object — use of this object is described below.

Getting Started

TIBCO iProcess Objects Programmer’s Guide 38

Using the SWIPEConfig Object

The SWIPEConfig object contains two methods that allow you to either
get or set the activity publication configuration for the iProcess Engine to
which you connected when the SWIPEConfig object was constructed. It
contains the following methods:

• getActivityPub - This method returns an XML string containing
the activity publication configuration for the engine. You can spec-
ify that you want the configuration information for all procedures
or a specific procedure.

• setActivityPub - This method sets the activity publication configuration based on the MER mes-
sage (XML string) sent in the method call. The XML string must conform to the
SWMonitorList.xsd schema. An example MER message is shown in the next subsection.

Configuration Example

An example MER message (which conforms to the SWMonitorList.xsd schema) generated to config-
ure activity publication for a procedure called BANK01 is shown below. The table summarizes the con-
figuration generated in the MER message. The table shows:

• the activities to be monitored

• the activity number (this relates to the audit trail number — see SWAuditActionType on
page 242 — an activity number of -1 means monitor all activities)

• the steps on which activities are to be monitored (ALL means all steps in the specified proce-
dure(s))

• the field data to be published when the activity occurs.

Activity
Activity
Number

Step Name Field Name

Case start 0 ALL ACCNO

SURNAME

LOAN_AMOUNT

All -1 MTGACC01 ACCNO

SURNAME

LOAN_AMOUNT

Deadline expired 3 ALL ACCNO

SURNAME

LOAN_AMOUNT

DEAD_REASON

DEAD_DATE

Case terminated 9 ALL ACCNO

SURNAME

LOAN_AMOUNT

SWIPEConfig

getDatabaseConfig

getActivityPub

setActivityPub

getClassId

Getting Started

TIBCO iProcess Objects Programmer’s Guide 39

The MER message generated to represent this configuration is shown below:

<ProcedureMonitor xmlns="http://bpm.tibco.com/2004/IAP/MER"
xmlns:ns2="http://bpm.tibco.com/2004/IAP/1.0/SWTypes"
xmlns:ns1="http://bpm.tibco.com/2004/IAP/1.0/procedureProperties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://bpm.tibco.com/2004/IAP/MER:\Projects\1439\Docs\schemas\SWMonitorList.xsd">

<SchemaVersion>001</SchemaVersion>
<MessageType>MER</MessageType>
<FullImport>true</FullImport>

<MonitorDetail>
<Procedure Name="BANK01">

<NodeName>SWNOD1</NodeName>
</Procedure>
<GlobalFieldList>

<Field Name="REQUEST_ID"/>
<Field Name="REQUEST_DATE"/>
<Field Name="REQUEST_STS"/>

</GlobalFieldList>
<MonitorList>

<Monitor>
<ActivityList>

<Activity Num="0"/>
</ActivityList>
<StepList>

<Step Name="ALL"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>

</FieldList>

</Monitor>
<Monitor>

<ActivityList>
<Activity Num="-1"/>

</ActivityList>
<StepList>

<Step Name="MTGACC01"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>

</FieldList>

</Monitor>

DECISION

CLOSED_DATE

Activity
Activity
Number

Step Name Field Name

Getting Started

TIBCO iProcess Objects Programmer’s Guide 40

<Monitor>
<ActivityList>

<Activity Num="3"/>
</ActivityList>
<StepList>

<Step Name="MTGACC01"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>
<Field Name="DEAD_REASON"/>
<Field Name="DEAD_DATE"/>

</FieldList>

</Monitor>
<Monitor>

<ActivityList>
<Activity Num="9"/>

</ActivityList>
<StepList>

<Step Name="ALL"/>
</StepList>
<FieldList>

<Field Name="ACCNO"/>
<Field Name="SURNAME"/>
<Field Name="LOAN_AMOUNT"/>
<Field Name="DECISION"/>
<Field Name="CLOSE_DATE"/>

</FieldList>

</Monitor>
</MonitorList>

</MonitorDetail>
</ProcedureMonitor>

TIBCO iProcess Objects Programmer’s Guide 41

5
Procedures

Introduction

A business process that is automated with TIBCO tools is referred to as a “procedure.” Procedures are
defined with a TIBCO tool called the “TIBCO iProcess Modeler”. A procedure consists of a number
of “steps,” including manual steps (which require user action), automatic steps (which are executed
automatically by the server), and condition steps (which branch based on the result of a condition). An
example of a simple procedure is shown below.

Procedures are represented by the SWProc object. The SWProc object contains methods that are used
to start, close, and purge cases (instances of procedures), and properties that contain information about
the procedure definition. You can get a list of all of the procedures that are defined on a node from the
SWNode.Procs property

Typically, you will look at lists of procedures from the perspective of the
user, specifically, the list of procedures that the user can audit or start.
This is done using the AuditProcs and StartProcs properties on the
SWUser object.

After getting an SWProc object, you can get either a “view” or an
“XList” of all of the live cases of that procedure using the Cases or
CasesX properties, respectively (views and XLists are described in
“Working with Lists” on page 55). Each live case of the procedure is rep-
resented by an SWCase object.

See the “Case Management” chapter on page 230 for information about
starting and managing cases of a procedure.

SWUser

AuditProcs

SWProc

SWProc

SWProc
StartProcs

SWProc

Cases

SWCase

SWCase

SWCase

CasesX

Procedures

TIBCO iProcess Objects Programmer’s Guide 42

Procedure Version Control

Procedure version control provides the ability to create and track multiple versions of procedures.
This allows you to develop and test a modified procedure while a live version is still in use. It also
allows you to revert to a previous version if you need to. (Note - Procedure version control is only
supported on TIBCO iProcess Objects Servers version i10 or newer.)

When a procedure is created using the TIBCO iProcess Modeler, it is given a unique version number
in the form:

<MajorVersion#>.<MinorVersion#>

For example, 1.0, 1.1, 1.2, 2.1, and so on.

There can be many versions of a particular procedure on your system at one time. All versions are
saved until you explicitly delete them.

Accessing the Procedure Version Number

The major and minor version numbers are available using the following properties:

• ProcMajorVer - This returns an integer indicating the <MajorVersion#> portion of the proce-
dure's version number.

• ProcMinorVer - This returns an integer indicating the <MinorVersion#> portion of the proce-
dure's version number.

These properties are available on a number of objects, such as:

• SWProc - From this object, the version number represents the version of the procedure defini-
tion.

• SWProcAudit - From this object, the version number represents the version of the procedure at
the time the procedure was modified.

• SWCase - From this object, the version number represents the version of the procedure when
the case was started.

• SWOutstandingItem, SWDynamicSubProcCallStep, SWEventStep, SWEAIStep,
SWGraftStep - All of these objects represent outstanding steps. From these objects, the version
number represents the version of the procedure at the time the step became outstanding.

• SWAuditStep - From this object, the version number represents the version of the procedure
when the action represented by the SWAuditStep object was performed. When entries are writ-
ten to the audit trail, the procedure version number is part of the entry. This is done because the
version number may change mid-case, i.e., the case may be migrated to a new version of the
procedure, resulting in steps (work items) of a case having different version numbers. (When a
new version is created in the TIBCO iProcess Modeler, it asks you if you want existing cases of
that procedure "migrated" to the new version, or whether they should be completed under the
old version.)

Procedures

TIBCO iProcess Objects Programmer’s Guide 43

Procedure Status

Each version of a procedure also has a procedure status associated with it. The status dictates how the
procedure can be used.

• swReleased - A procedure with this status can be used in live production. Cases can be started,
with work items being processed to user’s work queues.

• swUnreleased - New procedures default to a status of swUnreleased. Work items from cases of
procedures with a status of swUnreleased go to a “test” work queue for the user or group who is
the addressee of the step. This allows the new procedure to be tested/evaluated prior to releas-
ing it.

• swModel - This is the status a released procedure has after being imported. This status allows
new versions of a procedure to be imported without overwriting an existing released or unre-
leased version. Work items from cases of procedures with a status of swModel go to a “test”
work queue for the user or group who is the addressee of the step. This allows the new version
to be tested/evaluated prior to adopting it on the target system.

• swWithdrawn - Procedures with this status are no longer used in a production environment.
Cases cannot be started against a withdrawn procedure. When a procedure is given a status of
withdrawn, existing cases of the procedure are run to completion.

• swIncomplete - A procedure with this status cannot be run because it has required information
missing — for example, a step without an addressee, or a step without a connection from a pre-
vious step. This procedure status is not supported in TIBCO iProcess Objects, i.e., procedures
with this status are not returned by the TIBCO iProcess Objects Server.

• swWithdrawnIncomplete - An incomplete procedure that has been withdrawn. This procedure
status is not supported in TIBCO iProcess Objects, i.e., procedures with this status are not
returned by the TIBCO iProcess Objects Server.

Notice that for any particular procedure, there can only be:

• one swReleased version,

• one swModel version,

• one swUnreleased version, and

• any number of swWithdrawn versions.

You can determine a procedure’s status by calling the SWProc.Status property. They are enumerated
in SWProcStatusType.

If multiple versions of a procedure exist, one of those versions is considered the "current" version.
The "current" version is defined as the version with the highest status (SWProc.Status), according to
the following status hierarchy:

swReleased -> swUnreleased -> swModel -> swWithdrawn (most recent)

For example, if a particular procedure has a version with a status of swReleased, that is the "current"
version. If the procedure doesn't have a version with a status of swReleased, but has one with a status
of swUnreleased, that is the "current" version, and so on.

Some properties/methods act upon or list only the "current" version of a procedure (e.g., the Procs
property only returns the “current” version of each procedure — in the next subsection).

Procedures

TIBCO iProcess Objects Programmer’s Guide 44

Listing Versions of a Procedure

If you are operating with a TIBCO iProcess Objects Server that supports procedure versions (version
i10 or newer), the Procs property will return a list containing the "current" version of each procedure
on the node. See the previous section for information about "current" versions. (With earlier versions
of the TIBCO iProcess Objects Server, the Procs property returns all procedures, regardless of their
Status (except swIncomplete, which is not supported by TIBCO iProcess Objects).

With procedure version control, you can also obtain a list of ALL versions of procedures using the fol-
lowing property:

• SWNode.ProcGroups - This property returns a list of SWProcGroup objects. Each SWProc-
Group object represents a procedure defined on the node.

Then for each procedure returned by ProcGroups, you can access all of the versions available for that
procedure using the following property:

• SWProcGroup.ProcVersions - This property returns a list of SWProc objects, each represent-
ing a specific version of the procedure. This allows you access to ALL versions of the proce-
dure.

Accessing a Specific Procedure Version

The "key" for a procedure contains a procedure version component (ProcMajorVer|ProcMinorVer) so
that you can obtain an SWProc object for a specific procedure version using the ItemByKey method.

SWProc.Key = HostingNode|Name|ProcMajorVer|ProcMinorVer

This would typically be used to extract a specific procedure version from a list of procedures returned
by SWNode.Procs, SWUser.AuditProcs, SWUser.StartProcs, or SWProcGroup.ProcVersions.

Making Different Versions of Procedures

Procedures must be defined using the TIBCO iProcess Modeler. Once a procedure has been created
and saved with the TIBCO iProcess Modeler, the procedure definition can be accessed using TIBCO
iProcess Objects. A procedure definition is represented by an SWProc object.

The previous section describes the normal ways of accessing procedures that are defined on a node.
These methods, however, require you to traverse the object model hierarchy to locate the desired pro-
cedure.

There are also "make" methods that allow you to "make" an SWProc object without traversing the
object model hierarchy. These methods allow you to specify a version number or status in the method
call:

• MakeProc - This method accepts optional version numbers to specify that you want the
method to return a particular version of the procedure, as follows:

MakeProc (ProcName, [NodeName], [ProcMajorVer], [ProcMinorVer])

• MakeProcByStatus - This method allows you to specify the status of the procedure you would
like returned:

MakeProcByStatus (ProcName, ProcStatus, [NodeName])

You can specify that this method return procedures that have a status of swReleased, swUnre-
leased, or swModel.

Procedures

TIBCO iProcess Objects Programmer’s Guide 45

You can also make an SWStep object from a specific version of a procedure using the following
method:

• MakeStep - This method allows you to optionally specify the procedure version number in the
method call, as follows:

MakeStep (StepName, [NodeName], [ProcMajorVer], [ProcMinorVer])

Using the Tag Property to Make Specific Versions

The Tag property for both SWProc and SWStep contain a procedure version component, as follows:

SWProc.Tag = NodeName|ProcName|ProcMajorVer|ProcMinorVer

SWStep.Tag = NodeName|ProcName|StepName|ProcMajorVer|ProcMinorVer

This allows you to save the procedure or step tag from a specific version of procedure, then use that
tag to "make" an SWProc or SWStep object for that specific version of procedure by passing the tag in
the MakeProcByTag or MakeStepByTag method, respectively. Note that these methods are back-
ward compatible with older versions of the TIBCO iProcess Objects Server that do not support proce-
dure version control, i.e., they will accept tags with or without the procedure version component.

Procedure Version Details

The SWProc object also contains the following properties that provide information about the version
of the procedure:

• DateReleased - This returns the date and time the procedure was released. If it has not been
released, this property returns 12/31/3000 11:15:00 PM.

• DateCreated - This returns the date and time this version of the procedure was created.

• DateModified - This returns the date and time this version of the procedure was last modified.
If this version of the procedure has not been modified, this returns 12/31/3000 11:15:00 PM.

• DateWithdrawn - This returns the date and time this version of the procedure was withdrawn.
If this version of the procedure has not been withdrawn, this returns 12/31/3000 11:15:00 PM.

• LastUpdateUser - This returns the name of the user that last updated this version of the proce-
dure.

• VersionComment - This returns the comment that was entered by the user who last updated the
procedure.

Procedures

TIBCO iProcess Objects Programmer’s Guide 46

Procedure Audit Trails

When procedures are modified in the TIBCO iProcess Modeler, information about the modification is
written to an audit trail. This procedure audit trail information is available in the following property on
SWProc:

• ProcAudits - This property returns a list of SWProcAudit objects, each representing a specific
modification to the procedure definition. Note that for procedure audit data to be retrieved from
the server and placed in this property, you must set the SWProc.IsWithAuditData flag to True.

The SWProcAudit object contains the following properties, which provide information about the
procedure modification:

• Action - Describes the modification made to the procedure — these actions are defined in the
enumeration type SWProcAuditActionType.

• Comment - User comments concerning modifications made to the procedure.

• Date - The date and time the modification occurred.

• ProcMajorVer - The "major" portion of the procedure version number.

• ProcMinorVer - The "minor" portion of the procedure version number.

• User - The name of the user who made the modifications.

Sub-Procedures

Sub-procedures provide the ability for a case of one procedure to start a case of another procedure as
one of its steps. When the case of the child procedure has completed, the actions of the sub-procedure
call step in the parent case are processed just as for a normal step

When a sub-procedure is started (as in the CALLSUB1 step above), flow is halted along that particu-
lar path of the calling procedure until the sub-procedure has completed.

Procedures

TIBCO iProcess Objects Programmer’s Guide 47

When a procedure is defined in the TIBCO iProcess Modeler, you specify that it is either a “main”
procedure or a “sub-procedure”. A main procedure is started directly with the StartCaseEx method.
An instance (sub-case) of a sub-procedure can only be started by one of the follow types of steps in a
procedure:

• Sub-procedure call step - This type of call step (also called a “static” sub-procedure call step)
starts a single case of a sub-procedure. When the sub-procedure call step is defined in the
TIBCO iProcess Modeler, you specify the sub-procedure that will be started when the process
flow reaches the sub-procedure call step. See “Sub-Procedure Call Steps” on page 47 for more
information.

• Dynamic sub-procedure call step - This type of call step allows you to dynamically start one
or more sub-procedures. When the dynamic sub-procedure call step is defined in the TIBCO
iProcess Modeler, rather than specifying the sub-procedures to start, you specify the name of an
array field. At run-time, the client application will write the names of sub-procedures into the
elements of the array field. When the process flow reaches the dynamic sub-procedure call step,
the sub-procedures specified in the elements of the array field are started. See “Dynamic Sub-
Procedure Call Steps” on page 48 for more information.

• Graft steps - This type of call step is similar to a dynamic sub-procedure call step in that it
allows you to dynamically start one or more sub-procedures. The way in which it differs is that
it allows the application to start multiple sub-procedures as part of a “task”. A task can also
involve starting external processes, and you can start multiple tasks. See “Using Graft Steps” on
page 259 for more information.

Note that sub-procedures can be many levels deep, i.e., a sub-procedure can also contain a sub-proce-
dure call step, and the sub-procedure started by that call step can contain a graft step, and so on.

Also, a sub-procedure case cannot be directly closed or purged — although the main case from which
the sub-procedure was called can be closed or purged.

The TIBCO iProcess Objects provide read-only access to the properties associated with sub-proce-
dures. Therefore, access is provided to the definition of sub-procedures, but they may only be defined
and modified in the TIBCO iProcess Modeler, and not through TIBCO iProcess Objects.

Sub-Procedure Call Steps
When a sub-procedure call step (also called a “static” sub-procedure call step) is defined in the
TIBCO iProcess Modeler, you specify the name of the sub-procedure to start when the process flow
reaches the sub-procedure call step. This name is available in the SubProcName property on the
SWStep object that represents the sub-procedure call step (where SWStep.Type = swSubProcCall).

When a sub-procedure call step is defined, you can also specify a start step other than the default start
step. The name of this alternative start step is available in the SubProcStartStep property on the
SWStep object that represents the sub-procedure call step. If a start step other than the default start
step was not specified, the SubProcStartStep property will return an empty string.

Sub-Procedure Start Precedence

When you start a main procedure with the StartCaseEx method, you can also specify a SubProcPre-
cedence parameter that allows you to specify the “precedence” of sub-procedure versions (released,
unreleased, or model) that are launched from the main procedure. In other words, you are telling it
which version to look for first, second, then third. For example, you can specify that it look for unre-
leased, then model, then released versions. The default is to start only released versions. See “Sub-
Procedure Precedence” on page 233 for more information.

Procedures

TIBCO iProcess Objects Programmer’s Guide 48

Dynamic Sub-Procedure Call Steps

A "static" sub-procedure call step always starts a case of the same sub-procedure, whereas a
“dynamic” sub-procedure call step allows you to specify at run-time the names of one or more sub-
procedures to start. When a dynamic sub-procedure call step is processed (as an action of another
step), all of the sub-procedures specified are started. The TIBCO iProcess Engine will keep track of
all of the sub-procedures that were started — when they have all completed, it will process the step's
"release actions".

Dynamic sub-procedure call steps work in the same way as static sub-procedure calls, with the follow-
ing exceptions:

• Sub-Procedures to Start - When a dynamic sub-procedure call step is defined in the TIBCO
iProcess Modeler, you do not specify the sub-procedures that will be started when the step is
processed. Instead, you specify an "array field", which can contain multiple elements that are
accessed by index. At run-time, the application must write the names of the sub-procedure to
start in the elements of the array field. When the step is processed, those sub-procedures are
started.

The name of the array field containing the names of the sub-procedures to start is available in
the SWStep.SubProcName property.

If no elements of the "sub-procedures to start" array field are assigned when the step is pro-
cessed, the step is immediately released and its actions are performed.

See “Array Fields” on page 94 for information about how array fields are used with dynamic
sub-procedure calls.

• Sub-Procedure Start Steps - When a dynamic sub-procedure call step is defined in the TIBCO
iProcess Modeler, you can specify an array field whose elements will contain alternative start
steps at which each sub-procedure will be started. At run-time, the application can write the
names of the start steps corresponding to the sub-procedures in the array field in the SubProc-
Name property.

The name of the array field containing the names of the start steps on which to start is available
in the SWStep.SubProcStartStep property.

If an element that corresponds to one of the sub-procedures is empty when the step is pro-
cessed, that sub-procedure will start on its default start step.

See “Array Fields” on page 94 for information about how array fields are used with dynamic
sub-procedure calls.

• Return Status - When a dynamic sub-procedure call step
is defined in the TIBCO iProcess Modeler, you can spec-
ify an array field, whose elements will contain a return sta-
tus for each corresponding sub-procedure started by the
dynamic sub-procedure call step. The name of the array
field containing the return statuses is reflected in the
SWStep.SubProcStatus property. The elements of the
array field will return an SWSubProcStatusType enumer-
ation, identifying each sub-procedure's current status
(whether it's started, completed, encountered an error,
etc.), as shown in the table on the right.

SWSubProcStatusType

swNoAttempt 0

swStarted 1

swCompleted 2

swErrSubProc -1

swErrTemplate -2

swErrInTemplateVer -3

swErrOutTemplateVer -4

Procedures

TIBCO iProcess Objects Programmer’s Guide 49

The return status for each sub-procedure that is started by the dynamic sub-procedure call step is
also available in ReturnStatus property on the SWSubProcStep object that represents the sub-
procedure that was started by the dynamic sub-procedure call step.

• Error Processing - Dynamic sub-procedure call step definitions provide options that allow the
definer to specify how continued processing will occur if an error is encountered during process-
ing. These options are reflected in the following properties on SWStep:

- IsHaltOnSubProc - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify non-existent sub-procedures.

- IsHaltOnTemplate - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify sub-procedures that do not use the same
parameter template. (Parameter templates are used when defining procedures to ensure that the
same input and output parameters are used when starting multiple sub-procedures from a
dynamic sub-procedure call step — see the TIBCO iProcess Modeler Advanced Design Guide
for information about parameter templates.)

- IsHaltOnTemplateVer - Returns True if processing should be halted when the "sub-proce-
dures to start" array field contains elements that specify sub-procedures that do not use the
same version of parameter template.

These options for halting processing on specific error conditions have the following affects:

Errors during initial processing (when the dynamic sub-procedure step is processed as an action of
another step):

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
TIBCO iProcess Engine. (This is specified with a background attribute:
IQL_RETRY_COUNT = the number of times the message will be retried;
IQL_RETRY_DELAY = the number of seconds between retries.) If the message retries do
not result in a successful initial processing, the following apply:

• Processing of the entire step is halted at this point — it will always be left "waiting"
for the sub-case that's in error to be completed.

• All sub-procedures that have been started from the step are rolled back.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The other valid sub-procedures specified in the SubProcName array field are started as usual.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Errors during completion processing of one of the sub-cases:

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
TIBCO iProcess Engine. (This is specified with a background attribute:
IQL_RETRY_COUNT = the number of times the message will be retried;
IQL_RETRY_DELAY = the number of seconds between retries.) If the message retries do
not result in a successful completion processing, the following apply:

Procedures

TIBCO iProcess Objects Programmer’s Guide 50

• Processing of the entire step is halted at this point — it will always be left "waiting"
for the sub-case that's in error to be completed.

• The "sub-case completed" transaction for the sub-case in error is aborted -- this does
not cause transactions from other valid sub-case completions to be aborted.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The "sub-case completed" transaction for the sub-case in error is ignored (including
returned output parameter data).

- The status of the sub-case is set to "complete" so that the step can be released when all
other sub-cases complete.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Note that if none of the “halt on” selections are selected in the TIBCO iProcess Modeler, and one of
the error conditions are encountered (e.g., sub-procedures using different templates), the process will
continue, which could possibly result in errors in case data.

Passing Data between a Main and Sub-Procedure

Field values can be exchanged between a parent and child sub-case at the time a sub-case is started,
and again when it completes. The list of fields passed to and from the child case is specified when the
sub-procedure call step or dynamic sub-procedure call step is defined in the TIBCO iProcess Modeler.

The SWStep object that represents either a sub-procedure call step or a dynamic sub-procedure call
step contains the following properties to access the list of fields that are passed to and from the child
case (if such fields have been specified in the call step):

• InToFldNames - Local list of destination fields, in the sub-case, that receive values at sub-
case start.

• InFromFldNames - Local list of source fields, from the parent case, whose values are passed
to the sub-case when it starts.

• OutToFldNames - Local list of destination fields, in the parent case, that receive values from
the sub-case when it terminates.

• OutFromFldNames - Local list of source fields, from the sub-case, whose values are passed
to the parent case when the sub-case terminates.

Outstanding Sub-Procedures / Sub-Procedure Call Steps

Sub-procedure call steps and sub-procedures can become “outstanding” for the following reasons:

• The process flow reaches a sub-procedure call step. This causes the sub-procedure call step to
become outstanding. The process flow is halted along that path of the procedure, and the sub-
procedure is started. The sub-procedure call step remains outstanding until the sub-procedure
completes, at which time the process flow will continue to the next step in the procedure.

• A sub-procedure is started by a dynamic sub-procedure call step because the process flow has
reached the dynamic sub-procedure call step. This causes the sub-procedure that is started to
become outstanding. The sub-procedure will remain outstanding until it completes.

Procedures

TIBCO iProcess Objects Programmer’s Guide 51

• A sub-procedure is started by a graft step when the sub-procedure is specified in the start-
GraftTask method. This causes the sub-procedure that is started to become outstanding. The
sub-procedure will remain outstanding until it completes.

Every outstanding sub-procedure
call step and sub-procedure that is
started by an outstanding dynamic
sub-procedure call step or graft step
results in an SWSubProcStep
object.

It’s important to note that the
SWSubProcStep object can repre-
sent either a sub-procedure call step
or a sub-procedure.

The SubProcSteps property on
SWCase returns a list of SWSub-
ProcStep objects, one for each sub-
procedure call step that is currently
outstanding in the case.

The SubProcSteps property on the
SWDynamicSubProcStep and
SWGraftStep objects returns a local
list of SWSubProcStep objects, one for each sub-procedure that was started by the dynamic sub-pro-
cedure call step or graft step. This property will continue to be populated with a SWSubProcStep
object for each sub-procedure that was started, even after the sub-procedure has completed. You can
determine if a sub-procedure is still outstanding (hasn’t completed yet) by accessing the IsOutstand-
ing property on the SWSubProcStep object that represents the sub-procedure you are interested in.

Sub-Procedure Proc Path

The SubProcPath property on SWSubProcStep will return either the path to a sub-procedure call step
(if the SWSubProcStep object represents an outstanding sub-procedure call step) or to a sub-proce-
dure (if the SWSubProcStep object represents a sub-procedure started by a dynamic sub-procedure
call step or graft step).

The illustration below shows example strings returned by the SubProcPath property for a variety of
outstanding sub-procedure call steps and sub-procedures.

SWSubProcStep

< ClassId

< Deadline

< IsOutstanding

< Key

< ReturnStatus

< StartIndex

< StepName

< SubCaseId

< SubCaseNumber

< SubCaseTag

< SubProcMajorVer

< SubProcMinorVer

< SubProcName

< SubProcNode

< SubProcPath

< Arrived

SWCase.SubProcSteps
(outstanding sub-procedure call steps)

SWDynamicSubProcStep.SubProcSteps
(sub-procedures started)

SWGraftStep.SubProcSteps
(sub-procedures started)

Procedures

TIBCO iProcess Objects Programmer’s Guide 52

If an outstanding sub-procedure call step is in the main procedure, its SubProcPath will simply consist
of the name of the sub-procedure call step (see SubCallA in the example).

If the outstanding sub-procedure call step is located in a sub-procedure, the SubProcPath string will
consist of the name of each sub-procedure call step leading to that outstanding sub-procedure call
step, followed by the step name, each separated by a vertical bar (see SubCallD in the example).

If the case family contains any dynamic sub-procedure call steps or graft steps that start multiple sub-
procedures (see the Dynamic or Graft steps in the example), the name of the dynamic sub-procedure
call step or graft step in the SubProcPath will include a StartIndex in square brackets. The StartIndex
(which is zero based) indicates the sequential order in which the sub-procedure was started by the
engine for that dynamic sub-procedure call step or graft step. It is used in the SubProcPath to be able
to identify the path through multiple sub-procedures to the desired outstanding item.

In addition to appearing in the SubProcPath as illustrated above, you can also determine the StartIn-
dex for any particular sub-procedure that was started by a dynamic sub-procedure call step or graft
step by accessing the StartIndex property on the SWSubProcStep object that represents that sub-
procedure.

The StartIndex is not applicable to sub-procedures that are started from a sub-procedure call step. If
the sub-procedure was started from a sub-procedure call step (rather than a dynamic sub-procedure
call step or graft step), the StartIndex property on the SWSubProcStep object that represents the sub-
procedure call step will return -1.

Step/SubProc ProcPath

SubCallA “SubCallA”

SubCallD “SubCallA|SubCallD”

Dynamic “Dynamic”

Graft “Dynamic[0]|Graft”

SubProcB “Dynamic[0]”

SubProcC “Dynamic[1]”

SubProcE “Dynamic[0]|Graft[0]”

SubProcF “Dynamic[0]|Graft[1]”

Note - Since SubProcA and SubProcD are
started by sub-procedure call steps, they
do not result in vSubProcItem objects.

Procedures

TIBCO iProcess Objects Programmer’s Guide 53

Public Steps

When a step is defined with the TIBCO iProcess Modeler, the step can be designated a “public step.”
Public steps provide the ability to specify that those steps can be used as "start case at" or "trigger
event on" steps. This facility allows an application to limit case starting and event triggering to only
those steps that have been designated as valid steps for those functions if it wishes to do so. TIBCO
iProcess Objects do NOT enforce this limitation — it is the responsibility of the application to enforce
this limitation if it so desires.

Note - Public steps are available only if you are using a TIBCO iProcess Engine.

The following table lists the types of steps that can be designated public steps when they are defined
with the TIBCO iProcess Modeler:

The SWStep object has the following properties to support public steps:

• IsPublic - Flag that returns True if the step has been defined as a “public step”.

• PublicFields - For a step that has been designated as a public step, you can also specify fields as
being “public fields”. The PublicFields property returns an SWList of SWPublicField objects, one
for each field that has been designated as a public field on that public step.

• PublicStepDesc - Description of the public step (which may differ from the SWStep description).

• PublicStepURL - A URL that may be used as a link for additional information about the public
step.

For each field on a public step that has been designated as a public field, an SWPublicField object is
created. This object has the following read-only properties:

• ClassId - Identifies the class.

• Description - A description of the public field.

• IsMandatory - Flag indicating whether or not this public field is man-
datory. As described above (in the PublicFields description), data entry
in public fields that are flagged as mandatory is not enforced by TIBCO
iProcess Objects. It is up to the application to enforce this requirement.

• Key - Uniquely identifies the object in a list of objects (Key = Name).

• Name - The name given the public field.

Can be Public Step Cannot be Public Step

Normal step EIS step

Complex router step Script step

Event step Auto stepa

a. Not available if using a TIBCO iProcess Objects Server version i10 or
newer.

EAI step Open client stepa

Sub-procedure call step

Dynamic sub-procedure call step

Graft step

SWPublicField

< Description

< IsMandatory

< Key

< Name

< ClassId

Procedures

TIBCO iProcess Objects Programmer’s Guide 54

Public Fields are provided so that an application can identify mandatory and optional input fields
(based on the SWPublicField.IsMandatory property). Again, it is up to the application to enforce
whether data input into a public field is mandatory. TIBCO iProcess Objects do NOT enforce this
requirement, nor return errors if data is not entered into mandatory fields.

TIBCO iProcess Objects Programmer’s Guide 55

6
Working with Lists

Types of Lists Available

Many of the properties (methods in Java and C++) return a list of items when the property/method is
accessed. This list is in the form of a list object. List objects are special objects that contain lists of
other objects or strings (only SWLists and SWLocLists contain strings). There are four types of list
objects:

• SWList - This type of list contains objects (or strings) retrieved from the TIBCO iProcess
Engine, for example, all of the procedures (SWProc objects) that are defined on a node, all of
the steps (SWStep objects) that are defined for a particular
procedure, etc. The information in SWLists tends to be rel-
atively static.

• SWLocList - These are called “local lists,” primarily
because they are maintained locally by the client applica-
tion. Methods are provided that can be used by the pro-
grammer to add and delete objects from the local list. Local
lists can also be filled with information from the server.

• SWView - “Views” are a special form of list that hold only
two types of objects — SWCase or SWWorkItem. The
SWView object is similar to the SWList object in that it
contains objects that are retrieved from the TIBCO iProcess
Engine, except it also has properties that are used to filter
and sort the SWCase and SWWorkItem objects. The only
way a client can limit the number of objects returned from
the server to the SWView is to use a filter or set the MaxCnt
property.

Note - Because of improved efficiency, all new code should
use SWXLists instead of SWViews.

• SWXList - “XLists” are very similar to views, except for
one very important distinction. SWXLists are designed to
allow the programmer to control the number of objects in
the list at any given time and to allow non-sequential
access. Therefore, only a specified number of objects from
the TIBCO iProcess Engine are retrieved at one time,
allowing you to minimize network traffic and maximize
efficiency.

When viewing the object model graphics (provided on each distri-
bution CD), you can determine if and what type of list is returned
by a particular property or method (as shown in the illustration
above).

SWProc

< AdminByUserRef

< CaseCnt

< CaseDescOpt

< Cases

< CasesX

< ClassId

< ClosedCnt

< DateCreated

< DateModified

< DateReleased

< DateWithdrawn

< Description

< Duration

< ExtraPNumCnt

< Fields

< ActiveCnt

<> IsWithAuditData

< IsWorkDays

< Key

< LastCaseNumber

< LastUpdateUser

< Name

< NetworkNodeNames

< O

< IsSubProc

VL

L

LL

< HostingNode

< IsAutoPurge

< IsIgnoreBlank

< IsNetworked

< IsPrediction

<> IsRebuildAll

< FirstDeadline

XL

SWView

SWXList

SWLocList

SWList

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 56

How to Determine the Type of Object in a List

All list objects are homogeneous, containing only a single type of object or string. Every type of list
object has a Type property that indicates the type of object in the list.

Below are enumerations that are returned in the Type property to identify the type of object in the list.

Objects on SWLists:
swNodeInfoID = 1 swTableID = 49
swUserID = 2 swTableFieldID = 50
swRoleID = 3 swDateValueID = 51
swProcID = 4 swTimeValueID = 52
swAttributeID = 5 swNumericValueID = 53
swGroupID = 6 swAWorkQID = 60
swWorkQID = 7 swParticipationID = 61
swBstrID = 8 swCaseDataQParamDefID = 64
swAutoFwdID = 9 swPublicFieldID = 66
swFwdItemID = 10 swOutstandingItemID = 67
swFieldID = 11 swSubProcStepID = 68
swStepID = 12 swPredictedItemID = 69
swAuditStepID = 13 swProcAuditID = 76
swOSUserID = 14 swProcGroup = 77
swFMarkingID = 43 swGraftStepID = 78
swFConditionalID = 44 swEAIStepID = 79
swFRowID = 45 swEventStepID = 80
swListValidationID = 48 swDynamicSubProcStepID = 81

swTransControlStepID = 83

Objects on SWLocLists:
swBstrID = 8 swMarkingID = 23
swNodeID = 15 swEntUserID = 24
swConfigInfoID = 16 swActionID = 25
swSALInfoID = 17 swConditionalID = 26
swClientInfoID = 18 swDeadlineValueID = 27
swThreadInfoID = 19 swFMarkingID = 43
swQSessionInfoID = 20 swLabelID = 46
swActiveUserID = 21 swCaseDataQParamID = 65
swSortFieldID = 22 swCasePredictQParamID = 70

swExtProcessID = 82

Objects on SWViews
swCaseID = 28
swWorkItemID = 29

Objects on SWXLists
swUserID = 2 swCaseID = 28
swGroupID = 6 swWorkItemID = 29
swOSUserID = 14 swPredictedItemID = 69

Note that every object also has a ClassId property that identifies that particular object. They are iden-
tified by the enumerations shown above.

Note the swBstrID enumera-
tion shown for SWLists and
SWLocLists. This is the enu-
meration that is returned if
the list contains strings.
(BSTR strings are a type of
unicode string used in COM.
In Java, Java strings are
returned. In C++, pointers
to null-terminated “C”
strings are returned.)

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 57

Lists are Filled Asynchronously

An important thing to remember when accessing items on a list is that, by default, the items are
retrieved from the server asynchronously (except SWLocLists). This means you can access the first
items that have been retrieved before the download is complete.

Asynchronous transmission of data between the server and client is the most efficient means of trans-
mission. It allows the client to get quick access to large data streams, especially when accessing a list
containing thousands of cases or work items. The client can begin filling controls on the screen with
data without having to wait for the server to complete sending the entire data set.

How to Force Synchronous Behavior

A property has been provided on both the SWList and SWView objects that forces synchronous
behavior for item retrieval. Use this property if you want to ensure that all data has been received from
the server without an error before processing it. Setting the IsWaitForAll property to True tells the
client to not create objects from the raw data buffers and add them to the SWList or SWView until all
items have been received from the TIBCO iProcess Objects Server.

This behavior comes at a price, however. None of the items in the list are available to the client until
all items have been received from the server, which could be a significant amount of time with large
lists.

Even though asynchronous transmission between the server and client is the most efficient, there are
instances in which a programmer may want to force synchronous transmission. One reason is when
data integrity is more important than speed. Applications that must process all items and want to guar-
antee that all data is received before processing would want to set IsWaitForAll to True. The TIBCO
iProcess Objects Server only sends the status of the request in the final segment of the reply, so until
the entire reply is received, the client does not know if the request completed successfully. Also, trans-
mission errors could disrupt the reply.

In these situations, the client would have to catch the error and deal with it, even though it may have
already processed some of the data received from the server. The following is an example of using the
IsWaitForAll property.

Example — Synchronous Behavior

See page 322 for a comprehensive example.

Set oWorkQList = oUser.WorkQs
 oWorkQList.IsWaitForAll = True
 For Each oWorkQ In oWorkQList
 Debug.Print "Name: " & oWorkQ.Name & "; Description: " _
 & oWorkQ.Description
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count
 Next

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 58

Determining the Number of Objects in a List or View

To determine the number of objects in an SWList or SWView, you need to understand how data is
retrieved from the TIBCO iProcess Objects Server and added to a list. A consequence of the asynchro-
nous transmission of data between the TIBCO iProcess Objects Server and client is that the Count
property on SWList and SWView tells you “how many items are currently on the list at the client”
(i.e., received from the TIBCO iProcess Objects Server so far).

The Count property will not match the total number of items available on the server until all items
have been created into objects and added to the list at the client. One way to know that this has hap-
pened is to check to see if the IsEOL property is True. If IsEOL is True, it means “the last item you
accessed is the last item on the list.”

What’s important to understand about the IsEOL property is that it’s ONLY True when the last item
you accessed was the last item in the list. If another item in the list is subsequently accessed, IsEOL is
then set to False.

In the example below, the Count property will contain the total number of items in the list because the
While loop accesses all items available until it reaches the end of the list (EOL).

See page 322 for a comprehensive example.

oWorkQList.Rebuild
 oWorkQList.IsWaitForAll = False
 i = 0
 oWorkQList.IsEOL = False
 While (oWorkQList.IsEOL = False)
 Debug.Print "Name: " & oWorkQList(i).Name & "; Description: " _
 & oWorkQList(i).Description
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count
 i = i + 1
 Wend

Note that using Item, ItemByKey, IsEOL, and Count cause a message to be sent to the server
requesting data, which always has the potential of generating an error. Because of this, you need to
always include error handling code in case an error is generated as a result of the communication with
the server (the comprehensive example on page 322 includes this error handling code).

More information about counts and how items are accessed on lists is provided in the remaining sec-
tions of this chapter.

What about SWXLists?

Item counts work a little differently when using SWXLists in comparison to SWLists and SWViews.
The SWXList object also has a Count property that tells you the number of items currently in the
XList at the client, but it also has an ItemCount property that tells you the number of items that are
available from the server. The ItemCount value is immediately available without having to access the
items in the list because the TIBCO iProcess Objects Server creates a corresponding list that holds all
of the items accessed (see “Determining the Number of Items in an XList” on page 80 for more infor-
mation about how ItemCount works).

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 59

SWLists

SWLists are objects that hold lists of other objects or strings. The SWList
object provides methods (Item and ItemByKey) that are used to access the
items (objects or strings) that are on the SWList. It also provides proper-
ties to determine the number of items that are currently on the SWList
(Count) and the type of objects it contains (Type).

The items that are in an SWList are retrieved from the TIBCO iProcess
Engine. Typically, SWLists contain information that is relatively static. A
couple of examples are:

• SWGroup objects in the Groups property on SWNode.

• SWAuditStep objects in the AuditSteps property on SWCase.

These examples are shown below.

Notice the “L” next to Groups and AuditSteps, indicating that those properties return an SWList
(these illustrations are from the object model graphics provided on each distribution CD).

How SWLists are Created and Populated at the Client

Creating and populating an SWList consists of these actions:

• The client requests data from the
TIBCO iProcess Objects Server. This
causes raw data to be sent from the
TIBCO iProcess Engine to the
TIBCO iProcess Objects Server, then
to the raw data buffers on the client.

• Objects are created from the raw
data, then added to the SWList on the
client.

Although there are several properties and
methods that, when accessed, cause a mes-
sage to be sent to the TIBCO iProcess
Objects Server requesting that data be sent
to the raw data buffers on the client, objects
are created and added to the SWList only when you attempt to access the objects on the SWList. This
is done for efficiency reasons — if a large number of objects (some lists contain tens of thousands of
objects) were immediately created and added to the SWList, a significant amount of system resources
and memory may be consumed even though you only intend to access a few items on the list.

SWList

< Count

<> IsEOL

<> IsWaitForAll

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

L

SWNode

< ClassId

< ComputerName

< Groups

< GroupsX

< Key

< Attributes L

L
XL

SWGroup

< ClassId

< Description

< Key

< Attributes L

SWCase

< CaseFieldNames

< CaseNumber

< CaseReference

< AuditSteps

LL

L

<> AuditFilterExpr

SWAuditStep

< ClassId

< Date

< Description

< IsOutstanding

< Key

< Action

TIBCO
iProcess
Engine

TIBCO iProcess
Objects Server

Raw Data Buffers

SWList

TIBCO iProcess Objects

Request Message

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 60

What Causes Raw Data to be Sent to the Client?

When certain properties and methods are executed, a message is sent to the TIBCO iProcess Objects
Server requesting that the most current data be sent from the TIBCO iProcess Engine to the raw data
buffers on the client. Which properties and methods cause the message to be sent depends, however,
on whether or not the SWList is currently empty.

An SWList may be empty for the following reasons:

• It’s the first time the list has been accessed since it was created.

• The Clear method has been called on the list.

If the SWList is currently empty, any one of these properties/methods will cause a message to be sent
to the TIBCO iProcess Objects Server requesting the updated data:

• IsEOL - Note that in COM, this is a read/write property. When you “access” the property, i.e.,
you determine if its value is True or False, it sends a message to the server requesting the most
recent data. Whereas, if you “set” its value to True or False, it does not send a message to the
server requesting the most recent data. Likewise, in C++ and Java, getIsEOL sends a message
requesting updated data; setEOL does not.

oProcs.IsEOL = false ‘does not send a message to server
While Not (oProcs.IsEOL) ‘sends a message requesting data

• Count - Even though this property sends a message to the TIBCO iProcess Objects Server
requesting updated data, it does not immediately tell you how many items are in the list. This is
because of the asynchronous transmission between the server and client. See “Determining the
Number of Objects in a List or View” on page 58 for more information.

• Rebuild - This method sends a message to the TIBCO iProcess Objects Server requesting
updated data.

• Item - This method is attempting to access a specific item on the list based on an index. But the
list is empty, so it sends a message to the TIBCO iProcess Objects Server requesting data, then
returns the requested item to the client. For more information, see the next subsection, “What
Causes Objects to be Created and Added to an SWList?”.

• ItemByKey - This method is attempting to access a specific item on the list based on a key. But
the list is empty, so it sends a message to the TIBCO iProcess Objects Server requesting data,
then returns the requested item to the client. For more information, see the next subsection,
“What Causes Objects to be Created and Added to an SWList?”.

If the SWList currently contains items, the following method sends a message to the TIBCO iProcess
Objects Server requesting the most recent data:

• Rebuild - This method causes the current list at the client to be cleared and a message to be sent
to the TIBCO iProcess Objects Server requesting the most recent data.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 61

What Causes Objects to be Created and Added to an SWList?

After data has been requested from the server and received in the raw data buffers on the client, it is
held in the buffers until you attempt to access an item. At that time, the raw data is used to create the
objects and they are added to the list at the client.

The following methods cause one or more objects to be created from the raw data and added to the
SWList:

• Item - This method returns the object identified by the index parameter provided in the method
call. If the object is not already on the list, it creates as many objects as necessary, in sequential
order, up to the index value (which is zero based), and adds them to the SWList. For example, if
you request “Item(25)”, objects 0-24 are created and added to the list, and the requested object
is returned to the client (note that “Item” need not be included in your code, as in the example
below, since it is the default method on all list objects).

 i = 0
 oWorkQList.IsEOL = False
 While (oWorkQList.IsEOL = False)
 Debug.Print "Name: " & oWorkQList(i).Name & "; Description: " _
 & oWorkQList(i).Description
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count
 i = i + 1
 Wend

See page 322 for a comprehensive example.

• ItemByKey - This method returns the object identified by the key parameter provided in the
method call (see “Object Keys” on page 84 for a complete list of the keys that are used with this
method). If the object is not already on the list, it creates as many objects as necessary, in
sequential order, until the requested object is created or the end of the list is encountered, and
adds them to the SWList.

Set oWorkQ = oWorkQList.ItemByKey("swadmin@doug1|R")

See page 322 for a comprehensive example.

Why do Item and ItemByKey return a Variant (COM only)?

The Item and ItemByKey methods return a variant on SWList and SWLocList because these lists can
contain either objects ("IDispatch pointers") or strings (BSTRs). Variants are the only type of variable
(in COM) that can hold either a string or a pointer to an object.

Unlike SWLists and SWLocLists, SWViews and SWXLists can contain only objects (SWViews can
contain SWCase or SWWorkItem objects; SWXLists can contain SWCase, SWWorkItem, SWGroup,
SWUser, or SWOSUser objects). Therefore, the Item and ItemByKey methods return only IDispatch
pointers when the items are on an SWView or SWXList.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 62

When Should I Rebuild an SWList?

Typically, client applications will have no need to rebuild SWLists. Only if you are writing an admin-
istrative-type application will the need arise. This is because the data on SWLists is relatively static,
so there’s no need to update it.

The Rebuild method on SWList causes:

• the current list of items at the client to be cleared,

• the Count property to be set to zero,

• the IsEOL property to be set to False, and

• a message to be sent to the server requesting the most recent data to be sent to the raw data buf-
fers on the client.

When the program accesses an item, data from the raw data buffers is created into objects and placed
on the SWList.

How to Rebuild Subordinate Lists

For objects that are not lists but that have a Rebuild method (SWCase, SWProc, SWWorkItem, and
SWWorkQ), the default behavior is to not rebuild subordinate lists that are on the object. A property is
provided that, when set to True, causes all subordinate lists (this includes SWLists, SWViews, and
SWXLists) on the object to also be rebuilt when you rebuild the object. This is done with the IsRe-
buildAll property. Note that setting IsRebuildAll to True causes ALL subordinate lists to be rebuilt —
SWViews, SWLists, and SWXLists.

The following objects contain the IsRebuildAll property:

• SWCase

• SWProc

• SWWorkItem

• SWWorkQ

In the example below, when the SWProc object is rebuilt, all other lists on the SWProc object are also
rebuilt:

oProc.IsRebuildAll = True
oProc.Rebuild

Important - Use the IsRebuildAll property with caution. It can potentially cause very large amounts of
data to be retrieved from the TIBCO iProcess Objects Server unnecessarily. It’s much better to rebuild
individual lists as needed.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 63

SWLocLists

SWLocLists (local lists) are used to store lists of objects or strings that are
primarily static data. The objects and strings in these lists are added to and
deleted from the SWLocList in the following ways:

• By invoking the SWLocList Add and Delete methods in the client
application. CaseFieldNames and SortFields are examples of local
lists you might add to with the Add method.

• By invoking methods on other objects. An example of this is using
the CreateEntUsers and DeleteEntUsers methods on SWEnter-
prise to add and delete SWEntUser objects to and from the
EntUsers local list.

• Some local lists are filled by messages that fill other lists above
them in the hierarchy.

Note that the Count property on SWLocList is always current since noth-
ing is being transferred from the server for this type of list at the time the list is created.

There are only two objects that can be explicitly instantiated and added to a local list — SWSortField
and SWMarking objects. All other local lists of objects are managed by other objects and cannot be
directly modified by the application developer (i.e., cannot add or delete). (See “Sorting Work Items
and Cases” on page 178 for an example of how SWSortField objects are added to a local list.)

How to Add Objects/Strings to Local Lists

The Add method on SWLocList is used to add objects or strings to a local list. Be aware of the fact
that there may already be items in the local list when you add new items. For this reason, you may
need to clear the list before adding the new items.

You can include an index with the Add method to specify where to insert the new item. If you do not
include an index, the item is appended to the list. If the index is greater than the number of items in the
list, it will also be appended to the list.

The Add method returns the index (zero based) of the item’s location in the local list. The index can
be used to access the item (with the Item method), or to delete the item from the list (with the Delete
method).

Example of adding a string to a local list:

oWorkItems.CaseFieldNames.Clear
oWorkItems.CaseFieldNames.Add "SW_CASENUM"

Example of adding an object to a local list:

Set oSortField = New SWSortField
oSortField.FieldName = "SW_CASENUM"
oSortField.IsAscending = False
oSortField.SortAsType = swNumericSort
' Add SortField to local list
oWorkItems.SortFields.Add oSortField

See page 322 for a comprehensive example.

SWLocList

< Count

< Type

< ClassId

* Clear

* Delete

* DeleteByKey

* Item (default)

* ItemByKey

* Add

LL

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 64

How to Access Objects/Strings on Local Lists

The SWLocList object contains two methods that are used to access items that are currently on a local
list:

• Item - This method returns an item in the local list that is identified by an index value (starting
at zero). You can access a specific item using an index obtained when the item was added to the
local list with the Add method. Or, you can use the index to loop through the list, as in the
example shown below:

• ItemByKey - This method returns the object identified by the key parameter provided in the
method call (see “Object Keys” on page 84 for a complete list of the keys that are used with this
method). The example below shows the use of the SWMarking key (“Name”) to find a specific
SWMarking object in the local list and set their values (note that the key is case-sensitive).

cnt = oWorkItems.CaseFieldNames.Count
For i = 0 To cnt - 1
 Debug.Print "CaseField Name = " & oWorkItems.CaseFieldNames(i)
Next

Set oSortField = oWorkItems.SortFields.ItemByKey("SW_CASENUM")
Debug.Print "SortField Field Name = " & oSortField.FieldName

See page 322 for a comprehensive example.

Why do Item and ItemByKey return a Variant (COM only)?

The Item and ItemByKey methods return a variant on SWList and SWLocList because these lists can
contain either objects ("IDispatch pointers") or strings (BSTRs). Variants are the only type of variable
(in COM) that can hold either a string or a pointer to an object.

Unlike SWLists and SWLocLists, SWViews and SWXLists can contain only objects (SWViews can
contain SWCase or SWWorkItem objects; SWXLists can contain SWCase, SWWorkItem, SWGroup,
SWUser, or SWOSUser objects). Therefore, the Item and ItemByKey methods return only IDispatch
pointers when the items are on an SWView or SWXList.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 65

SWViews

SWView is another type of list object. It is very similar to an SWList object,
except for the following. SWView objects:

• only contain two types of objects — SWCase or SWWorkItem,
• contain properties used to filter and sort the cases and work items,
• contain properties used to request audit information on the cases in the

view, and
• contain a property (MaxCnt) that limits the number of items returned

from the server.

The primary purpose of an SWView object is to provide a “view” of cases and
work items that are filtered and/or sorted, allowing you to limit the number of
cases/work items that are displayed, and display them in a specified order.

Note - A more recent addition to TIBCO iProcess Objects is the SWXList
object. The SWXList object provides all of the same features as the SWView,
with the addition of the ability to limit the number items (cases or work items)
that are retrieved from the server, making it more efficient to use. You are
strongly encouraged to use SWXLists instead of SWViews. For more informa-
tion, see “SWXLists” on page 73.

Since filtering and sorting of lists of cases and work items are broad subjects
themselves, and they apply to both SWViews and SWXLists, these subjects
are described in-depth in their own chapters. See “Filtering Work Items and
Cases” on page 152 and “Sorting Work Items and Cases” on page 178.

The “Default” Views of Cases and Work Items

As mentioned above, views only contain cases or work items. Properties are provided that contain a
“default” view of the cases on each procedure (SWProc) and the work items on each work queue
(SWWorkQ). They are:

SWProc.Cases - The Cases property on SWProc contains a view
(SWView) of all of the cases in the procedure that match the filter
criteria in the SWView.FilterExpression property. They are listed in
the view in the order specified by the SWView.SortFields property.

SWWorkQ.WorkItems - The WorkItems property on SWWorkQ con-
tains a view (SWView) of all of the work items in the work queue that
match the filter criteria in the SWView.FilterExpression property.
They are listed in the view in the order specified by the SWView.Sort-
Fields property.

SWView

< ClassId

< Count

< ExcludeCnt

<> FilterExpression

< InvalidCnt

<> IsAuditAscending

< IsEOL

<> IsWaitForAll

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

< SortFields

< Status

< Type

< CaseFieldNames

* Item (default)

* ItemByKey

* Rebuild

* Clear

VL

LL

LL

<> AuditFilterExpr

SWProc

Cases

SWCase

SWCase

SWCase

SWView

SWView

SWWorkQ

WorkItems

SWWorkItem

SWWorkItem

SWWorkItem

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 66

Like properties that contain SWLists of objects, the Cases and WorkItems properties are not automat-
ically populated with case or work item information (i.e., SWCase or SWWorkItem objects) from the
TIBCO iProcess Objects Server. The following sections describe how the case and work item infor-
mation is retrieved from the server and added to the SWView.

How SWViews are Created and Populated at the Client

Creating and populating an SWView consists of the following actions:

• The client requests data from the
TIBCO iProcess Objects Server.
This causes raw data to be sent from
the TIBCO iProcess Engine to the
TIBCO iProcess Objects Server,
then to the raw data buffers on the
client. This raw data is filtered by
the TIBCO iProcess Objects Server
according to the SWView.FilterEx-
pression property prior to being sent
to the raw data buffers on the client.
(See “Filtering Work Items and
Cases” on page 152 for more infor-
mation.)

• When objects are requested by the
client application, they are created from the raw data, then added to the SWView on the client.

Although there are several properties and methods that, when accessed, cause a message to be sent to
the TIBCO iProcess Objects Server requesting that data be sent to the raw data buffers on the client,
objects are created and added to the SWView only when you attempt to access the objects on the view.
This is done for efficiency reasons. If a large number of objects (some views contain tens of thousands
of objects) were immediately created and added to the SWView, a significant amount of system
resources and memory may be consumed even though you only intend to access a few of the items.

What Causes Raw Data to be Sent to the Client?

When certain properties and methods are executed, a message is sent to the TIBCO iProcess Objects
Server requesting that the most current data be sent to the raw data buffers on the client. Which prop-
erties and methods cause the message to be sent depends, however, on whether or not the SWView is
currently empty.

An SWView may be empty for the following reasons:

• It’s the first time the list has been accessed.
• The Clear method has been called on the view.

If the SWView is currently empty, these properties/methods cause a message to be sent to request the
most recent data on the server to be sent to the client:

• IsEOL - Note that in COM, this is a read/write property. When you “access” the property, i.e.,
you determine if its value is True or False, it sends a message to the server requesting the most
recent data. Whereas, if you “set” its value to True or False, it does not send a message to the
server. Likewise, in C++ and Java, getIsEOL sends a message requesting updated data; setEOL
does not.

Raw Data Buffers
Filtered

Data

SWView

Request Message

TIBCO
iProcess
Engine

TIBCO iProcess
Objects Server

TIBCO iProcess Objects

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 67

oWorkItems.IsEOL = False ‘does not send a message to server
While Not (oWorkItems.IsEOL) ‘sends a message requesting data

• Count - Even though this property sends a message to the TIBCO iProcess Objects Server
requesting the most recent data to be sent to the client, it does not immediately tell you how
many items are in the view. This is because of the asynchronous transfer of data between the
server and client. See “Determining the Number of Objects in a List or View” on page 58 for
more information.

• Rebuild - This method sends a message to the TIBCO iProcess Objects Server requesting the
most recent data to be sent to the client.

• Item - This method attempts to access a specific item in the view based on an index. But the list
is empty, so it sends a message to the TIBCO iProcess Objects Server requesting the most
recent data to be sent to the client, then returns the requested item to the client. For more infor-
mation, see the next subsection, “What Causes Objects to be Created and Added to an
SWView?”.

• ItemByKey - This method attempts to access a specific item in the view based on a key. But the
list is empty, so it sends a message to the TIBCO iProcess Objects Server requesting the most
recent data to be sent to the client, then returns the requested item to the client. For more infor-
mation, see the next subsection, “What Causes Objects to be Created and Added to an
SWView?”.

If the SWView currently contains items, this method causes the most recent data on the server to be
sent to the client:

• Rebuild - This method causes the current view at the client to be cleared and a message to be
sent to the TIBCO iProcess Objects Server requesting the most recent data.

Exception when Rebuilding an SWView containing Work Items
Rebuild works a little differently if the view contains SWWorkItem objects. In this case,
TIBCO iProcess Objects make use of the caching that’s done by the TIBCO iProcess Engine.
To determine if new work item data should be sent to the client, the following conditions are
evaluated:

- If there has been a membership change in the work queue, i.e., new work items have
been added or existing work items released, new work item data will be retrieved from
the server (in this case, the SWView.Status property contains swChanged). If there has
not been a membership change in the work queue, work items are NOT retrieved from
the server (in this case, the SWView.Status property contains swNoChange).

There is an exception to this behavior; if a work item is routed back to your own work
queue, the Status will always show swNoChange. In these situations, you can force a
rebuild by first calling the Clear method on the SWView. This, however, should only be
done after careful consideration of the performance impact created by completely re-
populating the view.

- If only the status of the work items on the work queue has changed (i.e., items have been
locked or unlocked), only the status information is retrieved from the server. (If there has
been a status change, the SWView.Status property contains swStatusOnly.)

When rebuilding an SWView of work items, and the view’s status is swStatusOnly, the
following properties on the work items in the view are updated:

• IsLocked

• IsLongLock

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 68

• LockedBy

• IsUnopen

• IsUrgent

• IsDeadlineExp

- If the filter criteria (SWView.FilterExpression) or the sort criteria (SWView.SortFields)
for the SWView have been modified, it is assumed that the list of work items will be dif-
ferent, and therefore, they will be retrieved from the server.

The reason Rebuild works this way when rebuilding views of work items is because a work
queue can contain an extremely large number of work items. Retrieving all of them regardless
of status causes an unnecessary amount of network traffic.

After rebuilding a view of work items, you should check the SWView.Status property to deter-
mine if you need to refresh any of your application data.

What Causes Objects to be Created and Added to an SWView?

After data has been sent from the server to the raw data buffers on the client, it is held in the buffers
until you attempt to access an item (with Item or ItemByKey). At that time, the raw data is used to cre-
ate the objects and they are added to the view at the client.

The following properties and methods cause one or more objects to be created from the raw data and
added to the SWView:

• Item - This method returns the object identified by the index parameter provided in the method
call. If the object is not already in the view, it creates as many objects as necessary, in sequential
order, up to the index value (which is zero based), and adds them to the SWView. For example,
if you request “Item(25)”, objects 0-24 are created and added to the view, and the requested
object is returned to the client (note that “Item” need not be included in your code, as in the
example below, since it is the default method on all list objects).

i = 0
oWorkItems.IsEOL = False

While Not (oWorkItems.IsEOL)

 Set oWorkItem = oWorkItems(i)
 Debug.Print "WorkItem Key= " & oWorkItem.key & ", CaseNum = " _

& oWorkItem.Case.CaseNumber & ", Fields returned = " _
& oWorkItem.Case.Fields.Count

 For Each oField In oWorkItem.Case.Fields
 Debug.Print " FieldName = " & oField.Name & ", _

Field Value = " & oField.Value
 Next
 i = i + 1

Wend

See page 322 for a comprehensive example.

• ItemByKey - This method returns the object identified by the key parameter provided in the
method call (see “Object Keys” on page 84 for a complete list of the keys that are used with this
method). If the object is not already in the view, it creates as many objects as necessary, in
sequential order, until the requested object is created, and adds them to the SWView.

Set oWorkItem = oWorkItems.ItemByKey(key)

See page 322 for a comprehensive example.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 69

When should a View be Rebuilt?

Whenever the application needs access to the most current information on the server, you should
rebuild the view with the SWView.Rebuild method. Also, after modifying the view’s filter criteria
(SWView.FilterExpression) or the sort criteria (SWView.SortFields), you must rebuild the view to
cause a message to be sent to the TIBCO iProcess Objects Server to apply the new criteria.

The Rebuild method on SWView causes:

• the current view of items at the client to be cleared,

• the Count property to be set to zero,

• the IsEOL property to be set to False, and

• a message to be sent to the TIBCO iProcess Objects Server requesting the most recent data to
be sent to the raw data buffers on the client.

Note - If the view contains work items, Rebuild may or may not perform the functions listed above,
depending on the value of the Status property of the view. See “What Causes Raw Data to be Sent to
the Client?” on page 66 for more information.

The following is an example of rebuilding a view of work items after changing the filter criteria:

oWorkItems.FilterExpression = "SW_PRONAME = ""TestPro4"""

oWorkItems.Rebuild

Debug.Print "<=== After View Rebuild with fieldnames and sort criteria ===>"

For Each oWorkItem In oWorkItems

 Debug.Print "WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
& oWorkItem.Case.CaseNumber & ", Fields returned = "_

& oWorkItem.Case.Fields.Count

For Each oField In oWorkItem.Case.Fields

 Debug.Print " FieldName = " & oField.Name & ", Field Value = "_
& oField.Value

Next

Next

See page 322 for a comprehensive example.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 70

How to Rebuild Subordinate Views

For objects that are not lists but that have a Rebuild method (SWCase, SWProc, SWWorkItem, and
SWWorkQ), the default behavior is to not rebuild subordinate lists (this includes SWLists, SWViews,
and SWXLists) that are on the object. A property is provided that, when set to True, causes all subor-
dinate lists on the object to also be rebuilt when you rebuild the object. This is done with the
IsRebuildAll property. Note that setting IsRebuildAll to True causes ALL subordinate lists to be
rebuilt — SWViews, SWLists, and SWXLists.

The following objects contain the IsRebuildAll property:

• SWCase

• SWProc

• SWWorkItem

• SWWorkQ

In the example below, when the SWProc object is rebuilt, all other lists on the SWProc object are also
rebuilt:

oWorkQ.IsRebuildAll = True
oWorkQ.Rebuild

Important - Use the IsRebuildAll property with caution. It can potentially cause very large amounts of
data to be retrieved from the TIBCO iProcess Objects Server unnecessarily. It’s much better to rebuild
individual lists as needed.

When should I Create an Alternate View?

As described in “The “Default” Views of Cases and Work Items” on page 65, there are default views
available for cases (SWProc.Cases) and work items (SWWorkQ.WorkItems). These are the views you
will typically use. However, if you have a need to show a list of work items or cases in more than one
way, additional SWView objects can be created. For example, you may want to show a list of work
items sorted by priority and also (concurrently) a list of unopened work items that arrived today. To do
this, you would create an additional SWView containing SWWorkItem objects filtered and sorted in
the desired way.

The following methods are available to create alternate views:

• MakeViewCases - Creates an additional SWView containing SWCase objects.

• MakeViewItems - Creates an additional SWView containing SWWorkItem objects.

Each of these methods are available on several objects. The object from which you invoke the method
governs the scope of the method. The table below shows the scope of each method from the objects
from which they can be called.

Method Called From Scope

MakeViewCases SWProc Used to view cases in the procedure.

SWUser Used to view cases across multiple procedures on the same node.

SWEntUser Used to view cases across multiple procedures on more than one node.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 71

If your alternate view spans multiple procedures or work queues, the SWView.Status property will
always return swChanged.

The “single-parameter” SWNode.MakeViewItemsByTag method is available to create an additional
view of work items by passing a single Tag parameter. This method would typically be used by a web-
based application. Its scope is the work queues on the node from which it is called. (For more infor-
mation about using “single-parameter” methods in a web-based environment, see “Stateless
Programming” on page 270.)

Implied Sort on Alternate Views

If you create an alternate view of cases that spans multiple procedures, there is an implied primary sort
that first sorts the cases by procedure name before any user-defined sort criteria are invoked.

Likewise, if you create an alternate view of work items that spans multiple work queues, there is an
implied primary sort that first sorts the work items by work queue name before any user-defined sort
criteria are invoked.

Determining the Total Number of Items Available

You can determine the total number of items available from the server by looping through the view
and checking the SWView.IsEOL property. When IsEOL returns True, it means “the last item you
accessed is the last item available to the list.” At this point, the Count property indicates the total
number of items available from the server. See the example below.

i = 0

 oWorkQList.IsEOL = False

 While (oWorkQList.IsEOL = False)

 Debug.Print "Name: " & oWorkQList(i).Name & "; Description: " _

 & oWorkQList(i).Description

 Debug.Print "oWorkQList.Count = " & oWorkQList.Count

 i = i + 1

 Wend

It’s important to understand that the IsEOL property is ONLY True when the last item you accessed
was the last item in the list. If another item in the list is subsequently accessed, IsEOL is then set to
False.

Other count properties are also available on SWView:

• ExcludeCnt - Contains the number of work items or cases that were not included in the
indexed collection at the server because they did not satisfy the criteria in the FilterExpression
property. (Note - This count may or may not be available, depending on which filtering
enhancements have been incorporated in your TIBCO iProcess Objects Server. See the appro-
priate Filtering Work Items and Cases chapter on page 98, page 126, or page 152.)

MakeViewItems SWWorkQ Used to view work items in the work queue.

SWUser Used to view work items across multiple work queues on one node.

SWEntUser Used to view work items across multiple work queues on more than one
node.

Method Called From Scope

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 72

• InvalidCnt - Contains the number of work items or cases not included in the indexed collection
because they were invalid within the context of the filter criteria (e.g., the filter expression ref-
erences a field name not defined in all work items). (Note - This count may or may not be avail-
able, depending on which filtering enhancements have been incorporated in your TIBCO
iProcess Objects Server. See the appropriate Filtering Work Items and Cases chapter on
page 98, page 126, or page 152.)

How do I Limit the Number of Work Items/Cases in a View?

The MaxCnt property on SWView allows you to specify the maximum number of objects to retrieve
from the server. This can be used to retrieve only the number of objects the client needs, for example,
the number of items that will fit in a list box. The value of this property is initialized to -1, which
causes all objects to be retrieved from the server.

Note that if the SWView spans multiple work queues, the MaxCnt property is applied to each queue in
the view. For example, if MaxCnt is set to 10 and there are four queues in the view, 40 items will be
retrieved from the server (assuming there are at least 10 items in each queue).

If MaxCnt is used, the OverMaxCnt property will tell you how many objects were not sent to the cli-
ent because they exceeded the number specified with MaxCnt. The value of OverMaxCnt is not valid
until IsEOL is True since the value wouldn’t be known until all objects have been sent to the client.

How to Include Audit Data in a View

From the view level, you can specify that audit data be returned on the cases that are in the view. This
is done by setting the IsWithAuditData property to true. If you have a list of cases in a view and you
want audit data for all or most of the cases, it is much more efficient to request audit data for the entire
view by setting SWView.IsWithAuditData to True. If you are interested in the audit data for a specific
case, set the flag on that case only (SWCase.IsWithAuditData).

You can also specify the chronological order in which the audit data is returned with the IsAuditAs-
cending property on SWView and SWCase:

• Setting IsAuditAscending to True causes audit data to be returned in ascending order.

• Setting IsAuditAscending to False causes audit data to be returned in descending order.

See “Auditing Case Data” on page 239 for more information.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 73

SWXLists

SWXLists (also called “XLists”) are similar to SWViews in that they hold
a collection of objects retrieved from the server that are filtered and sorted
in a particular way. The primary difference is that when an SWView is
populated, it retrieves all of the objects on the server that match the filter
criteria. When an SWXList is populated, however, it only retrieves a
“block” of objects (specified with the ItemsPerBlock property), as
opposed to all of the objects available. Furthermore, XLists allow the pro-
grammer to access the list randomly, unlike views where it appears to be
random, but is actually sequential internally.

This approach to retrieving objects from the server allows you to more
closely control the memory resources of the client, as well as lessen the
amount of time the processor spends caching objects from large lists.

Note that “true” blocking only occurs with XLists containing work items
— only a block of work items are retrieved at a time from the TIBCO
iProcess Objects Server. When the XList contains cases, users, groups, or
OSUsers, all items are retrieved on the first access. However, the case,
user, group, or OSUser data are not created into objects until you access it, at which time, the objects
are created a block at a time. The specifics of this are explained in the following subsections.

SWXLists work well with web-based applications. They scale well because you have control over the
number of objects retrieved from the server. They also allow you to persist the lists that are created
(only XLists of work items and predicted work items can be persisted) so that you can access the same
collection of work items on subsequent logins. More about persistence is described in “Working with
Persisted XLists” on page 81.

Note - XLists have been added to improve performance when dealing with very large lists of objects.
Because of the efficiencies and scalability of XLists, you should be using them instead of SWViews.
They should also be used instead of SWLists that contain large numbers of groups, users, and OS
users.

Since filtering and sorting of lists of cases and work items are broad subjects in themselves, and they
apply to both SWViews and SWXLists, these subjects are described in-depth in their own chapters.
See “Filtering Work Items and Cases” on page 152 and “Sorting Work Items and Cases” on page 178.

What types of Objects can be found in an XList?

XLists can contain the following types of objects:

• SWWorkItem

• SWCase

• SWGroup

• SWUser

• SWOSUser

The reason these types of objects use XLists is because they are the types of objects that would most
likely be in large numbers on the server — especially SWWorkItem and SWCase objects. The
SWCase and SWWorkItem objects also change often on the server, requiring lists of them to be
refreshed frequently.

SWXList

< Count

< Criteria

< ExcludeCnt

< InvalidCnt

<> IsKeepLocalItems

< ItemCount

< ItemsPerBlock

< Status

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

XL

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 74

Accessing the “Default” XLists of Objects

The SWWorkQ, SWProc, and SWNode objects contain properties that create “default” XLists con-
taining the objects listed above. These properties are described below:

SWWorkQ.WorkItemsX - This property creates an XList containing
work items on the queue that match the filter criteria specified in the
SWCriteriaWI.FilterExpression property. They are listed in the XList in
the order specified by the SWCriteriaWI.SortFields local list.

SWProc.CasesX - This property creates an XList containing cases in
the procedure that match the filter criteria specified in the
SWCriteriaC.FilterExpression property. They are listed in the XList in
the order specified by the SWCriteriaC.SortFields local list.

SWNode.GroupsX - This property creates an XList containing the
groups that are defined on the node.

SWNode.UsersX - This property creates an XList containing the users
that are defined on the node.

SWNode.OSUsersX - This property creates an XList containing the OS
users that are defined on the node.

SWXList

SWWorkQ

WorkItemsX

SWWorkItem

SWWorkItem

SWWorkItem

SWProc

CasesX

SWCase

SWCase

SWCase

SWXList

SWNode

GroupsX

SWGroup

SWGroup

SWGroup

SWXList

SWNode

UsersX

SWUser

SWUser

SWUser

SWXList

SWNode

OSUsersX
SWOSUser

SWOSUser

SWOSUser

SWXList

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 75

Creating Additional XLists

When you want to create additional SWXList objects containing work items or cases that are filtered
and/or sorted differently from the “default” XLists you get from WorkItemsX and CasesX (work
items and cases are the only two types of objects you can filter and sort), use the following methods.

• SWWorkQ.MakeXListItems - This method creates an additional SWXList object containing
SWWorkItem objects. This would be used in situations where the client application needs two
or more views of the same work items.

• SWWorkQ.MakeXListItemsEx - This method creates an additional SWXList object contain-
ing SWWorkItem objects. This would be used in situations where the client application needs
two or more views of the same work items. This method is an extension of MakeXListItems; it
allows you to specify the specific CDQPs and case fields to return from the server when work
items are accessed from the XList.

Note - You must use one of the methods above (MakeXListItems or MakeXListItemsEx) to create
an XList that you are going to persist — see “Working with Persisted XLists” on page 81.)

• SWProc.MakeXListCases - This method creates an additional SWXList object containing
SWCase objects. This would be used in situations where the client application needs two or
more views of the same cases.

How XLists are Created

When you access one of the SWXList properties or call methods that create XLists (WorkItemsX,
CasesX, GroupsX, UsersX, OSUsersX, MakeXListItems, and MakeXListCases), an indexed collec-
tion of the items is created on the TIBCO iProcess Objects Server. This list is filtered and/or sorted
according to the filter and sort criteria, if they have been specified (See the appropriate Filtering Work
Items and Cases chapter on page 98, page 126, or page 152 and “Sorting Work Items and Cases” on
page 178 for information). It is also organized according to “blocks,” the size of which is dictated by
the ItemsPerBlock property (note that this property is read-only; it can be specified only by a param-
eter on the Rebuild, GetXList, MakeXListItems, and MakeXListCases methods). An example is illus-
trated below.

In this example, the block size is 20. There are a total of 53 items in the XList.

This indexed collection of items created on the TIBCO iProcess Objects
Server is NOT sent to the client until you access an item in the XList (with the
Item or ItemByKey method — these are described later).

After the indexed collection (XList) has been created on the TIBCO iProcess
Objects Server (with WorkItemsX, CasesX, etc.), you can refresh the list or
obtain count information using the following methods:

• Rebuild - This method on SWXList causes a message to be sent to the TIBCO iProcess Objects
Server requesting that the indexed collection on the TIBCO iProcess Objects Server be
refreshed.

If the optional ItemsPerBlock parameter is specified (and is different than the current setting)
with the Rebuild method, the XList at the client is cleared and the TIBCO iProcess Objects
Server will construct a new indexed collection of items based on the new block size. A block of
items, however, will not be sent to the client until the client requests an item with the Item or
ItemByKey method.

Item0

Item19

Block 1

Block 2

Block 3

Item20

Item39

Item40

Item52

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 76

If the XList contains work items, the following conditions are evaluated before determining if
the XList on the TIBCO iProcess Objects Server should be rebuilt:

- If there has been a membership change in the work queue, i.e., new work items have been
added or existing work items released, new work item data will be retrieved from the
server (in this case, the SWXList.Status property contains swXLChanged). If there has
not been a membership change in the work queue, work items are NOT retrieved from the
server (in this case, the SWXList.Status property contains swXLNoChange).

There is an exception to this behavior; if a work item is routed back to your own work
queue, the status of that work item will show swNoChange. In these situations, you can
force a rebuild by passing True in the IsRecreate parameter on the Rebuild method — this
forces the rebuild even though the status shows no change.

- If only the status of the work items on the work queue has changed (i.e., items have been
locked or unlocked), only the status information is updated on the XList on the TIBCO
iProcess Objects Server. (If there has been a status change, the SWXList.Status property
contains swXLStatusOnly.)

- If the filter criteria (SWCriteriaWI.FilterExpression) or sort criteria
(SWCriteriaWI.SortFields) for the SWXList have been modified, it is assumed that the list
of work items will be different, therefore, the indexed collection of work items on the
TIBCO iProcess Objects Server is rebuilt.

• ItemCount, ExcludeCnt, InvalidCnt - These “count” properties cause a message to be sent to
the TIBCO iProcess Objects Server to obtain the current item count information. These proper-
ties do not, however, cause a block of items to be sent to the client (that is done with the Item
and ItemByKey methods). These properties return the following count information:

- ItemCount - This returns the total number of items in the indexed collection on the
TIBCO iProcess Objects Server. If it is an XList containing cases or work items, this
count includes only those cases or work items that match the filter criteria specified in the
FilterExpression property.

- ExcludeCnt - This property, which only applies to XLists containing cases or work items,
contains the number of cases or work items that did not satisfy the Boolean expression
specified in the FilterExpression property, and therefore, were not included in the XList.
(Note - This count may or may not be available, depending on which filtering enhance-
ments have been incorporated in your TIBCO iProcess Objects Server. See the appropri-
ate Filtering Work Items and Cases chapter on page 98, page 126, or page 152.)

- InvalidCnt - This property, which only applies to XLists containing cases or work items,
contains the number of work items or cases not included in the indexed collection because
they were invalid within the context of the filter criteria (e.g., the filter expression refer-
ences a field name not defined in all work items). (Note - This count may or may not be
available, depending on which filtering enhancements have been incorporated in your
TIBCO iProcess Objects Server. See the appropriate Filtering Work Items and Cases
chapter on page 98, page 126, or page 152.)

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 77

Controlling Resources

The SWXList object has an IsKeepLocalItems property that allows you to specify whether or not
multiple blocks of items should be kept locally as subsequent blocks are retrieved from the server.

• Setting IsKeepLocalItems to True causes multiple blocks to be kept locally.

• Setting IsKeepLocalItems to False (the default) causes the previous block to be removed from
the XList when a new one is retrieved from the server, i.e., only one block is kept locally at a
time.

Populating an XList of Work Items

The XList on the client is populated by
using the Item and ItemByKey methods.
However, before determining if a message
should be sent to the TIBCO iProcess
Objects Server to retrieve data to populate
the XList on the client, these methods look
to see if the item identified by the index /
key parameter currently exists in the XList
on the client.

If the item is currently in the XList on the
client, it is returned to the client applica-
tion. No items are retrieved from the
server.

If the item is not in the XList on the client,
a message is sent to the TIBCO iProcess Objects Server to retrieve the block that contains the
requested item (the size of the block is determined by the value in the ItemsPerBlock property on
SWXList). The block is retrieved from the TIBCO iProcess Objects Server, and the objects are cre-
ated and added to the XList. The requested item is then returned to the client application.

The important thing that makes accessing work items on an XList different from the other types of
objects is that when a block of work items is retrieved from the TIBCO iProcess Objects Server and
sent to the raw data buffers on the client, objects are immediately created from the raw data and added
to the XList.

The following illustrates retrieving a block of work items from the XList on the TIBCO iProcess
Objects Server. Assume a block size of 20, with 53 items in the list (the item count is zero based):

If you request item 40:

Item(40)

only Block 3 (items 40-52) is sent to the XList on the client since that is the
block that contains the requested item. The requested item is returned to the
client application. The Count property will equal 13.

If you then request item 50 (Item (50)), since the requested item is already in the XList on the client,
no message is sent to the TIBCO iProcess Objects Server; the requested item is returned to the client
application. The Count property will still equal 13.

Raw Data Buffers

SWXList

Send Message

- Item
- ItemByKey
- Rebuild
- ItemCount
- ExcludeCnt
- InvalidCnt

SWCriteriaWI
 .FilterExpression
 .SortFields

TIBCO
iProcess
Engine

TIBCO iProcess
Objects Server

TIBCO iProcess Objects

Item0

Item19

Block 1

Block 2

Block 3

Item20

Item39

Item40

Item52

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 78

If you then request item 25 (Item (25)), Block 2 is retrieved from the TIBCO iProcess Objects Server,
since that block contains the requested item. The requested item is returned to the client application.
The Count property with then equal 33.

Note - The example above assumes you are maintaining multiple blocks of work items locally. This is
controlled with the IsKeepLocalItems property — see “Clearing Local Blocks of Work Items” on
page 78 for information about this property.

The following is an example of iterating through an XList of work items using the Item method.

cnt = 0
 For Each oWorkItem In oWorkItemsX
 Debug.Print ("WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count)
 For Each oField In oWorkItem.Case.Fields
 Debug.Print (" FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value)
 Next
 cnt = cnt + 1
 If cnt > 25 Then
 Exit For ' only display first 25 or less
 End If
 If (cnt Mod blksize) = 0 Then ' minimize memory use on client
 Debug.Print " XList clear "
 oWorkItemsX.Clear ' the block of 5 since already displayed info
 End If
 Next

See page 339 for a comprehensive example.

Clearing Local Blocks of Work Items
The blocks of work items retrieved from the TIBCO iProcess Objects Server and maintained in the
XList consume local memory. The following are provided to control this memory usage:

• IsKeepLocalItems property - This read/write property on SWXList allows you to specify
whether or not multiple blocks of items should be kept locally as subsequent blocks are
retrieved from the server. This allows you to conserve local memory by specifying that only
one block at a time be held locally. If set to True, multiple blocks will be kept locally. If set to
False (the default), the previous block will be removed from the XList when a new one is
retrieved from the server, i.e., only one block is kept locally at a time.

• Clear method - This method on SWXList frees memory and removes all items from the list on
the client. Note that when called from an SWXList (this method is also available on other types
of lists), it clears only the list on the client, not the buffers. Which means that if you clear an
XList with the Clear method, then access an item, you are getting the same buffer data as before
you cleared the list. (Note the call to oWorkItemsX.Clear after iterating through the block of
work items in the example shown above). It’s very important you do this to minimize memory
usage on the client, especially if there is a large number of work items in the XList.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 79

SWXLists of Work Items When Using Multiple Instances of the Server

If you are using multiple instances of the TIBCO iProcess Objects Server, be aware that an SWXList
of work items is tied to a specific instance of the TIBCO iProcess Objects Server. If an SWXList of
work items is created, that list can only be accessed on the specific instance of the TIBCO iProcess
Objects Server where it was created. This is not just limited to getting the work items on an SWXList,
but also to the method calls on workitems obtained from an SWXList. This is because it holds state to
the Work Item Server. However, all other operations can be performed against any instance in the
cluster.

Populating an XList of Cases

The first time you access any of the fol-
lowing properties or methods on an XList
containing cases, a message is sent to the
TIBCO iProcess Objects Server request-
ing data:

• Item

• ItemByKey

• Rebuild

• ItemCount

• ExcludeCnt

• InvalidCnt

The properties/methods listed above
cause the cases in the indexed collection on the TIBCO iProcess Objects Server to be sent to the raw
data buffers on the client.

The number of cases that are sent to the raw data buffers depends on the setting of the MaxCnt prop-
erty, as follows:

• If MaxCnt = -1 (the default), all cases that satisfy the filter criteria are sent to the raw data buf-
fers. So if there is a large number of cases in the procedure, the first one you access could take a
significant amount of time; all subsequent accesses will be very fast.

• If MaxCnt is set to a value other than -1, that number of cases are sent to the raw data buffer.
This allows you to limit the number of cases sent to the buffers when there is a large number of
cases.

When accessing cases, they are always retrieved synchronously. That is, cases will not be added to the
XList until all cases that match the filter criteria (and limited by the MaxCnt property) have been sent
from the TIBCO iProcess Objects Server to the raw data buffers.

Once the data is in the raw data buffers, subsequent accesses work as follows:

• Item and ItemByKey - If the case you are requesting is currently in the XList on the client, it is
returned to the client application. If the case is not currently in the XList on the client, the
appropriate objects are created from the raw data buffers, then the block containing the
requested case object is added to the XList. The requested case object is returned to the client
application.

After iterating through a block of cases, it is very important that you call the Clear method on
SWXList to clear the block from memory on the client. Allowing the blocks to grow on the cli-
ent could adversely affect performance of your application.

Raw Data Buffers

SWXList

Send Message

- Item
- ItemByKey
- Rebuild
- ItemCount
- ExcludeCnt
- InvalidCnt

SWCriteriaC
 .FilterExpression
 .SortFields

TIBCO
iProcess
Engine

TIBCO iProcess
Objects Server

TIBCO iProcess Objects

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 80

• Rebuild - This clears the XList on the client, clears the raw data buffers, and sends a message
to the TIBCO iProcess Objects Server requesting updated data, which is sent to the raw data
buffers. (Note that calling the Clear method on SWXList will clear the XList on the client, but
will NOT clear the raw data buffers. This is useful for minimizing memory usage, but to get a
new snapshot from the server, you need to call Rebuild.)

• ItemCount, ExcludeCnt, and InvalidCnt - Once the raw data buffers contain data, these prop-
erties will return their respective counts. See “Determining the Number of Items in an
XList” on page 80 for definitions of these counts.

Populating an XList of Groups, Users, or OSUsers

Populating an XList of groups, users, or OS users works the same as for cases (as described above),
except there are no filter criteria nor sort criteria with these types of objects.

After iterating through a block of groups, users, or OS users, it is very important that you call the
Clear method on SWXList to clear the block from memory on the client. Allowing the blocks to grow
on the client could adversely affect performance of your application.

Determining the Number of Items in an XList

The following counts are available for items that are stored in an XList:

• ItemCount - The total number of items in the XList at the server. This reflects the number of
items in the XList the first time the XList was accessed or the last time it was rebuilt. If the
XList contains work items or cases, this number includes only those items that satisfy the filter
criteria.

This count is available immediately upon creating the XList (unlike on a view where you need
to loop through the list until IsEOL is true to determine the total number of items available on
the server).

 If oWorkItemsX.ItemCount > 25 Then
 cnt = 25 ' if more than 25 only loop through 1st 25
 Else
 cnt = oWorkItemsX.ItemCount ' if less than 25 loop through all of them
 End If

• Count - The number of items that are currently stored in the XList at the client.

• ExcludeCnt - Only applies to XLists containing cases or work items. This property contains
the number of cases or work items that did not satisfy the Boolean expression specified in the
FilterExpression property, and therefore, were not included in the XList. (Note - This count
may or may not be available, depending on which filtering enhancements have been incorpo-
rated in your TIBCO iProcess Objects Server. See the appropriate Filtering Work Items and
Cases chapter on page 98, page 126, or page 152.)

• InvalidCnt - Only applies to XLists containing cases or work items. This property contains the
number of work items or cases not included in the indexed collection because they were invalid
within the context of the filter criteria (e.g., the filter expression references a field name not
defined in all work items). (Note - This count may or may not be available, depending on which
filtering enhancements have been incorporated in your TIBCO iProcess Objects Server. See the
appropriate Filtering Work Items and Cases chapter on page 98, page 126, or page 152.)

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 81

Work Item-Specific Counts

If the SWXList contains work items, the following count properties are also available on the XList’s
criteria object, SWCriteriaWI:

• DeadlineCnt - This returns the number of work items on the XList that have deadlines.

• UnopenedCnt - This returns the number of work items on the XList that have not been opened.

• UrgentCnt - This returns the number of work items on the XList that are marked as urgent. A
work item is marked as urgent if its priority value (SWWorkItem.Priority) is less than or equal
to a specific value. By default, this value is 10, although it can be modified in the staffcfg file.

Why do Item and ItemByKey return a Variant (COM only)?

The Item and ItemByKey methods return a variant on SWList and SWLocList because these lists can
contain either objects ("IDispatch pointers") or strings (BSTRs). Variants are the only type of variable
(in COM) that can hold either a string or a pointer to an object.

Unlike SWLists and SWLocLists, SWViews and SWXLists can contain only objects (SWViews can
contain SWCase or SWWorkItem objects; SWXLists can contain SWCase, SWWorkItem, SWGroup,
SWUser, or SWOSUser objects). Therefore, the Item and ItemByKey methods return only IDispatch
pointers when the items are on an SWView or SWXList.

Working with Persisted XLists

A client application can ask the TIBCO iProcess Objects Server to persist a collection of work items.
(Only SWXLIsts containing work items and predicted work items can be persisted.) This allows the
client to disconnect from the server, then reconnect at a later time and have access to the same collec-
tion of work items/predicted work items from the previous connection. The most obvious use of this
feature is for web-based applications to provide access to a consistent list of work items for a given
user between successive web pages.

The SWCriteriaWI object contains two properties that are used with persistence:

• IsPersisted - This property, when set to True, tells the TIBCO iProcess Objects Server to per-
sist the XList so that it will be available at a later time.

• PersistenceId - This property contains a string that uniquely identifies an XList. The Persisten-
ceId is generated by the TIBCO iProcess Objects Server and is written to this property when the
XList is created. The developer is responsible for saving this ID so that it can be used later to
access the persisted XList. (The PersistenceId property is also available on the SWQSession-
Info object. A queue session is started for each work queue that is opened. If the work items in
the work queue are in an XList that is persisted, the PersistenceId is stored with that queue ses-
sion information in the SWQSessionInfo object.)

It’s very important that if you intend to persist an XList, you create the XList with the
MakeXListItems or MakeXListItemsEx method for work items, or the MakeXListPredict method
for predicted work items. This is because if you create the XList with any of these methods, you will
have the only pointer to the XList, and can freely destruct it. You must destruct the XList object to
cause the XList to actually be persisted on the TIBCO iProcess Objects Server. When it is destructed,
if IsPersisted is False, the TIBCO iProcess Objects Server throws the list away; if IsPersisted is True,
the TIBCO iProcess Objects Server preserves the list so it can be accessed again with GetXList (for
work items) or GetXListPredict (for predicted work items).

Set oWorkItemsX = oWorkQ.MakeXListItems(10) ' will return 10 items per block

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 82

To persist the XList, set IsPersisted to True, then destruct the XList object:

oWorkItemsX.Criteria.IsPersisted = True ' msg sent to server to keep list
XListId = oWorkItemsX.Criteria.PersistenceId
Debug.Print "SWXList Persisted Id = " & XListId
Set oWorkItemsX = Nothing ' release XList

A persisted XList is re-created by using the GetXList method (for work items) or GetXListPredict
(for predicted work items). These methods require a PersistenceID parameter, which you must have
previously saved for an XList that you wanted the TIBCO iProcess Objects Server to preserve. GetX-
List and GetXListPredict also have an optional ItemsPerBlock parameter that allows you to specify
the number of items to download from the server to the persisted XList.

Set oWorkItemsX = oNode.GetXList(XListId)

Invoking the GetXList and GetXListPredict methods also clears the IsPersisted property, therefore, if
you want the XList to remain persisted, you must set IsPersisted to True before the XList object is
destructed.

The Developer is responsible for ensuring that a persisted XList is freed when you are done with it by
setting the IsPersisted property to False and then destructing the SWXList object. As noted earlier,
however, setting the IsPersisted property to False is done automatically if you retrieve the persisted
XList with the GetXList or GetXListPredict method.

oXList.Criteria.IsPersisted = false 'free the xlist
.
.
set oXList = Nothing

See page 339 for a comprehensive example.

Note - Invoking the SWEntUser.Logout method causes all persisted XLists for that user to be lost.
Instead of logging out, use the Disconnect method to disconnect from the TIBCO iProcess Objects
Server. This logs the user out, but causes the user's SAL session to remain open. When the user
returns, use the Login method to re-login the user to the TIBCO iProcess Objects Server. Any per-
sisted XLists for that user will still be available.

There is also a TIBCO iProcess Objects Server configuration parameter called WQSAbandonedPe-
riod that specifies how long the TIBCO iProcess Objects Server will maintain a persisted XList that
has not had any activity before it will discard it. The default is 900 seconds. See page 322 in the “Tun-
ing the SPO Server” chapter for more information about this parameter.

Using Multiple Instances of the Server or Director

SWXLists of work items or predicted work items are tied to a particular instance of the TIBCO iPro-
cess Objects Server. Therefore, if you are using multiple instances of the TIBCO iProcess Objects
Server, or you used a TIBCO iProcess Objects Director to connect to the TIBCO iProcess Objects
Server, you must ensure you access XLists of work items or predicted work items on the same
instance of the TIBCO iProcess Objects Server on which they were created.

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 83

How to Include Audit Data in an XList

From the XList level, you can specify that audit data be returned on the cases that are in the XList.
This is done by setting the IsWithAuditData property to True. If you have a list of cases in a XList
and you want audit data for all or most of the cases, it is much more efficient to request audit data for
the entire XList by setting SWCriteriaC.IsWithAuditData to True. If you are interested in the audit
data for a specific case, set the flag on that case only (SWCase.IsWithAuditData).

You can also specify the chronological order in which the audit data is returned with the IsAuditAs-
cending property on SWCriteriaC and SWCase:

• Setting IsAuditAscending to True causes audit data to be returned in ascending order.

• Setting IsAuditAscending to False causes audit data to be returned in descending order.

See “Auditing Case Data” on page 239 for more information.

CIList (Java Only)

This object is the "Common Interface for List Objects." At this time,
this list object is applicable only to TIBCO iProcess Objects (Java).

Every class implementing this interface is guaranteed to have this set of
methods, and an instance of that class can be assigned to variables of
the interface's type.

SWCIList eliminates the need for type knowledge of the object being
used as long as you know the object implements the common interface.
The SWList, SWLocList, and SWView objects all implement SWCI-
List. Therefore, you can assign any of these list objects to an SWCIList
variable and manipulate it, without having to worry about whether it is
a list, local list, or view.

Using an SWCIList

There may be methods specific to one of the list classes that you want to use that are not implemented
in the SWCIList interface. In this instance, the object will have to be assigned to a variable of the
specified list type in order to access the list-specific methods (e.g., the add method on SWLocList, or
the getSortFields method on SWView).

The actual classes implementing the interface may implement the methods in unique or inconsistent
ways. For example, the isWaitForAll and rebuild methods of the SWCIList interface in an SWLocList
object are not meaningful in the context of a local list. Local lists are created for local use and have no
server message directly associated with them. Therefore, isWaitForAll and rebuild have no effect in
the local list. If you call the clear method on a list or view, then reference an item, the underlying class
will send a message and repopulate the list; this is not so with local lists. If you clear a local list, there
is no way to automatically repopulate the list. The user of the SWCIList interface should be aware of
the behavior of the underlying objects.

SWCIList

count

getClassId

getType

isEOL

clear

item

itemByKey

items

rebuild

setEOL

setWaitForAll

isWaitForAll

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 84

Object Keys

Each of the list objects has a Key property that contains a string that identifies the item in the list. The
key can be used to identify the item when using the ItemByKey method. The key for each object is
shown in the table below. The objects that are not listed in this table do not have keys.

Note - Keys are case sensitive.

Object Key

SWAction StepName|Type

SWActiveUser UserName

SWAttribute Name

SWAuditStep Name|(ListIndex: 1 to n)

SWAutoFwd HostingNode|ProcName|StepName

SWAWorkQ Name@HostingNode

SWCase ComputerName|ProcNode|CaseReference

SWCaseDataQParam FieldName

SWCaseDataQParamDef FieldName

SWCasePredictQParam FieldName

SWClientInfo Name

SWConditional StepName|Condition

SWConfigInfo Name

SWDatabaseConfig Name

SWDeadlineValue (Type in text: Minutes, Hours, Days, Weeks, Months, Years, Date, Time)

SWDurationValue (Type in text: Microseconds, Seconds, Minutes, Hours, Days, Weeks, Months,
Years)

SWDynamicSubProcStep ProcName|StepName|CaseNumber

SWEAIStep ProcName|StepName|CaseNumber

SWEntUser Name

SWEventStep ProcName|StepName|CaseNumber

SWExtProcess ExtProcessName

SWFConditional IfRow

SWField Name

SWFMarking Name|Row|Column

SWFRow RowNumber

SWFwdItem QName@HostingNode|(Mode: R=Release)

SWGraftStep ProcName|StepName

Working with Lists

TIBCO iProcess Objects Programmer’s Guide 85

SWGroup Name

SWIPEConfig Name

SWLabel Row|Column

SWListValidation Name

SWMarking Name

SWNode ComputerName|NodeName|IsDirector|InstanceNumber

SWNodeInfo ComputerName|NodeName|IsDirector|InstanceNumber

SWOSUser Name

SWOutstandingItem WorkQName|MailID

SWParticipation “Participation”<Index + 1>

SWPredictedItem ProcName|StepName|AddrToName

SWProc HostingNode|Name|ProcMajorVer|ProcMinorVer

SWProcAudit Integer (ListIndex: 1 to n)

SWProcGroup HostingNode|Name

SWPublicField Name

SWQSessionInfo ClientName

SWRole Name

SWSALInfo UserName

SWSortField FieldName

SWStep Name

SWSubProcStep StepName|SubCaseNumber

SWTable Name

SWTableField Name

SWThreadInfo ID

SWTransControlStep ProcName|StepName|CaseNumber

SWUser Name

SWWorkItem AddrToName|MailID

SWWorkQ Name@HostingNode|Mode (Mode: T=Test or R=Release)

Object Key

TIBCO iProcess Objects Programmer’s Guide 86

7
Fields & Markings

What is a Staffware Field?

A Staffware field (SWField object) represents a field that is defined in a
TIBCO procedure. Before a field can be placed on a form, the field must be
defined in the procedure using the TIBCO iProcess Modeler.

Note - The term “Staffware field” is a remnant of the original software cre-
ated by Staffware, which was purchased by TIBCO. This term is still used in
the TIBCO iProcess Engine and TIBCO iProcess Modeler dialogs and docu-
mentation, and will be used here until the engine and modeler dialogs are
changed.

SWField objects are available in two properties:

• SWProc.Fields - This property returns an SWList of SWField objects,
one for each field that is defined in the procedure. These SWField objects will never have a
value in the Value property (it’s empty) because they are only field definitions — they do not
contain any data.

• SWCase.Fields - When accessed from an SWCase object, the Fields property returns an
SWList of SWField objects, one for each field that has been returned in the live case. These
SWField objects contain data in the Value property. (Note that case data is not available
through the Value property until after the work item has been released. If the case has just been
started, then “kept” in the starting user’s work queue, there will not be any data in the Value
property because the work item has not been released yet — see “Case Data vs. Work Item
Data” on page 91 for more information.)

To provide the user with more control over resource usage, field data is not returned unless it is
requested. For SWField objects to be returned in the Fields property on the case, you must spec-
ify which fields you want returned by doing one of the following:

- Using the MakeWorkItemEx or MakeWorkItemByTagEx methods. The CaseField-
Names argument on these methods allows you to specify which case fields to return from
the server when the work item is created. The case fields specified are returned by the
Fields property of the SWCase object (which is returned by the SWWorkItem.Case prop-
erty). If the CaseFieldNames argument is omitted or an empty string is passed, no case
fields are returned.

- Using the MakeXListItemsEx method. The CaseFieldNames argument on this method
allows you to specify which case fields to return from the server when an SWWorkItem in
the Xlist is accessed. The case fields specified are returned by the Fields property of the
SWCase object (which is returned by the SWWorkItem.Case property). If the CaseField-
Names argument is omitted or an empty string is passed, no case fields are returned.

SWField

< DecimalPlaceCnt

< IsArrayField

< Key

< Length

< Name

< Type

< Value

< ClassId

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 87

- Using the CaseFieldNames property. Adding field names to the CaseFieldNames prop-
erty causes those fields to be returned in the Fields property when the case is returned
from the server. By default, the CaseFieldNames list is empty, which means by default no
fields are returned. If you want the case’s fields (with data) to be returned from the
TIBCO iProcess Objects Server to the case on the client, you can explicitly state which
fields to return by listing them in the CaseFieldNames local list. Since CaseFieldNames is
a local list, you use the Add method to add a field name to it — see below:

Set oCaseList = oProc.Cases
oCaseList.CaseFieldNames.Clear
oCaseList.CaseFieldNames.Add lboFields.Text

' Rebuild the list to pick up the requested fields
oCaseList.Rebuild

You can also add the special “&ALL&” value to CaseFieldNames to cause all fields that
are defined in the procedure to be returned in the Fields property.

oWorkQ.WorkItems.CaseFieldNames.Clear
wString = "&ALL&"
oWorkQ.WorkItems.CaseFieldNames.Add wString
oWorkQ.WorkItems.Rebuild

Use &ALL& with caution, however, as it can result in a significant amount of data being
returned.

Since cases can be accessed in a number of ways (individually, on a view, or on an XList),
the CaseFieldNames property is available from a number of objects:

- SWCase
- SWView
- SWCriteriaWI
- SWCriteriaC

If the cases for which you need data are in a view or XList, but you only need data on a
few of the cases, it is better to use the CaseFieldNames property on the individual
SWCase objects.

If case data is needed for most of the cases in a view or XList, it is much more efficient to
specify the list of field names on the SWView or SWXList objects (for an XList, you
actually specify the CaseFieldNames on the XList’s criteria objects, SWCriteriaC and
SWCriteriaWI). This causes the TIBCO iProcess Objects Server to return the fields for
every case in the view or XList in a single request to the server.

If you modify the CaseFieldNames property on an individual SWCase object, you must
rebuild the SWCase.Fields list to retrieve the field data from the TIBCO iProcess Objects
Server. (Or you could optionally set the IsRebuildAll property to True on the case, then
rebuild the SWCase object. This is what you should do if you are also getting audit data,
so it’s all done in one trip to the server, making it more efficient.)

If you modify the CaseFieldNames property on a SWView or SWXList object, you must
rebuild the SWView or SWXList to retrieve the updated Fields list from the TIBCO iPro-
cess Objects Server.

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 88

What are Markings?

A “marking” is a field that is associated with a specific step in a procedure. Placing the field on a
Staffware form makes the association.

Note - The term “Staffware form” is a remnant of the original software created by Staffware, which
was purchased by TIBCO. This term is still used
in the TIBCO iProcess Engine and TIBCO iPro-
cess Modeler dialogs and documentation, and
will be used here until the engine and modeler
dialogs are changed.

Markings are represented by two objects:

• SWFMarking - This object represents the
marking as it is defined on a Staffware
form at design time. It has properties that
define the physical characteristics of the
marking on the form, but it does not have a
Value property, i.e., it does not contain data.

Each Staffware form (SWForm object) contains a list (in the
FMarkings property) of the markings that are defined on that partic-
ular form, with one SWFMarking object in the list for each marking
defined. (A field may exist on a form more than once, resulting in
more than one SWFMarking object with the same name.)

• SWMarking - This object represents the marking as it appears at runtime, in the context of a
live case. It has a Value property that contains the data in the marking.

SWMarking objects associated with a live case are available in the Markings property on
SWWorkItem. However, the Markings list is NOT populated until the work item is locked (with
the LockItem, LockItems, LockItemsEx, LockItemMarkings, or LockItemsMarkings methods).
(SWMarking objects are also available in the Markings property on SWStep, but since these
markings are not associated with a live case, they do not return any data, although they have a
Value property.) The markings that are added to the Markings property are controlled differ-
ently, depending on which method is used to lock the work item, as follows:

- LockItem – The allMarkings parameter allows you to specify that either all markings on
the form (both visible and conditional), or only the visible markings, be returned.

- LockItems – All markings on the form of each work item are returned. This method is used
only if the work items are on an SWView.

- LockItemsEx – All markings on the form of each work item are returned. This method is
used only if the work items are on an SWXList.

- LockItemMarkings – The MarkingNames parameter is used to specify the specific mark-
ings that are to be returned, allowing you to control resource usage.

- LockItemsMarkings – The MarkingNames parameter is used to specify the specific mark-
ings that are to be returned, allowing you to control resource usage. This method is used
only if the work items are on an SWXList.

SWFMarking

< Column

< DecimalPlaceCnt

< ExprValidations

< Font

< Help

< IsArrayField

< Key

< Length

< ListNames

< Name

< Row

< Type

< ValueType

< ClassId

LL

LL

SWMarking

< IsArrayField

< IsChanged

<> IsSendValue

< Key

<> Name

<> Value

<> ValueType

< ClassId

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 89

Note - It’s possible to lock a work item, but not have any markings in the Markings list. This
can occur if the work item was locked using TIBCO iProcess Objects, then the work item was
destroyed (e.g., the client crashed). To reacquire the markings, you must relock the work item.

As data is entered into the fields (markings) on a form, this data is saved in the Value property
of the respective SWMarking object.

Whenever the data in a marking is changed (that is, the Value property is modified), there are a
couple of Boolean properties on SWMarking that are set:

• IsChanged - This indicates whether or not the value of the marking has changed since it
was initially delivered to the work queue. If Value is modified, then the work item is
“kept”, this property is still True on subsequent locks.

• IsSendValue - This flag specifies whether or not the data in the Value property should be
sent to the server. It is automatically set to True whenever Value is modified. When the
work item is either “kept” or “released,” if IsSendValue = True, the data is sent to the
server; if IsSendValue = False, it is not sent. Since the flag is automatically set to True
whenever Value is modified, you must explicitly set it to False if you don’t want the data
sent to the server.

The Markings property is cleared when you do any of the following:

• Keep the work item (KeepItem, KeepItems, or KeepItemsEx)

• Release the work item (ReleaseItem, ReleaseItems, or ReleaseItemsEx)

• Unlock the work item (UnlockItem, UnlockItems, or UnlockItemsEx)

• Undo changes to the work item (UndoItem, UndoItems, or UndoItemsEx)

Data that is sent to the server when you keep or release work items is written to Work Item Data
and Case Data, respectively (see “Case Data vs. Work Item Data” on page 91), then the Mark-
ings list is cleared. To reestablish the Markings list, you must lock the work item again.

Type Validation on Fields/Markings

There are a couple of different type properties associated with fields and
markings:

• SWField.Type

• SWMarking.ValueType

Both of these properties refer to the type of data that can be placed in the
marking. These types are enumerated by the SWFieldType definition.

Note - The SWFMarking object also has a Type property. However, unlike
SWField.Type, it identifies the data-entry requirements for the marking on the form (optional,
required, etc.). These are enumerated in the SWMarkingType definition.

When the Value property of an SWMarking is set, the type of the variable passed is validated against
the type specified in the SWMarking.ValueType property. If the types do not match, the system will
attempt to do a data conversion (details of what can be converted can be found in the Value/getValue
topic in the on-line help system). If the types do not match, and the data cannot be converted, a “type
mismatch error” is generated.

Note - User-created markings are validated at a different time. See “Type Validation on User-Created
Markings” below.

 SWFieldType
 swText = 'A'
 swDate = 'D'
 swTime = 'T'
 swNumeric = 'R'
 swAttachment = 'X'
 swMemo = 'F'
 swCompositeTable = 'C'
 swComma = 'N'
 swTimeStamp = 'O'
 swUndefined = 'U'

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 90

User-Created Markings

Sometimes a user might want to change a field data value, even though that field wasn’t included on a
step’s form. This can be done using “user-created markings.” To create a user-created marking:

1. Instantiate an SWMarking object (the SWMarking object is one of only four objects that can be
directly created — all others are internally instantiated).

2. Specify the name of the marking (SWMarking.Name). The name of the marking must match that
of an existing field in the procedure.

3. Specify the type of data in the marking (SWMarking.ValueType).

4. Set the marking’s value (SWMarking.Value).

5. Add the SWMarking object to the Markings local list (SWWorkItem.Markings).

Dim oMarking As SWMarking
Set oMarking = New SWMarking
oMarking.Name = "ACCOUNT_NUMBER"
oMarking.ValueType = swNumeric
oMarking.Value = Val(“12345678”)
oLocalItem.Markings.Add oMarking

The user-created marking will be sent to the server when the work item is kept or released.

Some caveats to remember about user-created markings:

• If the Markings list is recreated (by locking the work item again), your user-created markings
will be lost; you must explicitly add them again. The Markings list will only contain SWMark-
ing objects for the fields/markings that are defined on the Staffware form.

• If you set data on a user-created marking, then keep the work item (which clears the Markings
list), there is no way to determine that value again until the work item is released (at which time
the value is available in SWCase.Fields(i).Value).

Type Validation on User-Created Markings

As described earlier in this chapter, system-created markings are validated when the SWMark-
ing.Value property is set. On user-created markings, however, the Value property can be set prior to
establishing the ValueType. Because of this, user-created markings have their Value validated against
their ValueType when the following methods are executed:

• KeepItem
• KeepItems
• ReleaseItem
• ReleaseItems
• TriggerEvent

If the types do not match, the system will attempt to do a data conversion (details of what can be con-
verted can be found in the Value/getValue topic in the on-line help system). If the types do not match,
and the data cannot be converted, a “type mismatch error” is generated.

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 91

Case Data vs. Work Item Data

Data that is associated with a live case is actually of two different types — these are referred to as
Case Data and Work Item Data.

Case Data is the “official” data for the case. This data, which is updated only when a work item is
released, is stored in the database (Oracle, SQL, or Classic). You can also modify Case Data with the
SetCaseData method — see “Setting Case Data” on page 92. (Case data is sometimes referred to as
“central case data”.) (Note - The setCaseData method is available only if you are using a TIBCO iPro-
cess Engine.)

Work Item Data is a copy of the Case Data that is taken when a work item is moved to a queue. This
is a temporary holding area for the data associated with this work item that is maintained as long as the
work item is kept in the work queue. This data reflects “keeps”, i.e., changes made to the field values
in work items that are not released. When the work item is released, the data is written to the Case
Data. Work Item data, which is also known as “pack data” or “packfile” data, is stored in the
SWDIR\queues\username\nodename.n (Windows) or $SWDIR/queues/username/nodename.n
(UNIX) directory.

Note - If you are using a TIBCO iProcess Engine, all data is stored in database tables rather than in
flat files. For information about these tables, see the TIBCO iProcess Engine Administrator’s Guide.

As the flow moves to the next step, another copy of the Case Data is made to create Work Item Data
for that work item.

Where do I find Case Data and Work Item Data?

Generally speaking, Case Data is found in the SWCase.Fields property and Work Item Data is found
in the SWWorkItem.Markings property. Some things to note:

• Case Data - The Fields property on the SWCase object contains the Case Data. This can be
accessed in a couple of ways:

- SWWorkQ.WorkItems(i).Case.Fields
- SWProc.Cases(i).Fields

The Fields property on SWProc contains a list of all of the fields defined in the procedure, but
these field definitions do not contain any data. (Remember that for fields to be returned in the
Fields property, you must request them through the CaseFieldNames property (as described ear-
lier in this chapter).)

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 92

• Work Item Data - The Markings property on the SWWorkItem object contains the Work Item
Data. This is accessed in the following way:

- SWWorkQ.WorkItems(i).Markings

The Markings property on SWStep contains a list of the markings that are defined on the
step/form, but these marking definitions do not contain any data. (Remember that the Markings
property is not populated until the work item is locked.)

Setting Case Data

You can modify the Case Data for one or more fields in the case using the SetCaseData method on
SWCase. This method requires you to pass the names of the fields and the values you want assigned
to those fields:

SetCaseData(FieldNames, FieldValues)

Note - You must be using a TIBCO iProcess Engine to use the SetCaseData method.

Keeping/Releasing the Start Step

If you start a case “with field data” (see “Starting a Case with Field Data” on page 232), you also have
the option of “keeping” or “releasing” the step when the case is started. The effect this has on Case
Data and Work Item Data is described below:

• If you “keep” the start step when the case is started (the StartCaseEx Release parameter =
False), the data that is passed with StartCaseEx is copied to the Work Item Data of the first step.
The Case Data will remain empty until the first step is released.

• If you “release” the start step when the case is started (the StartCaseEx Release parameter =
True), the data that is passed with StartCaseEx is copied to the Case Data and the flow moves to
the next step. This is equivalent to doing a “keep,” then a “release” on the first step.

Parallel Steps

Because each step has its own Work Item Data, this can create problems if your procedure has parallel
steps that contain a common field. As each step is released, it copies its Work Item Data to the Case
Data, overwriting the data that was written to Case Data by any previous parallel steps. Any other par-
allel steps that have not been released yet, do not see the new Case Data — they still only see the
Work Item Data that belongs to that step. In the end, the value of the common field in the Case Data
will be the value from the last parallel step to be released.

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 93

Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering and sorting on
the value of fields in work items. To make use of this functionality, you must first pre-designate the
fields you want to filter/sort on as CDQP fields. Fields are designated as CDQP fields with the utility,
swutil. This utility is used to create a list, on the TIBCO Process/iProcess Engine, of the case data
fields that are available to use for filtering and sorting. See the TIBCO iProcess Engine Administra-
tor's Guide for information about using swutil.

For information about using CDQP fields for filtering, see the Using Case Data Queue Parameter
Fields section in the appropriate Filtering Work Items and Cases chapter on page 117, page 144, and
page 169.

For information about using CDQP fields for sorting, see “Using Case Data Queue Parameter
Fields” on page 184.

Accessing Memo Fields

Fields of type swMemo can be accessed through the Value property of the SWField and SWMark-
ing objects (note that your TIBCO iProcess Objects Server must have CR 8427 implemented to be
able to access memo fields). Also, all methods that have field names and field values as input parame-
ters support the use of fields of type swMemo as input parameters.

Because the TIBCO iProcess Engine must perform file I/O to store memo data, the length of time
between when the client requests that a memo value be stored on the server, and the time when the cli-
ent receives a reply that the data was successfully stored, can be several seconds. Because of this, you
may have a desire to configure the client so that if a specified period of time elapses waiting for a
response from the server, the client will timeout and generate an error. To configure this “message
wait time,” you must add a Registry key (Windows) or environment variable (UNIX), and set it to the
number of milliseconds you would like the client to wait before timing out.

Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SEO Client\MessageWaitTime

Environment variable:

MessageWaitTime

If the number of milliseconds specified by MessageWaitTime is exceeded, the client will generate an
swTimeoutErr error. If MessageWaitTime is set to 0 (zero), the client will not timeout. By default
(i.e., if you do not set MessageWaitTime), Windows clients timeout in 30 seconds; UNIX clients
timeout in 60 seconds.

For additional information about MessageWaitTime, see “Message Wait Time” on page 290.

Accessing Attachments

You cannot directly access the data in fields of type swAttachment. The data in this type of field is
the system-generated name and path to the file on the server containing the data. You would have to
locate the file, then read and parse the contents of the file yourself. They are not moved to the client
machine.

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 94

Accessing System Fields

The built-in system fields (e.g., SW_CASE, SW_STARTER, etc.) provide the TIBCO iProcess
Engine with references to information about work items and cases. These fields are primarily used by
the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering and sort-
ing functions.

The information that is available to the TIBCO iProcess Engine through the system fields is also
available to the client though properties on SWWorkItem and SWCase. For example,
SW_CASENUM is available to the client in the SWCase.CaseNumber property. The TIBCO iPro-
cess Engine, however, doesn’t have access to those properties, so the property names from
SWWorkItem and SWCase can’t be used in filter and sort expressions — instead, the system field
names need to be used in your expressions. For example:

oWorkQ.WorkItems.FilterExpression = “SW_CASENUM=5”

See the System Fields used in Filtering tables on page 113, page 140, and page 165 (depending on the
filtering enhancements in your TIBCO iProcess Objects Server) and “System Fields used in
Sorting” on page 182 for lists of the system fields that can be used in filtering and sorting, respec-
tively.

Array Fields

Array fields are defined using the TIBCO iProcess Modeler's Field Definition dialog in the same way
as standard single-instance fields. An option on the Field Definition dialog allows you to designate the
field as either a single-instance field or an array field. If designated as an array field, the field can hold
up to 99,999 data elements, each identified by an index (the field name followed by an index number
in brackets "[]").

For example, the array field CUSTNAME would be referenced by:

CUSTNAME[0]
CUSTNAME[1]
CUSTNAME[2]

...and so on. For more information about indexes, see “Array Field Indexes” on page 95.

Note - The terms “Staffware field and Staffware form” are remnants of the original software created
by Staffware, which was purchased by TIBCO. These terms are still used in the TIBCO iProcess
Engine and TIBCO iProcess Modeler dialogs and documentation, and will be used here until the
engine and modeler dialogs are changed.

Array fields can be used in the same way as single-instance fields, i.e., they can be used on Staffware
forms and in scripts. They are also used with both dynamic sub-procedure call steps and graft steps.
These types of steps allow an arbitrary number of sub-procedure cases to be started from, or grafted
to, a parent case. Array fields provide the ability to dynamically create variable length sets of data
elements that may be passed between the parent and sub-procedures.

You can determine whether a field is a single-instance field or an array field using the following prop-
erty:

• IsArrayField - This Boolean flag, available on SWField, SWFMarking, and SWMarking,
returns True if the field is defined as an array field. It returns False if the field is defined as a
single-instance field.

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 95

When used with dynamic sub-procedure call steps and graft steps, array fields are used in the follow-
ing ways:

• To identify the sub-procedures to start - When a dynamic sub-procedure call step or graft
step is defined in a procedure, instead of specifying the names of the sub-procedures (or exter-
nal processes) to start from that step, a text array field is specified. For dynamic sub-proce-
dures, the client application is responsible for assigning the names of the sub-procedures it
wishes to have started to the elements of the array field. For graft steps, the StartGraftTask
method is called, which specifies the sub-procedures / external processes to start -- these names
are automatically written to the elements of the array field.

For example, suppose a dynamic sub-procedure call step specifies SPROCS as the array field
that will contain the names of the sub-procedures to start. If the application wants sub-proce-
dures SUB1, SUB5, and SUB7 to be started, it must assign to the elements of SPROC the fol-
lowing prior to the step being processed:

SPROCS[0] := "SUB1"
SPROCS[1] := "SUB5"
SPROCS[2] := "SUB7"

Note that the array field elements do NOT have to have contiguous indexes.

• To identify the start steps - When a dynamic sub-procedure call step is defined in a procedure,
a non-default "start step" may also be defined for each of the sub-procedures to be started (this
functionality is not available for graft steps). These are also specified in a text array field. The
step to start each sub-procedure is taken from the specified array field using the same element
index as the "sub-procedure to start" array field.

For example, continuing from the example in the bullet item above, suppose a dynamic sub-
procedure call step specifies STARTSTP as the array field that will contain the names of the
non-default start steps for the sub-procedures that are started by that dynamic sub-procedure
call step. If the application wants sub-procedure SUB1 to start at STEP1, SUB5 to start at
STEP2, and SUB7 to start at STEP5, it must assign to the elements of STARTSTP the follow-
ing values prior to the step being processed:

STARTSTP[0] := "STEP1"

STARTSTP[1] := "STEP2"

STARTSTP[2] := "STEP5"

If the "start step" array field (STARTSTP in this example) element that corresponds to the same
index as the "sub-procedure to start" array field is unassigned, the sub-procedure case is started
at that sub-procedure's default start step.

Array Field Indexes

As described in the above subsections, array field elements can be referenced using an index number
enclosed in brackets. They may also be referenced using just the field name without a specified index.
In this case, the value returned is dependent on two system fields that specify the array element that is
to be used as the data source. These system fields are:

• IDX_<Array Field Name> - For example, if an array field is called CUSTNAME, its corre-
sponding index system field is "IDX_CUSTNAME". Each array field has a corresponding
index system field, which is automatically created when the array field is defined in the TIBCO

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 96

iProcess Modeler. Whenever an array field is referenced by only its name without an index
identifier, the index number from this system field is used (if it has been assigned).

An example of using this index system field in a Staffware script to assign values to three ele-
ments of the array field CUSTNAME is shown below:

IDX_CUSTNAME := 0

CUSTNAME := "John Doe"

IDX_CUSTNAME := 1

CUSTNAME := "Jane Doe"

IDX_CUSTNAME := 2

CUSTNAME := "Danny Doe"

• SW_GEN_IDX - If the "IDX_<Array Field Name>" system field is not currently assigned for
an array field, the array element index is taken from this generic index system field. This is use-
ful if the application requires several different array fields to hold data sets across fields with
the same index, it can simply ensure that all of the individual system index fields are set to
unassigned (SW_NA), then set SW_GEN_IDX to the desired index. See the example below:

IDX_CUSTNAME := SW_NA

IDX_ACCOUNT := SW_NA

SW_GEN_IDX := 0

CUSTNAME := "John Doe"

ACCOUNT := 11111

SW_GEN_IDX := 1

CUSTNAME := "Jane Doe"

ACCOUNT := 55555

SW_GEN_IDX := 2

CUSTNAME := "Danny Doe"

ACCOUNT := 77777

If neither the index system field for an array field, nor the generic index system field, are assigned, the
index defaults to 0 (zero).

When an array field is "marked" on a Staffware form during procedure definition, it is identified only
by its field name. No element index is specified.

Using Array Fields in Filter Expressions

Array fields can be used in filter expressions if your TIBCO iProcess Objects Server has CR 14434
implemented.

You can include array fields with an index in brackets in filter expressions when filtering cases (e.g.,
NAME[0] = “abcd”). Note, however, that the index value must be a constant (i.e., a single number); it
cannot be a variable or expression.

Array fields with an index in square brackets cannot be used when filtering work items. When filter-
ing work items, you can use array fields without an index — the WIS uses the default index number,
either “IDX_<array_field_name>” or “SW_GEN_IDX.”

Fields & Markings

TIBCO iProcess Objects Programmer’s Guide 97

Date Format

Fields that contain a date, by default, use the format dd/mm/yyyy. This format is specified using char-
acters 27-29 (dmy) of line 5 of the SWDIR\etc\staffpms (Windows) or $SWDIR/etc/staffpms (UNIX)
file, as follows:

%2d/%2d/%4d\/\%s%s %s, %s\dmy\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

In addition, the first 11 characters determine how many characters to allow for each part of the date.
The default is to use two characters for the day and month, and four characters for the year. You can
change the order of these, but not the number of characters, i.e., the day and month must always be
two characters, and the year must always be four characters.

Example 1:

To change the date format to mm/dd/yyyy:

%2d/%2d/%4d\/\%s%s %s, %s\mdy\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

Example 2:

To change the date format to yyyy/mm/dd:

%4d/%2d/%2d\/\%s%s %s, %s\ymd\wdmy\%2d:%2d\:\ AM\ PM\Week\NYYYYYN

TIBCO iProcess Objects Programmer’s Guide 98

8
Filtering Work Items and Cases

Without Filtering Enhancements

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously
provided by the TIBCO iProcess Objects Server can now be performed by the WIS when filter-
ing work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <>
operators, etc.). Since the WIS has the work items cached, and has direct access to case data, this
provides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select statement,
which is used to create the result set from the cases in the database. The result set is then sorted.
Because of the indexing ability of the database, this provides for very efficient filtering and sort-
ing of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server - CR
13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 8

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 9

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 10

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 99

Introduction

You can filter work items and cases, allowing you to filter out all those you aren’t currently interested
in. For example, you may only be interested in the work items that arrived in the work queue today, in
which case you could specify a filter expression that filters out all work items other than those that
arrived today:

oWorkQ.WorkItems.FilterExpression = “SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and the server need to do. When the result set from the
filter operation results in fewer work items or cases, this reduces the work load on the client and
server.

To filter work items or cases, you must set the FilterExpression property equal to a filter expression
string (as shown in the example above). The filter expression string is evaluated against each work
item in the work queue or each case in the procedure, returning either True or False. If it returns True,
the work item/case is included in the view/XList; if it returns False, the work item/case is not included
in the view/XList.

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc. Note,
however, that using some of these elements may impact how efficiently your filter expressions are pro-
cessed. Details are explained in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 100

How Filtering Differs Between Views and XLists

As described in the Working With Lists chapter, you may be using either SWView objects or SWXList
objects to hold your work item and case objects. (Remember, all new development should make use of
SWXLists because of their improved efficiency.) The way in which filter expressions are defined is
somewhat different between these two objects. The differences are described below.

Defining Filter Expressions on SWView

The SWView object contains a FilterExpression property that is used to
specify a Boolean expression that defines which cases (SWCase objects)
or work items (SWWorkItem objects) for the respective procedure or
work queue will be returned from the server and included in the view.

Each SWCase or SWWorkItem object is evaluated against the string
expression specified in the FilterExpression property. Those that evaluate
True are included in the view; those that evaluate False are not included in
the view.

After setting or modifying the FilterExpression property, the Rebuild
method must be called to update the view list based on the most recent fil-
ter criteria.

Number of Work Items or Cases in the Filtered View

The SWView object has a number of properties available that provide
information about the number of objects in the view:

• Count - This property tells you the number of work items or cases
currently in the view at the client. You can use this property to deter-
mine the total number of work items or cases available from the
server. To do this you must iterate through all of the items in the
view until IsEOL is True. See “Determining the Total Number of
Items Available” on page 71 for more information and an example.

Also see “How SWViews are Created and Populated at the Client” on page 66 for information
about how views are populated at the client.

• ExcludeCnt - This property contains the number of work items or cases that did not satisfy the
Boolean expression specified in the FilterExpression property, and therefore, were not included
in the view.

• InvalidCnt - This property contains the number of work items or cases not included in the view
because they were invalid within the context of the filter criteria (e.g., the filter expression ref-
erences a field name not defined in all work items or cases).

Note - The SWView object also contains an AuditFilterExpr property that is specific to filtering
SWAuditStep objects that are in the AuditSteps list of the cases that are on the view. This filtering
mechanism uses its own syntax and filtering criteria; it does not use the filter criteria defined in this
chapter. See “Filtering Audit Data” on page 245 for information about syntax and filter criteria spe-
cific to filtering audit steps.

SWView

<> FilterExpression

< ClassId

< Count

< ExcludeCnt

< InvalidCnt

<> IsAuditAscending

< IsEOL

<> IsWaitForAll

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

< SortFields

< Status

< Type

< CaseFieldNames

* Item (default)

* ItemByKey

* Rebuild

* Clear

VL

LL

LL

<> AuditFilterExpr

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 101

Defining Filter Expressions on SWXList

The SWXList object contains a Criteria property that points to an SWCriteriaWI, SWCriteriaC, or
SWCriteriaP object, depending whether the XList contains cases, work items, or predicted work
items:

• SWCriteriaWI - Contains properties that specify criteria for an XList that contains
SWWorkItem objects.

• SWCriteriaC - Contains properties that specify criteria for an XList that contains SWCase
objects.

• SWCriteriaP - Contains properties that specify criteria for an XList that contains
SWPredictedItem objects. (Note that since predicted items are stored in the database, they are
filtered in the same way as cases when you have the database case filtering enhancement — see
Filtering Work Items and Cases on page 152 for more information.)

The following properties are available on the objects shown above for use when filtering cases and
work items on the XList:

• Criteria - This property contains a reference to the appropriate criteria object (SWCriteriaWI,
SWCriteriaC, or SWCriteriaP), depending on whether the XList contains work items, cases, or
predicted work items.

• FilterExpression - This read/write property is used to specify a Boolean expression that
defines which work items (SWWorkItem objects), cases (SWCase objects), or predicted work
items (SWPredictedItem objects) for the respective work queue or procedure will be returned
from the server and included in the XList.

Each SWWorkItem, SWCase, or SWPredictedItem object is evaluated against the string
expression specified in the FilterExpression property. Those that evaluate True are included in
the XList; those that evaluate False are not included in the XList.

After setting or modifying the FilterExpression property, the Rebuild method must be called to
update the XList list based on the most recent filter criteria.

SWXList

< Count

< Criteria

< ExcludeCnt

< InvalidCnt

<> IsKeepLocalItems

< ItemCount

< ItemsPerBlock

< Status

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

XL

SWCriteriaWI

< ClassId

<> CDQPNames

< DeadlineCnt

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< UnopenedCnt

< UrgentCnt

<> CaseFieldNames

SWCriteriaC

<> CaseFieldNames

< ClassId

<> FilterExpression

<> IsAuditAscending

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

<> SortFields

<> AuditFilterExpr

<Work Items> <Cases>

SWCriteriaP

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< ClassId

<Prediction>

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 102

Number of Work Items or Cases in the Filtered XList

The SWXList object has a number of properties available that provide information about the number
of objects in the XList:

• ItemCount - This property contains the total number of work items or cases that satisfied the
filter expression and are in the XList at the server. This count is available immediately after the
XList is created (unlike on a view where you must iterate through the objects to determine the
total number available).

• Count - This property tells you the number of work items or cases currently available in the
XList at the client.

See “How XLists are Created” on page 75 for information about how XLists are populated with
objects on the client.

• ExcludeCnt - This property contains the number of work items or cases that did not satisfy the
Boolean expression specified in the FilterExpression property, and therefore, were not included
in the XList.

• InvalidCnt - This property contains the number of work items or cases not included in the
XList because they were invalid within the context of the filter criteria (e.g., the filter expres-
sion references a field name not defined in all work items or cases).

Note - The SWCriteriaC object also contains an AuditFilterExpr property that is specific to filtering
SWAuditStep objects that are in the AuditSteps list of the cases that are on the XList. This filtering
mechanism uses its own syntax and filtering criteria; it does not use the filter criteria defined in this
chapter. See “Filtering Audit Data” on page 245 for information about syntax and filter criteria spe-
cific to filtering audit steps.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 103

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed — works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items can be filtered by either the WIS or the TIBCO iProcess Objects Server, depending
on how you write your filter expressions. Ideally, you should write them so they are evaluated
by the WIS, because the WIS has work items cached in memory, allowing it to evaluate filter
expressions for work items very quickly. The TIBCO iProcess Objects Server, however, pro-
vides additional filter criteria that the WIS does not provide. Using this additional criteria
causes the expression to be evaluated by the TIBCO iProcess Objects Server, which requires
that the server retrieve all of the work items from the queue to perform the evaluation, making
the filter operation less efficient. See the tables in “Can the WIS Perform the Filter
Operation?” on page 105 for a list of the filter expression elements that can be evaluated by the
WIS and the TIBCO iProcess Objects Server, respectively.

• If you “get case data” in your application, this causes the filter processing to be less efficient
because the TIBCO iProcess Objects Server must retrieve case data from the TIBCO iProcess
Engine. See “Getting Case Data” on page 109 for more information.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation, because if the TIBCO iProcess Objects Server performs the sort, it must hold
all of the work items in the result set in memory. See “Can the WIS Perform the Sort
Operation?” on page 107 for more information.

The diagram shown below illustrates the decision process that takes place when filtering and sorting
work items.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 104

As shown in the illustration, there are three actions that will cause the filter/sort operation to be less
efficient when filtering and sorting work items:

• Getting case data
• Performing the filter operation on the TIBCO iProcess Objects Server
• Performing the sort operation on the TIBCO iProcess Objects Server

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 105

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property. There is always a performance hit
when you ask for case data in this way, whether the filter/sort operation is performed by the
WIS or the TIBCO iProcess Objects Server. See “What is a Staffware Field?” on page 86 for
information about the use of CaseFieldNames.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

Can the WIS Perform the Filter Operation?

Work items can be filtered by either the WIS or the TIBCO iProcess Objects Server, depending on
how you write your filter expression). If your filter expression contains only WIS-compatible criteria,
the WIS will evaluate the expression. If your filter expression contains any of the expanded filter cri-
teria provided by the TIBCO iProcess Objects Server, the TIBCO iProcess Objects Server will evalu-
ate the expression.

The WIS has work items cached in memory, allowing it to evaluate filter expressions for work items
very quickly. If the TIBCO iProcess Objects Server must perform the filtering operation, it must
retrieve all work items from the work queue. Depending on the number of work items in the work
queue, this can have a very significant impact on the performance of the filtering operation

The following tables lists the elements that can be included in your work item filter expressions. If
your filter expression contains any of the additional criteria provided by the TIBCO iProcess Objects
Server, the entire expression is evaluated by the TIBCO iProcess Objects Server.

Filter Criteria the WIS can Evaluate

Element Description

Comparison Operator =

Logical Operator AND

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 106

The TIBCO iProcess Objects Server can evaluate the filter criteria listed in the table above, as well as
those listed in the table below.

The following example filter expression can be evaluated by the WIS because it contains the ‘=’
equality operator, and the SW_PRIORITY system field is WIS-compatible:

oCriteriaWI.FilterExpression = “SW_PRIORITY = 50”

The following example filter expression must be evaluated by the TIBCO iProcess Objects Server
because it contains the ‘>’ comparison operator:

oCriteriaWI.FilterExpression = “LOAN_AMT > 100000”

System Fields System fields that are “WIS-compatible” (see the WIS-compatible columns in the
table of system fields used for filtering — page 113) (They must also be applica-
ble to filtering work items — see the Applies To column.)

Case Data Fields Case data fields that have been defined as CDQPs. See “Filtering on Case Data
Fields” on page 117 for information.

Wild Cardsa The wild card characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax — see “How to Specify Ranges of Values” on page 122 for infor-
mation.

a. If the entire expression is WIS-compatible, the ‘*’ and ‘?’ are both interpreted as wild cards, as described above.
However, if any part of the expression is NOT WIS-compatible, the ‘*’ and ‘?’ characters are interpreted literally by
the TIBCO iProcess Objects Server (i.e., as asterisks and question marks), with the following exception — if the
expression contains a ‘?’ equality operator (e.g., SW_CASENUM ? “1*”), that part of the expression is evaluated
separately. The part of the expression that contains the ‘?’ equality operator CAN include the ‘*’ and ‘?’ wildcard
characters (as in the SW_CASENUMBER ? “1*” example).

Additional Filter Criteria the TIBCO iProcess Objects Server can Evaluate

Element Description

Comparison Operators <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 120.)

Logical Operator OR

System Fields System fields that are NOT “WIS-compatible” (see the WIS-compatible columns
in the table of system fields used for filtering — page 113) (They must also be
applicable to filtering work items — see the Applies To column.)

Case Data Fields Case data fields that have NOT been defined as CDQPs. See “Filtering on Case
Data Fields” on page 117 for information.

Regular Expressions Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 120.

Filter Criteria the WIS can Evaluate

Element Description

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 107

Work Item Server vs. TIBCO iProcess Objects Server Example
The following example illustrates the efficiency differences between the Work Item Server and the
TIBCO iProcess Objects Server evaluating a filter expression. These filter expressions were run with
3,000 work items:

• “SW_CASENUM = 1 OR SW_CASENUM = 90” - This is evaluated by the TIBCO iProcess
Objects Server because of the OR in the expression. It ran in 1450 ms.

• “SW_CASENUM = [1 | 90]” - This is evaluated by the Work Item Server. It ran in 20 ms.

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See the chapter, “Sorting Work Items and Cases” on page 178 for information about setting up sort
criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the TIBCO iProcess Objects Server. To filter cases, the TIBCO
iProcess Objects Server must retrieve all cases (both active and closed) from the procedure to
be able to filter them. This can take a significant amount of time, depending on the number of
cases. The TIBCO iProcess Objects Server can, however, efficiently filter on case number
(SW_CASENUM) or case reference number (SW_CASEREF) (see “Efficiently Filtering Cases
on the TIBCO iProcess Objects Server” on page 110 for more information). The elements you
are allowed to use in your filter expressions to filter cases are listed below.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 184 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 184 for more information.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 108

• Cases are always sorted by the TIBCO iProcess Objects Server. This, however, requires that the
server hold in memory all of the cases in the result set.

The following flow diagram shows the decision process that takes place when filtering and sorting
cases:

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 109

As shown in the illustration, there are some actions that will cause the filter/sort operation to be less
efficient when filtering and sorting cases:

• Getting case data

• Performing the filter operation on the TIBCO iProcess Objects Server

• Performing the sort operation on the TIBCO iProcess Objects Server

• Getting audit data

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property, which requires that the data be
retrieved from the engine. See “What is a Staffware Field?” on page 86 for information about
the use of CaseFieldNames.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

Filtering Cases on the TIBCO iProcess Objects Server

Cases can be filtered and sorted only by the TIBCO iProcess Objects Server. This limits your options
to perform an efficient filter and sort operation because the TIBCO iProcess Objects Server must
always retrieve all cases (both active and closed) from the engine to be able to determine if they sat-
isfy the filter expression. For large numbers of cases this can take a significant amount of time.

The following table lists the elements that can be used in filter expressions when filtering cases:

Element Description

Logical Operators AND, OR

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 120.)

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 110

The following is an example of a filter expression for filtering cases:

• To define a filter expression for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting):

oCriteriaC.FilterExpression = "SW_STARTEDDATE <= !03/01/2003!"

Efficiently Filtering Cases on the TIBCO iProcess Objects Server
The Filtering and Sorting Cases flow diagram shows that if you are filtering cases, you can bypass the
performance hit normally caused by filtering on the TIBCO iProcess Objects Server by filtering on
either SW_CASENUM or SW_CASEREF.

Cases are indexed by case number (SW_CASENUM) and case reference number (SW_CASEREF).
Therefore, if your filter expression contains one (and only one) of these system fields, the TIBCO
iProcess Objects Server is able to perform the filtering operation very quickly. When using these sys-
tem fields, the server does not have to retrieve all of the cases from the procedure.

The following are examples of filtering on the case number and case reference number:

oProc.Cases.FilterExpression = "SW_CASENUM = 150"

oProc.Cases.FilterExpression = "SW_CASEREF = ""2-6"""

Note - Case number is an integer; case reference number is a text string.

This exception for cases does not allow for any compound expressions; you can only filter on a single
case number or a single case reference number.

Sorting Cases on the TIBCO iProcess Objects Server

As described earlier and shown in the Filtering and Sorting Cases illustration, cases are always sorted
by the TIBCO iProcess Objects Server. This is not real efficient because the TIBCO iProcess Objects
Server must hold in memory all work items in the filter result set. If the result set from the filter
operation is very large, this can consume a significant amount of memory.

System Fields All system fields that are applicable to cases (see the Applies To column in the
table of system fields used for filtering — page 113)

Case Data Fields Case data fields can be included in your filter expressions, although it causes you
to take a performance hit because the TIBCO iProcess Objects Server must get
case data from the engine.

Wild Cards Note that the ‘*’ and ‘?’ characters are NOT interpreted as wild card characters
when filtering cases on the TIBCO iProcess Objects Server. They are interpreted
literally, i.e., as an asterisk and question mark. (This applies when using the ‘=’
equality operator. You can use ‘*’ and ‘?’ as wildcard characters when using the ‘?
equality operator (i.e., with regular expressions — see below).)

Regular Expressions Regular expressions can be used when filtering cases, allowing you to do com-
plex pattern matching. See “Using Regular Expressions” on page 120.

Element Description

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 111

The table below shows the sort criteria you can use when sorting cases.

See the chapter, “Sorting Work Items and Cases” on page 178 for specific information about setting
up sort criteria.

Getting Audit Data

Getting audit data by setting the IsWithAuditData flag to True on the view or XList that holds your
cases causes the TIBCO iProcess Objects Server to retrieve the audit data from the engine. This
impacts the performance of a case filter operation.

Only include audit data in the cases in which it is needed. If you need it in all or most of the cases in
the view/XList, set IsWithAuditData on the view/XLists. If it is needed on only one or a few cases,
request it on those specific cases by setting the IsWithAuditData flag only on those cases.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 113 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 182.

• Case data fields can be included in your sort criteria, although it causes you to take a performance hit
because the TIBCO iProcess Objects Server must get case data from the engine.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 112

<time>
#<hour>:<min>#

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 113

<alphanums>
<alphanum> [<alphanums>]

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the TIBCO iProcess Engine through the
system fields is also available to the client though properties on SWWorkItem and SWCase. For
example, SW_CASENUM is available to the client in the SWCase.CaseNumber property. The
TIBCO iProcess Engine, however, doesn’t have access to those properties, so the property names
from SWWorkItem and SWCase can’t be used in filter and sort criteria — instead, the system field
names need to be used in your expressions. For example:

oWorkQ.WorkItems.FilterExpression = “SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns). The WIS-compatible column tells you if the system
field is Work Item Server-compatible — see “Can the WIS Perform the Filter Operation?” on
page 105 for more information.

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X X

Arrival date SW_ARRIVALDATE Date 10 X X

Arrival time SW_ARRIVALTIME Time 5 X X

Case description SW_CASEDESC Text 24 X X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X X

Case reference number SW_CASEREF Text 20 X X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - not expired)

SW_EXPIRED Numeric 1 X X

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 114

Deadline set flag
(1 - has deadline;
0 - does not have deadline)

SW_HASDEADLINE Numeric 1 X X

Deadline time SW_DEADLINETIME Time 5 X

Forwardable work item flag
(1 - forwardable;
0 - not forwardable)

SW_FWDABLE Numeric 1 X X

Host name SW_HOSTNAME Text 24 or 8a X X X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Mail ID SW_MAILID String or

Numeric b
45 (String)

7 (Numeric)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 7 X X

Procedure description SW_PRODESC Text 24 X X X

Procedure name SW_PRONAME Text 8 X X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no
input fields) (1 - releasable;
0 - not releaseable)

SW_RELABLE Numeric 1 X X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” -
active; “C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X X

Step (work item) name SW_STEPNAME Text 8 X X

Step (work item) number in
procedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended) (only
available on TIBCO iProcess
Engines)

SW_SUSPENDED Numeric 1 X

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 115

Terminated date and time of
the case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - have been open)

SW_NEW Numeric 1 X X

Urgent flag (1- urgent;
0 - not urgent)

SW_URGENT Numeric 1 X X

Work queue parameter 1 SW_QPARAM1 Text 24 X X

Work queue parameter 2 SW_QPARAM2 Text 24 X X

Work queue parameter 3 SW_QPARAM3 Text 12 X X

Work queue parameter 4 SW_QPARAM4 Text 12 X X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is an integer of length 7; if using a TIBCO iProcess Engine,
SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance, if your fil-
ter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases that ARE termi-
nated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 116

Data Types Used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Data Type Conversions

If you specify a filter expression that compares values of different types, both types will be converted
to strings and compared as strings. For example, assume NUM_FIELD is a Staffware field of type
numeric with a value of 275. The filter:

NUM_FIELD < "34"

will result in being True because NUM_FIELD will be converted to a string before the comparison is
made ("275" < "34").

The expression:

!06/03/1999! < 34

will be converted to:

"06/03/1999" < "34"

Data Type Description

Numeric Numeric numbers are simply entered in the expression.

Examples: 36 or 425.00

Text Text must be enclosed within double quotes.

Example: "Smith"

Date Dates must be enclosed in exclamation marks. The ordering of the day, month and year is
specified in the staffpms file (see “Date Format” on page 97).

Example: !12/25/1997!

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the
staffpms file (see “Date Format” on page 97).

Example: "12/25/1997 10:30"

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 117

Filtering on Case Data Fields

You can filter work items in a work queue based on the values in the fields of the work item (referred
to as "case data" fields).

There are two ways in which you can filter on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlim-
ited number of case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field in filter or sort criteria. These fields have been superseded by CDQP fields as they were
considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available
to use for filtering. See the TIBCO iProcess Engine Administrator's Guide for information about using
swutil.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Once you have created the list of CDQP fields with
swutil, this list of fields is available via the
SWWorkQ.CaseDataQParamDefs property. This
property contains a list of SWCaseDataQParam-
Def objects, one for each case data field that has
been designated as a CDQP field in the work queue.
This list tells you the CDQPs that are available for
filter and sort criteria.

The CaseDataQParams property on SWWorkItem
provides access to CDQPs that are being used in the
work item. Note, however, to control resource
usage, you can specify which CDQPs to return from
the server by using the CDQPNames property on
the SWCriteriaWI object. By default, all CDQPs
used in a work item are returned from the server.
The SWCaseDataQParam object contains the cur-
rent value in the CDQP.

Your filter expressions can include any of the CDQP
fields that have been defined on the work queue. For example, assuming LOAN_AMT is listed as one
of the CDQP fields for the work queue, the following is a valid filter expression:

oWorkQ.WorkItems.FilterExpression = "LOAN_AMT = 500000"

SWCaseDataQParamDef

< Description

< FieldName

< Key

< Length

< ClassId

 SWWorkQ

< CaseDataQParamDefsL

 SWWorkItem

< CaseDataQParams LL
SWCaseDataQParam

< FieldName

< Key

< Value

< ClassId

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 118

Type of Data in CDQPs

If the WIS is performing the filter or sort operation, and you are using CDQP fields in your filter
expression or sort criteria, the evaluation is performed using the “Work Item Data” in the CDQP.
Work Item Data reflects “keeps” that have been done on the work item.

If the TIBCO iProcess Objects Server is performing the filter or sort operation, and you are using
CDQP fields in your filter expression or sort criteria, the server may perform the evaluation using
either “Work Item Data” or “Case Data”, depending on whether or not your TIBCO iProcess Objects
Server has implemented CR 12425. If CR 12425 has been implemented in your server, it will evaluate
Work Item Data; if CR 12425 has not been implemented in your server, it will evaluate Case Data.
Work Item Data reflects “keeps” that have been performed on the work item; Case Data does not
reflect “keeps”. (See your TIBCO iProcess Objects Server readme to determine if CR 12425 is imple-
mented in your server.)

See “Case Data vs. Work Item Data” on page 91 for more information about the difference between
Work Item Data and Case Data.

Using Work Queue Parameter Fields

Note - Previous versions of TIBCO iProcess Objects provided “Work Queue Parameter” fields that
could be used for filtering and sorting work items based on the value of case data. Work Queue
Parameter fields, however, did not provide the flexibility required by some customers. Therefore, a
new method of filtering on case data fields has been implemented using “Case Data Queue Parame-
ter” fields (see the previous section). New development should use Case Data Queue Parameter fields
instead of the Work Queue Parameter fields (Work Queue Parameter fields will continue to be sup-
ported, however).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name of Miller, the FilterExpression property is set as follows:

oWorkQ.WorkItems.FilterExpression = "SW_QPARAM1?""Miller"""

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 119

This would be much more efficient then filtering on the LAST_NAME field.

The SWWorkItem object has four read-only properties that provide access to the values in the Work
Queue Parameter fields — they are WQParam1 - WQParam4. These properties will contain the val-
ues you place in fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The SWWorkQ object has four read-only properties that contain a name for each of the Work Queue
Parameter fields (WQParam1Name - WQParam4Name). If you use the TIBCO iProcess Client, these
names appear in the column headers if you display the Work Queue Parameter fields in the Work
Queue Manager. For information about modifying these names, see the TIBCO iProcess Client (Win-
dows) Managers Guide.

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 120

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases.

Regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE.

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself. For example, an RE of “a” will match all constants/fields that match “a” exactly.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself.

The special characters are:

*, ?, [, and \ Asterisk, question mark, left square bracket, and backslash, respectively. These are
always special, except when they appear within square brackets ([]; see Item 5
below).

3. An asterisk (*) is a one-character RE that matches zero or more of any character.

4. A question mark (?) is a one-character RE that matches any character except new-line.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters *, ?, [, and \ stand for themselves within such a string of characters.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 121

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” exactly.

Using Escape Characters in the Filter Expression

The FilterExpression property requires a string value. Therefore, if within the string value, you are
required to provide another string, you must use an escape character to provide the quoted string
within a string.

In Visual Basic you use the double quotes twice. In the example below, the two pairs of double quotes
around LOAN signify that they are in reference to the string "LOAN", and not the ending quotes for
the filter string.

oWorkQ.WorkItems.FilterExpression = "SW_PRONAME=""LOAN"""

In Java and C++ you use the back slash to indicate that the next character is a special character. In the
example below, the back slashes indicate that the quotes that follow them are quoting the string
"LOAN", and are not the ending quotes for the setFilterExpression string.

oWorkQ.getWorkItems.setFilterExpression("SW_PRONAME=\"LOAN\"");

Filtering on Empty Fields

To filter on an empty field, compare the field with SW_NA, which checks to see if the field is "not
assigned." For example:

oWorkQ.WorkItems.FilterExpression = "SOC_SEC_NUM = SW_NA"

This returns only work items in which the SOC_SEC_NUM field is empty.

Comparing the field with an empty set of quotes (SOC_SEC_NUM = “”) will cause all work items to
be returned. Here's why: The TIBCO iProcess Objects Server determines that this is a filter that the
Work Item Server can perform. The Work Item Server views the filter from the perspective of the
Work Queue Manager. When you set up filter criteria from within the Work Queue Manager, if you
leave a filter field blank, it means "match all items." That's essentially what you are doing when you
compare one of the Work Queue Manager-defined filter criteria to an empty set of quotes.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 122

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 97).

Times are specified as:

#mm:hh#

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Specifying Multiple Ranges

When setting up a range filter, if you are filtering on criteria that can be filtered through the Work
Queue Manager, you are limited to five ranges in the expression if you want the Work Item Server to
evaluate the expression (which is what you want — the Work Item Server processes filter expressions
much faster than the TIBCO iProcess Objects Server). For instance, if you are filtering on the case
number, you can specify up to five case number ranges in your filter expression:

SW_CASENUM=[50-100|110|125-150|180-200|225-250]

The reason for this is because the TIBCO iProcess Objects Server always first determines if the filter
expression is something the Work Item Server can handle. If it is, the TIBCO iProcess Objects Server
sends it to the Work Item Server to evaluate the filter expression; otherwise the TIBCO iProcess
Objects Server will evaluate it. When the filter assignment is sent to the Work Item Server, you must

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 123

abide by the rules/limitations of filtering through the Work Queue Manager. One of the limitations is
that when defining filter ranges in the Work Queue Manager, there are only five range filter fields in
which you can enter filter criteria.

If you exceed five ranges in your filter expression, the TIBCO iProcess Objects Server must evaluate
the expression, which is a lot less efficient than the Work Item Server.

The following is a list of the filter criteria for which you can enter ranges in the Work Queue Manager.
Each of these is limited to five separate ranges:

• Host Name (SW_HOSTNAME)
• Procedure Name (SW_PRONAME)
• Procedure Description (SW_PRODESC)
• Case Number (SW_CASENUM)
• Case Description (SW_CASEDESC)
• Form Name (SW_STEPNAME)
• Form Description (SW_STEPDESC)
• Deadline (SW_DEADLINE)
• Priority (SW_PRIORITY)
• WQ Parameter 1 (SW_QPARAM1)
• WQ Parameter 2 (SW_QPARAM2)
• WQ Parameter 3 (SW_QPARAM3)
• WQ Parameter 4 (SW_QPARAM4)

Closing/Purging Cases Based on Filter Criteria

The SWNode and SWProc objects contain methods that allow you to close or purge cases based on
filter criteria. These methods are:

• CloseByCriteria - This method closes cases that match the specified filter criteria. To close a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
close a case from a slave node.

• PurgeByCriteria - This method purges cases that match the specified filter criteria. To purge a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 124

How to Persist (Default) Filter Criteria

You can set default filter criteria for a work queue that persists on the queue. This causes future
SWViews or SWXLists of work items on the current instance of the queue to use this default criteria.

Note - If you use the TIBCO iProcess Client, filter criteria that are defined on the Work Queue Man-
ager Work Item List Filter dialog become the default filter criteria for that work queue. When an
SWView or SWXList object is created for that work queue, the filter criteria defined on that dialog are
written to the FilterExpression property.

The following methods on the SWWorkQ object allow you to affect the default filter criteria (note
that at the same time these methods are affecting the default sort criteria for the work queue):

• SetDefCriteria - This method sets the default filter and sort criteria for this work queue. It uses
the current setting of the FilterExpression property and the SortFields property on the
SWView in the WorkItems property in the current instance of the work queue to establish the
default criteria.

Note that since this method uses the filter and sort criteria in the view in the WorkItems prop-
erty, this method is practical to use if you are using SWViews, but not if you are using
SWXLists. If you are using SWXLists, the SetDefCriteriaEx method is a better choice (see
below).

• SetDefCriteriaEx - This method allows you to specify the default filter and sort criteria for this
work queue by passing in the criteria as parameters. This causes the criteria you pass in this
method to persist on this instance of the work queue, causing future SWViews or SWXLists of
work items on this instance of the queue to use this default criteria.

• ClearDefCriteria - This method clears the default filter criteria that were set either through the
Work Queue Manager or by using the SetDefCriteria or SetDefCriteriaEx methods (see
above). (This also clears any default sort criteria that have been defined.)

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you call SetDefCriteria/SetDefCriteriaEx. The following are the fil-
ter criteria that are supported by the Work Queue Manager, that can, therefore, be persisted with the
SetDefCriteria/SetDefCriteriaEx methods:

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

Filtering Work Items and Cases - Without Filtering Enhancements

TIBCO iProcess Objects Programmer’s Guide 125

Also note the only equality operator that can be used in your filter expression when you are setting the
default criteria with the SetDefCriteria/SetDefCriteriaEx methods is the ‘=’ operator. The ‘<‘, ‘>’, and
‘?’ operators are not allowed (and since ‘?’ is not allowed, no regular expression syntax can be used).

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

System Field Description

TIBCO iProcess Objects Programmer’s Guide 126

9
Filtering Work Items and Cases

With WIS Work Item Filtering

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously pro-
vided by the TIBCO iProcess Objects Server can now be performed by the WIS when filtering
work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <> opera-
tors, etc.). Since the WIS has the work items cached, and has direct access to case data, this pro-
vides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select statement,
which is used to create the result set from the cases in the database. The result set is then sorted.
Because of the indexing ability of the database, this provides for very efficient filtering and sort-
ing of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server - CR
13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 8

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 9

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 10

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 127

Introduction

You can filter work items and cases, allowing you to filter out all those you aren’t currently interested
in. For example, you may only be interested in the work items that arrived in the work queue today, in
which case you could specify a filter expression similar to the following:

oWorkQ.WorkItems.FilterExpression = “SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and server need to do. When the result set from the fil-
ter operation results in fewer work items or cases, this reduces the work load on the client and
server.

To filter work items or cases, you must set the FilterExpression property equal to a filter expression
string (as shown in the example above). The filter expression string is evaluated against each work
item in the work queue or each case in the procedure, returning either True or False. If it returns True,
the work item/case is included in the view/XList; if it returns False, the work item/case is not included
in the view/XList.

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc. Details
about filter expressions is described in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 128

How Filtering Differs Between Views and XLists

As described in the Working With Lists chapter, you may be using either SWView objects or SWXList
objects to hold your work item and case objects. (Remember, all new development should make use of
SWXLists because of their improved efficiency.) The way in which filter expressions are defined is
somewhat different between these two objects. The differences are described below.

Defining Filter Expressions on SWView

The SWView object contains a FilterExpression property that is used to
specify a Boolean expression that defines which cases (SWCase objects) or
work items (SWWorkItem objects) for the respective procedure or work
queue will be returned from the server and included in the view.

Each SWCase or SWWorkItem object is evaluated against the string expres-
sion specified in the FilterExpression property. Those that evaluate True are
included in the view; those that evaluate False are not included in the view.

After setting or modifying the FilterExpression property, the Rebuild method
must be called to update the view list based on the most recent filter criteria.

Number of Work Items or Cases in the Filtered View

The SWView object has a number of properties available that provide infor-
mation about the number of objects in the view:

• Count - This property tells you the number of work items or cases that
satisfied the filter expression and are currently in the view at the client.
You can use this property to determine the total number of work items
or cases available from the server. To do this you must iterate through
all of the items in the view until IsEOL is True. See “Determining the
Total Number of Items Available” on page 71 for more information and
an example.

Also see “How SWViews are Created and Populated at the Client” on page 66 for information
about how views are populated at the client.

• ExcludeCnt - This property contains the number of cases or work items that did not satisfy the
Boolean expression specified in the FilterExpression property, and therefore, were not included
in the view.

• InvalidCnt - When filtering cases, this property contains the number of cases not included in
the view because they were invalid within the context of the filter criteria (e.g., the filter expres-
sion references a field name not defined in the procedure).

When filtering work items, this property is no longer applicable (it returns -1 if the view con-
tains work items).

The SWView object also contains an AuditFilterExpr property that is specific to filtering SWAudit-
Step objects that are in the AuditSteps list of the cases that are on the view. This filtering mechanism
uses its own syntax and filtering criteria; it does not use the filter criteria defined in this chapter. See
“Filtering Audit Data” on page 245 for information about syntax and filter criteria specific to filter-
ing audit steps.

SWView

<> FilterExpression

< ClassId

< Count

< ExcludeCnt

< InvalidCnt

<> IsAuditAscending

< IsEOL

<> IsWaitForAll

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

< SortFields

< Status

< Type

< CaseFieldNames

* Item (default)

* ItemByKey

* Rebuild

* Clear

VL

LL

LL

<> AuditFilterExpr

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 129

Defining Filter Expressions on SWXList

The SWXList object contains a Criteria property that points to an SWCriteriaWI, SWCriteriaC, or
SWCriteriaP object, depending whether the XList contains cases, work items, or predicted work
items:

• SWCriteriaWI - Contains properties that specify criteria for an XList that contains
SWWorkItem objects.

• SWCriteriaC - Contains properties that specify criteria for an XList that contains SWCase
objects.

• SWCriteriaP - Contains properties that specify criteria for an XList that contains
SWPredictedItem objects. (Note that since predicted items are stored in the database, they are
filtered in the same way as cases when you have the database case filtering enhancement — see
Filtering Work Items and Cases on page 152 for more information.)

The following properties are available on the objects shown above for use when filtering cases and
work items on the XList:

• Criteria - This property contains a reference to the appropriate criteria object (SWCriteriaWI,
SWCriteriaC, or SWCriteriaP), depending on whether the XList contains work items, cases, or
predicted work items.

• FilterExpression - This read/write property is used to specify a Boolean expression that
defines which work items (SWWorkItem objects), cases (SWCase objects), or predicted work
items (SWPredictedItem objects) for the respective work queue or procedure will be returned
from the server and included in the XList.

Each SWWorkItem, SWCase, or SWPredictedItem object is evaluated against the string
expression specified in the FilterExpression property. Those that evaluate True are included in
the XList; those that evaluate false are not included in the XList.

After setting or modifying the FilterExpression property, the Rebuild method must be called to
update the XList list based on the most recent filter criteria.

SWXList

< Count

< Criteria

< ExcludeCnt

< InvalidCnt

<> IsKeepLocalItems

< ItemCount

< ItemsPerBlock

< Status

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

XL

SWCriteriaWI

< ClassId

<> CDQPNames

< DeadlineCnt

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< UnopenedCnt

< UrgentCnt

<> CaseFieldNames

SWCriteriaC

<> CaseFieldNames

< ClassId

<> FilterExpression

<> IsAuditAscending

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

<> SortFields

<> AuditFilterExpr

<Work Items> <Cases>

SWCriteriaP

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< ClassId

<Prediction>

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 130

Number or Work Items or Cases in the Filtered XList

The SWXList object has a number of properties available that provide information about the number
of objects in the XList:

• ItemCount - This property contains the total number of work items or cases that satisfied the
filter expression and are in the XList at the server. This count is available immediately after the
XList is created (unlike on a view where you must iterate through the objects to determine the
total number available).

• Count - This property tells you the number of work items or cases that satisfied the filter
expression and are currently available in the XList at the client.

See “How XLists are Created” on page 75 for information about how XLists are populated with
objects at the client.

• ExcludeCnt - This property contains the number of work items or cases that did not satisfy the
Boolean expression specified in the FilterExpression property, and therefore, were not included
in the XList.

• InvalidCnt - When filtering cases, this property contains the number of cases not included in
the XList because they were invalid within the context of the filter criteria (e.g., the filter
expression references a field name not defined in the procedure).

When filtering work items, this property is no longer applicable (it returns -1 if the XList con-
tains work items).

Note - The SWCriteriaC object also contains an AuditFilterExpr property that is specific to filtering
SWAuditStep objects that are in the AuditSteps list of the cases that are on the XList. This filtering
mechanism uses its own syntax and filtering criteria; it does not use the filter criteria defined in this
chapter. See “Filtering Audit Data” on page 245 for information about syntax and filter criteria spe-
cific to filtering audit steps.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 131

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed— works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items are always filtered by the Work Item Server (WIS). The WIS has work items
cached in memory, allowing it to evaluate filter expressions for work items very quickly. The
elements you are allowed to use in your filter expressions are listed in “Work Items are Filtered
by the WIS” on page 133.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation. This is explained in detail below.

The following flow diagram shows the decision process that takes place when filtering and sorting
work items.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 132

As shown in the illustration, there are a couple of actions that will cause the filter/sort operation to be
less efficient when filtering and sorting work items:

• Getting case data
• Performing the sort operation on the TIBCO iProcess Objects Server

Additional information about these actions is provided in the subsections that follow.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 133

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property, which requires that the data be
retrieved from the engine. See “What is a Staffware Field?” on page 86 for information about
the use of CaseFieldNames.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if the sort operation is
being handled by the TIBCO iProcess Objects Server, and you sort on a customer-defined field
(i.e., any field on a form that is not a system field (SW_PRIORITY, SW_PRONAME, etc.)),
the TIBCO iProcess Objects Server must retrieve the data in that field from the engine,
adversely affecting performance.

Note that although the flow diagram shows that there are two different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you call CaseFieldNames and the TIBCO iProcess Objects Server is sort-
ing on customer-defined fields; the TIBCO iProcess Objects Server only has to get case data once for
the entire operation.

Work Items are Filtered by the WIS

As shown in the Filtering and Sorting Work Items illustration, work items are always filtered by the
WIS. The WIS has work items cached in memory, allowing it to evaluate filter expressions for work
items very quickly.

The following table lists the elements that can be used in filter expressions when filtering work items:

Element Description

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 147.)

Logical Operators AND, OR

System Fields All system fields that are applicable to work items (see the Applies To column in
the table of system fields used for filtering — page 140)

Case Data Fields Case data fields can be included in your filter expressions ONLY if they are first
defined as CDQPs. If your filter expression references a field that is not a CDQP,
the WIS will return a syntax error, which causes the entire filter operation to fail.
See “Filtering on Case Data Fields” on page 144 for information.

Wild Cards The wild card characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax — see “How to Specify Ranges of Values” on page 149 for infor-
mation.

Regular Expressions Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 147.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 134

The following is an example of a filter expression for filtering work items:

• To define a filter for all unopened work items:

oCriteriaWI.FilterExpression = "SW_NEW = 1"

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See “Sorting Work Items and Cases” on page 178 for information about setting up sort criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the TIBCO iProcess Objects Server. To filter cases, the TIBCO
iProcess Objects Server must retrieve all cases (both active and closed) from the procedure to
be able to filter them. This can take a significant amount of time, depending on the number of
cases. The TIBCO iProcess Objects Server can, however, efficiently filter on case number
(SW_CASENUM) or case reference number (SW_CASEREF) (see “Efficiently Filtering Cases
on the TIBCO iProcess Objects Server” on page 137 for more information). The elements you
are allowed to use in your filter expressions to filter cases are listed below.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Cases are always sorted by the TIBCO iProcess Objects Server. This, however, requires that the
server hold in memory all of the cases in the result set.

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 184 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 184 for more information.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 135

The following flow diagram shows the decision process that takes place when filtering and sorting
cases.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 136

As shown in the illustration, there are some actions you should avoid, if possible, when filtering and
sorting cases:

• Getting case data

• Performing the filter operation on the TIBCO iProcess Objects Server

• Performing the sort operation on the TIBCO iProcess Objects Server

• Getting audit data

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property, which requires that the data be
retrieved from the engine. See “What is a Staffware Field?” on page 86 for information about
the use of CaseFieldNames.

• Having the TIBCO iProcess Objects Server filter on customer-defined fields - The TIBCO
iProcess Objects Server does not have direct access to case data. Therefore, if your filter
expression contains a customer-defined field (i.e., any field on a form that is not a system field
(SW_PRIORITY, SW_PRONAME, etc.)), it must retrieve the data in that field from the
TIBCO iProcess Engine, adversely affecting performance.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if you sort on a cus-
tomer-defined field (i.e., any field on a form that is not a system field (SW_PRIORITY,
SW_PRONAME, etc.)), it must retrieve the data in that field from the TIBCO iProcess Engine,
adversely affecting performance.

Note that although the flow diagram shows that there are three different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you filter on customer-defined fields and sort on customer-defined fields;
the TIBCO iProcess Objects Server only has to get case data once for the entire operation.

The TIBCO iProcess Objects Server Filters Cases

Cases can be filtered and sorted only by the TIBCO iProcess Objects Server. This limits your options
to perform an efficient filter and sort operation because the TIBCO iProcess Objects Server must
always retrieve all cases (both active and closed) from the engine to be able to determine if they sat-
isfy the filter expression. For large numbers of cases this can take a significant amount of time.

The following table lists the elements that can be used in filter expressions when filtering cases:

Element Description

Logical Operators AND, OR

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 147.)

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 137

The following is an example of a filter expression for filtering cases:

• To define a filter for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting):

oCriteriaC.FilterExpression = "SW_STARTEDDATE <= !03/01/2003!"

Efficiently Filtering Cases on the TIBCO iProcess Objects Server
The Filtering and Sorting Cases flow diagram shows that if you are filtering cases, you can bypass the
performance hit normally caused by filtering on the TIBCO iProcess Objects Server by filtering on
either SW_CASENUM or SW_CASEREF.

Cases are indexed by case number (SW_CASENUM) and case reference number (SW_CASEREF).
Therefore, if your filter expression contains one (and only one) of these system fields, the TIBCO
iProcess Objects Server is able to perform the filtering operation very quickly. When using these sys-
tem fields, the server does not have to retrieve all of the cases from the procedure.

The following are examples of filtering on the case number and case reference number:

oProc.Cases.FilterExpression = "SW_CASENUM = 150"

oProc.Cases.FilterExpression = "SW_CASEREF = ""2-6"""

Note - Case number is an integer; case reference number is a text string.

This exception for cases does not allow for any compound expressions; you can only filter on a single
case number or a single case reference number.

The TIBCO iProcess Objects Server Sorts Cases

As described earlier and shown in the Filtering and Sorting Cases illustration, cases are always sorted
by the TIBCO iProcess Objects Server. This is not real efficient because the TIBCO iProcess Objects
Server must hold in memory all work items in the filter result set. If the result set from the filter
operation is very large, this can consume a significant amount of memory.

System Fields All system fields that are applicable to cases (see the Applies To column in the
table of system fields used for filtering — page 140)

Case Data Fields Case data fields can be included in your filter expressions, although it causes you
to take a performance hit because the TIBCO iProcess Objects Server must get
case data from the engine — see the illustration below.

Wild Cards Note that the ‘*’ and ‘?’ characters are NOT interpreted as wild card characters
when filtering cases on the TIBCO iProcess Objects Server. They are interpreted
literally, i.e., as an asterisk and question mark. (This applies when using the ‘=’
equality operator. You can use ‘*’ and ‘?’ as wildcard characters when using the ‘?
equality operator (i.e., with regular expressions — see below).)

Regular Expressions Regular expressions can be used when filtering cases, allowing you to do com-
plex pattern matching. See “Using Regular Expressions” on page 147.

Element Description

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 138

The table below shows the sort criteria you can use when sorting cases.

See the chapter, “Sorting Work Items and Cases” on page 178 for specific information about setting
up sort criteria.

Getting Audit Data

Getting audit data by setting the IsWithAuditData flag to True on the view or XList that holds your
cases causes the TIBCO iProcess Objects Server to retrieve the audit data from the engine. This
impacts the performance of a case filter operation.

Only include audit data in the cases in which it is needed. If you need it in all or most of the cases in
the view/XList, set IsWithAuditData on the view/XLists. If it is needed on only one or a few cases,
request it on those specific cases by setting the IsWithAuditData flag only on those cases.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 140 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 182.

• Case data fields can be included in your sort criteria, although it causes you to take a performance hit
because the TIBCO iProcess Objects Server must get case data from the engine.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 139

<time>
#<hour>:<min>#

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 140

<alphanums>
<alphanum> [<alphanums>]

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the engine through the system fields is also
available to the client though properties on SWWorkItem and SWCase. For example,
SW_CASENUM is available to the client in the SWCase.CaseNumber property. The engine, how-
ever, doesn’t have access to those properties, so the property names from SWWorkItem and SWCase
can’t be used in filter and sort criteria — instead, the system field names need to be used in your
expressions. For example:

oWorkQ.WorkItems.FilterExpression = “SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns).

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X

Arrival date SW_ARRIVALDATE Date 10 X

Arrival time SW_ARRIVALTIME Time 5 X

Case description SW_CASEDESC Text 24 X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X

Case reference number SW_CASEREF Text 20 X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - not expired)

SW_EXPIRED Numeric 1 X

Deadline set flag
(1 - has deadline;
0 - does not have deadline)

SW_HASDEADLINE Numeric 1 X

Deadline time SW_DEADLINETIME Time 5 X

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 141

Forwardable work item flag
(1 - forwardable;
0 - not forwardable)

SW_FWDABLE Numeric 1 X

Host name SW_HOSTNAME Text 24 or 8a X X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Mail ID SW_MAILID String or

Numeric b
7 (integer)

45 (string)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 7 X

Procedure description SW_PRODESC Text 24 X X

Procedure name SW_PRONAME Text 8 X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no input
fields) (1 - releasable;
0 - not releaseable)

SW_RELABLE Numeric 1 X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” - active;
“C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X

Step (work item) name SW_STEPNAME Text 8 X

Step (work item) number in pro-
cedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended)

(only available on TIBCO iPro-
cess Engines)

SW_SUSPENDED Numeric 1 X

Terminated date and time of the
case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 142

Data Types used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - have been open)

SW_NEW Numeric 1 X

Urgent flag (1- urgent;
0 - not urgent)

SW_URGENT Numeric 1 X

Work queue parameter 1 SW_QPARAM1 Text 24 X

Work queue parameter 2 SW_QPARAM2 Text 24 X

Work queue parameter 3 SW_QPARAM3 Text 12 X

Work queue parameter 4 SW_QPARAM4 Text 12 X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is a numeric field of length 7; if using a TIBCO iProcess
Engine, SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance,
if your filter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases
that ARE terminated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Data Type Description

Numeric Constant numbers are simply entered in the expression.

Example: 425.00

Text Text constants must be enclosed within double quotes.

Example: "Smith"

Date Date constants must be enclosed in exclamation marks. The ordering of the day, month and
year is specified in the staffpms file (see “Date Format” on page 97).

Example: !12/25/1997!

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the staff-
pms file (see “Date Format” on page 97).

Example: "12/25/1997 10:30"

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 143

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Data Type Conversions

If you specify a filter expression that compares values of data with different types, the following con-
version takes place:

Filtering Work Items on the WIS
If comparing data of different types when filtering work items, the WIS will do the following:

• If comparing a string to any other data type (e.g., String = Numeric, String = Date, etc.), the
WIS will attempt to convert the string to the non-string data type, then the comparison is per-
formed. If the string cannot be converted to the non-string data type (for example, you are com-
paring a string to a Date, but the string value does not fit in the Date format), a syntax error is
thrown.

• If comparing any other mismatched data types (e.g., Numeric = Date, Time = Date, etc.), the
comparison will return a False.

Filtering Cases on the TIBCO iProcess Objects Server
If comparing data of different types when filtering cases, the TIBCO iProcess Objects Server will con-
vert both data types to strings and compare their string values. See the examples below.

Example 1:
The expression:

!06/03/1999! < 34

will be converted to:

"06/03/1999" < "34"

Example 2:

Assume NUM_FIELD is a Staffware field of type Numeric with a value of 275. The filter:

NUM_FIELD < "34"

will result in being true because NUM_FIELD will be converted to a string before the comparison is
made ("275" < "34").

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 144

Filtering on Case Data Fields

You can filter work items in a work queue based on the values in the fields of the work item (referred
to as "case data" fields).

There are two ways in which you can filter on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlim-
ited number of case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field in filter or sort criteria. These fields have been superseded by CDQP fields as they were
considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Note - With the WIS work item filtering enhancement, case data fields can be included in filter expres-
sions only if they are defined as Case Data Queue Parameter (CDQP) fields. If your filter expression
references a field that is not a CDQP for the queue, the WIS will return a syntax error, which causes
the entire filter operation to fail. (The filter expression can also reference the Work Queue Parameter
fields, which are essentially system fields — their names begin with “SW”, e.g., SW_QPARAM1.)

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available
to use for filtering. See the TIBCO iProcess Engine Administrator's Guide for information about using
swutil.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Once you have created the list of CDQP fields with
swutil, this list of fields is available in the
SWWorkQ.CaseDataQParamDefs property. This
property contains a list of SWCaseDataQParam-
Def objects, one for each case data field that has
been designated as a CDQP field in the work queue.
This list tells you the CDQPs that are available for
filter and sort criteria.

SWCaseDataQParamDef

< Description

< FieldName

< Key

< Length

< ClassId

 SWWorkQ

< CaseDataQParamDefsL

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 145

The CaseDataQParams property on SWWorkItem
provides access to CDQPs that are being used in the
work item. Note, however, to control resource
usage, you can specify which CDQPs to return from
the server by using the CDQPNames property on
the SWCriteriaWI object. By default, all CDQPs
used in a work item are returned from the server.
The SWCaseDataQParam object contains the cur-
rent value in the CDQP.

Your filter expressions can include any of the CDQP
fields that have been defined on the work queue. For example, assuming LOAN_AMT is listed as one
of the CDQP fields for the work queue, the following is a valid filter expression:

oWorkQ.WorkItems.FilterExpression = "LOAN_AMT = 500000"

CDQPs Contain Work Item Data

An important thing to understand is that when you filter (or sort) on the values in CDQPs, it’s actually
“work item data” in the CDQP (as opposed to “case data”). Work item data reflects any “keeps” that
have been processed on the work item. In other words, if a user changes the value of a field, then
keeps the work item, the CDQP for that field will reflect the changes the user made to the field. The
“case data” is only updated when the work item is released.

See “Case Data vs. Work Item Data” on page 91 for more information.

Using Work Queue Parameter Fields

Note - Previous versions of TIBCO iProcess Objects provided “Work Queue Parameter” fields that
could be used for filtering and sorting work items based on the value of case data. Work Queue
Parameter fields, however, did not provide the flexibility required by some customers. Therefore, a
new method using “Case Data Queue Parameter” fields has been implemented (see the previous sec-
tion). New development should use Case Data Queue Parameter fields to filter on case data instead of
the Work Queue Parameter fields (Work Queue Parameter fields will continue to be supported, how-
ever).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

 SWWorkItem

< CaseDataQParams LL
SWCaseDataQParam

< FieldName

< Key

< Value

< ClassId

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 146

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name of Miller, the FilterExpression property is set as follows:

oWorkQ.WorkItems.FilterExpression = "SW_QPARAM1?""Miller"""

This would be much more efficient then filtering on the LAST_NAME field.

The SWWorkItem object has four read-only properties that provide access to the values in the Work
Queue Parameter fields — they are WQParam1 - WQParam4. These properties will contain the val-
ues you place in fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The SWWorkQ object has four read-only properties that contain a name for each of the Work Queue
Parameter fields (WQParam1Name - WQParam4Name). If you use the TIBCO iProcess Client, these
names appear in the column headers if you display the Work Queue Parameter fields in the Work
Queue Manager. For information about modifying these names, see the TIBCO iProcess Client (Win-
dows) Managers Guide.

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 147

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases. However, the way in which some regular
expression special characters are evaluated differs between work items and cases. See the subsections
below for information about the special characters that can be used with regular expressions when fil-
tering work items and cases.

Note - If using a regular expression when filtering predicted work items (vPredictedItem objects), the
only special characters that can be used are the asterisk and question mark. They both work as wild-
card characters, where the asterisk matches zero or more of any character, and the question mark
matches any single character.

All regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

Regular Expressions with Work Item Filtering

The following describes how regular expressions are evaluated when filtering work items (the Work
Item Server (WIS) evaluates all work item filter expressions).

Note - If you are moving from an TIBCO iProcess Objects Server that does not have the WIS work
item filtering enhancement (CR 12744) to one that does (see page 126 for more information), the way
in which some regular expression special characters are evaluated will be different. This can result in
a different set of work items being returned using the same filter expression.

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE. The REs allowed are:

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself anywhere in the constant/field. For example, an RE of “a” will match all con-
stants/fields that contain “a”.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

., *, [, and \ Period, asterisk, left square bracket, and backslash, respectively. These are always
special, except when they appear within square brackets ([]; see Item 4 below).

^ Caret or circumflex, which is special at the beginning of an entire RE, or when it
immediately follows the left bracket of a pair of square brackets ([]) (see Item 4
below).

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 148

$ Dollar sign, which is special at the end of an entire RE. The character used to bound
(i.e., delimit) an entire RE, which is special for that RE.

3. A period (.) is a one-character RE that matches any character except new-line.

4. A one-character RE followed by an asterisk (*) is an RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest, leftmost string that permits a match is
chosen.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters ., *, [, and \ stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” anywhere in the constant/field.

An entire RE may be constrained to match only an initial segment or final segment of a line (or both):

1. A circumflex (^) at the beginning of an entire RE constrains that RE to match an initial segment of
a line.

2. A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment of a line.

3. The construction ^entire RE$ constrains the entire RE to match the entire line.

Using Escape Characters in the Filter Expression

The FilterExpression property requires a string value. Therefore, if within the string value, you are
required to provide another string, you must use an escape character to provide the quoted string
within a string.

In Visual Basic you use the double quotes twice. In the example below, the two pairs of double quotes
around LOAN signify that they are in reference to the string "LOAN", and not the ending quotes for
the filter string.

oWorkQ.WorkItems.FilterExpression = "SW_PRONAME=""LOAN"""

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 149

In Java and C++ you use the back slash to indicate that the next character is a special character. In the
example below, the back slashes indicate that the quotes that follow them are quoting the string
"LOAN", and are not the ending quotes for the setFilterExpression string.

oWorkQ.getWorkItems.setFilterExpression("SW_PRONAME=\"LOAN\"");

Filtering on Empty Fields

To filter on an empty field, you can use either of the following:

• compare the field with SW_NA, which checks to see if the field is "not assigned." For example:

oWorkQ.WorkItems.FilterExpression = "SOC_SEC_NUM=SW_NA"

• compare the field to an empty set of quotes. For example:

oWorkQ.WorkItems.FilterExpression = "SOC_SEC_NUM="""""

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 97).

Times are specified as:

#mm:hh#

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 150

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Closing/Purging Cases Based on Filter Criteria

The SWNode and SWProc objects contain methods that allow you to close or purge cases based on
filter criteria. These methods are:

• CloseByCriteria - This method closes cases that match the specified filter criteria. To close a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
close a case from a slave node.

• PurgeByCriteria - This method purges cases that match the specified filter criteria. To purge a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

How to Persist (Default) Filter Criteria

You can set default filter criteria for a work queue that persists on the queue. This causes future
SWViews or SWXLists of work items on the current instance of the queue to use this default criteria.

Note - If you use the TIBCO iProcess Client, filter criteria that are defined on the Work Queue Man-
ager Work Item List Filter dialog become the default filter criteria for that work queue. When an
SWView or SWXList object is created for that work queue, the filter criteria defined on that dialog are
written to the FilterExpression property.

The following methods on the SWWorkQ object allow you to affect the default filter criteria (note
that at the same time these methods are affecting the default sort criteria for the work queue):

• SetDefCriteria - This method sets the default filter and sort criteria for this work queue. It uses
the current setting of the FilterExpression property and the SortFields property on the
SWView in the WorkItems property in the current instance of the work queue to establish the
default criteria.

Note that since this method uses the filter and sort criteria in the view in the WorkItems prop-
erty, this method is practical to use if you are using SWViews, but not if you are using
SWXLists. If you are using SWXLists, the SetDefCriteriaEx method is a better choice (see
below).

• SetDefCriteriaEx - This method allows you to specify the default filter and sort criteria for this
work queue by passing in the criteria as parameters. This causes the criteria you pass in this
method to persist on this instance of the work queue, causing future SWViews or SWXLists of
work items on this instance of the queue to use this default criteria.

Filtering Work Items and Cases - With WIS Work Item Filtering

TIBCO iProcess Objects Programmer’s Guide 151

• ClearDefCriteria - This method clears the default filter criteria that were set either through the
Work Queue Manager or by using the SetDefCriteria or SetDefCriteriaEx methods (see
above). (This also clears any default sort criteria that have been defined.)

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you call SetDefCriteria/SetDefCriteriaEx. The following are the fil-
ter criteria that are supported by the Work Queue Manager, that can, therefore, be persisted with the
SetDefCriteria/SetDefCriteriaEx methods:

Also note the only equality operator that can be used in your filter expression when you are setting the
default criteria with the SetDefCriteria/SetDefCriteriaEx methods is the ‘=’ operator. The ‘<‘, ‘>’, and
‘?’ operators are not allowed (and since ‘?’ is not allowed, no regular expression syntax can be used).

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

TIBCO iProcess Objects Programmer’s Guide 152

10
Filtering Work Items and Cases

With WIS Work Item and Database Case Filtering

Important - Read this page first to determine which of the
Filtering Work Items and Cases chapters you should use.

Over time, enhancements have been made to the TIBCO iProcess Objects Server to improve the effi-
ciency of filtering and sorting work items and cases. Because the scope of the enhancements is fairly
major, three chapters are now provided in this guide that describe how filtering and sorting work,
depending on which of the enhancements have been implemented in your TIBCO iProcess Objects
Server. Use the table below to determine which chapter to use, based on the enhancements in your
TIBCO iProcess Objects Server.

Note - Although the topic of sorting is covered in a separate chapter, filtering and sorting is described
as a single process in the Filtering Work Items and Cases chapters because that is the way it is
performed — work items or cases are filtered, then the result set from the filter operation is sorted.

Two major enhancements have been added to the TIBCO iProcess Objects Server that impact filtering
and sorting:

• WIS Work Item Filtering - This enhancement moved all work item filter processing to the
Work Item Server (WIS). With this enhancement, all of the additional capabilities previously
provided by the TIBCO iProcess Objects Server can now be performed by the WIS when filter-
ing work items (such as allowing the OR logical operator, allowing the <, >, <=, >=, and <>
operators, etc.). Since the WIS has the work items cached, and has direct access to case data, this
provides for very efficient filtering and sorting of work items.

Your server/engine must have the following CRs implemented for this enhancement: TIBCO
iProcess Objects Server - CR 12744; TIBCO Process/iProcess Engine - CR 12686.

• Database Case Filtering - This enhancement moved all case filter and sort processing to the
database. With this enhancement, the filter expression is translated into an SQL select statement,
which is used to create the result set from the cases in the database. The result set is then sorted.
Because of the indexing ability of the database, this provides for very efficient filtering and sort-
ing of cases.

This enhancement was implemented in the following CRs: TIBCO iProcess Objects Server - CR
13182; TIBCO Process/iProcess Engine - CR 13098.

Use the following table to determine which of the Filtering Work Items and Cases chapters to use:

If your TIBCO iProcess Objects Server includes... Use this chapter...

Neither of the enhancements listed above Chapter 8

Only the WIS Work Item Filtering enhancement (CR 12744) Chapter 9

Both the WIS Work Item Filtering and the Database Case Filtering
enhancements (CRs 12744 and 13182)

Chapter 10

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 153

Introduction

You can filter work items and cases, allowing you to filter out all those you aren’t currently interested
in. For example, you may only be interested in the work items that arrived in the work queue today, in
which case you could specify a filter expression similar to the following:

oWorkQ.WorkItems.FilterExpression = “SW_ARRIVALDATE = !08/02/2001!”

The benefits of this are two-fold:

• It allows you to display to the user only those cases or work items that are of interest to them.

• It reduces the amount of work the client and server need to do. When the result set from the fil-
ter operation results in fewer work items or cases, this reduces the work load on the client and
server.

To filter work items or cases, you must set the FilterExpression property equal to a filter expression
string (as shown in the example above). The filter expression string is evaluated against each work
item in the work queue or each case in the procedure, returning either True or False. If it returns True,
the work item/case is included in the view/XList; if it returns False, the work item/case is not included
in the view/XList.

Filter expression strings can contain elements such as system fields (SW_CASENUM, SW_NEW,
etc.), logical operators (AND, OR), comparison operators (=, <, <=, etc.), ranges of values, etc. Details
about filter expressions is described in the subsections that follow.

Note that the left and right side of comparison operators (=, <, >, <=, >=, <>, ?) must each consist of
only a single field name or single constant. It cannot be an expression containing operators (+, -, /, *,
etc.).

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 154

How Filtering Differs Between Views and XLists

As described in the Working With Lists chapter, you may be using either SWView objects or SWXList
objects to hold your work item and case objects. (Remember, all new development should make use of
SWXLists because of their improved efficiency.) The way in which filter expressions are defined is
somewhat different between these two objects. The differences are described below.

Defining Filter Expressions on SWView

The SWView object contains a FilterExpression property that is used to
specify a Boolean expression that defines which cases (SWCase objects) or
work items (SWWorkItem objects) for the respective procedure or work
queue will be returned from the server and included in the view.

Each SWCase or SWWorkItem object is evaluated against the string expres-
sion specified in the FilterExpression property. Those that evaluate True are
included in the view; those that evaluate False are not included in the view.

After setting or modifying the FilterExpression property, the Rebuild
method must be called to update the view list based on the most recent filter
criteria.

Number of Work Items or Cases in the Filtered View

The SWView object has a number of properties available that provide infor-
mation about the number of objects in the view:

• Count - This property tells you the number of work items or cases that
satisfied the filter expression and are currently in the view at the cli-
ent. You can use this property to determine the total number of work
items or cases available from the server. To do this you must iterate
through all of the items in the view until IsEOL is True. See “Deter-
mining the Total Number of Items Available” on page 71 for more
information and an example.

Also see “How SWViews are Created and Populated at the Client” on page 66 for information
about how views are populated at the client.

• ExcludeCnt - When filtering work items, this property contains the number of work items that
did not satisfy the Boolean expression specified in the FilterExpression property, and therefore,
were not included in the view.

When filtering cases, this property is no longer applicable (it returns -1 if the view contains
cases). Since the filter processing is being handled in the database, determining an invalid count
would require the database to determine the row count, which would decrease the performance
improvement gained by the database creating the result set.

• InvalidCnt - This count is no longer applicable when filtering work items or cases (it always
returns -1).

The SWView object also contains an AuditFilterExpr property that is specific to filtering SWAudit-
Step objects that are in the AuditSteps list of the cases that are on the view. This filtering mechanism
uses its own syntax and filtering criteria; it does not use the filter criteria defined in this chapter. See
“Filtering Audit Data” on page 245 for information about syntax and filter criteria specific to filter-
ing audit steps.

SWView

<> FilterExpression

< ClassId

< Count

< ExcludeCnt

< InvalidCnt

<> IsAuditAscending

< IsEOL

<> IsWaitForAll

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

< SortFields

< Status

< Type

< CaseFieldNames

* Item (default)

* ItemByKey

* Rebuild

* Clear

VL

LL

LL

<> AuditFilterExpr

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 155

Defining Filter Expressions on SWXList

The SWXList object contains a Criteria property that points to an SWCriteriaWI, SWCriteriaC, or
SWCriteriaP object, depending whether the XList contains cases, work items, or predicted work
items:

• SWCriteriaWI - Contains properties that specify criteria for an XList that contains
SWWorkItem objects.

• SWCriteriaC - Contains properties that specify criteria for an XList that contains SWCase
objects.

• SWCriteriaP - Contains properties that specify criteria for an XList that contains
SWPredictedItem objects.(Note that since predicted items are stored in the database, they are
filtered in the same way as cases when you have the database case filtering enhancement — see
“Filtering/Sorting Cases” on page 160 for more information.)

The following properties are available on the objects shown above for use when filtering cases and
work items on the XList:

• Criteria - This property contains a reference to the appropriate criteria object (SWCriteriaWI,
SWCriteriaC, or SWCriteriaP), depending on whether the XList contains work items, cases, or
predicted work items.

• FilterExpression - This read/write property is used to specify a Boolean expression that
defines which work items (SWWorkItem objects), cases (SWCase objects), or predicted work
items (SWPredictedItem objects) for the respective work queue or procedure will be returned
from the server and included in the XList.

Each SWWorkItem, SWCase, or SWPredictedItem object is evaluated against the string
expression specified in the FilterExpression property. Those that evaluate True are included in
the XList; those that evaluate false are not included in the XList.

After setting or modifying the FilterExpression property, the Rebuild method must be called to
update the XList list based on the most recent filter criteria.

SWXList

< Count

< Criteria

< ExcludeCnt

< InvalidCnt

<> IsKeepLocalItems

< ItemCount

< ItemsPerBlock

< Status

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

XL

SWCriteriaWI

< ClassId

<> CDQPNames

< DeadlineCnt

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< UnopenedCnt

< UrgentCnt

<> CaseFieldNames

SWCriteriaC

<> CaseFieldNames

< ClassId

<> FilterExpression

<> IsAuditAscending

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

<> SortFields

<> AuditFilterExpr

<Work Items> <Cases>

SWCriteriaP

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< ClassId

<Prediction>

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 156

Number or Work Items or Cases in the Filtered XList

The SWXList object has a number of properties available that provide information about the number
of objects in the XList:

• ItemCount - This property contains the total number of work items or cases that satisfied the
filter expression and are in the XList at the server. This count is available immediately after the
XList is created (unlike on a view where you must iterate through the objects to determine the
total number available).

• Count - This property tells you the number of work items or cases that satisfied the filter
expression and are currently available in the XList at the client.

See “How XLists are Created” on page 75 for information about how XLists are populated with
objects at the client.

• ExcludeCnt - When filtering work items, this property contains the number of work items that
did not satisfy the Boolean expression specified in the FilterExpression property, and therefore,
were not included in the XList.

When filtering cases, this property is no longer applicable (it returns -1 if the XList contains
cases). Since the filter processing is being handled in the database, determining an invalid count
would require the database to determine the row count, which would decrease the performance
improvement gained by the database creating the result set.

• InvalidCnt - This count is no longer applicable when filtering work items or cases (it always
returns -1).

Note - The SWCriteriaC object also contains an AuditFilterExpr property that is specific to filtering
SWAuditStep objects that are in the AuditSteps list of the cases that are on the XList. This filtering
mechanism uses its own syntax and filtering criteria; it does not use the filter criteria defined in this
chapter. See “Filtering Audit Data” on page 245 for information about syntax and filter criteria spe-
cific to filtering audit steps.

Length of Filter Expressions

The exact length that you can make filter expressions is not well defined, although some approxima-
tions are provided below. The filter expression length depends on whether you are filtering work items
or cases, as follows:

• Work Items - The filter expression is converted into a SAL-compatible expression. The maxi-
mum size after conversion is 2K bytes. Note, however, that the conversion can increase the size
of the expression. Tests have shown that a 1700-byte expression increases to approximately 2K
bytes during the conversion. The amount of increase depends on the operators used in the
expression.

• Cases - Filter expressions for cases are also converted into a SAL-compatible expression as
described above for work items. These filter expressions then undergo another conversion to
SQL Select statements. This second conversion can dramatically increase the size of the
expression by anywhere between two to four times. The maximum size of the expression after
the conversion to the SQL Select statement is 4K bytes.

If an expression filtering cases exceeds the maximum size after the conversion to a SQL Select
statement, an “Error in expression syntax” is returned to the client. (Note that the message is not
descriptive of the problem.)

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 157

Large Filter Expressions May Require Larger Stack Size in UNIX

When filtering cases, if the filter expression contains a large number of clauses, the SAL
sal_xpc_list_filter_cases routine crashes, resulting in the TIBCO iProcess Objects Server crashing (a
clause consists of a field being compared to a value, e.g., “SW_CASENUM = 7 AND AMOUNT >
10000” contains two clauses).

If you experience this type of error condition, increasing the thread stack size may resolve the prob-
lem. This is done using the StackSize configuration parameter. The default stack size is 700KB per
thread in AIX, HP-UX, and Linux, and 1M in Solaris. To increase this value, you must manually add
the StackSize parameter to your configuration file ($SWDIR/seo/data/swentobjsv.cfg). This parame-
ter allows you to specify the number of kilobytes to set the stack size, per thread. Note that increasing
the stack size will increase the overall memory size of the TIBCO iProcess Objects Server. For more
information, see StackSize in the TIBCO iProcess Objects Server Administrator’s Guide.

Filtering/Sorting in an Efficient Manner

The way in which you write your filter expressions can have an effect on how efficiently they are
evaluated. This section provides guidelines about what types of elements you can include in your filter
expressions (and those you should avoid) to ensure an efficient filter operation.

Flow diagrams (one for work items; one for cases) are shown in the following subsections that illus-
trate the decision process that takes place during a filter/sort operation. Note that the flow diagrams
show filtering and sorting taking place in a single operation; that is the way filtering and sorting is
processed — works items or cases are filtered to create a result set, then the result set is sorted. The
flow diagrams also illustrate how to prevent the filter/sort operation from being less efficient.

Filtering/Sorting Work Items

When filtering and sorting work items:

• Work items are always filtered by the Work Item Server (WIS). The WIS has work items
cached in memory, allowing it to evaluate filter expressions for work items very quickly. The
elements you are allowed to use in your filter expressions are listed in the table below.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending
on how you specify the sort criteria. It’s preferable to have the WIS sort the result set from the
filter operation. This is explained in detail below.

The following flow diagram shows the decision process that takes place when filtering and sorting
work items.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 158

As shown in the illustration, there are a couple of actions that will cause the filter/sort operation to be
less efficient when filtering and sorting work items:

• Getting case data
• Performing the sort operation on the TIBCO iProcess Objects Server

Additional information about these actions is provided in the subsections that follow.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 159

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following actions cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property, which requires that the data be
retrieved from the engine. See “What is a Staffware Field?” on page 86 for information about
the use of CaseFieldNames.

• Having the TIBCO iProcess Objects Server sort on customer-defined fields - The TIBCO iPro-
cess Objects Server does not have direct access to case data. Therefore, if the sort operation is
being handled by the TIBCO iProcess Objects Server, and you sort on a customer-defined field
(i.e., any field on a form that is not a system field (SW_PRIORITY, SW_PRONAME, etc.)),
the TIBCO iProcess Objects Server must retrieve the data in that field from the TIBCO iProcess
Engine, adversely affecting performance.

Note that although the flow diagram shows that there are two different places where you can take a
performance hit by getting case data, the actual hit only occurs once, i.e., you don’t take two perfor-
mance hits, for instance, if you call CaseFieldNames and the TIBCO iProcess Objects Server is sort-
ing on customer-defined fields; the TIBCO iProcess Objects Server only has to get case data once for
the entire operation.

Work Items are Filtered by the WIS

As shown in the Filtering and Sorting Work Items illustration, work items are always filtered by the
WIS. The WIS has work items cached in memory, allowing it to evaluate filter expressions for work
items very quickly.

The following table lists the elements that can be used in filter expressions when filtering work items:

Element Description

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 172.)

Logical Operators AND, OR

System Fields All system fields that are applicable to work items (see the Applies To column in
the table of system fields used for filtering — page 165).

Parentheses Parentheses can be used to construct more complex filter expressions, or to
make your expressions more readable.

Case Data Fields Case data fields can be included in your filter expressions ONLY if they are first
defined as CDQPs. If your filter expression references a field that is not a CDQP,
the WIS will return a syntax error, which causes the entire filter operation to fail.
See “Filtering on Case Data Fields” on page 169 for information.

Wild Cards The wild card characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Ranges of Values Ranges of values can be included in your work item filter expressions by using a
specific syntax. See “How to Specify Ranges of Values” on page 175 for informa-
tion.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 160

The following are examples of filter expressions for filtering work items:

• To define a filter for all unopened work items, set the filter expression to:

oCriteriaWI.FilterExpression = "SW_NEW = 1"

• To define a filter for work items that either arrived in the work queue after 03/01/2005, or that
arrived on or before 02/20/2005 and have not been opened yet:

oCriteriaWI.FilterExpression = "SW_ARRIVALDATE > !03/01/2005! OR
(SW_ARRIVALDATE <= !02/20/2005! AND SW_NEW = 1)"

Can the WIS Perform the Sort Operation?

Work items can be sorted by either the WIS or the TIBCO iProcess Objects Server, depending on the
sort criteria you use. Whenever possible, you should use the sort criteria that can be evaluated by the
WIS. If the TIBCO iProcess Objects Server must perform the sort operation, it must hold in memory
all work items in the filter result set. If the result set from the filter operation is very large, this can
consume a significant amount of memory.

The table below shows the sort criteria you can use to cause the sort operation to be performed by the
WIS. It also lists the expanded criteria available by the TIBCO iProcess Objects Server. Using this
expanded criteria causes the sort operation to be performed by the TIBCO iProcess Objects Server,
which is less efficient because it must hold the result set in memory.

See the chapter, “Sorting Work Items and Cases” on page 178 for information about setting up sort
criteria.

Filtering/Sorting Cases

When filtering and sorting cases:

• Cases are always filtered by the database. The filter expression is translated into an SQL select
statement, which is used to create the result set from the cases in the database. Because of the
indexing ability of the database, this provides for very efficient filtering of cases. The elements

Regular Expression Regular expressions can be used when filtering work items, allowing you to do
complex pattern matching. See “Using Regular Expressions” on page 172.

Sort Criteria the WIS can Process

• System fields that are “WIS-compatible”. See the WIS-compatible column in the table of System Fields
used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case Data Queue Parameter (CDQP) fields. See “Sorting on Case Data Fields” on page 184 for more
information.

Sort Criteria the TIBCO iProcess Objects Server must Process

• System fields that are NOT “WIS-compatible”. See the WIS-compatible column in the table of System
Fields used in Sorting on page 182. (The system fields must be applicable to filtering work items.)

• Case data fields that have NOT been designated as Case Data Queue Parameter (CDQP) fields. See
“Sorting on Case Data Fields” on page 184 for more information.

Element Description

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 161

you are allowed to use in your filter expressions to filter cases are listed in “The Database Fil-
ters Cases” on page 162.

• If you “get case data” in your application, this causes the filter processing to be less efficient.
More about “getting case data” is explained below.

• Cases are always sorted by the database. The result set from the filter operation (if performed)
is sorted in the database. See the table in “The Database Sorts Cases” on page 163 for the sort
criteria that can be used when sorting cases.

The following flow diagram shows the decision process that takes place when filtering and sorting
cases.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 162

As shown in the illustration, there are some actions you should avoid, if possible, when filtering and
sorting cases:

• Getting case data

• Getting audit data

Additional information about these actions is provided in the subsections that follow.

Getting Case Data

Causing the server to “get case data” means that the TIBCO iProcess Objects Server must retrieve
case data from the TIBCO iProcess Engine. This significantly slows down the filter/sort processing.
The following action cause the TIBCO iProcess Objects Server to get case data:

• Calling CaseFieldNames - Adding field names to the CaseFieldNames property explicitly
causes case data fields to be returned in the Fields property, which requires that the data be
retrieved from the engine. See “What is a Staffware Field?” on page 86 for information about
the use of CaseFieldNames.

The Database Filters Cases

Cases are always filtered by the database. The filter expression is translated into an SQL select state-
ment, which is used to create the result set from the cases in the database. Because of the indexing
ability of the database, this provides for very efficient filtering of cases.

The following table lists the elements that can be used in filter expressions when filtering cases:

Element Description

Logical Operators AND, OR

Comparison Operators =, <, >, <=, >=, <>

(The ? character can also be used as an equality operator with regular expres-
sions — see “Using Regular Expressions” on page 172.)

System Fields All system fields that are applicable to cases (see the Applies To column in the
table of system fields used for filtering — page 165).

Parentheses Parentheses can be used to construct more complex filter expressions, or to
make your expressions more readable.

Case Data Fields Case data fields can be included in your filter expressions (although field-to-field
comparisons are not supported, e.g., FIELD1 = FIELD2, FIELD2 > FIELD3, etc.).

Wild Cards The wild card characters ‘*’ and ‘?’ as part of a string on equality checks. The ‘*’
character matches zero or more of any character. The ‘?’ character matches any
single character.

Regular Expression Regular expressions can be used when filtering cases. However, when using the
regular expression equality operator (?) in your filter expression, the regular
expression string can include the * and ? wildcard characters, but none of the
other regular expression special characters (the database is not able to interpret
the other special characters). See “Using Regular Expressions” on page 172.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 163

The following are examples of filter expressions for filtering cases:

• To define a filter for all cases that were started on or before March 1, 2003 (assume
mm/dd/yyyy date locale setting in the engine), set the filter expression to:

oCriteriaC.FilterExpression = "SW_STARTEDDATE <= !03/01/2003!"

• To define a filter for cases with a case number of 1, or a case number of 2 and a case description
of “Test”:

oCriteriaC.FilterExpression = "SW_CASENUM = 1 OR (SW_CASENUM = 2 AND
SW_CASEDESC = ""Test"")"

The Database Sorts Cases

When sorting cases in the database, the following sort criteria can be used:

See the chapter, “Sorting Work Items and Cases” on page 178 for specific information about setting
up sort criteria.

Getting Audit Data

Getting audit data by setting the IsWithAuditData flag to True on the view or XList that holds your
cases causes the TIBCO iProcess Objects Server to retrieve the audit data from the engine. This
impacts the performance of a case filter operation.

Only include audit data in the cases in which it is needed. If you need it in all or most of the cases in
the view/XList, set IsWithAuditData on the view/XLists. If it is needed on only one or a few cases,
request it on those specific cases by setting the IsWithAuditData flag only on those cases.

Filter Criteria Format

The following shows the valid format for your filter criteria expressions. This is a BNF-like descrip-
tion. A vertical line "|" indicates alternatives, and [brackets] indicate optional parts.

<criteria>
<exp> | <exp> <logical_op> <exp> | [<criteria>]

<exp>
<value> <comparison_op> <value>

<logical_op>
and | or

<value>
<field> | <constant> | <systemfield>

Sort Criteria for Sorting Cases

• All system fields that are applicable to cases (see the Applies To column in the table of system fields used
for sorting — page 182).

• Case data fields can be included in your sort criteria when sorting cases.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 164

<comparison_op>
= | <> | ? | < | > | <= | >=

<field>
<alpha>[fieldchars]

<systemfield>
See “System Fields used in Filtering” on page 165 for a list of the allowable system fields.

<constant>
<date> | <time> | <numeric> | <string>

<date>
!<localdate>!

<time>
#<hour>:<min>#

<datetime>
"<localdate> <hour>:<min>"

<hour>
00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
| 23

<min>
00| 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45
| 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

<localdate>
<mm>/<dd>/<yyyy> | <dd>/<mm>/<yyyy> | <yyyy>/<mm>/<dd> | <yyyy>/<dd>/<mm>

<mm>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12

<dd>
01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

Note - The day and month portion of a date must be two digits. Correct: 09/05/2000. Incorrect:
9/5/2000.

<yyyy>
<digit> <digit> <digit> <digit>

<numeric>
<digits> [.<digits>]

<string>
"<asciichars>"

<asciichars>
<asciichar> [<asciichars>]

<asciichar>
ascii characters between values 32 and 126

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 165

<alpha>
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | A | B | C | D | E | F |
G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<digit>
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits>
<digit> [<digits>]

<alphanum>
<alpha> | <digit>

<alphanums>
<alphanum> [<alphanums>]

<fieldchar>
<alpha> | <digit> | _

<fieldchars>
<fieldchar> [<fieldchars>]

System Fields used in Filtering

System fields are symbolic references to data about a work item or case. These fields are primarily
used by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering
and sorting functions. The information that is available to the engine through the system fields is also
available to the client though properties on SWWorkItem and SWCase. For example,
SW_CASENUM is available to the client in the SWCase.CaseNumber property. The engine, how-
ever, doesn’t have access to those properties, so the property names from SWWorkItem and SWCase
can’t be used in filter and sort criteria — instead, the system field names need to be used in your
expressions. For example:

oWorkQ.WorkItems.FilterExpression = “SW_CASENUM=5”

The system fields that are available for filtering are listed in the table below. Note that some system
fields are only applicable for filtering on work items, some only for filtering on cases, and some are
applicable to both (see the “Applies to” columns).

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Addressee of work item
(username@node)

SW_ADDRESSEE Text 49 X

Arrival date and time SW_ARRIVAL DateTime 16 X

Arrival date SW_ARRIVALDATE Date 10 X

Arrival time SW_ARRIVALTIME Time 5 X

Case description SW_CASEDESC Text 24 X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 166

Case reference number SW_CASEREF Text 20 X X

Date (current) SW_DATE Date 10 X X

Deadline date and time SW_DEADLINE DateTime 16 X

Deadline date SW_DEADLINEDATE Date 10 X

Deadline expired flag
(1 - expired; 0 - not expired)

SW_EXPIRED Numeric 1 X

Deadline set flag
(1 - has deadline;
0 - does not have deadline)

SW_HASDEADLINE Numeric 1 X

Deadline time SW_DEADLINETIME Time 5 X

Forwardable work item flag
(1 - forwardable;
0 - not forwardable)

SW_FWDABLE Numeric 1 X

Host name SW_HOSTNAME Text 24 or 8a X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a X

Mail ID SW_MAILID String or

Numeric b
7 (integer)

45 (string)

X

Outstanding work item count
(not available on TIBCO iPro-
cess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 7 X

Procedure description SW_PRODESC Text 24 X X

Procedure name SW_PRONAME Text 8 X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no input
fields) (1 - releasable;
0 - not releaseable)

SW_RELABLE Numeric 1 X

Started date and time of the
case

SW_STARTED DateTime 16 X

Started date of the case SW_STARTEDDATE Date 10 X

Started time of the case SW_STARTEDTIME Time 5 X

Starter of the case
(username@node)

SW_STARTER Text
24 or 8

a X X

Status of the case (“A” - active;
“C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X

Step (work item) name SW_STEPNAME Text 8 X

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 167

Step (work item) number in pro-
cedure

SW_STEPNUM Numeric 7 X

Suspended work item
(1 - suspended;
0 - not suspended)

(only available on TIBCO iPro-
cess Engines)

SW_SUSPENDED Numeric 1 X

Terminated date and time of the
case

SW_TERMINATED c DateTime 16 X

Terminated date of the case SW_TERMINATEDDATE c Date 10 X

Terminated time of the case SW_TERMINATEDTIME c Time 5 X

Time (current) SW_TIME Time 5 X X

Unopened work item
(1 - unopened;
0 - have been open)

SW_NEW Numeric 1 X

Urgent flag (1- urgent;
0 - not urgent)

SW_URGENT Numeric 1 X

Work queue parameter 1 SW_QPARAM1 Text 24 X

Work queue parameter 2 SW_QPARAM2 Text 24 X

Work queue parameter 3 SW_QPARAM3 Text 12 X

Work queue parameter 4 SW_QPARAM4 Text 12 X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.

b. If using a TIBCO Process Engine, SW_MAILID is a numeric field of length 7; if using a TIBCO iProcess
Engine, SW_MAILID is a string of length 45.

c. Only cases that have been terminated will be returned when filtering on these system fields. For instance,
if your filter expression asks for cases where SW_TERMINATEDDATE < !09/01/2002!, only those cases
that ARE terminated and whose termination date is earlier than 09/01/2002 are returned.

Filter Criteria System Field Data Type Length
Applies to
work items

Applies to
cases

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 168

Data Types used in Filter Criteria

The following are definitions of the different data types used in filter criteria (see the Data Type col-
umn in the System Fields table in the previous section).

Note - The day and month portion of a date must be two digits (correct: 09/05/2004; incorrect:
9/5/2004). The year portion of a date must be four digits (correct: 09/05/2004; incorrect: 09/05/04).

Data Type Conversions

If you specify a filter expression that compares values of data with different types, the following con-
version takes place (this applies to both work items and cases that are filtered by either the WIS or the
database):

• If comparing a string to any other data type (e.g., String = Numeric, String = Date, etc.), the
WIS/database will attempt to convert the string to the non-string data type, then the comparison
is performed. If the string cannot be converted to the non-string data type (for example, you are
comparing a string to a Date, but the string value does not fit in the Date format), a syntax error
is thrown.

• If comparing any other mismatched data types (e.g., Numeric = Date, Time = Date, etc.), the
comparison will return a False.

Data Type Description

Numeric Constant numbers are simply entered in the expression.

Example: 425.00

Text Text constants must be enclosed within double quotes.

Example: "Smith"

Date Date constants must be enclosed in exclamation marks. The ordering of the day, month and
year is specified in the staffpms file (see “Date Format” on page 97).

Example: !12/25/1997!

Time Times can be included in the expression in the format hh:mm. They must be enclosed in
pound signs. Uses the 24-hour clock.

Example: #18:30#

DateTime DateTime constants are a combination of a date and time, separated by a space, all
enclosed in double quotes. The ordering of the day, month and year is specified in the staff-
pms file (see “Date Format” on page 97).

Example: "12/25/1997 10:30"

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 169

Filtering on Case Data Fields

You can filter work items in a work queue based on the values in the fields of the work item (referred
to as "case data" fields).

There are two ways in which you can filter on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to filter and/or sort on an unlim-
ited number of case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field in filter or sort criteria. These fields have been superseded by CDQP fields as they were
considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Note - With the WIS work item filtering enhancement, case data fields can be included in filter expres-
sions only if they are defined as Case Data Queue Parameter (CDQP) fields. If your filter expression
references a field that is not a CDQP for the queue, the WIS will return a syntax error, which causes
the entire filter operation to fail. (The filter expression can also reference the Work Queue Parameter
fields, which are essentially system fields — their names begin with “SW”, e.g., SW_QPARAM1.)

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of filtering on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to filter on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available to
use for filtering. See the TIBCO iProcess Engine Administrator's Guide for information about using
swutil.

Note - Case Data Queue Parameter fields are also used for efficiently sorting on case data, as
described in the Sorting Work Items and Cases chapter.

Once you have created the list of CDQP fields with
swutil, this list of fields is available in the
SWWorkQ.CaseDataQParamDefs property. This
property contains a list of SWCaseDataQParamDef
objects, one for each case data field that has been
designated as a CDQP field in the work queue. This
list tells you the CDQPs that are available for filter
and sort criteria.

SWCaseDataQParamDef

< Description

< FieldName

< Key

< Length

< ClassId

 SWWorkQ

< CaseDataQParamDefsL

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 170

The CaseDataQParams property on SWWorkItem
provides access to CDQPs that are being used in the
work item. Note, however, to control resource
usage, you can specify which CDQPs to return from
the server by using the CDQPNames property on
the SWCriteriaWI object. By default, all CDQPs
used in a work item are returned from the server.
The SWCaseDataQParam object contains the cur-
rent value in the CDQP.

Your filter expressions can include any of the CDQP
fields that have been defined on the work queue. For example, assuming LOAN_AMT is listed as one
of the CDQP fields for the work queue, the following is a valid filter expression:

oWorkQ.WorkItems.FilterExpression = "LOAN_AMT = 500000"

CDQPs Contain Work Item Data

An important thing to understand is that when you filter (or sort) on the values in CDQPs, it’s actually
“work item data” in the CDQP (as opposed to “case data”). Work item data reflects any “keeps” that
have been processed on the work item. In other words, if a user changes the value of a field, then
keeps the work item, the CDQP for that field will reflect the changes the user made to the field. The
“case data” is only updated when the work item is released.

See “Case Data vs. Work Item Data” on page 91 for more information.

Using Work Queue Parameter Fields

Note - Previous versions of TIBCO iProcess Objects provided “Work Queue Parameter” fields that
could be used for filtering and sorting work items based on the value of case data. Work Queue
Parameter fields, however, did not provide the flexibility required by some customers. Therefore, a
new method using “Case Data Queue Parameter” fields has been implemented (see the previous sec-
tion). New development should use Case Data Queue Parameter fields to filter on case data instead of
the Work Queue Parameter fields (Work Queue Parameter fields will continue to be supported, how-
ever).

"Work Queue Parameter" fields allow you to filter work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for sorting on case data — see the
Sorting Work Items and Cases chapter.)

If you have case/field data that you want to filter on (e.g., customer name, loan amount, etc.), it is
much more efficient to assign the field value to one of the Work Queue Parameter fields, then filter on
that field, instead of directly filtering on the application field. There are four work queue parameter
fields available. The default definitions (which can be changed) for these fields are shown below:

 SWWorkItem

< CaseDataQParams LL
SWCaseDataQParam

< FieldName

< Key

< Value

< ClassId

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 171

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Then, you can filter on the value in the SW_QPARAM1 field. For example, to return only the work
items that have a customer last name of Miller, the FilterExpression property is set as follows:

oWorkQ.WorkItems.FilterExpression = "SW_QPARAM1?""Miller"""

This would be much more efficient then filtering on the LAST_NAME field.

The SWWorkItem object has four read-only properties that provide access to the values in the Work
Queue Parameter fields — they are WQParam1 - WQParam4. These properties will contain the val-
ues you place in fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The SWWorkQ object has four read-only properties that contain a name for each of the Work Queue
Parameter fields (WQParam1Name - WQParam4Name). If you use the TIBCO iProcess Client, these
names appear in the column headers if you display the Work Queue Parameter fields in the Work
Queue Manager. For information about modifying these names, see the TIBCO iProcess Client (Win-
dows) Manager’s Guide.

Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

Why would you want to use the new Case Data Queue Parameter (CDQP) fields instead of the older
Work Queue Parameter fields? The reasons for using each method is shown in the following table.

Case Data Filtering Method Reasons For Using This Type

Work Queue Parameter Fields • They are pre-configured, not requiring any administration (where as,
CDQP fields require some additional administration).

• They are available for all queues, requiring no additional administra-
tion.

• They are already taking up resources (memory and disk space)
whether they are used or not. (Adding four CDQP fields instead of
using the already available Work Queue Parameter fields takes up
additional resources.)

• The load on the Work Item Server is slightly increased for each CDQP.

• Configuring CDQP fields requires a TIBCO iProcess Engine shutdown.

Case Data Queue Parameter
Fields

The primary reason to use CDQP fields is because if you use the four
available Work Queue Parameter fields, then later realize you need more,
it will require application changes — with CDQPs, you can just keep add-
ing as many as needed.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 172

Using Regular Expressions

Regular expressions may be included in filter expressions to provide powerful text search capabilities.
They can be used when filtering either work items or cases. However, the way in which some regular
expression special characters are evaluated differs between work items and cases. See the subsections
below for information about the special characters that can be used with regular expressions when fil-
tering work items and cases.

Note - If using a regular expression when filtering predicted work items (vPredictedItem objects), the
only special characters that can be used are the asterisk and question mark. They both work as wild-
card characters, where the asterisk matches zero or more of any character, and the question mark
matches any single character.

All regular expressions must be in the following format:

constant ? "regular expression"

where:

• constant - A constant value or field name. If a field name is included in the expression, the field
must be defined as a text data type (SWFieldType = swText). (Note that although the value in
DateTime fields (e.g., SW_STARTED) is enclosed in quotes, they cannot be used with regular
expressions, as they are not of text data type.)

• ? - Special character signifying that a regular expression follows (interpreted as an equality
operator).

• "regular expression" - Any valid regular expression (enclosed in double quotes).

Regular Expressions with Work Item Filtering

The following describes how regular expressions are evaluated when filtering work items (the Work
Item Server (WIS) evaluates all work item filter expressions).

Note - If you are moving from an TIBCO iProcess Objects Server that does not have the WIS work
item filtering enhancement (CR 12744) to one that does (see page 152 for more information), the way
in which some regular expression special characters are evaluated will be different. This can result in
a different set of work items being returned using the same filter expression.

A regular expression (RE) specifies a set of character strings. A member of this set of strings is
"matched" by the RE. The REs allowed are:

The following one-character REs match a single character.

1. An ordinary character (not one of those discussed in number 2 below) is a one-character RE that
matches itself anywhere in the constant/field. For example, an RE of “a” will match all con-
stants/fields that contain “a”.

2. A backslash (\) followed by any special character is a one-character RE that matches the special
character itself. The special characters are:

., *, [, and \ Period, asterisk, left square bracket, and backslash, respectively. These are always
special, except when they appear within square brackets ([]; see Item 4 below).

^ Caret or circumflex, which is special at the beginning of an entire RE, or when it
immediately follows the left bracket of a pair of square brackets ([]) (see Item 4
below).

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 173

$ Dollar sign, which is special at the end of an entire RE. The character used to bound
(i.e., delimit) an entire RE, which is special for that RE.

3. A period (.) is a one-character RE that matches any character except new-line.

4. A one-character RE followed by an asterisk (*) is an RE that matches zero or more occurrences of
the one-character RE. If there is any choice, the longest, leftmost string that permits a match is
chosen.

5. A non-empty string of characters enclosed in square brackets ([]) is a one-character RE that
matches any one character in that string, with these additional rules:

• If the first character of the string is a circumflex (^), the one-character RE matches any charac-
ter except new-line and the remaining characters in the string. The ^ has this special meaning
only if it occurs first in the string.

• The minus (-) may be used to indicate a range of consecutive characters. For example, [0-9] is
equivalent to [0123456789]. The minus sign loses this special meaning if it occurs first (after
an initial ^, if any) or last in the string.

• The right square bracket (]) does not terminate such a string when it is the first character within
it (after an initial ^, if any). For example, []a-f] matches either a right square bracket (]) or one
of the ASCII letters a through f, inclusive.

• The special characters ., *, [, and \ stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

1. A one-character RE is an RE that matches whatever the one-character RE matches.

2. The concatenation of REs is an RE that matches the concatenation of the strings matched by each
component of the RE. For example, an RE of “abc” will match all constants/fields that contain
“abc” anywhere in the constant/field.

An entire RE may be constrained to match only an initial segment or final segment of a line (or both):

1. A circumflex (^) at the beginning of an entire RE constrains that RE to match an initial segment of
a line.

2. A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment of a line.

3. The construction ^entire RE$ constrains the entire RE to match the entire line.

Regular Expressions with Case Filtering

Regular expressions can be used when filtering cases, however, the only special characters that can be
used are the asterisk and question mark. They both work as wildcard characters, where the asterisk
matches zero or more of any character, and the question mark matches any single character.

The reason only the asterisk and question mark can be used when filtering cases is that cases are fil-
tered by the database, which cannot interpret the other special characters.

Note - If you are moving from an TIBCO iProcess Objects Server that does not have the database case
filtering enhancement (CR 13182) to one that does (see page 152 for more information), the way in
which some regular expression special characters are evaluated will be different. This can result in a
different set of cases being returned using the same filter expression.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 174

Using Escape Characters in the Filter Expression

The FilterExpression property requires a string value. Therefore, if within the string value, you are
required to provide another string, you must use an escape character to provide the quoted string
within a string.

In Visual Basic you use the double quotes twice. In the example below, the two pairs of double quotes
around LOAN signify that they are in reference to the string "LOAN", and not the ending quotes for
the filter string.

oWorkQ.WorkItems.FilterExpression = "SW_PRONAME=""LOAN"""

In Java and C++ you use the back slash to indicate that the next character is a special character. In the
example below, the back slashes indicate that the quotes that follow them are quoting the string
"LOAN", and are not the ending quotes for the setFilterExpression string.

oWorkQ.getWorkItems.setFilterExpression("SW_PRONAME=\"LOAN\"");

Filtering on Empty Fields

To filter on an empty field, you can use either of the following:

• compare the field with SW_NA, which checks to see if the field is "not assigned." For example:

oWorkQ.WorkItems.FilterExpression = "SOC_SEC_NUM=SW_NA"

• compare the field to an empty set of quotes. For example:

oWorkQ.WorkItems.FilterExpression = "SOC_SEC_NUM="""""

Note - See the previous section for information about using escape characters.

The primary purpose of SW_NA is to determine if fields have been assigned a value. However, it can
also be used to determine if system fields have been assigned a value when you are filtering work
items (e.g., “SW_CASEDESC=SW_NA”). Note, however, you cannot use SW_NA when filtering
cases — the database is not able to interpret it.

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 175

How to Specify Ranges of Values

Ranges of values can be specified in your filter expressions. This functionality, however, is limited to
filtering on work items only — you cannot use range filtering when filtering cases.

Ranges must use the following format:

FilterField=[val1-val2|val3|val4-val5|.....|valn]

You can specify multiple ranges or single values, each separated by a vertical bar. The entire range
expression is enclosed in square brackets. Only the ‘=’ equality operator is allowed in a range filter
expression.

Dates are specified as:

!dd/mm/yyyy!

Note - The ordering of the day, month and year is specified in the staffpms file (see “Date Format” on page 97).

Times are specified as:

#mm:hh#

DateTimes are specified as:

"dd/mm/yyyy mm:hh"

Range Filter Example 1:

This example returns the work items with case numbers between 50 and 100, and between 125 and
150, as well as the work item with case number 110:

SW_CASENUM=[50-100|110|125-150]

Range Filter Example 2:

To return all work items that arrived in the queue between 09/01/2000 and 09/03/2000 (inclusive), and
that have a priority equal to 50:

SW_ARRIVALDATE=[!09/01/2000! - !09/03/2000!] AND SW_PRIORITY=50

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 176

Closing/Purging Cases Based on Filter Criteria

The SWNode and SWProc objects contain methods that allow you to close or purge cases based on
filter criteria. These methods are:

• CloseByCriteria - This method closes cases that match the specified filter criteria. To close a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
close a case from a slave node.

• PurgeByCriteria - This method purges cases that match the specified filter criteria. To purge a
case, you must have system administrator authority (MENUNAME = ADMIN). See “User
Attributes” on page 221 for information about the MENUNAME attribute. You also cannot
purge a case from a slave node.

Both of these methods require a parameter that specifies a filter string expression. Use the filter
expression syntax described in this chapter.

How to Persist (Default) Filter Criteria

You can set default filter criteria for a work queue; this criteria persists on the queue. This causes
future SWViews or SWXLists of work items on the current instance of the queue to use this default
criteria.

Note - If you use the TIBCO iProcess Client, filter criteria that are defined on the Work Queue Man-
ager Work Item List Filter dialog become the default filter criteria for that work queue. When an
SWView or SWXList object is created for that work queue, the filter criteria defined on that dialog are
written to the FilterExpression property.

The following methods on the SWWorkQ object allow you to affect the default filter criteria (note
that at the same time these methods are affecting the default sort criteria for the work queue):

• SetDefCriteria - This method sets the default filter and sort criteria for this work queue. It uses
the current setting of the FilterExpression property and the SortFields property on the
SWView in the WorkItems property in the current instance of the work queue to establish the
default criteria.

Note that since this method uses the filter and sort criteria in the view in the WorkItems prop-
erty, this method is practical to use if you are using SWViews, but not if you are using
SWXLists. If you are using SWXLists, the SetDefCriteriaEx method is a better choice (see
below).

• SetDefCriteriaEx - This method allows you to specify the default filter and sort criteria for this
work queue by passing in the criteria as parameters. This causes the criteria you pass in this
method to persist on this instance of the work queue, causing future SWViews or SWXLists of
work items on this instance of the queue to use this default criteria.

• ClearDefCriteria - This method clears the default filter criteria that were set either through the
Work Queue Manager or by using the SetDefCriteria or SetDefCriteriaEx methods (see
above). (This also clears any default sort criteria that have been defined.)

Filtering Work Items and Cases - With WIS Work Item and Database Case Filtering

TIBCO iProcess Objects Programmer’s Guide 177

You can only persist filter criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you call SetDefCriteria/SetDefCriteriaEx. The following are the fil-
ter criteria that are supported by the Work Queue Manager, that can, therefore, be persisted with the
SetDefCriteria/SetDefCriteriaEx methods:

Also note the only equality operator that can be used in your filter expression when you are setting the
default criteria with the SetDefCriteria/SetDefCriteriaEx methods is the ‘=’ operator. The ‘<‘, ‘>’, and
‘?’ operators are not allowed (and since ‘?’ is not allowed, no regular expression syntax can be used).

System Field Description

SW_ARRIVAL Arrival date and time

SW_ARRIVALTIME Arrival time

SW_ARRIVALDATE Arrival date

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_DEADLINETIME Deadline time

SW_DEADLINEDATE Deadline date

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

TIBCO iProcess Objects Programmer’s Guide 178

11
Sorting Work Items and Cases

Introduction

You can sort work items and cases so they can be presented to the user in a desired order. For example,
you may want all work items in the work queue sorted by priority (SW_PRIORITY), in ascending
order.

You can also sort using multiple criteria. For example, you may want all work items that are flagged as
urgent (SW_URGENT) to be listed first in the queue, and also sort the same work items in ascending
order according to the date and time they arrived in the work queue (SW_ARRIVED).

How Sorting Differs Between Views and XLists

As described in the Working With Lists chapter, you may be using either SWView objects or SWXList
objects to hold your work item and case objects. (All new development should make use of SWXLists
because of their improved efficiency.) The way in which sort criteria are defined is somewhat different
between these two objects. The differences are described below.

Defining Sort Criteria on SWView

Work items and cases in a view are sorted by using the
SortFields property on the SWView object. SortFields is
a local list of SWSortField objects, each representing
one field (system field or case data field — described in
the following subsections) on which the work items or
cases in the view are sorted.

The order in which the SWSortField objects are placed
in the SortFields local list defines the order in which the
work items or cases are sorted in the view.

SWSortField objects are added to the SortFields local
list by using the Add method on SWLocList.

After setting or modifying the SortFields local list, the
Rebuild method on SWView must be invoked to update
the view based on the most recent sort criteria.

SWView

< ClassId

< Count

< ExcludeCnt

<> FilterExpression

< InvalidCnt

<> IsAuditAscending

< IsEOL

<> IsWaitForAll

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

< SortFields

< Status

< Type

< CaseFieldNames

* Item (default)

* ItemByKey

* Rebuild

* Clear

VL

LL

LL

SWSortField

<> FieldName

<> IsAscending

< Key

<> SortAsType

< ClassId

<> AuditFilterExpr

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 179

Defining Sort Criteria on SWXList

The SWXList object contains a Criteria property that points to an SWCriteriaWI, SWCriteriaC, or
SWCriteriaP object, depending whether the XList contains work items, cases, or predicted work
items, respectively:

• SWCriteriaWI - Contains properties that specify criteria for an XList that contains
SWWorkItem objects.

• SWCriteriaC - Contains properties that specify criteria for an XList that contains SWCase
objects.

• SWCriteriaP - Contains properties that specify criteria for an XList that contains
SWPredictedItem objects.

Work items, cases, and predicted work items in an XList are sorted by using the SortFields property
on the SWCriteriaWI object (if the XList contains work items), SWCriteriaC object (if the XList con-
tains cases), or SWCriteriaP (if the XList contains predicted work items).

The SortFields property is a read/write array of SWSortField objects, each representing one field
(system field or case data field — described in the following subsections) on which the work items,
cases, or predicted work items in the XList are sorted.

The order in which the SWSortField objects are placed in the SortFields array defines the order in
which the work items, cases, or predicted work items are sorted in the XList.

After setting or modifying the SortFields array, the Rebuild method on SWXList must be invoked to
update the XList based on the most recent sort criteria.

SWXList

< Count

< Criteria

< ExcludeCnt

< InvalidCnt

<> IsKeepLocalItems

< ItemCount

< ItemsPerBlock

< Status

< Type

< ClassId

* Item (default)

* ItemByKey

* Rebuild

* Clear

XL

SWCriteriaWI

< ClassId

<> CDQPNames

< DeadlineCnt

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< UnopenedCnt

< UrgentCnt

<> CaseFieldNames

SWCriteriaC

<> CaseFieldNames

< ClassId

<> FilterExpression

<> IsAuditAscending

<> IsWithAuditData

<> MaxCnt

< OverMaxCnt

<> SortFields

<> AuditFilterExpr

<Work Items> <Cases>

SWCriteriaP

<> FilterExpression

<> IsPersisted

< PersistenceId

<> SortFields

< ClassId

<Prediction>

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 180

Specifying Sort Criteria

You specify how you want the cases or work items in the view or XList to be sorted by adding one or
more SWSortField objects to the SortFields local list (on a view) or array (on an XList). The
SWSortField object represents the field on which the list of cases or work items are sorted. The fields
on which it’s sorted can be:

• System Fields - These are symbolic references to information about the case or work item. For
example, its priority (SW_PRIORITY), the case number (SW_CASENUM), etc. See “System
Fields used in Sorting” on page 182 for more information.

• Case Data Fields - These are fields displayed on the Staffware form. You can sort according to
the value of these fields. See “Sorting on Case Data Fields” on page 184 for more information.

Note - Field names that are added to the SortFields list that are not valid system fields or case data
fields are silently ignored.

Important - The way in which you specify sort criteria in your client application can greatly affect
the speed at which the sorting is processed. You are strongly encouraged to read the Filtering Work
Items and Cases chapter that is applicable to you (depending on the filtering enhancements you have
in your TIBCO iProcess Objects Server). The Filtering Work Items and Cases chapters provide guide-
lines about how to specify filter and sort criteria to ensure an efficient filter/sort operation.

The following are a couple of examples of how the SortFields property is used to specify sort criteria.

Example of Sorting on a View:
Set oWorkItems = oWorkQ.WorkItems
oWorkItems.Clear
oWorkItems.MaxCnt = 20
Set oWorkItem = oWorkItems(0) ' msg sent since first access after clear
Debug.Print "Field Count (for workitem:" & oWorkItem.key & ") = "_
 & oWorkItem.Case.Fields.Count ' No fields returned for Case associated
 ' with Workitem
oWorkItems.CaseFieldNames.Clear ' ensure empty local list before adding
oWorkItems.CaseFieldNames.Add "SW_CASENUM" ' return Case Number Field
oWorkItems.CaseFieldNames.Add "TESTPROFIELD3" ' return User defined Field

 ' Enable workitems to be sorted by Casenumber
For Each oSortField In oWorkItems.SortFields ' Note there are sortfields present
 ' by default
 Debug.Print "Sortfield Field Name = " & oSortField.FieldName
Next

'clear current list since want to sort ONLY by casenum
oWorkItems.SortFields.Clear

' Create and configure Sortfield
Set oSortField = New SWSortField
oSortField.FieldName = "SW_CASENUM"
oSortField.IsAscending = False
oSortField.SortAsType = swNumericSort
' Add SortField to local list
oWorkItems.SortFields.Add oSortField

See page 322 for a comprehensive example.

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 181

Note that the maximum number of sort fields that can be set is 10. Any additional will be ignored.

Example of Sorting on an XList:
Set oWorkItemsX = oWorkQ.WorkItemsX
Set oWorkItem = oWorkItemsX(0) ' msg sent since first access after clear
' No fields returned for Case associated with Workitem
Debug.Print ("Field Count (for workitem:" & oWorkItem.key & ") = "_
 & oWorkItem.Case.Fields.Count)
ReDim Fieldnames(1)
Fieldnames(0) = "SW_CASENUM" ' return Case Number Field
Fieldnames(1) = "TESTPROFIELD3" ' return User defined Field
oWorkItemsX.Criteria.CaseFieldNames = Fieldnames ' replaces existing array
 ' of fieldnames
' Enable WorkItemsX to be sorted by Casenumber

Debug.Print "<=== Show list of preset/default sortfields_
 (ie see std client) ===>"
cnt = UBound(oWorkItemsX.Criteria.SortFields)
For i = LBound(oWorkItemsX.Criteria.SortFields) To cnt
 SortFlds = oWorkItemsX.Criteria.SortFields
 Set oSortField = SortFlds(i)
 Debug.Print ("Sortfield Field Name = " & oSortField.FieldName)
Next

' Create and configure Sortfield
Set oSortField = New SWSortField
oSortField.FieldName = "SW_CASENUM"
oSortField.IsAscending = False
oSortField.SortAsType = swNumericSort
' Add SortField
ReDim SortFldArray(0)
Set SortFldArray(0) = oSortField
oWorkItemsX.Criteria.SortFields = SortFldArray
Debug.Print "<=== List sortfields after configuring criteria on Xlist ===>"
cnt = UBound(oWorkItemsX.Criteria.SortFields)
For i = LBound(oWorkItemsX.Criteria.SortFields) To cnt
 SortFlds = oWorkItemsX.Criteria.SortFields
 Set oSortField = SortFlds(i)
 Debug.Print ("Sortfield Field Name = " & oSortField.FieldName)
Next

See page 339 for a comprehensive example.

Note for TIBCO iProcess Objects (C++) Only - On SWCriteriaWI and SWCriteriaC, SWSortField
objects are copied. Once the array of SWSortFields is set (i.e., call setSortFields), you need to delete
each of the SWSortField objects (i.e., delete pSortField).

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 182

Sorting in an Efficient Manner

Sorting and filtering take place in a single operation — the Work Item Server (WIS), TIBCO iProcess
Objects Server, or database (whichever is performing the filter/sort operation) evaluates the filter
expression to obtain a result set, then that result set is sorted.

To perform this filter/sort operation in an efficient manner, there are a number of things you need to be
concerned with. These include things such as whether the server needs to “get case data”. The efficiency
of the filter/sort operation can be greatly effected by these. See the Filtering Work Items and Cases chap-
ter that is applicable to you (depending on the filtering enhancements in your TIBCO iProcess Objects
Server) for more information about how to ensure an efficient filter/sort operation.

System Fields used in Sorting

System fields are symbolic references to data about a work item or case. These fields are primarily used
by the TIBCO iProcess Engine (specifically, the Work Item Server) when performing filtering and sort-
ing functions. The information that is available to the TIBCO iProcess Engine through the system fields
is also available to the client though properties on SWWorkItem and SWCase. For example,
SW_CASENUM is available to the client in the SWCase.CaseNumber property. The TIBCO iProcess
Engine, however, doesn’t have access to those properties, so the property names from SWWorkItem and
SWCase can’t be used in filter and sort expressions — instead, the system field names need to be used in
your expressions.

The system fields that are available for sorting are listed in the table below. Note that some system fields
are only applicable to sorting on work items, some only for sorting on cases, and some are applicable to
both (see the “Applies to” columns).

The WIS-compatible column tells you if the Work Item Server (WIS) can process that particular system
field. This is applicable only when sorting work items (cases are always sorted by the TIBCO iProcess
Objects Server or the database). (See the section “Can the WIS Perform the Sort Operation?” on
page 107 and page 134 for more information.)

Sort Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Arrival date and time SW_ARRIVAL DateTime 16 X X

Case description SW_CASEDESC Text 24 X X X

Case ID in procedure SW_CASEID Numeric 7 X

Case number SW_CASENUM Numeric 15 X X X

Case reference number SW_CASEREF Text 20 X X

Deadline date and time SW_DEADLINE DateTime 16 X X

Deadline expired flag (1 -
expired; 0 - all others)

SW_EXPIRED Numeric 1 X X

Deadline set flag (1 - has
deadline; 0 - all others)

SW_HASDEADLINE Numeric 1 X X

Forwardable work item flag
(1 - forwardable; 0 - all oth-
ers)

SW_FWDABLE Numeric 1 X X

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 183

Host name SW_HOSTNAME Text 24 or 8a X X

Locker of the work item
(username)

SW_LOCKER Text 24 or 8a Xb X

Mail ID SW_MAILID String or

Numeric c
7 (integer)

45 (string)

X

Outstanding work items in
case (not available on TIBCO
iProcess Engines)

SW_OUTSTANDCNT Numeric 7 X

Pack file (not available on
TIBCO iProcess Engines)

SW_PACKFILE Text 13 X

Priority of work item SW_PRIORITY Numeric 7 X X

Procedure description SW_PRODESC Text 24 X X X

Procedure name SW_PRONAME Text 8 X X X

Procedure number SW_PRONUM Numeric 7 X X

Releasable work item (no
input fields) (1 - releasable; 0
- all others)

SW_RELABLE Numeric 1 X X

Started date and time of the
case

SW_STARTED DateTime 16 X

Starter of the case
(username@node)

SW_STARTER Text 24 or 8a X X

Status of the case (“A” -
active; “C” - closed)

SW_STATUS Text 1 X

Step (work item) description SW_STEPDESC Text 24 X X

Step (work item) name SW_STEPNAME Text 8 X X

Step (work item) number in
procedure

SW_STEPNUM Numeric 7 X

Terminated date and time of
the case

SW_TERMINATED DateTime 16 X

Unopened work item (1 -
unopened; 0 - all others)

SW_NEW Numeric 1 X X

Urgent flag (1- urgent; 0 - all
others)

SW_URGENT Numeric 1 X X

Work queue parameter 1 SW_QPARAM1 Text 24 X X

Work queue parameter 2 SW_QPARAM2 Text 24 X X

Work queue parameter 3 SW_QPARAM3 Text 12 X X

Work queue parameter 4 SW_QPARAM4 Text 12 X X

a. This has a length of 24 for long-name systems, or 8 for short-name systems.
b. SW_LOCKER is WIS-compatible only if your TIBCO iProcess Objects Server has implemented CR 13397.
c. If using a TIBCO Process Engine, SW_MAILID is an integer of length 7; if using a TIBCO iProcess Engine,

SW_MAILID is a string of length 45.

Sort Criteria System Field Data Type Length
WIS-

compatible
Applies to
work items

Applies to
cases

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 184

Sorting on Case Data Fields

You can sort work items in a work queue based on the values in the fields of the work item (referred to
as "case data" fields).

There are two ways in which you can sort on case data:

• Using Case Data Queue Parameter (CDQP) Fields - CDQP fields are a more recent addition
than Work Queue Parameter fields (see below) that allow you to sort on an unlimited number of
case data fields that appear in work items on your work queue.

• Using Work Queue Parameter Fields - These fields are used by assigning a case data field value
to one of the pre-defined work queue parameter fields, then using the Work Queue Parameter
field as a sort criteria. These fields have been superseded by CDQP fields (see above) as they
were considered too limiting since there are only four of them.

More about CDQP and work queue parameter fields are described in the following subsections.

Using Case Data Queue Parameter Fields

Case Data Queue Parameter (CDQP) fields provide an efficient method of sorting on the value of
fields in your work items. To make use of this functionality, you must first pre-designate the fields you
want to sort on as CDQP fields. Fields are designated as CDQP fields with the utility, swutil. This
utility is used to create a list, on the TIBCO iProcess Engine, of the case data fields that are available
to use for sorting. See the TIBCO iProcess Engine Administrator's Guide for information about using
swutil.

Note - Case Data Queue Parameter fields are also used for efficiently filtering on case data, as
described in the Filtering Work Items and Cases chapters.

Once you have created the list of CDQP fields with
swutil, this list of fields is available in the
SWWorkQ.CaseDataQParamDefs property. This
property contains a list of SWCaseDataQParam-
Def objects, one for each case data field that has
been designated as a CDQP field in the work queue.
This list tells you the CDQPs that are available for
filter and sort criteria.

The CaseDataQParams property on
SWWorkItem provides access to CDQPs that are
being used in the work item. Note, however, to
control resource usage, you can specify which
CDQPs to return from the server by using the
CDQPNames property on the SWCriteriaWI
object. By default, all CDQPs used in a work item
are returned from the server. The SWCaseDataQ-
Param object contains the current value in the
CDQP.

SWCaseDataQParamDef

< Description

< FieldName

< Key

< Length

< ClassId

 SWWorkQ

< CaseDataQParamDefsL

 SWWorkItem

< CaseDataQParams LL
SWCaseDataQParam

< FieldName

< Key

< Value

< ClassId

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 185

After being designated as a CDQP field, that field can be used to sort on. (In the example below,
assume LAST_NAME has been designated as a CDQP):

Dim oSortField As New SWSortField
.
.
oSortField.FieldName = LAST_NAME

oView.SortFields.Add oSortField

CDQPs Contain Work Item Data

If the WIS is performing the sort operation, and you are using CDQP fields in your sort criteria, the
evaluation is performed using the “Work Item Data” in the CDQP. Work Item Data reflects “keeps”
that have been done on the work item.

If the TIBCO iProcess Objects Server is performing the sort operation, and you are using CDQP fields
in your sort criteria, the server may perform the evaluation using either “Work Item Data” or “Case
Data”, depending on whether or not your TIBCO iProcess Objects Server has implemented CR
12425. If CR 12425 has been implemented in your server, it will evaluate Work Item Data; if CR
12425 has not been implemented in your server, it will evaluate Case Data. Work Item Data reflects
“keeps” that have been performed on the work item; Case Data does not reflect “keeps”. (See your
TIBCO iProcess Objects Server readme to determine if CR 12425 is implemented in your server.)

See “Case Data vs. Work Item Data” on page 91 for more information about the difference between
Work Item Data and Case Data.

Using Work Queue Parameter Fields

Note - Previous versions of TIBCO iProcess Objects provided “Work Queue Parameter” fields that
could be used for filtering and sorting work items based on the value of case data. Work Queue
Parameter fields, however, did not provide the flexibility required by some customers. Therefore, a
new method using “Case Data Queue Parameter (CDQP)” fields has been implemented (see the pre-
vious section). New development should use CDQP fields to filter on case data instead of the Work
Queue Parameter fields (Work Queue Parameter fields will continue to be supported, however).

"Work Queue Parameter" fields allow you to sort work items based on the value of case data fields in
your client application. (Work Queue Parameter fields are also used for filtering on case data — see
the Filtering Work Items and Cases chapters.)

If you have case/field data that you want to sort on (e.g., customer name, loan amount, etc.), it is much
more efficient to assign the field value to one of the Work Queue Parameter fields, then sort on that
field, instead of directly sorting on the application field. There are four work queue parameter fields
available:

Name Type Length Description

SW_QPARAM1 Text 24 WQ Parameter Field 1

SW_QPARAM2 Text 24 WQ Parameter Field 2

SW_QPARAM3 Text 12 WQ Parameter Field 3

SW_QPARAM4 Text 12 WQ Parameter Field 4

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 186

These fields can be placed directly in forms, or you can assign the value of an application field to one
of the work queue parameter fields through a script. For example:

SW_QPARAM1:=LAST_NAME

Your application would assign the Work Queue Parameter field to an SWSortField object, then add
that object to the SortFields property. For example:

Dim oSortField As New SWSortField
.
.
oSortField.FieldName = SW_QPARAM1
oView.SortFields.Add oSortField

This method of sorting on case data fields is fast and efficient — it’s performed by the Work Item
Server. If you directly added the case data field to the SortFields property, the sort would have to be
performed by the TIBCO iProcess Objects Server.

The SWWorkItem object has four read-only properties that provide access to the values in the Work
Queue Parameter fields — they are WQParam1 - WQParam4. These properties will contain the val-
ues you place in fields, SW_QPARAM1 - SW_QPARAM4, for each work item.

The SWWorkQ object has four read-only properties that contain a name for each of the Work Queue
Parameter fields (WQParam1-4). If you use the TIBCO iProcess Client, these names appear in the
column headers if you display the Work Queue Parameter fields in the Work Queue Manager. For
information about modifying these names, see the TIBCO iProcess Client (Windows) Manager’s
Guide.

Setting Default Sort Criteria

You can set default sort criteria for a work queue that persists on the queue. This causes future
SWViews or SWXLists of work items on the current instance of the queue to use this default criteria.

Note - If you use the TIBCO iProcess Client, sort criteria that are defined on the Work Queue Man-
ager Work Queue Sort Criteria dialog become the default sort criteria for that work queue. When an
SWView or SWXList object is created for that work queue, the sort criteria defined on that dialog are
written to the SortFields property.

The following methods on the SWWorkQ object allow you to affect the default sort criteria (note that
at the same time these methods are affecting the default filter criteria for the work queue):

• SetDefCriteria - This method sets the default filter and sort criteria for this work queue. It uses
the current setting of the FilterExpression property and the SortFields property on the
SWView in the WorkItems property in the current instance of the work queue to establish the
default criteria.

Note that since this method uses the filter and sort criteria in the view in the WorkItems prop-
erty, this method is practical to use if you are using SWViews, but not if you are using
SWXLists. If you are using SWXLists, the SetDefCriteriaEx method is a better choice (see
below).

• SetDefCriteriaEx - This method allows you to specify the default filter and sort criteria for this
work queue by passing in the criteria as parameters. This causes the criteria you pass in this

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 187

method to persist on this instance of the work queue, causing future SWViews or SWXLists of
work items on this instance of the queue to use this default criteria.

• ClearDefCriteria - This method clears the default sort criteria that were set either through the
Work Queue Manager or by using the SetDefCriteria or SetDefCriteriaEx methods (see
above). (This also clears any default filter criteria that have been defined.)

You can only persist sort criteria that are a subset of those supported by the Work Queue Manager or
an exception will be thrown when you call SetDefCriteria/SetDefCriteriaEx.

The following are the sort criteria that are supported by the Work Queue Manager, that can, therefore,
be persisted with the SetDefCriteria/SetDefCriteriaEx methods:

System Field Description

SW_ARRIVAL Arrival date and time

SW_CASEDESC Case description

SW_CASENUM Case number

SW_CASEREF Case reference number

SW_DEADLINE Deadline date and time

SW_EXPIRED Deadline Expired Flag

SW_FWDABLE Forwardable Items

SW_HASDEADLINE Deadline Set Flag

SW_HOSTNAME Host Name

SW_NEW Unopened Work Item Flag

SW_PRIORITY Priority of work item

SW_PRODESC Procedure Description

SW_PRONAME Procedure Name

SW_QPARAM1 Work Queue Parameter1

SW_QPARAM2 Work Queue Parameter2

SW_QPARAM3 Work Queue Parameter3

SW_QPARAM4 Work Queue Parameter4

SW_RELABLE Releasable Work Item Flag

SW_STEPDESC Form (Step) Description

SW_STEPNAME Form (Step) Name

SW_URGENT Urgent Work Item Flag

Sorting Work Items and Cases

TIBCO iProcess Objects Programmer’s Guide 188

Implied Sort Fields for Multiple Views/XLists

If you create multiple views of cases (with MakeViewCases) or work items (with MakeViewItems),
there is an implied sort field on which the view is sorted before any user-defined sort criteria are
applied.

• Multi views of cases are always sorted first by procedure number. This is because the view
created with the MakeViewCases method can possibly span multiple procedures and/or nodes.

• Multi views of work items are always sorted first by queue name. This is because the view
created with the MakeViewItems method can possibly span multiple work queues.

Any user-defined sort criteria are applied after the view is sorted on the implied primary sort field.

Sorting as a Specified Data Type

The SortAsType property on SWSortField allows you to specify that the sort fields be converted to
the specified data type before the sort comparison is performed.

Sorting by a specified type with the SortAsType property is only applicable when sorting on:

• Work Queue Parameter fields (SW_QPARAM1-4) - see “Using Work Queue Parameter
Fields” on page 185

• Case Data Queue Parameter fields - see “Using Case Data Queue Parameter Fields” on
page 184

• Case Description (SW_CASEDESC)

The data types that can be specified with the SortAsType property are enumerated in SWSortType:

The TIBCO iProcess Objects Server will convert the value of the sort field to the specified sort type
before doing the sorting. For example, text fields containing numeric information could be sorted as
numbers by setting the sort type accordingly. Note, however, that if the sort field does not contain
something readily convertible to the specified type, the sort results may be unexpected. For example,
if sorting text as a numeric field but some of the text fields contain non-numeric data, the results of the
conversion are not defined, so the sort results may not be what you expected.

Constant Description Value

swDateSort Sort as date ‘D’

swDateTimeSort Sort as date/time ‘B’

swNumericSort Sort as real number ‘R’

swTextSort Sort as text ‘A’

swTimeSort Sort as time ‘T’

TIBCO iProcess Objects Programmer’s Guide 189

12
Managing Work Queues

Introduction

A work queue represents a list of work items that are
awaiting action. A work queue can belong to an individ-
ual user or to a group of users. If it is a group work queue,
all users that belong to that group have access to the work
items in the work queue.

Work Queue Objects

Work queues are represented by the SWWorkQ object. A
list of SWWorkQ objects is available from two locations:

• SWNode.WorkQs - This property returns a list of
SWWorkQ objects, one for each work queue
defined on the node. This includes both released
and test work queues (note that a test work queue
will exist only if there are work items in it —
explained below) .

• SWUser.WorkQs - This property returns a list of
SWWorkQ objects, one for each work queue the
user is authorized to work on. This includes only
released work queues.

The SWWorkQ object contains properties that allow you
to view information about the work queue (e.g., whether
or not it’s released (IsReleased), the number of work
items in the work queue (WorkItemCnt), etc.). It also con-
tains methods that allow you to act upon the work items
in the work queue (e.g., locking work items (LockItems),
releasing work items (ReleaseItems), etc.). These func-
tions are described in later subsections of this chapter.

Work Item Objects

A work item represents an individual item in a work
queue. Work items are represented in SSO by
SWWorkItem objects. These objects provide access to
information about that specific work item, e.g., whether
or not the work item is locked (IsLocked), the deadline
for the work item (Deadline), etc.

SWWorkItem

* KeepItem

* LockItem

* LockItemMarkings

* Rebuild

* ReleaseItem

* UndoItem

* UnlockItem

* ForwardItem

< CaseDataQParams

< ClassId

< Deadline

< ExtraCaseCtlRec

< ExtraPackFile

< ExtraPNumCnt

< ExtraReqID

< ExtraStepNum

< FwdItems

< IsAutoPurge

< IsDeadline

< IsDeadlineAWD

< IsDeadlineExp

< IsEditable

< IsForwardable

< Case

< IsLocked

< IsLongLock

< IsNetworked

< IsOrphaned

<> IsRebuildAll

< IsReleasable

< IsStartStep

< IsSuspended

< IsUndelivered

< IsUnopen

< IsUrgent

< IsWorkDays

< Key

< LastError

< LockedBy

< IsKeepOnWithdraw

< Priority

< StepDescription

< StepName

< Tag

< WQParam1

< WQParam2

< WQParam3

< WQParam4

< Markings

L

< Arrived

< AddrToName

SWWorkQ

< WorkItemsX

< WQParam1Name

< WQParam2Name

< WQParam3Name

< WQParam4Name

< WorkItems

* GrantAccess

* KeepItems

* KeepItemsEx

* LockItems

* LockItemsEx

* LockItemsMarkings

* MakeViewItems

* MakeXListItems

* MakeXListItemsEx

* Rebuild

* ReleaseItems

* ReleaseItemsEx

* RevokeAccess

* SetDefCriteria

* SetDefCriteriaEx

* ClearDefCritieria

< Description

< FirstDeadline

< HostingNode

< IsGroup

< IsReadOnly

<> IsRebuildAll

< IsReleased

< Key

< Name

< Participations

< Redirection

< SupervisorNames

< Tag

< UnopenedCnt

< UrgentCnt

< DeadlineCnt

VL

< ClassId

< CaseDataQParamDefs

< MailID

LL

XL

< WorkItemCnt

< ViewUserNames L

L

L

* UndoItemsEx

* UnlockItems

* UnlockItemsEx

* UndoItems

L

LL

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 190

Test vs. Released Work Queues

Whenever a user or group is added, both a “test” and “released” work queue is automatically created
for the user or group. Both of these work queues are returned when you retrieve lists of work queues
with the SWNode.WorkQs property (only released work queues are returned in SWUser.WorkQs).
Note, however, that neither the test nor the released work queue for a user or group “officially” exists
until a work item is sent to the work queue.

The “key” (Key property) for the SWWorkQ object contains the test/released designation as follows:

WorkQName@HostingName|Mode

where Mode = T for test or R for released.

If you attempt to access a work queue (either test or released) prior to it containing a work item, a
“Queue not found” error is thrown.

Work items that result from cases of procedures that have a status of swReleased (see “Procedure
Status” on page 43 for information about the procedure statuses available) are sent to the “released”
work queue for the user or group that is the addressee of the step. Released work queues are accessible
only by the user or group for whom the work queue was created, and by users that have been given
“participation” access (see “Participation Access to a Work Queue” on page 204).

Work items that result from cases of procedures that have a status of swUnreleased or swModel are
sent to the “test” work queue for the user or group that is the addressee of the step. Note, however, that
test work queues CANNOT be seen by the user or group that is the addressee of the step; they can
only be seen by the user that started the case of the test procedure (which is the owner/definer of the
unreleased procedure as only the owner/definer can start cases of an unreleased procedure). The test
work queues are given the names of the addressees of the steps, but are not visible by those users. For
instance, if user1 starts a case of an unreleased procedure, and the first step’s addressee is user2, the
work item is routed to user2’s test work queue, but that queue is only visible by user1, not user2. This
allows the definer of the procedure to ensure that the process flow is occurring as intended before
releasing the procedure without having to log in and out as different users.

You can determine whether a work queue is a test or released queue by accessing the IsReleased
property on SWWorkQ (you can access SWWorkQ only after a work item has been sent to the work
queue). (The IsWorkQReleased property is available on SWOutstandingItem to determine if the out-
standing item is located in a test or released work queue.)

Accessing Work Items on a Work Queue

The properties and methods that you use to access the work items on a work queue depends on
whether you are using views (SWViews) or XLists (SWXLists) in your client application. Accessing
work items in each of these list types is described in the following subsections.

Note - It is highly recommended that you use SWXLists instead of SWViews to list work items because
of their improved efficiency — see “Handling Large Lists of Work Items, Cases, Users, OS Users,
Groups” on page 275 for more information.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 191

Accessing Work Items in SWViews

You can obtain two types of views of work items in a work queue:

• The “default” view - The WorkItems property on SWWorkQ returns a view (SWView) of all
of the work items in the work queue that satisfy the filter criteria in the SWView.FilterExpres-
sion property. They are listed in the view in the order specified by the SWView.SortFields
property. This is the view of work items you will typically use.

Dim oWorkItems As SWView
Set oWorkQ = oUser.WorkQs.ItemByKey(cboWorkQs.Text)
Set oWorkItems = oWorkQ.WorkItems

' Read down the Work Queue, actioning each Work Item
For Each oLocalItem In oWorkItems

.

.

• An “alternate” view - If you have a need to show a view of work items in more than one way,
additional views can be created with the MakeViewItems method. For example, you may want
to show a view of work items sorted by priority and also (concurrently) a view of unopened
work items that arrived today. To do this, you would create an additional SWView containing
SWWorkItem objects filtered and sorted in the desired way.

The MakeViewItems method is available from several objects, which governs its scope, as
shown in the table below.

If you create a view with the MakeViewItems method, the Status property on that view will
always return swChanged.

The “single-parameter” SWNode.MakeViewItemsByTag method is available to create an
additional view of work items by passing a single Tag parameter. This method would typically
be used by a web-based application. Its scope is the work queues on the node from which it is
called. (See “Stateless Programming” on page 270 for more information about using “single-
parameter” methods in a web-based environment.)

Note that the SWViews returned with the WorkItems property and MakeViewItems method are not
automatically populated with SWWorkItem objects. See “How SWViews are Created and Populated
at the Client” on page 66 for details.

Method Called From Scope

MakeViewItems SWWorkQ Used to view work items in the work queue.

SWUser Used to view work items across multiple work queues on one node.

SWEntUser Used to view work items across multiple work queues on more than
one node.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 192

Accessing Work Items in SWXLists

You can obtain two types of XLists of work items in a work queue:

• The “default” XList - The WorkItemsX property on SWWorkQ returns an XList (SWXList)
of all of the work items in the work queue that satisfy the filter criteria in the
SWCriteriaWI.FilterExpression property. They are listed in the XList in the order specified
by the SWCriteriaWI.SortFields property. This is the XList of work items you will typically
use.

Dim oWorkItems As SWXList
Set oWorkQ = oUser.WorkQs.Item(lboWorkQs.ListIndex)
Set oWorkItems = oWorkQ.WorkItemsX

.

.

• An “alternate” XList - If you have a need to show an XList of work items in more than one way,
additional SWXLists can be created with the MakeXListItems or MakeXListItemsEx meth-
ods on SWWorkQ. For example, you may want to show an XList of work items sorted by pri-
ority and also (concurrently) an XList of unopened work items that arrived today. To do this,
you would create an additional SWXList containing SWWorkItem objects filtered and sorted in
the desired way. (Note that this is the method you need to use to create an XList of work items
that you are going to persist — see “Working with Persisted XLists” on page 81 for more infor-
mation.)

Note that the SWXList returned by the WorkItemsX property and the MakeXListItems / MakeX-
ListItemsEx methods are not automatically populated with SWWorkItem Objects. See “Populating
an XList of Work Items” on page 77 for details.

Determining the Number of Work Items in a Work Queue

The method you use to determine the number of work items in a work queue depends on whether you
are using SWViews or SWXLists, as described in the following subsections.

Determining the Number of Work Items in a Work Queue on an SWView

You can determine the total number of work items available from the server to an SWView at the cli-
ent by looping through the view and checking the SWView.IsEOL property. When IsEOL returns
True, it means “the last item you accessed is the last item available to the list.” At this point, the
Count property indicates the total number of work items available from the server. See the example
below.

i = 0
 oWorkQList.IsEOL = False
 While (oWorkQList.IsEOL = False)
 Debug.Print "Name: " & oWorkQList(i).Name & "; Description: " _
 & oWorkQList(i).Description
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count
 i = i + 1
 Wend

It’s important to understand that the IsEOL property is ONLY true when the last item you accessed
was the last item in the list. If another item in the list is subsequently accessed, IsEOL is then set to
false.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 193

Other count properties are also available on SWView:

• ExcludeCnt - Contains the number of work items that were not included in the indexed collec-
tion at the server because they did not satisfy the criteria in the FilterExpression property.
(Note - This count may or may not be available, depending on which filtering enhancements
have been incorporated in your TIBCO iProcess Objects Server. See the appropriate Filtering
Work Items and Cases chapter on page 98, page 126, or page 152.)

• InvalidCnt - Contains the number of work items not included in the indexed collection because
they were invalid within the context of the filter criteria (e.g., the filter expression references a
field name not defined in all work items). (Note - This count may or may not be available,
depending on which filtering enhancements have been incorporated in your TIBCO iProcess
Objects Server. See the appropriate Filtering Work Items and Cases chapter on page 98,
page 126, or page 152.)

Determining the Number of Work Items in a Work Queue on an XList

You can determine the number of work items in a work queue when you are using SWXLists by using
the following properties:

• ItemCount - The total number of items at the server the first time the XList was accessed or the
last time it was rebuilt. This count includes only those work items that satisfy the filter criteria
in SWCriteriaWI.FilterExpression.

This count is available immediately upon creating the XList (unlike on a view where you need
to loop through the list until IsEOL is true to determine the total number of items available on
the server).

 If oWorkItemsX.ItemCount > 25 Then
 cnt = 25 ' if more than 25 only loop through 1st 25
 Else
 cnt = oWorkItemsX.ItemCount ' if less than 25 loop through all of them
 End If

• Count - The number of items that are currently stored in the XList at the client.

• ExcludeCnt - Contains the number of work items that were not included in the indexed collec-
tion at the server because they did not satisfy the criteria in the FilterExpression property.
(Note - This count may or may not be available, depending on which filtering enhancements
have been incorporated in your TIBCO iProcess Objects Server. See the appropriate Filtering
Work Items and Cases chapter on page 98, page 126, or page 152.)

• InvalidCnt - Contains the number of work items not included in the indexed collection because
they were invalid within the context of the filter criteria (e.g., the filter expression references a
field name not defined in all work items). (Note - This count may or may not be available,
depending on which filtering enhancements have been incorporated in your TIBCO iProcess
Objects Server. See the appropriate Filtering Work Items and Cases chapter on page 98,
page 126, or page 152.)

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 194

Processing Work Items

Processing work items that are in a work queue involve the following concepts:

• Locking a work item gives you exclusive use of that work item so that you can modify it.

• Keeping a work item causes changes that have been made to the work item to be saved. The
work item is unlocked, then kept in the same work queue.

• Releasing a work item causes changes that have been made to the work item to be saved. The
work item is unlocked, then released, which causes the work item to be removed from the work
queue. The process advances to the next step in the procedure.

The following subsections describe the details of locking, keeping, and releasing work items.

Locking Work Items

Locking a work item gives you exclusive use of that work item so that you can perform some action
upon it. Note that “locking” a work item and “opening” a work item are synonymous. Several meth-
ods are provided to lock a work item:

• LockItem and LockItemMarkings - These methods on SWWorkItem are used to lock a sin-
gle work item. These are used if your work items are in an SWView. The difference: LockItem
returns either the visible markings on the form or all markings (both visible and conditional) on
the form; LockItemMarkings allows you to specify which markings to return — see the next
subsection.

• LockItems - This method on SWWorkQ is used to lock multiple work items in the queue. This
is used if your work items are in an SWView.

• LockItemsEx and LockItemsMarkings - These methods on SWWorkQ are used to lock one
or more work items in the queue. These are used if your work items are in an SWXList. The
difference: LockItemsEx returns all markings (both visible and conditional) on the form;
LockItemsMarkings allows you to specify which markings to return — see the next subsec-
tion.

Getting Markings When Locking Work Items

Locking work items also causes the Markings property to become populated with SWMarking
objects. This allows you access to the data in those markings (SWMarking.Value). Note, however,
that the Markings property is populated differently depending on which method is used to lock the
work items, as follows:

- LockItem – The allMarkings parameter allows you to specify that either all markings on
the form (both visible and conditional), or only the visible markings, be returned.

- LockItemMarkings – The MarkingNames parameter is used to specify the specific mark-
ings that are to be returned, allowing you to control resource usage.

- LockItems – All markings on the form (both visible and conditional) of each work item are
returned.

- LockItemsEx – All markings on the form of each work item are returned.

- LockItemsMarkings – The MarkingNames parameter is used to specify the specific mark-
ings that are to be returned, allowing you to control resource usage.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 195

What’s the Difference Between a “Lock” and a “Long Lock”?

There are two types of locks possible for a work item:

• A lock is one that is established from the Work Queue Manager (for those that are using the
TIBCO iProcess Client). If the work item is locked in this way, the SWWorkItem.IsLocked
property will be True. This type of lock is not persistent — if the client exits, the work item is
automatically unlocked.

• A long lock is one that is established from TIBCO iProcess Objects using one of the methods
described above (LockItem, etc.). If the work item is locked in this way, the
SWWorkItem.IsLongLock property will be True. This type if lock is persistent — if the client
exits, the work item will remain locked.

The two types of locks are mutually exclusive — IsLocked and IsLongLock cannot both be True. If
a work item has been locked in the Work Queue Manager, and you attempt to lock it using TIBCO
iProcess Objects, an error is returned telling you the work item is already locked. The same is true if it
is already locked using TIBCO iProcess Objects and you attempt to lock it in the Work Queue Man-
ager.

Unlocking a Work Item

A work item is automatically unlocked when it is “kept” or “released” (described later in this chapter).

The following methods allow you to unlock a long-locked (locked via TIBCO iProcess Objects) work
item:

• UnlockItem - This method on SWWorkItem is used to unlock a single work item. This is used
on SWViews of work items.

• UnlockItems - This method on SWWorkQ is used to unlock multiple work items. This is used
on SWViews of work items.

• UnlockItemsEx - This method on SWWorkQ is used to unlock one or more work items. This
is used on SWXLists of work items.

The unlock methods cause all changes that have been made to the work item since the last “keep” to
be discarded and unlocks the work item (the IsLongLock property is set to False).

Any user can unlock a work item they have locked, but you must have system administrator authority
(MENUNAME = ADMIN) to unlock a work item that another user has locked. That is the primary
purpose of the unlock methods — to allow a System Administrator to unlock another user’s work
items. (See “User Attributes” on page 221 for information about the MENUNAME attribute.)

Work items that have been locked in the Work Queue Manager (IsLocked is True) cannot be unlocked
using TIBCO iProcess Objects. (For information about unlocking work items using the Work Queue
Manager, see the TIBCO iProcess Client (Windows) Manager’s Guide.)

Discarding Changes made to a Locked Work Item

The following methods are available to discard changes that have been made to a long-locked (locked
via TIBCO iProcess Objects) work item:

• UndoItem - This method on SWWorkItem is used to discard changes to a single work item.
This is used on SWViews of work items.

• UndoItems - This method on SWWorkQ is used to discard changes to multiple work items.
This is used on SWViews of work items.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 196

• UndoItemEx - This method on SWWorkQ is used to discard changes to one or more work
items. This is used on SWXLists of work items.

The undo methods cause all changes that have been made to the work item since the last “keep” to be
discarded and unlocks the work item (the IsLongLock property is set to False).

Note that you can also discard any changes since the last “keep” without unlocking the work item by
calling the LockItem method again. This essentially re-populates the Markings property, overwriting
any new data in the markings.

Has a Work Item been Locked/Opened?

When a work item is added to a work queue, its IsUnopen property is set to True, indicating that it has
not been worked on yet. If you lock the work item (either through the Work Queue Manager or
TIBCO iProcess Objects), then keep it in the same work queue, its IsUnopen flag is changed to False,
indicating that it has been opened and worked on (but not necessarily modified).

The SWWorkQ object also contains an UnopenedCnt property, which indicates the number of work
items in the queue that have not been opened yet (i.e., the number that are new).

Determining who Locked a Work Item

The name of the user who currently has a work item locked is available in the
SWWorkItem.LockedBy property.

Executing a Command when a Work Item is Locked

When a procedure is defined with the TIBCO iProcess Modeler you can specify that a “command” be
executed when the step (work item) is locked. If this has been defined in the procedure, the name of
the command will appear in the SWCommand.InitialExpr property. This command may consist of
any script or valid expression (for information about valid expressions, see the TIBCO iProcess
Expressions and Functions Reference Guide).

Keeping Work Items

Keeping a work item causes changes that have been made to the work item to be saved. The work
item is then kept in the same work queue. The following methods are available to keep work items:

• KeepItem - This method on SWWorkItem is used to keep a single work item. This is used if
your work items are in an SWView.

• KeepItems - This method on SWWorkQ is used to keep multiple work items in the queue.
This is used if your work items are in an SWView.

• KeepItemsEx - This method on SWWorkQ is used to keep one or more work items in the
queue. This is used if your work items are in an SWXList.

When you keep a work item, data associated with that work item is written to “Work Item Data” (also
known as “pack data”). This is an intermediate storage area for work items that are in work queues.
See “Case Data vs. Work Item Data” on page 91 for more information.

When you modify data in a marking of a work item, the IsSendValue flag is automatically set to True.
This flag tells the system to send the new marking data to the Work Item Data storage area when the
work item is kept. You can optionally set the IsSendValue flag back to False after changing marking
data if you decide you do not want that data sent to the Work Item Data storage area — this essentially
discards the change made to the marking when you keep the work item.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 197

Executing a Command when a Work Item is Kept

When a procedure is defined with the TIBCO iProcess Modeler you can specify that a “command” be
executed when the step (work item) is kept. If this has been defined in the procedure, the name of the
command will appear in the SWCommand.KeepExpr property. This command may consist of any
script or valid expression (for information about valid expressions, see the TIBCO iProcess Expres-
sions and Functions Reference Guide).

Releasing Work Items

Releasing a work item causes changes that have been made to the work item to be saved. The work
item is then released, which causes the work item to be removed from the work queue and the process
to advance to the next step in the procedure. The following methods are available to release work
items:

• ReleaseItem - This method on SWWorkItem is used to release a single work item. This is
used if your work items are in an SWView.

• ReleaseItems - This method on SWWorkQ is used to release multiple work items in the
queue. This is used if your work items are in an SWView.

• ReleaseItemsEx - This method on SWWorkQ is used to release one or more work items in the
queue. This is used if your work items are in an SWXList.

When you release a work item, data associated with that work item is written to “Case Data.” This is
the permanent storage area for data associated with the case. See “Case Data vs. Work Item Data” on
page 91 for more information.

When you modify data in a marking of a work item, the IsSendValue flag is automatically set to True.
This flag tells the system to send the new marking data to the Case Data storage area when the work
item is released. You can optionally set the IsSendValue flag back to False after changing marking
data if you decide you do not want that data sent to the Case Data storage area — this essentially dis-
cards the change made to the marking when you release the work item.

Validating Markings

All of the release item methods provide a Validate parameter that allows you to ensure that all
required markings are sent to the server upon release.

• If Validate = True: 1) Validate that the markings exist on the form, 2) validate that all required
markings (swRequired) on the form are sent to the server with non-empty data, and 3) validate
that display markings (swDisplay) are not sent to the server. The IsSendValue flag for each
marking is set to False by default when the work item is locked. IsSendValue is automatically
set to True if the value of the marking is changed. You can also force the sending of the marking
by setting IsSendValue to True before releasing the work item.

• If Validate = False (the default), it bypasses the enforcement of marking types on the Staffware
form.

Executing a Command when a Work Item is Released
When a procedure is defined with the TIBCO iProcess Modeler you can specify that a “command” be
executed when the step (work item) is released. If this has been defined in the procedure, the name of
the command will appear in the SWCommand.ReleaseExpr property. This command may consist of
any script or valid expression (for information about valid expressions, see the TIBCO iProcess
Expressions and Functions Reference Guide).

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 198

Automatically Releasing the Start Step
The StartCaseEx method provides a Release parameter that allows you to specify that the start step
be automatically released when the case is started. Setting this parameter to True causes the case to
automatically proceed to the second step — resulting in the work item for the second step appearing in
the work queue of the addressee of the second step. (Note that the Release parameter is only relevant
if the user starting the case is the addressee of the start step (or the addressee is defined as
SW_STARTER).)

See “Keeping/Releasing the Start Step” on page 231 for more information.

What is an Orphaned Work Item?
When a work item is released, the SWWorkItem.IsOrphaned property on that work item is set to
True. This flag tells you that the work item has been released, even though it may still appear in the
work queue. This is most apt to occur with group queues where a user on one machine has released
the work item and a user on another machine attempts to access that work item. The work item will be
removed from the work queue the next time the queue is cleared and rebuilt.

Determining if a Work Item could not be Delivered to the Addressee
When a work item is released, the process advances to the next step in the case. The work item’s
“addressee” specifies to whom the next work item is to be sent. If the work item cannot be delivered
to that addressee, the SWWorkItem.IsUndelivered property is set to True and the work item is
placed in the $undeliv work queue. This could occur if the user or group specified as the addressee no
longer exists, or the addressee is a field that evaluated to a user or group that doesn’t exist. (Only the
swadmin user has access to the $undeliv work queue.)

Is the Work Item Directly Releasable?
A work item is considered “directly releasable” if there are no input fields on its form. Input fields
include fields of type Required and Optional (fields of type Display, Calculated, Hidden, and Embed-
ded are not considered input fields).

If the work item is directly releasable, the SWWorkItem.IsReleasable property is set to True.

Errors Resulting from Processing Work Items
When locking, unlocking, keeping, releasing, or undoing multiple work items on the SWWorkQ
object, the operation could possibly fail for one or more of the work items in the queue. Rather than
totally backing out of the operation, an error code is written to the SWWorkItem.LastError property
for the property or properties that failed.

It is up to the client to look at LastError to determine if the operation was successful or not. If the
operation was successful, LastError will contain a 0 (zero).

See the on-line help system for a list of the possible error codes.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 199

Forwarding Work Items to Another Work Queue

You can forward work items to another user’s or group’s work queue in the following ways:

• Manually Forwarding - This allows you to forward one work item to a specified work queue.

• Auto Forwarding - This allows you to set up a schedule so work items are automatically for-
warded to another work queue during a specified time period.

These are described in detail in the following subsections.

Manually Forwarding Work Items

The SWWorkItem object contains a ForwardItem method that allows you to forward the work item
represented by the SWWorkItem object to a specified work queue. The following factors determine
whether or not you can forward a work item:

• Work Queue Access - To call the ForwardItem method, you must have access to the work
queue containing the work item you want to forward.

• The step’s Forward Permission - This is specified when the step is defined in the TIBCO
iProcess Modeler. There is a Forward radio button on the step’s Step Status dialog that speci-
fies whether or not that step is forwardable (by default the step is forwardable). The step’s for-
ward permission is reflected in the IsForwardable property (which is available in the step
definition, SWStep, as well as the work item objects, SWWorkItem and SWOutstanding-
Item).

If the step’s forward permission is set (IsForwardable = True), the FwdItems property on
SWWorkItem is populated with a list of SWFwdItem objects, one for each work queue to
which the work item can be forwarded. Note that the list of work queues in the FwdItems prop-
erty is not totally definitive; even though it’s populated, you may not be able to forward the
work item, depending on the user’s forward permission. Conversely, if FwdItems is NOT pop-
ulated, you may still be able to forward the work item, depending on the user’s forward permis-
sion.

The step’s forward permission is used in conjunction with the user’s forward permission
(described below) to determine whether or not a user can manually forward the work item.

• The User’s Forward Permission - The user’s forward permission is specified in the USER-
FLAGS attribute. This permission specifies whether or not work items can be forwarded from
this user’s (or group’s) work queue. Note that it is NOT the USERFLAGS attribute for the user
that is calling ForwardItem that is used. Internally, the system logs in as the user who owns the
work queue from which the work item is being forwarded — it’s that user who must have the
forwarding permission. You are really forwarding the work item on behalf of the owner of the
work queue.

The USERFLAGS attribute can have the following values/meanings:

- “ ” - (Empty string) Work items from this user’s work queue can be forwarded if the step’s
forward permission has been set. This is the default value. (This is called Step Forward
in the User Manager.)

- “F” - Any work item from this user’s work queue can be forwarded, even if the step’s for-
ward permission has not been set. (This is called Forward Any in the User Manager.)

- “R” - Work items from this user’s work queue cannot be forwarded, even if the step’s for-
ward permission is set. (This is called Forward None in the User Manager.)

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 200

See “User Attributes” on page 221 for information about modifying the value of the USER-
FLAGS attribute.

To manually forward a work item, call the ForwardItem method and pass the name of the destination
node and work queue.

Auto Forwarding/Redirecting Work Items

TIBCO iProcess Objects originally provided the following methods to allow you to automatically for-
ward work items to another user’s or group’s work queue:

• CreateAutoFwd - This method is used to create an “auto forward” record, which defines where
work items are to be auto forwarded.

• DeleteAutoFwd - This method cancels a previously created auto forward record.

• AutoFwds - This property returns a list of SWAutoFwd objects, which identify the work items
to auto forward to another work queue.

These methods have been superseded by a new way of forwarding work items, which is now called
“redirection”. These older methods are still supported. Note, however, that on Windows systems,
there is still a process (SWEntObjDB.exe) that runs to support the older method of forwarding work
items. You can disable this process, if desired, by doing the following (note that it is disabled by
default starting with version 10.5.0):

1. Create the following Registry string:

\HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware EntObj Server\Nodes\
NodeName\DB_Enabled

where NodeName is the name of your TIBCO iProcess Objects Server.

2. Set DB_Enabled to 0 (zero) to disable the SWEntObjDB.exe process.

Note - This also disables “view-only work queue access”. See “View-Only Access to a Work
Queue” on page 203.

The following subsections describe how to forward work items to another work queue using redirec-
tion.

Redirection of Work Items

Redirection functionality allows you to specify that all work items destined for a work queue be redi-
rected to another work queue for a specified period of time. To redirect work items, a user who has
been designated as an administrative supervisor of the work queue must create a “redirection sched-
ule”. The redirection schedule specifies the work queue to which the work items are to be redirected,
as well as the date and time the redirection is to start and end.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 201

The illustration below shows the objects, properties, and methods involved in defining redirection.

Each work queue on the node has a corresponding “administrative” work queue (an SWAWorkQ
object). Each administrative work queue is used to administer its corresponding runtime work queue
(SWWorkQ object), including setting up a redirection schedule. (The administrative work queue is
used to administer other functionality also, such as participation, which is described later in this chap-
ter. Note that the SWAWorkQ object contains more properties and methods than are shown above;
this illustration shows only those that apply to redirection.)

Notice that the work queue’s redirection schedule (SWRedirection) is available in the Redirection
property on both the administrative work queue (SWAWorkQ) and runtime work queue
(SWWorkQ). However, it can be modified only from the administrative work queue.

Note - The step’s forward permission (defined in the step definition with the TIBCO iProcess Modeler)
and the user’s forward permission (defined in the USERFLAGS attribute) are not used by redirection.
They are only used when forwarding individual items with the ForwardItem method.)

Creating a Redirection Schedule

A redirection schedule is defined by the SWRedirection object. This object contains the following
redirection elements:

• Name of the user or user group to whom the work items are being redirected (WorkQName)

• Date and time to start the redirection (StartDateTime)

• Date and time to end the redirection (EndDateTime)

When the SWAWorkQ object is created, an SWRedirection object is automatically created with empty
values. The ChangeRedirection method is used to modify that initial redirection schedule. (There
isn't a “CreateRedirection” method — one is automatically created — you just need to change it to fit
your needs.)

The ChangeRedirection method replaces the existing SWRedirection object in the Redirection prop-
erty on both the SWWorkQ and SWAWorkQ objects. To cancel an existing redirection schedule, use
the CancelRedirection method. Canceling a schedule changes the schedule’s elements back to empty
values.

SWRedirection

SWAWorkQ

< SupervisorNames

* AddSupervisors

* CancelRedirection

* ChangeRedirection

* RemoveSupervisors

< Redirection

SWAdmin

< AWorkQs L

SWNode

L
< WorkQs

< Admin

L

L

SWWorkQ

< SupervisorNames

< Redirection

L

< StartDateTime

< WorkQName

* Rebuild

< EndDateTime

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 202

To create a redirection schedule, a user must be designated as a supervisor of the work queue. See
“Work Queue Supervisors” on page 208.

If you make a change to or cancel an existing redirection schedule with the ChangeRedirection
method, call Rebuild on the SWRedirection object to make the new schedule active (rather than
rebuilding the entire work queue).

Only one redirection schedule can be defined for a work queue.

Using the SWDate Object (Java and C++ Clients Only)

The SWDate object is used in redirection (and participation) schedules to hold the start and end
date/time. This object was created to be able to specify an empty date/time, which can't be done with
the java Date object. The SWDate object is only used in Java and C++ clients — it is not part of the
COM object model.

Java Clients
The SWDate object has two public constructors that allow you to either pass in a java Date object that
is used as either the start or end date/time, or to set the object to “Empty” (True) or “NotEmpty”
(False):

public SWDate(Date jDate)

public SWDate(boolean setEmpty)

Due to the requirements of redirection, it is necessary to have the SWDate object represent any of the
following:

• DateTime (Year, Month, Day, Hour, Minute, Seconds) - This is used when constructing an
SWDate object that will actually hold a date/time to be used as the StartDateTime or
EndDateTime argument in the redirection schedule.

• Empty - This causes an empty string to be sent to the server. This takes on different meanings
depending on which parameter it is representing, as follows:

- StartDateTime - Causes the redirection to start immediately.

- EndDateTime - Causes redirection to last indefinitely.

• NotEmpty - Causes the previously assigned date/time to be used.

An example of how you might create an SWDate object using these formats is shown below:

Calendar oCal = new GregorianCalendar();

//Setting up a start date for redirection
oCal.clear();

// Set date/time to Sept 12, 2002, 4:30 PM
oCal.set(2002, 8, 12, 16, 30, 0);
SWDate StartDateTime = new SWDate(oCal.getTime());

// Set end date/time to infinite
SWDate EndDateTime = new SWDate(true);

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 203

C++ Clients
This section describes using the SWDate object to specify the date and time to start and end the redi-
rection when using TIBCO iProcess Objects (C++).

The following method is provided on the SWDate object to specify this information:

• setDateTime - Sets the date/time in the SWDate object.

After setting the date/time with the setDateTime method, the SWDate object can be passed as a
parameter with the changeRedirection method to specify either a start date/time or an end date/time.
Setting the date/time with this method also causes the SWDate.isExplicit flag to be set to true.

Methods are also provided on the SWDate object to specify that you want to use the default value, or
that you want to use what is currently defined in the redirection schedule:

• setDefault - Specifies that the default for the start date/time or end date/time be used. The
meaning of the default is context specific. Calling this method also causes the
SWDate.isDefault flag to be set to true.

• setNoChange - Specifies that the date/time value currently defined in the redirection schedule
should be used. Calling this method also causes the SWDate.isNoChange flag to be set to true.

Granting Access to a Work Queue

By default, a user has access to his own work queue, as well as group work queues for which the user
is a member. Access to a work queue can also be granted to other users as follows:

• View-only access - This gives another user the ability to view work items in a work queue,
without the ability to make changes to the work items.

• Participation access - This gives another user full access to the work items in a work queue.

View-Only Access to a Work Queue

The following methods and properties provide read-only access functionality:

• SWWorkQ.GrantAccess - This method allows you to specify one or more users who will now
have view-only access to the work items in this work queue. You must have system administra-
tor authority (MENUNAME = ADMIN) to call this method. (See “User Attributes” on
page 221 for information about the MENUNAME attribute.)

• SWWorkQ.RevokeAccess - This method revokes the view-only access that was previously
granted with the GrantAccess method. You must have system administrator authority (MENU-
NAME = ADMIN) to call this method. (See “User Attributes” on page 221 for information
about the MENUNAME attribute.)

• SWWorkQ.ViewUsersName - This property tells you who currently has view-only access to
this work queue.

• SWUser.ViewOnlyQs - This property tells you which work queues this user has been granted
view-only access with the GrantAccess method.

These older methods of granting access are still supported. Note, however, that on Windows systems,
there is still a process (SWEntObjDB.exe) that runs to support this older view-only access. You can
disable this process, if desired, by doing the following (note that it is disabled by default starting with
version 10.5.0):

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 204

1. Create the following Registry string:

\HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware EntObj Server\Nodes\
NodeName\DB_Enabled

where NodeName is the name of your TIBCO iProcess Objects Server.

2. Set DB_Enabled to 0 (zero) to disable the SWEntObjDB.exe process.

Note - This also disables the older method of auto-forwarding work items. See “Auto Forward-
ing/Redirecting Work Items” on page 200.

Participation Access to a Work Queue

“Participation” allows you to specify that a user can “participate” in the work queue of another user,
that is, they have full read/write access to the work items in the other user’s work queue.

To be a participant of a work queue, a user who has been designated as an administrative supervisor of
the work queue must create a “participation schedule” for the participant user. The participation
schedule specifies the users and duration of the participation in the work queue.

The illustration below shows the objects, properties, and methods involved in defining participation of
a work queue.

Each work queue on the node has a corresponding “administrative” work queue (an SWAWorkQ
object). Each administrative work queue is used to administer its corresponding runtime work queue
(SWWorkQ object), including setting up a participation schedule. (The administrative work queue is
used to administer other functionality also, such as redirection, which is described earlier in this chap-
ter. Note that the SWAWorkQ object contains more properties and methods than are shown above;
this illustration shows only those that apply to participation.)

Notice that the work queue’s participation schedules (SWParticipation) are available in the Partici-
pations property on both the administrative work queue (SWAWorkQ) and runtime work queue
(SWWorkQ). However, they can be created and modified only from the administrative work queue.

SWParticipation

Participation
Schedule:

:

SWAWorkQ

< SupervisorNames

* AddSupervisors

* ChangeParticipation

* CreateParticipation

* RemoveParticipation

* RemoveSupervisors

< Participations

SWAdmin

< AWorkQs L

SWNode

L
< WorkQs

< Admin

L

L

L

SWWorkQ

< SupervisorNames

< Participations

L

L

< UserNames

< Index

LL

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 205

Note - Users with system administrator authority can access work queues of other users without being
a “participant” user. This, however, comes at a cost. When a work queue is accessed without partici-
pation, a SAL session is automatically started for the user whose queue is being accessed, and that
user is logged in internally. Note, however, that that user is not logged off automatically (the session
will timeout automatically in the number of seconds specified in the SALSessionTimeout parameter).
This overhead is not incurred if you use participation to give the user access to another user’s work
queue.

Creating a Participation Schedule

A participation schedule is defined by the SWParticipation object. This object contains the following
participation elements:

• Names of the users who can participate in the work queue
• Dates to start and end the participation
• Times to start and end the participation each day
• Days of the week to allow participation

SWParticipation objects are created by calling the CreateParticipation method on SWAWorkQ. This
method adds the new SWParticipation object to the Participations list on both the SWWorkQ and
SWAWorkQ objects. After adding an SWParticipation object to the Participations list, you must
rebuild the list for the new participation schedule to take effect.

Existing participation schedules (i.e., SWParticipation objects) can be modified or removed from the
Participations list by using the ChangeParticipation and RemoveParticipation methods, respec-
tively. Again, you must rebuild the list for these changes to be reflected in the list.

To create a participation schedule, a user must be designated as a supervisor of the work queue. See
“Work Queue Supervisors” on page 208.

Using the SWDate Object (Java and C++ Clients Only)

The SWDate object is used in participation (and redirection) schedules to hold the start and end
date/time. This object was created to be able to specify an empty date or time, which can't be done
with the java Date object. The SWDate object is only used in Java and C++ clients — it is not part of
the COM object model.

Java Clients
The SWDate object has two public constructors that allow you to either pass in a java Date object that
is used as either the start or end date/time, or to set the object to “Empty” (True) or “NotEmpty”
(False):

public SWDate(Date jDate)

public SWDate(boolean setEmpty)

Due to the requirements of participation, it is necessary to have the SWDate object represent any of
the following:

• DateOnly (Year, Month, Day) - This is used when constructing an SWDate object that will
actually hold a start or end date to be used as the StartDate or EndDate argument in the partici-
pation schedule.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 206

• TimeOnly (Hour, Minute, Seconds) - This is used when constructing an SWDate object that
will actually hold a start or end time to be used as the StartTime or EndTime argument in the
participation schedule.

• Empty - This causes an empty string to be sent to the server. This takes on different meanings
depending on which parameter it is representing, as follows:

- StartDate - Causes participation to begin on the next date allowed by the IsSunday-IsSatur-
day parameters.

- EndDate - Causes participation to last indefinitely.

- StartTime - Causes participation to start directly after midnight on the days that participation
is allowed (according to the other parameters).

- EndTime - Causes participation to end at midnight on the days that participation is allowed
(according to the other parameters).

• NotEmpty - Causes the previously assigned date or time or be used.

An example of how you might create an SWDate object to be used in a participation schedule is
shown below:

Calendar oCal = new GregorianCalendar();

// Setting up a date
oCal.clear();
// Set date to May 31, 2002
oCal.set(2002, 4, 31);
SWDate StartDate = new SWDate(oCal.getTime());

// Setting up a time
oCal.clear();
// Set time to 4:30 PM
oCal.set(0, 0, 0, 16, 30, 0);
SWDate StartTime = new SWDate(oCal.getTime());
// Testing Date for equality
SWDate oDate = oParticipation.getStartDate();

if (oDate.dateEquals(StartDate))
.
.

// Testing Time for equality
SWDate oTime = oParticipation.getStartTime();

if (oTime.timeEquals(StartTime))
.
.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 207

C++ Clients
This section describes using the SWDate object to specify the date and time to start and end the par-
ticipation when using TIBCO iProcess Objects (C++).

The following methods are provided on the SWDate object to specify this information:

• setDate - Sets the date in the SWDate object.

• setTime - Sets the time in the SWDate object.

After setting either the date or time with one of the methods above, the SWDate object can be passed
as a parameter with the createParticipation or changeParticipation method to specify either a start
date, start time, end date, or end time. Setting the date or time with one of these methods also causes
the SWDate.isExplicit flag to be set to true.

Methods are also provided on the SWDate object to specify that you want to use the default value, or
that you want to use what is currently defined in the participation schedule:

• setDefault - Specifies that the default for the start date, end date, start time, or end time be used.
The meaning of the default is context specific. Calling this method also causes the
SWDate.isDefault flag to be set to true.

• setNoChange - Specifies that the date or time value currently defined in the participation
schedule should be used. Calling this method also causes the SWDate.isNoChange flag to be
set to true.

The TIBCO iProcess Objects Server Maintains an Index of the Participation Schedules

The TIBCO iProcess Engine does not provide an index or a key to identify a particular participation
schedule in the Participations list. To get around this, a session is started each time the Participations
property is accessed on the administrative work queue object (SWAWorkQ). The sole purpose of this
session is to allow the TIBCO iProcess Objects Server to maintain an index for the list of participation
schedules. This session will remain open until the Participations list is destroyed (i.e., the SWAWorkQ
object is destroyed).

There are a couple of issues you need to be aware of because of these sessions being opened to impose
indexes on the Participations list:

• As the number of sessions that are open increases, the performance of the TIBCO iProcess
Objects Server is negatively affected. Therefore, it is important that you are aware of when ses-
sions are opened and that they are closed as soon as possible (by destroying the SWAWorkQ
object).

Note that a session is opened only when the Participations property is accessed on the SWA-
WorkQ (administrative) object, not on the SWWorkQ (runtime) object. Therefore, if you only
need to view the participation schedules, do so from SWWorkQ. Only use the Participations
property on SWAWorkQ to determine the index values of the schedules for the purpose of using
the index with the ChangeParticipation or RemoveParticipation methods.

• Conflicts may occur when changing a participation schedule. Opening a session on a Participa-
tions list does not lock the list. It only causes the TIBCO iProcess Objects Server to maintain an
index on the list while the session is open. Therefore, while the client is administering a specific
participation schedule, it is possible that another client, or even someone using the Process Cli-
ent, could be administering the same schedule. The first to finish will modify the participation
schedule at the TIBCO iProcess Engine. When the second one attempts to modify the same

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 208

schedule, the TIBCO iProcess Engine will not recognize it, causing the TIBCO iProcess
Objects Server to generate an error.

The index that is created for each participation schedule is maintained in the SWParticipation.Index
property. This index value is needed with the ChangeParticipation and RemoveParticipation methods
to specify which schedule you want to change or remove. You will need to step through the Participa-
tions list to determine which schedule you want to modify or remove, then obtain the schedule's index
value from the Index property.

Work Queue Supervisors

To define a participation or redirection schedule, a user must be designated as a supervisor of the work
queue. You can determine who the current supervisors are for a work queue by calling the
SupervisorNames property from either the “runtime” work queue object, SWWorkQ, or the “admin-
istrative” work queue object, SWAWorkQ.

Note that the same list of user names returned by the SupervisorNames property can be obtained
from the QSUPERVISOR user attribute. See “User Attributes” on page 221 for information about
QSUPERVISOR.

From the standpoint of a user, you can also determine which work queues the user has been authorized
to supervise by calling the SWUser.AdminQNames property. This property returns a list of strings,
one for each work queue for which the user is a work queue supervisor.

Adding Work Queue Supervisors

To add a new supervisor to a work queue, use the following method:

• SWAWorkQ.AddSupervisors - This method allows you to specify that one or more users is a
supervisor for the work queue. The caller of the AddSupervisors method must have system
administrator authority (MENUNAME = ADMIN). (See “User Attributes” on page 221 for
information about the MENUNAME attribute.)

After calling AddSupervisors, you must rebuild the list to have the changes reflected in the Supervi-
sorNames list.

Removing Work Queue Supervisors

To remove a supervisor from a work queue, use the following method:

• SWWorkQ.RemoveSupervisors - This method allows you to remove one or more users from
the list of supervisors for the work queue. The caller of the RemoveSupervisors method must
have system administrator authority (MENUNAME = ADMIN). (See “User Attributes” on
page 221 for information about the MENUNAME attribute.)

After calling RemoveSupervisors, you must rebuild the list to have the changes reflected in the
SupervisorNames list.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 209

Work Item Deadlines

When a step is defined using the TIBCO iProcess Modeler, a deadline may be specified on that step. If
a deadline is defined, and the deadline expires, the process follows a “deadline link” to another step in
the procedure, which is typically a notification to someone that the deadline has expired.

The actual definition of the deadline is part of the step definition. The SWStep.Deadline property
returns an SWDeadline object, which contains deadline dates, times, criteria, etc.

If the work item has a deadline defined, the SWWorkItem.IsDeadline property is set to True.

Once a work item is in a work queue, the following properties are available on SWWorkItem to pro-
vide information about the deadline on that work item:

• Deadline - The date and time the deadline expires. This property will contain the date and time
“12/31/3000 11:15:00 PM” if a deadline has not been defined, or if a deadline has been defined
but a condition in the deadline definition has not been satisfied.

• IsDeadlineExp - Boolean value that indicates whether or not the deadline has expired.

The SWWorkQ object also contains a FirstDeadline property that returns the date and time of the
earliest deadline in the work queue.

Withdrawing Work Item on Deadline

Part of the deadline definition specifies whether or not the work item is withdrawn (removed) from
the work queue when the deadline expires. (It’s common for the work item to remain in the work
queue so that the required action on the work item can still be performed.) If the Withdraw form
from queue on expiry box on the deadline definition dialog is checked when the deadline is created
in the TIBCO iProcess Modeler, the work item represented by the step with the deadline is removed
from the work queue if the deadline expires. In the example above, if this option is selected, when the
deadline expires in the Review Application step, the process flows to the Manager Notification step,
and the work item for the Review Application is withdrawn from the work queue.

The deadline withdrawal option can be determined by accessing the following property on the
SWWorkItem object for the work item with the deadline:

• IsDeadlineAWD - Returns True if the Withdraw form from queue on expiry box on the
deadline definition dialog is checked.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 210

Deadline Counts

You can determine the number of work items that have deadlines by using the following properties:

• SWWorkQ.DeadlineCnt - This tells you the number of work items in the queue that have a
deadline.

• SWCriteriaWI.DeadlineCnt - This tells you the number of work items in the SWXList that
have a deadline.

Filtering and Sorting on Deadline Information

The following system fields are also available for filtering and sorting work items on deadline infor-
mation:

• SW_HASDEADLINE - Deadline set flag (1 - has deadline, 0 - all work items)1

• SW_DEADLINE - Deadline date and time

• SW_DEADLINEDATE (filtering only) - Deadline date

• SW_DEADLINETIME (filtering only) - Deadline time

• SW_EXPIRED - Deadline expired flag (1 - has expired, 0 - all work items)1

See the appropriate Filtering Work Items and Cases chapter and the Sorting Work Items and Cases
chapter for information about how to use these system fields when filtering and sorting.

1. When filtering on system fields that can be set to 0 or 1, they work in this manner: When set to 1, only the respective
work items are displayed; when set to 0, all work items are displayed. For example, if SW_EXPIRED is set to 1, this
means “display only the work items that have expired deadlines”. If it’s set to 0, this means “don’t display only the
work items with expired deadlines, instead, display all of them.”

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 211

Keeping a Work Item that is Withdrawn

There are two ways in which you can specify that a work item be withdrawn from a work queue:

• When a deadline defined on the step expires. This is explained earlier in this chapter in “With-
drawing Work Item on Deadline” on page 209.

• A “withdraw link” can be drawn when the step is defined in the TIBCO iProcess Modeler.

In the example shown above, if Step 2a is released before Step 2b, then Step 2b is automatically
withdrawn from the work queue.

The step definition allows you to specify that under either of the conditions above, the work item
should be kept in the queue instead of withdrawn. To specify this, on the Step Definition Status dialog
in the TIBCO iProcess Modeler, check the Don’t delete work items on withdraw box. You can
determine whether or not this option has been checked by accessing the IsKeepOnWithdrawal prop-
erty on the step definition object (SWStep), or the SWWorkItem object in a live case.

If the Don’t delete work items on withdraw box is checked, and the work item would normally be
withdrawn (because of a deadline expiration or release action of another step), the following occur
instead:

• the work item is still considered “outstanding” (it is returned in the OutstandingItems list
SWCase).

• the work item remains in the work queue (it is not “deleted”).

When the work item is released (or sub-procedure case completes — if the step is a sub-procedure call
step), the following occurs:

• the normal release actions are NOT processed (as is normal for withdrawn work items).

• work item data in that work item is still written to case data upon release.

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 212

External Work Items

An external work item refers to a work item that is the result of a step that does not send a work item
to a work queue, but rather passes the work item to a third-party application that is external to the cli-
ent application. An example is an EAI step, which causes the TIBCO iProcess Engine to pass field
data, a form definition, and a unique ID that identifies the external work item, to a third-party applica-
tion. The third-party application uses the unique ID to pass the work item back to the client when it is
finished.

When the process flow reaches an EAI step, an SWEAIStep object is gener-
ated that represents the outstanding EAI step. This object can be accessed
with the EAISteps property on SWCase. The external ID generated by the
engine, and which is passed to the third-party application, is available in the
ExternalId property on SWEAIStep.

The form definition that is passed to the third-party application is available in
the ExtForm property on the SWStep object (currently only applicable to
EAI steps).

When an EAI step becomes outstanding, it also generates an
SWExtWorkItem object, representing the external work item. This object is
available with the GetExtWorkItem method on SWNode. Calling the
GetExtWorkItem method requires that you pass the external ID that uniquely
identifies the external work item.

The SWExtWorkItem object contains the following properties and
methods:

• Case - This property returns an SWCase object representing
the case in which the external work item resides.

• ExtWorkItemId - This property returns the unique ID that
was passed from the client application to the third-party
application to identify the external work item.

• RequestId - This property returns an identifier for the exter-
nal work item (this is an identifier that is available for all
outstanding work items — it’s not the one used by the external application).

• StepName - This property returns the name of the step that generated the external work item.

• ReleaseItem - This method is used to release the external work item once the external applica-
tion is finished with it. See the Releasing an External Work Item section below for more infor-
mation.

Releasing an External Work Item

The third-party application releases an outstanding EAI step using the ReleaseItem method on the
SWExtWorkItem object. This method requires that the external ID that was passed to the third-party
application be passed as a parameter in the ReleaseItem method to identify the specific outstanding
EAI step (there could be multiple EAI steps outstanding at one time).

SWEAIStep

< CaseNumber

< ClassId

< Deadline

< ExternalId

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< Arrived

SWExtWorkItem

< Case

< ExtWorkItemId

< RequestId

< StepName

< ClassId

* ReleaseItem
5

SWCase

Managing Work Queues

TIBCO iProcess Objects Programmer’s Guide 213

When the ReleaseItem method is called, you can optionally specify that the process flow proceed to a
step that is different from the one defined to follow the EAI step in the procedure. This is done using
the NextStep parameter. If you specify an alternative next step with the NextStep parameter, you can
also use the DoActions parameter to specify how the process flow should advance from the EAI step,
as follows:

• If the DoActions parameter is True, the actions defined for the work item being released are
processed. This results in the process advancing to the next step as defined in the procedure, as
well as the step specified in the NextStep parameter.

• If the DoActions parameter is False (the default), the process only advances to the step specified
in the NextStep parameter, but not the next step defined in the procedure.

You can also pass field data from the third-party application to be written to case data in the proce-
dure.

TIBCO iProcess Objects Programmer’s Guide 214

13
User Administration

Introduction

User administration tasks can be performed in two ways:

• using the Staffware User Manager, or

• through properties and methods on objects.

The Staffware User Manager is part of the Administration Managers suite of utilities. It is used to
administer users, groups, roles, and attributes, which are all associated with Staffware users.

Note - The term “Staffware User Manager” is a remnant of the original software created by Staffware,
which was purchased by TIBCO. This dialog (as well as the dialogs for the other Administration Man-
agers — Staffware List Manager, Staffware Table Manager, etc.) still contain the “Staffware” name.
This name will be used here until those dialogs are changed.

All of the user administration functions that can be performed using the Staffware User Manager can
also be done using TIBCO iProcess Objects. For information about using the Staffware User Manager,
see the TIBCO iProcess Client (Windows) Manager’s Guide.

The remainder of this chapter describes performing user administration tasks by using the TIBCO
iProcess Objects.

User Administration

TIBCO iProcess Objects Programmer’s Guide 215

Types of Users

TIBCO iProcess Objects make use of the following types of users:

• O/S User - This is a user that has been created in the operating system. When creating a Staffware
user (see below), the user may or may not have to be an existing O/S user, depending on the value
of a TIBCO iProcess Objects Server configuration parameter. For more information, see “Is an
O/S User needed for every Staffware User?” on page 217.

• Staffware User - This is a user created for the purpose of logging into a client application. A
Staffware user is created using the CreateUser method on the SWNode object.

• Enterprise User - This user is created for the purpose of representing a user across all nodes in
the enterprise. The username used by the enterprise user does not necessarily correspond with a
Staffware user username. This is because a Staffware user may be known by one username on
Node1, another username on Node2, and still another username on Node3. The enterprise user
(SWEntUser object) allows that user to log into multiple nodes, but be known by one username
across all of them. See “Creating Enterprise Users” on page 31.

MOVESYSINFO Function

Whenever you perform a function that affects a user, group, role, attribute, or queue supervisor defini-
tion, a MOVESYSINFO function must be performed to “commit” the change that you’ve made. There
are a number of ways the MOVESYSINFO function can be performed:

• Implicitly - This means that the MOVESYSINFO function will be performed automatically, in
background, after a user, group, role, attribute, or queue supervisor definition is changed. Note
that this can tie up the background and WIS/WQS processes for long periods of time if there are
lots of users.

To specify that the MOVESYSINFO function is to be implicitly performed, set the Implicit-
MoveSysInfo configuration parameter to 1 (UNIX), or check the appropriate box on the TIBCO
iProcess Objects Server Configuration Utility Users tab (Windows). See
“ImplicitMoveSysInfo” on page 323 for more information.

• Explicitly - This means that the MOVESYSINFO function will NOT be performed automatically
after a user, group, role, attribute, or queue supervisor definition is changed. Instead, the client
application must make a method call to cause the MOVESYSINFO function to be performed.
This allows you to more closely control this functionality.

To specify that the MOVESYSINFO function is to be explicitly performed, set the Implicit-
MoveSysInfo configuration parameter to 0 (UNIX), or uncheck the appropriate box on the
TIBCO iProcess Objects Server Configuration Utility Users tab (Windows). See
“ImplicitMoveSysInfo” on page 323 for more information. The actual MOVESYSINFO function
can then be executed by calling the MoveSysInfo method on SWNode. (You must have system
administrator authority (MENUNAME = ADMIN) to call the MoveSysInfo method. See “User
Attributes” on page 221 for information about the MENUNAME attribute.) See your on-line help
for information about this method.

• Using swutil - If changes to a large number of users, groups, roles, attributes, or queue supervisor
definitions need to be made, your best option might be to use the swutil “Update User Informa-
tion” function:

swutil USERINFO filename

For more information, see the TIBCO iProcess Engine Administrators Guide.

User Administration

TIBCO iProcess Objects Programmer’s Guide 216

Staffware Users

Each node maintains a list of Staffware users that have been created on
that node. This list of users is maintained in the Users property (as an
SWList) and the UsersX property (as an SWXList). Each user is repre-
sented by one SWUser object. (See “Handling Large Lists of Work
Items, Cases, Users, OS Users, Groups” on page 275 for information
about why you would use UsersX instead of Users.)

Note - The term “Staffware user” is a remnant of the original software
created by Staffware, which was purchased by TIBCO. This term is still
used in the TIBCO iProcess Engine dialogs and documentation, and will
be used here until the engine dialogs are changed.

Remember that if you add or delete a user from a node, you will need to rebuild the SWList or SWX-
List before the change is reflected in the Users/UsersX properties.

Creating a Staffware User

A Staffware user is created on a specific node with the SWNode.CreateUser method. The following
is an example:

Dim sAttributes(0), sValues(0)

If txtNewUser <> "" Then
 If txtUserDescription.Text <> "" Then
 sAttributes(0) = "Description": sValues(0) = txtUserDescription.Text
 Call oNode.CreateUser(txtNewUser.Text, sAttributes, sValues)
 Else
 oNode.CreateUser (txtNewUser.Text)
 End If
 txtNewUser.Text = "": txtUserDescription.Text = ""
End If

Exit Sub

The CreateUser method allows you to optionally specify groups to add the user to, and attribute values
to assign to the user (as shown in the example above). (You must have system administrator authority
(MENUNAME = ADMIN) to call the CreateUser method. See “User Attributes” on page 221 for
information about the MENUNAME attribute.) Note that the user name should not exceed 23 charac-
ters. Doing so may result in errors from the TIBCO iProcess Objects Server when functions are per-
formed against that user’s work queue.

Note - The Staffware user being created may have to already exist as an OS user, depending how your
system is configured. See “Is an O/S User needed for every Staffware User?” on page 217.

When a Staffware user is created, a corresponding directory for that user is added at
SWDIR\queues\username (Windows) or $SWDIR/queues/username (UNIX). (If you are using a
TIBCO Process Engine, this username directory will contain a staffo file, which contains all of the
work item data sent to the user. If you are using a TIBCO iProcess Engine, the work item data is
stored in the staffo database table.)

Creating a user also causes a “test” and “released” work queue for the user to be created. See “Test vs.
Released Work Queues” on page 190 for more information.

SWNode

Users

SWUser

SWUser

SWUser

UsersX

User Administration

TIBCO iProcess Objects Programmer’s Guide 217

Deleting a Staffware User

One or more Staffware users can be deleted from the node with the SWNode.DeleteUsers method.
(You must have system administrator authority (MENUNAME = ADMIN) to call the DeleteUsers
method. See “User Attributes” on page 221 for information about the MENUNAME attribute.) An
example is shown below.

If lboUsers.Text <> "" Then
 oNode.DeleteUsers (lboUsers.Text)
End If
Exit Sub

When a Staffware user is deleted, that user’s corresponding directory at SWDIR\queues\username
(Windows) or $SWDIR/queues/username (UNIX) is NOT deleted. If you have a desire to remove
directories associated with deleted users, this must be done through the operating system.

Prior to deleting a user, an administrator should unlock any work items that the user may have locked.
If the user is deleted, then another user attempts to unlock a work item that was locked by the deleted
user, a “Work Queue not found” error message is returned.

Important - Before deleting a user, ensure that there are no work items in the user’s work queue, or
that the user is not the addressee of a step, because after the user is deleted, their work queue is no
longer accessible.

Is an O/S User needed for every Staffware User?

You can configure your system so that when you create a Staffware user with the CreateUser method,
it does not require that the user already exists as an O/S user. To specify that an O/S user is NOT
required for each new Staffware user, the following two parameters must be configured:

• Password checking on the TIBCO iProcess Engine must be turned off.

The $SWDIR/etc/staffpms (UNIX) and SWDIR\etc\staffpms
(Windows) file can be modified to enable or disable O/S pass-
word checking. This is none by specifying a “Y” or “N” in the
4th character of the 4th line in the staffpms file.

• The TIBCO iProcess Objects Server CheckOSUser configura-
tion parameter must be set to 0 (zero). See page 322 for infor-
mation about setting this configuration parameter.

Note - If you are creating the user with the Staffware User Manager,
the user must exist in the operating system.

Changing the User’s Password

A Staffware user’s password can be changed with the SWUser.ChangePassword method.

Staffware users can change only their own password. Even System Administrators cannot change
another user’s password. The only way to change a password of another user is by using tools avail-
able through the operating system.

User Administration

TIBCO iProcess Objects Programmer’s Guide 218

User Groups

A group represents a collection of users. For each group that is created, a work queue is automatically
created with the same name as the group name. The purpose of the group work queue is to allow all
users that are members of the group to work on the collection of work items in the group queue.

A group is specific to the node on which it is created. Each node main-
tains a list of its groups in the Groups property (as an SWList) and the
GroupsX property (as an SWXList). Each group is represented by one
SWGroup object. (See “Handling Large Lists of Work Items, Cases,
Users, OS Users, Groups” on page 275 for information about why you
would use GroupsX instead of Groups.)

Remember that if you add or delete a group from a node, you will need
to rebuild the SWList or SWXList before the change is reflected in the
Groups/GroupsX properties.

The SWUser object also has a Groups property that contains a list of all of the groups to which that
specific user belongs.

Creating a User Group

A group is created on a specific node with the SWNode.CreateGroup method. (You must have sys-
tem administrator authority (MENUNAME = ADMIN) to call the CreateGroup method. See “User
Attributes” on page 221 for information about the MENUNAME attribute.) The following is an
example:

If txtNewGroup <> "" Then
 oNode.CreateGroup (txtNewGroup.Text)
End If

The CreateGroup method also has optional parameters that allow you to specify attributes/values for
the group, and provide the names of users to be members of the new group. Note that the group name
should not exceed 23 characters. Doing so may result in errors from the TIBCO iProcess Objects
Server when functions are performed against that group’s work queue.

When a group is created, a corresponding directory for that group is added at SWDIR\queues\group-
name (Windows) or $SWDIR/queues/groupname (UNIX). (If you are using a TIBCO Process
Engine, this groupname directory will contain a staffo file, which contains all of the work item data
sent to the group. If you are using a TIBCO iProcess Engine, the work item data is stored in the staffo
database table.)

Creating a group also causes a “test” and “released” work queue for the group to be created. See “Test
vs. Released Work Queues” on page 190 for more information.

SWNode

Groups

SWGroup

SWGroup

SWGroup

GroupsX

User Administration

TIBCO iProcess Objects Programmer’s Guide 219

Deleting a User Group

One or more groups can be deleted from the node with the SWNode.DeleteGroups method. (You
must have system administrator authority (MENUNAME = ADMIN) to call the DeleteGroups
method. See “User Attributes” on page 221 for information about the MENUNAME attribute.) An
example is shown below.

If lboGroups.Text <> "" Then
 oNode.DeleteGroups (lboGroups.Text)
End If

When a group is deleted, its corresponding directory at SWDIR\queues\groupname (Windows) or
$SWDIR/queues/groupname (UNIX) is NOT deleted. If you have a desire to remove directories asso-
ciated with deleted groups, this must be done through the operating system.

Important - Before deleting a group, ensure that there are no work items in the group’s work queue, or
that the group is not the addressee of a step, because after the group is deleted, their work queue is no
longer accessible

Adding and Removing Users to/from a Group

Once an SWGroup object is created with the CreateGroup method (or through the User Manager), you
can add and remove users from the group with the SWGroup.AddUsers and
SWGroup.RemoveUsers methods, respectively. (You must have system administrator authority
(MENUNAME = ADMIN) to call these methods. See “User Attributes” on page 221 for information
about the MENUNAME attribute.) An example of adding users to a group is shown below.

If lboGroups.Text <> "" And cboUser.Text <> "" Then
 Set oGroup = oNode.Groups.ItemByKey(lboGroups.Text)
 oGroup.AddUsers (cboUser.Text)
End If

User Administration

TIBCO iProcess Objects Programmer’s Guide 220

Roles

A role is a job title or function, such as Account Manager. One Staffware user is assigned to the role.
Within a procedure, the addressee of a step can be specified as the role. That way if the person
assigned to that job title changes, all you have to do is change the user assigned to the role. The proce-
dure definition does not have to change.

Roles are specific to the node on which they are created. Each node maintains an SWList of its roles
in the Roles property. Each role is represented by one SWRole object. Remember that if you add or
delete a role from a node, you will need to rebuild the SWList before the change is reflected in the
Roles property.

The SWUser object also has a RoleNames property that contains a list of all of the roles to which that
specific user belongs.

Creating a Role

A role is created on a specific node with the SWNode.CreateRole method. (You must have system
administrator authority (MENUNAME = ADMIN) to call the CreateRole method. See “User
Attributes” on page 221 for information about the MENUNAME attribute.) The following is an
example:

If txtRoleName <> "" And cboRoleUser <> "" Then
 oNode.CreateRole txtRoleName.Text, cboRoleUser.Text
 txtRoleName.Text = "": cboRoleUser.Text = ""
End If

Deleting a Role

One of more roles can be deleted from the node with the SWNode.DeleteRoles method. (You must
have system administrator authority (MENUNAME = ADMIN) to call the DeleteRoles method. See
“User Attributes” on page 221 for information about the MENUNAME attribute.) An example is
shown below.

If lboRoles.Text <> "" Then
 oNode.DeleteRoles (lboRoles.Text)
End If

User Administration

TIBCO iProcess Objects Programmer’s Guide 221

User Attributes

User attributes are properties/characteristics of a Staffware user or group. There are two types of user
attributes:

• Customizable - You can create attributes that can hold any type of characteristic of the
user/group. Some examples are an employee number, purchasing authority, etc.

• Pre-defined - Every Staffware user and group that is created is assigned each of the six pre-
defined attributes are shown in the table below.

Attribute Description

DESCRIPTION If the user or group was created with the CreateUser or CreateGroup method, this
defaults to the name of the user or group. If the user or group was created with the
Staffware User Manager, this is the value that was entered in the Description field.

LANGUAGE This specifies the language in which user messages are displayed. It defaults to the
language that is set in the regional settings on the system on which the user or
group is created.

MENUNAME This specifies the user’s access authority (the name is derived from “which menus
the user has access to”). This attribute is only applicable to users (not groups). The
possible values are:

• USER - This is for ordinary users. With this access authority, the user can
access work queues and start cases. This is the default value.

• MANAGER - This has no affect on access authority — it is the same as
USER. (If using the Work Queue Manager, this gives access to case admin-
istration for the purpose of viewing an audit trail.)

• PRODEF - This is for procedure definers. This user has the authority to
access the TIBCO iProcess Modeler for the purpose of defining procedures.

• ADMIN - This is the system administrator authority. Users with this authority
can perform administrative-type functions. See “User Authority” on page 227
for a list of the functions a system administrator can perform.

The user’s MENUNAME attribute is also available in the SWUser.MenuName and
SWActiveUser.Menu properties.

Note - You cannot change the value of this attribute for the swadmin user.

QSUPERVISOR This attribute specifies the users who can supervisor this user’s/group's work
queue. This is for the purpose of performing participation and redirection functions
for the work queue. The list of queue supervisors is also available in the
SupervisorNames property. See “Work Queue Supervisors” on page 208 for more
information.

User Administration

TIBCO iProcess Objects Programmer’s Guide 222

Attributes are defined on a specific node. All users and groups on that node take on those attributes
(but each user might have different values for the attributes). When a new user or group is created on
the node, they automatically acquire the attributes that are defined on the node.

The Attributes property on SWNode, SWUser, and SWGroup contains an SWList of SWAttribute
objects, one for each attribute defined on the node.

SORTMAIL Specifies the sequence in which work items are sorted in the user’s or group’s work
queue. The possible values are:

• PROCEDURE - Work items are sorted by Case Reference number. This is
the default.

• ASCENDING ARRIVAL - Work items are listed according to their arrival time
— oldest first, followed by newest.

• DESCENDING ARRIVAL - Work items are listed according to their arrival
time — newest first, followed by oldest.

• ASCENDING DEADLINE - Work items with deadlines are listed first (in order
by: expired, first to expire, last to expire), followed by work items without
deadlines.

• DESCENDING DEADLINE - Work items without deadlines are listed first,
followed by work items with deadlines (in order by: last to expire, first to
expire, expired).

USERFLAGS Specifies the user’s ability to forward work items to another work queue. The possi-
ble values are:

• “ ” - (Empty string) Work items from this user’s work queue can be forwarded
if the step’s Forward permission has been set in the procedure definition (on
the Step Status dialog). This is the default value. (This is called Step For-
ward in the User Manager.)

• “F” - Any work item from this user’s work queue can be forwarded, even if the
step’s Forward permission has not been set. (This is called Forward Any in
the User Manager.)

• “R” - Work items cannot be forwarded from this user’s work queue, even if
the step’s Forward permission is set. (This is called Forward None in the
User Manager.)

See “Manually Forwarding Work Items” on page 199 for more information.

Attribute Description

SWNode

* AssignAttribute

* CreateAttribute

* DeleteAttributes

< Attributes

:
: SWUser

* ChangeAttribute

< Attributes

:
:

L

L

SWGroup

* ChangeAttribute

< Attributes

:
:

L

SWAttribute

< DecimalPlaceCnt

< Key

< Length

< Name

< Type

< Value

< ClassId

User Administration

TIBCO iProcess Objects Programmer’s Guide 223

The AssignAttribute method on SWNode allows you to assign a value to an attribute for one or more
users or groups. The ChangeAttribute method on SWUser and SWGroup allows you to change the
value of an attribute for that particular user or group.

Creating an Attribute

An attribute is created on a specific node with the SWNode.CreateAttribute method. (You must
have system administrator authority (MENUNAME = ADMIN) to call the CreateAttribute method.)

Dim AttributeType As SWAttributeType
 If txtAddAttribute.Text = "" Then
 RetVal = MsgBox("Enter an Attribute Name.", vbExclamation)
 txtAddAttribute.SetFocus
 Else
 If Not IsNumeric(txtLength.Text) Then
 RetVal = MsgBox("Enter a numeric value for length.", vbExclamation)
 txtLength.SetFocus
 ElseIf Not IsNumeric(txtDecimal.Text) Then
 RetVal = MsgBox("Enter a numeric value for decimal.", vbExclamation)
 txtDecimal.SetFocus
 Else
 Screen.MousePointer = vbHourglass
 'determine data type of attribute
 If optText.Value Then
 AttributeType = swTextAttr
 ElseIf optNumeric.Value Then
 AttributeType = swNumericAttr
 ElseIf optDate.Value Then
 AttributeType = swDateAttr
 ElseIf optTime.Value Then
 AttributeType = swTimeAttr
 End If
 'create new attribute
 oNode.CreateAttribute txtAddAttribute.Text, AttributeType,_ Val(txt-

Length.Text), txtDefault.Text, Val(txtDecimal.Text)
 Screen.MousePointer = 0
 Unload frmAddAttribute
 End If
 End If
 Exit Sub

When an attribute is added to the node, it is automatically assigned to each existing user and group on
that node.

User Administration

TIBCO iProcess Objects Programmer’s Guide 224

Deleting an Attribute

One or more attributes can be deleted from the node with the SWNode.DeleteAttributes method.
(You must have system administrator authority (MENUNAME = ADMIN) to call the DeleteAttrib-
utes method.)

Set oNode = oEntUser.LoggedInNodes.Item(cboAdminServers.ListIndex)
 If lboSWAttributes.ListIndex >= 0 Then
 RetVal = MsgBox("Are you sure you want to remove " & lboSWAttributes.Text_

& "?", vbYesNo)
 If RetVal = vbYes Then
 Screen.MousePointer = vbHourglass
 oNode.DeleteAttributes lboSWAttributes.Text
 Call RefreshAdminList(lboSWAttributes, oNode.Attributes)
 Screen.MousePointer = 0
 End If
 Else
 RetVal = MsgBox("Select an Attribute.", vbExclamation)
 End If

Caution - The system will allow you to delete the pre-defined attributes that it needs to function
properly.

Modifying an Attribute

The ChangeAttribute method on SWUser and SWGroup allows you to change the value of a
specific attribute for the user or group. (You must have system administrator authority (MENUNAME
= ADMIN) to call the ChangeAttribute method.)

oUser.ChangeAttribute oAttribute.Name, txtValue.Text

Make sure the data type of the new value you provide in the ChangeAttribute method matches the data
type for the attribute you are changing.

Why isn’t the new User, Group, Role or Attribute Appearing in the List?

Staffware users, groups, roles, and attributes are created by the background process, so there is a delay
between when the method is executed and when the new user, group, role, or attribute actually
appears in the list (Users, UsersX, Groups, etc.).

Remember that you must also Rebuild the list to see any newly added (or deleted) items in the list.

User Administration

TIBCO iProcess Objects Programmer’s Guide 225

Determining which Procedures a User can Audit

By default, when a procedure is created on a node, all users on the node have the authority to audit
cases of that procedure.

You can specify the users who can audit cases of the procedure by using the Procedure | Access |
Case Admin function in the TIBCO iProcess Modeler:

This dialog is used to define who has case administration authority. If a user, group, or role name is
specified using this dialog, the ability to audit this procedure is limited to only the users, groups, or
roles specified, or the users for which the expression(s) evaluates to True. Note that having system
administrator authority (MENUNAME = ADMIN) does NOT automatically give you access to audit
trail data — if users are given access through this dialog, users with a MENUNAME of ADMIN must
be explicitly listed to have access. (The swadmin user always has access to the audit trail of any pro-
cedure.) If no one is designated as having access through this function, it defaults to giving everyone
access.

You can determine which procedures a user can audit by using the AuditProcs property on SWUser.
This property returns an SWList of SWProc objects, one for each procedure the user has permission
to audit. See the example below.

'Display in the lboProcs list box the procedures on this node
'that the logged-in-user can audit
'
With lboProcs
 .Clear
 For Each oProc In oNode.LoggedInUser.AuditProcs
 lboProcs.AddItem (oProc.Name)
 Next
End With

User Administration

TIBCO iProcess Objects Programmer’s Guide 226

Determining the Procedures for which the User can Start a Case

By default, when a procedure is created on a node, all users on the node have the authority to start
cases against that procedure. You can, however, specify the users who can start a case of a procedure
by using the Procedure | Access | Case Start function in the TIBCO iProcess Modeler.

Note - A procedure must be “released” (SWProc.Status = “swReleased”) before users other than the
procedure owner and swadmin can start cases of that procedure.

If a user name or role is specified using this function in the TIBCO iProcess Modeler, case-start access
to this procedure is limited to only the users, groups, or roles specified, or the users for which the
expression(s) evaluate to True. If no one is designated as having access through this function, it
defaults to giving everyone access.

You can determine the procedures for which a user can start a case by using the StartProcs property
on the SWUser object.

'Get the procedures logged-in-user can start cases of
'and display in list box lboStartProcs
'
Set oUser = oNode.LoggedInUser
lblUser.Caption = oUser.Name

lboStartProcs.Clear
For Each oProc In oUser.StartProcs
 lboStartProcs.AddItem (oProc.Name)
Next
Exit Sub

User Administration

TIBCO iProcess Objects Programmer’s Guide 227

User Authority

Throughout this document references are made to the user/access authority you need to perform par-
ticular functions. This section summarizes these authorities.

There are two primary administrator-level authority designations:

• System Administrator Authority - This authority allows the user to perform administrative-
type functions that the typical user would normally not be able to perform, such as
creating/removing users, closing/purging cases, etc. See below for comprehensive lists of the
functions you can perform with system administrator authority.

A user is given system administrator authority by setting their MENUNAME attribute to
ADMIN. This is done using the ChangeAttribute method on SWUser. See “User
Attributes” on page 221 for more information.

Note - To ensure that there is always a user that has system administrator authority, there is a
special system administrator user (swadmin) whose MENUNAME attribute cannot be changed
from ADMIN.

• Case Administration Authority - This authority allows the user to perform functions that are
specific to cases of a procedure, such as viewing lists of cases, rebuilding a case, auditing cases,
etc. See below for comprehensive lists of the functions you can perform with case administra-
tion authority.

A user is given case administration authority as part of the procedure definition (using the
TIBCO iProcess Modeler). Note that by default, when a procedure is defined in the TIBCO
iProcess Modeler, everyone is given case administration authority unless you specifically give
certain users case administration authority for that procedure; then only those users have that
authority. See “Determining which Procedures a User can Audit” on page 225 for information
about how users are given this authority for a procedure.

The following tables list functions that can be performed with each user authority.

• You must have system administrator authority to perform the following functions:

Function Methods

Close cases CloseCases
CloseByCriteria

Purge cases PurgeCases
PurgeByCriteria
PurgeAndReset

Create/delete users CreateUser
DeleteUsers

Create/delete groups CreateGroup
DeleteGroups

Modify group membership AddUsers
RemoveUsers

User Administration

TIBCO iProcess Objects Programmer’s Guide 228

• You must have case administration authority to perform the following functions:

Create/delete/modify attributes CreateAttribute
DeleteAttributes
AssignAttribute
ChangeAttribute

Create/delete roles CreateRole
DeleteRoles

Unlock work item locked by another user

(Note - Any user can unlock a work item that
they have locked.)

UnlockItem
UnlockItems
UnlockItemsEx

Modify auto-forward records for other users

(Note - Any user can modify an auto-forward
record for themselves.)

CreateAutoFwd
DeleteAutoFwd

Add/remove queue supervisors AddSupervisors
RemoveSupervisors

Change TIBCO iProcess Objects Server log
settings

ResetLog
SetLogCategories
SetLogLevel
SetLogTrace
SetMaxLogSize

Add/delete view-only queue access GrantAccess
RevokeAccess

Forward work items from other user’s work
queues

(Note - For information about the permission
requirements to forward work items from
your own work queue, see page 199.)

ForwardItem

Move system information
(MOVESYSINFO function)

MoveSysInfo

Function Methods

Retrieve audit data for cases of the proce-
dure

SWCase.AuditSteps

Rebuild a list audit steps SWCase.AuditSteps.Rebuild

Function Methods

User Administration

TIBCO iProcess Objects Programmer’s Guide 229

• You must have either system administrator or case administration authority to perform the
following functions:

Function Methods

Retrieve cases for any procedure on the
node

Cases
CasesX

Retrieve case data for any procedure SWCase.Fields

Get the filtered case count for any proce-
dure

GetFilteredCaseCnt

Make a case (stateless) of any procedure on
the node

MakeCase
MakeCaseByTag

Rebuild a list of cases or fields for any pro-
cedure

SWCase.Rebuild
SWCase.Fields.Rebuild

TIBCO iProcess Objects Programmer’s Guide 230

14
Case Management

Starting a Case

A case is defined as an instance of a procedure. Therefore, starting a case means to create an instance
of a procedure. This is done with the StartCaseEx method on the SWProc object. This method takes
the form:

StartCaseEx([Description], [StartStepName], [Release], [Validate], [FieldNames], _
[FieldValues], [SubProcPrecedence])

Note - The StartCase method on SWProc has been deprecated — it will be removed in a later release
of the software. All new code needs to use StartCaseEx.

By default, the case starts on the first step defined in the procedure — the name of this step is stored in
the SWProc.StartStepName property. However, you can optionally cause the procedure to start on a
step other than the one specified in the procedure definition — this is done by providing the StartStep-
Name parameter when calling the StartCaseEx method.

Note - You cannot directly start a case (with StartCaseEx) of a procedure that is defined as a sub-pro-
cedure (if it is a sub-procedure, its IsSubProc property will be set to True). Sub-procedures can only
be started from a sub-procedure call step, dynamic sub-procedure call step, or graft step.

Case Description

The procedure definition (defined with the TIBCO iProcess Modeler) specifies whether or not the
StartCaseEx method requires a Description parameter.

• If the procedure definition specifies that the description is required (SWProc.CaseDescOpt =
swRequiredDesc), the Description parameter must be provided with the StartCaseEx method.

• If the procedure definition specifies that the description is optional or hidden
(SWProc.CaseDescOpt = swOptionalDesc or swHiddenDesc), the Description parameter does
not need to be provided with the StartCaseEx method.

SWProc

CaseDescOpt

Procedure Definition
in the TIBCO iProcess Modeler

SWDescOptionType
 swOptionalDesc = 'O'
 swRequiredDesc = 'R'
 swHiddenDesc = 'H'

Case Management

TIBCO iProcess Objects Programmer’s Guide 231

Keeping/Releasing the Start Step

The StartCaseEx method provides a Release parameter that allows you to specify that the start step be
automatically released when the case is started. Note that this parameter is relevant only if the user start-
ing the case is the addressee of the start step.

The addressee must be defined in one of the following ways on the Step Definition Addressee Tab in the
TIBCO iProcess Modeler:

• Explicitly - The user’s name is entered in the Users column.

• SW_STARTER is listed in the Users column.

• A role name is listed in the Roles column, and the user starting the case is assigned to that role.

The Release parameter is ignored if the user starting the case is not the addressee of the start step, or if
the Fields column is used to specify the addressee of the start step.

• If Release = True (the default), when the case is started, the start step is automatically released at
the same time the case is started. This causes the case to automatically proceed to the second step,
resulting in the work item for the second step appearing in the work queue of the addressee of the
second step (see the illustration below).

• If Release = False, the work item representing the start step is placed in the queue of the addressee
of the start step. This is always the behavior if the addressee is not the user starting the case.

The Release flag is disabled if you specify a start step (with the StartStepName parameter) other than the
first step in the procedure.

Case
Start

Addressee
= JPublic

Step1

Addressee
= SMoore

Step2

Release
= True

Case
Start

Addressee
= JPublic

Step1

Addressee
= SMoore

Step2

Work Queue
for JPublic

Step1

Release
= False

Work Queue
for SMoore

Step2

Case Management

TIBCO iProcess Objects Programmer’s Guide 232

Starting a Case with Field Data

Starting a case “with field data” involves passing data with the StartCaseEx method that will be used
in the start step of the live case. This is done by passing in field names and corresponding values in the
FieldNames and FieldValues parameters, respectively.

An example is shown below.

Dim sNames(2)
Dim sValues(2)

sNames(0) = "CUSTOMER_NAME"
sNames(1) = "SALARY"
sNames(2) = "MORTGAGE"
sValues(0) = txtCustomer.Text
sValues(1) = txtSalary.Text
sValues(2) = txtMortgage.Text

oProc.StartCaseEx(txtCaseDesc.Text, oProc.StartStepName, False, False, _
sNames(), sValues())

Validating Markings on the Start Step

When a Staffware form is created, the markings that are
included on the form are given a “type” designation,
indicating whether data in that field is required, optional,
calculated, etc. For example, the form might have a First
Name field that is required, and a Middle Name field
that is optional.

Note - The term “Staffware form” is a remnant of the original software created by Staffware, which
was purchased by TIBCO. This term is still used in the TIBCO iProcess Engine and TIBCO iProcess
Modeler dialogs and documentation, and will be used here until the engine and modeler dialogs are
changed.

This type designation that is assigned to the field when it is added to the
form in the TIBCO iProcess Modeler is stored in the SWFMarking.Type
property for that particular marking on the form. The available marking
types are shown below.

The StartCaseEx method contains a Validate parameter that allows you to
specify whether or not to validate the markings on the Staffware form in
the start step, based on the marking types defined on the Staffware form:

• If Validate = True, 1) Validate that the markings exist on the form, 2) validate that all required
markings (swRequired) on the form are sent to the server with non-empty data, and 3) validate
that display markings (swDisplay) are not sent to the server. Markings are sent to the server
upon case start using the FieldNames/FieldValues parameters.

• If Validate = False (the default), it bypasses the enforcement of marking types on the Staffware
form.

This is probably most relevant when you are starting a case with field data and the Release flag is set
to True (see the previous sections).

SWMarkingType
 swOptional = 'O'
 swRequired = 'R'
 swHidden = 'H'
 swDisplay = 'D'
 swCalculated = 'C'
 swEmbedded = 'E'

Case Management

TIBCO iProcess Objects Programmer’s Guide 233

Sub-Procedure Precedence

The StartCaseEx method provides a SubProcPrecedence parameter that allows you to specify the
order in which sub-procedure versions will be looked for when sub-procedures are launched from the
main procedure. The sub-procedure precedence is enumerated in the SWSubProcPrecedenceType
enumeration, as shown below:

This enumeration allows you to specify that sub-procedure versions be looked for in a specific order:

• swPrecedenceR - Released version only

• swPrecedenceUR - Unreleased > Released

• swPrecedenceMR - Model > Released

• swPrecedenceUMR - Unreleased > Model > Released

• swPrecedenceMUR - Model > Unreleased > Released

For example, if swPrecedenceUR is passed in the SubProcPrecedence parameter, the engine will look
for an unreleased version of the sub-procedure to start. If there isn’t an unreleased version, it will look
for a released version.

The default is to only look for released versions of sub-procedures. Therefore, if the StartCase method
does not include the SubProcPrecedence parameter is used, only a released version of the sub-proce-
dure will be started.

If the specified (or default) versions of a sub-procedure cannot be found, the error message “Sub-case
started of a procedure that isn’t a sub-procedure” is written to the sw_warn file.

Why isn’t the Started Case Appearing in the Work Queue?

After starting a case and rebuilding the list of work items, the work item representing the case you just
started may not immediately appear in the work queue. This is because the work item is processed by
the background process in the TIBCO iProcess Engine. Until the TIBCO iProcess Engine has com-
pleted its processing, the work item will not appear in the work queue.

Obtaining the Case Number of a Case that was just Started

When a case is started through TIBCO iProcess Objects, it is assigned a “case number” that can be
used for purposes such as tracking, filtering, sorting, etc. This number is available in the following
ways:

• It is returned by the StartCaseEx method

• In the SWCase.CaseNumber property

• In the SW_CASENUM system field

SWSubProcPrecedenceType
swPrecedenceR = ‘0’
swPrecedenceUR = ‘1'
swPrecedenceMR = ‘2’
swPrecedenceUMR = ‘3'
swPrecedenceMUR = ‘4’

Case Management

TIBCO iProcess Objects Programmer’s Guide 234

The availability of the case number depends, however, on which TIBCO iProcess Engine you are
using:

• TIBCO iProcess Engine - With this engine, the case number is available immediately after the
case is started.

• TIBCO Process Engine - With this engine, the case number is not available immediately. The
work item that appears in the user’s work queue will show a case number of 0 (zero). It will
remain 0 for an indeterminate period of time. (The case number is generated by the background
process, so the amount of time it takes is determined by how frequently the background process
“wakes up” and processes instructions from the TIBCO iProcess Objects Server.)

If you are in a situation where you need the case number before the background process can
provide it, the following can be used as a work around: A "case number synchronization" step
could be added to the procedure definition just after the procedure start step. The addressee for
the "case number synchronization" step could be a user such as "CaseAdmin". When the start
case has been processed by the background, a work item will appear on the CaseAdmin’s work
queue. Application code could then be written to get (and lock) the work item from CaseAd-
min’s work queue to get the case number (SWWorkItem.Case.CaseNumber) and do whatever
processing is necessary, then release the work item so it will go to the next step.

Another alternative is to add a custom field that has a unique identifier provided by the user or
some external system. Then display or search on this number. After the case start has com-
pleted and the work item has reached a queue, then you can associate the case number to the
customer's unique number.

Determining Who Can Start a Case

By default, when a procedure is created on a node, all users on the node have the authority to start
cases against that procedure (assuming the procedure is “released”).

You can also specify the users who can start a case of a procedure by using the Procedure | Access |
Case Start function in the TIBCO iProcess Modeler:

If a user name or role is specified using this function in the TIBCO iProcess Modeler, case-start access
to this procedure is limited to only the users, groups, or roles specified, or the users for which the
expression(s) evaluate to True. If no one is designated as having access through this function, it
defaults to giving everyone access.

Case Management

TIBCO iProcess Objects Programmer’s Guide 235

Note - If a procedure is “unreleased” (SWProc.Status = “swUnreleased”), it can be started only by
the procedure owner and user swadmin. It must have a status of “swReleased” for other users to be
able to start cases of that procedure. If the procedure’s status is “swIncomplete” or “swWithdrawn”,
no one, not even swadmin, can start cases of that procedure.

You can determine which users, groups, or roles have permission to start a procedure by looking at the
StartByUserRef property on SWProc. (This cannot be set using TIBCO iProcess Objects, however.)

The StartByUserRef property returns an SWAccessUserRef object, which contains the following
properties:

• UserNames - A list of the users or groups who have authority to start a case of the procedure.

• RoleNames - A list of the roles that have authority to start a case of the procedure.

• Expressions - A list of expressions that indicate the attribute values the user must have to be
able to start the case. In the example above, if the user’s DEPARTMENT attribute is “legal” or
“hr”, that user has authority to start a case of the procedure.

If all three of these properties are empty, all users have authority to start a case of the procedure.

Which Procedures can a User Start?

You can also determine the procedures for which a user can start a case by using the StartProcs prop-
erty on the SWUser object:

'Get the procedures logged-in-user can start cases of
'and display in list box lboStartProcs
'
Set oUser = oNode.LoggedInUser
lblUser.Caption = oUser.Name

lboStartProcs.Clear
For Each oProc In oUser.StartProcs
 lboStartProcs.AddItem (oProc.Name)
Next
Exit Sub

Case Management

TIBCO iProcess Objects Programmer’s Guide 236

Obtaining the “Default” View / XList of Cases

As cases of a procedure are started and finished, a list of these live cases is maintained by the TIBCO
iProcess Engine. When you get an SWProc object from the node, it’s a snapshot of the cases for that
procedure at that instant. The SWProc object contains two properties that return a list of the cases for
that procedure: one as an SWView, the other as an SWXList:

SWProc.Cases - The Cases property on SWProc contains a view
(SWView) of all of the cases of the procedure that match the filter
criteria in the SWView.FilterExpression property. They are listed in the
view in the order specified by the SWView.SortFields property.

Note - Lists of cases obtained with the Cases or CasesX properties always includes cases from all ver-
sions of the procedure. There currently is no means of filtering the list to include only cases from a
specific version of the procedure.

SWProc.CasesX - The CasesX property on SWProc contains an XList
(SWXList) of cases in blocks of size SWXList.ItemsPerBlock of the
procedure that match the filter criteria specified in the
SWCriteriaC.FilterExpression property. They are listed in the XList in
the order specified by the SWCriteriaC.SortFields property.

The following is an example using the default view of cases on a procedure:

Dim i As Integer

Set oProc = oNode.LoggedInUser.AuditProcs.Item(lboProcs.ListIndex)

'Get case list for the selected procedure
Set oCases = oProc.Cases

'Add a sortfield to the cases view
oCases.SortFields.Clear
Set oSortField = New SWSortField
oSortField.FieldName = txtSortField
oSortField.IsAscending = optAsc
oCases.SortFields.Add oSortField

'Ask for audit data for the whole list of cases
oCases.IsWithAuditData = True

'Set the case list's filter criteria
oCases.FilterExpression = sFilterCriteria

'Rebuild list of cases

SWProc

Cases

SWCase

SWCase

SWCase

SWView

SWProc

CasesX

SWCase

SWCase

SWCase

SWXList

Case Management

TIBCO iProcess Objects Programmer’s Guide 237

oCases.Rebuild

'Iterate through the list of cases
While Not (oCases.IsEOL)

Set oCase = oCases.Item(i)
i = i + 1

Wend

Status of Cases

The Status property on SWView and SWXList always returns swChanged and swXLChanged,
respectively, for views/XLists of cases. This is true whether the view/XList of cases was obtained
with Cases, CasesX, MakeViewCases, or MakeXListCases. (See the next section for information
about creating a view/XList of cases with the MakeViewCases and MakeXListCases methods.)

Creating an “Alternate” View / XList of Cases

As described in the previous section, the “default” SWView and SWXList of cases is available in
Cases and CasesX, respectively, on SWProc — this is the view/XList you will typically use. However,
if you have a need to view a list of cases filtered or sorted in more than one way, an additional
view/XList of the cases can be created. For example, you may want to view a list of all cases that were
started on a particular date (SW_STARTEDDATE=DesiredDate) and concurrently view a list of all
currently active cases for the procedure (SW_STATUS=“A”). To do this, you would create an addi-
tional SWView or SWXList containing SWCase objects filtered and sorted in the desired way.

Alternate SWViews

The following method is available to create alternate views of cases:

• MakeViewCases - Creates an additional SWView containing SWCase objects.

This method is available on several objects. The object from which you invoke the method governs
the scope of the method. The table below shows the scope of the MakeViewCases method from the
objects from which it can be called.

Implied Sort on Alternate Views

If you create an alternate view of cases that spans multiple procedures, there is an implied primary
sort. Cases are always sorted by procedure name before any user-defined sort criteria are invoked.

Method Called From Scope

MakeViewCases SWProc Used to view cases in the procedure.

SWUser Used to view cases across multiple procedures on the same node.

SWEntUser Used to view cases across multiple procedures on more than one node.

Case Management

TIBCO iProcess Objects Programmer’s Guide 238

Alternate SWXLists

The following method is available to create alternate XLists of cases:

• MakeXListCases - Creates an additional SWXList containing SWCase objects.

This method is only available on SWProc, i.e., it cannot scan multiple procedures or nodes (like
MakeViewCases — see the previous section).

Status of Cases

The Status property on SWView and SWXList always returns swChanged and swXLChanged,
respectively, for views/XLists of cases. This is true whether the view/XList of cases was obtained
with Cases, CasesX, MakeViewCases, or MakeXListCases.

Determining the Number of Cases in a Procedure

There are a number of counts available that tell you how many cases are in a procedure. These counts
are available from different objects:

• SWView - When the cases are in an SWView, the following counts are available:

- Count - The number of items that are currently stored in the SWView at the client.

- ExcludeCnt - Contains the number of cases that were not included in the indexed collec-
tion at the server because they did not satisfy the criteria in the FilterExpression property.
(Note - This count may or may not be available, depending on which filtering enhance-
ments have been incorporated in your TIBCO iProcess Objects Server. See the appropriate
Filtering Work Items and Cases chapter on page 98, page 126, or page 152.)

- InvalidCnt - Contains the number of cases not included in the indexed collection because
they were invalid within the context of the filter criteria (e.g., the filter expression refer-
ences a field name not defined in all cases). (Note - This count may or may not be avail-
able, depending on which filtering enhancements have been incorporated in your TIBCO
iProcess Objects Server. See the appropriate Filtering Work Items and Cases chapter on
page 98, page 126, or page 152.)

Note - The Count, ExcludeCnt, and InvalidCnt properties on SWView are meaningful only
after all applicable cases have been evaluated (i.e., IsEOL=True). See “Determining the
Number of Objects in a List or View” on page 58 for more information.

• SWXList - When the cases are in an SWXList, the following counts are available:

- ItemCount - The total number of items at the server. This count includes only those items
that satisfy the filter criteria.

This count is available immediately upon creating the XList (unlike on a view where you
need to loop through the list until IsEOL is true to determine the total number of items
available on the server).

- Count - The number of items that are currently stored in the XList at the client.

- ExcludeCnt - Contains the number of cases that were not included in the indexed collec-
tion at the server because they did not satisfy the criteria in the FilterExpression property.
(Note - This count may or may not be available, depending on which filtering enhance-
ments have been incorporated in your TIBCO iProcess Objects Server. See the appropriate
Filtering Work Items and Cases chapter on page 98, page 126, or page 152.)

Case Management

TIBCO iProcess Objects Programmer’s Guide 239

- InvalidCnt - Contains the number of cases not included in the indexed collection because
they were invalid within the context of the filter criteria (e.g., the filter expression refer-
ences a field name not defined in all cases). (Note - This count may or may not be avail-
able, depending on which filtering enhancements have been incorporated in your TIBCO
iProcess Objects Server. See the appropriate Filtering Work Items and Cases chapter on
page 98, page 126, or page 152.)

• SWProc - Accessing the following counts on SWProc cause a message to be sent to the server
to obtain the count from the procedure:

- CaseCnt - The total number of cases in the procedure.

- ActiveCnt - The number of active cases (SWCase.IsActive=True) in the procedure.

- ClosedCnt - The number of closed cases (SWCase.IsActive=False) in the procedure.

Auditing Case Data

The system maintains an “audit trail” that provides information about the progress through a case, that
is, which steps in the case have been processed and who processed them. An example of how this
information might be presented to the user is shown below (this example is from the TIBCO iProcess
Client):

There are two types of audit trail entries:

• System-defined - These are added to the audit trail by the system. These messages are pre-
defined in SWDIR\etc\language.lng\audit.mes (Windows) or $SWDIR/etc/lan-
guage.lng/audit.mes (UNIX). An excerpt from the audit.mes file is shown below:

Case Management

TIBCO iProcess Objects Programmer’s Guide 240

The three-digit number on the left is the MsgId of the audit trail message. The system reserves
MsgIds 000-255 for system use.

• User-defined - These are added to the audit trail of a live case when you invoke the AddAudi-
tEntry method. These messages must be predefined in SWDIR\etc\language.lng\auditusr.mes
(Windows) or $SWDIR/etc/language.lng/auditusr.mes (UNIX). For information about adding
user-defined audit entries, see “Adding User-defined Audit Trail Entries” on page 246.

Determining the Procedures a User can Audit

Before a user can audit cases, that user must have the proper authority. Within the procedure defini-
tion, you can specify the users who can audit the procedure by using the Procedure | Access | Case
Admin function in the TIBCO iProcess Modeler:

This dialog is used to define who has case administration authority. If a user, group, or role name is
specified using this dialog, the ability to audit this procedure is limited to only the users, groups, or
roles specified, or the users for which the expression(s) evaluates to True. Note that having system
administrator authority (MENUNAME = ADMIN) does NOT automatically give you access to audit
trail data — if users are given access through this dialog, users with a MENUNAME of ADMIN must
be explicitly listed to have access. (The swadmin user always has access to the audit trail of any pro-
cedure.) If no one is designated as having access through this function, it defaults to giving everyone
access.

You can determine which procedures a user can audit by using the AuditProcs property on SWUser.
This property returns an SWList of SWProc objects, one for each procedure the user has permission
to audit. See the example below.

'Display in the lboProcs list box the procedures on this node
'that the logged-in-user can audit
'
With lboProcs
 .Clear
 For Each oProc In oNode.LoggedInUser.AuditProcs
 lboProcs.AddItem (oProc.Name)
 Next
End With

Case Management

TIBCO iProcess Objects Programmer’s Guide 241

Populating a Case with Audit Data

Information about which steps in a case have been processed (audit data) is maintained on the TIBCO
iProcess Engine. This information is not acquired by default — you must explicitly ask for it by set-
ting the IsWithAuditData property to true. This property can be found on the following objects:

• SWCase - Setting IsWithAuditData to true on this object causes audit data to be maintained in
the individual case.

• SWView - Setting IsWithAuditData to true on this object causes audit data to be maintained in
all cases in the view.

• SWCriteriaC - Setting IsWithAuditData to true on this object causes audit data to be main-
tained in all cases in the XList.

‘Return audit data on all cases in the view
Set oProc = oNode.LoggedInUser.AuditProcs.Item(lboProcs.ListIndex)
Set oCases = oProc.Cases
oCases.IsWithAuditData = True
oCases.Rebuid

Once you have specified that audit data is to be maintained in a case
(or all of the cases in a view or Xlist), then rebuilt the case, view, or
XList, the AuditSteps property on SWCase will contain an SWList
of SWAuditStep objects, one for each step that has been processed
in the case. (Note that if you are rebuilding an SWCase object to
populate AuditSteps, you must also set the IsRebuildAll flag to
True to also get the subordinate objects.)

Note - It’s possible the list of audit steps on the case is being fil-
tered, in which case, it may not contain ALL steps that have been
processed. It may also contain custom entries. Audit data filtering
and custom audit entries are described later in this chapter.

The IsAuditAscending property allows you to specify the chronological order in which the audit data
is returned from the server — a value of True (default) causes audit data to be returned in chronologi-
cally ascending order. False causes audit data to be returned in chronologically descending order.

The SWView and SWCriteriaC (for XLists) objects also contain
properties that allow you to specify that all cases on the view or
XList are to maintain audit data:

Note that it is preferable to get audit data only on the cases for
which it is needed. This functionality is resource expensive:

• If you have a list of cases in a view or XList and you need
audit data on all or most of the cases, it is much more effi-
cient to request audit data for the entire view or XList by setting the IsWithAuditData property
on the SWView or SWCriteriaC object.

• If you need audit data for only one or a few of the cases in a view or XList, it is much more effi-
cient to request audit data by setting the IsWithAuditData property on the individual SWCase
object.

SWCase

AuditFilterExpr

SWAuditStep

AuditSteps

IsAuditAscending

IsWithAuditData

AddAuditEntry

SWAuditStep

SWAuditStep

SWView

AuditFilterExpr

IsAuditAscending

IsWithAuditData

SWCriteriaC

AuditFilterExpr

IsAuditAscending

IsWithAuditData

Case Management

TIBCO iProcess Objects Programmer’s Guide 242

The SWAuditStep Object

Each SWAuditStep object in the AuditSteps prop-
erty list represents a single action that has been pro-
cessed in the case. The Action property identifies
what this action is, based on the SWAuditAction-
Type enumeration.

The Message property contains the actual message
that appears in the audit trail. This message will have
any %USER and %DESC variables resolved that are
part of the message in the audit.mes or auditusr.mes
files (see page 239 for information about these files).
For example, if the message in audit.mes is:

%DESC processed to %USER

the string in the Message property would be (assum-
ing a step description of "Final Approval" and a user
name of susieq):

"Final Approval" processed to susieq

The %DESC and %USER variables are replaced with
the step description and the name of the user who per-
formed the action, respectively.

The IsOutStanding property on SWAuditStep can be
used to determine if the step has been “processed to”
the addressee of the step that the SWAuditStep object
represents, but not yet released to the next step in the
procedure. In other words, it is the step at which the
case is currently sitting.

Configuring Audit Trail Strings

As you can see from the example above, part of the text that appears in the audit trail message is
obtained from the step description and the name of the user who performed the action. However, some
actions don’t have corresponding steps from which a description can be obtained (e.g., case suspen-
sion). Also, some actions are performed by the system (e.g., case termination/closure); these actions
do not have a corresponding user name that can be written to the audit trail message. Because of this,
TIBCO iProcess Objects Server configuration parameters are provided that contain default values that
are written to the Description, Name, and User properties on SWAuditStep for these types of
actions. You can change these default values to fit your particular needs.

SWAuditStep

getClassId

getDate

getDescription

getKey

getMessage

getName

getProcMajorVer

getProcMinorVer

getSubCaseId

getTimeOffset

getUser

isOutstanding

getAction

SWAuditActionType
 swStartCase = 0
 swProcessedTo = 1
 swReleasedBy = 2
 swDeadlineExp = 3
 swForwarded = 4
 swProcessedFor = 5
 swError = 6
 swTermAbnormal = 7
 swTermPremature = 8
 swTermNORMAL = 9
 swRevisedBy = 10
 swReleasedMBox = 11
 swModifiedBy = 12
 swDeadlineWdl = 13
 swResent = 14
 swEventIssued = 15
 swSubCaseStart = 16
 swSubCaseComp = 17
 swSubCaseTerm = 18
 swSubCaseExpired = 19
 swSubCaseWithdrawn = 20
 swRedirectedTo = 21
 swSuspendedBy = 22
 swResumedBy = 23
 swCaseJumpBy = 24
 swDynaGraftCaseStart = 25
 swTaskCountSet = 26
 swTaskDeleted = 27
 swSubCaseGrafted = 28
 swExtProcessGrafted = 29
 swGraftInitiated = 30
 swExtProcessReleased = 31
 swGraftReleased = 32
 swDynamicReleased = 33
 swCaseMigrated = 34
 swGraftWithdrawn = 35
 swDynaGraftDeadlineExp = 36
 swDynamicWithdrawn = 37
 swKeepOnWithdraw = 38
 swReleasedNoAddressees = 39
 swReleasedNoSubProcs = 40
 swEAICallInitiated = 50
 swEAICallComplete = 51
 swEAICallExpired = 52
 swEAICallWithdrawn = 53
 swTransProcessed = 54
 swTransStarted = 55
 swTransRestart = 56
 swWIOpenedBy = 59
 swWIKeptBy = 60
 swEAICallFailed = 80
 swErrMaxActions = 81
 swErrGenericTransfail = 82
 swEAINoPlugin = 83
 swErrBadSubProc = 84
 swErrDiffTemplate = 85
 swErrDiffTemplateVer = 86
 swTransAborted = 87

Case Management

TIBCO iProcess Objects Programmer’s Guide 243

The table below lists the audit actions that have configuration parameters:

Note that the configuration parameters that pertain to case suspension, resume, and jump to, are appli-
cable only if you are using a TIBCO iProcess Engine. For more information about using configuration
parameters, see the TIBCO iProcess Objects Server Administrator’s Guide.

Auditing Sub-Procedures

There are also a number of audit action types that are specific to sub-procedures. These are enumer-
ated in SWAuditActionType:

Action Configuration Parameter
Written to this
SWAuditStep Property

Default

swStartCase StartCaseDescription Description “Case Start”

StartCaseStepName Name “Case Start”

swTermNORMAL TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

TerminationUser User “System”

swTermAbnormal TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

TerminationUser User “System”

swTermPremature TerminationDescription Description “Termination”

TerminationStepName Name “Termination”

swSuspendedBy SuspendedDescription Description “Case Suspended”

SuspendedStepName Name “Case Suspended”

swResumedBy ResumedDescription Description “Case Activated”

ResumedStepName Name “Case Activated”

swCaseJumpBy JumpToStepName Name “Jump To”

SWAuditActionType Value Description

swSubCaseStart 16 Sub-case has been started.

swSubCaseComp 17 Sub-case has completed.

swSubCaseTerm 18 Sub-case has terminated prematurely.

swSubCaseExpired 19 Sub-case deadline has expired.

swSubCaseWithdrawn 20 Sub-case has been withdrawn.

swDynamicReleased 33 Dynamic sub-procedure call step has been released.

swDynamicWithdrawn 37 Dynamic sub-procedure call step has been withdrawn.

swErrBadSubProc 84 Error - Invalid sub-procedure.

swErrDiffTemplate 85 Error - Different templates.

swErrDiffTemplateVer 86 Error - Different template versions.

Case Management

TIBCO iProcess Objects Programmer’s Guide 244

The SWAuditStep object also contains a SubCaseId property that returns a system-generated string
that identifies whether or not the audit step or sub-procedure call step is in the main procedure or a
sub-procedure. This property may be used to group audit steps by case when steps from both main
procedures and sub-procedures are being processed simultaneously.

If the audit step/sub-procedure call step is in the main procedure, the SubCaseId contains an empty
string. If it is in a sub-procedure, the SubCaseId contains the name of the sub-procedure.

Note that additional information is also returned from the TIBCO iProcess Engine in the SubCaseId.
This requires that you parse this string to obtain the name of the sub-procedure. An example is shown
below:

SWAuditStep.SubCaseId = :MyServer:LOANSUB1:1:1:1

The LOANSUB1 part of the SubCaseId identifies the name of the sub-procedure, i.e., this particular
audit step is from sub-procedure LOANSUB1. Also see the illustration below.

For more information about auditing, see “Auditing Case Data” on page 239.

Case Management

TIBCO iProcess Objects Programmer’s Guide 245

Filtering Audit Data

Filtering audit data allows you to minimize the amount of audit data that is retrieved from the server,
making your client application more efficient. This is accomplished by setting a filter criteria expres-
sion in the AuditFilterExpr property. If the IsWithAuditData property is set to True, only SWAudit-
Step objects that satisfy this filter expression are returned from the server and placed in the AuditSteps
list.

The AuditFilterExpr property can be found on the following objects:

• SWCase - This allows you to set AuditStep filter criteria on an individual case.
• SWView - This is used to set AuditStep filter criteria for all cases in the view.
• SWCriteriaC - This is used to set AuditStep filter criteria for all cases in the XList.

If you need to filter audit steps on one or just a few cases, it may be more efficient to set the AuditFil-
terExpr property on the individual case(s), then rebuild the SWCase.AuditSteps list on those cases.
Whereas, if you need to filter audit steps on most or all of the cases in a view or XList, it is more effi-
cient to set the AuditFilterExpr property on the SWView or SWCriteriaC object, then rebuild the
SWView or SWXList.

The initial value of AuditFilterExpr on a SWCase object defaults to the AuditFilterExpr property on
the view or XList that holds the case. The value is taken at the time the case is created, so changing the
property on the SWView or SWCriteriaC of an XList at a later time will not change the property val-
ues on the individual cases until the view or XList is rebuilt.

Setting AuditFilterExpr

To set audit data filter criteria through the AuditFilterExpr property, you can AND together the fol-
lowing criteria to create a filter expression:

• AUDIT_TYPE - A list of audit entry types to return or not return, depending on the operator
used (= or !=).

• USER_NAME - A list of user names (or sub-case IDs).
• STEP_NAME - A list of step names.
• STEP_DESC - A list of step descriptions.
• DATE_RANGE - A range of dates.
• FILTER_FLAGS - Special condition flags.

An example is shown below:

oSWCase.AuditFilterExpr = "AUDIT_TYPE!=[AT_START|AT_SENT] AND _
STEP_DESC=[""new case""] AND DATE_RANGE=[- ""17/08/2000 01:30""]"

Note - The filter criteria names (AUDIT_TYPE, USER_NAME, etc.) are case insensitive if your
TIBCO iProcess Objects Server has CR 16694 implemented; if your TIBCO iProcess Objects Server
does not include CR 16694, the filter criteria names must be all uppercase. Also, the values following
each criteria must be enclosed in square brackets [].

Syntax details for each of the filter criteria are provided in the AuditFilterExpr property topic in the
on-line help system.

Case Management

TIBCO iProcess Objects Programmer’s Guide 246

Adding User-defined Audit Trail Entries

You can add user-defined audit trail entries to a live case by invoking the SWCase.AddAuditEntry
method.

User-defined audit trail messages must be predefined in SWDIR\etc\language.lng\auditusr.mes
(Windows) or $SWDIR/etc/language.lng/auditusr.mes (UNIX). You must create (or add to) this file
if you want to specify user-defined audit trail messages with the AddAuditEntry method.

User-defined audit trail messages must be in the format:

eventnum:event_description

where:

eventnum is a decimal number in the range 256-999 that identifies the message. This number is
used in the MsgId parameter with the AddAuditEntry method.

event_description is a string that describes the event. It can contain the strings %USER and
%DESC, which are replaced by the UserName and StepDesc strings, respectively, that are sup-
plied with the AddAuditEntry method (see the example below).

Below is an example of a user-defined audit trail message in the auditusr.mes file:

256:"%DESC" being worked on by %USER

Once the user-defined message is added to the auditusr.mes file, it can be added to the audit trail
using the AddAuditEntry method. (Note - If you make a change to the auditusr.mes file, you must
restart the iProcess Objects Server before the change will be recognized.)

An example is shown below of adding a user-defined audit entry of eventnum (MsgID) 256 to the
audit trail of a step:

oWorkItem.Case.AddAuditEntry oWorkItem.StepName, _
oWorkItem.StepDescription. oUser.Name, 256

For syntax details for AddAuditEntry, see the on-line help system.

Be aware that entries you add via the AddAuditEntry method may seemingly appear out of order
when compared to system-added entries. This is because system-added entries are added by the back-
ground process, possibly causing a delay in their entry.

Case Management

TIBCO iProcess Objects Programmer’s Guide 247

Predicting Cases

Case prediction provides the means for predicting
the expected outcome of an actual or an imaginary
case. Running a case prediction function causes a
list of "predicted work items" (SWPredictedItem
objects) to be returned that represent the work items
that are currently due (outstanding work items), as
well as the work items that are expected to be due in
the future.

Note - To be able to use case prediction functions,
you must be using a TIBCO iProcess Engine.

Included with the work items returned is information
about the expected times the work items are pre-
dicted to start and end, providing information that
can be used to predict the outcome of the case. This
can be used to improve work forecasting and estimate the expected completion of cases.

The prediction process moves through the designated procedure(s) step-by-step using live or simu-
lated case data to decide which path to take in the procedure. Each step uses an expected duration
(decided at design time) to calculate a start and end processing time for each step as it progresses
through the prediction process. When the process is complete, you can use these end processing times
to predict the outcome of the case(s).

During the prediction process, initial and release scripts are executed, deadlines are processed, and
withdrawal actions are performed, where appropriate.

There are two primary types of case prediction:

• Background case prediction, which allows you to predict the outcome of all active cases across
all (enabled) procedures on the node. This type of case prediction is performed using the
MakeXListPredict method. See “Background Case Prediction” on page 249 for more informa-
tion.

• Ad-hoc case prediction, which is sub-divided into the following two operations:

- Live case prediction, which allows you to predict the process path and duration of an
active case. This type of case prediction is performed using the PredictCase method. See
“Live Case Prediction” on page 249 for more information.

- Case simulation, which allows you to simulate the processing of an imagined case (with
simulated case data), to predict its expected outcome. This type of case prediction is per-
formed using the SimulateCase method. See “Case Simulation” on page 250 for more
information.

SWPredictedItem

< ClassId

< CasePredictQParams

< CaseReference

< Description

< DescriptionEx

< StepDuration

< Key

< ProcName

< StepName

< TimeEnded

< TimeEndedOffset

< TimeStarted

< TimeStartedOffset

< AddrToName

LL SWCasePredictQParam

< DecimalPlaceCnt

< FieldName

< Key

< Length

< Type

< Value

< ClassId

Case Management

TIBCO iProcess Objects Programmer’s Guide 248

Defining Case Prediction

The following subsections describe how case prediction is defined for a procedure using the TIBCO
iProcess Modeler.

Step Duration

As you are defining a procedure using the TIBCO iProcess Modeler, a "duration" is defined for each
step in the procedure. The duration is the expected time interval between when the work item will
become "active" and when it will be released. This is defined on the Deadline/Step Duration Defini-
tion dialog in the TIBCO iProcess Modeler. A prediction duration can be defined for the following
types of steps:

• Normal step
• Event set
• EAI step
• Sub-procedure call step
• Dynamic sub-procedure call step
• Graft step

The step's duration definition is represented by an SWDuration object, which is returned by the
SWStep.Duration property.

The SWDuration object contains the following properties:

• DurationValues - This property returns a list of SWDurationValue objects, which provide
access to the values that were entered in the Deadline/Step Duration Definition dialog for that
step.

• Type - This property indicates (using the SWDurationType enumeration constant) the type of
duration that is defined for the step. It may be defined as: no duration, a duration expression
(dynamic), a duration period (static), or that the deadline defined for the step be used as its
duration.

Note that if the step deadline is used for the duration (SWDuration.Type = swDurationDeadline),
the duration value will NOT be found in the SWDurationValue.Value property. Rather, it will be
found in SWDeadlineValue.Value.

On the Deadline/Step Duration Definition dialog, you can also specify that the duration definition
be used in the prediction calculation, but to exclude the step (work item) from the list of work items
that are returned when case prediction is performed. This option allows you to specify that only the
work items that are processed manually be included in the prediction output, excluding "broker type"
steps and EAI steps. The setting of this option is represented by the SWStep.IsPrediction property.

The IsPrediction property returns True if the step is excluded from the prediction results, but the step's
duration definition is still used in the prediction calculation.

The Procedure Status dialog also includes a Duration button, which displays a dialog that allows
you to set a duration for the procedure. This is intended to be used to assign a duration to a sub-proce-
dure, allowing you to assign a duration for the entire sub-procedure rather than each step in the sub-
procedure. If a duration is assigned for the sub-procedure, it takes precedence over a duration that is
defined for the sub-procedure calling step. If a duration is defined for the sub-procedure, it is accessi-
ble with the SWProc.Duration property.

Case Management

TIBCO iProcess Objects Programmer’s Guide 249

Conditional Actions for Case Predictions

The "conditional" definition for a step in the TIBCO iProcess Modeler includes a "predicted condi-
tion." When a "conditional action" is encountered in a step as the prediction process moves from step
to step, the "prediction condition" specifies how the conditional action is to be handled by the predic-
tion process. It can handle it in one for the following three ways:

• Evaluate - The conditional expression will be evaluated to determine the path to take.

• Default to True - The conditional expression will default to True.

• Default to False - The conditional expression will default to False.

The definition given the "predicted condition" in the TIBCO iProcess Modeler is represented by the
SWConditional.PredictType property. This property returns an enumeration constant (SWCondi-
tionPredictType) that identifies how the "prediction condition" was defined in the TIBCO iProcess
Modeler.

Performing Case Prediction

As stated earlier, there are two primary types of case prediction: background and ad-hoc. Ad-hoc case
prediction is further sub-divided into live case prediction and case simulation. The methods of
performing each of these types of case prediction are described below.

Background Case Prediction

Background case prediction allows you to predict the outcome of all active cases across all (enabled)
procedures on a node (see below for information about enabling a procedure for background predic-
tion). This type of case prediction is performed by calling SWNode.MakeXListPredict. This method
returns an SWXList of SWPredictedItem objects, one for each current and future outstanding work
item, for all active cases, on all procedures on the node (for which prediction is enabled).

A procedure must be enabled to take part in a background case prediction operation. When a proce-
dure is defined using the TIBCO iProcess Modeler, the Prediction flag on the Procedure Status dia-
log must be checked to enable prediction on this procedure. This flag can be accessed in the
SWProc.IsPrediction property. This property returns True if prediction has been enabled for the pro-
cedure.

The SWPredictedItem objects returned in the SWXList can be filtered and/or sorted using the Filter-
Expression and SortFields properties on the SWCriteriaP object (see “Filtering and Sorting Predicted
Items” on page 252). You can also filter or sort on case data in CDQP fields if they have been config-
ured properly for prediction (see “Including Case Data Queue Parameter Data in Prediction
Results” on page 251 for more information).

You can also persist the SWXList returned by MakeXListPredict by setting the SWCriteriaP.IsPer-
sisted property to True. You must then save the persistence ID (SWCriteriaP.PersistenceID) and use
it at a later time as an input parameter with the GetXListPredict method to retrieve the same
SWXList of SWPredictedItem objects. (For more information about persisting an XList of predicted
work items, see “Working with Persisted XLists” on page 81.)

Live Case Prediction

Live case prediction allows you to predict the process path and duration of an active case.This type of
case prediction is performed by calling SWProc.PredictCase. This method returns an SWList of
SWPredictedItem objects, one for each work item that was outstanding when the method was called,
and one for each work item that is expected to be outstanding in that case in the future.

Case Management

TIBCO iProcess Objects Programmer’s Guide 250

Note that the procedure from which the live case was started does not need to have case prediction
enabled in the TIBCO iProcess Modeler (i.e., the Prediction flag on the Procedure Status dialog does
not need to be set) to run a case prediction operation on the live case.

Case Simulation

Case simulation allows you to simulate the processing of an imagined case. This type of case predic-
tion allows you to provide case data that is used in the simulation of an imagined case. The case data is
used to decide which path to take when there are conditional actions in the steps of the procedure. This
type of case prediction is performed by calling SWProc.SimulateCase.

This method returns an SWList of SWPredictedItem objects, one for each work item that is expected
to be processed in the imagined case.

The SimulateCase method provides a StepNames parameter that allows you to specify the step(s) from
which the simulated case is to start. If omitted, the simulation will start at the start step of the proce-
dure.

Note that the procedure on which you want to run a case simulation does not need to have case predic-
tion enabled in the TIBCO iProcess Modeler (i.e., the Prediction flag on the Procedure Status dialog
does not need to be set).

Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction

The following summarizes the way in which the prediction methods handle sub-procedure call steps,
dynamic sub-procedure call steps, and graft steps.

Sub-Procedure Call Steps

• PredictCase and MakeXListPredict
- SWPredictedItem objects will be returned for sub-procedure call steps that have not yet been

processed (the process flow has not reached the step).

- SWPredictedItem objects will NOT be returned for sub-procedure call steps that are cur-
rently outstanding (the process flow has reach the step and its sub-procedure has been
started). However, an SWPredictedItem object will be returned for each outstanding item in
the sub-procedure that has been started by the sub-procedure call step.

• SimulateCase
- SWPredictedItem objects will NOT be returned for sub-procedure call steps. However, an

SWPredictedItem object will be returned for each of the outstanding steps predicted to be
outstanding in the sub-procedure started by the sub-procedure call step of the simulated
case.

Dynamic Sub-Procedure Call Steps and Graft Steps

• PredictCase and MakeXListPredict
- SWPredictedItem objects will be returned for dynamic sub-procedure call steps and graft

steps that have not yet been processed (the process flow has not reached the steps).

- SWPredictedItem objects will NOT be returned for dynamic sub-procedure call steps nor
graft steps that have been processed (the process flow has reached the steps). Also note that
SWPredictedItem objects will NOT be returned for any outstanding items in sub-procedures
that are started by dynamic sub-procedure call steps or graft steps — that’s because the pre-

Case Management

TIBCO iProcess Objects Programmer’s Guide 251

diction operation only looks at the definition of the procedure; it does not look at the con-
tents of the array field to determine which sub-procedures have been started by the dynamic
sub-procedure call step or graft step.

• SimulateCase
- SWPredictedItem objects will be returned for dynamic sub-procedure call steps and graft

steps predicted to be outstanding in the simulated case. Note, however, that since it’s a sim-
ulated case, no sub-procedures are actually started by dynamic sub-procedure call steps or
graft steps, therefore there can be no predicted items for sub-procedures started by those
steps (and there is no means to simulate starting sub-procedures from dynamic sub-proce-
dure call steps and graft steps).

Including Case Data Queue Parameter Data in Prediction Results

When Case Data Queue Parameter (CDQP) fields are defined with the swutil utility, an attribute may
be set specifying whether or not the CDQP field is to be included in prediction results (it defaults to
False). The setting of this attribute is represented by the SWCaseDataQParamDef.IsPrediction
property for each CDQP field.

If this attribute is set to True for a specific CDQP
field, and that CDQP field is encountered in the pre-
diction process, a SWCasePredictQParam object
representing the CDQP field is returned on the
SWPredictedItem object. All CDQP fields returned
are available from SWPredictedItem in the CasePre-
dictQParams property. These SWCasePredictQ-
Param objects provide access to the case data in the
predicted work items.

Note that certain conditions must be met for CDQP
fields to be returned in the prediction results. They
are:

• Only CDQP fields that have prediction enabled
in their definition will be returned as
SWCasePredictQParam objects.

• SWCasePredictQParam objects are returned only on SWPredictedItem objects that represent
normal steps.

• SWCasePredictQParam objects are returned only if the CDQP field is defined on the work
queue for the user / group who is the addressee of the step.

• If the SimulateCase method is called, CDQP fields will NOT be returned on work items if the
addressee of the step is a variable (such as sw_starter). They will be returned if the addressee is
a role or has been defined explicitly. (CDQPs will be returned on work items if the addressee is
a variable when PredictCase or MakeXListPredict is called.)

The SWCasePredictQParam objects returned in this property provide access to the case data in those
CDQP fields, as well as the ability to filter and sort on that case data when prediction is run using the
MakeXListPredict method (which returns an SWXList; filtering and sorting can't be performed on
SWList objects, which are returned by the PredictCase and SimulateCase methods).

SWPredictedItem

< ClassId

< CasePredictQParams

< CaseReference

< Description

< DescriptionEx

< StepDuration

< Key

< ProcName

< StepName

< TimeEnded

< TimeEndedOffset

< TimeStarted

< TimeStartedOffset

< AddrToName

LL SWCasePredictQParam

< DecimalPlaceCnt

< FieldName

< Key

< Length

< Type

< Value

< ClassId

Case Management

TIBCO iProcess Objects Programmer’s Guide 252

Filtering and Sorting Predicted Items

You can filter and/or sort the results of the makeXListPredict method, which are returned in an
SWXList. This is done by using the FilterExpression/getFilterExpression and SortFields/getSort-
Fields on SWCriteriaP. Note that because predicted items are stored in the database, filtering them
works in the same way as filtering cases when you have the database case filtering enhancement; this
includes the limitation that the only special characters that can be used when using regular expressions
are ‘*’ and ‘?’ — these work as wildcard characters, where the asterisk matches zero or more of any
character, and the question mark matches any single character. See the Filtering Work Items and Cases
chapter on page 152 for more information. Also see the Sorting Work Items and Cases chapter on
page 178 for information about how to sort items that are returned in a pageable list.

The Filtering Work Items and Cases chapters and the Sorting Work Items and Cases chapter provide
lists of system fields that can be used when filtering / sorting. Note, however, that when filtering and
sorting SWPredictedItem objects, you are restricted to using the system fields listed in the table
below. The “Filter” and “Sort” columns indicate whether you can filter or sort using that system field.

You can also filter on CDQP fields that are in the work items returned by MakeXListPredict, as long
as they have been configured for case prediction.

If no sort criteria are specified, the arrival date and time are used to sort the predicted items.

System Field Filter Sort Data Type

SW_STEPNAME X X String

SW_STEPDESC X X String

SW_STEPDESC2 X X String

SW_CASENUM X Numeric

SW_MAIN_CASENUM X Numeric

SW_PARENT_CASENUM X Numeric

SW_PRONUM X Numeric

SW_PARENT_PROCNUM X Numeric

SW_CASEREF X Numeric

SW_STEPDURN_SECS X Numeric

SW_STEPDURN_USECS X Numeric

SW_ADDRESSEE X X String

SW_ARRIVALDATE X String

(“YYYY-MM-DD HH:MM:SS”)a

a. The hour component is in 24-hour format.

SW_ARRIVALDATE_USECS X Numeric

SW_LEAVE_DATE X String

(“YYYY-MM-DD HH:MM:SS”)a

SW_LEAVE_DATE_USECS X Numeric

Case Management

TIBCO iProcess Objects Programmer’s Guide 253

Note - When filtering predicted items, if an invalid system field is used in the filter expression, an error
is not returned. Instead, the filter operation will not return any items.

Triggering Events

An Event step is a special kind of step that is processed by calling the TriggerEvent method on
SWCase. You can call TriggerEvent for a particular Event step:

• before the process flow has reached the Event step,

• after the process flow has halted at the Event step, or

• after the Event step has been processed.

When the TriggerEvent method is called, the process flow will proceed from the Event step in the pro-
cedure.

You can also call TriggerEvent on the same Event step multiple times. This reactivates that portion of
the procedure each time it is called.

When an Event step is triggered with the TriggerEvent method, you can optionally pass FieldName /
FieldValue pairs to identify fields whose case data you want to update. You can also specify that the
new data overwrite both “case data” and “work item data”. See “Case Data vs. Work Item Data” on
page 91 for information about the difference between case data and work item data.

The TriggerEvent method also allows you to “resurrect” (make active again) a closed case by passing
True in the Resurrect parameter.

See the on-line help for syntax details about the TriggerEvent method.

Case Management

TIBCO iProcess Objects Programmer’s Guide 254

Suspending Cases

You can suspend activity in a case family (a main case and all of its sub-cases) using the SetState
method on SWCase. The SetState method allows you to set the state of a case family to either sus-
pended or active (used to “unsuspend” a case family).

To suspend a case, call the SetState method, passing swSuspended (an SWCaseStateType enumera-
tion) in the NewState parameter.

Suspending a case family has the following effects:

• Normal Steps - You cannot lock any work items in the case family. If a work item is already
locked when its state is changed to "suspended," the work item may still be released, and the
release instructions will be carried out. Any new work items as a result of the release will
immediately become suspended, unless they are flagged to ignore suspensions (described
below). If the work item is kept, it will immediately become suspended, and it cannot be locked
again until the suspended state is removed with this method.

• Deadlines will continue to expire, however, if one expires while the case family is suspended,
no action will be carried out until the suspended state is removed with this method. Once the
suspended state is removed, the process flow will proceed as usual.

• Event steps do not support case suspension, i.e., an event can be triggered on a case that is sus-
pended. However, subsequent steps are suspended, unless they are flagged to ignore case sus-
pension (described below).

• Withdrawals do not support case suspension. For example, if you suspend a case then trigger an
event (see above), if the subsequent action is to withdraw an outstanding item, the withdrawal
will be processed.

Note - You must be using a TIBCO iProcess Engine to use this functionality.

When the state of a case family is set with the SetState method, the IsSuspended property on
SWCase is automatically set; it is set to True if the case family is suspended, or False if the case fam-
ily is active. This property is also available on the SWWorkItem object, representing the work items
in the case family.

When calling the SetState method, you can optionally pass FieldName / FieldValue pairs to identify
fields whose case data you want to update. You can also specify that the new data overwrite both
“case data” and “work item data”. See “Case Data vs. Work Item Data” on page 91 for information
about the difference between these types of data.

When a case is suspended, the following audit action (SWAuditActionType) is written to the audit
log:

• swSuspendedBy - The case family is set to “suspended.”

Reactivating a Suspended Case

To reactivate a suspended case, call the SetState method, passing swActive (an SWCaseStateType
enumeration) in the NewState parameter.

When a suspended case is reactivated, the following audit action (SWAuditActionType) is written to
the audit log:

• swResumedBy - The case family is set to “active.”

Case Management

TIBCO iProcess Objects Programmer’s Guide 255

Ignoring Suspended Cases

When a procedure is created with the TIBCO iProcess Modeler, normal, EAI, sub-procedure call
steps, dynamic sub-procedure call steps, and graft steps can be flagged to ignore suspensions. If
flagged to ignore suspensions, a step is processed normally even if the case in which it is located is
suspended. This flag is reflected in the IsIgnoreState property on SWStep.

Jumping To New Outstanding Step in a Case

You can specify that one or more outstanding items in a case family (a main case and all of its sub-
cases) be “withdrawn” and that the process “jump to” one or more other steps in the case family, mak-
ing those steps the new outstanding items. (To perform this functionality, you must be using a TIBCO
iProcess Engine.)

Note - Outstanding items represent the steps at which the process flow is currently sitting. Normal
steps (swNormal) that are outstanding result in a work item appearing in one or more work queues.
All other step types (event steps, sub-procedure call steps, etc.), result in some other action, such as an
external program being triggered, a sub-procedure being started, etc. These step types do not result in
a work item appearing in a work queue, although they are still considered outstanding because the
process flow is halted along that path of the process flow until whatever action was started by that
step is complete.

A withdrawal/jump-to operation is performed with the JumpTo method on the SWCase object. The
JumpTo method allows you to:

• Specify the set of outstanding items/steps to withdraw. These items may be in the main case or any
sub-case. See the “Determining Outstanding Items” section below for information about determin-
ing the currently outstanding items in the case. (You can specify a ‘*’ wildcard character to with-
draw all outstanding steps in the case family.)

• Specify the set of steps to “jump to”, making these steps the new outstanding items. These steps
may be in the main case or any sub-case. You can also optionally override the new outstanding
item’s default addressee, specifying one or more new addressees.

• Update case data when the withdrawal / jump to is performed. You can also optionally specify that
work item data be updated in all outstanding items. (See “Case Data vs. Work Item Data” on
page 91 for information about the difference between these types of data.)

You can withdraw / jump to the following types of steps:

• Normal (swNormal)

• Event (swEvent)

• EAI (swEAI)

• Sub-procedure (swSubProcCall)

• Dynamic sub-procedure (swDynamicSubProcCall)

You cannot withdraw an outstanding item representing a transaction control step, although you can
jump to a transaction control step.

You cannot withdraw an outstanding item representing a graft step, nor jump to a graft step.

Case Management

TIBCO iProcess Objects Programmer’s Guide 256

Determining Outstanding Items

The SWCase object provides properties that return lists of each of the different types of steps that are
currently outstanding in the case family. Obtaining a list of the current outstanding items in a case
family allows you to determine the items that are available for withdrawal with the JumpTo method.

The properties on SWCase that return outstanding item objects are:

• OutstandingItems - This returns a list of SWOutstandingItem objects, one for each normal
step that is outstanding in the case family.

• EventSteps - This returns a list of SWEventStep objects, one for each event step that is out-
standing in the case family.

• EAISteps - This returns a list of SWEAIStep objects, one for each EAI step that is currently
outstanding in the case family.

• SubProcSteps - This returns a list of SWSubProcStep objects, one for each sub-procedure call
step that is currently outstanding in the case family. Note that this property is also available on
the SWDynamicSubProcStep and SWGraftStep objects; from these objects, the SubProcSteps
property returns SWSubProcStep objects that represent the actual sub-procedures that were
started from the dynamic sub-procedure call step or graft step. Your withdraw list can include
either a sub-procedure call step that is outstanding in a case, or a sub-procedure that was started
by a dynamic sub-procedure call step or graft step. If you specify the name of a sub-procedure
that was started by a dynamic sub-procedure call step or graft step, all outstanding items in that
sub-procedure are withdrawn.

• DynamicSubProcSteps - This returns a list of SWDynamicSubProcStep objects, one for each
dynamic sub-procedure call step that is currently outstanding in the case family.

• GraftSteps - This returns a list of SWGraftStep objects, one for each graft step that is cur-
rently outstanding in the case family. (Note that graft steps can result in outstanding items,
although you cannot withdraw this type of outstanding item.)

• TransControlSteps - This returns a list of SWTransControlStep objects, one for each out-
standing transaction control step in the case. (Note that transaction control steps can result in
outstanding items, although you cannot withdraw this type of outstanding item.)

The IsRecurseProcPath property on SWCase specifies whether or not outstanding items in sub-
cases launched from the SWCase are also returned in the properties listed above. Setting this property
to True causes outstanding steps from the main case as well as all sub-cases to be returned. Setting it
to False (the default) causes the outstanding steps to be returned only from the main case.

Case Management

TIBCO iProcess Objects Programmer’s Guide 257

The following illustrates the outstanding item objects available in the object model.

ProcPath to Outstanding Items

Every outstanding item contains a “ProcPath” that provides a path from the main procedure to that
specific outstanding item. This ProcPath can be used in the WithdrawList parameter with the JumpTo
method to identify the outstanding items you want to withdraw. Note that the ProcPath may point to
either an outstanding item/step, or to an outstanding sub-procedure, in the case of sub-procedures that
are started by dynamic sub-procedure call steps and graft steps. (If you withdraw a sub-procedure that
was started by a dynamic sub-procedure call step or graft step, all outstanding items in that sub-proce-
dure are withdrawn.)

SWCase

< EAISteps

< EventSteps

< Fields

< FirstDeadline

< GraftSteps

< IsActive

<> IsAuditAscending

<> IsRebuildAll

<> IsRecurseProcPath

< IsSuspended

<> IsWithAuditData

< Key

< OutstandingItems

< OutStepCnt

< DynamicSubProcSteps

* DeleteGraftTask

* GraftExtProcessComp

* JumpTo

* Rebuild

* SetCaseData

* SetGraftTaskCnt

* SetState

* StartGraftTask

* TriggerEvent

* AddAuditEntry

L

< CaseFieldNames

< CaseNumber

< CaseReference

< ClassId

< ComputerName

< Description

< AuditSteps

LL

L

<> AuditFilterExpr

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcNode

< ProcNumber

< StartedBy

< SubProcSteps

< Tag

< TimeStarted

< TimeStartedOffset

< TimeTerminated

< TransControlSteps

< ProcDescription

L

L

SWOutstandingItem

< CaseNumber

< ClassId

< Deadline

< IsDeadline

< IsDeadlineExp

< IsForwardable

< IsLocked

< IsLongLock

< IsReleaseable

< IsSuspended

< IsUnopen

< IsUrgent

< Arrived

< Key

< LockedBy

< MailID

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< RequestId

< RequestIdHost

< StepName

< WorkItemTag

< WorkQName

< IsWorkQReleased

L

L

L

L

SWDynamicSubProcStep

< CaseNumber

< ClassId

< Deadline

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< SubProcSteps

< Arrived

SWGraftStep

< ClassId

< Deadline

< ExtProcesses

< GraftId

< IsGraftOutstanding

< IsGraftWithdrawn

< IsTaskCntSet

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< SubProcSteps

< TaskCnt

< CaseNumber

LL

< Arrived

LL

SWEAIStep

< CaseNumber

< ClassId

< Deadline

< ExternalId

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< ArrivedSWEventStep

< CaseNumber

< ClassId

< Deadline

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< Arrived

SWSubProcStep

< ClassId

< Deadline

< IsOutstanding

< Key

< ReturnStatus

< StartIndex

< StepName

< SubCaseId

< SubCaseNumber

< SubCaseTag

< SubProcMajorVer

< SubProcMinorVer

< SubProcName

< SubProcNode

< SubProcPath

< Arrived

LL

SWExtProcess

< IsOutstanding

< Key

< Name

< ReturnStatus

< StartIndex

< ClassId

SWTransControlStep

< CaseNumber

< ClassId

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< RetryTime

< StepName

< Arrived

L

Case Management

TIBCO iProcess Objects Programmer’s Guide 258

The ProcPath for an outstanding item can be obtained by accessing the following properties:

• ProcPath - This property is on the SWOutstandingItem, SWEventStep, SWEAIStep, SWGraft-
Step, and SWDynamicSubProcStep objects. It returns a string that provides the path from the
main procedure to the outstanding item.

• SubProcPath - This property is on the SWSubProcStep object. It provides the path from the
main procedure to the outstanding sub-procedure call step or the sub-procedure (if the SWSub-
ProcStep object represents a sub-procedure started by a dynamic sub-procedure call step or
graft step).

The illustration below shows how the ProcPath is constructed for a variety of outstanding items that
are several levels below the main procedure

If the outstanding item is in the main procedure, the ProcPath string will simply consist of the name of
the step for that outstanding item (see the NormalA step in the example).

Step ProcPath Sub-procedure ProcPath

NormalA “NormalA” SubProcC “Dynamic[0]”

NormalB “Dynamic[0]|NormalB” SubProcD “Dynamic[1]|Graft[0]”

NormalC “SubCallA|SubCallB|NormalC” SubProcE “Dynamic[1]”

EventA “Dynamic[1]|EventA” SubProcF “Dynamic[1]|Graft[1]”

EventB “Dynamic[1]|Graft[1]|EventB” Note that since SubProcA and SubProcB are
started by sub-procedure call steps, they do
not result in SWSubProcStep objects. There-
fore, there is no ProcPath to those sub-proce-
dures. Those sub-procedures can be
withdrawn by withdrawing their sub-procedure
call steps (SubCallA and SubCallB).

EAI “Dynamic[1]|Graft[0]|EAI”

Dynamic “Dynamic”

Graft “Dynamic[1]|Graft”

SubCallA “SubCallA”

SubCallB “SubCallA|SubCallB”

Case Management

TIBCO iProcess Objects Programmer’s Guide 259

If the outstanding item is located in a sub-procedure, the ProcPath string will consist of the name of
each sub-procedure call step leading to that outstanding item, followed by the step name, each sepa-
rated by a vertical bar (see SubCallB in the example).

If the case family contains any dynamic sub-procedure call steps or graft steps that start multiple sub-
procedures (see the Dynamic or Graft step in the example above), the name of the dynamic sub-proce-
dure call step and graft step in the ProcPath will include a StartIndex in square brackets. The StartIn-
dex (which is zero based) indicates the sequential order in which the sub-procedure was started by the
engine for that dynamic sub-procedure call step or graft step. It is used in the ProcPath to be able to
identify the path through multiple sub-procedures to the desired outstanding item. In addition to
appearing in the ProcPath as illustrated above, you can also determine the StartIndex for any particu-
lar sub-procedure that was started by a dynamic sub-procedure call step or graft step by accessing the
StartIndex property on the SWSubProcStep object.

The StartIndex is not applicable to sub-procedures that are started from a sub-procedure call step. If
the sub-procedure was started from a sub-procedure call step (rather than a dynamic sub-procedure
call step or graft step), the StartIndex property on the SWSubProcStep object that represents the sub-
procedure call step will return -1.

Using Graft Steps

A "graft step" allows an external application to inform the client application at run-time how many
"tasks" it intends to "graft" to that step. For each task that it will graft to the graft step, the external
application can specify any number of sub-procedures and/or external processes to start. You can graft
multiple tasks to one graft step.

For example, a financial application determines that a credit check and a transfer of funds are required
as part of the main procedure. When another case is started, it determines that only that a transfer of
funds is required. This means that the procedure is dynamic and cannot be decided at procedure defi-
nition time. One of the processes is a sub-procedure and the other is an external process run by the
financial system. They can be specified as a task at run-time and attached to a graft step for process-
ing.

A graft step is considered complete (i.e., its "release" actions are processed), when:

• It has been processed as an action of another step (i.e., the process flow has reached the graft
step), and

• an external application has informed the graft step how many tasks it needs to complete (i.e.,
the graft step’s task count has been set — IsTaskCntSet = True), and

• the graft step's task count (TaskCnt) has reached zero (the task count is decremented when a
task is started or if you delete a task), and

• all of the sub-procedures and/or external processes started for the graft step have completed.

Defining Graft Steps
Graft steps are defined using the TIBCO iProcess Modeler. A graft step is represented by the
SWGraftStep object. The following are elements of a graft step definition:

• Sub-Procedures / External Processes to Start - When a graft step is defined in the TIBCO
iProcess Modeler, you do not specify the names of sub-procedures and/or external processes
that will be started for the graft step; those are specified at run-time by the external application.
Instead, you specify a text "array field", which can contain multiple elements that are accessed

Case Management

TIBCO iProcess Objects Programmer’s Guide 260

by index. At run-time, the external application will write the names of the sub-procedures and
external processes to start into the elements of this array field.

The name of the array field containing the names of the sub-procedures and/or external pro-
cesses to start is available in the SWStep.SubProcName property.

See “Array Fields” on page 94 for information about how array fields are used with graft steps.

• Return Status - When a graft step is defined in the TIBCO iProcess Modeler, you can specify a
numeric array field, whose elements will contain a return status for each corresponding sub-
procedure in the SubProcName array field. The name of the array field containing the return
statuses is reflected in the SWStep.SubProcStatus property. See “Return Statuses” on
page 262 for more information about return statuses.

Starting a Graft Task

A graft task is started with the StartGraftTask method on SWCase. In this method call, you must list
the names of the sub-procedures and/or external processes that are being started as part of this task ini-
tiation. These names are written to elements of the array field that was specified in the graft step defi-
nition.

• If sub-procedures are started with the StartGraftTask method, the TIBCO iProcess Engine
will keep track of which of those sub-procedures have completed.

• If external processes are started with the StartGraftTask method, the client application must
keep track of when those external processes have completed, and for each one, must inform the
engine by calling the GraftExtProcessComp method when it is complete. (Note that calling
the StartGraftTask method does not actually start these external processes. It is merely provid-
ing the client the names of external processes that must be completed before the graft task is
considered complete.)

After specifying the names of the external processes to start in the StartGraftTask method, the
names are available in the SWGraftStep.ExtProcessNames property. External processes are
no longer outstanding and are removed from this list when you call GraftExtProcessComp to
tell the engine that the external process is complete.

Calling the StartGraftTask method causes the graft step's task count (TaskCnt -- see the next subsec-
tion) to be decremented by one.

When a graft task is started with the StartGraftTask method, a "graft ID" must be specified. This ID is
user-supplied and must be unique for this instance of the graft step. All other methods that can impact
this graft step must include this ID to ensure they are impacting the appropriate graft step. The graft
ID may be initially established with either the StartGraftTask or the SetGraftTaskCnt method, as
either one may be the first method called for a particular instance of a graft step. (You could establish
the graft ID for a graft step by calling the DeleteGraftTask method first, but it really doesn't make
any sense to delete a graft task before starting one or setting the count.)

For any given graft step, the StartGraftTask method can be called multiple times (using the same graft
ID). The sub-procedures and/or external processes specified in each subsequent call are appended to
the existing sub-procedure / external process names in the array field in the graft step definition.

Case data may also be supplied when calling the StartGraftTask method. This allows you to specify
field values that can be passed to sub-procedures that are started by the StartGraftTask method.

Case Management

TIBCO iProcess Objects Programmer’s Guide 261

Setting the Task Count

The client application must inform the TIBCO iProcess Engine how many tasks must be completed
for this graft step for it to be considered complete.

Setting the graft step's task count is done with the SetGraftTaskCnt method. Calling this method
causes the IsTaskCntSet property to be set to True, and increments the graft step's TaskCnt property
by the number specified in the SetGraftTaskCnt method. (Note that the task count (TaskCnt) may be
negative if you start and complete one or more tasks before you call the SetGraftTaskCnt method.)

The task count is automatically decremented by one each time the StartGraftTask or DeleteGraft-
Task method is called.

Outstanding Graft Items

A graft step becomes “outstanding” when the graft task
is initiated either with the StartGraftTask or SetGraft-
TaskCnt methods, or the process flow has reached the
graft step.

When the graft step becomes outstanding, an
SWGraftStep object representing the outstanding graft
item will be returned from the GraftSteps property on
SWCase.

Note that although the graft item is considered “out-
standing” (because it is returned when you access
GraftSteps), the IsGraftOutstanding property on
SWGraftStep returns True only if the process flow has
reached the graft step in the procedure. It does not
return True if the graft item is outstanding because it
was initiated with StartGraftTask or SetGraftTaskCnt.

The IsRecurseProcPath property on SWCase can be
used to specify whether or not the GraftSteps property
should be recursive, i.e., should the list include out-
standing graft items from sub-procedures that have
been launched from the main procedure.

You can determine the sub-procedures and/or external
processes that were started by the outstanding graft
item by accessing the following properties on
SWGraftStep:

• SubProcSteps - Returns a local list of SWSubProcStep objects, one for each sub-procedure
that was started by the graft item. This tells you ALL sub-procedures that were started, whether
they have completed or not. You can determine whether or not the sub-procedure has completed
by accessing the IsOutstanding property on SWSubProcStep; this property returns True if the
sub-procedure is still outstanding (it hasn’t completed yet).

Note that SWSubProcStep objects returned by the SubProcSteps property represent only sub-
procedures that were started by the graft item (the ProcPath returned by the SubProcPath prop-
erty on SWSubProcStep points to the sub-procedure).

SWGraftStep

< ClassId

< Deadline

< ExtProcesses

< GraftId

< IsGraftOutstanding

< IsGraftWithdrawn

< IsTaskCntSet

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< StepName

< SubProcSteps

< TaskCnt

< CaseNumber

LL

< Arrived

LL

SWSubProcStep

< ClassId

< Deadline

< IsOutstanding

< Key

< ReturnStatus

< StartIndex

< StepName

< SubCaseId

< SubCaseNumber

< SubCaseTag

< SubProcMajorVer

< SubProcMinorVer

< SubProcName

< SubProcNode

< SubProcPath

< Arrived

SWExtProcess

< IsOutstanding

< Key

< Name

< ReturnStatus

< StartIndex

< ClassId

Case Management

TIBCO iProcess Objects Programmer’s Guide 262

• ExtProcesses - Returns a local list of SWExtProcess objects, one for each external process that
was initiated by the graft item. This tells you ALL external processes that were initiated by the
graft step, whether they have completed or not. You can determine whether or not the external
process has completed by accessing the IsOutstanding property on SWExtProcess; this
method returns True if the external process is still outstanding (hasn’t completed yet). It is
flagged as completed when the application calls the GraftExtProcessComp method.

Return Statuses

A “return status” is available that provides status information for the sub-procedures and external pro-
cesses that are initiated/completed for a graft step. This status is available by accessing the Return-
Status property on SWSubProcStep (for sub-procedures) or SWExtProcess (for external processes).
These are described below:

• Sub-Procedures - The ReturnStatus property on SWSubProcStep returns an integer that
indicates the current status of the sub-procedure. The status for sub-procedures is set by the sys-
tem.

The integers returned by ReturnStatus are defined in the SWSubProcStatusType enumeration,
as follows:

• External Processes - The return status is only applicable to external processes after they have
completed.

When the GraftExtProcessComp method is called to tell the engine that the external process is
complete, a user-defined status can be specified in the method call. This ReturnStatus parameter
can be any integer the user chooses. It defaults to 0.

The ReturnStatus property on SWExtProcess returns the integer that was specified when the
GraftExtProcessComp method was called.

Note - You can also get the return status by using the ReturnStatus array field (SubProcStatus on
SWStep) that was specified in the graft step definition. The elements of the Return Status array fields
contain the status code for the corresponding sub-procedures or external processes named in the Sub-
ProcName array field (SubProcName on SWStep).

SWSubProcStatusType

swNoAttempt 0

swStarted 1

swCompleted 2

swErrSubProc -1

swErrTemplate -2

swErrInTemplateVer -3

swErrOutTemplateVer -4

Case Management

TIBCO iProcess Objects Programmer’s Guide 263

Other Status Information on an Outstanding Graft Item

The SWGraftStep objects that are returned in the GraftSteps property provide the following types of
status and count information about the graft step:

• whether the task count has been set yet on this graft step -- IsTaskCntSet property

• the current task count -- TaskCnt property

• the graft step's ID -- GraftId property (This will be established for the graft step if StartGraft-
Task or SetGraftTaskCnt has been called to provide the graft ID.)

• whether the graft step is withdrawn -- IsGraftWithdrawn property

• the graft step's deadline, if set -- Deadline property

• the case number of the case containing the graft step -- CaseNumber property

• the name and path to the graft step -- ProcPath property

Deleting a Task

After starting a graft task with the StartGraftTask method, you may decide you don't want to complete
that task and would like to delete it from the list of tasks the graft step needs to complete. This can be
done by calling the DeleteGraftTask method.

Calling DeleteGraftTask causes the TaskCnt property on SWGraftStep to be decremented by one.

Completing a Graft Step

A graft step is considered complete, and is subsequently released, when:

• the process flow has reached the graft step -- SWGraftStep.IsGraftOutstanding = True

• the graft step's task count has been set -- SWGraftStep.IsTaskCntSet = True

• all of the sub-procedures and/or external processes started for the graft step have completed

• all tasks have been completed -- SWGraftStep.TaskCnt = 0

When all of these conditions are met, the release actions for the graft step are executed.

Error Processing

Graft step definitions provide options that allow the definer to specify whether or not to halt process-
ing if an error is encountered during processing of the sub-procedures that are started by the graft step.
These options are reflected in the following properties on SWStep:

• IsHaltOnSubProc - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify non-existent sub-procedures.

• IsHaltOnTemplate - Returns True if processing should be halted when the "sub-procedures to
start" array field contains elements that specify sub-procedures that do not use the same param-
eter template. (Parameter templates are used when defining procedures to ensure that the same
input and output parameters are used when starting multiple sub-procedures from a graft step;
see the TIBCO iProcess Modeler Advanced Design Guide for information about parameter tem-
plates.)

• IsHaltOnTemplateVer - Returns True if processing should be halted when the "sub-proce-
dures to start" array field contains elements that specify sub-procedures that do not use the
same version of parameter template.

Case Management

TIBCO iProcess Objects Programmer’s Guide 264

These options for halting processing on specific error conditions have the following affects:

Errors during initial processing (when the graft step is processed as an action of another step):

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
TIBCO iProcess Engine. (This is specified with a background attribute:
IQL_RETRY_COUNT = the number of times the message will be retried;
IQL_RETRY_DELAY = the number of seconds between retries.) If the message retries
do not result in a successful initial processing, the following apply:

• Processing of the entire step is halted at this point -- it will always be left "waiting"
for the sub-case that's in error to be completed.

• All sub-procedures that have been started from the step are rolled back.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The other valid sub-procedures specified in the SubProcName array field will be started as
usual.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Errors during completion processing of one of the sub-cases:

• If an error is encountered and the step is defined to halt:

- The message that resulted in the error will be retried the number of times specified in the
TIBCO iProcess Engine. (This is specified with a background attribute:
IQL_RETRY_COUNT = the number of times the message will be retried;
IQL_RETRY_DELAY = the number of seconds between retries.) If the message retries
do not result in a successful completion processing, the following apply:

• Processing of the entire step is halted at this point -- it will always be left "waiting"
for the sub-case that's in error to be completed.

• The "sub-case completed" transaction for the sub-case in error is aborted -- this does
not cause transactions from other valid sub-case completions to be aborted.

• An SW_ERROR message is logged stating the reason for the failure.

• An appropriate entry is written to the audit trail for the parent case.

• If an error is encountered and the step is defined to NOT halt:

- The "sub-case completed" transaction for the sub-case in error is ignored (including
returned output parameter data).

- The status of the sub-case is set to "complete" so that the step can be released when all
other sub-cases complete.

- An SW_WARN message is logged stating the reason for the failure.

- An appropriate entry is written to the audit trail for the parent case.

Note that if none of the “halt on” selections are selected in the TIBCO iProcess Modeler when the
graft step is defined, and one of the error conditions are encountered (e.g., sub-procedures using dif-
ferent templates), the process will continue, which could possibly result in errors in case data.

Case Management

TIBCO iProcess Objects Programmer’s Guide 265

Transaction Control Steps

Transaction control steps provide a mechanism, within a procedure, to allow more transaction granu-
larity within a sequence of EAI steps (transaction control steps can only be used in conjunction with
EAI steps).

By default, the Background process groups a series of connected EAI steps into one transaction. If a
failure occurs in any EAI step in the series, the entire transaction is rolled back. A transaction control
step can be placed within the series of EAI steps to break the transaction into multiple transactions.
When the process flow reaches the transaction control step, the current transaction can be either com-
mitted and a new transaction started, or the current transaction can be aborted, depending on how the
transaction control step has been defined in the TIBCO iProcess Modeler.

For example, in the following procedure fragment, StepA is followed by a series of EAI steps. The
release of StepA and the execution and release of EAI1, EAI2, and EAI3 occurs as a single transac-
tion. A failure at any point in the series causes the transaction to rollback prior to the release of StepA.

By adding a transaction control step (TCS) between EAI2 and EAI3 as in the example below, two
transactions are created. When the process flow reaches the transaction control step, the current trans-
action is committed (assuming the successful execution and release of EAI1 and EAI2), then a second
transaction is started. A failure in execution/release of EAI3 will only cause a rollback prior to the
execution of EAI3.

Note that this is just one example of how transaction control steps can be used. For information about
additional ways transaction control steps can be placed and used in procedures, see the TIBCO iPro-
cess Modeler Integration Techniques Guide (which is provided in the documentation library on the
distribution CD).

Step Type

The Type property on the SWStep object will return the following constant if the step has been
defined as a transaction control step:

This constant is defined in the SWStepType enumeration.

Constant Description Value

swTransControl Transaction Control Step. ‘T’

Case Management

TIBCO iProcess Objects Programmer’s Guide 266

Type of Transaction Control Step

When a transaction control step is defined in the TIBCO iProcess Modeler, it is configured to be one
of the following three types:

• Commit and Continue - This type specifies that the current transaction be committed, and that
a new transaction be started for subsequent steps using the same Background process. The ben-
efit of choosing this option is that it is faster, as the same process starts the new transaction.

• Commit and Concede - This type specifies that the current transaction should be committed,
and that a new transaction be started for subsequent steps, except a different Background pro-
cess will be used for the second transaction.

The Background process processes the first transaction and updates the database. It then sends a
message back to the Mbox where the messages are stored. Processing of the next transaction
proceeds when the Background process (either the same one that processed the first transaction,
or another one) reads the message from the Mbox and processes it. The benefit of choosing this
option is that it enables load balancing because a different Background process can process the
second transaction.

• Abort - This option causes the abortion and rollback of the current transaction when the pro-
cess flow reaches the transaction control step. This option is typically used with a Conditional.
This allows you to specify a condition on which the transaction should be rolled back. After the
aborted transaction is rolled back, it will be retried using the normal Mbox queue message retry
behavior.

This type of transaction control step can be useful where a mixture of transactional and non-
transactional EAI steps are used in a procedure. The Conditional can check for an error state, a
corrective action can be performed in the non-transactional EAI step, then the abort transac-
tional control step will roll back the transaction.

The transaction control step type can be accessed in the TransControlType property on the SWStep
object. This property returns one of the following constants:

These constants are defined in the SWTransControlType enumeration. The TransControlType
property will return swNA if the step represented by SWStep is not a transaction control step.

Constant Description Value

swContinue Commit and continue transaction control step. ‘C’

swConcede Commit and concede transaction control step. ‘D’

swAbort Abort transaction control step. ‘A’

swNA Not applicable for this step type. ‘N’

Case Management

TIBCO iProcess Objects Programmer’s Guide 267

Outstanding Transaction Control Steps

The TransControlSteps property on SWCase returns an SWList of
SWTransControlStep objects, one for each outstanding transaction control
step in the case family.

See “Determining Outstanding Items” on page 256 for more information
about obtaining and using outstanding items.

Retrying Failed Transactions

If a transaction that is controlled from a “commit and continue” transaction control step fails, the
failed transaction will be retried after a specified period of time. The following properties reflect this
retry delay/time:

• SWStep.RetryDelay - This property returns the number of minutes in which a failed transac-
tion will be retried (only applicable for "commit and continue" transaction control steps). This
value is specified when the transaction control step is defined.

• SWTransControlStep.RetryTime - This property returns the date and time that the failed
transaction will be retried. This date/time is calculated from the time the transaction failed,
using the number of minutes specified when the transaction control step was defined (see
RetryDelay above).

If a transaction that is controlled from a “commit and continue” transaction control step fails for any
reason, the Deadline Manager will retry the failed transaction in the period of time specified when the
step was defined. The RetryTime property will return the date/time of this one-time retry. This one-
time retry by the Deadline Manager is for the purpose of allowing the reason for the failure to correct
itself so that the transaction can then be successfully processed.

Note, however, that if a failed transaction failed for some reason that is not corrected in the specified
delay time, the transaction may be continually retried by the standard Mbox message queue process
(the default is to retry 12 times, once every 5 minutes). These subsequent retries are not managed by
the Deadline Manager. Therefore, the date/time returned by the RetryTime property does not reflect
these additional retries — it will only contain the date/time of the initial retry — the one controlled by
the Deadline Manager.

SWTransControlStep

< CaseNumber

< ClassId

< Key

< ProcMajorVer

< ProcMinorVer

< ProcName

< ProcPath

< RetryTime

< StepName

< Arrived

Case Management

TIBCO iProcess Objects Programmer’s Guide 268

Transaction Control Step Audit Trail Messages

The following are the messages that are written to the audit trail when an action is performed against a
transaction control step. These are available in the SWAuditStep.Action property.

These constants are defined in the SWAuditActionType enumeration.

Closing Cases

Active cases of a procedure can be closed using the following methods:

• CloseCases - This method allows you to close one or more cases identified by their case num-
ber(s).

• CloseByCriteria - This method allows you to close cases based on a filter criteria expression.
Only those cases that match the criteria expression are closed. The filter criteria allowed is the
same as the criteria used when filtering a view or XList of cases. For information about the
allowable filter criteria, see “Filtering Work Items and Cases” on page 152.

This method is available on both the SWProc and SWNode objects. If called from SWNode,
you can optionally provide a list of procedures. Only cases of those procedures that match the
filter criteria are closed. (Note that you are not allowed to close cases from a slave node.)

To close cases using either of the methods above, the user must have system administrator authority
(MENUNAME attribute must be ADMIN — see “User Attributes” on page 221 for information about
the MENUNAME attribute).

After closing a case, the SWCase.IsActive property will be False to indicate it is no longer active.

You can filter and sort cases on their “active” or “closed” status by using the SW_STATUS system
field. If a case is active, SW_STATUS = “A”; if a case is closed, SW_STATUS = “C”.

Resurrecting a Closed Case

A closed case can be “resurrected” (i.e., it’s status changed to “active”) using the TriggerEvent
method on SWCase. From the SWCase object for the closed case, call TriggerEvent and pass True in
the Resurrect parameter (you must be using a TIBCO iProcess Engine to use this parameter). The case
will now become active, and the process flow will proceed from the Event step that was triggered by
the TriggerEvent method.

Constant Description Value

swTransProcessed Transaction Control Step Processed 54

swTransStarted Transaction Control Step - New Transaction Started 55

swTransRestart Transaction Control Step - Retry Time Expired 56

swTransAborted Transaction Control Step Processed - Transaction Aborted 87

Case Management

TIBCO iProcess Objects Programmer’s Guide 269

Purging Cases

Purging cases permanently deletes them from the system. You can purge cases using the following
methods:

• PurgeCases - This method purges one or more closed cases identified by their case number(s).

• PurgeByCriteria - This method purges cases based on a filter criteria expression. Only those
cases that match the criteria expression are purged. The filter criteria allowed is the same as the
criteria used when filtering a view or XList of cases. For information about the allowable filter
criteria, see “Filtering Work Items and Cases” on page 152.

This method is available on both SWProc and SWNode. If called from SWNode, you can
optionally provide a list of procedures. Only cases of those procedures that match the filter cri-
teria are purged. (Note that you are not allowed to purge cases from a slave node.)

• PurgeAndReset - This method purges ALL cases of the procedure and resets the case counter
(SWProc.CaseCnt) to 0.

To purge cases using any of the methods above, the user must have system administrator authority
(MENUNAME attribute must be ADMIN — see “User Attributes” on page 221 for information about
the MENUNAME attribute).

TIBCO iProcess Objects Programmer’s Guide 270

15
Stateless

Programming

Introduction

When using TIBCO iProcess Objects in a web-based environment, there are some stateless-model
concepts that you need to adhere to for your application to be efficient:

• The Logout method should NOT be called every time you disconnect from the server — see the
“Logging Out vs. Disconnecting” section below for more information.

• Use the “Make” methods to avoid pulling down large amounts of data from the server to access
a single item — see the “Stateless Objects” on page 271 for more information.

• Use XLists, especially persisted XLists of work items, to minimize network traffic — see “Per-
sisted XLists” on page 274 for more information.

Logging Out vs. Disconnecting

Logging into a TIBCO iProcess Objects Server accomplishes two things:

• Connecting to the TIBCO iProcess Objects Server

• Starting a SAL session

Connecting to the TIBCO iProcess Objects Server is very fast. It is the same connection that is made
between your browser and a web server every time you access a web page.

Starting a SAL session, on the other hand, is a very time-intensive operation. It involves connecting to
the Work Queue Server, caching bits of information, validating the user name and password, among
other things.

Calling the Login method always causes a connection to the TIBCO iProcess Objects Server to be
established. It then looks to see if a SAL session for the user already exists. If one does exist, it uses
that one for the new connection. If one does not exist, it starts a new session for the user.

Calling the Logout method closes both the connection to the TIBCO iProcess Objects Server and the
SAL session for the user. This is what was done in thick-client applications. However, in a stateless
environment, this is NOT what you want to do, because the next time the user connects, a new SAL
session must be started for the user, putting unneeded load on the TIBCO iProcess Objects Server,
SAL, login daemon, and the Work Queue Server.

Stateless Programming

TIBCO iProcess Objects Programmer’s Guide 271

In a stateless environment, use the SWEntUser.Disconnect method. This method disconnects the
user from the TIBCO iProcess Objects Server, leaving the user’s SAL state present in the TIBCO
iProcess Objects Server. When the user returns to the web page, a login is performed (with the Login
method). The TIBCO iProcess Objects Server notices that there is already a SAL session open for that
user, so it doesn’t start one, making the connection very fast.

When the user is completely done and does not expect to issue any more requests to the TIBCO iPro-
cess Objects Server, the Logout method should be called to clear the now unneeded SAL session in
the TIBCO iProcess Objects Server.

Stateless Objects

When building web-based applications, maintaining the state of objects between pages is not efficient
because of the stateless nature of the web. If you use TIBCO iProcess Objects in your web-based
application, you would normally be required to reconstruct the objects, through the hierarchy of the
object model each time a page is accessed. This results in a large volume of network traffic between
the server and client, and a high latency that is not acceptable in a web environment. Therefore, to
facilitate the building of web-based applications, methods are provided that allow you to create state-
less objects.

The methods used to create stateless objects provide direct access to the objects residing in lists within
the hierarchy of the object model, without requiring you to traverse object lists and create the underly-
ing objects in the object model hierarchy. This minimizes the volume of data passed between the cli-
ent and server.

A subset of the objects in the object model are suitable for stateless processing. Some objects, such as
SWForm, SWMarking, and SWPriority, have no meaning when used outside of the object hierarchy.
For example, SWMarking, which represents a field placed on a Staffware form, is not useful when
created by itself. It is only useful when it is derived from the SWStep object to which it belongs.

The following table lists the objects that are suitable for use in a stateless environment, as well as the
names of the methods used to create those objects without traversing the object model hierarchy.

Object Stateless Method

SWAttribute MakeAttribute

SWAWorkQ MakeAWorkQ

SWCase MakeCase

SWGroup MakeGroup

SWListValidation MakeListValidation

SWNodeInfo MakeNodeInfo

SWOSUser MakeOSUser

SWProc MakeProc

SWRole MakeRole

SWStep MakeStep

Stateless Programming

TIBCO iProcess Objects Programmer’s Guide 272

The primary purpose of these methods is to provide a way for a web-based application to access an
object without having to reconstruct it through the object hierarchy each time a new web page is
accessed. It is also important to note that using these methods is a much more efficient way to access
an object if the list containing the object on the server contains a large number of objects — this pre-
vents having to download the entire list from the server.

Single-Parameter Methods

The stateless methods listed in the table above all require parameters that provide information about
the object that had already been created on a previous web page. For example, if you were to create an
SWProc object with the MakeProc method, you need to provide the name of the procedure and,
optionally, the name of the node:

MakeProc(ProcName,[NodeName])

Using this method would require you to have saved the procedure name and node name somewhere so
that they could be used on a future web page to re-create the SWProc object.

To make this process easier, single-parameter methods are provided. Single-parameter methods are
available to re-create the stateless objects that require more than one parameter. These are:

• MakeAWorkQByTag(Tag)

• MakeCaseByTag(Tag)

• MakeNodeInfoByTag(Tag)

• MakeProcByTag(Tag)

• MakeStepByTag(Tag)

• MakeWorkItemByTag(Tag)

• MakeWorkItemByTagEx(Tag, [CDQPNames], [CaseFieldNames])

• MakeWorkQByTag(Tag)

• MakeViewItemsByTag(Tag)

Each of these methods requires only a single Tag parameter that consists of a string containing all of
the information needed to re-create that object.

Using the Tag Property

Each of the objects that can be re-created with the stateless single-parameter methods, also has a Tag
property that can be used to re-create that object. This property contains the information needed to re-
create the object at a later time in a stateless environment.

SWTable MakeTable

SWUser MakeUser

SWWorkItem MakeWorkItem / MakeWorkItemEx

SWWorkQ MakeWorkQ

Object Stateless Method

Stateless Programming

TIBCO iProcess Objects Programmer’s Guide 273

For example, the SWNodeInfo.Tag property contains the computer name, node name, IP address, and
TCP Port number for the SWNodeInfo object. That’s all the information needed to re-create that
object in a stateless environment.

Typically, you would save the Tag property from the desired object, then use it as an argument for a
'ByTag' method to create the desired object at a later time (e.g., a subsequent web page).

The Tag property allows you to create a stateless object by maintaining a single value rather than
maintaining multiple values across web pages. See the example below.

for each oNodeInfo in oEnterprise.NodeInfos
if Request.Form("Server") = oNodeInfo.SWEOSrvDesc then

'found the matching SWNodeInfo object
session("NodeTag") = oNodeInfo.Tag 'save Tag property
session("NodeDesc") = oNodeInfo.SWEOSrvDesc 'save SWEOSrvDesc property
exit for

end if
next

Then, on a subsequent web page, the Tag property information that was saved can be used to re-create
that object. For example:

set oEnterprise = CreateObject("SWEOCom.SWEnterprise.1")
oEnterprise.IsBroadcast = false 'disable UDP broadcast for servers, will use

'MakeNodeInfoByTag to save time on login

set oNodeInfo = oEnterprise.MakeNodeInfoByTag(session("NodeTag"))

set oEntUser = oEnterprise.CreateEntUsers(session("SWUserName"))
.
.
.

Passing an Empty Object in the Make Methods (C++ only)

When using TIBCO iProcess Objects (C++), the "make" methods require that you create a new
"empty" object, then pass that object as an argument with the method call (the makeNodeInfo and
makeNodeInfoByTag methods are an exception -- they are used to add a node to the NodeInfos list).
For example:

SWGroup *makeGroup(SWGroup *pSWGroup,
char *GroupName);

Note - The requirement to pass a new empty object has been extended to a few "non-make" methods as
well, specifically, the getXList, getXListPredict, and getExtWorkItem methods.

This is required because of memory allocation rules; TIBCO iProcess Objects use a memory manage-
ment tool (Microquill's SmartHeap) that requires, by license agreement, that only TIBCO iProcess
Objects use its heap. For this reason, the application must use the normal heap instead of the Smart-
Heap heap. Therefore, the application must create the empty object so that it is on the normal heap.

Stateless Programming

TIBCO iProcess Objects Programmer’s Guide 274

After the application is finished using the object that it is "making", it must explicitly delete that
object to prevent a memory leak. An example is shown below. This example uses the makeGroup
method -- all of the other "make" methods work similarly.

SWEnterprise *pSWEnterprise;
SWEntUser *pSWEntUser;
SWNode *pSWNode;
SWList *pSWGroups;
SWGroup *pSWGroup;
SWGroup *pSWGroup1;

try {
pSWEnterprise = new SWEnterprise;
pSWEntUser = pSWEnterprise->createEntUser(EntUserName);
pSWEnterprise->setBroadcast(false);
pSWEnterprise->addNode(ServerName, NodeName);
pSWNode = pSWEntUser->login(NodeKey, Password, UserName);
pSWGroups = pSWNode->getGroups();
pSWGroup = (SWGroup *) pSWGroups->item(0);
pSWGroup1 = pSWNode->makeGroup(new SWGroup(), pSWGroup->getName());

// This newly created SWGroup object...
... (use pSWGroup1 object) ...

delete pSWGroup1;// ...must be deleted to prevent leak.
pSWEntUser->logout(NodeKey);
delete pSWEnterprise;

}
catch (SWException Except) {

LOG(CTLOGALL, "???, "
 "Number %d Description '%s'\n",
 Except.Number, Except.Description);

Because of the memory management tools used by TIBCO iProcess Objects, the following rule must
be followed to prevent memory leaks: if TIBCO iProcess Objects create an object, they will delete it;
if the client application creates an object, it must delete it.

Persisted XLists

The client can ask the TIBCO iProcess Objects Server to persist a collection of work items. (Only
work items can be persisted.) This allows the client to disconnect from the server, then reconnect at a
later time and have access to the same collection of work items from the previous connection. The
most obvious use of this feature is for web-based applications to provide access to a consistent list of
work items for a given user between successive web pages.

For information about persisting XLists, see “Working with Persisted XLists” on page 81 in the
“Working with Lists” chapter.

TIBCO iProcess Objects Programmer’s Guide 275

16
Optimizing Your

Applications

Introduction

By their nature, object models provide a lot of flexibility in how you program with them. With the
TIBCO iProcess Objects object model, however, there are a number of areas in which you can realize
improved efficiency by performing functions in a certain way.

This chapter outlines those areas in which you can optimize your client applications.

Handling Large Lists of Work Items, Cases, Users, OS Users, Groups

When the object model was first created, the SWView object was the list object that was used to store
filtered and sorted lists of work items and cases. And the SWList object was used to store lists of
users, OS users, and groups.

It was determined later that when working with views and lists containing very large numbers of items
(in the multiple thousands), they were not as efficient as desired. When you access an item for the first
time in a view or list (or rebuild the list), all of the available items are retrieved from the server regard-
less of whether or not the application needs all of the items. Furthermore, to get the last item in the raw
data buffers requires sequentially parsing all raw data into objects. Depending on the number of items,
this can take a considerable amount of time. That’s why the SWXList object was conceived.

“XLists” are more efficient than SWViews or SWLists because they only download a “block” of items
from the server instead of all the available items. This makes for a much faster access when dealing
with very large lists, especially in situations when you only need to access a few of the items in the
large list.

All new development should use SWXLists whenever possible to make the application more effi-
cient.

See “SWXLists” on page 73 for detailed information about using XLists.

Optimizing Your Applications

TIBCO iProcess Objects Programmer’s Guide 276

Clear Blocks on Client when using XLists

The blocks of work items retrieved from the TIBCO iProcess Objects Server and maintained in the
XList consume local memory. The following are provided to control this memory usage:

• IsKeepLocalItems property - This read/write property on SWXList allows you to specify
whether or not multiple blocks of items should be kept locally as subsequent blocks are
retrieved from the server. This allows you to conserve local memory by specifying that only
one block at a time be held locally. If set to True, multiple blocks will be kept locally. If set to
False (the default), the previous block will be removed from the XList when a new one is
retrieved from the server, i.e., only one block is kept locally at a time.

• Clear method - This method on SWXList frees memory and removes all items from the list on
the client. Note that when called from an SWXList (this method is also available on other types
of lists), it clears only the list on the client, not the buffers. Which means that if you clear an
XList with the Clear method, then access an item, you are getting the same buffer data as before
you cleared the list.

See “Populating an XList of Work Items” on page 77 for more information about how blocks of work
items are retrieved from the server.

Optimizing Communications between Client and Server

Below is a list of the actions you can take to minimize the overhead involved in communicating
between the client and server:

• In a thick-client application, maximize the re-use of objects. To do this, don’t continually log in
and out, which causes the SWNode object and all of its dependent objects to be destroyed.

• Use filtering to retrieve only the items that the application is specifically interested in. This
reduces network traffic by causing only the items that match the filter criteria to be retrieved
from the server.

• If using SWViews, use the MaxCnt property to limit the number of items to retrieve from the
TIBCO iProcess Objects Server.

• Only use the “alternate” view/XList methods (MakeViewItems, MakeXListItems, MakeV-
iewCases, MakeXListCases) when you need to view work items across multiple work queues
or nodes at one time. Whenever possible, use the “default” view/XList (WorkItems,
WorkItemsX, Cases, and CasesX).

• Don’t unnecessarily call the Rebuild method. This can potentially cause large amounts of
unnecessary network traffic. Rebuild should be called only when you know that the list is out of
date.

Other than administrative- or reporting-type applications, Rebuild should only be done on
SWViews or SWXLists of SWCases and SWWorkItems.

• When working with web-based applications, use the available stateless objects to prevent hav-
ing to create all of the underlying objects, resulting in less network traffic between the server
and client. See “Stateless Programming” on page 270 for information about stateless objects.

Optimizing Your Applications

TIBCO iProcess Objects Programmer’s Guide 277

Filtering and Sorting in an Efficient Manner

The way in which you specify your filter and sort criteria can have a significant impact on how effi-
ciently the filter and sort operation is performed. Flow diagrams are provided in the Filtering Work
Items and Cases chapters that illustrate how to make your filter and sort operation more efficient. See
the Filtering/Sorting in an Efficient Manner sections on page 103, page 131, or page 157 (depending
on which of the filtering enhancements have been implemented in your TIBCO iProcess Objects
Server) for a description of each of the flow diagrams.

How Getting Case Data affects Application Efficiency

The Filtering Work Items and Cases chapters discuss the impact of getting case data when filtering
and sorting. You should understand, however, that there is a performance impact on your application
anytime you get case data.

The CaseFieldNames property contains the names of the case’s fields that will be returned in the
Fields property of SWCase. If this property is empty (the default), no fields are returned. Developers
can add and remove field names to/from the CaseFieldNames property, or add a value of &ALL& to
specify that all fields be returned.

The easy thing to do is to pass &ALL& to CaseFieldNames to get all of the fields. This can adversely
affect performance, however. Don’t use &ALL& unless you really do need all or most of the fields in
the case(s).

Getting Case Data on View/XList vs. Case

The CaseFieldNames property is on SWCase, as well as SWView and SWXList (it’s actually on
SWCriteriaC and SWCriteriaWI, which are used to specify criteria for the SWXList).

If you need case data for all or most of the cases in a view or XList, it is much more efficient to spec-
ify the field names in the CaseFieldNames property on the SWView or SWCriteriaC/SWCriteriaWI
object. This causes the TIBCO iProcess Objects Server to return the fields for each case in the view or
XList in a single request to the server.

However, if you need case data for only a few cases in the view or XList, it is more efficient to specify
the field names on each specific SWCase object. This causes the client to make separate requests for
each case on which you need the case data.

Optimizing Your Applications

TIBCO iProcess Objects Programmer’s Guide 278

Looping Through Items in an SWList or SWView

This section describes the proper way of looping through items in an SWList or SWView.

Note - If you are dealing with very large lists, you should be using SWXLists instead of SWViews or
SWLists. See “Handling Large Lists of Work Items, Cases, Users, OS Users, Groups” on page 275 for
information about using SWXLists.

If you want to loop through all items in an SWView, DO NOT loop on the Count property. Instead
loop on the IsEOL property, accessing items sequentially until the IsEOL property is true.

oWorkQ.WorkItems.MaxCnt = 20
oWorkQ.WorkItems.IsEOL = False
While Not (oWorkQ.WorkItems.IsEOL)

Set oWorkItem = oWorkQ.WorkItems.Item(i)
.
.

i = i + 1
Wend
cnt = oStartProcs.Count

Or use the For Each construct in VB:

For Each oWorkItem In oWorkQ.WorkItems
ListCtl.AddItem oWorkItem.Key

Next

The Count property reflects the number of objects that have been created and placed on the list/view
at the client, not necessarily all objects that are available from the server.

The IsEOL property will equal true when the last object available in the buffers has been created into
an object and placed on the list/view. At that point, the Count property will accurately reflect the num-
ber of items available on the server.

Locking, Keeping, Releasing Multiple Items

If you are going to be processing multiple work items that are on an SWView or SWXList, it is much
more efficient to use the methods on the SWWorkQ object. They are:

• LockItems • LockItemsEx

• KeepItems • KeepItemsEx

• ReleaseItems • ReleaseItemsEx

• UnlockItems • UnlockItemsEx

• UndoItems • UndoItemsEx

These methods allow the client to process multiple work items with a single message trip to the server.
Whereas, if you are using the singular version of these methods (LockItem, KeepItem, etc.) on the
SWWorkItem object, a message is sent to the server for each individual work item processed.

Note - It is recommended you
work on a small set of items at a
time by setting MaxCnt. A rea-
sonable value is 20-50.

Optimizing Your Applications

TIBCO iProcess Objects Programmer’s Guide 279

Optimizing VB Application Performance

If you are developing in Visual Basic, use early binding (i.e., reference the SWEOCom.dll in the VB
project and use the “new” operator to create objects) instead of late binding (which uses the
CreateObject operator to create objects) when instantiating objects. For example:

Set oEnterprise = New SWEnterprise

Note that there are only three objects that can be created by the programmer — SWEnterprise,
SWSortField, and SWMarking. All others are instantiated by other objects. (The TIBCO iProcess
Objects (Java and C++) also have an SWDate object that can be created by the programmer.)

Accessing a Single Object

If you need to access a single object (work queue, work item, case, etc.), and you know which object
you need, it is much more efficient to use one of the “Make” methods (MakeWorkQ, MakeCase,
MakeWorkItem, etc.) These methods allow you to provide the name of the desired object, and have
that object directly created. The only requirement is that you know the name of the object you need
created.

Using the Make methods significantly reduces network traffic by eliminating the need to reconstruct
the entire object hierarchy to get to the single desired object.

See “Stateless Objects” on page 271 for more information about these methods.

Clear Unneeded Views and XLists

When you are finished using SWViews and SWXList in your client application, clear them to free
memory and system resources:

oWorkQ.WorkItems.Clear

Case Indexing

Lists of cases are indexed by case number (SW_CASENUM) and case reference number
(SW_CASEREF). Therefore, if you need to search a list of cases for one case or a small number of
cases, searching on the case number or case reference number is very fast. For example:

SW_CASENUM = 5

or

SW_CASEREF=”2-6”

Note - Case number is an integer; case reference number is a text string.

Searching a list of cases using any other expression causes the TIBCO iProcess Objects Server to have
to search through the entire list, adversely affecting performance.

TIBCO iProcess Objects Programmer’s Guide 280

18
Client Configuration

This chapter provides information about the following items that can be configured in the client:

• Client Log - This log records messages generated by base objects. For more information, see
“Client Log” on page 280.

• Message Wait Time - This specifies the amount of time the client will wait for a response from
the server. For more information, see “Message Wait Time” on page 290.

• Encoding Using ICU Conversion Libraries - ICU conversion libraries can be used to specify
the desired character encoding. For more information, see “Character Encoding Using ICU
Conversion Libraries” on page 291.

Client Log

The client log records messages generated from the client application. These messages are most useful
for debugging.

Note - The following logs are also available as noted:

• TIBCO iProcess Objects Server Log - This log records messages generated by the TIBCO
iProcess Objects Server. For more information, see the TIBCO iProcess Objects Server Admin-
istrator’s Guide.

• Audit Log - This log records information about administrative functions that are performed
(e.g., adding/removing users, changing passwords, etc.). For more information, see the TIBCO
iProcess Objects Server Administrator’s Guide.

• UNIX System Log - This log records activity performed on UNIX systems. For more informa-
tion, see the TIBCO iProcess Objects Server Administrator’s Guide.

When the client needs to log a message, if the log exists, the new message is appended to the existing
log. If the log does not exist, a new log is created, then a header is written to the log, followed by the
message.

By default, only swLogError-level messages are written to the log. These are errors not expected by
the client (these were formally written to the Application Event Log on NT). So if no errors are occur-
ring, no log is created.

The client log contains one line for each message. They are in the format:

f|ppppp|ttttt|hhhhhhhh|dd/dd/dddd dd:dd:dd.ddd|wwwwwwwww|PPPPPPPPP|cccccccc|mmmmmmmm|llll|UserMsg

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 281

where:

Hood ID
Log messages that have a common source or a natural affinity are said to be from a common hood.
The Hood ID identifies that relationship. For example, all log messages generated in the process of
receiving TIBCO iProcess Objects Server messages are from the receive thread hood (00000001), and
all messages generated by the client log code are from the SWLog hood (00000000).

Logging on to a server (which creates a new SWNode object) generates a new Hood ID. All objects in
the hierarchy below this node are in the same hood (0000000B and above).

Objects in the hierarchy prior to login (like SWEnterprise, SWEntUser, etc.) each have the Hood ID
of SWEnterprise initialization.

User Message
The user message is the text that comes out of the object when the log message is generated. The user
message should adhere to the following format (adhering to this format is important for the log to be
properly read by the Client Log reader program):

<Module/Class>.<Routine>:<Text Message> (Relevant Data)

where:

f Line format (B - Basic, M - Contains memory values)

ppppp Process ID

ttttt Thread ID

hhhhhhhh Hood ID, where:
00000000 = Msg from SWLog
00000001 = Msg from receive thread
00000002 = Msg from SWEnterprise initialization
00000003 = User-created object (SWMarking, SWSortField)
00000004 = JNI boundary error
00000009 = Undefined hood
0000000A = After SWEnterprise created, but before login (SWNode)
0000000B & above = Logged in user node returns

dd/dd/dddd dd:dd:dd.ddd Date and time

wwwwwwwww Working set size (only appears if IsShowMemory = True)

PPPPPPPPP Page file usage (only appears if IsShowMemory = True)

cccccccc Log category (hex format)

llll Log level (ERR, WARN, INFO, DEBG)

mmmmmmmm Message type (see SWLogMessageType on page 287)

UserMsg User message

Module/Class The source module or class file from which the message originates.

"." A period separator.

Routine The specific property, method or routine in the Module/Class.

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 282

An example message written to the client log is shown below:

B|00076|0015C|00000001|06/05/2001 08:27:43.752|00000100|7FFFFFFF|ERR |RcvThread.main: Socket
Problem on Read,(WSAGetLastError = 10054, sockfd = 568)

Note - These messages are always logged as swLogInformation (log level) and swCatSEOUser (cate-
gory). So you must ensure this level and category are enabled.

Controlling the Client Log

You can dynamically control the client log. It can be turned on and off, its location can be modified,
you can specify the types and categories of messages to log, etc.

You can control the client log using the following methods:

• using the SWLog object

• through Registry settings (Windows only)

• through environment variables (UNIX only)

These are described in the following subsections.

The SWLog Object

The SWLog object allows configuration and control of the client log from the
client application. It contains properties and methods that can be used to define
the location of the log file, the level of logging, the size of the log, etc.

The SWLog object is created when the SWEnterprise object is instantiated. It
is accessible from the SWEnterprise.ClientLog property.

Note - The SWEnterprise object also contains a ReceiveLog property that has
been deprecated. New code should use the ClientLog property. The ReceiveLog
property will return the same SWLog object as the ClientLog property.

The functions provided through the properties and methods of the SWLog
object are described in the subsections that follow.

All objects share the same log, so if there is more than one SWEnterprise
object in the client application, changing SWLog of one SWEnterprise also
effects the other.

":" A colon separator.

Text Message Generic text message (should not contain instance or error-specific data).

(Relevant Data) Instance or error-specific data. This is the only place where you can insert C-lan-
guage format specifications or values of variables into the message. This data is
enclosed in parentheses.

10

SWLog

* DisableMessage

* EnableCategory

* EnableMessage

* Log

* ResetLog

* DisableCategory

< ClassId

<> IsActive

<> IsShowMemory

<> LogDirectory

<> LogId

<> LogLevel

<> MaxSize

<> Messages

<> Categories

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 283

Registry Settings (Windows only)

When the SWLog object is initially created (upon SWEnterprise creation), it attempts to obtain its
property values from the Registry. If the Registry entries exist, they are written to the properties of the
SWLog object. If the Registry entries do not exist, a Registry key is created at the path shown below.

HKEY_CURRENT_USER
Software

Staffware plc
Staffware SEO Client

Logs
SWClient_VB6

Note - The Registry path is slightly different if running from IIS. Instead of HKEY_CURRENT_USER,
the Registry location is HKEY_USERS\.DEFAULT.

When the Registry entries are initially created, the name of the key is determined by the value of the
LogId property of the SWLog object. In Windows, the default LogId value is the name of the proce-
dure in which the SWLog object is created, prefaced with “SWClient_”. For example, if the SWLog
object is generated from the Visual Basic 6 IDE environment, the Registry key will be
“SWClient_VB6”.

Since the SWLog object always tries to obtain its property values from the Registry upon creation,
you can use the Registry to configure and control the client log by setting the Registry values prior to
SWLog creation. You can also prevent a client log file from ever being created by ensuring the entries
have been added to the Registry, then setting the Active flag to “0” (false).

When the Registry entries are created, the default values of the SWLog object are written into the
Registry. They are:

• Active = “1” (true)
• Categories = “7FFFFFF3” (all categories except swCatConstDestr and swCatReceiveThread)
• LogDirectory = “C:\TEMP\”
• LogLevel = “1” (Error level — the lowest level)
• MaxSize = “15”
• Messages = “7FFFFFFF” (All messages)
• ShowMemory = “0” (No)

After the SWLog object is created, if a property value is changed, that change is written to the Regis-
try and it becomes active.

Changing the LogId property of the SWLog object causes a new Registry key to be created and ini-
tialized with the current values of the SWLog properties. Any SWLog property changes made after
changing the LogId causes the change to be written to the Registry under the new LogId.

Environment Variables (UNIX Only)

When the client log is initially created, it attempts to obtain its property values from the environment
variables listed below. If the environment variables exist, those values are used. If the environment
variables do not exist, the defaults shown in “Registry Settings (Windows only)” above are used.

The environment variables that control the client log are NOT automatically created. If you want to
use them to control the log, you must manually create them.

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 284

Since the client log always tries to obtain its property values from the environment variables upon cre-
ation, you can use them to configure and control the client log by creating them, and setting their val-
ues prior to log creation. You can also prevent a client log file from ever being created by ensuring the
Active flag (SEOClient_Active environment variable) is set to “0” (false).

The following are the UNIX environment variables that can be created to control the client log:

• SEOClient_Active

• SEOClient_Categories

• SEOClient_LogDirectory

• SEOClient_LogLevel

• SEOClient_MaxSize

• SEOClient_Messages

• SEOClient_ShowMemory

Name and Location of the Client Log

Log File Name

The LogId property on the SWLog object specifies the name of the client log (as well as the Registry
key name). If you change this property, a new client log is created with the new name (a new Registry
key is also created with the new name).

The default client log name depends on the operating system you are using, as follows:

• Windows - The name of the procedure in which the SWLog object is created, prefaced with
“SWClient_”. For example, if the SWLog object is generated from the Visual Basic 6 IDE
environment, the Registry key will be “SWClient_VB6”.

• UNIX - The name defaults to “SEOClient”.

Log File Directory

The client log will be written to the directory specified in the LogDirectory property of the SWLog
object.

The default directory depends on the operating system you are using, as follows:

• Windows 98, ME, and NT - The value of the TEMP environment variable (typically,
“C:\TEMP\”).

• Windows 2000 and XP - Documents and Settings\username\Local Settings\Temp\

• UNIX - The directory defaults to “/tmp/”.

Activating / Deactivating the Client Log

The SWLog.IsActive property specifies whether or not messages are written to the client log. This
includes “always log” messages (category swCatAlwaysLog). This property allows you to turn off
logging without having to clear the category and message filter settings (which are described in the
next section). The default setting for IsActive is true — logging is enabled.

Setting IsActive to False does not inhibit writing the SWLog properties to the Registry; it merely
causes all messages to be filtered out.

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 285

You can use the IsActive property to prevent the client log from ever being created. Before the
SWLog object is created (prior to instantiating SWEnterprise), set the IsActive flag in the Registry to
“0” (false). When the SWLog object is created, it will obtain its default values from the Registry,
including setting the IsActive property to false (based on the setting of the Active flag in the Registry).

Filtering the Client Log

The SWLog object contains a number of properties and methods that allow you to specify the catego-
ries and types of messages that are written to the client log. The subsections that follow describe these
filtering functions.

Setting the Log Level

The log level is used to filter the amount of information that is written to the client log. You can set the
log level using the SWLog.LogLevel property. The SWLogLevelType enumerations can be used to
specify the amount of information to record:

The log levels are hierarchical, from the least amount of information to the most, with each higher
level including the information from the levels below it.

The default log level is swLogError.

Note - Is is not recommended that you select swLogDebug along with swCatAll, as the amount of log
information can impact performance.

Filtering by Category

“Categories” of messages have been defined that allow you to filter according to broad areas of func-
tionality. For example, there are categories that have to do with UDP, WinSock, constructors/destruc-
tors, etc. You can filter the client log according to these categories using the SWLog.Categories
property. The SWLogCategoryType enumerations can be used to specify the categories you would
like written to the log.

SWLogLevelType Value
Amount of
Information

swLogError 1 Least

swLogWarning 2

swLogInformation 3

swLogDebug 4 Most

SWLogCategoryType Value

swCatAll 0x7FFFFFFF

swCatAlwaysLog 0x00000001

swCatSEOUser 0x00000002

swCatConstDestr 0x00000004

swCatReceiveThread 0x00000008

swCatMessages 0x00000010

swCatMsgSend 0x00000020

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 286

Notice that a unique bit is set for each category, allowing you to specify multiple categories with a sin-
gle designation. Set the SWLog.Categories property to the hex value that is the combined value for
all the categories you want written to the client log.

The category setting defaults to 0x7FFFFFF3, which includes all categories except swCatConstDestr
(object constructors/destructors) and swCatReceiveThread. If you need object constructor/destructor
or receive thread information in the log, you can use the SWLog.Categories property to set it to
swCatAll, or use the EnableCategory method to enable the swCatConstDestr and/or swCatReceive-
Thread category — see the next section for information about the EnableCategory method.

Enabling and Disabling Categories
The SWLog object provides methods that allow you to enable or disable a single message category.
They are:

• EnableCategory(Category) - This method adds the specified category to the list of categories
that are written to the client log. The specified category must belong to the SWLogCategory-
Type enumeration.

• DisableCategory(Category) - This method removes the specified category from the list of cat-
egories that are written to the client log. The specified category must belong to the SWLogCat-
egoryType enumeration. Other enabled categories remain enabled.

swCatMsgReceive 0x00000040

swCatUDP 0x00000080

swCatWinSock 0x00000100

swCatConversion 0x00000200

swCatTiming 0x00000400

swCatMethodCalls 0x00000800

swCatObjectWrapping 0x00001000

swCatMemory 0x00002000

SWLogCategoryType Value

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 287

Filtering by Message

This functionality allows you to filter messages
that are generated when the client sends messages
to the TIBCO iProcess Objects Server. This is
done by using the SWLog.Messages property.
The SWLogMessageType enumerations can be
used to specify the message types that you would
like written to the log. (Note that this is applicable
only if the swCatMessages category is enabled;
see the previous section.)

Notice that a unique bit is set for each message
type, allowing you to specify multiple message
types with a single designation. Set the
SWLog.Messages property to the hex value that
is the combined value for all the message types
you want written to the client log.

The default category is swMsgAll — all message
types are written to the log.

Enabling and Disabling Messages
The SWLog object provides methods that allow
you to easily enable or disable a single message
type. They are:

• EnableMessage(Message) - This method
adds the specified message type to the list
of message types that are written to the cli-
ent log. The specified message type must
belong to the SWLogMessageType enu-
meration.

• DisableMessage(Message) - This method
removes the specified message type from
the list of message types that are written to the client log. The specified message type must
belong to the SWLogMessageType enumeration. Other enabled message types remain
enabled.

SWLogMessageType Value

swMsgAll 0x7FFFFFFF

swMsgTCP 0x00000001

swMsgUDP 0x00000002

swMsgLogin 0x00000004

swMsgPassword 0x00000008

swMsgUser 0x00000010

swMsgAttribute 0x00000020

swMsgRole 0x00000040

swMsgGroup 0x00000080

swMsgProcedure 0x00000100

swMsgProcedureQuery 0x00000200

swMsgProcedureDefinition 0x00000400

swMsgQueueAccess 0x00000800

swMsgQueueQuery 0x00001000

swMsgCase 0x00002000

swMsgNode 0x00004000

swMsgEvent 0x00008000

swMsgWorkItem 0x00010000

swMsgForwarding 0x00020000

swMsgInstrumentation 0x00040000

swMsgMemoAttachment 0x00080000

swMsgForm 0x00100000

swMsgTable 0x00200000

swMsgListValidation 0x00400000

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 288

Displaying Memory Information in the Client Log (Windows only)

You can display memory information in the client log by setting the SWLog.IsShowMemory prop-
erty to true. This causes the Working Set Size and Page File Usage parameters to appear in each log
entry (see the example below).

BM|00129|0008A|0000000B|07/02/2001 09:15:59.942|022851584|013824000|00000004|7FFFFFFF|......

Working Set Size is the current number of bytes in the Working Set of this process. The Working Set
is the set of memory pages touched recently by the threads in the process. If free memory in the com-
puter is above a threshold, pages are left in the Working Set of a process even if they are not in use.
When free memory falls below a threshold, pages are trimmed from Working Sets. If they are needed,
they will be soft-faulted back into the Working Set before they leave main memory.

Page File Usage is the current number of bytes this process has used in the paging file(s). Paging files
are used to store pages of memory used by the process that are not contained in other files. Paging
files are shared by all processes, and lack of space in paging files can prevent other processes from
allocating memory.

Adding Entries to the Client Log

The SWLog.Log method allows you to add text messages to the client log from your application. For
example:

oLog.Log “This is displayed in the client log”

Causes the following message to appear in the client log:

. . . . 13:35:19.946|00000002|7FFFFFFF|INFO|SWLog.Log: This is displayed in the client log

User-entered messages are classified as category type swCatSEOUser and level type swLogInforma-
tion. Therefore, swCatSEOUser and swLogInformation must be enabled for these messages to be
written to the log.

Setting the Size of the Client Log

You can specify the maximum size of the client log, in megabytes, using the SWLog.MaxSize prop-
erty. When the log exceeds the specified maximum size, it is cleared and restarted (rolled over). A
message is written to the log indicating this has occurred.

The default maximum size is 15MB.

Resetting the Client Log

The SWLog.ResetLog method can be used to clear the client log. After clearing all existing entries,
an initial header message is written to the log.

Working
Set
Size

Page
File

Usage

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 289

Testing the Client Log

The SWLog object contains a hidden method that allows you to test the client log. The
LogTest(TestId) method writes test messages to the client log based on the TestId parameter specified:

TestId Test Message Description

1 Category/Level One log message of each category type at each log level.

2 Message One log message of each message type at the error level.

3 Multiple Category
Log messages with multiple category bits on a single log
message.

4 Multiple Message
Log messages with multiple message bits on a single log
message.

5 Always Log
A single log message at the error level with the always log
category bit set.

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 290

Message Wait Time

You can configure the client so that if a specified period of time elapses waiting for a response from
the server, the client will timeout and generate an error. (This is sometimes used when storing memo
data — because the TIBCO iProcess Engine must perform file I/O to store memo data, the length of
time between when the client requests that a memo value be stored on the server, and the time when
the client receives a reply that the data was successfully stored, can be several seconds. Because of
this, you may want to configure a message wait time.)

By default, Windows clients timeout in 30 seconds; UNIX clients timeout in 60 seconds. If you want
the timeout value to be different, you must configure the message wait time.

To configure the message wait time, you must add a Registry DWORD value (Windows) or environ-
ment variable (UNIX), and set it to the number of milliseconds you would like the client to wait
before timing out.

The following is the Registry DWORD value that must be added if using Windows:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SEO Client\MessageWaitTime

The following is the environment variable that must be added if using UNIX:

MessageWaitTime

If the number of milliseconds specified by MessageWaitTime is exceeded, the client will generate an
swTimeoutErr error.

The minimum value you can set MessageWaitTime is 500 (milliseconds) — smaller values will auto-
matically be changed to 500. An exception to the minimum value is the special value of 0 (zero) — if
MessageWaitTime is set to 0, the client will not timeout.

Be aware that the user under which the client is running must have read access to the MessageWait-
Time Registry value, otherwise it will silently ignore the setting (if you are running under IIS, by
default, the user does not have access). Use the regedit utility to grant access to the Registry value.

MessageWaitTime is a global setting — all programs will use this single setting. There is no means to
set a message wait time for individual programs.

Also note that if you view message wait times in the client log, they are shown in the log as
“MsgSegWaitTime(value)”.

Client Configuration

TIBCO iProcess Objects Programmer’s Guide 291

Character Encoding Using ICU Conversion Libraries

ICU conversion libraries can be used to specify the desired character encoding.

To use the ICU conversion libraries, you must create the following environment variable (UNIX sys-
tems) or Registry entry (Windows systems) and set it to the name of the converter you wish to use.

— TISOUnicodeConverterName

On Windows systems, the Registry entry must be located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SEO Client\

For a list of converter names, and information about each converter, see the following website:

http://demo.icu-project.org/icu-bin/convexp

Note that when using the ICU libraries, the converter you use must reserve positions 00 through 1F
for the standard single-byte ASCII control characters. This ensures that the control characters do not
otherwise occur in the byte stream. (The UTF-16 converter, for example, does not satisfy this
requirement, and therefore, cannot be used.)

UNIX Systems

If the TISOUnicodeConverterName environment variable does not exist, or is set to an invalid value,
the ICU libraries are not used. In this case, the system looks for the TISOMultiChar environment
variable. If the TISOMultiChar environment variable exists and is set to 1, UTF-8 (multi-byte)
encoding is used, otherwise extended ASCII (single-byte) encoding is used. The system will only look
at the TISOMultiChar environment variable if the TISOUnicodeConverterName environment
variable does not exist or is set to an invalid converter name.

Windows Systems

If the TISOUnicodeConverterName Registry entry does not exist, or is set to an invalid value, the
ICU libraries are not used. In this case, the system looks for the TISOMultiChar Registry entry in the
following path:
HKEY_LOCAL_MACHINE\SOFTWARE\Staffware plc\Staffware SEO Client\

If the TISOMultiChar Registry entry exists and is set to 1, UTF-8 (multi-byte) encoding is used,
otherwise extended ASCII (single-byte) encoding is used. The system will only look at the
TISOMultiChar Registry entry if the TISOUnicodeConverterName Registry entry does not exist or is
set to an invalid converter name.

For more information about ICU, see:

http://icu.sourceforge.net/

http://demo.icu-project.org/icu-bin/convexp
http://icu.sourceforge.net/

TIBCO iProcess Objects Programmer’s Guide 292

19
Error Handling

TIBCO iProcess Objects (COM)

All errors from TIBCO iProcess Objects (COM) are returned as exceptions. The exceptions are
returned in the standard HRESULT specified by COM as follows:

where:

E - The severity code

0 - Success

1 - Error

Rsv - Reserved bits

Facility - Facility code. This code will be FACILITY_ITF(4) for errors generated by TIBCO iProcess
Objects (COM).

Code - The error code generated by the facility. You can determine whether the TIBCO iProcess
Objects Server or the client generated the error as follows:

TIBCO iProcess Objects Server - Error code value is less than 0x800.

Client - Error code value is greater than or equal to 0x800.

For a complete list of the client and Server error codes and messages, see the on-line help system.

Error Constants

The TIBCO iProcess Objects (COM) provides enumeration type constants that represent each of the
errors that are generated by the client and server. They are:

• SWClientErrorType - Errors generated by the client

• SWServerErrorType - Errors generated by the TIBCO iProcess Objects Server

These constants can be used in code instead of a number, providing more readable code. The example
shown on the next page shows how these constants can be used in error handling in VB. See the on-
line help for a complete list of the client and server error constants.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 293

Error Trapping in Visual Basic

When using TIBCO iProcess Objects in Visual Basic, it is important to trap errors using exception
handling with the appropriate On Error function, otherwise run-time errors in VB will be "fatal" and
execution of the application may halt, which could mean the loss of unsaved work. This could mean
that data entered into a work item could be lost.

It is preferable to try to use the Visual Basic error handler where possible to either warn the user of a
problem, exit gracefully or provide an alternative action that may not cause the error. To do this, use
the On Error function in each sub procedure or function that contains methods or properties. The
example below shows using the Err object to look into the cause of the problem and if appropriate
rectify it before continuing.

Sub TWorkQ(oTWorkQ As swworkq)
 Dim IsReadOnly As Boolean

 On Error GoTo WorkQError
 IsReadOnly = oTWorkQ.IsReadOnly
 Exit Sub

WorkQError:
 If Err.Number = vbObjectError + swNoQueueErr _
 Or Err.Number = vbObjectError + swNoMemberErr _
 Or Err.Number = vbObjectError + swNotAuthErr Then

 'oEnterprise is global variable
 oEnterprise.ClientLog.Log ("TWorkQ: exception, no permission for _

isReadOnly," _
 & " Number " & Err.Number - vbObjectError _
 & " Description " & Err.Description & vbCrLf)
 Else
 oEnterprise.ClientLog.Log ("TWorkQ: unexpected exception, isReadOnly," _
 & " Number " & Err.Number - vbObjectErrors _
 & " Description " & Err.Description & vbCrLf)
 End If
End Sub

Notice that when comparing the value of an error constant with the Err.Number value, you must also
add the VB error constant, vbObjectError, to the error constant.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 294

TIBCO iProcess Objects (Java)

All errors are returned from TIBCO iProcess Objects (Java) via exceptions, as indicated by the excep-
tion hierarchy shown below:

Object

Exception

Throwable

SWServerException

IOException

SWMethodException

SWItemException

SWParameterException

IllegalAccessError

SocketException

Error

OutOfMemoryErrorVirtualMachineError

LinkageError IncompatibleClassChangeError

E_Bad_Key

E_Bad_Node

E_DelEntUsr_Fail
<System Generated Error
(Win32)>

E_Inval_Method

E_Item_Err

E_LLDup

E_Login_Fail

E_No_Memory

E_No_NodeInfo

E_Not_Found

E_Not_On_This_Step
E_Not_Supported

E_Passwd_length

E_Srv_Disconnect

E_TimeOut

E_View_Err

E_WINSOCK

<SPO Server Error>SWServerException
SWMethodException

SWItemException

SWParameterException

IllegalAccessError

SWMessageException

OutOfMemoryError

E_Invalid_Param

SWClientException

SWClientException

SWMessageException

SocketException

E_Seg_Not_Found

Errors to Exception Assignment

TIBCO iProcess Objects (Java)
Exception Hierarchy

Error Files

err.h SWErrors.cppEOErrs.h

Java: jThrowError - Mapping of
errors to Java Exception
Objects.

COM: SetErrStr -
SetHResStr -

TIBCO iProcess Objects (Java)-generated
errors and associated error strings.
Routines to return error string with length
checking.

<TIBCO iProcess Objects Server Error>
SPO Server generated errors and
associated error strings.

RuntimeException NoSuchElementException

NoSuchElementException
Supports "SWListEnum" which
derives from "Enumeration"

SWException

E_SubProc_Method
E_JNI_Wrp_Mismatch
E_JNI_Date_Empty
E_Unrecoverable_Err
E_SWSEC_Err
E_Auth_Fail

Error Handling

TIBCO iProcess Objects Programmer’s Guide 295

Error Constants

The TIBCO iProcess Objects (Java) provides enumeration type constants that represent each of the
errors that are generated by the client and server. They are:

• SWClientErrorType - Errors generated by the client

• SWServerErrorType - Errors generated by the TIBCO iProcess Objects Server

These enumeration constants can be used in code instead of a number, providing more readable code.

The example below shows how the error constants are used in error handling in a Java Client applica-
tion.

void tWorkQ(SWWorkQ oTWorkQ) throws
SWServerException, SWClientException, SWMethodException, SWItemException,
SWParameterException, SWMessageException, java.net.SocketException{

try{
boolean isReadOnly;
isReadOnly = oTWorkQ.isReadOnly();

}
catch(SWServerException err){

if (err.getErrCode() == SWServerErrorType._swNoQueueErr _
|| err.getErrCode() == SWServerErrorType._swNoMemberErr _
|| err.getErrCode() == SWServerErrorType._swNotAuthErr) {

 // oEnterprise is class variable
oEnterprise.getClientLog().log ("TWorkQ: exception, no permission _
for isReadOnly," _
+ " Number " + err.getErrCode() _
+ " Description " + err.getMessage());
}

else {
oEnterprise.getClientLog().log ("TWorkQ: unexpected exception, _
isReadOnly," _
+ " Number " + err.getErrCode() _
+ " Description " + err.getMessage());
}

}
}

For a complete list of the client and Server error codes and messages, see the on-line help system.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 296

TIBCO iProcess Objects (C++)

When using TIBCO iProcess Objects (C++), all errors are written to the SWException object. This
object’s Number and Description properties are available to view and act upon the error.

The C++ Client includes constants that can be used in your code instead of the actual raw error num-
ber that is generated, which doesn’t have as much meaning when reading the code. The C++ constants
are actually #defines from the EOErrs.h (client errors) and err.h (server errors) files (see
ER_NOQUEUE, etc., in the example below).

TWorkQ(SWWorkQ * pSWWorkQ {
try {

isReadOnly = pSWWorkQ->isReadOnly();
LOG(CTLOGALL, "TWorkQ: isReadOnly %d\n", isReadOnly);

}
catch (SWException Except) {

if (Except.Number == -(ER_NOQUEUE)
|| Except.Number == -(ER_NOMEMBER)
|| Except.Number == -(ER_NOTAUTH)) {
LOG(CTLOGALL, "TWorkQ: exception, no permission for isReadOnly, "

 "Number %d Description '%s'\n",
 Except.Number, Except.Description);

} else {
LOG(CTLOGALL, "TWorkQ: unexpected exception, isReadOnly, "

 "Number %d Description '%s'\n",
 Except.Number, Except.Description);

assert(false);
}

}
}

For a complete list of the constants available for client and Server errors, see the on-line help.

Handling Multiple Work Item Operation Errors

The following methods allow you to perform operations on multiple work items on a work queue with
a single method call:

• LockItems
• UnLockItems
• ReleaseItems
• KeepItems
• UndoItems

When these methods are called, there is the possibility that one or more of the items in the array will
return an error. If this occurs, instead of failing the entire operation, an error is written to the
SWWorkItem.LastError property for the item(s) that had the error.

You must check the LastError property to determine which items failed. A value of zero means it was
successful. See the on-line help system for a list of the errors that may be found in LastError.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 297

Debugging Problems with ASP

TIBCO iProcess Objects can be used in a Web-based solution, where users have access to data on the
TIBCO iProcess Engine via Microsoft's Internet Information Server (IIS) from a web browser using
Active Server Pages (ASP) and possibly Visual Basic applications (helpers). In this scenario, when a
problem arises between IIS and the TIBCO iProcess Engine, it may be difficult to investigate the
cause of the problem, due to the complexity of the system. The IIS server may treat problems with the
TIBCO iProcess Objects (COM) or other dynamic link libraries (i.e., the helpers) in the one of the fol-
lowing ways:

• IIS exits and a Dr. Watson error log is generated

• the Web service exits abnormally (IIS hangs)

• the browser returns an "ASP 0115" error

• the browser returns a "Server Application Error" message

• the browser returns a "Server Too Busy" error

To help investigate and debug such applications or environments where it is not immediately obvious
which component of the system is causing the problem, Microsoft has created a tool called the Excep-
tion Monitor to monitor the IIS server. Information on how to troubleshoot with the IIS Exception
Monitor can be found at:

http://msdn.microsoft.com/workshop/server/iis/ixcptmon.asp

The IIS Exception Monitor attaches to the IIS process and reports back what is going on. It can pro-
vide an explanation of which type of exception occurred, what thread the exception happened on, and
what DLLs were executing functions on that thread.

This may not be enough information to solve the problem 100 percent of the time. However, it usually
provides more information than you had before and narrows the scope of the problem down to focus
on a certain ODBC driver or component that is being called.

Instructions on how to read the log files that are produced by the Exception Monitor can be found at:

http://msdn.microsoft.com/workshop/server/iis/readlogs.asp
To be able to debug Visual Basic DLLs properly you will need to compile a debug version of the DLL
and export the symbols to a .pdb file. In addition, it may be necessary to use a debug version of the
SWEOCOM.DLL while using the Exception Monitor. A debug version of the TIBCO iProcess
Objects (COM) is included on the distribution CD. Contact your local TIBCO Support Representative
if you need more information.

http://msdn.microsoft.com/workshop/server/iis/ixcptmon.asp
http://msdn.microsoft.com/workshop/server/iis/readlogs.asp

Error Handling

TIBCO iProcess Objects Programmer’s Guide 298

Error Messages

This section lists error messages that may appear, as well as probable causes and resolutions.

“An Exception of Type java.lang.UnsatisfiedLinkError was not handled”

Symptom
This error message can appear when attempting to run a java program from Microsoft's Visual J++
6.0.

Cause
Some older versions of the Microsoft Visual J++ development tool may have a version of the Java
Virtual Machine that does not support Sun's Java Native Interface (JNI), which is required to use
TIBCO iProcess Objects (Java).

Resolution
Make sure that the Virtual Java Machine on your development platform supports both JNI and RNI.

“Authentication Request Failed”

Symptom
When performing a login using the SWEntUser.Login method, this error message is displayed.

Cause
Either an incorrect user name or password has been entered.

When logging a user into the TIBCO iProcess Engine, a sal_login is called only when no sessions for
that user name already exist. The sal_login call will return an “Unknown username or bad password”
error if it can’t verify the user name and/or password. If a session already exists for the user, the user
name and password are checked using a different function, which returns the “Authentication Request
Failed” error if the password check fails.

Resolution
Ensure the correct user name and password are entered.

“Error 2140: An internal Windows NT error occurred”

Note - This is 1 of 5 of the same error message. To determine the specific cause, you must also look at
the error message written to the TIBCO iProcess Objects Server log (SWEntObjSvXX.log). See the
Symptom section.

Symptom
This error occurs when the TIBCO iProcess Objects Server service is started. The following error
messages will also appear in the SWEntObjSvXX.log file:

281:186:09/17/1999 16:09:43.521:ERR:error calling OpenSWEntObjDB for SWAutoFwdQ (-167)

281:186:09/17/1999 16:09:43.521:ERR:error initializing autofwd/qview database (-167)

Cause
The number of message threads may be too high.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 299

Resolution
Try decreasing the number of messages threads to 30 and restart the TIBCO iProcess Objects Server
service. The number of message threads is configured using the TIBCO iProcess Objects Server Con-
figuration Utility (for information on using this utility, see the TIBCO iProcess Objects Server Admin-
istrator’s Guide).

“Error 2140: An internal Windows NT error occurred”

Note - This is 2 of 5 of the same error message. To determine the specific cause, you must also look at
the error message written to the TIBCO iProcess Objects Server log (SWEntObjSvXX.log). See the
Symptom section.

Symptom
This error occurs when attempting to start the TIBCO iProcess Objects Server service. You will also
find one of the following two error messages in the SWEntObjSvXX.log file:

211:12b:06/16/1999 11:24:46.581:ERR:TCP bind() error (10048)

or

267:cd:07/06/1999 11:01:31.061:ERR:error looking up TCP service (seomkw)

Cause
You may be configuring your TIBCO iProcess Objects Server to use a specific TCP port number for
client connections, rather than using "DEFAULT," which means use an ephemeral port (i.e., dynamic).
If this is the case, there may be a problem with the configuration of the TCP service.

Resolution
To check whether you are using a specific or ephemeral port number, run the TIBCO iProcess Objects
Server Configuration Utility and click on the TCP tab. If your TIBCO iProcess Objects Server is con-
figured to use a specific TCP port for client connections, there will be a name in the TCP Port field
other than “DEFAULT.” If that is the case, you will need to make sure that the service name is set up
in the Services file in the %System Root%\System32\drivers\etc directory and that the port number
specified is valid. Be sure that the port you have chosen is not being used by another service or is too
high.

You may want to specify DEFAULT to see if the TCP configuration is the problem.

See “Configuring the TIBCO iProcess Objects Server TCP Port” on page 27 for more information.

“Error 2140: An internal Windows NT error occurred”

Note - This is 3 of 5 of the same error message. To determine the specific cause, you must also look at
the error message written to the TIBCO iProcess Objects Server log (SWEntObjSvXX.log). See the
Symptom section.

Symptom
This error occurs when attempting to start the TIBCO iProcess Objects Server service. The following
error messages will appear in the SWEntObjSvXX.log file:

174:b4:05/10/1999 11:05:29.656:ERR:error in CoCreateInstance for SWAutoFwdQ (80070005)

174:b4:05/10/1999 11:05:29.656:ERR:error initializing autofwd/qview database (80070005)

Error Handling

TIBCO iProcess Objects Programmer’s Guide 300

Cause
If DCOM is enabled on your NT system, swpro (the background user) may not have the required
Access, Launch, or Configuration Permissions.

Resolution
To check if DCOM is enabled:

1. Log on to Windows as an administrator.

2. From the task bar, choose Start and then Run.

3. Enter dcomcnfg and press OK. This runs the Dcomcnfg.exe configuration utility.

4. Click Default Properties.

If the check box labelled Enable Distributed COM on this computer is selected, DCOM is enabled
and you must complete the following steps to give user swpro Access Permissions, Launch Permis-
sions and Configuration Permissions.

To add permissions for swpro:

1. Click Default Security.

2. Set up Access Permissions. To do this:

i. In the Default Access Permissions frame, click Edit Default and then Add.

ii. In the List Names From list box, choose the appropriate computer or domain name where the
TIBCO iProcess Engine is installed.

iii. Click Show Users.

iv. In the Names list, click the swpro user and then Add.

v. In the Type of Access list box, choose Allow Access and click OK to return to the Registry
Value Permissions dialog.

vi. Click OK to return to the Distributed DCOM Configuration Properties dialog.

3. Set up Launch Permissions. To do this:

i. In the Default Launch Permissions frame, click Edit Default and then Add.

ii. In the List Names From list box, choose the appropriate computer or domain name where the
TIBCO iProcess Engine is installed.

iii. Click Show Users.

iv. In the Names list, click the swpro user and then Add.

v. In the Type of Access list box, choose Allow Launch and click OK to return to the Registry
Value Permissions dialog.

vi. Click OK to return to the Distributed DCOM Configuration Properties dialog.

4. Set up Configuration Permissions. To do this:

i. In the Default Configuration Permissions frame, click Edit Default and then Add.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 301

ii. In the List Names From list box, choose the appropriate computer or domain name where the
TIBCO iProcess Engine is installed.

iii. Click Show Users.

iv. In the Names list, click the swpro user and then Add.

v. In the Type of Access list box, choose Full Control.

vi. Click OK three times to exit the DCOM configuration properties program.

“Error 2140: An internal Windows NT error occurred”

Note - This is 4 of 5 of the same error message. To determine the specific cause, you must also look at
the error message written to the TIBCO iProcess Objects Server log (SWEntObjSvXX.log). See the
Symptom section.

Symptom
This error occurs when attempting to start the TIBCO iProcess Objects Server service. The following
error message will appear in the SWEntObjSvXX.log file:

259:125:06/15/1998 12:38:19.031:ERR:error calling OpenSWEntObjDB for SWAutoFwdQ (-
2147417851)

Cause
The Microsoft Access Driver (.mdb) ODBC driver must be set up for the swpro user. Without this
driver installed, the TIBCO iProcess Objects Server will fail to start.

Resolution
To check if you have the Microsoft Access Driver installed:

1. Log on to Windows as swpro.

2. From the Control Panel, choose the Data Sources (ODBC) icon.

3. Click the Drivers tab. If you have the driver installed, there will be an entry for Microsoft Access
Driver (.mdb) in the list.

If you do not have the Microsoft Access Driver installed, you can install it from the TIBCO iProcess
Objects Server CD. To do this:

1. From the TIBCO iProcess Objects Server CD, run \MicrosoftODBC\Mdacfull.exe.

2. Follow the instructions presented on your screen.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 302

“Error 2140: An internal Windows NT error occurred”

Note - This is 5 of 5 of the same error message. To determine the specific cause, you must also look at
the error message written to the TIBCO iProcess Objects Server log (SWEntObjSvXX.log). See the
Symptom section.

Symptom
This error occurs when attempting to start the TIBCO iProcess Objects Server service. The following
error message will appear in the SWEntObjSvXX.log file:

219:a2:07/19/1999 14:34:32.081:ERR:Staffware multiple logins are disabled; must be enabled

Cause
The multiple logins feature is disabled — it must be enabled.

Resolution
Edit the SWDIR\etc\staffpms file and set the 13th character of line 4 to Y (where SWDIR is the direc-
tory where the TIBCO iProcess Engine is installed), then restart the TIBCO iProcess Objects Server
Background service.

“Error 5: Access is denied”

Symptom
The TIBCO iProcess Objects Server service could not be started on Windows 2000.

Cause
The SYSTEM account does not have the proper permissions.

Resolution
Follow these steps:

1. Via Windows 2000 Explorer, right-click on the SWDIR\bin\SWEntObjSv.exe file, and select
Properties.

2. On the Security tab, click Advanced. The Access Control Settings dialog is displayed.

3. On the Permissions tab, click Add. The Select User, Computer, or Group dialog is displayed.

4. Select SYSTEM, then click OK. The Permission Entry dialog is displayed.

5. Ensure that the Allow check box is checked for all of the permissions listed, then click OK.

6. Click OK again on the Properties dialog.

You should now be able to successfully start the TIBCO iProcess Objects Server service.

“Error Calling CreateDataSource Interface for SWAutoFwdQ”

“Error Initializing AutoFwd/QView Database”

Symptom
The TIBCO iProcess Objects Server on NT does not start correctly. The SwEntObjSvXX.log file con-
tains the following error message:

00159|000AA|10/16/2000 10:07:40.718|00000008|ERROR|error calling CreateDataSource interface
for SWAutoFwdQ (-175)

Error Handling

TIBCO iProcess Objects Programmer’s Guide 303

00159|000AA|10/16/2000 10:07:40.718|00000008|ERROR|error initializing autofwd/qview database
(ffffff51)

Cause
The error is being generated by the SWEntObjDB program. This program implements the COM inter-
faces that the TIBCO iProcess Objects Server uses to manipulate the SWEntObjDB.mdb database.
The -175 error means that something at the lowest levels of ODBC or RDO has gone wrong. How-
ever, it is not possible for the TIBCO iProcess Objects Server to exactly pinpoint the cause of the
problem.

One of the following issues could be causing the problem:

• Microsoft Access Driver (*.mdb) ODBC or Microsoft RDO 2.0 drivers (odbcjt32.dll and
msrdo20.dll) are not installed correctly, or you have the wrong versions installed

• Version mismatch of system files

• Permission problems

Resolution
A test program that can help to determine the cause of this problem is available on the TIBCO Techni-
cal website. This program should be run by the swpro NT user account, and the appropriate path to
the directory and nodename should be entered into the correct boxes on the form displayed. See
DIN000237. (Contact TIBCO Technical Support if you don’t have access to the TIBCO Technical
website.)

“Error creating mutex”

Symptom
Users are unable to log on. The SwEntObjSvXX.log file contains the following error message:

6045:13:12/06/2000 10:31:08.737:ERR:error creating mutex (SWENTOBJ:SWADMIN): (17)

Cause
Semaphore files may be retained on the system and TIBCO iProcess Objects is unable to create them
again as required.

When a semaphore (or a named mutex) is created and used, there are two files on Solaris systems;
both file names end with the mutex name (in this case “SWENTOBJ:SWADMIN”) and may also have
the node name of the Server as well. One file begins with “.SEML” and the other “.SEMD”.

In one case, if the owner of the TIBCO iProcess Objects Server is changed, the new owner cannot
open the mutex.

In the other case, the “.SEML***” file had to be manually removed and then the TIBCO iProcess
Objects Server was able to start up with no problem.

These semaphore files “should” be cleared or at least unlocked when the system is re-booted. Since
the file names begin with a dot, you need to give the "-a" option to the "ls" command to see them.

Resolution
Remove the “.SEMD” and “.SEML” files in either /var, /var/tmp or /tmp, depending on the operating
system involved. Then reboot the UNIX server and restart the TIBCO iProcess Engine and the client
application.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 304

“Error in sal_frm_putdata call”

Symptom
This error occurs when starting a case and passing field data.

Cause
The field data you are passing to the TIBCO iProcess Engine is incorrect.

Resolution
Check that the fields you are passing exist and that the data is the correct data type, size, etc.

“One of the items in the array returned an error”

Symptom
This error may occur even if you are attempting to lock a single work item.

Cause
The same error handler is used for the LockItem and LockItems methods.

Resolution
Look in SWWorkItem.LastError for the specific error code.

“The memory could not be ‘written’”

Symptom
When starting the TIBCO iProcess Objects Server, the server seems to start for a few seconds, then an
application error occurs with the message “The memory could not be ‘written’”.

Cause
There is a problem within the procedure caching of the TIBCO iProcess Objects Server, where if the
addressee of the first step of a procedure is a role, the TIBCO iProcess Objects Server attempts to
insert a NULL pointer into the role list and causes an application error.

Resolution
As a workaround, the addressee of the first step should be changed to a normal user, field or group.

“Unable to locate DLL”

Symptom
This may occur near the end of the TIBCO iProcess Objects Server installation. The error message
will say that the dynamic link library pthread.dll could not be found in the specified path.

Cause
The installed version of the TIBCO iProcess Engine is not compatible with the version of the TIBCO
iProcess Objects Server you are attempting to install.

Resolution
Upgrade the TIBCO iProcess Engine, then reinstall the TIBCO iProcess Objects Server.

Error Handling

TIBCO iProcess Objects Programmer’s Guide 305

“/usr/lib/dld.sl exists - can't open shared library: /oracle8/lib/libclntsh.sl no such
file or directory”

Symptom
This error message appear when starting the TIBCO iProcess Objects Server on a UNIX Oracle vari-
ant.

Cause
When using UNIX Oracle variants, the server needs to access shared libraries that are located in the
ORACLE_HOME directories. Therefore, the relevant environment variable needs to be set.

Resolution
For AIX, the environment variable $LIBPATH must be present and must include the "lib" directory of
the Oracle server. This is usually $ORACLE_HOME/lib.

For Solaris, the environment variable $LD_LIBRARY_PATH must be present and must include the
"lib" directory of the Oracle server. This is usually $ORACLE_HOME/lib.

For HP-UX, the environment variable $SHLIB_PATH must be present and must include the "lib"
directory of the Oracle server. This is usually $ORACLE_HOME/lib.

“Work Item is not accessible”

Symptom
This may occur when trying to unlock a work item.

Cause
The work item was locked by the Work Queue Manager (TIBCO iProcess Client), which uses the
“lock” mechanism, while the TIBCO iProcess Objects use the "long lock" mechanism. TIBCO iPro-
cess Objects cannot unlock "locked" work items, it can only unlock "long locked" work items.

Resolution
The work item must be unlocked by the Work Queue Manager.

TIBCO iProcess Objects Programmer’s Guide 306

A
Code Examples

Introduction

This appendix provides more comprehensive examples than the “code snippets” you will find in the
main body of this document. These examples are provided in the following forms:

• Visual Basic Example

• Java Example

• C++ Example

• Resulting Output

There are links back into the main body of the document where the functionality provided in the
examples is described.

The code samples in this appendix are also provided in the form of project files on the distribution CD.
This allows you to easily copy any of the code you would like to use in your application. The sample
code is located in the docs/SampleCode directory on the distribution CD in the following
subdirectories:

• Getting Started - This includes sample code from the “Getting Started” chapter, including
accessing nodes, logging in, logging out, etc.

• SWLists SWViews SWLocLists - This includes sample code from the “Working with Lists”
chapter. These samples pertain to using SWLists, SWViews, and SWLocLists.

• SWXLists - This includes sample code from the “Working with Lists” chapter. These samples
pertain to using SWXLists.

Code Examples

TIBCO iProcess Objects Programmer’s Guide 307

Auto-Discovery UDP Broadcast

See page 22 for a description of this functionality.

Visual Basic

Using the “For Each” Iteration:

Private Sub RunSample()

Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo

On Error GoTo Err_RunSample

Set oEnterprise = New SWEnterprise
oEnterprise.PollCnt = 2 'Broadcast for 2 sec

For Each oNodeInfo In oEnterprise.NodeInfos
 ' Display names in intermediate window
 Debug.Print "NodeInfo Key = " & oNodeInfo.Key & vbCrLf _
 & " IP Address= " & oNodeInfo.IPAddr
Next
Exit Sub

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Using a While loop:

Private Sub cmdRunSample_Click()
Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo
Dim oList As SWList
Dim idx As Long

On Error GoTo Err_RunSample

Set oEnterprise = New SWEnterprise
oEnterprise.PollCnt = 2 'Broadcast for 2 sec

Set oList = oEnterprise.NodeInfos

idx = 0
While oList.IsEOL = False
 Set oNodeInfo = oList(idx)
 ' Display names in intermediate window
 Debug.Print "NodeInfo Key = " & oNodeInfo.Key & vbCrLf _
 & " IP Address= " & oNodeInfo.IPAddr

 idx = idx + 1
Wend
Exit Sub

Code Examples

TIBCO iProcess Objects Programmer’s Guide 308

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Java

Using “Enumeration”:
import SWEntObj.*;
import java.util.Enumeration;

public class DoSamples
{

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 SWNodeInfo oNodeInfo;
 Enumeration oListEnum;

 try {
 oEnterprise = new SWEnterprise();
 oEnterprise.setPollCnt((short) 2);
 oListEnum = oEnterprise.getNodeInfos().items();
 for (oListEnum = oEnterprise.getNodeInfos().items();
 oListEnum.hasMoreElements();) {
 oNodeInfo = (SWNodeInfo) oListEnum.nextElement();

 System.out.println("NodeInfo Key " + oNodeInfo.getKey() +
 "\n IP Address= " + oNodeInfo.getIPAddr());
 }
 System.exit(0); // normal exit

 }

 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }
 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

Using a While Loop:
import SWEntObj.*;
import java.util.Enumeration;

public class DoSamples
{

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 SWNodeInfo oNodeInfo;

Code Examples

TIBCO iProcess Objects Programmer’s Guide 309

 SWList oList;
 int idx;

 try {
 oEnterprise = new SWEnterprise();
 oEnterprise.setPollCnt((short) 2);
 oList = oEnterprise.getNodeInfos();
 idx = 0;
 while (oList.isEOL() == false) {
 oNodeInfo = (SWNodeInfo) oList.item(idx);

 System.out.println("NodeInfo Key " + oNodeInfo.getKey() +
 "\n IP Address= " + oNodeInfo.getIPAddr());
 idx = idx + 1;
 }
 System.exit(0); // normal exit

 }

 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }
 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

C++

Note - A “For Next” interation or enumeration is not available in C++.

Using a While Loop:
#include "stdafx.h"
#include <SWEOCPP.h>
#include <ObjTypes.h>
#include <SWObject.h>
#include <SWEnterprise.h>
#include <SWNodeInfo.h>
#include <SWList.h>
#include <SWException.h>

int main(int argc, char* argv[])
{
 SWEnterprise *pEnterprise;
 SWNodeInfo *pNodeInfo;
 SWList *pList;
 long idx;

 try {
 pEnterprise = new SWEnterprise();
 pEnterprise->setPollCnt(2);

 pList = pEnterprise->getNodeInfos();
 idx = 0;

 while(pList->isEOL() == false) {
 pNodeInfo = (SWNodeInfo *) pEnterprise->getNodeInfos()->item(idx);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 310

 printf("NodeInfo Key %s\n IP Address= %s\n",
pNodeInfo->getKey(), pNodeInfo->getIPAddr());
 idx++;

 }

 }

 catch(SWException err) {

printf("Error Code = %s Description = %s\n",
err.Number, err.Description);
 }
 catch(...) {

printf("Unexpected Error\n");
 }

 return 0;
}

Resulting Output
NodeInfo Key = sw_dana|monti3
 IP Address= 10.20.30.43
NodeInfo Key = rick-srv|swrickf1
 IP Address= 10.20.30.3
NodeInfo Key = bts01|staffw_biz
 IP Address= 10.20.30.4
NodeInfo Key = rick2k|staffw_nod1
 IP Address= 10.20.30.11
NodeInfo Key = listserv|staffware1
 IP Address= 10.20.30.111

Code Examples

TIBCO iProcess Objects Programmer’s Guide 311

Directed UDP Broadcast

See page 25 for a description of this functionality.

Visual Basic
Private Sub RunSample()

Dim oEnterprise As SWEnterprise

On Error GoTo Err_RunSample

Set oEnterprise = New SWEnterprise
oEnterprise.IsBroadcast = False 'No Broadcast
oEnterprise.AddNode "swdoug2", "doug1" ' add a node

Exit Sub

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Java
import SWEntObj.*;

public class DoSamples
{

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 try {
 oEnterprise = new SWEnterprise();
 oEnterprise.setBroadcast(false);
 oEnterprise.addNode("swdoug2", "doug1"); // add a node

 }
 System.exit(0); // normal exit

 }
 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }
 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

Code Examples

TIBCO iProcess Objects Programmer’s Guide 312

C++
#include "stdafx.h"
#include <SWEOCPP.h>
#include <ObjTypes.h>
#include <SWObject.h>
#include <SWEnterprise.h>
#include <SWException.h>

int main(int argc, char* argv[])
{
 SWEnterprise *pEnterprise;

 try {
 pEnterprise = new SWEnterprise();
 pEnterprise->setBroadcast(false); // No Broadcast
 pEnterprise->addNode("swdoug2", "doug1"); // add a node
 }
 catch(SWException err) {

printf("Error Code = %s Description = %s\n",
err.Number, err.Description);
 }
 catch(...) {

printf("Unexpected Error\n");
 }

 return 0;
}

Connecting to a Specific Node, Creating Enterprise Users, Login, Logout

This example illustrates all of the following functionality. The list below also provides page numbers on
which you can find a description of that particular functionality:

• Connecting to a Specific Node - page 26

• Creating Enterprise Users - page 31

• Logging In - page 32

• Logging Out - page 34

Visual Basic
Private Sub RunSample()
Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo
Dim oNodeInfoAIX As SWNodeInfo
Dim oEntUser As SWEntUser
Dim oEntUser1 As SWEntUser
Dim oEntUserAdmin As SWEntUser
Dim oNode As SWNode
Dim oNodeSwipe As SWNode

Dim UserArray(2) As String
Dim NodeKeys(1) As String

On Error GoTo Err_RunSample

 Set oEnterprise = New SWEnterprise

Code Examples

TIBCO iProcess Objects Programmer’s Guide 313

 oEnterprise.IsBroadcast = False 'no broadcast
 Set oNodeInfo = oEnterprise.MakeNodeInfo("seosun2", "swipe", _
 "10.20.30.112", 34567)
 Set oNodeInfoAIX = oEnterprise.MakeNodeInfo("aixdev", "aixdev", _
 "10.20.30.103", 12345) 'add another node
 oEnterprise.AddNode "swdoug2", "doug1" ' add a third node

' Create a Enterprise user
 Set oEntUserAdmin = oEnterprise.CreateEntUsers("AdminUser")

' Create multiple Enterprise users with a single method call
 UserArray(0) = "Edgar"
 UserArray(1) = "User1"
 UserArray(2) = "Carlos"

 oEnterprise.CreateEntUsers UserArray

' print list of SWEntUsers names
 Debug.Print "<== List of SWEntUsers ==>"
 For Each oEntUser In oEnterprise.EntUsers
 ' Display names in intermediate window
 Debug.Print "SWEntUser Name = " & oEntUser.Name
 Next

' Login AdminUser to "swipe" as staffware user "swadmin"
 Set oNodeSwipe = oEntUserAdmin.Login(oNodeInfo.Key, "staffware", "swadmin")

' Login AdminUser to 2 more nodes (user is swadmin, password ="staffware")
 NodeKeys(0) = oNodeInfoAIX.Key
 NodeKeys(1) = "swdoug2|doug1"
 oEntUserAdmin.Login NodeKeys, "staffware", "swadmin"

 ' Login User1 to "swipe" as user "User1" with password "mypassword"
 Set oEntUser1 = oEnterprise.EntUsers.ItemByKey("User1")
 oEntUser1.Login "seosun2|swipe", "mypassword"

' print list of SWEntUsers and the node key and user name they are logged in as
 Debug.Print "<== After logins ... List of SWEntUsers and" & _
 " the nodes they are logged into ==>"
 For Each oEntUser In oEnterprise.EntUsers
 ' Display names in intermediate window
 Debug.Print "SWEntUser Name = " & oEntUser.Name & " Logged into " _
 & oEntUser.LoggedInNodes.Count & " nodes"
 For Each oNode In oEntUser.LoggedInNodes
 Debug.Print " Logged into Node: " & oNode.Key & _
 " as Staffware User = " & oNode.LoggedInUser.Name
 Next
 Next

' logout user1 from swipe node
 oEntUser1.Logout ' calling with no arguments will logout of all ...
 ' but only logged into a single node in this case

' print list of SWEntUsers and the node key and user name they are logged in as
 Debug.Print "<== After User1 logout ... List of SWEntUsers and " & _
 "the nodes they are logged into ==>"
 For Each oEntUser In oEnterprise.EntUsers
 ' Display names in intermediate window
 Debug.Print "SWEntUser Name = " & oEntUser.Name & " Logged into " & _

Code Examples

TIBCO iProcess Objects Programmer’s Guide 314

 oEntUser.LoggedInNodes.Count & " nodes"
 For Each oNode In oEntUser.LoggedInNodes
 Debug.Print " Logged into Node: " & oNode.Key & _
 " as Staffware User = " & oNode.LoggedInUser.Name
 Next
 Next

' logout swadmin from swipe node
 oEntUserAdmin.Logout "seosun2|swipe"

' print list of SWEntUsers and the node key and user name they are logged in as
 Debug.Print "<== After second logout ... List of SWEntUsers and " _
 & "the nodes they are logged into ==>"
 For Each oEntUser In oEnterprise.EntUsers
 ' Display names in intermediate window
 Debug.Print "SWEntUser Name = " & oEntUser.Name & " Logged into " _
 & oEntUser.LoggedInNodes.Count & " nodes"
 For Each oNode In oEntUser.LoggedInNodes
 Debug.Print " Logged into Node: " & oNode.Key & _
 " as Staffware User = " & oNode.LoggedInUser.Name
 Next
 Next

' logout swadmin from all nodes
 oEntUserAdmin.Logout

' print list of SWEntUsers and the node key and user name they are logged in as
 Debug.Print "<== After all logouts ... List of SWEntUsers and " & _
 "the nodes they are logged into ==>"
 For Each oEntUser In oEnterprise.EntUsers
 ' Display names in intermediate window
 Debug.Print "SWEntUser Name = " & oEntUser.Name & " Logged into " _
 & oEntUser.LoggedInNodes.Count & " nodes"
 For Each oNode In oEntUser.LoggedInNodes
 Debug.Print " Logged into Node: " & oNode.Key & _
 " as Staffware User = " & oNode.LoggedInUser.Name
 Next
 Next

Exit Sub

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Code Examples

TIBCO iProcess Objects Programmer’s Guide 315

Java
import SWEntObj.*;
import java.util.Enumeration;

public class DoSamples
{

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 SWNodeInfo oNodeInfo;
 SWLocList oLocList;
 SWLocList oLocList1;
 SWNodeInfo oNodeInfoAIX;
 SWEntUser oEntUser;
 SWEntUser oEntUser1;
 SWEntUser oEntUserAdmin;
 SWNode oNode;
 SWNode oNodeSwipe;

 int idx, idx1;
 String[] UserArray;
 String[] NodeKeys;

 try {
 oEnterprise = new SWEnterprise();
 oEnterprise.setBroadcast(false);
 oNodeInfo = oEnterprise.makeNodeInfo("seosun2", "swipe",
 "10.20.30.112", 34567);
 oNodeInfoAIX = oEnterprise.makeNodeInfo("aixdev", "aixdev",
 "10.20.30.103", 12345); // add another
 oEnterprise.addNode("swdoug2", "doug1"); // add a third node

 // Create a Enterprise user
 oEntUserAdmin = oEnterprise.createEntUser("AdminUser");

 // Create multiple Enterprise users with a single method call
 UserArray = new String[3];
 UserArray[0] = "Edgar";
 UserArray[1] = "User1";
 UserArray[2] = "Carlos";

 oEnterprise.createEntUsers(UserArray);

 // print list of SWEntUsers names
 System.out.println("<== List of SWEntUsers ==>");
 oLocList = oEnterprise.getEntUsers();
 idx = 0;
 while (idx < oLocList.count()) {
 oEntUser = (SWEntUser) oLocList.item(idx);
 // Display names in intermediate window
 System.out.println("SWEntUser Name = " + oEntUser.getName());
 idx++;
 }

 // Login AdminUser to "swipe" as staffware user "swadmin"
 oNodeSwipe = oEntUserAdmin.login(oNodeInfo.getKey(), "staffware", "swadmin");

Code Examples

TIBCO iProcess Objects Programmer’s Guide 316

 // Login AdminUser to 2 more nodes (user is swadmin, password ="staffware")
 NodeKeys = new String[2];

 NodeKeys[0] = oNodeInfoAIX.getKey();
 NodeKeys[1] = "swdoug2|doug1";
 oEntUserAdmin.login (NodeKeys, "staffware", "swadmin");

 // Login User1 to "swipe" as user "User1" with password "mypassword"
 oEntUser1 = (SWEntUser) oEnterprise.getEntUsers().itemByKey("User1");
 oEntUser1.login("seosun2|swipe", "mypassword");

 // print list of SWEntUsers and node key and user name they are logged in as
 System.out.println("<== After logins ... List of SWEntUsers and" +
 " the nodes they are logged into ==>");
 idx = 0;
 while (idx < oLocList.count()) {
 oEntUser = (SWEntUser) oLocList.item(idx);
 // Display names in intermediate window
 System.out.println("SWEntUser Name = " + oEntUser.getName() + " Logged

into " + oEntUser.getLoggedInNodes().count() + " nodes");
 idx1 = 0;
 oLocList1 = oEntUser.getLoggedInNodes();
 while (idx1 < oLocList1.count()) {
 oNode = (SWNode) oLocList1.item(idx1);
 System.out.println(" Logged into Node: " + oNode.getKey() +

" as Staffware User = " + oNode.getLoggedInUser().getName());
 idx1++;
 }
 idx++;
 }

 // logout user1 from swipe node
 oEntUser1.logout(); // calling with no arguments will logout of all ...
 // but only logged into a single node in this case

 // print list of SWEntUsers and node key and user name they are logged in as
 System.out.println("<== After User1 logout ... List of SWEntUsers and " +
 "the nodes they are logged into ==>");
 idx = 0;
 while (idx < oLocList.count()) {
 oEntUser = (SWEntUser) oLocList.item(idx);
 // Display names
 System.out.println("SWEntUser Name = " + oEntUser.getName() + " Logged

into " + oEntUser.getLoggedInNodes().count() + " nodes");
 idx1 = 0;
 oLocList1 = oEntUser.getLoggedInNodes();
 while (idx1 < oLocList1.count()) {
 oNode = (SWNode) oLocList1.item(idx1);
 System.out.println(" Logged into Node: " + oNode.getKey() +

" as Staffware User = " + oNode.getLoggedInUser().getName());
 idx1++;
 }
 idx++;
 }

 // logout swadmin from swipe node
 oEntUserAdmin.logout("seosun2|swipe");

 // print list of SWEntUsers and node key and user name they are logged in as
 System.out.println("<== After second logout ... List of SWEntUsers and "

Code Examples

TIBCO iProcess Objects Programmer’s Guide 317

 + "the nodes they are logged into ==>");
 idx = 0;
 while (idx < oLocList.count()) {
 oEntUser = (SWEntUser) oLocList.item(idx);
 // Display names
 System.out.println("SWEntUser Name = " + oEntUser.getName() + " Logged

into " + oEntUser.getLoggedInNodes().count() + " nodes");
 idx1 = 0;
 oLocList1 = oEntUser.getLoggedInNodes();
 while (idx1 < oLocList1.count()) {
 oNode = (SWNode) oLocList1.item(idx1);
 System.out.println(" Logged into Node: " + oNode.getKey() +

" as Staffware User = " + oNode.getLoggedInUser().getName());
 idx1++;
 }
 idx++;
 }
// logout swadmin from all nodes
 oEntUserAdmin.logout();

 // print list of SWEntUsers and node key and user name they are logged in as
 System.out.println("<== After all logouts ... List of SWEntUsers and " +
 "the nodes they are logged into ==>");
 idx = 0;
 while (idx < oLocList.count()) {
 oEntUser = (SWEntUser) oLocList.item(idx);
 // Display names
 System.out.println("SWEntUser Name = " + oEntUser.getName() + " Logged

into " + oEntUser.getLoggedInNodes().count() + " nodes");
 idx1 = 0;
 oLocList1 = oEntUser.getLoggedInNodes();
 while (idx1 < oLocList1.count()) {
 oNode = (SWNode) oLocList1.item(idx1);
 System.out.println(" Logged into Node: " + oNode.getKey() +

" as Staffware User = " + oNode.getLoggedInUser().getName());
 idx1++;
 }
 idx++;
 }

 System.exit(0); // normal exit

 }
 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }

 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

Code Examples

TIBCO iProcess Objects Programmer’s Guide 318

C++
// UserSamples.cpp : Defines the entry point for the console application.
//

#include "StdAfx.h"
#include <string.h>
#include <SWEOCPP.h>
#include <ObjTypes.h>
#include <SWObject.h>
#include <SWEnterprise.h>
#include <SWEntUser.h>
#include <SWNodeInfo.h>
#include <SWNode.h>
#include <SWUser.h>
#include <SWLocList.h>
#include <SWException.h>

int main(int argc, char* argv[])
{
 SWEnterprise *pEnterprise;
 SWNodeInfo *pNodeInfo;
 SWLocList *pLocList;
 SWLocList *pLocList1;
 SWNodeInfo *pNodeInfoAIX;
 SWEntUser *pEntUser;
 SWEntUser *pEntUser1;
 SWEntUser *pEntUserAdmin;
 SWNode *pNode;
 SWNode *pNodeSwipe;

 int idx, idx1;

char *UserArray[3];
char *NodeKeys[2];

 try {
 pEnterprise = new SWEnterprise();
 pEnterprise->setBroadcast(false);
 pNodeInfo = pEnterprise->makeNodeInfo("seosun2", "swipe",
 "10.20.30.112", 34567);
 pNodeInfoAIX = pEnterprise->makeNodeInfo("aixdev", "aixdev",
 "10.20.30.103", 12345); // add another
 pEnterprise->addNode("swdoug2", "doug1"); // add a third node

 // Create a Enterprise user
 pEntUserAdmin = pEnterprise->createEntUser("AdminUser");

 // Create multiple Enterprise users with a single method call
 UserArray[0] = "Edgar";
 UserArray[1] = "User1";
 UserArray[2] = "Carlos";

 pEnterprise->createEntUsers(3, UserArray);

 // print list pf SWEntUsers names
 printf("<== List of SWEntUsers ==>");
 pLocList = pEnterprise->getEntUsers();
 idx = 0;
 while (idx < pLocList->count()) {

Code Examples

TIBCO iProcess Objects Programmer’s Guide 319

 pEntUser = (SWEntUser *) pLocList->item(idx);
 // Display names in intermediate window
 printf("SWEntUser Name = %s", pEntUser->getName());
 idx++;
 }

 // Login AdminUser to "swipe" as staffware user "swadmin"
 pNodeSwipe = pEntUserAdmin->login(pNodeInfo->getKey(), "staffware", "swad-

min");

 // Login AdminUser to 2 more nodes (staffware user is swadmin, password ="staff-
ware")

 NodeKeys[0] = pNodeInfoAIX->getKey();
 NodeKeys[1] = "swdoug2|doug1";
 pEntUserAdmin->login(2, NodeKeys, "staffware", "swadmin");

 // Login User1 to "swipe" as staffware user "User1" with password "mypassword"
 pEntUser1 = (SWEntUser *) pEnterprise->getEntUsers()->itemByKey("User1");
 pEntUser1->login("seosun2|swipe", "mypassword");

 // print list of SWEntUsers and the node key and user name they are logged in as
 printf("<== After logins ... List of SWEntUsers and"

 " the nodes they are logged into ==>");
 idx = 0;
 while (idx < pLocList->count()) {
 pEntUser = (SWEntUser *) pLocList->item(idx);
 // Display names in intermediate window

printf("SWEntUser Name = %s Logged into %d nodes", pEntUser->getName(),
 pEntUser->getLoggedInNodes()->count());
 idx1 = 0;
 pLocList1 = pEntUser->getLoggedInNodes();
 while (idx1 < pLocList1->count()) {
 pNode = (SWNode *) pLocList1->item(idx1);

printf(" Logged into Node: %s as Staffware User = %s", pNode->getKey(),
 pNode->getLoggedInUser()->getName());
 idx1++;
 }
 idx++;
 }

 // logout user1 from swipe node
 pEntUser1->logout(); // calling with no arguments will logout of all
 // but only logged into a single node in this case

 // print list of SWEntUsers and the node key and user name they are logged in as
 printf("<== After User1 logout ... List of SWEntUsers and "
 "the nodes they are logged into ==>");
 idx = 0;
 while (idx < pLocList->count()) {
 pEntUser = (SWEntUser *) pLocList->item(idx);
 // Display names

printf("SWEntUser Name = %s Logged into %d nodes", pEntUser->getName(),
 pEntUser->getLoggedInNodes()->count());
 idx1 = 0;
 pLocList1 = pEntUser->getLoggedInNodes();
 while (idx1 < pLocList1->count()) {
 pNode = (SWNode *) pLocList1->item(idx1);

printf(" Logged into Node: %s as Staffware User = %s", pNode->getKey(),
 pNode->getLoggedInUser()->getName());
 idx1++;

Code Examples

TIBCO iProcess Objects Programmer’s Guide 320

 }
 idx++;
 }

 // logout swadmin from swipe node
 pEntUserAdmin->logout("seosun2|swipe");

 // print list of SWEntUsers and node key and user name they are logged in as
 printf("<== After second logout ... List of SWEntUsers and "
 "the nodes they are logged into ==>");
 idx = 0;
 while (idx < pLocList->count()) {
 pEntUser = (SWEntUser *) pLocList->item(idx);
 // Display names

printf("SWEntUser Name = %s Logged into %d nodes", pEntUser->getName(),
 pEntUser->getLoggedInNodes()->count());
 idx1 = 0;
 pLocList1 = pEntUser->getLoggedInNodes();
 while (idx1 < pLocList1->count()) {
 pNode = (SWNode *) pLocList1->item(idx1);

printf(" Logged into Node: %s as Staffware User = %s", pNode->getKey(),
 pNode->getLoggedInUser()->getName());
 idx1++;
 }
 idx++;
 }

 // logout swadmin from all nodes
 pEntUserAdmin->logout();

 // print list of SWEntUsers and node key and user name they are logged in as
 printf("<== After all logouts ... List of SWEntUsers and "
 "the nodes they are logged into ==>");
 idx = 0;
 while (idx < pLocList->count()) {
 pEntUser = (SWEntUser *) pLocList->item(idx);
 // Display names

printf("SWEntUser Name = %s Logged into %d nodes", pEntUser->getName(),
 pEntUser->getLoggedInNodes()->count());
 idx1 = 0;
 pLocList1 = pEntUser->getLoggedInNodes();
 while (idx1 < pLocList1->count()) {
 pNode = (SWNode *) pLocList1->item(idx1);

printf(" Logged into Node: %s as Staffware User = %s", pNode->getKey(),
 pNode->getLoggedInUser()->getName());
 idx1++;
 }
 idx++;
 }
 }

 catch(SWException err) {

printf("Error Code = %d Description = %s\n", err.Number, err.Description);
 }

catch(...) {
printf("Unexpected Error\n");
}

return 0;
}

Code Examples

TIBCO iProcess Objects Programmer’s Guide 321

Resulting Output
<== List of SWEntUsers ==>
SWEntUser Name = AdminUser
SWEntUser Name = Edgar
SWEntUser Name = User1
SWEntUser Name = Carlos
<== After logins ... List of SWEntUsers and the nodes they are logged into ==>
SWEntUser Name = AdminUser Logged into 3 nodes
 Logged into Node: seosun2|swipe as Staffware User = swadmin
 Logged into Node: aixdev|aixdev as Staffware User = swadmin
 Logged into Node: SWDOUG2|doug1 as Staffware User = swadmin
SWEntUser Name = Edgar Logged into 0 nodes
SWEntUser Name = User1 Logged into 1 nodes
 Logged into Node: seosun2|swipe as Staffware User = User1
SWEntUser Name = Carlos Logged into 0 nodes
<== After User1 logout ... List of SWEntUsers and the nodes they are logged into ==>
SWEntUser Name = AdminUser Logged into 3 nodes
 Logged into Node: seosun2|swipe as Staffware User = swadmin
 Logged into Node: aixdev|aixdev as Staffware User = swadmin
 Logged into Node: SWDOUG2|doug1 as Staffware User = swadmin
SWEntUser Name = Edgar Logged into 0 nodes
SWEntUser Name = User1 Logged into 0 nodes
SWEntUser Name = Carlos Logged into 0 nodes
<== After second logout ... List of SWEntUsers and the nodes they are logged into ==>
SWEntUser Name = AdminUser Logged into 2 nodes
 Logged into Node: aixdev|aixdev as Staffware User = swadmin
 Logged into Node: SWDOUG2|doug1 as Staffware User = swadmin
SWEntUser Name = Edgar Logged into 0 nodes
SWEntUser Name = User1 Logged into 0 nodes
SWEntUser Name = Carlos Logged into 0 nodes
<== After all logouts ... List of SWEntUsers and the nodes they are logged into ==>
SWEntUser Name = AdminUser Logged into 0 nodes
SWEntUser Name = Edgar Logged into 0 nodes
SWEntUser Name = User1 Logged into 0 nodes
SWEntUser Name = Carlos Logged into 0 nodes

Code Examples

TIBCO iProcess Objects Programmer’s Guide 322

Working with Staffware Lists — SWLists, SWViews, and SWLocLists

The examples in this section illustrate the following functionality. The list below provides page numbers
on which you can find a description of functionality illustrated in the examples.

• Forcing synchronous behavior - see page 57

• Determining the number of objects in a list - page 58

• Creating objects and adding them to an SWList - page 61

• Adding objects/strings to SWLocLists - page 63

• Accessing items on SWLocLists - page 64

• Creating objects and adding them to an SWView - page 66

• Rebuilding an SWView - page 69

• Specifying filter criteria in an SWView - page 154

• Specifying sort criteria on an SWView - page 180

Visual Basic
Option Explicit
' To run this sample will need to change the hard-coded servername, nodename, and user
' Also need to change the name of the work queue and the work queue you use should have
' at least 100 workitems on it

Private Sub cmdRunSample_Click()
Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo
Dim oEntUser As SWEntUser
Dim oNode As SWNode
Dim oWorkQ As SWWorkQ
Dim oWorkQList As SWList
Dim oUser As SWUser
Dim oWorkItems As SWView
Dim oWorkItem As SWWorkItem
Dim oSortField As SWSortField
Dim oField As SWField

Dim i As Integer
Dim cnt As Integer
Dim tag As String
Dim key As String

On Error GoTo Err_RunSample

 Debug.Print "<@@@@@@@@@@@@@@@@@@@@@@@@ SAMPLE START @@@@@@@@@@@@@@@@@@@@@@@@>"
 Set oEnterprise = New SWEnterprise
 oEnterprise.IsBroadcast = False 'no broadcast
 Set oNodeInfo = oEnterprise.MakeNodeInfo("swdoug2", "doug1", _
 "10.20.30.108", 3908)

' Create a Enterprise user to represent swadmin
 Set oEntUser = oEnterprise.CreateEntUsers("swadmin")

' Login swadmin into node
 Set oNode = oEntUser.Login(oNodeInfo.key, "staffware")

' All work will be done based on scope (i.e. permissions) of logged on user
 Set oUser = oNode.LoggedInUser

Code Examples

TIBCO iProcess Objects Programmer’s Guide 323

' Display WorkQ names and description in intermediate window
' Using IsWaitForAll (i.e. synchronous messaging)
' Print list of WorkQs to which swadmin belongs
 Debug.Print "<=== Iterating list of WorkQs with IsWaitForAll set true ===>"
 Set oWorkQList = oUser.WorkQs
 oWorkQList.IsWaitForAll = True
 For Each oWorkQ In oWorkQList ' Since first access, msg sent to server on this

' statement will not return from this
 ' statement on first access until all message
 ' buffers have been returned (NOTE: ' this statement
 ' does check for isEOL under the covers
 Debug.Print "Name: " & oWorkQ.Name & "; Description: " _
 & oWorkQ.Description
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count ' Current number SWProc
' Objects in list
 Next
 ' Total number of WorkQs
 Debug.Print "After iterating List oWorkQList.Count = " & oWorkQList.Count

' Display WorkQ names and description in intermediate window
' Not Using IsWaitForAll (i.e. asynchronous messaging)
' Print list of WorkQs to which swadmin belongs
 Debug.Print "<=== Re-Iterating List of WorkQs with IsWaitForAll set false ===>"
 oWorkQList.Rebuild ' WorkQ list is cleared locally and new msg sent
 ' to server

 oWorkQList.IsWaitForAll = False
 i = 0 ' alternate syntax (equivalent to "For each" above)
 oWorkQList.IsEOL = False ' Not necessary since Rebuild resets this value but
 ' but if comment out rebuild then would be needed to ensure
 ' that we would re-iterate through the list
 While (oWorkQList.IsEOL = False) ' Since message sent by rebuild, no message
 ' sent on this statement
 ' If replace oWorkQList.Rebuild with a oWorkQList.Clear
 ' then msg to server would have been sent on this statement

 ' 1st item is parced here to see if IsEOL is true
 Debug.Print "Name: " & oWorkQList(i).Name & "; Description: " _
 & oWorkQList(i).Description ' same as oWorkQList.item(i).Description
 ' gets next item out of msg buffer, does not wait until
 ' all buffers from server are received
 Debug.Print "oWorkQList.Count = " & oWorkQList.Count ' Current number SWProc
 ' Objects in list

 i = i + 1
 Wend

 ' Total number of WorkQs
 Debug.Print "After iterating list oWorkQList.Count = " & oWorkQList.Count

 'Using ItemByKey
 'For larger lists, it is much quicker to use the Stateless object calls
 ' (such as MakeWorkQ method on Node instead of doing an ItemByKey)
 Debug.Print "<=== Accessing specific WorkQ ===>"
 Set oWorkQ = oWorkQList.ItemByKey("swadmin@doug1|R")
 Debug.Print "Queue (from ItemByKey) description : " & oWorkQ.Description
 Set oWorkQ = oNode.MakeWorkQ("swadmin", True, "doug1")
 Debug.Print "Queue (from MakeWorkQ) description : " & oWorkQ.Description

Code Examples

TIBCO iProcess Objects Programmer’s Guide 324

 'Using RebuildAll
 Debug.Print "<=== Rebuilding WorkQ with RebuildALL ===>"
 oWorkQ.IsRebuildAll = True
 oWorkQ.Rebuild ' Will cause messages to be sent to the server
 ' to update ALL lists on oWorkQ (i.e Rebuild called)

 ' The 2 previous lines are equivalent to the following 8 lines of code
 oWorkQ.IsRebuildAll = False
 oWorkQ.Rebuild ' Will cause messages to be sent to the server
 oWorkQ.Participations.Rebuild
 oWorkQ.SupervisorNames.Rebuild
 oWorkQ.ViewUserNames.Rebuild
 oWorkQ.WorkItems.Rebuild
 oWorkQ.WorkItemsX.Rebuild
 oWorkQ.CaseDataQParamDefs.Rebuild

 'Adding strings & objects to a Local List
 ' Also demonstrates setting sort and filter criteria for view
 Debug.Print "<=== Adding strings & objects to a Local List ===>"
 Set oWorkItems = oWorkQ.WorkItems
 oWorkItems.Clear
 oWorkItems.MaxCnt = 20
 Set oWorkItem = oWorkItems(0) ' msg sent since first access after clear
 Debug.Print "Field Count (for workitem:" & oWorkItem.key & ") = "_
 & oWorkItem.Case.Fields.Count ' No fields returned for Case associated
 ' with Workitem

 oWorkItems.CaseFieldNames.Clear ' ensure empty local list before adding
 oWorkItems.CaseFieldNames.Add "SW_CASENUM" 'return Staffware Case Number Field
 oWorkItems.CaseFieldNames.Add "TESTPROFIELD3" ' return User defined Field

 ' Enable workitems to be sorted by Casenumber
 For Each oSortField In oWorkItems.SortFields ' Note there are sortfields
 ' present by default

 Debug.Print "Sortfield Field Name = " & oSortField.FieldName
 Next

 'clear current list since want to sort ONLY by casenum
 oWorkItems.SortFields.Clear

 ' Create and configure Sortfield
 Set oSortField = New SWSortField
 oSortField.FieldName = "SW_CASENUM"
 oSortField.IsAscending = False
 oSortField.SortAsType = swNumericSort

 ' Add SortField to local list
 oWorkItems.SortFields.Add oSortField

 Debug.Print "<=== After adding fieldnames and sort criteria on View===>"
 i = 0
 oWorkItems.IsEOL = False

Code Examples

TIBCO iProcess Objects Programmer’s Guide 325

 ' Accessing workitems in view
 While Not (oWorkItems.IsEOL) ' Setting View iteration
 Set oWorkItem = oWorkItems(i)
 Debug.Print "WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_

 & oWorkItem.Case.Fields.Count
 For Each oField In oWorkItem.Case.Fields
 Debug.Print " FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value
 Next
 i = i + 1
 Wend
 oWorkItems.Rebuild ' Causes new message to be sent to server
 ' so criteria takes effect
 Debug.Print "<=== After Rebuild with fieldnames and sort criteria ===>"
 For Each oWorkItem In oWorkItems
 Debug.Print "WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count
 For Each oField In oWorkItem.Case.Fields
 Debug.Print " FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value
 Next
 Next

 ' Get only workitems of procedure TestPro4
 oWorkItems.FilterExpression = "SW_PRONAME = ""TestPro4"""
 oWorkItems.Rebuild
 Debug.Print "<=== After View Rebuild with fieldnames and sort criteria ===>"
 For Each oWorkItem In oWorkItems
 Debug.Print "WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count
 For Each oField In oWorkItem.Case.Fields
 Debug.Print " FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value
 Next
 Next

 tag = oWorkItems(2).tag ' Save tag from workitem for ItemByKey example below
 key = oWorkItems(2).key ' Save key from workitem for ItemByKey example below

 'Accessing a Local List
 Debug.Print "<=== Accessing a Local List ===>"
 cnt = oWorkItems.CaseFieldNames.Count 'No msg sent to server so can loop on count
 For i = 0 To cnt - 1
 Debug.Print "CaseField Name = " & oWorkItems.CaseFieldNames(i)
 Next

 Set oSortField = oWorkItems.SortFields.ItemByKey("SW_CASENUM")
 Debug.Print "SortField Field Name = " & oSortField.FieldName

 'Accessing item in View with ItemByKey
 Debug.Print "Show properties of workitem returned with ItemByKey"
 Set oWorkItem = oWorkItems.ItemByKey(key)
 Debug.Print "Tag = " & oWorkItem.tag
 Debug.Print "MailId = " & oWorkItem.MailID
 Debug.Print "Case Number = " & oWorkItem.Case.CaseNumber
 Debug.Print "Procedure Name = " & oWorkItem.Case.ProcName
 Debug.Print "Case Description = " & oWorkItem.Case.Description

Code Examples

TIBCO iProcess Objects Programmer’s Guide 326

 Debug.Print "Show properties of workitem returned using MakeWorkItemByTag"
 Set oWorkItem = oNode.MakeWorkItemByTag(tag) ' returns same workitem as one
 ' returned with ItemByKey above
 Debug.Print "Tag = " & oWorkItem.tag
 Debug.Print "MailId = " & oWorkItem.MailID
 Debug.Print "Case Number = " & oWorkItem.Case.CaseNumber
 Debug.Print "Procedure Name = " & oWorkItem.Case.ProcName
 Debug.Print "Case Description = " & oWorkItem.Case.Description

' Disconnect swadmin TCP/IP session from node
 oEntUser.Disconnect ' ends TCP/IP connection and removes oNode
 ' from oEnterprise.EntUser.LoggedInNodes

Exit Sub

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Java
import SWEntObj.*;
import java.util.Enumeration;

public class DoSamples
{
// To run this sample will need to change the hard-coded servername, nodename, and
// user. Also need to change the name of the work queue and the work queue you use
// should have at least 100 workitems on it

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 SWNodeInfo oNodeInfo;
 SWEntUser oEntUser;
 SWNode oNode;
 SWWorkQ oWorkQ;
 SWList oWorkQList;
 SWUser oUser;
 SWView oWorkItems;
 SWWorkItem oWorkItem;
 SWSortField oSortField;
 SWField oField;
 Enumeration oListEnum;
 Enumeration oListEnum1;

 int i, cnt;
 String tag, key;

 try {
 System.out.println("<@@@@@@@@@@@@@@@@@@ SAMPLE START @@@@@@@@@@@@@@@@@@>");
 oEnterprise = new SWEnterprise();
 oEnterprise.setBroadcast(false);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 327

 oNodeInfo = oEnterprise.makeNodeInfo("swdoug2", "doug1",
 "10.20.30.108", 4498);

 // Create a Enterprise user to represent swadmin
 oEntUser = oEnterprise.createEntUser("swadmin");

 // Login swadmin
 oNode = oEntUser.login(oNodeInfo.getKey(), "staffware");
 // All work will be done based on scope (i.e. permissions) of logged on user
 oUser = oNode.getLoggedInUser();

 // Display WorkQ names and description in intermediate window
 // Using IsWaitForAll (i.e. synchronous messaging)
 // Print list of WorkQs to which swadmin belongs
 System.out.println("<=== Iterating list of WorkQs with IsWaitForAll set
 true ===>");
 oWorkQList = oUser.getWorkQs();
 oWorkQList.setWaitForAll(true);
 for (oListEnum = oWorkQList.items(); oListEnum.hasMoreElements();) {
 // Since first access, msg sent to server on this statement
 oWorkQ = (SWWorkQ) oListEnum.nextElement();
 // Will not return from this statement on first access until
 // all message buffers have been returned (NOTE: this statement
 // does check for isEOL under the covers
 System.out.println("Name: " + oWorkQ.getName() + "; Description: "
 + oWorkQ.getDescription());
 System.out.println("oWorkQList.getCount() = " + oWorkQList.count());
 // Current number SWProc Objects in list
 }

 System.out.println("After iterating List oWorkQList.Count = " +
 oWorkQList.count()); // Total number of WorkQs

 // Display WorkQ names and description in intermediate window
 // Not Using IsWaitForAll (i.e. asynchronous messaging)
 // Print list of WorkQs to which swadmin belongs
 System.out.println("<=== Re-Iterating List of WorkQs with IsWaitForAll
 set false ===>");
 oWorkQList.rebuild(); // WorkQ list is cleared locally and new msg sent
 // to server
 oWorkQList.setWaitForAll(false);
 i = 0; // alternate syntax (equivalent to "For each" above)
 oWorkQList.setEOL(false); // Not necessary since Rebuild resets this
 // value but if comment out rebuild then would be
 // needed to ensure that we would re-iterate
 // through the list
 while (oWorkQList.isEOL() == false) { // Since message sent by rebuild,
 // no message sent on this statement
 // If replace oWorkQList.Rebuild with a
 // oWorkQList.Clear then msg to
 // server would have been sent on this statement
 // 1st item is parced here to see if IsEOL is true
 oWorkQ = (SWWorkQ)oWorkQList.item(i);
 System.out.println("Name: " + oWorkQ.getName() + "; Description: "
 + oWorkQ.getDescription()); // same as oWorkQList.item(i).Description
 // gets next item out of msg buffer, does
 // not wait until all buffers from server a
 //re received

Code Examples

TIBCO iProcess Objects Programmer’s Guide 328

 System.out.println("oWorkQList.Count = " + oWorkQList.count());
 // Current number SWProc Objects in list
 i = i + 1;
 }

 System.out.println("After iterating list oWorkQList.Count = " +
 oWorkQList.count()); // Total number of WorkQs

 // Using ItemByKey
 // For larger lists, it is much quicker to use the Stateless object calls
 // (such as MakeWorkQ method on Node instead of doing an ItemByKey)
 System.out.println("<=== Accessing specific WorkQ ===>");
 oWorkQ = (SWWorkQ) oWorkQList.itemByKey("swadmin@doug1|R");
 System.out.println("Queue (from ItemByKey) description : " +
 oWorkQ.getDescription());
 oWorkQ = oNode.makeWorkQ("swadmin", true, "doug1");
 System.out.println("Queue (from MakeWorkQ) description : " +
 oWorkQ.getDescription());

 // Using RebuildAll
 System.out.println("<=== Rebuilding WorkQ with RebuildALL ===>");
 oWorkQ.setRebuildAll(true);
 oWorkQ.rebuild(); // Will cause messages to be sent to the server
 // to update ALL lists on oWorkQ (i.e Rebuild called)

 // The 2 previous lines are equivalent to the following 8 lines of code
 oWorkQ.setRebuildAll(false);
 oWorkQ.rebuild(); // Will cause messages to be sent to the server
 oWorkQ.getParticipations().rebuild();
 oWorkQ.getSupervisorNames().rebuild();
 oWorkQ.getViewUserNames().rebuild();
 oWorkQ.getWorkItems().rebuild();
 oWorkQ.getWorkItemsX().rebuild();
 oWorkQ.getCaseDataQParamDefs().rebuild();

 // Adding strings & objects to a Local List
 // Also demonstrates setting sort and filter criteria for view
 System.out.println("<=== Adding strings + objects to a Local List ===>");
 oWorkItems = oWorkQ.getWorkItems();
 oWorkItems.clear();
 oWorkItems.setMaxCnt(20);
 oWorkItem = (SWWorkItem) oWorkItems.item(0); // msg sent since first
 // access after clear
 System.out.println("Field Count (for workitem:" + oWorkItem.getKey() + ") = "
 + oWorkItem.getCase().getFields().count());
 oWorkItems.getCaseFieldNames().clear(); // ensure empty local list
 // before adding
 oWorkItems.getCaseFieldNames().add("SW_CASENUM"); // return Staffware Case
 // Number Field
 oWorkItems.getCaseFieldNames().add("TESTPROFIELD3"); // return User defined
 // Field
 // Enable workitems to be sorted by Casenumber
 for (oListEnum = oWorkItems.getSortFields().items();
 oListEnum.hasMoreElements();) {
 // Note there are sortfields present by default
 oSortField = (SWSortField) oListEnum.nextElement();
 System.out.println("Sortfield Field Name = " + oSortField.getFieldName());
 }

Code Examples

TIBCO iProcess Objects Programmer’s Guide 329

 //clear current list since want to sort ONLY by casenum
 oWorkItems.getSortFields().clear();

 // Create and configure Sortfield
 oSortField = new SWSortField();
 oSortField.setFieldName("SW_CASENUM");
 oSortField.setAscending(false);
 oSortField.setSortAsType(SWSortType.swNumericSort);
 // Add SortField to local list
 oWorkItems.getSortFields().add(oSortField);

 System.out.println("<=== After adding fieldnames and sort criteria
 on View===>");
 i = 0;
 oWorkItems.setEOL(false);

 // Accessing workitems in view
 while (oWorkItems.isEOL() == false) { // Setting View iteration
 oWorkItem = (SWWorkItem) oWorkItems.item(i);
 System.out.println("WorkItem Key= " + oWorkItem.getKey()
 + ", CaseNum = " + oWorkItem.getCase().getCaseNumber()
 + ", Fields returned = "
 + oWorkItem.getCase().getFields().count());
 for (oListEnum1 = oWorkItem.getCase().getFields().items();
 oListEnum1.hasMoreElements();) {
 oField = (SWField) oListEnum1.nextElement();
 System.out.println(" FieldName = " + oField.getName()
 + ", Field Value = " + oField.getValue());
 }
 i = i + 1;
 }

 oWorkItems.rebuild(); // Causes new message to be sent to server so
 // criteria takes effect
 System.out.println("<=== After Rebuild with fieldnames and sort
 criteria ===>");
 for (oListEnum = oWorkItems.items(); oListEnum.hasMoreElements();) {
 oWorkItem = (SWWorkItem) oListEnum.nextElement();
 System.out.println("WorkItem Key= " + oWorkItem.getKey()
 + ", CaseNum = " + oWorkItem.getCase().getCaseNumber()
 + ", Fields returned = "
 + oWorkItem.getCase().getFields().count());
 for (oListEnum1 = oWorkItem.getCase().getFields().items();
 oListEnum1.hasMoreElements();) {
 oField = (SWField) oListEnum1.nextElement();
 System.out.println(" FieldName = " + oField.getName()
 + ", Field Value = " + oField.getValue());
 }
 }

 // Get only workitems of procedure TestPro4
 oWorkItems.setFilterExpression("SW_PRONAME = \"TestPro4\"");
 oWorkItems.rebuild();
 System.out.println("<=== After View Rebuild with fieldnames and sort
 criteria ===>");
 for (oListEnum = oWorkItems.items(); oListEnum.hasMoreElements();) {
 oWorkItem = (SWWorkItem) oListEnum.nextElement();

Code Examples

TIBCO iProcess Objects Programmer’s Guide 330

 System.out.println("WorkItem Key= " + oWorkItem.getKey()
 + ", CaseNum = "
 + oWorkItem.getCase().getCaseNumber()
 + ", Fields returned = " +
 oWorkItem.getCase().getFields().count());
 for (oListEnum1 = oWorkItem.getCase().getFields().items();
 oListEnum1.hasMoreElements();) {
 oField = (SWField) oListEnum1.nextElement();
 System.out.println(" FieldName = " + oField.getName()
 + ", Field Value = " + oField.getValue());
 }
 }

 oWorkItem = (SWWorkItem) oWorkItems.item(2);

 tag = oWorkItem.getTag(); //Save tag from workitem for ItemByKey example below
 key = oWorkItem.getKey(); //Save key from workitem for ItemByKey example below

 // Accessing a Local List
 System.out.println("<=== Accessing a Local List ===>");
 cnt = oWorkItems.getCaseFieldNames().count(); //No msg sent to server so
 // can loop on count
 for (i = 0; i < cnt - 1; i++) {
 System.out.println("CaseField Name = "
 + oWorkItems.getCaseFieldNames().item(i));
 }

 oSortField = (SWSortField) oWorkItems.getSortFields().itemByKey("SW_CASENUM");
 System.out.println("SortField Field Name = " + oSortField.getFieldName());

 // Accessing item in View with ItemByKey
 System.out.println("Show properties of workitem returned with ItemByKey");
 oWorkItem = (SWWorkItem) oWorkItems.itemByKey(key);
 System.out.println("Tag = " + oWorkItem.getTag());
 System.out.println("MailId = " + oWorkItem.getMailID());
 System.out.println("Case Number = " + oWorkItem.getCase().getCaseNumber());
 System.out.println("Procedure Name = " + oWorkItem.getCase().getProcName());
 System.out.println("Case Description = " +
 oWorkItem.getCase().getDescription());

 System.out.println("Show properties of workitem returned using
 MakeWorkItemByTag");
 oWorkItem = oNode.makeWorkItemByTag(tag); // returns same workitem as one
 // returned with ItemByKey above
 System.out.println("Tag = " + oWorkItem.getTag());
 System.out.println("MailId = " + oWorkItem.getMailID());
 System.out.println("Case Number = " + oWorkItem.getCase().getCaseNumber());
 System.out.println("Procedure Name = " + oWorkItem.getCase().getProcName());
 System.out.println("Case Description = " +
 oWorkItem.getCase().getDescription());

 // disconnect swadmin from node
 oEntUser.disconnect();

 System.exit(0); // normal exit

Code Examples

TIBCO iProcess Objects Programmer’s Guide 331

 }
 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }

 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

C++
#include "StdAfx.h"

#include <time.h>
#include <string.h>

#include <SWEOCPP.h>
#include <ObjTypes.h>
#include <SWObject.h>
#include <SWEnterprise.h>
#include <SWEntUser.h>
#include <SWNodeInfo.h>
#include <SWNode.h>
#include <SWUser.h>
#include <SWLocList.h>
#include <SWList.h>
#include <SWView.h>
#include <SWXList.h>
#include <SWWorkQ.h>
#include <SWCase.h>
#include <SWSortField.h>
#include <SWField.h>
#include <SWWorkItem.h>
#include <SWException.h>

int main(int argc, char* argv[])
{
 SWEnterprise *pEnterprise;
 SWNodeInfo *pNodeInfo;
 SWEntUser *pEntUser;
 SWNode *pNode;
 SWWorkQ *pWorkQ;
 SWList *pWorkQList;
 SWUser *pUser;
 SWView *pWorkItems;
 SWWorkItem *pWorkItem;
 SWSortField *pSortField;
 SWField *pField;

 SWFieldType FldType;

 int i, j, cnt;
 char *pTag = NULL;

 char *pKey = NULL;
 char txtField[256];

 double NumValue;

 try {
 printf("<@@@@@@@@@@@@@@@@@@@@@@@@ SAMPLE START @@@@@@@@@@@@@@@@@@@@@@@@>\n");
 pEnterprise = new SWEnterprise();
 pEnterprise->setBroadcast(false);
 pNodeInfo = pEnterprise->makeNodeInfo("swdoug2", "doug1",
 "10.20.30.108", 3908);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 332

 // Create a Enterprise user o represent swadmin
 pEntUser = pEnterprise->createEntUser("swadmin");

 // Login swadmin
 pNode = pEntUser->login(pNodeInfo->getKey(), "staffware");
 // All work will be done based on scope (i.e. permissions) of logged on user
 pUser = pNode->getLoggedInUser();

 // Display WorkQ names and description in intermediate window
 // Using IsWaitForAll (i.e. synchronous messaging)
 // Print list of WorkQs to which swadmin belongs
 printf("<=== Iterating list of WorkQs with IsWaitForAll set true ===>\n");
 pWorkQList = pUser->getWorkQs();
 pWorkQList->setWaitForAll(true);

 i = 0;
 while (pWorkQList->isEOL() == false) {
 // Since first access, msg sent to server on this statement
 pWorkQ = (SWWorkQ *) pWorkQList->item(i);
 // Will not return from this statement on first access until
 // all message buffers have been returned (NOTE: this statement
 // does check for isEOL under the covers
 printf("Name: %s; Description: %s\n",pWorkQ->getName(), pWorkQ->getDescription());
 printf("pWorkQList->getCount() = %d\n",pWorkQList->count()); // Current number
 // SWProc Objects in list
 i++;
 }

 printf("After iterating List pWorkQList->Count = %d\n", pWorkQList->count());
 // Total number of WorkQs

 // Display WorkQ names and description in intermediate window
 // Not Using IsWaitForAll (i.e. asynchronous messaging)
 // Print list of WorkQs to which swadmin belongs
 printf("<=== Re-Iterating List of WorkQs with IsWaitForAll set false ===>\n");
 pWorkQList->rebuild(); // WorkQ list is cleared locally and new msg sent to server
 pWorkQList->setWaitForAll(false);
 i = 0; // alternate syntax (equivalent to "For each" above)
 pWorkQList->setEOL(false); // Not necessary since Rebuild resets this value but
 // but if comment out rebuild then would be needed to ensure
 // that we would re-iterate through the list
 while (pWorkQList->isEOL() == false) { // Since message sent by rebuild,
 // no message sent on this statement
 // If replace oWorkQList.Rebuild with a oWorkQList->Clear then msg to
 // server would have been sent on this statement
 // 1st item is parced here to see if IsEOL is true
 pWorkQ = (SWWorkQ *) pWorkQList->item(i);
 printf("Name: %s; Description: %d\n", pWorkQ->getName(),
 pWorkQ->getDescription());
 // same as oWorkQList->item(i)->Description
 // gets next item out of msg buffer, does not wait until
 // all buffers from server are received
 printf("pWorkQList->Count = %d\n", pWorkQList->count());
 // Current number SWProc Objects in list
 i++;
 }

 printf("After iterating list pWorkQList->Count = %d\n", pWorkQList->count());
 // Total number of WorkQs

Code Examples

TIBCO iProcess Objects Programmer’s Guide 333

 //Using ItemByKey
 //For larger lists, it is much quicker to use the Stateless object calls
 // (such as MakeWorkQ method on Node instead of doing an ItemByKey)
 printf("<=== Accessing specific WorkQ ===>\n");
 pWorkQ = (SWWorkQ *) pWorkQList->itemByKey("swadmin@doug1|R");
 printf("Queue (from ItemByKey) description : %s\n", pWorkQ->getDescription());

 SWWorkQ *pWorkQ1 = new SWWorkQ();
 pWorkQ1 = pNode->makeWorkQ(pWorkQ1, "swadmin", true, "doug1");
 printf("Queue (from MakeWorkQ) description : %s\n", pWorkQ1->getDescription());

 delete pWorkQ1;

 //Using RebuildAll
 printf("<=== Rebuilding WorkQ with RebuildALL ===>\n");
 pWorkQ->setRebuildAll(true);
 pWorkQ->rebuild(); // Will cause messages to be sent to the server
 // to update ALL lists on oWorkQ (i.e Rebuild called)
 // The 2 previous lines are equivalent to the following 8 lines of code
 pWorkQ->setRebuildAll(false);
 pWorkQ->rebuild(); // Will cause messages to be sent to the server
 pWorkQ->getParticipations()->rebuild();
 pWorkQ->getSupervisorNames()->rebuild();
 pWorkQ->getViewUserNames()->rebuild();
 pWorkQ->getWorkItems()->rebuild();
 pWorkQ->getWorkItemsX()->rebuild();
 pWorkQ->getCaseDataQParamDefs()->rebuild();

 //Adding strings & objects to a Local List
 // Also demonstrates setting sort and filter criteria for view
 printf("<=== Adding strings + objects to a Local List ===>\n");
 pWorkItems = pWorkQ->getWorkItems();
 pWorkItems->clear();
 pWorkItems->setMaxCnt(20);
 pWorkItem = (SWWorkItem *) pWorkItems->item(0); // msg sent since first access
 // after clear
 printf("Field Count (for workitem: %s) = %d\n",pWorkItem->getKey(),
 pWorkItem->getCase()->getFields()->count());
 pWorkItems->getCaseFieldNames()->clear(); // ensure empty local list before adding
 pWorkItems->getCaseFieldNames()->add("SW_CASENUM"); // return Staffware Case
 // Number Field
 pWorkItems->getCaseFieldNames()->add("TESTPROFIELD3"); // return User defined Field
 // Enable workitems to be sorted by Casenumber

 i = 0;
 cnt = pWorkItems->getSortFields()->count();
 while (i < cnt) {

 // Note there are sortfields present by default
 pSortField = (SWSortField *) pWorkItems->getSortFields()->item(i);
 printf("Sortfield Field Name = %s\n",pSortField->getFieldName());

 i++;
 }
 //clear current list since want to sort ONLY by casenum
 pWorkItems->getSortFields()->clear();

 // Create and configure Sortfield
 pSortField = new SWSortField("SW_CASENUM", false, swNumericSort);
 // Add SortField to local list
 pWorkItems->getSortFields()->add(pSortField); // DO NOT delete since NOT copied

 printf("<=== After adding fieldnames and sort criteria on View===>\n");
 i = 0;
 pWorkItems->setEOL(false);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 334

 // Accessing workitems in view
 while (pWorkItems->isEOL() == false) { //Setting View iteration
 pWorkItem = (SWWorkItem *) pWorkItems->item(i);
 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n",

 pWorkItem->getKey(),
 pWorkItem->getCase()->getCaseNumber(),
 pWorkItem->getCase()->getFields()->count());
 j = 0;
 while (pWorkItem->getCase()->getFields()->isEOL() == false) {
 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);

 FldType =pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n", pField->getName(),

 NumValue);
 break;

 case swTextAttr:
 pField->getValue(txtField, sizeof(txtField));

 printf(" FieldName = %s, Field Value = %s\n", pField->getName(),
 txtField);

 break;

 default:
 printf("<==== Unexpect Field type ..sample procs had ONLY numeric or

 text fields ====>\n");
 }
 j++;

 }
 i++;
 }
 pWorkItems->rebuild(); // Causes new message to be sent to server so
 //criteria takes effect
 printf("<=== After Rebuild with fieldnames and sort criteria ===>\n");

i = 0;
while (pWorkItems->isEOL() == false) {
pWorkItem = (SWWorkItem *) pWorkItems->item(i);

 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n",pWorkItem->getKey(),
 pWorkItem->getCase()->getCaseNumber(),
 pWorkItem->getCase()->getFields()->count());

 j = 0;
 while (pWorkItem->getCase()->getFields()->isEOL() == false) {
 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);

 FldType =pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n", pField->getName(),

 NumValue);
 break;

 case swTextAttr:

 pField->getValue(txtField, sizeof(txtField));
 printf(" FieldName = %s, Field Value = %s\n", pField->getName(),

 txtField);
 break;

 default:
 printf("<==== Unexpect Field type ..sample procs had ONLY numeric

 or text fields ====>\n");
 }
 j++;
 }
 i++;
 }

Code Examples

TIBCO iProcess Objects Programmer’s Guide 335

 // Get only workitems of procedure TestPro4
 pWorkItems->setFilterExpression("SW_PRONAME = \"TestPro4\"");
 pWorkItems->rebuild();
 printf("<=== After View Rebuild with fieldnames and sort criteria ===>\n");

 i = 0;
 while (pWorkItems->isEOL() == false) {
 pWorkItem = (SWWorkItem *) pWorkItems->item(i);
 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n",
 pWorkItem->getKey(),
 pWorkItem->getCase()->getCaseNumber(),
 pWorkItem->getCase()->getFields()->count());

 j = 0;
 while (pWorkItem->getCase()->getFields()->isEOL() == false) {
 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);

 FldType = pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n",

 pField->getName(), NumValue);
 break;

 case swTextAttr:
 pField->getValue(txtField, sizeof(txtField));
 printf(" FieldName = %s, Field Value = %s\n",

 pField->getName(), txtField);
 break;

 default:
 printf("<==== Unexpect Field type ..sample procs had ONLY

 numeric or text fields ====>\n");
 }

 j++;
 }
 i++;
 }

 pWorkItem = (SWWorkItem *) pWorkItems->item(2);
 pTag = pWorkItem->getTag(); // Save tag from workitem for accessing item example below
 pKey = pWorkItem->getKey(); // Save tag from workitem for accessing item example below
 // Accessing a Local List
 printf("<=== Accessing a Local List ===>\n");
 cnt = pWorkItems->getCaseFieldNames()->count(); //No msg sent to server so can
 //loop on count
 for (i = 0; i < cnt - 1; i++) {
 printf("CaseField Name = %s\n",pWorkItems->getCaseFieldNames()->item(i));
 }

 pSortField = (SWSortField *) pWorkItems->getSortFields()->itemByKey("SW_CASENUM");
 printf("SortField Field Name = %s\n",pSortField->getFieldName());

 //Accessing item in View with ItemByKey
 printf("Show properties of workitem returned with ItemByKey\n");
 pWorkItem = (SWWorkItem *) pWorkItems->itemByKey(pKey);
 printf("Tag = %s\n",pWorkItem->getTag());
 printf("MailId = %s\n", pWorkItem->getMailID());
 printf("Case Number = %d\n", pWorkItem->getCase()->getCaseNumber());
 printf("Procedure Name = %s\n", pWorkItem->getCase()->getProcName());
 printf("Case Description = %s\n", pWorkItem->getCase()->getDescription());

 printf("Show properties of workitem returned using MakeWorkItemByTag\n");
 SWWorkItem *pWorkItem1 = new SWWorkItem();

 pWorkItem1 = pNode->makeWorkItemByTag(pWorkItem1, pTag); // returns same workitem as
 //one returned with ItemByKey above

Code Examples

TIBCO iProcess Objects Programmer’s Guide 336

 printf("Tag = %s\n", pWorkItem1->getTag());
 printf("MailId = %s\n", pWorkItem1->getMailID());
 printf("Case Number = %d\n", pWorkItem1->getCase()->getCaseNumber());
 printf("Procedure Name = %s\n", pWorkItem1->getCase()->getProcName());
 printf("Case Description = %s\n", pWorkItem1->getCase()->getDescription());

 delete pWorkItem1;

 // disconnect swadmin from node
 pEntUser->disconnect(); // calling with no arguments will logout of all ...
 // but only logged into a single node in this case

 //delete pEnterprise;

 }

 catch(SWException err) {

 printf("Error Code = %n Description = %s\n", err.Number, err.Description);
 }

catch(...) {
 printf("Unexpected Error\n");
}

return 0;
}

Resulting Output
VB Test Output
<@@@@@@@@@@@@@@@@@@@ SAMPLE START @@@@@@@@@@@@@@@@@>
<=== Iterating list of WorkQs with IsWaitForAll set true ===>
Name: STUDENTS; Description: STUDENTS
oWorkQList.Count = 2
Name: swadmin; Description: System Administrator
oWorkQList.Count = 3
Name: TESTGROUP1; Description: TESTGROUP1
oWorkQList.Count = 4
Name: TESTGROUP2; Description: TESTGROUP2
oWorkQList.Count = 5
Name: TESTGROUP3; Description: TESTGROUP3
oWorkQList.Count = 6
Name: TESTGROUP4; Description: TESTGROUP4
oWorkQList.Count = 7
Name: TESTGROUP5; Description: TESTGROUP5
oWorkQList.Count = 8
Name: TESTGROUP6; Description: TESTGROUP6
oWorkQList.Count = 8
After iterating List oWorkQList.Count = 8
<=== Re-Iterating List of WorkQs with IsWaitForAll set false ===>
Name: STUDENTS; Description: STUDENTS
oWorkQList.Count = 2
Name: swadmin; Description: System Administrator
oWorkQList.Count = 3
Name: TESTGROUP1; Description: TESTGROUP1
oWorkQList.Count = 4
Name: TESTGROUP2; Description: TESTGROUP2
oWorkQList.Count = 5
Name: TESTGROUP3; Description: TESTGROUP3
oWorkQList.Count = 6
Name: TESTGROUP4; Description: TESTGROUP4
oWorkQList.Count = 7
Name: TESTGROUP5; Description: TESTGROUP5
oWorkQList.Count = 8
Name: TESTGROUP6; Description: TESTGROUP6
oWorkQList.Count = 8
After iterating list oWorkQList.Count = 8

Code Examples

TIBCO iProcess Objects Programmer’s Guide 337

<=== Accessing specific WorkQ ===>
Queue (from ItemByKey) description : System Administrator
Queue (from MakeWorkQ) description : System Administrator
<=== Rebuilding WorkQ with RebuildALL ===>
<=== Adding strings & objects to a Local List ===>
Field Count (for workitem:swadmin@doug1|9420803) = 0
Sortfield Field Name = SW_HOSTNAME
Sortfield Field Name = SW_PRONAME
Sortfield Field Name = SW_CASENUM
Sortfield Field Name = SW_STEPNAME
<=== After adding fieldnames and sort criteria on View===>
WorkItem Key= swadmin@doug1|9420803, CaseNum = 1, Fields returned = 0
WorkItem Key= swadmin@doug1|9416707, CaseNum = 2, Fields returned = 0
WorkItem Key= swadmin@doug1|9412611, CaseNum = 3, Fields returned = 0
WorkItem Key= swadmin@doug1|9408515, CaseNum = 4, Fields returned = 0
WorkItem Key= swadmin@doug1|9404419, CaseNum = 5, Fields returned = 0
WorkItem Key= swadmin@doug1|9400323, CaseNum = 6, Fields returned = 0
WorkItem Key= swadmin@doug1|9396227, CaseNum = 7, Fields returned = 0
WorkItem Key= swadmin@doug1|9392131, CaseNum = 8, Fields returned = 0
WorkItem Key= swadmin@doug1|9388035, CaseNum = 9, Fields returned = 0
WorkItem Key= swadmin@doug1|9383939, CaseNum = 10, Fields returned = 0
WorkItem Key= swadmin@doug1|9379843, CaseNum = 11, Fields returned = 0
WorkItem Key= swadmin@doug1|9375747, CaseNum = 12, Fields returned = 0
WorkItem Key= swadmin@doug1|9371651, CaseNum = 13, Fields returned = 0
WorkItem Key= swadmin@doug1|9367555, CaseNum = 14, Fields returned = 0
WorkItem Key= swadmin@doug1|9363459, CaseNum = 15, Fields returned = 0
WorkItem Key= swadmin@doug1|9359363, CaseNum = 16, Fields returned = 0
WorkItem Key= swadmin@doug1|9355267, CaseNum = 17, Fields returned = 0
WorkItem Key= swadmin@doug1|9351171, CaseNum = 18, Fields returned = 0
WorkItem Key= swadmin@doug1|9347075, CaseNum = 19, Fields returned = 0
WorkItem Key= swadmin@doug1|9342979, CaseNum = 20, Fields returned = 0
<=== After Rebuild with fieldnames and sort criteria ===>
WorkItem Key= swadmin@doug1|5234690, CaseNum = 1034, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5238786, CaseNum = 1033, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5242882, CaseNum = 1032, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5246978, CaseNum = 1031, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5251074, CaseNum = 1030, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5255170, CaseNum = 1029, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5259266, CaseNum = 1028, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5263362, CaseNum = 1027, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5267458, CaseNum = 1026, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5271554, CaseNum = 1025, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5275650, CaseNum = 1024, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5279746, CaseNum = 1023, Fields returned = 2

Code Examples

TIBCO iProcess Objects Programmer’s Guide 338

 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5283842, CaseNum = 1022, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5287938, CaseNum = 1021, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5292034, CaseNum = 1020, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5296130, CaseNum = 1019, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5300226, CaseNum = 1018, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5304322, CaseNum = 1017, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5308418, CaseNum = 1016, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5312514, CaseNum = 1015, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
<=== After View Rebuild with fieldnames and sort criteria ===>
WorkItem Key= swadmin@doug1|7012356, CaseNum = 6, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = Rubbish
WorkItem Key= swadmin@doug1|7016452, CaseNum = 5, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = Primo
WorkItem Key= swadmin@doug1|7020547, CaseNum = 4, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = fair
WorkItem Key= swadmin@doug1|7024646, CaseNum = 3, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = poor
WorkItem Key= swadmin@doug1|7028741, CaseNum = 2, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = excellent
<=== Accessing a Local List ===>
CaseField Name = SW_CASENUM
CaseField Name = TESTPROFIELD3
SortField Field Name = SW_CASENUM
Show properties of workitem returned with ItemByKey
Tag = doug1|TESTPRO4|swadmin|R|4|7020547
MailId = 7020547
Case Number = 4
Procedure Name = TESTPRO4
Case Description = Third Test Case
Show properties of workitem returned using MakeWorkItemByTag
Tag = doug1|TESTPRO4|swadmin|R|4|7020547
MailId = 7020547
Case Number = 4
Procedure Name = TESTPRO4
Case Description = Third Test Case

Code Examples

TIBCO iProcess Objects Programmer’s Guide 339

Working with Staffware Lists — SWXLists

The examples in this section illustrate the following functionality. The list below provides page numbers
on which you can find a description of functionality illustrated in the examples.

• Populating an SWXList of work items - page 77

• Determining the number of items in an SWXList - page 80

• Persisting an SWXList - page 81

• Specifying sort criteria for an SWXList - page 180

Visual Basic
Option Explicit
' To run this sample will need to change the hard-coded servername, nodename, and user
' Also need to change the name of the work queue and the work queue you use should
' have at least 100 workitems on it

Private Sub cmdRunSample_Click()
Dim oEnterprise As SWEnterprise
Dim oNodeInfo As SWNodeInfo
Dim oEntUser As SWEntUser
Dim oNode As SWNode
Dim oWorkQ As SWWorkQ
Dim oWorkQList As SWList
Dim oUser As SWUser
Dim oWorkItemsX As SWXList
Dim oWorkItem As SWWorkItem
Dim oSortField As SWSortField
Dim oField As SWField

Dim i As Integer
Dim cnt As Integer
Dim tag As String
Dim key As String
Dim XListId As String
Dim blksize As Integer

Dim Fieldnames() As String
Dim SortFlds As Variant
Dim SortFldArray() As SWSortField

Dim UserArray(2) As String
Dim NodeKeys(1) As String

On Error GoTo Err_RunSample

 Debug.Print "<@@@@@@@@@@@@@@@@ SAMPLE XLIST START @@@@@@@@@@@@@@@@@@>"
 Set oEnterprise = New SWEnterprise
 oEnterprise.IsBroadcast = False 'no broadcast
 Set oNodeInfo = oEnterprise.MakeNodeInfo("swdoug2", "doug1", _
 "10.20.30.108", 3908)

 ' Create a Enterprise user to swadmin
 Set oEntUser = oEnterprise.CreateEntUsers("swadmin")

 ' Login swadmin to node
 Set oNode = oEntUser.Login(oNodeInfo.key, "staffware")

Code Examples

TIBCO iProcess Objects Programmer’s Guide 340

 Set oWorkQ = oNode.MakeWorkQ("swadmin", True, "doug1")

 ' Adding strings & objects to XList Criteria
 Debug.Print "<=== Adding strings & objects to a XList Criteria ===>"
 Set oWorkItemsX = oWorkQ.WorkItemsX
 Set oWorkItem = oWorkItemsX(0) ' msg sent since first access after clear
 ' No fields returned for Case associated with Workitem
 Debug.Print ("Field Count (for workitem:" & oWorkItem.key & ") = "_
 & oWorkItem.Case.Fields.Count)
 ReDim Fieldnames(1)
 Fieldnames(0) = "SW_CASENUM" ' return Staffware Case Number Field
 Fieldnames(1) = "TESTPROFIELD3" ' return User defined Field
 oWorkItemsX.Criteria.CaseFieldNames = Fieldnames ' replaces existing array of
 ' fieldnames
 ' Enable WorkItemsX to be sorted by Casenumber

 Debug.Print "<=== Show list of preset/default sortfields (ie see std client) ===>"
 cnt = UBound(oWorkItemsX.Criteria.SortFields)
 For i = LBound(oWorkItemsX.Criteria.SortFields) To cnt
 SortFlds = oWorkItemsX.Criteria.SortFields
 Set oSortField = SortFlds(i)
 Debug.Print ("Sortfield Field Name = " & oSortField.FieldName)
 Next

 ' Create and configure Sortfield
 Set oSortField = New SWSortField
 oSortField.FieldName = "SW_CASENUM"
 oSortField.IsAscending = False
 oSortField.SortAsType = swNumericSort
 ' Add SortField
 ReDim SortFldArray(0)
 Set SortFldArray(0) = oSortField
 oWorkItemsX.Criteria.SortFields = SortFldArray
 Debug.Print "<=== List sortfields after configuring criteria on Xlist ===>"
 cnt = UBound(oWorkItemsX.Criteria.SortFields)
 For i = LBound(oWorkItemsX.Criteria.SortFields) To cnt
 SortFlds = oWorkItemsX.Criteria.SortFields
 Set oSortField = SortFlds(i)
 Debug.Print ("Sortfield Field Name = " & oSortField.FieldName)
 Next

 Debug.Print "<=== First 25 workitems after adding setting Xlist Criteria ===>"
 Debug.Print "Total number of workitems on xlist on server = "_
 & oWorkItemsX.ItemCount
 i = 0

 ' Accessing WorkItemsX in XList
 ' Get only 1st 25 back
 If oWorkItemsX.ItemCount > 25 Then
 cnt = 25 ' if more than 25 only loop through 1st 25
 Else
 cnt = oWorkItemsX.ItemCount ' if less than 25 loop through all of them
 End If
 While (i < cnt)
 Set oWorkItem = oWorkItemsX(i)
 Debug.Print ("WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count)

Code Examples

TIBCO iProcess Objects Programmer’s Guide 341

 For Each oField In oWorkItem.Case.Fields
 Debug.Print (" FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value)
 Next
 i = i + 1
 Wend
 oWorkItemsX.Clear ' Workaround for CR10994
 blksize = 5
 oWorkItemsX.Rebuild blksize ' Causes new message to be sent to server
 ' so criteria takes effect
 Debug.Print "<=== First 25 workitems after Rebuild with new block size_
 (blk size = 5)===>"
 Debug.Print "Total number of workitems on xlist on server = "_
 & oWorkItemsX.ItemCount
 cnt = 0
 For Each oWorkItem In oWorkItemsX
 Debug.Print ("WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count)
 For Each oField In oWorkItem.Case.Fields
 Debug.Print (" FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value)
 Next
 cnt = cnt + 1
 If cnt > 25 Then
 Exit For ' only display first 25 or less
 End If
 If (cnt Mod blksize) = 0 Then ' minimize memory use on client
 Debug.Print " XList clear "
 oWorkItemsX.Clear ' the block of 5 since already displayed info
 End If
 Next
 Debug.Print "<=== Local workitem count after listing first 25 workitems _
 with clears ===>"
 Debug.Print " Local number of workitems = " & oWorkItemsX.Count

 ' Get only WorkItemsX of procedure TestPro4
 oWorkItemsX.Criteria.FilterExpression = "SW_PRONAME = ""TestPro4"""
 oWorkItemsX.Rebuild
 Debug.Print "<=== First 25 workitems after XList Rebuild with filter_
 expression ===>"
 cnt = 0
 For Each oWorkItem In oWorkItemsX
 Debug.Print ("WorkItem Key= " & oWorkItem.key & ", CaseNum = "_
 & oWorkItem.Case.CaseNumber & ", Fields returned = "_
 & oWorkItem.Case.Fields.Count)
 For Each oField In oWorkItem.Case.Fields
 Debug.Print (" FieldName = " & oField.Name & ", Field Value = "_
 & oField.Value)
 Next
 cnt = cnt + 1
 If cnt > 25 Then
 Exit For ' only display first 25 or less
 End If
 Next
 tag = oWorkItemsX(2).tag ' Save tag from workitem for ItemByKey example below
 key = oWorkItemsX(2).key ' Save key from workitem for ItemByKey example below

Code Examples

TIBCO iProcess Objects Programmer’s Guide 342

 'Accessing item in SWXList with ItemByKey
 Debug.Print "Show properties of workitem returned with ItemByKey"
 Set oWorkItem = oWorkItemsX.ItemByKey(key)
 Debug.Print "Tag = " & oWorkItem.tag
 Debug.Print "MailId = " & oWorkItem.MailID
 Debug.Print "Case Number = " & oWorkItem.Case.CaseNumber
 Debug.Print "Procedure Name = " & oWorkItem.Case.ProcName
 Debug.Print "Case Description = " & oWorkItem.Case.Description

 Debug.Print "Show properties of workitem returned using MakeWorkItemByTag"
 Set oWorkItem = oNode.MakeWorkItemByTag(tag) ' returns same workitem as one
 ' returned with ItemByKey above
 Debug.Print "Tag = " & oWorkItem.tag
 Debug.Print "MailId = " & oWorkItem.MailID
 Debug.Print "Case Number = " & oWorkItem.Case.CaseNumber
 Debug.Print "Procedure Name = " & oWorkItem.Case.ProcName
 Debug.Print "Case Description = " & oWorkItem.Case.Description

 ' Create a XList to persist for future use
 Set oWorkItemsX = oWorkQ.MakeXListItems(10) ' will return 10 items per block
 Debug.Print "Number of Items in Xlist= " & oWorkItemsX.ItemCount
 Debug.Print "Display the tag of first 5 workitems in XList"
 i = 0
 While i < 5
 Set oWorkItem = oWorkItemsX(i)
 Debug.Print " WorkItem key = " & oWorkItem.tag
 i = i + 1
 Wend
 Debug.Print " Number of items on Xlist after getting first 5" & oWorkItemsX.Count
 Debug.Print "Display the tag of last 10 workitems in XList"
 i = oWorkItemsX.ItemCount - 10
 While i < oWorkItemsX.ItemCount
 Set oWorkItem = oWorkItemsX(i)
 Debug.Print " WorkItem key = " & oWorkItem.tag
 i = i + 1
 Wend
 Debug.Print "After getting last 10 workitems on XList (blk size = 5)"
 Debug.Print "Number of items on local Xlist = " & oWorkItemsX.Count

 ' Persist XList
 oWorkItemsX.Criteria.IsPersisted = True msg sent to server to keep list
 XListId = oWorkItemsX.Criteria.PersistenceId
 Debug.Print "SWXList Persisted Id = " & XListId
 Set oWorkItemsX = Nothing ' release XList

' Disconnect swadmin TCP/IP session from node
 oEntUser.Disconnect ' ends TCP/IP connection and removes oNode
 ' from oEnterprise.EntUser.LoggedInNodes

 ' Re-connect (ie logon)
 Set oNode = oEntUser.Login(oNodeInfo.key, "staffware")

 ' Re-attach to persisted XList
 Set oWorkItemsX = oNode.GetXList(XListId)
 Debug.Print "Retrieve persisted XList: item count = " & oWorkItemsX.ItemCount

Code Examples

TIBCO iProcess Objects Programmer’s Guide 343

 Debug.Print "Before getting last 10 workitems on persisted XList_
 (def blk size = 20)"
 Debug.Print "Display the workitem tags"
 i = oWorkItemsX.ItemCount - 10
 While i < oWorkItemsX.ItemCount
 Set oWorkItem = oWorkItemsX(i)
 Debug.Print " WorkItem key = " & oWorkItem.tag
 i = i + 1
 Wend
 Debug.Print "After getting last 10 workitems on persisted XList_
 (def blk size = 20)"
 Debug.Print "Number of items on local Xlist = " & oWorkItemsX.Count

Exit Sub

Err_RunSample:
 MsgBox "Error Code = " & Err.Number & _
 " Description = " & Err.Description
End Sub

Java
import SWEntObj.*;
import java.util.Enumeration;

public class DoSamples
{
// To run this sample you will need to change the hard-coded servername, nodename, and
// user. Also need to change the name of the work queue and the work queue you use
// should have at least 100 workitems on it

 public static void main (String args[]) {

 SWEnterprise oEnterprise;
 SWNodeInfo oNodeInfo;
 SWEntUser oEntUser;
 SWNode oNode;
 SWWorkQ oWorkQ;
 SWList oWorkQList;
 SWUser oUser;
 SWXList oWorkItemsX;
 SWWorkItem oWorkItem;
 SWSortField oSortField;
 SWField oField;
 SWCriteriaWI oCriteriaWI;
 Enumeration oListEnum;

 int i, cnt, blksize;
 String tag, key, XListId;
 String[] FieldNames;
 SWSortField[] SortFldArray;

 try {
 System.out.println("<@@@@@@@@@@@ SAMPLE XLIST START @@@@@@@@@@@@@@@@@@@>");
 oEnterprise = new SWEnterprise();
 oEnterprise.setBroadcast(false);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 344

 oNodeInfo = oEnterprise.makeNodeInfo("swdoug2", "doug1",
 "10.20.30.108", 4498);

 // Create a Enterprise user to represent swadmin
 oEntUser = oEnterprise.createEntUser("swadmin");

 // Login swadmin to node
 oNode = oEntUser.login(oNodeInfo.getKey(), "staffware");

 oWorkQ = oNode.makeWorkQ("swadmin", true, "doug1");

 // Adding strings & objects to XList Criteria
 System.out.println("<=== Adding strings + objects to a XList Criteria ===>");
 oWorkItemsX = oWorkQ.getWorkItemsX();
 oWorkItem = (SWWorkItem) oWorkItemsX.item(0); // msg sent since first
 // access after clear
 // No fields returned for Case associated with Workitem
 System.out.println("Field Count (for workitem:" + oWorkItem.getKey() + ") = "
 + oWorkItem.getCase().getFields().count());
 FieldNames = new String[2];
 FieldNames[0] = "SW_CASENUM"; // return Staffware Case Number Field
 FieldNames[1] = "TESTPROFIELD3"; // return User defined Field
 oCriteriaWI = (SWCriteriaWI) oWorkItemsX.getCriteria();
 oCriteriaWI.setCaseFieldNames(FieldNames); //replaces existing array of
 //fieldnames

 // Enable WorkItemsX to be sorted by Casenumber

 System.out.println("<=== Show list of preset/default sortfields
 (ie see std client) ===>");
 SortFldArray = oCriteriaWI.getSortFields();
 cnt = SortFldArray.length;
 i = 0;
 while(i < cnt) { // Note there are sortfields present by default
 oSortField = SortFldArray[i];
 System.out.println("Sortfield Field Name = " + oSortField.getFieldName());
 i++;
 }
 // Create and configure Sortfield
 oSortField = new SWSortField();
 oSortField.setFieldName("SW_CASENUM");
 oSortField.setAscending(false);
 oSortField.setSortAsType(SWSortType.swNumericSort);
 // Add SortField
 SortFldArray = new SWSortField[1];
 SortFldArray[0] = oSortField;
 oCriteriaWI.setSortFields(SortFldArray);
 System.out.println("<=== List sortfields after configuring criteria
 on Xlist ===>");
 cnt = SortFldArray.length;
 i = 0;
 while (i < cnt) {
 oSortField = SortFldArray[i];
 System.out.println("Sortfield Field Name = " + oSortField.getFieldName());
 i++;
 }
 System.out.println("<=== First 25 workitems after adding setting Xlist
 Criteria ===>");
 System.out.println("Total number of workitems on xlist on server = "
 + oWorkItemsX.getItemCount());

Code Examples

TIBCO iProcess Objects Programmer’s Guide 345

 // Accessing WorkItemsX in XList
 // Get only 1st 25 back
 if (oWorkItemsX.getItemCount() > 25) {
 cnt = 25; // if more than 25 only loop through 1st 25
 }
 else {
 cnt = oWorkItemsX.getItemCount(); //if less than 25 loop through all of them
 }
 i = 0;
 while (i < cnt) {
 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println("WorkItem Key= " + oWorkItem.getKey() + ", CaseNum = " +
 oWorkItem.getCase().getCaseNumber() + ", Fields
 returned = " + oWorkItem.getCase().getFields().count());
 for (oListEnum = oWorkItem.getCase().getFields().items();
 oListEnum.hasMoreElements();) {
 oField = (SWField) oListEnum.nextElement();
 System.out.println(" FieldName = " + oField.getName() + ",
 Field Value = " + oField.getValue());
 }
 i = i + 1;
 }
 oWorkItemsX.clear(); // Workaround for CR10994
 blksize = 5;
 oWorkItemsX.rebuild(blksize); // Causes new message to be sent to
 // server so criteria takes effect
 System.out.println("<=== First 25 workitems after Rebuild with new block
 size (blk size = 5)===>");
 System.out.println("Total number of workitems on xlist on server = " +
 oWorkItemsX.getItemCount());
 i = 0;

 if (oWorkItemsX.getItemCount() > 25) {
 cnt = 25; // if more than 25 only loop through 1st 25
 }
 else {
 cnt = oWorkItemsX.getItemCount(); //if less than 25 loop through all of them
 }

 while (i < cnt) {
 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println("WorkItem Key= " + oWorkItem.getKey() + ", CaseNum = " +
 oWorkItem.getCase().getCaseNumber() +
 ", Fields returned = " + oWorkItem.getCase().getFields().count());
 for (oListEnum = oWorkItem.getCase().getFields().items();
 oListEnum.hasMoreElements();) {
 oField = (SWField) oListEnum.nextElement();
 System.out.println(" FieldName = " + oField.getName() + ",
 Field Value = " + oField.getValue());
 }
 i++;
 if (cnt%blksize == 0) { // minimize memory use on client
 System.out.println(" XList clear ");
 oWorkItemsX.clear(); // the block of 5 since already displayed info
 }
 }

 System.out.println("<=== Local workitem count after listing first 25
 workitems with clears ===>");
 System.out.println(" Local number of workitems = " + oWorkItemsX.count());
 // Get only WorkItemsX of procedure TestPro4
 oCriteriaWI = (SWCriteriaWI) oWorkItemsX.getCriteria();

Code Examples

TIBCO iProcess Objects Programmer’s Guide 346

 oCriteriaWI.setFilterExpression("SW_PRONAME = \"TestPro4\"");
 oWorkItemsX.rebuild();
 System.out.println("<=== First 25 workitems after XList Rebuild with
 filter expression ===>");
 i = 0;

 if (oWorkItemsX.getItemCount() > 25) {
 cnt = 25; // if more than 25 only loop through 1st 25
 }
 else {
 cnt = oWorkItemsX.getItemCount(); // if less than 25 loop through all of them
 }

 while (i < cnt) {
 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println("WorkItem Key= " + oWorkItem.getKey() + ", CaseNum = "
 + oWorkItem.getCase().getCaseNumber()+ ", Fields returned = " +
 oWorkItem.getCase().getFields().count());
 for (oListEnum = oWorkItem.getCase().getFields().items();
 oListEnum.hasMoreElements();) {
 oField = (SWField) oListEnum.nextElement();
 System.out.println(" FieldName = " + oField.getName() + ",
 Field Value = " + oField.getValue());
 }
 i++;
 }
 oWorkItem = (SWWorkItem) oWorkItemsX.item(2);
 tag = oWorkItem.getTag(); // Save tag from workitem for ItemByKey example below
 key = oWorkItem.getKey(); // Save key from workitem for ItemByKey example below

 //Accessing item in SWXList with ItemByKey
 System.out.println("Show properties of workitem returned with ItemByKey");
 oWorkItem = (SWWorkItem) oWorkItemsX.itemByKey(key);
 System.out.println("Tag = " + oWorkItem.getTag());
 System.out.println("MailId = " + oWorkItem.getMailID());
 System.out.println("Case Number = " + oWorkItem.getCase().getCaseNumber());
 System.out.println("Procedure Name = " + oWorkItem.getCase().getProcName());
 System.out.println("Case Description = " + oWorkItem.getCase().getDescription());

 System.out.println("Show properties of workitem returned using
 MakeWorkItemByTag");
 oWorkItem = oNode.makeWorkItemByTag(tag); // returns same workitem as one
 // returned with ItemByKey above
 System.out.println("Tag = " + oWorkItem.getTag());
 System.out.println("MailId = " + oWorkItem.getMailID());
 System.out.println("Case Number = " + oWorkItem.getCase().getCaseNumber());
 System.out.println("Procedure Name = " + oWorkItem.getCase().getProcName());
 System.out.println("Case Description = " + oWorkItem.getCase().getDescription());

 // Create a XList to persist for future use
 oWorkItemsX = oWorkQ.makeXListItems(10); // will return 10 items per block
 System.out.println("Number of Items in Xlist= " + oWorkItemsX.getItemCount());
 System.out.println("Display the tag of first 5 workitems in XList");
 i = 0;
 if (oWorkItemsX.getItemCount() > 5)

 cnt = 5;
 else
 cnt = oWorkItemsX.getItemCount();

 while (i < cnt) {

Code Examples

TIBCO iProcess Objects Programmer’s Guide 347

 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println(" WorkItem tag = " + oWorkItem.getTag());
 i++;
 }

 System.out.println(" Number of items on Xlist after getting first 5" +
 oWorkItemsX.count());
 System.out.println("Display the tag of last 10 workitems in XList");
 i = oWorkItemsX.getItemCount() - 10;
 while (i < oWorkItemsX.getItemCount()){
 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println(" WorkItem key = " + oWorkItem.getTag());
 i++;
 }

 System.out.println("After getting last 10 workitems on XList (blk size = 5)");
 System.out.println("Number of items on local Xlist = " + oWorkItemsX.count());

 // Persist XList
 oCriteriaWI = (SWCriteriaWI) oWorkItemsX.getCriteria();
 oCriteriaWI.setIsPersisted(true); // msg sent to server to keep list
 XListId = oCriteriaWI.getPersistenceId();
 System.out.println("SWXList Persisted Id = " + XListId);

// Disconnect swadmin TCP/IP session from node
 oEntUser.disconnect(); // ends TCP/IP connection and removes oNode
 // from oEnterprise.EntUser.LoggedInNodes

// Re-connect (ie logon)
 oNode = oEntUser.login(oNodeInfo.getKey(), "staffware");

// Re-attach to persisted XList
 oWorkItemsX = oNode.getXList(XListId);
 System.out.println("Retrieve persisted XList: item count = " +
 oWorkItemsX.getItemCount());

 System.out.println("Before getting last 10 workitems on persisted XList (def
 blk size = 20)");
 System.out.println("Display the workitem tags");
 i = oWorkItemsX.getItemCount() - 10;
 while (i < oWorkItemsX.getItemCount()) {
 oWorkItem = (SWWorkItem) oWorkItemsX.item(i);
 System.out.println(" WorkItem key = " + oWorkItem.getTag());
 i++;
 }

 System.out.println("After getting last 10 workitems on persisted XList (def
 blk size = 20)");
 System.out.println("Number of items on local Xlist = " + oWorkItemsX.count());

 System.exit(0); // normal exit

 }
 catch(SWException err) {
 System.out.println("Description = " + err.getMessage());
 }

Code Examples

TIBCO iProcess Objects Programmer’s Guide 348

 catch(Exception err) {
 System.out.println("Description = " + err.getMessage());
 }
 }
}

C++
#include "StdAfx.h"

#include <time.h>
#include <string.h>

#include <SWEOCPP.h>
#include <ObjTypes.h>
#include <SWObject.h>
#include <SWEnterprise.h>
#include <SWEntUser.h>
#include <SWNodeInfo.h>
#include <SWNode.h>
#include <SWUser.h>
#include <SWLocList.h>
#include <SWList.h>
#include <SWView.h>
#include <SWXList.h>
#include <SWWorkQ.h>
#include <SWCase.h>
#include <SWSortField.h>
#include <SWField.h>
#include <SWWorkItem.h>
#include <SWCriteriaWI.h>
#include <SWException.h>

int main(int argc, char* argv[])
{
 SWEnterprise *pEnterprise;
 SWNodeInfo *pNodeInfo;
 SWEntUser *pEntUser;
 SWNode *pNode;
 SWWorkQ *pWorkQ;
 SWUser *pUser;
 SWXList *pWorkItemsX;
 SWWorkItem *pWorkItem;
 SWSortField *pSortField;

SWSortField **SortFields;
 SWField *pField;

SWCriteriaWI *pCriteriaWI;
SWFieldType FldType;

 int i, j, cnt, blksize;
 char *pTag = NULL;

char *pKey = NULL;
char *pXListId = NULL;
char txtField[256];
char *FieldNames[2];
double NumValue;
SWSortField *SortFldArray[1];

 try {
 printf("<@@@@@@@@@@@@@@@@@@ SAMPLE XLIST START @@@@@@@@@@@@@@@@@>\n");
 pEnterprise = new SWEnterprise();
 pEnterprise->setBroadcast(false);
 pNodeInfo = pEnterprise->makeNodeInfo("swdoug2", "doug1",
 "10.20.30.108", 3908);

Code Examples

TIBCO iProcess Objects Programmer’s Guide 349

 // Create a Enterprise user on represent swadmin
 pEntUser = pEnterprise->createEntUser("swadmin");

 // Login swadmin
 pNode = pEntUser->login(pNodeInfo->getKey(), "staffware");
 // All work will be done based on scope (i.e. permissions) of logged on user
 pUser = pNode->getLoggedInUser();

 pWorkQ = new SWWorkQ();
 pWorkQ = pNode->makeWorkQ(pWorkQ, "swadmin", true, "doug1");

 // Adding strings & objects to XList Criteria
 printf("<=== Adding strings & objects to a XList Criteria ===>\n");
 pWorkItemsX = pWorkQ->getWorkItemsX();
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(0); // msg sent since first access
 // after clear
 // No fields returned for Case associated with Workitem
 printf("Field Count (for workitem:%s) = %d\n", pWorkItem->getKey(),
 pWorkItem->getCase()->getFields()->count());
 FieldNames[0] = "SW_CASENUM"; // return Staffware Case Number Field
 FieldNames[1] = "TESTPROFIELD3"; // return User defined Field
 pCriteriaWI = (SWCriteriaWI *) pWorkItemsX->getCriteria();
 pCriteriaWI->setCaseFieldNames(2, FieldNames); //replaces existing array of
 //fieldnames

 // Enable WorkItemsX to be sorted by Casenumber

printf("<=== Show list of preset/default sortfields (ie see std client) ===>\n");
cnt = pCriteriaWI->getSortFields(SortFields);
i = 0;
while(i < cnt) { // Note there are sortfields present by default
 pSortField = SortFields[i];
 printf("Sortfield Field Name = %s\n", pSortField->getFieldName());

 i++;
}

// Create and configure Sortfield
pSortField = new SWSortField("SW_CASENUM", false, swNumericSort);

 // Add SortField
SortFldArray[0] = pSortField;
pCriteriaWI->setSortFields(1, SortFldArray);
printf("<=== List sortfields after configuring criteria on Xlist ===>\n");
delete pSortField;// sortfield added so free my copy.
pSortField = NULL;

i = 0;
cnt = pCriteriaWI->getSortFields(SortFields);
while (i < cnt) {
 pSortField = SortFields[i];
 printf("Sortfield Field Name = %s\n", pSortField->getFieldName());
 i++;
}

printf("<=== First 25 workitems after adding setting Xlist Criteria ===>\n");
printf("Total number of workitems on xlist on server = %d\n", pWorkItemsX->getItemCount());

Code Examples

TIBCO iProcess Objects Programmer’s Guide 350

 // Accessing WorkItemsX in XList
 // Get only 1st 25 back

if (pWorkItemsX->getItemCount() > 25) {
 cnt = 25; // if more than 25 only loop through 1st 25
}
else {
 cnt = pWorkItemsX->getItemCount(); // if less than 25 loop through all of them
}
i = 0;
while (i < cnt) {
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(i);
 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n", pWorkItem->getKey(),
 pWorkItem->getCase()->getCaseNumber(),

 pWorkItem->getCase()->getFields()->count());
 j = 0;
while (pWorkItem->getCase()->getFields()->isEOL() == false) {
 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);
 FldType =pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n", pField->getName(), NumValue);
 break;

 case swTextAttr:
 pField->getValue(txtField, sizeof(txtField));
 printf(" FieldName = %s, Field Value = %s\n", pField->getName(), txtField);
 break;
default:
printf("<==== Unexpect Field type ..sample procs had ONLY numeric or text fields ====>\n");

 }
 j++;
 }
 i++;

}
pWorkItemsX->clear(); // Workaround for CR10994
blksize = 5;
pWorkItemsX->rebuild(blksize); // Causes new message to be sent to server so

 //criteria takes effect
printf("<=== First 25 workitems after Rebuild with new block size (blk size = 5)===>\n");
printf("Total number of workitems on xlist on server = %d\n", pWorkItemsX->getItemCount());
cnt = 0;
i = 0;
if (pWorkItemsX->getItemCount() > 25)
 cnt = 25;

else
 cnt = pWorkItemsX->getItemCount();

while (i < cnt) {
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(cnt);
 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n", pWorkItem->getKey(),

 pWorkItem->getCase()->getCaseNumber(),
 pWorkItem->getCase()->getFields()->count());

j = 0;
while (pWorkItem->getCase()->getFields()->isEOL() == false) {

 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);
 FldType =pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n", pField->getName(), NumValue);
 break;
 case swTextAttr:
 pField->getValue(txtField, sizeof(txtField));
 printf(" FieldName = %s, Field Value = %s\n", pField->getName(), txtField);

 break;

Code Examples

TIBCO iProcess Objects Programmer’s Guide 351

 default:
 printf("<==== Unexpect Field type ..sample procs had ONLY numeric or text

 fields ====>\n");
 }
 j++;

}
i++;
if (cnt%blksize == 0) { // minimize memory use on client

 printf(" XList clear \n");
 pWorkItemsX->clear(); // the block of 5 since already displayed info

}
}

printf("<=== Local workitem count after listing first 25 workitems with clears ===>\n");
printf(" Local number of workitems = %d\n", pWorkItemsX->count());
// Get only WorkItemsX of procedure TestPro4
pCriteriaWI = (SWCriteriaWI *) pWorkItemsX->getCriteria();
pCriteriaWI->setFilterExpression("SW_PRONAME = \"TestPro4\"");
pWorkItemsX->rebuild();
printf("<=== First 25 workitems after XList Rebuild with filter expression ===>\n");
i = 0;
if (pWorkItemsX->getItemCount() > 25)
 cnt = 25;

else
 cnt = pWorkItemsX->getItemCount();

while (i < cnt) {
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(i);
 printf("WorkItem Key= %s, CaseNum = %d, Fields returned = %d\n", pWorkItem->getKey(),

 pWorkItem->getCase()->getCaseNumber(),
 pWorkItem->getCase()->getFields()->count());

 j= 0;
 while (pWorkItem->getCase()->getFields()->isEOL() == false) {
 pField = (SWField *) pWorkItem->getCase()->getFields()->item(j);

 FldType =pField->getType();
 switch(FldType) {
 case swNumericAttr:
 pField->getValue(NumValue);
 printf(" FieldName = %s, Field Value = %d\n", pField->getName(), NumValue);
 break;

 case swTextAttr:
 pField->getValue(txtField, sizeof(txtField));
 printf(" FieldName = %s, Field Value = %s\n", pField->getName(), txtField);
 break;

 default:
 printf("<==== Unexpect Field type ..sample procs had ONLY numeric or text

 fields ====>\n");

 }
 j++;

}
i++;

}
pWorkItem = (SWWorkItem *) pWorkItemsX->item(2);
pTag = pWorkItem->getTag(); // Save tag from workitem for accessing item example below
pKey = pWorkItem->getKey(); // Save tag from workitem for accessing item example below

Code Examples

TIBCO iProcess Objects Programmer’s Guide 352

//Accessing item in SWXList with ItemByKey
printf("Show properties of workitem returned with ItemByKey\n");
pWorkItem = (SWWorkItem *) pWorkItemsX->itemByKey(pKey);
printf("Tag = %s\n", pWorkItem->getTag());
printf("MailId = %s\n", pWorkItem->getMailID());
printf("Case Number = %d\n", pWorkItem->getCase()->getCaseNumber());
printf("Procedure Name = %s\n", pWorkItem->getCase()->getProcName());
printf("Case Description = %s\n", pWorkItem->getCase()->getDescription());

printf("Show properties of workitem returned using MakeWorkItemByTag\n");
SWWorkItem *pWorkItem1 = new SWWorkItem();
pWorkItem1 = pNode->makeWorkItemByTag(pWorkItem1, pTag); // returns same workitem as one

 // returned with ItemByKey above
printf("Tag = %s\n", pWorkItem1->getTag());
printf("MailId = %s\n", pWorkItem1->getMailID());
printf("Case Number = %d\n", pWorkItem1->getCase()->getCaseNumber());
printf("Procedure Name = %s\n", pWorkItem1->getCase()->getProcName());
printf("Case Description = %s\n", pWorkItem1->getCase()->getDescription());
delete pWorkItem1;

 // Create a XList to persist for future use
pWorkItemsX = new SWXList();
pWorkItemsX = pWorkQ->makeXListItems(pWorkItemsX, 10); // will return 10 items per block
printf("Number of Items in Xlist= %d\n", pWorkItemsX->getItemCount());
printf("Display the tag of first 5 workitems in XList\n");
i = 0;
 if (pWorkItemsX->getItemCount() > 5)
 cnt = 5;
 else
 cnt = pWorkItemsX->getItemCount();
while (i < cnt) {
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(i);
 printf(" WorkItem tag = %s\n", pWorkItem->getTag());
 i++;
}
printf(" Number of items on Xlist after getting first 5 = %d\n", pWorkItemsX->count());
printf("Display the tag of last 10 workitems in XList\n");
i = pWorkItemsX->getItemCount() - 10;
while (i < pWorkItemsX->getItemCount()){
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(i);
 printf(" WorkItem key = %s\n", pWorkItem->getTag());
 i++;
}
printf("After getting last 10 workitems on XList (blk size = 5)\n");
printf("Number of items on local Xlist = %d\n", pWorkItemsX->count());

 // Persist XList
pCriteriaWI = (SWCriteriaWI *) pWorkItemsX->getCriteria();
pCriteriaWI->setPersisted(true); // msg sent to server to keep list
pXListId = pCriteriaWI->getPersistenceId();
printf("SWXList Persisted Id = %s\n", pXListId);

delete pWorkItemsX;

// Disconnect swadmin TCP/IP session from node
pEntUser->disconnect(); // ends TCP/IP connection and removes oNode

 // from oEnterprise->EntUser->LoggedInNodes

// Re-connect (ie logon)
pNode = pEntUser->login(pNodeInfo->getKey(), "staffware");

Code Examples

TIBCO iProcess Objects Programmer’s Guide 353

// Re-attach to persisted XList
pWorkItemsX = new SWXList();
pWorkItemsX = pNode->getXList(pWorkItemsX, pXListId);
printf("Retrieve persisted XList: item count = %d\n", pWorkItemsX->getItemCount());

printf("Before getting last 10 workitems on persisted XList (def blk size = 20)\n");
printf("Display the workitem tags\n");
i = pWorkItemsX->getItemCount() - 10;
while (i < pWorkItemsX->getItemCount()) {
 pWorkItem = (SWWorkItem *) pWorkItemsX->item(i);
 printf(" WorkItem key = %s\n", pWorkItem->getTag());
 i++;
}
printf("After getting last 10 workitems on persisted XList (def blk size = 20)\n");
printf("Number of items on local Xlist = %d\n", pWorkItemsX->count());

delete pWorkItemsX;
delete pWorkQ;
delete pEnterprise;

 }
 catch(SWException err) {

 printf("Error Code = %d Description = %s\n\n", err.Number, err.Description);
 }

 catch(...) {
 printf("Unexpected Error\n");

 }

return 0;
}

Resulting Output
VB Test Output

<@@@@@@@@@@@@@@@@ SAMPLE XLIST START @@@@@@@@@@@@@@@@@>
<=== Adding strings & objects to a XList Criteria ===>
Field Count (for workitem:swadmin@doug1|9420803) = 0
<=== Show list of preset/default sortfields (ie see std client) ===>
Sortfield Field Name = SW_HOSTNAME
Sortfield Field Name = SW_PRONAME
Sortfield Field Name = SW_CASENUM
Sortfield Field Name = SW_STEPNAME
<=== List sortfields after configuring criteria on Xlist ===>
Sortfield Field Name = SW_CASENUM
<=== First 25 workitems after adding setting Xlist Criteria ===>
Total number of workitems on xlist on server = 1023
WorkItem Key= swadmin@doug1|9420803, CaseNum = 1, Fields returned = 0
WorkItem Key= swadmin@doug1|9416707, CaseNum = 2, Fields returned = 0
WorkItem Key= swadmin@doug1|9412611, CaseNum = 3, Fields returned = 0
WorkItem Key= swadmin@doug1|9408515, CaseNum = 4, Fields returned = 0
WorkItem Key= swadmin@doug1|9404419, CaseNum = 5, Fields returned = 0
WorkItem Key= swadmin@doug1|9400323, CaseNum = 6, Fields returned = 0
WorkItem Key= swadmin@doug1|9396227, CaseNum = 7, Fields returned = 0
WorkItem Key= swadmin@doug1|9392131, CaseNum = 8, Fields returned = 0
WorkItem Key= swadmin@doug1|9388035, CaseNum = 9, Fields returned = 0
WorkItem Key= swadmin@doug1|9383939, CaseNum = 10, Fields returned = 0
WorkItem Key= swadmin@doug1|9379843, CaseNum = 11, Fields returned = 0
WorkItem Key= swadmin@doug1|9375747, CaseNum = 12, Fields returned = 0
WorkItem Key= swadmin@doug1|9371651, CaseNum = 13, Fields returned = 0
WorkItem Key= swadmin@doug1|9367555, CaseNum = 14, Fields returned = 0
WorkItem Key= swadmin@doug1|9363459, CaseNum = 15, Fields returned = 0
WorkItem Key= swadmin@doug1|9359363, CaseNum = 16, Fields returned = 0
WorkItem Key= swadmin@doug1|9355267, CaseNum = 17, Fields returned = 0

Code Examples

TIBCO iProcess Objects Programmer’s Guide 354

WorkItem Key= swadmin@doug1|9351171, CaseNum = 18, Fields returned = 0
WorkItem Key= swadmin@doug1|9347075, CaseNum = 19, Fields returned = 0
WorkItem Key= swadmin@doug1|9342979, CaseNum = 20, Fields returned = 0
WorkItem Key= swadmin@doug1|9338883, CaseNum = 21, Fields returned = 0
WorkItem Key= swadmin@doug1|9334787, CaseNum = 22, Fields returned = 0
WorkItem Key= swadmin@doug1|9330691, CaseNum = 23, Fields returned = 0
WorkItem Key= swadmin@doug1|9326595, CaseNum = 24, Fields returned = 0
WorkItem Key= swadmin@doug1|9322499, CaseNum = 25, Fields returned = 0
<=== First 25 workitems after Rebuild with new block size (blk size = 5)===>
Total number of workitems on xlist on server = 1023
WorkItem Key= swadmin@doug1|5234690, CaseNum = 1034, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5238786, CaseNum = 1033, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5242882, CaseNum = 1032, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5246978, CaseNum = 1031, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5251074, CaseNum = 1030, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
 XList clear
WorkItem Key= swadmin@doug1|5255170, CaseNum = 1029, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5259266, CaseNum = 1028, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5263362, CaseNum = 1027, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5267458, CaseNum = 1026, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5271554, CaseNum = 1025, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
 XList clear
WorkItem Key= swadmin@doug1|5275650, CaseNum = 1024, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5279746, CaseNum = 1023, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5283842, CaseNum = 1022, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5287938, CaseNum = 1021, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5292034, CaseNum = 1020, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
 XList clear
WorkItem Key= swadmin@doug1|5296130, CaseNum = 1019, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5300226, CaseNum = 1018, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5304322, CaseNum = 1017, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =

Code Examples

TIBCO iProcess Objects Programmer’s Guide 355

 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5308418, CaseNum = 1016, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5312514, CaseNum = 1015, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
 XList clear
WorkItem Key= swadmin@doug1|5316610, CaseNum = 1014, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5320706, CaseNum = 1013, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5324802, CaseNum = 1012, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5328898, CaseNum = 1011, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
WorkItem Key= swadmin@doug1|5332994, CaseNum = 1010, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
 XList clear
WorkItem Key= swadmin@doug1|5337090, CaseNum = 1009, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value =
<=== Local workitem count after listing first 25 workitems with clears ===>
 Local number of workitems = 5
<=== First 25 workitems after XList Rebuild with filter expression ===>
WorkItem Key= swadmin@doug1|7012356, CaseNum = 6, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = Rubbish
WorkItem Key= swadmin@doug1|7016452, CaseNum = 5, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = Primo
WorkItem Key= swadmin@doug1|7020547, CaseNum = 4, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = fair
WorkItem Key= swadmin@doug1|7024646, CaseNum = 3, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = poor
WorkItem Key= swadmin@doug1|7028741, CaseNum = 2, Fields returned = 2
 FieldName = SW_CASENUM, Field Value =
 FieldName = TESTPROFIELD3, Field Value = excellent
Show properties of workitem returned with ItemByKey
Tag = doug1|TESTPRO4|swadmin|R|4|7020547
MailId = 7020547
Case Number = 4
Procedure Name = TESTPRO4
Case Description = Third Test Case
Show properties of workitem returned using MakeWorkItemByTag
Tag = doug1|TESTPRO4|swadmin|R|4|7020547
MailId = 7020547
Case Number = 4
Procedure Name = TESTPRO4
Case Description = Third Test Case
Number of Items in Xlist= 1023
Display the tag of first 5 workitems in XList
 WorkItem key = doug1|TESTPRO1|swadmin|R|1|9420803
 WorkItem key = doug1|TESTPRO1|swadmin|R|2|9416707
 WorkItem key = doug1|TESTPRO1|swadmin|R|3|9412611
 WorkItem key = doug1|TESTPRO1|swadmin|R|4|9408515
 WorkItem key = doug1|TESTPRO1|swadmin|R|5|9404419
 Number of items on Xlist after getting first 510
Display the tag of last 10 workitems in XList

Code Examples

TIBCO iProcess Objects Programmer’s Guide 356

 WorkItem key = doug1|TESTPRO1|swadmin|R|1030|5251074
 WorkItem key = doug1|TESTPRO1|swadmin|R|1031|5246978
 WorkItem key = doug1|TESTPRO1|swadmin|R|1032|5242882
 WorkItem key = doug1|TESTPRO1|swadmin|R|1033|5238786
 WorkItem key = doug1|TESTPRO1|swadmin|R|1034|5234690
 WorkItem key = doug1|TESTPRO4|swadmin|R|2|7028741
 WorkItem key = doug1|TESTPRO4|swadmin|R|3|7024646
 WorkItem key = doug1|TESTPRO4|swadmin|R|4|7020547
 WorkItem key = doug1|TESTPRO4|swadmin|R|5|7016452
 WorkItem key = doug1|TESTPRO4|swadmin|R|6|7012356
After getting last 10 workitems on XList (blk size = 5)
Number of items on local Xlist = 23
SWXList Persisted Id = swadmin;swadmin@doug1|R;R;U;L;65539;2417428578
Retrieve persisted XList: item count = 1023
Before getting last 10 workitems on persisted XList (def blk size = 20)
Display the workitem tags
 WorkItem key = doug1|TESTPRO1|swadmin|R|1030|5251074
 WorkItem key = doug1|TESTPRO1|swadmin|R|1031|5246978
 WorkItem key = doug1|TESTPRO1|swadmin|R|1032|5242882
 WorkItem key = doug1|TESTPRO1|swadmin|R|1033|5238786
 WorkItem key = doug1|TESTPRO1|swadmin|R|1034|5234690
 WorkItem key = doug1|TESTPRO4|swadmin|R|2|7028741
 WorkItem key = doug1|TESTPRO4|swadmin|R|3|7024646
 WorkItem key = doug1|TESTPRO4|swadmin|R|4|7020547
 WorkItem key = doug1|TESTPRO4|swadmin|R|5|7016452
 WorkItem key = doug1|TESTPRO4|swadmin|R|6|7012356
After getting last 10 workitems on persisted XList (def blk size = 20)
Number of items on local Xlist = 23

TIBCO iProcess Objects Programmer’s Guide 357

Symbols
‘*’ (asterisk), in REs 120
‘*’ character 148, 173
’^’ character 147, 172
’?’ (question mark), in REs 120
’.’ (period), in REs 148, 173
’$’ character 148, 173
"/usr/lib/dld.sl exists - can’t open shared library"

305
&ALL& 87, 277
%DESC 242, 246
%USER 242, 246
$SWDIR environment variable 6
$undeliv work queue 198

A
Abort, transaction control step 266
Access authority 221
Access is denied 302
Accessing

items in an SWList 61
items in an SWView 68
items in SWLocLists 64
work items 190

Action property 242
Activating/deactivating

client log 284
Active

Server Pages (ASP), debugging 297
ActiveCnt property 239
Activity monitoring 37
Add method 63
AddAuditEntry method 246
Adding

entries to the audit trail 246
entries to the client log 288
objects/strings to local lists 63
users to a group 219
work queue supervisors 208

Additional
views, creating 70
XLists, creating 75

AddNode method 20, 25
AddNodeEx method 20, 25
Addressee of work item 113, 140, 165
AddSupervisors method 208
AddUsers method 219

ADMIN access 221
Admin name 36
Administering users 214
"An Exception of Type java.lang.Unsatis-

fiedLinkError was not handled" 298
Anonymous logins 35
Array fields 94
Arrival date and time 113, 140, 165, 182
ASP, debugging 297
AssignAttribute method 223
Asterisk, in REs 148, 173
Asynchronous transmission 57
Attachments 93
Attributes 221

creating 223
deleting 224
modifying 224

Audit
case data 239
data

getting when filtering cases 111, 138,
163
including in an SWView 72
including in an SWXList 83

permission 225
steps, filtering 100, 102, 128, 130, 154, 156
trail 239
trail messages, user-defined 246

audit.mes file 239
AuditFilterExpr property 100, 102, 128, 130,

154, 156, 245
AuditProcs property 41, 225, 240
AuditSteps property 242
auditusr.mes file 240, 246
"Authentication Request Failed" 298
Authority, user 227
Auto steps 6
Auto-discovery broadcast 22
AutoFwds property 200

B
Background process 6
Binding 279
Boolean 17, 18
Broadcast

Interval 23
Port Number 23

Index

Index

TIBCO iProcess Objects Programmer’s Guide 358

BSTR strings 56, 61, 64, 81
"ByTag" methods 272

C
C++

examples 306
C++ objects 7
CancelRedirection method 201
Case 1

administration authority 225, 227, 240
closed, make active 268
closing 268
data 91, 197

auditing 239
filtering on 117, 144, 169
how it affects efficiency 277
setting 92

description 113, 140, 165, 182, 230
family 254
filtering 101, 129, 155
indexing 279
management 230
number, obtaining 233
prediction 247
purging 269
reference number 113, 140, 166, 182
start authority 226, 234
Start function 226, 234
starting 230
status, active or closed 268
suspending 254

Case data
getting, impact of 105, 133, 159

Case Data Queue Parameter fields
defined 93
filtering on 117, 144, 169
sorting on 184

Case property 212
CaseCnt property 239
CaseDataQParamDefs property 117, 144, 169,

184
CaseDataQParams property 117, 145, 170, 184
CaseFieldNames property 105, 133, 159, 277
CaseNumber property 233
CasePredictQParams property 251
Cases

alternate view/XList 237
default view/XList 236
determining number of 238
property 15, 65, 236

CasesX property 15, 74, 236
Categories

property 285
CDQPNames property 117, 145, 170, 184
ChangeAttribute method 223, 224
ChangeParticipation method 205
ChangePassword method 217
ChangeRedirection method 201
Changing user’s password 217
Character encoding 291
CheckOSUser 217
CIList 83
ClassId 56
Clear

method 60, 78
views and lists 279

ClearDefCriteria method 124, 151, 176, 187
Client log 280

activating/deactivating 284
adding entries to 288
displaying memory information 288
filtering 285
name and location 284
resetting 288
setting size 288
testing 289

Client/server 3
ClientLog property 282
Client-to-Server Communications 7
CloseByCriteria method 123, 150, 176
ClosedCnt property 239
Closing cases 268

based on filter criteria 123, 150, 176
Cnt (in property name) 17
Code examples 306
COM objects 7
Commit and Concede, transaction control step

266
Commit and Continue, transaction control step

266
Common Interface for List Objects 83
Communications

asynchronous/synchronous 57
optimizing 279

Comparison operators 105, 109, 133, 136, 159,
162

Connection ID, database 36
Constructing

SWDate objects 202, 205
Controlling resources, SWXLists 77

Index

TIBCO iProcess Objects Programmer’s Guide 359

Conversions, data type when filtering 116, 143,
168

Count property 278
SWList 60
SWList/SWView 58
SWLocList 63
SWView 67, 100, 128, 154, 192
SWXList 80, 102, 130, 156, 193, 238

CreateAttribute method 223
CreateAutoFwd method 200
CreateEntUsers method 31
CreateGroup method 218
CreateObject 279
CreateParticipation method 205
CreateRole method 220
CreateUser method 216
Creating

additional views 70
additional XLists 75
attribute 223
redirection schedule 201
role 220
Staffware user 216
user group 218

Criteria property 101, 129, 155
Custom audit-trail messages 246

D
Data type

conversions, filtering 116, 143, 168
sorting by 188
used in filtering 116, 142, 168

Database case filtering 98, 126, 152
Database configuration 36
Date

data type 116, 142, 168
format 97
in filter expressions 122, 149, 175
object 202, 205

DateCreated property 45
DateModified property 45
DateOnly 205
DateReleased property 45
DateTime 202

data type 116, 142, 168
in filter expressions 122, 149, 175

DateWithdrawn property 45
DB_Enabled 200, 204
DBConnectionAccess 36
DCOM 300

Deadline 209
date and time 113, 140, 166, 182
expired flag 113, 140, 166, 182
property 209
set flag 114, 140, 166, 182

DeadlineCnt property 81, 210
Default

filter criteria 124, 150, 176
sort specifications 186
Views of Cases and Work Items 65
XLists of objects 74

Definer, iProcess 41
Delete method 63
DeleteAttributes method 224
DeleteAutoFwd method 200
DeleteGraftTask method 263
DeleteGroups method 219
DeleteRoles method 220
Deleting

attribute 224
objects/strings from local lists 63
role 220
Staffware user 217
user group 219
work item on withdrawal 211

Directed UDP 20, 25
Director 8
Directory

system 6
DisableCategory method 286
DisableMessage method 287
Disconnect method 35, 271
Disconnecting from the SPO Server 271
DNS 25
Dr. Watson 297
Duration property 248
Dynamic

sub-procedures 48
TCP port 21, 27

Dynamic sub-procedure call step
outstanding 256

DynamicSubProcSteps property 256

E
EAI step 212
EAI step, outstanding 256
EAI steps 265
EAISteps property 212, 256
Early binding 279
Efficiency

Index

TIBCO iProcess Objects Programmer’s Guide 360

filtering 277
getting case data 277
handling large lists 275
sorting 182

Empty 202, 206
fields, in filtering 121, 149, 174

Empty object, in make methods 273
EnableCategory method 286
EnableMessage method 287
Encoding, character 291
Enterprise user 15, 215
EntUsers 15, 31
Environment variables

client log 283
EOErrs.h file 296
Err object 293
err.h file 296
Error

constants 292, 295
handling

C++ 296
COM 292
Java 294

result of processing work item 198
trapping in Visual Basic 293

"Error 2140: An internal Windows NT error oc-
curred" 298, 299, 301, 302

"Error 5: Access is denied" 302
"Error Calling CreateDataSource Interface for

SWAutoFwdQ" 302
"Error creating mutex" 303
"Error in sal_frm_putdata call" 304
"Error Initializing AutoFwd/QView Database"

302
Escape characters, in filter expressions 121, 148,

174
Event publishing 37
Event step, outstanding 256
EventSteps property 256
Examples 306
Exception Monitor 297
Exceptions, Java 294
ExcludeCnt property 76, 80

SWView 71, 100, 128, 154, 193, 238
SWXList 102, 130, 156

Executing command
on work item keep 197
on work item release 197

Expired deadline 209
Expressions property 235

External
processes 260
work items 212

External processes 262
ExternalId property 212
ExtForm property 212
ExtProcesses property 262
ExtProcessNames property 260
ExtWorkItemId property 212

F
Facility code 292
Field

Staffware 86
types, validating 89, 90

Fields
array 94
property 86, 277
System 94

FilterExpression property 100, 101, 128, 129,
154, 155

Filtering 99, 127, 153
audit steps 100, 102, 128, 130, 154, 156,
245
cases in database 98, 126, 152
client log 285
data types 116, 142, 168
expression format 111, 138, 163
in an efficient manner 277
on case data 117, 144, 169
on deadline information 210
on empty fields 121, 149, 174
on ranges of values 122, 149, 175
on SWViews 100, 128, 154
on SWXLists 101, 129, 155
predicted items 252
using system fields 113, 140, 165
work items in WIS 98, 126, 152

Finalization 8
Finding available nodes 20
Firewall, using with SPO 30
FirstDeadline property 209
Flat file system 6
For Each construct 278
Form

Staffware 88, 232
Format, of date 97
Forwardable work item flag 114, 141, 166, 182
Forwarding

permission 199, 222

Index

TIBCO iProcess Objects Programmer’s Guide 361

work items 199
ForwardItem method 199
FwdItems property 199

G
Garbage collection 8
"get" method names 17
getActivityPub method 38
getDatabaseConfig method 36
GetExtWorkItem property 212
GetXList method 81
GetXListPredict method 81, 249
Graft step

outstanding 256
Graft steps 259
GraftExtProcessComp method 260, 262
GraftSteps property 256, 261
GrantAccess method 203
Granting Access 203
Group 2

user 218
work queue 2, 16

Groups property 218
GroupsX property 74, 218

H
Hidden case description 230
Hood ID 281
Hosting node 2
HRESULT 292

I
IAP JMS library 37
IAPConfigAccess 37
ICU conversion libraries 291
IDispatch pointers 61, 64, 81
IDX_ 95
IMPMONITOR command 37
Index of the participation schedules 207
Indexes, array fields 95
Indexing, cases 279
InFromFldNames property 50
InitialExpr property 196
InstanceNumber property 23, 26
Internet Information Server (IIS) 297
InToFldNames property 50
InvalidCnt property 76, 80

SWView 72, 100, 128, 154, 193, 238, 239
SWXList 102, 130, 156

IP address 26
iProcess Definer 41

iProcess Engine 5
IsActive property 268, 284
IsArrayField property 94
IsAuditAscending property 72, 83, 241
IsBroadcast property 22, 25, 27
IsChanged property 89
IsDeadline property 209
IsDeadlineAWD property 209
IsDeadlineExp property 209
isDefault property 203, 207
IsEOL property 278

SWList 60
SWView 66, 192

isExplicit property 203, 207
IsGraftOutstanding property 261
IsHaltOnSubProc property 49, 263
IsHaltOnTemplate property 49, 263
IsHaltOnTemplateVer property 49, 263
IsIgnoreState property 255
IsKeepLocalItems property 77, 78, 276
IsKeepOnWithdrawal property 211
IsLocked property 195
IsLongLock property 195
IsMandatory property 53
isNoChange property 203, 207
IsOrphaned property 198
IsOutStanding property 242
IsOutstanding property 261
IsPersisted property 81
IsPrediction property 249
IsPublic property 53
IsRebuildAll property 62, 70
IsRecurseProcPath property 256, 261
IsReleasable property 198
IsReleased property 190
IsSendValue property 89, 196, 197
IsShowMemory property 288
IsSuspended property 254
IsTaskCntSet property 261
IsUndelivered property 198
IsUnopen property 196
IsUserPwdExp property 33
IsWaitForAll property 57
IsWithAuditData property 46, 72, 83, 111, 138,

163, 241
IsWorkQReleased property 190
Item method

SWList 60, 61
SWLocList 64
SWView 67, 68

Index

TIBCO iProcess Objects Programmer’s Guide 362

ItemByKey method
object keys 84
SWList 60, 61
SWLocList 64
SWView 67, 68

ItemCount property 76, 80, 102, 130, 156, 193,
238

ItemsPerBlock property 73, 75

J
Java

examples 306
exceptions 294
Message Service (JMS) 37
Native Interface (JNI) 298
objects 7

JumpTo method 255
JumpToStepName 243

K
KeepExpr property 197
Keeping

multiple items 278
multiple work items 296
start step 231
the start step 92
work item 2, 196

Key property 84, 190

L
LAN 21

segment 20
LANGUAGE attribute 221
Large lists, how to handle 275
LastError property 198, 296
LastUpdateUser property 45
Late binding 279
Latency 23, 271
LD_LIBRARY_PATH 305
LIBPATH 305
Limiting number of items in a view 72
Lists, using 55
Local

host file 25
lists 55

LockedBy property 196
Locker of the work item 114, 141, 166, 183
Locking

multiple work items 278, 296
work items 194

LockItem method 88, 194

LockItemMarkings method 88, 194
LockItems method 88, 194
LockItemsEx method 88, 194
LockItemsMarkings method 88, 194
Log

level, client log 285
method 288

LogDirectory property 284
LoggedInNodes 15, 32
Logging

client 280
in and out of Staffware 32

Logical operators 105, 109, 133, 136, 159, 162
LogId property 284
Login

anonymous 35
daemon 6
failure 33
long-lived 20, 21
method 32, 270
short-lived 20, 21

LogLevel
property 285

Logout method 270
Long lock 305
Long-lived logins 20, 21
Looping through items in a list 278

M
Major version number, procedures 42
"Make" methods (for stateless programming) 271
MakeNodeInfo method 20, 26
MakeNodeInfoEx method 20, 26
MakeProc method 44
MakeProcByStatus method 44
MakeStep method 45
MakeViewCases

implied sort order 188
method 70, 237, 238

MakeViewItems
implied sort order 188
method 70, 191

MakeViewItemsByTag method 191
MakeWorkItemByTagEx method 86
MakeWorkItemEx method 86
MakeXListCases method 75
MakeXListItems method 75, 81, 192
MakeXListItemsEx method 75, 81, 86, 192
MakeXListPredict method 81, 249
MANAGER access 221
Managing work queues 189

Index

TIBCO iProcess Objects Programmer’s Guide 363

Manual configuration 20
Markings 88

populating 194
re-populating 196
types 232
user-created 90
validating 232

MaxCnt property 72, 79
MaxSize property 288
Memo fields 93
Memory

freeing 78, 276, 279
Information, in the client log 288

Menu property 221
MENUNAME attribute 221
MenuName property 221
Message

Event Request (MER) 37
property 242
threads 298

Messages
property 287

MessageWaitTime 93, 290
Methods 17
Microsoft

Access Driver 301, 303
RDO 2.0 drivers 303

Minor version number, procedures 42
Model 43, 190
Modeler 1
Monitoring activities 37
MOVESYSINFO function 215
Multi-byte encoding 291
Multiple

instances of SPO Server 23, 26
items, locking/keeping/releasing 278
logins 302
views, creating 70
work item operation errors 296

Mutex 303

N
Names (in property name) 17
Naming conventions 17
New work item flag 115, 142, 167, 183
Node 2
NodeInfos property 15, 22, 26
Nodes

finding available 20
Normal step, outstanding 256
NotEmpty 202, 206

Number of
items in an XList 80, 193
objects in an SWList or SWView 58
work items in a work queue 192

Numeric data type 116, 142, 168

O
Object

keys 84
types 56

ODBC connection name 36
On Error function 293
"One of the items in the array returned an error"

304
Operating system users 215
Operators

comparison 105, 109, 133, 136, 159, 162
logical 105, 109, 133, 136, 159, 162

Optimizing
communications 279
SPO applications 275
VB application performance 279

Optional case description 230
Oracle SID 36
ORACLE_HOME directories 305
Orphaned work item 198
OSUsersX property 74
OutFromFldNames property 50
Out-of-the-box client 7
Outstanding

graft items 261
sub-procedures 50

OutstandingItems property 211, 256
OutToFldNames property 50
OverMaxCnt property 72

P
Pack data/file 91
Packfile data 196
Page File Usage 288
Parallel steps 92
Parameter

templates 49, 263
Participation access to work queue 204
Password

database user 36
Password checking 33, 217
Permission

to audit 225
Persisted XLists 81, 274
PersistenceId property 81

Index

TIBCO iProcess Objects Programmer’s Guide 364

Persisting
filter criteria 124, 150, 176

PollCnt property 23, 24
Populating

SWLists 59
SWViews 66
SWXLists

Cases 79
groups, users, or OSUsers 80

Precedence, sub-procedure 233
PredictCase method 249
Predicting cases 247
Prediction flag 249
PredictType property 249
Priority of work item 81, 114, 141, 166, 183
ProcAudits property 46
Procedure 1, 15, 41

audit trail 46
name 114, 141, 166, 183
status 43
version control 42

Process
Engine 5
Invocator 6

ProcGroups property 44
ProcMajorVer property 42
ProcMinorVer property 42
ProcPath property 258
Procs property 41
ProcVersions property 44
PRODEF access 221
Properties 17
Provider, database 36
Pstaffli 6
pthread.dll 304
Public steps, fields 53
PublicFields property 53
PublicStepDesc property 53
PublicStepURL property 53
Publishing events 37
PurgeByCriteria method 123, 150, 176
Purging cases 269

based on filter criteria 123, 150, 176

Q
QSUPERVISOR attribute 208, 221
Queue not found error 190

R
Range filtering 122, 149, 175
Raw data buffers

SWList 59
SWView 66
SWXList of cases 79

Rebuild method
SWList 60
SWView 67
SWXList 75
using unnecessarily 276

Rebuilding
an SWView 69
subordinate lists 62, 69, 70

ReceiveLog property 282
Redirecting work items 200
Redirection property 201
Registry

client log 283
Regular expressions 120, 147, 172
Releasable

work item 198
work item flag 114, 141, 166, 183

Released work queue 190
ReleaseExpr property 197
ReleaseItem method 212
ReleaseItem method (for EAI steps) 212
Releasing

multiple work items 278, 296
start step 92, 198, 231
work item 2, 197

RemoveParticipation method 205
RemoveSupervisors method 208
RemoveUsers method 219
Removing

users from a group 219
work queue supervisors 208

RequestId property 212
Required case description 230
ResetLog method 288
Resetting

case counter 269
the client log 288

Resource control, SWXLists 77
ResumedDescription parameter 243
ResumedStepName parameter 243
RetryDelay property 267
RetryTime property 267
Return status, graft step 262
ReturnStatus property 49, 262
RevokeAccess method 203
Role

creating 220
deleting 220

Index

TIBCO iProcess Objects Programmer’s Guide 365

RoleNames property 235
root user

access to system directory 6
Router 24
RPC

Server 6

S
SAL session

starting 270
Script, running when

keeping work item 197
locking work item 196
releasing work item 197

Semaphores 303
SEOPasswordRequired parameter 33
Server

multiple on one machine 27
service 24, 299, 301, 302

Service, server 24, 299, 301, 302
services file 28, 29
"set" method names 17
setActivityPub method 38
SetCaseData method 91
setDate method 207
setDateTime method 203
setDefault method 203, 207
SetDefCriteria method 124, 150, 176, 186
SetDefCriteriaEx method 124, 150, 176, 186
SetGraftTaskCnt method 261
setNoChange method 203, 207
SetState method 254
setTime method 207
Setting case data 92
SHLIB_PATH 305
Short-lived logins 20, 21
SimulateCase method 250
Single-byte encoding 291
Single-parameter methods (stateless) 272
Size of

client log 288
Sort criteria 107, 111, 134, 138, 160, 163
SortAsType property 188
SortFields property 178, 179
Sorting 178

data types 188
in an efficient manner 182
on case data 183, 184
on SWViews 178
on SWXLists 179

predicted items 252
setting default specifications 186
system fields 182

SORTMAIL attribute 222
SPO

Server 15
SQL select statement 98, 126, 152
StackSize parameter 157
staffcfg file 6
staffli.exe 6
staffo

database table 216
file 6, 216

staffpms file 33, 97, 302
Staffware

form 88, 232
user 215
User Manager 214

Start step, keeping/releasing 92, 198, 231
StartByUserRef property 235
StartCaseDescription parameter 243
StartCaseStepName parameter 243
Started date and time of the case 114, 141, 166,

183
Starter of the case 114, 141, 166, 183
StartGraftTask method 260
StartIndex 52
StartIndex property 52, 259
Starting

a case 230
a graft task 260
a SAL session 270
sub-procedure 230

StartProcs property 41, 226, 235
StartStepName property 230
Stateless programming 270
Static TCP port 21, 28
Status

of the case 114, 141, 166, 183
property 43, 67, 76, 237, 238

Step 2
Forward 199, 222
parallel 92

StepName property 212
SubCaseId property 244
Subordinate lists 62, 70
Sub-procedure

dynamic 48
outstanding 50, 256
precedence 233

Index

TIBCO iProcess Objects Programmer’s Guide 366

starting 230
using 46

SubProcName property 47, 48, 260
SubProcPath property 51, 258
SubProcStartStep property 47, 48
SubProcStatus property 260
SubProcSteps property 256, 261
SupervisorNames property 208, 221
SuspendedDescription parameter 243
SuspendedStepName parameter 243
Suspending cases 254
SW_GEN_IDX 96
SW_NA 121, 149, 174
SW_QPARAM1 119, 146, 171
SW_QPARAM1-4 118, 145, 170, 185
SW_STATUS 268
SWAccessUserRef 235
swadmin user 6, 221, 227
SWAuditActionType 38, 242, 254
SWAuditStep 242
SWAWorkQ 201
SWCase 15
SWCaseDataQParamDef 117, 144, 169, 184
SWCasePredictQParam 251
SWCaseStateType 254
swChanged 67, 71, 76, 191, 237, 238
SWCIList 83
SWClientErrorType 292, 295
SWConditionPredictType 249
SWCriteriaC 101, 129, 155, 179
SWCriteriaP 101, 129, 155, 179
SWCriteriaWI 101, 129, 155, 179
SWDatabaseConfig 36
SWDate 14, 202, 205, 207
SWDeadline 209
SWDIR, system directory 6
SWDurationType 248
SWDurationValue 248
swDynamicReleased 243
SWDynamicSubProcStep 256
swDynamicWithdrawn 243
SWEAIStep 212, 256
SWEnterprise 14

creating 19
destructing 19

SWEntObjDB.exe 200, 203
SWEntUser 15, 215

creating 31
SWEOCom.dll 279
swErrBadSubProc 243
swErrDiffTemplate 243

swErrDiffTemplateVer 243
SWEventStep 256
SWException object 296
SWExtProcess 262
SWExtWorkItem 212
SWField 86
SWFMarking 88
SWFwdItem 199
SWGraftStep 256, 261
SWGroup 16, 218
swHiddenDesc 230
swIncomplete 43, 235
SWIPEConfig 36, 38
SWIPEConfig object 37
SWList 55, 59

looping through items 278
when to rebuild 62

swLLDupErr 25, 27
SWLocList 55, 63
SWLog object 282
SWLogCategoryType 285
swLoginFailErr 26, 33
SWLogMessageType 287
SWMarking 14, 88
swModel 43, 190
SWMonitorList.xsd schema 37, 38
swNoChange 67, 76
SWNode 15
SWNodeInfo 15
swOptionalDesc 230
SWOutstandingItem 256
SWPredictedItem 247
swpro user 6
swpro.exe 6
SWProc 15
SWProcGroup 44
SWProcStatusType 43
SWPublicField 53
SWQSessionInfo 81
swReleased 43, 190, 235
swRequiredDesc 230
swrpcsrv.exe 6
SWServerErrorType 292, 295
SWSortField 14, 179
SWSortType 188
swStatusOnly 67
swSubCaseComp 243
swSubCaseExpired 243
swSubCaseStart 243
swSubCaseTerm 243
swSubCaseWithdrawn 243

Index

TIBCO iProcess Objects Programmer’s Guide 367

SWSubProcPrecedenceType 233
SWSubProcStatusType 262
SWSubProcStep 51, 256, 261
SWTransControlStep 256
SWTransControlType 266
swUnreleased 43, 190, 235
SWUser 16, 216
swuser user 6
swuser.exe 6
SWView 55, 65

alternate 70
determining if filled 71, 192
including audit data 72
looping through items 278

swWINSOCKErr 22, 25
swWithdrawn 43, 235
swWithdrawnIncomplete 43
SWWorkItem 16
SWWorkQ 16
swXLChanged 237, 238
SWXList 55, 73, 275

including audit data 72, 83
persisted 81, 274

swXLStatusOnly 76
SYSTEM account 302
System Administrator authority 227
System directory 6
System fields 94

used in filtering 113, 140, 165
used in sorting 182

T
Tag property 272
TaskCnt property 261
TCP

name resolution 25
port

for database 36
port number 26, 299

TCP/IP communications 3, 7
Terminated date and time of the case 115, 141,

167, 183
TerminationDescription 243
TerminationDescription parameter 243
TerminationStepName 243
TerminationStepName parameter 243
TerminationUser 243
TerminationUser parameter 243
Test work queue 190
Testing the client log 289

Text data type 116, 142, 168
"The memory could not be "written"" 304
Thick client

creating SWEnterprise 19
logging in and out of 34
login 21

Third-party application 212
TIBCO

iProcess Engine 5
iProcess Modeler 1
iProcess Objects Director 8
iProcess Objects Server 7
Process Engine 5

Time
data type 116, 142, 168
in filter expressions 122, 149, 175

TimeOnly 206
Timeout, server reply 93, 290
TISOMultiChar 291
TISOUnicodeConverterName 291
TNS connection 36
Transaction control steps 265
TransControlSteps 256
TransControlType property 266
Transparent Network Substrate (TNS) 36
TriggerEvent method 268

Event, triggering 253
Troubleshooting IIS 297
Type property 56, 89

U
UDP broadcast 20
UDP_SERVICE_NAME process attribute 23, 24,

25
UDPPort property 23, 25
UDPServiceName Parameter 23, 24, 25
"Unable to locate DLL" 304
Undelivered work item 198
Undoing

multiple work items 296
work item changes 195

Unlocking
a work item 195
multiple work items 296

Unopened work item flag 115, 142, 167, 183
UnopenedCnt property 81, 196
Urgent work item flag 115, 142, 167, 183
UrgentCnt property 81
User 2

administration 214

Index

TIBCO iProcess Objects Programmer’s Guide 368

attributes 221
authority 227
creating 216
deleting 217
Enterprise 15
enterprise 215
groups 218
Message, in client log 281

USER access 221
User-created markings 90
User-defined audit trail messages 240
USERFLAGS attribute 222
USERINFO 215
UserNames property 235
Users property 216
UsersX property 74, 216
UTF-8 291

V
Validating

field types 89, 90
markings 232

Value property 86
ValueType property 89
Variant 61, 64, 81
VB applications, optimizing performance 279
vbObjectError 293
Version control, procedures 42
VersionComment property 45
View-only access to work queues 203
ViewOnlyQs property 203
Views 55, 65
ViewUsersName property 203
Visual

Basic examples 306
J++ 298

W
WAN 21
Web-based environment 271

creating SWEnterprise 19
logging in and out of 34
logins 21

Wild card characters, filtering 106, 110, 133,
137, 159, 162

WIS work item filtering 98, 126, 152
WIS-compatible 113
wisrpc.exe 6
Withdrawing outstanding items 255
Withdrawing work item 209, 211

Withdrawing work item on deadline 209
Work item 2

accessing 190
counts 81
data 91, 118, 145, 170, 196
deadlines 209
determining if new (unopened) 196
determining who locked 196
errors 198
external 212
filtering 101, 129, 155
forwarding 199
keeping 196
locking 194
orphaned 198
processing 194
releasable 198
releasing 197
server 6
undelivered 198
undoing changes 195
unlocking 195
withdrawing 211

"Work Item is not accessible" 305
Work queue 2

forwarding 199
granting access to 203
managing 189
parameter fields

for filtering 118, 145, 170
for sorting 185

participation 204
server 6
test/released 190

"Work Queue not found" 217
Working Set Size 288
WorkItems property 16, 65, 191
WorkItemsX property 16, 74, 192
WorkQs property 16, 189
WQParam1-4 properties 119, 146, 171, 186
WQParam1Name - 4Name properties 119, 146,

171
WQS_WIS_COUNT 6
wqsrpc.exe 6

X
XLists 55, 73, 275

	TIBCO iProcess™ Objects Programmer’s Guide
	Preface
	Introduction
	Product Name Changes
	Knowledge Level
	Documentation Set

	Revision History
	Introduction
	Introduction
	Procedures
	TIBCO iProcess Objects Configurations
	TIBCO iProcess Objects Components
	TIBCO Process / iProcess Engine
	Engine and Server Version Numbers
	SWDIR - The System Directory
	Engine Processes

	TIBCO iProcess Objects
	Client-to-Server Communications

	TIBCO iProcess Objects Server
	TIBCO iProcess Objects Director

	JVM Finalization and Garbage Collection
	Solution Strategy
	Implementation
	Configuration

	FinalizeMonitor Log Example

	The Object Model
	Introduction

	Naming Conventions
	Overview
	Differences between COM, Java, and C++ Naming Conventions

	Getting Started
	Creating the SWEnterprise Object
	Do I Create One or Many SWEnterprise Objects?
	When Should the SWEnterprise Object be Destructed?

	Accessing Nodes on the Network
	Automatic Discovery (UDP Broadcast) on a LAN Segment
	Configuring the UDP Broadcast
	Multiple Instances of the TIBCO iProcess Objects Server/Director
	What if a Known Node is not Answering the UDP Broadcast?
	Example — Auto-Discovery UDP Broadcast

	Directed UDP to a Specific Node
	Specifying the UDP Port Number
	Example — Directed UDP Broadcast

	Manually Create an SWNodeInfo Object
	Example — Connecting to a Specific Node

	Configuring the TIBCO iProcess Objects Server TCP Port
	Configuring the TCP Port on a Windows System
	Configuring the TCP Port on a UNIX System

	Can I use TIBCO iProcess Objects through a Firewall?
	Creating Enterprise Users
	Logging In
	Turning On/Off Password Checking
	Logging In When Using Multiple Instances of the TIBCO iProcess Objects Server
	Login Failures
	Logging in Using a TIBCO iProcess Objects Director

	Logging Out
	How often should Users be Logged In and Out?
	When Should I use Anonymous Logins?

	Database Configuration
	Database Configuration Access

	Activity Publication
	Avtivity Publication Access
	Configuring Activity Publication
	Using the SWIPEConfig Object
	Configuration Example

	Procedures
	Introduction
	Procedure Version Control
	Accessing the Procedure Version Number
	Procedure Status
	Listing Versions of a Procedure
	Accessing a Specific Procedure Version
	Making Different Versions of Procedures
	Using the Tag Property to Make Specific Versions

	Procedure Version Details
	Procedure Audit Trails

	Sub-Procedures
	Sub-Procedure Call Steps
	Sub-Procedure Start Precedence

	Dynamic Sub-Procedure Call Steps
	Passing Data between a Main and Sub-Procedure
	Outstanding Sub-Procedures / Sub-Procedure Call Steps
	Sub-Procedure Proc Path

	Public Steps

	Working with Lists
	Types of Lists Available
	How to Determine the Type of Object in a List
	Lists are Filled Asynchronously
	How to Force Synchronous Behavior
	Determining the Number of Objects in a List or View
	What about SWXLists?

	SWLists
	How SWLists are Created and Populated at the Client
	What Causes Raw Data to be Sent to the Client?
	What Causes Objects to be Created and Added to an SWList?
	Why do Item and ItemByKey return a Variant (COM only)?

	When Should I Rebuild an SWList?
	How to Rebuild Subordinate Lists

	SWLocLists
	How to Add Objects/Strings to Local Lists
	How to Access Objects/Strings on Local Lists
	Why do Item and ItemByKey return a Variant (COM only)?

	SWViews
	The “Default” Views of Cases and Work Items
	How SWViews are Created and Populated at the Client
	What Causes Raw Data to be Sent to the Client?
	What Causes Objects to be Created and Added to an SWView?

	When should a View be Rebuilt?
	How to Rebuild Subordinate Views

	When should I Create an Alternate View?
	Implied Sort on Alternate Views

	Determining the Total Number of Items Available
	How do I Limit the Number of Work Items/Cases in a View?
	How to Include Audit Data in a View

	SWXLists
	What types of Objects can be found in an XList?
	Accessing the “Default” XLists of Objects
	Creating Additional XLists
	How XLists are Created
	Controlling Resources
	Populating an XList of Work Items
	SWXLists of Work Items When Using Multiple Instances of the Server
	Populating an XList of Cases
	Populating an XList of Groups, Users, or OSUsers

	Determining the Number of Items in an XList
	Work Item-Specific Counts
	Why do Item and ItemByKey return a Variant (COM only)?

	Working with Persisted XLists
	Using Multiple Instances of the Server or Director
	How to Include Audit Data in an XList

	CIList (Java Only)
	Using an SWCIList

	Object Keys

	Fields & Markings
	What is a Staffware Field?
	What are Markings?
	Type Validation on Fields/Markings
	User-Created Markings
	Type Validation on User-Created Markings

	Case Data vs. Work Item Data
	Where do I find Case Data and Work Item Data?
	Setting Case Data
	Keeping/Releasing the Start Step
	Parallel Steps

	Case Data Queue Parameter Fields
	Accessing Memo Fields
	Accessing Attachments
	Accessing System Fields
	Array Fields
	Array Field Indexes
	Using Array Fields in Filter Expressions

	Date Format

	Filtering Work Items and Cases (without Filtering Enhancements)

	Introduction
	How Filtering Differs Between Views and XLists
	Defining Filter Expressions on SWView
	Number of Work Items or Cases in the Filtered View

	Defining Filter Expressions on SWXList
	Number of Work Items or Cases in the Filtered XList

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Can the WIS Perform the Filter Operation?
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	Filtering Cases on the TIBCO iProcess Objects Server
	Sorting Cases on the TIBCO iProcess Objects Server
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types Used in Filter Criteria
	Data Type Conversions

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	Type of Data in CDQPs

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Specifying Multiple Ranges

	Closing/Purging Cases Based on Filter Criteria
	How to Persist (Default) Filter Criteria

	Filtering Work Items and Cases (with WIS WorkItem Filtering)

	Introduction
	How Filtering Differs Between Views and XLists
	Defining Filter Expressions on SWView
	Number of Work Items or Cases in the Filtered View

	Defining Filter Expressions on SWXList
	Number or Work Items or Cases in the Filtered XList

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Work Items are Filtered by the WIS
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	The TIBCO iProcess Objects Server Filters Cases
	The TIBCO iProcess Objects Server Sorts Cases
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types used in Filter Criteria
	Data Type Conversions
	Filtering Work Items on the WIS
	Filtering Cases on the TIBCO iProcess Objects Server

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	CDQPs Contain Work Item Data

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Regular Expressions with Work Item Filtering

	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Closing/Purging Cases Based on Filter Criteria
	How to Persist (Default) Filter Criteria

	Filtering Work Items and Cases (with WIS WorkItem & Database Case Filtering)

	Introduction
	How Filtering Differs Between Views and XLists
	Defining Filter Expressions on SWView
	Number of Work Items or Cases in the Filtered View

	Defining Filter Expressions on SWXList
	Number or Work Items or Cases in the Filtered XList

	Length of Filter Expressions
	Large Filter Expressions May Require Larger Stack Size in UNIX

	Filtering/Sorting in an Efficient Manner
	Filtering/Sorting Work Items
	Getting Case Data
	Work Items are Filtered by the WIS
	Can the WIS Perform the Sort Operation?

	Filtering/Sorting Cases
	Getting Case Data
	The Database Filters Cases
	The Database Sorts Cases
	Getting Audit Data

	Filter Criteria Format
	System Fields used in Filtering
	Data Types used in Filter Criteria
	Data Type Conversions

	Filtering on Case Data Fields
	Using Case Data Queue Parameter Fields
	CDQPs Contain Work Item Data

	Using Work Queue Parameter Fields
	Work Queue Parameter Fields vs. Case Data Queue Parameter Fields

	Using Regular Expressions
	Regular Expressions with Work Item Filtering
	Regular Expressions with Case Filtering

	Using Escape Characters in the Filter Expression
	Filtering on Empty Fields
	How to Specify Ranges of Values
	Closing/Purging Cases Based on Filter Criteria
	How to Persist (Default) Filter Criteria

	Sorting Work Items and Cases
	Introduction
	How Sorting Differs Between Views and XLists
	Defining Sort Criteria on SWView
	Defining Sort Criteria on SWXList

	Specifying Sort Criteria
	Sorting in an Efficient Manner
	System Fields used in Sorting
	Sorting on Case Data Fields
	Using Case Data Queue Parameter Fields
	CDQPs Contain Work Item Data

	Using Work Queue Parameter Fields

	Setting Default Sort Criteria
	Implied Sort Fields for Multiple Views/XLists
	Sorting as a Specified Data Type

	Managing Work Queues
	Introduction
	Work Queue Objects
	Test vs. Released Work Queues

	Accessing Work Items on a Work Queue
	Accessing Work Items in SWViews
	Accessing Work Items in SWXLists

	Determining the Number of Work Items in a Work Queue
	Determining the Number of Work Items in a Work Queue on an SWView
	Determining the Number of Work Items in a Work Queue on an XList

	Processing Work Items
	Locking Work Items
	Getting Markings When Locking Work Items
	What’s the Difference Between a “Lock” and a “Long Lock”?
	Unlocking a Work Item
	Discarding Changes made to a Locked Work Item
	Has a Work Item been Locked/Opened?
	Determining who Locked a Work Item
	Executing a Command when a Work Item is Locked

	Keeping Work Items
	Executing a Command when a Work Item is Kept

	Releasing Work Items
	Validating Markings
	Executing a Command when a Work Item is Released
	Automatically Releasing the Start Step
	What is an Orphaned Work Item?
	Determining if a Work Item could not be Delivered to the Addressee
	Is the Work Item Directly Releasable?

	Errors Resulting from Processing Work Items

	Forwarding Work Items to Another Work Queue
	Manually Forwarding Work Items
	Auto Forwarding/Redirecting Work Items
	Redirection of Work Items
	Creating a Redirection Schedule
	Using the SWDate Object (Java and C++ Clients Only)

	Granting Access to a Work Queue
	View-Only Access to a Work Queue
	Participation Access to a Work Queue
	Creating a Participation Schedule
	Using the SWDate Object (Java and C++ Clients Only)
	The TIBCO iProcess Objects Server Maintains an Index of the Participation Schedules

	Work Queue Supervisors
	Adding Work Queue Supervisors
	Removing Work Queue Supervisors

	Work Item Deadlines
	Withdrawing Work Item on Deadline
	Deadline Counts
	Filtering and Sorting on Deadline Information

	Keeping a Work Item that is Withdrawn
	External Work Items
	Releasing an External Work Item

	User Administration
	Introduction
	Types of Users
	MOVESYSINFO Function

	Staffware Users
	Creating a Staffware User
	Deleting a Staffware User
	Is an O/S User needed for every Staffware User?
	Changing the User’s Password

	User Groups
	Creating a User Group
	Deleting a User Group
	Adding and Removing Users to/from a Group

	Roles
	Creating a Role
	Deleting a Role

	User Attributes
	Creating an Attribute
	Deleting an Attribute
	Modifying an Attribute

	Why isn’t the new User, Group, Role or Attribute Appearing in the List?
	Determining which Procedures a User can Audit
	Determining the Procedures for which the User can Start a Case
	User Authority

	Case Management
	Starting a Case
	Case Description
	Keeping/Releasing the Start Step
	Starting a Case with Field Data
	Validating Markings on the Start Step
	Sub-Procedure Precedence
	Why isn’t the Started Case Appearing in the Work Queue?
	Obtaining the Case Number of a Case that was just Started

	Determining Who Can Start a Case
	Which Procedures can a User Start?

	Obtaining the “Default” View / XList of Cases
	Status of Cases

	Creating an “Alternate” View / XList of Cases
	Alternate SWViews
	Implied Sort on Alternate Views

	Alternate SWXLists
	Status of Cases

	Determining the Number of Cases in a Procedure
	Auditing Case Data
	Determining the Procedures a User can Audit
	Populating a Case with Audit Data
	The SWAuditStep Object
	Configuring Audit Trail Strings
	Auditing Sub-Procedures
	Filtering Audit Data
	Setting AuditFilterExpr

	Adding User-defined Audit Trail Entries

	Predicting Cases
	Defining Case Prediction
	Step Duration
	Conditional Actions for Case Predictions

	Performing Case Prediction
	Background Case Prediction
	Live Case Prediction
	Case Simulation

	Sub-Procedures, Dynamic Sub-Procedures, and Graft Steps in Prediction
	Sub-Procedure Call Steps
	Dynamic Sub-Procedure Call Steps and Graft Steps

	Including Case Data Queue Parameter Data in Prediction Results
	Filtering and Sorting Predicted Items

	Triggering Events
	Suspending Cases
	Reactivating a Suspended Case
	Ignoring Suspended Cases

	Jumping To New Outstanding Step in a Case
	Determining Outstanding Items
	ProcPath to Outstanding Items

	Using Graft Steps
	Defining Graft Steps
	Starting a Graft Task
	Setting the Task Count
	Outstanding Graft Items
	Return Statuses
	Other Status Information on an Outstanding Graft Item
	Deleting a Task
	Completing a Graft Step
	Error Processing

	Transaction Control Steps
	Step Type
	Type of Transaction Control Step
	Outstanding Transaction Control Steps
	Retrying Failed Transactions
	Transaction Control Step Audit Trail Messages

	Closing Cases
	Resurrecting a Closed Case

	Purging Cases

	Stateless Programming
	Introduction
	Logging Out vs. Disconnecting
	Stateless Objects
	Single-Parameter Methods
	Using the Tag Property

	Passing an Empty Object in the Make Methods (C++ only)
	Persisted XLists

	Optimizing Your Applications
	Introduction
	Handling Large Lists of Work Items, Cases, Users, OS Users, Groups
	Clear Blocks on Client when using XLists
	Optimizing Communications between Client and Server
	Filtering and Sorting in an Efficient Manner
	How Getting Case Data affects Application Efficiency
	Getting Case Data on View/XList vs. Case

	Looping Through Items in an SWList or SWView
	Locking, Keeping, Releasing Multiple Items
	Optimizing VB Application Performance
	Accessing a Single Object
	Clear Unneeded Views and XLists
	Case Indexing

	Client Configuration
	Client Log
	Controlling the Client Log
	The SWLog Object
	Registry Settings (Windows only)
	Environment Variables (UNIX Only)

	Name and Location of the Client Log
	Log File Name
	Log File Directory

	Activating / Deactivating the Client Log
	Filtering the Client Log
	Setting the Log Level
	Filtering by Category
	Filtering by Message

	Displaying Memory Information in the Client Log (Windows only)
	Adding Entries to the Client Log
	Setting the Size of the Client Log
	Resetting the Client Log
	Testing the Client Log

	Message Wait Time
	Character Encoding Using ICU Conversion Libraries

	Error Handling
	TIBCO iProcess Objects (COM)
	Error Constants
	Error Trapping in Visual Basic

	TIBCO iProcess Objects (Java)
	Error Constants

	TIBCO iProcess Objects (C++)
	Handling Multiple Work Item Operation Errors
	Debugging Problems with ASP
	Error Messages
	“An Exception of Type java.lang.UnsatisfiedLinkError was not handled”
	“Authentication Request Failed”
	“Error 2140: An internal Windows NT error occurred”
	“Error 2140: An internal Windows NT error occurred”
	“Error 2140: An internal Windows NT error occurred”
	“Error 2140: An internal Windows NT error occurred”
	“Error 2140: An internal Windows NT error occurred”
	“Error 5: Access is denied”
	“Error Calling CreateDataSource Interface for SWAutoFwdQ”
	“Error Initializing AutoFwd/QView Database”
	“Error creating mutex”
	“Error in sal_frm_putdata call”
	“One of the items in the array returned an error”
	“The memory could not be ‘written’”
	“Unable to locate DLL”
	“/usr/lib/dld.sl exists - can't open shared library: /oracle8/lib/libclntsh.sl no such file or directory”
	“Work Item is not accessible”

	Code Examples
	Introduction
	Auto-Discovery UDP Broadcast
	Visual Basic
	Using the “For Each” Iteration:
	Using a While loop:

	Java
	Using “Enumeration”:
	Using a While Loop:

	C++
	Using a While Loop:

	Resulting Output

	Directed UDP Broadcast
	Visual Basic
	Java
	C++

	Connecting to a Specific Node, Creating Enterprise Users, Login, Logout
	Visual Basic
	Java
	C++
	Resulting Output

	Working with Staffware Lists — SWLists, SWViews, and SWLocLists
	Visual Basic
	Java
	C++
	Resulting Output

	Working with Staffware Lists — SWXLists
	Visual Basic
	Java
	C++
	Resulting Output

	Index

