
JasperReports® Server REST API
Reference
Software Release 8.2

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR BUNDLED TIBCO
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED
TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO
SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE AGREEMENT FOUND
IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE SOFTWARE
(AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP
END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS
DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND
AN AGREEMENT TO BE BOUND BY THE SAME.

ANY SOFTWARE ITEM IDENTIFIED AS THIRD PARTY LIBRARY IS AVAILABLE UNDER SEPARATE SOFTWARE LICENSE TERMS AND
IS NOT PART OF A TIBCO PRODUCT. AS SUCH, THESE SOFTWARE ITEMS ARE NOT COVERED BY THE TERMS OF YOUR
AGREEMENT WITH TIBCO, INCLUDING ANY TERMS CONCERNING SUPPORT, MAINTENANCE, WARRANTIES, AND INDEMNITIES.
DOWNLOAD AND USE OF THESE ITEMS IS SOLELY AT YOUR OWN DISCRETION AND SUBJECT TO THE LICENSE TERMS
APPLICABLE TO THEM. BY PROCEEDING TO DOWNLOAD, INSTALL OR USE ANY OF THESE ITEMS, YOU ACKNOWLEDGE THE
FOREGOING DISTINCTIONS BETWEEN THESE ITEMS AND TIBCO PRODUCTS.

This document is subject to U.S. and international copyright laws and treaties. No part of this document may be reproduced in any form without the
written authorization of Cloud Software Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Jaspersoft, JasperReports, and Visualize.js are registered trademarks of Cloud Software Group, Inc. in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

All other product and company names and marks mentioned in this document are the property of their respective owners and are mentioned for
identification purposes only.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR INDIRECTLY, BY OTHER
DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ
ME" FILES.

This and other products of Cloud Software Group, Inc. may be covered by registered patents. Please refer to Cloud Software Group's Virtual Patent
Marking document (https://www.tibco.com/patents) for details.

Copyright © 2005-2023. Cloud Software Group, Inc. All Rights Reserved.

Version 0423-JSP82-38 of the JasperReports Server REST API Reference

https://www.tibco.com/patents

TABLE OF CONTENTS

Chapter 1 REST API Overview 9
1.1 List of Services 9
1.2 Sending REST Requests from a Browser 11
1.3 HTTP Response Codes 11
1.4 Deprecated Web Services 13

Chapter 2 The serverInfo Service 15

Chapter 3 Authentication Methods 17
3.1 Overview of REST Authentication 17
3.2 HTTP Basic Authentication 18
3.3 Argument-based Authentication 19
3.4 The login Service 20
3.5 Login Encryption (Deprecated) 23
3.6 Logout 24

Chapter 4 Working With Resources 25
4.1 Resource URI 25
4.2 CustomMedia Types 26
4.3 Accept HTTP Headers 26
4.4 Content-Type HTTP Headers 27
4.5 JSON Format 27
4.6 Nested Resources 27
4.7 Referenced Resources 28
4.8 Local Resources 29
4.9 Optimistic Locking 31
4.10 Update-only Passwords 31

Chapter 5 Resource Descriptors 33
5.1 Common Attributes 34
5.2 Folder 34
5.3 JNDI Data Source 35
5.4 JDBC Data Source 35
5.5 AWS Data Source 35
5.6 Virtual Data Source 36

Cloud Software Group, Inc. 3

JasperReports Server REST API Reference

5.7 Custom Data Source 36
5.8 Bean Data Source 37
5.9 Datatypes 37
5.10 List of Values 38
5.11 Query 38
5.12 Input Control 38
5.13 File 40
5.14 Report Unit (JRXML Report) 40
5.15 Report Options 42
5.16 Domain (semanticLayerDataSource) 42
5.17 Domain Topic 43
5.18 XML/A Connection 43
5.19 Mondrian Connection 43
5.20 Secure Mondrian Connection 44
5.21 OLAP Unit 44
5.22 Mondrian XML/A Definition 45
5.23 Other Types 45

Chapter 6 The resources Service 47
6.1 Searching the Repository 47
6.2 Paginating Search Results 50
6.2.1 Default Pagination 50
6.2.2 Full Page Pagination 51
6.2.3 No Pagination 52

6.3 Viewing Resource Details 53
6.4 Creating a Resource 54
6.5 Modifying a Resource 56
6.6 Copying a Resource 57
6.7 Moving a Resource 57
6.8 Deleting Resources 58

Chapter 7 Working With File Resources 61
7.1 MIME Types 61
7.2 Downloading File Resources 62
7.3 Uploading File Resources 63
7.4 Updating File Resources 64

Chapter 8 Working With Domains 67
8.1 The metadata Service 67
8.2 Fetching a Domain Schema 71
8.3 Fetching Domain Bundles and Security Files 72

Chapter 9 Working With Favorites 75
9.1 Adding Resources to Favorites 75
9.2 Removing Resources from Favorites 76
9.3 Accessing Resources in Favorites 77

Chapter 10 The permissions Service 79

4 Cloud Software Group, Inc.

10.1 Permission Constants 79
10.2 Viewing Multiple Permissions 80
10.3 Viewing a Single Permission 81
10.4 Setting Multiple Permissions 81
10.5 Setting a Single Permission 83
10.6 Deleting Multiple Permissions 84
10.7 Deleting a Single Permission 84

Chapter 11 The export Service 87
11.1 Requesting an Export 87
11.2 Polling the Export Status 90
11.3 Fetching the Export Output 91
11.4 Canceling an Export Operation 91

Chapter 12 The import Service 93
12.1 Launching an Import Operation 93
12.2 Polling the Import Status 96
12.3 Import Errors 96
12.4 Restarting an Import Operation 98
12.5 Canceling an Import Operation 99
12.6 Importing from aWeb Form 99

Chapter 13 The keys Service 103

Chapter 14 The reports Service 105
14.1 Running a Report 105
14.2 Finding Running Reports 107
14.3 Stopping a Running Report 107

Chapter 15 The reportExecutions Service 109
15.1 Running a Report Asynchronously 109
15.2 Polling Report Execution 113
15.3 Requesting Page Status 113
15.4 Requesting Report Execution Details 114
15.5 Requesting Report Output 115
15.6 Requesting Report Bookmarks 116
15.7 Exporting a Report Asynchronously 118
15.8 Modifying Report Parameters 118
15.9 Polling Export Execution 119
15.10 Finding Running Reports and Jobs 120
15.11 Stopping Running Reports and Jobs 122
15.12 Removing a Report Execution 122
15.13 Requesting Raw Parameter Values 123

Chapter 16 The inputControls Service 125
16.1 Listing Input Controls 125
16.2 Input Control Structure 129
16.3 Listing Input Control Values 130
16.4 Changing the Order of Input Controls 133

Cloud Software Group, Inc. 5

JasperReports Server REST API Reference

16.5 Setting Input Control Values 133

Chapter 17 The options Service 139
17.1 Listing Report Options 139
17.2 Creating Report Options 140
17.3 Updating Report Options 141
17.4 Deleting Report Options 141

Chapter 18 The jobs Service 143
18.1 Searching for Jobs 143
18.2 Viewing a Job Definition 146
18.3 The job Descriptor 149
18.3.1 General Properties of a Job 150
18.3.2 Source and Input Controls 152
18.3.3 Simple Trigger 153
18.3.4 Calendar Trigger 155
18.3.5 Job Output Properties 159
18.3.6 FTP Output 160
18.3.7 Job Output Email 162
18.3.8 Job Status Email 163

18.4 Creating a Job 164
18.5 Viewing Job Status 167
18.6 Modifying a Job 167
18.7 Pausing Jobs 170
18.8 Resuming Jobs 170
18.9 Restarting Failed Jobs 171
18.10 Deleting Jobs 172
18.11 Storing Additional Job Properties 173

Chapter 19 The calendars Service 175
19.1 Creating an Exclusion Calendar 175
19.2 Listing All Calendar Names 179
19.3 Viewing an Exclusion Calendar 180
19.4 Updating an Exclusion Calendar 182
19.5 Deleting an Exclusion Calendar 183
19.6 Error Messages 184

Chapter 20 The queryExecutor Service 189

Chapter 21 The caches Service 193

Chapter 22 The organizations Service 195
22.1 Searching for Organizations 195
22.2 Viewing an Organization 197
22.3 Creating an Organization 198
22.4 Modifying Organization Properties 199
22.5 Setting the Theme of an Organization 199
22.6 Deleting an Organization 200

Chapter 23 The users Service 201

6 Cloud Software Group, Inc.

23.1 Searching for Users 201
23.2 Viewing a User 203
23.3 Creating a User 204
23.4 Modifying User Properties 206
23.5 Deleting a User 207

Chapter 24 The roles Service 209
24.1 Searching for Roles 209
24.2 Viewing a Role 211
24.3 Creating a Role 212
24.4 Modifying a Role 213
24.5 Setting Role Membership 214
24.6 Deleting a Role 214

Chapter 25 The attributes Service 215
25.1 Attribute Descriptors 215
25.2 Secure Attributes 216
25.3 Entities with Attributes 217
25.4 Permissions for Accessing Attributes 217
25.5 Referencing Attributes 217
25.6 Attribute Limitations 218
25.7 Viewing Attributes 219
25.8 Setting Attributes 220
25.9 Deleting Attributes 222

Cloud Software Group, Inc. 7

JasperReports Server REST API Reference

8 Cloud Software Group, Inc.

CHAPTER 1 REST API OVERVIEW
The JasperReports Server REST API is an Application Programming Interface that follows the guidelines of
REpresentational State Transfer design to allow client application to interact with the server through the HTTP
protocol. With a few exceptions, the REST API allows clients to interact with all features of the server, such as
running, exporting, and scheduling reports, reading and writing resources in the repository, and managing
organizations, roles, and users. The REST API requires credentials for every operation and enforces the same
permissions and administrator restrictions as the server's user interface.

Client applications send requests to named URLs that are called services. A service provides several operations on
a feature, for example the roles service lists the roles in an organization, gives the properties and members of a
role, writes new roles, updates existing roles, and deletes roles. This chapter lists all the services of the current
REST API. The other chapters of this API Reference each describe one of the services.

In order to describe resources and objects in the server, the REST API sends and receives data structures called
descriptors. Most services support descriptors in both XML (eXtensible Markup Language) and JSON (JavaScript
Object Notation). The descriptors are specific to each service, and are defined in the corresponding chapter of this
reference. Descriptors are usually sent and received in the body of HTTP requests and responses, so your client
application usually relies on further APIs to handle the HTTP communications.

Historically, the REST API is considered a web service, and JasperReports Server provided several other web
services. The current REST API is the second version and all services use the rest_v2/ prefix. The first REST API
with the rest/ prefix and the earlier SOAP API (Simple Object Access Protocol) are deprecated and no longer
maintained. Although the server might still respond to deprecated services, they are not updated for new features of
the server and are never garanteed to succeed or be accurate. For completeness, the deprecated service names are
listed at the end of this chapter.

This chapter includes the following sections:
• List of Services
• Sending REST Requests from a Browser
• HTTP Response Codes
• Deprecated Web Services

1.1 List of Services
The REST API of JasperReports Server responds to HTTP requests from client applications, in particular the
following methods (sometimes called verbs):
• GET to list, search and acquire information about server resources.

Cloud Software Group, Inc. 9

JasperReports Server REST API Reference

• POST to create new resources and execute reports.
• PUT to modify existing resources.
• DELETE to remove resources.

As with any RESTful service, not all methods (GET, PUT, POST, and DELETE) are supported on every service.
The URLs usually include a path to the resource being acted upon, as well as any parameters that are accepted by
the method. For example, to search for input control resources in the repository, your application would send the
following HTTP request:

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?type=inputControl

In all URLs in this API Reference:
• <host> is the name of the computer hosting JasperReports Server
• <port> is the port you specified during installation
• jasperserver[-pro] indicates that the service is available in both Community and Commercial editions.
• jasperserver-pro indicates that the service is available only in Commercial editions.
• The context name (by default jasperserver or jasperserver-pro) may be customized in your specific installation

of JasperReports Server

The REST services are available at the following URLs:

Web Service URLs

Login (optional) http://<host>:<port>/jasperserver[-pro]/rest_v2/login

http://<host>:<port>/jasperserver[-pro]/logout.html

http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo

Repository http://<host>:<port>/jasperserver[-pro]/rest_v2/resources

http://<host>:<port>/jasperserver-pro/rest_v2/domains/.../metadata *

http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

http://<host>:<port>/jasperserver[-pro]/rest_v2/export

http://<host>:<port>/jasperserver[-pro]/rest_v2/import

http://<host>:<port>/jasperserver[-pro]/rest_v2/keys

Reports http://<host>:<port>/jasperserver[-pro]/rest_v2/reports

http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/.../inputControls

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/.../options

http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs

http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor *

http://<host>:<port>/jasperserver-pro/rest_v2/caches/vds *

Table 1-1 REST API Services and URLs

10 Cloud Software Group, Inc.

Chapter 1 REST API Overview

Web Service URLs

Administration
without
organizations

http://<host>:<port>/jasperserver[-pro]/rest_v2/users

http://<host>:<port>/jasperserver[-pro]/rest_v2/users/.../attributes

http://<host>:<port>/jasperserver[-pro]/rest_v2/roles

http://<host>:<port>/jasperserver[-pro]/rest_v2/attributes

Administration
with
organizations *

http://<host>:<port>/jasperserver-pro/rest_v2/organizations

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../attributes

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../users

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../users/.../attributes

http://<host>:<port>/jasperserver-pro/rest_v2/organizations/.../roles

http://<host>:<port>/jasperserver-pro/rest_v2/attributes

* Available only in commercial editions of JasperReports Server.

For progammers creating a client application, the reference chapters in this guide give the full description of the
methods supported by each REST service, the path or resource expected for each method, and the parameters that
are required or optional in the URL. The description of each method includes an example of the descriptors it uses
and a sample of the return value.

For tools that can parse the Web Application Description Language (WADL), the following URL gives a machine-
readable XML description of all supported REST v2 services:

http://<host>:<port>/jasperserver[-pro]/rest_v2/application.wadl

1.2 Sending REST Requests from a Browser
Normally, you program your client application to send REST requests to your instance of JasperReports Server.
You may also want to test certain requests or examine the response from the server, and some browsers have plug-
ins to send a REST request and view the response.

However, the server includes cross-session request forgery (CSRF) protection that does not allow requests,
including REST, from a browser in a different domain. Sending POST, PUT, or DELETE requests from a browser
will often fail for this reason. REST requests from REST-client applications are secure and are not stopped by
CSRF protection.

To allow testing of the REST API through a browser, configure your browser REST client to include the following
header in every request:

X-REMOTE-DOMAIN: 1

1.3 HTTP Response Codes
JasperReports Server REST services return standard HTTP status codes. In case of an error, a detailed message
may be present in the body as plain text. Client error codes are of type 4xx, while server errors are of type 5xx. The
following table lists all the standard HTTP codes. Each service returns typical success and error messages that are
given in the reference chapter for that service.

Cloud Software Group, Inc. 11

JasperReports Server REST API Reference

Success Messages Client Error Server Errors

Code Message Code Message Code Message

100 Continue 400 Bad Request 500 Internal Server Error

101 Switching Protocols 401 Unauthorized 501 Not Implemented

200 OK 402 Payment Required 502 Bad Gateway

201 Created 403 Forbidden 503 Service Unavailable

202 Accepted 404 Not Found 504 Gateway Time-out

203 Non-Authoritative
Information

405 Method Not Allowed 505 HTTP Version Not
Supported

204 No Content 406 Not Acceptable

205 Reset Content 407 Proxy Authentication
Required

206 Partial Content 408 Request Time-out

300 Multiple Choices 409 Conflict

301 Moved Permanently 410 Gone

302 Found 411 Length Required

303 See Other 412 Precondition Failed

304 Not Modified 413 Request Entity Too
Large

305 Use Proxy 414 Request URI Too Large

307 Temporary Redirect 415 Unsupported Media
Type

416 Requested Range Not
Satisfiable

417 Expectation Failed

Table 1-2 HTTP Response Codes

12 Cloud Software Group, Inc.

Chapter 1 REST API Overview

1.4 Deprecated Web Services
The server's first REST API (now called v1) is deprecated. These services are no longer supported, do not work
with the latest features of the server, and are never guaranteed to succeed. Note that meanings of PUT and POST
were reversed in the REST v1 API.

Web Service URLs

Login http://<host>:<port>/jasperserver[-pro]/rest/login

http://<host>:<port>/jasperserver[-pro]/j_spring_security_check

http://<host>:<port>/jasperserver[-pro]/GetEncryptionKey

Repository http://<host>:<port>/jasperserver[-pro]/rest/resources

http://<host>:<port>/jasperserver[-pro]/rest/resource

http://<host>:<port>/jasperserver[-pro]/rest/permission

Reports http://<host>:<port>/jasperserver[-pro]/rest/report

http://<host>:<port>/jasperserver[-pro]/rest/jobsummary

http://<host>:<port>/jasperserver[-pro]/rest/job

Administration
without
organizations

http://<host>:<port>/jasperserver[-pro]/rest/user

http://<host>:<port>/jasperserver[-pro]/rest/attribute

http://<host>:<port>/jasperserver[-pro]/rest/role

Administration
with
organizations *

http://<host>:<port>/jasperserver-pro/rest/organization

http://<host>:<port>/jasperserver-pro/rest/user

http://<host>:<port>/jasperserver-pro/rest/attribute

http://<host>:<port>/jasperserver-pro/rest/role

* Available only in commercial editions of JasperReports Server.

Table 1-3 Deprecated REST v1 Services

The original SOAP web services at the following URLs are also deprecated and no longer supported. The SOAP
web services will no longer be maintained or updated to work with new features of the server. In particular, the
SOAP web services do not support interactive charts or interactive HTML5 tables. Though the server may still
respond to these methods, they are never guaranteed to work.

The SOAP web services often refer to the http://www.jasperforge.org/jasperserver/ws namespace. This namespace
is only an identifier; it is not intended to be a valid URL.

Cloud Software Group, Inc. 13

JasperReports Server REST API Reference

Edition Web Service URL

Community
Project

Repository http://<host>:<port>/jasperserver/services/repository

Scheduling http://<host>:<port>/jasperserver/services/ReportScheduler

Administration http://<host>:<port>/jasperserver/services/UserAndRoleManagementServic
e

Commercial
Editions

Repository http://<host>:<port>/jasperserver-pro/services/repository

Scheduling http://<host>:<port>/jasperserver-pro/services/ReportScheduler

Domains http://<host>:<port>/jasperserver-pro/services/DomainServices

Administration http://<host>:<port>/jasperserver-
pro/services/UserAndRoleManagementService

Table 1-4 Deprecated SOAP Web Services

14 Cloud Software Group, Inc.

CHAPTER 2 THE serverInfo SERVICE
The rest_v2/serverInfo service returns the same information as the About JasperReports Server link in the
user interface.

Use the following methods to verify the server information, such as version number and supported features for
compatibility with your REST client application. Your application should also use the date and date-time patterns
to interpret all date or date-time strings it receives from the server and to format all date and date-time strings it
sends to the server.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – Body described below. This request should always succeed when the server is
running.

The server returns a structure containing the information in the requested format, XML or JSON:

<serverInfo>
<build>20141121_1750</build>
<dateFormatPattern>yyyy-MM-dd</dateFormatPattern>
<datetimeFormatPattern>yyyy-MM-dd'T'HH:mm:ss</datetimeFormatPattern>
<edition>PRO</edition>
<editionName>Enterprise</editionName>
<features>Fusion AHD EXP DB AUD ANA MT </features>
<licenseType>Commercial</licenseType>
<version>6.0.0</version>

</serverInfo>

{
"dateFormatPattern": "yyyy-MM-dd",

Cloud Software Group, Inc. 15

JasperReports Server REST API Reference

"datetimeFormatPattern": "yyyy-MM-dd'T'HH:mm:ss",
"version": "6.0.0",
"edition": "PRO",
"editionName": "Enterprise",
"licenseType": "Commercial",
"build": "20150527_1942",
"features": "Fusion AHD EXP DB AUD ANA MT "

}

You can access each value separately with the following URLs. Note that some information does not apply to
community editions of the server. The response is the raw value, XML or JSON are not accepted formats.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/version
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/edition
http://<host>:<port>/jasperserver-pro/rest_v2/serverInfo/editionName
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/build
http://<host>:<port>/jasperserver-pro/rest_v2/serverInfo/licenseType
http://<host>:<port>/jasperserver-pro/rest_v2/serverInfo/features
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/dateFormatPattern
http://<host>:<port>/jasperserver[-pro]/rest_v2/serverInfo/datetimeFormatPattern

Return Value on Success Typical Return Values on Failure

200 OK – The requested value. These requests should always succeed when the
server is running.

16 Cloud Software Group, Inc.

CHAPTER 3 AUTHENTICATION METHODS

This chapter demonstrates several ways for REST client applications to authenticate with JasperReports Server.
Choose an authentication method that matches the usage patterns and needs of your REST client application.

This chapter includes the following sections:
• Overview of REST Authentication
• HTTP Basic Authentication
• Argument-based Authentication
• The login Service
• Login Encryption (Deprecated)
• Logout

3.1 Overview of REST Authentication
When using the REST API, the client application must provide a valid user ID and password to JasperReports
Server. The REST services support two types of authentication:
• Stateless authentication – Your client sends user credentials with every API request. This is the traditional

RESTful behavior and fully supported by JasperReports Server. Clients may send credentials using HTTP
Basic Authentication, where the user ID and password are sent in the header with every request, or argument-
based authentication, where the user ID and password are included in URL arguments.

• User session management – Your client performs a login operation first, and then sends a session cookie with
every API request. As with a user interface, your client performs a logout operation when done. Use of the
login and logout services is optional, but it can improve performance under heavy user loads.

Normally, RESTful implementations do not rely on the persistent user sessions, such as the login service and user
sessions stored on the server. However, the JasperReports Server architecture automatically creates user sessions
internally, and the login method takes advantage of this. There are several use cases for either type of
authentication.
• If your client makes sporadic requests, for example running a report every hour, it is easier to use basic

authentication and send the credentials with each request. See 3.2, “HTTP Basic Authentication,” on
page 18.

• If a username or password contains UTF-8 characters, it may be corrupted by basic authentication and the
services will always return an error. In this case, you can send the username and password in URL arguments
with each request. See 3.3, “Argument-based Authentication,” on page 19.

Cloud Software Group, Inc. 17

JasperReports Server REST API Reference

• If your client applications perform many requests in a short time, you can avoid the overhead of stateless
authentication by using the login service once and passing the session ID cookie instead with each request. For
more information, see 3.4, “The login Service,” on page 20.

• However, sessions are kept for 20 minutes by default, so if your client makes a request every 15 minutes with
the same credentials, the corresponding session will be kept in memory indefinitely. This can be a problem if
you have many different clients running large reports, because some report output is stored in the user session,
and they can fill up the available memory. In this case, you should use the logout call to make sure the
memory is freed. For more information, see 3.6, “Logout,” on page 24.

As with logging in from the web UI, you can send a user-specific locale and time zone during REST API
authentication. To specify a locale and timezone, choose from the following possibilities:
• Use locale and time zone arguments on any REST API to specify the language and time in the response, for

example to localize a report. It is also possible for the same user to make several requests with different locales
or time zones. Once you specify a locale or time zone for a given user, the server sets a cookie so that it
applies to all requests. See 3.3, “Argument-based Authentication,” on page 19.

• When doing many requests with the same locale and time zone, you can also specify the locale and time zone
arguments with the login service. The language and time will be set with a cookie for all future requests. See
3.4, “The login Service,” on page 20.

• If you never specify any locale or time zone arguments, the default locale and default time zone on the server
will be used for all operations.

In the case of external authentication, how you perform REST authentication depends on the type of mechanism:
• If your server is configured with an external authentication that requires a username and password, such as

LDAP, then you can use any authentication method that submits those values: HTTP basic authentication,
argument-based authentication, or the login service with credentials in arguments or the request body.
However, repeatedly verifying external credentials may cause a performance issue, in which case you should
use the login service and the session cookie it returns.

• If your server is configured with SSO (Single Sign-On), use the updated v2 login service to send the token. For
more information, see 3.4, “The login Service,” on page 20.

• If your server is configured with Pre-Authentication, specify the pp argument in every API request, as shown
in 3.3, “Argument-based Authentication,” on page 19.

None of these authentication methods provide privacy, meaning that passwords are sent in plain text or easily
reversed encodings. Jaspersoft recommends that you configure your server and clients to use HTTPS to provide
end-to-end privacy and security. Alternatively, JasperReports Server has a login encryption feature that hides
passwords. If this feature is enabled on your server, you must encrypt your passwords before sending them in
REST requests. For more information, see 3.5, “Login Encryption (Deprecated),” on page 23.

3.2 HTTP Basic Authentication
HTTP basic authentication is stateless, meaning that your client application must supply a valid user and password
in every API request. The user ID and password are concatenated with a colon (:) and Base64-encoded in the
HTTP request header. Usually, your client library does this for you. For example, the default organization admin’s
credentials are jasperadmin:jasperadmin, which is encoded as follows:

Authorization: Basic amFzcGVyYWRtaW46amFzcGVyYWRtaW4=

The REST API services accept the same accounts and credentials as the JasperReports Server user interface.
• In commercial editions where there is only one organization, such as in the JasperReports Server default

installation, you should specify the user ID without any qualifiers, for example jasperadmin.

18 Cloud Software Group, Inc.

Chapter 3 Authentication Methods

• In commercial deployments with multiple organizations, the organization ID or organization alias must be
appended to the user ID, for example jasperadmin|organization_1 or jasperadmin|org2. When the
organization ID or alias is added to an argument in the URL, you should use the encoded form:
jasperadmin%7Corganization_1

When your server implements external authentication, such as using LDAP, you can submit the username and
password with HTTP basic authentication as well.

If login encryption in enabled in your server, you must encrypt the password before base64-encoding it with the
username. For more information about encryption, see 3.5, “Login Encryption (Deprecated),” on page 23.

3.3 Argument-based Authentication
Some UTF-8 characters in usernames and passwords are not properly handled by the encoding in HTTP basic
authentication, and such requests will return an error. To get around this, all services of the REST API accept
arguments for the username and password in the URL. This method also works when your server is configured to
check username and passwords with external authentication, for example using LDAP. All services also recognize
the pp argument that you use when your server is configured for pre-authentication.

Use the following arguments as an alternate method to send user credentials in a stateless manner with each API
request:

Method URL

any http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/<service/and/path>[?<arguments>]

Argument Type/Value Description

j_username Text The user ID. In commercial editions of the server that implement multiple
organizations, the argument must specify the organization ID or alias in the
following format: userID%7CorgID (%7C is the encoding for the | character).

j_password Text The user’s password. The argument is optional but authentication will fail
without the password. If the server has login encryption enabled, the
password must be encrypted as explained in 3.5, “Login Encryption
(Deprecated),” on page 23.

pp Text The token for your pre-authentication mechanism. The default parameter
name for a pre authentication token is pp. This parameter name can be
changed in the configuration file .../WEB-INF/applicationContext-
externalAuth-preAuth.xml.

userLocale Java locale
string

An optional argument to set the locale for this user. The locale can affect both
server strings such as messages and report content if localized by Domains.
The server sets a cookie with this value so that it is used in every subsequent
request until changed. If this argument is never specified for a given user, the
server's default locale is used. Specify a Java locale string such as fr
(French) or de (German).

Cloud Software Group, Inc. 19

JasperReports Server REST API Reference

userTime
zone

Java time zone An optional argument to set the time zone for this user. The server sets a
cookie with this value so that it is used in every subsequent request until
changed. If this argument is never specified for a given user, the server's
default time zone is used. The time zone names are those supported by
java.time.ZoneID, which are defined in the tz database.

Return Value on Success Typical Return Values on Failure

The normal response for the requested operation. 401 Unauthorized – Login failed or j_username or j_
password was missing, body of response is empty.

403 Forbidden – License expired or otherwise not valid.

For example, the following request will return all repository resources in the Public folder that the sample user
Joeuser has permission to read:

http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/resources/Public?j_user-
name=joeuser%7Corganization_1&j_password=<password>

When using pre-authentication on the server, specify only the pp arugument, for example (%3D is the encoding for
=, and %7C for |):

http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/resources/Public?pp=u%3Djoeuser
%7Cr%3DUSER,SALES%7Co%3DHeadquarters%7Cpa1%3DUSA%7Cpa2%3DLosAngeles

Even if you implement HTTPS, you should be aware that plain-text passwords in URLs may appear in your app
server's logs, and you should protect such log files. To prevent this security issue, change your logging rules or
implement login encryption as described in 3.5, “Login Encryption (Deprecated),” on page 23.

3.4 The login Service
The login service allows your client to send user credentials to the server, verify the credentials, and receive a
session cookie. By explicitly creating and maintaining a user session, your client can manage the user session and
optimize the resources it uses. For more information, see 3.1, “Overview of REST Authentication,” on page 17.

As of JasperReports Server 8.2, reports executions and Input Controls are no longer session dependent. The new
behavior is as follows:
1. The user logs in as joeuser|organization_1; user gets a session ID (JSESSIONID in cookies).
2. That user runs a report; report results stored in cache.
3. The user doesn't logout; session still alive.
4. From another browser or other client, user logs in as the same user joeuser|organization_1; user gets a

different session ID.
5. If a user with a different session ID tries to access report results from the cache from step 2, the user will be

able to get those results because now the service is session independent, it passes through the standard security
layer (superuser, tenant admins, users); and if the user has the same name|tenant or tenant admin, the user will
be able to access it.

In case at step 3, if the user logs out, then the associated cache will be cleared; furthermore, the user at step 5 won't
see the results.

20 Cloud Software Group, Inc.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Chapter 3 Authentication Methods

As of JasperReports Server 7.1, the REST v1 login service (rest/login) was deprecated and removed from the API.
It is replaced with the similar REST v2 login service (rest_v2/login). This section documents the use of the new
rest_v2/login API.

The rest_v2/login service allows REST clients to submit authentication credentials in several ways and receive a
server cookie that can be used to identify the user session in subsequent API operations. The supported
authentication methods are:
• Login with username and password in the URL arguments.
• Login with username and password in the request body.
• Login with a ticket for servers configured for single sign-on (SSO).

When external authentication such as LDAP is configured in the server, clients are still required to submit the
username and password in one of the first two methods above.

Sending passwords in plain text is strongly discouraged, therefore Jaspersoft recommends that you configure your
server and clients to use HTTPS, or that you use the login encryption feature. For more information, see 3.5,
“Login Encryption (Deprecated),” on page 23.

Method URL

POST

GET (config.)

http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/login[?<arguments>]
http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/login?<arguments>

Argument Type/Value Description

j_username Text The user ID. In commercial editions of the server that implement multiple
organizations, the argument must specify the organization ID or alias in the
following format: j_username%7CorgID (%7C is the encoding for the |
character).

j_password Text The user’s password. The argument is optional but authentication will fail
without the password. If the server has login encryption enabled, the
password must be encrypted as explained in 3.5, “Login Encryption
(Deprecated),” on page 23.

ticket Text The user's ticket for your SSOmechanism, when enabled. This argument is
not valid when j_username and j_password are specified. For example:

ticket=ST-40-CZeUUnGPxEqgScNbxh9l-sso-cas.example.com

The default parameter name for an SSO authentication token is ticket. This
parameter name can be changed in the configuration file WEB-
INF/applicationContext-externalAuth-<sso>.xml.

userLocale Java locale
string

An optional argument to set the locale for this user session. The locale can
affect both server strings such as messages and report content if localized by
Domains. The server sets a cookie with this value so that it is used in every
subsequent request until changed. When omitted, the server's default locale
is used during this session. Specify a Java locale string such as fr (French)
or de (German).

Cloud Software Group, Inc. 21

JasperReports Server REST API Reference

userTime
zone

Java time zone An optional argument to set the time zone for this user. The server sets a
cookie with this value so that it is used in every subsequent request until
changed. When omitted, the server's default time zone is used during this ses-
sion. The time zone names are those supported by java.time.ZoneID,
which are defined in the tz database.

Content-Type Content

application/x-www-form-
urlencoded

j_username=<userID>[%7C<organizationID>]&j_password=<password>

Example: j_username=jasperadmin&j_password=jasperadmin

or j_username=jasperadmin%7Corganization_1&j_password=jasperadmin

Return Value on Success Typical Return Values on Failure

200 OK – Session ID in cookie, body of response is empty. 400 Bad Request – Missing j_username or j_
password.

401 Unauthorized – Login failed, body of response
is empty.

403 Forbidden – License expired or otherwise not
valid.

Because browsers submit URLs with the GET method, you can test the login service and test credentials by
submitting requests from a web browser. With developer tools in your browser, you can see the server's response,
and when successful, the session cookie it contains. Credentials must be passed as arguments in the URL, as shown
in the following example:

http[s]://<host>:<port>/jasperserver[-pro]/rest_v2/login?j_username=<userID>[%7C<orgID>]&
j_password=<password>

Client applications typically use the POST method, and they gather the session cookie from the response to use in
future requests. Credentials can be sent either in the URL arguments, as shown above, or in the content of the
request, as shown in the following example:

POST /jasperserver/rest_v2/login HTTP/1.1
User-Agent: Jakarta Commons-HttpClient/3.1
Host: localhost:8080
Content-Length: 45
Content-Type: application/x-www-form-urlencoded
j_username=jasperadmin%7Corganization_1&j_password=jasperadmin

When the login is successful, the server sends the "200 OK" response containing a cookie for the session ID of the
now-logged-in user:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=52E79BCEE51381DF32637EC69AD698AE; Path=/jasperserver
Content-Length: 0
Date: Fri, 3 Aug 2018 01:52:48 GMT

For optimal performance, the session ID from the cookie should be used to keep the session open. Usually, your
REST library will automatically include the cookie in future requests to the other RESTful services. For example,

22 Cloud Software Group, Inc.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Chapter 3 Authentication Methods

given the response to the POST request above, future requests to the repository services should include the
following line in the header:

Cookie: $Version=0; JSESSIONID=52E79BCEE51381DF32637EC69AD698AE; $Path=/jasperserver

By default, the session timeout on the server is 20 minutes of inactivity. Beyond that time, requests using the
session cookie will fail due to lack of authentication. Your client will need to authenticate again using any of the
methods described in this chapter.

Maintaining a session with cookies is not mandatory, and your application can use any combination of session
cookie, stateless authentication, or both. However, if you use the session ID, it is good practice to close the session
as described in 3.6, “Logout,” on page 24. Closing the session frees up any associated resources in memory.

3.5 Login Encryption (Deprecated)
As of release 7.5, the HTTP parameter encryption described in this section is deprecated. This feature is no longer
supported because the Javascript libraries it uses are no longer supported. Jaspersoft recommends using TLS
(Transport Level Security) to implement HTTPS and secure communication between your users and the server.

JasperReports Server supports the ability to encrypt plain-text passwords over non-secure HTTP. Encryption does
not make passwords more secure, it only prevents them from being readable to humans. For more information
about security and how to enable login encryption, see the JasperReports Server Security Guide.

When login encryption is enabled, passwords in both HTTP Basic Authentication and using the login service must
be encrypted by the client. Login encryption has two modes:
• Static key encryption – The server only uses one key that never changes. The client only needs to encrypt the

password once and can use it for every REST service request.
• Dynamic key encryption – The server changes the encryption key for every request. The client must request

the new key and re-encrypt the password before every request using HTTP Basic Authentication including the
login service.

The GetEncryptionKey service does not take any arguments or content input.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/GetEncryptionKey

Return Value on Success Typical Return Values on Failure

200 OK – Body contains a JSON representation of public
key:

{
"maxdigits":"131",
"e":"10001",
"n":"9f8a2dc4baa260a5835fa33ef94c..."

}

200 OK – Body contains {Error: Key generation is
off}

After using this service to obtain the server’s public key, your client must encrypt the user's password with the
public key using the Bouncy Castle library and the RSA/NONE/NoPadding algorithm. Then your client can send
the encrypted password in simple authentication or using the login service.

Cloud Software Group, Inc. 23

JasperReports Server REST API Reference

3.6 Logout
While REST calls are often stateless, JasperReports Server uses a session to hold some information such as
generated reports. The session and its report data take up space in memory and it's good practice to explicitly close
the session when it is no longer needed. This allows the server to free up and reuse resources much faster.

To close a session and free its resources, invoke the logout page. The request must include the JSESSIONID
cookie, which your REST client libraries should do automatically.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/logout.html

Header

Cookie: $Version=0; JSESSIONID=52E79BCEE51381DF32637EC69AD698AE; $Path=/jasperserver

24 Cloud Software Group, Inc.

CHAPTER 4 WORKING WITH RESOURCES
The JasperReports Server repository stores the resources such as data sources and reports that REST clients can
interact with. Before you can use the rest_v2/resources service to access the repository, you should understand how
resources are represented. This chapter introduces concepts that are common to all resources as well as complex
topics such as nested resources.

For further information, see:
• Chapter 5, “Resource Descriptors,” on page 33 for a reference to every type of resource and its attributes.
• Chapter 6, “The resources Service,” on page 47 for methods to operate on resources in the repository.

This chapter includes the following sections:
• Resource URI
• Custom Media Types
• Accept HTTP Headers
• Content-Type HTTP Headers
• JSON Format
• Nested Resources
• Referenced Resources
• Local Resources
• Optimistic Locking
• Update-only Passwords

4.1 Resource URI
Resources (such as reports, images, queries, and data sources) are stored in the server's repository. The repository is
organized like a file system, with a root and a hierarchical set of folders. Each object in the repository is considered
a resource: a folder is a resource of type folder, a JRXML report is a resource of type reportUnit, and images are of
type file.

Every resource has an ID that is unique within the folder where it resides. The IDs of all parent folders create a
path, and appending the resource's own ID to the path gives the URI (Universal Resource Identifier) of the resource
in the repository. Resource descriptors do not have an explicit ID attribute, but the ID is always the last component
of the URI field in responses from the server.

In commercial editions of the server, the URI of a resource is relative to the organization of the user whose
credentials are used to authenticate the request. Thus the path /datasources/JServerJdbcDS for an organization_1

Cloud Software Group, Inc. 25

JasperReports Server REST API Reference

user is the same resource as the path /organizations/organization_1/datasources/JServerJdbcDS for the system
admin (superuser). The /public folder is a special path that is absolute for any user in any organization (including
superuser).

As with all server operations, the folders and resources that are visible and accessible to a given user depend
on permissions that are set in the repository on those folders and resources. REST services return an error
when attempting an operation on resources that the authenticated user does not have permission to access.

The URI and ID of a created resource is determined in one of the following ways:
• POST operations on the resources service specify a folder. The resource descriptor in the request is created in

the specified folder. The ID is created automatically from the label of the resource by replacing special
characters with underscores (_). The URI of the new resource is returned in the server's response and consists
of the target folder with the automatic ID appended to it.

• PUT operations on the resources service send a descriptor to create the resource at the URI specified in the
request. The resource ID is the last element of this URI, as long as it is unique in the parent folder. The server's
response should confirm that the resource was successfully created with the requested URI.

All resources also have a label string and a description string that can be presented to your client's users. The label
and description support special characters (such as spaces, punctuation, and accented characters) and even Unicode
if configured in your server during installation.

4.2 Custom Media Types
In order to specify all the different types of resources, the resources service relies on custom media types with the
following syntax:

application/repository.<resourceType>+<format>

where:
• <resourceType> is the name for each type of repository resource, such as reportUnit, dataType, or

jdbcDataSource. The names of all supported types are given in Chapter 5, “Resource Descriptors,” on
page 33.

• <format> is the representation format of the descriptor, either json or xml.

For example:
application/repository.dataType+json – JSON representation of a datatype resource
application/repository.reportUnit+xml – XML representation of a JRXML report

The custom media types should be used in Content-Type and Accept HTTP headers, as described in the following
sections. According to the HTTP specification, headers should be case insensitive; the headers and custom media
types can be upper case, lower case, or any mixture of upper and lower case.

4.3 Accept HTTP Headers
Client applications should use the Accept HTTP header in a request to specify the desired format in the server's
response. Generally, regardless of the resource type, it's enough to specify:
• Accept: application/json to get response in JSON format or
• Accept: application/xml to get response in XML format.

26 Cloud Software Group, Inc.

Chapter 4 Working With Resources

The server will respond with the specific custom media type for the requested resource, as described in the next
section.

However, there are some special cases where client must specify a precise resource type:
• When requesting the resource details of the root folder, client must specify

application/repository.folder+<format> to get its resource descriptor. Otherwise, the request is considered a
search of the root folder.

• When requesting the resource details of a file resource, as opposed to the file contents, the client must specify
application/repository.file+<format>. Without this Accept header, the response will contain the file contents.
The custom media type also distinguishes between the XML descriptor of a file and the contents of an
XML file.

If the client specifies a custom type in the Accept header that does not match the resource being requested, the
server responds with the error code 406 Not Acceptable.

4.4 Content-Type HTTP Headers
The Content-Type HTTP header indicates the media type being sent in the body of the request or response. For
example, if the client requests a valid datatype resource, and depending on the format that the client specified in the
Accept header of the request, the server's response includes:
• Content-Type: application/repository.dataType+json or
• Content-Type: application/repository.dataType+xml

When the client uploads a resource descriptor to create or update a resource, it must set the Content-Type
connector accurately. For example, when uploading a datatype resource represented in XML, the client must send:

Content-Type: application/repository.dataType+xml

The server relies on the Content-Type header to parse the body of the request, and it will respond with the error
code 400 Bad Request if there is a mismatch. In the example above, the following headers will result in an error:
• Content-Type: application/xml – custom media type not included
• Content-Type: application/repository.reportUnit+xml – media type mismatch
• Content-Type: application/repository.dataType+json – format mismatch

4.5 JSON Format
JasperReports Server uses the standard JSON (JavaScript Object Notation) format to send and receive
representations of resources and other structures. The JSON marshalling and unmarshalling (parsing) uses the
following conventions:
• Attributes with no value or a null value are not transmitted in a request.
• Unknown properties that JasperReports Server does not recognize are ignored without error.
• Dates should be given in ISO 8601 format.

4.6 Nested Resources
Many types of resources in the repository are defined in terms of other resources. For example, some types of input
controls require a query, and the query itself requires a data source. The nested query and data source can be
defined in two ways:

Cloud Software Group, Inc. 27

http://en.wikipedia.org/wiki/ISO_8601

JasperReports Server REST API Reference

• Referenced resources - a link to a valid resource defined elsewhere in the repository. JasperReports Server
manages the references between resources by enforcing permissions and protecting dependencies from
deletion.

• Local resources - a resource descriptor nested within the parent descriptor. The nested resource is fully defined
within the parent resource and not available for being referenced from elsewhere.

Both types of nested resources are further described in the following sections.

4.7 Referenced Resources
Referenced resources are defined by special structures within the descriptors of other resources. For example, in the
following query resource, the data source field contains a dataSourceReference object that contains the URI of
the target reference:

{
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03T16:32:37",
"updateDate": "2013-10-03T16:32:37",
"label": "Country Query",
"description": null,
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/

country_query",
"dataSource": { contents }, <*>
"value": "select distinct billing_address_country from accounts order by billing_address_

country",
"language": "sql"

}

<*> or "dataSourceReference": {
"uri": "/datasources/JServerJNDIDS"

},

To create referenced resources, send requests to the server that contain the appropriate reference objects for the
target resource. See 4.7, “Referenced Resources,” on page 28 for the specific reference objects available in each
resource descriptor.

When reading resources with referenced resources, the uri attribute gives the repository URI of the reference. To
simplify the parsing of referenced resources, the resources service GET method supports the expanded=true
parameter. Instead of following references and requiring two or more GET requests, the expanded=true parameter
returns all referenced resources fully expanded within the parent resource, as if it were a local resource.

The following resource types support referenced resources, and the table gives the name of the field that contains
the referenced URI, and the name of the expanded type that replaces the reference.

Resource Type Reference Attribute(s) Expanded Name and Descriptor

query dataSourceReference awsDataSource, beanDataSource,
customDataSource, jdbcDataSource,
jndiJdbcDataSource, virtualDataSource,
semanticLayerDataSource or
advDataSource (adhocDataView)

28 Cloud Software Group, Inc.

Chapter 4 Working With Resources

Resource Type Reference Attribute(s) Expanded Name and Descriptor

inputControl datatypeReference dataType

listOfValuesReference listOfValues

queryReference query

reportUnit jrxmlFileReference jrxmlFile with file attributes

dataSourceReference see query dataSourceReference

queryReference query

inputControlReference inputControl

fileReference (images, ...) fileResource with file attributes

semanticLayerDataSource
(Domain)

dataSourceReference see query dataSourceReference

schemaFileReference schemaFile with file attributes

fileReference (bundle) file of appropriate type

securityFileReference securityFile with file attributes

olapUnit olapConnectionReference xmlaConnection,
mondrianConnection,
or secureMondrianConnection

mondrianConnection dataSourceReference see query dataSourceReference

schemaReference schema with file attributes

secureMondrianConnection dataSourceReference see query dataSourceReference

schemaReference schema with file attributes

accessGrantSchemaReference accessGrantSchema with file attributes

mondrianXmlaDefinition mondrianConnectionReference mondrianConnection
or secureMondrianConnection

4.8 Local Resources
Nested resources that are not referenced resources must be defined locally within the parent resource. The nested
resource is defined by a complete resource descriptor of the appropriate type. The following example shows a data
source that is defined locally within the parent query resource:

Cloud Software Group, Inc. 29

JasperReports Server REST API Reference

{
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03T16:32:37",
"updateDate": "2013-10-03T16:32:37",
"label": "Country Query",
"description": null,
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_

query",
"dataSource": {

"jndiJdbcDataSource": {
"version": 0,
"permissionMask": 1,
"creationDate": "2013-10-03T16:32:05",
"updateDate": "2013-10-03T16:32:05",
"label": "my JNDI ds",
"description": "Local JNDI Data Source",
// URI of expanded nested resource is ignored. Resource is created locally
"uri": "/datasources/JServerJNDIDS",
"jndiName": "jdbc/sugarcrm",
"timezone": null

}
},
"value": "select distinct billing_address_country from accounts order by billing_address_

country",
"language": "sql"

}

Use nested descriptors such as the ones above to create resources that contain local resources. Descriptors can be
nested to any level, as long as the syntax of each descriptor is valid. See 4.6, “Nested Resources,” on page 27 for
the correct syntax of both the parent and the nested resource.

Internally, the resources service handles local resources as normal resources contained in a hidden folder. The
hidden folder containing local resources has the following name:

<parentURI>_files/

and local resources can be accessed at the following URI:
<parentURI>_files/<resourceID>

In the example above, we can see that the parent query resource is a nested resource itself. Its URI shows us that it
is the query resource for a query-based input-control of a topic resource:

/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_query

and the new nested data source will have the following URI:
/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select_files/country_query_files/my_JNDI_ds

The ID of the nested resource (my_JNDI_ds) is created automatically from the label of the nested resource.

The _files folder that exists in all parents of local resources is hidden so that its local resources do not appear in
repository searches. You can set the showHiddenItems=true parameter on the resources request to search for a _
files folder in all local resources, such as in a JRXML report (reportUnit).

Local resources in the hidden _files folder can also be created and updated separately from their parent resources
by using PUT and POST methods of the resources service and specifying the complete URI of the local resource as
shown above.

30 Cloud Software Group, Inc.

Chapter 4 Working With Resources

4.9 Optimistic Locking
The resources service supports optimistic locking on all write and update operations (PUT and POST). When using
the service to search the repository and receive descriptors of the resources, all descriptors contain a version
number field. Clients should return the same version number when writing or updating a given resources. The
server compares the version number in the modify request the current version of the resource to assure that no other
client has updated the same resource.

If the version numbers do not match, the server replies with error code 409 Conflict. In that case, the client should
request the resource again (read operation with GET) and send the modify request with an updated version number.

When a modify operation is successful, the server increments the version number on the affected resource and
returns the new descriptor with the new version as confirmation that the operation was successful.

4.10 Update-only Passwords
Some resource descriptors such as jdbcDataSource and xmlaConnection contain a password field. All password
fields are blank or missing when reading (GET) a resource descriptor. This prevents anyone, even administrators
from seeing existing passwords.

Write or update operations (PUT or POST) may send the password field in descriptors that support it. In this case,
the password value is updated in the resource in the repository. Make sure that resources with sensitive passwords
have the proper permissions so that only authorized users can modify them.

For complete security, you should only send passwords over HTTPS connections, otherwise they appear
unencrypted in network packets.

Cloud Software Group, Inc. 31

JasperReports Server REST API Reference

32 Cloud Software Group, Inc.

CHAPTER 5 RESOURCE DESCRIPTORS
This chapter provides a reference by example for every type of resource descriptor that exists in the repository. Use
the resources service to get and set resources with these descriptors. For further information, see:
• Chapter 4, “Working With Resources,” on page 25 for general guidelines about using descriptors.
• Chapter 6, “The resources Service,” on page 47 for methods to operate on resources in the repository.

This chapter does not cover descriptors for objects that are not stored in the repository. Descriptors that represent
jobs, calendars, organizations, roles, users, and attributes are described with the service that operates on them.

This chapter includes the following sections:
• Common Attributes
• Folder
• JNDI Data Source
• JDBC Data Source
• AWS Data Source
• Virtual Data Source
• Custom Data Source
• Bean Data Source
• Datatypes
• List of Values
• Query
• Input Control
• File
• Report Unit (JRXML Report)
• Report Options
• Domain (semanticLayerDataSource)
• Domain Topic
• XML/A Connection
• Mondrian Connection
• Secure Mondrian Connection
• OLAP Unit
• Mondrian XML/A Definition
• Other Types

Cloud Software Group, Inc. 33

JasperReports Server REST API Reference

5.1 Common Attributes
All resource types contain the following attributes. Of these common attributes, only the label and description
fields are writable.

In general, writable fields are ones that can be set by the client when sending a descriptor for a write or update
operation (PUT or POST). The other fields are read-only fields that the server sets automatically.

application/repository.{resourceType}+json application/repository.{resourceType}+xml

{
"uri" :"/sample/resource/uri",
"label":"Sample Label",
"description":"Sample Description",
"permissionMask":"0",
"creationDate": "2013-07-

04T12:18:47",
"updateDate": "2013-07-

04T12:18:47",
"version":"0"
...

}

<?xml version="1.0" encoding="UTF-8" stan-
dalone="yes"?>
<{resourceType}>

<uri>/sample/resource/uri</uri>
<label>Sample Label</label>
<description>Sample Description

</description>
<permissionMask>0</permissionMask>
<creationDate>2013-07-04T12:18:47

</creationDate>
<updateDate>2013-07-04T12:18:47

</updateDate>
<version>0</version>
...

</{resourceType}>

Only the label, description, and permission fields are writable. The other fields are generated by the server.

Throughout the rest of the resource type sections, the common attributes are included in every descriptor as
<commonAttributes> in JSON or {commonAttributes} in XML.

5.2 Folder
Folder types do not contain any additional fields beyond the common attributes shown above.

application/repository.folder+json application/repository.folder+xml

{
"uri" :"<resourceURI>",
"label":"Sample Label",
"description":"Sample Description",
"permissionMask":"0",
"creationDate": "2013-07-04T12:18:47",
"updateDate": "2013-07-04T12:18:47",
"version":"0"

}

<folder>
<uri>{resourceURI}</uri>
<label>Sample Label</label>
<description>Sample Description
</description>

<permissionMask>0</permissionMask>
<creationDate>2013-07-04T12:18:47
</creationDate>

<updateDate>2013-07-04T12:18:47
</updateDate>

<version>0</version>
</folder>

Only the label and description fields are writable.

34 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

5.3 JNDI Data Source

application/repository.jndiJdbcDataSource+json application/repository.jndiJdbcDataSource+xml

{
<commonAttributes>,
"jndiName":"<jndiName>",
"timezone":"<timezone>"

}

<jndiDataSource>
{commonAttributes}
<jndiName>{jndiName}</jndiName>
<timezone>{timezone}</timezone>

</jndiDataSource>

5.4 JDBC Data Source

application/repository.jdbcDataSource+json application/repository.jdbcDataSource+xml

{
<commonAttributes>,
"driverClass":"<driverClass>",
"password":"<password>",
"username":"<username>",
"connectionUrl":"<connectionURL>",
"timezone":"<timezone>"

}

<jdbcDataSource>
{commonAttributes}
<driverClass>{driverClass}</driverClass>
<password>{password}</password>
<username>{username}</username>
<connectionUrl>

{connectionURL}
</connectionUrl>
<timezone>{timezone}</timezone>

</jdbcDataSource>

5.5 AWS Data Source

application/repository.awsDataSource+json application/repository.awsDataSource+xml

{
<commonAttributes>,
"driverClass":"<driverClass>",
"password":"<password>",
"username":"<username>",
"connectionUrl":"<connectionURL>",
"timezone":"<timezone>",
"accessKey":"<accessKey>",
"secretKey":"<secretKey>",
"roleArn":"<roleArn>",
"region":"<region>",
"dbName":"<dbName>",
"dbInstanceIdentifier":

"<dbInstanceIdentifier>",
"dbService":"<dbService>"

}

<awsDataSource>
{commonAttributes}
<driverClass>{driverClass}</driverClass>
<password>{password}</password>
<username>{username}</username>
<connectionUrl>

{connectionURL}
</connectionUrl>
<timezone>{timezone}</timezone>
<accessKey>{accessKey}</accessKey>
<secretKey>{secretKey}</secretKey>
<roleArn>{roleArn}</roleArn>
<region>{region}</region>
<dbName>{dbName}</dbName>
<dbInstanceIdentifier>

{dbInstanceIdentifier}
</dbInstanceIdentifier>
<dbService>{dbService}</dbService>

</awsDataSource>

Cloud Software Group, Inc. 35

JasperReports Server REST API Reference

The {region} values are specified in the file .../WEB-INF/application-context.xml, with their corresponding
display labels defined in .../WEB-INF/bundles/jasperserver_messages.properties. By default, the following regions
are defined:

Values of AWS {region} in
.../WEB-INF/application-context.xml

Labels for AWS regions in
.../WEB-INF/bundles/jasperserver_messages.properties

us-east-1.amazonaws.com US East (Northern Virginia) Region

us-west-2.amazonaws.com US West (Oregon) Region

us-west-1.amazonaws.com US West (Northern California) Region

eu-west-1.amazonaws.com EU (Ireland) Region

eu-central-1.amazonaws.com EU (Frankfurt) Region

ap-southeast-1.amazonaws.com Asia Pacific (Singapore) Region

ap-southeast-2.amazonaws.com Asia Pacific (Sydney) Region

ap-northeast-1.amazonaws.com Asia Pacific (Tokyo) Region

sa-east-1.amazonaws.com South America (São Paulo) Region

5.6 Virtual Data Source
The id of each subDataSource must be unique. The server does not prevent duplicates, and the last one to be
defined silently overwrites the previous definition.

application/repository.virtualDataSource+json application/repository.virtualDataSource+xml

{
<commonAttributes>,
"subDataSources":[

{
"id":"<subDataSourceID>",
"uri":"<subDataSourceURI>"

},
...

]
}

<virtualDataSource>
{commonAttributes}
<subDataSources>

<subDataSource>
<id>{subDataSourceID}</id>
<uri>{subDataSourceURI}</uri>

</subDataSource>
...

</subDataSources>
</virtualDataSource>

5.7 Custom Data Source
The value of the serviceClass attribute is read-only and depends on the specific type of the custom data source,
as defined in the server's applicationContext configuration files.

36 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

application/repository.customDataSource+json application/repository.customDataSource+xml

{
<commonAttributes>,
"serviceClass":"<serviceClass>",
"dataSourceName":"<dataSourceName>",
"properties":[

{
"key":"<key>",
"value":"<value>"

},
...

]
}

<customDataSource>
{commonAttributes}
<serviceClass>

{serviceClass}
</serviceClass>
<dataSourceName>

{dataSourceName}
</dataSourceName>
<properties>

<property>
<key>{key}</key>
<value>{value}</value>

</property>
...

</properties>
</customDataSource>

5.8 Bean Data Source

application/repository.beanDataSource+json application/repository.beanDataSource+xml

{
<commonAttributes>,
"beanName":"<beanName>",
"beanMethod":"<beanMethod>"

}

<beanDataSource>
{commonAttributes}
<beanName>{beanName}<beanName>
<beanMethod>{beanMethod}</beanMethod>

</beanDataSource>

5.9 Datatypes

application/repository.dataType+json application/repository.dataType+xml

{
<commonAttributes>,
"type":"text|number|date|dateTime|time",
"pattern":"<pattern>",
"maxValue":"<maxValue>",
"strictMax":"true|false",
"minValue":"<minValue>",
"strictMin":"true|false"
"maxLength":"<maxLengthInteger>"

}

<dataType>
{commonAttributes}
<type>-

text|number|date|dateTime|time</type>
<pattern>{pattern}</pattern>
<maxValue>{maxValue}</maxValue>
<strictMax>true|false</strictMax>
<minValue>{minValue}</minValue>
<strictMin>true|false</strictMin>
<maxLength>{maxLengthInteger}</maxLength>

</dataType>

Cloud Software Group, Inc. 37

JasperReports Server REST API Reference

5.10 List of Values

application/repository.listOfValues+json application/repository.listOfValues+xml

{
<commonAttributes>,
"items":[

{
"label":"<label>",
"value":"<value>"

},
...

]
}

<listOfValues>
{commonAttributes}
<items>

<item>
<label>{label}</label>
<value>{value}</value>

</item>
...

</items>
</listOfValues>

5.11 Query
The dataSource field of the query may be null. Set an empty dataSource field when you want to remove a local
data source, either a reference or a local definition. When the data source of a query is not defined, the query uses
the data source of its parent, for example its JRXML report (reportUnit).

application/repository.query+json application/repository.query+xml

{
<commonAttributes>,
"value":"<query>",
"language":"<language>",
"dataSource":{

"dataSourceReference": {
"uri":"<dataSourceURI>"

}
}

}

<query>
{commonAttributes}
<value>{query}</value>
<language>{language}</language>
<dataSourceReference>

<uri>{dataSourceURI}</uri>
</dataSourceReference>

</query>

5.12 Input Control
Input controls come in several types that require different fields. The following table shows all possible fields, not
all of which are mutually compatible.

38 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

application/repository.inputControl+json application/repository.inputControl+xml

{
<commonAttributes>,
"mandatory":"true|false",
"readOnly":"true|false",
"visible":"true|false",
"type":"<inputControlTypeByteValue>",
"usedFields":"<field1;field2;...>",
"dataType": {

"dataTypeReference": {
"uri": "<dataTypeResourceURI>"

}
},
"listOfValues": {

"listOfValuesReference": {
"uri": "<listOfValuesResourceURI>"

}
}
"visibleColumns":["column1", "colum2",

...],
"valueColumn":"<valueColumn>",
"query": {

"queryReference": {
"uri": "<queryResourceURI>"

}
}

}

<inputControl>
{commonAttributes}
<mandatory>true|false</mandatory>
<readOnly>true|false</readOnly>
<visible>true|false</visible>
<type>{inputControlTypeByteValue}</type>
<usedFields>

{field1;field2;...}</usedFields>
<dataTypeReference>

<uri>{dataTypeResourceURI}</uri>
</dataTypeReference>
<listOfValuesReference>

<uri>{listOfValuesResourceURI}</uri>
</listOfValuesReference>
<queryReference>

<uri>{queryResourceURI}</uri>
</queryReference>
<visibleColumns>

<column>{column1}</column>
<column>{column2}</column>
<column>...</column>

</visibleColumns>
<valueColumn>{valueColumn}</valueColumn>

</inputControl>

The following list shows the numerical code and meaning for {inputControlTypeByteValue}. The input control
type determines the other fields that are required. The list of required fields may appear in a field named
usedFields, separated by semi-colons (;).

Type Type of Input Control Other Fields Required (usedFields)

1 Boolean None

2 Single value dataType

3 Single-select list of values listOfValues

4 Single-select query query; queryValueColumn

5 Not used

6 Multi-select list of values listOfValues

7 Multi-select query query; queryValueColumn

8 Single-select list of values radio buttons listOfValues

9 Single-select query radio buttons query; queryValueColumn

Cloud Software Group, Inc. 39

JasperReports Server REST API Reference

Type Type of Input Control Other Fields Required (usedFields)

10 Multi-select list of values check boxes listOfValues

11 Multi-select query check boxes query; queryValueColumn

5.13 File
The repository.file+<format> descriptor is used to identify the file type.

application/repository.file+json application/repository.file+xml

{
<commonAttributes>,
"type":"pdf|html|rtf|csv|odt|txt

|docx|ods|xlsx|img|font|jrxml
|jar|prop|jrtx|xml|css
|olapMondrianSchema
|accessGrantSchema
|unspecified",

"content":"<base64EncodedContent>"
}

<file>
{commonAttributes}
<type>pdf|html|rtf|csv|odt|txt

|docx|ods|xlsx|img|font|jrxml
|jar|prop|jrtx|xml|css
|olapMondrianSchema
|accessGrantSchema|unspecified

</type>
<content>{base64EncodedContent}</content>

</file>

The content field is write-only: it is absent when requesting the file resource descriptor and used only when
uploading a file resource as base-64 encoded content. For other ways to upload file contents, see 7.3, “Uploading
File Resources,” on page 63. To download file contents, see 7.2, “Downloading File Resources,” on page 62.

5.14 Report Unit (JRXML Report)
A report unit contains mostly references to the files that make up a report within the server. A report unit is a
composite resource that may contain other local resources (see 4.6, “Nested Resources,” on page 27). In this case,
the URIs that it references include a URI in the following format:

<reportUnitURI>_files/<localResourceID>

For example, the main JRXML of a sample report is referenced as follows:
/reports/samples/Cascading_multi_select_report_files/Cascading_multi_select_report

The default value for the controlsLayout is popupScreen. The reportRenderingView and the
inputControlRenderingView can be left as empty strings (""), while the query can be null.

application/repository.reportUnit+json application/repository.reportUnit+xml

{
<commonAttributes>,
"con-

trolsLayout":"<popupScreen|separatePage
|topOfPage|inPage>",

<reportUnit>
{commonAttributes}
<controlsLayout>popupScreen|separatePage

|topOfPage|inPage</controlsLayout>

40 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

application/repository.reportUnit+json application/repository.reportUnit+xml

"alwaysPromptControls":"true|false",
"inputControlRenderingView":

"<inputControlRenderingView>",
"reportRenderingView":

"<reportRenderingView>",
"dataSource":{

"dataSourceReference": {
"uri":"<dataSourceURI>"

}
},
"query:" {

"queryReference": {
uri: "<queryResourceURI>"

}
},
"jrxml": {

"jrxmlFileReference": {
"uri": "<jrxmlFileResourceURI>"

} or
"jrxmlFile": {

"type": "jrxml",
"label": "Main jrxml",
"content": "<base64Encoded>

}
},
"inputControls": [

{
"inputControlReference": {

"uri": "<inputControlURI>"
}

},
...

],
"resources": {

"resource": [{
"name": "<resourceName>",
"fileReference": {

"uri": "<fileResourceURI>"
}

}],
"resource": [{

"name": "Logo",
"file": {

"fileResource": {
"type": "img",
"label": "Logo.png",
"con-

tent":"<base64Encoded>"
}

}
}]
...

}
}

<alwaysPromptControls>true|false
</alwaysPromptControls>

<inputControlRenderingView>
{inputControlRenderingView}

</inputControlRenderingView>
<reportRenderingView>

{reportRenderingView}
</reportRenderingView>
<dataSource>

<dataSourceReference>
<uri>{dataSourceURI}</uri>

</dataSourceReference>
</dataSource>
<query>

<queryReference>
<uri>{queryResourceURI}</uri>

</queryReference>
</query>
<jrxml>

<jrxmlFileReference>
<uri>{jrxm-

lFileResourceURI}</uri>
</jrxmlFileReference>
or <jrxmlFile>

<type>jrxml</type>
<label>Main report</label>
<content>{base64Encoded}
</content>

</jrxmlFile>
</jrxml>
<inputControls>

<inputControlReference>
<uri>{inputControlURI}</uri>

</inputControlReference>
...

</inputControls>
<resources>

<resource>
<name>{resourceName}</name>
<fileReference>

<uri>{fileResourceURI}</uri>
</fileReference>

</resource>
<resource>

<name>Logo</name>
<file>

<type>img</type>
<label>Logo.png</label>
<content>{base64Encoded}
</content>

</file>
</resource>
...

</resources>
</reportUnit>

Cloud Software Group, Inc. 41

JasperReports Server REST API Reference

5.15 Report Options

application/repository.reportOptions+json application/repository.reportOptions+xml

{
<commonAttributes>,
"reportUri":"<reportURI>",
"reportParameters":[

{
"name":"<parameterName>",
"value":[

"value_1",
"value_2",
...

]
},
...

]
}

<reportOptions>
{commonAttributes}
<reportUri>{reportURI}</reportUri>
<reportParameters>

<reportParameter>
<name>{parameterName}</name>
<value>value_1</value>
<value>value_2</value>
...

</reportParameter>
...

</reportParameters>
</reportOptions>

5.16 Domain (semanticLayerDataSource)
For more information about accessing the schema of a Domain, see Chapter 8, “Working With Domains,” on
page 67.

When the locale property is left empty, the default locale bundle is used.

application/repository.semanticLayerDataSource+j
son

application/repository.semanticLayerDataSource+
xml

{
<commonAttributes>,
"dataSource":{

"dataSourceReference": {
"uri":"<dataSourceURI>"

} },
"schema": {

"schemaFileReference": {
"uri": "<schemaFileURI>"

} },
"bundles": [{

"locale": "<localeString>",
"file": {

"fileReference": {"uri":
"<propertiesFileURI>"

} } },
...

],
"securityFile": {

"securityFileReference": {
"uri": "<securityFileURI>"

} } }

<semanticLayerDataSource>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceURI}</uri>
</dataSourceReference>
<schemaFileReference>

<uri>{schemaFileURI}</uri>
</schemaFileReference>
<bundles>

<bundle>
<locale>{localeString}</locale>
<fileReference>

<uri>{propertiesFileURI}</uri>
</fileReference>

</bundle>
...

</bundles>
<securityFileReference>

<uri>{securityFileURI}</uri>
</securityFileReference>

</semanticLayerDataSource>

42 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

5.17 Domain Topic
A Domain Topic is a Topic created by selecting database fields from a Domain. It is structurally equivalent to a
JRXML report, and thus it has the same type attributes (see 5.14, “Report Unit (JRXML Report),” on page 40).
The only difference is that the data source field will reference a Domain (semanticLayerDataSource).

application/repository.domainTopic+json application/repository.domainTopic+xml

Same attributes as
application/repository.reportUnit+json

Same attributes as
application/repository.reportUnit+xml

5.18 XML/A Connection

application/repository.xmlaConnection+json application/repository.xmlaConnection+xml

{
<commonAttributes>,
"url":"<xmlaServiceURL>",
"xmlaDataSource":"<xmlaDataSource>",
"catalog":"<catalog>",
"username":"<username>",
"password":"<password>"

}

<xmlaConnection>
{commonAttributes}
<url>{xmlaServiceURL}</url>
<xmlaDataSource>

{xmlaDataSource}
</xmlaDataSource>
<catalog>{catalog}</catalog>
<username>{username}</username>
<password>{password}</password>

</xmlaConnection>

5.19 Mondrian Connection
Mondrian connections without the access grant schemas are used in the Community edition of JasperReports
Server.

application/repository.mondrianConnection+json application/repository.mondrianConnection+xml

{
<commonAttributes>,
"dataSource":{

"dataSourceReference": {
"uri":"<dataSourceURI>"

}
},
"schema": {

"schemaReference": {
"uri": "<schemaFileResourceURI>"

}
}

}

<mondrianConnection>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceURI}</uri>
</dataSourceReference>
<schemaReference>

<uri>{schemaFileResourceURI}</uri>
</schemaReference>

</mondrianConnection>

Cloud Software Group, Inc. 43

JasperReports Server REST API Reference

5.20 Secure Mondrian Connection
Secure Mondrian connections are available only in commercial releases of JasperReports Server.

application/repository.secureMondrianConnection+
json

application/repository.secureMondrianConnectio
n+xml

{
<commonAttributes>,
"dataSource":{

"dataSourceReference": {
"uri":"<dataSourceURI>"

}
},
"schema": {

"schemaReference": {
"uri": "<schemaFileResourceURI>"

}
},
"accessGrantSchemas": [

{
"accessGrantSchemaReference": {

"uri": "<accessGrantS-
chemaFileResourceURI>"

}
},
...

]
}

<secureMondrianConnection>
{commonAttributes}
<dataSourceReference>

<uri>{dataSourceURI}</uri>
</dataSourceReference>
<schemaReference>

<uri>{schemaFileResourceURI}</uri>
</schemaReference>
<accessGrantSchemas>

<accessGrantSchemaReference>
<uri>{accessGrantS-

chemaFileResourceURI}</uri>
</accessGrantSchemaReference>

</accessGrantSchemas>
</secureMondrianConnection>

5.21 OLAP Unit

application/repository.olapUnit+json application/repository.olapUnit+xml

{
<commonAttributes>,
"mdxQuery":"<mdxQuery>",
"olapConnection": {

"olapConnectionReference": {
"uri": "<olapConnectionReferenceURI>"

}
}

}

<olapUnit>
{commonAttributes}
<mdxQuery>{mdxQuery}</mdxQuery>
<olapConnectionReference>
<uri>{olapCon-

nectionReferenceURI}</uri>
</olapConnectionReference>

</olapUnit>

44 Cloud Software Group, Inc.

Chapter 5 Resource Descriptors

5.22 Mondrian XML/A Definition

application/repository.mondrianXmlaDefinition+jso
n

application/repository.mondrianXmlaDefinition+x
ml

{
<commonAttributes>,
"catalog":"<catalog>",
"mondrianConnection": {

"mondrianConnectionReference": {
"uri": "<mon-

drianConnectionResourceURI>"
}

}
}

<mondrianXmlaDefinition>
{commonAttributes}
<catalog>{catalog}</catalog>
<mondrianConnectionReference>

<uri>{mon-
drianConnectionResourceURI}</uri>

</mondrianConnectionReference>
</mondrianXmlaDefinition>

5.23 Other Types
The following types are defined in commercial editions of the server and appear in the repository. However, they
are meant only to describe the corresponding resources as read-only objects in the repository. The REST API does
not support services for clients to create or modify these types.

The types in the following table contain only the common attributes described in 5.1, “Common Attributes,” on
page 34.

Type String Description

application/repository.dashboard+json
application/repository.dashboard+xml

The dashboard resource descriptors are deprecated
and subject to change.

application/repository.adhocDataView+json
application/repository.adhocDataView+xml

The Ad Hoc view type is not fully defined yet and subject
to change. Ad Hoc views may be referenced as data
sources in other repository types, in which case they are
called advDataSource.

Cloud Software Group, Inc. 45

JasperReports Server REST API Reference

46 Cloud Software Group, Inc.

CHAPTER 6 THE resources SERVICE
The rest_v2/resources service searches the repository and access the resources it contains. This service provides
performance and consistent handling of resource descriptors for all repository resource types. The service has two
formats, one takes search parameters to find resources, the other takes a repository URI to access resource
descriptors and file contents.

For further information, see:
• Chapter 4, “Working With Resources,” on page 25 for general guidelines about using descriptors.
• Chapter 5, “Resource Descriptors,” on page 33 for a reference to every type of resource and its attributes.
• Chapter 7, “Working With File Resources,” on page 61 to download and upload file resources.
• Chapter 8, “Working With Domains,” on page 67 to view Domains and their nested resources.

This chapter includes the following sections:
• Searching the Repository
• Paginating Search Results
• Viewing Resource Details
• Creating a Resource
• Modifying a Resource
• Copying a Resource
• Moving a Resource
• Deleting Resources

6.1 Searching the Repository
The resources service, when used without specifying any repository URI, is used to search the repository. The
various parameters listed in the following table let you refine the search and specify how you receive search results.
For example, the search and results pagination parameters can be used to implement an interface to repository
resources in a REST client application.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?<arguments>

Cloud Software Group, Inc. 47

JasperReports Server REST API Reference

Argument Type/Value Description

q String Search for resources having the
specified text in the name or description.
Note that the search string does not
match in the ID of resources.

folderUri String The path of the base folder for the
search.

recursive true|false Indicates whether search should include
all sub-folders recursively. When
omitted, the default behavior is recursive
(true).

excludeFolder String A folder to exclude from the results, for
example excludeFolder=/public.

type String Match only resources of the given type.
Valid types are listed in Chapter 5,
“Resource Descriptors,” on page 33,
for example: dataType, jdbcDataSource,
reportUnit, or file. Multiple type
parameters are allowed. Wrong values
are ignored.

accessType viewed
|modified

Filters the results by access
events: viewed (by current user) or
modified (by current user). By default, no
access event filter is applied.

dependsOn /path/to/resource Searches for all resources depending on
specified resource. Only data source
and reportUnit resources may be spe-
cified. If this parameter is specified, then
all the other parameters except pagin-
ation are ignored.

showHidden
Items

true|false When set to true, results include nested
local resources (in _files) as if they were
in the repository. For more information,
see 4.8, “Local Resources,” on
page 29. By default, hidden items are
not shown (false).

favorites true|false When it set to true, service will list the
resources that are added to Favorites.
By default favorites is false.

48 Cloud Software Group, Inc.

Chapter 6 The resources Service

sortBy optional
String

One of the following strings representing
a field in the results to sort by: uri, label,
description, type, creationDate,
updateDate, accessTime, or popularity
(based on access events). By default,
results are sorted alphabetically by label.

limit
offset
forceFullPage
forceTotalCount

Pagination is enabled by default, and the
default limit is 100 results. By default,
permissions are applied after raw
results, such that the search returns
fewer than 100 items but there are more
pages of results. If you work with large
repositories, you must handle pagination
issues. These parameters are described
in 6.2, “Paginating Search Results,”
on page 50.

Options

accept: application/json (default)

accept: application/xml

Return Value on Success

200 OK – The body contains a list of resourceLookup descriptors representing the results of the search.

The response of a search is a set of shortened descriptors showing only the common attributes of each resource.
One additional attribute specifies the type of the resource. This allows the client to quickly receive a list of
resources for display or further processing.

application/json application/xml

[
{

"uri" :"/sample/resource/uri",
"label":"Sample Label",
"description":

"Sample Description",
"type":"folder"
"permissionMask":"0",
"creationDate":

"2013-07-04T12:18:47",
"updateDate":

"2013-07-04T12:18:47",
"version":"0"

},
...

]

<resources>
<resourceLookup>

<uri>/sample/resource/uri</uri>
<label>Sample Label</label>
<description>Sample Description

</description>
<type>folder</type>
<permissionMask>0</permissionMask>
<creationDate>2013-07-04T12:18:47

</creationDate>
<updateDate>2013-07-04T12:18:47

</updateDate>
<version>0</version>

</resourceLookup>
...

</resources>

Cloud Software Group, Inc. 49

JasperReports Server REST API Reference

6.2 Paginating Search Results
Paginating search results can speed up the user experience by making smaller queries and displaying the fewer
results one page at a time. By default, a page is approximately 100 repository items. If and when users request
another page, your application needs to send another request to the server with the same search parameters but an
updated offset number that fetches the next page.

When any folder in your repository contains more than 100 subfolders and resources, then the search results
will be paginated by default. This means you will not receive all results in a single request. In this case, you
must use the pagination parameters to obtain more pages or change the pagination strategy as explained
below.

Your application could perform further optimizations such as requesting a page and storing it before the user
requests it. That way, the results can be displayed immediately, and each page can be fetched in the background
while the user is looking at the previous page.

Pagination is complicated by the fact that JasperReports Server enforces permissions after performing the query
based on your search parameters. This means that a default search can return fewer results than a full page, but this
behavior can be configured.

There are 3 different combinations of settings that you can use for pagination.
• Default pagination - Every page may have less than a complete page of results, but this is the fastest strategy

and the easiest to implement.
• Full page pagination - Ensures that every page has exactly the number of results that you specify, but this

makes the server perform more queries, and it requires extra logic in the client.
• No pagination - Requests all search results in a single reply, which is simplest to process but can block the

caller for a noticeable delay when there are many results.

The advantages and disadvantages of each pagination strategy are described in the following sections. Choose a
strategy for your repository searches based on the types searches being performed, the user performing the search,
and the contents of your repository. Every request to the resources service can use a different pagination strategy;
it's up to your client app to use the appropriate strategy and process the results accordingly.

6.2.1 Default Pagination
With the default pagination, every page of results returned by the server may contain less than the designated page
size. You can determine the number of actual results from the HTTP headers of the response. The headers also
indicate whether there are further pages to fetch.

Default pagination has the best performance and, when configured with the right limit for the size of your
repository, almost no delay in response for your users. Because results are filtered by permissions, the user
credentials that you specify for the request determine how full each page is:
• The system admin (superuser) has access to every resource, and therefore the results are effectively

unfiltered and each page is full. But the same can be true when you perform a search as jasperadmin within his
organization, or even as a plain user within a folder where the user has full read permission. In these cases the
default pagination is very efficient and has no partially-full pages.

• If you are performing a sparse search, for example finding all reports that a given user has permission to access
within an entire and large organization, then the results may have many partially-full page, all of differing
lengths. In this case, you may prefer to use 6.2.2, “Full Page Pagination,” on page 51.

50 Cloud Software Group, Inc.

Chapter 6 The resources Service

Arguments to resources for Default Pagination

Argument Type/Value Description

limit integer
default is 100

This defines the page size, which is maximum number of resources to
return in each response. However, with default pagination, the response is
likely have less than this value of responses. The default limit is 100. You
can set the limit higher or lower if you want to process generally larger or
smaller pages, respectively.

offset integer By setting the offset to a whole multiple of the limit, you select a specific
page of the results. The default offset is 0 (first page). With a limit of 100,
subsequent calls should set offset=100 (second page), offset=200 (third
page), etc.

forceFullPage false (default) The default is false, so you do not need to specify this parameter.

forceTotal
Count

true|false When true, the Total-Count header is set in every paginated response,
which impacts performance. When false, the default, the header is set in
the first page only. Note that Total-Count is the intermediate, unfiltered
count of results, not the number of results returned by this service.

With each response, you can process the HTTP headers to help you display pagination controls:

Headers in Responses for Default Pagination

Header Description

Result-Count This is the number of results that are contained in the current response. It can be less than or
equal to the limit.

Start-Index The Start-Index in the response is equal to the offset specified in the request. With a limit=100, it
will be 0 on the first page, 100 on the second page, etc.

Next-Offset This is the offset to request the next page. With forceFullPage=false, the Next-Offset is equivalent
to Start-Index+limit, except on the last page. On the last page, the Next-Offset is omitted to indic-
ate there are no further pages.

Total-Count This is the total number of results before permissions are applied. This is not the total number of
results for this search by this user, but it is an upper bound. Dividing this number by the limit gives
the number of pages that will be required, though not every page will have the full number of
results.

As described in the previous table, this header only appears on the first response, unless
forceTotalCount=true.

6.2.2 Full Page Pagination
Full Page pagination ensures that every page, except the last one, has the same number of results, the number given
by the limit parameter. To do this, JasperReports Server performs extra queries after filtering results for permission,

Cloud Software Group, Inc. 51

JasperReports Server REST API Reference

until each page has the full number of results. Though small, the extra queries have a performance impact and may
slow down the request. In addition, your client must read the HTTP header in every response to determine the
offset value for the next page.

For full page pagination, set the pagination parameters of the resources service as follows:

Arguments of resources for Full Page Pagination

Argument Type/Value Description

limit integer
default is 100

Specifies the exact number of resources to return in each response. This is
equivalent to the number of results per page. The default limit is 100. You
can set the limit higher or lower if you want to process larger or smaller
pages, respectively.

offset integer Specifies the overall offset to use for retrieving the next page of results. The
default offset is 0 (first page). For subsequent pages, you must specify the
value given by the Next-Offset header, as described in the next table.

forceFullPage true Setting this parameter to true enables full page pagination. Depending on
the type of search and user permissions, this parameter can cause sig-
nificant performance delays.

forceTotal
Count

do not use When forceFullPage is true, the Total-Count header is set in every
response, even if this parameter is false by default.

With each response, you must process the HTTP headers as follows:

Headers in Responses for Full Page Pagination

Header Description

Result-Count This is the number of results that are contained in the current response. With full page pagination,
it is equal to the limit in every response except for the last page.

Start-Index The Start-Index in the response is equal to the offset specified in the request. It changes with
every request-response.

Next-Offset The server calculates this value based on the extra queries it performed to fill the page with per-
mission-filtered results. In order to avoid duplicate results or skipped results, your client must
read this number and submit it as the offset in the request for the next page. When this value is
omitted from the header, it indicates there are no further pages.

Total-Count This is the total number of results before permissions are applied. This is not the total number of
results for this search by this user, but it is an upper bound.

6.2.3 No Pagination
In certain cases, you can turn off pagination. Use this for small search request that you want to process as a whole,
for example a listing of all reports in a folder. In this case, you receive and process all results in a single response

52 Cloud Software Group, Inc.

Chapter 6 The resources Service

and do not need to implement the logic for pagination. You should only use this for result sets that are known to be
small.

To turn off pagination, set the pagination parameters of the resources service as follows:

Arguments to resources for No Pagination

Argument Type/Value Description

limit 0 To return all results without pagination, set limit=0. Do not set limit=0 for
large searches, for example from the root of the repository, because it can
cause significant delays and return a very large number of results.

offset do not use The default offset is 0, which is the start of the single page of results.

forceFullPage do not use This setting has no meaning when there is no limit.

forceTotal
Count

do not use The Total-Count header is included in the first (and only) response. Note
that Total-Count is the intermediate, unfiltered count of results, not the
number of results returned by this service.

With each response, you must process the HTTP headers as follows:

Headers in Responses for No Pagination

Header Description

Result-Count This is the number of results contained in the current response. Thus, this header indicates how
many results you should process in the single response.

Start-Index This is 0 for a single response containing all the search results.

Next-Offset This header is omitted because there is no next page.

Total-Count This is the total number of results before permissions are applied. It is of little use.

6.3 Viewing Resource Details
Use the GET method and a resource URI to request the resource's complete descriptor.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource?<argument>

Cloud Software Group, Inc. 53

JasperReports Server REST API Reference

Argument Type/Value Description

expanded true|false When true, all nested resources will be given as full descriptors. The default
behavior, false, has all nested resources given as references. For more
information, see 4.8, “Local Resources,” on page 29.

Options

accept: application/json (default)

accept: application/xml

accept: application/repository.folder+<format> (specifically to view the folder resource)

Return Value on Success Typical Return Values on Failure

200 OK – The response will indicate the content-type
and contain the corresponding descriptor, for example:

application/repository.dataType+json

404 Not Found – The specified resource is not found in
the repository.

6.4 Creating a Resource
The POST and PUT methods offer alternative ways to create resources. Both take a resource descriptor but each
handles the URL differently.

With the POST method, specify a folder in the URL, and the new resource ID is created automatically from the
label attribute in its descriptor.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder?<argument>

Argument Type/Value Description

create
Folders

true|false By default, this is true, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all exist,
otherwise the service returns an error.

Content-Type Content

application/repository.
<resourceType>+json

application/repository.
<resourceType>+xml

A well defined descriptor of the specified type and format. See Chapter 5,
“Resource Descriptors,” on page 33

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

54 Cloud Software Group, Inc.

Chapter 6 The resources Service

With the PUT method, specify a unique new resource ID as part of the URL. For more information, see 4.1,
“Resource URI,” on page 25.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource
?<arguments>

Argument Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all exist,
otherwise the service returns an error.

overwrite true|false When true, the resource given in the URL is overwritten even if it is a different
type than the resource descriptor in the content. The default is false.

Content-Type Content

application/repository.
<resourceType>+json

application/repository.
<resourceType>+xml

A well defined descriptor of the specified type and format. See Chapter 5,
“Resource Descriptors,” on page 33

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

The POST method also supports a way to create complex resources and their nested resources in a single multipart
request.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder

Cloud Software Group, Inc. 55

JasperReports Server REST API Reference

Content-Type Content

multipart/form-data Root resource multipart item name: resource

Root resource multipart Content-type and corresponding item names:
• mondrianConnection

• schema – Mondrian schema XML file
• secureMondrianConnection

• schema – Mondrian schema XML file
• accessGrantSchemas.accessGrantSchema[{itemIndex}] – XML file

• semanticLayerDataSource
• schema – Domain schema XML file
• securityFile – XML security file
• bundles.bundle[{bundleIndex}] – Properties file for internationalization

• reportUnit
• jrxml – Report unit JRXML file
• files.{fileName} – Report unit attached resource file (e.g. images)

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of the
resource that was just created.

400 Bad Request – Mismatch between the
content-type and the fields or syntax of the actual
descriptor.

6.5 Modifying a Resource
Use the PUT method to overwrite an entire resource. PUT sends the entire descriptor for the resource. Specify the
path of the target resource in the URL, and specify a resource of the same type in the descriptor. If you want to
replace a resource of a different type, specify the overwrite=true argument. The createFolders argument isn't used
for updates because the resource and the folders in its path must exist already.

The resource descriptor must completely describe the updated resource, not use individual fields. The descriptor
must also use only references for nested resources, not other resources expanded inline. To update a local resource,
use the PUT method with the hidden folder _file in the path, and send a complete descriptor for the updated
resource. For more information, see 4.8, “Local Resources,” on page 29.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource
?<arguments>

Argument Type/Value Description

overwrite true|false When true, the resource given in the URL is overwritten even if it is a different
type than the resource descriptor in the content. The default is false.

56 Cloud Software Group, Inc.

Chapter 6 The resources Service

Content-Type Content

application/repository.
<resourceType>+json

application/repository.
<resourceType>+xml

A well defined descriptor of the specified type and format. See Chapter 5,
“Resource Descriptors,” on page 33.

Return Value on Success Typical Return Values on Failure

201 Created – The resource was replaced and the
response contains the full descriptor of the updated
resource.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

6.6 Copying a Resource
Copying a resource uses the Content-Location HTTP header to specify the source of the copy operation. If any
resource descriptor is sent in the request, it is ignored.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder
?<arguments>

Argument Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all exist,
otherwise the service returns an error.

overwrite true|false When true, the target resource given in the URL is overwritten even if it is a
different type than the resource descriptor in the content. The default is false.

Options

Content-Location: {resourceSourceUri} - Specifies the resource to be copied.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just copied.

404 Not Found –When the {resourceSourceUri} is not
valid.

6.7 Moving a Resource
Moving a resource uses the PUT method, whereas copying it uses the POST method.

Cloud Software Group, Inc. 57

JasperReports Server REST API Reference

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder
?<arguments>

Argument Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all exist,
otherwise the service returns an error.

overwrite true|false When true, the target resource given in the URL is overwritten even if it is a
different type than the resource descriptor in the content. The default is false.

Options

Content-Location: {resourceSourceUri} - Specifies the resource to be moved.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just moved.

404 Not Found –When the {resourceSourceUri} is not
valid.

6.8 Deleting Resources
The DELETE method has two forms, one for single resources and one for multiple resources.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

Return Value on Success Typical Return Values on Failure

204 No Content – The request always returns 204. If the
resource existed, it has been deleted.

204 No Content – The request always returns 204, even
if the resource path is invalid.

To delete multiple resources at once, specify multiple URIs with the resourceUri parameter.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?resourceUri={uri}&...

Argument Type/Value Description

resourceUri string Specifies a resource to delete. You may need to encode the / characters in
the URI with %2F. Repeat this parameter to delete multiple resources.

58 Cloud Software Group, Inc.

Chapter 6 The resources Service

Return Value on Success Typical Return Values on Failure

204 No Content – The request always returns 204. The
resources with valid URIs are deleted.

204 No Content – The request always returns 204. No
action is taken for invalid URIs.

Cloud Software Group, Inc. 59

JasperReports Server REST API Reference

60 Cloud Software Group, Inc.

CHAPTER 7 WORKING WITH FILE RESOURCES
This chapter includes the following sections:
• MIME Types
• Downloading File Resources
• Uploading File Resources
• Updating File Resources

7.1 MIME Types
When downloading or uploading file contents, you must specify the MIME type (Multi-Purpose Internet Mail
Extensions) that corresponds with the desired file type, as shown in the following table.

You can customize this list of MIME types in the server by editing the contentTypeMapping map in the file
.../WEB-INF/applicationContext-rest-services.xml. You can change MIME types for predefined types, add MIME
types, or add custom types.

File Types Corresponding MIME Types

pdf application/pdf

html text/html

xls application/xls

rtf application/rtf

csv text/csv

ods application/vnd.oasis.opendocument.spreadsheet

odt application/vnd.oasis.opendocument.text

txt text/plain

Table 7-1 MIME Types for File Contents

Cloud Software Group, Inc. 61

JasperReports Server REST API Reference

File Types Corresponding MIME Types

docx application/vnd.openxmlformats-officedocument.wordprocessingml.
document

xlsx application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

font font/*

img image/*

jrxml application/jrxml

jar application/zip

prop application/properties

jrtx application/jrtx

xml application/xml

css text/css

accessGrantSchema application/accessGrantSchema

olapMondrianSchema application/olapMondrianSchema

7.2 Downloading File Resources
There are two read operations on file resources:
• Viewing the file resource details to determine the file format
• Downloading the binary file contents

To view the file resource details, specify the URL and the file descriptor type as follows:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/file/resource

Options

accept: application/repository.file+json

accept: application/repository.file+xml

Return Value on Success Typical Return Values on Failure

200 OK – The response will contain the file resource
descriptor.

404 Not Found – The specified resource is not found in
the repository.

62 Cloud Software Group, Inc.

Chapter 7 Working With File Resources

The type attribute of the file resource descriptor indicates the format of the contents. However, you can also
download the binary file contents directly, with the format indicated by the MIME content-type of the response:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/file/resource

Return Value on Success Typical Return Values on Failure

200 OK – The response content-type will indicate the
MIME type of the binary contents. See Table 7-1,
“MIME Types for File Contents,” on page 61 for the
list of MIME types that correspond to file resource types.

404 Not Found – The specified resource is not found in
the repository.

7.3 Uploading File Resources
There are several ways of uploading file contents to create file resources. The simplest way is to POST a file
descriptor containing the file in base64 encoding.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder?<argument>

Argument Type/Value Description

create
Folders

true|false True by default, and the service will create all parent folders if they don't
already exist. When set to false, the folders specified in the URL must all
exist, otherwise the service returns an error.

Content-Type Content

application/repository.file+json

application/repository.file+xml

A well defined file resource descriptor, as described in 5.13, “File,” on
page 40. The contents of the file are base64-encoded in the content
attribute of the descriptor.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

You can also create a file resource with a multipart form request. The request parameters contain information that
becomes the name and description of the new file resource.

Cloud Software Group, Inc. 63

JasperReports Server REST API Reference

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder

Content-Type Content

multipart/form-data The request should include the following parameters:
• label – contains the name of the file resource
• description – contains a description for the resource
• type – contains a file type shown in Table 7-1, “MIME Types for File

Contents,” on page 61
• data – contains the file contents

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-type
and the fields or syntax of the actual descriptor.

Another form allows you to create a file resource by direct streaming, without needing to create it first as a
descriptor object. In this case, the required fields of the file descriptor are specified in HTTP headers.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/folder

Options

Content-Description: <file-description> – Becomes the description field of the created file resource

Content-Disposition: attachment; filename=<filename> – Becomes the name of the file resource

Content-Type Content

{MIME type} The MIME type from Table 7-1, “MIME Types for File Contents,” on
page 61 that corresponds to the desired file type. The body of the request then
contains the binary data representation of that file format.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-type
and the fields or syntax of the actual descriptor.

7.4 Updating File Resources
For an existing file resource, you can update its name, description or file contents in several ways.

64 Cloud Software Group, Inc.

Chapter 7 Working With File Resources

The simplest way is to PUT a file descriptor containing the new file in base64 encoding. This new definition of the
file resource overwrites the previous one.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

Content-Type Content

application/repository.file+json

application/repository.file+xml

A well defined file resource descriptor, as described in 5.13, “File,” on
page 40. The new contents of the file are base64-encoded in the
content attribute of the descriptor.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-
type and the fields or syntax of the actual descriptor.

The second method allows you to update a file resource by direct streaming. You can specify the Content-
Description and Content-Disposition headers to update the resource description or name, respectively.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/resources/path/to/resource

Options

Content-Description: <file-description> – Becomes the description field of the created file resource

Content-Disposition: attachment; filename=<filename> – Becomes the name of the file resource

Content-Type Content

{MIME type} The MIME type from Table 7-1, “MIME Types for File Contents,” on
page 61 that corresponds to the desired file type. The body of the request then
contains the binary data representation of that file format.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful and, for
confirmation, the response contains the full descriptor of
the resource that was just created.

400 Bad Request – Mismatch between the content-type
and the fields or syntax of the actual descriptor.

Cloud Software Group, Inc. 65

JasperReports Server REST API Reference

66 Cloud Software Group, Inc.

CHAPTER 8 WORKING WITH DOMAINS

This section describes functionality that can be restricted by the software license for JasperReports Server. If
you don’t see some of the options described in this section, your license may prohibit you from using them. To
find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

This chapter explains the limited interaction with Domains that is available through the REST API. The metadata
service retrieves the display layer of a Domain containing sets and items and their labels. You can also retrieve the
full Domain schema and security files through the resources service, but the API provides no functionality to parse
these.

This chapter includes the following sections:
• The metadata Service
• Fetching a Domain Schema
• Fetching Domain Bundles and Security Files

8.1 The metadata Service
The rest_v2/domains/metadata service gives access to the sets and items exposed by a Domain for use in Ad Hoc
reports. Items are database fields exposed by the Domain, after all joins, filters, and calculated fields have been
applied to the database tables selected in the Domain. Sets are groups of items, arranged by the Domain creator for
use by report creators.

A limitation of the metadata service only allows it to operate on Domains with a single data island. A data
island is a group of fields that are all related by joins between the database tables in the Domain. Fields that
belong to tables that are not joined in the Domain belong to separate data islands.

If your Domain contains localization bundles you can specify a locale and an optional alternate locale and
preference (called q-value, a decimal between 0 and 1).

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/domains/path/to/Domain/metadata

Cloud Software Group, Inc. 67

JasperReports Server REST API Reference

Options

Accept-Language: <locale>[, <alt-locale>;q=0.8]

Accept: application/xml (default)

Accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body is XML containing the list of
resourceDescriptors.

404 Not Found – The specified Domain URI is not found
in the repository. This service also returns an XML
errorDescriptor giving a human-readable error
message.

The response of the metadata service is an XML or JSON structure that describes the sets and items available in the
selected Domain. This metadata includes the localized labels for the sets and items, as well as the datatypes of the
items. The resourceId of the sets and items are internal to the Domain and not meaningful or otherwise useable.

For more information about Domains, refer to the JasperReports Server User Guide.

The following example shows the JSON response for a Domain with:
• A set named expense containing:

• An item named Exp Date of type Date
• An item named Amount of type BigDecimal

• A set named store containing:
• An item named Store Type of type String
• ...

{
"rootLevel": {

"id":"root",
"subLevels":[

{
"id":"expense_join",
"label":"expense",
"properties": {

"resourceId": "expense_join"
},
"items":[

{
"id":"ej_expense_fact_exp_date",
"label":"Exp Date",
"properties": {

"JavaType": "java.sql.Date",
"resourceId": "expense_join.e.exp_date"

}
},
{

"id":"ej_expense_fact_amount",
"label":"Amount",
"properties": {

"JavaType": "java.math.BigDecimal",

68 Cloud Software Group, Inc.

Chapter 8 Working With Domains

"resourceId": "expense_join.e.amount"
}

}
]

},
{

"id":"expense_join_store",
"label":"store",
"properties": {

"resourceId":"expense_join"
},
"items":[

{
"id":"ej_store_store_type",
"label":"Store Type",
"properties": {

"JavaType": "java.lang.String",
"resourceId": "expense_join.s.store_type"

}
},
...

]
}

]
}

}

The following example shows the same Domain as returned by the metadata service in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<domainMetadata>

<rootLevel>
<id>root</id>
<subLevels>

<subLevel>
<id>expense_join</id>
<label>expense</label>
<properties>

<entry>
<key>resourceId</key>
<value>expense_join</value>

</entry>
</properties>
<items>

<item>
<id>ej_expense_fact_exp_date</id>
<label>Exp Date</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.sql.Date</value>

</entry>
<entry>

<key>resourceId</key>

Cloud Software Group, Inc. 69

JasperReports Server REST API Reference

<value>expense_join.e.exp_date</value>
</entry>

</properties>
</item>
<item>

<id>ej_expense_fact_amount</id>
<label>Amount</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.math.BigDecimal</value>

</entry>
<entry>

<key>resourceId</key>
<value>expense_join.e.amount</value>

</entry>
</properties>

</item>
</items>

</subLevel>
<subLevel>

<id>expense_join_store</id>
<label>store</label>
<properties>

<entry>
<key>resourceId</key>
<value>expense_join</value>

</entry>
</properties>
<items>

<item>
<id>ej_store_store_type</id>
<label>Store Type</label>
<properties>

<entry>
<key>JavaType</key>
<value>java.lang.String</value>

</entry>
<entry>

<key>resourceId</key>
<value>expense_join.s.store_type</value>

</entry>
</properties>

</item>
...

</items>
</subLevel>

</subLevels>
</rootLevel>

</domainMetadata>

If the Domain metadata service encounters one or more issues, the response includes either a list or an
object, depending on the number of errors returned; if a single error is returned, the response includes an
object; if multiple errors are returned, it includes a list.

70 Cloud Software Group, Inc.

Chapter 8 Working With Domains

8.2 Fetching a Domain Schema
The metadata service returns only the display information about a Domain, not its internal definition. The fields,
joins, filters, and calculated fields that define the internal structure of a Domain make up the Domain design. The
XML representation of a Domain design is called the Domain schema.

Currently, there is no REST service to interact with Domain schemas, but you can use the resources service to
retrieve the raw schema. First, retrieve the resource descriptor for the Domain. For example, to view the descriptor
for the Supermart Domain, use the following request (when logged in as jasperadmin):

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain

This descriptor contains the Domain schema as an internal resource:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<semanticLayerDataSource>

<creationDate>2013-10-10T15:30:31</creationDate>
<description>Comprehensive example of Domain (pre-joined table sets for complex reporting,

custom query based dataset, column and row security, I18n bundles)</description>
<label>Supermart Domain</label>
<permissionMask>1</permissionMask>
<updateDate>2013-10-10T15:30:31</updateDate>
<uri>/organizations/organization_1/Domains/supermartDomain</uri>
<version>1</version>
<dataSourceReference>

<uri>/organizations/organization_1/analysis/datasources/FoodmartDataSourceJNDI</uri>
</dataSourceReference>
<bundles>

<bundle>
<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-

permart_domain.properties</uri></fileReference>
<locale></locale>

</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_en_US.properties</uri></fileReference>

<locale>en_US</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_de.properties</uri></fileReference>

<locale>de</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_fr.properties</uri></fileReference>

<locale>fr</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_es.properties</uri></fileReference>

<locale>es</locale>
</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_ja.properties</uri></fileReference>

<locale>ja</locale>

Cloud Software Group, Inc. 71

JasperReports Server REST API Reference

</bundle>
<bundle>

<fileReference><uri>/organizations/organization_1/Domains/supermartDomain_files/su-
permart_domain_zh_CN.properties</uri></fileReference>

<locale>zh_CN</locale>
</bundle>

</bundles>
<schemaFileReference>

<uri>/organizations/organization_1/Domains/supermartDomain_files/supermartDomain_schem-
a</uri>

</schemaFileReference>
<securityFileReference>

<uri>/organizations/organization_1/Domains/supermartDomain_files/supermartDomain_
domain_security</uri>

</securityFileReference>
</semanticLayerDataSource>

Use the following request to access the Domain schema file inside the Domain resource:
GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_
files/supermartDomain_schema

The Domain schema is an XML file with a structure explained in the JasperReports Server User Guide. If you
wish to modify the schema programmatically, you must write your own parser to access its fields and definitions.
You can then replace the schema file in the Domain with one of the file updating methods described in 7.3,
“Uploading File Resources,” on page 63.

8.3 Fetching Domain Bundles and Security Files
Once you have the descriptor of a Domain resource as shown in the previous section, you can access the other files
that help define a Domain. For example, you can access the language bundles of the Supermart Domain with the
following request:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_files/supermart_
domain_<locale>.properties

Language bundles are Java properties files that follow the language bundle naming convention, and that contain the
names of the sets and fields in the language of the locale in the filename.

You can also retrieve the localized set and item names by specifying Accept-Language when using the metadata
service. However, by accessing the language bundles through the Domain descriptor, you read the default bundle to
see the pattern of keys and values, and then create a bundle for a new locale.

Domains may also contain a security file that is also stored as an internal resource of the Domain descriptor. Use
the following example to request the security file of the Supermart Domain in the sample data:

GET http://<host>:<port>/jasperserver-pro/rest_v2/resources/Domains/supermartDomain_files/supermart_
domain_security

A security file defines a complex set of access permissions to the data in the rows and columns returned by the
Domain, based on the username, roles, or profile attributes of the user running a Domain-based report. As with the
Domain schema file, you must write your own parser to interpret this file and modify it.

You can then upload an updated language bundle or security file for the Domain with one of the methods described
in 7.3, “Uploading File Resources,” on page 63.

72 Cloud Software Group, Inc.

Chapter 8 Working With Domains

For more information about language bundles and security files in Domains, see the JasperReports Server User
Guide.

Cloud Software Group, Inc. 73

JasperReports Server REST API Reference

74 Cloud Software Group, Inc.

Chapter 9 Working With Favorites

CHAPTER 9 WORKING WITH FAVORITES
The rest_v2/favorites service provides methods that allow you to add the resources to Favorites for quick access,
remove the resources from Favorites and see the starred resources in your list of Favorites.

This chapter includes the following sections:
• Adding Resources to Favorites
• Removing Resources from Favorites
• Accessing Resources in Favorites

9.1 Adding Resources to Favorites
Use the following method to add the resources to Favorites.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/favorites

Content-Type Content

application/json A JSON object that contains the list of resource URIs to be added to Favorites.

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful. 400 Bad Request – Invalid request syntax.
403 Forbidden –When the logged-in user does not
have permission to access the resource.
404 Not Found –When the resource specified in the
request does not exist.

The following is an example of sample payload.

Sample Request Payload:

{
"favorites":[

Cloud Software Group, Inc. 75

JasperReports-Server-REST-API-Reference/JasperReports-Server-REST-API-Reference/User Favorites.htm#Adding
../../../../../Content/JasperReports-Server-REST-API-Reference/JasperReports-Server-REST-API-Reference/User Favorites.htm#Accessin

JasperReports Server REST API Reference

{
"uri":"/public/audit/datasources/AuditDataSource_1"

},
{

"uri":"/public/audit/datasources/AuditVirtualDataSource_1"
}

]
}

Sample Response Payload:

{
"favorites":[
{

"uri":"/public/audit/datasources/AuditDataSource_1"
},
{

"uri":"/public/audit/datasources/AuditVirtualDataSource_1"
}

]
}

If a user adds a resource to the Favorites and later an admin removes user's access to resources, the entry stays in
the jifavoriteresource table, but user will not be able to view or remove the resources from the Favorites.

Local resources cannot be added to Favorites.

9.2 Removing Resources from Favorites
The following method is used to remove the starred resources from the Favorites.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/favorites/delete

Content-Type Content

application/json A JSON object that contains the list of resource URIs to be deleted from
Favorites.

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful. 400 Bad Request – Invalid request syntax.
403 Forbidden –When the logged-in user does not
have permission to access the resource.
404 Not Found –When the resource specified in the
request does not exist.

76 Cloud Software Group, Inc.

Chapter 9 Working With Favorites

9.3 Accessing Resources in Favorites
Use the following method to get the list of favorites. By default, favorites is false. For more information, see
Searching the Repository.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/resources?favorites=true

Content-Type Content

application/json A JSON object that lists the resources added to Favorites.

Return Value on Success Typical Return Values on Failure

200 OK – The body contains a list of Favorites
representing the results of the search.

404 Not Found –When the resource specified in the
request does not exist.
204 No content – When the resources added to
Favorites are not found.

Cloud Software Group, Inc. 77

JasperReports Server REST API Reference

78 Cloud Software Group, Inc.

CHAPTER 10 THE permissions SERVICE
The rest_v2/permissions service reads and sets permissions on resources in the repository.

This chapter includes the following sections:
• Permission Constants
• Viewing Multiple Permissions
• Viewing a Single Permission
• Setting Multiple Permissions
• Setting a Single Permission
• Deleting Multiple Permissions
• Deleting a Single Permission

10.1 Permission Constants
In the permissions service, the syntax allows you to specify the resource, the recipient (user name or role name)
and the permission value within the URL. This makes it simpler to set permissions because you don’t need to send
a resource descriptor to describe the permissions. In order to set, modify, or delete permissions, you must use
credentials or login with a user that has “administer” permissions on the target resource.

The permissions for each user and each role are indicated by the following values. These values are not a true
mask; they should be treated as constants:

• No access: 0
• Administer: 1
• Read-only: 2
• Read-write: 6
• Read-delete: 18
• Read-write-delete: 30
• Execute-only: 32

Because a permission can apply to either a user or a role, the permissions service uses the concept of a recipient. A
recipient specifies whether the permission applies to a user or a role, and gives the ID of the user or role, including
any organization, for example:

role:/ROLE_ADMINISTRATOR (this is a root role and thus has no organization specified)
user:/organization_1/joeuser

Cloud Software Group, Inc. 79

JasperReports Server REST API Reference

Recipients are listed when viewing permissions, and they are also used to set a permission. A recipient can be
specified in a URL parameter when allowed, but in this case, the slash (/) character must be encoded as %2F.

There are two qualities of a permission:
• The assigned permission is one that is set explicitly for a given resource and a given user or role. Not all

permissions are assigned, in which case the permission is inherited from the parent folder.
• The effective permission is the permission that is being enforced, whether it is assigned or inherited.

There is one permission that is not defined: you cannot read or write the permission for ROLE_SUPERUSER
on the root .

10.2 Viewing Multiple Permissions
The GET method of the permissions service lists permissions on a given resource according to several arguments.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource/?<arguments>

Argument Type/Value Description

effective
Permissions

Boolean
optional

When set to true, the effective permissions are returned. By default, this
argument is false and only assigned permissions are returned.

recipientType String
optional

Either user or role. When not specified, the recipient type is the role.

recipientId String
optional

Id of the user or role. In environments with multiple organizations, specify
the organization as %2F<orgID>%2F<recipientID> (%2F is the / character).

resolveAll Boolean
optional

When set to true, shows the effective permissions for all users and all roles.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body describes the requested permissions
for the resource.

400 Bad Request – When the recipient type is
invalid. 404 Not Found –When the specified
resource URI is not found in the repository or the
recipient ID cannot be resolved.

For example, the following request shows all permission for a resource, similar to the permissions dialog in the
user interface:

GET http://localhost:8080/jasperserver-pro/rest_v2/permissions/public?resolveAll=true

80 Cloud Software Group, Inc.

Chapter 10 The permissions Service

<permissions>
<permission>
<mask>0</mask>
<recipient>user:/anonymousUser</recipient>

</permission>
<permission>
<mask>0</mask>
<recipient>user:/organization_1/CaliforniaUser</recipient>

</permission>
...
<permission>
<mask>2</mask>
<recipient>role:/ROLE_USER</recipient>
<uri>/public</uri>

</permission>
</permissions>

10.3 Viewing a Single Permission
Specify the recipient in the URL to see a specific assigned permission. To view effective permissions, use the form
above.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string required The recipient format specifies user or role, the object ID, and the
organization ID if necessary. The slash character must be encoded, for
example:

user:%2Forganization_1%2Fjoeuser

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body describes the requested permission. 404 Not Found –When the specified resource URI or
recipient is invalid, or when the recipient does not have
any assigned permission (only inherited).

10.4 Setting Multiple Permissions
The POST method assigns any number of permissions to any number of resources specified in the body of the
request. All permissions must be newly assigned, and the request will fail if a recipient already has an assigned (not

Cloud Software Group, Inc. 81

JasperReports Server REST API Reference

inherited) permission. Use the PUT method to update assigned permissions.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

Content-Type Content

application/collection+json A JSON object that describes a set of permissions, for example:

{
"permission" :[
{
"uri":"/properties",
"recipient":"role:/ROLE_USER",
"mask":"1"
},
{
"uri":"/properties",
"recipient":"role:/ROLE_ADMINISTRATOR",
"mask":"32"
}

]}

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful. 400 Bad Request – A permission is already
assigned or the given permission mask is
invalid.

The PUT method modifies exiting permissions (already assigned).

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource

82 Cloud Software Group, Inc.

Chapter 10 The permissions Service

Content-Type Content

application/collection+json A JSON object that describes a set of permissions. Because a single resource
is specified in the URL, all permissions apply to the same resource, and the
server ignores the uri field in the JSON object.

{
"permission" :[
{
"uri":"/foo",
"recipient":"role:/organization_1/ROLE_MANAGER",
"mask":"30"
},
{
"uri":"/bar",
"recipient":"user:/organization_1/joeuser",
"mask":"32"
}

]}

Return Value on Success Typical Return Values on Failure

200 OK – The request was successful. 400 Bad Request – If a recipient or mask
is invalid.

404 Not Found – If the resource in the
URL is invalid.

10.5 Setting a Single Permission
The POST method accepts a single permission descriptor.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions

Content-Type Content

application/json A JSON object that describes a single permission on a single resource, for
example:

{
"uri":"/properties",
"recipient":"role:/ROLE_USER",
"mask":"1"

}

Return Value on Success Typical Return Values on Failure

201 Created – The request was successful. 400 Bad Request – The permission is already
assigned or the given mask is invalid.

The PUT method accepts a resource and recipient in the URL.

Cloud Software Group, Inc. 83

JasperReports Server REST API Reference

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string required The recipient format specifies user or role, the organization if necessary,
and the object ID. The slash characters must be encoded, for example:

user:%2Forganization_1%2Fjoeuser

Content-Type Content

application/json A JSON object that describes only the mask, for example:

{
"uri": null,
"recipient": null,
"mask":"2"

}

Return Value on Success Typical Return Values on Failure

200 OK – The request was successful, and the response
body contains the single permission that was modified.

400 Bad Request – If the mask is invalid.

404 Not Found – If the resource or the recipient in the
URL is invalid.

10.6 Deleting Multiple Permissions
The DELETE method removes all assigned permissions from the designated resource. After returning successfully,
all effective permissions for the resource are inherited.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful. 404 Not Found – If the resource in the URL is invalid.

10.7 Deleting a Single Permission
Specify a recipient in the URL of the DELETE method to remove only that permission.

84 Cloud Software Group, Inc.

Chapter 10 The permissions Service

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/permissions/path/to/resource;recipient=
<recipient>

Argument Type/Value Description

recipient string required The recipient format specifies user or role, the organization if necessary,
and the object ID. The slash characters must be encoded, for example:

user:%2Forganization_1%2Fjoeuser

Return Value on Success Typical Return Values on Failure

204 No Content – The request was successful. 404 Not Found – If the resource or the recipient in the
URL is invalid.

Cloud Software Group, Inc. 85

JasperReports Server REST API Reference

86 Cloud Software Group, Inc.

CHAPTER 11 THE export SERVICE
The rest_v2/export service works asynchronously: first you request the export with the desired options, then you
monitor the state of the export, and finally you request the output file. Each step requires a different service call.

You must be authenticated as the system admin (superuser) for the export services.

This chapter includes the following sections:
• Requesting an Export
• Polling the Export Status
• Fetching the Export Output
• Canceling an Export Operation

11.1 Requesting an Export
Use the following method to specify the export options for your export request:

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/export/

Content-Type Content

application/json A JSON object that describes the export options.

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that gives the ID of the
running export operation.

401 Unauthorized – Export is available only to the
system admin user (superuser).

The content to send describes the export options, for example:

{
"roles": ["ROLE_USER","ROLE_MANAGER|organization_1"],
"users": ["superuser","joeuser|organization_1"],
"uris": ["/public/Samples/Reports/AllAccounts",

"/organizations/organization_1/reports/Survey/Survey_Data"],

Cloud Software Group, Inc. 87

JasperReports Server REST API Reference

"parameters": ["role-users", "repository-permissions"]
}

As shown above, commercial editions must use the organization syntax for all roles, users, and URIs.

The following table describes the options you can list in the request.

Export Options Description

roles A list of role names to export. Specify the role-users parameter to also
export all users who have these roles.

users A list of user names to export.

uris A list of resources or folders to export, specified as repository URIs.
When a folder is specified, all its contents and all its subfolders
recursively are included. To export all resources in the repository or in
an organization, specify "/" (root) in this list. When you specify an
organization ID below, the URIs in this list are all relative to the
organization.

scheduledJobs A list of report URIs for which all scheduled jobs are exported. If you
specify a folder URIs, the scheduled jobs for all reports in the folder,
recursively, are exported.

resourceTypes A list of resource types that filters any selected resources for export.
When omitted, all resources specified by URI or folder URI are
exported. When specified, only the resource types in this list are
exported.

organization A single organization ID that determines a branch of the repository for
export. When this option is specified, this organization becomes the root
for all roles, users, and URIS to be listed for export.

parameters A list of parameters that act as flags: if specified, the corresponding
action is taken, if omitted they have no effect. The export parameters
are listed in the following table.

keyalias Specify the alias of the key (for example "productionServerKey") to use
when encrypting passwords in the export catalog. The alias must
correspond to a custom key in the importing server's keystore. When not
specified, the server uses its own import-export key, and unless this key
is shared with another server, the catalog may only be imported back
into the same server.

For a list of available keys, see Chapter 13, “The keys Service,” on
page 103. This key must also be available on the server that imports the
catalog. For more information about import and export keys, see the
JasperReports Server Security Guide.

The following table describes the export parameters that can be specified in the parameters option:

88 Cloud Software Group, Inc.

Chapter 11 The export Service

Export Parameters Description

everything Export everything except audit and monitoring: all repository resources,
permissions, report jobs, users, roles, and server settings.

role-users When this option is present, each role export triggers the export of all
users belonging to that role. This option should only be used if roles are
specified.

repository-permissions When this option is present, repository permissions are exported along
with each exported folder and resource. This option should only be used
if URIs are specified.

skip-dependent-resources When specified, only the resources specified by URIs or resource types
are exported, no dependent resources such as data sources, queries, or
files included by reference are exported. For example, you can use this
parameter to export a single report. The export catalog created with this
parameter will cause broken dependencies during import unless the
same dependencies already exist in the same relative locations in the
destination.

skip-suborganizations When specified, the export will omit all the items such as roles, users,
and resources that belong to suborganizations, even if they are directly
specified using the corresponding options. When no organization ID is
specified, this flag applies to the root such that no top-level
organizations are included in the export, only the contents of the root.

skip-favorite-resources When specified, the resources added to Favorites are not exported.

include-attributes Includes all attributes that are associated with a item being exported,
such as a user, an organization, or the root.

skip-attribute-values When specified with include-attributes, only attribute names are
exported with null values. Use this to prevent applying attributes that are
specific to one server or one organization.

include-server-settings When specified, the configuration and security settings on the server
are exported. When imported into another server, these settings will
take effect immediately.

include-access-events When this option is present, access events (date, time, and user name
of last modification) are exported along with each exported folder and
resource. This option should only be used if URIs are specified.

include-audit-events Include audit data for all resources and users in the export. The audit
feature must be enabled in the server configuration.

include-monitoring-events Include monitoring events. The monitoring feature must be enabled in
the server configuration.

Cloud Software Group, Inc. 89

JasperReports Server REST API Reference

The body of the response contains the ID of the export operation needed to check its status and later download the
file:

{
"id": "njkhfs8374",
"phase": "inprogress",
"message": "Progress..."

}

The response may also warn you of any broken dependencies in the export that may affect a future import
operation:

{
"id": "njkhfs8374",
"phase": "inprogress",
"message": "Progress..."
"warnings": [
{

"code": "export.broken.dependency",
"message":"Resource with broken dependencies",
"parameters": [
"path_to_broken_resource"]

}, ...
]

}

11.2 Polling the Export Status
After receiving the export ID in the response to the export request, you can check the state of the export operation.
The server takes up to several seconds to generate the export catalog, depending on the size of the requested
resources and the load on the server.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/export/<export-id>/state

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that gives the current
state of the export operation.

404 Not Found –When the specified export ID is not
found.

The body of the response contains the current state of the export operation:

{
"phase": "inprogress",
"message": "Progress..."

}

{
"phase": "ready",
"message": "Ready!"

}

{
"phase": "failure",
"message": "Not enough space on

disk"
}

90 Cloud Software Group, Inc.

Chapter 11 The export Service

11.3 Fetching the Export Output
When the export state is ready, you can download the zip file containing the export catalog.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/export/<export-id>/<fileName>

Return Value on Success Typical Return Values on Failure

200 OK – Returns the exported catalog as a zip file with
the given <fileName>.

404 Not Found –When the specified export ID is not
found.

11.4 Canceling an Export Operation
To cancel an export operation that you have started, send a DELETE request with the ID of the export operation.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/export/<export-id>

Return Value on Success Typical Return Values on Failure

204 No Content – The specified export operation was
canceled.

404 Not Found –When the specified export ID is not
found.

Cloud Software Group, Inc. 91

JasperReports Server REST API Reference

92 Cloud Software Group, Inc.

CHAPTER 12 THE import SERVICE
Use the rest_v2/import service to upload a catalog as a zip file and import it into the repository with the given
options. The service has two forms, depending on whether called from an application or from a web page. The
operation is also asychronous, you must poll the state of the import to make sure it succeeds, or otherwise read an
error code and retry the operation with different options.

This chapter includes the following sections:
• Launching an Import Operation
• Polling the Import Status
• Import Errors
• Restarting an Import Operation
• Canceling an Import Operation
• Importing from a Web Form

12.1 Launching an Import Operation
Typically, an application will use the rest_v2/import service to upload a catalog zip file as an attachment. Your
application can specify import options as URL arguments in the format <argument>=true. Options that are omitted
are assumed to be false. You must be authenticated as the system admin (superuser) to import into root, but
organization admins (jasperadmin) may import into their organizations or suborganizations.

As of JasperReports Server 7.5, import operations must specify a key to decrypt any passwords in the import
catalog. Use either the secret-key or the secretUri parameter. For more information about import and export
keys, see the JasperReports Server Security Guide.

The import operation is asynchronous, and your application should poll the status of the operation to determine
when it finishes or has an error. In case of an error, you can restart the operation with new options or cancel it. The
next sections of this chapter explain how to do this.

It is also possible to invoke the import service from a web page, as explained in 12.6, “Importing from a Web
Form,” on page 99.

Cloud Software Group, Inc. 93

JasperReports Server REST API Reference

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/import?<arguments>

Argument Value Description

update? true Resources in the catalog replace those in the repository if their URIs and
types match.

skipUserUpdate? true When used with update=true, users in the catalog are not imported or
updated. Use this option to import catalogs without overwriting currently
defined users.

broken
Dependencies?

skip
include
fail

Defines the strategy when importing a resource with broken
dependencies. The default value is fail.
• skip – The resource with broken dependency won't be imported, but

the import operation will continue.
• include – Attempts to import the resource by resolving dependencies

with local resources. If unsuccessful, this resource is skipped.
• fail – The import operation will stop and show an error.

organization? orgID Destination organization for importing. The file being imported must
have been exported from an organization, not the root of the server. If
this argument is not specified, the organization of the user performing
the operation is used.

merge
Organization?

true When importing from one organization into a different organization,
specify this argument. The resulting organization takes its ID from the
import file. If organization IDs of import and destination do not match,
and this argument is not specified, the operation stops with an error.

skipThemes? true When this argument is specified, any themes in the import other than the
default theme is ignored. Use this argument when importing catalogs
from other JasperReports Server versions that used themes
incompatible with your version.

includeAccess
Events?

true Restores the date, time, and user name of last modification if they are
included in the catalog to import.

includeAudit
Events?

true Imports audit events if they are included in the catalog.

includeMonitoring
Events?

true Imports monitoring events if they are included in the catalog.

includeServer
Setting?

true Imports server settings if they are included in the catalog.

94 Cloud Software Group, Inc.

Chapter 12 The import Service

keyalias key Specify the alias of the key (for example "productionServerKey")
associated with the import catalog. This is the key that was used to
encrypt any passwords in the catalog when it was exported. The alias
must correspond to a custom key in the importing server's keystore.
When not specified, the server uses its own import-export key, in which
case the catalog must have been exported from this server, unless this
key has been shared with another server.

For a list of available keys, see Chapter 13, “The keys Service,” on
page 103. For more information about import and export keys, see the
JasperReports Server Security Guide.

secret-key

secretUri

Deprecated for security reasons. See the Content-Type below.

Content-Type Content

multipart/form-data You must send the secret-key or secret-uri as form-data. See 12.6,
“Importing from a Web Form,” on page 99:
secret-key: specify the encryption key in hexadecimal format (for
example "0x1c 0x40 0xb9 0xf6 0xe2 0xd3 0xf9 0xd0 0x5a 0xab 0x84
0xe6 0xd4 0xe8 0x5f 0xed") associated with the import catalog. You can
obtain the key in hexadecimal format when exporting the catalog from
the source server.

secret-uri: specify the encryption key as the URI of a secure file resource
in the repository. This must be the same key used when exporting the
catalog from the source server.

application/zip The catalog file to import. Jaspersoft does not recommend uploading
files greater than 2 gigabytes.

Return Value on Success Typical Return
Values on
Failure

200 OK – Returns a JSON object that indicates the import has been started. See sections on
polling and error messages below.

401
Unauthorized –
Import is
available only to
administrators
(superuser or
jasperadmin).

The body of the response contains the ID of the import operation needed to check its status:

{
id:"aad78989-dasds32-dasdsd"
phase: "inprogress",
message: "Import in progress"

}

Cloud Software Group, Inc. 95

JasperReports Server REST API Reference

See the following sections to manage the asynchronous import operation.

12.2 Polling the Import Status
To check the status of the import, use its ID in the following method:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/import/<import-id>/state

Return Value on Success Typical Return Values on Failure

200 OK – The body of the response gives the current
state of the import operation.

404 Not Found –When the specified import ID is not
found.

As with the initial import request, the body of the response contains the state of the import operation, including its
current phase and corresponding message:

{
id:"aad78989-dasds32-dasdsd"
phase: "inprogress",
message: "Import in progress"

}

The following table describes the possible phases of the import operation:

Import Phase Description

inprogress Import has begun and is still running.

finished The import has completed.

failed The import had an error and was not completed.

pending The import cannot run because of an error, but it can be restarted with
new options. Pending will happen if the import operation stopped with
the following error codes:
• import.organizations.not.match
• import.broken.dependencies

12.3 Import Errors
In case of warnings or errors, the GET method will return a JSON structure that includes an error message and
code. Some errors also have parameters given as a list of values, for example a list of resource URIs with broken
dependencies.

96 Cloud Software Group, Inc.

Chapter 12 The import Service

{
id:"aad78989-dasds32-dasdsd"
phase: "pending",
message: "Import is pending",
error: {

code: "import.broken.dependencies",
parameters: [errorParams]

}
}

The following tables list the most common warnings and errors, along with an array of parameters, if any. When
there is more than one parameter, its position in the array determines its meaning. Some warnings have more than
one form with different numbers of parameters:

Warning Code Parameters Description

import.resource.uri.too.long 0=resourceURI The URI given by the parameter is too long.

import.resource.uri.too.long 0=resourceURI
1=length

The URI given by the first parameter is too
long. The second parameter is the
maximum length.

import.access.denied 0=resourceURI Access was denied when trying to import
the resource with the given URI.

import.resource.not.found 0=resourceURI The resource with the given URI cannot be
found.

import.resource.different.type.
already.exists

0=resourceURI The target of the given resource URI has a
different type than the one being imported.
The resource will not be updated.

import.resource.uri.not.valid 0=resourceURI The resource with the given URI is attached
to an organization that is not valid in the
target.

import.resource.data.missing 0=resourceURI The resource with the given URI is missing
from the catalog and will be skipped.

import.reference.resource.not.found 0=resourceURI The resource with the given URI has
dependent resources that are not in the
import catalog.

import.reference.resource.not.found 0=resourceURI
1=dependentURI

The resource with the first URI has a
dependent resource with the second URI
that is not in the import catalog.

Cloud Software Group, Inc. 97

JasperReports Server REST API Reference

Error Code Parameters Description

import.organizations.not.match 0=catalogOrganization
1=targetOrganization

The organization ID contained in the
import catalog does not match the
target organization. Use the
mergeOrganizations option.

import.broken.dependencies 0=resourceURI
1=resourceURI
...

The resources in the list have broken
dependencies in the import catalog.

import.organization.into.root.not.allowed 0=catalogOrganization You cannot import the organization
into the root.

import.root.into.organization.not.allowed 0=targetOrganization The import catalog contains root
resources that cannot be imported
into the target organization.

import.failed 0=message The import failed for the reason in the
message.

import.failed.zip.error none The server cannot read the zip file.

import.failed.content.error none The zip file is not a valid import
catalog.

12.4 Restarting an Import Operation
When an import is in the pending state, you can try to restart it. To see the import options that led to the pending
state, use the GET method with the import ID.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/import/<import-id>

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that contains the
options of the import operation.

404 Not Found –When the specified import ID is not
found.

The response contains a JSON structure that lists all options specified for this import operation:

{
"brokenDependencies": "fail",
"organization" : "organization_1",
"parameters" : ["role-users", "repository-permissions"]

}

98 Cloud Software Group, Inc.

Chapter 12 The import Service

Once you know which options blocked the import operation, use the PUT method of the import service to send
new options and restart the operation.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/import/<import-id>

Content-Type Content

application/json A JSON object that contains the new import options, for example:

{
"brokenDependencies": "include",
"organization" : "organization_1",
"parameters" : ["role-users", "repository-permissions"]

}

Return Value on Success Typical Return Values on Failure

200 OK – The body of the response is shown below. 404 Not Found –When the specified
import ID is not found.

The body of the response shows the import options that were applied:

{
"brokenDependencies": "include",
"organization" : "organization_1",
"parameters" : ["role-users", "repository-permissions"]

}

12.5 Canceling an Import Operation
To cancel an import operation that you have started, send a DELETE request with the ID of the operation.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/import/<import-id>

Return Value on Success Typical Return Values on Failure

204 No Content – The specified export operation was
canceled.

404 Not Found –When the specified import ID is not
found.

12.6 Importing from a Web Form
Alternatively, you can call the import service directly from a web page with form and input tags. Use checkbox
inputs to submit the import options and a file input to upload the catalog zip file.

Cloud Software Group, Inc. 99

JasperReports Server REST API Reference

Submitting an import catalog through an HTML form is also an asychronous operation. However, web pages are
not practical for receiving the ID and polling the status of the import operation. Therefore, you are limited in
knowing whether the import succeeded and unable to restart it if needed.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/import

Content-Type Content

multipart/form-data The form data is sent by the browser when you submit a page with input
tags. For example:

form-data; name="file-name",
form-data; name="include-access-events",
form-data; name="update",
...

application/zip The catalog file to import. Jaspersoft does not recommend uploading files
greater than 2 gigabytes.

Return Value on Success Typical Return Values on Failure

200 OK – Returns a JSON object that indicates the import has
been started.

401 Unauthorized – Import is available only to
administrators (superuser or jasperadmin).

The form data options are similar to the arguments in the other import format. Submitting an option name as form
data sets it to true for this operation, otherwise all options are false by default. The following table describes the
options you can submit in the request:

Import Web Form Options Description

update When the catalog contains resources with the same path and type as
existing resources in the repository, those in the repository will be
overwritten. Roles and users in an organization will also be overwritten
with any in the catalog.

skip-user-update When update is specified, you can also specify this option to avoid
overwriting any user profiles.

merge-organization In commercial releases with organizations, specify this option if the
catalog is exported from one organization and imported into a different
one. If this option is not specified, and the catalog is sourced from a
different organization than the destination, the import will fail.

skip-themes In commercial releases, specify this option to ignore any themes in the
catalog. Otherwise, any themes in the catalog will be imported into the
repository.

100 Cloud Software Group, Inc.

Chapter 12 The import Service

Import Web Form Options Description

include-access-events When specified, the timestamps for resource creation and modification
of each resource are imported into the repository.

include-audit-events When this option is specified, any audit event logs in the catalog will be
imported into the server's audit event logs.

include-monitoring-events When this option is specified, any monitoring event logs in the catalog
will be imported into the server's monitoring event logs.

include-server-settings When this option is specified, any global server settings in the catalog
will be imported into the server.

The following HTML example shows how the import service can be invoked from a web page:

<form method="post"
action="http://example.com:8090/jasperserver-pro/rest_v2/import"
enctype="multipart/form-data">

Import a catalog file to JasperReports Server:
<input type="file" name="file-name" required="true" accept="application/zip">
<fieldset>

<legend>Options:</legend>
<input type="checkbox" name="update">Overwrite resources of the same name

 <input type="checkbox" name="skip-user-update">But do not overwrite users

<input type="checkbox" name="merge-organization">Import into a different organ-

ization

<input type="checkbox" name="skip-themes">Do not import themes

<input type="checkbox" name="include-access-events">Import created/modified

timestamps

<input type="checkbox" name="include-audit-events">Import audit event logs

<input type="checkbox" name="include-monitoring-events">Import monitoring event logs

<input type="checkbox" name="include-server-settings">Import global server settings

</fieldset>
<input type="submit" value="Submit">

</form>

Cloud Software Group, Inc. 101

JasperReports Server REST API Reference

102 Cloud Software Group, Inc.

CHAPTER 13 THE keys SERVICE
The rest_v2/keys service allows you to list the cryptographic keys that have been added to the server's keystore.
The keys in the list are identified by their key alias, the keys themselves are not given. The response never includes
the server's own keys that it creates at installation time, only custom keys added to keystore by administrators using
the js-import or keytool commands.

For more information about cryptographic keys and how to add them to the keystore, see the JasperReports Server
Security Guide.

This service requires system administrator priviliges on the server (jasperadmin for Community Project, superuser
for Professional Edition).

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/keys/

Options Response

accept:application/json A JSON object that lists custom keys, for example:

[
{"alias": "myCustomKeyAlias", "algorithm": "AES",
"label": "My Custom Key" },
{"alias": "productionServerKey", "algorithm": "AES"},
{"alias": "testServerKey", "algorithm": "RSA"}

]

Return Value on Success Typical Return Values on Failure

200 OK – The response contains the custom keys.

204 No Content – When there are no custom keys.

401 Unauthorized – When system
administrator credentials are not
provided.

You can use the response to create a list of keys available for import or export operations. When present, use the
label to display the keys, otherwise use the alias. When specifying keys in import and export operations, specify
them by alias. For more information, see Chapter 11, “The export Service,” on page 87 and Chapter 12, “The
import Service,” on page 93.

Cloud Software Group, Inc. 103

JasperReports Server REST API Reference

104 Cloud Software Group, Inc.

CHAPTER 14 THE reports SERVICE
The rest_v2/reports service has a simple API for obtaining report output, such as PDF and XLSX. The service also
provides functionality to interact with running reports, report options, and input controls.

This chapter includes the following sections:
• Running a Report
• Finding Running Reports
• Stopping a Running Report

14.1 Running a Report
The reports service allows clients to receive report output in a single request-response. The reports service is a
synchronous request, meaning the caller will be blocked until the report is generated and returned in the response.
For large datasets or long reports, the delay can be significant. If you want to use a non-blocking (asynchronous)
request, see Chapter 15, “The reportExecutions Service,” on page 109

The output format is specified in the URL as a file extension to the report URI.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/
path/to/report.<format>?<arguments>

Argument Type/Value Description

<format> output
type

One of the following: pdf, html, xlsx, rtf, csv, xml, docx, odt, ods, jrprint.

As of JasperReports Server 6.0, it is also possible to specify json if your
reports are designed for data export. For more information, see the
JasperReports Library samples documentation.

page? Integer > 0 An integer value used to export a specific page.

ignore
pagination?

Boolean When set to true, the report will be generated as a single page. This can
be useful for some formats such as csv. When omitted, this argument's
default value is false and the report is paginated normally.

Cloud Software Group, Inc. 105

JasperReports Server REST API Reference

<inputControl> String Any input control that is defined for the report. Input controls that are multi-
select may appear more than once. See examples below.

interactive? Boolean In a commercial editions of the server where HighCharts are used in the
report, this property determines whether the JavaScript necessary for
interaction is generated when exporting to HTML. By default it is true. If
set to false, the chart is generated as a non-interactive image file.

onePage
PerSheet?

Boolean Valid only for the XLS format. When true, each page of the report is on a
separate spreadsheet. When false or omitted, the entire report is on a
single spreadsheet. If your reports are very long, set this argument to true,
otherwise the report will not fit on a single spreadsheet and cause an
error.

report
Container
Width?

Integer This property specifies the width of the report container. A report spe-
cifying this parameter with integer values receives the current screen size
width when the report is run.

baseUrl String Specifies the base URL that the report will use to load static resources
such as JavaScript files. You can also set the deploy.base.url property in
the .../WEB-INF/js.config.properties file to set this value permanently. If
both are set, the baseUrl parameter in this request takes precedence.

attachments
Prefix

attachments For HTML output, this property specifies the URL path to use for
downloading the attachment files (JavaScript and images).

Return Value on Success Typical Return Values on Failure

200 OK – The content is the requested file. 400 Bad Request – When incorrect format is
provided in the Get request.

404 Not Found –When the specified report URI is
not found in the repository.

The follow examples show various combinations of formats, arguments, and input controls:
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.html (all pages)
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.html?page=43
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.pdf (all pages)
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/AllAccounts.pdf?page=1
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/EmployeeAccounts.html?
EmployeeID=sarah_id
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_report.html?
Country_multi_select=USA&Cascading_state_multi_select=WA&Cascading_state_multi_select=CA

JasperReports Server does not support exporting Highcharts charts with background images to PDF, ODT,
DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have background
images to these formats, the background image is removed from the chart. The data in the chart is not
affected.

106 Cloud Software Group, Inc.

Chapter 14 The reports Service

14.2 Finding Running Reports
The reports service provides functionality to stop reports that are running. Reports can be running from user
interaction, web service calls, or scheduling. The following method provides several ways to find reports that are
currently running, in case the client wants to stop them.

This syntax of the reports service is deprecated. See Chapter 15, “The reportExecutions Service,”
on page 109.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports?<arguments>

Argument Type/Value Description

jobID? String Find the running report based on its jobID in the scheduler.

jobLabel? String Find the running report based on its jobLabel in the scheduler.

userName? String Name of user who has scheduled a report, in the format
<username>%7C<organizationID>. In the commercial editions,
%7C<organizationID> is required for all users except system admins
(superuser).

fireTime
From?

date/time Date and time in the following pattern: yyyy-MM-dd'T'HH:mmZ. Together,
these arguments create a time range to find when the running report was
started. Both of the range limits are inclusive. Either argument may be null to
signify an open-ended range.fireTimeTo? date/time

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of execution IDs that can be
used for cancellation.

404 Not Found –When the specified report URI is not
found in the repository.

For security purposes, the search for running reports is has the following restrictions:
• The system administrator (superuser) can see and cancel any report running on the server.
• An organization admin (jasperadmin) can see every running report, but can cancel only the reports that were

started by a user of the same organization or one of its child organizations.
• A regular user can see every running report, but can cancel only the reports that he initiated.

14.3 Stopping a Running Report
Use the following method to stop a running report, as found with the previous method.

This syntax of the reports service is deprecated. See Chapter 15, “The reportExecutions Service,”
on page 109.

Cloud Software Group, Inc. 107

JasperReports Server REST API Reference

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<executionID>/status/

Content-Type Content

application/xml Either an empty instance of the ReportExecutionCancellation class or

<status>cancelled</status>.

Return Value on Success Typical Return Values on Failure

200 OK – The content also contains:
<status>cancelled</status>.

204 No Content – When the specified execution ID is
not found on the server, and the response body is
empty.

108 Cloud Software Group, Inc.

CHAPTER 15 THE reportExecutions SERVICE
As described in Chapter 14, “The reports Service ,” on page 105, synchronous report execution blocks the client
waiting for the response. When managing large reports that may take minutes to complete, or when running a large
number of reports simultaneously, synchronous report execution slows down the client or uses many threads, each
waiting for a report.

The rest_v2/reportExecutions service provides asynchronous report execution, so that the client does not need to
wait for report output. Instead, the client obtains a request ID and periodically checks the status of the report to
know when it is ready (also called polling). When the report is finished, the client can download the output.
Alternatively, the client can check when specific pages are finished and download available pages. The client can
also send an asynchronous request for other export formats (PDF, Excel, and others) of the same report. Again the
client can check the status of the export and download the result when the export has completed.

Reports being scheduled on the server also run asynchronously, and reportExecutions allows you to access jobs that
are triggered by the scheduler. Finally, the reportExecutions service allows the client to stop and remove any report
execution or job that has been triggered.

This chapter includes the following sections:
• Running a Report Asynchronously
• Polling Report Execution
• Requesting Page Status
• Requesting Report Execution Details
• Requesting Report Output
• Requesting Report Bookmarks
• Exporting a Report Asynchronously
• Modifying Report Parameters
• Polling Export Execution
• Finding Running Reports and Jobs
• Stopping Running Reports and Jobs
• Removing a Report Execution

15.1 Running a Report Asynchronously
In order to run a report asynchronously, the reportExecutions service provides a method to specify all the
parameters needed to launch a report. Report parameters are all sent as a reportExecutionRequest object. The
response from the server contains the request ID needed to track the execution until completion.

Cloud Software Group, Inc. 109

JasperReports Server REST API Reference

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions

Content-Type Content

application/xml

application/json

A complete ReportExecutionRequest in either XML or JSON format. See
the example and table below for an explanation of its properties.

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example

403 Forbidden –When the logged-in user does not
have permission to access the report in the request.

404 Not Found –When the report URI specified in the
request does not exist.

The following example shows the structure of the ReportExecutionRequest:

<reportExecutionRequest>
<reportUnitUri>/supermart/details/CustomerDetailReport</reportUnitUri>
<async>true</async>
<reportContainerWidth>900</reportContainerWidth>
<freshData>false</freshData>
<saveDataSnapshot>false</saveDataSnapshot>
<outputFormat>html</outputFormat>
<interactive>true</interactive>
<ignorePagination>false</ignorePagination>
<pages>1-5</pages>
<parameters>

<reportParameter name="someParameterName">
<value>value 1</value>
<value>value 2</value>

</reportParameter>
<reportParameter name="someAnotherParameterName">

<value>another value</value>
</reportParameter>

</parameters>
</reportExecutionRequest>

The following table describes the properties you can specify in the ReportExecutionRequest:

Property Required or
Default Description

reportUnitUri Required Repository path (URI) of the report to run. For commercial editions
with organizations, the URI is relative to the logged-in user’s
organization.

110 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

Property Required or
Default Description

outputFormat Required Specifies the desired output format: pdf, html, xlsx, rtf, csv, xml,
docx, odt, ods, jrprint.

As of JasperReports Server 6.0, it is also possible to specify json if
your reports are designed for data export. For more information,
see the JasperReports Library samples documentation.

freshData false When data snapshots are enabled, specifies whether the report
should get fresh data by querying the data source or if false, use a
previously saved data snapshot (if any). By default, if a saved data
snapshot exists for the report it will be used when running the
report.

saveDataSnapshot false When data snapshots are enabled, specifies whether the data
snapshot for the report should be written or overwritten with the
new data from this execution of the report.

interactive true In a commercial editions of the server where HighCharts are used
in the report, this property determines whether the JavaScript
necessary for interaction is generated and returned as an
attachment when exporting to HTML. If false, the chart is
generated as a non-interactive image file (also as an attachment).

allowInlineScripts true Affects HTML export only. If true, then inline scripts are allowed,
otherwise no inline script is included in the HTML output.

ignorePagination Optional When set to true, the report is generated as a single long page.
This can be used with HTML output to avoid pagination. When
omitted, the ignorePagination property on the JRXML, if any, is
used.

pages Optional Specify a page range to generate a partial report. The format is:
<startPageNumber>-<endPageNumber>

async false Determines whether reportExecution is synchronous or
asynchronous. When set to true, the response is sent immediately
and the client must poll the report status and later download the
result when ready. By default, this property is false and the
operation will wait until the report execution is complete, forcing the
client to wait as well, but allowing the client to download the report
immediately after the response.

Cloud Software Group, Inc. 111

JasperReports Server REST API Reference

Property Required or
Default Description

transformerKey Optional Advanced property used when requesting a report as a JasperPrint
object. This property can specify a JasperReports Library generic
print element transformers of class
net.sf.jasperreports.engine.export.GenericElementTransformer.
These transformers are pluggable as JasperReports Library
extensions.

attachmentsPrefix attachments For HTML output, this property specifies the URL path to use for
downloading the attachment files (JavaScript and images). The full
path of the default value is:

{contextPath}/rest_v2/reportExecutions/
{reportExecutionId}/exports/{exportExecutionId}/attachments/

You can specify a different URL path using the placeholders
{contextPath}, {reportExecutionId}, and {exportExecutionId}.

baseUrl String Specifies the base URL that the report will use to load static
resources such as JavaScript files. You can also set the
deploy.base.url property in the .../WEB-INF/js.config.properties file
to set this value permanently. If both are set, the baseUrl
parameter in this request takes precedence.

parameters See example A list of input control parameters and their values.

reportContainerWidth Optional This property specifies the width of the report container. A report
specifying this parameter with integer values receives the current
screen size width when the report is run.

When successful, the reply from the server contains the reportExecution descriptor. This descriptor contains the
request ID and status needed in order for the client to request the output. There are two statuses, one for the report
execution itself, and one for the chosen output format.

The following descriptor shows that the report is still executing (<status>execution</status>).

<reportExecution>
<currentPage>1</currentPage>
<exports>

<export>
<id>html</id>
<status>queued</status>

</export>
</exports>
<reportURI>/supermart/details/CustomerDetailReport</reportURI>
<requestId>f3a9805a-4089-4b53-b9e9-b54752f91586</requestId>
<status>execution</status>

</reportExecution>

The value of the async property in the request determines whether or not the report output is available when the
response is received. Your client should implement either synchronous or asynchronous processing of the response
depending on the value you set for the async property.

112 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

15.2 Polling Report Execution
When requesting reports asynchronously, use the following method to poll the status of the report execution. The
request ID in the URL is the one returned in the reportExecution descriptor.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/status/

Options Sample Return Value

accept: application/xml
(default)

<status>ready</status>

accept:
application/status+xml

<status>
<errorDescriptor>

<errorCode>input.controls.validation.error</errorCode>
<message>Input controls validation failure</message>
<parameters>

<parameter>Specify a valid value for type Integer.
</parameter>

</parameters>
</errorDescriptor>
<value>failed</value>

</status>

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the report status, as shown above. In the
extended format, error reports contain error messages suitable for
display.

404 Not Found –When the specified
requestID does not exist.

15.3 Requesting Page Status
When requesting reports asynchronously, you can also poll the status of a specific page during the report execution.
The request ID in the URL is the one returned in the reportExecution descriptor.

Cloud Software Group, Inc. 113

JasperReports Server REST API Reference

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_
v2/reportExecutions/requestID/pages/pageNumber/status

Options Sample Response Content

accept: application/status+json {
"reportStatus": "ready",
"pageTimestamp": "0",
"pageFinal": "true"

}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the page status, as shown
above.

404 Not Found –When the request ID specified
in the request does not exist.

15.4 Requesting Report Execution Details
Once the report is ready, your client must determine the names of the files to download by requesting the
reportExecution descriptor again. Specify the requestID in the URL as follows:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains a ReportExecution
descriptor. See below for an example.

404 Not Found –When the request ID specified in the
request does not exist.

The reportExecution descriptor now contains the list of exports for the report, including the report output itself
and any other file attachments. File attachments such as images and JavaScript occur only with HTML export.

{
"status": "ready",
"totalPages": 47,
"requestId": "cce63cba-1685-4708-ba4f-b70f277a1cd5",
"reportURI": "/public/Samples/Reports/AllAccounts",
"exports": [

{
"status": "ready",
"outputResource": {

114 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

"contentType": "text/html,"
"output final": true,
"outputTimestamp": 0

},
"id": "db9acf02-8add-4196-9ab5-ce86844bfc2e",
"attachments": [

{
"contentType": "image/png",
"fileName": "img_0_0_0"

}
]

}

When exporting a chart report to HTML, the image produced for the chart will be part of HTML, and can be in 2
formats - JavaScript or SVG:
• When "interactive" is set to true, it will be embedded as JavaScript in HTML which will use highcharts js to

render the chart.
• When "interactive" is set to false, the chart image will be embedded as SVG as part of HTML.

When the option net.sf.jasperreports.force.html.embed.image=false in WEB-INF/classes/jasperreports.properties in
combination with interactive=false, this will put the SVG images into attachments instead of HTML.

15.5 Requesting Report Output
After requesting a report execution and waiting synchronously or asynchronously for it to finish, your client is
ready to download the report output.

Every export format of the report has an ID that is used to retrieve it. For example, the HTML export in the
previous example has the ID 195a65cb-1762-450a-be2b-1196a02bb625. To download the main report output,
specify this export ID in the following method:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/exports/
exportID/outputResource

Return Value on Success Typical Return Values on Failure

200 OK – The content is the main output of the report, in
the format specified by the contentType property of
the outputResource descriptor, for example:
text/html

400 Bad Request – When invalid values are provided
for export options in the request body.

404 Not Found –When the request ID specified in the
request does not exist.

For example, to download the main HTML of the report execution response above, use the following URL:
GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/b487a05a-4989-8b53-b2b9-
b54752f998c4/exports/195a65cb-1762-450a-be2b-1196a02bb625/outputResource

Cloud Software Group, Inc. 115

JasperReports Server REST API Reference

JasperReports Server does not support exporting Highcharts charts with background images to PDF, ODT,
DOCX, or RTF formats. When exporting or downloading reports with Highcharts that have background
images to these formats, the background image is removed from the chart. The data in the chart is not
affected.

To download file attachments for HTML output, use the following method. You must download all attachments to
display the HTML content properly. The given URL is the default path, but it can be modified with the
attachmentsPrefix property in the reportExecutionRequest, as described in 15.1, “Running a Report
Asynchronously,” on page 109.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_
v2/reportExecutions/requestID/exports/exportID/attachments/fileName

Return Value on Success Typical Return Values on Failure

200 OK – The content is the attachment in the format
specified in the contentType property of the
attachment descriptor, for example:

image/png

404 Not Found –When the request ID specified in the
request does not exist.

For example, to download the one of the images for the HTML report execution response above, use the following
URL:
GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/html/attachments/img_0_46_0

15.6 Requesting Report Bookmarks
Some reports have additional meta-information associated with them, such as bookmarks and indexes of report
sections or parts. Clients can use this information to create a table of contents for the report with links to the
bookmarks and parts that are defined by the report. After running a report, you can request this information using
the same request ID.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/info

Options Sample Response Content

accept: application/json

accept: application/xml

A structure that contains bookmarks and report parts, as shown below.

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the report meta-
information, as shown below.

404 Not Found –When the request ID specified in
the request does not exist.

116 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

Example of a request URL:

https://localhost:8080/jasperserver[-pro]/rest_v2/reportExecutions/70b9b169-1c0e-431c-b8bc-
a6f49328bc75/info

JSON:

{
"bookmarks": {
"id": "bkmrk_1058907116",
"type": "bookmarks",
"bookmarks": [

{
"label": "USA shipments",
"pageIndex": 22,
"elementAddress": "0",
"bookmarks": [
{
"label": "Albuquerque",
"pageIndex": 22,
"elementAddress": "4",
"bookmarks": null

},
{
"label": "Anchorage",
"pageIndex": 23,
"elementAddress": "116",
"bookmarks": null

},
...

]
}

]
},

"parts": {
"id": "parts_533304192",
"type": "reportparts",
"parts": [

{
"idx": 0,
"name": "Table of Contents"

},
{
"idx": 3,
"name": "Overview"

},
{
"idx": 22,
"name": "USA shipments"

}
]

}
}

Cloud Software Group, Inc. 117

JasperReports Server REST API Reference

15.7 Exporting a Report Asynchronously
After running a report and downloading its content in a given format, you can request the same report in other
formats. As with exporting report formats through the user interface, the report does not run again because the
export process is independent of the report.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/exports/

Content-Type Content

application/xml

application/json

Send an export descriptor in either XML or JSON format to specify the format
and details of your request. For example:

<export>
<outputFormat>html</outputFormat>
<pages>10-20</pages>
<attachmentsPrefix>./images/</attachmentsPrefix>

</export>

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content contains an exportExecution descriptor.
See below for an example.

404 Not Found –When the request ID
specified in the request does not exist.

The following example shows the exportExecution descriptor that the server sends in response to the export
request:

<exportExecution>
<id>html;attachmentsPrefix=./images/</id>
<status>ready</status>
<outputResource>

<contentType>text/html</contentType>
</outputResource>

</exportExecution>

15.8 Modifying Report Parameters
You can update the report parameters, also known as input controls, through a separate method before running a
report execution again. For more operations with input controls, see Chapter 16, “The inputControls Service,”
on page 125.

118 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/parameters

Argument Type/Value Description

freshData true When data snapshots are enabled, you must set this to true to force the server
to get fresh data when you change parameters. This overrides the default
valeu of false, as explained in the table of properties in 15.1, “Running a
Report Asynchronously,” on page 109.

Media-Type Content

application/json [
{

"name":"someParameterName",
"value":["value 1", "value 2"]

},
{

"name":"someAnotherParameterName",
"value":["another value"]

}
]

application/xml <reportParameters>
<reportParameter name="Country_multi_select">

<value>Mexico</value>
</reportParameter>
<reportParameter name="Cascading_state_multi_select">

<value>Guerrero</value>
<value>Sinaloa</value>

</reportParameter>
</reportParameters>

Return Value on Success Typical Return Values on Failure

204 No Content – There is no content to return. 404 Not Found –When the request
ID specified in the request does not
exist.

15.9 Polling Export Execution
As with the execution of the main report, you can also poll the execution of the export process. This service
supports the extended status value that includes an appropriate message.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/exports/
exportID/status

Cloud Software Group, Inc. 119

JasperReports Server REST API Reference

Options Sample Return Value

accept: application/xml
(default)

<status>ready</status>

accept:
application/status+xml

<status>
<errorDescriptor>

<errorCode>input.controls.validation.error</errorCode>
<message>Input controls validation failure</message>
<parameters>

<parameter>Specify a valid value for type Integer-
.</parameter>

</parameters>
</errorDescriptor>
<value>failed</value>

</status>

accept: application/json { "value": "ready" }

accept:
application/status+json

{
"value": "failed",
"errorDescriptor": {

"message": "Input controls validation failure",
"errorCode": "input.controls.validation.error",
"parameters": ["Specify a valid value for type Integer."]

}
}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the export status, as shown above. In
the extended format, error reports contain error messages suitable for
display.

404 Not Found –When the specified
request ID does not exist.

For example, to get the status of the HTML export in the previous example, use the following URL:
GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/195a65cb-1762-450a-be2b-1196a02bb625/status

When the status is "ready" your client can download the new export output and any attachments as described in
15.5, “Requesting Report Output,” on page 115. For example:

GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/195a65cb-1762-450a-be2b-1196a02bb625/outputResource
GET http://localhost:8080/jasperserver-pro/rest_v2/reportExecutions/912382875_1366638024956_
2/exports/195a65cb-1762-450a-be2b-1196a02bb625/images/img_0_46_0

15.10 Finding Running Reports and Jobs
The reportExecutions service provides a method to search for reports that are running on the server, which includes
asychronous reports that are still running and those that are finished but still in the cache and available by their
request ID.

120 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

The search for reports also includes report jobs triggered by the scheduler, both running and finished but still in the
cache.

To search for running or finished reports, use the search arguments with the following URL:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions?<arguments>

Argument Type/Value Description

reportURI Optional String This string matches the repository URI of the running report, relative the
currently logged-in user’s organization.

jobID Optional String For scheduler jobs, this argument matches the ID of the job that triggered
the running report.

jobLabel Optional String For scheduler jobs, this argument matches the name of the job that
triggered the running report.

userName Optional String For scheduler jobs, this argument matches the user ID that created the job.

fireTimeFrom Optional
Date/Time

For scheduler jobs, the fire time arguments define a range of time that
matches if the job that is currently running was triggered during this time.
You can specify either or both of the arguments. Specify the date and time
in the following pattern: yyyy-MM-dd'T'HH:mmZ.

fireTimeTo

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a descriptor for each of the
matching results.

204 No Content – When the search results are empty.

The response contains a list of summary reportExecution descriptors, for example in XML:

<reportExecutions>
<reportExecution>

<reportURI>repo:/supermart/details/CustomerDetailReport</reportURI>
<requestId>2071593484_1355224559918_5</requestId>

</reportExecution>
</reportExecutions>

Given the request ID, you can obtain more information about each result by downloading the full
reportExecution descriptor, as described in 15.4, “Requesting Report Execution Details,” on page 114.

For security purposes, the search for running reports has the following restrictions:
• The system administrator (superuser) can see and cancel any report running on the server.

Cloud Software Group, Inc. 121

JasperReports Server REST API Reference

• An organization admin (jasperadmin) can see every running report, but can cancel only the reports that were
started by a user of the same organization or one of its child organizations.

• A regular user can see every running report, but can cancel only the reports that he initiated.

15.11 Stopping Running Reports and Jobs
To stop a report that is running and cancel its output, use the PUT method and specify a status of "cancelled" in
the body of the request.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID/status/

Content-Type Content

application/xml

application/json

Send a status descriptor in either XML or JSON format with the value
cancelled. For example:

XML: <status>cancelled</status>

JSON: { "value": "cancelled" }

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK –When the report execution was successfully
stopped, the server replies with the same status:

XML: <status>cancelled</status>

JSON: { "value": "cancelled" }

204 No Content – When the report specified by the
request ID is not running, either because it finished
running, failed, or was stopped by another process.

404 Not Found –When the request ID specified in the
request does not exist.

15.12 Removing a Report Execution
Deleting a report that has been executed removes it from the cache and makes its output no longer available. If the
report execution is still running, it is stopped automatically then removed.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/reportExecutions/requestID

122 Cloud Software Group, Inc.

Chapter 15 The reportExecutions Service

Return Value on Success Typical Return Values on Failure

204 No Content – The report execution was successfully
removed.

404 Not Found –When the request ID specified in
the request does not exist.

15.13 Requesting Raw Parameter Values
After returning from the drill-down report, you can restore the input control values applied to the main report.
Using the following method, you can request raw parameter values.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_
v2/reportExecutions/requestID/rawParameterValues

Media-Type Content

application/json {

"someParameterName":["someValue"],
"someAnotherParameterName":["anotherValue1","anotherValue2"]
}

Return Value on Success Typical Return Values on Failure

200 OK – The content contains the value as shown above. 404 Not Found –When the request ID
specified in the request does not exist.

Cloud Software Group, Inc. 123

JasperReports Server REST API Reference

124 Cloud Software Group, Inc.

CHAPTER 16 THE inputControls SERVICE
The reportExecutions service includes only a simple mechanism for setting input controls (parameters) in reports.
The inputControls service provides a complete set of operations for reading and setting input controls. Even though
the inputControls service is accessed through a URL that includes rest_v2/reports/<resourceURI> /inputControls,
the <resourceURI> can be any of the following resource types that support input controls:
• reportUnit

• reportOption

• adhocDataView

This chapter includes the following sections:
• Listing Input Controls
• Input Control Structure
• Listing Input Control Values
• Changing the Order of Input Controls
• Setting Input Control Values

16.1 Listing Input Controls
The following method returns a description of the structure of the input controls for a given resource. The
<resourceURI> can be any of the resource types that support input controls (reportUnit, reportOption,
adhocDataView).

By default, the inputControls operation returns both the structure and the state of the input controls. The structure
of an input control is its name, type, and display characteristics (such as a label). The state of an input control
includes both the current value and the list of possible values, if applicable to that type. You can use the structure
of each input control to create a UI for your users to enter values. The state of each input control gives you the
values to display, such as the values in a drop-down selector.

Some states are small because the input control type is a single text or numeric input, and only the current value is
stored. Some states may be quite large if they are a select type (select single or select multiple items) based on a
list generated dynamically from your data. For example, a list of customers to select from may contain hundreds or
thousands of items. The inputControls operation can take much longer to return on such large input controls that
require a query on your datasource. In this case, you can specify the exclude=state argument to list only input
control structures first. You can request the input control states separately at a later time.

The inputControls service uses either XML or JSON data structures. If no Accept header is included, the response
is XML by default.

Cloud Software Group, Inc. 125

JasperReports Server REST API Reference

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<resourceURI>
/inputControls?<argument>

Argument Type/Value Description

exclude state When specifed as exclude=state, the input control objects in the response
contain only the structure elements and none of the state elements. Use this
argument if your input controls have large lists of values and may affect
performance. You can fetch these values in a separate call, usually after
displaying the empty input control UI. See 16.3, “Listing Input Control
Values,” on page 130.

Options

accept: application/xml (default)
accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of XML or JSON objects
that describe the structure of all input controls. See
examples below.

204 NO CONTENT – The specified <resourceURI>
does not have any input controls defined.

404 Not Found –When the specified <resourceURI> is
not found in the repository.

The body of the response contains an object defining the structure and optionally the state of the input controls.
The following examples shows the same input control in both the XML and JSON formats, including values in the
state objects:

<inputControls>
<inputControl>

<description>Country multi select</description>
<id>Country_multi_select</id>
<label>Country multi select</label>
<mandatory>true</mandatory>
<masterDependencies/>
<readOnly>false</readOnly>
<slaveDependencies>

<controlId>Cascading_name_single_select</controlId>
<controlId>Cascading_state_multi_select</controlId>

</slaveDependencies>
<state>

<id>Country_multi_select</id>
<options>

<option>
<label>Canada</label>
<selected>false</selected>
<value>Canada</value>

126 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

</option>
<option>

<label>Mexico</label>
<selected>false</selected>
<value>Mexico</value>

</option>
<option>

<label>USA</label>
<selected>true</selected>
<value>USA</value>

</option>
</options>
<uri>/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select</uri>

</state>
<type>multiSelect</type>
<uri>repo:/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select</uri>
<validationRules>

<mandatoryValidationRule>
<errorMessage>This field is mandatory so you must enter data.</errorMessage>

</mandatoryValidationRule>
</validationRules>
<visible>true</visible>

</inputControl>
...

</inputControls>

{
"inputControl": [

{
"id": "Country_multi_select",
"description": "Country multi select",
"type": "multiSelect",
"uri": "repo:/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"label": "Country multi select",
"mandatory": true,
"readOnly": false,
"visible": true,
"masterDependencies": [],
"slaveDependencies": [

"Cascading_name_single_select",
"Cascading_state_multi_select"

],
"validationRules": [

{
"mandatoryValidationRule": {

"errorMessage": "This field is mandatory so you must enter data."
}

}
],
"state": {

"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"id": "Country_multi_select",
"options": [

{
"selected": false,
"label": "Canada",

Cloud Software Group, Inc. 127

JasperReports Server REST API Reference

"value": "Canada"
},
{

"selected": false,
"label": "Mexico",
"value": "Mexico"

},
{

"selected": true,
"label": "USA",
"value": "USA"

}
]

}
},
...

]
}

The following example shows two more JSON objects for single value number and date types of input controls.
The number data type has limits, in this example 1 ≤ number ≤ 50, that your application should enforce when users
input a value. Indpendently of the input limits, the values of these input controls are used as limits for a comparison
filter, for example "store ID that is less than or equal to" or "Opening date after". Note that the type of filter is not
reflected in the input control structure other than through a judiciously named label. Your app usually needs to
know the structure of a report and the use of its input controls to properly render a UI that reflects the actual filters.

{
"inputControl": [

{
"id": "store_id_1",
"type": "singleValueNumber",
"uri": "repo:/public/reports/StoreReport_files/store_id_1",
"label": "Store ID is less than or equal to",
"mandatory": false,
"readOnly": false,
"visible": true,
"masterDependencies": [],
"slaveDependencies": [],
"state": {

"uri": "/public/reports/StoreReport_files/store_id_1",
"id": "store_id_1",
"value": "22"

},
"dataType": {

"type": "number",
"maxValue": "50",
"strictMax": false,
"minValue": "1",
"strictMin": false

}
},
{

"id": "first_opened_date_1",
"type": "singleValueDatetime",
"uri": "repo:/public/reports/StoreReport_files/first_opened_date_1",

128 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

"label": "Date opened is greater than",
"mandatory": false,
"readOnly": false,
"visible": true,
"masterDependencies": [],
"slaveDependencies": [],
"validationRules": [

{
"dateTimeFormatValidationRule": {

"errorMessage": "Specify a valid date/time value.",
"format": "yyyy-MM-dd'T'HH:mm:ss"

}
}

],
"state": {

"uri": "/public/reports/StoreReport_files/first_opened_date_1",
"id": "first_opened_date_1",
"value": "1982-01-08T00:00:00"

},
"dataType": {

"type": "datetime",
"strictMax": false,
"strictMin": false

}
}

]
}

16.2 Input Control Structure
The input control objects shown in the examples above contain the information needed by your application to
display the input controls to your users and allow them to make a selection. The main elements are:
• ID and URI to define which input control it is.
• Mandatory, visible, and read-only flags to determine whether users should interact with this input control.
• Display characteristics such as a label and description.
• The type of input control, which also determines how it is displayed and how users interact with it, for

example text box, checkboxes, radio buttons, or drop-down list. The type is one of the following values:

bool (checkbox)
singleSelect (drop-down)
singleSelectRadio
multiSelectCheckbox
multiSelect (list box)

singleValue
singleValueText
singleValueNumber
singleValueDate
singleValueDatetime
singleValueTime

For all of the single-value types in the right-hand column, the structure includes an additional dataType object
that defines limits on the data type such as maxValue or strictMax. Your app should interpret these limits and
enforce them on the values that users may enter.

The input control structure also includes certain validation rules that depend on the type of input control. The
presence of these rules indicates that your client should verify or validate the values it receives from your users.
The rules provide messages to display when validation fails. Messages are localized if you have language bundles

Cloud Software Group, Inc. 129

JasperReports Server REST API Reference

defined on the server and the authenticated user specifies a locale. In the current release, the following validations
are possible:
• mandatoryValidationRule – This input is required (as indicated by "mandatory": true), and your client

should ensure the user enters a value.

"mandatoryValidationRule" : {
"errorMessage" : "This field is mandatory so you must enter data."

}

• dateTimeFormatValidationRule – This input is a date or time value and your client should ensure the user
enters a valid date or time.

"dateTimeFormatValidationRule" : {
"errorMessage" : "Specify a valid date value.",
"format" : "yyyy-MM-dd"

}

The input control structure also defines cascading dependencies, if any, between the input controls. The cascading
dependencies determine whether a change of values in one input control may change the possible values in another.
• masterDependencies – A list of input control IDs that this input control depends upon. If one of these

dependencies is modified, your application should fetch the new state of this input control.
• slaveDependencies – A list of input control IDs that depend upon this input control. If this input control is

modifided (given a new value by your user), your application should fetch new state values for these
dependencies.

The state object of an input control contains the current and possible values for this input control. The state objects
are explained in the next section.

16.3 Listing Input Control Values
The following method returns only the state objects that define the current values of a resource's input controls. The
state object includes the possible values of each input controls, and among these values, the one that is currently
selected. Your app can use these values to generate input and selection widgets in the UI for each input control.

Use this method if you have already fetched all the input control structures using the inputControls method. The
<resourceURI> can be any of the resource types that support input controls (reportUnit, reportOption,
adhocDataView).

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<resourceURI>
/inputControls/values?<argument>

130 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

Argument Type/Value Description

freshData true|false When freshData=true is specified, the list of values for any selection input
contols is refreshed with a database query. When this argument is omitted, its
default value is false, and cached values for input controls are returned.
Querying the database for thousands of input control list values may impact
performance, which is why the server manages a cache of these values.

Options

accept: application/xml (default)
accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of XML or JSON objects
that describe the values of all input controls. See
examples below.

204 NO CONTENT – The specified <resourceURI>
does not have any input controls defined.

404 Not Found –When the specified <resourceURI> is
not found in the repository.

The body of the response contains a list of state objects for all input controls in the given resource. The contents of
each state object depend upon the type of the input control. Single value types will only have a value that is the
current value of the input control. Selection types have a list of options, each with a value and indicator of whether
it is currently selected or not.

The following examples shows the same state objects in both the XML and JSON formats:

<inputControlStateList>
<inputControlState>

<id>Country_multi_select</id>
<options>

<option>
<label>Canada</label>
<selected>false</selected>
<value>Canada</value>

</option>
<option>

<label>Mexico</label>
<selected>false</selected>
<value>Mexico</value>

</option>
<option>

<label>USA</label>
<selected>true</selected>
<value>USA</value>

</option>
</options>
<uri>/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select</uri>

</inputControlState>
...

</inputControlStateList>

Cloud Software Group, Inc. 131

JasperReports Server REST API Reference

{
"inputControlState": [

{
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"id": "Country_multi_select",
"options": [

{
"selected": false,
"label": "Canada",
"value": "Canada"

},
{

"selected": false,
"label": "Mexico",
"value": "Mexico"

},
{

"selected": true,
"label": "USA",
"value": "USA"

}
]

},
...

]
}

If a selection-type input control has a null value, it is given as ~NULL~. If no selection is made, its value is
given as ~NOTHING~.

The internal structure of the inputControlState object in an inputControls/Values response is the same as
that of a state object in an inputControls response.

The following example shows two more JSON inputControlState objects for single value number and date
types of input controls.

{
"inputControlState": [

{
"uri": "/public/reports/StoreReport_files/store_id_1",
"id": "store_id_1",
"value": "22"

},
{

"uri": "/public/reports/StoreReport_files/first_opened_date_1",
"id": "first_opened_date_1",
"value": "1982-01-08T00:00:00"

}
]

}

Note that the state objects do not contain the input control type, therefore your app must determine how to read
each state object based on the input control structure that it has previously fetched and stored in memory. There are
two ways you can match the list of input control values to their previously fetched structure:

132 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

• Each state object has the ID and URI of its corresponding input control. The URI of an input control is
equivalent to <resourceURI>_files/<inputControlID>. Use the ID or URI of each state object to match the ID
or URI of each input control stucture in your app.

• Input controls are positional: the order of input controls is determined when creating the resource and saved in
the resource. All responses from the inputControls methods, both structure and values, contain the complete
list of input controls in the same order.

16.4 Changing the Order of Input Controls
The inputControls service does not allow you to modify any input control structures, such as types, labels,
visibility, or dependencies, because doing so would break the reports that rely on them. Also, input controls
definitions may simply be referenced in a resource and their structure defined in other repository folders. However,
you may use the following method to change the order of the input controls.

Changing the order of the input controls is persistent in the parent resource as stored in the repository, but it does
not affect the running of a report or their display in a viewer.

Note that if you manage your list of input control structures and states based on the unchanging order of input
controls, this operation will invalidate your current order in memory. You will need to update your list of stored
input controls, or use IDs or URIs to match structures and states.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<resourceURI>/inputControls/

Content-Type Content

application/xml
application/json

An XML or JSON object that lists the full structure, including the state object, of
all input controls in the new order. You cannot modify any fields in the input
control strucutres, they must be sent exactly as received from the
inputControls service, except for the order of objects in the list.

Options

accept: application/xml (default)
accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is an XML or JSON object that
lists all input control structures, including their state
objects. This should be identical to the content that was
sent.

403 Forbidden – If any input control structure in the
request list does not match its current structure.

404 Not Found –When the specified <resourceURI> is
not found in the repository.

16.5 Setting Input Control Values
After your app has fetched all structures and values and created a UI, your users can interact with the input controls
and set new values. Use the following methods to send the new values and selections to the server. The server

Cloud Software Group, Inc. 133

JasperReports Server REST API Reference

performs validation and returns an error if certain conditions are not satisfied. Before sending new values your
application should validate user input in several ways:
• It must prevent certain input, such as accepting values for a read-only input control or making multiple

selections in a single-select input control.
• It should enforce constraints, such as ensuring that a mandatory input control is not null or has at least one

selection.
• It should also validate values against any input control limits, such as minimum and maximum values.

After sending new values, use the response to update any changes in selection list values. For example, if you
change an input control with cascading dependencies, the server will respond with the new selection lists for the
dependent input controls. After all new values have been set, you can call the reportExecutions service to run the
report again.

There are two forms of this operation, one that returns the full input control structures, and the other that returns
only the state values.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<resourceURI>
/inputControls?<argument>

Argument Type/Value Description

freshData true|false When freshData=true is specified, the list of values for any selection input
contols is refreshed with a database query. When this argument is omitted, its
default value is false, and cached values for input controls are returned.
Querying the database for thousands of input control list values may impact
performance, which is why the server manages a cache of these values.

Content-Type Content

application/xml An XML object that lists the new value for just those input controls that are
modified, for example:

<reportParameters>
<reportParameter name="Country_multi_select">

<value>Mexico</value>
</reportParameter>
<reportParameter name="Cascading_state_multi_select">

<value>Guerrero</value>
<value>Sinaloa</value>

</reportParameter>
</reportParameters>

134 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

application/json A JSON object that lists the new value for just those input controls that are
modified. In JSON, the value of every input control is given as an array of
string values, even for numbers, single-select controls, or multi-select controls
with a single value. This example is equivalent to the XML example above:

{
"Country_multi_select":["Mexico"],
"Cascading_state_multi_select":["Guerrero", "Sinaloa"]

}

Options

accept: application/xml (default)
accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of XML or JSON structure objects that
describes all input controls and their values, including the newly sent
values and any new list values arising from cascading dependencies.

403 Forbidden – If any input control
value in the request list is invalid as
determined by its type or limit
validation.

404 Not Found –When the specified
<resourceURI> is not found in the
repository.

When sending the values shown in the table above, the JSON response is a list of input control structures that
begins with the following element:

{
"inputControl": [

{
"id": "Country_multi_select",
"description": "Country multi select",
"type": "multiSelect",
"uri": "repo:/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"label": "Country multi select",
"mandatory": true,
"readOnly": false,
"visible": true,
"masterDependencies": [],
"slaveDependencies": [

"Cascading_name_single_select",
"Cascading_state_multi_select"

],
"validationRules": [

{
"mandatoryValidationRule": {

"errorMessage": "This field is mandatory so you must enter data."
}

}
],
"state": {

Cloud Software Group, Inc. 135

JasperReports Server REST API Reference

"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"id": "Country_multi_select",
"options": [

{
"selected": false,
"label": "Canada",
"value": "Canada"

},
{

"selected": true,
"label": "Mexico",
"value": "Mexico"

},
{

"selected": false,
"label": "USA",
"value": "USA"

}
]

}
},
...

]
}

In the second form, you send the same content in the request, but the URL includes the IDs of the modified input
controls and you request values.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/<resourceURI>
/inputControls/<inputControlid1>;<inputControlid2>;.../values?<argument>

Argument Type/Value Description

freshData true|false When freshData=true is specified, the list of values for any selection input
contols is refreshed with a database query. When this argument is omitted, its
default value is false, and cached values for input controls are returned.
Querying the database for thousands of input control list values may impact
performance, which is why the server manages a cache of these values.

Content-Type Content

application/xml An XML object that lists the new value for just those input controls that are
modified, for example:

<reportParameters>
<reportParameter name="Country_multi_select">

<value>Mexico</value>
</reportParameter>
<reportParameter name="Cascading_state_multi_select">

<value>Guerrero</value>
<value>Sinaloa</value>

</reportParameter>
</reportParameters>

136 Cloud Software Group, Inc.

Chapter 16 The inputControls Service

application/json A JSON object that lists the new value for just those input controls that are
modified. In JSON, the value of every input control is given as an array of
string values, even for numbers, single-select controls, or multi-select controls
with a single value. This example is equivalent to the XML example above:

{
"Country_multi_select":["Mexico"],
"Cascading_state_multi_select":["Guerrero", "Sinaloa"]

}

Options

accept: application/xml (default)
accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of XML or JSON state objects of all input
control values, including the newly sent values and any new list values
arising from cascading dependencies.

403 Forbidden – If any input control
value in the request list is invalid as
determined by its type or limit
validation.

404 Not Found –When the specified
<resourceURI> is not found in the
repository.

When sending the values shown in the table above, the JSON response is a list of state objects that begins with the
following element:

{
"inputControlState": [

{
"uri": "/adhoc/topics/Cascading_multi_select_topic_files/Country_multi_select",
"id": "Country_multi_select",
"options": [

{
"selected": false,
"label": "Canada",
"value": "Canada"

},
{

"selected": true,
"label": "Mexico",
"value": "Mexico"

},
{

"selected": false,
"label": "USA",
"value": "USA"

}
]

},
...

]
}

Cloud Software Group, Inc. 137

JasperReports Server REST API Reference

138 Cloud Software Group, Inc.

CHAPTER 17 THE options SERVICE
This chapter describes the rest_v2/reports/options service. Report options are sets of input control values that are
saved in the repository. A report option is always associated with a report.

A report option contains input control values that you can read and modify with the inputControls service.
Therefore, you should use the methods of the options service to create and list report option resources in the
repository, and use the methods of the inputControls service to view and modify the values contained in a report
option. For more information, see Chapter 16, “The inputControls Service,” on page 125.

This chapter includes the following sections:
• Listing Report Options
• Creating Report Options
• Updating Report Options
• Deleting Report Options

17.1 Listing Report Options
The following method retrieves a list of report options summaries. The summaries give the name of the report
options, but not the input control values that are associated with it.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that lists the
names of the report options for the given report.

404 Not Found –When the specified report URI is not
found in the repository.

The body of the response contains the labels of the report options, for example:

Cloud Software Group, Inc. 139

JasperReports Server REST API Reference

{
"reportOptionsSummary": [{
"uri": "/reports/samples/Options",
"id": "Options",
"label": "Options"

},
{
"uri": "/reports/samples/Options_2",
"id": "Options_2",
"label": "Options 2"

}]
}

17.2 Creating Report Options
The following method creates a new report option for a given report. A report option is defined by a set of values
for all of the report’s input controls.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options?<arguments>

Argument Type/Value Description

label string The name to give the new report option.

overwrite? true / false If true, any report option that has the same label is replaced. If false or
omitted, any report option with the same label will not be replaced.

Content-Type Content

application/json A JSON object that lists the input control selections. See example below.

Options

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a JSON object that describes
the new selection of input control values.

404 Not Found –When the specified report URI is not
found in the repository.

In this example, we create new options for the sample report named Cascading_multi_select_report:
http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_
report/options?label=MyReportOption

With the following request body:

{
"Country_multi_select":["Mexico"],
"Cascading_state_multi_select":["Guerrero", "Sinaloa"]

}

140 Cloud Software Group, Inc.

Chapter 17 The options Service

When successful, the server responds with a JSON object that describes the new report options, for example:

{
"uri":"/reports/samples/MyReportOption",
"id":"MyReportOption",
"label":"MyReportOption"

}

17.3 Updating Report Options
Use the following method to modify the values in a given report option. You can also use the methods of the
inputControls service to view and modify the values contained in a report option. For more information, see
Chapter 16, “The inputControls Service,” on page 125.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/<optionID>/

Content-Type Content

application/json A JSON object that lists the input control selections. See example below.

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found –When the specified report URI is not
found in the repository.

For example, we change the report option we created in 17.2, “Creating Report Options,” on page 140 with the
following header:

http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/reports/samples/Cascading_multi_select_
report/options/MyReportOption

And the following request body:

{
"Country_multi_select":["USA"],
"Cascading_state_multi_select":["CA", "WA"]

}

17.4 Deleting Report Options
Use the following method to delete a given report option.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/reports/path/to/report/options/<optionID>/

Cloud Software Group, Inc. 141

JasperReports Server REST API Reference

Return Value on Success Typical Return Values on Failure

200 OK 404 Not Found –When the specified report URI is not
found in the repository.

142 Cloud Software Group, Inc.

CHAPTER 18 THE jobs SERVICE
The rest_v2/jobs service provides the interface to schedule reports and dashboards and manage those schedules.
When a user schedules a report or dashboard to run at a given time and with a given recurrence, the server stores
this information in a job. There can be any number of jobs for any number of reports and dashboards, all created by
different users. As with the server's user interface, the jobs service only manages jobs that are active, which means
they have a trigger that is still pending in the future. Jobs that have finished and are no longer active are never
listed or returned.

Within the job, the trigger determines when it will run. A trigger is said to fire when it reaches its scheduled time,
and when it does, the server generates the output associated with the job. Various other properties define the
filename of the output and where it is stored, emailed, or both. For example, you can define a job to run every
Monday at 6 AM, except on company holidays, to generate a report in both PDF and Excel output and have the
files written to the repository with sequential filenames, with links to the output emailed to a list of recipients, and
any errors emailed to administrators.

The jobs service also uses exclusion calendars that can be defined in Chapter 19, “The calendars Service,” on
page 175.

This chapter includes the following sections:
• Searching for Jobs
• Viewing a Job Definition
• The job Descriptor
• Creating a Job
• Viewing Job Status
• Modifying a Job
• Pausing Jobs
• Resuming Jobs
• Restarting Failed Jobs
• Deleting Jobs
• Storing Additional Job Properties

18.1 Searching for Jobs
The GET method of the jobs service has multiple arguments to search for jobs in several ways. The credentials
used for authentication determine the scope of the search: an ordinary user can search all of his or her own jobs, an
organization admin (jasperadmin) can search all jobs in his or her organization, and the system admin

Cloud Software Group, Inc. 143

JasperReports Server REST API Reference

(superuser) can search all jobs on the server. This method only returns active jobs that still have a pending
trigger or are still running after their last trigger.

When used without any arguments, this method returns all scheduled jobs for any scheduled report, report option,
or dashboard within the scope of the user. The various arguments let you search for jobs on a specific report or
dashboard, or find all jobs created by a given user (with administrator credentials). You can also do a string search
on the label, or do an advanced search such as by output type or email address. If you want to handle large
numbers of results, you can control the pagination and sorting order of the reply.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs?<arguments>

Argument Type/Value Description

label? string Performs a case-insensitive string search for this value anywhere within
the label property of every job.

owner? string The name of the user who scheduled the report, if necessary in the
format <username>%7C<organization> (%7C is the | character).

reportUnitURI? /path/to/report Optional URI (repository path) of a report, report option, or dashboard to
list all of its jobs. You may need to encode the / characters in the URI
with %2F. When specified, the results are only for the given resource.

example? JSON jobModel Searches for jobs that match the JSON jobModel, which is a fragment
of a job descriptor containing one or more properties to be matched.
This argument lets you search for any parameter of the job descriptor,
for example the trigger, exclusion calendar, output format, recipient
email, or FTP output. Because the JSON fragment appears as an
argument in the URL, it must be properly URL-encoded (percent-
encoded) as shown in the example below.

limit? integer Specifies the number of jobsummary descriptors in the results. The
default is -1 for no limit and thus all results are returned. When used with
the offset parameter, it can be used to implement pagination of results.

offset? integer Specifies the index of the first jobsummary to be returned. When used
with the limit parameter, it can be used to implement pagination.

sortType? Possible values are: NONE, SORTBY_JOBID, SORTBY_JOBNAME,
SORTBY_REPORTURI, SORTBY_REPORTNAME, SORTBY_
REPORTFOLDER, SORTBY_OWNER, SORTBY_STATUS, SORTBY_
LASTRUN, SORTBY_NEXTRUN

isAscending? true / false Determines the sort order: ascending if true, descending if false or
omitted. This has no effect when sortType is not specified.

144 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The body contains an array or list of jobsummary
descriptors that match the search criteria, as shown in the
examples below.

204 No Content – When no matching job is found
in the server. After a job finishes running its last
triggered instance, it no longer shows up in
search results.

For example, if your application wants to request all the jobs for a given report, it would send the following URL
(%2F is the / character):

GET http://example.com:8090/jasperserver-pro/rest_v2/-
jobs?reportUnitURI=%2Freports%2FAllAccounts

In the response from the server, the jobs are described in a jobsummary element such as the following example.
The jobsummary contains a small subset of the properties of the job descriptor as well as the complete state
descriptor:

JSON: {
"jobsummary": [
{
"id": 1898,
"version": 0,
"reportUnitURI": "/reports/AllAccounts",
"label": "SampleJobName",
"description": "Accounts Sample Job",
"owner": "jasperadmin|organization_1",
"reportLabel": "Accounts Report",
"state": {
"previousFireTime": null,
"nextFireTime": "2022-03-15T00:00:00+03:00",
"value": "NORMAL"

}
},
...

]
}

XML: <jobs>
<jobsummary>

<id>1898</id>
<label>SampleJobName</label>
<description>Accounts Sample Job</description>
<reportUnitURI>/reports/AllAccounts</reportUnitURI>
<reportLabel>Accounts Report</reportLabel>
<state>

<nextFireTime>2022-03-15T00:00:00+03:00</nextFireTime>
<value>NORMAL</value>

</state>

Cloud Software Group, Inc. 145

JasperReports Server REST API Reference

<owner>jasperadmin|organization_1</owner>
<version>0</version>

</jobsummary>
...

</jobs>

The example parameter lets you specify a search of any property in the job descriptor, such as output formats. You
can specify any property in the job descriptor or in any of its nested structures. Some properties may be specified in
both the example parameter and in a dedicated parameter, for example label. In that case, the search specified in
the example parameter takes precedence.

For example, you can search for all jobs that specify an output format of PDF. The JSON jobModel to specify this
property is:

{"outputFormat":"PDF"}

And the corresponding URI with proper encoding is:

http://<host>:<port>/jasperserver[-pro]/rest_v2/-
jobs?example=%7b%22outputFormat%22%3a%22PDF%22%7d

18.2 Viewing a Job Definition
Once you search for and find the ID of a job that is still active, use the GET method with that specific job ID to
retrieve its detailed information.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/

Options

accept: application/job+xml

accept: application/job+json

Return Value on Success Typical Return Values on Failure

200 OK – The body contains a descriptor with all details
about the job.

404 Not Found –When the specified job is not found in
the server. After a job finishes running its last triggered
instance, it is no longer active and its ID will return this
error.

The GET method returns a descriptor that fully describes all the aspects of a scheduled job, such as recurrence,
parameters, output, email notifications, and alerts, if any. All properties are included, many of which may be null if
not set for the chosen job. For more information, see 18.3, “The job Descriptor,” on page 149.

JSON:

{

146 Cloud Software Group, Inc.

Chapter 18 The jobs Service

"id": 1906,
"version": 0,
"username": "jasperadmin|organization_1",
"label": "Daily Report",
"description": "Sample desctiption",
"creationDate": "2019-04-21T14:52:04.955+03:00",
"outputFormats": {

"outputFormat": ["XLS",
"PDF"]

}

"trigger": {
"simpleTrigger": {

"id": 0,
"version": 0,
"timezone": "America/Los_Angeles",
"calendarName": null,
"startType": 2,
"startDate": "2019-04-21 10:00",
"endDate": null,
"misfireInstruction": 0,
"occurrenceCount": 1,
"recurrenceInterval": 1,
"recurrenceIntervalUnit": "DAY"

}
},

"source": {
"reportUnitURI": "/adhoc/topics/Cascading_multi_select_topic",
"parameters": {

"parameterValues": {
"Country_multi_select": ["Mexico"],
"Cascading_name_single_select": ["Chin-Lovell Engineering Associates"],
"Cascading_state_multi_select": ["DF","Jalisco","Mexico"]

}
}

},

"alert": {
"id": 0,
"version": -1,
"recipient": "OWNER_AND_ADMIN",
"toAddresses": {

"address": []
},
"jobState": "FAIL_ONLY",
"messageText": null,
"messageTextWhenJobFails": null,
"subject": null,
"includingStackTrace": true,
"includingReportJobInfo": true

},

"baseOutputFilename": "Cascading_multi_select_report",
"outputLocale": null,
"mailNotification": null,
"outputTimeZone": null,

Cloud Software Group, Inc. 147

JasperReports Server REST API Reference

"repositoryDestination": {
"id": 0,
"version": -1,
"folderURI": "/temp",
"sequentialFilenames": false,
"overwriteFiles": false,
"outputDescription": null,
"timestampPattern": null,
"saveToRepository": true,
"defaultReportOutputFolderURI": null,
"usingDefaultReportOutputFolderURI": false,
"outputLocalFolder": null,
"outputFTPInfo": {

"userName": "anonymous",
"password": null,
"folderPath": null,
"serverName": null,
"type": "ftps",
"protocol": null,
"port": 990,
"implicit": true,
"pbsz": 0,
"prot": null

}
},

}

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<clientJob>

<creationDate>2019-04-21T13:38:09.759+02:00</creationDate>
<id>5484</id>
<label>test</label>
<username>superuser</username>
<version>0</version>
<outputFormats>

<outputFormat>PDF</outputFormat>
</outputFormats>

<simpleTrigger>
<id>5482</id>
<misfireInstruction>0</misfireInstruction>
<startDate>2019-04-21 10:00</startDate>
<startType>2</startType>
<timezone>Europe/Helsinki</timezone>
<version>0</version>
<occurrenceCount>1</occurrenceCount>
<recurrenceInterval>1</recurrenceInterval>
<recurrenceIntervalUnit>DAY</recurrenceIntervalUnit>

</simpleTrigger>

<source>
<parameters>

<parameterValues>
<entry>

<key>Country_multi_select</key>

148 Cloud Software Group, Inc.

Chapter 18 The jobs Service

<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="collection">
<item xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">Mexico</item>

</value>
</entry>
<entry>

<key>Cascading_name_single_select</key>
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="collection">

<item xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">Chin-Lovell Engin-
eering Associates</item>
</value>

</entry>
<entry>

<key>Cascading_state_multi_select</key>
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="collection">

<item xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">DF</item>
<item xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">Jalisco</item>
<item xmlns:xs="http://www.w3.org/2001/XMLSchema" xsi:type="xs:string">Mexico</item>

</value>
</entry>

</parameterValues>
</parameters>
<reportUnitURI>/organizations/organization_1/adhoc/topics/Cascading_multi_select_topic<
/reportUnitURI>

</source>

<outputTimeZone>Europe/Helsinki</outputTimeZone>
<baseOutputFilename>Cascading_multi_select_topic</baseOutputFilename>
<repositoryDestination>

<folderURI>/organizations/organization_1/adhoc/topics</folderURI>
<id>5483</id>
<outputFTPInfo>

<implicit>true</implicit>
<password/>
<pbsz>0</pbsz>
<port>21</port>
<type>ftp</type>
<userName>anonymous</userName>

</outputFTPInfo>
<overwriteFiles>true</overwriteFiles>
<saveToRepository>true</saveToRepository>
<sequentialFilenames>false</sequentialFilenames>
<usingDefaultReportOutputFolderURI>false</usingDefaultReportOutputFolderURI>
<version>-1</version>

</repositoryDestination>
</clientJob>

18.3 The job Descriptor
The job descriptor is a complex data object with nested containers for the various properties that define a
scheduled job. The job descriptor is both the output of the GET method to view job details and, with slightly
different content, the input of the PUT and POST methods to create and modify jobs.

The properties of the job descriptor are defined in the following sections:
• 18.3.1, “General Properties of a Job,” on page 150, such as label and description, but also the output

formats and base filename.

Cloud Software Group, Inc. 149

JasperReports Server REST API Reference

• 18.3.2, “Source and Input Controls,” on page 152 includes the repository URL of the report, report option,
or dashboard, and any input controls.

• 18.3.3, “Simple Trigger,” on page 153 defines interval-based repetition of the job for a given number of
occurrences.

• 18.3.4, “Calendar Trigger,” on page 155 runs at specific times on specific days of the week or days of the
month.

• 18.3.5, “Job Output Properties,” on page 159 define the file name and locations where output files are
written.

• 18.3.6, “FTP Output,” on page 160 defines whether the output files are written to a remote server.
• 18.3.7, “Job Output Email,” on page 162 defines the recipients for successful output files.
• 18.3.8, “Job Status Email,” on page 163 defines the recipients for success or error messages.

When submitting a job descriptor to create or modify a job schedule, not all properties are needed. In the
following tables, each property is one of the following:
• Required - This property must have a value for input in order to define a valid job.
• Optional - This property may be omitted on input, either because it is nullable, or because the server assigns a

default value. The behavior is explained in the property description.
• Conditional - The property may be required or optional depending on other property values. The behavior is

explained in the property description.
• Ignored - This property is for internal usage or output only, and the server ignores any value on input. Good

practice is to omit these properties from your input.

18.3.1 General Properties of a Job
A valid job descriptor contains the following properties:

Property (as input) Description

creationDate
(ignored)

The time and date that the job was first created, managed internally by the server.

id (ignored) The ID of the job assigned by the server. Use this ID to read, modify, or delete the job.

version (ignored) An internal version number that has no outside use.

username
(ignored)

The owner and creator of this job, including the organization name. Note that only
administrators can view other users' jobs.

label
(required)

A name for the job, like the label of a resource in the repository.

description
(optional)

A description string for the job, often describes the trigger and chosen output.

150 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Property (as input) Description

exportType
(optional)

The default value is DEFAULT, and for scheduling a report no other value is accepted.
In a schedule for a dashboard, DEFAULT indicates that output will be a screenshot in
the chosen format, for example an image in a Word file. When this is set to
DASHBOARD_DETAILED for a dashboard schedule, the dashlets are exported as
individual reports sequentially into the same file. Not all output formats are available
depending on the value of exportType (see next property).

outputFormats
outputFormat
(required)

Contains a list of output formats, each to be generated in a separate output file when
the job is triggered. The possible values depend on the resource and the exportType
above:
• Report (exportType="DEFAULT" is required): CSV, DATA_CSV, DOCX,

HTML, ODS, ODT, PDF, PPTX, RTF, XLSX, XLSX_NOPAG, DATA_XLSX

• Dashboard with exportType="DEFAULT": DOCX, ODT, PDF, PNG, PPTX

• Dashboard with exportType="DASHBOARD_DETAILED": CSV, DOCX, ODS,
ODT, PDF, PPTX, RTF, XLSX

The XLS and XLS_NOPAG (Excel 2003) output formats are deprecated. You can use
XLSX and XLSX_NOPAG (Excel 2016) instead. Older jobs that are still running a
request for XLS or XLS_NOPAG outputs, generate output in the XLSX or XLSX_
NOPAG format.

outputTimeZone
(optional)

The time zone to use when running the report or dashboard, for example
"America/Los_Angeles". By default the scheduler runs the report or dashboard using
the server's default time zone. The time zone names are those supported by
java.time.ZoneID, which are defined in the tz database.

The trigger time zone and the output time zone have different purposes, even if they
are often set to the same value. The trigger time zone determines when the job will run,
whereas the output time zone affects any time or date calculations in the report or
dashboard. The time zone specified in a data source also affects times and dates in
the output.

outputLocale
(optional)

The locale to use when running the report or dashboard, if it is based on a Domain with
locales defined. By default the scheduler runs the report or dashboard using the
server's default locale. If the report or dashboard is not based on a Domain with
locales, this value has no effect. Use a Java locale string that is also defined in your
Domain, for example fr (French) or fr_CA (French from Canada).

baseOutput

Filename
(required)

The basename of the file for the generated report output. Each output format appends
its corresponding file extension to this name. This name may also have a time stamp
appended as specified in 18.3.5, “Job Output Properties,” on page 159. This final
output name is then used in all locations where the file is saved: repository, file system,
FTP, and email attachment.

Cloud Software Group, Inc. 151

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

JasperReports Server REST API Reference

Property (as input) Description

source
(required)

A container for the properties that define the repository URI of the report, report option,
or dashboard and its input controls. See 18.3.2, “Source and Input Controls,” on
page 152.

trigger
(required)

A container for one of the triggers specified in 18.3.3, “Simple Trigger,” on page 153
or 18.3.4, “Calendar Trigger,” on page 155. The trigger determines how often the
job runs and the date and times at which it runs.

repository

Destination
(optional)

A container for properties that define the folders and filenames for the output files that
are generated each time a scheduled job runs successfully. Its properties are defined
in 18.3.5, “Job Output Properties,” on page 159 and the optional 18.3.6, “FTP
Output,” on page 160.

mailNotification
(optional)

A container for properties that define email recipients when a job runs successfully.
You can customize the contents of the email and whether the report output files are
sent as attachments or links. For more information, see 18.3.7, “Job Output Email,”
on page 162.

alert
(optional)

A container for properties that define email recipients for job success and errors. For
more information, see 18.3.8, “Job Status Email,” on page 163.

18.3.2 Source and Input Controls
The source is the report, report option, or dashboard being scheduled by the job, along with any required input
controls.

Property (as input) Description

source
(required)

A container for the following properties.

reportUnitURI
(required)

A mandatory property that defines the repository URI of the report, report option, or
dashboard to run for this job. The repository URI is relative to the scope of the user
credentials used to authenticate the REST call.

referenceHeight
(optional)

When scheduling a dashboard, the default output is a screenshot and these properties
specify the dimensions in pixels of the dashboard canvas. The images in the output will
have these dimensions, even inside another format such as PDF. The default size is
1280 width by 800 height.referenceWidth

(optional)

parameters

parameterValues
(conditional)

A container for the input controls (filters) for this job. Every required input control in the
report or dashboard must have an XML entry or JSON list item within
parameterValues. If there are no input controls, this property can be omitted. See the
examples in Creating a Job for the syntax of these properties in JSON and XML.

152 Cloud Software Group, Inc.

Chapter 18 The jobs Service

18.3.3 Simple Trigger
The following properties define the recurrence pattern for a simple trigger.

Property (as input) Description

simpleTrigger
(conditional)

A container for the following properties, itself contained in a required trigger. For
input, you must specify either the simpleTrigger or the calendarTrigger.

id (ignored) An internal ID of the simple trigger that has no outside use.

version (ignored) An internal version number that has no outside use.

timezone
(optional)

The timezone for all dates and times used by the trigger, for example "America/Los_
Angeles". By default, the trigger uses the same time zone as the server. The time
zone names are those supported by java.time.ZoneID, which are defined in the tz
database.

startType
(optional)

Determines when the job becomes active and sets the base time at which recurrence
starts. Supported values:

START_TYPE_NOW - The job starts immediately, and the trigger fires right away. This is
the default value when this property is omitted.

START_TYPE_SCHEDULE - The job starts at the startDate, at which time it will fire.

startDate
(conditional)

The date and time at which the job will start, required when startType=START_TYPE_
SCHEDULE. The simple trigger will fire at this time, and it will begin its recurrence at this
time. The format is "yyyy-MM-dd HH:mm" and the timezone property is applied.

endDate
(optional)

The date and time at which the job will stop. The trigger will not fire after this time, even if
any occurrences still remain, unless a misfire occurs and the misfire policy allows it. The
format is "yyyy-MM-dd HH:mm" and the timezone property is applied.

occurrenceCount
(required)

An integer that defines how many times the trigger will fire, provided the recurrence
intervals happen before the endDate.

recurrence

Interval
(required)

The time interval between firings of the trigger, with the interval unit provided in the next
property.

recurrence

IntervalUnit
(required)

The unit of time for the recurrence interval. Supported values: MINUTE, HOUR, DAY, or
WEEK. For units greater than MINUTE, the startType and startDate determine the
basis for recurrence. For example, if the trigger fires immediately and recurs every 2
days, it will fire at the current time on the subsequent days.

Cloud Software Group, Inc. 153

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

JasperReports Server REST API Reference

Property (as input) Description

calendarName
(optional)

The name of a previously defined exclusion calendar. An exclusion calendar defines a
set of dates or times when the job will not run, for example a list of holidays. You can
update the exclusion calendar without changing the job. For information about creating
and modifying exclusion calendars, see Chapter 19, “The calendars Service,” on
page 175.

misfire

Instruction
(optional)

An integer value that defines the behavior if the trigger did not fire when scheduled. The
values of misfireInstruction are described in the next table. A misfire occurs if
JasperReports Server or its Quartz scheduler component is offline when a trigger was
supposed to happen and run a job. It can also occur if all threads of the scheduler are
busy and the job cannot run when the trigger should fire. When the scheduler restarts or
a thread becomes available again, it checks for any triggers that did not fire on time and
takes action based on the misfireInstruction. The misfire instruction does not
apply if the trigger fires normally but the report encounters an error. The default value is
0 when this property is omitted.

Choose a misfire policy based on how frequently your job runs and how critical it is. For example, an outage may
last one to two hours, and if a daily report is critical, you may want it to run as soon as the scheduler is able.
However, if a report runs every hour, you may want to ignore missed reports and wait for the next report at the
scheduled time. Note that different policies may have the same effect depending on how the trigger is defined, but
also the same policy may have different effects on different trigger types.

misfireInstruction Description for Simple Triggers

0 (default) No instruction (same behavior as option -1 below). Does not trigger the job that misfired,
and takes no action. Because the trigger did not fire, the number of occurrences is not
decremented. This is the default behavior if no misfireInstruction is defined. The
trigger will fire the next time according to the recurrence value and unit, as if the misfire
had fired at the proper time.

-1 Ignore misfire policy. Instructs the scheduler that the trigger will never be evaluated for a
misfire situation, and that the scheduler will simply try to fire it as soon as it can, and then
update the trigger as if it had fired at the proper time. This value has the same effect as 0:
take no action and do not change the number of occurrences.

-999 Called the smart policy. Instructs the scheduler that upon a misfire situation, the custom
updateAfterMisfiremethod will be called on the trigger to determine the misfire
action. In this case, you must define and enable a custom trigger class on the server,
which is beyond the scope of this documentation.

1 Run now: instructs the scheduler to trigger now, which is the time the misfire is detected.
If the outage covers several trigger times, they will each have a misfire, and with this
value, they will each run now.

154 Cloud Software Group, Inc.

Chapter 18 The jobs Service

misfireInstruction Description for Simple Triggers

2 Instructs the scheduler that upon a misfire situation, the SimpleTrigger will be re-
scheduled to 'now' (even if the associated calendar excludes 'now') with the repeat count
left as-is. This does obey the trigger end-time, so if 'now' is after the end-time, the trigger
will not fire.

3 Instructs the scheduler that upon a misfire situation, the SimpleTrigger will be re-
scheduled to 'now' (even if the associated Calendar excludes 'now') with the repeat count
set to what it would be, if it had not missed any firings. This does obey the trigger end-
time, so if 'now' is after the end-time the Trigger will not fire.

4 Ignores any missed firings of the trigger (no action is taken for the missed firing), but the
repeat count is set to what it would be if the trigger had fired normally. The trigger will fire
at the next scheduled time after the current time, taking into account any associated
exclusion calendar or end time. The effect is that missed trigger occurrences will be
skipped.

5 Ignores any missed firings of the trigger (no action is taken for the missed firing), but the
repeat count is left unchanged. The trigger will fire at the next scheduled time after the
current time, taking into account any associated exclusion calendar or end time. The
effect is that missed trigger occurrences will happen later, past the last expected
occurrence.

18.3.4 Calendar Trigger
A calendar trigger lets you schedule a job to run multiple times based on any combination of time and date. Its
properties let you define single values, ranges, or wild-cards for minutes, hours, days, weeks, or months. For
example, you can run a report every 15 minutes from 10 AM to noon every Monday.

The following properties define the recurrence pattern of a calendar trigger:

Property (as input) Description

calendarTrigger
(conditional)

A container for the following properties, itself contained in a required trigger. For
input, you must specify either the simpleTrigger or the calendarTrigger.

id (ignored) An internal ID of the calendar trigger that has no outside use.

version (ignored) An internal version number that has no outside use.

timezone
(optional)

The timezone for all dates and times used by the trigger, for example "America/Los_
Angeles". By default, the trigger uses the same time zone as the server. The time
zone names are those supported by java.time.ZoneID, which are defined in the tz
database.

Cloud Software Group, Inc. 155

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

JasperReports Server REST API Reference

Property (as input) Description

startType
(optional)

Determines when the job becomes active. Supported values:

START_TYPE_NOW - The job starts immediately, and the trigger may fire right away.
This is the default value when this property is omitted.

START_TYPE_SCHEDULE - The trigger will not fire until the specified startDate.

startDate
(conditional)

The date and time at which the job will be active, required when startType=START_
TYPE_SCHEDULE. The trigger will not fire before this time; it will only fire for calendar
occurrences that happen after this time. The format is "yyyy-MM-dd HH:mm" and the
timezone property is applied.

endDate
(optional)

The date and time at which the job will stop. The trigger will not fire after this time, unless
a misfire occurs and the misfire policy allows it. The format is "yyyy-MM-dd HH:mm" and
the timezone property is applied.

calendarName
(optional)

The name of a previously defined exclusion calendar. An exclusion calendar defines a
set of dates or times when job will not run, for example a list of holidays. You can update
the exclusion calendar without changing the job. For information about creating and
modifying exclusion calendars, see Chapter 19, “The calendars Service,” on
page 175.

minutes
(required)

Specifies the minute or minutes at which the trigger fires on a given hour. The value can
consist of the following tokens:
• A single minute value between 0 and 59.
• A range of minutes, for example 0-10 means the trigger fires every minute starting

from HH:00 to HH:10. Minute values and ranges can be concatenated using
commas as separators.

• A minute value with an increment, for example 5/10 means the trigger fires every 10
minutes starting from HH:05.

• *means the trigger fires every minute of the hour.

hours
(required)

Specifies the hour or hours during which the trigger fires on a given day. The minutes
property determines when during the hour that the trigger will fire, possibly multiple
times. All hours are specified in 24-hour format. The value can consist of the following
tokens:
• A single hour value between 0 and 23.
• A range of hours, for example 8-16 means the trigger fires every hour from 8 AM to 4

PM. Hour values and ranges can be concatenated using commas as separators.
• An hour value with an increment, for example 10/2 means the trigger fires during the

hour every 2 hours starting from 10 AM.
• *means the trigger fires during every hour.

156 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Property (as input) Description

months
(required)

A list of month values during which the trigger fires. Can be used in addition to
weekDays or monthDays below to suppress the trigger during certain months. The
month values are 1 for January and 12 for December. In JSON, it has the following
syntax:

"months": {
"month": ["3", "6", "9", "12"]

}

daysType
(required)

Determines how the trigger days are defined:
• WEEKmeans the trigger fires on a weekly pattern defined in weekDays below.
• MONTHmeans the trigger fires on a monthly pattern defined in monthDays below.
• ALLmeans the trigger fires every single day at the time or times defined by the

hours and minutes properties.

weekDays
(conditional)

Specifies a list of days of the week on which the trigger fires, to be repeated every week.
This is required if daysType=WEEK, and ignored otherwise. The day values are 1 for
Sunday and 7 for Saturday. On the designated days, the trigger fires at the time or times
defined by the hours and minutes properties. In JSON, it has the following syntax:

"weekDays": {
"day": ["1", "4", "6"]

}

monthDays
(conditional)

Specifies the days of the month on which the trigger fires, to be repeated every month.
This is required if daysType=MONTH, and ignored otherwise. On the designated days,
the trigger fires at the time or times defined by the hours and minutes properties. The
value can consist of the following tokens:
• A single day value between 1 and 31.
• A range of days, for example 2-5 means the trigger fires during each day starting

from the 2nd to the 5th of the month. Day values and ranges can be concatenated
using commas as separators, for example "1,3,5-22".

• A day value with an increment, for example 1/5 means the trigger fires every 5 days
starting on 1st of the month.

• *means the trigger fires during every day.

misfire

Instruction
(optional)

An integer value that defines the behavior if the trigger did not fire when scheduled. The
values of misfireInstruction are described in the next table. A misfire occurs if
JasperReports Server or its Quartz scheduler component is offline when a trigger was
supposed to happen and run a job. It can also occur if all threads of the scheduler are
busy and the job cannot run when the trigger should fire. When the scheduler restarts or
a thread becomes available again, it checks for any triggers that did not fire on time and
takes action based on the misfireInstruction. The misfire instruction does not
apply if the trigger fires normally but the report encounters an error. The default value is
0 when this property is omitted.

For example, the following calendar trigger should run at 3:30 AM every Monday in every month.

Cloud Software Group, Inc. 157

JasperReports Server REST API Reference

"trigger": {
"calendarTrigger": {

"timezone": "America/Denver",
"startType": 2,
"startDate": "2022-02-22 00:00",
"misfireInstruction": 0,
"minutes": "30",
"hours": "3",
"daysType": "WEEK",
"weekDays": {

"day": ["2"]
},
"months": {

"month": ["1","2","3","4","5","6","7","8","9","10","11","12"]
}

}
}

Choose a misfire policy based on how frequently your job runs and how critical it is. For example, an outage may
last one to two hours, and if a daily report is critical, you may want it to run as soon as the scheduler is able.
However, if a report runs every hour, you may want to ignore missed reports and wait for the next scheduled time.
Note that different policies may have the same effect depending on how the trigger is defined, but also the same
policy may have different effects on different trigger types.

misfireInstruction Description for Calendar Triggers

0 (default) No instruction (same behavior as option -1 below). Does not trigger the job that misfired,
and takes no action. This is the default behavior if no misfireInstruction is defined.
The trigger will fire the next time according to the times and days that were defined.

-1 Ignore misfire policy. Instructs the scheduler that the trigger will never be evaluated for a
misfire situation, and that the scheduler will simply try to fire it as soon as it can, and then
update the trigger as if it had fired at the proper time. This value has the same effect as 0:
take no action and wait for the next calendar trigger.

-999 Called the smart policy. Instructs the scheduler that upon a misfire situation, the custom
updateAfterMisfiremethod will be called on the trigger to determine the misfire
action. In this case, you must define and enable a custom trigger class on the server,
which is beyond the scope of this documentation.

1 Run now: instructs the scheduler to trigger now, which is the time the misfire is detected.
If the outage covers several trigger times, they will each have a misfire, and with this
value, they will each run now.

2 Ignores any missed firings of the trigger (no action is taken for the missed firing), but
updates the trigger to fire at the next scheduled time after now, taking into account any
associated exclusion calendar or end time. The effect is that missed trigger occurrences
will be skipped.

158 Cloud Software Group, Inc.

Chapter 18 The jobs Service

18.3.5 Job Output Properties
The output properties define the folders and filenames for the output files that are generated each time a scheduled
job runs successfully.

Property (as input) Description

repository

Destination
(optional)

A container for the following properties.

id (ignored) An internal ID of the repository destination that has no outside purpose.

version (ignored) An internal version number that has no outside purpose.

saveToRepository
(optional)

A boolean that determines whether the output is written as file resources in the
repository. The default value is true. Use the next two parameters to specify the
location of the files. When false, no output is written to the repository, local file
system, or remote FTP, and the output files are sent only by email if configured.

UsingDefaultReport

OutputFolderURI
(optional)

A boolean that determines if the output is written to the default folder:
/public/Samples/Reports or /public/Samples/Dashboards (these folders can be
configured as described in the JasperReports Server Administrator Guide). By
default, this is false and you must specify the folderURI.

folderURI
(conditional)

Defines a folder in the repository where the output file resources will be saved. This
repository URI is relative to the scope of the user who authenticates the REST call.
This property is required if you do not use the default output folder above.

outputDescription
(optional)

A string that becomes the description of the output file resources in the repository.

sequential

Filenames
(optional)

A boolean that indicates whether output files have the time stamp pattern in the next
parameter appended to the base filename. The default value is false.

timestampPattern
(conditional)

A string containing "yyyyMMddHHmm" tokens to append a timestamp to the base
filename. This takes effect if sequentialFilenames is true. For example, an
hourly trigger might use "yyyyMMdd-HHmm" but a daily trigger only "yyyy-MM-dd".
Characters in the pattern must be valid in file names where the output is being
written (repository, local file system, or remote FTP). There is an implicit "-" (dash)
character added between the base file name and the pattern, for example the
pattern "MM-dd" becomes basename-02-14.pdf.

Cloud Software Group, Inc. 159

JasperReports Server REST API Reference

Property (as input) Description

overwriteFiles
(optional)

A boolean to determine the behavior when a newly generated output file has the
same name as a previous one. When true, the new file will overwrite the old one;
when false, the old file is not overwritten and the new file is not stored, though it will
be sent by email if configured. The default value is true. Use the
sequentialFilenames and timestampPattern to create unique file names if
you wish to store every generated output.

outputLocalFolder
(optional)

Specifies a path in the local file system (of the JasperReports Server host) for
writing output files. The user running the server process must have write permission
in that location. When specified, file system output is always in addition to repository
output, and the output will be written to both the repository and the local folder.

Before setting this property, the server must be configured to allow it. In the file
.../WEB-INF/applicationContext.xml, you must set the enableSaveToHostFS
property to true. However, this setting also enables file system output from the
scheduler user interface for all users, which could be a security risk.

The file names to be written are the same as for the repository, therefore the
baseOutputFilename and sequential pattern must be valid on the host file
system. The file overwrite and sequential filename behavior also apply to file
system output.

outputFTPInfo
(optional)

Contains parameters for writing output files to a remote FTP location. For more
information, see 18.3.6, “FTP Output,” on page 160.

18.3.6 FTP Output
You have the option to specify output to a remote server through FTP (File Transfer Protocol). When specified,
FTP output is always in addition to repository output, and the output will be written to both the repository and the
FTP location. The file names to be written are the same as for the repository, therefore the baseOutputFilename
and sequential pattern must be valid on the FTP file system. The file overwrite and sequential filename behavior
also apply to FTP output.

Specify the FTP server, authentication, remote path, and other FTP settings in the following properties:

Property (as input) Description

outputFTPInfo
(optional)

A container for the following properties, itself contained in repositoryDestination.

type
(optional)

Type of FTP connection requested: ftp (default), ftps, or sftp.

serverName
(optional)

The domain and host name of the FTP server, for example "ftp.example.com".

160 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Property (as input) Description

port
(optional)

Integer value that specifies the port number of the FTP server. The default value depends
on the connection type: ftp = 21, ftps = 990, and sftp = 22.

userName
(conditional)

The login user name for the FTP server.

password
(conditional)

The login password for the given userName on the FTP server.

folderPath
(conditional)

The path of the folder where the job output resources should be created.

implicit
(optional)

Specifies the security mode for FTPS, Implicit if true (default) or Explicit if false. If implicit is
true, the default port is set to 990.

protocol
(optional)

Specifies the secure socket protocol to be used, for example SSL or TLS.

prot
(optional)

Specifies the PROT command for FTP. Supported values:
• C - Clear
• S - Safe (SSL protocol only)
• E - Confidential (SSL protocol only)
• P - Private

pbsz
(optional)

Specifies the protection buffer size: a decimal integer from 0 to (2^32)-1. The default is 0.

sshKey
(conditional)

When using SFTP authentication, store the SSH key file in the repository and specify its
repository URI in this property. For more information about secure files in the repository,
see the JasperReports Server Administrator Guide.

sshPassphrase
(conditional)

When using SFTP authentication, specify the passphrase for the SSH private key file
stored in the repository.

The following example shows a simple use of outputFTPInfo in XML:

<job>
<reportUnitURI>/reports/samples/AllAccounts</reportUnitURI>
<label>MyJob</label>
<description>MyJob description</description>
<baseOutputFilename>WeeklyAccountsReport</baseOutputFilename>
<repositoryDestination>

<folderURI>/reports/samples</folderURI>
<overwriteFiles>true</overwriteFiles>
<sequentialFilenames>false</sequentialFilenames>
<outputFTPInfo>

<serverName>ftpserver.example.com</serverName>
<userName>ftpUser</userName>

Cloud Software Group, Inc. 161

JasperReports Server REST API Reference

<password>ftpPassword</password>
<folderPath>/shared/users/ftpUser</scheduledOutput>

</outputFTPInfo>
</repositoryDestination>
<outputFormats>

<outputFormat>XLS</outputFormat>
<outputFormat>PDF</outputFormat>

</outputFormats>
...

</job>

18.3.7 Job Output Email
When a job runs successfully, the properties in mailNotification specify email recipients for the report output
files. You can specify subject and body content, and you can choose to send output as attachments or links. When a
job fails, no report output is sent but you have the option to configure an error message in 18.3.8, “Job Status
Email,” on page 163.

Property (as input) Description

mailNotification
(optional)

This container and the following properties are optional. When omitted, the report
output is not sent by email.

id (ignored) An internal ID of the mailNotification container that has no outside purpose.

version (ignored) An internal version number that has no outside purpose.

toAddresses
(required)

A list of addresses to which job output emails are sent. This property is required if you
are sending output email.

ccAddresses
(optional)

A list of addresses to which job output emails are CC'd.

bccAddresses
(optional)

A list of addresses to which job output emails are BCC'd.

subject
(optional)

A string that is used as a subject line for all output emails from this job.

messageText
(optional)

A string that is used in the body of output emails for this job, unless HTML output is
selected for the email body below.

162 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Property (as input) Description

resultSendType
(required)

Determines whether output files are attached to the notification email. Each value
has a different behavior and you must set this property based on your other
properties:

SEND - The links to the report output in the repository are appended to the message
body, and no files are attached. This option is valid only if saveToRepository is set
to true in the job descriptor.

SEND_ATTACHMENT - The output files are sent as individual attachments to the
email.

SEND_EMBED - The HTML output is embedded in email body, and any other output
files are sent as individual attachments. This option is valid only if HTML output is
specified in outputFormats for a report.

SEND_ATTACHMENT_ZIP_ALL - The output files are sent as a single zipped
attachment to the email.

SEND_EMBED_ZIP_ALL_OTHERS - The HTML output is embedded in the email
body, and any other output files are sent as a single zipped attachment. This option is
valid only if HTML output is specified in outputFormats for a report.

skipEmptyReports
(optional)

A boolean that suppresses the output email when the report is empty (successful
completion but no content).

skipNotification

WhenJobFails
(ignored)

Two legacy properties that do not affect email notification. Use the properties in the
alert container below to specify failure notifications.

includingStack

TraceWhenJobFails
(ignored)

18.3.8 Job Status Email
The second type of notifications are job success and failure emails specified in the alert container. These message
indicate whether the job ran successfully or not, and contain an error message in case of failure. They do not
include the report output in case of success.

Regardless of any settings here, the scheduler sends completion status to the job owner and the administrators of
the same organization upon each job trigger, assuming those users have email addresses defined in their profiles.
You can change this behavior, as described in the configuration chapter of the JasperReports Server Administrator
Guide. The scheduler also sends a server message in case of job failure (visible to administrators in View >
Messages).

Property (as input) Description

alert
(optional)

This container and the following properties are optional. When omitted, the server
sends only the default notifications listed above.

Cloud Software Group, Inc. 163

JasperReports Server REST API Reference

Property (as input) Description

id (ignored) An internal ID of the alert container that has no outside purpose.

version (ignored) An internal version number that has no outside purpose.

jobState
(required)

Selects which job status events trigger an email notification: ALL, FAIL_ONLY,
SUCCESS_ONLY, or NONE. This property is required if you are sending status email,
however NONE is the same as not specifying alert.

toAddresses
(required)

A list of addresses to which job status emails are sent. This property is required if you
are sending status email.

subject
(optional)

A string that is used as a subject line for all status email from this job.

messageText
(optional)

A string that is used in the body of an email for a successful job completion.

messageTextWhen

JobFails (optional)
A string that is used in the body of an email when the job fails. Additional information can
be added to failure notifications with the following two properties.

includingReport

JobInfo (optional)
Appends the job info (label and id) to the email body.

includingStack

Trace (optional)
In the case of a job failure, appends the stack trace to the email body. This includes the
exception that caused the report to fail.

18.4 Creating a Job
Contrary to REST conventions, the jobs service uses the PUT method to create a job and the POST method to
modify a job. To schedule a report, report option, or dashboard, specify its properties in a job descriptor and use
the PUT method of the jobs service. Specify the repository path to the resource being scheduled inside the job
descriptor.

The user who is authenticated when making this request becomes the owner of the job that is created--this affects
who can view the job and who receives notifications.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/

Content-Type Content

application/job+xml

application/job+json

A well-formed XML or JSON job descriptor as described in 18.3, “The job
Descriptor,” on page 149. You need only specify the relevant properties in
the job descriptor; do not include any null properties.

164 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Options

accept: application/job+xml

accept: application/job+json

Return Value on Success Typical Return Values on Failure

201 Created – The body contains the job descriptor of
the newly created job. It is similar to the one that was
sent but now contains the jobID for the new job and
other default property values.

404 Not Found –When the report specified in the job
descriptor is not found in the server.

The following example shows a basic job descriptor in JSON:

{
"label": "Sample Job Name",
"description": "Sample description",
"trigger": {

"simpleTrigger": {
"timezone": "America/Los_Angeles",
"startType": 2,
"startDate": "2019-04-21 10:00",
"occurrenceCount": 1,
"recurrenceInterval": 1,
"recurrenceIntervalUnit": "DAY"

}
},
"source": {

"reportUnitURI": "/adhoc/topics/Cascading_multi_select_topic",
"parameters": {

"parameterValues": {
"Country_multi_select": ["Mexico"],
"Cascading_name_single_select": ["Chin-Lovell Associates"],
"Cascading_state_multi_select": ["DF","Jalisco","Mexico"]

}
}

},
"baseOutputFilename": "Cascading_multi_select_report",
"outputTimeZone": "America/Los_Angeles",
"repositoryDestination": {

"saveToRepository": true,
"folderURI": "/temp",
"overwriteFiles": true,
"sequentialFilenames": false

},
"outputFormats": {

"outputFormat": ["PDF", "XLS"]
}

}

Cloud Software Group, Inc. 165

JasperReports Server REST API Reference

The following example shows a basic job descriptor in XML. As of release 7.5, input values must use the special
type syntax below to pass strings, integers, and dates. The collection element is required even for a single value,
and the item element is always of type string, as shown below:

<job>
<label>Sample Job Name</label>
<description>Sample description</description>
<simpleTrigger>

<timezone>America/Los_Angeles</timezone>
<startType>2</startType>
<startDate>2019-04-21 10:00</startDate>
<occurrenceCount>1</occurrenceCount>
<recurrenceInterval>1</recurrenceInterval>
<recurrenceIntervalUnit>DAY</recurrenceIntervalUnit>

</simpleTrigger>
<source>

<reportUnitURI>/adhoc/topics/Cascading_multi_select_topic</reportUnitURI>
<parameters>

<parameterValues>
<entry>

<key>StringParameter</key>
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:-type="collection">
<item xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:type="xs:string">Mexico</item></value>
</entry>
<entry>

<key>IntegerParameter</key>
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:-type="collection">
<item xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:type="xs:string">123456</item></value>
</entry>
<entry>

<key>DateParameter</key>
<value xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:-type="collection">
<item xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:type="xs:string">2021-12-31</item></value>
</entry>

</parameterValues>
</parameters>

</source>
<baseOutputFilename>Cascading_multi_select_report</baseOutputFilename>
<outputTimeZone>America/Los_Angeles</outputTimeZone>
<repositoryDestination>

<saveToRepository>true</saveToRepository>
<folderURI>/temp</folderURI>
<overwriteFiles>true</overwriteFiles>
<sequentialFilenames>false</sequentialFilenames>

</repositoryDestination>
<outputFormats>

<outputFormat>PDF</outputFormat>
<outputFormat>XLS</outputFormat>

</outputFormats>
</job>

166 Cloud Software Group, Inc.

Chapter 18 The jobs Service

If needed, you can configure the server to accept the other parameters and keep them with the newly created job,
but the default is to only store the required properties. For more information, see 18.11, “Storing Additional Job
Properties,” on page 173.

The response of the PUT request is the descriptor of the newly created job, similar to the result of the GET request
shown in 18.2, “Viewing a Job Definition,” on page 146. It includes all the properties of the job descriptor,
including the server-assigned ID and all the null properties.

18.5 Viewing Job Status
The following method returns the current state of a job:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/state/

Return Value on Success Typical Return Values on Failure

200 OK – Body contains the state descriptor. 404 Not Found –When the specified <jobID> does not
exist or the job is no longer active.

The following example shows a typical response in XML:

<state>
<nextFireTime>2022-03-29T18:01:00-07:00</nextFireTime>
<previousFireTime>2022-03-28T18:01:00-07:00</previousFireTime>
<value>NORMAL</value>

</state>

Either of the fire times may be missing, for example there is no previousFireTime if the job has not fired yet, or
there is no nextFireTime if the job is currently running its last trigger time. The value property can be: NORMAL,
EXECUTING, PAUSED, or some error state.

18.6 Modifying a Job
Contrary to REST conventions, the jobs service uses the PUT method to create a job and the POST method to
modify a job. There are two POST methods for editing the properties of a job. The first method is simpler but the
second method is more versatile.

The first method replaces the entire definition of a single job with a new descriptor. To modify an existing job
definition, use the GET method to read its job descriptor, modify the desired properties, then use the following
POST method:

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/

Cloud Software Group, Inc. 167

JasperReports Server REST API Reference

Content-Type Content

application/job+xml

application/job+json

A complete, well-formed XML or JSON job descriptor, as described in 18.3,
“The job Descriptor,” on page 149. It may include null properties and other
default values that are ignored when using the descriptor as input, as in the
result of 18.2, “Viewing a Job Definition,” on page 146.

Options

accept: application/job+xml

accept: application/job+json

Return Value on Success Typical Return Values on Failure

200 OK – The response includes the complete job
descriptor updated with the submitted changes.

404 Not Found –When the specified <jobID> does not
exist or the job is no longer active.

The second POST method lets you modify individual properties in one or more existing jobs. See the examples
below:

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs?<arguments>

Argument Type/Value Description

id jobID string Can be used multiple times to create a list of job IDs to update.

replace
Trigger
IgnoreType

true / false Specify true when you send a new trigger type. By default, this is false, and
the trigger can be updated but not changed to a different type.

Content-Type Content

application/json

application/xml

A well-formed jobModel descriptor, which is a fragment of a job descriptor
containing only the properties to be updated. See the examples below.

Options

accept: application/json

accept: application/xml

Return Value on Success Typical Return Values on Failure

200 OK – The array or list of jobs that were modified. 404 Not Found –When the specified <jobID> does not
exist or the job is no longer active.

168 Cloud Software Group, Inc.

Chapter 18 The jobs Service

In this usage, the POST method allows you to send a partial job description, called a jobModel, that contains any
subset of the job descriptor's properties. This update applies to one or more jobs whose ID is specified by the id
argument. For example, the following simple request will update the job description in several jobs:

POST http://localhost:8080/jasperserver-pro/rest_v2/jobs?id=3798&id=3802&id=3806

<jobModel>
<description>This description updated in bulk</description>

</jobModel>

The jobModel provides two mechanisms to perform more complex updates:
• You can describe nested structures by using the nestedNameModel equivalent element. Like the jobModel,

nested model elements contain only the subset that you want to modify. Thus you could change one value
within a parameter, the end date within a schedule, or an email address within a notification.

• You can remove the definition of an element by using the isPropertyNameModified element and giving it
the value true. This indicates that the element's new value is null, and thus that the element should be removed
altogether from the job descriptor.

In the following example, the description will be removed from the target jobs, the trigger's time zone will be
modified, and the file name will be changed. Note that XML descriptors do not use the trigger container and
thus do not have a triggerModel container:

JSON: {
"label":"Modified label",
"isDescriptionModified":true,
"triggerModel":{

"simpleTriggerModel":{
"timezone":"Europe/Helsinki",

}
}
"baseOutputFilename":"NewOutputName"

}

XML: <jobModel>
<label>Modified label</label>
<isDescriptionModified>true</isDescriptionModified>
<simpleTriggerModel>

<timezone>Europe/Helsinki</timezone>
</simpleTriggerModel>
<baseOutputFilename>NewOutputName</baseOutputFilename>

</jobModel>

The response has an array or list of jobId elements that were updated:

JSON: {"jobId":[8322,8326]}

XML: <jobIdList>
<jobId>8322</jobId>
<jobId>8326</jobId>

</jobIdList>

Cloud Software Group, Inc. 169

JasperReports Server REST API Reference

18.7 Pausing Jobs
The following method pauses currently scheduled job execution, also called disabled in the user interface. Pausing
keeps the job schedule and all other details but prevents the job from running. It does not delete the job.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/pause/

Content-Type Content

application/xml

application/json

An array or list of job IDs to pause. See the example below. If the body of the
request is empty, or the list is empty, all jobs in the scheduler will be paused.

Options

accept: application/json

accept: application/xml

Return Value on Success Typical Return Values on Failure

200 OK – The array or list of jobs that were paused.
Jobs specified with a <jobID> that doesn't exist are
ignored without error.

The request and the response have the same format, an array or list of jobId elements:

JSON: {"jobId":[1236,1240,1244,1248]}

XML: <jobIdList>
<jobId>1236</jobId>
<jobId>1240</jobId>
<jobId>1244</jobId>
<jobId>1248</jobId>

</jobIdList>

18.8 Resuming Jobs
Use the following method to resume any or all paused jobs in the scheduler. Resuming a job means that any
defined trigger in the schedule that occurs after the time it is resumed will cause the report to run again. Missed
triggers that occur before the job is resumed are never run.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/resume/

170 Cloud Software Group, Inc.

Chapter 18 The jobs Service

Content-Type Content

application/xml

application/json

An array or list of job IDs to resume. See the example below. If the body of the
request is empty, or the list is empty, all paused jobs in the scheduler will
resume.

Options

accept: application/json

accept: application/xml

Return Value on Success Typical Return Values on Failure

200 OK – The array or list of jobs that were resumed.
Jobs specified with a <jobID> that doesn't exist are
ignored without error.

The request and the response have the same format, an array or list of jobId elements:

JSON: {"jobId":[1236,1240]}

XML: <jobIdList>
<jobId>1236</jobId>
<jobId>1240</jobId>

</jobIdList>

18.9 Restarting Failed Jobs
Use the following method to rerun failed jobs in the scheduler. For each job to be restarted, the scheduler creates an
immediate single-run copy of job, to replace the one that failed. Therefore, all jobs listed in the request body will
run once immediately after issuing this command. The single-run copies have a misfire policy set so that they do
not trigger any further failures (MISFIRE_INSTRUCTION_IGNORE_MISFIRE_POLICY). If the single-run copies fail
themselves, no further attempts are made automatically.

Method URL

POST http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/restart/

Content-Type Content

application/xml

application/json

An array or list of job IDs to restart. See the example below.

Options

accept: application/json

accept: application/xml

Cloud Software Group, Inc. 171

JasperReports Server REST API Reference

Return Value on Success Typical Return Values on Failure

200 OK – The array or list of jobs that were restarted.

The request and the response have the same array or list of jobId elements:

JSON: {"jobId":[8320,8324]}

XML: <jobIdList>
<jobId>8320</jobId>
<jobId>8324</jobId>

</jobIdList>

18.10 Deleting Jobs
Use the DELETE method to remove jobs from the scheduler. The first form deletes a single job:

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/<jobID>/

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the ID of the deleted job. 404 Not Found –When the specified job is not found in
the server or the job is no longer active.

The second form deletes multiple jobs:

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs?<arguments>

Argument Type/Value Description

id Multiple String Enter as many job IDs as you want to delete, for example:

?id=5594&id=5640&id=5762

Options

accept: application/xml

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a list of deleted jobs, as shown
in the example below.

The list of deleted jobs in the response has an array or list of jobId elements:

172 Cloud Software Group, Inc.

Chapter 18 The jobs Service

JSON: {"jobId":[5594,5640,5762]}

XML: <jobIdList>
<jobId>5594</jobId>
<jobId>5640</jobId>
<jobId>5762</jobId>

</jobIdList>

18.11 Storing Additional Job Properties
When sending a job descriptor as described in Chapter 18, “The jobs Service,” on page 143, the server does not
store all properties in the descriptor, only the ones needed to define the job. If you wish to keep any additional
parameters in the newly created job, you can configure the server so that all valid job properties submitted to the
jobs service are stored.

Locate the following file and modify the configuration bean. After saving the new configuration, you must restart
the server for the change to take effect.

Storing Additional Job Parameters

Configuration File

.../WEB-INF/applicationContext-cascade.xml

Bean Description

allowExtraReportParameters The default value is false, and only essential job properties are
stored when creating a job.

When set to true, all valid job descriptor properties sent when
creating the job are stored in the newly created job.

Cloud Software Group, Inc. 173

JasperReports Server REST API Reference

174 Cloud Software Group, Inc.

CHAPTER 19 THE calendars SERVICE
The scheduler allows a job to be defined with a list of excluded days or times when you do not want the job to run.
For example, if you have a report scheduled to run every business day, you may not want to run it on holidays. The
list of excluded days and times is called a calendar, and a calendar may be defined as a list of annual dates, a
weekly or monthly pattern, or a cron expression.

The rest_v2/jobs/calendars service defines any number of exclusion calendars that are stored in the repository.
When scheduling a report, reference the name of the calendar to exclude, and the scheduler automatically calculates
the correct days to trigger the report.

The scheduler also allows you to modify an exclusion calendar and update all of the report jobs that used it.
Therefore, you can update the calendar of holidays every year and not need to modify any report jobs.

This chapter includes the following sections:
• Creating an Exclusion Calendar
• Listing All Calendar Names
• Viewing an Exclusion Calendar
• Updating an Exclusion Calendar
• Deleting an Exclusion Calendar
• Error Messages

19.1 Creating an Exclusion Calendar
The PUT method creates a named exclusion calendar that you can use when scheduling reports. Specify a unique
name for the calendar in the URL. The body of the request determines the type of the calendar, as shown in the
examples below the table.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>

Content-Type Content

application/xml
application/json

A well-formed XML or JSON calendar descriptor (see examples below).

Cloud Software Group, Inc. 175

JasperReports Server REST API Reference

Return Value on Success Typical Return Values on Failure

200 OK – The calendar is created, and the body of the
response contains the calendar definition, similar to the
one that was sent.

400 Bad Request – When the calendar name already
exists or the descriptor is missing a parameter (the error
message describes the missing parameter).

The following examples show the types of exclusion calendars that you can add to the scheduler:
• Annual calendar – A list of days that you want to exclude every year.

JSON:

{
"calendarType":"annual",
"description":"Annual calendar description",
"excludeDays": ["2021-03-20", "2021-03-21", "2021-03-22"],
"timeZone":"GMT+03:00"

}

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>annual</calendarType>
<description>Annual calendar description</description>
<timeZone>GMT+03:00</timeZone>
<excludeDays>
<excludeDay>2021-03-20</excludeDay>
<excludeDay>2021-03-21</excludeDay>
<excludeDay>2021-03-22</excludeDay>

</excludeDays>
</reportJobCalendar>

• Cron calendar – Defines the days and times to exclude as a cron expression.
JSON:

{
"calendarType":"cron",
"description":"Cron calendar description",
"cronExpression":"0 30 10-13 ? * WED,FRI",
"timeZone":"GMT+03:00"

}

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>cron</calendarType>
<description>Cron calendar description</description>
<cronExpression>0 30 10-13 ? * WED,FRI</cronExpression>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

176 Cloud Software Group, Inc.

Chapter 19 The calendars Service

• Daily calendar – Defines a time range to exclude every day.
JSON:

{
"calendarType":"daily",
"description":"Daily calendar description",
"invertTimeRange":false,
"rangeEndingCalendar":"2020-20T14:44:37.353+03:00",
"rangeStartingCalendar":"2020-03-20T14:43:37.353+03:00",
"timeZone":"GMT+03:00"

}

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>daily</calendarType>
<description>Daily calendar description</description>
<invertTimeRange>false</invertTimeRange>
<rangeEndingCalendar>2020-03-20T14:44:37.353+03:00</rangeEndingCalendar>
<rangeStartingCalendar>2020-03-20T14:43:37.353+03:00</rangeStartingCalendar>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Holiday calendar – Defines a set of days to exclude that can be updated every year.
JSON:

{
"calendarType":"holiday",
"description":"Holiday calendar (observed)",
"excludeDays": [

"2020-01-01",
"2020-01-20",
"2020-02-17",
"2020-05-25",
"2020-07-03",
"2020-09-07",
"2020-10-12",
"2020-11-11",
"2020-11-26",
"2020-12-25"

],
"timeZone":"GMT+03:00"

}

Cloud Software Group, Inc. 177

JasperReports Server REST API Reference

XML:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reportJobCalendar>
<calendarType>holiday</calendarType>
<description>Holiday calendar (observed)</description>
<excludeDays>
<excludeDay>2021-03-20</excludeDay>
<excludeDay>2020-01-01</excludeDay>
<excludeDay>2020-01-20</excludeDay>
<excludeDay>2020-02-17</excludeDay>
<excludeDay>2020-05-25</excludeDay>
<excludeDay>2020-07-03</excludeDay>
<excludeDay>2020-09-07</excludeDay>
<excludeDay>2020-10-12</excludeDay>
<excludeDay>2020-11-11</excludeDay>
<excludeDay>2020-11-26</excludeDay>
<excludeDay>2020-12-25</excludeDay>

</excludeDays>
<timeZone>GMT+03:00</timeZone>

</reportJobCalendar>

• Weekly calendar – Defines a set of days to be excluded each week.
JSON:

{
"calendarType": "weekly",
"description": "Weekly calendar description",
"excludeDaysFlags": [

true, /*Sunday*/
false, /*Monday*/
false, /*Tuesday*/
false, /*Wednesday*/
false, /*Thursday*/
false, /*Friday*/
false /*Saturday*/

],
"timeZone": "GMT+03:00"

}

178 Cloud Software Group, Inc.

Chapter 19 The calendars Service

• Monthly calendar – Defines the dates to exclude every month.
JSON:

{
"calendarType":"monthly",
"description":"Monthly calendar description",
"excludeDaysFlags": [

true, /* 1*/
false, /* 2*/
false, /* 3*/
false, /* 4*/
false, /* 5*/
false, /* 6*/
false, /* 7*/
false, /* 8*/
false, /* 9*/
false, /*10*/
false, /*11*/
false, /*12*/
false, /*13*/
false, /*14*/
false, /*15*/
false, /*16*/
false, /*17*/
false, /*18*/
false, /*19*/
false, /*20*/
false, /*21*/
false, /*22*/
false, /*23*/
false, /*24*/
false, /*25*/
false, /*26*/
false, /*27*/
false, /*28*/
false, /*29*/
false, /*30*/
false /*31*/

],
"timeZone":"GMT+03:00"

}

19.2 Listing All Calendar Names
The following method returns the list of all calendar names that were added to the scheduler.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/?<argument>

Cloud Software Group, Inc. 179

JasperReports Server REST API Reference

Argument Type/Value Description

calendar
Type

optional string A type of calendar to return: annual, cron, daily, holiday, monthly, or weekly.
You may specify only one calendarType parameter. When calendarType isn't
specified, all calendars names are returned. If calendarType has an invalid
value, an empty collection is returned.

Return Value on Success Typical Return Values on Failure

200 OK – Body contains a list of calendar names. 401 Unauthorized

The list of calendar names in the result has the following format in XML:

<calendarNameList>
<calendarName>name1</calendarName>
<calendarName>name2</calendarName>

</calendarNameList>

19.3 Viewing an Exclusion Calendar
The following method takes the name of an exclusion calendar and returns the definition of the calendar:

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>/

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the definition of the
requested calendar.

404 Not Found –When the specified calendar name
does not exist.

The calendar descriptor in a successful response has the following JSON format:
• Annual calendar:

{
"calendarType": "annual",
"description": "Annual calendar description",
"timeZone": "GMT+03:00",
"excludeDays": [

"2012-03-20",
"2012-03-21",
"2012-03-22"

]
}

• Cron calendar:

{
"calendarType": "cron",

180 Cloud Software Group, Inc.

Chapter 19 The calendars Service

"description": "Cron calendar description",
"timeZone": "GMT+03:00",
"excludeDays": null,
"cronExpression": "0 30 10-13 ? * WED,FRI"

}

• Daily calendar:

{
"calendarType": "daily",
"description": "Daily calendar description",
"timeZone": "GMT+03:00",
"excludeDays": null,
"rangeStartingCalendar": 1332243817353,
"rangeEndingCalendar": 1332243877353,
"invertTimeRange": false

}

• Holiday calendar:

{
"calendarType": "holiday",
"description": "Holiday calendar (observed)",
"timeZone": "GMT+03:00",
"excludeDays": [

"2020-01-01",
"2020-01-20",
"2020-02-17",
"2020-05-25",
"2020-07-03",
"2020-09-07",
"2020-10-12",
"2020-11-11",
"2020-11-26",
"2020-12-25"

]
}

• Weekly calendar (day flags are Sunday to Saturday):

{
"calendarType": "weekly",
"description": "Weekly calendar description",
"excludeDays": null,
"excludeDaysFlags": [

true,
false,
false,
false,
false,
false,
false

],
"timeZone":"GMT+03:00"

}

• Monthly calendar (day flags are dates from 1 to 31):

Cloud Software Group, Inc. 181

JasperReports Server REST API Reference

{
"calendarType":"monthly",
"description":"Monthly calendar description",
"excludeDaysFlags": [

true,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
false

],
"timeZone":"GMT+03:00"

}

19.4 Updating an Exclusion Calendar
Use the PUT method to update a calendar that already exists, with the option to update all the jobs that use it.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>?<args>

Argument Type/Value Description

replace? true Set to true to modify an existing calendar with the given name. When this
argument is omitted or false, an error is returned (see below).

182 Cloud Software Group, Inc.

Chapter 19 The calendars Service

update
Triggers?

true / false Whether or not to update existing triggers that reference this calendar. When
triggers are updated, the new calendar is in effect on existing scheduled
reports.

Content-Type Content

application/xml
application/json

A well-formed XML or JSON calendar descriptor. See 19.1, “Creating an
Exclusion Calendar,” on page 175 for examples of each type of calendar.
You can specify any type of exclusion calendar such as weekly, monthly, or
cron, regardless of the current type.

Return Value on Success Typical Return Values on Failure

200 OK – The calendar is updated, and the body of the
response contains the new calendar definition, similar to
the one that was sent.

400 Bad Request – When the replace parameter is
false or omitted, or the calendar definition is not valid.

404 Not Found –When the specified calendar name
does not exist.

For example, you can make the following request to replace the calendar named weeklyCalendar. Note that the
calendar name does not change, and it will contain a daily calendar, which is not good naming practice.

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/

weeklyCalendar?replace=true&updateTriggers=true

Content-Type=application/json

Body {
"calendarType":"daily",
"description":"test description",
"invertTimeRange":false,
"rangeEndingCalendar":"2012-03-20T14:44:37.353+03:00",
"rangeStartingCalendar":"2012-03-20T14:43:37.353+03:00",
"timeZone":"GMT+03:00"

}

If the replace parameter is false or omitted, the error is as follows:

Response 400 Bad Request

Body {
"message": "Resource 'weeklyCalendar' already exists",
"errorCode": "resource.already.exists",
"parameters":
[

"weeklyCalendar"
]

}

19.5 Deleting an Exclusion Calendar
Use the following method to delete a calendar by name.

Cloud Software Group, Inc. 183

JasperReports Server REST API Reference

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/<calendarName>/

Return Value on Success Typical Return Values on Failure

200 OK – The calendar has been deleted. 404 Not Found –When the specified calendar name
does not exist.

19.6 Error Messages
When creating or updating a calendar, the error messages can be expected in the following cases.
• Creating an annual calendar that is missing a mandatory parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/annualCalendar

Content-Type=application/json

Body {
"calendarType":"annual",
"description":"Annual calendar description",
"timeZone":"GMT+03:00"

}

Expected Reply:

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.excludeDays' not found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.excludeDays"
]

}

• Creating a cron calendar that is missing a mandatory parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/cronCalendar

Content-Type=application/json

Body {
"calendarType":"cron",
"description":"Cron calendar description",
"timeZone":"GMT+03:00"

}

Expected Reply:

184 Cloud Software Group, Inc.

Chapter 19 The calendars Service

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.cronExpression' not

found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.cronExpression"
]

}

• Creating a daily calendar that is missing the mandatory start-range parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/dailyCalendar

Content-Type=application/json

Body {
"calendarType":"daily",
"description":"Daily calendar description",
"invertTimeRange":false,
"rangeEndingCalendar":"2021-03-20T14:44:37.353+03:00",
"timeZone":"GMT+03:00"

}

Expected Reply:

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.rangeStartingCalendar' not

found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.rangeStartingCalendar"
]

}

• Creating a daily calendar that is missing the mandatory end-range parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/dailyCalendar

Content-Type=application/json

Body {
"calendarType":"daily",
"description":"Daily calendar description",
"invertTimeRange":false,
"rangeStartingCalendar":"2012-03-20T14:43:37.353+03:00",
"timeZone":"GMT+03:00"

}

Expected Reply:

Cloud Software Group, Inc. 185

JasperReports Server REST API Reference

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.rangeEndingCalendar' not

found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.rangeEndingCalendar"
]

}

• Creating a holiday calendar that is missing a mandatory parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/holidayCalendar

Content-Type=application/json

Body {
"calendarType":"holiday",
"description":"Holiday calendar description",
"timeZone":"GMT+03:00"

}

Expected Reply:

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.excludeDays' not found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.excludeDays"
]

}

• Creating a weekly calendar that is missing a mandatory parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/weeklyCalendar

Content-Type=application/json

Body {
"calendarType":"weekly",
"description":"Weekly calendar description",
"timeZone":"GMT+03:00"

}

Expected Reply:

Response 400 Bad Request

186 Cloud Software Group, Inc.

Chapter 19 The calendars Service

Body {
"message": "mandatory parameter 'reportJobCalendar.excludeDaysFlags' not

found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.excludeDaysFlags"
]

}

• Creating a monthly calendar that is missing a mandatory parameter:

Request PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/jobs/calendars/monthlyCalendar

Content-Type=application/json

Body {
"calendarType":"monthly",
"description":"Monthly calendar description",
"timeZone":"GMT+03:00"

}

Expected Reply:

Response 400 Bad Request

Body {
"message": "mandatory parameter 'reportJobCalendar.excludeDaysFlags' not

found",
"errorCode": "mandatory.parameter.error",
"parameters":
[

"reportJobCalendar.excludeDaysFlags"
]

}

Cloud Software Group, Inc. 187

JasperReports Server REST API Reference

188 Cloud Software Group, Inc.

CHAPTER 20 THE queryExecutor SERVICE
In addition to running reports, JasperReports Server exposes queries that you can run through the rest_
v2/queryExecutor service. The only resource that supports these queries is a Domain.

Use the GET method to specify the query string in the request as an argument.

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor/path/to/Domain/?q=<query>

Argument Type/Value Description

q Required
String

The query string is a special format that references the fields and measures
exposed by the Domain. To write this query, you must have knowledge of the
Domain schema that is not available through the REST services. See below.

Options

accept: application/xml (default)

accept: application/json

Accept-Language: <locale>, <relativeQualityFactor>; for example en_US, q=0.8;

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the data that is the result of
the query. See the format of the data below.

404 Not Found –When the specified Domain does not
exist.

If the query is too large to fit in the argument in the URL, use the POST method to send it as request content:

Method URL

POST http://<host>:<port>/jasperserver-pro/rest_v2/queryExecutor/path/to/Domain/

Cloud Software Group, Inc. 189

JasperReports Server REST API Reference

Content-Type Content

application/xml The query string is a special format that references the fields and measures
exposed by the Domain. To write this query, you must have knowledge of the
Domain schema that is not available through the REST services. See below.

Options

accept: application/xml (default)

accept: application/json

Accept-Language: <locale>, <relativeQualityFactor>; for example en_US, q=0.8;

Return Value on Success Typical Return Values on Failure

200 OK – The body contains the data that is the result of
the query. See the format of the data below.

404 Not Found –When the specified Domain does not
exist.

The following example show the format of a query in XML:

<query>
<queryFields>
<queryField id="expense_join_store.ej_store_store_city"/>
<queryField id="expense_join_store.ej_store_store_country"/>
<queryField id="expense_join_store.ej_store_store_name"/>
<queryField id="expense_join_store.ej_store_store_state"/>
<queryField id="expense_join_store.ej_store_store_street_address"/>

</queryFields>
<queryFilterString>expense_join_store.ej_store_store_country == 'USA'

 and expense_join_store.ej_store_store_state == 'CA'
</queryFilterString>

</query>

And the following sample shows the result of query. In order to optimize the size of the response, rows are
presented as sets of values without the column names repeated for each row. The column IDs appear at the top of
the result, as shown in the following example. As with the query, the result requires knowledge of the Domain
schema to identify the human-readable column names.

<queryResult>
<names>
<name>expense_join_account.ej_account_account_description</name>
<name>expense_join_account.ej_expense_fact_account_id</name>
<name>expense_join_account.ej_account_account_parent</name>
<name>expense_join_account.ej_account_account_rollup</name>
<name>expense_join_account.ej_account_account_type</name>
<name>expense_join_account.ej_account_Custom_Members</name>
<name>expense_join.ej_expense_fact_amount</name>
<name>expense_join_store.ej_store_store_type</name>
<name>expense_join_store.ej_store_store_street_address</name>
<name>expense_join_store.ej_store_store_city</name>
<name>expense_join_store.ej_store_store_state</name>
<name>expense_join_store.ej_store_store_postal_code</name>
<name>expense_join_store.sample_time</name>

</names>

190 Cloud Software Group, Inc.

Chapter 20 The queryExecutor Service

<values>
<row>

<value xsi:type="xs:string">Marketing</value>
<value xsi:type="xs:int">4300</value>
<value xsi:type="xs:int">4000</value>
<value xsi:type="xs:string">+</value>
<value xsi:type="xs:string">Expense</value>
<value xsi:nil="true"/>
<value xsi:type="xs:double">1884.0000</value>
<value xsi:type="xs:dateTime">1997-01-01T04:05:06+02:00</value>
<value xsi:type="xs:string">HeadQuarters</value>
<value xsi:type="xs:string">1 Alameda Way</value>
<value xsi:type="xs:string">Alameda</value>
<value xsi:type="xs:string">CA</value>
<value xsi:type="xs:int">94502</value>
<value xsi:type="xs:string">USA</value>
<value xsi:type="xs:time">04:05:06+02:00</value>

</row>
...

</values>
</queryResult>

Both date-only and timestamp fields are given in the ISO date-time format such as 1997-01-
01T04:05:06+02:00.

For database columns that store a time and date that includes a time zone, such as "timestamp with time
zone" in PostgreSQL, the result is not guaranteed to be in the same time zone as stored in the database.
These dates and times are converted to the server's time zone.

Cloud Software Group, Inc. 191

JasperReports Server REST API Reference

192 Cloud Software Group, Inc.

CHAPTER 21 THE caches SERVICE
The rest_v2/caches service allows you to clear the caches used by virtual data sources. Virtual data sources use the
Teiid engine that lets you combine data from several data sources such as JDBC, JNDI, and several flavors of big
data. In order to join the data, the Teiid engine uses an internal cache to store data. You can use this service to clear
this cache, for example after updating your data sources.

For now this service provides only cache deletion for virtual data sources.

Method URL

DELETE http://<host>:<port>/jasperserver-pro/rest_v2/caches/vds/

Return Value on Success Typical Return Values on Failure

204 No Content – There is nothing to return. 404 Not Found –When the specified cache does not
exist.

Cloud Software Group, Inc. 193

JasperReports Server REST API Reference

194 Cloud Software Group, Inc.

CHAPTER 22 THE organizations SERVICE

This section describes functionality that can be restricted by the software license for JasperReports Server. If
you don’t see some of the options described in this section, your license may prohibit you from using them. To
find out what you're licensed to use, or to upgrade your license, contact Jaspersoft.

The rest_v2/organizations service provides methods that allow you to list, view, create, modify, and delete
organizations (also known as tenants). Search functionality allows you to find organizations by name and retrieve
hierarchies of organizations.

Because the organization ID is used in the URL, this service can operate only on organizations whose ID is less
than 100 characters long and does not contain spaces or special symbols. As with resource IDs, the organization ID
is permanent and cannot be modified for the life of the organization.

Only administrative users may access the organizations service. System admins (superuser) can operate on top-
level organizations, and organization admins (jasperadmin) can operate on their own organization or any sub-
organizations.

This chapter includes the following sections:
• Searching for Organizations
• Viewing an Organization
• Creating an Organization
• Modifying Organization Properties
• Setting the Theme of an Organization
• Deleting an Organization

22.1 Searching for Organizations
The GET method without any organization ID searches for organizations by ID, alias, or display name. If no search
is specified, it returns a list of all organizations. Searches and listings start from but do not include the logged-in
user’s organization or the specified base (rootTenantId).

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/organizations?<arguments>

Cloud Software Group, Inc. 195

JasperReports Server REST API Reference

Argument Type Description

q Optional
String

Specify a string or substring to match the organization ID, alias, or name of
any organization. The search is not case sensitive. Only the matching
organizations are returned in the results, regardless of their hierarchy.

include
Parents

Optional
Boolean

When used with a search, the result will include the parent hierarchy of each
matching organization. When not specified, this argument is false by default.

rootTenantId Optional
String

Specifies an organization ID as a base for searching and listing child
organizations. The base is not included in the results. Regardless of this
base, the tenantFolderURI values in the result are always relative to the
logged-in user’s organization. When not specified, the default base is the
logged-in user’s organization.

sortBy Optional
String

Specifies a sort order for results. When not specified, lists of organizations
are in the order that they were created. The possible values are:

name – Sort results alphabetically by organization name.

alias – Sort results alphabetically by organization alias.

id – Sort results alphabetically by organization ID.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all
organizations in the result.

204 No Content – The search did not return any
organizations.

The following example shows a search for an organization and its parent hierarchy:
GET http://localhost:8080/jasperserver-pro/rest_v2/organizations?q=acc&includeParents=true

This request has the following response, as viewed by superuser at the root of the organization hierarchy:

<organizations>
<organization>
<alias>Finance</alias>
<id>Finance</id>
<parentId>organizations</parentId>
<tenantDesc></tenantDesc>
<tenantFolderUri>/organizations/Finance</tenantFolderUri>
<tenantName>Finance</tenantName>
<tenantUri>/Finance</tenantUri>
<theme>default</theme>

</organization>

196 Cloud Software Group, Inc.

Chapter 22 The organizations Service

<organization>
<alias>Accounts</alias>
<id>Accounts</id>
<parentId>Finance</parentId>
<tenantDesc></tenantDesc>
<tenantFolderUri>/organizations/Finance/organizations/Accounts</tenantFolderUri>
<tenantName>Accounts</tenantName>
<tenantUri>/Finance/Accounts</tenantUri>
<theme>default</theme>

</organization>
</organizations>

22.2 Viewing an Organization
The GET method with an organization ID retrieves a single descriptor containing the list of properties for the
organization. When you specify an organization, use its unique ID, not its path.

Method URL

GET http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
organization.

404 Not Found –When the ID does not match any
organization. The content includes an error message.

403 Forbidden –When the logged-in user does not
have permission to view the given organization

The organization descriptor is identical to the one returned when searching or listing organization, but only a single
descriptor is ever returned. The following example shows the descriptor in JSON format:

{
"id":"Finance",
"alias":"Finance",
"parentId":"organizations",
"tenantName":"Finance",
"tenantDesc":" ",
"tenantNote":null,
"tenantUri":"/Finance",
"tenantFolderUri":"/organizations/Finance",
"theme":"default"

}

Cloud Software Group, Inc. 197

JasperReports Server REST API Reference

22.3 Creating an Organization
To create an organization, put all information in an organization descriptor, and include it in a POST request to the
organizations service, with no ID specified in the URL. The organization is created in the organization specified by
the parentId value of the descriptor.

Method URL

POST http://<host>:<port>/jasperserver-pro/rest_v2/organizations?<argument>

Argument Type Description

create
Default
Users

Optional
Boolean

Set this argument to false to suppress the creation of default users (joeuser,
jasperadmin) in the new organization. When not specified, the default
behavior is true and organizations are created with the standard default users.

Content-Type Content

application/xml

application/json

A partial or complete organization descriptor that includes the desired
properties for the organization.

Return Value on Success Typical Return Values on Failure

201 Created – The organization was successfully
created using the values in the descriptor or default
values if missing.

404 Not Found –When the ID of the parent organization
cannot be resolved.

400 Bad Request – When the ID or alias of the new
organization is not unique on the server, or when the ID
in the description contains illegal symbols. The following
symbols are not allowed:

id and alias: ~!+-#$%^|

tenantName: |&*?<>/\

The descriptor sent in the request should contain all the properties you want to set on the new organization. Specify
the parentId value to set the parent of the organization, not the tenantUri or tenantFolderUri properties.
The following example shows the descriptor in JSON format:

{
"id":"Audit",
"alias":"Audit",
"parentId":"Finance",
"tenantName":"Audit",
"tenantDesc":"Audit Department of Finance",
"theme":"default"

}

However, all properties have defaults or can be determined based on the alias value. The minimal descriptor
necessary to create an organization is simply the alias property. In this case, the organization is created as a child of
the logged-in user’s home organization. For example, if superuser posts the following descriptor, the server
creates an organization with the name, ID, and alias of HR as a child of the root organization:

198 Cloud Software Group, Inc.

Chapter 22 The organizations Service

{
"alias":"HR"

}

22.4 Modifying Organization Properties
To modify the properties of an organization, use the PUT method and specify the organization ID in the URL. The
request must include an organization descriptor with the values you want to change. You cannot change the ID of
an organization, only its name (used for display) and its alias (used for logging in).

Method URL

PUT http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID/

Content-Type Content

application/xml

application/json

A partial organization descriptor that includes the properties to change. Do not
specify the following properties:

id – The organization ID is permanent and can never be modified.

parentId – Organizations cannot change parents.

tenantUri – Organizations cannot change the organization hierarchy.

tenantFolderUri – The organization folder is automatically based on its
parent, which cannot be changed.

Return Value on Success Typical Return Values on Failure

200 OK – The organization was successfully updated. 400 Bad Request – When some dependent resources
cannot be resolved.

The following example shows a descriptor sent to update the name and description of an organization:

{
"tenantName":"Audit Dept",
"tenantDesc":"Audit Department of Finance Division"

}

22.5 Setting the Theme of an Organization
A theme determines how the JasperReports Server interface appears to users. Administrator can create and set
different themes for each organization. To set a theme through web services, use the PUT method of the REST
organizations service to modify the corresponding property of the desired organization.

For example:
PUT http://localhost:8080/jasperserver-pro/rest_v2/organizations/Audit

{
"theme":"jasper_dark"

}

Cloud Software Group, Inc. 199

JasperReports Server REST API Reference

For more information about themes, see the JasperReports Server Administrator Guide.

22.6 Deleting an Organization
To delete an organization, use the DELETE method and specify the organization ID in the URL. When deleting an
organization, all of its resources in the repository, all of its sub-organizations, all of its users, and all of its roles are
permanently deleted.

Method URL

DELETE http://<host>:<port>/jasperserver-pro/rest_v2/organizations/organizationID/

Return Value on Success Typical Return Values on Failure

204 No Content – The organization was successfully
deleted.

400 Bad Request – When attempting to delete the
organization of the logged-in user.

404 Not Found –When the ID of the organization
cannot be resolved.

200 Cloud Software Group, Inc.

CHAPTER 23 THE users SERVICE
The rest_v2/users service provides methods that allow you to list, view, create, modify, and delete user accounts,
including setting role membership. The service provides improved search functionality, such as organization-based
searches in commercial editions licensed to use organizations. Every method has two URL forms, one with an
organization ID and one without.

Only administrative users may access the users service. System admins (superuser) can define and modify users
anywhere in the server, and organization admins (jasperadmin) can define and modify users within their own
organization or any sub-organizations.

Because the user ID and organization ID are used in the URL, this service can operate only on users and
organizations whose ID is less than 100 characters long and does not contain spaces or special symbols. As with
resource IDs, the user ID is permanent and cannot be modified for the life of the user account.

This chapter includes the following sections:
• Searching for Users
• Viewing a User
• Creating a User
• Modifying User Properties
• Deleting a User

23.1 Searching for Users
The GET method without any user ID searches for and lists user accounts. It has options to search for users by
name or by role. If no search is specified, it returns all users. The method has two forms:
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL without an organization ID.
• In commercial editions with organizations, use the first URL to list all users starting from the logged-in user’s

organization (root for the system admin), and use the second URL to list all users in a specified organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users?<arguments>

Cloud Software Group, Inc. 201

JasperReports Server REST API Reference

Argument Type Description

search Optional
String

Specify a string or substring to match the user ID or full name of any user.
The search is not case sensitive.

requiredRole Optional
String

Specify a role name to list only users with this role. Repeat this argument to
filter with multiple roles. In commercial editions with multiple organizations,
specify roles as <roleName>%7C<orgID> (%7C is the | character).

hasAll
Required
Roles

Optional
Boolean

When set to false with multiple requiredRole arguments, users will match if
they have any of the given roles (OR operation). When true or not specified,
users must match all of the given roles (AND operation).

include
SubOrgs

Optional
Boolean

Limits the scope of the search or list in commercial editions with multiple
organizations. When set to false, the first URL form is limited to the logged-in
user’s organization, and the second URL form is limited to the organization
specified in the URL. When true or not specified, the scope includes the
hierarchy of all child organizations.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all users
in the result.

204 No Content – The search did not return any users.

404 Not Found –When the organization ID does not
match any organization. The content includes an error
message.

The following example shows the first form of the URL on a community edition server:
GET http://localhost:8080/jasperserver/rest_v2/users?search=j

The response is a set of summary descriptors for all users containing the string "j":

<users>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin User</fullName>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<username>joeuser</username>

</user>
</users>

The next example shows the second form of the URL on a commercial edition server with multiple organizations:
GET http://localhost:8080/jasperserver/rest_v2/organizations/Finance/users

202 Cloud Software Group, Inc.

Chapter 23 The users Service

On servers with multiple organizations, the summary user descriptors include the organization (tenant) ID. As
shown in the following example, the same username may exist in different organizations:

<users>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin</fullName>
<tenantId>Finance</tenantId>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>jasperadmin</fullName>
<tenantId>Audit</tenantId>
<username>jasperadmin</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<tenantId>Finance</tenantId>
<username>joeuser</username>

</user>
<user>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<tenantId>Audit</tenantId>
<username>joeuser</username>

</user>
</users>

The externallyDefined property is true when the user is synchronized from a 3rd party such as an LDAP
directory or single sign-on. For more information, see the JasperReports Server External Authentication
Cookbook.

23.2 Viewing a User
The GET method with a user ID (username) retrieves a single descriptor containing the full list of user properties
and roles.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to specify users of the root organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Cloud Software Group, Inc. 203

JasperReports Server REST API Reference

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
user.

404 Not Found –When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

The full user descriptor includes detailed information about the user account, including any roles. The following
example shows the descriptor in XML format:

GET http://localhost:8080/jasperserver/rest_v2/users/joeuser

<user>
<enabled>true</enabled>
<externallyDefined>false</externallyDefined>
<fullName>Joe User</fullName>
<previousPasswordChangeTime>2013-04-19T18:53:07.602-07:00
</previousPasswordChangeTime>
<roles>
<role>

<externallyDefined>false</externallyDefined>
<name>ROLE_USER</name>

</role>
</roles>
<username>joeuser</username>

</user>

In servers with multiple organizations, the full descriptor includes the organization (tenant) ID. The following
example shows the descriptor in JSON format:

GET http://localhost:8080/jasperserver/rest_v2/organizations/Finance/users/joeuser

{
"fullName":"joeuser",
"emailAddress":"",
"externallyDefined":false,
"enabled":true,
"previousPasswordChangeTime":1366429181984,
"tenantId":"Finance",
"username":"joeuser",
"roles":[
{"name":"ROLE_USER","externallyDefined":false}]

}

23.3 Creating a User
To create a user account, put all required information in a user descriptor, and include it in a PUT request to the
users service, with the intended user ID (username) specified in the URL.

204 Cloud Software Group, Inc.

Chapter 23 The users Service

• In the community edition of the server, or commercial editions without organizations, use the first form of the
URL.

• In commercial editions with organizations, use the second URL to specify the user’s organization. When
specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to create users in the root organization.

To create a user, the user ID in the URL must be unique on the server or in the organization. If the user ID already
exists, that user account will be modified, as described in 23.4, “Modifying User Properties,” on page 206.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Content-Type Content

application/xml

application/json

A user descriptor that includes at least the fullName and password for the
user. Even if the username and tenantID are specified in the descriptor,
their values in the URL take precedence. See the table below for other
properties in the user descriptor.

Return Value on Success Typical Return Values on Failure

201 Created – The user was successfully created using
the values in the descriptor. The response contains the
full descriptor of the new user.

404 Not Found –When the organization ID cannot be
resolved.

The user descriptor includes the following properties when being sent for creating or updating a user:

Property Description

username This can be omitted because the userID in the URL takes precedence.
If a value is specified, it has no effect.

tenantID This can be omitted because the orgID in the URL takes precedence. If
a value is specified, it has no effect.

fullName A string giving the name of the user that appears in the user interface, for
example Joe User. This property is required when creating a user.

password A string giving the password of the user. This property is required when
creating a user.

emailAddress The email address is optional, but when specified, the user can receive
notifications such as when a scheduled report is available.

Cloud Software Group, Inc. 205

JasperReports Server REST API Reference

Property Description

roles The roles are optional because ROLE_USER is automatically assigned
to all users and does not need to be specified. To assign further roles to
the user, specify an array of roles with the name and tenantId
properties. See the example below.

enabled When false, the user cannot log in. If this property is omitted during user
creation, its value is true (enabled) by default. Set this value to false if
you want to create the user but not allow access to the server yet.

previousPasswordChangeTime This property is set automatically by the server. Any value submitted in
the descriptor is ignored.

externallyDefined The externallyDefined property is true when the user is
synchronized from a 3rd party such as an LDAP directory or single sign-
on. When creating a user through the REST API, this property should be
set to false. For more information, see the JasperReports Server
External Authentication Cookbook.

The following example shows the user descriptor in JSON format:

{
"fullName":"Joe User",
"emailAddress":"juser@example.com",
"externallyDefined":false,
"enabled":false,
"password":"mySecretPassword",
"roles":[
{"name":"ROLE_MANAGER", "tenantId":"organization_1"}]

}

23.4 Modifying User Properties
To modify the properties of a user account, put all desired information in a user descriptor, and include it in a PUT
request to the users service, with the existing user ID (username) specified in the URL. See the properties of the
descriptor in the table above.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to modify users of the root organization.

To modify a user, the user ID in the URL must already exist on the server or in the organization. If the user ID
doesn’t exist, a user account will be created, as described in 23.3, “Creating a User,” on page 204.

206 Cloud Software Group, Inc.

Chapter 23 The users Service

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Content-Type Content

application/xml

application/json

A user descriptor that includes the properties you want to change. The
username and tenantID properties have no effect in the descriptor, their
values in the URL always take precedence. For other properties, see the table
in 23.3, “Creating a User,” on page 204.

Return Value on Success Typical Return Values on Failure

200 OK – The user properties were successfully
updated.

404 Not Found –When the organization ID cannot be
resolved.

To add a role to the user, specify the entire list of roles with the desired role added. To remove a role from a user,
specify the entire list of roles with the desired role removed. The following example shows the descriptor in JSON
format:

{
"enabled":true,
"password":"newPassword",
"roles":[
{"name":"ROLE_USER"},
{"name":"ROLE_STOREMANAGER", "tenantId":"organization_1"}]

}

23.5 Deleting a User
To delete a user, send the DELETE method and specify the user ID in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to delete users of the root organization.

When this method is successful, the user is permanently deleted.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/users/userID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/users/userID

Return Value on Success Typical Return Values on Failure

204 No Content – The user was successfully deleted. 404 Not Found –When the ID of the organization
cannot be resolved.

Cloud Software Group, Inc. 207

JasperReports Server REST API Reference

208 Cloud Software Group, Inc.

CHAPTER 24 THE roles SERVICE
The rest_v2/roles service provides methods that allow you to list, view, create, modify, and delete roles. The
service provides improved search functionality, including user-based role searches. Every method has two URL
forms, one with an organization ID and one without.

Only administrative users may access the roles service. System admins (superuser) can define and set roles
anywhere in the server, and organization admins (jasperadmin) can define and set roles within their own
organization or any sub-organizations.

Because the role ID and organization ID are used in the URL, this service can operate only on roles and
organizations whose ID is less than 100 characters long and does not contain spaces or special symbols. Unlike
resource IDs, the role ID is the role name and can be modified.

This chapter includes the following sections:
• Searching for Roles
• Viewing a Role
• Creating a Role
• Modifying a Role
• Setting Role Membership
• Deleting a Role

24.1 Searching for Roles
The GET method without any role ID searches for and lists role definitions. It has options to search for roles by
name or by user that belong to the role. If no search is specified, it returns all roles. The method has two forms:
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL without an organization ID.
• In commercial editions with organizations, use the first URL to search or list all roles starting from the logged-

in user’s organization (root for the system admin), and use the second URL to search or list all roles in a
specified organization.

Cloud Software Group, Inc. 209

JasperReports Server REST API Reference

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/roles?<arguments>
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles?<arguments>

Argument Type Description

search Optional
String

Specify a string or substring to match the role ID (name) of any role. The
search is not case sensitive.

user Optional
String

Specify a username (ID) to list the roles to which this user belongs. Repeat
this argument to list all roles of multiple users. In commercial editions with
multiple organizations, specify users as <userID>%7C<orgID> (%7C is the |
character).

hasAllUsers Optional
Boolean

When set to true with multiple user arguments, this method returns only the
roles to which all specified users belong (intersection of all users' roles).
When false or not specified, all roles of all specified users are found (union of
all users' roles).

include
SubOrgs

Optional
Boolean

Limits the scope of the search or list in commercial editions with multiple
tenants. When set to false, the first URL form is limited to the logged-in user’s
organization, and the second URL form is limited to the organization
specified in the URL. When true or not specified, the scope includes the
hierarchy of all child organizations.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a set of descriptors for all roles
in the result.

204 No Content – The search did not return any roles.

404 Not Found –When the organization ID does not
match any organization. The content includes an error
message.

The following example shows the first form URL on a commercial edition server with multiple organizations:
GET http://localhost:8080/jasperserver/rest_v2/roles

This method returns the set of all default system and root roles defined on a server with the sample data (no
organization roles have been defined yet):

<roles>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_ADMINISTRATOR</name>

</role>

210 Cloud Software Group, Inc.

Chapter 24 The roles Service

<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_ANONYMOUS</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_DEMO</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_PORTLET</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_SUPERMART_MANAGER</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_SUPERUSER</name>

</role>
<role>
<externallyDefined>false</externallyDefined>
<name>ROLE_USER</name>

</role>
</roles>

The externallyDefined property is true when the role is synchronized from a 3rd party such as an LDAP
directory or single sign-on mechanism. For more information, see the JasperReports Server External
Authentication Cookbook.

24.2 Viewing a Role
The GET method with a role ID retrieves a single role descriptor containing the role properties.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the role’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to specify roles of the root organization.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Options

accept: application/xml (default)

accept: application/json

Cloud Software Group, Inc. 211

JasperReports Server REST API Reference

Return Value on Success Typical Return Values on Failure

200 OK – The content is the descriptor for the given
role.

404 Not Found –When the role ID or organization ID
does not match any role or organization. The content
includes an error message.

After adding roles to an organization, the following example shows the simple role descriptor for an organization
role in JSON format:

GET http://localhost:8080/jasperserver-pro/rest_v2/organizations/Finance/roles/ROLE_MANAGER

{
"name":"ROLE_MANAGER",
"externallyDefined":false,
"tenantId":"Finance"

}

24.3 Creating a Role
To create a role, send the PUT request to the roles service with the intended role ID (name) specified in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to create roles in the root organization.

Roles do not have any properties to specify other than the role ID, but the request must include a descriptor that
can be empty.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Content-Type Content

application/xml

application/json

An empty role descriptor, either <role></role> or {}. The role descriptor has the
following properties, but they are not needed:

name – The roleID value in the URL takes precedence, and any value in the
descriptor is ignored.

tenantID – The orgID value in the URL takes precedence, and any value in
the descriptor is ignored.

externallyDefined – The externallyDefined property is true when the
role is synchronized from a 3rd party such as an LDAP directory. If you omit
this property, its default value is false. If you include it, it must be set to false.

212 Cloud Software Group, Inc.

Chapter 24 The roles Service

Return Value on Success Typical Return Values on Failure

201 Created – The role was successfully created. The
response contains the full descriptor of the new role.

404 Not Found –When the organization ID cannot be
resolved.

24.4 Modifying a Role
To change the name of a role, send a PUT request to the roles service and specify the new name in the role
descriptor.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to modify roles in the root organization.

The only property of a role that you can modify is the role's name, which is also its roleID. After the update, all
members of the role are members of the new role name, and all permissions associated with the old role name are
updated to the new role name.

Only repoository permissions based on the role will be updated to the new role name. If you have Domain
security files based on the role name, they must be updated manually by uploading a modified security file.
For more information, see the JasperReports Server Data Management Using Domains.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Content-Type Content

application/xml

application/json

A role descriptor that needs only the name property:

name – The new name for the role, which also becomes its new roleID.

tenantID – The orgID value in the URL takes precedence, and any value in
the descriptor is ignored.

externallyDefined – The externallyDefined property is true when the
role is synchronized from a 3rd party such as an LDAP directory. If you omit
this property, its default value is false. If you include it, it must be set to false.

Return Value on Success Typical Return Values on Failure

200 OK – The role was successfully updated. The
response contains the full descriptor of the updated
role.

404 Not Found –When the organization ID cannot be
resolved.

Cloud Software Group, Inc. 213

JasperReports Server REST API Reference

24.5 Setting Role Membership
To assign role membership to a user, set the roles property on the user account with the PUT method of the users
service. For details, see 23.4, “Modifying User Properties,” on page 206.

24.6 Deleting a Role
To delete a role, send the DELETE method and specify the role ID (name) in the URL.
• In the community edition of the server, or commercial editions without organizations, use the first form of the

URL.
• In commercial editions with organizations, use the second URL to specify the user’s organization. When

specifying the organization, use its unique ID, not its path. When logged in as the system admin (superuser),
use the first URL to delete roles of the root organization.

When this method is successful, the role is permanently deleted.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/roles/roleID
http://<host>:<port>/jasperserver[-pro]/rest_v2/organizations/orgID/roles/roleID

Return Value on Success Typical Return Values on Failure

204 No Content – The role was successfully deleted. 404 Not Found –When the ID of the organization
cannot be resolved.

214 Cloud Software Group, Inc.

CHAPTER 25 THE attributes SERVICE
Attributes are name-value pairs that are associated with users, organizations, or the server. Unlike roles, attributes
are not predefined, and thus any attribute name can be assigned any value at any time. When running dashboards,
views, or reports, certain advanced features of the server will reference attribute values of the currently logged-in
user (or of the organization of the currently logged-in user), so that behavior is customized for that user.

For example, Domain security files and OLAP access grants may reference attributes in addition to roles to grant
certain permissions. Attributes may also be referenced when defining the fields of a data source, thereby making
database access customized for each user or organization. Finally, application developers may use the attributes
service in order access or store information that can enhance their embedded BI solutions.

The rest_v2/attributes service provides methods for reading, writing, and deleting attributes at the server,
organization, or user level. Only administrative users may access the attributes service. System admins
(superuser) can set attributes anywhere in the server, and organization admins (jasperadmin) can set attributes
within their own organization or any sub-organizations. Because of the nature of attributes, organization admins
may see attributes from parent organizations and override them if allowed to do so by the parent administrator.

Attributes used to be called profile attributes because they were associated only with users. As of JasperReports
Server 6.0, the attributes service applies to users, organization, and the root organization representing the server.

This chapter includes the following sections:
• Attribute Descriptors
• Secure Attributes
• Entities with Attributes
• Permissions for Accessing Attributes
• Referencing Attributes
• Attribute Limitations
• Viewing Attributes
• Setting Attributes
• Deleting Attributes

25.1 Attribute Descriptors
Attributes are represented as a pair of string fields, one for the name of the attribute, the other for its value. For
example, the following JSON structure defines an attribute:

Cloud Software Group, Inc. 215

JasperReports Server REST API Reference

{
"name": "Attr1",
"value": "Value1"

}

Each attribute may only have one value, however that value may contain a comma-separated list that, in certain
uses, is interpreted by the server as being multi-valued. Such attributes can be used in Domain security filters that
match against a collection of values.

{
"name": "Attr2",
"value": "Value2a,Value2b,Value2c"

}

Attributes with the same name may be defined on different entities. For example, a user has a specific value for an
attribute, the organization he belongs to has a default value for the same attribute, and the server level has yet
another value for it. In this example, three separate attributes are defined, but they have the same name because
they occur on different entities. The mechanisms described in 25.5, “Referencing Attributes,” on page 217 can
take advantage of this to implement default values.

25.2 Secure Attributes
JasperReports Server 6.0 also introduced the notion of secure attribute that can be used to store sensitive
information such as a password. Secure attributes have the following properties:
• Their values are stored in encrypted form in the server's internal database.
• Their values are write-only through the REST service; their value is never returned.
• Their values are never displayed in the user interface; only ●●● or *** symbols are shown.
• Their value is decrypted only when referenced internally, for example as the password field in a data source.

When reading the value of a secure attribute, the server returns the field "secure": "true" instead of the
"value" field. Applications that read attributes must test for this case:

{
"name": "Attr3",
"secure": "true"

}

When setting the value of a secure attribute, your application should specify both the secure field and the value
field.

{
"name": "Attr3"
"value": "SecureValue3"
"secure": "true"

}

Applications that set secure attributes should consider enabling HTTPS so that the clear-text value of the attribute
is encrypted in all communication with the server.

216 Cloud Software Group, Inc.

Chapter 25 The attributes Service

25.3 Entities with Attributes
The entities that may have attributes are user accounts, organizations, and the server itself, represented by the root
organization. The entity is specified in the URL invoking the attributes service. The URL has the following form:

http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes<parameters>

The syntax of <entity> depends on the target entity for the operation and the type of server.

Commercial Edition Syntax of <entity>

User organizations/organizationID/users/userID/

Organization-level organizations/organizationID/

Server Admin users/userID/

Server-level <blank> (the attributes apply to the "root")

Community Edition Syntax of <entity>

User users/userID/

Server-level <blank> (the attributes apply to the "root")

When specifying the organization, use its unique ID, not its path. In commercial edition servers that use the
single default organization, you must specify organization_1.

25.4 Permissions for Accessing Attributes
Only API calls that include administrator credentials may view, set, or delete attributes on users, organizations, or
the server. Non-administrative users can't view or edit attributes, even on their own user account.

In commercial editions of the server, operations on attributes follow the visibility rules for organizations:
• Organization admins (jasperadmin by default) can view and edit attributes on their own organization, their

users, any of their sub-organizations, and the users in any sub-organizations.
• Organization admins can't view or edit attributes in any parent or sibling organizations.
• Only the server admin (superuser by default) can view and edit attributes at the server level, represented as

the root organization.
• Server admins can view and edit attributes on any organization or sub-organization in the server, as well as on

any user account in any organization.
• Only a server admin can view and edit attributes on other server admins (users of the root organization).

25.5 Referencing Attributes
As mentioned, several internal mechanisms of the server read attributes on users and organizations and make use of
their values in some way:

Cloud Software Group, Inc. 217

JasperReports Server REST API Reference

• Domain security files: you can reference attribute values associated with the logged-in user (or his
organization) to create rules to access data in the Domain. For more information, see the chapter "Advanced
Domains Features" in the JasperReports Server User Guide.

• Data source definitions: the fields that define a data source, such as its server, port number, database, and user
credentials, can all reference attributes of the logged-in user's organization (or a server-specific attribute). In
this way, different organizations or different servers can share the same data source yet still access a different
database. For more information, see the chapter "Data Sources" in the JasperReports Server Administrator
Guide.

The server provides two different methods to reference attributes:
• Categorical reference: requests the value of a named attribute from a specific entity, either the logged-in user's

profile, the logged-in user's organization, or from the server-wide set of attributes. If the named attribute is not
defined in the specified entity, an error is returned.

• Hierarchical reference: searches for the value of a named attribute first in the logged-in user's account, and if
not found, then in the logged-in user's organization, and if still not found, then at the server level. This allows
attributes to be defined at several levels, with the definition at a lower level (the user profile) having higher
priority, and the definition at a higher lever (the organization or server level) providing a default value. If the
named attribute is not defined at any level, an error is returned.

The methods you use to reference attributes will then determine the entities where you need to create attributes and
the values of those attributes.

25.6 Attribute Limitations
Attributes have the following limitations in the attributes service:
• The user ID and organization ID are specified in the URL, and therefore must be less than 100 characters long

and not contain spaces or special symbols.
• Attribute names and attribute values being written with this service are limited to 255 characters and may not

be empty (null) nor contain only whitespace characters.

The attributes service detects these conditions and returns errors accordingly:

Error Code Description

too_long_name Attribute's name is longer than 255 characters.

too_long_value Attribute's value is longer than 255 characters.

empty_name Attribute's name is empty or contains only whitespaces.

empty_value Attribute's value is empty or contains only whitespaces.

Some methods of the attributes service operate on multiple attributes on a given entity. Such batch operations are
not transactional, meaning the operation terminates with no rollback functionality when encountering an error.
Attributes that have been processed (modified or deleted) before the error remain so, and attributes after the error
are not processed.

All attribute operations apply to a single specific entity; there are no operations for reading or setting attributes on
multiple entities.

218 Cloud Software Group, Inc.

Chapter 25 The attributes Service

25.7 Viewing Attributes
The GET method of the attributes service retrieves the list of attributes, if any, defined for the specified entity (a
user, an organization, or the server-level). For possible values of <entity> in the URL, see 25.3, “Entities with
Attributes,” on page 217.

There are two syntaxes; the following one is for reading multiple attributes or all attributes at once.

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes?<arguments>

Argument Type Description

name Optional
String

Specify an attribute name to list the value of that specific attribute. Repeat this
argument to view multiple attributes. When this argument is omitted, all
attributes and their values are returned for the given entity.

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is the list of attributes for the
given entity.

204 No Content – The search did not return any
attributes or the entity has no attributes.

404 Not Found –When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

The list of attributes includes the name and value of each attribute. The following example shows user-level
attributes in JSON format:

GET http://localhost:8080/jasperserver-pro/rest_v2/organizations/organzation_1/users/joeuser/attributes

{
"attribute":[
{

"name": "Attr1",
"value":"Value1"

},
...
{

"name": "AttrN",
"value":"ValueN"

}
]

}

The second syntax reads a single attribute by specifying its name in the URL:

Cloud Software Group, Inc. 219

JasperReports Server REST API Reference

Method URL

GET http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes/attrName

Options

accept: application/xml (default)

accept: application/json

Return Value on Success Typical Return Values on Failure

200 OK – The content is a single attribute for the given
entity.

404 Not Found –When the user ID, organization ID, or
attribute name does not match any user, organization,
or attribute. The content includes an error message.

The response is a single attribute name-value pair. The following example shows an organization-level attribute in
JSON format:

GET http://localhost:8080/jasperserver-pro/rest_v2/organizations/organization_1/attributes/Attr2

{
"name": "Attr2",
"value":"Value2a,Value2b,Value2c"

}

25.8 Setting Attributes
The PUT method of the attributes service adds or replaces attributes on the specified entity (a user, an organization,
or the server-level). For possible values of <entity> in the URL, see 25.3, “Entities with Attributes,” on
page 217.

There are two syntaxes; the following one is for adding or replacing all attributes at once.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes

Content-Type Content

application/xml

application/json

An attribute descriptor that includes the new list of attributes. All previously
defined attributes are replaced by this new list.

220 Cloud Software Group, Inc.

Chapter 25 The attributes Service

Return Value on Success Typical Return Values on Failure

201 Created – When the attributes were successfully
created on the given entity.

200 OK –When the attributes were successfully
updated.

404 Not Found –When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

400 Bad Request – When an attribute name or value is
null, blank, or too long (see 25.6, “Attribute
Limitations,” on page 218). If one attribute causes an
error, the operation stops and returns an error, but
attributes that were already set remain.

The following example shows how to set all attributes on an organization. The list of attributes in JSON format
defines the name and value of each attribute.

PUT http://localhost:8080/jasperserver-pro/rest_v2/organizations/organization_1/attributes

{
"attribute":[
{

"name": "Attr1",
"value":"newValue1"

},
{

"name": "Attr2",
"value":"newValue2a, newValue2b"

},
{

"name": "Attr3"
"value": "SecureValue3"
"secure": "true"

}
]

}

The second syntax of the PUT attributes method is for adding or replacing individual attributes.

Method URL

PUT http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes/attrName

Content-Type Content

application/xml

application/json

A single attribute name-value pair. The attribute name must match the
attrName exactly as it appears in the URL. If this attribute name already exists
on the specified user, this attribute’s value is updated. If the attribute does not
exist, it is added to the user’s list of attributes.

Return Value on Success Typical Return Values on Failure

201 Created – When the attribute was successfully
created on the given entity.

200 OK –When the attribute was successfully updated.

404 Not Found –When the user ID or organization ID
does not match any user or organization. The content
includes an error message.

Cloud Software Group, Inc. 221

JasperReports Server REST API Reference

The content in the request is a single attribute, for example:
PUT http://localhost:8080/jasperserver-pro/rest_v2/organizations/organization_1/users/
joeuser/attributes/Attr2

{
"name": "Attr2",
"value":"NewValue2"

}

25.9 Deleting Attributes
The DELETE method of the attributes service removes attributes from the specified entity (a user, an organization,
or the server-level). When attributes are removed, both the name and the value of the attribute are removed, not
only the value. For possible values of <entity> in the URL, see 25.3, “Entities with Attributes,” on page 217.

There are two syntaxes; the following one is for deleting multiple attributes or all attributes at once.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes?<arguments>

Argument Type Description

name Optional
String

Specify an attribute name to remove that attribute. Repeat this argument to
delete multiple attributes. When this argument is omitted, all attributes are
deleted from the given entity.

Return Value on Success Typical Return Values on Failure

204 No Content – The attributes were successfully
removed from the given entity.

404 Not Found –When the user ID or organization ID does
not match any user or organization. The content includes an
error message.

400 Bad Request – When an attribute name is null, blank, or
too long (see 25.6, “Attribute Limitations,” on page 218).
If one attribute causes an error, the operation stops and
returns an error, but attributes that were already deleted
remain deleted.

The second syntax deletes a single attribute named in the URL from the specified entity.

Method URL

DELETE http://<host>:<port>/jasperserver[-pro]/rest_v2/<entity>attributes/attrName

222 Cloud Software Group, Inc.

Chapter 25 The attributes Service

Return Value on Success Typical Return Values on Failure

204 No Content – The attribute was successfully
removed from the given entity.

404 Not Found –When the user ID, organization ID, or
attribute name does not match any user, organization,
or attribute. The content includes an error message.

400 Bad Request – When an attribute name is null,
blank, or too long (see 25.6, “Attribute Limitations,”
on page 218).

Cloud Software Group, Inc. 223

JasperReports Server REST API Reference

224 Cloud Software Group, Inc.

	Chapter 1 REST API Overview
	1.1 List of Services
	1.2 Sending REST Requests from a Browser
	1.3 HTTP Response Codes
	1.4 Deprecated Web Services

	Chapter 2 The serverInfo Service
	Chapter 3 Authentication Methods
	3.1 Overview of REST Authentication
	3.2 HTTP Basic Authentication
	3.3 Argument-based Authentication
	3.4 The login Service
	3.5 Login Encryption (Deprecated)
	3.6 Logout

	Chapter 4 Working With Resources
	4.1 Resource URI
	4.2 Custom Media Types
	4.3 Accept HTTP Headers
	4.4 Content-Type HTTP Headers
	4.5 JSON Format
	4.6 Nested Resources
	4.7 Referenced Resources
	4.8 Local Resources
	4.9 Optimistic Locking
	4.10 Update-only Passwords

	Chapter 5 Resource Descriptors
	5.1 Common Attributes
	5.2 Folder
	5.3 JNDI Data Source
	5.4 JDBC Data Source
	5.5 AWS Data Source
	5.6 Virtual Data Source
	5.7 Custom Data Source
	5.8 Bean Data Source
	5.9 Datatypes
	5.10 List of Values
	5.11 Query
	5.12 Input Control
	5.13 File
	5.14 Report Unit (JRXML Report)
	5.15 Report Options
	5.16 Domain (semanticLayerDataSource)
	5.17 Domain Topic
	5.18 XML/A Connection
	5.19 Mondrian Connection
	5.20 Secure Mondrian Connection
	5.21 OLAP Unit
	5.22 Mondrian XML/A Definition
	5.23 Other Types

	Chapter 6 The resources Service
	6.1 Searching the Repository
	6.2 Paginating Search Results
	6.2.1 Default Pagination
	6.2.2 Full Page Pagination
	6.2.3 No Pagination

	6.3 Viewing Resource Details
	6.4 Creating a Resource
	6.5 Modifying a Resource
	6.6 Copying a Resource
	6.7 Moving a Resource
	6.8 Deleting Resources

	Chapter 7 Working With File Resources
	7.1 MIME Types
	7.2 Downloading File Resources
	7.3 Uploading File Resources
	7.4 Updating File Resources

	Chapter 8 Working With Domains
	8.1 The metadata Service
	8.2 Fetching a Domain Schema
	8.3 Fetching Domain Bundles and Security Files

	Chapter 9 Working With Favorites
	9.1 Adding Resources to Favorites
	9.2 Removing Resources from Favorites
	9.3 Accessing Resources in Favorites

	Chapter 10 The permissions Service
	10.1 Permission Constants
	10.2 Viewing Multiple Permissions
	10.3 Viewing a Single Permission
	10.4 Setting Multiple Permissions
	10.5 Setting a Single Permission
	10.6 Deleting Multiple Permissions
	10.7 Deleting a Single Permission

	Chapter 11 The export Service
	11.1 Requesting an Export
	11.2 Polling the Export Status
	11.3 Fetching the Export Output
	11.4 Canceling an Export Operation

	Chapter 12 The import Service
	12.1 Launching an Import Operation
	12.2 Polling the Import Status
	12.3 Import Errors
	12.4 Restarting an Import Operation
	12.5 Canceling an Import Operation
	12.6 Importing from a Web Form

	Chapter 13 The keys Service
	Chapter 14 The reports Service
	14.1 Running a Report
	14.2 Finding Running Reports
	14.3 Stopping a Running Report

	Chapter 15 The reportExecutions Service
	15.1 Running a Report Asynchronously
	15.2 Polling Report Execution
	15.3 Requesting Page Status
	15.4 Requesting Report Execution Details
	15.5 Requesting Report Output
	15.6 Requesting Report Bookmarks
	15.7 Exporting a Report Asynchronously
	15.8 Modifying Report Parameters
	15.9 Polling Export Execution
	15.10 Finding Running Reports and Jobs
	15.11 Stopping Running Reports and Jobs
	15.12 Removing a Report Execution
	15.13 Requesting Raw Parameter Values

	Chapter 16 The inputControls Service
	16.1 Listing Input Controls
	16.2 Input Control Structure
	16.3 Listing Input Control Values
	16.4 Changing the Order of Input Controls
	16.5 Setting Input Control Values

	Chapter 17 The options Service
	17.1 Listing Report Options
	17.2 Creating Report Options
	17.3 Updating Report Options
	17.4 Deleting Report Options

	Chapter 18 The jobs Service
	18.1 Searching for Jobs
	18.2 Viewing a Job Definition
	18.3 The job Descriptor
	18.3.1 General Properties of a Job
	18.3.2 Source and Input Controls
	18.3.3 Simple Trigger
	18.3.4 Calendar Trigger
	18.3.5 Job Output Properties
	18.3.6 FTP Output
	18.3.7 Job Output Email
	18.3.8 Job Status Email

	18.4 Creating a Job
	18.5 Viewing Job Status
	18.6 Modifying a Job
	18.7 Pausing Jobs
	18.8 Resuming Jobs
	18.9 Restarting Failed Jobs
	18.10 Deleting Jobs
	18.11 Storing Additional Job Properties

	Chapter 19 The calendars Service
	19.1 Creating an Exclusion Calendar
	19.2 Listing All Calendar Names
	19.3 Viewing an Exclusion Calendar
	19.4 Updating an Exclusion Calendar
	19.5 Deleting an Exclusion Calendar
	19.6 Error Messages

	Chapter 20 The queryExecutor Service
	Chapter 21 The caches Service
	Chapter 22 The organizations Service
	22.1 Searching for Organizations
	22.2 Viewing an Organization
	22.3 Creating an Organization
	22.4 Modifying Organization Properties
	22.5 Setting the Theme of an Organization
	22.6 Deleting an Organization

	Chapter 23 The users Service
	23.1 Searching for Users
	23.2 Viewing a User
	23.3 Creating a User
	23.4 Modifying User Properties
	23.5 Deleting a User

	Chapter 24 The roles Service
	24.1 Searching for Roles
	24.2 Viewing a Role
	24.3 Creating a Role
	24.4 Modifying a Role
	24.5 Setting Role Membership
	24.6 Deleting a Role

	Chapter 25 The attributes Service
	25.1 Attribute Descriptors
	25.2 Secure Attributes
	25.3 Entities with Attributes
	25.4 Permissions for Accessing Attributes
	25.5 Referencing Attributes
	25.6 Attribute Limitations
	25.7 Viewing Attributes
	25.8 Setting Attributes
	25.9 Deleting Attributes

