
TIBCO iProcess® Workspace (Browser)

Configuration and Customization
Software Release 11.4
April 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO iProcess,TIBCO FormBuilder, and TIBCO General Interface are either
registered trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
EJB, Java EE, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 2006-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . ix

Related Documentation . x
TIBCO iProcess Workspace (Browser) Documentation . x
Other TIBCO Documentation . xi

Connecting with TIBCO Resources . xii
How to Join TIBCOmmunity . xii
How to Access TIBCO Documentation. xii
How to Contact TIBCO Support . xii

Chapter 1 Introduction . 1

Overview . 2
iProcess Client . 2
Custom Application Built with Components . 6

Configuration Files . 7

Chapter 2 User Access . 9

User Access Profiles . 10
Hierarchy . 12
Using a Single Profile for Multiple User Types . 13
Access Profile ‘name’ Attributes . 13
Creating Custom User Access Profiles. 27

Chapter 3 Configuring the Client Application . 29

Server Nodes. 30

Action Processor URL . 34

Session Monitor . 37

Hide Case Data Tab Find Tool . 38

Remember Login Information . 39

Customizing the Browser Window Caption . 40

Customizing the Work Item Caption . 42

Specifying Browser Window Features . 44
Form Type. 45
Browser Feature Attributes . 46

Releasing Resources on Logout . 51
 TIBCO iProcess Workspace (Browser) Configuration and Customization

iv | Contents
Redirecting Client to URL on Logout. 52

Redirecting Client to URL on Browser Session Timeout. 53

User Options . 54

Limiting Number of Cases. 62

Setting the Maximum Number of Case History Entries. 63

Specifying Default Page Size for Work Item Lists . 64

Specifying Default Types/Statuses to Display on Lists . 65

Server-Side Atomic Locking of Work Items. 67

Specifying Whether Case Counts Should be Obtained . 70

Specifying Outstanding Work Item Step Types . 71

WebDAV Root Setting . 72

Add-ins . 73

TIBCO Forms Caching . 74

Show/Hide Personal Work Queues. 75

Chapter 4 Customizations . 77

Font and Image Settings . 78

Adding Custom Menu Items and Toolbar Buttons. 79
Extending User Access Profiles to Control Custom Menus and Toolbar Buttons . 83

Callout Interface . 87
Sample Callout Handler . 88
Helper Function . 90
Configuration . 90
Callout Methods. 93

Browser File Cache Issues . 122
Browser File Cache Settings . 122
How Expiration Dates Are Used . 124
Clearing the Local Browser Cache . 124
Content Expiration Dates on IIS. 124
Other Considerations and Recommendations . 125
Creating New Application Directory for Updates . 125

Dynamic Work Item Status Icons Based on Priority . 126

Dynamic Row Colors on Work Item List . 133

Chapter 5 Configuring the Action Processor . 137

Overview . 138

Log Settings . 139

XML Response Compression . 140
TIBCO iProcess Workspace (Browser) Configuration and Customization

Contents | v
Return Request Parameters . 141

External Form URI . 142
Obfuscating External Form URI Information. 142

Server Factories. 144

XML Validation . 146

Action Processor Version. 147

Chapter 6 Application Server Settings. 149

Session Timeout . 150

Maximum POST Size. 153

Character Encoding . 154

Java Heap Size . 155

Chapter 7 Direct Login . 157

Direct Login . 158
Enabling Direct Login . 160
On the URL. 160
In an HTML Form Element Named 'DirectLogin' . 161
In an HTML Script Element that Defines ‘getDirectLoginArgs’ . 162

Chapter 8 Single Authentication. 163

Introduction . 164

Java Single Authentication. 165
Web Server Configuration . 165
Authenticator Plug-in . 166
iProcess Workspace (Browser) Configuration . 167
Java Single Authentication Sample . 167

.NET Single Authentication . 171
Web Server Configuration . 171
Authenticator Plug-in . 172
iProcess Workspace (Browser) Configuration . 173
.NET Single Authentication Sample . 173

Chapter 9 Logging . 177

Introduction . 178

Application Log . 179

Application Monitor . 181
 TIBCO iProcess Workspace (Browser) Configuration and Customization

vi | Contents
Chapter 10 Localization . 185

Localizing the iProcess Workspace (Browser) . 186
Create a New Localized Language Resource File. 187
Configure the New Localized Language in the iProcess Workspace (Browser) . 189
Modify or Create a General Interface System Locale File . 190
Translate User Access Profiles Descriptions . 193
Set the New Default Language for the iProcess Workspace (Browser). 193
Create a New Folder to Hold Localized Help Files . 194

Chapter 11 IPC Tools Methods . 195

Introduction . 196

Method Summary . 197
ipcStartCase . 199
ipcShowCase. 200
ipcCloseCases. 201
ipcPurgeCases . 202
ipcSuspendCases . 202
ipcActivateCases . 203
ipcShowGraphicalCaseHistory . 204
ipcAddCaseHistoryEntry . 205
ipcShowCasePrediction . 207
ipcTriggerEvent . 208
ipcProcessJump. 210
ipcOpenWorkItem . 212
ipcOpenWorkItemEx . 213
ipcUnlockWorkItem . 215
ipcForwardWorkItem . 216
ipcReleaseWorkItem . 217
ipcConfigureSupervisors . 218
ipcConfigureParticipation . 220
ipcConfigureRedirection. 221
ipcShowWorkQLoadingChart . 223
ipcGetStartProcs . 224
ipcGetAuditProcs . 225
ipcShowProcLoadingChart . 226
ipcShowProcVersion . 227
ipcShowServerInfo. 229
ipcShowOptions . 230
ipcWorkItemTag2CaseTag . 231
ipcWorkItemTag2WorkQTag . 232
ipcGetUserAttributes . 232
ipcGetGroupAttributes . 233

IPC Tools Methods Sample. 234
TIBCO iProcess Workspace (Browser) Configuration and Customization

Contents | vii
Chapter 12 Forms . 239

Introduction to Forms. 240
External Forms / GI Forms . 241

Chapter 13 GI Forms Interface . 245

Overview . 246
Base Class . 247
Sample Implementation . 248

Implementation . 249

Interface Properties and Methods . 254
Base Class Properties . 254
Base Class Methods. 257
buildCDFArrays. 258
closeForm. 259
confirmUserMessage . 260
createFieldDefsRequest . 261
createKeepRequest . 265
createLockRequest. 268
createReleaseRequest . 272
doCancel . 275
doClose . 276
doKeep . 277
doRelease . 278
getWindowContext . 279
init . 280
lockWorkItem . 281
onBeforeUnload . 283
postLoadInit . 284
readFieldDefs . 287
readFormFields. 289
readStepMarkings . 291
showUserMessage . 293
socketRequest . 294
transformData . 295

FieldData Class . 296
FieldData Class Functions . 296
Requesting Values For Items in an Array Field. 299

Date Conversions . 300
Code Example . 303
Date Conversion Methods . 304
Date Format Localization Methods . 307

Accessing User Options When Using GI Forms . 311
 TIBCO iProcess Workspace (Browser) Configuration and Customization

viii | Contents
Chapter 14 ASP Forms. 313

ASP Form Example. 314
Setting Up the ASP Form Project in IIS . 314
Configuring iProcess Workspace to Use the ASP Form . 316
ASP Form Interface . 320

Chapter 15 JSP Forms . 323

JSP Form Example . 324
Configure iProcess Workspace to Use the JSP Form . 324
JSP Form Interface . 328

Chapter 16 Customizing iProcess Modeler Forms . 331

Overview . 332

Embedding HTML . 334
Word Wrap in the Editor. 334
Pre-Formatting of the Form . 334
Disabling Pre-Formatting . 334
Including Scripts . 334
Nesting of HTML Tags with Conditional Statements . 335
Functions Available for Embedded Scripting . 335
Altering the Style of Various Controls . 336
Embedded Customization Examples. 337

File Caching . 342
Setting up a Test Environment . 342
Structure of the Complete iProcess Modeler Form Page . 343
Functions Available for File-Cached Scripting . 344
HTML for Marking Controls . 347
File-Cached Customization Example. 351

Common Issues for Embedded and File-Cached Customizations . 357

Chapter 17 Displaying Forms Outside of the iProcess Workspace. 359

The LinkForm Example . 360

Appendix A Deprecated Callout Interface . 363

Callout Interface . 364
Configuration . 367
Callout Method Signatures. 370

Index . 385
TIBCO iProcess Workspace (Browser) Configuration and Customization

| ix
Preface

This guide provides information about configuring and customizing your TIBCO
iProcess Workspace (Browser).

Topics

• Related Documentation on page x

• Connecting with TIBCO Resources on page xii
TIBCO iProcess Workspace (Browser) Configuration and Customization

x | Preface
Related Documentation

This section lists documentation resources you may find useful.

TIBCO iProcess Workspace (Browser) Documentation

The following documents form the TIBCO iProcess Workspace (Browser)
documentation set:

• TIBCO iProcess® Workspace (Browser) Installation Guide - Read this manual for
information about installing and configuring the TIBCO iProcess Workspace
(Browser).

• TIBCO iProcess® Workspace (Browser) Release Notes - Read the release notes for a
list of new and changed features. This document also contains lists of known
issues and closed issues for each release.

• TIBCO iProcess® Workspace (Browser) User’s Guide - Read this manual for
instructions on using the TIBCO iProcess Workspace (Browser) client
application.

• TIBCO iProcess® Workspace (Browser) Configuration and Customization - This
manual provides information about configuring and customizing the iProcess
Workspace and Action Processor.

• TIBCO iProcess® Workspace (Browser) Components Concepts - This guide
provides an overview of the TIBCO iProcess Workspace (Browser)
Components, and how they work with other TIBCO products, as well as
information about using the Properties and Events Editor to configure
components you’ve added to your application. It also provides a tutorial that
steps you through creating a simple application using the iProcess Workspace
(Browser) Components.

• TIBCO iProcess® Workspace (Browser) Components Reference - This guide
provides details about each of the components available in the TIBCO iProcess
Workspace (Browser).

• TIBCO iProcess® Workspace (Browser) Action Processor Reference - This
document provides an overview of the Action Processor, as well as
information about all of the requests that can be sent to the Action Processor
from TIBCO General Interface components.

• Integrating TIBCO Forms 2.x with GI Applications - Describes a programmatic
approach to instantiating and launching TIBCO Forms applications from a
standalone General Interface application. This is included in the TIBCO
iProcess Workspace (Browser) document set as the TIBCO Forms Add-in is
installed via the TIBCO iProcess Workspace (Browser) installer.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Related Documentation | xi
Before installation, you can access the product documentation listed above from
the download site or in the doc folder at the root level on the product media.

After installation, if documentation has been installed with the product, you can
access either HTML or PDF product documentation in the following folder:

TIBCO_HOME\iprocessclientbrowser\doc\ipworkspacebrowser\

Also after installation, you can view the release notes (for new features, closed
issues, and known issues) in the following folder:

TIBCO_HOME\iprocessclientbrowser\doc\

Other TIBCO Documentation

You may find it useful to read the documentation for the following TIBCO
products:

• TIBCO iProcess® Server Objects (Java or .NET) Programmer’s Guide - The TIBCO
iProcess Server Objects (either Java or .NET) are installed as part of the TIBCO
iProcess Workspace (Browser). This guide provides information about
configuring the iProcess Server Objects.

• TIBCO iProcess® Objects Server Administrator’s Guide - The TIBCO iProcess
Workspace (Browser) communicates with the iProcess Engine through an
iProcess Objects Server. This guide can be used to help configure your
iProcess Objects Server.

• TIBCO PageBus® Developer’s Guide - This guide provides an introduction to the
PageBus, an Ajax publish/subscribe message delivery hub used by the TIBCO
iProcess Workspace (Browser) components.

• TIBCO iProcess® Workspace (Windows) Manager's Guide - Read this guide for
information about using the TIBCO iProcess Administrator, which includes the
User Manager. The User Manager is used to add users to the system, who can
then log into the TIBCO iProcess Workspace (Browser) application.

• TIBCO Business Studio® Forms User’s Guide - Read this guide for information
about creating and deploying TIBCO Forms.

All of these guides are available in the TIBCO Documentation Library.
TIBCO iProcess Workspace (Browser) Configuration and Customization

xii | Preface
Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts. It is a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access TIBCO Documentation

You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact
TIBCO Support as follows:

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO iProcess Workspace (Browser) Configuration and Customization

http://www.tibcommunity.com
http://docs.tibco.com
http://www.tibco.com/services/support
https://support.tibco.com

| 1
Chapter 1 Introduction

This chapter provides an introduction to configuring and customizing TIBCO
iProcess Workspace (Browser).

Topics

• Overview, page 2

• Configuration Files, page 7
 TIBCO iProcess Workspace (Browser) Configuration and Customization

2 | Chapter 1 Introduction
Overview

All of the information in this guide can be used to configure and customize either
of the following applications:

• iProcess Client

• Custom application built with components

iProcess Client

The iProcess Client is an application that is provided with TIBCO iProcess
Workspace (Browser) that allows you to perform functions such as start cases of
iProcess procedures, display case history, view work items in their work queue,
etc.

Note, however, the iProcess Client was not built using the TIBCO iProcess
Workspace (Browser) components. Therefore, it cannot be opened in TIBCO
General Interface Builder, like a custom application built with components, nor
can you use component-specific items like WCC methods (which are described in
the TIBCO iProcess Workspace (Browser) Components Reference Guide), to customize
the iProcesss Client.

The iProcess Client can be configured and customized only to the extent of what
is described in this document.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Overview | 3
The following shows the iProcess Client:

Details about the functions available in this application can be found in the TIBCO
iProcess Workspace (Browser) User’s Guide.

iProcess Client Launch Fragment

When the iProcess Client is installed, a launch fragment is provided that is used to
launch the iProcess Client application. This launch fragment is located as follows:

InstallDir\iProcessClient.html

where InstallDir is the directory specified during the installation of TIBCO
iProcess Workspace (Browser).

After all installation and configuration tasks are completed, and the Web
Application Server hosting the iProcess Client and Action Processor has been
started, the iProcess Client can be launched by pointing a browser at the iProcess
Client launch fragment:

http://Host:Port/ClientDir/iProcessClient.html
 TIBCO iProcess Workspace (Browser) Configuration and Customization

4 | Chapter 1 Introduction
where:

— Host is the machine name on which the iProcess Client is being hosted.

— Port is the port number used by the Web server to communicate with web
applications.

— ClientDir is the directory (or virtual directory alias) in which you installed
the iProcess Client files (which defaults to TIBCOiPClnt).

For example:
http://Roxie:8090/TIBCOiPClnt/iProcessClient.html

Cross-Domain Scripting

Cross-domain scripting is a security vulnerability of web applications. If you trigger
cross-domain scripting, and your browser doesn’t allow it, the web application
will not run (in the case of an iProcess Workspace (Browser) application, it will
state that it is unable to establish a connection to the Action Processor).

Some browsers are more strict about enforcing cross-domain scripting than
others; and newer versions of browsers tend to be more strict than older versions.
Some browsers also provide methods to allow cross-domain scripting—see your
browser’s documentation for more information.

Cross-domain scripting affects accessing iProcess Workspace (Browser)
applications in the following ways:

• URL used to launch the application - To prevent cross-domain scripting, it is
best practice to ensure that the domain portion of the URL that is entered into
the address line of the browser exactly matches the domain portion of the
Action Processor URL specified in the application’s config.xml file.

The domain consists of the "http://Host:Port" part of the URL.

The domain used to launch the application cannot differ in any way from the
Action Processor’s specified domain, otherwise cross-domain scripting may
be triggered (depending on your browser). That is, you cannot use "http" in
one and "https" in the other; you cannot use a host name in one and an IP
address in the other; one host name cannot be unqualified and the other
qualified; you cannot use "localhost" in one and "127.0.0.1" in the other.

To determine if cross-domain scripting is being used, the browser simply
compares the URL domains as strings.

• Running the application from the local file system - Because of the security
risk of cross-domain scripting, some browsers will not allow you to run a web
application (including the iProcess Client) from the local file system.

Note that you would typically only run the iProcess Client or a WCC
application from the file system in a testing and development environment. In
TIBCO iProcess Workspace (Browser) Configuration and Customization

Overview | 5
a production environment, it is expected that the application will be deployed
to a Web server and run from there.

Launching the iProcess Client in an HTML Frame

To be able to launch the iProcess Client in an HTML frame (for example, an iframe
in a portal), you must make some modifications to the launch fragment for the
application.

Prior to launching the iProcess Client in a frame:

1. Open the launch fragment.

2. Locate the following: “NOTE: To allow display of this application under
frames remove the following style and script elements”.

3. Remove (or comment out) the <style> and <script> elements immediately
after the note. For example:

4. Locate the following: “NOTE: To allow display of this application under
frames remove the next script element”.

5. Remove (or comment out) the <script> element immediately after the note
(do not, however, remove the second <script> element following the note).
For example:

<!-- NOTE: To allow display of this application under frames remove the following

style and script elements

<style type="text/css">html{display:none;}</style>

<script language="javascript">

if (self == top) {

// Not in frame so show client app

document.documentElement.style.display='block';

} else {

// In a frame so try to show client app outside of a frame

top.location = self.location;

}

</script> -->
 TIBCO iProcess Workspace (Browser) Configuration and Customization

6 | Chapter 1 Introduction
6. Save and close the launch fragment.

Custom Application Built with Components

Custom applications that are built with TIBCO iProcess Workspace (Browser)
components1 can be configured and customized using any of the parameters
described in this document. Plus, they can further enhanced using things like
WCC methods and the JavaScript Interface, which are described in the TIBCO
iProcess Workspace (Browser) Components Reference Guide.

Also see the TIBCO iProcess Workspace (Browser) Components Concepts Guide for
information about how to create a custom application using components.

<!-- NOTE: To allow display of this application under frames remove the next

script element

<script language="javascript">

if (self !== top) {

// Still in a frame so clear body of app and close

document.getElementsByTagName("body")[0].innerHTML = 'Not allowed in frames.';

window.open('close.html', '_self');

}

</script> -->

<script type="text/javascript" src="JSX/js/JSX30.js"

jsxappns="wccApp" jsxapppath="JSXAPPS/ipc/"

wccapppath="JSXAPPS/ipc/" wccloadorder="0" >

</script>

1. Also commonly called “WCC” components.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Configuration Files | 7
Configuration Files

There are two primary configuration files provided to configure the client
application:

• userAccessProfiles.xml - This is used to specify which users have access to
the functions available in the client application.

For information about configuring user access profiles, see User Access on
page 9.

• config.xml - This is used to configure many other aspects of the client
application, such as which servers the user can connect to, default settings in
the application, etc.

For information about configuring the client application, see Configuring the
Client Application on page 29.

The location of these configuration files depends on whether you are using the
client application provided with the iProcess Workspace (Browser), or a custom
application developed with the iProcess Workspace (Browser) components.

• If you are using the client application, these configuration files are located as
follows:

ClientInstallDir\JSXAPPS\ipc\

where ClientInstallDir is the directory in which the client application is
installed.

• If you are using a custom application developed with the iProcess Workspace
(Browser) components, these configuration files are located as follows:

WorkspaceDir\JSXAPPS\ProjectName\

where WorkspaceDir is the directory that was designated as your workspace
when TIBCO General Interface (GI) Builder was initially started, and
ProjectName is the name that was given to your GI Builder project when your
application was developed with the components.

The references to these configuration files in this chapter assume you are
configuring the client application provided with the iProcess Workspace
(Browser).

If you are configuring a custom application created with the iProcess Workspace
(Browser) components, substitute the path shown with the appropriate path.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

8 | Chapter 1 Introduction
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 9
Chapter 2 User Access

This chapter describes setting up user access in the TIBCO iProcess Workspace
(Browser).

Topics

• User Access Profiles, page 10
 TIBCO iProcess Workspace (Browser) Configuration and Customization

10 | Chapter 2 User Access
User Access Profiles

User access profiles provide the ability to specify which application functionality
is available to various types of users of the client application. They do this by
specifying which user interface components (i.e., icons, buttons, and menu
selections) are made available to the logged-in user.

The user access profiles are defined using the UserAccessProfiles record in the
ClientInstallDir\JSXAPPS\ipc\userAccessProfiles.xml file.

Each profile represents a type of application user and defines the user interface
components available to users of that type. The following shows a collapsed view
of the default user access profiles included in the iProcess Workspace (Browser):

Each user's profile type is stored in the MENUNAME user attribute, the name of
which is specified by the serverUserAttr attribute (for information about the
MENUNAME user attribute, see the TIBCO iProcess Server Objects Programmer’s
Guide or on-line help system). By default, the MENUNAME attribute is used
because it is an inherent attribute of all iProcess users and requires no
customization when the iProcess Workspace (Browser) is installed.

User access profiles only define which user interface components are made
available to the logged-in user — the ability to actually execute the functionality is
determined by the level of security defined on the iProcess Objects Server. For
instance, the user's access profile may grant access to the tool/menu selection for
closing cases, however, if the user does not have system administrative privileges
on the iProcess Objects Server, any attempt to close a case will be rejected.
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 11
The “Default” profile type is assigned to application users that do not have their
iProcess attribute set to one of the defined profile types. In this example, if a user
logs in to the iProcess Workspace (Browser), and the value of their MENUNAME
iProcess attribute is empty, or set to a value other than “Admin”, “User”,
“ProDef”, or “Manager”, the access defined for the “Default” profile type is
assigned. If the MENUNAME value is invalid, and the “Default” profile type has
not been defined in userAccessProfiles.xml, access is automatically limited to
viewing only the list of procedures.

There is also a special “PreLogin” user type specified in the
userAccessProfiles.xml file that represents all users before they login, i.e.,
before the application knows their user name/type. The access profile for the
“PreLogin” user type only contains the elements needed to specify how much
error information will be shown to the user prior to logging in.

If you need additional user profile types, you must create a new user attribute and
assign profile types to that user attribute (rather than assigning new types to the
MENUNAME attribute). For information on how to create custom profiles by
defining a new user attribute, see Creating Custom User Access Profiles on
page 27.

Each user access profile (i.e., each <Profile/> element) specified in the
userAccessProfiles.xml file contains the following attributes:

• The type attribute of each profile represents the user type and corresponds to
the value that is stored in the iProcess attribute of the user. For example:
<Profile type="Admin" description="Access Level: Admin">

Initially, profiles are defined for each of the possible MENUNAME values:
“Admin”, “User”, “ProDef” and “Manager” (as well as a “Default” and
“PreLogin” type, which are described above).

• The description attribute defines a text string that is displayed in the header
area of the iProcess Workspace (Browser) interface, and provides an indication
of the access level of the logged-in user. For example:
<Profile type="Admin" description="Access Level: Admin">

This example would cause the following to be displayed when a user with a
MENUNAME of “Admin” is logged in:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

12 | Chapter 2 User Access
Each <Profile/> element contains subordinate <property/> elements, each of
which represents a specific function in the iProcess Workspace (Browser). The
<property/> elements contain the following attributes:

• The name attribute identifies the function for which you can provide or deny
access using the state attribute (see the next bullet item).
<property name="Procedure" state="1">

For a complete list of the allowable name attributes (functions), see the table
in the Access Profile ‘name’ Attributes section on page 13.

• The state attribute specifies whether or not the associated user type has access
to the functionality identified by the name attribute (see the bullet item
above), where “1” means allow access and “0” means deny access.
<property name="Procedure" state="1">

If access to a function is not allowed, the applicable buttons and/or menu
selections are not displayed.

Note that if a <property/> element for a particular function is not present in the
userAccessProfiles.xml file, access to that function is not allowed by default.

Hierarchy

The hierarchy of the <property/> elements is significant, i.e., if a child
<property/> element gives the user type access to a button/menu selection, the
child’s parent <property/> element must also be enabled (by setting its state
attribute to “1”). For example, see the following excerpt from the
userAccessProfiles.xml file. If the user type is given access to open work items
(name=”Open”), it must also be given access to view the work items
(name=”WorkItem”).

Likewise, if you give the user type access to “ForwardAnyQueue”, you must also
give access to “Forward”, since “ForwardAnyQueue” is a child of “Forward”.

<property name="WorkItem" state="1">
<property name="AutoRefresh" state="1"/>
<property name="Forward" state="1">

<property name="ForwardAnyQueue" state="1"/>
</property>
<property name="Open" state="1"/>
<property name="OpenFirst" state="1"/>
<property name="OpenNext" state="1"/>
<property name="OpenAuto" state="1"/>
<property name="Release" state="1">
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 13
Using a Single Profile for Multiple User Types

The same access profile can be used for multiple user types by including the
optional <Type/> element. The example shown below for the Admin user
illustrates an example of this — the Admin2 user uses the same profile.

Access Profile ‘name’ Attributes

This section provides descriptions of each function for which you can control
access using the user access profiles.

The table below provides a list of all of the name attribute values for the
<property> element of an access profile, and the meaning of each.

The ‘name’ Attribute Values column shows the hierarchy of name attributes
within the profile.

<Profile type="Admin" description="Access Level: Admin">
<Type name="Admin2" description="Access Level: Admin2"/>
<property name="Procedure" state="1">

<property name="Versions" state="1"/>
<property name="LoadingChart" state="1"/>
.
.
.

‘name’ Attribute Values Description

Procedure1 Provides access to the procedure list.

Procedure
Versions

Provides access to the Procedure Versions tool on the procedure list.

Procedure
LoadingChart

Provides access to the Procedure Loading Chart tool on the
procedure list.

Procedure
CaseStart

Provides access to the Start New Case tool on the procedure list.

Procedure
Status

Provides access to the following selections on the procedure list
View menu: Released Procedures, Unreleased Procedures, Model
Procedures, and Withdrawn Procedures. This allows you to control
whether or not the user can choose which statuses of procedures to
display.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

14 | Chapter 2 User Access
Procedure
Type

Provides access to the following selections on the procedure list
View menu: Main Procedures, Sub-Procedures, and Main and
Sub-Procedures. This allows you to control whether or not the user
can choose which types of procedures to display.

Procedure
Case

Provides access to the case list.

Procedure
Case

Activate

Provides access to the Activate Case(s) tool on the case list, and the
Activate Case tool on the Summary tab when the case is opened
from the case list.

Procedure
Case

Close

Provides access to the Close Case(s) tool2 on the case list, and the
Close Case tool on the Summary tab when the case is opened from
the case list.

Procedure
Case

Jump

Provides access to the Process Jump tool on the case list and on the
Summary tab when the case is opened from the case list.

Procedure
Case

Jump
DataRead

Provides read-only access to Case Data dialog available through the
Process Jump dialog.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to case data.

If both this and DataUpdate access are disabled, the Data button is
not displayed on the Process Jump dialog.

Procedure
Case

Jump
DataUpdate

Provides update access to Case Data dialog available through the
Process Jump dialog. (This overrides DataRead if it is also enabled.)

If both this and DataRead access are disabled, the Data button is not
displayed on the Process Jump dialog.

Procedure
Case

Jump
SelectColumns

Provides access to the Select Columns selection on the View menu
for the outstanding items list on the Process Jump dialog.

Procedure
Case

Suspend

Provides access to the Suspend Case(s) tool on the case list, and the
Suspend Case tool on the Summary tab when the case is opened
from the case list.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 15
Procedure
Case

Trigger

Provides access to the Trigger Events tool on the case list and on the
Summary tab when the case is opened from the case list.

Procedure
Case

Trigger
DataRead

Provides read-only access to Case Data dialog available through the
Events dialog.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to case data.

If both this and DataUpdate access are disabled, the Data button is
not displayed on the Events dialog.

Procedure
Case

Trigger
DataUpdate

Provides update access to Case Data dialog available through the
Events dialog. (This overrides DataRead if it is also enabled.)

If both this and DataRead access are disabled, the Data button is not
displayed on the Events dialog.

Procedure
Case

Trigger
Resurrect

Provides access to the Trigger Events tool on the case list when a
closed case is selected, and on the Summary tab when a closed case
has been opened from the case list.

Procedure
Case

Trigger
RecalculateDeadlines

Provides access to the Recalculate Deadlines radio buttons on the
Events dialog.3

Procedure
Case

Purge

Provides access to the Purge Case(s) tool2 on the case list, and the
Purge Case tool on the Summary tab when the case is opened from
the case list.

Procedure
Case

Open

Provides access to the Open Case(s) tool on the case list.

Procedure
Case

Open
Summary

Provides access to the case Summary tab when a case is opened from
the case list.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

16 | Chapter 2 User Access
Procedure
Case

Open
History

Provides access to the case History tab when a case is opened from
the case list.

Procedure
Case

Open
History

AddHistoryEntry

Provides access to the Add Entry tool on the History tab when the
case is opened from the case list.

Procedure
Case

Open
History

Predict

Provides access to the Predict Case tool on the History tab when the
case is opened from the case list.

Procedure
Case

Open
History

GraphicalHistory

Provides access to the Graphical History tool on the History tab
when the case is opened from the case list.

Procedure
Case

Open
History

FilterHistory

Provides access to the Filter History tool on the History tab when
the case is opened from the case list.

Procedure
Case

Open
Outstanding

Provides access to the case Outstanding tab when a case is opened
from the case list.

Procedure
Case

Open
Outstanding

SelectColumns

Provides access to the Select Columns selection on the View menu
on the case Outstanding tab.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 17
Procedure
Case

Open
DataRead

Provides read-only access to case data on the Data tab when a case is
opened from the case list.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to data.

If both this and DataUpdate access are disabled, the case Data tab is
hidden.

Procedure
Case

Open
DataUpdate

Provides update access to the case Data tab (this overrides DataRead
if it is also enabled) when a case is opened from the case list.

If both this and DataRead are disabled, the case Data tab is hidden.

Procedure
Case

SelectColumns

Provides access to the Select Columns selection on the View menu
on the case list.

Procedure
Case

SortableColumns

Controls whether or not the user can click on the column header to
sort the case list.

Procedure
Case

Filter

Provides access to the Filter tool on the case list.

Procedure
Case

Sort

Provides access to the Sort tool on the case list.

Procedure
Case

Preview

Provides access to the Preview button and the Preview selection on
the case list View menu.

Procedure
Case

Preview
CasePreviewOn

Provides access to the Preview On - Open Details in Preview Pane
selection from the Preview menu on the case list.

Procedure
Case

Preview
CasePreviewFloat

Provides access to the Preview On - Float Details selection from the
Preview menu on the case list.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

18 | Chapter 2 User Access
Procedure
Case

Preview
CasePreviewOff

Provides access to the Preview Off selection from the Preview menu
on the case list.

Procedure
SelectColumns

Provides access to the Select Columns selection on the View menu
on the procedure list.

WorkQueue1 Provides access to the work queue list.

WorkQueue
LoadingChart

Provides access to the Work Queue Loading Chart tool on the work
queue list.

WorkQueue
Participation

Provides access to the Manage Work Queue Participation tool on
the work queue list.

WorkQueue
Redirection

Provides access to the Manage Work Queue Redirection tool on the
work queue list.

WorkQueue
Supervisors

Provides access to the Manage Work Queue Supervisors tool2 on the
work queue list.

WorkQueue
Status

Provides access to the following selections on the work queue list
View menu: Released Work Queues, Test Work Queues, Released
and Test Work Queues. This allows you to control whether or not
the user can choose which statuses of work queues to display.

WorkQueue
Type

Provides access to the following selections on the work queue list
View menu: User Work Queues, Group Work Queues, and User
and Group Work Queues. This allows you to control whether or not
the user can choose which types of work queues to display.

WorkQueue
PersonalWorkQueueOption

Specifies whether or not the user can show or hide their own
personal work queue. If state =“1”, a selection appears on the work
queue list View menu that allows the user to either show or hide
their personal work queue; if state = “0”, the menu selection does not
display. (Also see, Show/Hide Personal Work Queues on page 75.)

WorkQueue
WorkItem

Provides access to the work item list.

WorkQueue
WorkItem

AutoRefresh

Provides access to the Auto-Refresh tool on the work item list.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 19
WorkQueue
WorkItem

Forward

Provides access to the Forward Work Item(s) tool on the work item
list.

WorkQueue
WorkItem

Forward
ForwardAnyQueue

This is applicable only if the user has access to the Forward Work
Item(s) tool.

This causes the list of work queues on the Forward Selected Work
Items dialog to contain all work queues on the system.

If disabled, the list of work queues on the Forward Selected Work
Items dialog will contain only the work queues of which the user is a
member.

WorkQueue
WorkItem

Open

Provides access to the Open Selected Work Item(s) tool on the work
item list.

WorkQueue
WorkItem

OpenFirst

Provides access to the Open First Work Item tool on the work item
list.

WorkQueue
WorkItem

OpenNext

Provides access to the Open Next Work Item tool on the work item
list.

WorkQueue
WorkItem

OpenAuto

Provides access to the Auto-Repeat Open Work Item tool on the
work item list.

Note that if access to both OpenFirst and OpenNext (see above) are
prohibited, the Auto-Repeat Open Work Item tool is automatically
disabled, as it requires OpenFirst and OpenNext.

WorkQueue
WorkItem

Release

Provides access to the Release Work Item(s) tool on the work item
list.

(If disabled, it does not prevent the user from releasing a work item
via a form.)

WorkQueue
WorkItem

Unlock

Provides access to the Unlock Work Item(s) tool on the work item
list.

WorkQueue
WorkItem

SelectColumns

Provides access to the Select Columns selection on the View menu
on the work item list.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

20 | Chapter 2 User Access
WorkQueue
WorkItem

SortableColumns

Controls whether or not the user can click on the column header to
sort the work item list.

WorkQueue
WorkItem

PageSize

Provides access to the Page Size selection on the work item list View
menu.

WorkQueue
WorkItem

Preview

Provides access to the Preview button and the Preview selection on
the work item list View menu.

WorkQueue
WorkItem

Preview
WIPreviewOn

Provides access to the Preview On - Open Forms in Preview Pane
selection from the Preview menu on the work item list.

WorkQueue
WorkItem

Preview
WIPreviewFloat

Provides access to the Preview On - Float Forms selection from the
Preview menu on the work item list.

WorkQueue
WorkItem

Preview
WIPreviewOff

Provides access to the Preview Off selection from the Preview menu
on the work item list.

WorkQueue
WorkItem

OpenCase

Provides access to the Open Case tool on the work item list.

WorkQueue
WorkItem

OpenCase
Summary

Provides access to the case Summary tab when a case is opened from
the work item list.

WorkQueue
WorkItem

OpenCase
Summary

Activate

Provides access to the Activate Case tool on the Summary tab when
a case is opened from the work item list.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 21
WorkQueue
WorkItem

OpenCase
Summary

Close

Provides access to the Close Case tool2 on the Summary tab when a
case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
Summary

WiJump

Provides access to the Process Jump tool on the Summary tab when
a case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
Summary

WiJump
DataRead

Provides read-only access to Case Data dialog available through the
Process Jump dialog.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to case data.

If both this and DataUpdate access are disabled, the Data button is
not displayed on the Process Jump dialog.

WorkQueue
WorkItem

OpenCase
Summary

WiJump
DataUpdate

Provides update access to Case Data dialog available through the
Process Jump dialog. (This overrides DataRead if it is also enabled.)

If both this and DataRead access are disabled, the Data button is not
displayed on the Process Jump dialog.

WorkQueue
WorkItem

OpenCase
Summary

WiJump
SelectColumns

Provides access to the Select Columns selection on the View menu
for the outstanding items list on the Process Jump dialog.

WorkQueue
WorkItem

OpenCase
Summary

Suspend

Provides access to the Suspend tool on the Summary tab when a
case is opened from the work item list.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

22 | Chapter 2 User Access
WorkQueue
WorkItem

OpenCase
Summary

WiTrigger

Provides access to the Trigger Events tool on the Summary tab when
a case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
Summary

WiTrigger
DataRead

Provides read-only access to Case Data dialog available through the
Events dialog.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to case data.

If both this and DataUpdate access are disabled, the Data button is
not displayed on the Events dialog.

WorkQueue
WorkItem

OpenCase
Summary

WiTrigger
DataUpdate

Provides update access to Case Data dialog available through the
Events dialog. (This overrides DataRead if it is also enabled.)

If both this and DataRead access are disabled, the Data button is not
displayed on the Events dialog.

WorkQueue
WorkItem

OpenCase
Summary

WiTrigger
Resurrect

Provides access to the Trigger Events tool on the Summary tab when
you’ve opened a case from the work item list.

Note that because closed cases cannot be seen in the work item list,
access to this function is applicable only in the following situations:

— After opening the case from the work item list, you close the
case from the Case Details, then before closing the Case
Details dialog, you decide to resurrect the closed case.

— After opening the case from the work item list, another user
closes the case while you still have the Case Details open. If
you refresh the Case Details, the new “Closed” status will be
displayed. At that point, you can resurrect the closed case.

WorkQueue
WorkItem

OpenCase
Summary

WiTrigger
RecalculateDeadlines

Provides access to the Recalculate Deadlines radio buttons3 on the
Events dialog when a case is opened from the work item list.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 23
WorkQueue
WorkItem

OpenCase
Summary

Purge

Provides access to the Purge Case tool2 on the Summary tab when a
case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
WiHistory

Provides access to the case History tab when a case is opened from
the work item list.

WorkQueue
WorkItem

OpenCase
WiHistory

AddHistoryEntry

Provides access to the Add Entry tool on the History tab when a case
is opened from the work item list.

WorkQueue
WorkItem

OpenCase
WiHistory

Predict

Provides access to the Predict Case tool on the History tab when a
case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
WiHistory

GraphicalHistory

Provides access to the Graphical History tool on the History tab
when a case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
WiHistory

FilterHistory

Provides access to the Filter History tool on the History tab when a
case is opened from the work item list.

WorkQueue
WorkItem

OpenCase
WiOutstanding

Provides access to the case Outstanding tab when a case is opened
from the work item list.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

24 | Chapter 2 User Access
WorkQueue
WorkItem

OpenCase
WiOutstanding

SelectColumns

Provides access to the Select Columns selection on the View menu
on the case Outstanding tab when a case is opened from the work
item list.

WorkQueue
WorkItem

OpenCase
DataRead

Provides read-only access to case data on the Data tab when a case is
opened from the work item list.

If DataUpdate access is also enabled, it overrides this element,
giving the user update access to data.

If both this and DataUpdate access are disabled, the case Data tab is
hidden.

WorkQueue
WorkItem

OpenCase
DataUpdate

Provides update access to the case Data tab (this overrides DataRead
if it is also enabled) when a case is opened from the work item list.

If both this and DataRead are disabled, the case Data tab is hidden.

WorkQueue
WorkItem

Filter

Provides access to the Filter tool on the work item list.

WorkQueue
WorkItem

Sort

Provides access to the Sort tool on the work item list.

WorkQueue
SelectColumns

Provides access to the Select Columns selection on the View menu
on the work queue list.

SessionActivity Provides access to the Session Activity button/icon.

SessionActivity
ClearActivity

Provide access to the Clear button on the Session Activity dialog.

ServerInfo Provides access to the Server Info button/icon.

Options Provides access to the Options dialog.

Options
Language

Provides access to the language selection field on the Options dialog.

Options
InitialList

Provides access to the “Select which list initially displays at startup”
selection on the Options dialog.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 25
Options
WorkQueueReference

Provides access to the “Work queues may be referenced by name or
description” selection on the Options dialog.

Options
ProcedureReference

Provides access to the “Procedures may be referenced by name or
description” selection on the Options dialog.

Options
AutoRefresh

Provides access to the “Auto-refresh lists of work items” check box
on the Options dialog.

Options
WorkItemFilters

Provides access to the “Work Item Filters” radio buttons on the
Options dialog.

Options
CaseFilters

Provides access to the “Case Filters” radio buttons on the Options
dialog.

Options
CasePreview

Provides access to the “Case Preview Default” radio buttons on the
Options dialog.

Options
WorkItemPreview

Provides access to the “Work Item Preview Default” radio buttons on
the Options dialog.

Options
BrowserOrDialog

Provides access to the “When opening a floating work item form,
open it in” radio buttons on the Options dialog.

Options
SizeAndPosition

Provides access to the “Default position and size” fields on the
Options dialog.

Options
OutstandingItems

Provides access to the “Outstanding Items Options” radio buttons on
the Options dialog.

Options
SessionActivity

Provides access to the “Session Options” check boxes (which control
the actions that are written to the Session Activity log) on the
Options dialog.

Options
ChangePassword

Provides access to the Change Password button on the Options
dialog.

Options
SubCaseVersion

Provides access to the “Sub-Case” Version Options” radio buttons on
the Options dialog.

ApplicationLog Provides access to the TIBCO iProcess Workspace (Browser)
application log by pressing F12. (For more information, see
Application Log on page 179.)

If disabled, the F12 function key has no function.

‘name’ Attribute Values Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

26 | Chapter 2 User Access
ChangePwdExpired If enabled, this causes the Change Password dialog to be displayed
when the user attempts to log in with an expired password. Requires
a password change to log in.

ChangePwdOption Provides access to the Change Password button on the Options
dialog.

ShowErrorDetail If enabled, details about error conditions are displayed to the user.

ShowErrorDetail
ShowStackTrace

If enabled, a stack trace is shown when error information is
displayed.

1. If a user that has neither procedure view access (name=”Procedure”) nor work queue view access
(name=”WorkQueue”) logs into the iProcess Workspace (Browser), a screen is displayed containing
the message: “Access to Procedure and Work Queue data is denied - please contact your system ad-
ministrator”. The only components available on this screen are the Logout and Help tools.

2. The case close (name=”Close”), case purge (name=”Purge”), and work queue supervisors
(name=”Supervisors”) functions all require system administrative authority. Without system admin-
istrative authority, a user cannot perform these functions even if their access profile provides access
to the tools/buttons for these functions. If a user’s access profile causes the buttons/selections to ap-
pear, but they don’t have administrative authority, the buttons/selections are grayed out.

3. If you are using an older iProcess Objects Server that does not provide recalculate deadline function-
ality, you may want to set state=”0” for RecalculateDeadlines so that the Recalculate Deadline radio
buttons are not displayed on the Events dialog.

‘name’ Attribute Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Access Profiles | 27
Creating Custom User Access Profiles

Custom user access profiles allow the client application interface to be tailored for
various user categories that exist within an organization. The simplest form of
customization is to modify the state attribute values for the existing
MENUNAME profile types that are defined at installation.

If the existing profile types are not sufficient to reflect the organization's user
types, further customization may be performed. Rather than using the default
MENUNAME attribute to specify the profile of each user, a new iProcess user
attribute must be defined and used to hold the name of customized user profile
types. The customization process is as follows:

1. Define a new iProcess user attribute (e.g., ACCESS) on the server. The new
iProcess attribute must be created by a user with administrative access using
the TIBCO iProcess User Manager (for information about the User Manager,
see the TIBCO iProcess Workspace (Windows) Manager’s Guide).

2. In the userAccessProfiles.xml file, change the value of the serverUserAttr
attribute from “MENUNAME” to the name of the new iProcess attribute
created in step 1.

3. Modify the profile types and state values as desired. For information about
how to do this, see User Access Profiles on page 10.

4. For each iProcess user, set the value of their iProcess attribute to one of the
profile types defined in userAccessProfiles.xml. This must be done by a
user with administrative access using the TIBCO iProcess User Manager (for
information about the User Manager, see the TIBCO iProcess Workspace
(Windows) Manager’s Guide).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

28 | Chapter 2 User Access
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 29
Chapter 3 Configuring the Client Application

This chapter describes configuration parameters that are available in the
application’s config.xml file.

Topics

• Server Nodes, page 30

• Action Processor URL, page 34

• Session Monitor, page 37

• Hide Case Data Tab Find Tool, page 38

• Remember Login Information, page 39

• Customizing the Browser Window Caption, page 40

• Customizing the Work Item Caption, page 42

• Specifying Browser Window Features, page 44

• Releasing Resources on Logout, page 51

• Redirecting Client to URL on Logout, page 52

• Redirecting Client to URL on Browser Session Timeout, page 53

• User Options, page 54

• Limiting Number of Cases, page 62

• Setting the Maximum Number of Case History Entries, page 63

• Specifying Default Page Size for Work Item Lists, page 64

• Specifying Default Types/Statuses to Display on Lists, page 65

• Server-Side Atomic Locking of Work Items, page 67

• Specifying Whether Case Counts Should be Obtained, page 70

• Specifying Outstanding Work Item Step Types, page 71

• WebDAV Root Setting, page 72

• Add-ins, page 73

• TIBCO Forms Caching, page 74

• Show/Hide Personal Work Queues, page 75
 TIBCO iProcess Workspace (Browser) Configuration and Customization

30 | Chapter 3 Configuring the Client Application
Server Nodes

When the client application Login screen is displayed, the Server field
drop-down list will contain a list of TIBCO iProcess Objects Servers that the user
can log into:

This list of servers is controlled using the ServerNodes record in the client
application’s configuration file.

During the iProcess Workspace (Browser) installation process, you enter the
information for one iProcess Objects Server. This section describes how to add
additional entries to the ServerNodes record if you would like more than one
server to appear in the Server field drop-down list.

To configure the server nodes for your installation:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the ServerNodes record:
TIBCO iProcess Workspace (Browser) Configuration and Customization

Server Nodes | 31
The first record should reflect the entries that were entered during the
installation. The elements in this record can be modified if the information is
no longer correct (for instance, the TCP port has changed for that server).

Placeholders have been provided for two additional iProcess Objects Servers.

<record jsxid="ServerNodes" type="ipc">

<record displayNodeName="Portland">

<NodeId>

<ComputerName>francine</ComputerName>

<IPAddress>10.97.5.34</IPAddress>

<TCPPort>52012</TCPPort>

<Name>Corp</Name>

<Director>false</Director>

</NodeId>

<UserPreferencePersistence persistOnServer="true"

maxDataSize="32768"/>
</record>

<!--
<record displayNodeName="Server Two">

<NodeId>
<ComputerName>ComputerName</ComputerName>
<IPAddress>255.255.255.255</IPAddress>
<TCPPort>99999</TCPPort>
<Name>Server2</Name>
<Director>false</Director>
<UserPreferencePersistence persistOnServer="false"

maxDataSize="32768"/>
</NodeId>

</record>
<record displayNodeName="Server Three">

<NodeId>
<ComputerName>ComputerName</ComputerName>
<IPAddress>255.255.255.255</IPAddress>
<TCPPort>99999</TCPPort>
<Name>Server3</Name>
<Director>false</Director>

</NodeId>
<UserPreferencePersistence persistOnServer="false"

maxDataSize="32768"/>
</record>

-->

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

32 | Chapter 3 Configuring the Client Application
3. To configure additional servers, remove or move the appropriate comment
delimiters from the “Server Two” or “Server Three” record, then enter the
appropriate information in the following elements:

— displayNodeName: The name that you would like displayed in the
iProcess Workspace (Browser) Login to field drop-down list. This is the
name the user would select when choosing a server to log into.

— <ComputerName>: The name of the machine on which the TIBCO iProcess
Objects Server is installed.

— <IPAddress>: The IP address of the machine on which the TIBCO iProcess
Objects Server is installed. You can enter the name of the host machine in
this field, as long as that name resolves to the IP address of the machine
where the iProcess Objects Server is running. Note, however, that this name
must be able to be resolved by the machine on which the Action Processor
is running.

— <TCPPort>: The TCP port number used by the TIBCO iProcess Objects
Server. (The TCP port used by the server is specified using the iProcess
Objects Server Configuration Utility in Windows systems
(SWDIR\bin\SWEntObjSvCfg.exe), or by editing the iProcess Objects
Server configuration file in UNIX systems
($SWDIR/seo/data/swentobjsv.cfg). For more information, see the
TIBCO iProcess Objects Server Administrator’s Guide.)

— <Name>: The name of the TIBCO iProcess Engine / iProcess Objects Server
to which the user can log in. This is the “nodename” that is assigned to the
iProcess Engine when it is installed.

— <Director>: Specifies whether or not the previous entries actually describe
a TIBCO iProcess Objects Director, which is used to connect the client to a
server). Select “true” if the specifications are for a Director, or “false” if a
TIBCO iProcess Objects Director is not being used.

— UserPreferencePersistence - This element contains two attributes that are
used to specify whether user data1 is persisted locally or on the server, as
well as obtained locally or from the server upon login. Server-side

1. User data consists of the following: Adding, removing, or changing
views (note that changes to views are persisted immediately, whereas all
other user data are persisted upon logout or application closure); list filters;
list sorts; column changes (either using the Column Selector, or done
manually); auto-repeat toggle on the work item list; case history show
seconds/microseconds setting.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Server Nodes | 33
persistence allows users to move to different machines and/or browser
types, and pick up user preferences specified from another machine and/or
browser type. The user preference persistence attributes are:

persistOnServer - This attribute specifies whether or not to persist on the
server, as follows:

If “false”:

— All user data is stored on the client.

— User data is not cached and is persisted client-side immediately.

If “true”:

— All user data is stored on the server.

— User data is cached and is not saved to the server until the user logs out
or closes the browser window.

— Options values (i.e., all settings on the Options dialog in the
application) are stored on both the client and the server. This is required
because the language setting is stored in the Options data and this is
needed to set up the locale before login.

The first time server-side data is accessed for a given user, the user is given
the option of initializing the server-side data with any data that has
previously been persisted client side (if any client-side data exists). The
user’s response to this question is persisted on the server and will not be
asked again.

Default = “false” if attribute is absent.

maxDataSize - Sets the maximum number of bytes for the user preference
data. This value needs to be set at or below the field size supported by the
database used on the server, which is typically 256K (128K for double-byte
character encoding).

If this value is too small, processing the data at the server will be inefficient;
if it’s too large, the database will throw an exception when it attempts to
parse the message containing user preference data.

Note that the character encoding used should be taken into consideration
when determining the maximum data size.

Default = 32768 (32K) if attribute is absent

Minimum value = 10

Additional records can be added if you would like more than three servers to
appear in the Server field drop-down list.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

34 | Chapter 3 Configuring the Client Application
Action Processor URL

When the client application is installed, you must specify the URL to the Action
Processor to which you want the client application to connect when it is started.
This URL is written to the client application’s configuration file by the installation
program.

You can later modify the Action Processor URL in the configuration file so that the
client connects to a different Action Processor. You can also specify multiple
URLs, and assign each a weighting value, which is used to determine the
percentage of connections given to that URL (Action Processor). This allows load
balancing of the available Action Processors. When the client application starts, it
randomly selects (with weighting applied) one of the Action Processor URLs
specified in the configuration file.

To configure the Action Processor URL:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the ActionProcessors record in the config.xml file. For example:

3. If you would like multiple Action Processors to be available for connections,
add an additional <ActionProcessor /> element for each Action Processor,
then perform the following steps to configure each of the components of the
<ActionProcessor /> element. (The easiest method is to copy and paste the
existing <ActionProcessor /> element, then modify the weighting and
baseUrl values according to the descriptions in steps 4 and 5.)

If you are just modifying the existing URL or weighting value, proceed to the
following steps.

4. To specify the Action Processor to which the client should connect, modify the
baseUrl attribute string to point to the desired Action Processor(s). This entry
must be in the form:

http://Host:Port/APDir/ActionProcessor.ext

<record jsxid="ActionProcessors" type="ipc" >

<ActionProcessor weighting="100"

baseUrl="%http://austin:90/TIBCOActProc/ActionProcessor.servlet"/>

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Action Processor URL | 35
where:

— Host is the name of the machine hosting the Action Processor. (Note that if
you are hosting both the client application and the Action Processor on the
same machine, and they are both being hosted by Tomcat, you can specify
Host as “localhost”.)

— Port is the port number used by the Web Application Server (WAS) that is
hosting the Action Processor to communicate with web applications.

— APDir is the directory on Host in which the Action Processor is installed.

— ext is the file name extension. This is “servlet” (for Java servlet) if you are
connecting to a Java Action Processor, or “aspx” (for .NET ASP web
application) if you are connecting to a .NET Action Processor.

The example shown in step 2 specifies that the client application connect to a
Java Action Processor (hence the “servlet” extension) on machine “austin”.
The WAS hosting the Action Processor is communicating with web
applications on port 90, and the Action Processor was installed in the
TIBCOActProc directory.

5. Specify a weighting value for each Action Processor by setting the weighting
attribute as follows:

— If you are only specifying a single URL, the weighting attribute can be set
to any value, or it can be left unspecified.

— For multiple URLs, the weighting value determines the percentage of
connections based on the total of all weighting values. For instance, if a
URL’s weighting value is 30% of the total of all weighting values (see the
example below), the client will connect to it 30% of the time:

Note that the weighting parameter is only for load balancing purposes — it is
not to provide failover. If the Action Processor fails, the application should
return to the Login screen.

The weighting values can total any number, although it’s easier to calculate
the percentage for each if they total 100 as in the example above.

<record jsxid="ActionProcessors" type="ipc" >

<ActionProcessor weighting="30"

baseUrl="http://austin:70/TIBCOActProc1/ActionProcessor.servlet"/>

<ActionProcessor weighting="50"

baseUrl="http://austin:8500/TIBCOActProc2/ActionProcessor.servlet"/>

<ActionProcessor weighting="20"

baseUrl="http://austin:9050/TIBCOActProc3/ActionProcessor.servlet"/>

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

36 | Chapter 3 Configuring the Client Application
If an Action Processor is not available when the client attempts to connect to
it, the weighting values are recalculated based on the remaining available
Action Processors, and another URL is randomly selected. This process
continues until a connection is made, or no active Action Processor can be
found (in which case, an error is returned — the client application must be
reloaded to continue).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Session Monitor | 37
Session Monitor

You can specify that if a user of the client application is inactive for a certain
period of time, the user’s session will time out and automatically log the user out.

You can also specify when a warning dialog is to be displayed, informing the user
that the session is about to time out. The user can click OK on this warning dialog
to continue the session. If the user does not respond to the warning message, the
session will time out in the specified period of time.

To specify the session time-out:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the SessionMonitor record in the config.xml file:

3. Specify the record’s attributes as follows:

— timeout - The number of minutes of user inactivity before the session will
time out. The user is automatically logged out upon timing out.
Minimum: 5
Maximum: none
Default: 30

— warning - The number of minutes before the time out will occur that a
warning dialog is displayed informing the user that the session is about to
time out.
Minimum: 1
Maximum: 1/3 of the value specified for the time-out period.
Default: 5

— disable - Set to “true” to disable session monitoring — the application will
not time out; set to “false” to enable session monitoring.
Default: false

4. Save and close the config.xml file.

Note that if there is a timeout setting on the application server that is less than the
setting specified using the SessionMonitor parameter, the setting on the
application server takes precedence. See Session Timeout on page 150.

<record jsxid="SessionMonitor" timeout="30" warning="5" disable="false" type="ipc" />
 TIBCO iProcess Workspace (Browser) Configuration and Customization

38 | Chapter 3 Configuring the Client Application
Hide Case Data Tab Find Tool

The CaseDataFind configuration parameter allows you to remove the Find tool
from the case Data tab.

The reason you would want to remove the Find tool is because of an issue that
can cause the field list on the case Data tab to be empty. This issue can occur
under the following circumstances:

• You are using Microsoft Internet Explorer (the issue does not occur when
using Mozilla Firefox),

• the case contains memo fields that contain a large amount of XML data, and

• the Find tool on the case Data tab is enabled.

Under these circumstances, an XML transformation performed by the Find tool
can cause the MSXML parser to fail, resulting in the empty field list.

To specify whether or not to hide the Find tool:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the CaseDataFind record in the config.xml file:

3. Set the show attribute as follows:

— “true” - The Find tool is enabled on the case Data tab.

— “false” - The Find tool is hidden on the case Data tab.

4. Save and close the config.xml file.

<record jsxid="CaseDataFind" show="true" />
TIBCO iProcess Workspace (Browser) Configuration and Customization

Remember Login Information | 39
Remember Login Information

You can configure whether or not to display the Remember User Id and Server
next time I login check box on the Login dialog:

By default, the check box is displayed.

To configure this option:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the Login record in the config.xml file:

3. Modify the useRemember attribute as follows:

— “true” causes the check box to be displayed.

— “false” causes the check box to not be displayed.

<record jsxid="Login" type="ipc" useRemember="true" allowDirectLogin="false"/>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

40 | Chapter 3 Configuring the Client Application
Customizing the Browser Window Caption

You can customize the caption that is displayed in the browser window after a
user has logged into the client application.

By default, the caption is set to:

“TIBCO iProcess Workspace (Browser) - <Username> - <ServerNodeName>”

To customize the caption:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the postLoginCaption record in the config.xml file:

<record jsxid="postLoginCaption" pattern="%productname% - %username% - %displayNodeName%"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Customizing the Browser Window Caption | 41
3. Modify the pattern attribute for the caption you would like displayed. The
following placeholders can be used in the pattern string to display various
information:

— %productname% - This placeholder is replaced with the name of the
product.

— %username% - This placeholder is replaced with the name of the logged-in
user.

— %usernameDesc% - This placeholder is replaced with the user's
"DESCRIPTION" attribute defined on the server.

— %serverNodeName% - This placeholder is replaced with the node name of
the server the user has logged into. Note that when single authentication is
used (see Single Authentication on page 163), this value is available only if
the logged-in user’s access profile (see User Access on page 9) allows access
to server information (name=”ServerInfo”).

— %displayNodeName% - This placeholder is replaced with the value of the
displayNodeName attribute of the server the user has logged into (see the
displayNodeName attribute for the ServerNodes element on page 32). If
displayNodeName is null, the server node name is displayed.

Any or all of the placeholders can be specified or omitted.

If a placeholder is specified that is not available, it will be replaced with a
zero-length string.

Note that you can also customize the caption that is displayed in the
window/dialog/preview pane for an opened work item — see Customizing the
Work Item Caption on page 42.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

42 | Chapter 3 Configuring the Client Application
Customizing the Work Item Caption

You can customize the caption that is displayed when you open a work item form.

Note that this applies only to work items that are opened from a work queue — it
does not apply to the form displayed when starting a case. That caption always
displays “Start Case: CaseDescription - ProcedureName - StepName”, which is the
information known at that point.

Depending on how options are set for the display of work items, and the type of
form used, the caption will be displayed in one of the following ways:

• in the title bar of a separate browser window, or

• as a dialog caption in the main window.

For example:

This illustration shows the default caption, which is defined using the
workItemCaption parameter in the client’s config.xml file.

The following is the default caption:
Work Item: %caseNumber% - %caseDescription% - %procName% - %stepName%

Data from the work item will appear in place of the keywords shown.

To override the default setting:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the workItemCaption record in the config.xml file:

3. Remove the comment characters around the record (“<!--“ and “-->”).

<record jsxid="workItemCaption"
pattern="Work Item: %CaseNumber% - %Description% - %Proc_Name% - %StepName%" />
TIBCO iProcess Workspace (Browser) Configuration and Customization

Customizing the Work Item Caption | 43
4. Modify the pattern attribute for the caption you would like displayed. A list
of the placeholders that can be used in the record appears in the comments
above the setting in config.xml.

Note that you can also customize the caption that is displayed in the browser
window in which the client application is running — see Customizing the
Browser Window Caption on page 40.

The default caption uses localized text. When overriding the setting in this way
localized text is no longer used; the setting applies to all languages.

If you are using GI Forms in your application, you can customize the form caption
on an individual-form basis. This is done by setting the caption property in your
FormTemplate.js file to the customized value. The same data placeholders can
be used that are used for the workItemCaption parameter. The value specified in
the caption property overrides the workItemCaption parameter in the
config.xml file. For more information, see the comments in the
FormTemplate.js file.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

44 | Chapter 3 Configuring the Client Application
Specifying Browser Window Features

You can customize the appearance of the browser window when displaying work
item forms. You can specify things such as whether the window is resizable,
whether or not a status bar is displayed, etc.

Note that the extent to which you can customize your browser window
appearance depends on the type of browser (Internet Explorer or Firefox) you are
using.

To configure browser features for your work item forms:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the BrowserFeatures record in the config.xml file:

<record jsxid="BrowserFeatures" type="ipc">
<ExternalForms channelmode="no" dialog="no" directories="no"

location="no" menubar="no" minimizable="no" resizable="yes"
status="yes" toolbar="no"/>

<GIForms channelmode="no" dialog="no" directories="no" location="no"
menubar="no" minimizable="no" resizable="yes" scrollbars="yes"
status="yes" toolbar="no"/>

</record>

3. Modify the desired attributes for the appropriate form category. Each attribute
can be set to either “yes” or “no” to indicate whether or not to display/enable
that feature.

— For information about the different form categories, see Form Type on
page 45.

— For information about the available attributes, see Browser Feature
Attributes on page 46.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Specifying Browser Window Features | 45
Form Type

Browser features are specified separately for each of the following categories of
work item forms:

• External Forms - This category includes the following types of forms:

— ASP Forms

— JSP Forms

— BusinessWorks FormBuilder Forms

The <ExternalForms> record attributes are used to control the browser
features for external forms.

<record jsxid="BrowserFeatures" type="ipc">
<ExternalForms channelmode="no" dialog="no" directories="no"

location="no" menubar="no" minimizable="no" resizable="yes"
status="yes" toolbar="no"/>

<GIForms channelmode="no" dialog="no" directories="no" location="no"
menubar="no" minimizable="no" resizable="yes" scrollbars="yes"
status="yes" toolbar="no"/>

</record>

• GI Forms - This category includes the following types of forms:

— General Interface Forms

— TIBCO Forms

The <GIForms> record attributes are used to control the browser features for
GI Forms.

<record jsxid="BrowserFeatures" type="ipc">
<ExternalForms channelmode="no" dialog="no" directories="no"

location="no" menubar="no" minimizable="no" resizable="yes"
status="yes" toolbar="no"/>

<GIForms channelmode="no" dialog="no" directories="no" location="no"
menubar="no" minimizable="no" resizable="yes" scrollbars="yes"
status="yes" toolbar="no"/>

</record>

Note that iProcess Modeler forms are also considered external forms. However,
browser features cannot be used with TIBCO iProcess Modeler-produced work
item forms.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

46 | Chapter 3 Configuring the Client Application
Browser Feature Attributes

The following table lists the available attributes for the <BrowserFeatures>
record. The Browsers columns indicate the browsers to which the attribute
applies.

Attribute

Browsers

DescriptionInternet
Explorer Firefox

channelmode X Specifies whether or not to display the window in
“theater mode”, that is, as a maximized window.

When set to "yes", the height, width, top and left
values are overridden, the Navigation Bar is hidden,
and the Title Bar is visible.

dialog X X Specifies whether or not to display the window as a
“dialog”.

• If the WCC/client application is being run locally,
and you are using Internet Explorer, the "dialog"
attribute must be set to "no" — it can be set to "yes"
only if the application is run from a web server. (If
you are using Firefox, the "dialog" attribute can be
set to "yes" or "no", even if you are running locally.)

• If "dialog" is set to "yes", it behaves differently for
external forms than for GI forms, as follows:

— For external forms: if “dialog” = yes, the form
opens in a “Webpage” dialog. For information
about webpage dialogs, see Dialog/Window
Characteristics on page 49.

— For GI forms: if “dialog” = yes, the form opens
in an “application” dialog. For information
about application dialogs, see Dialog/Window
Characteristics on page 49.

Note - For information about external forms and
GI forms, see Form Type on page 45.

• If “dialog” = no, the form opens in a separate
browser window (this is true for both external
forms and GI forms). For information about
separate browser windows, see Dialog/Window
Characteristics on page 49.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Specifying Browser Window Features | 47
directories X Specifies whether or not to display the "Personal
Toolbar" and the "Bookmarks Toolbar" in Firefox.

Firefox users can force new windows to always render
the Personal Toolbar/Bookmarks Toolbar by setting
dom.disable_window_open_feature.directories
to true in about:config1 or in their user.js file.

location X X Specifies whether or not to display the "Navigation
Toolbar" in IE or the "Location Bar" in Firefox.

Firefox users can force new windows to always render
the Location Bar by setting
dom.disable_window_open_feature.location to
true in about:config or in their user.js file.

menubar X X Specifies whether or not the browser window should
display a “Menu Bar”.

Firefox users can force new windows to always render
the Menu Bar by setting
dom.disable_window_open_feature.menubar to
true in about:config or in their user.js file.

minimizable X Specifies whether or not to allow the browser window
to be minimized. This is only applicable when
dialog=”yes”, which causes the Maximize and
Minimize buttons to not be displayed. Setting
minimizable=yes causes both the Maximize and
Minimize buttons to be displayed, but the Minimize
button is enabled and the Maximize button is
disabled.

Also see the dialog attribute above.

Attribute

Browsers

DescriptionInternet
Explorer Firefox
 TIBCO iProcess Workspace (Browser) Configuration and Customization

48 | Chapter 3 Configuring the Client Application
resizable X Specifies whether or not the browser window can be
manually resized using the lower right corner of the
window.

Firefox always makes windows resizable.

Note - This attribute may not work as expected. Tests
on various systems has shown that on some the
window can be resized, while on others, it cannot. The
exact cause(s) of the unexpected behavior remains
unknown, although it is thought to be a combination
of the browser being used, the browser version, and
browser security settings.

scrollbars X X Controls the display of scrollbars, on work item forms
opened in a separate browser window, when the form
content overflows the browser dimensions.

Note that this only applies to GI Forms. When using
external forms (ASP, JSP, BusinessWorks FormBuilder,
iProcess Modeler), scrollbars will always appear if the
form content exceeds the browser dimensions.

status X Specifies whether or not the browser window displays
a status bar on the bottom of the window.

Firefox always displays the status bar.

toolbar X X Specifies whether or not to display the Toolbar across
the top of the window. This bar contains
buttons/icons for Back, Forward, Refresh, Home, etc.

In IE, this bar is referred to as the “Command Bar”;
and in Firefox, the “Tab Bar”.

Firefox users can force new windows to always render
the Tab Bar by setting
dom.disable_window_open_feature.toolbar to
true in about:config or in their user.js file.

1. Firefox can be configured by entering “about:config” in the Firefox address bar.

Attribute

Browsers

DescriptionInternet
Explorer Firefox
TIBCO iProcess Workspace (Browser) Configuration and Customization

Specifying Browser Window Features | 49
Dialog/Window Characteristics

When a WCC or client application displays a work item form, it displays it either
in a preview pane, in a separate dialog, or in a separate browser window. You can
choose which of these formats you want from within the application (for more
information, see the TIBCO iProcess Workspace (Browser) User’s Guide).

Note, however, the type of form you are using determines which of the form
formats (preview pane, dialog, or separate browser window) are selectable from
the application, as follows:

• if your application uses GI forms, you can choose to open them in any of the
three available formats: Preview Pane, dialog, or separate browser window.

• if your application uses external forms, they will always be opened in a
separate browser window.

Also note that “dialogs” are further subdivided into the following:

• Webpage dialogs

• Application dialogs

Whether the work item form opens in a “Webpage” dialog or an “application”
dialog depends on the setting of the “dialog” attribute in the <BrowserFeatures>
record in the application’s config.xml file. For more information, see the
“dialog” attribute description on page 46.

The following describes the differences in behavior between the different types of
dialogs/windows:

• Minimize/Maximize Buttons - Webpage dialogs do not have minimize nor
maximize buttons. Separate browser windows and application dialogs have
these buttons.

• Floating Window Outside Application Window - Both Webpage dialogs and
separate browser windows can be floated outside the parent application's
window, whereas application dialogs cannot.

• Browser Feature Attributes - The Browser Feature attributes (i.e., the
attributes of the <BrowserFeatures> record in the config.xml file) supported
depends on the dialog/window and the type of browser used, as follows:

— Webpage dialog: If using Internet Explorer, only the "resizable" and
"status" attributes are supported. If using Firefox, the supported attributes
 TIBCO iProcess Workspace (Browser) Configuration and Customization

50 | Chapter 3 Configuring the Client Application
are: "dialog", "directories", "location", "menubar", "minimizable", and
"toolbar".

— Application dialog: None of the Browser Feature attributes are supported
for this type of dialog.

— Separate browser window: The table on the preceding pages lists the
browser features that are supported for each of the available browsers.

• Close as child window: Both Webpage dialogs and application dialogs are
children of the parent window, therefore if the parent window is closed (or
minimized), the Webpage/application dialog is also closed (or minimized).
Separate browser windows do not close (or minimize) when the parent is
closed (or minimized).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Releasing Resources on Logout | 51
Releasing Resources on Logout

You can specify the level that resources are released when a user logs out of the
client application.

To configure this option:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the Logout record in the config.xml file:

3. Modify the releaseAllResources attribute as follows:

— “false” causes the “user session” to be closed, which closes the TCP
connection between the client and the iProcess Objects Server.

— “true” (the default) causes the “user session” to be closed, which closes the
TCP connection between the client and the iProcess Objects Server. This
also closes the “SAL session”, which releases all lists held on the iProcess
Objects Server — this releases all client-side and server-side resources.

<record jsxid="Logout" releaseAllResources="true"
logoutUrl=""
timeoutUrl="">

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

52 | Chapter 3 Configuring the Client Application
Redirecting Client to URL on Logout

You can specify that the client be redirected to a specified URL when the user logs
out.

Note that the logoutUrl parameter applies to standard logins/logouts, as well as
when single authentication is used to log into the application.

To configure this option:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the Logout record in the config.xml file:

3. Specify the desired URL in the logoutUrl attribute string.

If an empty string is specified, the client is redirected to the Login screen.

You can also specify “close.html” in the logoutUrl attribute string to cause the
browser window to close upon user logout.

<record jsxid="Logout" releaseAllResources="true"
logoutUrl=""
timeoutUrl="">

</record>

Not all browsers allow a web application to close the main browser window in
which it is running. Therefore, if logoutUrl is used to redirect to close.html,
when the redirection occurs some browsers will leave the window open to a blank
page. This can be observed in recent versions of Firefox, where the behavior is
intentional. Since the main window was opened by the user and not by the web
application, the browser does not allow the web application to close it.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Redirecting Client to URL on Browser Session Timeout | 53
Redirecting Client to URL on Browser Session Timeout

You can specify that the client be redirected to a specified URL upon a browser
session time out.

To configure this option:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the Logout record in the config.xml file:

3. Specify the desired URL in the timeoutUrl attribute string.

If an empty string is specified, the client is redirected to the Login screen. (If
single authentication is being used, and the timeoutUrl attribute is an empty
string, the browser window closes upon a session timeout.)

You can also specify “close.html” in the timeoutUrl attribute string to cause
the browser window to close if a timeout occurs.

<record jsxid="Logout" releaseAllResources="true"
logoutUrl=""
timeoutUrl="">

</record>

Not all browsers allow a web application to close the main browser window in
which it is running. Therefore, if timeoutUrl is used to redirect to close.html,
when the redirection occurs some browsers will leave the window open to a blank
page. This can be observed in recent versions of Firefox, where the behavior is
intentional. Since the main window was opened by the user and not by the web
application, the browser does not allow the web application to close it.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

54 | Chapter 3 Configuring the Client Application
User Options

The client application contains an Options dialog from which each user can
specify their personal user options. User options establish default settings for each
user who logs into the client application. These include things such as the list
(procedure or work queue) to display first, the size and location of forms, the
language to display, etc. For information about setting user options from the
Options dialog, see the iProcess Workspace (Browser) User’s Guide.

There are default user options defined in the system that each new user inherits
until they specify their own user options on the Options dialog. These default
user options are defined in the client application’s configuration file, config.xml.

Note that the Options dialog in the client application also contains a Defaults
button that sets all of the options for the user to the default user options specified
in the config.xml file.

To configure the default user options:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the Options record:

3. Using the information in the following table, change the values of the
appropriate element attributes to the desired default values:

<record jsxid="Options" type="ipc">

<options>

<display localeKey="en_US" initialDisplay="workQs" ...

<filter filterCases="specify" thresholdCases="500" ...

<layout previewCase="on" previewWorkItems="off" ...

<outstanding recurse="true"></outstanding>

<subcase precedence="swPrecedenceR"></subcase>

</options>

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Options | 55
Element Attribute Possible Values Meaning

<display /> localeKey Locale key specified
in ClientInstallDir\
JSXAPPS\ipc\
locale\locales.xml.

Specifies the language in which the
client application is displayed. (For
more information, see Localization
on page 185.)

initialDisplay procs Displays the procedure list upon
login.

workQs Displays the work queue list upon
login.

captionCases name Causes the case name to be
displayed in the case list caption.

description Causes the case description to be
displayed in the case list caption.

captionWorkItems name Causes the work queue name to be
displayed in the work item list
caption.

description Causes the work queue description
to be displayed in the work item
list caption.

autoRefreshWorkItems true Causes work item lists to be
automatically refreshed.

false Work item lists are not
automatically refreshed.

autoRefreshInterval integer value Number of seconds between
automatic refreshes of work item
lists when autoRefreshWorkItems
= true.

autoRefreshApplyAll true Changes to auto-refresh settings
via the Options dialog, apply to
currently open lists, as well as lists
opened in the future.

false Changes to auto-refresh settings
via the Options dialog, apply only
to lists opened in the future.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

56 | Chapter 3 Configuring the Client Application
<filter /> filterCases always The Filter dialog is always
displayed when you open a case
list.

never The Filter dialog is never displayed
when you open a case list (you can
manually display the Filter dialog).

specify This is used in conjunction with the
thresholdCases attribute. If this
value is specified, the Filter dialog
is automatically displayed if the
number of cases of the selected
procedure exceeds the number in
the thresholdCases attribute. If the
number of cases does not exceed
the threshold, the case list is
displayed without displaying the
Filter dialog.

Element Attribute Possible Values Meaning
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Options | 57
<filter />

(Cont.)

thresholdCases integer value See the specify value for the
filterCases attribute above.

filterWorkItems always The Filter dialog is always
displayed when you open a work
item list.

never The Filter dialog is never displayed
when you open a work item list
(you can manually display the
Filter dialog). The first page of the
work item list is always displayed.
Use caution with this selection as it
can have a negative impact on
performance if the page size is set
to a large value.

specify This is used in conjunction with the
thresholdWorkItems attribute. If
this value is specified, the first page
of the work item list is downloaded
from the iProcess Engine when you
open a work queue from the work
queue list only if the number of
work items does not exceed the
number in the
thresholdWorkItems attribute. If
the number exceeds the threshold,
the Filter dialog is displayed first,
allowing you to apply a filter so a
large number of work items won’t
be downloaded.

thresholdWorkItems integer value See the specify value for the
filterWorkitems attribute above.

<layout /> previewCase on The case summary is shown in the
Preview Pane when a case is
selected; case details are shown in
the Preview Pane when a case is
opened.

Element Attribute Possible Values Meaning
 TIBCO iProcess Workspace (Browser) Configuration and Customization

58 | Chapter 3 Configuring the Client Application
<layout />

(Cont.)

previewCase

(Cont.)

float The case summary is shown in the
Preview Pane when a case is
selected; case details are shown in a
floating window when a case is
opened.

off The Preview Pane is turned off; no
display when a case is selected;
case details are shown in a floating
window when a case is opened.

previewWorkItems on The work Item summary is shown
in the Preview Pane when a work
item is selected; a work item form
is shown in the Preview Pane when
a work item is opened.

float The work Item summary is shown
in the Preview Pane when a work
item is selected; a work item form
is shown in a floating window
when a work item is opened.

off The Preview Pane is turned off; no
display when a work item is
selected; a work item form is
shown in a floating window when
a work item is opened.

previewCaseResize false The Preview Pane is not resized
when a case is opened in the
Preview Pane.

true The Preview Pane is resized to the
percentage specified in the
previewCaseSize attribute when a
case is opened in the Preview Pane.
It reverts to the previous size when
the case details are closed.

previewWorkItemResize false The Preview Pane is not resized
when a work item is opened in the
Preview Pane.

Element Attribute Possible Values Meaning
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Options | 59
<layout />

(Cont.)

previewWorkItemResize

(Cont.)

true The Preview Pane is resized to the
percentage specified in the
previewWorkItemSize attribute
when a work item is opened in the
Preview Pane. It reverts to the
previous size when it is closed.

previewCaseSize integer value The percentage (from 1 - 100) of the
viewing area the Preview Pane
should encompass when
automatically resizing the Preview
Pane when a case is opened in the
Preview Pane (see the
previewCaseResize attribute).

previewWorkItemSize integer value The percentage (from 1 - 100) of the
viewing area the Preview Pane
should encompass when
automatically resizing the Preview
Pane when a work item is opened
in the Preview Pane (see the
previewWorkItemResize
attribute).

floatWorkItems dialog Floating windows containing a
work item form are displayed in a
separate dialog.

browser Floating windows containing a
work item form are displayed in a
separate browser window.

modalDialog false Work item forms are not modal.

true Work item forms are displayed
modal (i.e., the user cannot
perform any other functions until
that dialog is closed).

floatLeft integer value The floating window is positioned
this number of pixels from the left.
(Only applicable if both the
floatFullscreen and floatCenter
attributes are false.)

Element Attribute Possible Values Meaning
 TIBCO iProcess Workspace (Browser) Configuration and Customization

60 | Chapter 3 Configuring the Client Application
<layout />

(Cont.)

floatTop integer value The floating window is positioned
this number of pixels from the top.
(Only applicable if both the
floatFullscreen and floatCenter
attributes are false.)

floatWidth integer value The width (in pixels) of the floating
window. (Only applicable if the
floatFullscreen attribute is false.)

floatHeight integer value The height (in pixels) of the
floating window. (Only applicable
if the floatFullscreen attribute is
false.)

floatFullscreen true The floating window is displayed
full screen.

false The floating window is not
displayed full screen. (Use other
attributes to determine
position/size.)

floatCenter true The floating window is displayed
centered. (Use floatWidth and
floatHeight attributes to determine
size.)

false The floating window is not
displayed centered. (Use other
attributes to determine
position/size.)

floatRememberPostion true The system remembers the size and
position of the floating window if
you manually move it on your
screen.

false Future floating windows are
opened in the position and size
specified by the other <layout />
element float attributes.

Element Attribute Possible Values Meaning
TIBCO iProcess Workspace (Browser) Configuration and Customization

User Options | 61
<outstanding /> recurse true Causes the default setting of the
Recurse sub-cases for outstanding
items check box on lists of
outstanding work items to be
checked. (This check box determines
whether or not the list should
include work items in sub-cases.)

false Causes the default setting of the
Recurse sub-cases for outstanding
items check box on lists of
outstanding work items to be
unchecked.

<subcase /> precedence swPrecedenceR The precedence in which
sub-procedures are started from
the main procedure:

— swPrecedenceR: Only
released sub-procedures are
started.

— swPrecedenceUR:
Unreleased, then released.

— swPrecedenceMR: Model,
then released.

— swPrecedenceUMR:
Unreleased, model, then
released.

— swPrecedenceMUR: Model,
unreleased, then released.

swPrecedenceUR

swPrecedenceMR

swPrecedenceUMR

swPrecedenceMUR

Element Attribute Possible Values Meaning
 TIBCO iProcess Workspace (Browser) Configuration and Customization

62 | Chapter 3 Configuring the Client Application
Limiting Number of Cases

By default, when a case list is displayed, all available cases for the selected
procedure are downloaded from the server. If there is a very large number of
cases for the selected procedure, the list may be slow in displaying.

For this reason, the MaxCases parameter is available to limit the number of cases
to download from the server. If this parameter is set in the application’s
config.xml file, when a user selects a procedure in the application, and the
number of cases for that procedure exceeds the number specified, the number
downloaded is limited to the number specified.

When the number of cases downloaded is limited by this parameter, a message is
displayed on the bottom of the case list informing the user of the number of cases
that were downloaded, as well as the number that were not downloaded because
they exceeded the maximum number specified.

To limit the number of cases to download:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the MaxCases record in the config.xml file. For example:

3. Enter the desired number in the quotes of the maximum attribute:

If maximum is set to an empty string or a non-positive number, all available cases
are downloaded when the user selects a procedure.

<record jsxid="MaxCases" maximum=""/>

<record jsxid="MaxCases" maximum="100"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Setting the Maximum Number of Case History Entries | 63
Setting the Maximum Number of Case History Entries

If the number of entries in the case history list is very large (e.g., greater than
5000), responsiveness of the list is degraded, and the chance of an out-of-memory
condition is increased.

For this reason, there is configuration parameter that limits the number of case
history entries to a specified number.

If the requested number of entries exceeds this specified number, the list is
truncated to the maximum, the count of excluded items is displayed, and the user
is instructed to filter the list.

To configure this parameter:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the MaxHistory record in the config.xml file:

3. In the maximum attribute string, specify the maximum number of entries for
the case history list.

Default = “5000” (which is imposed if maximum is empty or a negative value)

Minimum = “1”

Maximum = “5000”

<record jsxid="MaxHistory" maximum="5000"/>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

64 | Chapter 3 Configuring the Client Application
Specifying Default Page Size for Work Item Lists

You can specify the default number of work items to display in a work item list.

The user can modify this value using the Page Size function on the work item list
(access to the Page Size function can also be control via a user access profile
property).

To configure this parameter:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the PageSize record in the config.xml file:

3. In the default attribute string, specify the desired number of work items you
would like displayed in the work item list by default.

<record jsxid="PageSize" default="20"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Specifying Default Types/Statuses to Display on Lists | 65
Specifying Default Types/Statuses to Display on Lists

You can specify the default types and statuses of procedures and work queues to
display in the procedure and work queue list. These include:

• Procedure statuses on the procedure list:

— Released procedures

— Unreleased procedures

— Model procedures

— Withdrawn procedures

• Procedure types on the procedure list:

— Main procedures

— Sub-procedures

— Main and sub-procedures

• Work queue statuses on the work queue list:

— Released work queues

— Test work queues

— Released and test work queues

• Work queue types on the work queue list:

— User work queues

— Group work queues

— User and group work queues

Note that setting the configuration parameters for these only specifies what is
displayed by default. The user can change the statuses/types to display by making
the desired selections from the View menu on the procedure or work item list.

To specify default types/statuses:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the ListView record in the config.xml file:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

66 | Chapter 3 Configuring the Client Application
3. Set the applicable attributes to “true” or “false” to control whether or not that
status/type is displayed by default:

— “true” causes that type/status to be displayed on the applicable list by
default. The associated selection on the View menu will also show a check
mark, indicating that that type/status is currently displayed.

— “false” causes that type/status to not be displayed on the applicable list by
default (although the user can display that type/status by selecting it from
the View menu).

<record jsxid="ListView" type="ipc">

<procedureStatus released="true" unreleased="false" model="false" withdrawn="false">

</procedureStatus>

<procedureType main="true" sub="true"></procedureType>

<workQueueStatus released="true" test="false"></workQueueStatus>

<workQueueType user="true" group="true"></workQueueType>

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Server-Side Atomic Locking of Work Items | 67
Server-Side Atomic Locking of Work Items

To ensure that only available work items are locked when using the “Open First
Available Work Item” or “Open Next Available Work Item” functions, the TIBCO
iProcess Workspace (Browser) supports server-side atomic locking of work items.

Server-side atomic locking of work items results in the selection of the work item
to lock to occur on the server (instead of on the client) when using the “Open First
Available Work Item” and “Open Next Available Work Item” functions.

If the server-side atomic locking feature is not used, and the user opens work
items using the aforementioned functions, an error can appear because the work
item to open is being selected from the work item list on the client, which is a
“snap shot” and doesn't reflect locks that have occurred by other users on work
items in that snap shot — the selected work item may not be available anymore.

The AtomicServerLock parameter is used to specify whether or not work items
are locked at the server or on the client when using the functions mentioned
above.

To configure this parameter:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the AtomicServerLock record in the config.xml file:

3. Set the values in the supported and refresh attributes to “false” or “true”
according to the descriptions below.

Note that to use this “atomic server lock” feature, your TIBCO iProcess Objects
Server must have MR 38404 implemented. Also note that if your TIBCO iProcess
Objects Server also contains MR 41569, the operation of this feature differs, as
described below.

<record jsxid="AtomicServerLock" supported="false" refresh="false"/>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

68 | Chapter 3 Configuring the Client Application
‘supported’ attribute

— If set to “true”, the work item selection for the aforementioned functions
occurs on the server.

— If set to “false”, the work item selection occurs on the client. If you set
supported = “false”, a “Work item already locked” error may occur when
the “Open First Available Work Item” or “Open Next Available Work Item”
function is used. (This provides backward compatibility for TIBCO
iProcess Object Servers that don't have MR 38404.)

‘refresh’ attribute

— If set to “true”, the snap shot of the work items is refreshed prior to the
TIBCO iProcess Workspace (Browser) requesting that the server atomically
lock the work item.

— If set to “false”, the snap shot of the work items is not refreshed prior to the
TIBCO iProcess Workspace (Browser) requesting that the server atomically
lock the work item.

The following lists the reasons you may want to set the refresh attribute to “true”
or “false” when using the atomic server lock feature (i.e., supported = “true”),
depending on whether your TIBCO iProcess Objects Server has only MR 38404, or
both MR 38404 and MR 41569:

• Your TIBCO iProcess Objects Server has only MR 38404:

— If you are only concerned with ensuring that the server atomically lock the
first available work item in the snap shot for the “Open First Available
Work Item” and “Open Next Available Work Item” functions, set the
attributes as follows:

- supported = “true”

- refresh = “false”

— If you want to ensure that the atomic server lock includes new work items,
and excludes work items that would no longer be in the work queue
because they no longer match the filter, set the attributes as follows:

- supported = “true”

- refresh = “true”

• Your TIBCO iProcess Objects Server has both MR 38404 and MR 41569:

— If you are not concerned that the atomic server lock includes new work
items that have arrived in the work queue since the last refresh, set the
attributes as follows:

- supported = “true”
TIBCO iProcess Workspace (Browser) Configuration and Customization

Server-Side Atomic Locking of Work Items | 69
- refresh = “false”

— If you also want to ensure that the snap shot be refreshed to include new
work items, before the server atomically locks a work item when using the
aforementioned functions, set the attributes as follows:

- supported = “true”

- refresh = “true”

Note that when your server has MR 41569, the server also re-applies the filter that
was specified on the work queue, to the snap shot, prior to selecting the work
item. Therefore, work items in the snap shot that would no longer match the filter
are excluded by the atomic server lock.

Additional notes concerning the “atomic server lock” feature:

• There is a cost to setting refresh = “true” — the work item list is refreshed
every time the user selects the “Open First Available Work Item” or “Open
Next Available Work Item” function. Therefore, you should set refresh =
“true” only if a refresh is needed.

• Your TIBCO iProcess Engine's “WIS_QCHANGE_EXTENDED_CHECK”
process attribute must be set to 1.

• If you are using a TIBCO iProcess Objects Server that does not support the
“atomic server lock” feature (i.e., it does not have MR 38404), and a user
attempts to use the “Open First Available Work Item” or “Open Next
Available Work Item” function, a “Lock First Work Item not supported”
message is displayed.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

70 | Chapter 3 Configuring the Client Application
Specifying Whether Case Counts Should be Obtained

The procedure list may be configured (using the Column Selector) to display
counts of active cases, total cases, and closed cases for each procedure. Systems
with very large numbers of procedures and cases may wish to avoid the overhead
involved with obtaining these case counts.

For this reason, the CaseCounts parameter is available to be able to specify
whether or not case counts are calculated and obtained.

To specify whether or not to obtain case counts:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the CaseCounts record in the config.xml file. For example:

3. To obtain case counts, ensure the show attribute is set to “true”; to specify that
case counts not be obtained, set the show attribute to “false”.

Note that if the Active Cases, Closed Cases, or Total Cases columns are displayed
in the procedure list, and you have set the show attribute to “false”, the column
headers are displayed with a line through them, and there are no counts in the
columns.

Also note that if you are not getting case counts, but you are displaying the case
count columns, if the Column Selector is opened and you change any columns in
the procedure list, the Active Cases, Closed Cases, and Total Cases column
headers will no longer have a line through them; refreshing the list causes them to
be re-displayed. (Although, typically, if you are not getting case counts, you will
not be displaying the case count columns.)

<record jsxid="CaseCounts" show="true"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Specifying Outstanding Work Item Step Types | 71
Specifying Outstanding Work Item Step Types

The OutstandingTypes configuration parameter is available to allow you to
specify the types of steps that will appear in the list of outstanding work items for
a case.

To specify step types for the list of outstanding work items:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the OutstandingTypes record in the config.xml file. For example:

3. For each of the step types listed in the attributes of the OutstandingTypes
record, specify either “true” to include that type in the list of outstanding
work items, or “false” to exclude that step type.

<record jsxid="OutstandingTypes"

includeNormalSteps="true"

includeEventSteps="true"

includeEAISteps="true"

includeSubProcCallSteps="true"

includeDynamicSubProcSteps="true"

includeGraftSteps="true"

includeTransactionControlSteps="true"/>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

72 | Chapter 3 Configuring the Client Application
WebDAV Root Setting

If you are using TIBCO Forms, the base URL of the form’s location must be
specified in the webDAVRoot parameter in the application’s config.xml file.

When the client application is installed, the installation program asks if TIBCO
Forms are being used, and if so, it allows you to enter the root to WebDAV, which
the installation program then writes to the webDAVRoot parameter in
config.xml.

If the person installing the client application does not enter the root to WebDAV at
that time, it can be specified later by editing the webDAVRoot parameter in
config.xml.

To specify the WebDAV root for TIBCO Forms:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the webDAVRoot record in the config.xml file. For example:

3. Replace %TIBCO_CLIENT_WEBDAVROOT% with the base URL of the location at
which the TIBCO Forms are stored (this will already contain a URL if one had
been entered during the installation). For example:

For more information about TIBCO Forms, see Forms on page 239.

Web-based Distributed Authoring and Versioning (WebDAV) is a protocol used
for publishing and managing content to web servers. TIBCO Forms uses WebDAV
to publish forms.

<record jsxid="webDAVRoot" URL="%TIBCO_CLIENT_WEBDAVROOT%"/>

<record jsxid="webDAVRoot" URL="http://myserver:8090/webDAV"/>

The iProcess Workspace (Browser) software automatically loads a JavaScript file
called webDAVRoot/META-INF/form_ext.js. This file allows loading and using
custom JavaScript libraries inside TIBCO Form validations and events. The
form_ext.js file is customized and deployed from TIBCO Business Studio. For
more information, see the TIBCO Business Studio Forms User’s Guide.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Add-ins | 73
Add-ins

The addins parameter contains entries for TIBCO add-ins that are used by the
client application and/or TIBCO General Interface Builder when creating a
custom WCC application, as described below:

The addins parameter may contain the following entries:

• user:forms - This add-in must be specified in the config.xml file if the client
application is using TIBCO Forms version 1.1. This add-in is used at runtime
to display version 1.1 TIBCO Forms.

• user:forms2 - This add-in must be specified in the config.xml file if the client
application is using TIBCO Forms version 2.x. This add-in is used at runtime
to display version 2.x TIBCO Forms.

• wcc - This add-in is used only in the config.xml file for custom WCC
applications. It provides access to the WCC components in TIBCO GI Builder
during design time.

You do not need to explicitly add any of these add-ins. All three of them appear in
the config.xml file for custom WCC applications by default. Only the forms
add-ins appear in the TIBCO iProcess Workspace (Browser) client application
config.xml file by default, as that application does not use the wcc add-in.

<record jsxid="addins" type="array">

<record jsxid="0" type="string">user:forms</record>

<record jsxid="1" type="string">user:forms2</record>

<record jsxid="2" type="string">wcc</record>

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

74 | Chapter 3 Configuring the Client Application
TIBCO Forms Caching

The formsConfig parameter is used to specify caching of TIBCO Forms. Setting
the ignoreCache attribute to true causes TIBCO Forms and their resources to be
reloaded on each request instead of retrieving the resources from the browser
cache.

To set TIBCO Forms caching:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the formsConfig record in the config.xml file. For example:

3. To cause TIBCO Forms to reload on each request rather than be loaded from
cache, set the ignoreCache attribute to true:

<record jsxid="formsConfig" ignoreCache="false"/>

<record jsxid="formsConfig" ignoreCache="true"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Show/Hide Personal Work Queues | 75
Show/Hide Personal Work Queues

The personalWorkQueue configuration parameter specifies whether or not the
logged-in user’s personal work queue is shown or hidden by default.

This parameter can be used in conjunction with the <WorkQueue> /
<PersonalWorkQueueOption> user access profile property in the
userAccessProfiles.xml file, which specifies whether or not the user can
change the default specified in this parameter. For more information, see page 18.

To specify whether to show or hide the logged-in user’s personal work queue by
default:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the personalWorkQueue record in the config.xml file. For example:

3. Set the default attribute as follows:

— To show the queue by default, set default = “show”.

— To hide the queue by default, set default = “hide”.

<record jsxid="personalWorkQueue" default="hide"/>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

76 | Chapter 3 Configuring the Client Application
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 77
Chapter 4 Customizations

This chapter describes customization tasks that can be performed on your
application, either the iProcess Client or a custom WCC application.

Topics

• Font and Image Settings, page 78

• Adding Custom Menu Items and Toolbar Buttons, page 79

• Callout Interface, page 87

• Browser File Cache Issues, page 122

• Dynamic Work Item Status Icons Based on Priority, page 126

• Dynamic Row Colors on Work Item List, page 133
 TIBCO iProcess Workspace (Browser) Configuration and Customization

78 | Chapter 4 Customizations
Font and Image Settings

A cascading style sheet-like file is provided that allows you to customize the
appearance of the client application. This file can be modified to change elements
such as:

• icon/button images

• font type, size, color

• background colors

The appearance of these elements is defined in the following file:

ClientInstallDir\JSXAPPS\ipc\jss\ipcCSS.xml

An excerpt from this file is shown below:

<!-- background color for lists -->
<record jsxid="ipcList BGC" type="jsxbgcolor" jsxtext="#fffeff" />
<!-- background effect for menu bars -->
<record jsxid="ipcMenu BG" type="jsxbg" jsxtext="#ececee" />

This file is well-commented, making it easy to find the area you would like to
customize.

To make a change to a font, image, color, etc., modify the value in the jsxtext
attribute.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Adding Custom Menu Items and Toolbar Buttons | 79
Adding Custom Menu Items and Toolbar Buttons

Custom menus and/or toolbar buttons can be added to the client application
using configuration settings in the client application’s configuration file,
config.xml.

The record element that specifies a custom menu or toolbar button has a jsxid
attribute value of customMenus:

The <record jsxid="customMenus"> element can have either toolbar or menu
child elements. Both the toolbar and menu elements have three attributes:

• parent - The name of the menu or toolbar location. The following values are
valid:

— “MainAppToolbar”

— “WorkQList”

— "WorkItemList"

— “ProcList”

— “CaseList”

— “CaseSummary’

• width - The display width in pixels.

• prototype - The path to the default prototype XML file. This is the General
Interface prototype that defines the GUI components for the menu or toolbar.

The custom menu files should be added in a directory under the application root:

ClientInstallDir\JSXAPPS\ipc

<record jsxid="customMenus">

<!-- custom menu or toolbar elements added here -->

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

80 | Chapter 4 Customizations
The following example shows a toolbar and a menu element taken from the
samples given in config.xml:

Both the toolbar and menu elements may also have optional locale child elements
that define prototype XML files that are localized for specific languages. If a
locale child element exists, and it corresponds to the language and locale
currently selected by the user, the language-specific prototype is loaded,
otherwise the default prototype is loaded. For more information on customizing
the client application for language localization, see Localization on page 185.

Each locale child element has three attributes:

• localeKey - Locale identifier. This value must correspond to one of the locale
element key attributes defined in the JSXAPPS\ipc\locale\locales.xml
configuration file. For example:

The localeKey attribute values are of the format: ll or ll_CC, where ll is a
lowercase, two- letter ISO 639 language code, and CC is the optional,
uppercase, two-letter ISO 3166 country code. For a list of codes, visit these
web sites:

— International Organization for Standardization (ISO):

http://www.iso.ch/iso/en/ISOOnline.frontpage

— Language codes:

http://www.loc.gov/standards/iso639-2/langhome.html

— Country codes:

http://www.iso.ch/iso/en/prods-services/iso3166ma/
02iso-3166-code-lists/index.html

<record jsxid="customMenus">

<toolbar parent="MainAppToolbar" width="110"

prototype="JSXAPPS/ipc/custom/prototypes/toolbars/ToolbarSample.xml">

</toolbar>

<menu parent="ProcList" width="110"

prototype="JSXAPPS/ipc/custom/prototypes/menus/MenuSample.xml">

</menu>

</record

<locale key="en_US">

</locale>
TIBCO iProcess Workspace (Browser) Configuration and Customization

http://www.iso.ch/iso/en/ISOOnline.frontpage
http://www.loc.gov/standards/iso639-2/langhome.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html

Adding Custom Menu Items and Toolbar Buttons | 81
• width - The display width in pixels.

• prototype - The path to the prototype XML file containing language-specific
data. This is the General Interface prototype that defines the GUI components
for the menu or toolbar.
The custom localized menu files should be added in a directory under the
application root:
ClientInstallDir\JSXAPPS\ipc

The following example shows a toolbar and a menu element, with localized
language-specific prototypes, taken from the samples in config.xml:

There is an example entry in config.xml for each of the valid parent attribute
values. These examples make reference to the sample files that can be found
under the installation home directory:

InstallationHomeDir\iprocessclientbrowser\samples\CustomMenus

where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the TIBCO iProcess
Workspace (Browser) is installed.

The files in the ...\CustomMenus directory show examples of how to use both
menu and toolbar prototype XML files and handle the events using a
CustomEventHandler class.

The sample custom menus and toolbars can be installed using the steps listed
below. These same steps can be used to install actual custom menus and toolbars,
substituting the actual custom prototype, JavaScript, and image files and
config.xml entries. See the TIBCO General Interface Builder documentation for
details on creating custom menu or toolbar prototype files.

<record jsxid="customMenus">
<toolbar parent="MainAppToolbar" width="110"

prototype="JSXAPPS/ipc/custom/prototypes/toolbars/ToolbarSample.xml">
<locale localeKey="de_DE" width="200"

prototype="JSXAPPS/ipc/custom/prototypes/toolbars/ToolbarSample_de_DE.xml"/>
</toolbar>

<menu parent="ProcList" width="110"
prototype="JSXAPPS/ipc/custom/prototypes/menus/MenuSample.xml">

<locale localeKey="de_DE" width="200"
prototype="JSXAPPS/ipc/custom/prototypes/menus/MenuSample_de_DE.xml"/>

</menu>
</record
 TIBCO iProcess Workspace (Browser) Configuration and Customization

82 | Chapter 4 Customizations
1. Create a custom directory under the application root:

ClientInstallDir\JSXAPPS\ipc\custom

Any valid directory name can be used. The “custom” directory name is used
in the sample entries shown in config.xml.

2. Copy all of the files from the following directory:

InstallationHomeDir\iprocessclientbrowser\samples\CustomMenus

... to your custom directory:

ClientInstallDir\JSXAPPS\ipc\custom

Note that the custom directory structure, and the examples in config.xml,
include samples for localizing the client application in German (locale
de_DE). These files provide an example of the structure necessary to provide
language-specific support, however, to utilize these localized files, the client
application must be configured for German language support (see
Localization on page 185).

3. In config.xml, add menu or toolbar elements under the <record
jsxid=”customMenus”> element. (Uncomment the samples shown in the
description for <record jsxid=”customMenus”>.)

4. Add a new mapping record in the config.xml file as a child element under
<record jsxid=”includes” type=”array”> for CustomEventHandler.js as
shown below:

Note - The someId in the jsxid attribute can be any number as long as it’s unique
among the mapping records in the config.xml file.

The application should now load with the sample custom menus and toolbars
displayed.

<record jsxid="includes" type="array">
...

<record jsxid="someId" type="map">

<record jsxid="id" type="string">CustomEventHandler</record>

<record jsxid="type" type="string">script</record>

<record jsxid="owner" type="string">application</record>

<record jsxid="onLoad" type="boolean">true</record>

<record jsxid="required" type="boolean">true</record>
<record jsxid="src" type="string">JSXAPPS/ipc/custom/js/CustomEventHandler.js</record>

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Adding Custom Menu Items and Toolbar Buttons | 83
Extending User Access Profiles to Control Custom Menus and Toolbar Buttons

This section describes how to extend the user access profiles to control access to
custom menus and toolbar buttons.

The sample code in these instructions, utilizes the sample custom menus and
toolbar buttons in the samples files that can be found in the following directory:
InstallationHomeDir\iprocessclientbrowser\samples\CustomMenus

Therefore, these instructions assume you have configured custom menus and
toolbar buttons as described in Adding Custom Menu Items and Toolbar Buttons
on page 79 (i.e., you’ve copied the sample code to a custom directory in the
ClientInstallDir\JSXAPPS\ipc directory).

In this example, two custom menus and two custom toolbar buttons have been
added to the main application toolbar by including the following record in the
JSXAPPS\ipc\config.xml file:

This causes the following buttons to be displayed on the main application toolbar:

<record jsxid="customMenus">

<menu parent="MainAppToolbar" width="110"

prototype="JSXAPPS/ipc/custom/prototypes/menus/MenuSample.xml">

</menu>

<toolbar parent="MainAppToolbar" width="110"

prototype="JSXAPPS/ipc/custom/prototypes/toolbars/ToolbarSample.xml">

</toolbar>
</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

84 | Chapter 4 Customizations
To extend the user access profiles to control these new custom menus and toolbar
buttons, follow these steps:

1. Add properties to the user access profiles that control custom menus and
toolbar buttons. The user access profiles are defined in the UserAccessProfiles
record in the following file:

ClientInstallDir\JSXAPPS\ipc\userAccessProfiles.xml

For more information about user access profiles, see User Access on page 9.

The following shows the properties added for our example:

The new properties in this example have been added to the profile for
“Admin” users. You will need to add them to all profiles to which you want
them to apply (Default, General, etc.).

2. Set the state attribute for each new property to the desired state, where “1”=
allow access, and “0” = deny access.

<Profile type="Admin" description="Access Level: Admin">

<!--Optional Type element(s) to assign Profile to other types-->

<Type name="Admin2" description="Access Level: Admin2"/>

<Type name="Admin3" description="Access Level: Admin3"/>

<property name="MainAppToolbar" state="1">

<property name="tbbCustomSample1" state="1"/>

<property name="tbbCustomSample2" state="1"/>

<property name="mnuCustom1" state="1">

<property name="mnuSample1" state="0"/>

<property name="mnuSample2" state="1"/>

</property>

<property name="mnuCustom2" state="1">

<property name="mnuSample1" state="0"/>

<property name="mnuSample2" state="1"/>

</property>

</property>

<property name="Procedure" state="1">

<property name="Versions" state="1"/>

<property name="LoadingChart" state="1"/>

Added
Properties
TIBCO iProcess Workspace (Browser) Configuration and Customization

Adding Custom Menu Items and Toolbar Buttons | 85
The property state attribute controls access as follows:

— The “MainAppToolbar” property controls access to the new custom menus
and toolbar buttons on the main application toolbar.

— The “tbbCustomSample1” and “tbbCustomSample2” properties control
access to the individual custom toolbar buttons.

— The “mnuCustom1” and “mnuCustom2” properties control access to the
individual custom menus.

— The “mnuSample1” and “mnuSample2” properties control access to the
individual selections on the custom menus.

3. Edit your custom event handler class (CustomEventHandler.js in the
JSXAPPS\ipc\custom\js directory) to include methods for determining
whether the logged in user has access to custom menus and toolbars and take
action to either remove or disable items for which the user is not authorized.

An example custom event handler is provided that contains a method named
“authorizeMenus” for controlling the menus, and a method named
“authorizeToolBar” for controlling the toolbar buttons. This example event
handler is located in the following directory:
InstallHomeDir\iprocessclientbrowser\samples\CustomMenus\js

4. Make the necessary changes so that the authorization methods are called
when toolbars and menus are deserialized. This can be done in one of two
ways:

— The first way is to add the following lines of code to the XML prototypes
for the custom menus and toolbars:

To JSXAPPS\ipc\custom\prototypes\menus\MenuSample.xml, add:

<onAfterDeserialize><![CDATA[com.xyz.sample.custom.
CustomEventHandler.singleton.authorizeMenus();]]>
</onAfterDeserialize>

To JSXAPPS\ipc\custom\prototypes\toolbars\ToolbarSample.xml,
add:

<onAfterDeserialize><![CDATA[com.xyz.sample.custom.
CustomEventHandler.singleton.authorizeToolBar();]]>
</onAfterDeserialize>

— You can also add the method calls to the XML prototypes through GI
Builder. To do this, open the prototypes for the custom menus and toolbars
 TIBCO iProcess Workspace (Browser) Configuration and Customization

86 | Chapter 4 Customizations
in GI Builder, then select ‘Component Profile’. In the Component Profile
Editor, enter the following code in the onAfterDeserialization field:

For the custom menus prototype, enter:
com.xyz.sample.custom.CustomEventHandler.singleton.
authorizMenus();

For the custom toolbars prototype, enter:
com.xyz.sample.custom.CustomEventHandler.singleton.
authorizeToolbars();

Your custom menus and toolbar buttons should now react to the access settings in
the userAccessProfiles.xml file.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 87
Callout Interface

The callout interface is used to specify filters, sorts, available filter fields, available
sort fields, and default column displays for various lists in the client application.
The callout interface methods allow you to impose filters and sorts on a work
item list or case list when it is initially displayed, or every time it is displayed. You
can also force specific columns to be displayed on various lists.

Methods in the callout interface can be used in combination with user access
profile settings to control filter, sort, and column display. For example, you could
use the callout interface methods to set a filter on the case list for a particular user,
then use the access profiles to not allow the user to set a filter (i.e., do not give
access to the case list Filter dialog).

The following bullet items summarize the callout interface methods. Each method
is then described in more detail later in this section.

• overrideFilterFields - Used to modify the filter fields that will appear in the
Field drop-down list on the Filter dialog.

• overrideInitialFilter - Specifies the initial filter for work item and case lists, i.e.,
it is applied only when the list is initially opened after a login.

• overrideFilter - Specifies a filter to apply every time a work item or case list is
opened.

• overrideInitialHistoryFilter - Specifies the initial filter for case history lists.

• overrideHistoryFilter - Specifies a filter to apply every time a case history list
is displayed, refreshed, or has its filter changed.

• overrideSortFields - Used to modify the sort fields that will appear in the
Available Fields list on the Sort dialog.

The original callout interface in the TIBCO iProcess Workspace (Browser) was
deprecated in version 11.0.0. It was superseded by a simpler method of specifying
filters, sorts, and column displays, which is now described in this section. New
development should use the callout interface described here.

The deprecated interface is still functional and can continue to be used. The
documentation for the original callout interface has been moved to an appendix.
See Deprecated Callout Interface on page 363.

Note that the original callout interface naming convention was to begin each
method name with “callout”. It is still called the “callout” interface, although the
naming convention for the new methods is to begin each method name with
“override”, as they can be used to override filter, sort, and column settings in the
client application.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

88 | Chapter 4 Customizations
• overrideInitialSort - Specifies the initial sort for work item and case lists, i.e., it
is applied only when the list is initially opened after a login.

• overrideSort - Specifies a sort to apply every time a work item or case list is
opened.

• overrideSelectColumns - Used to modify the columns that appear on the
Column Selector dialog on various lists.

• overrideInitialColumns - Used to modify the columns that are displayed
when a list is initially loaded.

• overrideColumns - Used to modify the columns that are displayed when a list
is initially loaded, as well as when the columns are modified by the user with
the Column Selector.

• modifyMatrixColumns - Provides direct access to the Matrix control so that
specific properties can be changed on the Matrix control and the individual
columns.

Sample Callout Handler

The TIBCO iProcess Workspace (Browser) comes with a sample callout handler
that contains sample implementations of all of the callout methods.

The sample callout handler is named ‘SampleCalloutHandler.js’ and is located
in the InstallationHomeDir\iprocessclientbrowser\samples\Callouts
directory, where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the TIBCO iProcess
Workspace (Browser) is installed.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 89
The following illustrates one of the callout methods in the sample callout handler:

Each of the methods is similar to the method shown above in the following ways:

• All of the callout methods have two parameters: oValue and oContext (the
exception is the modifyMatrixColumns method, which has oMatrix and
oContext parameters):

— oValue - This parameter provides the output to the method call. For
example, for the overrideInitialFilter method shown above, this parameter
provides the filter expression needed to modify the initial filter for the work
item or case list.

— oContext - This parameter provides all available input to the method. For
example, it may provide information about the list upon which you are
modifying the filter or sort (user name, list type, etc), or it may provide all
of the available fields if you are modifying filter or sort fields.

• Each callout method has a SAMPLE CHANGE example that illustrates
making a modification to a filter, sort, filter field, sort, field, or column for a
particular list type.

• Each of the callout methods contains if/else statements that provide a
location to place code that modifies the oValue object for each of the list types
for which the method applies.

ipcClass.prototype.overrideInitialFilter = function(oValue, oContext) {

jsx3.log('overrideInitialFilter called');
this.logObjectContents(oContext, ' (in) oContext');
this.logObjectContents(oValue, ' (in) oValue');

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Filter for the work items list here

// SAMPLE CHANGE: append additional filtering information;
// Append criteria so that the procedure named ALLOCATE is not initially shown.
// The user will be able to change this later during this session.
oValue.Filter = this.appendExpression(oContext.Filter, 'SW_PRONAME = "ALLOCATE"');

// Note: uncommenting the line below will disable this sample change
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Filter for the case list here
oValue = null;

}

this.logObjectContents(oValue, ' (out) oValue');
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

90 | Chapter 4 Customizations
• You can easily enable or disable the method for each list type by either
commenting (to enable) or uncommenting (to disable) the oValue = null:
line in the appropriate if/else segment for the desired list type:

Helper Function

The SampleCalloutHandler.js file also contains an appendExpression helper
function that appends a specified filter expression to the original filter expression.
It requires two parameters: filterExpression, the original expression, and
appendExpression, the expression you would like appended to the original.

It is used in the sample code in the overrideInitialFilter example shown on
page 88.

Configuration

To configure your client application to use the callout handler, perform the
following steps:

1. Copy the SampleCalloutHandler.js file into a directory you’ve created
under the ClientInstallDir\JSXAPPS\ipc directory, where ClientInstallDir is the
path to the directory in which the client application is installed. For example,
ClientInstallDir\JSXAPPS\ipc\Callouts.

You may also want to rename the SampleCalloutHandler.js file to just
‘CalloutHandler.js’, or to something more specific if that’s what its purpose
is, for example ‘ColumnsCalloutHandler.js’.

2. Modify the callout handler you copied in step 1 to modify the appropriate
lists.

3. Specify the callout handler custom class in the client application’s
configuration file, ClientInstallDir\JSXAPPS\ipc\config.xml.

The <record jsxid=”customCallout” element specifies which classes will be
loaded to handle custom callout methods. The <Classes> element can contain
any number of <Class> elements whose class attribute is set to the fully
qualified name of the custom class to load. The class is loaded after the user is

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Filter for the work items list here

// SAMPLE CHANGE: append additional filtering information;
// The initial filter will only show items where the procecure name begins with 'c'.
// The user will be able to change this later during this session.
oValue.Filter = this.appendExpression(oContext.Filter, 'SW_PRONAME = "c*"');

// Note: uncommenting the line below will disable this sample change

oValue = null;
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 91
authenticated at login. This gives the custom class access to the logged-in
user's session to query the Action Processor for initialization data, if required.

The following is an example of the customCallout element identifying the
ColumnsCalloutHandler custom class:

4. Add a mapping record to the client application’s configuration file,
ClientInstallDir\JSXAPPS\ipc\config.xml so that it points to your callout handler.

a. Locate the commented-out mapping record as shown below.

b. Make a copy of the record and remove the comment characters from the
copy.

c. Modify the id and src records to match the name and location of your
callout handler, and change the number in the jsxid attribute in the first
record to any number that is not already used in a mapping record. For
example:

 <record jsxid="customCallout" type="ipc">
 <Classes>
 <Class class="com.tibco.bpm.ipc.ColumnsCalloutHandler" />
 </Classes>
</record>

<!--<record jsxid="ipc.1" type="map">
<record jsxid="id" type="string">FormTemplate</record>
<record jsxid="type" type="string">script</record>
<record jsxid="owner" type="string">application</record>
<record jsxid="onLoad" type="boolean">true</record>
<record jsxid="required" type="boolean">true</record>
<record jsxid="src" type="string">JSXAPPS/ipc/components/Forms/FormTemplate/js

/FormTemplate.js</record>

</record>-->

<record jsxid="ipc.2" type="map">
<record jsxid="id" type="string">ColumnsCalloutHandler</record>
<record jsxid="type" type="string">script</record>
<record jsxid="owner" type="string">application</record>
<record jsxid="onLoad" type="boolean">true</record>
<record jsxid="required" type="boolean">true</record>
<record jsxid="src" type="string">JSXAPPS/ipc/Callouts/ColumnsCalloutHandler.js</record

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

92 | Chapter 4 Customizations
5. Optionally, modify the user access profiles that would be used in conjunction
with the custom handling. For example, if your custom handler is setting the
default columns on the work item list, you may want to deny access to the
Column Selector on the work item list (see SelectColumns on page 19).

Note that case is significant on some web servers, such as Tomcat. For example, if
you are storing your custom callouts in the directory,
ClientInstallDir\JSXAPPS\Callouts (i.e., with “Callouts” capitalized), the
path specification to the custom callout handler in the config.xml file cannot be
“JSXAPPS/callouts/ColumnsCalloutHandler.js” (i.e., with “callouts” all
lowercase).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 93
Callout Methods

The following describes each of the available callout interface methods:

overrideFilterFields

This method allows you to modify the filter fields that will appear in the Field
drop-down list on the Filter dialog. This is used to limit the fields on which the
user can filter.

This filter can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the filter to each type of list.

To remove a field from the Field drop-down list, remove it from the array of
available fields. Values in the properties of the AvailableFields array should not be
changed.

This method is called once while initializing the list.

Syntax

ipcClass.prototype.overrideFilterFields = function(oValue, oContext)

Parameters

• oValue - An object that specifies the fields to include in the Field drop-down
list. It has one property:

— oValue.AvailableFields[] (array) - Describes each available field, as
follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

type (string) - Type of data stored in the field. Possible values are:
swText
swDate
swTime
swNumeric
swTimeStamp
swComma

length (string) - Maximum length of the field.

regex (boolean) - True or false, indicating whether a regular expression
can be entered.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

94 | Chapter 4 Customizations
info (string) - Text providing information about the format for entering
the value. This may be placeholder text that will be replaced by
localized text.

lookup (string) - Text indicating there was a formatting problem and that
a valid example of data follows. This may be placeholder text that
will be replaced by localized text.

validation (string) - Identifies a method for validating the value
entered for comparison. Leave null for text. Possible values are:

getDateValidator
getTimeValidator
getTimeStampValidator
getNumericValidator
getCommaValidator
getCaseStatusValidator
getZeroOneValidator

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.Filter (string) - The original filter value.

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available. For details, see oValue.AvailableFields [] above.

— oContext.ListName (string)

— oContext.ListDescription (string)

Returns

The modified oValue object, or null if no changes are to be made.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 95
Example

overrideInitialFilter

This method specifies the initial filter for a list, i.e., it is applied when the list is
initially opened after a login and remains in effect until the user removes it or
changes it.

An initial filter appears on the Filter dialog (and the Filter icon has a red check
mark), and can be changed by the user if they have access to the Filter dialog.

An initial filter can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the filter to each type of list.

This method is called once upon the initial display of the work item and case list.

Syntax

ipcClass.prototype.overrideInitialFilter = function(oValue, oContext)

Parameters

• oValue - An object that specifies the filter expression to apply to the initial list.
It has one property:

— oValue.Filter (string) - The filter expression to apply.

ipcClass.prototype.overrideFilterFields = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.AvailableFields for the work item list here

// SAMPLE CHANGE: This removes the field SW_QPARAM1 from the available fields list
oValue.AvailableFields = new Array();
for (var x=0; x<oContext.AvailableFields.length; x++) {

if (oContext.AvailableFields[x].id != "SW_QPARAM1") {
oValue.AvailableFields.push(oContext.AvailableFields[x]);

}
}
// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.AvailableFields for the case list here
oValue = null;

}
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

96 | Chapter 4 Customizations
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.Filter (string) - The original filter value.

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available, as follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

type (string) - Type of data stored in the field. Possible values are:
swText
swDate
swTime
swNumeric
swTimeStamp
swComma

length (string) - Maximum length of the field.

regex (boolean) - True or false, indicating whether a regular expression
can be entered.

info (string) - Text providing information about the format for entering
the value. This may be placeholder text that will be replaced by
localized text.

lookup (string) - Text indicating there was a formatting problem and that
a valid example of data follows. This may be placeholder text that
will be replaced by localized text.

validation (string) - Identifies a method for validating the value
entered for comparison. Leave null for text. Possible values are:

getDateValidator
getTimeValidator
getTimeStampValidator
getNumericValidator
getCommaValidator
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 97
getCaseStatusValidator
getZeroOneValidator

— oContext.ListName (string)

— oContext.ListDescription (string)

— oContext.GroupQueue (boolean) - This is for work item lists only; true or
false, indicating whether the work queue is for a queue (true) or a user
(false).

Returns

The modified oValue object, or null if no changes are to be made.

Example

ipcClass.prototype.overrideInitialFilter = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Filter for the work items list here

// SAMPLE CHANGE: append additional filtering information;
// Append criteria so that the procedure named ALLOCATE is not initially shown.
// The user will be able to change this later during this session.
oValue.Filter = this.appendExpression(oContext.Filter, 'SW_PRONAME <> "ALLOCATE"');

// EXAMPLE: use the GroupQueue context value to determine which ipc toolbox method
// to call in order to retrieve attributes for either the selected group or user
// START EXAMPLE - uncomment up to END EXAMPLE to retrieve attributes from the
// server
//if (oContext.GroupQueue) {
// var attributes = this.app.ipcGetGroupAttributes(oContext.ListName);
//}
//else {
// var attributes = this.app.ipcGetUserAttributes(oContext.ListName);
//}
//for (var i = 0; i < attributes.length; i++) {
// jsx3.log('Attribute=' + attributes[i].Name + ' / ' + 'Type=' +
// attributes[i].Type + ' / ' + 'Value=' + attributes[i].Value);
//}
// END EXAMPLE

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Filter for the case list here
oValue = null;

}
this.logObjectContents(oValue, ' (out) oValue');
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

98 | Chapter 4 Customizations
Note that in the example above, the appendExpression helper function is used to
append the specified filter expression to the user’s specified filter expression. For
more information about this helper function, see Helper Function on page 90.

overrideFilter

This method is called whenever a work item or case list is opened and each time it
is refreshed, allowing modification to the filter that is used.

This filter can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the filter to each type of list.

The normal use of this callout would be to append additional filtering beyond
what the user has specified, but it can be used to make any kind of change to the
filter.

The changes to the filter expression applied by this method will NOT appear in
the Filter dialog. The user will continue to see the original filter there.

Syntax

ipcClass.prototype.overrideFilter = function(oValue, oContext)

Parameters

• oValue - An object that specifies the filter expression to apply to the list. It has
one property:

— oValue.Filter (string) - The filter expression to apply.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 99
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.Filter (string) - The original filter value.

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available to filter on, as follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

type (string) - Type of data stored in the field. Possible values are:
swText
swDate
swTime
swNumeric
swTimeStamp
swComma

length (string) - Maximum length of the field.

regex (boolean) - True or false, indicating whether a regular expression
can be entered.

info (string) - Text providing information about the format for entering
the value. This may be placeholder text that will be replaced by
localized text.

lookup (string) - Text indicating there was a formatting problem and that
a valid example of data follows. This may be placeholder text that
will be replaced by localized text.

validation (string) - Identifies a method for validating the value
entered for comparison. Leave null for text. Possible values are:

getDateValidator
getTimeValidator
getTimeStampValidator
getNumericValidator
getCommaValidator
getCaseStatusValidator
getZeroOneValidator
 TIBCO iProcess Workspace (Browser) Configuration and Customization

100 | Chapter 4 Customizations
— oContext.ListName (string)

— oContext.ListDescription (string)

— oContext.GroupQueue (boolean) - This is for work item lists only; true or
false, indicating whether the work queue is for a queue (true) or a user
(false).

Returns

The modified oValue object, or null if no changes are to be made.

Example

ipcClass.prototype.overrideFilter = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Filter for the work items list here

// SAMPLE CHANGE: append additional filtering information.
// Append criteria to the filter so that a procedure named CARPOOL will
// never be displayed. Note: the user will never see this appended criteria
// in the filter editor
oValue.Filter = this.appendExpression(oContext.Filter, 'SW_PRONAME <> "CARPOOL"');

// EXAMPLE: use the GroupQueue context value to determine which ipc toolbox method
// to call in order to retrieve attributes for either the selected group or user
// START EXAMPLE - uncomment up to END EXAMPLE to retrieve attributes from the
// server
//if (oContext.GroupQueue) {
// var attributes = this.app.ipcGetGroupAttributes(oContext.ListName);
//}
//else {
// var attributes = this.app.ipcGetUserAttributes(oContext.ListName);
//}
//for (var i = 0; i < attributes.length; i++) {
// jsx3.log('Attribute=' + attributes[i].Name + ' / ' + 'Type=' +
// attributes[i].Type + ' / ' + 'Value=' + attributes[i].Value);
//}
// END EXAMPLE

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Filter for the case list here
oValue = null;

}

this.logObjectContents(oValue, ' (out) oValue');
return oValue;

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 101
Note that in the example above, the appendExpression helper function is used to
append the specified filter expression to the user’s specified filter expression. For
more information about this helper function, see Helper Function on page 90.

overrideInitialHistoryFilter

This method specifies the initial filter for case history lists, i.e., it is applied
whenever case history is initially displayed.

This filter is visible and can be changed by the user (unlike a filter applied by the
overrideHistoryFilter method — see overrideHistoryFilter on page 102).

Syntax

ipcClass.prototype.overrideInitialHistoryFilter = function(oValue,
oContext)

Parameters

• oValue - An object that specifies the filter expression to apply to the initial list.
It has one property:

— oValue.Filter (string) - The filter expression to apply.

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.Filter (string) - The original filter value.

Returns

The modified oValue object, or null if no changes are to be made.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

102 | Chapter 4 Customizations
Example

overrideHistoryFilter

This method is called upon initial display of the case history list (like the
overrideInitialHistoryFilter — see overrideInitialHistoryFilter on page 101), plus
it is called anytime the user refreshes the list or applies a new filter to the case
history list.

The filter applied by this method is not visible to the user. It is forcibly applied
without the user’s knowledge.

Syntax

ipcClass.prototype.overrideHistoryFilter = function(oValue, oContext)

Parameters

• oValue - An object that specifies the filter expression to apply to the list. It has
one property:

— oValue.Filter (string) - The filter expression to apply.

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.Filter (string) - The original filter value.

Returns

The modified oValue object, or null if no changes are to be made.

ipcClass.prototype.overrideInitialHistoryFilter = function(oValue, oContext) {

// Make changes to oValue.Filter for the case history list here

// SAMPLE CHANGE: append additional filtering information;
// Set criteria so that case history entries related to a step named STEP1 are
// always displayed.
// The user will be able to change this later during this session.

oValue.Filter = 'STEP_NAME=[STEP1]';

// Note: uncommenting the line below will disable this sample change
//oValue = null;

return oValue;

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 103
Example

overrideSortFields

This method allows you to modify the sort fields that will appear in the Available
Fields list on the Sort dialog. This is used to limit the fields on which the user can
sort.

This sort specification can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the sort to each type of list.

To remove a field from the Available Fields drop-down list, remove it from the
array of available fields. Values in the properties of the AvailableFields array
should not be changed.

This method is called once while initializing the list.

Syntax

ipcClass.prototype.overrideSortFields = function(oValue, oContext)

ipcClass.prototype.overrideHistoryFilter = function(oValue, oContext) {

// Make changes to oValue.Filter for the case history list here

// SAMPLE CHANGE: append additional filtering information;
// Set criteria so that case history entries related to a step named STEP2 are
// always displayed.

oValue.Filter = 'STEP_NAME=[STEP2]';

// Note: uncommenting the line below will disable this sample change
//oValue = null;

return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

104 | Chapter 4 Customizations
Parameters

• oValue - An object that specifies the fields to include in the Available Fields
list on the Sort dialog. It has one property:

— oValue.AvailableFields[] (Array) - Contains information about each
field that is available to sort on, as follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

defaultsorttype (string) - Default type of data on which this field is
sorted. Possible values are:

swDateSort
swDateTimeSort
swNumericSort
swTextSort
swTimeSort

sortas (boolean) - True or false, indicating whether or not this field can
be sorted as a different data type.

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available to sort on. For details, see
oValue.AvailableFields[] above.

— oContext.ListName (string)

— oContext.ListDescription (string)

Returns

The modified oValue object, or null if no changes are to be made.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 105
Example

overrideInitialSort

This method specifies the initial sort, i.e., it is applied when the list is initially
opened after a login and remains in effect until the user removes it or changes it.

This sort specification can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the sort to each type of list.

This sort specification appears on the Sort dialog after it is applied, and can be
changed by the user if they have access to the Sort dialog.

This method is called once upon the initial display of the work item and case list.

Syntax

ipcClass.prototype.overrideInitialSort = function(oValue, oContext)

ipcClass.prototype.overrideSortFields = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.AvailableFields for the work items list here

// SAMPLE CHANGE: remove SQ_QPARAM1 from list of available fields
oValue.AvailableFields = new Array();
for (var x=0; x<oContext.AvailableFields.length; x++) {

if (oContext.AvailableFields[x].id != "SW_QPARAM1") {
oValue.AvailableFields.push(oContext.AvailableFields[x]);

}
}

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.AvailableFields for the case list here
oValue = null;

}

return oValue;
};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

106 | Chapter 4 Customizations
Parameters

• oValue - An object that provides the sort information for the list. It has one
property:

— oValue.Sort[] (array) - Each element identifies a field on which the list
will be sorted, as follows:

id (string) - Identifier for the field used for sorting.

ascending (boolean) - True or false, indicating whether the sort order
should be ascending (true) or descending (false).

sorttype (string) - Type of data on which to sort. Note that the
oContext.AvailableFields.sortas property identifies whether or
not the field can be sorted as a different data type. Possible values are:

swDateSort
swDateTimeSort
swNumericSort
swTextSort
swTimeSort

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.Sort[] (array) - The original sort information (see
oValue.Sort[] above).

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available to sort on, as follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

defaultsorttype (string) - Default type of data on which this field is
sorted. Possible values are:

swDateSort
swDateTimeSort
swNumericSort
swTextSort
swTimeSort

sortas (boolean) - True or false, indicating whether or not this field can
be sorted as a different data type.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 107
— oContext.ListName (string)

— oContext.ListDescription (string)

— oContext.GroupQueue (boolean) - This is for work item lists only; true or
false, indicating whether the work queue is for a queue (true) or a user
(false).

Returns

The modified oValue object, or null if no changes are to be made.

Example

ipcClass.prototype.overrideInitialSort = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Sort for the work items list here

// SAMPLE CHANGE: force the initial sort to be by case number, descending;
oValue.Sort = new Array();
var oSortToAdd = new Object();
oSortToAdd.id = "SW_CASENUM";
oSortToAdd.ascending = false;
oSortToAdd.sorttype = "swNumericSort";
oValue.Sort.push(oSortToAdd);

// EXAMPLE: use the GroupQueue context value to determine which ipc toolbox method
// to call in order to retrieve attributes for either the selected group or user
// START EXAMPLE - uncomment up to END EXAMPLE to retrieve attributes from the
// server
//if (oContext.GroupQueue) {
// var attributes = this.app.ipcGetGroupAttributes(oContext.ListName);
//}
//else {
// var attributes = this.app.ipcGetUserAttributes(oContext.ListName);
//}
//for (var i = 0; i < attributes.length; i++) {
// jsx3.log('Attribute=' + attributes[i].Name + ' / ' + 'Type=' +
// attributes[i].Type + ' / ' + 'Value=' + attributes[i].Value);
//}
// END EXAMPLE

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Sort for the case list here
oValue = null;

}
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

108 | Chapter 4 Customizations
overrideSort

This method is called whenever a work item or case list is opened and each time it
is refreshed, allowing modification to the sorting that is used.

This sort specification can be applied to work item and case lists — the sample
implementation in SampleCalloutHandler.js provides if/else statements for
applying the sort to each type of list.

The normal use of this callout would be to append additional sort columns to
those that the user has specified, but it can be used to make any kind of change to
the sorting. The changes made by this method will NOT appear in the Sort dialog.
The user will continue to see the original sort specification there.

Syntax

ipcClass.prototype.overrideSort = function(oValue, oContext)

Parameters

• oValue - An object that provides the sort information for the list. It has one
property:

— oValue.Sort[] (array) - Each element identifies a field on which the list
will be sorted, as follows:

id (string) - Identifier for the field used for sorting.

ascending (boolean) - True or false, indicating whether the sort order
should be ascending (true) or descending (false).

sorttype (string) - Type of data on which to sort. Note that the
oContext.AvailableFields.sortas property identifies whether or
not the field can be sorted as a different data type. Possible values are:

swDateSort
swDateTimeSort
swNumericSort
swTextSort
swTimeSort
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 109
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, and
the work queue tag for work item lists.

— oContext.ComponentName (string)

— oContext.Sort[] (array) - The original sort information (see
oValue.Sort[] above).

— oContext.AvailableFields[] (Array) - Contains information about each
field that is available to sort on, as follows:

id (string) - Identifier for the field.

text (string) - Text description of the field.

defaultsorttype (string) - Default type of data on which this field is
sorted. Possible values are:

swDateSort
swDateTimeSort
swNumericSort
swTextSort
swTimeSort

sortas (boolean) - True or false, indicating whether or not this field can
be sorted as a different data type.

— oContext.ListName (string)

— oContext.ListDescription (string)

— oContext.GroupQueue (boolean) - This is for work item lists only; true or
false, indicating whether the work queue is for a queue (true) or a user
(false).

Returns

The modified oValue object, or null if no changes are to be made.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

110 | Chapter 4 Customizations
Example

ipcClass.prototype.overrideSort = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Sort for the work items list here

// SAMPLE CHANGE: if case number is not already part of the sorting, append
// it to the end.
var bFound = false;
for (var x=0; x<oValue.Sort.length; x++) {

if (oValue.Sort[x].id == "SW_CASENUM") {
bFound = true;

}
}
if (bFound == false) {

var oSortToAdd = new Object();
oSortToAdd.id = "SW_CASENUM";
oSortToAdd.ascending = false;
oSortToAdd.sorttype = "swNumericSort";
oValue.Sort.push(oSortToAdd);

}

// EXAMPLE: use the GroupQueue context value to determine which ipc toolbox method
// to call in order to retrieve attributes for either the selected group or user
// START EXAMPLE - uncomment up to END EXAMPLE to retrieve attributes from the
// server
//if (oContext.GroupQueue) {
// var attributes = this.app.ipcGetGroupAttributes(oContext.ListName);
//}
//else {
// var attributes = this.app.ipcGetUserAttributes(oContext.ListName);
//}
//for (var i = 0; i < attributes.length; i++) {
// jsx3.log('Attribute=' + attributes[i].Name + ' / ' + 'Type=' +
// attributes[i].Type + ' / ' + 'Value=' + attributes[i].Value);
//}
// END EXAMPLE

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Sort for the case list here
oValue = null;

}
return oValue;

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 111
overrideSelectColumns

This method is used to modify the columns that appear on the Column Selector
dialog. This allows you to specify what columns the user can display on a list
through the use of the Column Selector dialog.

This can be specified for the following lists:

— work item list

— case list

— work queue list

— procedure list

— outstanding work items list on the case Outstanding tab

— outstanding steps to withdraw list on the Process Jump dialog

The sample implementation in SampleCalloutHandler.js provides if/else
statements for applying the change to each type of list.

This method is called when the list is initially displayed.

Syntax

ipcClass.prototype.overrideSelectColumns = function(oValue, oContext)

Parameters

• oValue - An object that specifies the columns to display. It has one property:

— oValue.Columns[] (Array) - Contains one element for each column that
can be selected, as follows:

id (string) - Identifies the column.

text (string)

header (string)

defaultwidth (string)

type (string) - General Interface datatype for the Matrix.Column
component used to display the data:

Matrix.Column.TYPE_NUMBER - “number”

Matrix.Column.TYPE_TEXT (default) [Note: Leave null rather than
specifying a value.]

find (boolean) - True or false indicating whether the column will appear
in the find interface.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

112 | Chapter 4 Customizations
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, the
work queue tag for work item lists, and is empty for all other list types.

— oContext.ComponentName (string)

— oContext.AvailableColumns[] (Array) - Contains information about
each column that is available for display:

id (string) - Identifier for the column.

text (string)

header (string)

defaultwidth (string)

type (string) - General Interface datatype for the Matrix.Column
component used to display the data:

Matrix.Column.TYPE_NUMBER - “number”

Matrix.Column.TYPE_TEXT (default) [Note: Leave null rather than
specifying a value.]

find (boolean) - True or false indicating whether the column will appear
in the find interface.

Plus the following context values appear on work item and case lists:

— oContext.ListName (string)

— oContext.ListDescription (string)

Plus the following context values appear on the outstanding work item lists
on the case Outstanding tab and on the Process Jump dialog:

— oContext.CaseTag

— oContext.NodeName

— oContext.ProcName

— oContext.MajorVerion

— oContext.MinorVerion

— oContext.CaseNumber

Returns

The modified oValue object, or null if no changes are to be made.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 113
Example

ipcClass.prototype.overrideSelectColumns = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.AvailableColumns for the work items list here

// SAMPLE CHANGE, remove WorkQParam1 from the available columns
oValue.AvailableColumns = new Array();
for (var x=0; x<oContext.AvailableColumns.length; x++) {

if (oContext.AvailableColumns[x].id != "WorkQParam1") {
oValue.AvailableColumns.push(oContext.AvailableColumns[x]);

}
}

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// MAke changes to oValue.AvailableColumns for the case list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKQ) {
// Make changes to oValue.AvailableColumns for the work queues list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.PROC) {
// Make changes to oValue.AvailableColumns for the procedures here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING) {
// Make changes to oValue.AvailableColumns for the outstanging items list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump') {
// Make changes to oValue.AvailableColumns for the outstnading items (jump) list here
oValue = null;

}
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

114 | Chapter 4 Customizations
overrideInitialColumns

This method allows you to modify the columns that are displayed when the
following lists are initially loaded:

— work item list

— case list

— work queue list

— procedure list

— outstanding work items list on the case Outstanding tab

— outstanding steps to withdraw list on the Process Jump dialog

This method is run only upon initial load. This allows you to set the columns in
the initial list, then allow the user to modify them with the Column Selector. (Also
see the overrideColumns method; it is run upon initial load, as well as anytime
the user changes columns with the Column Selector.)

The sample implementation in SampleCalloutHandler.js provides if/else
statements for applying the change to each type of list.

Syntax

ipcClass.prototype.overrideInitialColumns = function(oValue, oContext)

Parameters

• oValue - An object that specifies the columns to display. It has one property:

— oValue.Columns[] (Array) - Contains one element for each column to
display, as follows:

id (string) - Identifies the column.

width (string) - The width of the column; a default will be used if this is
null.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 115
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, the
work queue tag for work item lists, and is empty for all other list types.

— oContext.ComponentName (string)

— oContext.Columns[] (Array) - Original column information

— oContext.AvailableColumns[] (Array) - Contains information about
each column that is available for display, as follows:

id (string) - Identifier for the column.

text (string)

header (string)

defaultwidth (string)

type (string) - General Interface datatype for the Matrix.Column
component used to display the data:

Matrix.Column.TYPE_NUMBER - “number”

Matrix.Column.TYPE_TEXT (default) [Note: Leave null rather than
specifying a value.]

find (boolean) - True or false indicating whether the column will appear
in the find interface.

Plus the following context values appear on work item and case lists:

— oContext.ListName (string)

— oContext.ListDescription (string)

Plus the following context values appear on the outstanding work item lists
on the case Outstanding tab and on the Process Jump dialog:

— oContext.CaseTag

— oContext.NodeName

— oContext.ProcName

— oContext.MajorVerion

— oContext.MinorVerion

— oContext.CaseNumber

Returns

The modified oValue object, or null if no changes are to be made.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

116 | Chapter 4 Customizations
Example

ipcClass.prototype.overrideInitialColumns = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Columns for the work items list here

// SAMPLE CHANGE: add the "CaseNumber" column to the list if not already displayed.
var bFound = false;
for (var x=0; x<oValue.Columns.length; x++) {

if (oValue.Columns[x].id == "CaseNumber") {
bFound = true;

}
}
if (bFound == false) {

oColToAdd = new Object();
oColToAdd.id = "CaseNumber"
oColToAdd.width = "100";
oValue.Columns.push(oColToAdd);

}

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Columns for the case list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKQ) {
// Make changes to oValue.Columns for the work queues list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.PROC) {
// Make changes to oValue.Columns for the procedures here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING) {
// Make changes to oValue.Columns for the outstanding items list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump') {
// Make changes to oValue.Columns for the outstanding items (jump) list here
oValue = null;

}
return oValue;

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 117
overrideColumns

This method allows you to modify the columns to display by default. Default
columns can be specified for the following lists:

— work item list

— case list

— work queue list

— procedure list

— outstanding work items list on the case Outstanding tab

— outstanding steps to withdraw list on the Process Jump dialog

The sample implementation in SampleCalloutHandler.js provides if/else
statements for applying the change to each type of list.

This method is called when the list is initially displayed, as well as each time the
user changes the columns using the Column Selector. (Also see the
overrideInitialColumns method; it is run only upon initial load of the list.)

Syntax

ipcClass.prototype.overrideColumns = function(oValue, oContext)

Parameters

• oValue - An object that specifies the columns to display. It has one property:

— oValue.Columns[] (Array) - Contains one element for each column to
display, as follows:

id (string) - Identifies the column.

width (string) - The width of the column; a default will be used if this is
null.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

118 | Chapter 4 Customizations
• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, the
work queue tag for work item lists, and is empty for all other list types.

— oContext.ComponentName (string)

— oContext.Columns[] (Array) - Original column information

— oContext.AvailableColumns[] (Array) - Contains information about
each column that is available for display, as follows:

id (string) - Identifier for the column.

text (string)

header (string)

defaultwidth (string)

type (string) - General Interface datatype for the Matrix.Column
component used to display the data:

Matrix.Column.TYPE_NUMBER - "number"

Matrix.Column.TYPE_TEXT (default) [Note: Leave null rather than
specifying a value.]

find (boolean) - True or false indicating whether the column will appear
in the find interface.

Plus the following context values appear on work item and case lists:

— oContext.ListName (string)

— oContext.ListDescription (string)

Plus the following context values appear on the outstanding work item lists
on the case Outstanding tab and on the Process Jump dialog:

— oContext.CaseTag

— oContext.NodeName

— oContext.ProcName

— oContext.MajorVerion

— oContext.MinorVerion

— oContext.CaseNumber

Returns

The modified oValue object, or null if no changes are to be made.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 119
Example

modifyMatrixColumns

This method allows you to modify the Matrix.Columns control, which allows
you to change specific properties of the columns appearing on the following lists:

— work item list

— case list

— work queue list

— procedure list

— outstanding work items list on the case Outstanding tab

— outstanding steps to withdraw list on the Process Jump dialog

The sample implementation in SampleCalloutHandler.js provides if/else
statements for applying the change to each type of list.

ipcClass.prototype.overrideColumns = function(oValue, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oValue.Columns for the work items list here

// SAMPLE CHNAGE: add the "Proc_Name" column to the list if not already displayed.
var bFound = false;
for (var x=0; x<oValue.Columns.length; x++) {

if (oValue.Columns[x].id == "Proc_Name") {
bFound = true;

}
}
if (bFound == false) {

oColToAdd = new Object();
oColToAdd.id = "Proc_Name"
oColToAdd.width = "100";
oValue.Columns.push(oColToAdd);

}

// Note: uncommenting the line below will disable this sample change
//oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oValue.Columns for the case list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKQ) {
// Make changes to oValue.Columns for the work queues list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.PROC) {
// Make changes to oValue.Columns for the procedures here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING) {
// Make changes to oValue.Columns for the outstanging items list here
oValue = null;

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump') {
// Make changes to oValue.Columns for the outstnading items (jump) list here
oValue = null;

}
return oValue;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

120 | Chapter 4 Customizations
This method is called when the list is initially displayed, as well as each time the
column selection is changed on the list.

Syntax

ipcClass.prototype.modifyMatrixColumns = function(oMatrix, oContext)

Parameters

• oMatrix (jsx3.gui.Matrix) - Matrix control that will be used to display the list.

• oContext - An object that provides information about the list being modified.
It has the following properties:

— oContext.UserName (string)

— oContext.ListType (string)

— oContext.ListTag (string) - Contains the procedure tag for case lists, the
work queue tag for work item lists, and is empty for all other list types.

— oContext.ComponentName (string)

— oContext.AvailableColumns[] (Array) - Contains information about
each column that is available for display:

id (string) - Identifier for the column.

text (string)

header (string)

defaultwidth (string)

type (string) - General Interface datatype for the Matrix.Column
component used to display the data:

Matrix.Column.TYPE_NUMBER - "number"

Matrix.Column.TYPE_TEXT (default) [Note: Leave null rather than
specifying a value.]

find (boolean) - True or false indicating whether the column will appear
in the find interface.

Plus the following context values appear on work item and case lists:

— oContext.ListName (string)

— oContext.ListDescription (string)
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 121
Plus the following context values appear on the outstanding work item lists
on the case Outstanding tab and on the Process Jump dialog:

— oContext.CaseTag

— oContext.NodeName

— oContext.ProcName

— oContext.MajorVerion

— oContext.MinorVerion

— oContext.CaseNumber

Returns

None.

Example

ipcClass.prototype.modifyMatrixColumns = function(oMatrix, oContext) {

if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKITEM) {
// Make changes to oMatrix for the work items list here

// SAMPLE CHANGE: Increases height of rows in the list and changes various
// properties of the procedure name column

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.CASE) {
// Make changes to oMatrix for the case list here
var cols = oMatrix.getChildren();
for (var x = 0; x < cols.length; x++) {

var path = cols[x].getPath();
if (path == "Proc_Name") {

cols[x].setCellColor('#FF0000');
cols[x].setCellFontSize("16");
cols[x].setCellFontWeight(jsx3.gui.Block.FONTBOLD);
//Note: changing this text here overrides default, localized text for these.
cols[x].setTip("This is a custom tooltip for the procedure name field!!!!!");
cols[x].setText("---Procedure---", true);

}
}
oMatrix.setRowHeight(24);

} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.WORKQ) {

// Make changes to oMatrix for the work queues list here
} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.PROC) {

// Make changes to oMatrix for the procedures here
} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING) {

// Make changes to oMatrix for the outstanging items list here
} else if (oContext.ListType == com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump'){

// Make changes to oMatrix for the outstnading items (jump) list here
}

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

122 | Chapter 4 Customizations
Browser File Cache Issues

This section describes browser file cache issues that can arise if you modify things
such as configuration settings, user access profiles, or custom GI Forms. You need
to consider the way these changes are detected by browsers accessing the
application.

The following are files that are commonly updated that may cause browser file
cache issues:

• the application’s configuration file, config.xml

• the user access profiles file, userAccessProfiles.xml

• the Action Processor’s configuration file, apConfig.xml

• custom GI Forms in the \JSXAPPS\ipc\components\Forms directory

• TIBCO Forms in the WebDAV Server

The web server hosting the iProcess Workspace (Browser) may specify expiration
dates for the various files making up the application and its configuration. If the
web server does not explicitly set an expiration date, the browser may determine
an expiration date based on the creation date and other attributes of the file.

The browser will have a configuration setting that specifies how this expiration
date is used. It may choose to continue using a locally cached copy of the file, or it
may retrieve a new, possibly updated, copy of the file from the server.

Browser File Cache Settings

Microsoft Internet Explorer

Microsoft Internet Explorer lets you choose when to check for newer versions of
stored pages. This includes images, media, configuration files, and other
application files. You can change this setting as follows:

— Tools > Internet Options > General tab. Under Browsing history, click on
the Settings button.

Consider how you will need to configure server settings regarding content
expiration and what browser settings you want to recommend to users before
users begin accessing the application.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Browser File Cache Issues | 123
TIBCO recommends one of the first two options: “Every time I visit the webpage”
or “Every time I start Internet Explorer”. With these options you will be able to
retrieve all configuration and application changes that have been made on the
server by either refreshing the page or by exiting and reloading Internet Explorer.

When “Automatically” is selected, content expiration dates, the disk space set
aside for temporary internet files, and other internet usage will all affect when
updates to the application configuration are used. Some updated files may be
retrieved before others, and time periods before new files are retrieved could be
minutes, hours, days, or even weeks. However, some web servers may let you
specify the expiration dates in a way that will work well with this selection.

The option “Never” will work similar to “Automatically” except that expiration
dates are not considered. Locally cached files continue to be used until disk space
set aside for temporary files is used up.

Mozilla Firefox

Firefox has similar settings that can be accessed and changed by typing
“about:config” into the address bar. The list of configurations displayed include
an item entitled “browser.cache.check_doc_frequency”. The values you can
specify are:

— 0 - Check once per browser session

— 1 - Check every time the page is viewed

— 2 - Never check (always use cached page)

— 3 (default) - Check when the page is out of date (automatically determined)

You can also configure Firefox so that the cache will be cleared and all browser
client files, including updates, will be retrieved the next time the browser client is
run by doing the following:

1. On the Tools menu, select Options.

2. Click on the Privacy icon on the top of the dialog.

3. In the Firefox will field drop-down list, select “Use custom settings for
history”.

4. Check the Clear history when Firefox closes check box.

5. Click the Settings button.

6. On the Settings for Clearing History dialog, check the Cache box, then click
OK.

7. Click OK on the Options dialog.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

124 | Chapter 4 Customizations
How Expiration Dates Are Used

If the web server specifies a content expiration date for a file, and the browser is
configured to check for updated files automatically, the date should affect how
long a cached version of the file will be used.

If the web server does not specify an expiration date, the browser may determine
one based on the file creation date or other attributes.

The details may vary with the browser platform and type/version.

Other factors may also cause a request for a newer file before the expiration date.
The local file may be removed from the cache if the disk space set aside for cached
files is full, or the user may choose to delete all cached files.

Clearing the Local Browser Cache

In both Microsoft Internet Explorer and Mozilla Firefox, you can delete all locally
cached files so that the most recent will be retrieved from the web server. The way
in which you do this varies with each browser version; consult your browser’s
help.

Content Expiration Dates on IIS

If you are hosting the client application or Action Processor on IIS, you can
specify expiration dates for the web site, for folders, or for individual files.

Right click on a file or directory inside of the IIS administration application, select
the Properties option, and switch to the HTTP Headers tab. The Enable Content
Expiration section allows you to configure content expiration.

If the browser is configured to automatically determine when to check for
updated files, the expiration date may affect how long the browser uses a locally
cached copy of the file before requesting a new, possibly updated, copy.

If you do not enable content expiration dates, the browser may determine an
expiration date on its own based on the file creation date or other attributes.

When files are set to immediately expire, the browser should always request a
new copy of the file from the web server and never use a locally cached copy.
While this should guarantee that updated files are always used, it means the files
are transferred with every use. Bandwidth and file transfer speed concerns may
not make it the best choice.

If updates to the site are made on a scheduled basis, a date and time can be
specified. At that time, updates would be copied to the server and the date/time
would be set for the next scheduled update.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Browser File Cache Issues | 125
Specifying an interval may result in the browser retrieving some updated files
before others, on a staggered basis.

Other Considerations and Recommendations

By default, Firefox does not use the file cache for SSL web sites, so if your
application or Action Processor is hosted on this type of site, users should always
get all updated files.

Content expiration dates cannot be directly configured for static files in Tomcat.
However, a custom filter application could be developed to add the content
expiration headers to the HTML response that Tomcat creates for the static files.
Otherwise, the browser accessing the files will determine an expiration date.

If you are using IIS to host, consider what files you may need to modify in the
future. For those files, setting appropriate content expiration may prevent
problems with deploying updates.

If setting content expiration dates will not handle problems with deploying
updates, recommend appropriate browser settings to users.

Creating New Application Directory for Updates

Another method of deploying changes to a production environment is to create a
new application directory where the entire modified application will reside. For
example:

— Original: http://www.myserver.com/IPC_V1/iProcessClient.html

— Modified: http://www.myserver.com/ IPC_V2/iProcessClient.html

Links from other web pages used to launch the client would need to be changed,
users notified of the new site if appropriate, and the original URL either
redirected or otherwise disabled.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

126 | Chapter 4 Customizations
Dynamic Work Item Status Icons Based on Priority

By default, the status icons shown on the work item list is based on the following
statuses of the work item:

• Currently locked (open)

• Never been opened (unopened)

• Has been opened (opened)

• Currently suspended (suspended)

• Flagged as urgent (urgent)

This section provides an example of how to display customized status icons based
on these same statuses, except instead of using the urgent flag, the priority of each
work item is used to determine the status icon to display for the work item.

The following illustrates the icons that are displayed by default for each of the
possible combinations of the statuses listed above:

• Locked (Lock.gif)

• Locked and Urgent (ItemLockedUrgent.gif)

• Locked and Suspended (ItemLockedSuspended.gif)

• Locked and Suspended and Urgent (ItemLockedSuspendedUrgent.gif)

• Unopened (ItemUnopened.gif)

• Unopened and Urgent (ItemUnopenedUrgent.gif)

• Unopened and Suspended (ItemUnopenedSuspended.gif)

• Unopened and Suspended and Urgent (ItemUnopenedSuspendedUrgent.gif)

• Opened (ItemOpened.gif)

• Opened and Urgent (ItemOpenedUrgent.gif)

• Opened and Suspended (ItemOpenedSuspended.gif)

• Opened and Suspended and Urgent (ItemOpenedSuspendedUrgent.gif)

This example describes how to modify the XSLT, which transforms the server
response containing a list of work items into CDF format for populating a TIBCO
General Interface Matrix component. The changes cause different status icons to
be displayed, based on the Priority attribute (sso:Priority) of each work item,
rather than the Urgent attribute (sso:IsUrgent).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Dynamic Work Item Status Icons Based on Priority | 127
To base the icon on priority, rather than urgency, new icons must be created for
each identified priority level. In this example, a different icon will be displayed
for items with priority ranges 0-59, 60-74, 75-89, and 90 or greater. Work items
with a priority less than 60 will display the normal icon. Those in the 60-74, 75-89
and 90 or greater ranges will have different icons instead of the "Urgent" icons
shown above.

The following illustrates icons that could be used for each of the priority ranges.
You would need to create these icons, with the names shown, to use the example
XSLT (or use different names, and modify the example XSLT accordingly):

• Locked and Priority 60-74 (ItemLockedPriority60.gif)

• Locked and Priority 75-89 (ItemLockedPriority75.gif)

• Locked and Priority > 90 (ItemLockedPriority90.gif)

• Locked and Suspended and Priority 60-74
(ItemLockedSuspendedPriority60.gif)

• Locked and Suspended and Priority 75-89
(ItemLockedSuspendedPriority75.gif)

• Locked and Suspended and Priority > 90
(ItemLockedSuspendedPriority90.gif)

• Unopened and Priority 60-74 (ItemUnopenedPriority60.gif)

• Unopened and Priority 75-89 (ItemUnopenedPriority75.gif)

• Unopened and Priority > 90 (ItemUnopenedPriority90.gif)

• Unopened and Suspended and Priority 60-74
(ItemUnopenedSuspendedPriority60.gif)

• Unopened and Suspended and Priority 75-89
(ItemUnopenedSuspendedPriority75.gif)

• Unopened and Suspended and Priority > 90
(ItemUnopenedSuspendedPriority90.gif)

• Opened and Priority 60-74 (ItemOpenedPriority60.gif)

• Opened and Priority 75-89 (ItemOpenedPriority75.gif)

• Opened and Priority > 90 (ItemOpenedPriority90.gif)

• Opened and Suspended and Priority 60-74
(ItemOpenedSuspendedPriority60.gif)

• Opened and Suspended and Priority 75-89
(ItemOpenedSuspendedPriority75.gif)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

128 | Chapter 4 Customizations
• Opened and Suspended and Priority > 90
(ItemOpenedSuspendedPriority90.gif)

To modify the XSLT to set the status image based on priority values:

1. Save the new icons that are based on priority (e.g., ItemLockedPriority60.gif)
to the following directory, with the file names shown above:

JSXAPSS\ipc\application\images

2. Make a backup copy of the following file:
JSXAPPS\ipc\components\ListContainer\xsl\WorkItem\actionProcess
orToCdf.xsl

3. Open the following file with an editor:
JSXAPPS\ipc\components\ListContainer\xsl\WorkItem\actionProcess
orToCdf.xsl

4. Search for the following template in the actionProcessorToCdf.xsl file:
<xsl:template name="setStatusImage" >

5. Replace the “setStatusImage” template with the following template definition.
This template is modified to replace each test for the Urgent attribute with
three tests for the Priority attribute in the specified ranges:

<xsl:template name="setStatusImage">
 <!-- This template defines the rules for outputing the image status icon -->
 <xsl:choose>
 <xsl:when test="sso:IsLocked = 'true' or sso:IsLongLocked = 'true'">
 <xsl:choose>
 <xsl:when test="sso:Priority > 59 and sso:Priority < 75">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:choose>
 <xsl:when test="sso:IsSuspended = 'true'">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedSuspendedPriority60.gif</xsl:attri
bute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedPriority60.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:Priority > 74 and sso:Priority < 90">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:choose>
 <xsl:when test="sso:IsSuspended = 'true'">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedSuspendedPriority75.gif</xsl:attri
bute>
 </xsl:when>
 <xsl:otherwise>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Dynamic Work Item Status Icons Based on Priority | 129
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedPriority75.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:Priority > 89">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:choose>
 <xsl:when test="sso:IsSuspended = 'true'">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedSuspendedPriority90.gif</xsl:attri
bute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedPriority90.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:choose>
 <xsl:when test="sso:IsSuspended = 'true'">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemLockedSuspended.gif</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/Lock.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:IsUnopened = 'true' and sso:IsSuspended = 'true'">
 <xsl:choose>
 <xsl:when test="sso:Priority > 59 and sso:Priority < 75">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedSuspendedPriority60.gif</xsl:att
ribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 74 and sso:Priority < 90">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedSuspendedPriority75.gif</xsl:att
ribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 89">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedSuspendedPriority90.gif</xsl:att
ribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedSuspended.gif</xsl:attribute>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

130 | Chapter 4 Customizations
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:IsUnopened = 'true'">
 <xsl:choose>
 <xsl:when test="sso:Priority > 59 and sso:Priority < 75">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedPriority60.gif</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 74 and sso:Priority < 90">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedPriority75.gif</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 89">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopenedPriority90.gif</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemUnopened.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:IsUnopened = 'false' and sso:IsSuspended = 'true'">
 <xsl:choose>
 <xsl:when test="sso:Priority > 59 and sso:Priority < 75">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedSuspendedPriority60.gif</xsl:attri
bute>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 74 and sso:Priority < 90">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedSuspendedPriority75.gif</xsl:attri
bute>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 89">
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedSuspendedPriority90.gif</xsl:attri
bute>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedSuspended.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:IsUnopened = 'false'">
 <xsl:choose>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Dynamic Work Item Status Icons Based on Priority | 131
 <xsl:when test="sso:Priority > 59 and sso:Priority < 75">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedPriority60.gif</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 74 and sso:Priority < 90">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedPriority75.gif</xsl:attribute>
 </xsl:when>
 <xsl:when test="sso:Priority > 89">
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpenedPriority90.gif</xsl:attribute>
 </xsl:when>
 <xsl:otherwise>
 <xsl:attribute name="IsStatus">true</xsl:attribute>
 <xsl:attribute
name="IsStatusImage">JSXAPPS/ipc/application/images/ItemOpened.gif</xsl:attribute>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>
 </xsl:choose>
</xsl:template>

The resulting work item list, containing all icon combinations, displays as follows:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

132 | Chapter 4 Customizations
TIBCO iProcess Workspace (Browser) Configuration and Customization

Dynamic Row Colors on Work Item List | 133
Dynamic Row Colors on Work Item List

This section describes how to modify the XSLT, which transforms the server
response containing a list of work items into CDF format for populating a TIBCO
General Interface Matrix component. The changes cause varying row colors on
the work item list, based on the values of CDQPs and step name attributes of each
work item.

In order to implement dynamic row colors, you must first remove the default
alternating row colors implemented by iProcess Workspace (Browser), otherwise,
they will override the colors you specify. To do this:

1. Make a backup copy of the following file:
JSXAPPS\ipc\components\ListContainer\prototypes\WorkItem\listDe
fault.xml

2. Open the following file with an editor:
JSXAPPS\ipc\components\ListContainer\prototypes\WorkItem\listDe
fault.xml

3. Remove the following XML element from the listDefault.xml file and save
the file:
<xslparameters jsx_rowbg1="#fffeff" jsx_rowbg2="#e8e7e9"/>

Modify the XSLT to set the background color of rows based on CDQP and step
name values:

1. Make a backup copy of the following file:
JSXAPPS\ipc\components\ListContainer\xsl\WorkItem\actionProcess
orToCdf.xsl

2. Open the following file with an editor:
JSXAPPS\ipc\components\ListContainer\xsl\WorkItem\actionProcess
orToCdf.xsl

3. Locate the following template in the actionProcessorToCdf.xsl file:
<xsl:template match="sso:vCDQP" >

4. Replace this template with the following template definition. This template
adds a test for the value of the "OCCUPATION" CDQP, and based on whether
the value is "Engineer", "Lawyer" or "Physician", performs a subsequent test
on the value of the StepName attribute. Each row of the list will have a

If you wanted to change row color based on priority (rather than CDQP and step
name), you could simply modify the XSLT in the example to check sso:Priority
rather than sso:FieldName and sso:StepName.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

134 | Chapter 4 Customizations
different color, depending on the CDQP value and the step name of the work
item.

<xsl:template match="sso:vCDQP" >
 <xsl:variable name="cdqpName" select="sso:FieldName" />
 <xsl:attribute name="{$cdqpName}">
 <xsl:value-of select="sso:Value" />
 </xsl:attribute>
 <xsl:choose>
 <xsl:when test="$cdqpName = 'OCCUPATION'">
 <xsl:choose>
 <xsl:when test="sso:Value = 'Engineer'">
 <xsl:choose>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPL'">
 <xsl:attribute name="jsxstyle">background-color:#fff6d2;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPROVAL'">
 <xsl:attribute name="jsxstyle">background-color:#deedd4;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'NOTIFY'">
 <xsl:attribute name="jsxstyle">background-color:#d0a3a3;</xsl:attribute>
 </xsl:when>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:Value = 'Lawyer'">
 <xsl:choose>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPL'">
 <xsl:attribute name="jsxstyle">background-color:#f5d972;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPROVAL'">
 <xsl:attribute name="jsxstyle">background-color:#a0b493;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'NOTIFY'">
 <xsl:attribute name="jsxstyle">background-color:#e47474;</xsl:attribute>
 </xsl:when>
 </xsl:choose>
 </xsl:when>
 <xsl:when test="sso:Value = 'Physician'">
 <xsl:choose>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPL'">
 <xsl:attribute name="jsxstyle">background-color:#debb5c;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'APPROVAL'">
 <xsl:attribute name="jsxstyle">background-color:#82b75f;</xsl:attribute>
 </xsl:when>
 <xsl:when test="ancestor::sso:vWorkItem/sso:StepName = 'NOTIFY'">
 <xsl:attribute name="jsxstyle">background-color:#d84545;</xsl:attribute>
 </xsl:when>
 </xsl:choose>
 </xsl:when>
 </xsl:choose>
 </xsl:when>
 </xsl:choose>
</xsl:template>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Dynamic Row Colors on Work Item List | 135
The resulting work item list appears as:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

136 | Chapter 4 Customizations
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 137
Chapter 5 Configuring the Action Processor

The installation procedure for the TIBCO iProcess Workspace (Browser) steps you
through the configurations that are necessary to get the Action Processor up and
running.

This chapter describes additional options that can be configured after the Action
Processor has been installed.

Topics

• Overview, page 138

• Log Settings, page 139

• XML Response Compression, page 140

• Return Request Parameters, page 141

• External Form URI, page 142

• Server Factories, page 144

• XML Validation, page 146

• Action Processor Version, page 147
 TIBCO iProcess Workspace (Browser) Configuration and Customization

138 | Chapter 5 Configuring the Action Processor
Overview

All of the Action Processor configuration settings are specified in the Action
Processor’s configuration file, which is located as follows:

APDir\apConfig.xml

where APDir is the directory in which the Action Processor is installed (which
defaults to “TIBCOActProc”). The location of this directory on your system will
depend on which Web Application Server is hosting your Action Processor.

If changes are made to any of the Action Processor configuration settings, you
must restart the Action Processor so it picks up the changes to apConfig.xml. To
restart the Action Processor, stop and restart the Web Application Server.

The Action Processor configuration settings are described in the following
subsections.

Note that Secure Sockets Layer (SSL) can be used to secure communications
between the Action Processor and the client. However, the way in which it is
implemented is specific to the Web Application Server (WAS) you are using. See
the documentation for your WAS.

Also note that if you access the TIBCO iProcess Workspace (Browser) through
HTTPS, you must also access the Action Processor through HTTPS, and vice
versa. In other words, you cannot access one through HTTP and the other one
through HTTPS.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Log Settings | 139
Log Settings

There are a number of configuration parameters that allow you to specify the type
and amount of information to write to the Action Processor log file. Locate the
following elements in the apConfig.xml file and change the default value to fit
your needs for Action Processor logging:

• <LogLevel> - This specifies the level of information to write to the log. The
valid levels are:

— ERROR - This provides the least amount of information.

— WARN - This provides more information than ERROR, but less than INFO.

— INFO - (The default) This provides more information than WARN, but less
than DEBUG.

— DEBUG - This provides the most amount of information. This setting
should be used only if there is a problem that is being diagnosed.

• <MaxLogFileSize> - This specifies the maximum size of the log file before it is
rolled over. The default is 10 MB. Setting this to 0 (zero) causes the log to never
roll over.

• <LogArchiveCount> - This specifies the number of archived log files. These
are created if the log exceeds the maximum size limit specified with the
<MaxLogFileSize> tag. The default is 5. Note that the naming convention for
these differs between Java and .NET, as follows (assuming you are using the
default log file name specified in the <LogFile> tag):

— Java Action Processor: APLog.log.X, where X starts at 1 and increases as
archive log files are created (e.g., APLog.log.1).

— .NET Action Processor: APLogXXX.log, where XXX starts at 001 and
increases as archive log files are created (e.g., APLog001.log).

• <LogFile> - This specifies the fully qualified path to the log file. If only the
name is specified, the log file is written to the directory specified in the system
property user.home. This defaults to APLog.log.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

140 | Chapter 5 Configuring the Action Processor
XML Response Compression

This parameter specifies whether or not to compress the XML response from the
Action Processor. (This is only applicable for the Java Action Processor.) This may
be desired if the connection link between the client and Action Processor is slow.

The default is to not compress the response.

To specify the XML response compression setting:

1. Locate the <IsCompressResponse> element in the apConfig.xml file:

<IsCompressResponse>false</IsCompressResponse>

2. Specify a value in this element of “true” to compress the XML response from
the Action Processor, or “false” to not compress.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Return Request Parameters | 141
Return Request Parameters

This configuration setting specifies whether or not the Action Processor should,
by default, return parameter information to the client (parameter information is
returned to the client in the form of <InParam> elements).

When the Action Processor calls the GetXMLResult method, it passes the value in
this configuration setting in the “WithInput” parameter to specify whether or not
to return input information. This setting defaults to “false”.

To specify the return request parameter setting:

1. Locate the <IsReturnSSOParams> element in the apConfig.xml file:

<IsReturnSSOParams>false</IsReturnSSOParams>

2. Specify a value in this element of “true” to include input parameters by
default, or “false” to exclude input parameters by default.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

142 | Chapter 5 Configuring the Action Processor
External Form URI

This parameter is used to specify a URI that points to an external forms package
that is used to display forms in the iProcess Workspace. This parameter is used
with the following external forms packages:

• TIBCO BusinessWorks™ iProcess Forms Plug-in - This plug-in allows you
to create a form using TIBCO BusinessWorks™ FormBuilder, then associate
that form with a step in a TIBCO iProcess Engine procedure. For information
about this plug-in, see the TIBCO BusinessWorks iProcess Forms Plug-in User’s
Guide.

• ASP Forms - These forms can be created in a .NET project, then used in a
TIBCO iProcess Engine procedure. For information about using these types of
forms, see ASP Forms on page 313.

• JSP Forms - These forms can be created in a Java development environment,
then used in a TIBCO iProcess Engine procedure. For information about using
these types of forms, see JSP Forms on page 323.

To specify the external form URI setting:

1. Locate the <ExternalFormURI> element in the apConfig.xml file:

<ExternalFormURI>http://localhost:8080/</ExternalFormURI>

2. Replace “localhost” with the name of the computer on which the Formflow
process, ASP form, or JSP form is deployed, and replace “8080” with the port
number used by the Web Application Server that is hosting your external
form. For example:

<ExternalFormURI>http://whisler:90/</ExternalFormURI>

Note that the final slash following the port number is required.

Obfuscating External Form URI Information

When an external form is invoked, the user name, password, and server detail
information can either be displayed in the URI, or they can be obfuscated, i.e.,
made obscure by showing asterisks in their place.

The default is “false”, which causes the user name, password, and server details
to be displayed in the URI.

To change the obfuscation setting:

1. Locate the desired obfuscation element in the apConfig.xml file:

— <IsObfuscateExternalFormURIUsername>

— <IsObfuscateExternalFormURIPassword>
TIBCO iProcess Workspace (Browser) Configuration and Customization

External Form URI | 143
— <IsObfuscateExternalFormURIServerDetails>

2. Set the desired element to “true” to obfuscate the information, or “false” to
display the information.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

144 | Chapter 5 Configuring the Action Processor
Server Factories

This parameter specifies the server factories to use when using the Remote
Method Invocation (RMI). (This parameter is only applicable for the Java Action
Processor.)

The TIBCO iProcess Workspace (Browser) installer asks for server factory
information if the interface type is RMI. It then writes that information into the
<ServerFactories> element in the apConfig.xml file.

You can modify the server factory information, or add additional
<ServerFactory> elements if multiple server factories are used.

To configure the server factories to use:

1. Locate the <ServerFactories> element in the apConfig.xml file:

2. Enter values in these elements to specify information about the server factory:

— <UniqueId>: Used to uniquely identify the server factory.

— <Name>: The name of the server factory.

— <IsJRMP>: This specifies the protocol used to marshall objects. Setting this
to “true” causes the Java Remote Method Protocol (JRMP) to be used;
setting this to “false” causes Internet Inter-ORB Protocol (IIOP) to be used.

<ServerFactories>
<ServerFactory>

<UniqueId>prServerFactory</UniqueId>
<Name>prServerFactory</Name>
<IsJRMP>true</IsJRMP>
<LoadFactor>100</LoadFactor>
<JNDIEnvs>

<JNDIEnv>
<Name>java.naming.provider.url</Name>
<Value>rmi://localhost:1099</Value>

</JNDIEnv>
<JNDIEnv>

<Name>java.naming.factory.initial</Name>
<Value>com.sun.jndi.rmi.registry.RegistryContextFactory
</Value>

</JNDIEnv>
</JNDIEnvs>

</ServerFactory>
</ServerFactories>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Server Factories | 145
(Note that the protocol specified here must be the same protocol used when
constructing xSession objects.)

— <LoadFactor>: This specifies how the load should be dispersed among the
server factories when using multiple server factories. The number specified
here is viewed as a percentage of the total of the load factors specified for
all server factories. For ease of use, the total of all load factors should total
100 (although it’s not required). For example, if three server factories are
used, their load factors might be set to 50, 30, and 20 — the first one will get
50% of the load, the second 30%, and the third 20%.

This defaults to 100. You can can modify this value if you use multiple
server factories.

— <JNDIEnv>: Multiple JNDI environment settings can be specified to use
when creating the context used to locate the server factory. Each of these
will contain a <Name> and <Value> element to provide specifics about the
environment setting.

The installer asks for a “Java naming provider URL” (which specifies the
location of the registry when the registry is being used as the initial
context). The installer adds this value to one set of JNDI environment
<Name> / <Value> element pairs (see the example above).

Another set of <Name> / <Value> element pairs is provided that specifies
the initial context factory to use (see java.naming.factory.initial in
the example above).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

146 | Chapter 5 Configuring the Action Processor
XML Validation

This parameter specifies whether or not to validate the XML requests to the
Action Processor using an XSD (apAction.xsd). This is configurable because there
is some overhead incurred when validating requests.

The default is to not validate the requests.

To specify the XML validation setting:

1. Locate the <IsValidateActionXML> element in the apConfig.xml file:

<IsValidateActionXML>false</IsValidateActionXML>

2. Specify a value in this element of “true” to validate the XML requests, or
“false” to not validate.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Action Processor Version | 147
Action Processor Version

This parameter is used to specify whether or not to display the Action Processor
version number in the Action Processor action response. The version number is
displayed under the <ap:Status> element in the response: For example:

<ap:Status>
<ap:Version>11.3.0</ap:Version>
...

To specify this setting:

1. Locate the <IsReturnVersion> element in the apConfig.xml file:

<IsReturnVersion>true</IsReturnVersion>

2. Specify a value in this element of “true” to return the Action Processor
version, or “false” to not return the version.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

148 | Chapter 5 Configuring the Action Processor
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 149
Chapter 6 Application Server Settings

This chapter describes some configuration settings in Web Application Servers
(WAS) that can be useful when configuring your TIBCO iProcess Workspace
(Browser) system.

For a comprehensive discussion of WAS configuration settings, see the
documentation for your WAS.

Topics

• Session Timeout, page 150

• Maximum POST Size, page 153

• Character Encoding, page 154
 TIBCO iProcess Workspace (Browser) Configuration and Customization

150 | Chapter 6 Application Server Settings
Session Timeout

The session timeout specifies the number of minutes in which the communication
session between the WAS and the client will timeout if there is no user activity,
which results in the Action Processor timing out. If the session times out, a
message similar to the following is displayed:

The following subsections describe how to change the session timeout in Tomcat,
WebLogic, and IIS. If you are using a different application server, see the
documentation for that server.

Tomcat Session Timeout

By default, the session timeout on Tomcat is 30 minutes. To specify a different
session timeout:

1. Add the <session-timeout> element to the following configuration file:

TomcatDir\webapps\APDir\WEB-INF\web.xml

where TomcatDir is the directory in which Tomcat is installed, and APDir is the
directory in which the Action Processor is installed (which defaults to
TIBCOActProc).

The <session-timeout> element must be added to the <session-config>
element, for example:

<session-config>
<session-timeout>90</session-timeout>

</session-config>

Also see the Session Monitor parameter on page 150.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Session Timeout | 151
2. Set the value of the <session-timeout> element to the number of minutes for
the timeout. A value of -1 causes the session to never timeout.

You must restart the Action Processor for the change to take effect.

WebLogic Session Timeout

By default, the session timeout on WebLogic is 60 minutes. To specify a different
session timeout:

1. Add the <session-timeout> element in the following configuration file:

WebLogicDir\webapps\APDir\WEB-INF\web.xml

where WebLogicDir is the directory in which WebLogic is installed, and APDir is
the directory in which the Action Processor is installed (which defaults to
TIBCOActProc).

The <session-timeout> element must be added to the <session-config>
element, for example:

<session-config>
<session-timeout>90</session-timeout>

</session-config>

2. Set the value of the <session-timeout> element to the number of minutes for
the timeout. A value of -1 causes the session to never timeout.

You must restart the Action Processor for the change to take effect.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

152 | Chapter 6 Application Server Settings
IIS Session Timeout

By default, the session timeout on IIS is 20 minutes. To specify a different session
timeout:

1. Locate the <sessionState> element in the following configuration file:

\Inetpub\wwwroot\APDir\Web.config

where APDir is the directory in which the Action Processor is installed (which
defaults to TIBCOActProc).

For example:

<sessionState
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
sqlConne�tionString="data
source=127.0.0.1;Trusted_Connection=yes"
cookieless="false"
timeout="20"

/>

2. Set the value of the timeout attribute for the desired number of minutes for
the session timeout.

You must restart the Action Processor for the change to take effect.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Maximum POST Size | 153
Maximum POST Size

This section is applicable only to users of Tomcat.

By default, Tomcat sets a limit of 2097152 (2 MB) on the maximum size for HTTP
POST requests it will accept. This is specified in the maxPostSize attribute in the
following configuration file:

TomcatDir\conf\server.xml

where TomcatDir is the directory in which Tomcat is installed.

It is possible to exceed the maximum POST size limit in situations where your
application contains large memos or lots of fields.

Any large POST request to the Action Processor that exceeds the limit might
result in one of the following errors:

java.lang.IllegalStateException: Post too large

—or—
Error encountered while processing action request:

There was no Action specified.

Error Details:

No additional details available. Check the Action Processor log.

For additional information, see the Apache Tomcat documentation:

http://tomcat.apache.org/
 TIBCO iProcess Workspace (Browser) Configuration and Customization

http://tomcat.apache.org/

154 | Chapter 6 Application Server Settings
Character Encoding

The following describes how to set character encoding to UTF-8 using Tomcat. If
you are using a different web server, refer to their documentation.

If you are going to be using any double-byte character encoding, such as the
Japanese character sets, you need to set the URIEncoding attribute in Tomcat’s
server.xml file to “UTF-8”, otherwise data such as the case description will not
be properly encoded. The URIEncoding attribute must be located in the
<Connector> element.

Note that the URIEncoding parameter is not in the server.xml file by default;
you must add it if you are going to be using any double-byte character sets.

To do this:

1. Locate the <Connector> element in the following configuration file:

TomcatDir\conf\server.xml

where TomcatDir is the directory in which Tomcat is installed.

2. Add a URIEncoding attribute and set it to “UTF-8”. See the following
example:

<Connector URIEncoding="UTF-8" port="8080"
maxHttpHeaderSize="8192" maxThreads="150" minSpareThreads="25"
maxSpareThreads="75" enableLookups="false" redirectPort="8443"
acceptCount="100" connectionTimeout="20000"
disableUploadTimeout="true" maxPostSize="0" />

You must restart Tomcat for the change to take effect.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Java Heap Size | 155
Java Heap Size

This section is applicable only to users of Tomcat.

If you are running a Java Action Processor in Tomcat, and receive a “Java heap
space” error message when attempting to display a list that contains a large
number of items (10000+), you will need to do one of the following, depending on
your version of Tomcat:

Tomcat Pre-Version 5.5

Modify the EXECJAVA statement in the catalina.bat file (Windows) or catalina.sh
file (UNIX) to include the -Xms and -Xmx parameters. For example:

%_EXECJAVA% %JAVA_OPTS% %CATALINA_OPTS% %DEBUG_OPTS% -Xms1024m
-Xmx1024m -Djava.library.path="C:\Java\Tomcat55\shared\lib"
-Djava.endorsed.dirs="%JAVA_ENDORSED_DIRS%" -classpath
"%CLASSPATH%" -Dcatalina.base="%CATALINA_BASE%"
-Dcatalina.home="%CATALINA_HOME%"
-Djava.io.tmpdir="%CATALINA_TMPDIR%" %MAINCLASS% %CMD_LINE_ARGS%
%ACTION%

This sets the total memory and the maximum memory to 1 GB.

Tomcat Version 5.5/6.0

[For Tomcat 5.5 and 6.0 on UNIX, use the Tomcat Pre-Version 5.5 procedure
above.] Start the Tomcat monitoring/configuration program by executing the
following:

— TomcatDir\bin\tomcat5w.exe [Tomcat 5.5]

or

— TomcatDir\bin\tomcat6w.exe [Tomcat 6.0]

The Apache Tomcat Properties dialog is displayed.

Click on the Java tab and add “-Xms1024m” and “-Xmx1024m” to the Java
Options section. For example:

This sets the total memory and the maximum memory to 1 GB.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

156 | Chapter 6 Application Server Settings
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 157
Chapter 7 Direct Login

This chapter describes methods of bypassing the iProcess Workspace (Browser)
Login screen by passing login credentials directly.

Topics

• Direct Login, page 158
 TIBCO iProcess Workspace (Browser) Configuration and Customization

158 | Chapter 7 Direct Login
Direct Login

You can bypass the iProcess Workspace (Browser) Login screen by passing login
credentials directly into the application.

Login credentials can be directly passed into the iProcess Workspace (Browser) in
one of the following ways:

• On the URL

• In an HTML form element named ‘DirectLogin’

• In an HTML script element that defines ‘getDirectLoginArgs’

When loading, the application will look for direct login credentials in the order
shown above.

To use any of the methods of direct login listed above, direct login must be
enabled in the iProcess Workspace (Browser) configuration file. This is described
in Enabling Direct Login on page 160.

In all of the methods of direct login, the following case-insensitive parameters can
be specified:

— Username - The user name of the user logging in.

— Password - The password of the user logging in.

— ComputerName - The computer name for the iProcess Objects Server.

— IPAddress - The IP address of the machine on which the TIBCO iProcess
Objects Server is installed. You can specify the name of the host machine,
as long as that name resolves to the IP address of the machine where the
iProcess Objects Server is running. Note, however, that this name must be

Users can also be authenticated using credentials they have already entered in
another web application by using the single authentication feature. For
information, see Single Authentication on page 163.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Direct Login | 159
able to be resolved by the machine on which the Action Processor is
running.

— TCPPort - The TCP Port for the iProcess Objects Server.

— Name - The iProcess Engine node name.

— Director - “true” or “false”, indicating if an iProcess Objects Director is
being used.

— persistOnServer - (optional) If “true”, user preferences are persisted on,
and read from, the server. If “false”, user preferences are stored locally, as
well as read from the local machine upon login.

Default = “false” if attribute is absent

— maxDataSize - (optional) This is the maximum number of characters in a
property value string. This must be set at or below the field size supported
by the database used on the server. The maximum number is typically
256K. For double-byte character encoding, the maximum value is 128K.

Default = 32768 (32K) if attribute is absent

Minimum value = 10

— ServerName - If specified, this causes the connection information to be
obtained from the ServerNodes record in the client’s config.xml file. Pass
the node name in this parameter, i.e., the name in the <Name /> element.
For example, if the following server node is specified in the client’s
config.xml file, and you want to connect to that node via direct login, pass
“phoenix” in this parameter:

— BaseUrl - The Action Processor base URL. If this is passed in the URL, it
overrides the baseURL specified in the client’s config.xml file. If it is not
passed, the baseURL specified in the client’s config.xml file is used.

<record jsxid="ServerNodes" type="ipc">
<record displayNodeName="The Phoenix Server">
<NodeId>

<ComputerName>EastServer</ComputerName>
<IPAddress>10.67.2.50</IPAddress>
<TCPPort>58997</TCPPort>
<Name>phoenix</Name>
<Director>false</Director>

</NodeId>
<UserPreferencePersistence persistOnServer="false"

maxDataSize="32768"/>
</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

160 | Chapter 7 Direct Login
The following sections provide examples of each of the three direct login
methods.

Enabling Direct Login

To be able to use any of the methods of direct login, direct login must be enabled
in the iProcess Workspace (Browser).

To enable direct login:

1. Open the ClientInstallDir\JSXAPPS\ipc\config.xml file with an editor.

2. Locate the Login record in the config.xml file:

<record jsxid="Login" type="ipc" useRemember="true" allowDirectLogin="false"/>

3. Modify the allowDirectLogin attribute as follows:

— “true” enables the use of the methods of direct login listed on page 158.

— “false” disables direct login.

On the URL

The following are forms and examples of passing login credentials on the URL:

• Providing all needed information in the URL:

http://ClientHost:Port/ClientDir/iProcessClient.html?
Username=xxx&Password=xxx&ComputerName=xxx&IPAddress=xxx&
tcpport=xxx&name=xxx&director=xxx&persistOnServer=xxx&
maxDataSize=xxx

For example:

http://mymachine:7979/TIBCOiPClnt/iProcessClient.html?username=swadmin&password=&co
mputername=liberty&ipaddress=10.20.30.40&tcpport=58221&name=v11&director=false&pers
istOnServer=true&maxDataSize=2222

• Using the ServerName parameter, which specifies a node name. It will use the
connection information for that node in the <ServerNodes/> element in the
client’s config.xml file:

http://ClientHost:Port/ClientDir/iProcessClient.html?
Username=xxx&Password=xxx&ServerName=xxx
TIBCO iProcess Workspace (Browser) Configuration and Customization

Direct Login | 161
For example:

http://mymachine:7979/TIBCOiPClnt/iProcessClient.html?username=swadmin&password=&se
rvername=v11

• Using the baseUrl parameter, which overrides the baseURL specified in the
client’s config.xml file:

http://ClientHost:Port/ClientDir/iProcessClient.html?
Username=xxx&Password=xxx&ServerName=xxx&BaseUrl=xxx

For example:

http://mymachine:7979/TIBCOiPClnt/iProcessClient.html?username=swadmin&password=&se
rvername=v11&BaseUrl=http%3A%2F%2Fozquadling%3A8090%2Fap1120rc2%2FActionProcessor.s
ervlet

If the BaseUrl parameter is passed on the URL, it must be URI encoded as
shown in the example above.

In an HTML Form Element Named 'DirectLogin'

The following is an example HTML form:

<form name="DirectLogin">
<input type="hidden" name="BaseUrl"
value="http://ServerComputerName:90/ipc/ActionProcessor.aspx">
<input type="hidden" name="Username" value="swadmin">
<input type="hidden" name="Password" value="">
<!--If ServerName is specified, this will override other

values and will be looked up from the config.xml file. -->
<!-- <input type="hidden" name="ServerName"

value="MyServerConfigName"> -->
<input type="hidden" name="ComputerName"

value="ServerComputerName">
<input type="hidden" name="IPAddress" value="10.20.30.40">
<input type="hidden" name="TCPPort" value="54321">
<input type="hidden" name="Name" value="ServerNodeName">
<input type="hidden" name="Director" value="false">
<input type="hidden" name="persistOnServer" value="true">
<input type="hidden" name="maxDataSize" value="32768">

</form>

Note that case is not significant for parameter/argument names when using
direct login.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

162 | Chapter 7 Direct Login
Add this form to the HTML file used to launch the iProcess Workspace (Browser),
which by default is ClientInstallDir/iProcessClient.html, where ClientInstallDir is
the path to the directory in which the iProcess Workspace (Browser) is installed.

In an HTML Script Element that Defines ‘getDirectLoginArgs’

The following is an example HTML script:

<script language="JavaScript">
function getDirectLoginArgs(nameSpace) {

var args = new Object();
if (nameSpace == 'wccApp') {

args.BaseUrl = "http://ServerComputerName:90/" +
"ipc/ActionProcessor.aspx";

args.Username = "swadmin";
args.Password = "";
//If ServerName is specified, this will override other
//values and will be looked up from the config.xml file.
//args.ServerName = "MyServerConfigName";
args.ComputerName = "ServerComputerName";
args.IPAddress = "10.20.30.40";
args.TCPPort = "54321";
args.Name = "ServerNodeName";
args.Director = "false";
args.persistOnServer = "true";
args.maxDataSize = "32768";

}
return args;

}
</script>

Add this script to the HTML file used to launch the iProcess Workspace
(Browser), which by default is ClientInstallDir/iProcessClient.html, where
ClientInstallDir is the path to the directory in which the iProcess Workspace
(Browser) is installed.
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 163
Chapter 8 Single Authentication

This chapter describes how to configure the TIBCO iProcess Workspace (Browser)
so that users can be authenticated using credentials they have already entered in
another web application.

Topics

• Introduction, page 164

• Java Single Authentication, page 165

• .NET Single Authentication, page 171
 TIBCO iProcess Workspace (Browser) Configuration and Customization

164 | Chapter 8 Single Authentication
Introduction

The single authentication feature allows users to go directly to the iProcess
Workspace (Browser) from another web application without going through the
iProcess Workspace (Browser) Login screen. When configured for this feature, the
system will authenticate the user using the credentials the user has already
entered in the other web application.

The single authentication feature provides a secure method of passing the user’s
credentials to the iProcess Workspace (Browser).

The way in which you implement this feature depends on whether you are using
the Java or .NET Action Processor. Each is described in the following sections.

Single authentication is supported in the client application, as well as in custom
applications created with WCC components.

Other methods of passing login credentials to perform a “direct login” are
described in Direct Login on page 157.

Also note that there is a configuration parameter (logoutUrl) that allows you to
redirect the client upon a user logout. This feature can also be used with single
authentication. For more information, see Redirecting Client to URL on Logout on
page 52.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Java Single Authentication | 165
Java Single Authentication

The Java single authentication feature is used if you are using the Java Action
Processor. It allows users to go directly to the iProcess Workspace (Browser) from
another web application in which they have already been authenticated.

The Java single authentication feature implements a filter to act as a mediator
between the customer’s web application authentication methods and the iProcess
Workspace (Browser) and Java Action Processor.

Web Server Configuration

The single authentication filter is configured by adding the <filter> and
<filter-mapping> elements to the web server’s deployment descriptor file, which
is located as follows:

APInstallDir\WEB-INF\web.xml

where APInstallDir in the installation directory of the Java Action Processor, which
defaults to TIBCOActProc.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

166 | Chapter 8 Single Authentication
The following shows the elements that must be added to web.xml:

<filter>
<filter-name>LoginAuthenticator</filter-name>
<filter-class>com.tibco.bpm.ap.filter.AuthenticateFilter</filter-class>

<init-param>
<param-name>AuthenticatorClass</param-name>
<param-value>

com.tibco.bpm.ap.filter.sample.SampleAuthenticator
</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>LoginAuthenticator</filter-name>
<servlet-name>ActionProcessor</servlet-name>

</filter-mapping>

The <init-param> element provides initialization parameters, including the class
name of the authenticator plug-in that the customer must implement. See the next
section for more information about this plug-in.

Authenticator Plug-in

The customer must create a plug-in that implements the Authenticator interface,
as follows:

public interface Authenticator {
public String getUserName();
public String getPassword();
public String getNodeName();
public String getComputerName();
public String getIpAddress();
public int getTcpPort();
public boolean isDirector();
public boolean authenticate (HttpServletRequest);

}

The authenticate method receives the request object so it can sync its
authentication parameters with the request ID. The authenticate method’s return
value is boolean, indicating either success or failure of the authenticate call.

The Authenticator interface also provides getter methods for the information
required for a successful login to the iProcess Workspace (Browser). The filter uses
these values to construct a Login action request to the Java Action Processor.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Java Single Authentication | 167
iProcess Workspace (Browser) Configuration

To use single authentication, you must enable it in the iProcess Workspace
(Browser) configuration file, which is located as follows:

ClientInstallDir\JSXAPPS\ipc\config.xml

Locate the SingleAuthentication record in the configuration file, and set
useSingle to true:

<record jsxid="SingleAuthentication" type="ipc" useSingle="true"
failureUrl="" />

This informs the iProcess Workspace (Browser) that an external application will
be providing the login authentication credentials.

The failureUrl attribute is used to specify a URL to which the user is redirected if
the login fails.

— If there is a value specified in the failureUrl attribute, and the login fails,
an alert dialog is displayed containing the message "User authentication
could not be confirmed. You will be redirected to an appropriate login
page." The browser is then redirected to the specified URL.

— If the value of failureUrl is empty, and the login fails, an alert dialog is
displayed containing the message “User authentication could not be
confirmed. You must successfully log in before using this site."

Java Single Authentication Sample

A sample Java single authentication plug-in is included with the TIBCO iProcess
Workspace (Browser). This section describes how to set up the sample plug-in, as
well as information about how it operates.

The Java single authentication sample is provided in the following two JAR files:

• SingleAuthenticationSample.jar - This JAR file contains the files that make
up the sample authenticator. It includes:

— login.html

— customApplication.html

— WEB-INF/web.xml

— WEB-INF/classes/com/tibco/bpm/ap/filter/sample/Login.class

— WEB-INF/classes/com/tibco/bpm/ap/filter/sample/SampleAuthenticator.class

— src/com/tibco/bpm/ap/filter/sample/Login.java

— src/com/tibco/bpm/ap/filter/sample/SampleAuthenticator.java
 TIBCO iProcess Workspace (Browser) Configuration and Customization

168 | Chapter 8 Single Authentication
• SingleAuthentication.jar - This JAR file contains the class files used by the
authenticator plug-in. It includes:

— com/tibco/bpm/ap/filter/Authenticator.class

— com/tibco/bpm/ap/filter/AuthenticateFilter.class

— com/tibco/bpm/ap/filter/AuthenticateRequestWrapper.class

— com/tibco/bpm/ap/filter/xml/Attribute.class

— com/tibco/bpm/ap/filter/xml/Element.class

— com/tibco/bpm/ap/filter/xml/action/Action.class

— com/tibco/bpm/ap/filter/xml/request/Login.class

— com/tibco/bpm/ap/filter/xml/request/Request.class

— com/tibco/bpm/ap/filter/xml/request/UserId.class

— com/tibco/bpm/ap/filter/xml/vobject.NodeId.class

These JAR files are located in the following directory:

InstallationHomeDir\iprocessclientbrowser\samples\
SingleAuthentication\Java

where InstallationHomeDir is the directory in which the installer places administrative
files, such as the uninstaller, documentation, and sample code. This defaults to
C:\tibco on Windows systems, and /opt/tibco on UNIX systems, but can be
specified as a different directory when the TIBCO iProcess Workspace is installed.

Setting Up the Java Single Authentication Sample

To set up the Java single authentication sample, follow these steps:

1. Stop your web application server.

2. Unpack the SingleAuthenticationSample.jar file into a temporary directory.

3. Compare the APInstallDir/WEB-INF/web.xml file to the one supplied in the
SingleAuthenticationSample.jar file. The one provided in the
SingleAuthenticationSample.jar file will contain the following new
sections: <welcome-file-list>, <filter>, <filter-mapping>. It will also contain
additional <servlet> and <servlet-mapping> sections for the Login.do servlet.
Assuming these are the only differences, you can safely replace the
APInstallDir/WEB-INF/web.xml file with the one supplied in the
SingleAuthenticationSample.jar file.

4. Create the following directory:

APInstallDir/WEB-INF/classes/com/tibco/bpm/ap/filter/sample
TIBCO iProcess Workspace (Browser) Configuration and Customization

Java Single Authentication | 169
5. From the SingleAuthenticationSample.jar file you unpacked in step 2,
copy the Login.class and SampleAuthenticator.class files to the directory you
created in step 4.

6. From the SingleAuthenticationSample.jar file you unpacked in step 2,
copy the login.html and customerApplication.html files to the Action
Processor installation directory.

7. Copy the SingleAuthentication.jar file to the APInstallDir/WEB-INF/lib
directory.

8. Configure the TIBCO iProcess Workspace to use single authentication — see
iProcess Workspace (Browser) Configuration on page 167.

9. Restart your web application server.

Launching the Java Single Authentication Sample

To launch the Java single authentication sample, follow these steps:

1. Execute the following URL in your browser:

http://Host:Port/APDir/login.html

where:

— Host is the name of the machine hosting the Action Processor.

— Port is the port number used by the WAS that is hosting the Action
Processor to communicate with web applications.

— APDir is the directory on Host in which the Action Processor is installed.
This defaults to TIBCOActProc.

This presents a dialog on which you can enter login credentials. This
represents the outside source from which login credentials are provided.

2. Enter a user name and password, as well as information about the iProcess
Objects Server to log into, then click the Submit button.

This causes the login credentials to be sent to the login.do servlet, which
stores the information in the session using a Java hash map. It then launches
the customerApplication.html file, which represents the customer
application. This page contains the following fields: New window URL,
Window width, and Window height.

3. Enter the URL to the TIBCO iProcess Workspace in the New window URL
field. You can also specify new width and height values, if desired.

The URL must be in the form:

http://Host:Port/iProcessClientDir/iProcessClient.html
 TIBCO iProcess Workspace (Browser) Configuration and Customization

170 | Chapter 8 Single Authentication
where:

— Host is the name of the machine hosting the iProcess Workspace (Browser).

— Port is the port number used by the WAS that is hosting the iProcess
Workspace (Browser) to communicate with web applications.

— iProcessClientDir is the directory on Host in which the iProcess Workspace
(Browser) is installed. This defaults to TIBCOiPClnt.

4. Click the Open new window button.

Since the iProcess Workspace (Browser) has been configured to use the single
authentication feature (see step 8 on page 169), it will bypass the normal
iProcess Workspace (Browser) Login screen and send a login request to the
Action Processor.

The filter (AuthenticateFilter), which sits between the iProcess Workspace
(Browser) and the Action Processor (see the illustration on page 165), wraps
each requests in an AuthenticateRequestWrapper object. The wrapper
examines each request for a single-authenticate login request. When it finds
one, it uses the SampleAuthenticator, which implements the Authenticator
interface, calling the authenticate method, and passing the request object. The
authenticate method obtains the login data hash map from the session, and
queries the hash map to populate its login properties. The
AuthenticateRequestWrapper then uses the SampleAuthenticator properties
to construct a login request that is passed to the Action Processor.

If the previously entered credentials are valid, the iProcess Workspace
(Browser) is displayed.
TIBCO iProcess Workspace (Browser) Configuration and Customization

.NET Single Authentication | 171
.NET Single Authentication

The .NET single authentication feature is used if you are using the .NET Action
Processor. It allows users to go directly to the iProcess Workspace (Browser) from
another web application in which they have already been authenticated.

The .NET single authentication feature implements an HTTP module that is
inserted into the HTTP request pipeline to act as a mediator between the
customer’s web application authentication methods and the iProcess Workspace
(Browser) and .NET Action Processor.

Web Server Configuration

The HTTP module is hooked into the pipeline by configuring it in the web server
configuration file, which is located as follows:

C:\inetpub\wwwroot\APInstallDir\web.config

where APInstallDir in the installation directory of the .NET Action Processor, which
defaults to TIBCOActProc.

The following shows the elements that must be added to web.config:

<configuration>
<appSettings>

<add key=”AuthenticatorAssemblyPath”
value=”D:\\SingleAuthenticationSample.dll” />

<add key=”AuthenticatorAssemblyName”
value=”SingleAuthenticationSample” />

<add key=”AuthenticatorAssemblyImpl”
value=”SingleAuthenticationSample.SampleAuthenticator” />

<add key=”AuthenticatorLogFile”
value=”C:\\temp\\SingleAuthentication.log” />

</appSettings>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

172 | Chapter 8 Single Authentication
<system.web>
<httpModules>

<add name=”LoginAuthenticator"
type=”SingleAuthentication.AuthenticateFilter, SingleAuthentication” />

</httpModules>
</system.web>

</configuration>

where:

• AuthenticatorAssemblyPath is the absolute path to the customer assembly.

• AuthenticatorAssemblyName is the name of the assembly.

• AuthenticatorAssemblyImpl is the name of the IAuthenticator
implementation.

• AuthenticatorLogFile is the absolute path to the log file.

Authenticator Plug-in

The customer must create a plug-in that implements the
SingleAuthentication.IAuthenticator interface, as follows:

using Sysyem;
using System.Web;

namespace SingleAuthentication {

public interface IAuthenticator {
string UserName { get; }
string Password { get; }
string NodeName { get; }
string ComputerName { get; }
string IpAddress { get; }
int TcpPort { get; }
bool Director { get; }
bool Authenticate (HttpContext ctx);

}

}

The customer plug-in Authenticator module implements an Authenticate
method that receives the HttpContext object so that it can sync its authentication
parameters with the context. The return value of the Authenticate method is a
boolean, indicating success or failure of the authenticate call.
TIBCO iProcess Workspace (Browser) Configuration and Customization

.NET Single Authentication | 173
The IAuthenticator interface also provides getter methods for the information
required for a successful login to the iProcess Workspace (Browser). The HTTP
module uses these values to construct a Login action request to the .NET Action
Processor.

iProcess Workspace (Browser) Configuration

To use single authentication, you must enable it in the iProcess Workspace
(Browser) configuration file, which is located as follows:

ClientInstallDir\JSXAPPS\ipc\config.xml

Locate the SingleAuthentication record in the configuration file, and set
useSingle to true:

<record jsxid="SingleAuthentication" type="ipc" useSingle="true"
failureUrl="" />

This informs the iProcess Workspace (Browser) that an external application will
be providing the login authentication credentials.

The failureUrl attribute is used to specify a URL to which the user is redirected if
the login fails.

— If there is a value specified in the failureUrl attribute, and the login fails, an
alert dialog is displayed containing the message “User authentication
could not be confirmed. You will be redirected to an appropriate login
page.” The browser is then redirected to the specified URL.

— If the value of failureUrl is empty, and the login fails, an alert dialog is
displayed showing the message “User authentication could not be
confirmed. You must successfully log in before using this site."

.NET Single Authentication Sample

A sample .NET single authentication plug-in is included with the TIBCO iProcess
Workspace (Browser). This section describes how to set up the sample plug-in, as
well as information about how it operates.

The sample .NET single authentication plug-in defines three pages:

• SingleAuthenticationLoginSample.aspx

The useSingle parameter can also be passed in the URL, if desired. The following
example URL is telling the client that an outside source is supplying the login
credentials:

http://somedirectory/iProcessClient.html?useSingle=true
 TIBCO iProcess Workspace (Browser) Configuration and Customization

174 | Chapter 8 Single Authentication
• customerApplication.htm

• iProcessClient.htm

The SingleAuthenticationLoginSample.aspx page provides the user the
ability to define login particulars. Once the data has been filled in, the user will
select the Login button. This action sends login data to the event method, which
stores it in the session using a C# hash table. The event method then launches
customerApplication.htm.

The customerApplication.htm page provides the user the ability to specify the
URL from which to launch the iProcess Workspace (Browser) application, as well
as the window width and window height. The customerApplication.htm page
also contains an Open new window button, which launches the application
specified in the URL field in a new browser window using the specified width
and height settings.

Since the iProcess Workspace (Browser) application has been configured for
single authentication, it bypasses the client’s login window, and sends a single
authentication request to the Action Processor. The AuthenticateFilter is inserted
into the Action Processor request pipeline, and it examines each request looking
for the single authentication request. When it finds a single authentication
request, it uses the sample object, SampleAuthenticator, which implements the
IAuthenticator interface, calling the Authenticate method and passing the
HttpContext object. The Authenticate method obtains the login data hash table
from the session and queries the hash table to populate it with the login
properties. The AuthenticateFilter then uses the SampleAuthenticator to
construct a login request that is passed to the Action Processor.

Setting Up the .NET Single Authentication Sample

The .NET single authentication sample plug-in includes the following .zip file
and assembly:

• SingleAuthenticationSample.zip

• SingleAuthentication.dll

These files are located in the following directory:
InstallationHomeDir\iprocessclientbrowser\samples\SingleAuthentication\
dotNet

This sample assumes that SingleAuthenticationLoginSample.aspx,
customerApplication.htm, iProcessClient.htm, and the TIBCO iProcess
Workspace (Browser) application itself will reside in the Action Processor
installation directory. (The iProcess Workspace (Browser) application must reside
in the Action Processor installation directory for this sample because of .NET
security constraints.)
TIBCO iProcess Workspace (Browser) Configuration and Customization

.NET Single Authentication | 175
where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the TIBCO iProcess
Workspace is installed.

To set up the .NET single authentication sample, following these steps:

1. Unpack the SingleAuthenticationSample.zip file into a temporary
location.

This zip file contains all of the files needed for the plug-in sample (including
the sample source code), which include:

— AssemblyInfo.cs

— SingleAuthenticationLoginSample.cs

— SampleAuthenticator.cs

— bin\Release\SingleAuthenticationSample.dll

— SingleAuthenticationLoginSample.aspx

— SingleAuthenticationLoginSample.aspx.resx

— Web.config

— customerApplication.htm

— iProcessClient.htm

2. Stop Microsoft IIS.

3. Compare the APInstallDir\Web.config file to the one supplied in the
SingleAuthenticationSample.zip file. They should differ by the
<appSettings> and <httpModules> sections. Assuming these are the only
differences, you can safely replace the APInstallDir\Web.config file with the
one supplied in the SingleAuthenticationSample.zip file.

4. Copy the assemblies bin\Release\SingleAuthenticationSample.dll and
SingleAuthentication.dll into the APInstallDir\bin directory.

5. In the new APInstallDir\Web.config file, modify the
key=AuthenticatorAssemblyPath value in the <appSettings> section to point
to the absolute location where you installed the
SingleAuthenticationSample.dll file (APInstallDir\bin).

6. Copy the files SingleAuthenticationLoginSample.aspx,
SingleAuthenticationLoginSample.aspx.resx,
customerApplication.htm and iProcessClient.htm to the Action
Processor installation directory.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

176 | Chapter 8 Single Authentication
7. Install a copy of the TIBCO iProcess Workspace (Browser) in the Action
Processor installation directory. This is required for this sample because of
.NET security constraints.

8. Configure the iProcess Workspace (Browser) to perform a single
authentication. For information about how to do this, see iProcess Workspace
(Browser) Configuration on page 173.

9. Restart Microsoft IIS.

Launching the .NET Single Authentication Sample

To launch the .NET single authentication sample, follow these steps:

1. Execute the following URL in your browser:

http://Host:Port/APDir/SingleAuthenticationLoginSample.aspx

where:

— Host is the name of the machine hosting the Action Processor.

— Port is the port number used by IIS to communicate with web applications.

— APDir is the directory on Host in which the Action Processor is installed.
This defaults to TIBCOActProc.

This presents a dialog on which you can enter login credentials. This
represents the outside source from which login credentials are provided.

2. Enter a user name and password, as well as the information about the iProcess
Objects Server to log into, then click the Submit button.

The customerApplication.htm page is opened. This page contains the
following fields: New window URL, Window width, and Window height.
The New window URL field will be prefilled with “iProcessClient.htm”. You
can specify different width and height values, if desired.

3. Click the Open new window button.

If the login particulars you entered in step 2 are correct, the iProcess
Workspace (Browser) will start without displaying its Login screen.
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 177
Chapter 9 Logging

This chapter describes the logs available in TIBCO iProcess Workspace (Browser).

Topics

• Introduction, page 178

• Application Log, page 179

• Application Monitor, page 181
 TIBCO iProcess Workspace (Browser) Configuration and Customization

178 | Chapter 9 Logging
Introduction

There are three types of TIBCO iProcess Workspace (Browser) logs available:

• Session Activity Log - This log allows users of the iProcess Workspace to
view information about activities they have performed in the application
since they logged in. For information about this log, see the TIBCO iProcess
Workspace (Browser) User’s Guide.

• Application Log - This log provides detailed debug information, as well as
communications between the client and the Action Processor. For more
information, see Application Log on page 179.

• Application Monitor - This log provides debug information on error
conditions and exceptions encountered. For more information, see
Application Monitor on page 181.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Application Log | 179
Application Log

The Application Log is available to assist with troubleshooting the client
application. This log provides detailed debug information generated by the
iProcess Workspace, as well as information about communications between the
client and Action Processor.

To display the Application Log, press the F12 function key while the TIBCO
iProcess Workspace is running. A window similar to the following is displayed:

Note that this log is available only if the logged-in user has “ApplicationLog”
enabled in their user access profile. For more information, see ApplicationLog on
page 25.

Notice the Log Active check box on the bottom of the Application Log dialog.
This box must be checked for the log to receive log data from the application.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

180 | Chapter 9 Logging
Having the Application Log active can have an adverse effect on performance,
therefore you can set the default state of the Log Active check box using the
appLogActive attribute in the logging record in the application’s config.xml
file.

The logging record also contains an attribute that allows you to echo the
Application Log data to the Application Monitor — for information about the
Application Monitor, see Application Monitor on page 181.

To configure the Application Log:

1. Open the appropriate config.xml file, depending on whether you are
configuring the iProcess Client or a custom application. For information about
the file’s location, see Configuration Files on page 7.

2. Locate the logging record in the config.xml file:

3. Modify the appLogActive attribute as follows:

— “true” causes the Log Active check box in the Application Log to be
checked by default.

— “false” causes the Log Active check box in the Application Log to be
unchecked by default.

4. Modify the echoToJsxLog attribute as follows:

— “true” causes the contents of the Application Log to be echoed to the
Application Monitor.

— “false” causes the contents of the Application Log to not be echoed to the
Application Monitor.

You can also use the buttons on the bottom of the Application Log dialog to do
things such as clear and refresh the log, show rendered HTML, etc.

The Application Log can be closed by clicking in the X in the upper right corner of
the Application Log dialog.

<record jsxid="logging" type="ipc"
appLogActive="false"
echoToJsxLog="false"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Application Monitor | 181
Application Monitor

The Application Monitor is available to assist with troubleshooting the client
application. This monitor provides debug information on error conditions and
exceptions encountered.

The Application Monitor is displayed in a separate browser window, which
shows details of actions performed in the application. An example is shown
below:

The Application Monitor can be configured using the following configuration file:

ClientInstallDir\logger.xml

where ClientInstallDir is the path to the directory in which the iProcess Workspace
is installed.

Default settings are specified by the following handler element in the logger.xml
file, as shown below:

<handler name="ipcAppMonitorDefault" class="jsx3.app.Monitor" require="true">

<property name="serverNamespace" value="wccApp"/>

<property name="disableInIDE" eval="true" value="true"/>

<property name="activateOnHotKey" eval="true" value="true"/>

<property name="format" value="%t %n (%l) - %M"/>

</handler>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

182 | Chapter 9 Logging
A reference to this handler is added under the global logger element:

By default, both the Application Monitor and its hotkeys are enabled.

• To disable the Application Monitor, comment out the entire <handler/>
element, as well as the <handler-ref/> element under the global logger
element. (Note that if you comment out the Application Monitor, you must
comment out both the <handler/> element, as well as the <handler-ref/>
element. If the <handler/> element is commented out, but the <handler-ref/>
element is not commented out, it results in a fatal error — the application will
not load.)

• To disable the Application Monitor hotkeys, change the activateOnHotKey
property’s value attribute to “false”.

When the Application Monitor’s hotkeys are enabled, you can turn the monitor
on and off using the <Ctrl>+<Alt>+<m> key sequence.

Also note that there are two logging categories used by the GI Forms add-in:

— form_adapter

— com.tibco.forms

To see log messages for these categories, add the following elements to the
logger.xml file:

<logger name="form_adapter" level="INFO"/>

<logger name="com.tibco.forms" level="INFO"/>

The level of the log messages can be set by changing the value of the level
attribute in the <logger name=”global” record. The valid levels are:

— FATAL

— ERROR

— WARN

— INFO

— DEBUG

— TRACE

<logger name="global" level="INFO">

<handler-ref name="memory"/>

...

<handler-ref name="ipcAppMonitorDefault"/>
</logger>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Application Monitor | 183
You can also specify that Application Log data be echoed to the Application
Monitor. This is accomplished using the echoToJsxLog attribute in the logging
record in the application’s config.xml file. For more information, see
Application Log on page 179.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

184 | Chapter 9 Logging
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 185
Chapter 10 Localization

This chapter describes how to add a language resource file to the iProcess
Workspace (Browser) to display the application in the desired language.

Topics

• Localizing the iProcess Workspace (Browser), page 186
 TIBCO iProcess Workspace (Browser) Configuration and Customization

186 | Chapter 10 Localization
Localizing the iProcess Workspace (Browser)

This chapter describes how to manually localize your TIBCO iProcess Workspace
(Browser) client application.

Note that TIBCO has language packs available for selected languages, that when
installed, localize your client application to the language for that language pack.
For information about the available language packs, contact your TIBCO
representative.

If the desired language is not available in a language pack, you can use the
procedure described in this chapter to manually localize your client application.

Localizing the TIBCO iProcess Workspace (Browser) involves the following steps:

• Create a new localized language resource file. The resource file contains a
collection of application text strings that have been translated to a specific
language and may be localized for language variations used by individual
countries.

• Configure the new localized language in the iProcess Workspace (Browser).

• Modify an existing, or create a new, General Interface system locale file. These
files contain localized resources utilized by the General Interface framework.

• Translate user access profile descriptions.

• Set the new default language for the iProcess Workspace (Browser).

• Create a new folder to hold localized help files.

These steps are described in detail in the following subsections, using Spanish as
an example of the new language being added to the iProcess Workspace
(Browser).

Note that each localized language is represented by a two-letter code, in the
format:

— ll

where ll is a lowercase, two-letter ISO 639 language code. For a list of
language codes, visit the following web site:

http://www.loc.gov/standards/iso639-2/langhome.html

Each country is represented by a two-letter code, in the format:

— CC

where CC is an uppercase, two-letter ISO 3166 country code. For a list of
country codes, visit the following web site:
TIBCO iProcess Workspace (Browser) Configuration and Customization

http://www.loc.gov/standards/iso639-2/langhome.html

Localizing the iProcess Workspace (Browser) | 187
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists
/index.html

A locale key is a string representation of a locale that includes a language and a
country code in the following format:

— ll_CC

Create a New Localized Language Resource File

You must create a resource file that contains a collection of application text strings
that have been translated to a specific language and may be localized for language
variations used by individual countries.

Perform the following steps to create a new language resource file:

1. Determine whether the new language file will contain translations that are:

a. Generic for all locales - for instance, Spanish is sufficient without regard to
variations for the specific dialects or alphabets of Spain or Mexico.

b. Language defaults, with variations for specific locales - for instance,
Spanish is the default, however, some words or phrases are defined
specifically for the dialects or alphabets of Mexico and Spain.

c. Locale specific - for instance, if the Spanish of Mexico did not have any
words or phrases in common with the Spanish of Spain, you would create
a separate language resource file for each country.

2. Open a new XML file and insert the following XML elements, using the
proper language code (if of type a or b above), or locale key containing both
language and country codes (if of type c), as the value for the key attribute:

3. Open the default (English) locale file:
ClientInstallDir\JSXAPPS\ipc\locale\locale.xml

4. Copy all record elements that are direct children of the <locale> element in
locale.xml.

Note - Only copy children of the <locale> elements that do not have a key
attribute.

<data jsxnamespace="propsbundle"

 <locale key="es">

 </locale>

</data>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html

188 | Chapter 10 Localization
5. Paste all copied record elements into the newly created file as direct children
of the <locale key=”es”> element.

6. Translate the value of every jsxtext attribute in the newly created file to
language-specific values.

Note - Any record elements that are deleted from the new language resource
file will cause the iProcess Workspace (Browser) to “fallback” to the record
that is defined in the default (English) locale file.

7. Optionally, localize the new language resource for specific countries. The
purpose of localizing for specific countries is to provide a mechanism for
overriding default language text values (translated in Step 6) with text values
that are specific for a country and that differ from the default (type b above).

For each country-specific locale, create a <locale> element (within the root
<data> element) and specify the locale key as the value of the key attribute.
Insert record elements into each new <locale> element, that are to “override”
default language records, with matching jsxid attribute values.

In the example above, the default Spanish language text of “Abierto” will be
replaced with country-specific values when either the Spanish (Spain) or

<data jsxnamespace="propsbundle"

 <locale key="es">

 <!-- PASTE ALL RECORD ELEMENTS HERE -->

 </locale>

</data>

<data jsxnamespace="propsbundle"

 <locale key="es">

 <!-- DEFAULT LANGUAGE RECORD ELEMENTS HERE -->

 ...

 <record jsxid="txtClose" jsxtext="Cierre"/>

 <record jsxid="txtOpen" jsxtext="Abierto"/>

 ...

 </locale>

 <locale key="es_ES">

 <record jsxid="txtOpen" jsxtext="override value for Spain"/>

 </locale>

 <locale key="es_MX">

 <record jsxid="txtOpen" jsxtext="override value for Mexico"/>

 </locale>

</data>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Localizing the iProcess Workspace (Browser) | 189
Spanish (Mexico) locales have been selected by the user as the language for
the iProcess Workspace (Browser).

Any records not explicitly overridden in country-specific locales will
“fallback” to the default language definition (e.g., “Cierre” in the example
above).

8. Save the newly created locale resource file as follows:

ClientInstallDir\JSXAPPS\ipc\locale\locale.ll.xml

or (if of type c in step 1):

ClientInstallDir\JSXAPPS\ipc\locale\locale.ll_CC.xml

where ll in the filename is the language code, and CC is the country code (e.g.,
locale.es.xml - for Spanish; locale.es_MX.xml - for a Mexico-only
translation) and ClientInstallDir is the path to the directory in which the
iProcess Workspace (Browser) is installed.

Configure the New Localized Language in the iProcess Workspace (Browser)

Perform the following steps to configure the new localized language in the
iProcess Workspace (Browser):

1. Add the new language code to the default language resource file.

a. Open ClientInstallDir\JSXAPPS\ipc\locale\locale.xml and edit
the value of the locales attribute of the root <data> element.

b. Insert the two-letter language code of the new language into the
comma-separated value of the locales attribute, as shown in the following
example:

Adding the language code to locale.xml provides the necessary
configuration to support the “override” and “fallback” relationship between
the new file and the default language resource file.

<data jsxnamespace="propsbundle" locales="de,fr,es">

 <locale>

 <record jsxid="and" jsxtext="AND"/>

 ...
 TIBCO iProcess Workspace (Browser) Configuration and Customization

190 | Chapter 10 Localization
Modify or Create a General Interface System Locale File

Some of the text that is displayed in the iProcess Workspace (Browser) application
originates from the General Interface (GI) system locale files. Although several
formats and text strings are defined in these GI locale files, only a few text items
will ever display in the iProcess Workspace (Browser).

By default, GI is already localized for many languages and countries, however,
some of the text displayed in the iProcess Workspace (Browser) is only defined in
the default GI system locale file (English), and must be inserted and translated
into other locale files as required.

For this version of the iProcess Workspace (Browser), General Interface supports
the following languages and countries:

Language ISO 639-1
Code

ISO 639-1 Code +
ISO 3166 Code Country

Arabic ar N/A

Chinese zh zh_CN

zh_HK

zh_TW

China

Hong Kong

Taiwan

Danish da da_DK Denmark

English en en_AU

en_CA

en_GB

en_NZ

en_US

Australia

Canada

Great Britain (UK)

New Zealand

United States

French fr fr_CA

fr_FR

Canada

France

German de de_DE Germany

Greek el el_GR Greece

Italian it it_IT Italy

Japanese ja ja_JP Japan

Korean ko ko_KR Korea
TIBCO iProcess Workspace (Browser) Configuration and Customization

Localizing the iProcess Workspace (Browser) | 191
The language resource files for these locales are stored at the following path:
ClientInstallDir\JSX\locale\

where ClientInstallDir is the path to the directory in which the iProcess Workspace
(Browser) is installed. For example:

Portuguese pt pt_BR

pt_PT

Brazil

Portugal

Russian ru ru_RU Russian Federation

Spanish es es_ES

es_MX

es_US

Spain

Mexico

United States

Swedish sv sv_SE Sweden

Language ISO 639-1
Code

ISO 639-1 Code +
ISO 3166 Code Country
 TIBCO iProcess Workspace (Browser) Configuration and Customization

192 | Chapter 10 Localization
As with the iProcess Workspace (Browser), the default GI language resource file is
locale.xml (English). If the locale resource files already defined by General
Interface do not support the desired localization being created for the iProcess
Workspace (Browser), a new GI system locale file must be created using the
following steps:

1. Create a new localized GI system language file using the same instructions as
in Create a New Localized Language Resource File on page 187 of this
document, substituting ClientInstallDir\JSX\locale\ as the file path.

2. Perform Step 1 of the section, Configure the New Localized Language in the
iProcess Workspace (Browser) on page 189 of this document, substituting
ClientInstallDir\JSX\locale\ as the file path.

If General Interface already provides a locale resource file for the desired
localization, perform the following steps to add text resources, utilized by the
iProcess Workspace, into the locale file:

1. Open the XML file corresponding to the language of the new localization (e.g.,
ClientInstallDir\JSX\locale\locale.es.xml) and open the default GI
system locale file: ClientInstallDir\JSX\locale\locale.xml.

2. Copy the following record elements from locale.xml into the locale file of
the new localization (under the <locale> element whose key attribute value
matches the locale key of the new localization):

3. Translate the value of the jsxtext attributes to the desired language.

4. Save the locale file (e.g., ClientInstallDir\JSX\locale\locale.es.xml).

<record jsxid="jsx3.gui.Select.defaultText" jsxtext="- Select -"/>

<record jsxid="jsx3.gui.Select.dataUnavailable" jsxtext="- Data Unavailable -"/>

<record jsxid="jsx3.gui.Select.noMatch" jsxtext="- No Match Found -"/>

<record jsxid="jsx3.gui.Select.sel" jsxtext="Selected"/>

<record jsxid="jsx3.gui.Menu.noData" jsxtext="- No Data -"/>

<record jsxid="jsx3.gui.Menu.sel" jsxtext="Selected"/>

<record jsxid="jsx3.gui.Matrix.seek" jsxtext="Viewing rows {0} to {1} of {2}"/>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Localizing the iProcess Workspace (Browser) | 193
Translate User Access Profiles Descriptions

User access profiles define the functionality available to various types of iProcess
Workspace (Browser) users. The description of the profile defined for the
logged-in user is displayed in the upper left corner of the application:

In the example above, “Access Level: Admin” is defined as the user access profile
description for Admin-level users.

To localize user access profile descriptions, locate the <Profile> elements in the
ClientInstallDir\JSXAPPS\ipc\userAccessProfiles.xml file (where
ClientInstallDir is the path to the directory in which the iProcess Workspace
(Browser) is installed), and change the description attributes to the desired
language.

Set the New Default Language for the iProcess Workspace (Browser)

Set the new default language using one of the following methods:

• Modify the config.xml file to specify the default localeKey, as follows:

• Or, specify the language on the Options dialog in the application. For
information about setting options in the application, see the TIBCO iProcess
Workspace (Browser) User's Guide.

<record jsxid="Options" type="ipc">

<options>

<display localeKey="en_US" initialDisplay="workQs"

captionCases="name" captionWorkItems="name"

autoRefreshWorkItems="true" autoRefreshInterval="60"

autoRefreshApplyAll="true"/>

...

</options>

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

194 | Chapter 10 Localization
Create a New Folder to Hold Localized Help Files

If you have help files that have been localized, they need to be copied to the
appropriate folder so that the iProcess Workspace (Browser) can find them based
on the locale under which the application is running.

Perform the following steps to create the folders necessary to hold the localized
help files for the iProcess Workspace (Browser).

1. Create a new folder at the following path:
ClientInstallDir\Help\language\ll

where ClientInstallDir is the path to the directory in which the iProcess
Workspace (Browser) is installed, and ll is the two-letter language code for the
help files.

If the help files are not country-specific and will be applicable for all locales of
this particular language, proceed to Step 2 to store the files in this new
language folder.

If your help files are localized for specific countries, create another folder
beneath this new language folder, using the two-letter country code for the
folder name (e.g. ClientInstallDir\Help\language\ll\CC). Proceed to
Step 2 to store the files in this new country folder.

2. Copy the localized help files into the new folder.
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 195
Chapter 11 IPC Tools Methods

This chapter describes tools methods available for iProcess Client applications.

Topics

• Introduction, page 196

• Method Summary, page 197

• IPC Tools Methods Sample, page 234
 TIBCO iProcess Workspace (Browser) Configuration and Customization

196 | Chapter 11 IPC Tools Methods
Introduction

The IPC tools methods allow you to perform application functions through
method calls when using a customized iProcess Client application, or from either
custom GI Forms or TIBCO Forms used in an iProcess Client application. (Note
that there are also equivalent methods called the "WCC" tools methods that can be
used with a custom application created with WCC components; those are
described in the TIBCO iProcess Workspace (Browser) Components Reference guide.

The IPC tools methods provide the same functionality that is available through
the client application (as well as the WCC components), such as starting a case,
opening a work item, triggering an event, etc.

Most of the IPC tools methods expect a tag of some sort (e.g., case tag, work item
tag, etc.). Tags are intentionally opaque, that is, we do not provide the information
needed to build them — you are expected to acquire them in one of the following
ways:

• Tags can be acquired through the iProcess Server Objects object model,
specifically using the getTag and makeTag methods. For information, see the
TIBCO iProcess Server Objects (Java or .NET) Programmer’s Guide.

• You can also acquire tags through an Action Processor response XML. For
information, see the TIBCO iProcess Workspace Action Processor Reference.

These methods must be called in the context of the iProcess Client application
object. For example, to call the ipcStartCase method, you would call either:

— this.getApp().ipcStartCase(procTag); (from within a javascript
function)

—or—

— com.tibco.bpm.ipc.getApp(this).ipcStartCase(procTag); (from
an event in a TIBCO General Interface component)

A sample custom GI form that demonstrates the use of the IPC tools methods is
also provided. For information about setting and using this sample, see IPC Tools
Methods Sample on page 234.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 197
Method Summary

The following are the methods available:

• Case Functions

— ipcStartCase - Starts a case of a procedure.

— ipcShowCase - Displays information about a specific case.

— ipcCloseCases - Closes one or more cases.

— ipcPurgeCases - Purges (permanently deletes) one or more cases.

— ipcSuspendCases - Suspends one or more cases.

— ipcActivateCases - Reactivates one or more suspended cases.

— ipcShowGraphicalCaseHistory - Displays the case history in a graphical
format.

— ipcAddCaseHistoryEntry - Adds an entry to the case history.

— ipcShowCasePrediction - Predicts the outcome of the case.

— ipcTriggerEvent - Starts process flow from an event step.

— ipcProcessJump - Changes the process flow in a case.

• Work Item Functions

— ipcOpenWorkItem - Opens (locks) a work item by passing in a work item
tag.

— ipcOpenWorkItemEx - Opens (locks) a work item by passing in
parameters that identify the work item.

— ipcUnlockWorkItem - Unlocks a work item.

— ipcForwardWorkItem - Forwards a work item to a different work queue.

— ipcReleaseWorkItem - Releases a work item.

• Work Queue Functions

— ipcConfigureSupervisors - Allows set up of work queue supervisors.

— ipcConfigureParticipation - Allows set up of participation schedules.

— ipcConfigureRedirection - Allows set up of redirection schedules.

— ipcShowWorkQLoadingChart - Displays a graphical work queue
summary.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

198 | Chapter 11 IPC Tools Methods
• Procedure Functions

— ipcGetStartProcs - Returns the procedures for which the logged-in user has
permission to start cases.

— ipcGetAuditProcs - Returns the procedures for which the logged-in user
has permission to view or add entries to case history.

— ipcShowProcLoadingChart - Displays a graphical procedure summary.

— ipcShowProcVersion - Displays version history information for the
procedure.

• Other Functions

— ipcShowServerInfo - Displays information about the iProcess Objects
Server.

— ipcShowOptions - Displays interface for establishing default settings.

— ipcWorkItemTag2CaseTag - Returns a case tag that is extracted from the
work item tag passed as an argument.

— ipcWorkItemTag2WorkQTag - Returns a work queue tag that is extracted
from the work item tag passed as an argument.

— ipcGetUserAttributes - Returns an array of objects that represent iProcess
attributes assigned to a specific user.

— ipcGetGroupAttributes - Returns an array of objects that represent
iProcess attributes assigned to a specific group.

Login Required

All of the WCC methods require that the user be logged in prior to the method
being called. A login can be accomplished in a number of ways, for example:

• using single authentication, which allows the user to be authenticated using
credentials the user has already entered in another application — see the
TIBCO iProcess Workspace (Browser) Configuration and Customization guide

• using the Action Processor Login request — see the TIBCO iProcess Workspace
(Browser) Action Processor Reference.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 199
ipcStartCase

This method starts a case of the specified procedure.

The ipcStartCase method displays the following dialog, which allows the user to
enter a case description1, then start the case by clicking on the OK button:

This method is equivalent to selecting Start New Case from the Tools menu on
the procedure list in the iProcess Client application.

When the user clicks OK, a form is opened if the addressee of the first step in the
procedure is SW_STARTER. The context in which the form is displayed depends
on how the form was created, as follows:

• iProcess Modeler Forms - These forms are always displayed in a new browser
window.

• General Interface Builder Forms - These forms (also known as “GI Forms) are
always displayed in a separate dialog.

• TIBCO Forms - These forms are always displayed in a separate dialog.

To start a case, the user must have permission to start cases of the particular
procedure. To determine the procedures the user has permission to start, use the
ipcGetStartProcs method.

Syntax

this.getApp().ipcStartCase(procTag);

1. The case description may or may not be required, depending on how the procedure
was configured. If the case description is required, “*Required” is shown on the Start
Case dialog.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

200 | Chapter 11 IPC Tools Methods
Parameters

procTag - (String) Identifies the procedure for which you want to start a case. For
information about tags, see Introduction on page 196.

Example

this.getApp().ipcStartCase('i111|HIRING|1|0');

ipcShowCase

This method displays information, related to a specific case, in a dialog. The
dialog contains four tabs of information, which may be optionally hidden using
input parameters. For example:

Syntax

this.getApp().ipcShowCase(caseTag, hideSummary, hideHistory,
hideOutstanding, hideData);

Parameters

caseTag - (String) Identifies the case to display. For information about tags, see
Introduction on page 196.

hideSummary - (Boolean) If true, the Summary tab is removed from the dialog.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 201
hideHistory - (Boolean) If true, the History tab is removed from the dialog. Note
that to view the case history (that is, the History tab), the user must have
permission to audit the procedure (of which the case is an instance). To determine
the procedures the user has permission to audit, use the ipcGetAuditProcs
method.

hideOutstanding - (Boolean) If true, the Outstanding tab is removed from the
dialog.

hideData - (Boolean) If true, the Data tab is removed from the dialog.

Example

this.getApp().ipcShowCase('myserver|CARPOOL|0|1|1234', false,
true, false, false);

ipcCloseCases

This method closes the specified active cases of a procedure. This stops the
process flow for the cases.

You must have system administrator authority to close cases.

An optional confirmation message can be displayed.

This method is equivalent to selecting Close Case(s) from the Tools menu on the
case list in the iProcess Client application.

Syntax

this.getApp().ipcCloseCases(caseTags, suppressConfirm);

Parameters

caseTags - (String or Array of Strings) Identifies the case(s) to close. For
information about tags, see Introduction on page 196.

suppressConfirm - (Boolean - Optional) Specifies whether or not to suppress the
confirmation message. False (default) causes a confirmation message to be
displayed; True suppresses the confirmation message.

Example

var caseTags = ["myserver|CARPOOL|0|1|1234",
"myserver|CARPOOL|0|1|2342"];
this.getApp().ipcCloseCases(caseTags, true);
 TIBCO iProcess Workspace (Browser) Configuration and Customization

202 | Chapter 11 IPC Tools Methods
ipcPurgeCases

This method purges the specified cases of a procedure. Purging cases
permanently deletes them from the system. You can purge both active and closed
cases.

The user must have system administrator authority to purge cases.

An optional confirmation message can be displayed.

This method is equivalent to selecting Purge Case(s) from the Tools menu on the
case list in the TIBCO iProcess Workspace client application.

Syntax

this.getApp().ipcPurgeCases(caseTags, suppressConfirm);

Parameters

caseTags - (String or Array of Strings) Identifies the case(s) to purge. For
information about tags, see Introduction on page 196.

suppressConfirm - (Boolean - Optional) Specifies whether or not to suppress the
confirmation message. False (default) causes a confirmation message to be
displayed; True suppresses the confirmation message.

Example

var caseTags = ["myserver|CARPOOL|0|1|1234",
"myserver|CARPOOL|0|1|2342"];
this.getApp().ipcPurgeCases(caseTags, true);

ipcSuspendCases

This method suspends one or more cases. Note that when you suspend a case,
you are suspending the entire case family, which includes the main case and all of
its sub-cases, if any.

When a case is suspended, current work items from that case can no longer be
opened.

If a work item is already open when the case is suspended, the work item can still
be kept, which causes the work item to become immediately suspended, and it
cannot be opened again until the case is reactivated (see ipcActivateCases on
page 203). The opened work item can also be released; this causes any new work
items as a result of the release to become immediately suspended (unless they are
flagged to ignore suspensions).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 203
For more details about case suspensions, see the TIBCO iProcess Workspace
(Browser) User’s Guide.

An optional confirmation message can be displayed.

This method is equivalent to selecting Suspend Case(s) from the Tools menu on
the case list in the iProcess Client application.

Syntax

this.getApp().ipcSuspendCases(caseTags, suppressConfirm);

Parameters

caseTags - (String or Array of Strings) Identifies the case(s) to suspend. For
information about tags, see Introduction on page 196.

suppressConfirm - (Boolean - Optional) Specifies whether or not to suppress the
confirmation message. False (default) causes a confirmation message to be
displayed; True suppresses the confirmation message.

Example

var caseTags = ["myserver|CARPOOL|0|1|1234",
"myserver|CARPOOL|0|1|2342"];
this.getApp().ipcSuspendCases(caseTags, true);

ipcActivateCases

This method reactivates one or more suspended cases (see ipcSuspendCases on
page 202), which causes the process to flow as usual. Work items that were
suspended because the case they are a part of was suspended can now be opened
and processed normally.

An optional confirmation message can be displayed.

This method is equivalent to selecting Activate Case(s) from the Tools menu on
the case list in the iProcess Client application.

Syntax

this.getApp().ipcActivateCases(caseTags, suppressConfirm);

Parameters

caseTags - (String or Array of Strings) Identifies the suspended case(s) to activate.
For information about tags, see Introduction on page 196.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

204 | Chapter 11 IPC Tools Methods
suppressConfirm - (Boolean - Optional) Specifies whether or not to suppress the
confirmation message. False (default) causes a confirmation message to be
displayed; True suppresses the confirmation message.

Example

var caseTags = ["myserver|CARPOOL|0|1|1234",
"myserver|CARPOOL|0|1|2342"];
this.getApp().ipcActivateCases(caseTags, true);

ipcShowGraphicalCaseHistory

This method displays the case history for the specified case in a graphical format.
For example:

This method is equivalent to selecting Graphical History from the View menu on
the case’s Summary tab.

To view the graphical case history, the user must have permission to audit the
procedure (of which the case is an instance). To determine the procedures the user
has permission to audit, use the ipcGetAuditProcs method.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 205
For more details about using the graphical case history, see the TIBCO iProcess
Workspace (Browser) User’s Guide.

Syntax

this.getApp().ipcShowGraphicalCaseHistory(caseTag);

Parameters

caseTag - (String) Identifies the case whose history to display in a graphical format.
For information about tags, see Introduction on page 196.

Example

this.getApp().ipcShowGraphicalCaseHistory('i2tagtest|CARPOOL|1|0|1
851');

ipcAddCaseHistoryEntry

This method allows the user to manually add an entry to a case history.

This requires that a file (auditusr.mes file) be set up on the system that contains
pre-defined messages that you can add to the case history.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

206 | Chapter 11 IPC Tools Methods
This method causes a dialog similar to the following to be displayed:

This dialog presents the messages that have been added to the auditusr.mes file.
It allows the user to select which message to add to the case history.

This method is equivalent to selecting Add Entry from the Tools menu on the
case’s History tab.

To add an entry to case history, the user must have permission to audit the
procedure (of which the case is an instance). To determine the procedures the user
has permission to audit, use the ipcGetAuditProcs method.

For more details about adding case history entries, see the TIBCO iProcess
Workspace (Browser) User’s Guide.

Syntax

this.getApp().ipcAddCaseHistoryEntry(caseTag);

If your iProcess Engine does not support Add Case History “Templates”, the Add
History dialog will contain a Message Number field instead of the list of
available message numbers. If your system does not support templates, enter the
the message number in the Message Number field.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 207
Parameters

caseTag - (String) Identifies the case to which you are adding an entry to case
history. For information about tags, see Introduction on page 196.

Example

this.getApp().ipcAddCaseHistoryEntry('i2tagtest|CARPOOL|1|0|1851');

ipcShowCasePrediction

This method is used to predict the expected outcome of the specified live case.
Running the case prediction function causes a list of “predicted work items” to be
returned that represent the work items that are currently due (outstanding work
items), as well as the work items that are expected to be due in the future.

Included with the predicted work items returned is information about the
expected times the work items are predicted to start and end, providing
information that can be used to predict the outcome of the case. This can be used
to improve work forecasting and estimate the expected completion of cases.

This method causes a dialog similar to the following to be displayed:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

208 | Chapter 11 IPC Tools Methods
This provides a list of the predicted steps — the currently outstanding steps, and
steps predicted to be outstanding as the case is processed to completion. For each
step, it also indicates in parentheses the addressee of the step.

This method is equivalent to selecting Predict Case from the Tools menu on the
case’s History tab.

For more details about using case prediction, see the TIBCO iProcess Workspace
(Browser) User’s Guide.

Syntax

this.getApp().ipcShowCasePrediction(caseTag);

Parameters

caseTag - (String) Identifies the case on which you want to perform a case
prediction function. For information about tags, see Introduction on page 196.

Example

this.getApp().ipcShowCasePrediction('i2tagtest|CARPOOL|1|0|1851');

ipcTriggerEvent

This method is used to start the process flow from an event step in the procedure.

An event step is a step in a procedure that allows you to control the process flow
in various ways, depending on how your procedure was designed. It can be used
to perform actions such as:

• Suspending the flow of a case until an external action takes place.

• Starting a parallel branch in a case.

• Pausing a case for a specific period of time.

When the process flow reaches an event step, process flow is halted, and remains
halted, until the user triggers the event with the triggerEvent method. When the
event is triggered, the process flow will continue again.

However, an event step does not need to be outstanding (i.e., process flow has
reached the step) to be triggered. You can trigger an event step at any time, such
as:

• before the process flow has reached the event step,

• after the process flow has been halted at the event step, or
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 209
• after the event step has been triggered — one event step can be triggered
multiple times. This allows you to run a segment of the procedure at any time,
as many times as necessary.

Also note that other actions can be performed when an even step is triggered.
These include resurrecting a closed case, as well as recalculating deadlines in the
case. These actions and other details about triggering events are described in the
TIBCO iProcess Workspace (Browser) User’s Guide.

The ipcTriggerEvent method causes a dialog similar to the following to be
displayed:

This dialog allows the user to select the event step from which the process flow
should begin.

This method is equivalent to selecting Trigger Event from the Tools menu on the
case’s Summary tab.

Syntax

this.getApp().ipcTriggerEvent(caseTag);
 TIBCO iProcess Workspace (Browser) Configuration and Customization

210 | Chapter 11 IPC Tools Methods
Parameters

caseTag - (String) Identifies the case on which you want to trigger the event. For
information about tags, see Introduction on page 196.

Example

this.getApp().ipcTriggerEvent('i2tagtest|CARPOOL|1|0|1851');

ipcProcessJump

This method is used to change the process flow in the following ways:

• You can select currently outstanding steps you would like to “withdraw,” i.e.,
make them no longer outstanding.

• You can specify a set of steps to “jump to,” making those steps the new
outstanding items.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 211
Calling this method causes the following dialog to be displayed:

This dialog allows the user to select the outstanding steps to withdraw, as well as
the new steps to make outstanding.

For more details about using the process jump function, see the TIBCO iProcess
Workspace (Browser) User’s Guide.

Syntax

this.getApp().ipcProcessJump(caseTag);

Parameters

caseTag - (String) Identifies the case on which you want to change the process flow.
For information about tags, see Introduction on page 196.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

212 | Chapter 11 IPC Tools Methods
Example

this.getApp().ipcProcessJump('i2tagtest|CARPOOL|1|0|1851');

ipcOpenWorkItem

This method opens (and locks) the specified work item and displays the form
associated with that work item. For example:

This method is equivalent to selecting Open Selected Work Item(s) from the
Tools menu on the work item list in the TIBCO iProcess Workspace client
application.

The context in which the form is displayed depends on how the form was created,
as follows:

• iProcess Modeler Forms - These forms are always displayed in a new browser
window (as in the example shown above).

• General Interface Builder Forms - These forms (also known as “GI forms”) are
always displayed in a separate dialog.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 213
• TIBCO Forms - These forms are always displayed in a separate dialog.

Also see the ipcOpenWorkItemEx method.

Syntax

this.getApp().ipcOpenWorkItem(workQTag, workItemTag);

Parameters

workQTag - (String) Identifies the work queue in which the work item resides. For
information about tags, see Introduction on page 196. (Note that a null can be
passed in for the workQTag. If null, the workQTag is constructed from the
workItemTag parameter.)

workItemTag - (String) Identifies the work item to open. For information about
tags, see Introduction on page 196.

Example

this.getApp().ipcOpenWorkItem('i11|swadmin|R','i11|S1|swadmin|R|13
02|8152|i11|STEP1|0|0');

ipcOpenWorkItemEx

This method opens (and locks) the specified work item and displays the form
associated with that work item. Unlike the ipcOpenWorkItem method (see
page 212), however, you do not pass in a work item tag with this method —
instead, the work item tag is obtained from a list of outstanding work items using
the information passed in the parameters.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

214 | Chapter 11 IPC Tools Methods
An example work item form is shown below:

This method is equivalent to selecting Open Selected Work Item(s) from the
Tools menu on the work item list in the iProcess Client application.

The context in which the form is displayed depends on how the form was created,
as follows:

• iProcess Modeler Forms - These forms are always displayed in a new browser
window (as in the example shown above).

• General Interface Builder Forms - These forms (also known as “GI forms”) are
always displayed in a separate dialog.

• TIBCO Forms - These forms are always displayed in a separate dialog.

Syntax

this.getApp().ipcOpenWorkItemEx(caseNumber, procName, stepName,
queueName, queueReleased);

Parameters

caseNumber - (String) Identifies the case in which the work item was created.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 215
procName - (String) Identifies the procedure.
stepName - (String) Identifies the step in the procedure that corresponds to the
work item.
queueName - (String) Identifies the work queue in which the work item resides.

queueReleased - (String) "Y" or "N" indicating whether or not the work queue is
released.

Example

this.getApp().ipcOpenWorkItemEx('13502', 'ONESTEP', 'STEP1',
'swadmin', 'Y');

ipcUnlockWorkItem

This method unlocks the specified work item.

This method is equivalent to selecting Unlock Work Item(s) from the Tools menu
on the work item list in the iProcess Client application.

Note that work items are automatically unlocked when you keep or release them;
normally, you do not need to explicitly unlock work items. This function is for
those rare occasions when a work item was left open for some reason (e.g., a
system crash).

Unlocking a work item using this method causes any changes that were made on
the form while the work item was open to be discarded.

Any user can unlock a work item that they have opened. To unlock a work item
that was opened by another user, you must have system administrator authority.

If you attempt to unlock a work item that is not locked, the method call returns
silently with no error.

An optional confirmation message can be displayed.

Syntax

this.getApp().ipcUnlockWorkItem(workQTag, workItemTag,
suppressConfirm);

Parameters

workQTag - (String) Identifies the work queue in which the work item resides. For
information about tags, see Introduction on page 196. (Note that a null can be
passed in for the workQTag. If null, the workQTag is constructed from the
workItemTag parameter.)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

216 | Chapter 11 IPC Tools Methods
workItemTag - (String) Identifies the work item to unlock. For information about
tags, see Introduction on page 196.

suppressConfirm - (Boolean - Optional) Specifies whether or not to suppress the
confirmation message. False (default) causes a confirmation message to be
displayed; True suppresses the confirmation message.

Example

this.getApp().ipcUnlockWorkItem('i11|smith|R',
'i11|S1|smith|R|135|812|i11|SP1|0|0', true);

ipcForwardWorkItem

This method forwards the specified work item to a different work queue.

Note that not all work items are “forwardable.” When a procedure is defined, the
designer specifies whether or not work items representing each step are
forwardable. (There is a “Forwardable” column available on the work item list
that indicates whether or not a work item is forwardable.)

This method causes a dialog similar to the following to be displayed:
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 217
This dialog will list either all work queues on the system, or only the work queues
of which the user is a member, depending on how the user’s user access profile is
set up.

The user selects the desired work queue from the list, then clicks OK. The work
item specified in the method call is forwarded.

This method is equivalent to selecting Forward Work Item(s) from the Tools
menu on the work item list in the TIBCO iProcess Workspace client application.

Syntax

this.getApp().ipcForwardWorkItem(workQTag, workItemTag);

Parameters

workQTag - (String) Identifies the work queue in which the work item being
forwarded currently resides. For information about tags, see Introduction on
page 196. (Note that a null can be passed in for the workQTag. If null, the
workQTag is constructed from the workItemTag parameter.)

workItemTag - (String) Identifies the work item to forward. For information about
tags, see Introduction on page 196.

Example

this.getApp().ipcForwardWorkItem('i11|swadmin|R','i11|S1|smith|R|1
32|8152|i11|STEP1|0|0');

ipcReleaseWorkItem

This method releases the specified work item.

Note that you can only release work items with this method that are considered
“directly releasable”, i.e., they do not have any input fields on their form (if they have
a form). That does not mean their input fields have been filled in — they cannot
have input fields. (There is a Releasable column available on the work item list
that indicates whether or not a work item is directly releasable.)

Releasing the work item causes the case to advance to the next step in the
procedure, possibly resulting in another work item appearing in someone’s work
queue.

This method is equivalent to selecting Release Work Item(s) from the Tools menu
on the work item list in the iProcess Client application.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

218 | Chapter 11 IPC Tools Methods
Syntax

this.getApp().ipcReleaseWorkItem(workQTag, workItemTag);

Parameters

workQTag - (String) Identifies the work queue in which the work item being
released currently resides. For information about tags, see Introduction on
page 196. (Note that a null can be passed in for the workQTag. If null, the
workQTag is constructed from the workItemTag parameter.)

workItemTag - (String) Identifies the work item to release. For information about
tags, see Introduction on page 196.

Example

this.getApp().ipcReleaseWorkItem('i11|swadmin|R','i11|S1|smith|R|1
32|8152|i11|STEP1|0|0');

ipcConfigureSupervisors

This method is used to designate users as work queue supervisors. A user must
be a work queue supervisor to perform the following tasks:

• Configure participation schedules. A participation schedule gives another
user temporary access to a work queue. For information about configuring
participation schedules, see ipcConfigureParticipation on page 220.

• Configure redirection schedules. A redirection schedule causes work items to
be temporarily redirected to another work queue. For information about
configuring redirection schedules, see ipcConfigureRedirection on page 221.

Each work queue can be assigned one or more work queue supervisors.

You must have system administrator authority to configure work queue
supervisors.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 219
This method causes a dialog similar to the following to be displayed:

The Work Queues section of this dialog lists all work queues (i.e., all users and
groups) defined on your TIBCO system. The WorkQueue Supervisors section
lists the supervisors for the currently selected work queue.

For more details about configuring work queue supervisors, see the TIBCO
iProcess Workspace (Browser) User’s Guide.

This method is equivalent to selecting Manage Work Queue Supervisors from
the Tools menu on the work queue list.

Syntax

this.getApp().ipcConfigureSupervisors();

Parameters

None

Example

this.getApp().ipcConfigureSupervisors();
 TIBCO iProcess Workspace (Browser) Configuration and Customization

220 | Chapter 11 IPC Tools Methods
ipcConfigureParticipation

This method is used to configure participation schedules, which specify that a user
can participate in (i.e., have access to) another user’s work queue for a specified
period of time.

This method causes a dialog similar to the following to be displayed:

The Supervised work queues section lists all work queues for which the user has
been designated a supervisor — these are the work queues for which the user is
authorized to configure participation schedules. (For information about
designating a user a work queue supervisor, see ipcConfigureSupervisors on
page 218.)

For details about work queue participation, see the TIBCO iProcess Workspace
(Browser) User’s Guide.

This method is equivalent to selecting Manage Work Queue Participation from
the Tools menu on the work queue list.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 221
Syntax

this.getApp().ipcConfigureParticipation();

Parameters

None

Example

this.getApp().ipcConfigureParticipation();

ipcConfigureRedirection

This method is used to configure redirection schedules, which are used to redirect
one user’s work items to the work queue of another user or group for a specified
period of time.

For information about forwarding an individual work item from a work queue,
see ipcForwardWorkItem on page 216.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

222 | Chapter 11 IPC Tools Methods
This method causes a dialog similar to the following to be displayed:

The Supervised work queues section lists all work queues for which the user has
been designated a supervisor — these are the work queues for which the user is
authorized to configure redirection schedules. (For information about designating
a user a work queue supervisor, see ipcConfigureSupervisors on page 218.)

For details about configuring redirection schedules, see the TIBCO iProcess
Workspace (Browser) User’s Guide.

This method is equivalent to selecting Manage Work Queue Redirection from the
Tools menu on the work queue list.

Syntax

this.getApp().ipcConfigureRedirection();

Parameters

None
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 223
Example

this.getApp().ipcConfigureRedirection();

ipcShowWorkQLoadingChart

This method displays a graphical summary of the work queues available to the
user. For example:

This chart provides information about the numbers and types of work items in
each work queue.

This method is equivalent to selecting Work Queue Loading Chart from the Tools
menu on the work queue list.

Syntax

this.getApp().ipcShowWorkQLoadingChart(releasedQs, testQs,
groupQs, userQs);

Parameters

releasedQs - (Boolean - Optional) Include released work queues in loading chart?
Default = True.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

224 | Chapter 11 IPC Tools Methods
testQs - (Boolean - Optional) Include test work queues in loading chart?
Default = True.

groupQs - (Boolean - Optional) Include group work queues in loading chart?
Default = True.

userQs - (Boolean - Optional) Include user work queues in loading chart?
Default = True.

Example

this.getApp().ipcShowWorkQLoadingChart(true, false, false, false);

ipcGetStartProcs

This method returns an array of JavaScript objects that represent iProcess
procedures for which the logged-in user has permission to start cases.

Each JavaScript object returned represents a procedure, and has a Name,
Description, HostingNode, MajorVersion, MinorVersion, and Tag property.

This method can be used prior to calling the ipcStartCase method to determine
the procedures the logged-in user can start.

Syntax

this.getApp().ipcGetStartProcs();

Parameters

None

You must pass True for either releasedQs or testQs. If you pass False for
both parameters, loading information is displayed for both released
and test work queues.

You must pass True for either groupQs or userQs. If you pass False for
both parameters, loading information is displayed for both group and
user work queues.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 225
Example

var startProcs = this.getApp().ipcGetStartProcs();
var msg =
'Name/Description/HostingNode/MajorVersion/MinorVersion/Tag' +
'\n';
for (var i = 0; i < startProcs.length; i++) {
 msg += startProcs[i].Name + '/' +
 startProcs[i].Description + '/' +
 startProcs[i].HostingNode + '/' +
 startProcs[i].MajorVersion + '/' +
 startProcs[i].MinorVersion + '/' +
 startProcs[i].Tag + '"\n';
}
alert(msg);

ipcGetAuditProcs

This method returns an array of JavaScript objects that represent iProcess
procedures for which the logged-in user has permission to view or add entries to
case history.

Each JavaScript object returned represents a procedure, and has a Name,
Description, HostingNode, MajorVersion, MinorVersion, and Tag property.

This method can be used prior to calling the ipcShowGraphicalCaseHistory or
ipcAddCaseHistoryEntry method to determine if the logged-in user has
permission to view the graphical case history or add an entry to case history. It
can also be used prior to calling the ipcShowCase method to determine if the
logged-in user can view the History tab when displaying information about a
case.

Syntax

this.getApp().ipcGetAuditProcs();

Parameters

None
 TIBCO iProcess Workspace (Browser) Configuration and Customization

226 | Chapter 11 IPC Tools Methods
Example

var auditProcs = this.getApp().ipcGetAuditProcs();
var msg =
'Name/Description/HostingNode/MajorVersion/MinorVersion/Tag' +
'\n';
for (var i = 0; i < auditProcs.length; i++) {
 msg += auditProcs[i].Name + '/' +

auditProcs[i].Description + '/' +
auditProcs[i].HostingNode + '/' +
auditProcs[i].MajorVersion + '/' +
auditProcs[i].MinorVersion + '/' +
auditProcs[i].Tag + '"\n';

}
alert(msg);

ipcShowProcLoadingChart

This method displays a graphical summary of the procedures on the system. For
example:

This chart provides information about the numbers and types of cases that exist
for each procedure.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 227
This method is equivalent to selecting Procedure Loading Chart from the Tools
menu on the procedure list.

Syntax

this.getApp().ipcShowProcLoadingChart(released, unreleased, model,
withdrawn);

Parameters

released - (Boolean - Optional) Include released procedures in loading chart?
Default = True.

unreleased - (Boolean - Optional) Include unreleased procedures in loading chart?
Default = True.

model - (Boolean - Optional) Include model procedures in loading chart?
Default = True.

withdrawn - (Boolean - Optional) Include withdrawn procedures in loading chart?
Default = True.

Example

this.getApp().ipcShowProcLoadingChart(true, false, false, false);

ipcShowProcVersion

This method displays information about the past and current versions of the
specified procedure.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

228 | Chapter 11 IPC Tools Methods
This method displays a dialog similar to the following:

Clicking on one of the versions in the top section causes history information about
that version to be displayed in the section on the bottom of the dialog.

This method is equivalent to selecting Versions from the Tools menu on the
procedure list.

Syntax
this.getApp().ipcShowProcVersion(procTag);

Parameters

procTag - (String) Identifies the procedure whose version information you want
displayed. For information about tags, see Introduction on page 196.

Example

this.getApp().ipcShowProcVersion('i111|HIRING|1|0');
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 229
ipcShowServerInfo

This method displays technical information about the iProcess Objects Server the
user is currently logged into.

This method causes a dialog similar to the following to be displayed:

This method is equivalent to clicking on the Server Info button in the iProcess
Client application.

Syntax

this.getApp().ipcShowServerInfo();

Parameters

None

Example

this.getApp().ipcShowServerInfo();
 TIBCO iProcess Workspace (Browser) Configuration and Customization

230 | Chapter 11 IPC Tools Methods
ipcShowOptions

This method opens the Options dialog, which is used to establish default
application settings for the user. These include things such as whether preview is
turned on by default, the size/location of work item forms, etc.

The Options dialog appears as follows:

This method is equivalent to clicking on the Options button in the iProcess Client
application.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 231
For details about all of the options available, see the TIBCO iProcess Workspace
(Browser) User’s Guide.

Syntax

this.getApp().ipcShowOptions();

Parameters

None

Example

this.getApp().ipcShowOptions();

ipcWorkItemTag2CaseTag

This method returns a case tag extracted from the work item tag passed as an
argument.

If the argument is not a valid work item tag (which includes not containing the
correct number of elements between the vertical bars), an exception is thrown.

Syntax

this.getApp().ipcWorkItemTag2CaseTag(workItemTag);

Parameters

workItemTag - A valid work item tag. For information about tags, see Introduction
on page 196.

Example

var caseTag =
this.getApp().ipcWorkItemTag2CaseTag('i11|s1|smith|R|102|811|i11|S
TEP1|0|0');

The only session activity option available with the ipcShowOptions method is
the change password function. The Session Activity Log is not available using this
method.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

232 | Chapter 11 IPC Tools Methods
ipcWorkItemTag2WorkQTag

This method returns a work queue tag extracted from the work item tag passed as
an argument.

If the argument is not a valid work item tag (which includes not containing the
correct number of elements between the vertical bars), an exception is thrown.

Syntax

this.getApp().ipcWorkItemTag2WorkQTag(workItemTag);

Parameters

workItemTag - A valid work item tag. For information about tags, see Introduction
on page 196.

Example

var workQTag = this.getApp().ipcWorkItemTag2WorkQTag
('i11|s1|smith|R|10|81|i11|s1|0|0');

ipcGetUserAttributes

This method returns an array of objects that represent iProcess attributes assigned
to a specific user.

Syntax

this.getApp().ipcGetUserAttributes(userName);

Parameters

userName - (String) Name of user for which attributes are to be retrieved.

Example

var attributes = this.getApp().ipcGetUserAttributes('swadmin');
for (var i = 0; i < attributes.length; i++) {

var name = attributes[i].Name;
var type = attributes[i].Type;
var value = attributes[i].Value;

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

Method Summary | 233
ipcGetGroupAttributes

This method returns an array of objects that represent iProcess attributes assigned
to a specific group.

Syntax

this.getApp().ipcGetGroupAttributes(groupName);

Parameters

groupName - (String) Name of group for which attributes are to be retrieved.

Example

var attributes =
this.getApp().ipcGetGroupAttributes('Supervisors');
for (var i = 0; i < attributes.length; i++) {

var name = attributes[i].Name;
var type = attributes[i].Type;
var value = attributes[i].Value;

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

234 | Chapter 11 IPC Tools Methods
IPC Tools Methods Sample

A sample custom GI form is provided that demonstrates how the IPC tools
methods can be invoked from a custom GI form.

The sample custom GI form includes, a button for each of the IPC tools methods.
The names on the buttons correspond to the method names:

After setting up the sample (which is described below), you can open the
ipcToolsMethodsForm.js file in the following directory to see how the methods
were implemented on the custom form shown above:

InstallDir\JSXAPPS\ipc\components\Forms\ipcToolsMethodsForm\

where InstallDir is the directory specified during the installation of TIBCO
iProcess Workspace (Browser).
TIBCO iProcess Workspace (Browser) Configuration and Customization

IPC Tools Methods Sample | 235
Note that this sample requires that you have a procedure deployed on your
server. It can be any procedure; you will be using it to display the custom GI form
shown above, for the purpose of demonstrating the IPC tools methods.

To set up and use the IPC tools methods sample:

1. Copy the following directory:

InstallDir\Samples\ipcToolsMethodsForm\

And paste it into the following directory:

InstallDir\JSXAPPS\ipc\components\Forms\

where InstallDir is the directory specified during the installation of TIBCO
iProcess Workspace (Browser).

2. Open the iProcess Client’s config.xml file, which is located in the following
directory:

InstallDir\JSXAPPS\ipc\

3. Locate the jsxid="Forms" record in the config.xml file, and add a <Forms>
element for the custom GI form in the sample. An example is shown below:

The attributes in the <Forms> element are described below (note that optional
attributes can be either omitted or set to a zero-length string).

— procName (required) - The name of the procedure in which the custom GI
form provided in the sample will be displayed.

— stepName (required) - The name of the step on which you want the custom
GI form provided in the sample to be displayed. Likely, this will be the first
step in the procedure so that the custom form is displayed when a case of
the procedure is started.

— class (required) - The name of the class that defines the custom form. This
is the sample ipcToolsMethodsForm class.

<record jsxid="Forms" type="ipc">

<Forms>

<Form procName="ALLOCATE" stepName="STEP1"

class="com.tibco.bpm.ipc.ipcToolsMethodsForm"

prototypePath="ipcToolsMethodsForm/prototypes/ipcToolsMethodsForm

Default.xml" nodeName="i2tagtest" floatWorkItems="dialog"/>

</Forms>

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

236 | Chapter 11 IPC Tools Methods
— prototypePath (optional) - The path to the prototype for the custom form,
relative to the forms root directory (which defaults to
‘JSXAPPS/ipc/components/Forms/’).

— nodeName (optional) - The name of the TIBCO iProcess Objects Server on
which the procedure specified in the procName attribute (see above) is
defined. This attribute is optional. If it is not specified, any server will
match.

— major (optional) - The “major” portion of the procedure version number.
For example, if the procedure version is 3.2, major = “3”. The default is the
most recent.

— minor (optional) - The “minor” portion of the procedure version number.
For example, if the procedure version is 3.2, minor = “2”. The default is the
most recent.

— floatWorkItems (optional) - This attribute specifies whether the custom GI
form is opened in a separate browser window or a dialog.

The valid entries are “browser” to open the form in a separate browser
window, or “dialog” to open the form in a dialog within the browser
running the application. If omitted, or set to any other value, the value
selected in the "When opening a floating work item form, open it in" option
on the application’s Options dialog is used.

4. If there was already a custom GI form specified in the config.xml file for the
procedure and step you added in step 3, comment out the original one until
you are done using this sample. Once you are done with the sample, you can
uncomment the original, then remove the <Form> element you added in
step 3.

5. Locate the mapping records in the config.xml file (search for ’type="map"’),
and add the following new record, which maps to the ipcToolsMethodsForm
class:

<record jsxid="5" type="map">

<record jsxid="id" type="string">ipcToolsMethodsForm</record>

<record jsxid="type" type="string">script</record>

<record jsxid="load" type="number">1</record>

<record jsxid="src"

type="string">JSXAPPS/ipc/components/Forms/ipcToolsMethodsForm/js/ipc

ToolsMethodsForm.js</record>

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

IPC Tools Methods Sample | 237
Note that the jsxid value for the map-type record (5 in this example) is
arbitrary, that is, you can specify any value desired (the jsxid is not used in
this context).

6. Start the iProcess Client, then start a case of the procedure you specified in the
<Form> element in step 3. If you specified the name of the first step in the
stepName attribute, the custom form showing the IPC tools methods is
displayed; if you specified a different step, you will need to progress the case
to get to the step you specified.

Most of the IPC tools methods expect a tag of some sort (e.g., case tag, work item
tag, etc.). Tags are intentionally opaque, that is, we do not provide the information
needed to build them — you are expected to acquire them in one of the following
ways:

• Tags can be acquired through the iProcess Server Objects object model,
specifically using the getTag and makeTag methods. For information, see the
TIBCO iProcess Server Objects (Java or .NET) Programmer’s Guide.

• You can also acquire tags through an Action Processor response XML. For
information, see the TIBCO iProcess Workspace Action Processor Reference.

For additional information about GI Forms, see the GI Forms Interface chapter in
the TIBCO iProcess Workspace (Browser) Configuration and Customization guide.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

238 | Chapter 11 IPC Tools Methods
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 239
Chapter 12 Forms

This chapter provides an overview of how forms are handled by the TIBCO
iProcess Workspace (Browser).

Topics

• Introduction to Forms, page 240
 TIBCO iProcess Workspace (Browser) Configuration and Customization

240 | Chapter 12 Forms
Introduction to Forms

The iProcess Workspace (Browser) can display the following types of forms:

• General Interface (GI) Forms

• TIBCO Forms

• ASP Forms

• JSP Forms

• BusinessWorks™ FormBuilder Forms

• iProcess Modeler Forms

When a user starts a case that causes a form to display (i.e., when the first step in
the procedure is addressed to SW_STARTER), or opens a work item, the iProcess
Workspace (Browser) determines which type of form to display by going through
the steps listed below.

Note that the order in which it looks for each form type is significant. In other
words, if a GI Form is specified for the step, that form type takes precedence; if
there is not a GI Form but there is a TIBCO Form specified, that takes precedence
over the other form types, and so on.

1. Has a General Interface (GI) form been defined for the step?

— If the <Forms> element in the application’s config.xml file specifies a GI
form for the step/work item, that GI form is displayed.

For more information, see GI Forms Interface on page 245.

2. Has a TIBCO Form been defined for the step?

— If a TIBCO Form for the step/work item has been defined and deployed in
Business Studio, that TIBCO Form is displayed.

— If you are using TIBCO Forms, the “base” URL of the form’s location must
be specified in the webDAVRoot parameter in the application’s
config.xml file.

— For more information about the webDavRoot parameter, see WebDAV
Root Setting on page 72.

— For more information about creating TIBCO Forms, see the TIBCO Business
Studio™ Forms User’s Guide.

3. Has an ASP Form, JSP Form, or FormBuilder Form been defined for the form?

— One of these form types has been specified for the step if the
ExternalFormURI parameter in the Action Processors’s configuration file,
TIBCO iProcess Workspace (Browser) Configuration and Customization

Introduction to Forms | 241
apConfig.xml, contains a value. This specifies the “base” URL to the form’s
location. The remainder of the URL is obtained from the value in the
Formflow Form field in the step definition.

— For more information about the ExternalFormURI parameter, see External
Form URI on page 142.

— For more information about ASP Forms, see ASP Forms on page 313.

— For more information about JSP Forms, see JSP Forms on page 323.

— For more information about FormBuilder Forms, see the TIBCO
BusinessWorks iProcess Forms Plug-in User’s Guide.

4. A TIBCO iProcess Modeler Form is displayed.

— If none of the previously listed forms are specified for the step, it is assumed
the form to display is an iProcess Modeler-created form. If this is the case,
the form to display is specified in the step’s definition.

— For more information, see Customizing iProcess Modeler Forms on
page 331.

External Forms / GI Forms

Forms are divided into two groups:

• External Forms - This category includes the following types of forms:

— ASP Forms

— JSP Forms

— BusinessWorks FormBuilder Forms

— iProcess Modeler Forms

• GI Forms - This category includes the following types of forms:

— General Interface Forms

— TIBCO Forms

If you are using TIBCO Forms, your iProcess Objects Server must have MR 32564
implemented. The iProcess Objects Server version 10.6.1 and newer contains this
MR, plus there is a hotfix available for the 10.6.0 version. If the iProcess Object
Server does not contain MR 32564, and TIBCO Forms are used, intermittent errors
may occur, as well as a server crash.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

242 | Chapter 12 Forms
You may see references to external forms and GI Forms in the documentation.
Depending on the situation, the system may behave differently for each of these
form categories. For instance, you can customize the appearance of the window
when displaying work item forms — this is done with the <BrowserFeatures>
record in the config.xml file. The <BrowserFeatures> record contains subordinate
<ExternalForms> and <GIForms> records — these subordinate records allow
customization for each of the form categories. For more information about setting
browser features, see Specifying Browser Window Features on page 44.

Dialog/Window Characteristics

When a WCC or client application displays a work item form, it displays it either in
a preview pane, in a separate dialog, or in a separate browser window. You can
choose which of these formats you want from within the application (for more
information, see the TIBCO iProcess Workspace (Browser) User’s Guide).

Note, however, the type of form you are using determines which of the form
formats (preview pane, dialog, or separate browser window) are selectable from
the application, as follows:

• if your application uses GI forms, you can choose to open them in any of the
three available formats: Preview Pane, dialog, or separate browser window.

• if your application uses external forms, they will always be opened in a
separate browser window.

Also note that “dialogs” are further subdivided into the following:

• Webpage dialogs

• Application dialogs

Whether the work item form opens in a “Webpage” dialog or an “application”
dialog depends on the setting of the “dialog” attribute in the <BrowserFeatures>
record in the application’s config.xml file. For more information, see the “dialog”
attribute description on page 46.

The following describes the differences in behavior between the different types of
dialogs/windows:

• Minimize/Maximize Buttons - Webpage dialogs do not have minimize nor
maximize buttons. Separate browser windows and application dialogs have
these buttons.

• Floating Window Outside Application Window - Both Webpage dialogs and
separate browser windows can be floated outside the parent application's
window, whereas application dialogs cannot.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Introduction to Forms | 243
• Browser Feature Attributes - The Browser Feature attributes (i.e., the
attributes of the <BrowserFeatures> record in the config.xml file) supported
depends on the dialog/window and the type of browser used, as follows:

— Webpage dialog: If using Internet Explorer, only the "resizable" and
"status" attributes are supported. If using Firefox, the supported attributes
are: "dialog", "directories", "location", "menubar", "minimizable", and
"toolbar".

— Application dialog: None of the Browser Feature attributes are supported
for this type of dialog.

— Separate browser window: The table on page 46 lists the browser features
that are supported for each of the available browsers.

• Close as child window: Both Webpage dialogs and application dialogs are
children of the parent window, therefore if the parent window is closed (or
minimized), the Webpage/application dialog is also closed (or minimized).
Separate browser windows do not close (or minimize) when the parent is
closed (or minimized).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

244 | Chapter 12 Forms
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 245
Chapter 13 GI Forms Interface

This chapter provides an overview of the TIBCO GI Forms interface, information
about how to implement the interface to display custom GI forms, and a list of the
methods available to handle custom form prototypes.

The intended audience of this information is developers who have a thorough
understanding of the TIBCO® General Interface Builder and the functionality
available through the TIBCO iProcess Server Objects.

Topics

• Overview, page 246

• Implementation, page 249

• Interface Properties and Methods, page 254

• FieldData Class, page 296

• Date Conversions, page 300

• Accessing User Options When Using GI Forms, page 311
 TIBCO iProcess Workspace (Browser) Configuration and Customization

246 | Chapter 13 GI Forms Interface
Overview

The GI Forms interface allows you to create forms using TIBCO General Interface
Builder, then use those forms for work item steps in the iProcess Workspace
(Browser). This allows you to take advantage of the advanced form-building
capabilities of the TIBCO General Interface Builder.

The GI Forms interface allows your custom forms to utilize the existing iProcess
Workspace (Browser) communication methods to perform the following
functions:

• start a case

• lock a work item

• get field data to display in the form

• keep or release the work item

When a user either starts a case of a procedure or opens an existing work item, the
TIBCO iProcess Workspace (Browser) will check to see if there is a GI form
specified for that step in the <Forms> element of the client’s config.xml file:

• If there is a GI form specified for the step:

— The iProcess Workspace (Browser) instantiates the custom GI form class
that is specified in the <Forms> element in the iProcess Workspace
TIBCO iProcess Workspace (Browser) Configuration and Customization

Overview | 247
(Browser) configuration file (config.xml). This is described in more detail
later.

— Field data is requested from the Action Processor (applicable only when
opening a work item, not when starting a case).

— The custom GI form (prototype) is displayed within the GI context in the
iProcess Workspace (Browser).

— A keep or release request is sent to the Action Processor when the user
initiates one of those actions.

• If there is no GI form definition for the step:

— The normal iProcess Workspace (Browser) open work item actions are
performed, i.e., a new browser window is opened pointing to the Action
Processor URL to handle the form action. This delegates control to the
external form handling process.

Base Class

The GI Forms interface provides the following base class that is extended for each
custom GI form created:

• com.tibco.bpm.ipc.Form

Each custom form consists of two files:

— <FormClassName>.js - This class extends the com.tibco.bpm.ipc.Form
base class, adding any form-specific logic.

— <FormClassName>.xml - This defines the GUI prototype for the form
component layout.

For information about the version of TIBCO General Interface Builder that must
be used if you are developing your own GI forms to use with the iProcess
Workspace (Browser), see the Release Notes for the iProcess Workspace
(Browser).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

248 | Chapter 13 GI Forms Interface
Sample Implementation

A sample subclass implementation of the GI Forms interface base class is provided
in the FormTemplate subdirectory.

The FormTemplate.js file is a sample implementation class
(com.tibco.bpm.ipc.FormTemplate), which you can use by replacing
“FormTemplate” with your custom form class name, then modifying the methods in
the class to fit your custom form needs. The com.tibco.bpm.ipc.FormTemplate class
extends the base class (com.tibco.bpm.ipc.Form). For information about the
properties and methods available in the base class, see Interface Properties and
Methods on page 254. (Note that at a minimum, the custom class that extends the
com.tibco.bpm.ipc.Form base class must override the postLoadInit, doKeep, and
doRelease methods; it can also optionally override the init and doCancel methods.)

Multiple prototypes can be defined for each custom form. During the
implementation phase, you will specify which prototype to use. (The prototype can
also be specified using the prototypePath attribute of the <Form> element in the
config.xml file.)

The sample implementation also contains a showFormDetails function (which is
called by the Form Details button on the sample template). This function
provides details about the messages sent to and returned by the Action Processor,
which may be useful during development. It uses the FormDetails.xml
prototype.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Implementation | 249
Implementation

Perform the following steps to implement the GI Forms interface in the TIBCO
iProcess Workspace (Browser):

1. Copy the entire FormTemplate directory, and paste it into the
.../components/Forms directory.

2. Rename the copied directory to match the class name for your custom form.

For example, assume a custom form with a class name of “CustomForm1”:

3. In the new custom form directory, replace the “FormTemplate” name with the
name of your custom form class. For example:
— Forms/CustomForm1/js/FormTemplate.js

— Forms/CustomForm1/prototype/FormTemplateDefault.xml

... should become:
— Forms/CustomForm1/js/CustomForm1.js

— Forms/CustomForm1/prototype/CustomForm1Default.xml

The following illustrates an example directory/file structure for the new
custom form:

4. Globally replace “FormTemplate” with your class name (“CustomForm1” in
this example) in the CustomForm1.js file.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

250 | Chapter 13 GI Forms Interface
5. Replace the content of CustomForm1Default.xml with the XML that defines
the prototype of your custom form.

Event actions defined in a custom form prototype can get reference to the
custom form class instance by getting the parent of the top level object. The
examples below are taken directly from the FormTemplateDefault.xml
sample prototype file.

The example button object defined below returns a reference to the custom
form class instance, and the doKeep() function defined in the custom class is
called when the jsxexecute event is triggered.

Note that the name referenced above, layoutFormData, is the name assigned
to the top-level object (using: jsxname=”layoutFormData”) in the form
prototype:

See JSXAPPS\ipc\components\Forms\FormTemplate\prototypes
\FormTemplateDefault.xml to see these examples in their complete context.

6. Modify the methods in CustomForm1.js to handle the custom form
prototype. For information about the methods available, see Base Class
Methods on page 257.

7. Update the TIBCO iProcess Workspace (Browser) configuration file
(...\JSXAPPS\ipc\config.xml) to include a <Form> element under the
<Forms> element for each custom form.

<object type="jsx3.gui.Button">

<variants jsxindex="0" jsxheight="18"/>

<strings jsxname="btnKeep" jsxtext="Keep" jsxmargin="top:6px"/>

<events jsxexecute="this.getAncestorOfName('layoutFormData').getParent().doKeep();"/>

</object>

<object type="jsx3.gui.LayoutGrid">

<variants jsxrepeat="2" jsxsizearray="['*','30']" jsxrelativeposition="0" ... />

<strings jsxname="layoutFormData" jsxwidth="100%" jsxheight="100%"/>

<children>

...
TIBCO iProcess Workspace (Browser) Configuration and Customization

Implementation | 251
The following is an example <Forms> element with a number of sample
<Form> entries:

A sample configuration file (config-sample.xml) is provided in the
JSXAPPS/ipc/components/Forms directory from which you can copy a sample
<Forms> element, then modify it to fit your needs.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

252 | Chapter 13 GI Forms Interface
The following defines the available <Form> element attributes that need to be
specified for each custom form (note that the optional attributes can be either
omitted or set to a zero-length string):

— procName (required) - The name of the procedure in which the custom
form is used.

— stepName (required) - The name of the step to which the custom form is
associated. When this step is reached in the case (procedure instance), the
custom form is displayed.

— class (required) - The name of the class that defines the custom form. This
is the class that is instantiated by the iProcess Workspace (Browser) when
the user starts a case or opens an existing work item. For the example
described earlier, this would be specified as:

class=”com.tibco.bpm.ipc.CustomForm1”

— prototypePath (optional) - The path to a prototype for the custom form,
relative to the forms root directory, specified in
com.tibco.bpm.ipc.Form.DIR (this defaults to
‘JSXAPPS/ipc/components/Forms/’). For the example described earlier,
this would be specified as:

prototypePath=”CustomForm1/prototypes/CustomForm1Default.xml”

If the prototype path is not specified here or explicitly in the class, the
default path is used:

com.tibco.bpm.ipc.Form.DIR + classname + '/prototypes/' +
classname + 'Default.xml'

For example, the default prototype path for the sample FormTemplate is:

“FormTemplate/prototypes/FormTemplateDefault.xml”

— nodeName (optional) - The name of the TIBCO iProcess Objects Server on
which the procedure specified in the procName attribute (see above) is
defined. This attribute is optional. If it is not specified, any server will
match.

— major (optional) - The “major” portion of the procedure version number.
For example, if the procedure version is 3.2, major = “3”.

— minor (optional) - The “minor” portion of the procedure version number.
For example, if the procedure version is 3.2, minor = “2”.

— floatWorkItems (optional) - This attribute is relevant only for custom GI
forms. It specifies whether or not the custom GI form is opened in a
separate browser window. The valid entries are “browser” for open the
form in a separate browser window, or “dialog” for open the form in a
dialog within the browser running the TIBCO iProcess Workspace
TIBCO iProcess Workspace (Browser) Configuration and Customization

Implementation | 253
(Browser). If omitted or set to any other value, the value selected in the
When opening a floating work item form, open it in option on the
application’s Options dialog is used.

8. Update the TIBCO iProcess Workspace (Browser) configuration file to include
mappings to each custom form class. The configuration file is located at:

...\JSXAPPS\ipc\config.xml

The following is an example map record for the sample form template:

Locate the existing mapping records (type = “map”) in the config.xml file and
enter a record for each of your custom form classes.

Note that the jsxid value for the map-type record (127 in this example) is
arbitrary, i.e., you can specify any value desired (the jsxid is not used in this
context).

<record jsxid="127" type="map">

<record jsxid="id" type="string">FormTemplate</record>

<record jsxid="type" type="string">script</record>

<record jsxid="owner" type="string">application</record>

<record jsxid="onLoad" type="boolean">true</record>

<record jsxid="required" type="boolean">true</record>

<record jsxid="src"

type="string">JSXAPPS/ipc/components/Forms/FormTemplate/js/FormTemplate.js</record>

</record>

A sample configuration file (config-sample.xml) is provided in the
JSXAPPS/ipc/components/Forms directory from which you can copy sample
mapping records, then modify them to fit your needs.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

254 | Chapter 13 GI Forms Interface
Interface Properties and Methods

This section provides information about the properties and methods available in
the com.tibco.bpm.ipc.Form base class. Since the custom form class extends this
base class, these properties and methods can be accessed directly in your custom
form class.

Base Class Properties

The following accessor methods are available to the subclass to access properties
in the com.tibco.bpm.ipc.Form base class.

Note that any of the values in the node returned by getNode() can be read using
getAttribute('attributeName') as shown below:

var version = this.getNode().getAttribute('Version');

The following samples show node data returned by getNode() (shown
formatted):

For Start Case:

<record
jsxid="IDAOAICE"

Method Returns Property Description

isStartCase() boolean True if form opened for a start case.

getDescription() string Start case or work item description.

getProcName() string The procedure name.

getStepName() string Name of the start step.

getProcTag() string The procedure tag.

getCaseNumber() string The case number.1

1. The case number, work item tag, and work queue tag are null for start case.

getWorkItemTag() string The work item tag.a

getWorkQTag() string The work queue tag.a

getNode() jsx3.xml.Entity The start case or work item node.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Interface Properties and Methods | 255
jsxtext=""
jsximg=""
IsStatus="true"
IsStatusImage="JSXAPPS/ipc/application/images/ProcReleased.gif"
Name="PROCNAME"
Description="Case Description"
HostingNode="serverNodeName"
Version="0.2"
Tag="serverNodeName|PROCNAME|0|2"
ProcNumber="36"
StartStepName="STEP1"
Status="swReleased"
CaseDescOpt="swRequiredDesc"
IsAutoPurge="false"
IsIgnoreBlank="false"
IsNetworked="false"
IsSubProc="false"
IsSubProcImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsOrphaned="false"
IsWorkDays="true"
IsPrediction="false"
Owner="username"
Duration="swDurationNone"
Permission="Start / History"
CaseCount="36"
ActiveCount="35"
ClosedCount="1"
jsxselected="1"
ListId="_jsx_ipcNS_102"
IsCustomFormStartCase="true">

</record>

For Work Item:

<record
jsxid="IDAFSZGE"
jsxtext=""
jsximg=""
IsStatus="true"
IsStatusImage="JSXAPPS/ipc/application/images/ItemLockedDesktop.gif"
CaseNumber="4922"
CaseReference="36-4922"
Description="Case Description"
Tag="serverNodeName|PROCNAME|username|R|4922|421916|

serverNodeName|STEP1|0|2"
StartedBy="username@serverNodeName"
Proc_Name="PROCNAME"
Proc_Description="Proc Description"
Proc_HostingNode="serverNodeName"
Version="0.2"
Proc_Tag="serverNodeName|PROCNAME|0|2"
ComputerName="OZQUADLING"
CaseFields=""
MailId="421916|serverNodeName"
CaseTag="serverNodeName|PROCNAME|0|2|4922"
 TIBCO iProcess Workspace (Browser) Configuration and Customization

256 | Chapter 13 GI Forms Interface
AddrToName="username@serverNodeName"
Arrived="2006-08-29 16:22"
IsDeadline="false"
IsDeadlineImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsDeadlineExp="false"
IsDeadlineExpImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsKeepOnWithdrawalImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsKeepOnWithdrawal="false"
IsForwardableImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsForwardable="false"
IsLocked="false"
IsLockedImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsLongLocked="true"
IsLongLockedImage="JSXAPPS/ipc/application/images/IsTrue.gif"
IsOrphanedImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsOrphaned="false"
IsReleasable="false"
IsReleasableImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsUnopened="false"
IsUnopenedImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsUrgent="false"
IsUrgentImage="JSXAPPS/ipc/application/images/IsFalse.gif"
IsSuspended="false"
IsSuspendedImage="JSXAPPS/ipc/application/images/IsFalse.gif"
LockedBy="username"
Priority="50"
StepName="STEP1"
StepDescription="First step"
OCCUPATION=""
WorkQParam1=""
WorkQParam2=""
WorkQParam3=""
WorkQParam4=""
DeltaStatus="swNotDeltaItem"
jsxselected="1"
ListId="_jsx_ipcNS_254"
IsCustomFormStartCase="false">

</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Interface Properties and Methods | 257
Base Class Methods

This section provides information about the methods available in the
com.tibco.bpm.ipc.Form base class.

Note that at a minimum, the custom class that extends the
com.tibco.bpm.ipc.Form base class must override the postLoadInit, doKeep, and
doRelease methods; it can also optionally override the init and doCancel
methods.

The following is a list of the methods described in this section:

• buildCDFArrays, page 258

• closeForm, page 259

• confirmUserMessage, page 260

• createFieldDefsRequest, page 261

• createKeepRequest, page 265

• createLockRequest, page 268

• createReleaseRequest, page 272

• doCancel, page 275

• doClose, page 276

• doKeep, page 277

• doRelease, page 278

• getWindowContext, page 279

• init, page 280

• lockWorkItem, page 281

• onBeforeUnload, page 283

• postLoadInit, page 284

• readFieldDefs, page 287

• readFormFields, page 289

• readStepMarkings, page 291

• showUserMessage, page 293

• socketRequest, page 294

• transformData, page 295
 TIBCO iProcess Workspace (Browser) Configuration and Customization

258 | Chapter 13 GI Forms Interface
buildCDFArrays

Purpose This method examines the cached XML CDF document, created by the
lockWorkItem method, and identifies any array field elements (the ssoFieldType
attribute will start with “swArrayOf” for array fields).

Each array field record contains the field name and a value string containing the
values of all array elements, separated by a “|” character (e.g., “a|b|c|d”).

A new CDF record is created for each array element. The name of the array
element includes the array index (e.g., “field[0]”) and its value is extracted from
the string containing all element values.

Syntax buildCDFArrays()

Parameters None

Returns CDF records

Remarks This method is called by the initializeFormData function to handle array field
data.
TIBCO iProcess Workspace (Browser) Configuration and Customization

closeForm | 259
closeForm

Purpose This method closes the dialog.

Syntax closeForm()

Parameters None

Returns Void

Remarks This method also clears the XML cache data. The XML cache data includes any
XML data stored in cache as a result of a socketRequest or transformData call.
Caches are cleared that have IDs containing the form instance object ID. If names
other than the default cache names have been used, the overriding class should
ensure that all caches have been removed.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

260 | Chapter 13 GI Forms Interface
confirmUserMessage

Purpose Displays a confirm dialog with the given message. If this is a child browser
window, the confirm is sent to the child window context to prevent focus being
moved to the parent browser window.

Note - Custom GI forms should call this.confirmUserMessage (vs. confirm) to
prevent window focus from shifting back to the parent window.

Syntax confirmUserMessage(message)

Parameters

Returns Boolean — True if the user selects OK from the confirm dialog; False if the user
selects Cancel.

Parameter Type Required? Description

message string Yes The message to be displayed in the
confirm dialog.
TIBCO iProcess Workspace (Browser) Configuration and Customization

createFieldDefsRequest | 261
createFieldDefsRequest

Purpose This method creates and returns the Action Processor GetFieldDefs request,
which is used to get the field definitions for a procedure for which you are
starting a case or opening a work item.

This method is used if you don’t have knowledge of the fields on the form. The
GetFieldDefs request returns all fields defined for the procedure.

This method only returns the GetFieldDefs request; it does not submit it to the
Action Processor. To submit the request, you must call the socketRequest method
(see page 294).

Syntax createFieldDefsRequest(requestId)

Parameters

Returns A string — GetFieldDefs request XML.

Remarks This method is called by readFieldDefs. Normally, a developer of a custom form
will have knowledge of the fields that are available on the form. The sample file,
com.tibco.bpm.ipc.FormTemplate, can be applied to any procedure; it calls
readFieldDefs to read the fields that are available.

This method is not required for use with a form that has statically defined fields
on it.

Example XML The following provides example XML for this method.

Field Defs Request:

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:ProcManager>

<ap:GetFieldDefs Id="_jsx_ipcNS_1394_XML_apfd">
<sso:ProcTag>i2tagtest|ALLOCATE|0|2</sso:ProcTag>

</ap:GetFieldDefs>
</ap:ProcManager>

</ap:Action>

Parameter Type Required? Description

requestId string No Identifies the request.

If not provided, the xmlCacheIdAp
is used (which can be obtained with
the this.getXmlCacheIdAp
function).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

262 | Chapter 13 GI Forms Interface
Field Defs Request Result:

<ap:ActionResult xmlns:ap="http://tibco.com/bpm/actionprocessor">
<ap:Status>

<ap:Version>10.6.0</ap:Version>
<ap:ReturnCode>0</ap:ReturnCode>
<ap:ReturnComment>The Action was processed successfully. Check the individual
Request Results for their status.</ap:ReturnComment>
<ap:ReturnDateTime>2006-02-06T10:43:42.432-0800</ap:ReturnDateTime>

</ap:Status>
<ap:SSO>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">
<sso:Results>

<sso:vResult Id="_jsx_ipcNS_301_XML_apfd">
<sso:FieldDefs>

<sso:vFieldDef>
<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value></sso:Value>
<sso:Length>20</sso:Length>
<sso:DecimalPlaceCnt>0</sso:DecimalPlaceCnt>
<sso:IsArrayField>false</sso:IsArrayField>

</sso:vFieldDef>
<sso:vFieldDef>

<sso:Name>MEMO</sso:Name>
<sso:FieldType>swMemo</sso:FieldType>
<sso:Value></sso:Value>
<sso:Length>0</sso:Length>
<sso:DecimalPlaceCnt>0</sso:DecimalPlaceCnt>
<sso:IsArrayField>false</sso:IsArrayField>

</sso:vFieldDef>
<sso:vFieldDef>

<sso:Name>NAME</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value></sso:Value>
<sso:Length>20</sso:Length>
<sso:DecimalPlaceCnt>0</sso:DecimalPlaceCnt>
<sso:IsArrayField>false</sso:IsArrayField>

</sso:vFieldDef>
<sso:vFieldDef>

<sso:Name>NUMERIC</sso:Name>
<sso:FieldType>swNumeric</sso:FieldType>
<sso:Length>10</sso:Length>
<sso:DecimalPlaceCnt>2</sso:DecimalPlaceCnt>
<sso:IsArrayField>false</sso:IsArrayField>

</sso:vFieldDef>
<sso:vFieldDef>

<sso:Name>REASON</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value></sso:Value>
<sso:Length>20</sso:Length>
<sso:DecimalPlaceCnt>0</sso:DecimalPlaceCnt>
<sso:IsArrayField>false</sso:IsArrayField>
TIBCO iProcess Workspace (Browser) Configuration and Customization

createFieldDefsRequest | 263
</sso:vFieldDef>
<!-- SW fields removed -->

</sso:FieldDefs>
</sso:vResult>

</sso:Results>
</sso:vSSOData>

</ap:SSO>
</ap:ActionResult>

Field Defs Request Transform XSL:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sso="http://tibco.com/bpm/sso/types"
xmlns:ap="http://tibco.com/bpm/actionprocessor" exclude-result-prefixes="sso ap">

<xsl:output omit-xml-declaration="yes"/>
<xsl:param name="uniqueId"/>
<xsl:output indent="yes"/>
<xsl:template match="/">

<data>
<xsl:apply-templates
select="/ap:ActionResult/ap:SSO/sso:vSSOData/sso:Results/sso:vResult[@Id =
$uniqueId]"/>

</data>
</xsl:template>
<xsl:template match="sso:vResult">

<xsl:apply-templates select="sso:FieldDefs/sso:vFieldDef"/>
</xsl:template>
<xsl:template match="sso:vFieldDef">

<xsl:variable name="fieldName" select="sso:Name"/>
<xsl:if test="not(starts-with($fieldName, 'SW_'))">

<xsl:element name="record">
<xsl:attribute name="jsxid">

<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<xsl:attribute name="ssoName">

<xsl:value-of select="sso:Name"/>
</xsl:attribute>
<xsl:attribute name="ssoFieldType">

<xsl:value-of select="sso:FieldType"/>
</xsl:attribute>
<xsl:attribute name="ssoValue">

<xsl:value-of select="sso:Value"/>
</xsl:attribute>

</xsl:element>
</xsl:if>

</xsl:template>
</xsl:stylesheet>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

264 | Chapter 13 GI Forms Interface
Field Defs Request CDF:

<data>
<record jsxid="IDARQ4YC" ssoName="LOCATION" ssoFieldType="swText" ssoValue=""/>
<record jsxid="IDAYQ4YC" ssoName="MEMO" ssoFieldType="swMemo" ssoValue=""/>
<record jsxid="IDA5Q4YC" ssoName="NAME" ssoFieldType="swText" ssoValue=""/>
<record jsxid="IDAGR4YC" ssoName="NUMERIC" ssoFieldType="swNumeric" ssoValue=""/>
<record jsxid="IDAMR4YC" ssoName="REASON" ssoFieldType="swText" ssoValue=""/>
<record jsxid="IDA1T4YC" ssoName="TEXT" ssoFieldType="swText" ssoValue=""/>
<record jsxid="IDACU4YC" ssoName="TITLE" ssoFieldType="swText" ssoValue=""/>

</data>
TIBCO iProcess Workspace (Browser) Configuration and Customization

createKeepRequest | 265
createKeepRequest

Purpose If a case is being started, this method creates and returns the Action Processor
StartCase request, with the isRelease flag set to False.

If an existing work item is being kept in the work queue, this method creates and
returns the Action Processor KeepItems request.

This method only returns the StartCase or KeepItems request; it does not submit
it to the Action Processor. To submit the request, you must call the socketRequest
method (see page 294).

Syntax createKeepRequest(fields,
requestId,
validate,
subProcPrecedence)

Parameters
Parameter Type Required? Description

fields Object or
Array of
Objects

Yes This can be either:

• An Array of Objects containing
field data properties: name,
fieldType, value.

• An Object, such as
com.tibco.bpm.ipc.FieldData
that implements
getFieldDataArray(), which
returns an Array (for
information about
com.tibco.bpm.ipc.FieldData,
see FieldData Class on
page 296).

requestId string No Identifies the request.

If not provided, xmlCacheIdAp is
used (which can be obtained with
the this.getXmlCacheIdAp
function).
 TIBCO iProcess Workspace (Browser) Configuration and Customization

266 | Chapter 13 GI Forms Interface
Returns A string — StartCase or KeepItems request XML

Remarks This method is called by the custom form class doKeep method. The Keep button
on the form triggers the call to the doKeep method. Data is collected from the
form and the XML request is obtained using this method. This request is then
submitted to the Action Processor using the socketRequest method.

Example The following is an example usage from com.tibco.bpm.ipc.FormTemplate:

ipcClass.prototype.doKeep = function() {
var keepRequest = this.createKeepRequest(this.getFormData());
var socket = this.socketRequest(keepRequest);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.jsxsuper();
}

};

validate boolean No If True, the field values are
validated against the type to which
they are defined (text, date, time,
etc.).

Default = False

subProcPrecedence string No Specifies the precedence of
sub-procedure statuses that are
launched from the procedure.
These are enumerated in
SWSubProcPrecedenceType.

Default = If not specified, the
option set in the application is used
(Options dialog > General tab >
Sub-Case Version Precedence).

Note: The subProcPrecedence
parameter is only applicable for
StartCase.

Parameter Type Required? Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

createKeepRequest | 267
Example XML The following provides example XML for this method.

Keep Request:

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:WorkQ>

<ap:KeepItems Id="_jsx_ipcNS_1394_XML_ap">
<sso:WorkQTag>i2tagtest|swadmin|R</sso:WorkQTag>
<sso:WIFieldData>

<sso:vWIFieldGroup>
<sso:WorkItemTag>i2tagtest|ALLOCATE|swadmin|R|2708|414137|

i2tagtest|STEP1|0|2</sso:WorkItemTag>
<sso:WorkItemFields>

<sso:vField>
<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>USA</sso:Value>

</sso:vField>
...

</sso:WorkItemFields>
</sso:vWIFieldGroup>

</sso:WIFieldData>
<sso:ValidateFields/>

</ap:KeepItems>
</ap:WorkQ>

</ap:Action>

Keep Request (Start Case):

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:User>

<ap:StartCase Id="_jsx_ipcNS_217_XML_ap">
<sso:ProcTag>i2tagtest|ALLOCATE|0|2</sso:ProcTag>
<sso:Description>Demo</sso:Description>
<sso:ReleaseItem>false</sso:ReleaseItem>
<sso:ValidateFields>false</sso:ValidateFields>
<sso:Fields>

<sso:vField>
<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>USA</sso:Value>

</sso:vField>
...

</sso:Fields>
</ap:StartCase>

</ap:User>
</ap:Action>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

268 | Chapter 13 GI Forms Interface
createLockRequest

Purpose This method creates and returns the Action Processor LockItems request.

This method only returns the LockItems request; it does not submit it to the
Action Processor. To submit the request, you must call the socketRequest method
(see page 294).

Note that it is not required that you call this method — it is called by the custom
form class lockWorkItem method. It is available, however, if you want the Action
Processor LockItems request to lock a work item and get field data.

Syntax createLockRequest(fieldNames,
requestId)

Parameters

Returns A string — LockItems request XML

Example The following is an example usage from com.tibco.bpm.ipc.Form:

ipcClass.prototype.lockWorkItem = function(
fieldNames, xslPath, apCacheId, cdfCacheId) {

var fieldData = null;
var useApCacheId = apCacheId != null ? apCacheId :

this.getXmlCacheIdAp();
var useXslPath = xslPath != null ? xslPath :

 com.tibco.bpm.ipc.Form.DIR + 'xsl/lockItemsToCdf.xsl';
var useCdfCacheId = cdfCacheId != null ? cdfCacheId :

this.getXmlCacheId();
var lockRequest = this.createLockRequest(fieldNames, useApCacheId);
var socket = this.socketRequest(lockRequest, useApCacheId);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.transformData(useXslPath, useApCacheId, useCdfCacheId);
var doc = this.getApp().getCache().getDocument(useCdfCacheId);
fieldData = new com.tibco.bpm.ipc.FieldData();
fieldData.loadFromCdfDoc(doc);

}
return fieldData;

};

Parameter Type Required? Description

fieldNames Array of
strings

Yes Fields to include in the lock items
request.

requestId string No Identifies the request.

If not provided, the xmlCacheIdAp
is used (which can be obtained with
the this.getXmlCacheIdAp
function).
TIBCO iProcess Workspace (Browser) Configuration and Customization

createLockRequest | 269
Example XML The following provides example XML for this method.

Lock Items Request:

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:WorkQ>

<ap:LockItems Id="y76R20">
<sso:WorkQTag>i2tagtest|swadmin|R</sso:WorkQTag>
<sso:WorkItemTags>

<sso:string>i2tagtest|ALLOCATE|swadmin|R|2050|408966|i2tagtest|
SUMMARY|0|2</string>

</sso:WorkItemTags>
<sso:WIFGContent>

<sso:WIFieldNames>
<sso:string>LOCATION</sso:string>
<sso:string>MEMO</sso:string>
<sso:string>NAME</sso:string>
<sso:string>NUMERIC</sso:string>
<sso:string>REASON</sso:string>
<sso:string>TEXT</sso:string>
<sso:string>TITLE</sso:string>

</sso:WIFieldNames>
<sso:FieldsOption>ssoAllMarkings</sso:FieldsOption>

</sso:WIFGContent>
</ap:LockItems>

</ap:WorkQ>
</ap:Action>

Lock Items Request Result:

<ap:ActionResult xmlns:ap="http://tibco.com/bpm/actionprocessor">
<ap:Status>

<ap:Version>10.6.0</ap:Version>
<ap:ReturnCode>0</ap:ReturnCode>
<ap:ReturnComment>The Action was processed successfully. Check the individual

Request Results for their status.</ap:ReturnComment>
<ap:ReturnDateTime>2006-02-06T10:43:42.698-0800</ap:ReturnDateTime>

</ap:Status>
<ap:SSO>

<sso:vSSOData xmlns:sso="http://tibco.com/bpm/sso/types">
<sso:Results>

<sso:vResult Id="_jsx_ipcNS_301_XML_ap">
<sso:WIFieldGroups>

<sso:vWIFieldGroup>
<sso:WorkItemTag>i2tagtest|ALLOCATE|swadmin|R|2050|408966|
i2tagtest|SUMMARY|0|2</sso:WorkItemTag>
<sso:WorkItemFields>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

270 | Chapter 13 GI Forms Interface
<sso:vField>
<sso:Name>TITLE</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>test title 3</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>TEXT</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>test</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>REASON</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>test</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>NUMERIC</sso:Name>
<sso:FieldType>swNumeric</sso:FieldType>
<sso:Value>123.0</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>NAME</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>test name 3</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>MEMO</sso:Name>
<sso:FieldType>swMemo</sso:FieldType>
<sso:Value>test memo 4</sso:Value>

</sso:vField>
<sso:vField>

<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>test 6</sso:Value>

</sso:vField>
</sso:WorkItemFields>

</sso:vWIFieldGroup>
</sso:WIFieldGroups>

</sso:vResult>
</sso:Results>

</sso:vSSOData>
</ap:SSO>

</ap:ActionResult>

Lock Items Request Transform XSL:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sso="http://tibco.com/bpm/sso/types"
xmlns:ap="http://tibco.com/bpm/actionprocessor" exclude-result-prefixes=

"sso ap">
<xsl:output omit-xml-declaration="yes"/>
<xsl:param name="uniqueId" select="'_jsx_ipcNS_264_XML_ap'"/>
<xsl:output indent="yes"/>
<xsl:template match="/">
TIBCO iProcess Workspace (Browser) Configuration and Customization

createLockRequest | 271
<data>
<xsl:apply-templates select="/ap:ActionResult/ap:SSO/sso:vSSOData/
sso:Results/sso:vResult[@Id = $uniqueId]"/>

</data>
</xsl:template>
<xsl:template match="sso:vResult">

<xsl:apply-templates select="sso:WIFieldGroups/sso:vWIFieldGroup/
sso:WorkItemFields/sso:vField"/>

</xsl:template>
<xsl:template match="sso:vField">

<xsl:element name="record">
<xsl:attribute name="jsxid">

<xsl:value-of select="generate-id()"/>
</xsl:attribute>
<xsl:attribute name="ssoName">

<xsl:value-of select="sso:Name"/>
</xsl:attribute>
<xsl:attribute name="ssoFieldType">

<xsl:value-of select="sso:FieldType"/>
</xsl:attribute>
<xsl:attribute name="ssoValue">

<xsl:value-of select="sso:Value"/>
</xsl:attribute>

</xsl:element>
</xsl:template>

</xsl:stylesheet>

Lock Items Request CDF:

<data>
<record jsxid="IDAF1CZC" ssoName="TITLE" ssoFieldType="swText" ssoValue="test
title 3"/>

<record jsxid="IDAJ1CZC" ssoName="TEXT" ssoFieldType="swText" ssoValue="test"/>
<record jsxid="IDAN1CZC" ssoName="REASON" ssoFieldType="swText"
ssoValue="test"/>

<record jsxid="IDAR1CZC" ssoName="NUMERIC" ssoFieldType="swNumeric"
ssoValue="123.0"/>

<record jsxid="IDAV1CZC" ssoName="NAME" ssoFieldType="swText"
ssoValue="test name 3"/>

<record jsxid="IDAZ1CZC" ssoName="MEMO" ssoFieldType="swMemo"
ssoValue="test memo 4"/>

<record jsxid="IDA31CZC" ssoName="LOCATION" ssoFieldType="swText"
ssoValue="test 6"/>

</data>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

272 | Chapter 13 GI Forms Interface
createReleaseRequest

Purpose If a case is being started, this method creates and returns the Action Processor
StartCase request, with the isRelease flag set to True.

If an existing work item is being released from the work queue, this method creates
and returns the Action Processor ReleaseItems request.

This method only returns the StartCase or ReleaseItems request; it does not
submit it to the Action Processor. To submit the request, you must call the
socketRequest method (see page 294).

Syntax createReleaseRequest(fields,
requestId,
validate,
subProcPrecedence)

Parameters
Parameter Type Required? Description

fields Array of
objects

Yes • An Array of Objects containing
field data properties: name,
fieldType, value.

• An Object, such as
com.tibco.bpm.ipc.FieldData
that implements
getFieldDataArray(), which
returns an Array (for
information about
com.tibco.bpm.ipc.FieldData,
see FieldData Class on
page 296).

requestId string No Identifies the request.

If not provided, xmlCacheIdAp is
used (which can be obtained with
the this.getXmlCacheIdAp
function).

validate boolean No If True, the field values are
validated against the type to which
they are defined (text, date, time,
etc.).

Default = False
TIBCO iProcess Workspace (Browser) Configuration and Customization

createReleaseRequest | 273
Returns A string — StartCase or ReleaseItems request XML.

Remarks This method is called by the custom form class doRelease method. The Release
button on the form triggers the call to the doRelease method. Data is collected
from the form and the XML request is obtained using this method. This request is
then submitted to the Action Processor using the socketRequest method.

Example The following is an example usage from com.tibco.bpm.ipc.FormTemplate:

ipcClass.prototype.doRelease = function() {
var releaseRequest = this.createReleaseRequest(this.getFormData());
var socket = this.socketRequest(releaseRequest);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.jsxsuper();
}

};

subProcPrecedence string No Specifies the precedence of
sub-procedure versions that are
launched from the procedure.
These are enumerated in
SWSubProcPrecedenceType.

Default = If not specified, the
option set in the application is used
(Options dialog > General tab >
Sub-Case Version Precedence).

Note: The subProcPrecedence
parameter is only applicable for
StartCase.

Parameter Type Required? Description
 TIBCO iProcess Workspace (Browser) Configuration and Customization

274 | Chapter 13 GI Forms Interface
Example XML The following provides example XML for this method.

Release Request:

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:WorkQ>

<ap:ReleaseItems Id="_jsx_ipcNS_1394_XML_ap">
<sso:WorkQTag>i2tagtest|swadmin|R</sso:WorkQTag>
<sso:WIFieldData>

<sso:vWIFieldGroup>
<sso:WorkItemTag>i2tagtest|ALLOCATE|swadmin|R|2708|414137|

i2tagtest|STEP1|0|2</sso:WorkItemTag>
<sso:WorkItemFields>

<sso:vField>
<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>USA</sso:Value>

</sso:vField>
...

</sso:WorkItemFields>
</sso:vWIFieldGroup>

</sso:WIFieldData>
<sso:ValidateFields/>

</ap:ReleaseItems>
</ap:WorkQ>

</ap:Action>

Release Request (Start Case):

<?xml version="1.0" encoding="UTF-8"?>
<ap:Action xmlns:ap="http://tibco.com/bpm/actionprocessor"

xmlns:sso="http://tibco.com/bpm/sso/types">
<ap:User>

<ap:StartCase Id="_jsx_ipcNS_217_XML_ap">
<sso:ProcTag>i2tagtest|ALLOCATE|0|2</sso:ProcTag>
<sso:Description>Demo</sso:Description>
<sso:ReleaseItem>true</sso:ReleaseItem>
<sso:ValidateFields>false</sso:ValidateFields>
<sso:Fields>

<sso:vField>
<sso:Name>LOCATION</sso:Name>
<sso:FieldType>swText</sso:FieldType>
<sso:Value>USA</sso:Value>

</sso:vField>
...

</sso:Fields>
</ap:StartCase>

</ap:User>
</ap:Action>
TIBCO iProcess Workspace (Browser) Configuration and Customization

doCancel | 275
doCancel

Purpose This method closes the form dialog and unlocks the work item. No field data is
saved. This method also updates the work item list.

Unlock work item and list update are not applicable for case start.

Syntax doCancel()

Parameters None

Returns Void
 TIBCO iProcess Workspace (Browser) Configuration and Customization

276 | Chapter 13 GI Forms Interface
doClose

Purpose This method closes the form dialog and unlocks the work item. No field data is
saved. This method also updates the work item list.

Unlock work item and list update are not applicable for case start.

Syntax doClose()

Parameters None

Returns Void

Remarks This method is called by the close event on the jsx3.Dialog.

This method calls the doCancel method.
TIBCO iProcess Workspace (Browser) Configuration and Customization

doKeep | 277
doKeep

Purpose This method closes the form dialog and updates the work item list. (List update is
not applicable for case start.)

A custom form class that extends the base class must override this method. The
overridden method provides the keep functionality and calls this super class
method (using this.jsxsuper();) upon successful completion, as follows:

• The Keep button on the form triggers the call to the doKeep method.

• Data is collected from the form.

• The XML request is obtained using createKeepRequest. This request is then
submitted to the Action Processor using socketRequest.

• The socket results are checked for success, and if successful, calls this super
class method (using this.jsxsuper();).

Note that the com.tibco.bpm.ipc.Socket class presents the user with a message
dialog if any errors are encountered. The Socket class can be checked for any error
conditions using the methods shown in the example below.

Syntax doKeep()

Parameters None

Returns Void

Example The following is an example usage from com.tibco.bpm.ipc.FormTemplate:

ipcClass.prototype.doKeep = function() {
var keepRequest = this.createKeepRequest(this.getFormData());
var socket = this.socketRequest(keepRequest);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.jsxsuper();
}

};
 TIBCO iProcess Workspace (Browser) Configuration and Customization

278 | Chapter 13 GI Forms Interface
doRelease

Purpose This method closes the form dialog and updates the work item list. (List update is
not applicable for case start.)

A custom form class that extends the base class must override this method. The
overridden method provides the release functionality and calls this super class
method (using this.jsxsuper();) upon successful completion, as follows:

• The Release button on the form triggers the call to the doRelease method.

• Data is collected from the form.

• The XML request is obtained using createReleaseRequest. This request is
then submitted to the Action Processor using socketRequest.

• The socket results are checked for success, and if successful, calls this super
class method (using this.jsxsuper();).

Note that the com.tibco.bpm.ipc.Socket class presents the user with a message
dialog if any errors are encountered. The Socket class can be checked for any error
conditions using the methods shown in the example below.

Syntax doRelease()

Parameters None

Returns Void

Example The following is an example usage from com.tibco.bpm.ipc.FormTemplate:

ipcClass.prototype.doRelease = function() {
var releaseRequest = this.createReleaseRequest(this.getFormData());
var socket = this.socketRequest(releaseRequest);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.jsxsuper();
}

};
TIBCO iProcess Workspace (Browser) Configuration and Customization

getWindowContext | 279
getWindowContext

Purpose This method provides access to the window context of the window that contains
the GI Form when floating the form in a new browser window.

This method is needed because the JavaScript keyword 'window' refers back to
the original iProcess browser window, not to the window context that contains
the GI Form document.

Syntax getWindowContext()

Parameters None

Returns The window that contains the document object to which the GI form's HTML
elements are attached.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

280 | Chapter 13 GI Forms Interface
TIBCO iProcess Workspace (Browser) Configuration and Customization

init

Purpose This method is called when a new instance of the class is created. A custom form
class that extends this base class can override this method if required, but must
call the super class init method (using this.jsxsuper();). The init method might be
overridden to set the dialog caption bar (if something other than the default value
is desired) or to explicitly set the prototypePath.

Syntax init(node,
strName,
intWidth,
intHeight,
strCaption)

Parameters

Returns Void

Remarks The default dialog caption is as follows:

For a case start:

'Start Case: ' + description + ' - ' + procName + ' - ' + stepName

For a lock work item:

'Work Item: ' + caseNumber + ' - ' + description + ' - ' + procName + ' - ' +
stepName

Parameter Type Required? Description

node jsx3.Entity Yes The XML node record for the
selected list item.

strName string No The jsx name assigned to the object.

Default = “ipc.Form’

intWidth int No The form dialog width.

Default = 800

intHeight int No The form dialog height.

Default = 500

strCaption string No The form dialog caption.

Default = see Remarks below.

lockWorkItem | 281
lockWorkItem

Purpose This method creates an Action Processor LockItems request XML, submits the
request, then applies the specified XSL transform to the result returned.

The lockWorkItem method combines several common actions into a convenient
single method call. This can be used by a custom form class when initializing the
form data, typically called from the custom class postLoadInit method override.
For a code example, see postLoadInit (on page 284).

This method returns an instance of com.tibco.bpm.ipc.FieldData. Each record
element in the transformed CDF is added as a data field in
com.tibco.bpm.ipc.FieldData. The field data is read from the corresponding
attributes in each record: ssoName, ssoFieldType, ssoValue, and ssoIsArray.

The com.tibco.bpm.ipc.FieldData class provides convenient access to field data,
which can be updated and then passed into the fields parameter of the
createKeepRequest or the createReleaseRequest function.

If an error is encountered processing the request, a null is returned.

Note that if a custom transform is applied, the returned
com.tibco.bpm.ipc.FieldData will contain valid data only if the resulting CDF
conforms to the expected default format shown below:

<data>
<record ssoName="FieldName"

ssoFieldType="swFieldType"
ssoValue="FieldValue"
ssoIsArray="true" or "false"/>

...
</data>

If an expected record attribute is not found, its matching property in the data
object is set to null.

If record elements are not found, no data objects are created.

Syntax lockWorkItem(fieldNames,
xslPath,
apCacheId,
cdfCacheId)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

282 | Chapter 13 GI Forms Interface
Parameters

Returns Instance of com.tibco.bpm.ipc.FieldData.

Note: If an error is encountered processing the request, a null is returned.

Parameter Type Required? Description

fieldNames array of
strings
or single
string

Yes Specifies the fields to return from
the server when locking work items.
This can be specified as follows:

Array of strings: The names of the
fields to return.

Single string: Specifies the fields to
return from the server using one of
the following strings:

• “ssoFormMarkings” - Returns
only visible fields/markings
(based on conditional
statements on the form).

• “ssoAllMarkings” - Returns all
fields/markings, even if not
visible on the form (based on
conditional statements on the
form).

Also see, Requesting Values For
Items in an Array Field on page 299.

xslPath string No A file path or CacheId for the XSL to
transform the fieldDefs result into
CDF.

Default = Use the XSL provided in:
.../JSXAPPS/ipc/components/
Forms/xsl/lockItemsToCdf.xsl

apCacheId string No CacheId for the ActionProcessor
result XML.

Default = Use value returned from:
this.getXmlCacheIdAp().

cdfCacheId string No CacheId for the transform CDF.

Default = Use value returned from:
this.getXmlCacheId()
TIBCO iProcess Workspace (Browser) Configuration and Customization

onBeforeUnload | 283
onBeforeUnload

Purpose This method can be extended by a sub-class to handle any actions to be taken
before the browser window is closed directly using the window close icon. This
only applies if the form is opened in a new external browser window.

Note that this method is not called if the window is closed as a result of a call to
doCancel().

Syntax onBeforeUnload()

Parameters None

Returns Void
 TIBCO iProcess Workspace (Browser) Configuration and Customization

284 | Chapter 13 GI Forms Interface
postLoadInit

Purpose A custom form class that extends the base class must override this method. The
postLoadInit method is called after the form prototype is loaded. The overridden
method first calls this super class method (using this.jsxsuper();), then
implements data loading and GUI initialization code.

Note that this method does not update (refresh) the work item list by sending a
message to the server, although statuses in the list are updated (not applicable for
case start).

Syntax postLoadInit()

Parameters None

Returns Void

Example The following is an example usage from com.tibco.bpm.ipc.FormTemplate:

ipcClass.prototype.postLoadInit = function() {
this.jsxsuper();
this.readFieldNames();
if (! this.startCase) {

var lockNames = new Array();
// Returns data for the field names in the given array.
for (var i = 0; i < this.fieldNames.length; i++) {

if (this.fieldData.isArrayField(this.fieldNames[i])) {
//if it is an array field, add [*] to name to return all array values
lockNames.push(this.fieldNames[i] + '[*]');

}
else {

lockNames.push(this.fieldNames[i]);
}

}
this.fieldData = this.lockWorkItem(lockNames);
// Note: Data returned can be specified based on markings
// as shown below. This only applies if forms (which
// define the markings) exist in the procedure.
// Return only visible fields/markings
// (based on conditional statements on the form).
// this.fieldData = this.lockWorkItem("ssoFormMarkings");
// Return all fields/markings, even if not visible on the form
// (based on conditional statements on the form).
// this.fieldData = this.lockWorkItem("ssoAllMarkings");
if (this.fieldData == null) {

// Close the form on lock error.
this.doCancel();

}
else {

this.initializeFormData();
}

TIBCO iProcess Workspace (Browser) Configuration and Customization

postLoadInit | 285
}
else {

this.initializeFormData();
}

}
catch (e) {

this.showUserMessage('Error encountered loading form data: ' + e.message);
}

Remarks

The following describes the sequence of calls from the postLoadInit method:

1. Calls the readFieldNames method to populate the this.fieldNames property,
of this class, with the names of fields that are to be returned when the work
item is locked.

The readFieldNames method calls one of the following three methods (in the
Form base class) to obtain the names of the fields associated with a work item.

— readFieldDefs - This method is called if all fields defined for the procedure
are desired. It submits an Action Processor request to retrieve all fields
defined for the procedure.

— readStepMarkings - This method is called if only the fields marked on an
iProcess form are desired. It submits an Action Processor request to retrieve
all fields marked on an iProcess form.

— readFormFields - This method is called if only fields defined for a TIBCO
form plug-in are desired. It submits an Action Processor request to retrieve
all fields defined for a TIBCO form plug-in.

For each of the methods listed above, the field names, types, and isArray flags
are returned by the Action Processor requests, and are cached in an XML CDF
document, as well as stored in a FieldData object, which is returned to the
calling function. The name of the CDF document, and the XSL transform used
to generate the document, may be optionally specified as input parameters to
these methods. If omitted, defaults are used.

2. Uses the this.fieldNames property to loop through the fields stored in the
FieldData object (in the this.fieldData property of this class) to determine
which fields are arrays. For each array field, “[*]” is added to the field name to
signal that all array elements are to be returned when the work item is locked.

3. Calls the lockWorkItem method (in the Form base class) to lock the work
item, passing the names of the fields whose values are to be returned when
the item is locked.

The lockWorkItem method submits an Action Processor request to lock a
work item and retrieve a group of fields with their values. The field names,
 TIBCO iProcess Workspace (Browser) Configuration and Customization

286 | Chapter 13 GI Forms Interface
types, and isArray flags are returned by the Action Processor requests, and are
cached in an XML CDF document, as well as stored in a FieldData object,
which is returned to the calling function. The name of the CDF document, and
the XSL transform used to generate the document, may be optionally
specified as input parameters to the lockWorkItem method. If omitted,
defaults are used.

4. Calls the initializeFormData method to load the form with the field values
returned by the lockWorkItem method.

The initializeFormData method calls the buildCDFArrays method to create
entries, in the XML CDF document, for each element in any array fields
returned by the lockWorkItem method. The buildCDFArrays method
examines the cached XML CDF document, created by the lockWorkItem
method, and identifies any array field elements (the ssoFieldType attribute
will start with “swArrayOf” for array fields). Each array field record contains
the field name and a value string containing the values of all array elements,
separated by a “|” character (e.g., “a|b|c|d”). A new CDF record is created
for each array element. The name of the array element includes the array
index (e.g., “field[0]”), and its value is extracted from the string containing all
element values.

The initializeFormData method then loads a GI Grid component, on the GI
Form, with the resulting XML CDF document containing field names and
values.
TIBCO iProcess Workspace (Browser) Configuration and Customization

readFieldDefs | 287
readFieldDefs

Purpose This method creates an Action Processor GetFieldDefs request XML, submits the
request, then applies the specified XSL transform to the result returned.

The readFieldDefs method combines several common actions into a convenient
single method call. This is called by
com.tibco.bpm.ipc.FormTemplate.readFieldNames. This might be most useful in
development if the values of fields on a procedure are not known or if there is a
need to obtain these dynamically instead of having statically defined fields on a
form.

This method returns an instance of com.tibco.bpm.ipc.FieldData, representing all
fields defined for a procedure. Each record element in the transformed CDF is
added as a data field in com.tibco.bpm.ipc.FieldData. The field data is read from
the corresponding attributes in each record: ssoName, ssoFieldType, ssoValue,
and ssoIsArray.

The com.tibco.bpm.ipc.FieldData class provides convenient access to field data,
which can be updated and then passed into the fields parameter of the
createKeepRequest or the createReleaseRequest function.

If an error is encountered processing the request, a null is returned.

Note that if a custom transform is applied, the returned
com.tibco.bpm.ipc.FieldData will contain valid data only if the resulting CDF
conforms to the expected default format shown below:

<data>
<record ssoName="FieldName"

ssoFieldType="swFieldType"
ssoValue="FieldValue"
ssoIsArray=”true” or “false”/>

...
</data>

If an expected record attribute is not found, its matching property in the data
object is set to null.

If record elements are not found, no data objects are created.

Syntax readFieldDefs(xslPath,
apCacheId,
cdfCacheId)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

288 | Chapter 13 GI Forms Interface
Parameters

Returns Instance of com.tibco.bpm.ipc.FieldData

Note: If an error is encountered processing the request, a null is returned.

Parameter Type Required? Description

xslPath string No A file path or CacheId for the XSL to
transform the fieldDefs result into
CDF.

Default = Use the XSL provided in:
.../JSXAPPS/ipc/components/
Forms/xsl/fieldDefsToCdf.xsl

apCacheId string No CacheId for the ActionProcessor
result XML.

Default = Use value returned from:
this.getXmlCacheIdAp() + 'fd'

cdfCacheId string No CacheId for the transform CDF.

Default = Use value returned from:
this.getXmlCacheId() + 'fd'
TIBCO iProcess Workspace (Browser) Configuration and Customization

readFormFields | 289
readFormFields

Purpose This method creates an Action Processor GetFieldDefs request XML to retrieve
the fields included in the XML returned by an Action Processor GetPluginForm
request, submits the request, and applies the specified XSL transform to the result
returned.

The readFormFields method combines several common actions into a convenient
single method call. This is called by
com.tibco.bpm.ipc.FormTemplate.readFieldNames. This method is useful in
development if the fields defined for a TIBCO Form plug-in are not known or
there is a need to obtain these dynamically instead of having statically defined
fields on a form.

This method returns an instance of com.tibco.bpm.ipc.FieldData, representing
fields defined for a TIBCO form plug-in used on a step of a procedure. Each
record element in the transformed CDF is added as a data field in
com.tibco.bpm.ipc.FieldData. The field data is read from the corresponding
attributes in each record: ssoName, ssoFieldType, ssoValue, and ssoIsArray.

The com.tibco.bpm.ipc.FieldData class provides convenient access to field data,
which can be updated and then passed into the fields parameter of the
createKeepRequest or the createReleaseRequest function.

If an error is encountered processing the request, a null is returned.

Note that if a custom transform is applied, the returned
com.tibco.bpm.ipc.FieldData will contain valid data only if the resulting CDF
conforms to the expected default format shown below:

<data>
<record ssoName="FieldName"

ssoFieldType="swFieldType"
ssoValue="FieldValue"
ssoIsArray=”true” or “false”/>

...
</data>

If an expected record attribute is not found, its matching property in the data
object is set to null.

If record elements are not found, no data objects are created.

Syntax readFormFields(xslPath,
apCacheId,
cdfCacheId,
apPluginCacheId)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

290 | Chapter 13 GI Forms Interface
Parameters

Returns Instance of com.tibco.bpm.ipc.FieldData

Note: If an error is encountered processing the request, a null is returned.

Parameter Type Required? Description

xslPath string No A file path or CacheId for the
XSL to transform the fieldDefs
result into CDF.

Default = Use the XSL provided
in:

.../JSXAPPS/ipc/components/
Forms/xsl/fieldDefsToCdf.xsl

apCacheId string No CacheId for the ActionProcessor
result XML.

Default = Use value returned
from:

this.getXmlCacheIdAp() + 'fd'

cdfCacheId string No CacheId for the transform CDF.

Default = Use value returned
from:

this.getXmlCacheId() + 'fd'

apPluginCacheId string No CacheId for the XML that is the
result of an Action Processor
GetPluginForm request.

Default = Use value returned
from:

this.getApp().getPluginFormId()
TIBCO iProcess Workspace (Browser) Configuration and Customization

readStepMarkings | 291
readStepMarkings

Purpose This method creates an Action Processor GetSteps request XML to get fields
marked on a step form, submits the request, and applies the specified XSL
transform to the result returned.

The readStepMarkings method combines several common actions into a
convenient single method call. This is called by
com.tibco.bpm.ipc.FormTemplate.readFieldNames. This method is useful in
development if the fields marked on the form of a step are not known or there is a
need to obtain these dynamically instead of having statically defined fields on a
form.

This method returns an instance of com.tibco.bpm.ipc.FieldData, representing
fields marked on a form for a step in a procedure. Each record element in the
transformed CDF is added as a data field in com.tibco.bpm.ipc.FieldData. The
field data is read from the corresponding attributes in each record: ssoName,
ssoFieldType, ssoValue, and ssoIsArray.

The com.tibco.bpm.ipc.FieldData class provides convenient access to field data,
which can be updated and then passed into the fields parameter of the
createKeepRequest or the createReleaseRequest function.

If an error is encountered processing the request, a null is returned.

Note that if a custom transform is applied, the returned
com.tibco.bpm.ipc.FieldData will contain valid data only if the resulting CDF
conforms to the expected default format shown below:

<data>
<record ssoName="FieldName"

ssoFieldType="swFieldType"
ssoValue="FieldValue"
ssoIsArray=”true” or “false”/>

...
</data>

If an expected record attribute is not found, its matching property in the data
object is set to null.

If record elements are not found, no data objects are created.

Syntax readStepMarkings(xslPath,
apCacheId,
cdfCacheId)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

292 | Chapter 13 GI Forms Interface
Parameters

Returns Instance of com.tibco.bpm.ipc.FieldData

Note: If an error is encountered processing the request, a null is returned.

Parameter Type Required? Description

xslPath string No A file path or CacheId for the XSL to
transform the fieldDefs result into
CDF.

Default = Use the XSL provided in:
.../JSXAPPS/ipc/components/
Forms/xsl/fieldDefsToCdf.xsl

apCacheId string No CacheId for the ActionProcessor
result XML.

Default = Use value returned from:
this.getXmlCacheIdAp() + 'fd'

cdfCacheId string No CacheId for the transform CDF.

Default = Use value returned from:
this.getXmlCacheId() + 'fd'
TIBCO iProcess Workspace (Browser) Configuration and Customization

showUserMessage | 293
showUserMessage

Purpose Displays an alert dialog with the given message. If this is a child browser window,
the alert is sent to the child window context to prevent focus being moved to the
parent browser window.

Note - Custom GI forms should call this.showUserMessage (vs. alert) to prevent
window focus from shifting back to the parent window.

Syntax showUserMessage(message)

Parameters

Returns Void

Example The following is an example usage:

this.showUserMessage(

'Invalid format:' +

'\n\n Field name: ' + fieldName +

'\n\n Current value: ' + fieldValue +

'\n\n Expected format: ' + pattern + '.');

Parameter Type Required? Description

message string Yes The message to be displayed in the
alert.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

294 | Chapter 13 GI Forms Interface
socketRequest

Purpose This method creates an Action Processor socket for the given request and submits
the request to the Action Processor. This must be called to submit the request after
calling any of the “create...Request” methods (createKeepRequest,
createLockRequest, etc.).

The instance of the Socket class returned can be checked for any error conditions
using the following functions:

• socket.isSuccess - A false value indicates an error occurred communicating
with the Action Processor.

• socket.getSsoErrorMsg - If not null, this will contain a string message
indicating what iProcess Server Object error was returned in the Action
Processor result.

Syntax socketRequest(requestXml,
cacheId)

Parameters

Returns Instance of socket (com.tibco.bpm.ipc.Socket)

Example The following is an example usage:

ipcClass.prototype.doKeep = function() {
var keepRequest = this.createKeepRequest(this.getFormData());
var socket = this.socketRequest(keepRequest);
if (socket.isSuccess() && socket.getSsoErrorMsg() == null) {

this.jsxsuper();
}

};

Note - The com.tibco.bpm.ipc.Socket class presents the user with a message
dialog if any errors are encountered.

Parameter Type Required? Description

requestXml string Yes The Action Processor request XML.

CacheId string No The CacheId where the Action
Processor result is stored.

Default = Use value returned from:
this.getXmlCacheIdAp().
TIBCO iProcess Workspace (Browser) Configuration and Customization

transformData | 295
transformData

Purpose This method applies the given XSL transform to the source CacheId XML and
stores the result in the target CacheId XML.

Syntax transformData(xslPath,
sourceCacheId,
targetCacheId)

Parameters

Returns A string — the result of the transform.

Parameter Type Required? Description

xslPath string Yes File path or CacheId for the
transform XSL document.

sourceCacheId string No CacheId for the source XML.

Default = Use value returned from:
this.getXmlCacheIdAp().

targetCacheId string No CacheId for the target XML.

Default = Use value returned from:
this.getXmlCacheId().
 TIBCO iProcess Workspace (Browser) Configuration and Customization

296 | Chapter 13 GI Forms Interface
FieldData Class

The com.tibco.bpm.ipc.FieldData class provides convenient access to field data,
which can be updated and then passed in the fields parameter of the
createKeepRequest (see page 265) or the createReleaseRequest (see page 272)
function.

An instance of com.tibco.bpm.ipc.FieldData is returned by the following Form
base class methods:

• lockWorkItem

• readFieldDefs

• readStepMarkings

• readFormFields

The constructor for com.tibco.bpm.ipc.FieldData does not require any
parameters, for example:

var fieldDat = new com.tibco.bpm.ipc.FieldData();

For examples of usage, see FormTemplate.js.

Also note:

• The value of a field can be set to uninitialized by setting the FieldData value
for the field to null.

• For all fields that are not fieldType == 'swText', a zero-length string value will
result in the field being set to an uninitialized state.

• Fields of fieldType == 'swDate' or 'swTime' must be formatted in standard
XML format. See Date Conversions.

FieldData Class Functions

The com.tibco.bpm.ipc.FieldData class contains the following public functions:

• loadFromCdfDoc(cdfDoc)

This function loads fieldDataObject from the CDF document passed in.

where:

— cdfDoc is the CDF document (jsx3.xml.Document) from which to load the
field data.
TIBCO iProcess Workspace (Browser) Configuration and Customization

FieldData Class | 297
The CDF is expected to be in the following form:

<data>
<record ssoName="FieldName"

ssoFieldType="swFieldType"
ssoValue="FieldValue"
ssoIsArray="true" or "false"... />

...
</data>

The fieldDataObject serves as a map, where each association is:

— property = field name

— value = a field data Object, with properties name, fieldType, value, and
isArrayField.

• getFieldValue(name)

This function returns the data value (string) for the specified field name. A
null is returned if name is not found. If the field is an array field, this function
returns an array of values, where each value in the array corresponds to an
element in the array field.

where:

— name is the field name (string) whose value you are retrieving.

• getFieldType(name)

This function returns the field type (string) for the specified field name. A null
is returned if name is not found.

where:

— name is the field name (string) whose type you are retrieving.

• isArrayField(name)

This function returns a Boolean indicating if the specified field is an array
field. True = it is an array field.

where:

— name is the field name (string) in question.

• setFieldValue(name, value)

This function sets the value of the specified field.

where:

— name is the field name (string) whose value you are setting.

— value is the value (string) to set.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

298 | Chapter 13 GI Forms Interface
• setFieldType(name, fieldType)

This function sets the field type of the specified field.

where:

— name is the field name (string) whose field type you are setting.

— fieldType is the field type (string) to set.

• addField(name, fieldType, value, isArrayField)

This function adds a new field data Object with name, fieldType, value, and
isArrayField specified. If an Object with the same name already exists, it will
be replaced with the new Object.

where:

— name is the field name (string) to add.

— fieldType is the type (string) of the field to add.

— value is the value (string) to assign to the new field.

— isArrayField is a Boolean indicating if the field is an array field (True = array
field).

• removeField(name)

This function removes the field data Object specified by setting it to null.

where:

— name is the field name (string) to remove.

• getFieldDataObject()

This function returns the fieldDataObject, which serves as a map, where each
association is:

— property = field name

— value = a field data Object, with properties name, fieldType, value, and
isArrayField.

• getFieldDataArray()

This function returns an array of Objects whose properties contain field data.
These properties are: name, fieldType, value, and isArrayField.
TIBCO iProcess Workspace (Browser) Configuration and Customization

FieldData Class | 299
• enableLogging(app, forceLog)

This function enables logging.

where:

— app is the application instance (com.tibco.bpm.ipc.Application) to log to.

— forceLog (boolean) allows you to force logging. If true, the log is written
even if appLogActive = false. This is optional. Default = false.

• log(message)

This function logs the specified message if logging is enabled — see the
enableLogging function.

where:

— message is the message to write to the log.

Requesting Values For Items in an Array Field

You can request the values for items in an array field by including an indexed
string in the lock work item request array. An array field indexed string has the
following syntax:

arrayFieldName + "[" + index + "]"

For example, given an array field named 'IDX_ITEM', the lockWorkItem method
of the GI form class is called:

this.lockWorkItem(this.fieldNames);

with the this.fieldNames array set to include:

'IDX_ITEM[0]' , 'IDX_ITEM[1]', 'IDX_ITEM[2]' … etc

Array field values can also be set by including these in the FieldData set when
calling the doKeep or doRelease methods.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

300 | Chapter 13 GI Forms Interface
Date Conversions

This section provides information about the methods available in the
com.tibco.bpm.ipc.FormDateHandler class that allow you to convert date
information between the following three formats:

• XML - a string used in standard serialized XML (as described at
http://www.w3.org/TR/xmlschema-2/#dateTime)

• JSDate - a JavaScript Date object

• Local - a localized string as defined by a specified pattern

The formatting patterns use commands similar to those used for formatting in
Java. The following are the date formatting tokens that are supported:

— MM - month, numeric, with leading zero

— M - month, numeric, without leading zero

— MMM - abbreviated month name

— MMMM - full month name

— dd - day number, with leading zero

— d - day number, without leading zero

— yy - year, without century, with leading zero

— yyyy - full year

— a - am/pm designation

— hh (or HH, kk, KK) - hour with leading zero

— h (or H, k, K) - hour without leading zero

— mm - minutes, always with leading zero

— ss - seconds, always with leading zero

Other rules for the formatting pattern:

• Patterns can contain tokens for date information, time information, or both.

• If the am/pm designator is included in the pattern, the hour will be
interpreted as 1-12, otherwise it will be 0-23. Any of the Java-style formatting
tokens for an hour can be specified, but they are all interpreted in this one
manner.

• No other Java-style formatting tokens are supported (e.g., G, w, W, D, E, F, S, z,
Z).
TIBCO iProcess Workspace (Browser) Configuration and Customization

http://www.w3.org/TR/xmlschema-2/#dateTime

Date Conversions | 301
• The only alphanumeric characters that can appear in the pattern are those
shown in the list above.

• Quoted, literal text is not supported in the pattern.

• One or more non-alphanumeric characters MUST appear between tokens as
delimiters (spaces, colons, slashes, dashes, etc). There is one exception to this
rule; the am/pm designator can immediately follow another token without a
delimiter between.

The routines are very flexible when interpreting dates and times entered by a
user, so information will not have to be entered exactly like the pattern, character
by character.

• Any number of delimiting characters can be entered between parts of the
date/time. These delimiting characters do not have to match the characters in
the formatting pattern (keeping in mind that alpha characters cannot be used
as delimiters). For instance, all of these values will be interpreted the same:
'12/31/2005', '12-31-2005', '12 31 * 2005', '(12) (31?%$#@2005)'.

• Numeric values can be entered either with or without leading zeros.

• No matter what token is used in the pattern for the month, it can be entered as
either a number or as the abbreviated or full month name.

• When the name or abbreviation for a month is entered, there does not have to
be delimiters around it, and it can be placed out of the expected order.
However, all the remaining elements must appear in the expected order. For
instance, if the pattern is 'dd-MM-yyyy', then 'Sep-10-2005', 'September 10,
2005', '10Sep2005', and even '10 2005Sep' will all be interpreted as the 10th of
September, 2005.

• Time can be entered in either 24-hour or 12-hour format. If seconds or minutes
are left off, they will be set to zero. The AM/PM designator does not have to
appear in the exact position specified in the pattern. For instance, using any of
these formatting patterns: 'h:mm:ssa', 'h:mm:ss', 'h.mm.ss a', cause all of the
following values to be interpreted as 2PM: '2:00pm', '2pm', '2:00:00pm', '14',
'14:00', '14:00:00', and even 'pm2'.

• The sets of characters 'st', 'nd', 'rd', and 'th' when used with day numbers, such
as '1st', '2nd', '3rd', '4th', etc., will be ignored. The fact that these follow a
number will not automatically cause the number to be used as the day,
however. The number must still fall in the proper relative order according to
the pattern. Aside from these pairs of characters, the am/pm designator, and
the full and abbreviated month names, no other alpha characters (a-z and
A-Z) are allowed in the input string, and will cause a conversion to fail. Month
names will, of course, have to be spelled properly, and only the one expected
abbreviation will be valid.

• When 0 through 99 is entered for a year, it will be interpreted as 2000 - 2099.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

302 | Chapter 13 GI Forms Interface
• The user must enter the elements of the date/time in the order specified in the
formatting pattern, but if some elements are left off the end, a suitable value
will be used. For instance, when using the pattern MM-dd-yyyy, if only the
month and day are entered, the current year is used. If only the month is
entered, the first day of the month for the current year is used.

• Relative dates or times can be specified by entering a plus or minus sign
followed by a number:

— If the pattern includes date information, this is interpreted in days. So '+1'
is tomorrow, '-1' is yesterday, '+7' is a week from today, etc. Time is set to
00:00:00.

— For time-only fields, this is interpreted as minutes. So '-30' is thirty minutes
ago, '+90' is an hour and a half from now, etc. Seconds are set to 00.

• All XML dateTime strings will have the fractional seconds values shown with
a decimal followed by six zeros:

2006-06-30T17:14:39.0000000

Note that the JavaScript Date object milliseconds value is truncated.

• No XML dateTime strings will include a timezone value.

• The following range of dates is allowed:

— Any valid JavaScript Date with a year of 100 or greater:
0100-01-01T00:00:00.0000000 to 275760-09-13T01:00:00.0000000

— For a JavaScript date, this range is: 59011430400000 milliseconds (-683002
days) to 8640000000000000 milliseconds (100000000 days) elapsed since
1/1/1970 GMT.

The following are examples of valid patterns:

— MM/dd/yyyy

— dd-MMM-yyyy

— MMMM dd, yyyy

— yyyy-mm-dd

— h:mma
TIBCO iProcess Workspace (Browser) Configuration and Customization

Date Conversions | 303
The following are examples of invalid patterns (although they are valid in Java
patterns):

— yyyyMMddhhmmss (no delimiters)

— yyyy-mm-dd'T'hh:mm:ss.000z (quoted text and unsupported commands)

— E MMMM dd, yyyy G (unsupported commands)

— 'week:' w 'day:' F 'of' yyyy (quoted text and unsupported commands)

— h 'o''clock' a (quoted text)

Code Example

// Convert from JavaScript date to XML string format

var formDateHandler = new com.tibco.bpm.ipc.FormDateHandler();
var date = new Date(1182738273189);
var xmlDateString = formDateHandler.jsDateToXml(date);

alert('xmlDateString = ' + xmlDateString);

// Result: xmlDateString = 2007-06-24T19:24:33.0000000

// Convert from XML string format to display format

var pattern = 'MM/dd/yyyy h:mma'
var displayString = formDateHandler.xmlToLocal(xmlDateString,

pattern);

alert('displayString = ' + displayString);

// Result: displayString = 06/24/2007 7:24pm

// Convert local string format to XML string format

var localString = '2006-12-31 23:59:59';
var pattern = 'yyyy-MM-dd hh:mm:ss';
var happyNewYear = formDateHandler.localToXml(localString,

pattern);

alert('happyNewYear = ' + happyNewYear);

// Result: happyNewYear = 2006-12-31T23:59:59.0000000
 TIBCO iProcess Workspace (Browser) Configuration and Customization

304 | Chapter 13 GI Forms Interface
Date Conversion Methods

The following is a list of the date conversion methods described in this section:

• jsDateToLocal, page 304

• jsDateToXml, page 304

• localToJSDate, page 305

• localToXml, page 305

• xmlToJSDate, page 306

• xmlToLocal, page 306

jsDateToLocal

Purpose This method converts a JavaScript Date object into a string containing a formatted
local date value.

Syntax jsDateToLocal(jsDate, pattern)

Parameters

Returns A string containing a formatted date. Returns null if parameters are omitted or
the format pattern is invalid.

Remarks If the date portion of the format pattern is omitted, the resulting date is
12/30/1899. If the time portion of the format pattern is omitted, the resulting time
is 00:00.

jsDateToXml

Purpose This method converts a JavaScript Date object into a standard serialized XML date
string.

Syntax jsDateToXml(jsDate)

Parameter Type Required? Description

jsDate Date
object

Yes JavaScript Date object to be
converted.

pattern string Yes A valid format pattern — specifies
the format of the date string
returned by this method.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Date Conversions | 305
Parameters

Returns A string containing a date in standard serialized XML format:

yyyy-MM-ddThh:mm:ss.0000000

Returns null if the jsDate parameter is omitted.

localToJSDate

Purpose This method converts a string containing a formatted local date value into a
JavaScript Date object.

Syntax localToJSDate(strDate, pattern)

Parameters

Returns A JavaScript Date object. Returns null if parameters are omitted or the format
pattern is invalid.

Remarks If the date portion of the format pattern is omitted, the resulting date is
12/30/1899. If the time portion of the format pattern is omitted, the resulting time
is 00:00.

localToXml

Purpose This method converts a string containing a formatted local date value into a
standard serialized XML date string.

Syntax localToXml(strDate, pattern)

Parameters

Parameter Type Required? Description

jsDate Date
object

Yes JavaScript Date object to be
converted.

Parameter Type Required? Description

strDate string Yes Formatted date string.

pattern string Yes Valid format pattern — the format
of strDate parameter.

Parameter Type Required? Description

strDate string Yes Formatted date string.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

306 | Chapter 13 GI Forms Interface
Returns A string containing a date in standard serialized XML format:

yyyy-MM-ddThh:mm:ss.0000000

Returns null if parameters are omitted or the format pattern is invalid.

Remarks If the date portion of the format pattern is omitted, the resulting date is
12/30/1899. If the time portion of the format pattern is omitted, the resulting time
is 00:00.

xmlToJSDate

Purpose This method converts a standard serialized XML date string into a JavaScript Date
object.

Syntax xmlToJSDate(xmlDate)

Parameters

Returns A JavaScript Date object. Returns null if the xmlDate parameter is omitted or the
format pattern is invalid.

xmlToLocal

Purpose This method converts a standard serialized XML date string into a string
containing a formatted local date value.

Syntax xmlToLocal(xmlDate, pattern)

pattern string Yes Valid format pattern — the format
of strDate parameter.

Parameter Type Required? Description

Parameter Type Required? Description

xmlDate string Yes Standard serialized XML date string
in the format:

yyyy-MM-ddThh:mm:ss.0000000
TIBCO iProcess Workspace (Browser) Configuration and Customization

Date Conversions | 307
Parameters

Returns A string containing a formatted date. Returns null if parameters are omitted or
the format pattern is invalid.

Remarks If the date portion of the format pattern is omitted, the resulting date is
12/30/1899. If the time portion of the format pattern is omitted, the resulting time
is 00:00.

Date Format Localization Methods

This section provides information about the methods available in the
com.tibco.bpm.ipc.FormDateHandler class that allow you to customize text
strings representing months and the am/pm designation. These are used when
matching a format pattern converting to or from a local date string format.

• getAbbrMonthNames, page 307

• setAbbrMonthNames, page 308

• getAmPm, page 308

• setAmPm, page 309

• getFullMonthNames, page 309

• setFullMonthNames, page 309

getAbbrMonthNames

Purpose This method returns the abbreviations of the months that are returned when the
abbreviated month name format (MMM) is specified in a pattern parameter to a
date conversion method.

Syntax getAbbrMonthNames()

Parameters None

Parameter Type Required? Description

xmlDate string Yes Standard serialized XML date string
in the format:

yyyy-MM-ddThh:mm:ss.0000000

pattern string Yes Valid format pattern - specifies the
format of the date string returned
by this method.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

308 | Chapter 13 GI Forms Interface
Returns JavaScript array of strings representing the abbreviations for months of the year,
in order from the first month to the twelfth month.

Remarks The default abbreviated month names returned by the date conversion methods
are: 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'.

setAbbrMonthNames

Purpose This method allows you to specify the abbreviations that are returned when the
abbreviated month name format (MMM) is specified in a pattern parameter to a
date conversion method.

Syntax setAbbrMonthNames(monthNames)

Parameters

Returns None

Remarks The default abbreviated month names returned by the date conversion methods
are: 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'.

getAmPm

Purpose This method returns the am/pm designation that is returned when the am/pm
designator (‘a’) is specified in a pattern parameter to a date conversion method.

Syntax getAmPm()

Parameters None

Returns JavaScript array of two strings, the first representing the am, and the second
representing the pm designation.

Remarks The default designations returned by the date conversion methods are: 'am', 'pm'.

Parameter Type Required? Description

monthNames JavaScript
array

Yes Array of strings representing the
abbreviations for the months of
the year, in order from the first
month to the twelfth month.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Date Conversions | 309
setAmPm

Purpose This method allows you to specify the am/pm designation that is returned when
the am/pm designator (‘a’) is specified in a pattern parameter to a date
conversion method.

Syntax setAmPm(designators)

Parameters

Returns None

Remarks The default designations returned by the date conversion methods are: 'am', 'pm'.

getFullMonthNames

Purpose This method returns the names of the months that are returned when the full
month name format (MMMM) is specified in a pattern parameter to a date
conversion method.

Syntax getFullMonthNames()

Parameters None

Returns JavaScript array of strings representing the months of the year, in order from the
first month to the twelfth month.

Remarks The default full month names returned by the date conversion methods are:
'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September',
'October', 'November', 'December'.

setFullMonthNames

Purpose This method allows you to specify the names of the months that are returned
when the full month name format (MMMM) is specified in a pattern parameter to
a date conversion method.

Syntax setFullMonthNames(monthNames)

Parameter Type Required? Description

designators JavaScript
array

Yes Array of strings representing the
am/pm designators, the first
element represents am, and the
second represents pm.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

310 | Chapter 13 GI Forms Interface
Parameters

Returns None.

Remarks The default full month names returned by the date conversion methods are:
'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September',
'October', 'November', 'December'.

Parameter Type Required? Description

monthNames JavaScript
array

Yes Array of strings representing the
months of the year, in order from
the first month to the twelfth
month.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Accessing User Options When Using GI Forms | 311
Accessing User Options When Using GI Forms

User options establish default settings for each user who logs into the iProcess
Workspace (Browser). These include things such as the language to display, form
position on the screen, etc. (More information about the options available and
how they can be set from the application can be found in the iProcess Workspace
(Browser) User’s Guide.)

The custom GI form class that extends the com.tibco.bpm.ipc.Form base class can
access the user options for the currently logged in user using:

this.getAppPrefValue(prefName)

where prefName identifies the user option for which you would like the value.
This method returns a string, identifying the current setting of the given user
option. The following table lists the valid prefName values and the possible return
values for each option (note that options were formerly called preferences, hence the
prefName parameter):

prefName Return Values Description

language “language name” Identifies the language in which the iProcess
Workspace (Browser) is displayed. The default is
“English(US)”.

formLeft “integer value” The work item form window is positioned this
number of pixels from the left. (Only applicable if
both formFullscreen and formCenter are false.)

formTop “integer value” The work item form window is positioned this
number of pixels from the top. (Only applicable if
both formFullscreen and formCenter are false.)

formWidth “integer value” The width (in pixels) of the work item form window.
(Only applicable if formFullscreen is false.)

formHeight “integer value” The height (in pixels) of the work item form window.
(Only applicable if formFullscreen is false.)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

312 | Chapter 13 GI Forms Interface
formFullscreen “true” The work item form window is displayed full screen.

“false” The work item form window is not displayed full
screen. (Other options are used to determine
position/size.)

formCenter “true” The work item form window is displayed centered.
(the formWidth and formHeight options are used to
determine size.)

“false” The work item form window is not displayed
centered. (Other options are used to determine
position/size.)

subProcPrecedence “swPrecedenceR” The precedence in which sub-procedures are started
from the main procedure:

— swPrecedenceR: Only released
sub-procedures are started.

— swPrecedenceUR: Unreleased, then released.

— swPrecedenceMR: Model, then released.

— swPrecedenceUMR: Unreleased, model, then
released.

— swPrecedenceMUR: Model, unreleased, then
released.

“swPrecedenceUR”

“swPrecedenceMR”

“swPrecedenceUMR”

“swPrecedenceMUR”

prefName Return Values Description
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 313
Chapter 14 ASP Forms

This chapter describes how to set up the ASP form example that is provided with
the iProcess Workspace.

Topics

• ASP Form Example, page 314
 TIBCO iProcess Workspace (Browser) Configuration and Customization

314 | Chapter 14 ASP Forms
ASP Form Example

A Microsoft Visual Studio .NET 2003 project that defines an example ASP form is
provided with the iProcess Workspace. This example can be used as a starting
point to create your own custom ASP form project.

The example .NET project is located in the following directory:

InstallationHomeDir\iprocessclientbrowser\samples\ASPFormExample

where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the TIBCO iProcess
Workspace is installed.

The following sections describe how to implement this example.

Setting Up the ASP Form Project in IIS

Perform the following steps to set up the Microsoft Visual Studio .NET 2003 ASP
form project in Microsoft Internet Information Services (IIS):

1. Create a virtual directory in IIS and give it an alias name. In this example, we
will use the name of the example project.
TIBCO iProcess Workspace (Browser) Configuration and Customization

ASP Form Example | 315
2. Set the physical directory to point to the location of the ASPFormExample
.NET project.

3. Select all permissions for development purposes. The permissions on the
finished production forms can be set to secure settings at a later time.

4. Start IIS if it is not already running.

5. Open Visual Studio .NET 2003 and select File > Open > Project From Web,
then enter the URL to the project. The path will be:

http://Host:Port/ASPFormExample
 TIBCO iProcess Workspace (Browser) Configuration and Customization

316 | Chapter 14 ASP Forms
where:

— Host is the name of the machine on which you’ve installed the ASP form
project.

— Port is the port used by IIS to communicate with web applications.

The Open Project dialog is displayed.

6. Select and open the ASPFormExample.csproj file.

7. In Visual Studio, select Build > Rebuild Solution.

You will be prompted to save the solution file (.sln).

8. Save the solution file in the ASPFormExample directory.

9. In Visual Studio, right click on ASPForm.aspx in the Solution Explorer
window and select Set As Start Page.

10. In Visual Studio, select Debug in the Solution Configuration drop-down list,
then click the start arrow to the left of the field.

Visual Studio will connect to IIS, allowing you to develop and debug the
ASPFormExample project. (A browser window may appear with the
ASPForm.aspx page displayed containing an error message — you can ignore
this message and close the browser window.)

Configuring iProcess Workspace to Use the ASP Form

Perform the following steps to configure the iProcess Workspace to use the ASP
form:

1. Set the ExternalFormURI parameter in the Action Processor’s configuration
file, apConfig.xml. This specifies the base URL of the Web Application Server
(IIS in this case) that is hosting your ASP Forms. For information about this
parameter, see External Form URI on page 142.

2. Create a procedure and define a normal step, or import ASPForm.xfr (which
is included in the ASPFormExample project).
TIBCO iProcess Workspace (Browser) Configuration and Customization

ASP Form Example | 317
3. Set the form type of the normal step to “FormFlow Form”.

4. Click the Edit button on the Step Definition dialog. The FormFlow Form
dialog is displayed.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

318 | Chapter 14 ASP Forms
5. Enter the location of the ASPForm.aspx file. Don't enter the full URL, as the
base URL location is defined in the ExternalFormURI parameter (see step 1).
Only enter the portion of the URL that is unique to the step.
TIBCO iProcess Workspace (Browser) Configuration and Customization

ASP Form Example | 319
6. Start a case of the procedure. The ASP form example should look as follows.

7. Edit the ASPFormExample example project for the desired form layout and
fields to be displayed.

Define the field names in the fieldNames array, the types in the fieldTypes
array, and the date format in the dateFormat string.

The field names should correspond to the iProcess Engine procedure field
names. The arrays are defined in ASPForm.aspx, as follows:

String [] fieldNames = {"TEXTFLD1", "TEXTFLD2", "TEXTFLD3",
"NUMERIC1", "CNUMERIC1", "DATE1", "TIME1"};

String [] fieldTypes = {"swText", "swText", "swText", "swNumeric",
"swComma", "swDate", "swTime"};

String dateFormat = "MDY";
 TIBCO iProcess Workspace (Browser) Configuration and Customization

320 | Chapter 14 ASP Forms
The dateFormat variable can be set to “MDY”, “DMY”, or “YMD”, to indicate the
order of the day, month, and year in date fields. (Time fields will be displayed in
the hh:mm format.)

The position and look of these fields can be defined in the ASPForm.css cascading
style sheet. For example:

#TEXTFLD1marking {
position:relative;
left:75px;
top:0px;
width:240px;

}

ASP Form Interface

The ASPForm.aspx form makes use of the interfaces defined in the
ASPFormLib.cs library in order to do a start case, lock item, release item, keep
item, and undo item. These interfaces construct and make the request to the
Action Processor. The ASPFormLib public interfaces available are as follows:

ASPFormLib Constructor

The constructor initiates the ASPFormLib with the request and field information.

public ASPFormLib (HttpRequest aRequest,
string [] aFieldNames,
string [] aFieldTypes)

getRequestType

This method returns the type of the request.

public int getRequestType()

The getRequestType method returns one of the following constant int values:

• public const int REQUEST_TYPE_UNKNOWN = 0x0;

• public const int REQUEST_TYPE_RENDER_WORK_ITEM_FORM = 0x1;

• public const int REQUEST_TYPE_RENDER_START_CASE_FORM = 0x2;

• public const int REQUEST_TYPE_START_CASE = 0x3;

• public const int REQUEST_TYPE_UNDO = 0x4;

• public const int REQUEST_TYPE_KEEP = 0x5;
TIBCO iProcess Workspace (Browser) Configuration and Customization

ASP Form Example | 321
• public const int REQUEST_TYPE_RELEASE = 0x6;

getInitXML

This method returns the details of the XML generated by an Undo, Keep or
Release button click on the form.

public string getInitXML()

startCase

This method creates and submits an Action Processor StartCase request.

public void startCase()

undoItem

This method creates and submits an Action Processor UndoItems request.

public void undoItem()

lockItem

This method creates and submits an Action Processor LockItems request.

public String [] lockItem()

keepItem

This method creates and submits an Action Processor KeepItems request.

public void keepItem()
 TIBCO iProcess Workspace (Browser) Configuration and Customization

322 | Chapter 14 ASP Forms
releaseItem

This method creates and submits an Action Processor ReleaseItems request.

public void releaseItem()
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 323
Chapter 15 JSP Forms

This chapter describes how to set up the JSP form example that is provided with
the iProcess Workspace.

Topics

• JSP Form Example, page 324
 TIBCO iProcess Workspace (Browser) Configuration and Customization

324 | Chapter 15 JSP Forms
JSP Form Example

A JSP form example is provided with the TIBCO iProcess Workspace. This
example can be used as a starting point to create your own custom JSP form
project.

The example is in the form of an IntelliJ project that was developed using IntelliJ
IDEA 7.0.4 and assumes Tomcat as the application server.

You can open and build the project using IntelliJ, or you can extract the files from
the \src directory and create a project using those files in whatever Java
development tool you desire.

The example IntelliJ project is located in the following directory:

InstallationHome\iprocessclientbrowser\Samples\JSPFormExample

where InstallationHome is the directory in which the installer places administrative
files, such as the uninstaller, documentation, and sample code. This defaults to
C:\tibco on Windows systems, and /opt/tibco on UNIX systems, but can be
specified as a different directory when the TIBCO iProcess Workspace is installed.

If you build the project in IntelliJ, move the resulting JSPFormExample.war file to
the webapps directory on Tomcat and start Tomcat. The form example will extract
itself into a directory called JSPFormExample under TomcatHome\webapps.

If you build the project in a different Java development tool, or use an application
server other than Tomcat, refer to the instructions for those tools for building and
extracting .war files.

Configure iProcess Workspace to Use the JSP Form

1. Set the ExternalFormURI parameter in the Action Processor’s configuration
file, apConfig.xml. This specifies the base URL of the Web Application Server
(Tomcat in this case) that is hosting your JSP Forms. For information about
this parameter, see External Form URI on page 142.

2. Create a procedure and define a normal step, or import JSPForm.xfr (which
is included in the JSPFormExample project).
TIBCO iProcess Workspace (Browser) Configuration and Customization

JSP Form Example | 325
3. Set the form type of the normal step to “FormFlow Form”.

4. Click the Edit button on the Step Definition dialog. The FormFlow Form
dialog is displayed.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

326 | Chapter 15 JSP Forms
5. Enter the location of the JSPForm.jsp file. Don't enter the full URL as the
base URL location is defined in the ExternalFormURI parameter (see step 1).
Only specify the portion of the URL that is unique to the step.
TIBCO iProcess Workspace (Browser) Configuration and Customization

JSP Form Example | 327
6. Start a case of the procedure. The JSP form example should look as follows.

7. Edit the JSPFormExample example project for the desired form layout and
fields to be displayed.

Define the field names in the fieldNames array, the types in the fieldTypes
array, and the date format in the dateFormat string.

The field names should correspond to the iProcess Engine procedure field
names. The arrays are defined in JSPForm.jsp, as follows:

String [] fieldNames = {"TEXTFLD1", "TEXTFLD2", "TEXTFLD3",
"NUMERIC1", "CNUMERIC1", "DATE1", "TIME1"};

String [] fieldTypes = {"swText", "swText", "swText", "swNumeric",
"swComma", "swDate", "swTime"};

String dateFormat = "MDY";
 TIBCO iProcess Workspace (Browser) Configuration and Customization

328 | Chapter 15 JSP Forms
The dateFormat variable can be set to “MDY”, “DMY”, or “YMD”, to indicate the
order of the day, month, and year in date fields. (Time fields will be displayed in
the hh:mm format.)

The position and look of these fields can be defined in the JSPForm.css cascading
style sheet. For example:

#TEXTFLD1marking {
position:relative;
left:75px;
top:0px;
width:240px;

}

JSP Form Interface

The JSPForm.jsp form makes use of the interfaces defined in the
JSPFormLib.java library in order to do a start case, lock item, release item, keep
item, and undo item. These interfaces construct and make the request to the
Action Processor. The JSPFormLib public interfaces available are as follows:

JSPFormLib Constructor

The constructor initiates the JSPFormLib with the request and field information.

public JSPFormLib (HttpServletRequest aRequest,
String [] aFieldNames,
String [] aFieldTypes)

getRequestType

This method returns the type of the request.

public int getRequestType()

The getRequestType method returns one of the following static int values:

• public static final int REQUEST_TYPE_UNKNOWN = 0x0;

• public static final int REQUEST_TYPE_RENDER_WORK_ITEM_FORM =
0x1;

• public static final int REQUEST_TYPE_RENDER_START_CASE_FORM =
0x2;

• public static final int REQUEST_TYPE_START_CASE = 0x3;
TIBCO iProcess Workspace (Browser) Configuration and Customization

JSP Form Example | 329
• public static final int REQUEST_TYPE_UNDO = 0x4;

• public static final int REQUEST_TYPE_KEEP = 0x5;

• public static final int REQUEST_TYPE_RELEASE = 0x6;

getInitXML

This method returns the details of the XML generated by an Undo, Keep or
Release button click on the form.

public String getInitXML()

startCase

This method creates and submits an Action Processor StartCase request.

public void startCase()

undoItem

This method creates and submits an Action Processor UndoItems request.

public void undoItem()

lockItem

This method creates and submits an Action Processor LockItems request.

public String [] lockItem()

keepItem

This method creates and submits an Action Processor KeepItems request.

public void keepItem()
 TIBCO iProcess Workspace (Browser) Configuration and Customization

330 | Chapter 15 JSP Forms
releaseItem

This method creates and submits an Action Processor ReleaseItems request.

public void releaseItem()
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 331
Chapter 16 Customizing iProcess Modeler Forms

This chapter describes how to customize TIBCO iProcess Modeler-generated
forms using additional HTML and scripting code.

Topics

• Overview, page 332

• Embedding HTML, page 334

• File Caching, page 342

• Common Issues for Embedded and File-Cached Customizations, page 357
 TIBCO iProcess Workspace (Browser) Configuration and Customization

332 | Chapter 16 Customizing iProcess Modeler Forms
Overview

The TIBCO iProcess Workspace (Browser) renders the standard iProcess Modeler
forms as HTML with scripting. This can be customized with additional HTML
and scripting code to alter the appearance and augment the functionality
provided by the standard form.

Customizations can be done using two methods:

• Embedding - Additional HTML can be embedded directly into the iProcess
Modeler Form definition so that it is included when the browser form is
dynamically generated.

— The customizations are stored in the form definitions. Exporting and
importing the procedure maintains the customizations.

— A smaller, simpler set of scripting functions are used to access work item
data.

— The iProcess Modeler Form definition will not be suitable for display in the
iProcess Workspace (Windows), where the HTML tags and scripting code
will be visible as part of the form.

— Each type of marking (required marking, optional marking, display field,
and embedded field) has a consistent, standard appearance. You can
customize the appearance of each type of control, but not individual
markings. You can, however, create your HTML controls, then set and get
work item / case values.

— Standard Undo, Keep, and Release buttons always appear at the bottom of
the form.

• File Caching - The HTML that is generated for the iProcess Modeler Form can
be altered and saved to a disk cache where it will be used instead of
dynamically generated HTML.

— The customizations are stored in files on the web server and will not
automatically follow the iProcess Modeler Form definition through export
/ import, so backups will need to be maintained separately.

— Customizations can be saved for use with a specific minor version of the
procedure, a specific major version, or for all versions. So when the
procedure is changed, new cache files may need to be created, copied, or
modified so that the appropriate customizations are available for use with
TIBCO iProcess Workspace (Browser) Configuration and Customization

Overview | 333
a modified procedure definition, or for work items not migrated to the new
version of the procedure.

— The iProcess Modeler Form definition can be designed to work well in
iProcess Workspace (Windows), while the customizations are used only for
the iProcess Workspace (Browser).

— The appearance and functionality of the individual marking control can be
customized.

— The Undo, Keep, and Release buttons can be modified or moved. They can
also be removed and replaced with other controls that would trigger the
actions through scripting.

If you will only be displaying forms in the iProcess Workspace (Browser), and
your customization needs are not overly complex, you might choose to embed the
HTML into the form definition. If you need to be able to use both the rich client
and browser versions of the iProcess Workspace (Browser), or apply more
extensive customizations, you might choose file-cached customizations.

Also, you do not have to handle all procedures, steps, and versions of steps using
the same method. You can use a mixture of standard dynamically generated
HTML, embedded HTML, and file-cached HTML.

These methods of customization are described in more detail in the following
sections.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

334 | Chapter 16 Customizing iProcess Modeler Forms
Embedding HTML

When embedding HTML directly into the iProcess Modeler Form definition, any
valid HTML can be included, with a few limitations and considerations, as
described in the following subsections.

Word Wrap in the Editor

The editor for the iProcess Modeler Form limits the line length for entering text
into the form definition. When typing or pasting HTML code into the form, you
may want to set the line length to the maximum value of 128. If the editor does
wrap code to a new line, you may need to alter it so that line breaks do not
adversely affect the HTML.

Pre-Formatting of the Form

By default, all the text that appears in the form definition is treated as one large
block of text with spacing preserved and carriage returns between the lines.
Where fields appear in the iProcess Modeler Form, one or more HTML elements
will be inserted into that block of text. By default, this block of HTML is enclosed
inside an HTML <pre> tag. This preserves all whitespace in the form, including
multiple spaces and line feeds. It also limits fonts to monospaced fonts.

Disabling Pre-Formatting

Pre-formatting could interfere with the appearance of some types of HTML you
embed. If it does, the pre-formatting can be disabled by including the HTML
comment “<!-- DISABLE PRE -->” anywhere in the form definition. When that
comment is detected, the HTML <pre> tag will not be placed around the HTML
for the form. If there are some isolated sections of your form that still need to be
pre-formatted, <pre> tags can be added where needed in the form definition.

Including Scripts

Scripting can also be included in the form. As an example, to disable the context
menu for the page, you could include the following block of text anywhere on the
form.

<script language="javascript">
document.oncontextmenu = function (){return false;}

</script>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Embedding HTML | 335
Nesting of HTML Tags with Conditional Statements

Where the iProcess Modeler Form definition includes IF / ELSE / ENDIF
conditions, the blocks affected by a condition are enclosed in an HTML
tag. Make sure that any opening and closing HTML tags that you add nest
properly with these. For instance, you should not put a tag on the line before
an IF statement and the matching tag on the line right after the IF. You could,
however, put the matching tag after the ENDIF.

Functions Available for Embedded Scripting

Two .js files are imported into the page generated for an iProcess Modeler Form:

• spddate.js - Contains functions for date, time, and numeric data conversions.

• spdform.js - Contains functions for accessing the work item / case data and
performing other interactions with the iProcess Modeler Forms.

Comments inside of spddate.js describe the available functions. The file also
contains many private variables and functions. The names of these private
variables and functions all begin with the text “_private”. You should not call or
access these private items as they are subject to change or removal in future
versions.

Comments inside of spdform.js describe the functions that are available for use
from scripting. The ones that are specifically for use with HTML embedded
directly into the form definition are labeled with the text “Supported in Client
Scripting”. Do not use other functions in the file as they are only for use with
file-cache customizations, or are private functions that are subject to change or
removal in future versions.

These are the functions allowed for use in embedded scripting:

• spdSetFieldValue(fieldName, fvalue, spdFormat, spdPreDecimalDigits)

• spdGetFieldValue(fieldName, spdFormat, getInitialValue)

• spdGetWorkItemTag()

• spdGetProcTag()

• spdIsFieldValid(fieldName)

• spdGetFieldErrorMsg(fieldName)

• spdSetFieldNotificationFunction(fieldName, notificationFunction)

Use the spdSetFieldValue() and spdGetFieldValue() functions to get and set the
values of any work item or case fields whether or not the field is included as a
marking. Any change to the field value through these functions will update the
information displayed in marking controls on the form.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

336 | Chapter 16 Customizing iProcess Modeler Forms
Separate functions (spdGetWorkItemTag() and spdGetProcTag()) exist for
retrieving the work item tag and procedure tag, since these are not actually
accessible as case fields.

The spdIsFieldValid() function returns false if invalid data is entered on the form
for a field, for example, a date with a value of “13/13/2006”. When the field data
is not valid, the field error message will contain a text description of the problem.

The spdSetFieldNotificationFunction() function lets you specify a function to be
called when the value of the specified field changes. The function will also be
called during initialization of the form if the form includes a marking for the field
(including hidden or embedded markings).

Altering the Style of Various Controls

The appearance of the various marking controls is set through a cascading style
sheet named spdform.css. You should not directly alter this file, but can include
styles to override the values directly in your form definition or add a reference to
an additional CSS file to override settings.

The following are the class names for the styles used in the dynamically generated
iProcess Modeler Forms:

• SPD_CONTAINER - Style for an area containing the entire iProcess Modeler
Form. Used to create a border, padding default color and font information.

• SPD_MARKING_REQ - Style applied to input controls (text input or select)
for required markings.

• SPD_MARKING_OPT - Style applied to input controls (text input or select)
for optional markings.

• SPD_MARKING_EMBEDDED - Style applied to embedded marking data.

• SPD_MARKING_READONLY - Style applied to read-only marking data.

• SPD_MEMO_BUTTON_REQ - Style applied to memo buttons for editing
required memo fields.

• SPD_MEMO_BUTTON_OPT - Style applied to memo buttons for editing
optional memo fields.

• SPD_MEMO_BUTTON_READONLY - Style applied to memo buttons for
displaying read-only memo fields.

You’ll see the “SPD” acronym used in places. This is a carryover from the
previously used “Staffware Process Definer” name, which is now called the
“iProcess Modeler”.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Embedding HTML | 337
• SPD_MESSAGE - Style applied to a message area that could appear at the top
of the form (rarely shown).

• SPD_BUTTON - Style applied to the buttons used to trigger the undo, keep,
and release actions.

• SPD_HELP - Style applied to area/link for displaying field help.

• SPD_CALENDAR - Style applied to the area/link for displaying the popup
calendar.

• SPDCAL_CONTAINER - Style for an area containing a popup calendar (used
to set border/padding/ default color/font).

• SPDCAL_PREV - Style for the area/link for going to the previous year and
month.

• SPDCAL_NEXT - Style for the area/link for going to the next year and
month.

• SPDCAL_HEADER - Style for the heading areas displaying the year and
month name.

• SPDCAL_WEEKDAYS - Style for the area displaying the abbreviated day
names.

• SPDCAL_ACTIVEDAY - Style for all selectable days from the displayed
month.

• SPDCAL_INACTIVEDAY - Style for all the non-selectable days before/after
the display month.

• SPDCAL_SELECTEDDAY - Style for the currently selected day (or current
date if none was already selected).

For example, to alter the background color for optional fields (only used if the
field is empty), you could include the following in the iProcess Modeler Form
definition:

<style>
<!--
.SPD_MARKING_OPT {background-color: #008800 }
-->
</style>

Embedded Customization Examples

The file IPCBrowserExamples.xpdl contains several example procedures
illustrating embedded HTML. This file is located in the following directory:
InstallationHomeDir\iprocessclientbrowser\samples\IPCBrowserFormExamples
 TIBCO iProcess Workspace (Browser) Configuration and Customization

338 | Chapter 16 Customizing iProcess Modeler Forms
where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the iProcess Workspace
(Browser) is installed.

The examples provided are described in the following subsections.

CHECKBOX

The CHECKBOX example uses check boxes to modify field data.

• The form includes a hidden marking for each of the fields that will be edited
with a check box.

• An input control of the type “checkbox” is included for each field. The onclick
event of the check box calls the function spdSetFieldValue() with the
appropriate value for the current checked state of the control.

• A notification function is defined and is registered with the spdform.js code
using the function spdSetFieldNotificationFunction().

• Any time the field value is changed by other controls or through scripting
code, the notification function is called, which will set the state of the check
boxes to match the data. This includes a call to the function when the form is
initialized so the check boxes will display the correct information when the
form is first loaded.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Embedding HTML | 339
RADIOBTN

The RADIOBTN example uses radio buttons to modify field data. The setup of a
set of radio buttons is very similar to the check box example, except that each field
requires multiple input controls, one for each radio button.

SCRIPT

The SCRIPT example lets the user enter a URL on the initial step. The form for the
second step shows the URL as an embedded field. The web page for the URL is
displayed on the form inside an IFRAME. A button will let the user alter the URL,
which will both change the IFRAME to the new page and set the new value for
the URL field.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

340 | Chapter 16 Customizing iProcess Modeler Forms
TABFIELD

The TABFIELD example creates a set of tabs using HTML elements.
Clicking on the tabs will change the value of a hidden field, which in turn causes
different conditional sections of the form to be displayed.

TABNOFLD

The TABNOFLD example also creates a set of tabs, but it does not use an actual
field value or rely on conditional sections of the form.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Embedding HTML | 341
CSSCHGS

The CSSCHGS example shows changing the appearance of the iProcess Modeler
Form through a <style> tag embedded in the form definition.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

342 | Chapter 16 Customizing iProcess Modeler Forms
File Caching

The iProcess Modeler Form definition, including any embedded HTML, is
converted into an HTML form for display in the iProcess Workspace (Browser).

The dynamically generated HTML can be further modified and saved to a specific
path and file name on the server to be used for subsequent requests for the form.
When this file- cached version of the form is detected, the iProcess Modeler Form
definition is no longer used as a source for generating the HTML for the page.

To begin customizing a form, use the iProcess Workspace (Browser) to display a
work item for the step you wish to change. Right click on the form and choose the
option to view source. The source can then be modified and saved to the
appropriate path and file name. Appropriate file names are listed in a comment
near the top of the source.

In addition to modifying the section of the page used to display the iProcess
Modeler Form, you may also modify header and footer sections of the page. You
can then save the file to an additional location where it will be used as a source for
the header and footer section for multiple steps or procedures. The comments at
the top of the source indicate the appropriate file names for this purpose.

Setting up a Test Environment

Before saving your modifications to the location that will override the standard
rendering of the form, you may want to save them into a work directory where
you can fully test your changes before deploying. To do this:

1. Create a directory for storing the pages you will be modifying.

2. Copy the files spddate.js, spdform.js, spdform.css, and memopage.html
from the directory where the Action Processor is installed to your work
directory.

3. Open a work item in the iProcess Workspace (Browser) for the step you wish
to customize.

4. Right click on the page for the work item and choose to view the source.

5. Save the source to your work directory. Any file name can be used in the work
directory, but using the name you later plan to use in the file cache will make
it easier to identify multiple files.
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 343
You can now load the saved page directly into your browser from the work
directory. Everything should work as if you had just loaded the page from the
iProcess Workspace (Browser), except that the Undo, Keep, and Release buttons
will not actually communicate with the server. You can use any text or HTML
editor to make modifications and test your changes.

Once you are satisfied with your changes, you can deploy by copying the file to
the appropriate file name in the “htmlcache” subdirectory under the Action
Processor installation directory (the htmlcache directory does not exist by
default; you must create it).

Structure of the Complete iProcess Modeler Form Page

If you examine the source for a work item page returned by the iProcess
Workspace (Browser), you will see a very simple skeletal web page with four
areas clearly blocked off by start and end comments. Make sure you do not alter
these start and end comments when you customize the page.

The four main areas are:

• Data XML

• Common Header HTML

• Common Footer HTML

• iProcess Modeler Form HTML

Data XML

This block is XML containing data for the work item / case that is displayed. The
XML itself will not be visible on the page, but is embedded in the page as a source
of information for the standard scripting inside of spdform.js. You should not
write scripting code to directly query this XML because the format is subject to
change in future versions. Only use the spdform.js functions to access the work
item / case data.

After you have made some customizations to a form, you might want to try the
form with data for a different work item. To do this, display a different work item
in the iProcess Workspace (Browser), view the source, copy the Data XML section
from that source, and use it to replace the same section in the copy of the page you
are customizing.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

344 | Chapter 16 Customizing iProcess Modeler Forms
Common Header HTML and Common Footer HTML

These are blocks of HTML that can be reused for multiple steps or procedures.
These can be saved for use with a specific step, a specific procedure, or for all
procedures. The information for the header and the footer are always retrieved
from the same disk cache file so you can set up HTML in these sections that act as
a wrapper for everything that lies between the header and footer. For instance, a
table could be started in the header, a cell inside of the table could include what
comes between the header and footer, then the footer would close that cell and
specify the rest of the table.

Scripting code can be used to display data inside the header or footer. Make sure
any fields you choose to display will always be available. For instance, fields like
case description and case reference could be displayed for all procedures, but
other case fields may not exist inside all procedures.

iProcess Modeler Form HTML

This is the block of HTML used for the iProcess Modeler Form. As with the
header and footer sections, you can make modifications to the code and save the
HTML to the cached HTML directory. You can choose to save it for use with a
specific minor version of the procedure, for a specified major version of the
procedure, or for all versions of the procedure. There are a few special
requirements for this block of HTML, which will be described in the following
sections.

Functions Available for File-Cached Scripting

The functions for embedded scripting are also available for file-cached scripting.
For details about those functions, see Functions Available for Embedded
Scripting on page 335.

In addition, the following functions can also be used. Comments in the file
spdform.js describe each function in detail.

Functions related to form initialization:

• spdInitForm()

• spdAppendList(listname, markingControlId)

• spdInitMarking(markingControlId, spdName, spdFormat, spdRequired,
spdEmbedded, spdPreDecimalDigits, spdHelp)

• spdCalculateOptionValue(markingControlId, optionId, expression)

• spdConditionalBlock(blockId, condition)
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 345
• spdPostInitForm()

Near the end of the HTML that is dynamically generated for the iProcess Modeler
Form is a block of script code that initializes the form. This should be left at the
end since many of the function calls may reference text boxes, select lists, or other
controls defined earlier in the form. The code begins with the spdInitForm()
function and ends with the spdPostInitForm() function. The code in between
performs actions such as populating selection lists, initializing markings, and
defining a function that updates the information on the form after a field is
changed.

The spdInitForm() function sets up some hidden form elements that will be later
used when submitting the form to undo, keep or release the work item.

When a marking has validation items, it will be rendered as an HTML <select>
element. Individual selection items that are part of the form definition will appear
as <option> elements under that. Items retrieved from lists maintained on the
server, however, must be added through code. The spdAppendList() function
retrieves the list values from the data XML block and adds them as <option>
elements under the <select> element.

All markings are converted into HTML elements. In addition to <select> lists,
these might be text boxes, hidden input areas, spans, or buttons. Calls to the
spdInitMarking() function links up these controls to the appropriate fields and
specifies how the data is formatted and whether it is required. When this function
gets called during form initialization, the initial field value is retrieved from the
data XML and placed into the HTML element that is defined.

Next, the spdFormUpdate() function must be defined. This function will be called
whenever a field value changes. If any of the <option> elements for a <select> list
are iProcess expressions (either a field name or a simple supported expression),
there will be a call to the spdCalculateOptionValue() function to update the value
for that <option> element.

If the form contains any conditional sections, there will be calls to the
spdConditionalBlock() function to display or hide the section on the form.

Finally, the spdPostInitForm() function will be called. This makes an initial call to
the spdFormUpdate() function and then performs an initial validation of the data
in the form.

Functions related to marking data

• spdSetMarkingValue(markingControlId, fvalue)

• spdGetMarkingValue(markingControlId, getInitialValue)

• spdIsMarkingValid(markingControlId)

• spdGetMarkingErrorMsg(markingControlId)
 TIBCO iProcess Workspace (Browser) Configuration and Customization

346 | Chapter 16 Customizing iProcess Modeler Forms
These are similar to the functions for accessing field values, but rather than
accessing the fields by name, it accesses them through the markings that have
been set up on the form. When accessed this way, formatting information does not
have to be specified, as that is defined for the marking when it is initialized.

For some dynamically generated controls, the onchange event will contain a call
to the spdSetMarkingValue() function. This will validate the data in the field and
notify any other markings for the same field of the change.

If the marking control is a text box, selection list or button, and it uses one of the
standard class names to indicate it is an optional or required field, the colors of
the text and background indicates the status of the data., as follows:

• Valid data - black on white

• Invalid data - white on bright red

• Required fields that are empty - dark red background

• Optional fields that are empty - dark blue background

If a custom notification is set up for the field, it is called. Also, the
spdFormUpdate() function is called so that calculated validation items and
conditional sections of the form can be properly updated.

Also, the onkeypress event for text boxes calls the spdSetMarkingValue()
function, but will pass the optional parameter indicating that actions should only
be performed if the last key pressed was the Enter key.

Functions related to form validation and submission

• spdFormSubmit(actionName)

• spdSetValidationNotificationFunction(notificationFunction)

In the dynamically generated HTML, the Undo, Keep, and Release buttons are
defined between the area generated for the iProcess Modeler Form and the block
of initialization scripting code. Each of these buttons calls the spdFormSubmit()
function with the appropriate action name: “UndoForm”, “KeepForm”, or
“ReleaseForm”.

You can set up a function that will be called after form validation is performed
(done after any field change). The function should have two parameters. The first
parameter will be true if the “KeepForm” action can be performed, and the
second will be true if “ReleaseForm” can be performed.
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 347
During form validation, the Keep and Release buttons will be enabled or
disabled as appropriate, and their appearance will be altered to indicate their
enabled state: the Keep button is disabled if any fields contain invalid data, and
the Release button is disabled if there is invalid data or an empty required field.
To override this default behavior, you can change the id attribute for the buttons
and set up a validation notification function to trigger your own code.

Other Functions

• spdEditMemo(markingControlId, isReadOnly)

• spdShowCalendar(markingControlId, calendarLinkControl)

• spdShowMarkingHelp(markingControlId)

The spdEditMemo() function opens a separate dialog to edit or display a memo
field. The memo will be editable unless you specify true for the optional second
parameter.

The spdShowCalendar() function displays a calendar in the page. The
calendarLinkControl parameter is required, and it should be set to an object that
appears on the form. The calendar selection interface will be displayed next to the
control specified. In the dynamically generated HTML, markings for date fields
are followed by an <a> tag containing a small calendar selection graphic. This <a>
tag is passed in as the calendar line control so the calendar appears to the right of
that.

The spdShowMarkingHelp() function displays the help message defined for the
marking in an alert box. The dynamically generated form only includes a link to
display help if help text exists for that marking.

HTML for Marking Controls

This section describes the types of HTML controls that can be used as marking
controls in a customized form. It describes each of the attributes of the control,
values that can be assigned to those attributes, and the way they are typically set
in the dynamically generated forms that will serve as the starting point for
customizations.

All marking controls must have an id attribute, which uniquely identifies the
marking control. This id is used to reference the control when initializing the
marking, and in calls to other scripting functions. The name assigned in
dynamically generated code is made up of the text “marking_”, plus the field
name. If multiple markings for the same field are defined, a number is appended
to keep the id unique.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

348 | Chapter 16 Customizing iProcess Modeler Forms
A name attribute is assigned to each control, but is not actively used. The default
name that is dynamically generated is the text “MARKING$”, plus the field
name.

Text Input Controls

Text input controls are implemented as an HTML <input> element, with the type
of “text”.

The class attribute sets the general appearance. In the dynamically generated
HTML, required markings will have a class of SPD_MARKING_REQ, optional
markings will be SPD_MARKING_OPT, and display markings will be
SPD_MARKING_READONLY.

When these standard class names are used, the text and background color of the
control will change to reflect the status of the data (white on bright red if the data
is invalid, black on white for valid data, a dark red background for blank required
markings, and dark blue background for blank optional markings).

If a different class name is used, the field appearance will not automatically
change based on the status of the data. Custom code could be added, using a field
notification or validation notification function.

The maxlength attribute limits the length of the text that can be entered based on
the field definition, and size will typically be set the same.

The value attribute should be left blank. When the marking is initialized, the
value from the work item will be copied to the control.

The onkeypress and onchange events call the spdSetMarkingValue() function so
that changes made in the text box will be applied to the work item data.

Selection Lists

Selection lists are implemented as an HTML <select> element. These are used for
required and optional markings that have validations items.

The class attribute is typically set to SPD_MARKING_REQ for required fields and
SPD_MARKING_OPT for optional. As with text boxes, the appearance of the
control is automatically changed to indicate the validity of the data if one of these
standard class names is used.

The onchange event will call the spdSetMarkingValue() function so that changes
made to the selection will be applied to the work item data.

Embedded Markings

Embedded markings are implemented as an HTML element.
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 349
The class attribute of the tag is typically SPD_MARKING_EMBEDDED.
This can be changed to alter the appearance of the marking without affecting
functionality.

A parameter in the call to initialize the marking indicates whether the field data is
embedded. When it is set to be embedded, the field text is wrapped in an HTML
<pre> tag to preserve all white space. Multiple spaces and line feeds and certain
characters are converted to an equivalent entity character to prevent any field text
from being misinterpreted as HTML or XML.

Memo Markings

Memo markings are displayed as buttons, i.e., HTML <input> elements with a
type attribute of “button”.

The class attribute sets the general appearance. Required memo markings will
typically have a class of SPD_MEMO_BUTTON_REQ, optional memo markings
will be SPD_ MEMO_BUTTON_OPT, and display memo markings will be SPD_
MEMO_BUTTON_READONLY.

The appearance of the buttons will change based on the data for the memo field
when the standard class names are used, similar to text boxes and selection lists.

The value attribute for a button is, of course, used for the button text rather than
data.

The onclick event for the Memo button calls the spdEditMemo() function, which
displays a separate dialog window with the memo text. For read-only Memo
buttons, an extra parameter is passed to this function to disable editing.

Calculated Markings

Calculated markings are rendered identically to display markings. They are
shown as read-only text boxes.

Note that calculations are only performed when the work item is locked at the
server and when the work item is kept or released at the server. If calculations
need to occur in the browser, they will need to be implemented in custom
scripting code.

Hidden Markings

Hidden markings are rendered as an HTML <input> element with the type
“hidden” and simply store a copy of the current data for the marking field.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

350 | Chapter 16 Customizing iProcess Modeler Forms
Standard Submit Buttons

The standard buttons for submitting the form use the following values for the id
attribute.

• Undo - “undoButton”

• Keep - “keepButton”

• Release - “releaseButton”

The class for these buttons will typically be “SPD_BUTTON”. This can be
changed without affecting functionality.

The onclick event for the button calls the spdFormSubmit() function with the
appropriate action name.

When form validation is performed, the standard submit buttons are
automatically enabled or disabled, depending on the state of the work item data.
To override this behavior, change the id attribute to another value. Custom
scripting code could then be used to change the state or appearance of the button,
or the buttons could be left enabled at all times and the form validation routines
will prevent submitting the form with invalid data.

Calendar Link

Text boxes for date fields will typically be followed by a link used to display a
calendar for selecting a date.

In the dynamically generated HTML, this will be an HTML <a> tag with an href
attribute set to “#” and an onclick event that calls the spdShowCalendar()
function. Inside the link is a element with a class attribute of
“SPD_CALENDAR” that sets a background image for the span, which is a
calendar selection icon.

This link could be replaced with any HTML for calling the spdShowCalendar()
function.

Help Link

Text boxes that have associated help text will typically be followed by a link for
displaying the help text.

In the dynamically generated HTML, this will be an HTML <a> tag with an href
attribute set to “#” and an onclick event that calls the spdShowMarkingHelp()
function. Inside the link is a element with a class attribute of “SPD_
HELP” that sets a background image for the span, which is a help icon.

This link could be replaced with any HTML for calling the
spdShowMarkingHelp() function.
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 351
Field and Form Validation

There are three locations where you might insert custom scripting code to react to
a change in a field value.

• A field notification function, if one has been defined for the changed field.

The field notification is typically set up when something other than a marking
is used to modify the data (e.g., editing data through check box or radio
buttons). Although the function could also be used to trigger actions for one of
the supported marking controls.

• The spdFormUpdate() function, which is required as part of the scripting code
for the form.

The spdFormUpdate() function typically updates the options for selection
lists when those are reference field values or are calculated from a simple
expression. Also, it is used to hide or display conditional sections of the form.
Custom code could also be added to the function.

• A validation notification function, if one has been defined for the form.

The validation notification function is called last, after the default form
validations are performed to determine whether the work item can be kept or
released. Custom code here can override the status determined for keep and
release, or to perform any other actions.

The validation notification function is also called right before the form is
submitted. So even if the function doesn't disable every method of keeping or
releasing the work item, it can still block the actual keep or release. When the
form submit is blocked in this way, an alert box is displayed explaining why.

File-Cached Customization Example

A file-cached customization example is provided in the following directory:

InstallationHomeDir\iprocessorclientbrowser\samples\
IPCBrowserFormExamples

where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the iProcess Workspace
(Browser) is installed.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

352 | Chapter 16 Customizing iProcess Modeler Forms
This example includes a IPCBrowserExamples.xpdl file, which contains a
sample procedure named SITERATE. It contains three steps.

— INIT - Lets a user enter the basic site information for the site that will be
rated later.

— RATE - Lets a reviewer rate the site and provide comments.

— FINAL - Displays a report on the rating.

The example also includes the following files, which customize the procedure for
display in the iProcess Workspace (Browser). To begin using these customizations,
copy these files into a subdirectory named “htmlcache” under the Action
Processor installation directory.

• common_SITERATE.html

• SITERATE_FINAL.html

• SITERATE_INIT.html

• SITERATE_RATE.html

The following screen shots show the steps of the procedure without the
customizations.

STEP 1: Initial form for data entry
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 353
STEP 2: Form for rating the web site

STEP 3: Final report on the web site rating
 TIBCO iProcess Workspace (Browser) Configuration and Customization

354 | Chapter 16 Customizing iProcess Modeler Forms
The customized version performs a wide variety of customizations. For example:

• Some of the data entry controls, with sets of radio buttons and check boxes.

• Proportionally spaced fonts are used for all text.

• Custom colors for all elements.

• Tables are used for positioning text and input controls.

• Hyperlinks rather than buttons are used to trigger editing of the memo fields.

• The memo data was added to the page as an embedded marking.

• The web site address is made into a hyperlink that loads the page to be rated
in a separate browser window.

• The submit buttons appear as standard browser buttons.

• The Keep button is omitted on forms where it isn't needed.

• Text for the submit buttons is changed to fit the process rather than using
generic terms.

• A file with header and footer HTML is used to define static content used for
all steps.

Here are the customized forms for these same steps:

STEP 1: Initial form for data entry
TIBCO iProcess Workspace (Browser) Configuration and Customization

File Caching | 355
STEP 2: Form for rating the web site
 TIBCO iProcess Workspace (Browser) Configuration and Customization

356 | Chapter 16 Customizing iProcess Modeler Forms
STEP3: Final report on the web site rating
TIBCO iProcess Workspace (Browser) Configuration and Customization

Common Issues for Embedded and File-Cached Customizations | 357
Common Issues for Embedded and File-Cached Customizations

You may wish to reference images, JS files, CSS files, or other external files in your
custom HTML code. If you will be using a relative path to access these files, keep
in mind that all paths are relative to the Action Processor installation directory.

Although the file cache for your modified HTML is the subdirectory
“htmlcache”, underneath the Action Processor directory, this is not the base
directory for pages generated using those files as a source for the iProcess
Modeler Form or form header and footer sections for the page.

Therefore, if you store images in the directory “htmlcache\images”, you will
need to use “htmlcache\images” as the relative path to those files in either
embedded or file-cached HTML.

When using a working directory to create and test your file-cached HTML, you
will need to create a copy of any files referenced by relative path to an appropriate
directory under your working directory.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

358 | Chapter 16 Customizing iProcess Modeler Forms
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 359
Chapter 17 Displaying Forms Outside of the iProcess
Workspace

This chapter describes an example that is provided in the TIBCO iProcess
Workspace (Browser) that allows you to display iProcess Modeler-created forms
outside of the TIBCO iProcess Workspace (Browser).

Topics

• The LinkForm Example, page 360
 TIBCO iProcess Workspace (Browser) Configuration and Customization

360 | Chapter 17 Displaying Forms Outside of the iProcess Workspace
The LinkForm Example

An example is provided with the TIBCO iProcess Workspace (Browser) that
allows you to display iProcess Modeler-created forms outside of the TIBCO
iProcess Workspace (Browser). (This example is applicable only to iProcess
Modeler-produced forms.)

The LinkForm.html file can be found in the installation home directory:

InstallationHomeDir\iprocessclientbrowser\samples\LinkFormExample

where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the iProcess Workspace
(Browser) is installed.

The LinkForm.html file is an example of an intermediary HTML file that can be
used to display an existing work item without running the TIBCO iProcess
Workspace (Browser). Note that this can only be used to display standard iProcess
Modeler-produced forms. Those forms can include customizations made by
embedding HTML into the iProcess form definition or made by creating a
file-cached copy of the HTML as described in Customizing iProcess Modeler
Forms on page 331. Custom GI Forms, Form Flow forms, or other external form
systems that may be implemented in the future cannot be displayed in this
manner.

Also note that this is a simple HTML example that passes login information
directly through a URL and performs manipulation of the request through
client-side scripting. As such, it does not represent a best practice solution
regarding security. However, the general ideas presented can be used in building
a custom Servlet, JSP, or ASPX page.

The parameters passed in a link to the LinkForm.html file are parsed through
scripting code. The following parameters are supported in the example:

• workitemtag
• nodename
• computername
• ipaddress
• tcpport
• isdirector
• nodealias
• username
• password
TIBCO iProcess Workspace (Browser) Configuration and Customization

The LinkForm Example | 361
where:

— workitemtag identifies the work item. This is required.

— nodename, computername, ipaddress, tcpport, and isdirector identify the
TIBCO iProcess Objects Server. Either these parameters can be provided to
identify the server, or you can provide the nodealias (see below).

— nodealias identifies the TIBCO iProcess Objects Server. Either this
parameter can be provided to identify the server, or you can provide the
five parameters listed above (nodename, computername, etc.). If a node
alias name is specified, code inside of the LinkForm.html must set the
other five values to identify the iProcess Objects Server.

— username and password provide login credentials. These are optional. If
both are provided, the work item will immediately be displayed. If either
of these is omitted, a login section of the page will be displayed allowing
the user to enter the information. If there is a problem logging in with the
information provided, a message is displayed and it will return to the login
interface. (Note that all parameters are passed to the LinkForm.html file
as part of the URL, so specifying the password in the password parameter
is not advised.)

The URL should be launched using the javascript window.open(...) command, so
the work item will appear in a separate window without browser menus or
toolbars. The following is an example of this command:

window.open('http://myserver/actionprocessor/linkform.html?workite
mtag=myserver|TESTPROC|swadmin|R|4475|19048|myserver|FORM1|0|7@nod
ealias=myserver@username=swadmin', '_blank',
'resizable=1,scrollbars=1');

The following is an example of HTML for a hyperlink displaying the work item:

<a target="_blank" href=""
onclick="window.open('http://myserver/actionprocessor/linkform.htm
l?workitemtag=myserver|TESTPROC|swadmin|R|4475|19048|myserver|FORM
1|0|7@nodealias=myserver@username=swadmin', '_blank',
'resizable=1,scrollbars=1');return false;");">Display work
item
 TIBCO iProcess Workspace (Browser) Configuration and Customization

362 | Chapter 17 Displaying Forms Outside of the iProcess Workspace
To use the LinkForm example:

1. Examine the contents of the LinkForm.html file for “TODO” messages and
make the appropriate changes. The “TODO” items are for the following:

— Specifying the appropriate Action Processor name, which will be different
for Java and .NET versions.

— Defining node aliases, which will allow you to pass fewer parameters in the
URL.

2. Save the LinkForm.html file in the Action Processor installation directory.
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 363
Appendix A Deprecated Callout Interface

This appendix documents the callout interface that was deprecated in version
11.0.0.

Topics

• Callout Interface, page 364

The callout interface described in this appendix was deprecated in version 11.0.0
of the TIBCO iProcess Workspace (Browser). It is superseded by a simpler means
of specifying default filters, sort, and column displays, which is described in
Callout Interface on page 87. New development should use the new callout
interface.

This deprecated interface is still functional and can continue to be used. Note,
however, that it is possible that the format of the serialized XML for columns and
other XML representations of data could change in future releases of the product.

The sample file of these callout functions now resided in a file named
SampleCalloutHandlerDeprecated.js.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

364 | Appendix A Deprecated Callout Interface
Callout Interface

The callout interface provides methods that allow you to:

• Set default filters and sorts on the work item and case lists.

• Specify filters and sorts that can modify any user-defined filters and sorts.

• Specify which columns/fields the user can filter and sort on for work item
and case lists.

• Set default columns to display on the procedure list, work queue list, case list,
work item list, outstanding work item list on the case Outstanding tab, and
the outstanding work item list on the Process Jump dialog.

• Specify which columns are available for a user to display from the Column
Selector dialogs.

Methods in the callout interface can be used in combination with user access
profile settings to control filter, sort, and column display. For example:

• You could use the callout interface methods to set a default filter on the case
list, then use the access profiles to not allow the user to set a filter (i.e., do not
give access to the case list Filter dialog).

• You could use the callout interface methods to display specific columns in the
work item list by default, then use the user access profiles to not allow the
user to change the columns (i.e., do not give access to the Column Selector on
the work item list).

For information about user access profiles, see User Access on page 9.

Since callout method calls are used to restrict access to data, any exceptions
thrown will prevent the associated list from loading or close an already open list.
An error message will be displayed to the user, logged to the Application Log and
Application Monitor, and the list will be closed.

The callout methods are arranged in three functional groups:

• Filter - These methods control default filters and additional filters to apply to
user-defined filters.

• Sort - These methods control default sorts and additional sorts to apply to
user-defined sorts.

• Column - These methods control default column displays and which columns
the user is allowed to select from the Column Selector.

Basic knowledge of XML, JavaScript, and TIBCO General Interface is necessary to
understand and work with the callout methods.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 365
The following tables show the callout methods available:

Filter Methods (Case and Work Item Lists)

Method Description

calloutInitialWorkItemFilter Specifies the filter to be used when the work item list is
opened. The filter that was saved when the list was last closed
can be reused with or without modifications, or it can be
replaced with a default filter. This filter appears on the Filter
dialog after it is applied, and can be changed by the user if
they have access to the Filter dialog.

calloutWorkItemFilter Specifies the filter to apply to the work item list. This may be
used to either modify the user-defined filter, to append
additional criteria, or to override it. This is applied
automatically when the user applies a filter by either clicking
the Apply button on the work item list Filter dialog, or by
applying a server-side find. Any user-defined filter will
appear on the Filter dialog, but any modification applied to
the filter with this method will not be visible to the user.

calloutWorkItemFilterColumns Specifies which fields/columns can be used to filter work
items, i.e., it controls which fields/columns appear in the
Field drop-down list on the Filter dialog.

calloutInitialCaseFilter Specifies the filter to be used when the case list is opened. The
filter that was saved when the list was last closed can be
reused with or without modifications, or it can be replaced
with a default filter. This filter appears on the Filter dialog
after it is applied, and can be changed by the user if they have
access to the Filter dialog.

calloutCaseFilter Specifies the filter to apply to the case list. This may be used
to either modify the user-defined filter, to append additional
criteria, or to override it. This is applied automatically when
the user applies a filter by clicking the Apply button on the
case list Filter dialog. Any user-defined filter will appear on
the Filter dialog, but any modification applied to the filter
with this method will not be visible to the user.

calloutCaseFilterColumns Specifies which fields/columns can be used to filter cases, i.e.,
it controls which fields/columns appear in the Field
drop-down list on the Filter dialog.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

366 | Appendix A Deprecated Callout Interface
Sort Methods (Case and Work Item Lists)

Method Description

calloutInitialWorkItemSort Specifies the sort to be used when the work item list is
opened. The sort that was saved when the list was last closed
can be reused with or without modifications, or it can be
replaced with a default sort. This sort appears on the Sort
dialog after it is applied, and can be changed by the user if
they have access to the Sort dialog.

calloutWorkItemSort Specifies the sort to apply to the work item list. This may be
used to either modify the user-defined sort, to append
additional criteria, or to override it. This is applied
automatically when the user applies a sort by clicking the
Apply button on the work item list Sort dialog. Any
user-defined sort will appear on the Sort dialog, but any
modification applied to the sort with this method will not be
visible to the user.

calloutWorkItemSortColumns Specifies which fields/columns can be used to sort work
items, i.e., it controls which fields/columns appear in the
Available Fields list on the Sort dialog.

calloutInitialCaseSort Specifies the sort to be used when the case list is opened. The
sort that was saved when the list was last closed can be
reused with or without modifications, or it can be replaced
with a default sort. This sort appears on the Sort dialog after
it is applied, and can be changed by the user if they have
access to the Sort dialog.

calloutCaseSort Specifies the sort to apply to the case list. This may be used to
either modify the user-defined sort, to append additional
criteria, or to override it. This is applied automatically when
the user applies a sort by clicking the Apply button on the
case list Sort dialog. Any user-defined sort will appear on the
Sort dialog, but any modification applied to the sort with
this method will not be visible to the user.

calloutCaseSortColumns Specifies which fields/columns can be used to sort cases, i.e.,
it controls which fields/columns appear in the Available
Fields list on the Sort dialog.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 367
Column Methods (Procedure, Case, Work Queue, Work Item, Outstanding, Outstanding-Jump
Lists)

A custom class can implement one or more of the methods in the tables above.
One or more custom classes may be used to handle these method calls.

If there is no implementation of these methods, there are no restrictions other than
what might be applied through user access profiles.

Additional details about each callout method can be found in Callout Method
Signatures on page 370.

Configuration

The TIBCO iProcess Workspace (Browser) comes with a sample callout handler
that contains sample implementations of all of the callout methods. This sample
callout handler is named ‘SampleCalloutHandler.js’ and is located in the
InstallationHomeDir\iprocessclientbrowser\samples\Callouts directory,
where InstallationHomeDir is the directory in which the installer places
administrative files, such as the uninstaller, documentation, and sample code.
This defaults to C:\tibco on Windows systems, and /opt/tibco on UNIX
systems, but can be specified as a different directory when the iProcess Workspace
(Browser) is installed.

Method Description

calloutColumns Specifies the default columns to display on the procedure
list, case list, work queue list, work item list, outstanding
work items list on the case Outstanding tab, and the
outstanding work items lists on the Process Jump dialog.

calloutSelectColumns Specifies which columns will be available to the user on the
Column Selector dialog from the procedure list, case list,
work queue list, work item list, outstanding work items list
on the case Outstanding tab, and the outstanding work
items lists on the Process Jump dialog. This controls which
columns the user is able to display on each of the lists.

Also see the Migration section in the Release Notes for information about callout
interface method considerations if you are upgrading your version of the iProcess
Workspace (Browser).

Upon deprecation of this callout interface, the name of the sample callout handler
file was renamed SampleCalloutHandlerDeprecated.js. For more information,
see page 363.
 TIBCO iProcess Workspace (Browser) Configuration and Customization

368 | Appendix A Deprecated Callout Interface
Perform the following steps to create a custom handler and configure your
iProcess Workspace (Browser) to use the callout methods.

1. Copy the SampleCalloutHandler.js file into a directory you’ve created
under the ClientInstallDir\JSXAPPS\ipc\ directory, where ClientInstallDir is the
path to the directory in which the iProcess Workspace (Browser) is installed.
For example, ClientInstallDir\JSXAPPS\ipc\Callouts.

You may also want to rename the SampleCalloutHandler.js file to identify
the type of custom handling it performs. For example,
‘ColumnsCalloutHandler.js’.

2. Modify the callout handler (e.g., ColumnsCalloutHandler.js) to fit your
needs.

The original SampleCalloutHandler.js file that you copied contains sample
implementations of each of the available callout methods.

Each callout method receives a data parameter that can be modified by the
method and returned to the application. The following are example data
parameters:

— filterExpression (string)

— sortFields (Array<com.tibco.bpm.ipc.vSortField>)

— columns (jsx3.xml.Entity)

Additional parameters provide information the methods can use to determine
how the filters, sorts, and columns should be modified. For example:

— username (string)

— eventNode (jsx3.xml.Entity)

— listType (string)

— availableFields (jsx3.xml.Entity)

There is also a componentName parameter that specifies the specific instance
of the component the method is affecting. This can be useful in WCC custom
applications where you may be displaying multiple lists at one time, and
would like to modify the filter, sort, or columns on only one of them.

The jsx3.xml.Entity object is a TIBCO General Interface class that is a wrapper
of the native browser XML node class. This class provides methods for
querying, traversing, and creating XML entities (see the TIBCO General
Interface documentation for more information). The object is a Document
Object Model (DOM) class that provides methods to add, find, modify, or
delete XML values in an XML document. Use these methods to modify the
incoming XML so that the desired filter, sort, or columns are displayed.
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 369
In each case, the method returns the same type of XML object that was passed
in. This would probably be the same object in most cases, with some
modification applied.

When customizing the callout handler, you must also register the callout
method with the application CalloutController by adding the method to the
init (constructor) method. It must be in the form:

app.getCalloutController().registerHandler(target,arrayOfMethodNames)

where:

— target - (Object) The instance or object the method is called on.

— arrayOfMethodNames - (Array<strings>) Array of strings that are the names of
the methods to register.

The following is an example of the init method in which the
calloutColumns method is registered:

ipcClass.prototype.init = function(app) {
this.app = app;
this.controller = this.app.getCalloutController();
this.controller.registerHandler(this,['calloutColumns']);

};

A reference to the application object is passed as the single parameter to the
init (constructor) method.

Note that the application getServer() method can be used to get a reference
to the jsx3.app.Server instance:

app.getServer()

3. Specify the callout handler custom class in the iProcess Workspace (Browser)’s
configuration file, ClientInstallDir\JSXAPPS\ipc\config.xml.

The <record jsxid=”customCallout” element specifies which classes will be
loaded to handle custom callout methods. The <Classes> element can contain
any number of <Class> elements whose class attribute is set to the fully
qualified name of the custom class to load. The class is loaded after the user is
authenticated at login. This gives the custom class access to the logged-in
user's session to query the Action Processor for initialization data, if required.

The following is an example of the customCallout element identifying the
ColumnsCalloutHandler custom class:

<record jsxid="customCallout" type="ipc">
<Classes>

<Class class="com.tibco.bpm.ipc.ColumnsCalloutHandler" />
</Classes>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

370 | Appendix A Deprecated Callout Interface
</record>

4. Add a mapping record to the config.xml file that points to the custom
handler. This is added as a child element of the <record jsxid=”includes”
element. The following is an example class mapping element for the custom
callout handler, ColumnsCalloutHandler.js.

<record jsxid="includes" type="array">
...
<record jsxid="90" type="map">

<record jsxid="id" type="string">ColumnsCalloutHandler</record>
<record jsxid="type" type="string">script</record>
<record jsxid="owner" type="string">application</record>
<record jsxid="onLoad" type="boolean">true</record>
<record jsxid="required" type="boolean">true</record>
<record jsxid="src" type="string">JSXAPPS/ipc/Callouts/ColumnsCalloutHandler.js</record>

</record>
</record>

5. Optionally, modify the user access profiles that would be used in conjunction
with the custom handling. For example, if your custom handler is setting the
default columns on the work item list, you may want to deny access to the
Column Selector on the work item list (see SelectColumns on page 19).

Callout Method Signatures

The following are the method signatures from the SampleCalloutHandler.js
file (in JavaDoc format).

Note that the parameter data XML examples shown with the method signatures
are representative samples — they may contain other attributes that are not
shown.

calloutInitialWorkItemFilter

 /**
 * @param filterExpression (string) The filter string value.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the

Note that case is significant on some web servers, such as Tomcat. For example, if
you are storing your custom callouts in the directory,
ClientInstallDir\JSXAPPS\ipc\Callouts (i.e., with “Callouts” capitalized),
the path specification to the custom callout handler in the config.xml file cannot
be “JSXAPPS/ipc/callouts/ColumnsCalloutHandler.js” (i.e., with “callouts”
not capitalized).
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 371
 * workitem list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be filtered.

* @param componentName (string) Component instance name
 *
 * @return (string) Modified filter string.
 */
 ipcClass.prototype.calloutInitialWorkItemFilter = function(
 filterExpression,
 username, queueNode,
 availableFields

componentName) {

calloutWorkItemFilter

 /**
 * @param filterExpression (string) The filter string value.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the
 * workitem list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be filtered.

* @param componentName (string) Component instance name
 *
 * @return (string) Modified filter string.
 */
 ipcClass.prototype.calloutWorkItemFilter = function(filterExpression,
 username, queueNode,
 availableFields

componentName) {

The following is an example filterExpression parameter value used with
calloutWorkItemFilter:

SW_PRONAME = "a*"

The sample above would show only work items whose procedure name starts
with “a”. (For information about filter expression syntax, see the TIBCO iProcess
Server Objects (Java or .NET) Programmer’s Guide.)

calloutWorkItemFilterColumns

 /**
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be filtered.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the
 * workitem list.

* @param componentName (string) Component instance name
*

 TIBCO iProcess Workspace (Browser) Configuration and Customization

372 | Appendix A Deprecated Callout Interface
 * @return (jsx3.xml.Entity) Modified XML defining the
* available fields that can be
* filtered.

 */
 ipcClass.prototype.calloutWorkItemFilterColumns = function(
 availableFields,
 username,
 queueNode

componentName) {

The following are example availableFields and queueNode parameter values
used with calloutWorkItemFilterColumns:

availableFields (jsx3.xml.Entity)

<data jsxid="jsxroot">
 <record jsxid="OCCUPATION" jsxtext="Occupation" fieldType="swText"
 fieldLength="20" />
 <record jsxid="SW_ARRIVAL" jsxtext="Date and Time Arrived" fieldType="swTimeStamp"
 fieldLength="16" />
 <record jsxid="SW_ARRIVALDATE" jsxtext="Date Arrived" fieldType="swDate"
 fieldLength="10" />
 <record jsxid="SW_ARRIVALTIME" jsxtext="Time Arrived" fieldType="swTime"
 fieldLength="5" />
 ...
</data>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 373
queueNode (jsx3.xml.Entity)

calloutInitialCaseFilter

 /**
 * @param filterExpression (string) The filter string value.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The procedure node XML for
 * the case list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.

* @param componentName (string) Component instance name
 *
 * @return (string) Modified filter string.
 */
 ipcClass.prototype.calloutInitialCaseFilter = function(
 filterExpression,
 username, procNode,
 availableFields

componentName) {

<record jsxid="IDA3CHEB"
 Name="swadmin"
 Description="System Administrator"
 HostingNode="i2tagtest"
 Tag="i2tagtest|swadmin|R"
 IsGroup="false"
 IsReleased="true"
 FirstDeadline="2006-07-28 10:44:00"
 DeadlineCnt="17"
 UnopenedCnt="138"
 UrgentCnt="2"
 WorkItemCnt="267"
 WorkQParam1Name="WQ Parameter1"
 WorkQParam2Name="WQ Parameter2"
 WorkQParam3Name="WQ Parameter3"
 WorkQParam4Name="WQ Parameter4" >
</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

374 | Appendix A Deprecated Callout Interface
calloutCaseFilter

 /**
 * @param filterExpression (string) The filter string value.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The procedure node XML for
 * the case list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be filtered.

* @param componentName (string) Component instance name
 *
 * @return (string) Modified filter string.
 */
 ipcClass.prototype.calloutCaseFilter = function(filterExpression,
 username, procNode,
 availableFields

componentName) {

calloutCaseFilterColumns

 /**
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be filtered.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The proc node XML for the
 * case list.

* @param componentName (string) Component instance name
*

 * @return (jsx3.xml.Entity) Modified XML defining the
* available fields that can be
* filtered.
*/

 ipcClass.prototype.calloutCaseFilterColumns = function(availableFields,
 username,
 procNode

componentName) {
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 375
calloutInitialWorkItemSort

 /**
 * @param sortFields (Array) An array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the
 * workitem list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.

* @param componentName (string) Component instance name
 *
 * @return (Array) Modified array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 */
 ipcClass.prototype.calloutInitialWorkItemSort = function(sortFields,
 username, queueNode,
 availableFields

componentName) {

calloutWorkItemSort

 /**
 * @param sortFields (Array) An array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the
 * workitem list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.

* @param componentName (string) Component instance name
 *
 * @return (Array) Modified array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 */
 ipcClass.prototype.calloutWorkItemSort = function(sortFields,
 username, queueNode,
 availableFields

componentName) {

The following describes the sortFields parameter used with
calloutWorkItemSort:
 TIBCO iProcess Workspace (Browser) Configuration and Customization

376 | Appendix A Deprecated Callout Interface
Each vSortField has three properties with accessors as shown:

— fieldName getFieldName()

— ascending getAscending()

— sortAsType getSortAsType()

For example:

sortFields[0] :
fieldName : SW_CASEDESC
ascending : true
sortAsType: swTextSort
sortFields[1] :
fieldName : SW_CASENUM
ascending : true
sortAsType: swTextSort

Work items will be sorted in the order in which elements are passed in the
vSortField array.

New vSortField values are created by passing the three properties in the
constructor:

var newSortFields = new Array();
newSortFields.push(new com.tibco.bpm.ipc.vSortField('SW_CASEDESC',

true,
'swTextSort'));

newSortFields.push(new com.tibco.bpm.ipc.vSortField('SW_CASENUM',
true,
'swTextSort'));

calloutWorkItemSortColumns

 /**
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.
 * @param username (string) The logged in user name.
 * @param queueNode (jsx3.xml.Entity) The queue node XML for the
 * workitem list.

* @param componentName (string) Component instance name
*

 * @return (jsx3.xml.Entity) Modified XML defining the
* available fields that can be
* filtered.
*/

 ipcClass.prototype.calloutWorkItemSortColumns = function(
 availableFields,
 username,
 queueNode

componentName) {
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 377
The following is an example availableFields parameter value used with
calloutWorkItemSortColumns:

calloutInitialCaseSort

 /**
 * @param sortFields (Array) An array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The procedure node XML for
 * the case list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.

* @param componentName (string) Component instance name
 *
 * @return (Array) Modified array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 */
 ipcClass.prototype.calloutInitialCaseSort = function(sortFields,
 username, procNode,
 availableFields

componentName) {

<data jsxid="jsxroot">
 <record jsxid="SW_ARRIVAL" jsxtext="Date and Time Arrived"
 sorttype="swDateTimeSort" />
 <record jsxid="SW_CASEDESC" jsxtext="Case Description"
 sorttype="swTextSort" />
 <record jsxid="SW_CASENUM" jsxtext="Case Number"
 sorttype="swNumericSort" />
 ...
</data>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

378 | Appendix A Deprecated Callout Interface
calloutCaseSort

 /**
 * @param sortFields (Array) An array of
 * com.tibco.bpm.ipc.vSortField
 * instances.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The procedure node XML for
 * the case list.
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.

* @param componentName (string) Component instance name
 *
 * @return (Array) Modified array of
 * com.tibco.bpm.ipc.vSortField
 *
 */
 ipcClass.prototype.calloutCaseSort = function(sortFields,
 username, procNode,
 availableFields

componentName) {

calloutCaseSortColumns

 /**
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields that can be sorted.
 * @param username (string) The logged in user name.
 * @param procNode (jsx3.xml.Entity) The proc node XML for the
 * case list.

* @param componentName (string) Component instance name
*

 * @return (jsx3.xml.Entity) Modified XML defining the
* available fields that can be
* filtered.
*/

 ipcClass.prototype.calloutCaseSortColumns = function(availableFields,
 username,
 procNode

componentName) {
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 379
calloutColumns

 /**
 * @param columns (jsx3.xml.Entity) The serialized columns for
 * the list.
 * @param username (string) The logged in user name.
 * @param eventNode (jsx3.xml.Entity) The procedure (Cases list),
 * workQ (WorkItems list), or
 * caseTag data (Outstanding)
 * node XML. Null for Proc and
 * WorkQ list types:
 * @param availableFields (jsx3.xml.Entity) XML defining the available
 * fields for column selection.
 * @param listType (string) The list type, one of:
 * com.tibco.bpm.ipc.ListContainer.PROC
 * com.tibco.bpm.ipc.ListContainer.CASE
 * com.tibco.bpm.ipc.ListContainer.WORKQ
 * com.tibco.bpm.ipc.ListContainer.WORKITEM
 * com.tibco.bpm.ipc.ListContainer.OUTSTANDING
 * com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump'

* @param componentName (string) Component instance name
 *
 * @return (jsx3.xml.Entity) Modified serialized columns
 * for the list.
 *
 */
 ipcClass.prototype.calloutColumns = function(columns,
 username, eventNode,
 availableFields,
 listType

componentName) {
 TIBCO iProcess Workspace (Browser) Configuration and Customization

380 | Appendix A Deprecated Callout Interface
The following describes the eventNode parameter used with calloutColumns:

The value of eventNode depends on the type of list as shown below:

— Proc list : null

— Case list:

— WorkQ list: null

<record
 Name="ALLOCATE"
 Description="Allcate Resources"
 HostingNode="i2tagtest"
 Version="0.2"
 Tag="i2tagtest|ALLOCATE|0|2"
 ProcNumber="36"
 StartStepName="STEP1"
 Status="swReleased"
 CaseDescOpt="swRequiredDesc"
 IsAutoPurge="false"
 IsIgnoreBlank="false"
 IsNetworked="false"
 IsSubProc="false"
 IsOrphaned="false"
 IsWorkDays="true"
 IsPrediction="false"
 Owner="swadmin"
 Duration="swDurationNone"
 Permission="Start / History"
 CaseCount="40"
 ActiveCount="39"
 ClosedCount="1">
</record>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 381
— WorkItem list:

— Outstanding or Outstanding Jump:

<record
 Name="rbTestGroup"
 Description="rbTestGroup"
 HostingNode="i2tagtest"
 Tag="i2tagtest|rbTestGroup|R"
 IsGroup="true"
 IsReleased="true"
 DeadlineCnt="0"
 UnopenedCnt="1"
 UrgentCnt="0"
 WorkItemCnt="1"
 WorkQParam1Name="WQ Parameter1"
 WorkQParam2Name="WQ Parameter2"
 WorkQParam3Name="WQ Parameter3"
 WorkQParam4Name="WQ Parameter4" >
</record>

<record
 CaseTag="i2tagtest|ALLOCATE|0|2|2453"
 NodeName="i2tagtest"
 ProcName="ALLOCATE"
 MajorVerion="0"
 MinorVerion="2"
 CaseNumber="2453"/>

</record>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

382 | Appendix A Deprecated Callout Interface
calloutSelectColumns

 /**
 * @param availableFields (jsx3.xml.Entity) XML defining the fields
 * available for column
 * selection.
 * @param username (string) The logged in user name.
 * @param eventNode (jsx3.xml.Entity) The procedure (Cases list),
 * workQ (WorkItems list), or
 * caseTag data (Outstanding)
 * node XML. Null for Proc and
 * WorkQ list types:
 * @param columns (jsx3.xml.Entity) The serialized columns for
 * the list.
 * @param listType (string) The list type, one of:
 * com.tibco.bpm.ipc.ListContainer.PROC
 * com.tibco.bpm.ipc.ListContainer.CASE
 * com.tibco.bpm.ipc.ListContainer.WORKQ
 * com.tibco.bpm.ipc.ListContainer.WORKITEM
 * com.tibco.bpm.ipc.ListContainer.OUTSTANDING
 * com.tibco.bpm.ipc.ListContainer.OUTSTANDING + 'Jump'

* @param componentName (string) Component instance name
 *
 * @return (jsx3.xml.Entity) Modified XML defining the
 * fields available for column
 * selection.
 *
 */
 ipcClass.prototype.calloutSelectColumns = function(availableFields,
 username, eventNode,
 columns,
 listType

componentName) {

The following are example availableFields and columns parameter values used
with calloutSelectColumns:

availableFields (jsx3.xml.Entity)

columns (jsx3.xml.Entity)

The columns value contains the serialized columns for the list. The following
sample shows how this can be obtained from a jsx3.gui.List:

<data jsxid="jsxroot">
 <record jsxid="IsStatusImage" />
 <record jsxid="CaseNumber" fieldname="SW_CASENUM" fieldtype="swNumeric"/>
 <record jsxid="CaseReference" fieldname="SW_CASEREF" fieldtype="swText"/>
 ...
</data>
TIBCO iProcess Workspace (Browser) Configuration and Customization

Callout Interface | 383
var objProperties = new Object();

objProperties['children'] = true;

var serializedXml = jsxList.toXML(objProperties);

The following is a sample of the serialized columns:

<?xml version="1.0" encoding="utf-8" ?>

<serialization xmlns="urn:tibco.com/v3.0" jsxversion="3.5">
 <name><![CDATA[List]]></name>
 <icon><![CDATA[]]></icon>
 <description><![CDATA[]]></description>
 <onBeforeDeserialize><![CDATA[]]></onBeforeDeserialize>
 <onAfterDeserialize><![CDATA[]]></onAfterDeserialize>
 <object type="jsx3.gui.Matrix.Column">
 <variants jsxwidth="24"/>
 <strings jsxname="colIsStatusImage" jsxpath="IsStatusImage" ... />
 <dynamics jsxbg="ipcColHeader BG" jsxborder="@Outset" ... />
 </object>
 <object type="jsx3.gui.Matrix.Column">
 <variants jsxwidth="60"/>
 <strings jsxname="colCaseNumber" jsxpath="CaseNumber" ... />
 <dynamics jsxbg="ipcColHeader BG" jsxborder="@Outset" ... />
 </object>
 <object type="jsx3.gui.Matrix.Column">
 <variants jsxwidth="120"/>
 <strings jsxname="colDescription" jsxpath="Description" ... />
 <dynamics jsxbg="ipcColHeader BG" jsxborder="@Outset" ... />
 </object>

</serialization>
 TIBCO iProcess Workspace (Browser) Configuration and Customization

384 | Appendix A Deprecated Callout Interface
TIBCO iProcess Workspace (Browser) Configuration and Customization

| 385
Index

A

about
config 47

Access
profiles 10

Action Processor
configuration settings 138
URL 34
version number 147

Activate Case(s) tool 14, 20
Activate, in access profile 14, 20
Add Entry tool 16, 23
AddHistoryEntry, in access profile 16, 23
Adding custom menu items / toolbar buttons 79
Admin profile 11
allowDirectLogin attribute 160
apAction.xsd 146
apConfig.xml file 138, 150, 151
APLog.logX log file 139
APLogXXX.log log file 139
Application

log 179
Monitor 181

ApplicationLog, in access profile 25
appLogActive attribute 180
Array fields, requesting values from 299
ASP Forms 142, 240, 314
aspx extension 35
auditusr.mes file 205
Authenticate/authenticate method 166, 172
Authentication, single 163
Authenticator interface 166
AutoRefresh, in access profile 18
autoRefreshApplyAll attribute 55
autoRefreshInterval attribute 55
autoRefreshWorkItems attribute 55
Auto-Repeat Open Work Item tool 19

B

Background colors 78
Base class 247

properties 254
BaseUrl 158
baseUrl attribute 34
Browser issues 122
Browser window

customizing 44
BrowserFeatures 44
buildCDFArrays method 258
Button

settings 78

C

cache, clearing 124
Callout interface 87, 364
calloutCaseFilter method 374
calloutCaseFilterColumns method 374
calloutCaseSort method 378
calloutCaseSortColumns method 378
calloutColumns method 379
calloutInitialCaseFilter method 373
calloutInitialCaseSort method 377
calloutInitialWorkItemFilter method 370
calloutInitialWorkItemSort method 375
calloutSelectColumns method 382
calloutWorkItemFilter method 371
calloutWorkItemFilterColumns method 371
calloutWorkItemSort method 375
calloutWorkItemSortColumns method 376
Caption

customizing 42
Caption, customizing 40
captionCases attribute 55
 TIBCO iProcess Workspace (Browser) Configuration and Customization

386 | Index
captionWorkItems attribute 55
case

activate 203
close 200, 201
history

add entry 205
graphical 204

prediction 207
purge/delete 202
start 199
suspend 202

Case, in access profile 14
CaseCounts parameter 70
CasePreviewFloat

in access profile 17
CasePreviewOff

in access profile 18
CasePreviewOn

in access profile 17
Cases, limiting number downloaded 62
CaseStart, in access profile 13, 13, 14, 18, 18, 18
ChangePwdExpired, in access profile 26
ChangePwdOption, in access profile 26
changing process flow 210
channelmode attribute 46
Character encoding 154
CHECKBOX example 338
class attribute 252
ClearActivity, in access profile 24
clearing browser cache 124
Clearing XML cache data 259
Close

Case(s) tool 14
Close, in access profile 14, 21
closeForm method 259
Color settings 78
Columns

setting defaults 117, 364
com.tibco.bpm.ipc.Form 247
com.tibco.bpm.ipc.Socket class 277, 278
componentName parameter 368
Compressing XML response 140
ComputerName element 32
config-sample.xml 251
confirmUserMessage method 260

Connector element 154
Controls, marking 336
Conversions, date 300
createFieldDefsRequest method 261
createKeepRequest method 265
createLockRequest method 268
createReleaseRequest method 272
CSSCHGS example 341
Custom form prototypes 245
Custom menu items, adding 79
customCallout record 91, 369
customer support xii
Customizing

browser window 44
browser window caption 40
forms 331
work item caption 42

D

Data tab 17, 24
DataRead, in access profile 14, 15, 17, 21, 22, 24
DataUpdate, in access profile 14, 15, 17, 21, 22, 24
Date conversion methods 300
DEBUG log level 139
Debugging application 179, 181
default

application settings 230
Default filters, ,sorts, and columns 87, 364
Default profile 11, 11
deleting cases 202
description attribute 11
dialog attribute 46
Direct login 158
DirectLogin element 161
Director element 32
directories attribute 47
display element 55
Displaying forms outside client 359
displayNodeName

placeholder 41
doCancel method 275
doClose method 276
TIBCO iProcess Workspace (Browser) Configuration and Customization

Index | 387
doKeep method 277
doRelease method 278, 279

E

echoToJsxLog attribute 180
Embedding HTML 334
Encoding 154
ERROR log level 139
event step, triggering 208
Examples

ASP form 314
form customizations

embedded 337
file-cached 351

JSP form 324
single authentication (.NET) 173
single authentication (Java) 167

External form URI 142
ExternalFormURI element 142
ExternalFormURI parameter 240

F

failureUrl attribute 167, 173
File caching 342
Filter

dialog default user option 56
setting defaults 98, 102, 364

filter
element 165

Filter Case History tool 16
filter element 56
Filter History tool 23
Filter, in access profile 17, 24
filterCase attribute 56
FilterHistory, in access profile 16, 23
filter-mapping element 165
filterWorkItems attribute 57
Firefox issues 122
floatCenter attribute 60

floatFullscreen attribute 60
floatHeight attribute 60
floatLeft attribute 59
floatRememberPostion attribute 60
floatTop attribute 60
floatWidth attribute 60
floatWorkItems attribute 59, 252
Font settings 78
Form Details button 248
FormBuilder Forms 240
formCenter option 312
FormDateHandler class 300
FormDetails.xml prototype 248
Formflow Form 241
formFullscreen option 312
formHeight option 311
formLeft option 311
Forms 142, 199, 212, 214

ASP 142, 314
customizing 331
displaying outside client 359
element 246
GI 245
JSP 142, 324
TIBCO 72

FormTemplate.js file 248
formTop option 311
formWidth option 311
Forward

Work Item(s) tool 19
Forward, in access profile 19
ForwardAnyQueue, in access profile 19

G

General Interface (GI) Forms 240
General Interface Builder 245
getAbbrMonthNames method 307
getAmPm method 308
getAppPrefValue function 311
getDirectLoginArgs function 162
GetFieldDefs request 261, 287
getFullMonthNames method 309
 TIBCO iProcess Workspace (Browser) Configuration and Customization

388 | Index
getNode method 254
GetXMLResult method 141
GI Forms interface 245
Graphical Case History tool 16
Graphical History tool 23
graphical, case history 204
GraphicalHistory, in access profile 16, 23
Group Work Queues 18

H

History
tab 16

History, in access profile 16
Host, of Action Processor 35, 169, 170, 176
HTML, embedding 334
HTTP

module 171
POST requests 153

HttpContext object 172
HTTPS 138

I

IAuthenticator interface 173
Icon settings 78
IIS

session timeout 152
Image settings 78
Implementing, GI Forms interface 249
INFO log level 139
init method 280
initialDisplay attribute 55
init-param element 166
Interface, callout 87, 364
Internet Explorer issues 122
Internet Inter-ORB Protocol (IIOP) 144
IPAddress element 32
IPC tools methods 196
ipcActivateCases method 203
ipcAddCaseHistoryEntry method 205

IPCBrowserExamples.xpdl file 337, 352
ipcCloseCases method 201
ipcConfigureParticipation method 220
ipcConfigureRedirection method 221
ipcConfigureSupervisors method 218
ipcCSS.xml file 78
ipcForwardWorkItem method 216
ipcGetAuditProcs method 225
ipcGetGroupAttributes method 233
ipcGetStartProcs method 224
ipcGetUserAttributes method 232
ipcOpenWorkItem method 212
ipcOpenWorkItemEx method 213
ipcProcessJump method 210
ipcPurgeCases method 202
ipcReleaseWorkItem method 217
ipcShowCase method 200
ipcShowCasePrediction method 207
ipcShowGraphicalCaseHistory method 204
ipcShowOptions method 230
ipcShowProcLoadingChart method 226
ipcShowProcVersion method 227
ipcShowServerInfo method 229
ipcShowWorkQLoadingChart method 223
ipcStartCase method 199
ipcSuspendCases method 202
ipcTriggerEvent method 208
ipcUnlockWorkItem method 215
ipcWorkItemTag2CaseTag method 231
ipcWorkItemTag2WorkQTag method 232
iProcess Modeler 332
iProcess Objects Server

information screen 229
IsCompressResponse element 140
IsJRMP element 144
isRelease flag 265, 272
IsReturnSSOParams element 141
IsReturnVersion element 147
IsValidateActionXML element 146
TIBCO iProcess Workspace (Browser) Configuration and Customization

Index | 389
J

Java
Remote Method Protocol (JRMP) 144
servlet 35

JNDIEnv element 145
JSDate conversions 300
jsDateToLocal method 304
jsDateToXml method 304
JSP Forms 142, 240, 324
jsxid value 253
jsxtext attribute 78
Jump, in access profile 14

K

Keep button 277
KeepItems request 265

L

language
option 311

Language, setting 185
layout element 57
limit number of cases downloaded 62
LinkForm example 360
LoadFactor element 145
LoadingChart, in access profile 13, 18
localeKey attribute 55
localhost 142
Localization 185
localToJSDate method 305
localToXml method 305
location attribute 47
lock work item 212, 213
LockItems request 268, 281
lockWorkItem method 281
Log settings 139
LogArchiveCount parameter 139
LogFile parameter 139

logging record 180
Login

direct 158
for WCC methods 198
screen 30, 158, 164
single authentication 163

Login record 39, 160
LogLevel parameter 139
Logs, iProcess Client 178

M

Main Procedures 14
major attribute 252
Manager profile 11
Marking controls 336
MaxCases parameter 62
Maximum POST Size 153
MaxLogFileSize parameter 139
maxPostSize attribute 153
Memo markings 349
Menu items, adding custom 79
menubar attribute 47
MENUNAME user attribute 10
Methods, IPC 196
Microsoft Internet Explorer issues 122
minimizable attribute 47
minor attribute 252
Model Procedures status 13
Modeler, iProcess 332
modifyMatrixColumns method 119

N

Name element 32, 144
nodeName attribute 252
Nodes, server 30
 TIBCO iProcess Workspace (Browser) Configuration and Customization

390 | Index
O

onBeforeUnload method 283
Open

Auto-Repeat Work Item(s) tool 19
Case(s) tool 15
First Available Work Item tool 19, 19
Next Available Work Item tool 19
Selected Work Item(s) tool 19

Open, in access profile 15, 19
OpenAuto, in access profile 19
OpenCase, in access profile 20
OpenFirst, in access profile 19
OpenNext, in access profile 19
Options, setting 230
Options, user 54, 311
outstanding element 61
Outstanding tab 16
Outstanding, in access profile 16
Override methods 87
overrideColumns method 117
overrideFilter method 98, 102
overrideFilterFields method 93
overrideInitialColumns method 114
overrideInitialFilter method 95, 101
overrideInitialSort method 105
overrideSelectColumns method 111
overrideSort method 108
overrideSortFields method 103

P

Participation
tool 18

participation schedules 218, 220
Participation, in access profile 18
Password, changing elements 26
pattern attribute 41
Permissions 10
plug-in 142
Port, used by WAS 35, 169, 170, 176
POST size, maximum 153
postLoadInit method 284

postLoginCaption record 40
precedence attribute 61
Precedence, sub-procedures 61, 312
Predict

Case tool 16
Predict Case tool 23
Predict, in access profile 16, 23
predicted work items 207
Preview

in access profile 17, 20
previewCase attribute 57
previewWorkItemsfloating 58
Procedure

in access profile 13
Loading Chart tool 13
Versions tool 13

procedure
loading chart 226
versions 227

process flow, changing 210
Process Jump tool 14, 21
Process Modeler Forms 240
procName attribute 252
ProDef profile 11
productname 41
Profile element 11
Profiles, user access 10
Properties, in base class 254
prototypePath attribute 252
Purge

Case(s) tool 15, 23
Purge, in access profile 15, 23

R

RADIOBTN example 339
reactivating suspended case 203
readFieldDefs method 287, 289, 291
Read-only access 14, 15, 17, 21, 22, 24
RecalculateDeadlines, in access profile 15, 22
recurse attribute 61
redirection schedules 218, 221
Redirection tool 18
TIBCO iProcess Workspace (Browser) Configuration and Customization

Index | 391
Redirection, in access profile 18
Release

button 278
Work Item(s) tool 19

Release, in access profile 19
Released Procedures status 13
Released Work Queues 18
ReleaseItems request 272
Remote

Method Invocation (RMI) 144
Request parameters, returning 141
Requesting values from array fields 299
resizable attribute 48
Resurrect, in access profile 15, 22
Returning request parameters 141

S

Samples
ASP form 314
form customizations

embedded 337
file-cached 351

JSP form 324
single authentication (.NET) 173
single authentication (Java) 167

SCRIPT example 339
Scripts, for custom forms 334
scrollbars attribute 48
Secure Sockets Layer 138
Select Columns tool 18
SelectColumns, in access profile 14, 16, 17, 18, 19, 21,

24, 24
Server

factories 144
field, on Login dialog 30
Info tool 24
nodes 30

server information 229
server.xml file 153, 154
ServerFactories element 144
ServerInfo, in access profile 24
serverNodeName 41

ServerNodes record 30
serverUserAttr attribute 10, 27
Servlet, Java 35
Session

Activity
Log 178
tool 24

timeout 150
SessionActivity, in access profile 24
SessionMonitor record 37
sessionState element 152
session-timeout element 150, 151
setAbbrMonthNames method 308
setAmPm method 309
setFullMonthNames method 309
ShowErrorDetail, in access profile 26
showFormDetails function 248
ShowStackTrace, in access profile 26
showUserMessage method 293
Single authentication 163
SingleAuthentication record 167, 173
socketRequest method 294
Sort

in access profile 17, 24
setting default 364
setting defaults 108

SortableColumns, in access profile 17, 20
SPD 336
spddate.js file 335
spdform.js file 335
SSL 138
Start New Case tool 13
StartCase request 265, 272
status attribute 48
stepName attribute 252
Sub-procedure precedence 61, 312
Sub-Procedures 14
subProcPrecedence option 312
Summary tab 15, 20
Summary, in access profile 15, 20
Supervisors

in access profile 18
tool 18

supervisors, configuring 218
support, contacting xii
 TIBCO iProcess Workspace (Browser) Configuration and Customization

392 | Index
Suspend
Case(s) tool 14
in access profile 14

Suspend tool 21
Suspend, in access profile 21
suspended case, reactivating 203

T

TABFIELD example 340
TABNOFLD example 340
tags 196, 237
TCPPort element 32
technical support xii
Templates, case history 206
Test Work Queues 18
this.jsxsuper 277, 278, 280, 284
thresholdCases attribute 57, 57
TIBCO

Forms 199, 213, 214
TIBCO Forms 72, 240
TIBCOActProc directory 35
Timeout, session 150
Tomcat

session timeout 150
toolbar attribute 48
Toolbar buttons, adding custom 79
transformData method 295
Trigger

Events tool 15, 15
in access profile 15

Trigger Events tool 22, 22
type attribute 11

U

UniqueId element 144
Unlock Work Item(s) tool 19
Unlock, in access profile 19
unlocking 215
Unreleased Procedures status 13

URI, external form 142
URIEncoding attribute 154
URL

Action Processor 34
direct login 160
displaying forms from 361

User
access profiles 10

creating custom 27
options 54, 311
profile 11

User Work Queues 18
user.home 139
user.js file 47
userAccessProfiles.xml file. 10, 84
useRemember attribute 39
useRemote attribute 173
username 41
usernameDesc 41
useSingle attribute 167
UTF-8 154

V

Validation, XML 146
Version, of Action Processor 147
Versions, in access profile 13

W

WARN log level 139
WAS 35, 169, 170
Web Application Server 35, 169, 170
Web.config file 152
web.config file 171
web.xml file 150, 151, 165
webDAVRoot parameter 72, 240
WebLogic

session timeout 151
WiHistory, in access profile 23
WiJump, in access profile 21
TIBCO iProcess Workspace (Browser) Configuration and Customization

Index | 393
Window layout 311
WiOutstanding, in access profile 23
WIPreviewFloat

in access profile 20
WIPreviewOff

in access profile 20
WIPreviewOn

in access profile 20
Withdrawn Procedures status 13
WiTrigger, in access profile 22
work item 215

forwarding 216
opening/locking 212, 213
releasing 217

work queue loading chart 223
Work Queue Loading Chart tool 18
WorkItem, in access profile 18
workitemCaption parameter 42
WorkQueue, in access profile 18

X

XML
cache data, clearing 259
date conversions 300
response compression 140
validation 146

xmlToJSDate method 306
xmlToLocal method 306
XSD 146
XSL transform 295
 TIBCO iProcess Workspace (Browser) Configuration and Customization

	TIBCO iProcess® Workspace (Browser) Configuration and Customization

	Contents
	Preface
	Related Documentation
	TIBCO iProcess Workspace (Browser) Documentation
	Other TIBCO Documentation

	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction
	Overview
	iProcess Client
	Custom Application Built with Components

	Configuration Files

	Chapter 2 User Access
	User Access Profiles
	Hierarchy
	Using a Single Profile for Multiple User Types
	Access Profile ‘name’ Attributes
	Creating Custom User Access Profiles

	Chapter 3 Configuring the Client Application
	Server Nodes
	Action Processor URL
	Session Monitor
	Hide Case Data Tab Find Tool
	Remember Login Information
	Customizing the Browser Window Caption
	Customizing the Work Item Caption
	Specifying Browser Window Features
	Form Type
	Browser Feature Attributes

	Releasing Resources on Logout
	Redirecting Client to URL on Logout
	Redirecting Client to URL on Browser Session Timeout
	User Options
	Limiting Number of Cases
	Setting the Maximum Number of Case History Entries
	Specifying Default Page Size for Work Item Lists
	Specifying Default Types/Statuses to Display on Lists
	Server-Side Atomic Locking of Work Items
	Specifying Whether Case Counts Should be Obtained
	Specifying Outstanding Work Item Step Types
	WebDAV Root Setting
	Add-ins
	TIBCO Forms Caching
	Show/Hide Personal Work Queues

	Chapter 4 Customizations
	Font and Image Settings
	Adding Custom Menu Items and Toolbar Buttons
	Extending User Access Profiles to Control Custom Menus and Toolbar Buttons

	Callout Interface
	Sample Callout Handler
	Helper Function
	Configuration
	Callout Methods

	Browser File Cache Issues
	Browser File Cache Settings
	How Expiration Dates Are Used
	Clearing the Local Browser Cache
	Content Expiration Dates on IIS
	Other Considerations and Recommendations
	Creating New Application Directory for Updates

	Dynamic Work Item Status Icons Based on Priority
	Dynamic Row Colors on Work Item List

	Chapter 5 Configuring the Action Processor
	Overview
	Log Settings
	XML Response Compression
	Return Request Parameters
	External Form URI
	Obfuscating External Form URI Information

	Server Factories
	XML Validation
	Action Processor Version

	Chapter 6 Application Server Settings
	Session Timeout
	Maximum POST Size
	Character Encoding
	Java Heap Size

	Chapter 7 Direct Login
	Direct Login
	Enabling Direct Login
	On the URL
	In an HTML Form Element Named 'DirectLogin'
	In an HTML Script Element that Defines ‘getDirectLoginArgs’

	Chapter 8 Single Authentication
	Introduction
	Java Single Authentication
	Web Server Configuration
	Authenticator Plug-in
	iProcess Workspace (Browser) Configuration
	Java Single Authentication Sample

	.NET Single Authentication
	Web Server Configuration
	Authenticator Plug-in
	iProcess Workspace (Browser) Configuration
	.NET Single Authentication Sample

	Chapter 9 Logging
	Introduction
	Application Log
	Application Monitor

	Chapter 10 Localization
	Localizing the iProcess Workspace (Browser)
	Create a New Localized Language Resource File
	Configure the New Localized Language in the iProcess Workspace (Browser)
	Modify or Create a General Interface System Locale File
	Translate User Access Profiles Descriptions
	Set the New Default Language for the iProcess Workspace (Browser)
	Create a New Folder to Hold Localized Help Files

	Chapter 11 IPC Tools Methods
	Introduction
	Method Summary
	ipcStartCase
	ipcShowCase
	ipcCloseCases
	ipcPurgeCases
	ipcSuspendCases
	ipcActivateCases
	ipcShowGraphicalCaseHistory
	ipcAddCaseHistoryEntry
	ipcShowCasePrediction
	ipcTriggerEvent
	ipcProcessJump
	ipcOpenWorkItem
	ipcOpenWorkItemEx
	ipcUnlockWorkItem
	ipcForwardWorkItem
	ipcReleaseWorkItem
	ipcConfigureSupervisors
	ipcConfigureParticipation
	ipcConfigureRedirection
	ipcShowWorkQLoadingChart
	ipcGetStartProcs
	ipcGetAuditProcs
	ipcShowProcLoadingChart
	ipcShowProcVersion
	ipcShowServerInfo
	ipcShowOptions
	ipcWorkItemTag2CaseTag
	ipcWorkItemTag2WorkQTag
	ipcGetUserAttributes
	ipcGetGroupAttributes

	IPC Tools Methods Sample

	Chapter 12 Forms
	Introduction to Forms
	External Forms / GI Forms

	Chapter 13 GI Forms Interface
	Overview
	Base Class
	Sample Implementation

	Implementation
	Interface Properties and Methods
	Base Class Properties
	Base Class Methods
	buildCDFArrays
	closeForm
	confirmUserMessage
	createFieldDefsRequest
	createKeepRequest
	createLockRequest
	createReleaseRequest
	doCancel
	doClose
	doKeep
	doRelease
	getWindowContext
	init
	lockWorkItem
	onBeforeUnload
	postLoadInit
	readFieldDefs
	readFormFields
	readStepMarkings
	showUserMessage
	socketRequest
	transformData

	FieldData Class
	FieldData Class Functions
	Requesting Values For Items in an Array Field

	Date Conversions
	Code Example
	Date Conversion Methods
	Date Format Localization Methods

	Accessing User Options When Using GI Forms

	Chapter 14 ASP Forms
	ASP Form Example
	Setting Up the ASP Form Project in IIS
	Configuring iProcess Workspace to Use the ASP Form
	ASP Form Interface

	Chapter 15 JSP Forms
	JSP Form Example
	Configure iProcess Workspace to Use the JSP Form
	JSP Form Interface

	Chapter 16 Customizing iProcess Modeler Forms
	Overview
	Embedding HTML
	Word Wrap in the Editor
	Pre-Formatting of the Form
	Disabling Pre-Formatting
	Including Scripts
	Nesting of HTML Tags with Conditional Statements
	Functions Available for Embedded Scripting
	Altering the Style of Various Controls
	Embedded Customization Examples

	File Caching
	Setting up a Test Environment
	Structure of the Complete iProcess Modeler Form Page
	Functions Available for File-Cached Scripting
	HTML for Marking Controls
	File-Cached Customization Example

	Common Issues for Embedded and File-Cached Customizations

	Chapter 17 Displaying Forms Outside of the iProcess Workspace
	The LinkForm Example

	Appendix A Deprecated Callout Interface
	Callout Interface
	Configuration
	Callout Method Signatures

	Index

