
TIBCO JasperReports® Server
Security Guide
Software Release 8.0

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO
SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT
FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE
AGREEMENT, THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT
OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF
THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF
AND AN AGREEMENT TO BE BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER SEPARATE SOFTWARE LICENSE TERMS AND
IS NOT PART OF A TIBCO PRODUCT. AS SUCH, THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR
AGREEMENT WITH TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND INDEMNITIES.
DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION AND SUBJECT TO THE LICENSE TERMS
APPLICABLE TO THEM. BY PROCEEDING TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this document may be reproduced in any form without the
written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, Jaspersoft, JasperReports, and Visualize.js are registered trademarks of TIBCO Software Inc. in the United States and/or other
countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned for
identification purposes only.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ
ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to TIBCO's Virtual Patent Marking document
(https://www.tibco.com/patents) for details.

Copyright © 2005-2021. TIBCO Software Inc. All Rights Reserved.

Version 1121-JSP80-11 of the TIBCO JasperReports Server Security Guide

https://www.tibco.com/patents

TABLE OF CONTENTS

Chapter 1 Introduction to JasperReports® Server 5

Chapter 2 Overview of JasperReports Server Security 7
2.1 Authentication 7
2.2 Authorization Overview 8

Chapter 3 Key and Keystore Management 11
3.1 Managing Keys During Installation 11
3.1.1 Keys During Upgrade 12
3.1.2 Making Backups 13

3.2 Managing Keys for Import and Export 13
3.2.1 Entering a Key Value in the Import UI 15
3.2.2 Using a Stored Key in the Repository 16
3.2.3 Specifying an Import Key on the Command Line 17
3.2.4 Importing a Key from the Command Line 18
3.2.5 Specifying a Custom Key in the Import UI 20
3.2.6 Specifying an Export Key on the Command Line 21
3.2.7 Exporting a Key from the Command Line 22

3.3 Sharing Custom Keys 23
3.4 Configuring Encryption 25
3.4.1 Configuring Encryption Before Installation 27
3.4.2 Configuring Encryption After Installation 27
3.4.3 Legacy Encryption Configurations 28

Chapter 4 Application Security 29
4.1 Encrypting Passwords in Configuration Files 30
4.1.1 Encrypting Configuration Passwords on Tomcat 30
4.1.2 Encrypting Configuration Passwords on Enterprise Servers 31
4.1.3 Encrypting Additional Properties in default_master.properties 31
4.1.4 Password Encryption for External Authentication 33
4.1.5 Encryption Options 35

4.2 Configuring CSRF Protection 36
4.2.1 Setting the Cross-DomainWhitelist 37
4.2.2 Sending REST Requests from a Browser 38

TIBCO Software Inc. 3

TIBCO JasperReports Server Security Guide

4.2.3 CSRF Browser Compatibility 39
4.3 Configuring XSS Protection 39
4.3.1 Configuring the TagWhitelist 40
4.3.2 Configuring the AttributeMap 41

4.4 Protecting Against SQL Injection 41
4.4.1 Customizing the Error Message 42
4.4.2 Understanding Query Validation 43
4.4.3 Customizing Query Validation 44
4.4.4 Performance Issues 44

4.5 Further Security Configuration 45
4.6 Protecting Against XML External Entity Attacks 45
4.7 Protecting Against Clickjacking Attacks 45
4.8 Restricting File Uploads 46
4.9 Restricting Groovy Access 48
4.10 Hiding Stack TraceMessages 50
4.11 Defining a Cross-Domain Policy for Flash 51
4.12 Enabling SSL in Tomcat 53
4.12.1 Setting Up an SSLCertificate 53
4.12.2 Enabling SSL in theWeb Server 54
4.12.3 Configuring JasperReports Server to UseOnly SSL 54

4.13 Disabling Unused HTTP Verbs 55
4.14 Configuring HTTP Header Options 55
4.15 Setting the Secure Flag on Cookies 56
4.16 Setting httpOnly for Cookies 57
4.17 Protection Domain Infrastructure in Tomcat 57
4.17.1 Enabling the JVM Security Manager 57
4.17.2 Restoring Disallowed Permissions 58

4.18 Encrypting Passwords in URLs 59

Chapter 5 User Security 61
5.1 Configuring the User Session Timeout 61
5.2 Configuring User Password Options 62
5.2.1 Configuring PasswordMemory 62
5.2.2 Enabling Password Expiration 62
5.2.3 Allowing Users to Change their Passwords 63
5.2.4 Enforcing Password Patterns 63

5.3 Encrypting User Passwords 64
5.3.1 Dropping and Recreating the Database in PostgreSQL 66
5.3.2 Dropping and Recreating the Database inMySQL 67
5.3.3 Dropping and Recreating the Database in Oracle 67
5.3.4 Dropping and Recreating in the Database inMicrosoft SQL Server 67

5.4 Encrypting User Session Login 68
5.4.1 Dynamic Key Encryption 69
5.4.2 Static Key Encryption 69

Index 71

4 TIBCO Software Inc.

CHAPTER 1 INTRODUCTION TO JASPERREPORTS® SERVER

TIBCO JasperReports® Server builds on TIBCO JasperReports® Library as a comprehensive family of Business
Intelligence (BI) products, providing robust static and interactive reporting, report server, and data analysis
capabilities. These capabilities are available as either stand-alone products, or as part of an integrated end-to-end
BI suite utilizing common metadata and provide shared services, such as security, a repository, and scheduling.
The server exposes comprehensive public interfaces enabling seamless integration with other applications and
the capability to easily add custom functionality.

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

The heart of the TIBCO Jaspersoft® BI Suite is the server, which provides the ability to:
• Easily create new reports based on views designed in an intuitive, web-based, drag and drop Ad Hoc

Editor.
• Efficiently and securely manage many reports.
• Interact with reports, including sorting, changing formatting, entering parameters, and drilling on data.
• Schedule reports for distribution through email and storage in the repository.
• Arrange reports and web content to create appealing, data-rich Jaspersoft Dashboards that quickly convey

business trends.

For users interested in multi-dimensional modeling, we offer Jaspersoft® OLAP, which runs as part of the server.

While the Ad Hoc Editor lets users create simple reports, more complex reports can be created outside of the
server. You can either use Jaspersoft® Studio or manually write JRXML code to create a report that can be run
in the server. We recommend that you use Jaspersoft Studio unless you have a thorough understanding of the
JasperReports file structure.

You can use the following sources of information to learn about JasperReports Server:
• Our core documentation describes how to install, administer, and use JasperReports Server and Jaspersoft

Studio. Core documentation is available in PDF format on the TIBCO Product Documentation website. You
can also access PDF and HTML versions of these guides online from the Documentation section of the
Jaspersoft Community website.

• Our Ultimate Guides document advanced features and configuration. They also include best practice
recommendations and numerous examples. You can access PDF and HTML versions of these guides online
from the Documentation section of the Jaspersoft Community website.

TIBCO Software Inc. 5

https://docs.tibco.com/products/tibco-jasperreports-server
http://community.jaspersoft.com/documentation
http://community.jaspersoft.com/documentation

TIBCO JasperReports Server Security Guide

• Our Online Learning Portal lets you learn at your own pace, and covers topics for developers, system
administrators, business users, and data integration users. The Portal is available online from the Professional
Services section of our website.

• Our free samples, which are installed with JasperReports Library, Jaspersoft Studio, and JasperReports
Server, are available and documented online. Please visit our GitHub repository.

• If you have a subscription to our professional support offerings, please contact our Technical Support team
when you have questions or run into difficulties. They're available on the web at https://support.tibco.com
and through email at js-support@tibco.com.

JasperReports Server is a component of both a community project and commercial offerings. Each integrates the
standard features such as security, scheduling, a web services interface, and much more for running and sharing
reports. Commercial editions provide additional features, including Ad Hoc views and reports, advanced charts,
dashboards, Domains, auditing, and a multi-organization architecture for hosting large BI deployments.

6 TIBCO Software Inc.

http://www.jaspersoft.com/bi-training-center
http://www.jaspersoft.com/
https://github.com/Jaspersoft/jasperreports
https://support.tibco.com/
mailto:js-support@tibco.com?subject=Jaspersoft Technical Support Request

Chapter 2 Overview of JasperReports Server Security

CHAPTER 2 OVERVIEW OF JASPERREPORTS SERVER SECURITY
JasperReports Server ensures that people can access only the data they're allowed to see. The settings that define
organizations, users, roles, and repository resources work together to provide complete access control that
includes:
• Authentication – Restricts access to identified users and protects that access with passwords. Defines roles

for grouping users and assigning permissions.
• Authorization – Controls access to repository objects, pages, and menus based on users and roles.
• Data level security (commercial version only) – Defines row and column level permissions to access your

data. Row and column level permissions can be defined and enforced in Domains.

Administrators must keep security in mind at all times when managing organizations, user, roles, and resources,
because the security settings behind each of these rely on the others.

The bundled installer is not meant for use in either production environments or security testing; it's only intended for
evaluation purposes. The application server provided in that package has been configured with minimal security.
We recommend that production environments use the WAR package deployed to an application server configured
to your security standards.
This guide focuses on security concerns specific to JasperReports Server. However, you should consider other
security precautions in your environment. For example, an end-user can potentially exploit JasperReports Server's
Test Connection option when scheduling reports to an FTP server. If this is a concern, you can secure the port (by
default, port 21) at the operating system level.
The chapter on data-level security for Domains has been moved from this guide to the new document TIBCO
JasperReports Server Data Management Using Domains. That guide covers all aspects of Domains, including
creating the security file.

This chapter contains the following sections:
• Authentication
• Authorization Overview

2.1 Authentication
The first part of security is to define user accounts and secure them with passwords to give each user an identity
within JasperReports Server. The server stores user definitions, including encrypted passwords, in a private
database. Administrators create, modify, and delete user accounts through the administrator pages, as described
in the TIBCO JasperReports Server Administrator Guide.

TIBCO Software Inc. 7

TIBCO JasperReports Server Security Guide

JasperReports Server also implements roles for creating groups or classes of users with similar permissions. A
user can belong to any number of roles and have the privileges of each The server stores role definition in its
private database, and administrators create, modify, and delete roles through the administrator pages, as
described in the TIBCO JasperReports Server Administrator Guide.

JasperReports Server relies on the open source Spring security framework; it has many configurable options for:
• External authentication services such as LDAP (used by Microsoft Active Directory and Novell eDirectory)
• Single sign-on using JA-SIG's Central Authentication Service (CAS)
• Java Authentication and Authorization Service (JAAS)
• Container security (Tomcat, Jetty)
• SiteMinder
• Anonymous user access (disabled by default)

JasperReports Server also supports these encryption and authentication standards:
• HTTPS, including requiring HTTPS
• HTTP Basic
• HTTP Digest
• X509

The Spring framework is readily extensible to integrate with custom and commercial authentication services and
transports.

Authentication occurs by default through the web user interface, forcing login, and/or through HTTP Basic
authentication for web services, such as Jaspersoft Studio and for XML/A traffic. The server can automatically
synchronize with an external authentication service. External users don’t need to be created manually in the
server first. Both users and roles are created automatically in the server from their definitions in an external
authentication service. For an overview of the authentication system and details about external authentication,
see the JasperReports Server Authentication Cookbook.

2.2 Authorization Overview
With a user’s identity and roles established, JasperReports Server controls the user’s access in these ways:

Menu options and
pages

The menus appear in JasperReports Server UI depending on the user’s roles. For
example, only users with the administrator role can see the Manage menu and
access the administrator pages. By modifying the server’s configuration, you can
modify access to menus, menu items, and individual pages. Refer to the
JasperReports Server Source Build Guide and TIBCO JasperReports Server
Ultimate Guide for more information.

Organization scope Users belong to organizations and are restricted to resources within their
organizations. Organizations have their own administrators who each see only the
users, roles, and resources of their own organization. When JasperReports Server
is configured with multiple organizations, those organizations are effectively
isolated from each other, although the system admin can share resources through
the Public folder. For more information, see the TIBCO JasperReports Server
Administrator Guide.

8 TIBCO Software Inc.

Chapter 2 Overview of JasperReports Server Security

Resource permissions Administrators can define access permissions on every folder and resource in the
repository. You can define permissions for every role and every user, or leave them
undefined to be inherited from the parent folder. For example, user may have read-
write access to a folder where they create reports, but the administrator can also
create shared reports in the same folder that are set to read-only. The possible
permissions are: no access, execute only, read-only, read-delete, read-write-delete,
and administer (see "Repository Administration" in the TIBCO JasperReports Server
Administrator Guide).

Permissions are enforced when accessing any resource whether directly through
the repository interface, indirectly when called from a report, or programmatically
through the web services. A user's access to resources is limited by the permissions
defined in the user's roles.

Administrator privileges JasperReports Server distinguishes between reading or writing a resource in the
repository and viewing or editing the internal definition of a resource. For security
purposes, granting a user read or write permission on a resource does not allow
viewing or editing the resource definition. For example, users need execute or read
permission on a data source to run reports that use it, but they cannot view the data
source’s definition, which includes a database password. Also, only administrators
can interact with theme folders to upload, download, and activate CSS files that
control the UI's appearance.

Data-level security Data-level security determines the data that can be retrieved and viewed in a report,
based on the username and roles of the user running the report. For example, a
management report could allow any user to see the management hierarchy,
managers would see the salary information for their direct employees, and only
human resource managers would see all salary values.

Data-level security in Domains is explained in the new TIBCO JasperReports
Server Data Management Using Domains. Data-level security through OLAP views
is covered in the TIBCO Jaspersoft OLAP User Guide.

Note: This type of security is available only in the commercial edition of
JasperReports Server.

User attributes User attributes are name-value pairs associated with a user, organization, or server.

User attributes provide additional information about the user and can also be used
to restrict a user's access to data through Domain security files and OLAP schemas.
For information on defining user attributes, see "Editing User Attributes" in the
TIBCO JasperReports Server Administrator Guide.

User, organization and server attributes can be used to customize the definition of a
data source or as parameters of a report. See "Attributes in Data Source Definitions"
and "Attribute-Based Parameters for Queries and Reports" in the TIBCO
JasperReports Server Administrator Guide

TIBCO Software Inc. 9

TIBCO JasperReports Server Security Guide

10 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

CHAPTER 3 KEY AND KEYSTORE MANAGEMENT

JasperReports Server uses cryptographic keys internally to secure sensitive content such as database passwords
in the configuration and user passwords in the database and export catalogs. The keys are used to encrypt
information before storage and decrypt it upon retrieval.

The keys themselves are sensitive security items that must be carefully stored and safguarded. A keystore is a
standard file that holds keys and protects them with passwords. The Java Cryptography Architecture (JCA)
provides the ciphers and the protocols that protect the keys and the keystore. Administators use the command-
line keytool to manage keys in the keystore, and the server accesses keys as permitted through Java APIs.

As of JasperReports Server 7.5, key and keystore management has been updated to improve consistency and
secure all sensitive server and user data inside and outside the server application. Administrators should become
familiar with the new procedures and how to upgrade keys and the keystore from previos versions if necessary.

Because the keystore and keys are created during installation, the user account that performs the installation is
the owner of the keystore file and holder of the keystore passwords. If either the keystore or its passwords are
lost, the server can no longer function and the data it contains may become inaccessible, so be sure to keep
backup copies.

This chapter contains the following sections:
• Managing Keys During Installation
• Managing Keys for Import and Export
• Sharing Custom Keys
• Configuring Encryption

3.1 Managing Keys During Installation
As of JasperReports Server 7.5, the use of keys in a single keystore has been standardized, and all the necessary
files and configuration settings are created and initialized during the installation.

The following files are created during installation, where $USER is the user who installed the server:

TIBCO Software Inc. 11

TIBCO JasperReports Server Security Guide

Filename Default
Location Description

.jrsks $USER/home The encrypted keystore file containing the actual keys. Only the
user who performs the installation can access and modify this
file using the keytool utility.

.jrsksp $USER/home The keystore properties file that defines the keys in the keystore.
This file is encoded so that it doesn’t appear in plain text, and
permissions are set so that only the user who performs the
installation can modify it.

keystore.init
.properties

buildomatic and
WEB-INF/classes

Contains the path to the keystore files above, so that
JasperReports Server and its app server can use them. This file
should always point to the same keystore that was created at
installation. This file is copied in two locations so that when
other system users (for example tomcatuser) run the buildomatic
commands, they can detect the existing keystore and not create
a new one.

If this file is missing and the buildomatic scripts do not detect the
keystore, they will prompt the user to create a new one. If a new
keystore is created twice for a server, the scripts may overwrite
database passwords and the server will no longer be able to
access its internal database. Be sure to never create more than
one keystore for the server.

The server uses different cryptographic keys for the following tasks:
• Encrypting user passwords and secure files in the internal database.
• Encrypting and decrypting passwords in import and export catalogs. The server may also import keys in

order to decrypt catalogs from other servers.
• Encrypting passwords and sensitive data that appear in configuration files.
• Encrypting log contents in log collector output and diagnostic data.
• Encrypting HTTP parameters with a static key (now deprecated)

3.1.1 Keys During Upgrade
Because key management was introduced recently in JasperReports Server, upgrade procedures must also deal
with upgrading keys so they are unified in the keystore. For more details, see the TIBCO JasperReports Server
Upgrade Guide.

One important detail is that the keys and keystore are associated with the user that originally installed the
server. Therefore, you must do the following in order for the upgrade to recover your encrypted repository
contents:
• Back up your original keystore by copying the .jrsks and .jrsksp files to a safe location. Remember that

these files contain sensitive keys for your data, so they must always be transmitted and stored securely.
• Run the upgrade script as the same user that was originally used to install the server. Then the keystore

will be available to the script in the user's home directory.
• Alternatively, copy the .jrsks and .jrsksp files to the home directory of the user that will run the upgrade

script.

12 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

When the server's original keystore is available to the user running the upgrade script, the keys it contains are
copied and preserved in the new keystore (.jrsks) with the aliases deprecatedPasswordEncSecret and
deprecatedImportExportEncSecret.

When the upgrade script does not detect any keystore in the user's home directory, the script will prompt you to
create a new keystore. DO NOT create a new keystore if you wish to recover the contents of your old server
through the upgrade process. If you create a new keystore during the upgrade procedure, you will need to
recover your server's repository data (all users and all reports) from a backup in a separate import. You will also
need a backup of your old keystore in order to import the old keys. You will need both backups to have been
created and saved previously, they are not created by the upgrade process. In general, if the upgrade script
prompts you to create a new keystore, it is recommended to quit the script and rerun it as a user with access to
the original keystore, as describe above.

3.1.2 Making Backups
During installation, the keys in the keystore are used to protect sensitive data by encrypting configuration files
and the server’s internal repository database. Once the server is installed, the keys are used during normal
operation to encrypt or decrypt information as needed. For example, when anyone logs into the server, their
password is encrypted with the corresponding key and compared to the encrypted password stored in their user
profile. Or when importing a report from an export catalog, the catalog must be decrypted to access the contents.

Without the keystore files, the specific files created with random keys during the installation, your instance of
the server cannot function and all information it contains becomes inaccessible. This is why having backups of
the keystore files must be a part of your larger backup and recovery plans for your data. Businesses usually have
IT policies for making backups, and the keystore files for your JRS instance should be included in your policies
and procedures.

Backups of the keystore files are digital copies of the files stored in a secure location, usually determined by
your IT policies. Use the following guidelines when creating and implementing your keystore backup policies:
• Copy both the .jrsks and .jrsksp files together, keeping the .jrsksp file encoded as it is.
• The keystore files should be copied only by the system user who installed the server.
• Restrict access to the backup keystore files as you would the originals on production servers. This includes

digital access security for online backups and physical security for offline backups. The files are literally the
keys to the application and should be guarded as such.

• If you need to restore from the backups, the system user who installed the server should copy the files to
their home directory ($USER/$HOME). This is the location where the server expects to find them at
runtime.

3.2 Managing Keys for Import and Export
As of JasperReports Server 7.5, the management of the encryption keys used during import and export has been
automated. These encryption keys are used by the server to encrypt user passwords so they are not revealed in
export catalogs.

In previous versions of the server, the import-export key had to be configured manually outside the server.
Beginning with version 7.5, the server creates and manages its import-export key internally, and also includes
UI and REST options for specifying keys during import and export operations. However, there are still cases
when you may need to manage keys on the server and specify keys during import-export operations.

The following table summarizes the use of keys when importing catalogs into the current version of the server:

TIBCO Software Inc. 13

TIBCO JasperReports Server Security Guide

Origin of Export Catalog Guidelines for Importing into 8.0

Prior to version 7.5
With default key

The current version of the server handles previous export catalogs created
with legacy keys, and even older catalogs that did not use encryption. When
importing through the UI, specify the Legacy key, and when importing
through the command line, specify the deprec-
atedImportExportEncSecret.

Prior to version 7.5
With custom import-export keys

The custom keys are not known to your server, so in order to import these
catalogs, you will need to share the custom key with the importing server.
There are two ways to specify custom keys:
1. For one-time or occasional imports, you can enter the key's hex value

into the UI or the import command-line, or store it in the repository for
repeated use.

2. For continual use, you should import the key to server's keystore with the
command-line import command. Then the key is available by it's alias
either through the UI or the command-line when importing a catalog.

Version 7.5 and later
From the same server

When you import a catalog back into the same server, the server uses the
same key for export and import and thus can read its own export catalog.
When importing through the UI, specify the Server key, and when importing
through the command-line, the key is detected automatically. This is also
true after upgrading the server, as long as the catalog was exported from ver-
sion 7.5 or later and the server's keystore was preserved during the upgrade.
For more information about the keystore and catalogs during upgrade, see
the TIBCO JasperReports Server Upgrade Guide.

Version 7.5 and later
From a different server

Because each server has unique randomly-generate keys, the keys of the
export server are not known to your server. However, unlike the custom key
scenario above, you do not have direct access to the server's keys. Before
you can move export catalogs between servers, such as test and production
servers, you will need to generate and share a key between the servers:
1. Generate a key during the export operation on the first server.
2. Import the new key into the second server's keystore with the command-

line import command.
3. Import the catalog into the second server and specify the custom key

either through the UI or the command-line.
If you also import the key back into the originating server, both servers
will share the same key. Then if you specify this custom key during import
and export, catalogs can be exported from either sever and imported into
the other one.

This guide documents the following operations to set up and manipulate keys:
• Specifying custom keys during import and export operations.
• Importing keys used by other servers.
• Exporting keys for use in other servers.
• Sharing custom keys between multiple servers.

For the default import and export operations, including specifying import-export keys through the UI, see the
TIBCO JasperReports Server Administrator Guide:

14 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

• Importing catalogs from older servers with legacy or custom keys.
• Exporting catalogs with a specific key.

The following sections describe the three ways to import a catalog that is encrypted with a custom key:
• Use the import UI, and enter the key’s hexadecimal bytes in the Key Value field. This method is simple,

but the key will not be stored in the server for multiple imports.
• Store the custom key as a secure file resource in the repository, so it can be reused. Then use the import UI

with the Stored Key field.
• Use the import command line to import the key into the keystore so that is available for any import

operation in the future.

3.2.1 Entering a Key Value in the Import UI
The simplest way to import a catalog with a custom key is to use the Settings UI for import and enter the key
value. The key value is its representation in hexadecimal, for example:

0x1c 0x40 0xb9 0xf6 0xe2 0xd3 0xf9 0xd0 0x5a 0xab 0x84 0xe6 0xd4 0xe8 0x5f 0xed
1. Log in as system administrator (superuser by default).
2. Select Manage > Server Settings, then click Import in the left-hand panel.
3. In the right-hand panel, browse the file system to enter the catalog file you want to import.

Figure 3-1 Import UI with Key Value

TIBCO Software Inc. 15

TIBCO JasperReports Server Security Guide

4. Choose the Key Value radio button and paste the entire key value in the designated field. The characters of
the key value are hidden to keep them secret.

5. Select your import options and click Import.
If the key does not decrypt the catalog file, you will get an error message, otherwise the import will
proceed.

3.2.2 Using a Stored Key in the Repository
If you have multiple files to import, you can store the custom key in a secure file resource in the repository. The
contents of secure file resources are considered sensitive and protected internally in the same way as user
passwords, that is they are encrypted with a key in the internal database.
1. Start by saving your custom key value as a hexadecimal number in a plain text file, for example:

0x1c 0x40 0xb9 0xf6 0xe2 0xd3 0xf9 0xd0 0x5a 0xab 0x84 0xe6 0xd4 0xe8 0x5f 0xed
2. Log in as system administrator (superuser by default).
3. Select View > Repository, then browse the repository tree to find an appropriate folder.
4. Right-click the folder and select Add Resource > File > Secure File.
5. In the Add File dialog, browse the file system to enter your text file with the key.

Figure 3-2 Add Secure File Dialog

6. Fill in the other fields and click Submit. The File appears in the repository.

16 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

7. Select Manage > Server Settings, then click Import in the left-hand panel.
8. In the right-hand panel, browse the file system to enter the catalog file you want to import.

Figure 3-3 Import UI with Key File

9. Choose the Stored Key radio button and browse the repository to find your secure file.
10. Select your import options and click Import.

If the key does not decrypt the catalog file, you will get an error message, otherwise the import will
proceed.

3.2.3 Specifying an Import Key on the Command Line
Similar to the import UI, the js-import command-line utility has new options to specify the key needed to decryt
passwords in the catalog, for example, catalogs from older servers with different keys. There are two ways to
specify the import key:
• Give the hexadecimal bytes of the key.
• Give the alias of a key in the server's keystore (.jrsks).

TIBCO Software Inc. 17

TIBCO JasperReports Server Security Guide

js-import Options to Specify an Import Key

Option Explanation

--input-zip Specifies the file path to a zipped input catalog from an older JasperReports
Server instance that was configured to use custom keys.

import options The standard import options specifying the import behavior, for example --update
--skip-user-update. These options are documented in the TIBCO
JasperReports Server Administrator Guide.

--keyalias When used with input-zip, this option specifies a key in the server's keystore (.jrsks)
to use when decrypting passwords in the import catalog.

--secret-key Lets you specify the hexadecimal representation of a key to be used as a one-time
import key to decrypt any passwords in the input-zip.

--keyalg When used with --secret-key, this option defines the algorithm, either AES or
DES, for the hexidecimal key. The default is AES.

The following example shows how to import a catalog with a custom key.

js-import.sh --secret-key "0x1c 0x40 0xb9 0xf6 0xe2 0xd3 0xf9 0xd0 0x5a 0xab 0x84 0xe6 0xd4
0xe8 0x5f 0xed" --input-zip myExport.zip

The following example shows how to import a catalog using a key already saved in the keystore.

js-import.sh --keyalias productionServerKey --input-zip myExport.zip

3.2.4 Importing a Key from the Command Line
If you have many catalogs to import from a server with a custom key, the js-import script has different options
to import the key and add it to the local keystore (.jrsks by default). You can then use the example in the
previous section to specify the new key by its alias when importing. There are three ways to define the key to
import:
• Provide the hexadecimal bytes of the key.
• Provide a keystore and the alias (and password) of a key it contains.
• Requst a random key be generated and associated with an alias (and password) you provide.

js-import Options to Import a Key

Option Explanation

--input-key This option specifies a key to be added to the server's keystore. This option should
be followed by the hexadecimal representation of the key, or by the --keystore
or --genkey options (see below). Use the --keyalias, --keyalg, and --
keypass options to add properties to the definition of the key in the keystore.

18 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

js-import Options to Import a Key

Option Explanation

--keystore This option specifies the path and filename of a keystore file from which to read
and copy the key designated by the --keyalias option. You must also specify the
--storepass option to access the source keystore and the --keypass option to
give the key's password in the keystore file.

--storepass This option specifies the password for the keystore file from which to read and copy
the key designated by the --keyalias option.

--genkey This option triggers the import utility to generate a random key to be added to the
server's keystore with the alias and password you specify (in the other options
below) so that you can later access and use it. This option is a shortcut for creating
a random key in an external keystore and then importing it with the --keystore
option.

--keyalias When used with a hexidecimal input-key, it specifies the alias of the new key to be
imported. When used with the --genkey option, this specifies the alias of the new
key to create. When used with the --keystore option, it specifies the alias of the
key to be copied, and the copy of the key will have the same alias.

--keypass When used with a hexidecimal input-key, it specifies the password of the new key
to be imported. When used with the --genkey option, this specifies the password
of the new key to create. When used with the --keystore option, it specifies the
password of the key to be copied, and the copy of the key will have the same
password.

--keyalg When used with a hexidecimal input-key, this option defines the algorithm, either
AES or DES, for the key being imported in the keystore. When used with the --
genkey option, this specifies the algorithm to use when creating the new key.

--keysize When used with a hexidecimal input-key, this option defines the key length in bits,
usually 128 or 256, for the key being imported in the keystore. When used with the
--genkey option, this specifies the length of the new key to create.

--visible Specify this flag to make the imported key displayed in the list of Custom Keys as
shown in 3.2.5, “Specifying a Custom Key in the Import UI,” on page 20. When
omitted, the imported key is not available for UI import operations, only through
command-line import operations (using --keyalias).

--keylabel When --visible is specified, this option lets you specify the name of the key to
display in the Custom Key selection interface. If --visible is specified without this
option, the key alias is displayed in the UI. This option has no effect when --visible
is not specified.

The following example shows how to add a key to the keystore, so it can be used for other import operations:

TIBCO Software Inc. 19

TIBCO JasperReports Server Security Guide

js-import.sh --input-key "0x59 0xe3 0xd9 0xce 0x7f 0x34 0xab 0x27 0xb8 0xdf 0xc3 0x7e 0x01 0xab
0x4d 0x6c" --keyalias productionKey --keyalg AES --keypass productionKeyPass
--visible --keylabel ProductionServerKey

The following example shows how to copy a key from an external keystore file into the default keystore.

js-import.sh --input-key --keystore ./mystore --storepass password --keyalias productionKey2
--keypass productionKeyPass2 --visible --keylabel ProductionServerKey2

3.2.5 Specifying a Custom Key in the Import UI
After adding custom keys to the keystore from the command line using the --visible option, you can also
select the keys in the UI during import operations. The keys are identified by their alias or label if given.
1. Log in as system administrator (superuser by default).
2. Select Manage > Server Settings, then click Import in the left-hand panel.
3. In the right-hand panel, browse the file system to enter the catalog file you want to import.

Figure 3-4 Import UI with Key Value

4. When the server's keystore contains custom keys, the list of keys appears as the third bullet. Note that key
files in the repository do not appear in this list, only custom keys in the keystore. Each key in the list is

20 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

identified by its label if it was defined on import, otherwise by its alias. Choose this bullet and select your
key from the drop-down list.

5. Select your import options and click Import.
If the key does not decrypt the catalog file, you will get an error message, otherwise the import will
proceed.

3.2.6 Specifying an Export Key on the Command Line
As with the export UI, you can specify custom keys when exporting from the command line. For example, you
can create an export catalog that can be imported into another server instance that has different keys. There are
three ways to specify the export key:
• Provide the hexadecimal bytes of the key.
• Give the alias of a key in the server's keystore (.jrsks).
• Requst a random key be generated and displayed on the console.

js-export Options to Specify the Export Encryption Key

Option Explanation

--output-zip Specifies the name of a zipped output catalog that will use the custom keys
specifed by the other options in this table. The index.xml file in the catalog contains
new attributes to handle keys.

export options The standard export options specifying the resources to export and export
behavior, for example --uris ... --skip-dependent-resources. These
options are documented in the TIBCO JasperReports Server Administrator Guide.

--secret-key This option lets you specify the hexadecimal representation of a key to be used as
a one-time export key to encrypt any passwords in the output-zip.

--keyalg This option may be specified only with the secret-key option above. It specifies
the cryptography algorithm of the given key, either AES or DES (RSA is not
supported by default). When not specified, the secret-key is assumed to use the
same algoritm as the server's default import-export key (AES).

--keysize This option may be specified only with the secret-key option above. It specifies
the key length in bits (usually 128 or 256) to apply to the given key. When not
specified, the size is the same as the server's default import-export key (128).

--keyalias This option specifies a key in the keystore to use when encrypting passwords in
the export catalog, instead of the default import-export key.

--keypass This option may be specified only with the keyalias option above. It is required in
the unlikely situation where the key with the given alias is held in the keystore, but
the .jrsksp file is not configured with the password to access the key.

TIBCO Software Inc. 21

TIBCO JasperReports Server Security Guide

js-export Options to Specify the Export Encryption Key

Option Explanation

--genkey This option generates a random key using the same algoritm and key size as the
server's default import-export key (AES-128), and uses it to encrypt passwords in
the export catalog. If the export is successful, the js-export script prints the key's
hexadecimal representation and a unique alias for it on the console where it is
running. You will need to specify the same key when importing the catalog, for
example with the js-import --input-key option or as explained in 3.2.1,
“Entering a Key Value in the Import UI,” on page 15.

The following example shows how to export a catalog with passwords encrypted with a custom key:

js-export.sh --uris /public/samples/AccountList --output-zip myExport.zip
--secret-key="0x6f 0x00 0xf1 0xbd 0x46 0x1f 0x62 0xa1 0x03 0x56 0x13 0xda 0x07 0x00 0x7c 0x10"

The following example shows how to export a catalog with passwords encrypted by one of the keys in the
keystore. :

./js-export.sh --uris /public/samples/AccountList --output-zip myExport.zip
--keyalias productionServerKey --keypass "mykeypw2"

3.2.7 Exporting a Key from the Command Line
The js-export utility can also be used to export one of the keys from the server's keystore (.jrsks). In addition to
exporting repository resources in an export catalog, the following options will generate a Java keystore file
containing the specified key. The keystore is a secure file protected by the given password that can be used
with the keytool utility or with the keystore options of the js-import tool. For more information, see 3.2.4,
“Importing a Key from the Command Line,” on page 18.

js-export Options to Export a Key

Option Explanation

--keyalias When used with the --destkeystore option below, this specifies the alias of the
key to be exported from the server's keystore, and the copy of the key will have the
same alias. If the export includes resources in an export catalog, any passwords it
contains will be encrypted with this key.

--keypass This option may be specified only with the keyalias option above. It is required in
the unlikely situation where the key with the given alias is held in the keystore, but
the .jrsksp file is not configured with the password to access the key.

22 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

js-export Options to Export a Key

Option Explanation

--genkey This option generates a random key using the same algoritm and key size as the
server's default import-export key (AES-128), and exports it in the specified
keystore. If the export includes resources in an export catalog, any passwords it
contains will be encrypted with this key.

--destkeystore This option specifies the filename of a keystore file to create, in order to export the
key designated by the --keyalias option. You must also specify the --
deststorepass option.

--deststorepass This option specifies the password for the keystore file to be created to hold the
exported key.

--destkeypass Specifies a new password for the key in the newly created keystore.

You may specify both an output zip catalog and list of resources to export, as well as a key alias and keystore
filename. In the following example of this, the export will create two output files, the zip catalog and the
keystore, and any passwords in the catalog will be encrypted with the same key that was exported.

js-export.sh --everything --output-zip myExport.zip --destkeystore mystore --deststorepass storepw --
genkey

The server that generates this key will store a copy of it in its keystore, and if you import the key to another
server, they will share the key. If you examine the key with the keytool utility, it has a unique alias name:

keytool -list -v -keystore ./mystore -storetype jceks

Enter keystore password: *******
Keystore type: JCEKS
Keystore provider: SunJCE
Your keystore contains 1 entry
Alias name: ced6b744-033d-4516-b293-c4776035a6f1
Creation date: Dec 12, 2019
Entry type: SecretKeyEntry

Now you can specify this unique alias name whenever importing or exporting from your two servers, the
encryption will be mutually compatible, and you won't need to export or import keys anymore.

3.3 Sharing Custom Keys
The import and export functionality can be used to share export catalogs between servers that have different
keys, for example an old server with custom keys. If you wish to share catalogs between two servers that are
both on release 7.8, you can add the keys directly to the server's keystore.

TIBCO Software Inc. 23

TIBCO JasperReports Server Security Guide

For example, if you have a test server for developing reports and dashboards, and a production server where
users need them, you can transfer them by exporting from one and importing into the other. To do so, both
servers need the same import-export key, but after intallation, each will have a different and random key. The
recommended solution is to generate the new key in a new keystore file, and then import it to both servers.

The following procedure assumes you are familiar with the command-line keytool utility. For more
information, see the Java keytool reference.

To create and import a custom key to multiple servers (release 7.5):
1. Generate your custom keys in a keystore. In this example, we generate two keys that will be used to

overwrite the default import-export key and the diagnostic key.

keytool -genseckey -keystore ./mystore -storetype jceks -storepass storepw
-keyalg AES -keysize 128 -alias importExportEncSecret -keypass myimportexportpw

keytool -genseckey -keystore ./mystore -storetype jceks -storepass storepw
-keyalg AES -keysize 128 -alias diagnosticDataEncSecret -keypass mydiagnosticpw

Use the keytool utility again to verify your new keys:

keytool -list -v -keystore ./mystore -storetype jceks

Enter keystore password: *******
Keystore type: JCEKS
Keystore provider: SunJCE
Your keystore contains 2 entries
Alias name: diagnosticdataencsecret
Creation date: Dec 12, 2019
Entry type: SecretKeyEntry

Alias name: importexportencsecret
Creation date: Dec 12, 2019
Entry type: SecretKeyEntry

2. Copy the keystore file to both servers using a secure method such as scp, sftp, or rsync.

scp ./mystore jrsusr@bi-test.example.com:/opt/jasperreports-server/jasperreports-server-7.8.0/buil-
domatic/

scp ./mystore jrsusr@bi-production.example.com:/opt/jasperreports-server/jasperreports-server-
7.8.0/buildomatic/

3. Log into the first server (bi-test) as the system user who installed JasperReports Server (jrsusr) and stop the
app server. Then import the keys with the following commands:

cd /opt/jasperreports-server/jasperreports-server-7.8.0/buildomatic/

./js-import.sh --input-key --keystore ./mystore --storepass storepw

24 TIBCO Software Inc.

https://docs.oracle.com/en/java/javase/11/tools/keytool.html

Chapter 3 Key and Keystore Management

--keyalias importExportEncSecret --keypass myimportexportpw

./js-import.sh --input-key --keystore ./mystore --storepass storepw
--keyalias diagnosticDataEncSecret --keypass mydiagnosticpw

4. Log into the second server (bi-production) as the system user who installed JasperReports Server (jrsusr) and
stop the app server. Then import the keys with the same commands as above.

5. Restart both app servers, and now they will use your custom keys.

In this example, the two custom keys were given the same alias as keys that are created by default in the server's
own keystore (/users/jrsuser/.jrsks). As a result, the custom keys will overwrite the server's default keys and be
used in any operation where the default keys are used. This will have the following consequences:
• Export catalogs can be shared between the two servers. Any passwords in the export catalog will be

encrypted with the new importExportEncSecret one one server and decrypted with the same key on the
other server. Export catalogs can be moved from the test server to the production server for deployment and
vice versa for debugging, witout exchanging keys or even specifying key aliases.

• Log collectors will be encrypted with a known key. For security, the diagnostic information in log collector
is encrypted with the diagnosticDataEncSecret key. Now when you download the log collector zip file,
you just need a copy of the mystore keystore file with your new diagnosticDataEncSecret key to decrypt it.

The keystore you created in this procdure contains the same keys as your production server, and could
thus be used to access sensitive data. Be sure to delete the copies of the keystore you no longer need,
and safeguard the passwords you used in these commands.

3.4 Configuring Encryption
In a normal server installation for evaluation or production environments, once the server is installed or
upgraded, the use of the keystore is transparent and requires no further configuration. If you need to handle keys
for old servers, you can you the import and exort tool so that servers have the keys they need.

For special situations, it is possible to customize the server’s use of encryption, such as configuring specific
ciphers or cipher length. For example, the server only supports the AES (Advanced Encryption Standard) and
DES (Data Encryption Standard) algorithms for encryption by default. If you wish to use a different algorithm
such as RSA (Rivest–Shamir–Adleman), you need to change cipher implementation to one that supports RSA.
Configuring encryption is best done before installation, but can also be done after.

However, the specifics of configuring encryption in JasperReports Server are beyond the scope of this document.
This section is intended only to introduce the concepts and guidelines for advanced use cases. Administrators
wishing to customize encryption settings must be proficient in cryptography libraries of the Java Cryptography
Architecture (JCA) and know the risks to avoid.

Before you consider modifying the encryption configuration, keep in mind the following:
• Always make a backup of the server and original keystore files before configuring encryption. The keystore

files are unique to every installation and the server is inaccessible without them.
• If you need to modify the encryption settings, do it before provisioning your server with production data.
• Even if the server has no production data, you should export the entire repository along with the export key

before proceeding. Default accounts such as superuser and jasperadmin must be re-imported later in order to
work with your new encryption settings.

• You must be familiar with cryptographic concepts and details of the keystore APIs. For more information,
see the Java Cryptography Architecture (JCA) Reference Guide and its section on key management.

TIBCO Software Inc. 25

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement

TIBCO JasperReports Server Security Guide

• Encryption may be configured in the .jrsksp file and also in beans and properties in other configuration
files. This may create a complex configuration where values override other settings, and what appears in the
keystore properties file may not be the final configuration at runtime. While this may be desirable or
necessary for your configuration, it creates complex dependencies and risk.

• Be sure to document your new configuration, including any secondary configuration file dependencies.
• Incorrect configuration of the keystore or importing with the wrong keys may corrupt your data or make it

impossible to access the server. Therefore, it is critical you know and test your encryption configuration and
your import procedure. Testing on an isolated and empty evaluation server instance is recommended.

• Be sure to securely delete any draft copies of your encryption configuration and wipe any test servers to
ensure the security of your production server.

• After configuring the encryption, importing your export catalog, and testing your server, remember to back
up your new keystore files, including any other configuration files that may contribute to the encryption
settings.

For security, the .jrsksp file is Base64 encoded so that it is not a plain text file. To read and modify the file, the
system user who installed the server must decode the file, for example:
Windows: certutil -decode .jrsksp myconfig.txt

Linux: cat ~/.jrsksp | openssl base64 -d > myconfig.txt

Inside the keystore is the configuration for each of the following keys:

Key Alias Description

buildSecret Key for encrypting passwords and sensitive values in configuration
files in the file system.

importExportEncSecret Key for all import and export operations of the new server.

deprecatedImportExportEncSecret Key for importing from previous versions of the server.

passwordEncSecret Key for encrypting user passwords and other sensitive content in
the server’s internal database (the repository).

deprecatedPasswordEncSecret Key for upgrade to 7.5 without exporting everything; However, the
best practice is to export everything, modify the configuration, and
reimport, as described in the upgrade section.

diagnosticDataEncSecret Key for encryption of log collector output. Use js-export to export
this key and decrypt the output file.

httpParameterEncSecret Key used for HTTP parameter encryption in releases prior to 7.5,
now deprecated. If upgrading from a previous release, this key
needs to be exported from the old keystore, and imported into the
server.

deprecatedHttpParameterEncSecret This key is not used.

If you have added key to the keystore with the js-import command, they will have their alias and password
defined here as well.

26 TIBCO Software Inc.

Chapter 3 Key and Keystore Management

Configuration properties are typical Java properties (name=value), one per line. Special precaution needs to be
taken while working with the .jrsksp properties because certain symbols must be escaped with a backslash. For
example, #, :, \, and = are represented as \#, \:, \\, and \= to be interpreted correctly.

Configuration values with the same name may be set in other files and take precedence. This may be necessary
for certain configurations, but it is more complicated and may lead to errors. If possible, keep all the encryption
settings in the .jrsksp file.

The values of the keys themselves are encrypted and stored in the .jrsks file. Only the Java keytool utility in the
JDK (Java Development Kit) can read, write, or modify keys in the keystore file.

The procedure for configuring encryption depends on whether you can do it before installation, which is easier,
or after.

3.4.1 Configuring Encryption Before Installation
The easiest way to customize the encryption on your server is to modify configuration files before doing a
WAR file installation. That way, the installation scripts use your settings when generating keys and the
keystore, and all encryption is performed once with the properties you want.

You may need to install an evaluation server to access its .jrsksp file and determine which settings you want to
modify. Of course, you should also test your custom encryption configuration on test installations before
installing your production servers.

The default values of properties may be modified by defining them in default_master.properties, after copying
the appropriate <name>_master.properties file and before running the installation scripts. For example, you
could specify predefined passwords for each key instead randomly generated ones. When the installation runs, it
performs the keystore creation and all initial encryption using your configuration.

After the installation is successful, you should be sure to back up and then delete any files that contain sensitive
encryption configuration values such as passwords. You should also document your custom installation for ease
of maintenance and support.

3.4.2 Configuring Encryption After Installation
If possible, you should customize your encryption configuration before you install the server. In case that’s not
possible, you can configure encryption after the fact, but the procedure is much longer, depending on the
settings you need to change. For example, changing the password of a key does not impact contents that are
already encrypted, but changing the strength of the password cipher means you need to re-encrypt all user
passwords.

The following procedure gives the general steps for changing the encryption configuration of a server after it
has been installed and provisioned. This assumes your changes require the server’s contents to be re-encrypted.
1. Export the entire contents of the server including the import-export cipher.
2. Stop the server.
3. Decode the .jrsksp file as described above, and make changes to its settings. It’s also possible to add

encryption configuration settings in the applicationContext-security.xml file if necessary.
4. Depending on what you modify in the configuration, you may need to generate or modify keys using the

keytool utility. For example, if you want a stronger cipher, you need to generate the longer key to replace
the existing one. If you change a password in the properties file, you must also set the password in the
keystore with keytool. Make sure the keystore is updated in exactly the same way as the .jrsksp properties
file.

TIBCO Software Inc. 27

TIBCO JasperReports Server Security Guide

5. After all modifications, the .jrsksp file must be Base64 encoded and replaced in the user’s home directory
with the updated keystore (.jrsks) file.

6. Restart the server.
7. Import your server’s export catalog with its old export key (if the export key has changed). If the

configuration is coherent and the keys are correct, you should be able to log in.

As mentioned previously, the details and complexity of these procedures are beyond the scope of this document.
You must have the knowledge and experience with the Java Cryptography Architecture to successfully modify
the encryption configuration.

3.4.3 Legacy Encryption Configurations
In previous releases of the server, encryption was often defined in configuration files and could be modified. As
of release 7.5, all encryption keys are stored in the server's keystore (.jrsks) with the matching configuration in
the keystore properties file (.jrsksp). However, in certain cases where you wish to customize how the
encryption works, you could use the legacy configuration.

The following sections describe legacy encryption configuartions that have been replaced by the keystore
functionality, but could be used as documentation for advanced encryption configuration. In general, if you
configure a key through a configuration file, it will be used instead of the key from the keystore:
• 5.4.2, “Static Key Encryption,” on page 69 for HTTP parameters.
• 5.3, “Encrypting User Passwords,” on page 64 in the internal database.
• 4.1.5, “Encryption Options,” on page 35 for encrypting passwords in configuration files.

28 TIBCO Software Inc.

CHAPTER 4 APPLICATION SECURITY
This chapter describes the configuration settings that protect JasperReports Server and its users from
unauthorized access. The configuration properties appear in two locations:
• Some properties must be configured during the installation and deployment phase, before users access the

server. These settings are configured through files used by the installation scripts. These settings are
available only when performing a WAR file installation.

• Properties you can configure after installation are located in files in various folders. Configuration file paths
are relative to the <js-install> directory, which is the root of your JasperReports Server installation. To
change the configuration, edit these files then restart the server.

Because the locations of files described in this chapter vary with your application server, the paths specified in
this chapter are relative to the deployed WAR file for the application. For example, the applicationContext.xml
file is shown as residing in the WEB-INF folder. If you use the Tomcat application server bundled with the
installer, the default path to this location is:

C:\Program Files\jasperreports-server-8.0\apache-tomcat\webapps\jasperserver-pro\WEB-INF

Use caution when editing the properties described in this chapter. Inadvertent changes may cause
unexpected errors throughout JasperReports Server that may be difficult to troubleshoot. Before changing
any files, back them up to a location outside of your JasperReports Server installation.

Do not modify settings not described in the documentation. Even though some settings may appear
straightforward, values other than the default may not work properly and may cause errors.

This chapter contains the following sections:
• Encrypting Passwords in Configuration Files
• Configuring CSRF Protection
• Configuring XSS Protection
• Protecting Against SQL Injection
• Protecting Against XML External Entity Attacks
• Protecting Against Clickjacking Attacks
• Restricting File Uploads
• Restricting Groovy Access
• Hiding Stack Trace Messages
• Defining a Cross-Domain Policy for Flash
• Enabling SSL in Tomcat
• Disabling Unused HTTP Verbs
• Configuring HTTP Header Options

TIBCO Software Inc. 29

TIBCO JasperReports Server Security Guide

• Setting the Secure Flag on Cookies
• Setting httpOnly for Cookies
• Protection Domain Infrastructure in Tomcat
• Encrypting Passwords in URLs

4.1 Encrypting Passwords in Configuration Files
In JasperReports Server version 5.5 or later, administrators can obfuscate passwords that appear in the
configuration files. This satisfies security audit requirements and prevents the passwords from being seen by
unauthorized individuals. Typically, the following are encrypted:
• The password to JasperReports Server's internal database (jasperserver).
• The passwords to the sample databases (foodmart and sugarcrm).
• On Tomcat, passwords in JNDI resource definitions.

You can change the configuration to also encrypt:
• The password for the mail server used by the scheduler (quartz.mail.sender.password)
• The password for LDAP external authentication.

Passwords in configuration files are encrypted during JasperReports Server installation. If the installation
deploys to the Tomcat application server, the database password is also automatically encrypted in the JNDI
configuration (in the file context.xml).

Full password security cannot be guaranteed from within JasperReports Server. A user with sufficient
privileges and knowledge of JasperReports Server can gain access to the encryption keys and the
configuration passwords. While you could require a password on every server restart, this is impractical
for most users. The only practical way to guarantee password security is through backup and restriction
of access to the keystore property file.

4.1.1 Encrypting Configuration Passwords on Tomcat
To encrypt passwords in a Tomcat installation, modify the installation procedure:
1. Depending on the database you use, copy the installation configuration file as usual:

from: <js-install>/buildomatic/sample_conf/<database>_master.properties
to: <js-install>/buildomatic/default_master.properties

2. Edit the default_master.properties file:
• Enter values specific to your installation.
• Enter your passwords in plain text.
• Turn on configuration file encryption by uncommenting the encrypt=true property. You don't have

to uncomment any other encryption properties because they all have the default values shown.
• Unless you're using Oracle, uncomment propsToEncrypt and set it to dbPassword,sysPassword.
• Optionally, specify additional properties to encrypt as described in 4.1.3, “Encrypting Additional

Properties in default_master.properties,” on page 31.
• Optionally, change the settings for configuration file encryption as described in 4.1.5, “Encryption

Options,” on page 35.
3. Run the buildomatic installation script (js-install) and all other installation steps according to the TIBCO

JasperReports Server Installation Guide. This will have the following effects:

30 TIBCO Software Inc.

Chapter 4 Application Security

a. The plain text passwords in default_master.properties are overwritten with their encrypted equivalents.
There is no warning when you run js-install with encrypt=true.

b. The encrypted passwords are propagated to all configuration files.
c. The installation proceeds and copies files to their final locations.

4. After installation, passwords are encrypted in the following locations:
• In all server configuration files in .../WEB-INF/applicationContext*.xml.
• In JNDI definitions in .../META-INF/context.xml.
• In the default_master.properties files that remain after installation.

If you get an error like the following when restarting the server:

javax.naming.NamingException: KeystoreManager.init was never called or there are errors

instantiating an instance

you may need to add the following to your Tomcat service start properties:

-Duser.home=c:\Users\<TomcatUser>

4.1.2 Encrypting Configuration Passwords on Enterprise Servers
Most enterprise servers, like JBoss, Glassfish, WebSphere, and WebLogic, have proprietary ways to set up
password encryption. You should use these encryption methods. JasperReports Server doesn't automatically set
up encrypted passwords for these servers during deployment. In this case, you can encrypt the passwords in the
buildomatic file after deployment:
1. Deploy JasperReports Server to your enterprise server as specified in the TIBCO JasperReports Server

Installation Guide. The resulting JasperReports Server instance will have unencrypted JNDI data source
passwords. If you want to encrypt these passwords, refer to your application server's documentation.

2. After the server has been successfully configured, encrypt the JasperReports Server configuration files as
follows:
a. In default_master.properties, turn on encryption by uncommenting encrypt=true.
b. Run the target js-ant refresh-config. This will remove and recreate all the configuration files

without deploying them to the application server. Now the buildomatic files will have the database
passwords encrypted. You should still be able to execute import/export or other scripts.

3. After running js-ant refresh-config, you will need to manually copy the encrypted password to the
application server configuration file. Copy the encrypted password from the updated default_
master.properties file to the corresponding database connection files on the server, such as the /META-
INF/context.xml file for Tomcat.

Do not run js-install or js-ant deploy-webapp-pro. These commands will overwrite the WAR file
created in step 1 and render the server data sources inaccessible. If you need to redeploy the WAR file,
reset the database password(s) to plain text in your default_master.properties file and start again with
step 1.

4.1.3 Encrypting Additional Properties in default_master.properties
You can encrypt additional properties in the default_master.properties file. To work correctly, these properties
need to be decrypted when used. Currently decryption is supported for properties loaded into the Spring

TIBCO Software Inc. 31

TIBCO JasperReports Server Security Guide

application context via the propertyConfigurer bean in applicationContext-webapp.xml.

If a property is defined via JNDI, we recommend pointing there instead of encrypting:

<property name="password">
<jee:jndi-lookup jndi-name="java:comp/env/emailPassword" />

</property>

The following code sample shows the propertyConfigurer bean in applicationContext-webapp.xml:

<bean id="propertyConfigurer" class-
s="com.jaspersoft.jasperserver.api.common.properties.DecryptingPropertyPlaceholderConfigurer">

<property name="locations">
<list>
<value>/WEB-INF/hibernate.properties</value>
<value>/WEB-INF/js.quartz.properties</value>
<value>/WEB-INF/js.spring.properties</value>
<value>/WEB-INF/js.scheduling.properties</value>
<value>/WEB-INF/mondrian.connect.string.properties</value>
<value>/WEB-INF/js.diagnostic.properties</value>
<value>/WEB-INF/js.aws.datasource.properties</value>
<value>/WEB-INF/js.config.properties</value>
<value>/WEB-INF/js.externalAuth.properties</value>

</list>
</property>
...

</bean>
</pre>

Because we extended Spring's PropertyPlaceholderConfigurer class as
DecryptingPropertyPlaceholderConfigurer, all the loaded properties are scanned for the special marker
ENC-<value>-. If that marker is found around the property value, that property is decrypted before it's loaded
into Spring context.

To determine if your property is scanned by propertyConfigurer, search the files in propertyConfigurer's
locations to see if it's defined in one of these files.

For example, suppose you want to encrypt the password property of the reportSchedulerMailSender bean
in applicationContext-report-scheduling.xml:

<bean id="reportSchedulerMailSender" class="org.springframework.mail.javamail.JavaMailSenderImpl">
<property name="host" value="${report.scheduler.mail.sender.host}"/>
<property name="username" value="${report.scheduler.mail.sender.username}"/>
<property name="password" value="${report.scheduler.mail.sender.password}"/>
<property name="protocol" value="${report.scheduler.mail.sender.protocol}"/>
<property name="port" value="${report.scheduler.mail.sender.port}"/>
<property name="javaMailProperties">
<props>
<prop key="mail.smtp.auth">false</prop>

</props>
</property>

</bean>

The use of the ${...} syntax tells you that report.scheduler.mail.sender.password is most likely
defined via the propertyConfigurer bean. Search through the propertyConfigurer locations to verify. This
property is defined in /WEB-INF/js.quartz.properties as follows:
report.scheduler.mail.sender.password=${quartz.mail.sender.password}.

32 TIBCO Software Inc.

Chapter 4 Application Security

Once you've verified that the quartz.mail.sender.password property can be encrypted using default-
master.properties, you set up encryption before installation as follows:
1. Set the password for quartz.mail.sender.password in default-master.properties:

quartz.mail.sender.password=cleartextpassword

2. Uncomment the encrypt=true property in the same file.
3. Uncomment propsToEncrypt=dbPassword in default-master.properties.
4. Add quartz.mail.sender.password to propsToEncrypt:

quartz.mail.sender.password=cleartextpassword
...
encrypt=true
propsToEncrypt=dbPassword,quartz.mail.sender.password

5. Configure and install your JasperReports Server WAR installation as described in the TIBCO JasperReports
Server Installation Guide.

6. Verify that report.scheduler.mail.sender.password was encrypted in both default-master.properties
and in /WEB-INF/js.quartz.properties.

4.1.4 Password Encryption for External Authentication
As of JasperReports Server 5.6, you can encrypt the passwords in the external authentication configuration files
for LDAP and external database authentication. Here we cover only the encryption of these passwords; for
details about configuring external authentication, see the TIBCO JasperReports Server External Authentication
Cookbook.

To enable encryption during installation, property values in the external authentication sample configuration
are referenced from other configuration files. For example, if you're using LDAP to authenticate, the sample
configuration file contains the following reference to the LDAP password:

<bean id="ldapContextSource"
class="com.jaspersoft.jasperserver.api.security.externalAuth.ldap.JSLdapContextSource">

<constructor-arg value="${external.ldap.url}" />
<property name="userDn" value="${external.ldap.username}" />
<property name="password" value="${external.ldap.password}"/>

</bean>

The values referenced by the ${...} format are defined in the js.externalAuth.properties file and imported into
Spring context via the propertyConfigurer. For example, the LDAP properties are defined in
js.externalAuth.properties as follows:

external.ldap.url=${external.ldapUrl}
external.ldap.username=${external.ldapDn}
external.ldap.password=${external.ldapPassword}

The ${...} syntax again references other configuration properties that must be set in default_master.properties
before installation or upgrade. The following example shows the syntax of the properties in the default_
master.properties file:

external.ldapUrl=ldap://hostname:389/dc=example,dc=com
external.ldapDn=cn=Administrator,dc=example,dc=com
external.ldapPassword=password

TIBCO Software Inc. 33

TIBCO JasperReports Server Security Guide

To encrypt the password property, set the following values in default_master.properties before installation or
upgrade:

external.ldapPassword=cleartextpassword
...
encrypt=true
propsToEncrypt=dbPassword, external.ldapPassword

During the installation process, the password value in default_master.properties and its reference in
js.externalAuth.properties are overwritten with the encrypted value.

If your external authentication is configured to create organizations for external users, and you're using
JasperReports Server 6.0, or later, there is another password to encrypt. When external authentication creates an
organization, it uses the information in ExternalTenantSetupUser of the externalTenantSetupProcessor
bean to create the organization administrator.

<bean class="com.jaspersoft.jasperserver.multipleTenancy.security.externalAuth.processors.
MTAbstractExternalProcessor.ExternalTenantSetupUser">

<property name="username" value="${new.tenant.user.name.1}"/>
<property name="fullName" value="${new.tenant.user.fullname.1}"/>
<property name="password" value="${new.tenant.user.password.1}"/>
<property name="emailAddress" value="${new.tenant.user.email.1}"/>
<property name="roleSet">
<set>
<value>ROLE_ADMINISTRATOR</value>
<value>ROLE_USER</value>

</set>
</property>

</bean>

The values referenced by the ${...} format are defined in the js.config.properties file as follows:

New tenant creation: user config
new.tenant.user.name.1=jasperadmin
new.tenant.user.fullname.1=jasperadmin
...
new.tenant.user.password.1=jasperadmin
new.tenant.user.email.1=

The default values for new tenant (organization) administrators in js.config.properties apply only to
external authentication. They do not apply to organizations created by administrators through the UI or
REST interface.

To encrypt this password, modify the js.config.properties file as follows:

new.tenant.user.password.1=${tenant.user.password}

Then add the following lines to default_master.properties before installation or upgrade:

tenant.user.password=cleartextpassword
...
encrypt=true
propsToEncrypt=dbPassword, external.ldapPassword, tenant.user.password

34 TIBCO Software Inc.

Chapter 4 Application Security

During the installation process, the password value in default_master.properties and its reference in
js.config.properties are overwritten with the encrypted value.

4.1.5 Encryption Options

As of JasperReports Server 7.5, all encryption in the server relies on cryptoghaphic keys stored in the
server's keystore. For more information, see Chapter 3, “Key and Keystore Management,” on page 11.
The configuration files and properties described in this section are no longer used by this feature. They
are documented here only for legacy purposes.

In buildomatic installation scripts, the passwords are symmetrically encrypted: the same secret key is used for
both encryption and decryption. The key and its containing keystore file are randomly generated on each
machine during the first JasperReports Server installation. All subsequent JasperReports Server installations on
the same server rely on the same keystore; they don't regenerate the key.

The keystore is an encrypted file used to securely store secret keys. JasperReports Server uses keystore properties
to access the keystore. Both the keystore and keystore properties files are created by default in the user home
directory. Alternatively, before running js-install, you can specify different locations for the keystore and
keystore properties files via the environmental variables ks and ksp.

By default, database passwords are encrypted with the AES-128 algorithm in Cipher Block Chaining mode with
PKCS5 padding. The AES algorithm is the current industry encryption standard. You can choose to modify the
encryption strength by choosing either a different algorithm, a longer secret key size (for example AES-256), or
a different encryption mode.

Edit the following properties in your default_master.properties and set these options. If a property is commented
out, the default is used:

Property Description Default

build.key.algo Algorithm used to encrypt the properties in configuration files. AES

build.key.size Size of the encryption key as in AES-128.

To increase the key size, if it has not been done before, you might have
to install "Unlimited Strength Jurisdiction Policy Files" from the Oracle
site for your Java version. To install the files, download US_export_
policy.jar and local_policy.jar. AFTER backing up the old files, extract
the jars into %JAVA_HOME%/jre/lib/security directory.

Alternatively, you may download one of the reputable providers such as
Bouncy Castle (ships with JasperReports Server). You would need to
add the Bouncy Castle provider to the list in
%JAVA_HOME%/jre/lib/security/java.security file:

security.provider.<seq number>=
org.bouncycastle.jce.provider.BouncyCastleProvider

128 (bits)

enc.transformation So-called encryption mode. See Java's javax.crypto documentation
to understand the modes and padding better.

AES/CBC
/PKCS5
Padding

TIBCO Software Inc. 35

TIBCO JasperReports Server Security Guide

Property Description Default

enc.block.size The size of the block that's encrypted. Encrypted text can contain many
blocks. Usually the block is changed together with the encryption
algorithm.

16 (bytes)

propsToEncrypt A comma separated list of the properties to encrypt. dbPassword

4.2 Configuring CSRF Protection
Cross-Site Request Forgery (CSRF) is an exploit where the attacker attempts to gain information or perform
actions while a user is logged into JasperReports Server in another window or tab of the same browser. This is
called session riding. For example, a server administrator logged into JasperReports Server is tricked into
opening a malicious website that invisibly uses the browser session to create a new user with administrator
permissions, which the attacker can then use to access the system at a later time.

JasperReports Server uses the latest release of CSRFGuard from OWASP (Open Web Application Security
Project). CSRFGuard verifies that every POST, PUT, and DELETE request submits a valid token previously
obtained from the server. This includes every request submitted via forms or AJAX. When a malicious request
arrives without the proper token, the server does not reply and logs an error for administrators to analyze later.

Tokens are sent in HTTP headers or parameters, and the entire exchange is invisible to users. Tokens have the
following syntax:

OWASP_CSRFTOKEN: K8E9-L4NZ-58H6-Z4P2-ZG75-KKBW-U53Z-ZL6X

In the default configuration of the server, CSRF protection is active. We recommend leaving this setting
unchanged.

However, in order to fully implement CSRF and secure your server, you must configure the domain
whitelist as explained in the next section.

CSRF Protection

Configuration File

.../WEB-INF/csrf/jrs.csrfguard.properties

Property Value Description

org.owasp.csrfguard.Enabled true <default>
false

Turns CSRF protection on or off. By default,
CSRF protection is enabled. Setting this value
to false will disable the CSRF filter and allow
any request regardless of tokens.

This configuration file contains many settings that are preconfigured for JasperReports Server. We do not
recommend changing any other settings. In particular, the two configOverlay properties are unreliable
and not supported.

36 TIBCO Software Inc.

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

Chapter 4 Application Security

After making any changes to the jrs.csrfguard.properties file, you must restart JasperReports Server for the new
values to take effect.

4.2.1 Setting the Cross-Domain Whitelist

In all cases, even if you do not use Visualize.js, you must configure the whitelist. You should never use a
server in production with the default whitelist.

Applications that use the embedded Visualize.js library typically access JasperReports Server from a different
domain. For this reason, CSRF protection includes a whitelist of domains that you specifically allow to access
the server. Initially, all your Visualize.js applications can access the server, but you should configure the
whitelist so that only your domains have access. Then, any Visualize.js request from an unknown domain will
fail with HTTP error 401, and the server will log a CSRF warning.

The domain whitelist is implemented through attributes named domainWhitelist at the user, organization, or
server level. Different values can be specified at each level, with the value defined at according to the attribute
hierarchy. In addition, the domainWhitelist attribute is defined with administer permissions, meaning that
organization admins can set their own values. You can set attributes through the server UI or through the REST
API. For more information on how to define attributes and how their values are determined by hierarchy, see the
TIBCO JasperReports Server Administrator Guide.

There are four cases listed in the table below, choose the one suited to your use of Visualize.js.

Cross-Domain Whitelist

Configuration Location

Attribute named domainWhitelist defined at the server level. For security, always set the server level as
described below, in addition to setting any alternate values at the organization or user levels.
• Server level: as system admin (superuser), selectManage > Server Settings then Server Attributes.
• Organization or user level: as any administrator, selectManage > Organizations or Manage > Users, then

select the organization or user, click Edit in the right-hand panel, and select the Attributes tab.

Attribute Value Description

domainWhitelist at server level <blank> If you do not have any Visualize.js-enabled web
applications, or if you have Visualize.js-enabled
web applications that will access your server
from the same domain as the server, you
should explicitly set the whitelist to blank
(attribute defined with an empty value).

domainWhitelist at server level example.com

(see below)

If you have Visualize.js-enabled web
applications that will access your server from a
different domain, then specify an expression
that will match the domain name. For the syntax
of this expression, see below.

TIBCO Software Inc. 37

TIBCO JasperReports Server Security Guide

Cross-Domain Whitelist

domainWhitelist at server level

domainWhitelist at org1 level

domainWhitelist at user2 level

...

<blank>
example1.com

example2.com

...

(see below)

If your organizations or users have Visualize.js
applications on specific domains, you could use
the hierarchy of attributes to set the whitelist
according to each organization's or each user's
individual domain. In this case, make sure the
whitelist at the server level is defined as blank.
For the syntax of this expression, see below.

domainWhitelist1

domainWhitelist2

<regexp>

<regexp>

If you want to add more than one regular expres-
sion to the whitelist, define these additional
attributes at the same level as domainWhitel-
ist. If you need further attributes, you can spe-
cify them in the
additionalWhitelistAttributes property
of the crossDomainFilter bean in the file
.../WEB-INF/applicationContext.xml.

The actual value of the attribute is a simplified expression that the server converts into the full regular
expression. The value must include the protocol (http), any sub-domains that you use, and the port as well. The
value you write can use * and . which the server translates into proper form as .* and \.. The server also adds
^ and $ to the ends of the expression. For example, a typical value for this attribute would be:

http://*.myexample.com:80\d0 which is translated to ^http://.*\.myexample\.com:80\d0$

This will match the following domains you might use:
http://bi3.myexample.com:8080 and http://bi3.myexample.com:8090
http://bi4.myexample.com:8080 and http://bi4.myexample.com:8090

But it will not match the following:
http://myexample.com:8080 or http://bi3.myexample.com:8081

If you wish to write your own complete regular expression, surround it with ^ and $, and it will be used as-is by
the server.

Remember that if you add Visualize.js applications that run on different domains, or change the domains where
they run, then you must update the whitelist attributes accordingly. Visualize.js applications on domains that
are not whitelisted will not work.

Do not delete the domainWhitelist property from the server level. That will remove the whitelist, but
upon upgrading the server, the attribute will be restored with a less secure default value. When the
attribute is defined, even with an empty value, it will remain during any server upgrade.

4.2.2 Sending REST Requests from a Browser
If you use the REST API to access JasperReports Server from within an application, this does not trigger a CSRF
warning because the application is separate from any access through the browser. However, some browser plug-
ins can be used to send REST API requests, and using these to send POST, PUT, or DELETE requests will
trigger a CSRF warning and fail. GET requests from a browser REST client are safe and do not fail the CSRF
check.

38 TIBCO Software Inc.

Chapter 4 Application Security

To allow REST API requests through a browser, configure your browser REST client to include the following
header in every request:

X-REMOTE-DOMAIN: 1

4.2.3 CSRF Browser Compatibility
Because only browsers are susceptible to CSRF, the CSRF protection mechanism detects browsers based on their
user-agent string embedded in the request. For performance reasons, the current configuration only filters for
Mozilla and Opera user-agents, because these cover more than 99% of all browsers in use, such as Chrome,
Firefox, Internet Explorer, and Safari.

If your users have browsers with user-agents other than Mozilla, they will not be protected against CSRF by
default.

All browsers officially supported by JasperReports Server are protected against CSRF. The following
instructions are provided for testing purposes only.

To enable CSRF protection for these browsers, you can add the corresponding user-agent to the CSRF filter:
1. Find the name of the user-agent for the given browser. If you cannot find the user-agent, many are listed on

the following website:
http://www.useragentstring.com/pages/Browserlist/

2. Open the file .../WEB-INF/applicationContext.xml for editing.
3. Locate the csrfGuardFilter bean and its protectedUserAgentRegexs property. Each list value is a

regular expression that is matched against every request's user-agent value in its entirety.
4. Add a regular expression to the protectedUserAgentRegexs property list that will match the user-agent

string from your desired browser.
5. Restart JasperReports Server.

4.3 Configuring XSS Protection
Cross-site scripting (XSS) is a security threat where attackers inject malicious data into the server so that the
data is executed as JavaScript when it is displayed in the UI. The Open Web Application Security Project
(OWASP) lists cross-site scripting in their Top 10 Most Critical Web Application Security Risks.

As of JasperReports Server 6.1, all output in the UI is escaped so that no malicious scripts can run. For example,
if an attacker inserts the <script ...> tag into the text of a resourse description, the HTML generated by the
server contains <script ...> that is displayed but will not run as code. If you see <script ... > in the
data shown in the UI, that means someone is trying to inject a cross-site script on the server.

Before output escaping, the security framework implemented an input validation mechanism to block cross-site
scripting. Input validation is now deprecated in JasperReports Server and no longer supported.

Like many modern web apps, JasperReports Server consists of interactive pages that use JavaScript to modify
and update the page dynamically in the browser. To display this dynamic content, JavaScript has to insert
HTML snippets or raw data from the server into the page's static HTML. The static page is generated by
JavaServer Pages (JSP) and HTML templates, which have mechanisms for output escaping to prevent XSS.
JasperReports Server has additional mechanisms to escape the output in the dynamic content, otherwise it would
be vulnerable to XSS. The dynamic output escaping blocks dangerous tags such as <script ...> and it
removes dangerous attributes such as onmouseover.

TIBCO Software Inc. 39

http://www.useragentstring.com/pages/Browserlist/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

TIBCO JasperReports Server Security Guide

The default configuration of JasperReports Server provides output escaping of both static and dynamic content,
and thus protects the server from XSS. The output escaping mechanism for static content cannot be configured.
However, for advanced uses, the output escaping mechanism for dynamic content can be configured to allow
different HTML tags and block new attributes. The output escaping mechanism is implemented in
.../scripts/runtime_dependencies/js-sdk/src/commom/util/xssUtil.js. It defines the tags that are allowed, called the
tag whitelist, and HTML attributes that are blocked, called the attribute map. The following configuration
properties can supplement or replace these defaults.

The default configuration of the server provides secure XSS protection. Modifying the following
configuration is for advanced use cases only and must be done correctly. When configured improperly,
these settings may inadvertently break the server UI or silently disable XSS protection.

Output Escaping

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Description

xss.soft.html.escape.
tag.whitelist

The whitelist is the list of HTML tags that will not be escaped when the server
renders dynamic content to the UI. This property expands or replaces the
default list in xssUtil.js. Specify comma-separated tag names without <>
brackets. Use + as the first character to append to the default whitelist. If this
property is not specified or the list is empty, the default whitelist applies. For
details, see 4.3.1, “Configuring the TagWhitelist,” on page 40.

xss.soft.html.escape.
attrib.map

The attribute map determines which HTML attributes create vulnerabilities in
dynamic content and how to replace them. This property defines a map of
case-insensitive regular expressions (regex syntax) and replacements. When
specified, it overrides the default map defined in xssUtil.js. If this property is
absent or not set, the default map is used. For details, see 4.3, “Configuring
XSS Protection,” on page 39.

Note that these configurations only apply to XSS protection of dynamic content; they do not affect how
static pages or static content are escaped when generated by the server.

4.3.1 Configuring the Tag Whitelist
The tag whitelist specifies all HTML tags (elements) that are allowed in the dynamic content sent to a user's
browser, sometimes called asynchronous data. Tags not in the whitelist are escaped, meaning their < and >
brackets are replaced with < and > so they are displayed as < and > but not interpreted as HTML. The
default whitelist is defined in the xssUtil.js file, and it allows the tags needed for the UI to be displayed and
escapes any tags such as <script ...> that create XSS vulnerabilities.

The xss.soft.html.escape.tag.whitelist property expands or replaces the default whitelist. It contains
comma-separated tag names without < > brackets. If this property is not specified or the list is empty, the
default whitelist in xssUtil.js applies.

40 TIBCO Software Inc.

Chapter 4 Application Security

In normal usage, the first character is + so that the specified tags are added to the default whitelist. For example,
if you want to add blink and marquee to the list of allowed HTML tags, specify the following value:

xss.soft.html.escape.tag.whitelist=+blink,marquee

When + is omitted, this list replaces the entire default whitelist. For example, if you wish to block a tag that is
specified in the default whitelist, copy all of the default tags from xssUtil.js, then remove the one you wish to
block. Be very careful with this usage, because whitelisting the wrong tags can create vulnerabilities. Also,
some parts of the UI depend on the default whitelist, and they may appear broken if they are removed from the
whitelist.

Never add the script tag to the whitelist because it will disable output escaping of dynamic content.

4.3.2 Configuring the Attribute Map
Certain HTML attributes create XSS vulnerabilities because they switch to JavaScript context, for example
onmouseover and the like. The attribute map defines which attributes are dangerous and how to replace them
when performing output escaping of dynamic content, also called asynchronous data. It uses a map of case-
insensitive regular expressions (regex syntax) and replacements to detect and neutralize such malicious HTML.
The default map that is coded in xssUtil.js is equivalent to the following expression:

xss.soft.html.escape.attrib.map= {'\\\\bjavascript:': '', '\\\\bon(\\\\w+?)\\\\s*=': 'on$1=', '\\\\
(':'(', \ '\\\\bsrcdoc\\\\s*=': 'srcdoc='}

When regex syntax appears in properties files, \ characters must be escaped. For example, \s appears as \\\\s.

For advanced use cases, you can modify this property by adding more pairs to the map. Copy the default map
above and add the new regex and its safe replacement at the end. For example, to escape the string
data:text/html by replacing it with nothing, use the following map:

xss.soft.html.escape.attrib.map= {'\\\\bjavascript:': '', '\\\\bon(\\\\w+?)\\\\s*=': 'on$1=', '\\\\
(':'(', \ '\\\\bsrcdoc\\\\s*=': 'srcdoc=', '\\\\bdata:\\\\s*text/html\\\\b': ''}

Modify this property at your own risk. To work properly, the regex keys in the map must be very specific. Also,
the replacement values in the map should never be the same as any regex keys, otherwise multiple replacements
will happen, and the output will be corrupted in unpredictable ways.

Never set the map to {} because this will disable HTML attribute escaping in dynamic content.

4.4 Protecting Against SQL Injection
SQL injection is an attack that uses malicious SQL queries in reports to gain access or do damage to your
databases. By default, JasperReports Server validates query strings to protect against SQL injection.

Whenever the server runs an SQL query, the server validates the query string with the following rules:
• SQL queries must start with SELECT.
• Queries may not contain INTO clauses.

TIBCO Software Inc. 41

TIBCO JasperReports Server Security Guide

• Queries may call stored procedures (CALL command used by JDBC drivers).
• Multiple queries separated by semi-colons (;) are also prohibited.
• SQL comments are allowed, but will be removed before being transmitted.

If your reports or Domains use such queries, you need to either change your queries or update the security
configuration to allow them.

Users who run a report with a query that does not meet the rules will see an error. Administrators can monitor
the server logs to search for evidence of attempted security breaches.

SQL query validation is enabled by default when installing JasperReports Server. To turn off this protection,
edit the following file:

SQL Query Validation

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Default Value Description

security.validation.sql.on true Turns SQL query validation on or off in the
server. Any other value besides case-
insensitive “false” is equivalent to true.

SQL query validation rules were added to comply with security guidelines for web applications. Turning
off query validation or modifying the validation rules may make the server more vulnerable to web attacks.

4.4.1 Customizing the Error Message
When query validation blocks a query that violates a security rule, the server displays an error in the UI. By
default, security messages are intentionally generic to avoid alerting potential attackers to security errors.

We highly recommend that external deployments customize the security error message to be unique, yet still
generic. You can change both the message and the error number. Choose any combination of numbers or letters
so administrators can easily search the logs to detect security violations.

Query Validation Messages

Configuration File

.../WEB-INF/bundles/security.properties

Property Default Value

message.validation.sql An error has occurred. Please contact your system
administrator. (6632)

If you translate your application into other languages, be sure to create a locale-specific copy of this file and
translate these messages as well.

42 TIBCO Software Inc.

Chapter 4 Application Security

4.4.2 Understanding Query Validation
Query validation uses a mechanism to validate every SQL query before running it. The validation process is
defined by a validation rule that references a validator expression. The rule and the expression are defined in
separate files.

The security.properties and validation.properties files contain many validation rules and expressions.
These were used for general input validation in the server, but this mechanism is deprecated and no
longer used. Only the expressions for SQL validation are still applicable.

Query Validation Rule

Configuration File

.../WEB-INF/classes/esapi/security.properties

Property Default Value

sqlQueryExecutor Alpha,ValidSQL,500000,true,SQL_Query_Executor_context

The validation rule contains 5 comma-separated values:
• Alpha – Not used for query validation.
• ValidSQL – The name of the SQL validator expression in the other file.
• 500000 – The maximum length allowed for the query.
• true – Whether the query can be blank.
• SQL_Query_Executor_context – Context string for log messages.

SQL Validator Expression

Configuration File

.../WEB-INF/classes/esapi/validation.properties

Property Default Value

Validator.ValidSQL (?is)^\\s*(select|call)\\b((?!\\binto\\b)[^;])*;?\\s*$

The validator expression is a regular expression that must match the query string. The default expression
enforces the following:
• Queries may only use the SELECT statement, which is read-only. The following write statements are

forbidden: DROP, INSERT, UPDATE, DELETE

• SELECT statements may not use the INTO clause that could copy data.
• CALL statements for stored procedures are allowed.
• Multiple queries separated by semi-colons (;) will be rejected. The following example will cause a security

error: SELECT f1,f2 FROM tbl_1; SELECT f3 from tbl_2;

The rule and validator expression are commented by default because the server implements the same
SQL validation with an internal mechanism. If you wish to customize the SQL validation, uncomment the
rule and create a new validator expression as described below.

TIBCO Software Inc. 43

TIBCO JasperReports Server Security Guide

4.4.3 Customizing Query Validation
If you wish to use a different validator expression for queries, always create a new validator expression with a
new name in validation.properties, then substitute that name in the validation rule in security.properties. For
example, if you wish to forbid queries from running stored procedures in your database, you can add the
following validator expression in validation.properties:

#Validator.ValidSQL=(?is)^\\s*(select|call)\\b((?!\\binto\\b)[^;])*;?\\s*$
Validator.ValidSQLnoProc=(?is)^\\s*(select)\\b((?!\\binto\\b)[^;])*;?\\s*$

Then you would uncomment and modify the validation rule in security.properties as follows:

Main SQL execution point
sqlQueryExecutor=Alpha,ValidSQLnoProc,500000,true,SQL_Query_Executor_context

It is also possible to have two or more validation rules that will be applied sequentially (logical AND) until one
fails. The rules must have the same names but with a numerical suffix, for example:

Main SQL execution point
sqlQueryExecutor=Alpha,ValidSQL,500000,true,SQL_Query_Executor_context
sqlQueryExecutor2=Alpha,ValidSQLCustom,500000,true,SQL_Custom_Executor_context

With multiple rules for query validation, each rule is applied in the order listed until one fails. When one
rule fails, the whole validation fails.

4.4.4 Performance Issues
By default, the internal SQL validation mechanism accesses the query metadata to allow semicolons (;) in the
data part of the query, for example in table names. This access can cause performance issue with certain JDBC
drivers, in which case you can disable it as follows:

Advanced Input Validation

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Default
Value

Description

validate.sql.via.metadata.query.execution true Set this value to false to disable
semicolon checking in query metadata
if SQL validation causes performance
issues with your JDBC driver.

44 TIBCO Software Inc.

Chapter 4 Application Security

4.5 Further Security Configuration
The security configuration file contains other default security settings. In particular, they can warn you when a
security file has a syntax error and could not be loaded. Changing these defaults is possible but not
recommended:

Advanced Input Validation

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Default Value Description

log.msg.security.off SECURITY for [%s] is OFF If security is turned OFF, this message will be
logged. This message in the logs can alert
administrators if the security configuration has
been tampered with.

msg.cannot.load Security configuration [%s]
cannot be loaded.

If there is an error in the security configuration
files, this message is logged. This is a severe
error and should be resolved by the
administrator.

4.6 Protecting Against XML External Entity Attacks
XML files are vulnerable to XML External Entity (XXE) attacks when they include a DTD (Document Type
Definition) that has a DOCTYPE declaration. Because of this risk, JasperReports Server can check for
DOCTYPE declarations. By default, this protection is disabled, since the setting causes errors if your XML files
are vulnerable to the attack. Consider enabling this setting if XXE attacks are a concern. For more information
on this security issue, see Wikipedia's article on XML External Entity Attack.

Before enabling the check, ensure that the XML files in your repository don't include DOCTYPE declarations.

To enable XXE protection:
1. Identify and edit any XML files in your JasperReports Server repository that include a DOCTYPE

declaration. Delete the declaration and update the JasperReport on the server. Since JasperReports Server
doesn't support DTDs themselves, we recommend removing them entirely.

2. Using a text editor, open the .../WEB-INF/applicationContext.xml file.
3. Locate the skipXXECheck property and set it to false.
4. Restart JasperReports Server.

4.7 Protecting Against Clickjacking Attacks
JasperReports Server implements a mechanism to protect against clickjacking attacks. To enable this mechanism,
edit the following configuration file: applicationContext-security-web.xml.

TIBCO Software Inc. 45

https://en.wikipedia.org/wiki/XML_external_entity_attack

TIBCO JasperReports Server Security Guide

1. Using a text editor, open the applicationContext-security-web.xml file (found in <js-install>\apache-
tomcat\webapps\jasperserver-pro\WEB-INF).

2. Locate the antiClickJackingEnabled property in the webAppSecurityFilter bean, and set it to true.
Setting this property to true instructs JasperReports Server to include an X-Frame-Options header in every
response.

3. You can also set the antiClickJackingOption property to control the header value. Valid values are:
• DENY - JasperReports Server does not load into any iframe.
• SAMEORIGIN - JasperReports Server only loads into an iframe on a page in the same domain as

JasperReports Server.
• ALLOW-FROM - JasperReports Server only loads in a frame on a page specified in antiClickJackingUri

property.
4. If you set the antiClickJackingOption property to ALLOW-FROM, also set the antiClickJackingUri

property to a valid URI.
5. Save the file and restart the server.

If you use iframes to embed JasperReports Server (including use of Visualize.js), set the
antiClickJackingOption to either SAMEORIGIN (if the embedding host is on the same domain as
JasperReports Server) or ALLOW-FROM (if the embedding host is on a different domain than
JasperReports Server). If you use ALLOW-FROM, also set the antiClickJackingUri property.

Clickjack protection does not support cases in which multiple domains embed JasperReports Server.

4.8 Restricting File Uploads
Several dialogs in JasperReports Server prompt the user to upload a file to the server. For performance and
security reasons, you may want to restrict file uploads by name and size.

The following setting is the global file upload limit for the entire server. Any single upload that exceeds this
limit will trigger an error and a stack trace message. It's intended to be an absolute maximum to prevent a worse
out-of-memory error that affects the entire server.

Global File Size Upload Limit

Configuration File

…/WEB-INF/js.config.properties

Property Value Description

file.upload.max.size -1
<default>

Maximum size in bytes allowed for any file upload. The
default value, -1, means there is no limit to the file size, and a
large enough file could cause an out-of-memory error in the
JVM. Some file uploads such as importing through the UI are
necessarily large and must be taken into account. Set this
value larger than your largest expected import and smaller
than your available memory.

46 TIBCO Software Inc.

Chapter 4 Application Security

The following settings apply to most file upload dialogs in the UI, such as uploading a JRXML or a JAR file to
create a JasperReport in the repository. These settings in the fileResourceValidator bean restrict the file size
and the filename pattern.

File Upload Restrictions

Configuration File

…/WEB-INF/flows/fileResourceBeans.xml

Property Value Description

maxFileSize -1
<default>

Maximum size in bytes allowed for a file uploaded through
most UI dialogs. If an upload exceed this limit, the server
displays a helpful error message. The default value, -1,
means there is no limit to the file size, and an upload could
reach the global limit if set, or an out-of-memory error.
Usually, files required in resources are smaller, and a limit of
10 MB is reasonable.

fileNameRegexp ^.+$
<default>

A regular expression that matches allowed file names. The
default expression matches all filenames of one or more
characters. A more restrictive expression such as [a-zA-Z0-9]
{1,200}\.[a-zA-Z0-9]{1,10} would limit uploads to alpha-
numeric names with an extension.

fileName
ValidationMessageKey

<null/>
<default>

The name of a Java property key whose value is a custom
message to display when the uploaded filename does not
match fileNameRegexp. For example, you could add the
following line to WEB-INF/js.config.properties:
my.filename.validation=The name of the uploaded
filename must contain only alphanumeric
characters and have a valid extension.

The following setting restricts the extension of the uploaded file for the sub flows, when adding files to a
composite resource like reports, (for example, Add Resource -> JasperReport). The upload dialogs will browse
only for files with the given extensions.

File Upload Extensions

Configuration File

<jasperserver-pro-war>/scripts/resource.locate.js

TIBCO Software Inc. 47

TIBCO JasperReports Server Security Guide

File Upload Extensions

Property Value

ALLOWED_FILE_
RESOURCE_EXTENSIONS

By default, the following extensions are allowed:
"css", "ttf", "jpg", "jpeg", "gif", "bmp", "png", "jar",
"jrxml", "properties", "jrtx", "xml", "agxml", "docx", "doc",
"ppt", "pptx", "xls", "xlsx", "ods", "odt", "odp", "pdf",
"rtf", "html"

Add or remove extensions to change the file type restrictions.

The following setting restricts the extension of the uploaded file for adding the individual files to the repository
(for example, Add Resource -> File -> JRXML). The upload dialogs will browse only for files with the
extensions that are mapped to resource types.

File Upload Extensions

Configuration File

<jasperserver-pro-war>/scripts/resource.add.files.js

Property Value

typeToExtMap This property specifies the mapping of resource types to the file extensions.

For example: 'img': ['jpg', 'jpeg', 'gif', 'bmp', 'png']

Add or remove extensions to change the file type restrictions.

4.9 Restricting Groovy Access

This section describes functionality that can be restricted by the software license for JasperReports
Server. If you don’t see some of the options described in this section, your license may prohibit you from
using them. To find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

JasperReports Server relies on Apache Groovy in a number of contexts, including:
• When a Domain definition includes a security file that determines which users or roles have access to

various data.
• When a calculated field in an Ad Hoc view or Domain relies on a Groovy expression.

By default, Groovy is given broad access within your application server, which is a good approach to certain
design, testing, and evaluation tasks. However, some production systems should be configured to restrict
Groovy to more limited access by creating a whitelist that only includes the classes Groovy should access. Once
configured, the server returns an error when the Groovy compiler encounters code that doesn't conform to the
whitelist.

Groovy's access is set at the server level; configure it by editing properties files as well as a Groovy source file:
1. Configure the groovyRunner to enable the restriction in general.
2. Configure the preprocessor to enable the restriction for Groovy expressions in DomEL.

48 TIBCO Software Inc.

Chapter 4 Application Security

3. Optionally configure the whitelist to allow Groovy access to additional classes.

First, enable the Groovy restriction:

Groovy Restriction

Configuration File

.../WEB-INF/applicationContext-semanticLayer.xml

Property Bean Description

groovyCustomizerFactory groovyRunner Uncomment this property to enable the
restriction.

In addition to enabling the Groovy restriction, configure the DomEL preprocessor:

DomEL Restriction

Configuration File

.../WEB-INF/applicationContext-datarator.xml

Attribute Bean Description

preprocessGroovy defaultPreprocessor Set this value to true to apply the Groovy
restriction to all DomEL expressions that
rely on the groovy() function.

Optionally, you can extend the whitelist by adding additional classes that you want Groovy to access:

Groovy Whitelist

Groovy Source File

.../groovy/com/jaspersoft/commons/groovy/GroovyCustomizerFactoryImpl.groovy

Class Description

GroovyCustomizerFactoryImpl List of classes that Groovy can access. Enclose each
classname in quotes and delimit each entry with a comma.
For example:
def receiversWhiteList = [

'java.lang.Byte',

'java.lang.Character',

...

]

The last entry shouldn't be followed by a comma.

TIBCO Software Inc. 49

TIBCO JasperReports Server Security Guide

Which classes you might restrict Groovy from accessing depends largely on your usage patterns, environment,
and security concerns. Because of this, we can't provide specific advice about what you should whitelist.
However, we have some general recommendations of classes you wouldn't or would want to whitelist.

For example, Groovy can be used to execute commands in the server host's operating system using a string
literal such as rm -rf /".execute(). Therefore, java.lang.String shouldn't be added to the whitelist.

However, some classes, like those in the default list, are considered much safer. For example, the class
org.apache.commons.lang3.StringUtils consists solely of static utility string methods, so if it's in the
whitelist, you can call StringUtils.isEmpty() to check for an empty string, instead of calling isEmpty() on
a string directly.

When you enable and configure the whitelist, be sure to test your JasperReports Server environment
thoroughly.

If you have been running your server without this restriction, and then enable and configure it, some
functionality may fail. For example, Domains that include a security file may return errors, since they rely on
Groovy to evaluate the principalExpression. The failure is likely because the Groovy expression calls
classes that aren't in your whitelist. However, your best course of action isn't necessarily to add those classes to
the whitelist, as it may be difficult to debug. It's better to create a method in BaseGroovyScript and call it
from the Domain security expression. For more information, please see our article on the Jaspersoft community
site (http://community.jaspersoft.com).

For more information about Groovy, see Apache's Groovy web site.

4.10 Hiding Stack Trace Messages
By default, JasperReports Server displays stack traces in certain error messages. Stack traces reveal some
information about the application, and security experts recommend that an application not display them.

The following setting determines what error messages are displayed:

Hiding Stack Trace Messages

Configuration File

.../WEB-INF/applicationContext-security.xml

Property Bean Description

outputControlMap exceptionOutput
Manager

Set the roles in the list for each the three levels of
error details. Only users who have a given role
will see that level of detail. See sample below.

Error messages contain 3 parts: an ID, the stack trace, and a message. You can control which of these error
message parts are displayed to users based on roles.

For example, in order for regular users to not see stack traces, remove ROLE_USER from the second list,
resulting in the following configuration:

50 TIBCO Software Inc.

http://community.jaspersoft.com/
http://community.jaspersoft.com/
http://groovy-lang.org/

Chapter 4 Application Security

<bean name="exceptionOutputManager" class="com.jaspersoft.jasperserver.
api.common.error.handling.ExceptionOutputManagerImpl">

<property name="outputControlMap">
<map>

<entry key="ERROR_UID">
<list>

<!--<value>ROLE_USER</value>-->
</list>

</entry>
<entry key="STACKTRACE">

<list>
<value>ROLE_SUPERUSER</value>

</list>
</entry>
<entry key="MESSAGE">

<list>
<value>ROLE_USER</value>
<value>ROLE_SUPERUSER</value>

</list>
</entry>

</map>
</property>

</bean>

When configuring error messages, keep in mind the following:
• We recommend the configuration shown above, so that users see a descriptive error message.
• You can turn off any or all error message parts, however, when both STACKTRACE and MESSAGE are not

displayed to a user, a generic message is output instead. The generic message text is defined as follows:

Generic Error Message

Configuration File

.../WEB-INF/bundles/jasperserver_messages*.properties

Property Value

generic.error.message There was an error on the server. Try again or contact site

administrators. <default> If you modify this message, be sure to update the
translation in all language files of the bundle.

• If you do remove both STACKTRACE and MESSAGE for a given role, we recommend adding back ERROR_UID
for that role. That way, the user will see the generic message and an ID that can be sent to administrators
and correlated with events in the log file.

If you make any changes to the error message configuration or bundles, restart your application server or
redeploy the JasperReports Server web app.

4.11 Defining a Cross-Domain Policy for Flash
JasperReports Server can be configured to use Flash for advanced Fusion-based charts such as gauges and maps.
For security reasons, a Flash animation playing in a web browser is not allowed to access data that resides

TIBCO Software Inc. 51

TIBCO JasperReports Server Security Guide

outside the exact web domain where the SWF originated.

As a result, even servers in subdomains cannot share data with a server in the parent domain unless they define
a cross-domain policy that explicitly allows it. The file crossdomain.xml, located at the root of the server
containing the data, determines which domains can access the data without prompting the user to grant access
in a security dialog. Therefore, the server containing the data determines which other servers may access the
data.

The following crossdomain.xml sample allows access from only the example domain or any of its subdomains.
This example says the server with this file trusts only example.com to use its data.

<?xml version="1.0" ?>
<!DOCTYPE cross-domain-policy SYSTEM

"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>
<allow-access-from domain="example.com" />
<allow-access-from domain="*.example.com" />

</cross-domain-policy>

Behind a firewall servers and users often refer to other computers in the same domain without using the domain
name. Flash considers this a different domain and blocks access to data unless the computer name is given in the
policy.

<cross-domain-policy>
<allow-access-from domain="myserver.example.com" />
<allow-access-from domain="myserver" />

</cross-domain-policy>

When using web services, use the allow-http-request-headers-from element so that actions encoded in
the request header are allowed. The following example allows standard requests and web service requests from
any subdomain of example.com.

<cross-domain-policy>
<site-control permitted-cross-domain-policies="master-only"/>
<allow-access-from domain="*.example.com"/>
<allow-http-request-headers-from domain="*.example.com" headers="*"

secure="true"/>
</cross-domain-policy>

For a description of all possible properties, see the cross-domain policy file specification.

To define a cross-domain policy for Flash-based reports, create a file such as the ones above on the server
containing the data being accessed. Be sure to place the crossdomain.xml file at the root of the filespace being
served. For example, if you use Apache Tomcat, place your files in the following locations:

File Location

crossdomain.xml <website-B-tomcat-dir>/webapps/ROOT/crossdomain.xml

XML data (*.xml) <website-B-tomcat-dir>/webapps/ROOT/<any-dir>/*.xml

Flash component (*.swf) <website-A-tomcat-dir>/webapps/<appname>/<any-dir>

52 TIBCO Software Inc.

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

Chapter 4 Application Security

For more information o configuring the server to use Flash to render advanced charts, see the TIBCO
JasperReports Server Administrator Guide.

4.12 Enabling SSL in Tomcat
Secure Sockets Layer (SSL) is a widely-used protocol for secure network communications. It encrypts network
connections at the Transport Layer and is used in conjunction with HTTPS, the secure version of the HTTP
protocol. This section shows how to install SSL on Tomcat 9 and to configure JasperReports Server to use only
SSL in Tomcat.

4.12.1 Setting Up an SSL Certificate
To use SSL, you need a valid certificate in the Tomcat keystore. In the Java Virtual Machine (JVM), certificates
and private keys are saved in a keystore. This is the repository for your keys and certificates. By default, it's
implemented as a password-protected file (public keys and certificates are stored elsewhere).

If you already have a suitable certificate, you can import it into the keystore, using the import switch on the
JVM keytool utility. If you don't have a certificate, you can use the keytool utility to generate a self-signed
certificate (one signed by your own certificate authority). Self-signed certificates are acceptable in most cases,
although certificates issued by certificate authorities are even more secure. And they do not require your users to
respond to a security warning every time they login, as self-signed certificates do.

The following command is an example of how to import a certificate. In this case a self-signed certificate
imported into a PKCS12 keystore using OpenSSL:

openssl pkcs12 \-export \-in mycert.crt \-inkey mykey.key \-out mycert.p12
 \-name tomcat \-CAfile myCA.crt \-caname root \-chain

Next in this example, you create key.bin, the keystore file, in the Tomcat home folder. Use one of these
commands.

For Windows:
%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA -keystore %CATALINA_HOME%\conf\key.bin

For Unix:
$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore $CATALINA_HOME/conf/key.bin

The basic install requires certain data. With the above commands, you're prompted for the data:
• Enter two passwords twice. The default for both is “changeit”. If you use the default, be sure to set better,

stronger passwords later.
• Specify information about your organization, including your first and last name, your organization unit, and

organization. The normal response for first and last name is the domain of your server, such as
jasperserver.mycompany.com. This identifies the organization the certificate is issued to. For organization
unit, enter your department or similar-sized unit; for organization, enter the company or corporation. These
identify the organization the certificate is issued by.

• Keytool has numerous switches. For more information about it, see the Java documentation.

TIBCO Software Inc. 53

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

TIBCO JasperReports Server Security Guide

4.12.2 Enabling SSL in the Web Server
Once the certificate and key are saved in the Tomcat keystore, you need to configure your secure socket in the
$CATALINA_BASE/conf/server.xml file, where $CATALINA_BASE represents the base directory for the
Tomcat instance. For your convenience, sample <Connector> elements for two common SSL connectors
(blocking and non-blocking) are included in the default server.xml file that’s installed with Tomcat. They're
similar to the code below, with the connector elements commented out, as shown.

<!-- Define a SSL HTTP/1.1 Connector on port 8443
 This connector uses the JSSE configuration, when using APR, the
 connector should be using the OpenSSL style configuration
 described in the APR documentation -->

<!--
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"

 maxThreads="150" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS" />

-->

To implement a connector, you need to remove the comment tags around its code. Then you can customize the
specified options as necessary. For detailed information about the common options, consult the Tomcat 9.0 SSL
Configuration HOW-TO. For detailed information about all possible options, consult the Server Configuration
Reference.

The default protocol is HTTP 1.1; the default port is 8443. The port is the TCP/IP port number on which
Tomcat listens for secure connections. You can change it to any port number (such as the default port for
HTTPS communications, which is 443). However, note that if you run Tomcat on port numbers lower than
1024, special setup outside the scope of this document is necessary on many operating systems.

4.12.3 Configuring JasperReports Server to Use Only SSL
At this point, the JasperReports Server web application runs on either protocol (HTTP and HTTPS). You can
test the protocols in your web browser.

HTTP: http://localhost:8080/jasperserver[-pro]/

HTTPS: https://localhost:<SSLport>./jasperserver[-pro]/

The next step, then, is to configure the web application to enforce SSL as the only protocol allowed. Otherwise,
requests coming through HTTP are still serviced.

Edit the file <js-webapp>/WEB-INF/web.xml. Near the end of the file, make the following changes inside the
first <security-constraint> tag:
• Comment out the line <transport-guarantee>NONE</transport-guarantee>.
• Uncomment the line <transport-guarantee>CONFIDENTIAL</transport-guarantee>.

Your final code should be like the following:

<security-constraint>
<web-resource-collection>
<web-resource-name>JasperServerWebApp</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<user-data-constraint>

54 TIBCO Software Inc.

http://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
http://tomcat.apache.org/tomcat-9.0-doc/config/index.html
http://tomcat.apache.org/tomcat-9.0-doc/config/index.html

Chapter 4 Application Security

<!-- SSL not enforced -->
<!-- <transport-guarantee>NONE</transport-guarantee> -->
<!-- SSL enforced -->
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>

The term CONFIDENTIAL forces the server to accept only SSL connections through HTTPS. And because of the
URL pattern /*, all web services must also use HTTPS. If you need to turn off SSL mode, you can set the
transport guarantee back to NONE or delete the entire <security-constraint> tag.

4.13 Disabling Unused HTTP Verbs
It's a good idea to disable all unused HTTP verbs so they can't be used by intruders.

In the default JasperReports Server installation, the following HTTP verbs are not used, but they are allowed. To
make it easier to disable the verbs, they're listed in a single block of code in <js-webapp>/WEB-INF/web.xml.
As in the code immediately above, the URL pattern /* applies the security constraint to all access to the server,
including web service requests.

The list is commented out by default because it has not been exhaustively tested with all system
configurations and platforms.

After uncommenting the security constraint, your final code should be like the following:

<!-- This constraint disables the listed HTTP methods, which are not used by JS -->
<security-constraint>
<web-resource-collection>
<web-resource-name>RestrictedMethods</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>HEAD</http-method>
<http-method>CONNECT</http-method>
<http-method>COPY</http-method>
<http-method>LOCK</http-method>
<http-method>MKCOL</http-method>
<http-method>OPTIONS</http-method>
<http-method>PATCH</http-method>
<http-method>PROPFIND</http-method>
<http-method>PROPPATCH</http-method>
<http-method>SEARCH</http-method>
<http-method>TRACE</http-method>
<http-method>UNLOCK</http-method>

</web-resource-collection>
</security-constraint>

4.14 Configuring HTTP Header Options
Application servers usually provide mechanisms to secure HTTP headers. For example:
• X-Content-Type-Options
• X-XSS-Protection

For Tomcat, both options are described in Apache's Tomcat documentation.

TIBCO Software Inc. 55

https://tomcat.apache.org/tomcat-9.0-doc/config/filter.html#HTTP_Header_Security_Filter

TIBCO JasperReports Server Security Guide

4.15 Setting the Secure Flag on Cookies
JasperReports Server uses cookies in several ways:
• userTimezone and userLocale to store user settings
• Other UI settings such as "Recently Viewed Resources" and "Popular Resources" on the home page and

data source page history. The cookie names for those resources are
homePageRecentlyViewedResourcesExpandableListState, homePagePopularLinksExpandableListState, and
DataSourceControllerHistory.

The JSESSIONID cookie is managed by the application server, so its security setting depends on your app
server configuration.

Jaspersoft doesn't set the secure flag on these cookies because we don't want to force you to use secure
connections. If you want all cookies to be secure, you must customize the source files that create the cookies.
This requires the source code distribution and recompiling and building the server app, as described in the
TIBCO JasperReports Server Source Build Guide.

To customize JasperReports Server so cookies are sent only via secure connections:
1. For the time zone and locale cookies, open the following file to edit:

jasperserver-war-jar\src\main\java\com\jaspersoft\jasperserver\war\UserPreferencesFilter.java
2. Locate the following code in 2 locations, one for each cookie, and add the middle line to both:

cookie.setMaxAge(cookieAge);
cookie.setSecure(true); /* requires HTTPS */
...
httpOnlyResponseWrapper.addCookie(cookie);

For more information, see the JavaDoc for the setSecure method on the javax.servlet.http.Cookie
class.

3. For the cookies set in JavaScript (homePageRecentlyViewedResourcesExpandableListState and
homePagePopularLinksExpandableListState), edit the following file:
jasperserver-war\src\main\webapp\scripts\home\util\cookie.js

4. Locate the following line:
document.cookie = updatedCookie;

Modify the line as follows:
document.cookie = updatedCookie + ";secure;";

5. Edit the following file:
jasperserver-war\src\main\webapp\scripts\runtime_dependencies\jrs-ui\src\utils.common.js

6. Located the following line:
return _.template('{{- name}}={{- value}}; expires={{- expires}}; path=/;')

Modify the line as follows:
return _.template('{{- name}}={{- value}}; expires={{- expires}}; path=/;secure;')

7. To redeploy the JavaScript files, you will need to optimize and implement them as described in section
"Customizing JavaScript Files" in the TIBCO JasperReports Server Ultimate Guide. The optimized scripts
are the ones that are served by JasperReports Server by default.

8. Recompile, rebuild, and redeploy the JasperReports Server application.
This acts only on the cookies. Providing a secure connection is up to the client application, usually by
configuring and establishing an HTTPS connection, as described in Enabling SSL in Tomcat. If no secure

56 TIBCO Software Inc.

http://docs.oracle.com/javaee/5/api/javax/servlet/http/Cookie.html#setSecure(boolean)

Chapter 4 Application Security

connection is established, the cookies with the secure flag will not be sent and user settings won’t take
effect.

4.16 Setting httpOnly for Cookies
The application server that hosts JasperReports Server handles the session cookie. To prevent malicious scripts
on a client from accessing the user connection, you should set the application server to use httpOnly cookies.
This tells the browser that only the server may access the cookie, not scripts running on the client. This setting
safeguards against cross-site scripting (XSS) attacks. Consult the documentation for your application server on
how to set httpOnly cookies.

4.17 Protection Domain Infrastructure in Tomcat
Legitimate code can be used to introduce harmful measures into the web application. For instance, calls for disk
access and calls to System.Exit can be hidden in classpaths. An effective measure against such intrusions is to
implement a protection domain. In Tomcat you have to enable the Tomcat Security Manager then edit its
parameters according to the requirements of your server environment.

The ProtectionDomain class encloses a group of classes whose instances have the same permissions, public
keys, and URI. A given class can belong to only one ProtectionDomain. For more information on
ProtectionDomain, see the Java documentation.

4.17.1 Enabling the JVM Security Manager
The Security Manager restricts permissions at the application server level. By default, no permissions are
disallowed at that level, so legitimate permissions must be specifically added. You must add permissions for
JasperReports Server. Doing so does not interfere with server operations because JasperReports Server security
restrictions occur on other levels.

Add the enabling code for the Security Manager in the file <apache-tomcat>/conf/catalina.policy.
ProtectionDomains can be enabled, as defined in <js-webapp>/WEB-INF/applicationContext.xml,
reportsProtectionDomainProvider bean.

To enable the Security Manager and give JasperReports Server full permissions there, add the following code
fragment at the end of catalina.policy.

// These permissions apply to the JasperReports Server application
grant codeBase "file:${catalina.home}/webapps/jasperserver[-pro]/-" {

permission java.security.AllPermission;
};

grant codeBase "file:/groovy/script" {
permission java.io.FilePermission "${catalin-

a.home}${file.separator}webapps${file.separator}jasperserver[-pro]${file.separator}WEB-INF${-
file.separator}classes${file.separator}-", "read";

permission java.io.FilePermission

"${catalina.home}${file.separator}webapps${file.separator}jasperserver[-pro]${file.separator}WEB-
INF${file.separator}lib${file.separator}*", "read";

permission java.util.PropertyPermission "groovy.use.classvalue", "read";
};

TIBCO Software Inc. 57

http://download.oracle.com/javase/6/docs/api/java/security/ProtectionDomain.html

TIBCO JasperReports Server Security Guide

After enabling the manager in catalina.policy, you should limit the packages that the JasperReports Library can
access. To do so, edit <apache-tomcat>/conf/catalina.policy, locate the package.access property, and add
the names of the packages that JasperReports Library should be prevented from accessing. We recommend that
you block these packages:
• com.jaspersoft.jasperserver
• org.springframework

After editing, it should be similar to:

package.access=sun.,org.apache.catalina.,org.apache.coyote.,org.apache.jasper.,
org.apache.tomcat.,com.jaspersoft.jasperserver.,org.springframework.

After enabling the manager, you should add the security parameter to your Tomcat startup command. For
example:

<apache-tomcat>\bin\startup -security

If you didn't add the permissions properly, you will receive errors like the following:

Feb 9, 2010 12:34:05 PM org.apache.catalina.core.StandardContext listenerStart
SEVERE: Exception sending context initialized event to listener instance of class org.s-
pringframework.web.context.ContextLoaderListener
java.security.AccessControlException: access denied (java.lang.RuntimePermission
accessDeclaredMembers)
at java.security.AccessControlContext.checkPermission(Unknown Source)
at java.security.AccessController.checkPermission(Unknown Source)
at java.lang.SecurityManager.checkPermission(Unknown Source)
at java.lang.SecurityManager.checkMemberAccess(Unknown Source)
at java.lang.Class.checkMemberAccess(Unknown Source)
at java.lang.Class.getDeclaredMethods(Unknown Source)

...

4.17.2 Restoring Disallowed Permissions
The file <js-webapp>/WEB-INF/applicationContext.xml defines the permissions allowed for
java.security.Class. You might have to use the file to add permissions disallowed by enabling the Security
Manager. On the application level, only specified permissions are granted now, so any application-level
permissions you were using have been disallowed. You must write code that restores them.

Refer to this commented sample applicationContext.xml file when you restore necessary permissions.

For instance, to add permission for read/write access to the /temp and JasperReport resources folders, add the
java.io.FilePermission beans to the permissions property of
reportsProtectionDomainProvider:

<bean id="reportsProtectionDomainProvider" class-
s="com.jaspersoft.jasperserver.api.engine.jasperreports.util.
PermissionsListProtectionDomainProvider">

<property name="permissions">
<list>

<bean class="java.io.FilePermission">
<constructor-arg value="${java.io.tmpdir}${file.separator}*"/>
<constructor-arg value="read,write"/>

58 TIBCO Software Inc.

Chapter 4 Application Security

</bean>

<bean class="java.io.FilePermission">
<constructor-arg value="${catalina.home}${file.separator}webapps${file.separator}
jasperserver[-pro]${file.separator}WEB-INF${file.separator}classes${file.separator}-"/>
<constructor-arg value="read"/>

</bean>

<bean class="java.io.FilePermission">
<constructor-arg value="${catalina.home}${file.separator}webapps${file.separator}
jasperserver[-pro]${file.separator}WEB-INF${file.separator}lib${file.separator}*"/>
<constructor-arg value="read"/>

</bean>
</list>

</property>
</bean>

4.18 Encrypting Passwords in URLs

As of JasperReports Server 7.5, encryption of HTTP parameters is deprecated and this feature may be
removed in future versions. Jaspersoft recommends using TLS (Transport Layer Security) in your app
server to enable HTTPS when accessing your server.

One advantage of JasperReports Server is the ability to share reports with other users. You can easily share the
URL to access a report, even with people who don't have a username. To embed the web app, it’s often
necessary to include a link to a page without logging in, for example:

http://example.com:8080/jasperserver/flow.html?_flowId=homeFlow&j_username=joeuser&j_
password=joeuser

However, you must take special precautions to avoid revealing a password in plain text. The server provides a
way to encrypt any password that appears in a URL:
1. Configure login encryption as described in 5.4, “Encrypting User Session Login,” on page 68. Specify

static key encryption by setting encryption.dynamic.key to false and configure the keystore as
described.

2. Once the server is restarted, log into the server to generate the static key.
3. Open the following URL: http://example.com:8080/jasperserver/encrypt.html.
4. Enter the password that you want to encrypt then click Encrypt. The script on this page will use the public

key to encrypt the password.
5. Paste the encrypted password into the URL instead of the plain text password (log out of the server to test

this):
http://example.com:8080/jasperserver/flow.html?_flowId=homeFlow&j_username=joeuser&j_
password=<encrypted>

6. Use the URL with the encrypted password to share a report.

For complex web applications generating report URLs on the fly, you can also encrypt the password with
JavaScript. Your JavaScript should perform the same operations as the encrypt.js script used by the encrypt.html
page at the URL indicated above. Using the encryptData() function in encrypt.js, your JavaScript can generate
the encrypted password and use it to create the URL.

TIBCO Software Inc. 59

TIBCO JasperReports Server Security Guide

Static key encryption is very insecure and recommended only for intranet server installation where the
network traffic is more protected. Anyone who sees the username and encrypted password can use them
to log into JasperReports Server. Therefore, we recommend creating user IDs with very specific
permissions to control access from URLs.

The only advantage of encrypting passwords in URLs is that passwords can't be deciphered and used to
attack other systems where users might have the same password.

60 TIBCO Software Inc.

Chapter 5 User Security

CHAPTER 5 USER SECURITY
JasperReports Server ensures that users access only the data they're allowed to see. The settings that define
organizations, users, roles, and repository resources work together to provide complete access control.

This chapter contains the following sections:
• Configuring the User Session Timeout
• Configuring User Password Options
• Encrypting User Passwords
• Encrypting User Session Login

5.1 Configuring the User Session Timeout
After a period of inactivity, JasperReports Server displays a pop-up notice that the user's session is about to
timeout. This gives the user a chance to continue without being logged out.

User Session Timeout

Configuration File

.../WEB-INF/web.xml

Property Value Description

<session-config>
<session-timeout>

20 <default> Set the number of minutes that a user session
can remain idle before automatic logout. A
setting of 0 (zero) will prevent session timeouts.

Note that the session timeout also applies to how long a session remains in memory after a web services call
finishes. If another web service call with the same credentials occurs within the timeout period, the server reuses
the same session. If the timeout is too short for this case, you may have performance issues caused by a high
load of web service calls.

If the timeout is too long, a session may stay active for a long time (even indefinitely with a timeout of 0). The
risk of allowing long sessions is that the in-memory session is not updated with any role changes until the user
logs out manually (ending the session) and logs in again (creating a new session).

TIBCO Software Inc. 61

TIBCO JasperReports Server Security Guide

5.2 Configuring User Password Options
The user password options determine whether passwords can be remembered by the browser, whether users can
change their own passwords, and whether password changes are mandatory or optional.

By default, passwords are stored in an encrypted format in the server’s private database. For information
about changing the way passwords are encrypted, see “Encrypting User Passwords” on page 64

5.2.1 Configuring Password Memory
As a general security policy, sensitive passwords should not be stored in browsers. Many browsers have a
“remember passwords” feature that stores a user's passwords. Most browsers don't protect passwords with a
master password by default. JasperReports Server can send the property autocomplete="off" to indicate that
its users’ passwords should not be stored or filled in automatically. This helps to ensure that your users don't
store their passwords. Actual behavior depends on the browser settings and how the browser responds to the
autocomplete="off" property.

Login encryption described in “Encrypting User Session Login” on page 68 is not compatible with password
memory in the browser. Independent of the autocomplete setting, the JavaScript that implements the login
encryption clears the password field before submitting the page. As a result, most browsers will not prompt to
remember the password when login encryption is enabled, even if the user has password memory enabled in the
browser.

When autoCompleteLoginForm is true, as in the default installation, you should ensure that all of your
users have a master password in their browser.

Password Memory in the Browser

Configuration File

.../WEB-INF/jasperserver-servlet.xml

Property Value Description

autoCompleteLoginForm true <default>
false

When false, the server sets autocomplete="off"
on the login page and browsers will not fill in or
prompt to save Jaspersoft passwords. When
true, the autocomplete property is not sent at
all, and browser behavior depends on user
settings.

5.2.2 Enabling Password Expiration
If your security policies require users to change their passwords at regular intervals, you can enable password
expiration. This way JasperReports Server prompts users to change their passwords at your set interval. Users
with expired passwords can't log in without changing their passwords. This option is disabled by default,
meaning passwords don’t expire and users are never prompted.

62 TIBCO Software Inc.

Chapter 5 User Security

When you enable this option, the server automatically enables the Change Password link on the Login page,
even if allowUserPasswordChange is set to false.

If your users are externally authenticated, for example with LDAP, do not enable this option.

Password Administration Option

Configuration File

.../WEB-INF/jasperserver-servlet.xml (controls the Login page)

.../WEB-INF/applicationContext-security-web.xml (controls web services)

Property Value Description

passwordExpirationInDays 0 <default>
<any other value>

Set the value to any positive, non-zero value to
specify the number of days after which a
password expires.

5.2.3 Allowing Users to Change their Passwords
This configuration enables the Change Password link on the Login page. By default, this option is turned off,
and an administrator must define user passwords initially or reset a forgotten password. Enabling the password
expiration option (described in the previous section) automatically enables users to change their passwords.

If your users are externally authenticated, for example with LDAP, do not enable this option.

Password Administration Option

Configuration File

.../WEB-INF/jasperserver-servlet.xml

Property Value Description

allowUserPasswordChange false <default>
true

Set the value to true to enable the Change
Password link. Any other value disables it.

5.2.4 Enforcing Password Patterns
If you allow or force users to change their passwords, you can enforce patterns for valid strong passwords, by
requiring a minimum length and a mix of uppercase, lowercase, and numbers. The default pattern accepts any
password of any length, including an empty password.

If your users are externally authenticated, for example with LDAP, do not enable this option.

TIBCO Software Inc. 63

TIBCO JasperReports Server Security Guide

Password Administration Option

Configuration File

.../WEB-INF/applicationContext.xml

Property Bean Description

allowedPasswordPattern userAuthority
Service

A regular expression that matches valid
passwords. The default pattern ^.*$matches
any password. Change the regular expression
to enforce patterns such as:
• Minimum and maximum password length
• Both uppercase and lowercase characters
• At least one number or special character

Be sure that your pattern allows whitespace
and international characters if needed by your
users.

When you enforce a password pattern, you should set the following message to inform users why their password
was rejected. Be sure to set the message in all your locales.

Password Administration Option

Configuration File

.../WEB-INF/bundles/jsexceptions_messages[_locale].properties

Property Description

exception.remote.weak.password Message displayed to users when password
pattern matching fails.

5.3 Encrypting User Passwords

As of JasperReports Server 7.5, all encryption in the server relies on cryptoghaphic keys stored in the
server's keystore. For more information, see Chapter 3, “Key and Keystore Management,” on page 11.
The configuration files and properties described in this section are no longer used by this feature. They
are documented here only for legacy purposes.

User passwords are stored along with user profiles in JasperReports Server's own private database. By default,
password encryption is enabled and passwords are stored as cipher text in the database. With the following
procedure, system administrators can turn user password encryption on or off or change the encryption algorithm
and specify the salt key used to initiate the encryption algorithm.

64 TIBCO Software Inc.

Chapter 5 User Security

To Configure User Password Encryption:
1. As a precaution, back up the server's private jasperserver database. To back up the default PostgreSQL

database, go to the <js-install> directory and run the following command:
pg_dump -U postgres jasperserver > js-backup.sql

To back up DB2, Oracle, Microsoft SQL Server, and MySQL databases, refer to your database product
documentation.

2. Stop your application server. You should leave your database running.
3. Export the entire contents of the repository, which includes user profiles and their passwords, with the

following commands. Note that there are two dashes (--) in front of the command options:
Windows: cd <js-install>\buildomatic

js-export.bat --everything --output-dir js-backup-catalog

Linux: cd <js-install>/buildomatic
js-export.sh --everything --output-dir js-backup-catalog

In the export operation, passwords are decrypted using the existing user password ciphers and re-encrypted
with the import-export encryption key. This is a separate encryption that ensures that passwords are never in
plain text, even when exported. For more information, see “Import and Export” in the TIBCO JasperReports
Server Administrator Guide.

4. Edit the properties in the following table to configure different ciphers. Both the server and the import-
export scripts access the user profiles and must be configured identically. Make the same changes in both
files:

DEPRECATED User Password Encryption Configuration

<jasperserver-pro-war>/WEB-INF/applicationContext-security.xml
<js-install>/buildomatic/conf_source/iePro/applicationContext-security.xml

Property Bean Description

allowEncoding passwordEncoder With the default setting of true, user passwords are
encrypted when stored. When false, user passwords
are stored in clear text in JasperReports Server's
private database. We do not recommend changing this
setting.

keyInPlainText passwordEncoder When true, the secretKey value is given as a plain
text string. When false, the secretKey value is a
numeric representation that can be parsed by Java's
Integer.decode() method. By default, this setting is
false, and the secretKey is in hexadecimal notation
(0xAB).

Table 5-1 User Password Encryption Configuration

TIBCO Software Inc. 65

TIBCO JasperReports Server Security Guide

secretKey passwordEncoder This value is the salt used by the encryption algorithm
to make encrypted values unique. This value can be a
text string or a numeric representation depending on
the value of keyInPlainText.

secretKeyAlgorithm passwordEncoder The name of the algorithm used to process the key, by
default DESede.

cipher
Transformation

passwordEncoder The name of the cipher transformation used to encrypt
passwords, by default DESede/CBC/ PKCS5Padding.

You should change the secretKey value so it's different from the default.

The secretKey, secretKeyAlgorithm, and cipherTransformation properties must be consistent. For
example, the secretKey must be 24 bytes long in hexadecimal notation or 24 characters in plain text for
the default cipher (DESede/CBC/PKCS5Padding). Different algorithms expect different key lengths. For
more information, see Java's javax.crypto documentation.

5. Next, drop your existing jasperserver database, where the passwords had the old encoding, and recreate
an empty jasperserver database. Follow the instructions for your database server:
• Dropping and Recreating the Database in PostgreSQL
• Dropping and Recreating the Database in MySQL
• Dropping and Recreating the Database in Oracle
• Dropping and Recreating in the Database in Microsoft SQL Server

6. Import your exported repository contents with the following commands. The import operation will restore
the contents of JasperReports Server's private database, including user profiles. As the user profiles are
imported, the passwords are encrypted using the new cipher settings.
Note that there are two dashes (--) in front of the command options:
Windows: cd <js-install>\buildomatic

js-import.bat --input-dir js-backup-catalog

Linux: cd <js-install>/buildomatic
js-import.sh --input-dir js-backup-catalog

During the import operation, passwords are decrypted with the import-export encryption key and then re-
encrypted in the database with the new user password encryption settings. For more information, see
“Setting the Import-Export Encryption Key” in the TIBCO JasperReports Server Administrator Guide.

7. Use a database like the SQuirreL tool to check the contents of the JIUser table in the jasperserver
database and verify that the password column values are encrypted.

8. Restart your application server. Your database should already be running.
9. Log into JasperReports Server to verify that encryption is working properly during the log in process.

5.3.1 Dropping and Recreating the Database in PostgreSQL
1. Change directory to <js-install>/buildomatic/install_resources/sql/postgresql.
2. Start psql using an administrator account such as postgres:

psql -U postgres

3. Drop the jasperserver database, create a new one, and load the jasperserver schema:

66 TIBCO Software Inc.

http://squirrel-sql.sourceforge.net/

Chapter 5 User Security

drop database jasperserver;
create database jasperserver encoding='utf8';
\c jasperserver
\i js-pro-create.ddl
\i quartz.ddl

5.3.2 Dropping and Recreating the Database in MySQL
1. Change directory to <js-install>/buildomatic/install_resources/sql/mysql.
2. Log into your MySQL client:

mysql -u root -p

3. Drop the jasperserver database, create a new one, and load the jasperserver schema:

mysql>drop database jasperserver;
mysql>create database jasperserver character set utf8;
mysql>use jasperserver;
mysql>source js-pro-create.ddl;
mysql>source quartz.ddl;

5.3.3 Dropping and Recreating the Database in Oracle
1. Change directory to <js-install>/buildomatic/install_resources/sql/oracle.
2. Log into your SQLPlus client, for example:

sqlplus sys/sys as sysdba

3. Drop the jasperserver database, create a new one, and load the jasperserver schema:

SQL> drop user jasperserver cascade;
SQL> create user jasperserver identified by password;
SQL> connect jasperserver/password
SQL> @js-pro-create.ddl
SQL> @quartz.ddl

5.3.4 Dropping and Recreating in the Database in Microsoft SQL Server
1. Change directory to <js-install>/buildomatic/install_resources/sql/sqlserver.
2. Drop the jasperserver database, create a new one, and load the jasperserver schema using the

SQLCMD utility:

cd <js-install>\buildomatic\install_resources\sql\sqlserver
sqlcmd -S ServerName -Usa -Psa
1> DROP DATABASE [jasperserver]
2> GO
1> CREATE DATABASE [jasperserver]
2> GO
1> USE [jasperserver]
2> GO
1> :r js-pro-create.ddl
2> GO
1> :r quartz.ddl
2> GO

TIBCO Software Inc. 67

TIBCO JasperReports Server Security Guide

5.4 Encrypting User Session Login

As of JasperReports Server 7.5, encryption of HTTP parameters is deprecated and this feature may be
removed in future versions. Jaspersoft recommends using TLS (Transport Layer Security) in your app
server to enable HTTPS when accessing your server.

By default, JasperReports Server does not enable the Secure Socket Layer/Transport Layer Security (SSL/TLS) to
encrypt all data between the browser and the server, also known as HTTPS. Enabling HTTPS requires a
certificate and a careful configuration of your servers. We recommend implementing HTTPS but recognize that
it is not always feasible. See “Enabling SSL in Tomcat” on page 53

Without HTTPS, all data sent by the user, including passwords, appear unencrypted in the network traffic.
Because passwords should never be visible, JasperReports Server provides an independent method for
encrypting the password values without using HTTPS. Passwords are encrypted in the following cases:
• Passwords sent from the login page.
• Passwords sent from the change password dialog. See “Configuring User Password Options” on page 62.
• Passwords sent from the user management pages by an administrator.

When a browser requests one of these pages, the server generates a private-public key pair and sends the public
key along with the page. A JavaScript in the requested page encrypts the password when the user posts it to the
server. Meanwhile, the server saves its private key and uses it to decrypt the password when it arrives. After
decrypting the password, the server continues with the usual authentication methods.

Login encryption is not compatible with password memory in the browser. Independent of the autocomplete
setting described in 5.2.1, “Configuring Password Memory,” on page 62, the JavaScript that implements login
encryption clears the password field before submitting the page. As a result, most browsers will never prompt to
remember the encrypted password.

The disadvantage of login encryption is the added processing and the added complexity of web services login.
For backward compatibility, login encryption is disabled by default. To enable login encryption, set the
following properties. After making any changes, redeploy the JasperReports Server webapp or restart the
application server.

When login encryption is enabled, web services and URL parameters must also send encrypted
passwords. Your applications must first obtain the key from the server and then encrypt the password
before sending it. See the JasperReports Server Web Services Guide.

Login Encryption

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Value Description

encryption.on truefalse
<default>

Turns login encryption on or off. Encryption is
off by default. Any other value besides case-
insensitive “false” is equivalent to true.

68 TIBCO Software Inc.

Chapter 5 User Security

Login Encryption

encryption.type RSA <default> Encryption algorithm; currently, only RSA is
supported.

encryption.key.length integer power of 2
1024 <default>

The length of the generated encryption keys.
This affects the strength of encryption and the
length of the encrypted string.

encryption.dynamic.key true <default>
false

When true, a key will be generated per every
single request. When false, the key will be
generated once per application installation.
See descriptions in Dynamic Key Encryption
and Static Key Encryption below.

Encryption has two modes, dynamic and static, as determined by the encryption.dynamic.key parameter.
These modes provide different levels of security and are further described in the following sections.

5.4.1 Dynamic Key Encryption
The advantage of encrypting the password at login is to prevent it from being seen, but also to prevent it from
being used. For password encryption to achieve this, the password must be encrypted differently every time it's
sent. With dynamic key encryption, the server uses a new public-private key pair with every login request.

Every time someone logs in, the server generates a new key pair and sends the new public key to the JavaScript
on the page that sends the password. This ensures that the encrypted password is different every time it's sent,
and a potential attacker won't be able to steal the encrypted password to log in or send a different request.

Because it's more secure, dynamic key encryption is the default setting when encryption is enabled. The
disadvantage is that it slows down each login, though users may not always notice. Another effect of dynamic
key encryption is that it doesn't allow remembering passwords in the browser. While this may seem
inconvenient, it's more secure to not store passwords in the browser. See 5.2.1, “Configuring Password
Memory,” on page 62.

5.4.2 Static Key Encryption

As of JasperReports Server 7.5, all encryption in the server relies on cryptoghaphic keys stored in the
server's keystore. For more information, see Chapter 3, “Key and Keystore Management,” on page 11.
The configuration files and properties described in this section are no longer used by this feature. They
are documented here only for legacy purposes.

JasperReports Server also supports static key encryption. For every login, the server expects the client to encode
parameters such as passwords with the httpParameterEncSecret key in the keystore. Because the key is always
the same, the encrypted value of a user’s password is always the same. This means an attacker could steal the
encrypted password and use it to access the server.

Static key encryption is very insecure and is recommended only for intranet server installation where the
network traffic is more protected. The only advantage of static encryption over no encryption at all is that
passwords can't be deciphered and used to attack other systems where users might have the same password.

TIBCO Software Inc. 69

TIBCO JasperReports Server Security Guide

Before setting encryption.dynamic.key=false to use static encryption, you must also configure the secure
file called keystore where the key pair is kept. Be sure to customize the keystore parameters listed in the
following table to make your keystore file unique and secure.

For security reasons, always change the default keystore passwords immediately after installing the
server.

DEPRECATED Keystore Configuration (when encryption.dynamic.key=false)

Configuration File

.../WEB-INF/classes/esapi/security-config.properties

Property Value Description

keystore.location keystore.jks
 <default>

Path and filename of the keystore file. This
parameter is either an absolute path or a file in
the webapp classpath, for example
<tomcat>/webapps/jasperserver-pro/WEB-
INF/classes>. By default, the keystore.jks file is
shipped with the server and doesn’t contains
any keys.

keystore.password jasper123 <default> Password for the whole keystore file. This
password is used to verify keystore's integrity.

keystore.key.alias jasper <default> Name by which the single key is retrieved from
keystore. If a new alias is specified and does
not correspond to an existing key, a new key
will be generated and inserted into the
keystore.

keystore.key.password jasper321 <default> Password for the key whose alias is specified
by keystore.key.alias.

When you change the key alias, the old key will not be deleted. You can use it again by resetting the key alias.
Also, once the key has been created with a password, you can't change the password through the keystore
configuration. To delete keys or change a keystore password, the server administrator must use the Java
keytool utility in the bin directory of the JDK. If you change the keystore password or the key password, the
keystore configuration above must reflect the new values or login will fail for all users.

70 TIBCO Software Inc.

A

access control
authentication 7
authorization 8

administering JasperReports Server
passwords 62
security settings 29
users 7

attributes 9
authentication See access control
authorization See access control

C

cookies 56
Cross-Site Request Forgery (CSRF) 36
cross-site scripting 39
CSRF 36

D

default_master.properties 33

E

external.ldap.password 33
external.ldap.username 33

H

HTTPS only, configuring 54

J

Jasperserver See administering JasperReports Server
Jaspersoft OLAP prerequisites 5

js.config.properties 34
js.externalAuth.properties 33

K

keystore 53

N

new.tenant.user.password.1 34

O

OLAP views 9
output escaping 39
OWASP_CSRFTOKEN 36

P

passwords
expiration 62
users changing 63

PKC12 keystore 53
prerequisites for Jaspersoft OLAP 5
propertyConfigurer 32
protection domains 57

Q

query validation 42

R

report.scheduler.mail.sender.password 32
reportSchedulerMailSender 32

INDEX

TIBCO Software Inc. 71

TIBCO JasperReports Server Security Guide

S

Secure Sockets Layer See SSL
Secure Sockets Layer. See SSL. 53
security 29

configuring HTTPS only 54
cookies 56-57
httpOnly 57
keystore 53
protection domains 57
SSL 53

Security Manager 57
session timeout 61
SQL injection 41
SSL 53-54
stack trace 50

T

TLS See SSL
TLS. See SSL. 53

U

users
administering 7
authenticating 7-8
changing passwords 63
session timeout 61

V

views 9

X

XSS 39

72 TIBCO Software Inc.

	Chapter 1 Introduction to JasperReports® Server
	Chapter 2 Overview of JasperReports Server Security
	2.1 Authentication
	2.2 Authorization Overview

	Chapter 3 Key and Keystore Management
	3.1 Managing Keys During Installation
	3.1.1 Keys During Upgrade
	3.1.2 Making Backups

	3.2 Managing Keys for Import and Export
	3.2.1 Entering a Key Value in the Import UI
	3.2.2 Using a Stored Key in the Repository
	3.2.3 Specifying an Import Key on the Command Line
	3.2.4 Importing a Key from the Command Line
	3.2.5 Specifying a Custom Key in the Import UI
	3.2.6 Specifying an Export Key on the Command Line
	3.2.7 Exporting a Key from the Command Line

	3.3 Sharing Custom Keys
	3.4 Configuring Encryption
	3.4.1 Configuring Encryption Before Installation
	3.4.2 Configuring Encryption After Installation
	3.4.3 Legacy Encryption Configurations

	Chapter 4 Application Security
	4.1 Encrypting Passwords in Configuration Files
	4.1.1 Encrypting Configuration Passwords on Tomcat
	4.1.2 Encrypting Configuration Passwords on Enterprise Servers
	4.1.3 Encrypting Additional Properties in default_master.properties
	4.1.4 Password Encryption for External Authentication
	4.1.5 Encryption Options

	4.2 Configuring CSRF Protection
	4.2.1 Setting the Cross-Domain Whitelist
	4.2.2 Sending REST Requests from a Browser
	4.2.3 CSRF Browser Compatibility

	4.3 Configuring XSS Protection
	4.3.1 Configuring the Tag Whitelist
	4.3.2 Configuring the Attribute Map

	4.4 Protecting Against SQL Injection
	4.4.1 Customizing the Error Message
	4.4.2 Understanding Query Validation
	4.4.3 Customizing Query Validation
	4.4.4 Performance Issues

	4.5 Further Security Configuration
	4.6 Protecting Against XML External Entity Attacks
	4.7 Protecting Against Clickjacking Attacks
	4.8 Restricting File Uploads
	4.9 Restricting Groovy Access
	4.10 Hiding Stack Trace Messages
	4.11 Defining a Cross-Domain Policy for Flash
	4.12 Enabling SSL in Tomcat
	4.12.1 Setting Up an SSL Certificate
	4.12.2 Enabling SSL in the Web Server
	4.12.3 Configuring JasperReports Server to Use Only SSL

	4.13 Disabling Unused HTTP Verbs
	4.14 Configuring HTTP Header Options
	4.15 Setting the Secure Flag on Cookies
	4.16 Setting httpOnly for Cookies
	4.17 Protection Domain Infrastructure in Tomcat
	4.17.1 Enabling the JVM Security Manager
	4.17.2 Restoring Disallowed Permissions

	4.18 Encrypting Passwords in URLs

	Chapter 5 User Security
	5.1 Configuring the User Session Timeout
	5.2 Configuring User Password Options
	5.2.1 Configuring Password Memory
	5.2.2 Enabling Password Expiration
	5.2.3 Allowing Users to Change their Passwords
	5.2.4 Enforcing Password Patterns

	5.3 Encrypting User Passwords
	5.3.1 Dropping and Recreating the Database in PostgreSQL
	5.3.2 Dropping and Recreating the Database in MySQL
	5.3.3 Dropping and Recreating the Database in Oracle
	5.3.4 Dropping and Recreating in the Database in Microsoft SQL Server

	5.4 Encrypting User Session Login
	5.4.1 Dynamic Key Encryption
	5.4.2 Static Key Encryption

	Index

