
TIBCO Mashery® Local
Installation and Configuration Guide for Docker
Software Release 4.2
November 2017

Two-Second Advantage®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD
OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE)
OR IF THERE IS NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER
LICENSE AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE
SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS AND CONDITIONS, AND
YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE
BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws
and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO and TIBCO Mashery are either registered trademarks or trademarks of TIBCO Software Inc. in
the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT
ALL OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED
AT THE SAME TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE
VERSION ON A SPECIFIC OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

Copyright © 2004-2017 TIBCO Software Inc. All rights reserved.

TIBCO Software Inc. Confidential Information

2

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Contents

TIBCO Documentation and Support Services .7

Introduction . 8

Assumptions . 8

Conventions . 8

Deployment Topology . 9

Overview of Installation and Configuration Process . 9

Mashery Local Failover Strategy Recommendations . 10

Cluster Management in Mashery Local .12

Setting up a New Mashery Local Cluster . 12

Adding a Slave to a Running Mashery Local Cluster .15

Changing the Master in a Mashery Local Cluster . 16

Installing and Configuring Mashery Local for Docker . 17

Required Docker Images . 17

Installing Mashery Local for Docker . 17

Additional Installation Tips . 18

Installing with Docker Toolbox .18

Working with Amazon EC2 Instances . 19

Installation Troubleshooting Tips .20

Changing the Traffic Manager Port . 20

How to Enable Additional Features That Require a New Port .21

How to Telnet Memcache Port . 21

How to Troubleshoot 596 Error Caused by Memcache . 22

How to Change Ulimits for a Container . 22

How to Use NFS for Verbose Log . 22

Creating a Larger Memory for Memory Allocation .23

How to Monitor the Health of Docker Containers . 23

How to Increase the CPU Share and Memory of a Container . 23

How to Do a Clean Restart of a Docker Instance . 23

How to Register Master or Slave with Commands . 24

How to Promote a Slave to Master with CLI . 24

How to Change Master to Slave with CLI .24

Managing Docker Containers . 25

Installing and Running Mashery Local for Docker Using Kubernetes .25

Verifying Installation on Kubernetes . 31

Invoking APIs via AWS ELB . 32

Customizing for Kubernetes . 32

3

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Installing and Running Mashery Local for Docker Using GCP . 33

Invoking APIs via GCP Load Balancer . 41

Notes for Docker Installations Using GCP .41

Configuring the Mashery Local Cluster .42

Configuring a Mashery Local Master . 42

Configuring Slaves to the Local Master . 44

Configuring the Load Balancer .46

Configuring the Instance .46

Shutting Down a Master . 53

Promoting a Slave to Master . 53

Repointing Other Slaves to a New Master . 55

HTTPS Client Feature Overview . 57

HTTPS Server Feature Overview . 58

Advanced Configuration and Maintenance . 59

Configuring Quota Notifications . 59

Configuring OAuth 2.0 API Access .60

Making OAuth 2.0 Calls . 60

Sample Call . 60

Understanding the OAuth 2.0 API . 61

Configuring JMX Reporting Access . 62

Using the Adapter SDK . 63

Adapter SDK Package .63

TIBCO Mashery Domain SDK .63

TIBCO Mashery Infrastructure SDK . 63

SDK Domain Model . 63

Extended Attributes . 65

Pre and Post Processor Extension Points . 66

Listener Pattern .66

Event Types and Event .66

Event Listener API . 66

Creating a Custom Authenticator .66

Implementing and Registering Processors . 70

Downloading the SDK .70

Implementing the Event Listener . 71

Implementing Lifecycle Callback Handling . 72

Adding Libraries to Classpath . 73

Deploying Processors to Runtime .73

Packaging the Custom Processor . 73

Uploading the Custom Processor .74

4

TIBCO Mashery® Local Installation and Configuration Guide for Docker

How Custom Processors are Updated . 74

Enabling Debugging . 74

Caching Content . 75

Terminating a Call During Processing of an Event . 76

Accessing Package Key EAVs in the Custom Processor . 78

Configuring Identity Management . 79

Configuring Trust Management . 81

Testing the New Instance . 83

Testing a New Instance . 83

Tracking the Database Restore and Replication Status . 83

Troubleshooting . 86

Verbose Logs . 86

Using the Verbose Logs Feature . 86

Working with Verbose Logs . 87

Mapping Endpoint IDs . 88

Debugging Utility . 88

Running the Debug Utility . 89

Collect Logs . 89

Test Connectivity to Cloud Sync . 89

Show Slave Status . 89

Check IP Address .89

Update Record of Master IP Address in Master . 89

Fix Slave Corruption . 90

Update Record of Master IP Address in Old Slave Node . 90

System Manager (Remove Non-functional or Unused Slaves from Master) . 90

System Level Troubleshooting . 90

General Troubleshooting .91

Appendix . 98

Setup Examples .98

Example Cloud Deployments with CLI . 98

Example Setup to Run Mashery Local Master and Slave on a Local Machine . 101

Adapter SDK Usage and Examples .102

Adapter SDK Development Environment Example Setup . 102

Setting up the Adapter SDK for Maven . 102

Using the Adapter SDK in Mashery Local with Single Processor . 103

Using the Adapter SDK in Mashery Local with Third-Party Libraries .107

Using the Adapter SDK in Mashery Local with Multiple Processors in One Eclipse Project .110

Using the Adapter SDK in Mashery Local with Multiple Processors in One Zip Package . 111

Using the Adapter SDK in Mashery Local with Multiple Processors in One Package and Third Party Libraries113

5

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Setting up HTTPS Server using Self-Signed Certificate . 113

Setting up HTTPS Server using Customer-Provided Certificate .114

Configuring and Using the HTTPS Client Feature without Mutual Authentication . 116

Configuring and Using the HTTPS Client Feature with Mutual Authentication . 122

Enabling Java SSL Debug Logging . 131

6

TIBCO Mashery® Local Installation and Configuration Guide for Docker

TIBCO Documentation and Support Services

Documentation for this and other TIBCO products is available on the TIBCO Documentation site. This
site is updated more frequently than any documentation that might be included with the product. To
ensure that you are accessing the latest available help topics, visit:

https://docs.tibco.com

Product-Specific Documentation

The following document for this product can be found on the TIBCO Documentation site:

● TIBCO Mashery® Local Installation and Configuration Guide

For information on TIBCO Cloud Integration with Mashery, refer to Integrating with Mashery.

TIBCO Mashery Professional customers will not have access to all of the features documented here. The
following is a list of capabilities that are not available and as such will not be visible within the API
Control Center for these customers:

● Distributed API Management (managing Organizations)

● Enriched Call Log Export

● HTTPS Client Profiles

● Mashery Local (Deploy)

● Event Triggers

Additionally, TIBCO Mashery Professional customers will not have access to the Mashery V2 API and
as such will be able to use only the OAuth2 Accelerator feature.

Additionally, TIBCO Mashery Professional includes 8M QPM (Queries per month) and all traffic
purchased is limited to a max of 100 QPS (Queries per second). TIBCO Mashery Professional customers
can create a max of 25 APIs and 25 packages.

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, contact TIBCO Support:

● For an overview of TIBCO Support, and information about getting started with TIBCO Support,
visit this site:

http://www.tibco.com/services/support

● If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user name, you can
request one.

How to Join TIBCO Community

TIBCO Community is an online destination for TIBCO customers, partners, and resident experts. It is a
place to share and access the collective experience of the TIBCO community. TIBCO Community offers
forums, blogs, and access to a variety of resources. To register, go to the following web address:

https://community.tibco.com

7

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://docs.tibco.com
https://integration.cloud.tibco.com/docs/getstarted/managing-apps/integrating-with-mashery.html
http://www.tibco.com/services/support
https://support.tibco.com
https://community.tibco.com

Introduction

This guide provides an overview of the installation, requirements and configuration for Mashery®
Local for Docker.

Mashery Local for Docker is a set of Docker images for running Mashery Local. These images can be
customized for custom configurations. Mashery Local for Docker allows customers to perform hybrid
traffic management on premise to run the API traffic inside data-centers. Mashery Local securely
interacts with the Mashery Cloud hosted Developer Portal, Administration Dashboard and API
Reporting and Analytics modules.

Mashery Local includes commercial support for Project Mashling, an open-source, event-driven
microgateway. You can publish an endpoint exposed by Mashling to Mashery for access to broader API
management functions. For more information about Mashling, please see https://www.mashling.io/
home or https://community.tibco.com/products/project-mashling.

Assumptions
This guide assumes that you are using Docker version 1.12 or later. If you have an internal cloud,
established best practices will be applied (for example disk alignment). If you are using different
servers and clients, the underlying concepts implied by the installation and configuration steps still
apply.

Conventions
This guide uses the following conventions:

● Keys you press simultaneously appear with a plus (+) sign between them (for example, Ctrl+P
means press the Ctrl key first, and while holding it down, press the P key).

● Field, list, folder, window, and dialog box names have initial caps (for example, City, State).

● Tab names are bold and have initial caps (for example, People tab).

● Names of buttons and keys that you press on your keyboard are in bold and have initial caps (for
example, Cancel, OK, Enter, Y).

8

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://www.mashling.io/home
https://www.mashling.io/home
https://community.tibco.com/products/project-mashling

Deployment Topology
The following diagram depicts a typical deployment topology for Mashery Local.

Overview of Installation and Configuration Process
This section provides a roadmap of the installation process for Mashery Local.

Procedure

1. Download the Mashery Local Docker artifact from TIBCO® eDelivery and create the Mashery Local
Docker Image set as described in Installing and Configuring Mashery Local for Docker.

2. Configure a Mashery Local Master as described in Configuring a Mashery Local Master.

3. Configure slaves to the Mashery Local Master as described in Configuring Slaves to the Local
Master. It is best practice to set up production with no less than 2 slaves per master.

4. Configure the load balancer as described in Configuring the Load Balancer.

5. Perform advanced configuration such as enabling notifications, as described in Advanced
Configuration.

9

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Mashery Local Failover Strategy Recommendations

Many of TIBCO customers rely on TIBCO Mashery Local to manage and distribute their revenue-
generating and business-critical API traffic. The nature of the usage warrants that Mashery Local is
always on without any downtime. Proper planning for redundancy and failover is recommended when
high availability is expected of a mission-critical system.

The current Mashery Local architecture relies on four entities:

1. Mashery Cloud - This is where you make all your service configuration changes, through the
Mashery Control Center API dashboard.

2. Mashery On-Prem Manager (MoM) - This is your Mashery Local's gateway to the Mashery Cloud.
You must have received a secured key and secret, which provides each of your clusters its unique
identity. You should always have a separate MoM key for each cluster, even if they are connecting to
the same Mashery area.

3. A Mashery Master node synching with Cloud for API keys, OAuth Tokens, Service Configuration,
User details, etc.. The time taken for synchronization of your configuration and token data is a
function of the amount of data. Each customer implementation is unique and each network
topology is different, so there isn't any formula that can correctly project the amount of time taken.

4. Slaves within the cluster that replicate the API Key, OAuth Token and Service Configuration data
from Master. This happens within the cluster and in your environment, so the replication speed is
slightly faster than Cloud Sync, but yet depends on various other environmental and data
components.

TIBCO Recommendations to Achieve High Availability for TIBCO Mashery Local Deployment

Failover and redundancy can be achieved at many levels and should be considered while building your
high availability strategy. Customers should also maintain updated runbooks so that their environment
specific nuances are captured for their internal teams for faster deployment and recovery of systems.
Failover systems should be tested and monitored in periodic intervals to ensure that they are in sync
with production. Failure to do so will result in loss of traffic at the time of need. The following are some
recommendations for redundancy – redundancy within a cluster and cross datacenter redundancy.

Redundancy within a Cluster:

Each Cluster has two type of Nodes – a Master Node that syncs the cluster with Cloud and many Slave
Nodes that replicate from the Master. Though both type of Nodes are capable of serving traffic, TIBCO's
recommendation is to keep the Master out of rotation in high traffic, high OAuth type implementations.

Keep one Slave extra than what is needed for optimum capacity to achieve within cluster redundancy.

If Master runs into problem due to disk, VM, or Network issues, then you can easily promote the spare
Slaves to a Master and point the rest of the Slaves to the new Master. This can be achieved in minutes
and will have a very low impact on the traffic. Except for newly synched up OAuth tokens, Slaves
should be able to successfully service traffic during the promotion and pointing to the new Master. Fix
the old Master Node and you can bring it back as a Slave into the cluster after re-imaging the VM.

If a Slave runs into problems, then take that Slave out of rotation from load balancer level. That way,
you will not experience any traffic loss. Fix the issue and bring the slave back into rotation.

Cross Datacenter Redundancy:

If there is an issue with the datacenter, or if the whole cluster is having problems, having an Active-
Active or Active-Passive cluster strategy is very beneficial in this scenario:

● Active-Active Strategy: Both Clusters with their unique Mashery On Prem Manager (MoM) key
would connect to the same Mashery area and continue to sync. Nodes in both clusters can be used
to serve traffic but both would have enough capacity (Disk Space, Caching configuration, etc.) to
serve total traffic from both clusters combined and act like a failover if needed.

10

TIBCO Mashery® Local Installation and Configuration Guide for Docker

● Active-Passive Strategy: Both Clusters with their unique Mashery On Prem Manager (MoM) key
would connect to the same Mashery area and will sync. Nodes from only one cluster would serve
traffic. If needed traffic can be routed to the other non-traffic serving cluster without any blip in
service. Both clusters should be identical in their configuration and capacity (Disk Space, Caching
configuration, etc.) to serve total traffic.

Please note that TIBCO Mashery's license policy in cluster-based, so please discuss this with your Sales
or Mashery Customer Success team. Having cluster redundancy is absolutely essential to avoid any
traffic loss. Master sync and Slave replication takes time when done from scratch, and without cluster
failover, you will encounter traffic loss.

11

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Cluster Management in Mashery Local

The following sections describe how to set up and manage a Mashery Local Cluster:

● Setting up a new Mashery Local Cluster

● Adding a Slave to a Running Mashery Local Cluster

● Changing the Master in a Mashery Local Cluster

Setting up a New Mashery Local Cluster
The following section describes how to set up a new Mashery Local Cluster.

Procedure

Prepare mysqldump from Existing Mashery Local Cluster. (Optional)

1. For Mashery Local prior to 4.2.0, root can generate mysqldump in the Master Instance under the /
mnt/ folder. Because proxy service needs to be stopped when mysqldump is being generated, this
Mashery Local cluster cannot handle traffic.
If you are using Docker-Machine, make sure you are talking to the right one. Execute the command
docker-machine ls to find which one is currently active. It is also recommended to always redo
the command:
eval "$(docker-machine env <docker machine name>)"

a) docker exec -it ml-tm nohup service javaproxy stop
b)

1. docker exec -it ml-db /bin/bash

2. mysqldump -u masherybackup -p'password_for_masherybackup'--opt --master-data --single-
transaction onprem > /mnt/onprem.sql

3. md5sum /mnt/onprem.sql

4. Exit the ml-db container

Below step copies the mysqldump from container to host's file system in present working
directory. You can specify other location by replacing '.' at the end.

5. docker cp ml-db:/mnt/onprem.sql
c) docker exec -it ml-tm nohup service javaproxy start

For Mashery Local 4.2.0 or later, root can generate mysqldump in the Slave or Master Instance
under /mnt/dump/ folder.

Because proxy service needs to be stopped when mysqldump is being generated, this Master/Slave
Instance cannot handle traffic.
a) docker exec -it ml-tm nohup service javaproxy stop
b)

1. docker exec -it ml-db /bin/bash

2. mysqldump -u masherybackup -p'password_for_masherybackup'--opt --dump-slave --
single-transaction onprem > /mnt/dump/onprem.sql

3. md5sum /mnt/dump/onprem.sql

4. Exit the ml-db container

Below step copies the mysqldump from container to host's file system in present working
directory. You can specify other location by replacing '.' at the end

5. docker cp ml-db:/mnt/dump/onprem.sql.

12

TIBCO Mashery® Local Installation and Configuration Guide for Docker

c) docker exec -it ml-tm nohup service javaproxy start

Set up Mashery Local Master Instance

2. Perform the following steps:
a) Create and configure a Mashery Local Master instance as described in the topic "Configuring a

Mashery Local Master", in this Guide.
If special tuning is needed on MySQL, for example, expanding buffer pool size in "/etc/my.cnf"
(login into ml-db container first):
innodb_buffer_pool_size = 512M

Mashery Local customers should consult TIBCO Support and request assistance in tuning
MySQL. After tuning of MySQL, the MySQL service should be restarted by the Administrator:
service mysqld restart

When disk expansion is needed, the Administrator should follow the instructions in the topic
"Expanding the Disk Space of a Mashery Local Instance" in this Guide.

b) Import mysqldump from a previous Mashery Local Cluster. (Optional)
Importing mysqldump from an existing Mashery Local Cluster can minimize the amount data to
synchronize from Cloud, greatly reducing the amount of time required to setup the Mashery
Local Instance.
For example, suppose the remote Mashery Local instance is "remote_host".
For Mashery Local prior to 4.2.0, root can copy mysqldump from remote host.
If you are using Docker-Machine, make sure your are talking to the right one. Execute the
command docker-machine ls to find which one is currently active. It is also recommended to
always redo the command:
eval "$(docker-machine env <docker machine name>)"

1. First transfer the mysqldump from remote host to the current host. scp root@remote_host:
<Absolute path of onprem.sql on remote host> <LOCAL DEST DIR>

2. Now copy the mysqldump file from host machine to DB container's file system docker cp
<LOCAL DEST DIR>/onprem.sql ml-db:/mnt/

For Mashery Local 4.2.0 or later, root can copy mysqldump from remote host:

1. First transfer the mysqldump from remote host to the current host. scp
root@remote_host:<Absolute path of onprem.sql on remote host> <LOCAL DEST DIR>

2. Now copy the mysqldump file from host machine to DB container's file system docker cp
<LOCAL DEST DIR>/onprem.sql ml-db:/mnt/

Verify the checksum of mysqldump file (Login into ml-db container:
md5sum /mnt/dump/onprem.sql

Stop "proxy" service:
docker exec -it ml-tm nohup service javaproxy stop

Import mysqldump:
mysql -u masheryonprem -p'password_for_masheryonprem' onprem < /mnt/dump/
onprem.sql

After importing is done, restart MySQL:
service mysqld restart

Start "proxy" service:
docker exec -it ml-tm nohup service javaproxy start

c) Register the Mashery Local Instance as Master.
Follow the instructions in the topic "Configuring a Local Mashery Master" in this guide to
register the Mashery Local Instance as Master, to finish the settings for the Master in Cluster
Manager.

13

TIBCO Mashery® Local Installation and Configuration Guide for Docker

When synchronizing the Master for the first time, allow the Master to finish the
synchronization. This ensures the Master Instance is set up properly and
synchronization with the Cloud is normal.

d) Stop "proxy" Service (Optional).
After "proxy" service is stopped, there will be no activity in MySQL. This enables Mashery Local
slaves to replicate faster. To stop "proxy" service, run the following command:
docker exec -it ml-tm nohup service javaproxy stop

Set up the Mashery Local Slave Instance

3. Perform the following steps:
a) Create and configure a Mashery Local Slave instance as described in the topic "Configuring a

Mashery Local Slave", in this Guide.
If special tuning is needed on MySQL, for example, expanding buffer pool size in "/etc/my.cnf":
innodb_buffer_pool_size = 512M

Mashery Local customers should consult TIBCO Support and request assistance in tuning
MySQL. After tuning of MySQL, the MySQL service should be restarted:
service mysqld restart

When disk expansion is needed, the Administrator should follow the instructions in the topic
"Expanding the Disk Space of a Mashery Local Instance" in this Guide.

b) Register the Mashery Local Instance as a Slave.
Follow the instructions in the topic "Configuring a Local Mashery Slave" in this guide to register
the Mashery Local Instance as Slave, to finish the settings for the Slave in Cluster Manager.

c) Import mysqldump from a previous Mashery Local Cluster. (Optional)
Importing mysqldump from an existing Mashery Local Cluster can minimize the amount data to
synchronize from Cloud, greatly reducing the amount of time required to setup the Mashery
Local Instance.
For example, suppose the remote Mashery Local instance is "remote_host".
For Mashery Local prior to 4.2.0, the user can copy mysqldump from remote host.
If you are using Docker-Machine, make sure you are talking to the right one. Execute the
command docker-machine ls to find which one is currently active. It is also recommended to
always redo the command:
eval "$(docker-machine env <docker machine name>)"

1. First transfer the mysqldump from remote host to the current host. scp
root@remote_host:<Absolute path of onprem.sql on remote host> <LOCAL DEST DIR>

2. Now copy the mysqldump file from host machine to DB container's file system docker cp
<LOCAL DEST DIR>/onprem.sql ml-db:/mnt/

For Mashery Local 4.2.0 or later, root can copy mysqldump from remote host:

1. First transfer the mysqldump from remote host to the current host. scp
root@remote_host:<Absolute path of onprem.sql on remote host> <LOCAL DEST DIR>

2. Now copy the mysqldump file from host machine to DB container's file system docker cp
<LOCAL DEST DIR>/onprem.sql ml-db:/mnt/

Verify the checksum of mysqldump file (Login into ml-db container) :
md5sum /mnt/dump/onprem.sql

Stop "proxy" service:
docker exec -it ml-tm nohup service javaproxy stop

14

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Import mysqldump:

mysql -u masheryonprem -p'password_for_masheryonprem' onprem < /mnt/dump/
onprem.sql

After importing is done, restart MySQL:
service mysqld restart

Start "proxy" service:
docker exec -it ml-tm nohup service javaproxy start

Ensure MySQL Slave replicates well from MySQL Master:
mysql -u masheryonprem -p'password_for_masheryonprem' onprem
show slave status\G

d) Start "proxy" Service in Master after all Slaves are set. (Optional)
Run the following command:
docker exec -it ml-tm nohup service javaproxy start

Adding a Slave to a Running Mashery Local Cluster
The following section describes how to add a Slave to a running Mashery Local Cluster.

Procedure

1. Register the Mashery Local Instance as new Slave.
Follow the instructions in the topic "Configuring a Local Mashery Slave" in this guide to register the
Mashery Local Instance as Slave, to finish the settings for the Slave in Cluster Manager.

2. Exclude existing Slave or Master Instance from taking traffic.
In order to prepare mysqldump, it is recommended that the user exclude an existing Slave Instance
from Load Balancer, so that the Master Instance and other Slave Instances can keep taking traffic. In
the case of high availability setup, the user can also switch traffic from the primary cluster to a
backup cluster, then stop proxy service in the Master Instance of the primary cluster.

3. Stop "proxy" Service in existing Slave or Master Instance.
Use the following command:
docker exec -it ml-tm nohup service javaproxy stop

4. Initialize New Slave Database.
a) Initialize New Slave Database by importing mysqldump file.

The user should prepare mysqldump in the existing Slave Instance.

1. The user generates mysqldump in existing Slave instance:
mysqldump -u masherybackup -p'password_for_masherybackup' --opt --dump-
slave --master-data --single-transaction onprem > /mnt/dump/onprem.sql

md5sum /mnt/dump/onprem.sql

2. Or, the user generates mysqldump in existing Master instance:
mysqldump -u masherybackup -p'password_for_masherybackup' --opt --master-
data --single-transaction onprem > /mnt/dump/onprem.sql

md5sum /mnt/dump/onprem.sql

b) Import mysqldump to new Slave instance.
Copy mysqldump to new Slave instance:

1. First transfer the mysqldump from remote host to the current host.scp
root@remote_host:<Absolute path of onprem.sql on remote host> <LOCAL DEST DIR>

15

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. Now copy the mysqldump file from host machine to DB container's file systemdocker cp
<LOCAL DEST DIR>/onprem.sql ml-db:/mnt/dump/

3. md5sum /mnt/dump/onprem.sql

Stop MySQL Slave:
mysql -u masheryonprem -p'password_for_masheryonprem' onprem
stop slave

Import mysqldump to new Slave Instance:
mysql -u masheryonprem -p'password_for_masheryonprem' onprem < /mnt/dump/
onprem.sql

c) Initialize New Slave Database by streaming mysqldump.

1. Stop Slave in new Slave Instance:
mysql -u masheryonprem -p'password_for_masheryonprem' onprem
stop slave

2. Import mysqldump to new Slave Instance via Stream:

● Stream from existing Slave Instance:
mysqldump -h remote_host_internal_ip -u mashonpremrepl -
p'password_for_mashonpremrepl' \
 --opt --dump-slave --single-transaction onprem \
 | mysql -u masheryonprem -p'password_for_masheryonprem' onprem

● Stream from existing Master Instance:
mysqldump -h remote_host_internal_ip -u mashonpremrepl -
p'password_for_mashonpremrepl' \
 --opt --master-data --single-transaction onprem \
 | mysql -u masheryonprem -p'password_for_masheryonprem' onprem

5. Restart MySQL Service:
service mysqld restart

6. Start "proxy" Service:
docker exec -it ml-tm nohup service javaproxy start

Changing the Master in a Mashery Local Cluster
The following section describes how to change the Master in a Mashery Local Cluster.

Procedure

1. Shut down the old Master in the Mashery Local Cluster.
Follow the steps in the topic Shutting down a Master.

2. Promote one Slave to be the new Master.
Follow the steps in the topic Promoting a Slave to Master.

3. Repoint other Slaves to the new Master.
Follow the steps in the topic Repointing Other Slaves to a New Master.

16

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Installing and Configuring Mashery Local for Docker

The following sections describe how to install and configure some basic environments complete with a
master, one or more slaves, and load balancing.

Mashery Local for Docker includes a script that will download and install third-party software from
third-party websites, including but not necessarily limited to CentOS and EPEL repositories located
here:
● https://hub.docker.com/_/centos/

● http://vault.centos.org/

● https://dl.fedoraproject.org/pub/epel/

Such third-party software is subject to third-party software licenses that may be available on such third-
party websites. For more information on CentOS repositories and EPEL, see:
● https://wiki.centos.org/AdditionalResources/Repositories

● https://fedoraproject.org/wiki/EPEL

Required Docker Images
Three images are needed to install Mashery Local for Docker:

1. On-premise database: ml-db

2. Memcache: ml-mem

3. TIBCO Mashery Local Core - Traffic Manager plus Cluster Manager UI: ml-core

Installing Mashery Local for Docker
To install Mashery Local for Docker:

Procedure

1. Install Docker Engine, Docker Machine (optional), and docker-compose (optional, and not needed if
on Kubernetes) on your operating system.

Refer to the Docker documentation for the operating system of your choice:
● https://docs.docker.com/engine/

● https://docs.docker.com/machine/

● https://docs.docker.com/compose/

For Mac OS installations, it's recommended to install Docker Toolbox so that multiple
docker hosts can be run on the same box.

2. TIBCO Mashery Local for Docker is available as a TIB_mash-local**.tar.gz file. Download this file
from TIBCO eDelivery and extract the file contents.

3. Create the TIBCO Mashery Local Docker Image set:
a) Drop in custom configurations:

- Modify examples/set-user-variables.sh and drop it in the resource/addons directory
- (Optional) To use a custom https server PEM file for ML Cluster Manager, drop the PEM file to
the resource/addons/certs directory and name it server.pem.

If planning to run on Kubernetes, additional customization may be required. Please see
the section Installing and Running Mashery Local for Docker with Kubernetes.

17

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://hub.docker.com/_/centos/
http://vault.centos.org/
https://dl.fedoraproject.org/pub/epel/
https://wiki.centos.org/AdditionalResources/Repositories
https://fedoraproject.org/wiki/EPEL
https://docs.docker.com/engine/
https://docs.docker.com/machine/
https://docs.docker.com/compose/

b) Navigate to the root folder of the extracted contents and run the following command to build the
Mashery Local image set (comprising three images): ./build-docker.sh 2>&1 |tee /tmp/
build-docker.log

This will increment the image tag revision number. You can use the command "docker
images" to check it out. You will need to modify the docker-compose.yml file to use the
new tag if you build more than once in the same directory. However, if you would like
to keep the same revision number, you will need to remove the file
BUILD_NUMBER.txt in the current directory before starting the next build.

c) Verify three images are created: ml-db.tar.gz, ml-mem.tar.gz, ml-core.tar.gz. (The image sizes are
about 400MB, 120MB, and 850MB, respectively.)

If the size of any image is significantly less than the numbers above, then the image
build might have some problems. Check the build-docker.log generated from the
previous step. If you see several errors, such as:

Could not retrieve mirrorlist http://mirrorlist.centos.org/?..... error

was14: PYCURL ERROR 22 - "The requested URL returned error: 503 Service

Unavailable"

then you probably have some firewall issues on your network. Switch to a network
without firewall restriction to do the build.

4. (If planning to run on Kubernetes, the remaining steps do not apply. Please go to the section
Installing and Running Mashery Local for Docker with Kubernetes to continue installation.)
Navigate to the examples folder and copy the docker-compose.yml and the three image .gz files to
the target Docker host machine.

The docker-compose.yml may need additional edits, depending on what ports need to be
exposed or for other customization. For example, to add "extra hosts" if there are any extra
host names and IP mapping that need to be added for a container.

Note: The indents and dash in the docker-compose yml file are important.
Run the following commands:

● docker load -i <each of the three image files, one by one>

● docker-compose up -d

5. Verify that four Docker containers are up:
docker ps to make sure the four containers are running.

6. Repeat Steps 4-5 for each Docker host that will run a Mashery Local instance.

7. Go to the instance in a browser:

https://<docker host-IP>:5480.

8. Complete Master registration to TIBCO MOM (Mashery On-Prem Manager) or complete Slave
registration to Master.

Additional Installation Tips

● Installation Steps with Docker Toolbox

● Working with Amazon EC2

Installing with Docker Toolbox

Docker Toolbox is a tool that lets you manage Docker engines on multiple virtual instances, and is used
with Docker Machine. If you need to setup slaves for the cluster on different virtual instances, images
built in the previous set of instructions (Step 3 of Installating Mashery Local for Docker) can be reused
below.

18

TIBCO Mashery® Local Installation and Configuration Guide for Docker

1. Install Docker Toolbox from https://www.docker.com/products/docker-toolbox.

2. Use docker-machine create command to create Docker engines on virtual instances.

Drivers are available for various cloud provider platforms. Refer to https://
docs.docker.com/machine/ for the latest information. Also refer to individual cloud
provider documentation for more details on authentication details and other parameters
you can use to customize your Docker Machine.

Some example commands are below:

a. To create a Docker Machine on a VirtualBox setup on your machine (prerequisite: VirtualBox 5+
ideal):
docker-machine create --driver virtualbox <docker machine name>

b. To create a Docker Machine on a VMware Fusion setup on your machine:
docker-machine create --driver vmwarefusion <docker machine name>

c. To create a Docker Machine on AWS (prerequisite: AWS signup, create an IAM administrator
user and a key pair: AWS access key, AWS secret key):
docker-machine create --driver amazonec2 --amazonec2-access-key <your aws
access key> --amazonec2-secret-key <your aws secret key> <name for your new
AWS instance>

d. To create a Docker Machine on Microsoft Azure (prerequisite: Microsoft Azure signup):
docker-machine create --driver azure --azure-subscription-id <your
subscription id> <name for your new azure instance>

e. To create a Docker Machine on Google Cloud (prerequisite: Google Cloud signup, recommend
installing and configuring gcloud tools locally to manage authentication. Refer to GCE
documentation.):
docker-machine create --driver google --google-project <google project id> -
google-zone "us-west1-a" <name for your new google instance>

3. List all your available machines and make sure the one you just created shows up:
docker-machine ls

4. Connect your shell to a machine:
eval $(docker-machine env <docker machine name>)

docker-machine ls

(confirm the machine you are connecting to has an * to it to show that it's active)

5. You can use the three images you created via running the build-docker.sh script above:

a. Copy or move the images to the Amazon instance:

b. Run load command to load the images to the docker host.

c. Run docker compose up -d.

Working with Amazon EC2 Instances

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides resizable compute
capacity in the cloud.

Procedure

1. Install Docker Engine: http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-
basics.html

2. Install Docker Compose: https://docs.docker.com/compose/install

19

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://www.docker.com/products/docker-toolbox
https://docs.docker.com/machine/
https://docs.docker.com/machine/
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.docker.com/compose/install

3. Install Docker Machine: https://docs.docker.com/machine/install-machine

4. TIBCO Mashery Local for Docker is available as a TIB_mash-local**.tar.gz file. Download this file
from TIBCO eDelivery and extract the file contents.

5. Navigate to the root folder of the extracted contents and run the following command to build the
Mashery Local image set (comprising three images):
a) ./build-docker.sh

This will increment the image tag revision number. You can use the command "docker
images" to check it out. You will need to modify the docker-compose.yml file to use the
new tag if you build more than once in the same directory.

b) Verify three images are created: ml_db.tar.gz, ml-mem.tar.gz, ml_core.tar.gz.

6. Navigate to the examples folder and copy the docker-compose.yml and the three image .gz files
previously built to a target directory.

The docker-compose.yml may need additional edits, depending on what ports need to be
exposed or for other customization. For example, to add "extra hosts" if there are any extra
host names and IP mapping that need to be added for a container.

Note: The indents and dash in the docker-compose.yml file are important.
Run the following command: docker load -i <each of the three image files, one by one>
At this point, this AWS instance can be saved as an AM1 that can be re-used for any Mashery Local
instance.

7. Run the following command: docker-compose up -d
Verify that four Docker containers are up:
docker ps to make sure the four containers are running.

8. Go to the instance in a browser:

https://<docker host-IP>:5480.

9. Complete Master registration to TIBCO MOM (Mashery On-Prem Manager) or complete Slave
registration to Master.

If you are using docker-machine to create the docker container, then use the following
command:
docker-machine create --driver amazonec2 --amazonec2-access-key <Your
AWS Key> --amazonec2-secret-key <Your AWS Key Secret> --amazonec2-region
<Region You want to create the instance> <Instance Name>

You will need to open the following ports under the security group for registering Slave
machine with Master: 22, 443, 2200, 2376 (TCP), 3306 , 5480, 11212.

Installation Troubleshooting Tips
Use the following tips in this section to troubleshoot your installation.

Changing the Traffic Manager Port

To change the Traffic Manager port in Mashery Local for Docker, modify the docker-compose.yml file
to change the 80:80 under services:/ml-tm:/ports: to <host port>:<container port>, where the
container port is the port you configured for the proxy.

Note that the host port could be different from the container port. The host port is the port that would
be used to access the proxy from outside. After changing the ports in the docker-compose.yml, you will
need to do docker-compose down and up to take them into effect. If you know the ports you are
planning to switch in the future, you can add them in advance. Then, later when you decide to switch
the port, you can simply change it from the UI (under Instance Management > Instance Settings >
HTTP/HTTPS port).

20

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://docs.docker.com/machine/install-machine

There could be two scenarios for changing the proxy port:

Scenario 1
● Add the new port mapping to docker-compose.yml

● Execute the command below if the Mashery Local Docker instance is running:
docker-compose down

● Execute
docker-compose up -d

● Change port from UI

● Check whether port is in effect:
docker exec -it ml-tm netstat -nlp |grep LISTEN|grep tcp

● If the new port is not being listened, execute the command:
docker exec -it ml-tm nohup service javaproxy restart

Scenario 2
● Change port from UI

● Add the new port mapping to docker-compose.yml

● Execute
docker-compose down

● Execute
docker-compose up -d

How to Enable Additional Features That Require a New Port

To enable features, such as HTTPS, that requires a port other than 443, the port must be mapped in the
docker-compose.yml file. If not, add it to the .yml file. Normally, it would be associated with Traffic
Manager. So add it under the services:/ml-tm:/ports. Then, you access from outside through the Docker
host IP address.

The example docker-compose.yml file already has most needed ports mapped. However, to change the
ports to be used (for example HTTP/HTTPS ports), it would be better to make the changes in the
docker-compose.yml file before starting the containers so that the mapping are in place. Then later, you
can modify the UI to change the ports. However, if new port was not in effect after the UI change, try
restarting the javaproxy. This can be done with command docker exec -it ml-tm nohup service
javaproxy restart.

How to Telnet Memcache Port

Currently, only port 11212 is exposed to the outside for the memcache. You can telnet to the memcache
port 11212 with the command:
telnet <docker host IP> 11212

The docker host IP can be found from the command echo $DOCKER_HOST if docker-machine is used.
Otherwise, it's the machine/vm IP.

If you need to telnet to other memcache ports, you need to add the port mapping in the docker-
compose.yml file and restart the docker-compose. Then, use the command:
telnet <docker host IP> <port number>

Alternatively, you could get in the memcache container with the command:
docker exec -it ml-mem /bin/bash

21

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Install the telnet there and then use the command:
telnet localhost <port number>

How to Troubleshoot 596 Error Caused by Memcache

The 596 Service not found error may be caused by memcache and you may see the following errors
in proxy log:
[2017-03-21T19:16:42+00:00] WARN [Memcached IO over {MemcachedConnection to ml-mem/
172.19.0.2:11214}] n.spy.memcached.MemcachedConnection - Closing, and reopening
{QA sa=ml-mem/172.19.0.2:11214, #Rops=0, #Wops=2, #iq=0, topRop=null, topWop=Cmd:
get Keys: ENDPOINTS_digital-api.biogen.comExp: 0, toWrite=0, interested=0}, attempt
2.

[2017-03-21T19:16:44+00:00] WARN [proxy-server-71] c.m.p.i.m.MemcachedClientImpl
- Operation timed out; retrying...

net.spy.memcached.internal.CheckedOperationTimeoutException: Timed out waiting for
operation - failing node: ml-mem/172.19.0.2:11214

First check if whether the memcached is running:
docker exec -it ml-mem ps -ef

Then, look for the memcached process. If not running, get in the ml-mem container to start it and see
whether there's any error:
docker exec -it ml-mem /bin/bash
then

service memcached start

If it failed to start because of running out of file limit, following the instructions in the section How to
Change Ulimits on Containers to fix it.

How to Change Ulimits for a Container

To override the fault ulimits for a container, you can either specify a single limit as an integer or soft/
hard limits as a mapping. For example:
ulimits:
 nproc: 65535
 nofile:
 soft: 65535
 hard: 65535

How to Use NFS for Verbose Log

To use NFS for verbose log:

1. Mount the NFS to a host directory, for example, /mnt/nfs.

2. Add the volume mapping in the docker-compose.yml file under the services:/ml-tm:/volumes, for
example:

- /mnt/nfs:/var/log/tm_verbose_log

Use the same indent as the existing entry - mldata:/mnt.

3. Execute
docker-compose down

4. Execute
docker-compose up -d

5. Modify the UI to set the Verbose Logs Location to /var/log/tm_verbose_log but leave the flag
Use NFS unchecked.

22

TIBCO Mashery® Local Installation and Configuration Guide for Docker

6. Enable the verbose log.

7. Execute
docker exec -it ml-tm nohup service
javaproxy restart

Creating a Larger Memory for Memory Allocation

The Memory Allocation factor setting (in the Management Options of Instance Management) resizes
the memory of the instance. It will not resize memory to less than 1024MB, as it is the minimum
required memory for Docker.

On some platforms, for example Mac OS, if Docker host is created by Docker Machine, Docker creates
an instance with 1024MB by default. For the Memory Allocation factor to have an effect, the Docker
Machine should be created with a larger memory than 1024MB.

For example, to create a Docker Machine with 2GB of memory, use the following command:

$docker-machine create -d virtualbox --virtualbox-memory 2048 <docker-machine-name>

For example, to create a Docker Machine with 4GB of memory, use the following command:

$docker-machine create -d virtualbox --virtualbox-memory 4096 <docker-machine-name>

How to Monitor the Health of Docker Containers

To check the container logs, use the following example command:
docker logs ml-tm

To check the container status, use the following example commands:
docker stats ml-tm
docker top ml-tm

How to Increase the CPU Share and Memory of a Container

To increase the Docker CPU share and the memory of a container, use the following example
command:
docker update --cpu-shares 5120 -m 3000M ml-tm

See Docker CPU share constraints and memory constraints for more information.

How to Do a Clean Restart of a Docker Instance

If you are using Docker-Machine, make sure your are talking to the right one. Execute the command
docker-machine ls to find which one is currently active. It is also recommended to always redo the
command:
eval "$(docker-machine env <docker machine name>)"

Deleting volumes will wipe out their data. Back up any data that you need before deleting a container.

Procedure

1. Stop the container(s) using the following command:
docker-compose down

2. Delete all containers using the following command:
docker rm -f $(docker ps -a -q)

3. Delete all volumes using the following command:
docker volume rm $(docker volume ls -q)

23

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://docs.docker.com/engine/reference/run/#cpu-share-constraint
https://docs.docker.com/engine/reference/run/#user-memory-constraints

4. Restart the containers using the following command:
docker-compose up -d

How to Register Master or Slave with Commands

You can register the master or slave with the following example commands:

● On Docker host for master:
docker exec -it ml-cm /etc/ml.sh register_master '{ "api_key": "chainsproxykey",
"api_secret": "DVUVwqjXqQ", "node_name": "ML_Master", "master_address":
"192.168.99.100", "ntp": "false", "ntp_address": ""}'

● On Docker host for slave1:
docker exec -it ml-cm /etc/ml.sh register_slave '{ "api_key": "chainsproxykey",
"api_secret": "DVUVwqjXqQ", "node_name": "ML_Slave1", "master_address":
"192.168.99.100", "ntp": "false", "ntp_address": "", "slave_address":
"192.168.99.101"}'

If NTP needs to be configured (recommended) during registration, use the following commands:

● On the Docker host for master:
docker exec -it ml-cm /etc/ml.sh register_master '
{ "api_key": "chainsproxykey", "api_secret": "DVUVwqjXqQ", "node_name":
"ML_Master", "master_address": "192.168.99.100", "ntp": "true", "ntp_address":
"0.centos.pool.ntp.org","ntp_address1": "1.centos.pool.ntp.org","ntp_address2":
"2.centos.pool.ntp.org","ntp_address3": "3.centos.pool.ntp.org"}
'

● On Docker host for slave1:
docker exec -it ml-cm /etc/ml.sh register_slave '
{ "api_key": "chainsproxykey", "api_secret": "DVUVwqjXqQ", "node_name":
"ML_Slave1", "master_address": "192.168.99.100", "ntp": "true", "ntp_address":
"0.centos.pool.ntp.org","ntp_address1": "1.centos.pool.ntp.org","ntp_address2":
"2.centos.pool.ntp.org","ntp_address3": "3.centos.pool.ntp.org",
"slave_address": "192.168.99.101"}

How to Promote a Slave to Master with CLI

To promote a Slave to Master without using Mashery Local Cluster Manager administrator, you can use
Command Line Interface (CLI).

Copy the following code to a temporary file (for example, /tmp/promote_to_master.py):
import sys;
sys.path.append('/var/www/htdocs/service/mashery/cgi');
import Mashery;
Mashery.make_master()
Mashery.backup_mysql_server()

Then, execute the following command:
docker cp /tmp/promote_to_master.py ml-cm:/tmp
docker exec -it ml-cm python/tmp/promote_to_master.py

How to Change Master to Slave with CLI

To change a Master to a Slave without using Mashery Local Cluster Manager administrator, you can
use Command Line Interface (CLI).

Create a temporary file (for example, /tmp/change_master.py) with the following code (fill in the <old
master IP> and <new master IP> fields):
import sys;
sys.path.append('/var/www/htdocs/service/mashery/cgi');
import debug;
debug.change_master_to('<old master IP>','<new master IP>')

24

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Then, execute the following command:
docker cp /tmp/change_master.py ml-cm:/tmp
docker exec -it ml-cm python/tmp/change_master.py

Managing Docker Containers
Use the following commands to manage the Docker containers:

Action Command

Pause docker-compose pause

Unpause docker-compose unpause

Restart docker-compose restart

Shut down docker-compose down

Complete Cleanup
(remove persistent data)

docker volume rm $(docker volume ls -q)

This will clean up all the database content and configurations.

Then, you will need to redo and register the master and slave after re-
running Mashery Local for Docker.

This command removes all volumes for a docker host. If you
have other volumes besides those used by Mashery Local for
Docker, you must remove the volumes for Mashery Local for
Docker individually.

Installing and Running Mashery Local for Docker Using Kubernetes
To install and run Mashery Local for Docker using Kubernetes on Amazon Web Services (AWS) cloud,
ensure your configuration meets the proper pre-requisites, then follow the steps below. The following
instructions use Kubernetes Operations (kops), the recommended tool for creating and managing
Kubernetes clusters.

Prerequisites

● Mac OS or Linux local working environment

● AWS account with full access to the AWS APIs

● AWS EC2 Console

● AWS Command Line Interface (CLI) installed and configured

— AWS configurations set up, such as default region, access key, and secret key

— Verify the command "aws" is on your path and that you can do some simple AWS CLI
commands, for example:
aws ec2 describe-vpcs

● Local Docker environment ready (either connect to a docker-machine that is up and running, or run
docker host on the machine).

You need this to upload docker images even if you are using pre-built images from S3.

25

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://github.com/kubernetes/kops

● Mashery Local for Docker images built locally (For instructions on building Mashery Local for
Docker images, see Installing Mashery Local for Docker.

If you have custom adapters, see the Customizing for Kubernetes section.

● Docker images verified (no critical errors during the build and the images can be seen with the
command "docker images".

Procedure

1. Install Kops.
On OS X, use the following command:
brew update && brew install kops

2. Create the cluster.
a) Use the following commands as an example to create the cluster definition:

export NAME=kubeml411.rkdemo.com
export KOPS_STATE_STORE=s3://rkdemo-state-store
kops create cluster --zones us-east-1a $NAME

The cluster name must use a public domain suffix. In this example, rkdemo.com is a
registered domain.

b) Update the slave nodes' instance type by editing the cluster node configuration:
kops edit ig --name=$NAME nodes

The default size listed under the spec.machineType property is t2.medium; change it to
m3.large or higher. Additionally, the values of the maxSize and minSize properties should be
increased from 2 to 3, so that each Mashery Local node (the master and two slaves) will be
deployed on a separate host.

Warning! Leaving the minSize and maxSize property values at 2 will result in both slaves being
deployed to the same physical host, resulting in TCP port conflicts.

Tip! Use vi commands to save and exit the editor.

26

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Finally, apply the changes using the following command:
kops update cluster $NAME --yes

If successful, your EC2 Console on AWS should look like this:

3. Install the Kubernetes Dashboard UI
a) Use the following command to install the Dashboard service:

kubectl create -f https://rawgit.com/kubernetes/dashboard/master/src/deploy/
kubernetes-dashboard.yaml

b) Access the dashboard app at https://api.<cluster-name>/ui, for example, https://
api.kubeml411.rkdemo.com/ui

Use the following command to obtain the password for the admin user:

export PATH=<path to kubernetes-directory>/client/bin:.:$PATH

c) You can access the Kubernetes console UI with the following URL: <cluster server url>/ui
In the previous example, this is: https://34.205.42.112/ui

4. Deploy Mashery Local.
a) Create a private Amazon EC2 Container Registry (ECR) for Mashery Local for Docker, for

example:
aws ecr create-repository --repository-name <registry name>

for example
aws ecr create-repository --repository-name tibco/mlce

If you have never used AWS ECS before, you will need to go to the AWS ECS
dashboard and follow the "Getting Started" step.

b) Go to the directory examples/kubernetes extracted from the Mashery Local for Docker 4.1 (or
later) release, modify the aws-env.sh with the planned configuration, and set the environment
variables with the command:
. aws-env.sh

The ML_REGISTRY_NAME is the registry name used in step 4a.

The ML_REGISTRY_HOST can be found with the following command:
aws ecr get-login --registry-ids `aws ecr describe-repositories --
repository-names "$ML_REGISTRY_NAME" |grep registryId |cut -d ":" -f 2|
tr -d ' ",'`|awk -F'https://' '{print $2}'

Or, from the AWS ECS dashboard, go to Repositories > Repository URI. For
example, with repository URI "12345603243.dkr.ecr.us-east-1.amazonaws.com/
tibco/mlce", the ML_REGISTRY_NAME is tibco/mlce, and the
ML_REGISTRY_HOST is 12345603243.dkr.ecr.us-east-1.amazonaws.com.

c) Add or set login credentials in <home>/.docker/config.json using the command:
aws ecr get-login --no-include-email | sh -

For the get-login command, the --no-include-email option must be specified for
Docker version 17.06 or later, otherwise the command will fail.

27

TIBCO Mashery® Local Installation and Configuration Guide for Docker

d) Load Docker images.

1. Verify Mashery Local for Docker images with the correct tag are in the current docker host
with the command:
docker images

The tag should match the env. variable ML_IMAGE_TAG.

2. Execute the following script to load images to the ECR Docker registry:
upload-images.sh

e) Execute the following script to store the Docker registry key as Kubernetes "Secret":
set-registry-key.sh

f) Execute the following script to store MOM host and key as Kubernetes "Secret":
set-mom-secret.sh create <MOM key> <MOM secret>

If you want to enable HTTPS or OAuth, see the section Customizing for Kubernetes for
additional configuration steps.

g) Create storage classes for Mashery Local for Docker persistent stores:
set-storage-classes.sh

h) Create Mashery Local Traffic Manager service and Mashery Local Master service:
set-ml-services.sh

You can check the services with the following commands:
kubectl describe service ml-traffic-manager

kubectl describe service ml-master

The ml-traffic-manager is configured with load balancer. You can find the load balancer DNS
name with the following command:
kubectl describe service ml-traffic-manager|grep Ingress|awk -F' ' '{print $3}'

The load balancer can also be found on the AWS EC2 dashboard Load Balancers list.

API invocation should be done solely via the AWS ELB (Elastic Load Balancer). The
ELB configuration uses the internal IPs of the customer nodes for load balancing, so
invoking API calls directly via the public IP addresses of the master or slave nodes is
not an option.

i) Deploy Mashery Local master instance:
deploy-master.sh

You can check the ML instance pods with the command:
kubectl get pods

The ML master pod has a name like ml-master-...... When it's fully up, you should see 4/4
under the READY column with STATUS "Running" for the master instance pod.
You can check the startup init instance log with the following command:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c ml-cm
-- cat /var/log/mashery/init-instance.log

When it's fully ready to serve traffic, you should see something like the following:
....

Register status: Content-Type: application/json Status: 200 {"results":
[{"results": [{"address": "10.0.22.98"}], "error": null}, {"results":
[{"area_name": "Roger"}], "error": null}, {"results": [{"credentials_updated":
true}], "error": null}, {"results": [{"name": "ml-master-4209822619-sxq40",
"id": 0}], "error": null}, {"results": [{"is_master": true}], "error": null}],
"error": null}

**** 04/06 05:27:38 Register instance succeeded

Load service result:

Load service result:

28

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Load service result: 70a0b42e-2b9a-4f60-a4d6-8c5503894043 [SERVICES] 04/06/17
05:27:45 - 04/06/17 05:27:47: 254 records (Success) 70a0b42e-2b9a-4f60-
a4d6-8c5503894043 [KEYS] 04/06/17 05:27:47 - 04/06/17 05:27:55: 10963 records
(Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043 [APPS] 04/06/17 05:27:55 -
04/06/17 05:28:23: 6884 records (Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043
[CLASSES] 04/06/17 05:28:23 - 04/06/17 05:28:23: 0 records (Success)
70a0b42e-2b9a-4f60-a4d6-8c5503894043 [PACKAGES] 04/06/17 05:28:23 - 04/06/17
05:29:54: 28824 records (Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043
[PACKAGEKEYS] 04/06/17 05:29:54 - 04/06/17 05:30:17: 5553 records (Success)

**** 04/06 05:30:17 Service info loaded

Load cache output first ten lines: - Trying to load mapi data for spkey:
m8hxx3wxy5wjyjhfzc328wqh key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::
2011w25DeveloperJay key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::2011w25DeveloperRoger
key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::3skjegt4ddpam6a5r8sfgpkz key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::4q5t7z4gduy388z9nk5tmptm key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::4tzw5p5h5mx8gr8ez6m34wak key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::5s8ds7dcyj7cjz4h9h5tv7ev key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::5yy6dkjbq7sr922j4wt6u2hc key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::6mbcz48nabrz682xn2hdmhzn key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::8tng6tk5bzhpfqexn525cqnj

**** 04/06 05:31:01 Cache Loaded

**** 04/06 05:31:01 Ping Traffic Manager succeeded

**** 04/06 05:31:01 Setting status ready

When the ML master instance containers are up, you can find the ML master instance node
public IP with the following command:
kubectl describe node `kubectl get pods -o wide |grep ml-master |awk -F' ' 'ml-
master'`|\
awk '/Addresses/ {for(i=1; i<=6; i++) {getline; print}{print "\n"}}'

InternalIP: 172.20.41.66
LegacyHostIP: 172.20.41.66
ExternalIP: 184.73.16.126
InternalDNS: ip-172-20-41-66.ec2.internal
ExternalDNS: ec2-184-73-16-126.compute-1.amazonaws.com
Hostname: ip-172-20-41-66.ec2.internal

InternalIP: 172.20.54.44
LegacyHostIP: 172.20.54.44
ExternalIP: 54.160.43.6
InternalDNS: ip-172-20-54-44.ec2.internal
ExternalDNS: ec2-54-160-43-6.compute-1.amazonaws.com
Hostname: ip-172-20-54-44.ec2.internal

InternalIP: 172.20.58.180
LegacyHostIP: 172.20.58.180
ExternalIP: 34.207.81.153
InternalDNS: ip-172-20-58-180.ec2.internal
ExternalDNS: ec2-34-207-81-153.compute-1.amazonaws.com
Hostname: ip-172-20-58-180.ec2.internal

If you need to access the Mashery Local instance Cluster Manager UI, you need to open the port
5480 for UI access. For convenience, you can open the port for all minion nodes in the cluster
with the following command:
aws ec2 authorize-security-group-ingress --group-id `aws ec2 describe-security-
groups \
--filters "Name=group-name,Values=nodes.${NAME}" | jq -r
'.SecurityGroups[0].GroupId'` \
--protocol tcp --port 5480 --cidr 0.0.0.0/0

Or you can open the port individually as needed with additional security group through AWS
UI or CLI.

29

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Then you can login to the ML master instance Cluster Manager UI with https://< ML master
instance node ip>:5480.

You can get into any ML master instance container with the following command:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c
<container name> -- /bin/bash

The container names are: ml-db, ml-mem, ml-tm, ml-cm.

You can also execute some simple remote command on a container directly:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c
<container name> -- <remote command>

for example:

kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c ml-tm
-- ls -l /var/log/trafficmgr/access

At any time, you could also get in the Kubernetes dashboard UI to check the progress, such as
checking the deployment, replica sets, services, pods, containers and their logs.

j) Deploy Mashery Local slave instances:
deploy-slaves.sh

You can check the Mashery Local instance pods with the command:
kubectl get pods

The Mashery Local slaves instance pods are named with ml-slave-0, ml-slave-1, ml-slave-2.

When it's fully up, you should see 4/4 under the READY column with STATUS "Running" for
the slave instance pod.

You can check the startup init instance log with the following command:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
ml-cm -- cat /var/log/mashery/init-instance.log

for example:

kubectl exec -ti `kubectl get pods |grep ml-slave-0 |cut -d " " -f 1` -c ml-cm
-- cat /var/log/mashery/init-instance.log

You can find the Mashery Local slave instance node IP with the following command:
kubectl describe node `kubectl get pods -o wide |grep <slave pod name> |awk -
F' ' '{print $7}'` |grep Addresses |cut -d "," -f 3

Then, login to the ML slave instance Cluster Manager UI with https://<ML slave instance node
ip>:5480

If you didn't open the port 5480 for all nodes in the previous step, you need to open the
port for each ML slave instance individually with additional security group through
AWS UI or CLI.

You can get into any ML slave instance container with the following command:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
<container name> -- /bin/bash

The container names are: ml-db, ml-mem, ml-tm, ml-cm.

You can also execute some simple remote command on a container directly:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
<container name> -- <remote command>

for example:

kubectl exec -ti `kubectl get pods |grep ml-slave-0 |cut -d " " -f 1` -c ml-tm
-- ls -l /var/log/trafficmgr/access

At any time, you could also get into the Kubernetes dashboard UI to check the progress, such as
checking the stateful sets, services, pods, and containers and their logs.

30

TIBCO Mashery® Local Installation and Configuration Guide for Docker

By default, it's configured to run two slave instances.

You can use the following command to increase or reduce the number of slaves:
kubectl patch statefulset ml-slave --type='json' -p='[{"op": "replace",
"path": "/spec/replicas", "value":<the desired replica number>}]'

However, you must have enough worker nodes to run all the slave instances.
k) Test the traffic, using the following example commands:

export LB=`kubectl describe service ml-traffic-manager|grep Ingress|awk -F'
' '{print $3}'` && echo $LB

curl -H 'Host: roger.api.perfmom.mashspud.com' http://$LB/testep?
api_key=funjsgx8m5bsew2jngpdanxf

l) Cleanup or undeploy Mashery Local instances.

To undeploy Mashery Local slave instances:
deploy-slaves.sh delete

To undeploy Mashery Local master instances:
deploy-master.sh delete

m) Shut down Kubernetes cluster using the following command:
kubernetes/cluster/kube-down.sh

Verifying Installation on Kubernetes
To verify the Mashery Local installation on Kubernetes:

Procedure

1. Navigate to the Pods view in the Kubernetes Dashboard.

You can also use the following command:
kubectl get pods

The values under the READY column should all read 4/4.

31

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. The Mashery Local Cluster Manager console should look like this:

Invoking APIs via AWS ELB
In the Mashery API Control Center dashboard, make sure to add the AWS ELB host name to your
endpoint's domain list and synchronize the Mashery Local cluster. For more information, see Endpoint
Load Balancing and Domains.

When you invoke your API via the ELB, you can tell which traffic manager node responded to the call
by looking at the HTTP response headers, for example:
X-Mashery-Responder: ml-slave-1

Customizing for Kubernetes
When Kubernetes does autoscaling or auto-repairing, you are not able to get into the Mashery Local
Cluster Manager UI to change the configuration, so all customizations should be set up at image build
time.

Disabling HTTP or using a different HTTP Port

To disable HTTP or to use a different HTTP port, modify the following variables in the examples/set-
user-variables.sh and drop it in the resource/addons directory before building docker images:
export HTTP_ENABLED=true

export HTTP_PORT=80

Also, make the corresponding changes in the aws-env.sh file.

32

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://docs.mashery.com/GUID-586E5F93-7538-42C1-990E-E88DADAABA24.html
http://docs.mashery.com/GUID-586E5F93-7538-42C1-990E-E88DADAABA24.html

Adding a Custom Adapter

To add a custom adapter, put the adapter zip file in the resources/addons directory and modify the
following variable in the examples/set-user-variables.sh and drop it in the resource/addons directory
before building docker images:
export CUSTOM_ADAPTER_ZIP_FILE_NAME=<custom adapter zip file name>

Enabling OAuth

To enable OAuth, in the aws-env.sh file, set:
export OAUTH_ENABLED=true

Then, execute the following command as an additional step in Step 7 of Installing and Running
Mashery Local for Docker with Kubernetes:
set-oauth-secret.sh <create|replace|delete> <OAuth authorization user> <OAuth
authorization user password>

For the first argument in the above command, use "create" for the first time, then use "replace" for
subsequent changes.

Enabling HTTPS

To enable OAuth, in the aws-env.sh file, set:
export HTTPS_ENABLED=true

export HTTPS_PORT=<port number>

Next, put the server certificate file in the resources/addons/certs directory before building the
images.

Then, execute the following command as an additional step in Step 7 of Installing and Running
Mashery Local for Docker with Kubernetes:
set-https-secret.sh <create|replace|delete> <server certificate file name> <server
certificate password>

For the first argument in the above command, use "create" for the first time, then use "replace" for
subsequent changes.

Installing and Running Mashery Local for Docker Using GCP
To install and run Mashery Local for Docker using GCP (Google Cloud Platform), follow the steps
below.

Procedure

1. Install the Google Cloud SDK.
Follow the instructions on the Google Cloud SDK page. Verify your installation using the following
command:
gcloud -v

The output should look like the following:
Google Cloud SDK 169.0.0
bq 2.0.25
core 2017.08.28
gcloud
gsutil 4.27

2. Create the cluster.
Use the GCP console to create a new cluster:

33

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://cloud.google.com/sdk/

When your cluster is ready, it should be listed as follows:

Use n1-standard-2 as the minimum machine type for the cluster (2 vCPUs and 7.5 GB of
memory).

3. Install the Kubernetes Dashboard UI.

Click the Connect button in the console to reveal the gcloud commands to execute (the following is
an excerpt):

34

TIBCO Mashery® Local Installation and Configuration Guide for Docker

The output from the first command should look like the following:
Fetching cluster endpoint and auth data.
kubeconfig entry generated for rkdemo-ml411.

The output from the second command should look like the following:
Starting to serve on 127.0.0.1:8001

Access the dashboard app at https://localhost:8081/ui.

4. Upload the Docker Images to the GCP Container Registry.
a) In order to deploy Mashery Local to your Kubernetes cluster on GCP, you will need to upload

the images to your GCP Container Registry. The registry console is available at https://
cloud.google.com/container-registry. The ML Docker images need to be tagged first before they
can be uploaded to the registry. Use the following command to tag them: docker tag [IMAGE]
[HOSTNAME]/[PROJECT-ID]/[IMAGE], for example:
docker tag ml-core:v4.1.1.0 us.gcr.io/ml-4-1-1/ml-core:v4.1.1.0
docker tag ml-mem:v4.1.1.0 us.gcr.io/ml-4-1-1/ml-mem:v4.1.1.0
docker tag ml-db:v4.1.1.0 us.gcr.io/ml-4-1-1/ml-db:v4.1.1.0

35

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://cloud.google.com/container-registry
https://cloud.google.com/container-registry

The following is the list of available gcr.io (container registry) hostnames:
● us.gcr.io hosts your images in the United States

● eu.gcr.io hosts your images in the European Union

● asia.gcr.io hosts your images in Asia

● gcr.io without a prefix hosts your images in the United States, but this behavior
may change in a future release.

See https://cloud.google.com/container-registry/docs/pushing-and-pulling for more
details.

b) Upload the images using the gcloud docker push command:
gcloud docker -- push us.gcr.io/ml-4-1-1/ml-core
gcloud docker -- push us.gcr.io/ml-4-1-1/ml-mem
gcloud docker -- push us.gcr.io/ml-4-1-1/ml-db

The space separating the '--' characters from the push parameter in the above
commands is required.

c) Once the push commands complete, the new images should be listed in the container registry
console.

You can also verify the pushed images using the gcloud container images command:
gcloud container images list-tags us.gcr.io/ml-4-1-1/ml-core
DIGEST TAGS TIMESTAMP
b20b0700bf3a v4.1.1.0 2017-08-03T22:33:02

d) With the Docker images in the container registry, you can inspect the images in the container
registry console.

e) Execute the pull command for each image:

gcloud docker -- pull us.gcr.io/ml-4-1-1/ml-core:v4.1.1.0
gcloud docker -- pull us.gcr.io/ml-4-1-1/ml-mem:v4.1.1.0
gcloud docker -- pull us.gcr.io/ml-4-1-1/ml-db:v4.1.1.0

36

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://cloud.google.com/container-registry/docs/pushing-and-pulling

f) Create a new shell script to setup GCP environment variable (replaces aws-env.sh):

gcp-env.sh

Source the new shell script:
source gcp-env.sh

Copy deploy-master.sh to deploy-master-gcp.sh. Edit deploy-master-gcp.sh and change all
filename references from:
cat >> ml-master.yaml << EOF

to:
cat >> ml-master-gcp.yaml << EOF

g) Additionally, change all image registry references from:
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-core-$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-mem-$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-db-$ML_IMAGE_TAG

to:
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-core:$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-mem:$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-db:$ML_IMAGE_TAG

h) Execute the following script to store the Docker registry key as Kubernetes "Secret":
set-registry-key.sh

i) Execute the following script to store MOM host and key as Kubernetes "Secret":
set-mom-secret.sh create <MOM key> <MOM secret>

If you want to enable HTTPS or OAuth, see the section Customizing for Kubernetes for
additional configuration steps.

j) Create storage classes for Mashery Local for Docker persistent stores:
set-storage-classes.sh

k) Create Mashery Local Traffic Manager service and Mashery Local Master service:
set-ml-services.sh

You can check the services with the following commands:
kubectl describe service ml-traffic-manager

kubectl describe service ml-master

The ml-traffic-manager is configured with load balancer. You can find the load balancer DNS
name with the following command:
kubectl describe service ml-traffic-manager|grep Ingress|awk -F' ' '{print $3}'

The load balancer can also be found on the AWS EC2 dashboard Load Balancers list.

API invocation should be done solely via the AWS ELB (Elastic Load Balancer). The
ELB configuration uses the internal IPs of the customer nodes for load balancing, so
invoking API calls directly via the public IP addresses of the master or slave nodes is
not an option.

l) Deploy Mashery Local master instance:
deploy-master-gcp.sh

37

TIBCO Mashery® Local Installation and Configuration Guide for Docker

You can check the ML instance pods with the command:
kubectl get pods

The ML master pod is named ml-master-<name>. When it's fully up, you should see 4/4 under
the READY column with STATUS "Running" for the master instance pod.
You can check the startup init instance log with the following command:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c ml-cm
-- cat /var/log/mashery/init-instance.log

When it's fully ready to serve traffic, you should see something like the following:
....

Register status: Content-Type: application/json Status: 200 {"results":
[{"results": [{"address": "10.0.22.98"}], "error": null}, {"results":
[{"area_name": "Roger"}], "error": null}, {"results": [{"credentials_updated":
true}], "error": null}, {"results": [{"name": "ml-master-4209822619-sxq40",
"id": 0}], "error": null}, {"results": [{"is_master": true}], "error": null}],
"error": null}

**** 04/06 05:27:38 Register instance succeeded

Load service result:

Load service result:

Load service result: 70a0b42e-2b9a-4f60-a4d6-8c5503894043 [SERVICES] 04/06/17
05:27:45 - 04/06/17 05:27:47: 254 records (Success) 70a0b42e-2b9a-4f60-
a4d6-8c5503894043 [KEYS] 04/06/17 05:27:47 - 04/06/17 05:27:55: 10963 records
(Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043 [APPS] 04/06/17 05:27:55 -
04/06/17 05:28:23: 6884 records (Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043
[CLASSES] 04/06/17 05:28:23 - 04/06/17 05:28:23: 0 records (Success)
70a0b42e-2b9a-4f60-a4d6-8c5503894043 [PACKAGES] 04/06/17 05:28:23 - 04/06/17
05:29:54: 28824 records (Success) 70a0b42e-2b9a-4f60-a4d6-8c5503894043
[PACKAGEKEYS] 04/06/17 05:29:54 - 04/06/17 05:30:17: 5553 records (Success)

**** 04/06 05:30:17 Service info loaded

Load cache output first ten lines: - Trying to load mapi data for spkey:
m8hxx3wxy5wjyjhfzc328wqh key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::
2011w25DeveloperJay key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::2011w25DeveloperRoger
key: MAPI_m8hxx3wxy5wjyjhfzc328wqh::3skjegt4ddpam6a5r8sfgpkz key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::4q5t7z4gduy388z9nk5tmptm key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::4tzw5p5h5mx8gr8ez6m34wak key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::5s8ds7dcyj7cjz4h9h5tv7ev key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::5yy6dkjbq7sr922j4wt6u2hc key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::6mbcz48nabrz682xn2hdmhzn key:
MAPI_m8hxx3wxy5wjyjhfzc328wqh::8tng6tk5bzhpfqexn525cqnj

**** 04/06 05:31:01 Cache Loaded

**** 04/06 05:31:01 Ping Traffic Manager succeeded

**** 04/06 05:31:01 Setting status ready

When the ML master instance containers are up, you can find the ML master instance node
public IP with the following command:
kubectl describe node `kubectl get pods -o wide |grep ml-master |awk -F' ' 'ml-
master'`|\
awk '/Addresses/ {for(i=1; i<=6; i++) {getline; print}{print "\n"}}'

 InternalIP: 10.138.0.2
 ExternalIP: 104.198.13.169
 Hostname: gke-rkdemo-ml411-default-pool-ca67e8bf-c9vp
Capacity:
 cpu: 2
 memory: 7664944Ki

 InternalIP: 10.138.0.4

38

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 ExternalIP: 35.197.13.37
 Hostname: gke-rkdemo-ml411-default-pool-ca67e8bf-f5s0
Capacity:
 cpu: 2
 memory: 7664944Ki

 InternalIP: 10.138.0.3
 ExternalIP: 35.185.213.163
 Hostname: gke-rkdemo-ml411-default-pool-ca67e8bf-x9g4
Capacity:
 cpu: 2
 memory: 7664944Ki

If you need to access the Mashery Local instance Cluster Manager UI, you need to open the port
5480 for UI access. For convenience, you can open the port for all minion nodes in the cluster
with the following GCP command:
gcloud compute firewall-rules create

Alternatively, you can create the firewall rule in the GCP console. For more information, see
https://cloud.google.com/sdk/gcloud/reference/compute/firewall-rules/create.

Then you can login to the ML master instance Cluster Manager UI with https://< ML master
instance node ip>:5480.

You can get into any ML master instance container with the following command:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c
<container name> -- /bin/bash

The container names are: ml-db, ml-mem, ml-tm, ml-cm.

You can also execute some simple remote command on a container directly:
kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c
<container name> -- <remote command>

for example:

kubectl exec -ti `kubectl get pods |grep ml-master |cut -d " " -f 1` -c ml-tm
-- ls -l /var/log/trafficmgr/access

39

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://cloud.google.com/sdk/gcloud/reference/compute/firewall-rules/create

At any time, you could also get in the Kubernetes dashboard UI to check the progress, such as
checking the deployment, replica sets, services, pods, containers and their logs.

m) Copy deploy-slaves.sh to deploy-slaves-gcp.sh. Edit deploy-slaves-gcp.sh and change
all filename references from:
cat >> ml-slave.yaml << EOF

to:
cat >> ml-slave-gcp.yaml << EOF

n) Additionally, change all image registry references from:
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-core-$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-mem-$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME:ml-db-$ML_IMAGE_TAG

to:
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-core:$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-mem:$ML_IMAGE_TAG
image: $ML_REGISTRY_HOST/$ML_REGISTRY_NAME/ml-db:$ML_IMAGE_TAG

o) Deploy Mashery Local slave instances:
deploy-slaves-gcp.sh

You can check the Mashery Local instance pods with the command:
kubectl get pods

The Mashery Local slaves instance pods are named with ml-slave-0, ml-slave-1, ml-slave-2.

When it's fully up, you should see 4/4 under the READY column with STATUS "Running" for
the slave instance pod.

You can check the startup init instance log with the following command:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
ml-cm -- cat /var/log/mashery/init-instance.log

for example:

kubectl exec -ti `kubectl get pods |grep ml-slave-0 |cut -d " " -f 1` -c ml-cm
-- cat /var/log/mashery/init-instance.log

You can find the Mashery Local slave instance node IP with the following command:
kubectl describe node `kubectl get pods -o wide |grep <slave pod name> |awk -
F' ' '{print $7}'` |grep Addresses |cut -d "," -f 3

Then, login to the ML slave instance Cluster Manager UI with https://<ML slave instance node
ip>:5480

If you didn't open the port 5480 for all nodes in the previous step, you need to open the
port for each ML slave instance individually with additional security group through
AWS UI or CLI.

You can get into any ML slave instance container with the following command:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
<container name> -- /bin/bash

The container names are: ml-db, ml-mem, ml-tm, ml-cm.

You can also execute some simple remote command on a container directly:
kubectl exec -ti `kubectl get pods |grep <slave pod name> |cut -d " " -f 1` -c
<container name> -- <remote command>

for example:

kubectl exec -ti `kubectl get pods |grep ml-slave-0 |cut -d " " -f 1` -c ml-tm
-- ls -l /var/log/trafficmgr/access

At any time, you could also get into the Kubernetes dashboard UI to check the progress, such as
checking the stateful sets, services, pods, and containers and their logs.

By default, it's configured to run two slave instances.

40

TIBCO Mashery® Local Installation and Configuration Guide for Docker

You can use the following command to increase or reduce the number of slaves:
kubectl patch statefulset ml-slave --type='json' -p='[{"op": "replace",
"path": "/spec/replicas", "value":<the desired replica number>}]'

However, you must have enough worker nodes to run all the slave instances.
p) If everything works properly, you should have a fully deployed cluster with one master and two

slaves.

q) You can also use the following command (the values under the READY column should all read

4/4):
kubectl get pods

NAME READY STATUS RESTARTS AGE
ml-master-3287073518-j540c 4/4 Running 0 26m
ml-slave-0 4/4 Running 0 19m
ml-slave-1 4/4 Running 0 15m

r) Finally, the Mashery Local Cluster Manager console should look like this:

Invoking APIs via GCP Load Balancer
Be sure to add the LB host name or IP address to your endpoint's domain list and synchronize the
Mashery Local cluster. To find the LB IP address, execute the command:
export LB=`kubectl describe service ml-traffic-manager|grep Ingress|awk -F'
' '{print $3}'` && echo $LB

Notes for Docker Installations Using GCP
The following section are additional notes for Docker installations using GCP.

● The process/steps for pulling the image can be done manually as indicated. However, if you skip
this step, it will be done automatically when running the deploy-master-gcp script. Note that the
spin-up time will be slightly longer since all the images will need to be pulled as a part of the
deployment process. So you'll see "CreatingContainer" for a few minutes until anything happens.
Logs in local dashboard for the deployment will track progress on the pull requests

● The deploy-slaves-gcp script is based on the Master deployment script, which has persistent
storage. This is ideal for a Master, since it handles synchronizations between MOM and also

41

TIBCO Mashery® Local Installation and Configuration Guide for Docker

contains local settings around sync times, etc. This may not be ideal for the Slave deployment script,
particularly if you're testing or switching between different Mashery clusters within a K8s cluster.
The persistent storage for Slaves will keep the original MOM Key/Secret used during the first
deployment, which can lead to issues later on, if you switch to a new Master or cluster (for another
POC/environment). You can always just manually delete the PVs (persistent volumes) for the Slaves
but long term non-persistent seems to be the best option for Slaves.

● Init logs for the containers (ML-CM, in particular) under /var/log/mashery/ are your most helpful
way for troubleshooting why a container may not be fully initializing. For example, looking at these
logs were used to determine that while a key/secret were being passed to MOM for authentication,
the process was ultimately failing. This may have been due to explicitly defining a MOM-Host
during the set-mom-secret script process. Deleting the existing secret, and re-creating/replacing it,
helped the container to initialize without issues.

● During initialization of the containers you may, almost immediately, see warnings or errors of
persistent volume health checks failing. This is caused by health-check scripts running a little too
quickly, which draws these flags. Give the containers a little more time (2 to 4 minutes on average
for a decently equipped K8s cluster). You can refresh your dashboard or check "kubectl get pods" to
see if all 4 containers come on line. The ML-CM (4th container) tends to take a little longer than the
rest.

Configuring the Mashery Local Cluster
Mashery Local may run configured in a cluster of one master and multiple slaves.

To configure the Mashery Local cluster, you need to:

● Configure a Mashery local master
● Configure slave(s) to the local master

If you run Mashery Local with Kubernetes, the Master and Slave configuration are done automatically.

Configuring a Mashery Local Master
To configure a Mashery Local master:

Procedure

1. Browse to the Mashery Local Cluster Manager of the master by using the Docker Host IP address of
the instance:
https://<IP_address_of_instance>:5480

2. Login with username administrator and the password configured in set-user-variables.sh.
Click Master.

The Configure Master window appears.

42

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Enter an instance name (this name will eventually display in the Mashery Admin Dashboard) that is
meaningful to your operation, the Mashery Cloud Key and shared secret provided by TIBCO
Mashery, and the NTP server address, if used.

The Instance Name you choose should be a unique name; other Master or Slaves instances
in your cluster cannot be given the same name.

The Use NTP (recommended) checkbox is selected by default, and four NTP servers can
be configured.

If you have multiple clusters, the Mashery Cloud Key and shared secret provided by
TIBCO Mashery should be unique to each of your clusters. Mashery Local clusters should
not share keys.

3. Click Commence Initiation Sequence.

After the Master initializes with the Mashery cloud service, a completion page appears.

4. Click Continue.

43

TIBCO Mashery® Local Installation and Configuration Guide for Docker

5. Navigate to the Cloud Sync page and perform manual syncs for API Settings and Developers by
clicking the adjacent icons:

6. Test the instance as described in Testing a New Instance.

7. See the instructions in Advanced Configuration for how to enable notifications, if desired.

Configuring Slaves to the Local Master
Mashery Local may run configured in a cluster of one master and multiple slaves.
To configure slaves to the master:

Procedure

1. Browse to the Mashery Local Cluster Manager of the slave by using the Docker Host IP address of
the instance:
https://<IP_address_of_instance>:5480

2. Login with username administrator and the password provided by TIBCO Mashery.

3. Click Slave.

44

TIBCO Mashery® Local Installation and Configuration Guide for Docker

4. Enter an instance name (this name will eventually display in the Mashery Admin Dashboard) that is
meaningful to your operation, the Mashery Cloud Key and shared secret provided by TIBCO
Mashery, and the NTP server address, if used.

45

TIBCO Mashery® Local Installation and Configuration Guide for Docker

The Use NTP (recommended) checkbox is selected by default, and four NTP servers can
be configured.

5. Click Register with Mashery and Master.

6. Click Continue.

7. Test the instances as described in Testing a New Instance.

8. See the instructions in Advanced Configuration for how to enable notifications, and API and JMX
reporting access, if desired.

Configuring the Load Balancer
TIBCO Mashery recommends using a Load Balancer to best utilize the cluster, although this is not
required because you may route your API traffic directly to each instance.

Each instance hosts a service called /mashping. Configure the Load Balancer to access the following
address, without the host header:

http://<IP_address_of_instance>/mashping

If the Load Balancer and the cluster is working correctly, /mashping returns the following response:
HTTP/1.1 200 OK
Server: Mashery Proxy
Content-Type: application/json; charset=UTF-8
Transfer-Encoding: chunked
{"status":200,"time":1315510300,"message":"success"}

If /mashping returns any other response, then the load balancer should remove the instance from the
cluster and either retry after a period of time or alert operations to investigate.

Mashery Local has two instance types: Master and Slave. Should the Load Balancer pull the Master out
of the cluster pool, an Operations engineer should immediately investigate whether it can be recovered,
and, if not, promote a Slave to Master. Taking offending Slaves out of rotation through the Load
Balancer can mitigate any traffic impact. If no Master exists in the pool, data synchronization with the
Mashery Cloud Service will not occur with the exception of API event activity. Access Tokens, Keys,
Applications, Classes and Services will not be synchronized.

For steps on how to promote a Slave to Master, see Promoting a Slave to Master.

Configuring the Instance
The Instance Management tab allows you to configure additional settings for that particular instance.
You can edit the instance name, configure instance settings, and update software and custom adapters.
Additional system-level parameters can be tuned here such as application memory allocation,
configuration cache size, maximum concurrent connections, and connection pool size for the database.

To configure an instance:

Procedure

1. Click Instance Management.

46

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. Click the Management Options for which you want to configure the settings.
A text box is displayed for the selected Management Options.

3. Enter the details for the following fields to configure the instance.

47

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Field Description

Use NTP
(recommended)

Enabled by default. Specify one to four NTP server addresses.

NTP Address for time synchronizing is required if using NTP.

Memory Allocation Specify application memory size as a fraction of the available memory,
between 0 and 1.

Concurrent
Connections

Sets the maximum number of concurrent connections to this service
instance, must be at least 1.

Database Connector The Connection Pool Size sets the maximum number of concurrent
connections this instance will make to its database, between 1 and
100,000.

The Connector Cache Size sets the cache size for the data connector,
between 1 and 524,288.

48

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Field Description

Configuration
Cache

Specify the maximum entry size (in MB) for configuration cache, at least
1.

Disable IPv6 Select this option to disable IPv6 if IPv6 traffic should not be allowed to
the backend. By default, Mashery Local supports both IPv4 and IPv6.

4. Select the appropriate HTTP Server Security Level:

● Enable HTTP only: If selected, the default HTTP Port for HTTP Server Security Settings is 80.

49

TIBCO Mashery® Local Installation and Configuration Guide for Docker

● Enable HTTPS only: If selected, enter the details for the following fields:

Field Description

HTTPS Port Specify the HTTPS port. The default is 443.

Certificate Common
Name (display only)

Automatically displays the name of the selected certificate.

Certificate # (display
only)

Automatically displays the number of the selected certificate.

New SSL Certificate Select from:

● Create new certificate: If selected, enter a Certificate Common
name in the Create SSL Certificate window, then click Create.

● Upload new certificate: If selected, in the Upload SSL Certificate
window, browse to the SSL certificate using the Click here to
select file link, enter the Password for Certificate, then click
Upload.

Download SSL
Certificate

Select from:

● Download certificate in PEM: downloads the current certificate
in PEM format.

● Download certificate in DER: downloads the current certificate in
DER format.

50

TIBCO Mashery® Local Installation and Configuration Guide for Docker

● Enable HTTP and HTTPS: If selected, enter the details for the following fields:

Field Description

HTTP Port Specify the HTTP port. The default is 80.

HTTPS Port Specify the HTTPS port. The default is 443.

Certificate Common
Name (display only)

Displays the name of the selected certificate.

Certificate # (display
only)

Displays the number of the selected certificate.

51

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Field Description

New SSL Certificate Select from:

● Create new certificate: If selected, enter a Certificate Common
name in the Create SSL Certificate window, then click Create.

● Upload new certificate: If selected, in the Upload SSL Certificate
window, browse to the SSL certificate using the Click here to
select file link, enter the Password for Certificate, then click
Upload.

Download SSL
Certificate

Select from:

● Download certificate in PEM: downloads the current certificate
in PEM format.

● Download certificate in DER: downloads the current certificate in
DER format.

5. Click Save.

You may be reminded that Mashery Local needs to restart proxy service.

The instance is configured for the specified settings.

What to do next

For detailed steps on setting up HTTPS Server, please refer to the following sections in the Appendix:

● Setting up HTTPS Server using Self-Signed Certificate

● Setting up HTTPS Server using Customer-Provided Certificate

52

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Shutting Down a Master
The following section describes how to shut down a Master in a Mashery Local Cluster.

Procedure

● Use docker-compose down to shut down the Master.

Promoting a Slave to Master
Promoting a Slave to Master is important from within a cluster, and having multiple clusters (using
unique MoM keys) connecting to the same area is High Availability. Taking offending Slaves out of
rotation through the Load Balancer can also mitigate any traffic impact.

To promote a Slave to Master:

Procedure

1. Log into the Slave instance.

2. Click Instance Management.

3. In the Promote to Master section, click Promote to Master.

53

TIBCO Mashery® Local Installation and Configuration Guide for Docker

4. Log into the other Slaves, go to Instance Settings in Instance Management, and in the change the
Master Instance IP address to the new Master's IP address.

54

TIBCO Mashery® Local Installation and Configuration Guide for Docker

5. (Optional) Delete the old Master or shut down that Virtual Machine.

Repointing Other Slaves to a New Master
The following section describes how to repoint other slaves to a new Master.

Procedure

1. Log into the Slave Instance.

2. On the TIBCO Mashery Local page, click Instance Management.

55

TIBCO Mashery® Local Installation and Configuration Guide for Docker

3. In the Instance Settings section, enter the IP address of the new Master in the Master Instance IP
field.

4. Click Save.

56

TIBCO Mashery® Local Installation and Configuration Guide for Docker

HTTPS Client Feature Overview

The HTTP Client in Mashery Local is used for connecting to customer backend servers.

The HTTPS Client supports the following features:

● Verification of backend server certificate

● HTTPS Client authentication (Mutual SSL Authentication)

These features are configured via the HTTPS Client Profile feature. With an HTTPS Client profile, you
can configure one or more trusted CA certificates. These CA certificates are used for verifying backend
customer server certificates. You can configure only one identity, which will be used in HTTPS Client
Authentication (Mutual SSL Authentication). The HTTPS Client profile can be applied to one or more
endpoints.

Summary of How to Use the HTTPS Client Profile Feature

The HTTPS Client Profile feature is implemented as follows:

1. Certificates and identities are uploaded or updated in Mashery Local using Mashery Cluster
Manager.

2. Metadata of certificates and identity are synchronized to Mashery SaaS (Control Center). Then, they
are available for creating HTTPS Client profiles in Mashery SaaS.

3. An HTTPS Client profile is created In Mashery SaaS, and the profile is applied to the endpoint.

4. The HTTPS Client Profile is synchronized to Mashery Local, then the list of certificates and one
identity will be used in HTTPS Client connection to backend servers.

For detailed steps on setting up the HTTPS Client feature, please refer to following sections in the
Appendix:

● Configuring and using the HTTPS Client Feature without Mutual Authentication

● Configuring and using the HTTPS Client Feature with Mutual Authentication

57

TIBCO Mashery® Local Installation and Configuration Guide for Docker

HTTPS Server Feature Overview

Mashery Local supports HTTPS requests. The following picture illustrates a typical TIBCO Mashery
Local deployment, which consists of one master node and two slave nodes. The communication
between the Load Balancer and Mashery Local nodes can be either HTTP or HTTPS.

Administrators can configure the certificates and port number for the Mashery Local HTTPS Server.
Mashery Local supports using self-signed certificates or customer-provided certificates. The
configuration for certificates and port number must be done on a per-node basis using Mashery Cluster
Manager.

For detailed steps on setting up an HTTPS Server, please refer to following sections in the Appendix:

● Setting up HTTPS Server using Self-Signed Certificate

● Setting up HTTPS Server using Customer-Provided Certificate

58

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Advanced Configuration and Maintenance

This section describes how you can extend your installation by adding the following capabilities:

● Quota Notifications

● Configuring OAuth 2.0 API Access

● API and JMX Reporting

Configuring Quota Notifications
You can configure Mashery Local to send Over Throttle Limit, Over Quota Limit and Near Quota Limit
Warning notifications when an API key exceeds or nears its limits.

To configure quota notifications, follow the steps below:

1. Click Notification Configuration.

2. In the Notification Configuration page, configure/enable the following fields for the SMTP server:

● Hostname

● Port

● SMTPAuth

● Username

● Password

● SSL

3. Click Save.

59

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Similar notifications settings are available on the slave instances as well.

Configuring OAuth 2.0 API Access
Mashery Local provides a local OAuth 2.0 API. The API can be available on any computer within the
cluster, regardless if the instance is a Master or Slave.

To configure and use the OAuth 2.0 API, follow the instructions below:

Procedure

1. Click Account Settings.

2. In the Mashery Local API Settings section, enable/configure the following fields to enable the API:

● Enable API Access
● User Name and Password: You need to enter a username and password to access the API using

basic HTTP authentication.
3. Click Save.
4. Similar API settings are available on the slave instances as well. On all slave instances, navigate to

Account Settings, and under Mashery Local API Settings, select the Enable API Access check box.

Making OAuth 2.0 Calls
The Mashery Local OAuth 2.0 API is available over SSL on port 8083 of your local instance.

Authorization is handled via HTTP authentication using the credentials you specified in the steps for
Configuring OAuth 2.0 API Access.

Sample Call
The following is a sample call for OAuth 2.0.
curl -v -d '{
"method":"oauth2.fetchApplication",
"id": "2",
"params":{

60

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 "service_key" : "<service_key>",
 "client" : {"client_id":"<api_key>",
 "client_secret":"<api_secret>"},
 "response_type" : null,
 "uri" : {"redirect_uri": "http://sometest.test.com/error?key=foo",
 "state":"bar"}
 }
}' 'https://<masherylocal_host>:8083/v2/json-rpc/' -u '<api_access_user>:
<api_access_password>' -k

For host name, the IP Address of the instance where the OAuth API is enabled can be used. If the
OAuth API on TIBCO Mashery® Local is to be used in conjunction with traffic outside the firewall, it is
recommended that the TIBCO Mashery® Local cluster be fronted with a load balancer with a host name
is associated with it (in addition to mapping port 8083 to an acceptable externally accessible port, such
as 443).

Understanding the OAuth 2.0 API
The complete technical documentation for the Mashery OAuth 2.0 API is available online at http://
support.mashery.com/docs/read/mashery_api/20/OAuth_Supporting_Methods. To see this
documentation, request access by contacting your client services contact.

The following table describes the API at a high level:

API Method Purpose

fetchApplication Used during the Authorization step when the service provider’s
authorization server presents the resource owner with information
about the client requesting access to the resource owner’s data.
The API calls is used to verify if the client is valid and fetches the
client application data (name, attributes, redirection url) which
will be used to provide information to the end user.

createAuthorizationCode
(Authz Code grant type only)

After the resource owner has successfully authenticated against
the service provider’s authorization server and authorized the
client, the authz server will make this API call to TIBCO Mashery
to generate the authz code which can be subsequently used to
obtain an access token. As a part of this API call, the service
provider will also supply the user-context (userid) for the
authenticated user. The service provider returns the authz code to
the client using the redirection url.

createAccessToken API call used to generate the access token.

● For the authz code grant type, a valid authz code must be
presented.

● For implicit and resource owner grant types, this occurs after
the resource owner has been authenticated (user-context
should be supplied). Service provider initiates the API call.

● For Client Credentials flow, only the client credentials are
verified.

● When exchanging a refresh token, a valid refresh token must
be presented.

Both client id and secret must be presented when
requesting an access token except in the case of Implicit
grant type.

61

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://support.mashery.com/docs/read/mashery_api/20/OAuth_Supporting_Methods
http://support.mashery.com/docs/read/mashery_api/20/OAuth_Supporting_Methods

API Method Purpose

fetchAccessToken May be used by the service provider to validate access tokens and
may be used as an additional layer of security or when certain API
calls are sent directly to the provider instead of through TIBCO
Mashery.

fetchUserApplications Used by the service provider to present the resource owner with
the client applications that been authorized by that resource
owner. This is typically used in the Account section of the service
provider’s site where the resource owner can view the list.

revokeAccessToken Used by the service provider to allow the resource owner to
revoke access to specific client applications that been authorized
by that resource owner. This is typically used in the “Account”
section of the service provider’s site where the resource owner can
view the list authorized applications and select which application
should no longer be allowed access.

revokeUserApplication Revokes all tokens for an application for the specified user.

Configuring JMX Reporting Access
JMX Monitoring is not supported in Mashery Local for Docker 4.1.0.

62

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Using the Adapter SDK

This section outlines the development process for writing custom adapters using the Adapter SDK for
Mashery Local Traffic Manager. This section also provides the list of areas of extension provided in the
SDK, along with code samples to illustrate the extension process.

Adapter SDK Package
The Adapter SDK defines the Traffic Manager domain model, tools and APIs and provides extension
points to inject custom code in the processing of a call made to the Traffic Manager.

DIY SDK adapters need to be coded and compiled using JDK 1.6 or lower.

The Adapter SDK package contains the following:

● TIBCO Mashery Domain SDK

● TIBCO Mashery Infrastructure SDK

TIBCO Mashery Domain SDK
TIBCO Mashery Domain SDK packaged in com.mashery.trafficmanager.sdk identifies the traffic
manager SDK and provides access to the TIBCO Mashery domain model which includes key objects
such as Members, Applications, Developer Classes, Keys, Packages.

TIBCO Mashery Infrastructure SDK
TIBCO Mashery Infrastructure SDK provides the ability to handle infrastructure features and contains
the following:

● TIBCO Mashery HTTP Provider

The HTTP provider packaged as com.mashery.http provides HTTP Request/Response processing
capability and tools to manipulate the HTTP Request, Response, their content and headers.

● TIBCO Mashery Utility

The utility packaged as com.mashery.util provides utility code which handles frequently occurring
logic such as string manipulations, caching, specialized collection handling, and logging.

SDK Domain Model
The Traffic Manager domain model defines the elements of the Traffic Manager runtime.

The following table highlights some of the key elements:

Element Description Usage

User A user or member subscribing to
APIs and accesses the APIs.

com.mashery.trafficmanager.model.User

API An API represents the service
definition. A service definition has
endpoints defined for it.

com.mashery.trafficmanager.model.API

63

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Element Description Usage

Endpoint An Endpoint is a central resource of
an API managed within Mashery. It
is a collection of configuration
options that defines the inbound
and outbound URI's, rules,
transformations, cache control,
security, etc. of a unique pathway of
your API.

An Endpoint is specialized as either
an API Endpoint or a Plan
Endpoint. This specialization
provides context to whether or not
the Endpoint is being used as part
of a Plan or not.

● Generic endpoint entity representation:

com.mashery.trafficmanager.model.E

ndpoint

● API endpoint entity representation:

com.mashery.trafficmanager.model.A

PIEndpoint

● Plan endpoint entity representation:

com.mashery.trafficmanager.model.P

lanEndpoint

Method A method is a function that can be
called on an endpoint and
represents the method currently
being accessed/requested from the
API request. A method could have
rate and throttle limits specified on
it to dictate the volume of calls
made using a specific key to that
method.

A Method is specialized as either an
API Method or Plan Method. The
specialization provides context to
whether or not the Method belong
to a Plan.

● Generic method entity representation:

com.mashery.trafficmanager.model.M

ethod

● API method entity representation:

com.mashery.trafficmanager.model.A

PIMethod

● Plan method entity representation:

com.mashery.trafficmanager.model.P

lanMethod

Package A Package is a mechanism to
bundle or group API capability
allowing the API Manager to then
offer these capabilities to
customers/users based on various
access levels and price points. A
Package represents a group of
Plans.

com.mashery.trafficmanager.model.Pack

age

Plan A Plan is a collection of API
endpoints, methods and response
filters to group functionality so that
API Product Managers can manage
access control and provide access to
appropriate Plans to different users.

com.mashery.trafficmanager.model.Plan

64

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Element Description Usage

API Call The API Call object is the complete
transaction of the incoming request
received by the Traffic Manager
and the outgoing response as
processed by the Traffic Manager. It
provides an entry point into all
other entities used in the execution
of the request.

com.mashery.trafficmanager.model.core

.APICall

Key A key is an opaque string allowing
a developer to access the API
functionality. A key has rate and
throttle controls defined on it and
dictates the volume of calls that can
be made to the API by the caller.

A Key can be specialized as an API
key or Package Key. This
specialization provides context to
whether the key provides access to
an API or a specific Plan in a
Package.

● Generic key entity representation:

com.mashery.trafficmanager.model.K

ey

● API key entity representation:

com.mashery.trafficmanager.model.A

PIKey

● Package key entity representation:

com.mashery.trafficmanager.model.P

ackageKey

Application An application is a developer
artifact that is registered by the
developer when he subscribes to an
API or a Package.

com.mashery.trafficmanager.model.Appl

ication

Rate
Constraint

A Rate Constraint specifies how the
amount of traffic is managed by
limiting the number of calls per a
time period (hours, days, months)
that may be received.

com.mashery.trafficmanager.model.Rate

Constraint

Throttle
Constraint

A Throttle Constraint specifies how
the velocity of traffic is managed by
limiting the number of calls per
second that may be received.

com.mashery.trafficmanager.model.Thro

ttleConstraint

Customer
Site

A customer specific area configured
through the developer portal.

com.mashery.trafficmanager.model.Cust

omerSite

Extended Attributes
The traffic manager model allows defining name-value pairs on different levels of the model. The levels
are identified here:

● Application

● Customer Site

● Key (both API Key and Package Key)

● Package

65

TIBCO Mashery® Local Installation and Configuration Guide for Docker

● Plan

● User

Pre and Post Processor Extension Points
This version of the SDK allows extensions for Processors only. This means that only pre and post
processing of requests prior to invocation of the target host are allowed.

Listener Pattern
The extension API leverages a listener pattern to deliver callbacks to extension points to allow injecting
custom logic.

A call made to the traffic manager is an invocation to a series of tasks. Each step in the workflow
accomplishes a specific task to fulfill the call. The current API release only allows customization of the
tasks prior to invoking the API server (pre-process) and post receipt of the response from the API
server (post-process). The callback API handling these extensions is called a Processor.

The pre-process step allows a processor to receive a fully-formed HTTP request targeted to the API
server. The processor is allowed to alter the headers or the body of the request prior to the request being
made to the server. Upon completion of the request and receiving the response the Traffic Manager
allows the processor to alter the response content and headers prior to the response flowing back
through a series of exit tasks out to the client.

Event Types and Event
The transition of the call from one task to the next is triggered through ‘events’ and an event is
delivered to any subscriber interested in receiving the event. The SDK supports two event-types which
are delivered synchronously:

● Pre-Process Event type: This event is used to trigger any pre-process task.

● Post-Process Event type: This event is used to trigger any post-process task.

● Authentication Event type: This event is used to trigger any custom authentication.

The subscribers in this case will be Processors registered in a specific manner with the Traffic Manager
API.

Event Listener API
The Traffic Manager SDK provides the following interface and is implemented by custom processors to
receive Processor Events.
package com.mashery.trafficmanager.event.listener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
/*** Event listener interface which is implemented by listeners which wish to
handle Traffic events. Traffic events will be delivered via this callback
synchronously to handlers implementing the interface.
The implementers of this interface subscribe to events via annotations. E.g.
Processor events need to handle events by using annotations in the
com.mashery.proxy.sdk.event.processor.annotation */
public interface TrafficEventListener {
 /*** The event is delivered to this API @param event*/
 void handleEvent(TrafficEvent event);
}

Creating a Custom Authenticator
This version of the SDK allows you to create a custom authenticator. This triggers an authentication
event that a custom processor can handle for the custom authentication.

To create and use a custom authenticator:

66

TIBCO Mashery® Local Installation and Configuration Guide for Docker

1. Download the SDK, then add the SDK to the class path for
com.mashery.trafficmanager.event.listener.TrafficEventListener and
com.mashery.trafficmanager.event.listener.Authenticator.

2. Create a new class. In Eclipse, select the Java project, right-click and select New > Class in the
context menu.

3. Set the following fields as shown in the image below, implement the
com.mashery.trafficmanager.event.listener.TrafficEventListener and
com.mashery.trafficmanager.event.listener.Authenticator interface, then click Finish.

4. The new class should contain the following content:
package com.mashery.processor;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;

public class CustomAuthenticator implements TrafficEventListener, Authenticator {
 @Override
 public void handleEvent(TrafficEvent arg0) {
 // TODO Auto-generated method stub
 }
}

5. Add the following class annotation, as shown:
package com.mashery.processor;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.processor.ProcessorBean;

67

TIBCO Mashery® Local Installation and Configuration Guide for Docker

@ProcessorBean(enabled = true, name = "CustomAuthProcessor", immediate = true)
public class CustomAuthenticator implements TrafficEventListener, Authenticator {
 @Override
 public void handleEvent(TrafficEvent arg0) {
 // TODO Auto-generated method stub
 }
}

The "name" attribute on the ProcessorBean annotation, CustomAuthProcessor, is what
will be used to reference this class from the endpoint definition.

6. Update the CustomAuthenticator class with the following code snippet:
package com.mashery.processor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.http.server.HTTPServerRequest;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.AuthenticationEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "CustomAuthProcessor", immediate = true)
public class CustomAuthenticator implements TrafficEventListener, Authenticator {

 private final Logger log =
LoggerFactory.getLogger(CustomAuthenticator.class);
 @Override
 public void handleEvent(TrafficEvent event) {
 try {
 if (event instanceof PreProcessEvent) {
 //preProcess((PreProcessEvent) event);
 } else if(event instanceof PostProcessEvent){
 //postProcess((PostProcessEvent) event);
 } else if(event instanceof AuthenticationEvent){
 authCallprocess((AuthenticationEvent)event);
 }
 } catch (ProcessorException e) {
 log.error("Exception occurred when handling processor event");
 }
 }

 private void authCallprocess(AuthenticationEvent event) throws
ProcessorException{
 HTTPServerRequest httpRequest = event.getServerRequest();
 //add code to perform authentication of the request.
 }

}

Use HttpServerRequest to perform any authentication activity.

All the headers, status code and status messages set in the custom authentication would
not be returned as part of response in case of Authentication Event handling (Custom
authenticator). If you want to fail authentication request from custom authenticator, then
you need to terminate the call in order to throw "ERR_403_NOT_AUTHORIZED" for a
request. Refer to the example in Terminating a Call During Processing of an Event for
more information.

7. Ensure there are no compilation errors and export the JAR file. In Eclipse, select the Java project,
right click and select Export from the context menu.

8. In the Export wizard, select and export destination of type Java > Jar file.

68

TIBCO Mashery® Local Installation and Configuration Guide for Docker

9. Provide the JAR file name and click Finish.

You can ignore all warnings during the export process.

10. Create a zip archive, adding the exported JAR file created in the previous step.

11. Sign into the Mashery Local Admin UI and select Adapter SDK from the left menu.

12. In the Upload Adapters section, click Choose File and select the zip file created in Step 9, then click
Upload Adapters to Instance.

If the upload is successful, a message appears that the adapters were updated successfully.

13. Update the endpoint's authentication configuration to use the custom authenticator. Log into TIBCO
Mashery SaaS (Control Center), navigate to Design > API > Select Endpoint > Key & Method

69

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Detection, select Request Authentication Type as Custom, then enter the name of the custom
authenticator in the Custom Request Authentication Adapter field.

The name used for the Custom Request Authentication Adapter field is the
ProcessorBean name used in Step 4.

14. Save the configuration in the portal dashboard.

Implementing and Registering Processors
Writing custom processors involves the following general steps:

● Downloading the SDK

● Implementing the event listener

● Implementing lifecycle callback handling

● Adding libraries to the classpath

The following sections describe these steps in more detail.

Downloading the SDK
To download the SDK:

Procedure

1. Click Adapter SDK.

2. Click Download SDK:

70

TIBCO Mashery® Local Installation and Configuration Guide for Docker

3. Use your favorite IDE and put the SDK jars in your classpath.

4. Create a project and a new java class. The details of that process are skipped here and assumed that
the developer will use the relevant IDE documentation to accomplish this.

Implementing the Event Listener
To implement the event listener:

Procedure

1. Employ the Traffic Event Listener interface (introduced in Event Listener API) as shown in the
following example:
package com.company.extension;
public class CustomProcessor implements TrafficEventListener{
 public void handleEvent(TrafficEvent event){
 //write your custom code here
 }
}

2. Annotate your code to ensure that the processor is identified correctly for callbacks on events
related to the specific endpoints it is written to handle:
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true)
public class CustomProcessor implements TrafficEventListener{
 public void handleEvent(TrafficEvent event){
 //write your custom code here
 }
}

The annotation identifies the following properties:

● enabled: Identifies if the processor is to be enabled.

● name: Identifies the unique name of the processor as configured in API Settings (see marked
area in ‘red’ in the following screenshot).

● immediate: Identifies if the processor is enabled immediately.

71

TIBCO Mashery® Local Installation and Configuration Guide for Docker

The name used in the annotation for the Processor MUST be the same as configured on the
portal for the Endpoint>Pre/Post Processing, as shown in the following screenshot:

Implementing Lifecycle Callback Handling
If you wish to have some initialization work done once and only once for each of the processors, then
implement the following interface:

package com.mashery.trafficmanager.event.listener:
/*** The lifecycle callback which gets called when the processor gets loaded when
installed and released*/
public interface ListenerLifeCycle {
 /*** The method is called once in the life-cycle of the processor before the
processor is deemed ready to handle requests. If the processor throws an exception,
the activation is assumed to be a failure and the processor will not receive any
requests @throws ListenerLifeCycleException*/
 public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException;

 /*** The method is called once in the life-cycle of the processor before the
processor is removed due. The processor will not receive any requests upon
inactivation.*/
 public void onUnLoad(LifeCycleContext ctx);
}

The onLoad call is made once prior to the processor handling any requests and onUnLoad call is made
before the processor is decommissioned and no more requests are routed to it.

The lifecycle listener can be implemented on the Processor class or on a separate class. The annotation
needs to add a reference to the lifecycle-class if the interface is implemented (see highlighted property
in bold).
package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true, lifeCycleClass=”com.company.extension.CustomProcessor”)
public class CustomProcessor implements TrafficEventListener, ListenerLifeCycle{
 public void handleEvent(TrafficEvent event){
 //write your custom code here
 }
 public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
 }
 public void onUnLoad(LifeCycleContext ctx){
 }
}

72

TIBCO Mashery® Local Installation and Configuration Guide for Docker

The lifeCycleClass property should point to the class implementing the Listener LifeCycle interface.
This also allows having a separate lifecycle listener interface as follows (note the different
lifeCycleClass name).

The following example shows a different class implementing the LifeCycle callback:
package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true, lifeCycleClass=”com.company.extension.CustomProcessorLifeCycle”)
public class CustomProcessor implements TrafficEventListener {
 public void handleEvent(TrafficEvent event){
 //write your custom code here
 }
 public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
 }
 public void onUnLoad(LifeCycleContext ctx){
 }
}
public class CustomProcessorLifeCycle implements ListenerLifeCycle{
 public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
 }
 public void onUnLoad(LifeCycleContext ctx){
 }
}

Adding Libraries to Classpath
If the processor needs third-party libraries, those can be used in development and packaged with the
processors, as described in Deploying Processors to Runtime.

Deploying Processors to Runtime
Deploying a custom processor involves the following general steps:

● Packaging the custom processor

● Uploading the custom processor

● Enabling Debugging

The following sections describe these steps in more detail.

Packaging the Custom Processor
To package your custom processor once the processor code is written, perform the following steps:

1. Compile the classes and create a JAR file with all the classes.

2. Specify third party libraries used in the MANIFEST.MF of the JAR containing the processor classes.
and should be introduced as follows:

● Third party libraries should be listed as values of the property Class-Path in the MANIFEST.MF.

● Only third party library names are used, do not include paths to libraries.

● Third party library names should be separated by spaces.

Example: In META-INF/MANIFEST.MF:
Class-Path: org.apache.commons.codec_1.4.0.v201209201156.jar
com.amazonaws_1.1.9.jar

3. Create a folder "lib" alongside the JAR file, then copy all third party libraries to the "lib" folder.

4. Zip the JAR file and all contents of the "lib" folder to a ZIP package.

For more information, please refer to the Adapter SDK Usage and Examples section in the Appendix.

73

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Uploading the Custom Processor
To upload the custom processor:

Procedure

1. In the Upload Adapters section, click Choose file to navigate and select the zip file containing the
JAR file.

2. Click Upload Adapters to Instance to upload the package .ZIP file to the Mashery Local instance.

If the upload is successful, a message appears that the adapters were uploaded successfully.

How Custom Processors are Updated

● Custom processors are updated each time a new package ZIP file is uploaded, the existing custom
processors installed, with last package ZIP file are cleaned.

● To keep an existing custom processor, include it in the new package even if the custom processor is
not updated.

● To update a custom processor, include it in the new package, do not change the attributes of
ProcessorBean.

Enabling Debugging
During development, it is sometimes necessary to enable debugging on the Mashery Local instance.

To enable debugging, click the Enable debugging check box, indicate the port number to which you
will connect your debugger, and then click Save:

74

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Caching Content

The custom endpoints can cache content during the call handling. The cache configuration is found in
the Manage Custom Content Cache section on the API Settings page.

Manage Custom Content Cache provides the following options:

● Custom TTL: A default TTL provided for the cache.
● Update TTL: Provides ability to save any TTL changes.
● Update TTL & Flush Cache: Updates the database with the updated TTL and flushes the cache

contents.
● Flush Cache: Allows the cache contents to be flushed.

The SDK provides references to a Cache where all this data is stored. The cache interface provided in
the callback to the TrafficEventListener is:
package com.mashery.trafficmanager.cache;
/*** Cache API which allows extensions to store and retrieve data from cache*/
public interface Cache {
 /**
 * Retrieves the value from the cache for the given key
 * @param key
 * @return
 * @throws CacheException
 */
 Object get(String key) throws CacheException;
 /**
 * Puts the value against the key in the cache for a given ttl
 * @param key
 * @param value
 * @param ttl
 * @throws CacheException
 */
 void put(String key, Object value, int ttl) throws CacheException;
}

A reference to the cache can be found on the ProcessorEvent which is reported on the callback. Here
is an example of how to access cache on callback:
package com.company.extension;
@ProcessorBean(enabled=true, name=”com.company.extension.CustomProcessor”,
immediate=true
public class CustomProcessor implements TrafficEventListener, ListenerLifeCycle{
 public void handleEvent(TrafficEvent event){
 ProcessorEvent processorEvent = (ProcessorEvent) event;
 Cache cacheReference = processorEvent.getCache();
 //Add data to cache
 try{

75

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 cacheReference.put(“testkey”, “testValue”, 10)
 }catch(CacheException e){
 //load data or load default data
 }
 //write your custom processor code here
 }
}

A reference to cache is also available on the lifecycle callback:
package com.company.extension;
public class CustomProcessorLifeCycle implements ListenerLifeCycle{
 public void onLoad(LifeCycleContext ctx) throws ListenerLifeCycleException{
 Cache cache = ctx.getCache();
 // perform cache operations
 }
 public void onUnLoad(LifeCycleContext ctx){
 }
}

Terminating a Call During Processing of an Event
This version of the SDK allows a user to terminate a call during pre or post processing, or in
authentication event handling. For example, if the request does not have a required URL parameter,
Mashery Local can be configured to terminate the call in the pre-processing.

All the headers, status code and status messages set in the custom processing is returned to the client as
part of the response in pre processing and post processing.

All the headers, status code and status messages set in the custom authentication would not be
returned as part of response in case of Authentication Event handling (Custom authenticator). If you
want to fail authentication request from the custom authenticator, then you need to terminate the call in
order to throw "ERR_403_NOT_AUTHORIZED" for a request.

For example, if you want to terminate the call in authenticator, if request doesn't contain the
authorization header, then the call can be terminated by marking the response as complete as shown in
the following example:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.http.HTTPHeaders;
import com.mashery.trafficmanager.debug.DebugContext;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.AuthenticationEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "CustomAuthentication", immediate = true)

public class CustomAuthentication implements TrafficEventListener,Authenticator {

 @Override
 public void handleEvent(TrafficEvent event) {
 try {
 if (event instanceof AuthenticationEvent) {
 authenticate((AuthenticationEvent) event);
 }
 } catch (ProcessorException e) {
 }
 }

 private void authenticate(AuthenticationEvent event)
 throws ProcessorException {
 //For example request doesn't contain the authorization header then user
can terminate the call by marking response as complete

76

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 // in order to thrown 403 ERR_403_NOT_AUTHORIZED for the incoming request.
 if (headers != null) {
 String authorization = headers.get(HEADER_AUTHORIZATION);
 if ((null == authorization || authorization == "")
 || !authorization.startsWith(AUTH_BASIC)) {
 debugContext.logEntry("Final Value", "DIY-CUSTOM-AUTH-HEADER-
FAILIURE");
 event.getCallContext().getResponse().setComplete();
 }
 }
}

If you want to terminate the call in pre or post processing, refer to the following example:
package com.mashery.processor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.model.core.ExtendedAttributes;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "PrePostProcessing", immediate = true)

public class PrePostProcessing implements TrafficEventListener{

 private final Logger log = LoggerFactory.getLogger(PrePostProcessing.class);

 @Override
 public void handleEvent(TrafficEvent event) {
 try {
 if (event instanceof PreProcessEvent) {
 preProcess((PreProcessEvent) event);
 } else if (event instanceof PostProcessEvent) {
 postProcess((PostProcessEvent) event);
 }
 } catch (ProcessorException e) {
 log.error("Exception occurred when handling processor event");
 }
 }

 //In the below example we checking the query parameter's value to decide whether
to terminate the call or not.
 private void preProcess(PreProcessEvent event) throws ProcessorException {
 String complete =
event.getCallContext().getRequest().getQueryData().get("preComplete");
 if (complete != null) {
 event.getCallContext().getResponse().getHTTPResponse().setBody(new
StringContentProducer("{\"response\": \"Terminated the call in pre-processing\"}"));
 event.getCallContext().getResponse().setComplete();
 }
 }
 //In the below example we checking the query parameter's value to decide whether
to terminate the call or not.
 private void postProcess(PostProcessEvent event) throws ProcessorException {
 String complete =
event.getCallContext().getRequest().getQueryData().get("postComplete");
 if (complete != null) {
 event.getCallContext().getResponse().getHTTPResponse().setBody(new
StringContentProducer("{\"response\": \"Terminated the call in post-processing
\"}"));
 event.getCallContext().getResponse().setComplete();
 }
 }
}

77

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Accessing Package Key EAVs in the Custom Processor
This version of the SDK includes an example custom processor that can access package EAVs (Extended
Attribute Values).

For example, this sample processor looks for "user_defined_key" EAVs for a package key:
package com.mashery.processor;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.listener.Authenticator;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.processor.model.PostProcessEvent;
import com.mashery.trafficmanager.event.processor.model.PreProcessEvent;
import com.mashery.trafficmanager.model.core.ExtendedAttributes;
import com.mashery.trafficmanager.processor.ProcessorBean;
import com.mashery.trafficmanager.processor.ProcessorException;

@ProcessorBean(enabled = true, name = "PrePostProcessing", immediate = true)

public class PrePostProcessing implements TrafficEventListener,Authenticator {

 private final Logger log = LoggerFactory.getLogger(PrePostProcessing.class);

 @Override
 public void handleEvent(TrafficEvent event) {
 try {
 if (event instanceof PreProcessEvent) {
 preProcess((PreProcessEvent) event);
 } else if (event instanceof PostProcessEvent) {
 postProcess((PostProcessEvent) event);
 } else if (event instanceof AuthenticationEvent) {
 authenticate((AuthenticationEvent) event)
 }
 } catch (ProcessorException e) {
 log.error("Exception occurred when handling processor event");
 }
 }

 //In the below snippet we are extracting the package key and checking its value.

 private void preProcess(PreProcessEvent event) throws ProcessorException {
 ExtendedAttributes attrs = (event).getKey().getExtendedAttributes();
 String strAllowed = attrs.getValue("user_defined_key");
 }
 private void postProcess(PostProcessEvent event) throws ProcessorException {
 ExtendedAttributes attrs = (event).getKey().getExtendedAttributes();
 String strAllowed = attrs.getValue("user_defined_key");
 }
 private void authenticate(AuthenticationEvent event)
 throws ProcessorException {
 ExtendedAttributes attrs = (event).getKey().getExtendedAttributes();
 String strAllowed = attrs.getValue("user_defined_key");
 }
}

78

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Configuring Identity Management

The Identity Management page allows the administrator to add or update identities used by the
HTTPS client. The HTTPS client profile references these identities.

The following table describes the fields in the Identity Management page.

Field or button Description

Upload Identity Opens the Upload a Trusted CA Certificate window.

To upload an identity, click Click here to select file, enter the Password, then
click Upload.

Name The name of the identity.

Serial Number The serial number of the identity.

79

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Field or button Description

Expiration Date The date and time the identity expires.

State Identifies the following information:

● The state of the identity:

— Certificate manifest will be synchronized with TIBCO Mashery SaaS

— Certificate manifest has been synchronized with TIBCO Mashery SaaS

— Certificate is about to expire - The expiration warning is shown one
month before expiration date.

— Certificate expired.

— Certificate manifest update will be synchronized with TIBCO Mashery
SaaS

— Certifcate in TIBCO Mashery Local is outdated for TIBCO Mashery
SaaS

— Certificate is not present in TIBCO Mashery Local

● The number of profile(s) using the identity.

● The number of endpoint(s) using the identity.

● The available action suggested or required for the identity.

80

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Configuring Trust Management

The Trust Management page allows the administrator to add or update certificates used by the HTTPS
client. The HTTPS client profile references these certificates.

The following table describes the fields in the Trust Management page.

Field or button Description

Upload Trust Opens the Upload a Trusted CA Certificate window.

To upload a certificate, click Click here to select file, then click Upload.

In case of a CA certificate chain, you can upload the immediate CA
certificate.

81

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Field or button Description

Name The name of the certificate.

Serial Number The serial number of the certificate.

Expiration Date The date and time the certificate expires.

State Identifies the following information:

● The state of the certificate:

— Certificate manifest will be synchronized with TIBCO Mashery SaaS

— Certificate manifest has been synchronized with TIBCO Mashery SaaS

— Certificate is about to expire - The expiration warning is shown one
month before expiration date.

— Certificate expired.

— Certificate manifest update will be synchronized with TIBCO Mashery
SaaS

— Certifcate in TIBCO Mashery Local is outdated for TIBCO Mashery
SaaS

— Certificate is not present in TIBCO Mashery Local

● The number of profile(s) using the certificate.

● The number of endpoint(s) using the certificate.

● The available action suggested or required for the certificate.

82

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Testing the New Instance

You should test a new instance after installing and creating it.

Testing a New Instance
One approach to test a new instance is:

Procedure

1. Find the API to test in the API Settings area of the Mashery Admin Dashboard and identify an
associated endpoint that is ready for testing.

2. Create a test API key for the API identified in the previous step. You accomplish this in the Users
area accessed by clicking the Users tab of the Mashery Admin Dashboard.

3. Perform a manual sync of the Services and Developers in the Cloud Sync page of the Mashery Local
Cluster Manager, as described in step 7 of Configuring Slaves to the Master.

4. Construct a test API call for the API you wish to test.

5. Execute the API call against the instance. Unless you have set up a domain name for the instance,
your API call will need to be made against the IP address of the instance directly.

Should you use a hostname or IP in your test call? When a service is setup in the
dashboard, the hostnames (IP addresses as well could be used) that will consume the
service are defined. When a call is made to the proxy, the hostname used for the call must
match one of the hostnames setup in the dashboard for the service, otherwise the call will
fail. If you make a call directly to one of the instances using its IP address and that IP
address was not configured in the service definition, then the proxy returns a 596 error.

If you receive the expected response from the API, then your instance is working properly.

Tracking the Database Restore and Replication Status
TIBCO Mashery Local slave node registration process provides a status endpoint that helps to track the
asynchronous steps of database restore and replication status. However, these steps are processed in
the background, so there is no active feedback on completion or failure of processes.

The status endpoint (registration_status.py) is an experimental API and is subject to change in later
implementations.

There is no need to Enable API Access on the node for this endpoint to function.

To obtain the database restore and replication status, type the URL of the endpoint in your browser. For
example: https://<Mashery_Local_Slave_IP>:5480/service/mashery/cgi/
replication_status.py

The endpoint returns the following JSON:
{
 "replication_status":
 {
 "restore": {
 "error": false,
 "errors": "",
 "log": "1. transfer backup from master\nMon Aug 22 18:38:04
UTC
 2016\n\n2. unzip backup\nMon Aug 22 18:38:41 UTC 2016\n\n3.
 stop slave\nSlave stopped\nMon Aug 22 18:38:41 UTC
 2016\n\n4. restore from backup\nMon Aug 22 20:36:18 UTC
 2016\n\n5. start slave\nSlave started\nMon Aug 22 20:36:18
 UTC 2016\n\n6. done\nMon Aug 22 20:36:18 UTC 2016\n\n",
 "complete": true

83

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 },
 "replication": {
 "last_error": "",
 "seconds_behind_master": "250832\n",
 "slave_io_running": "Yes\n",
 "slave_sql_running": "Yes\n"
 }
 },
 "error": null
}

The following table provides details about the JSON that is returned by the status endpoint:

JSON Node Value in JSON Description

Database restore log

replication_status.restor

e.log

Provides database restore log.

replication_status.restor

e.complete

true Implies that the database
restore step is done.

false Implies that the database
restore step is not complete.

replication_status.restor

e.error

true Implies that there are errors
during the process. Refer to the
replication_status.restor

e.errors node to get more
details for the errors.

false Implies that there are errors
during the process.

Database replication status

replication_status.replic

ation

Provides replication-specific
information from “show slave
status”.

replication_status.

replication.last_error

<error> Provides the details for the
errors (if any).

replication_status.replic

ation.

seconds_behind_master

<time in milliseconds> Provides an estimate of how
long it takes the slave node to
catch up to the master.

84

TIBCO Mashery® Local Installation and Configuration Guide for Docker

JSON Node Value in JSON Description

replication_status.replic

ation.slave_io_running or
replication_status.replic

ation.slave_sql_running

No

Yes

Replication is not running and
last_error provides the
details for the errors (if any).

Replication starts,

seconds_behind_master

provides an estimate of how
long it takes the slave node to
catch up to the master.

When the restore step is in process, replication is disabled. Therefore, the value of slave_io_running
and slave_sql_running is No.

85

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Troubleshooting

Mashery Local provides a set of tools that help an administrator to debug issues with API calls as they
flow through TIBCO Mashery, troubleshoot networking issues with the system, identify issues with
cloud synchronization, and collect system logs to facilitate Operations and Support staff to identify
root-cause faster. This section outlines the tools available and their usage scenarios.

Verbose Logs
The Mashery Local administrator can troubleshoot issues related to call payloads or identify any
inconsistencies as API call data flows through TIBCO Mashery by enabling verbose logs on API calls.
This feature is not enabled as an “always on” feature as producing these verbose logs may have some
impact on API call performance. Instead, options are provided on the Cluster Manager UI to enable
and disable verbose logs.

Using the Verbose Logs Feature
To use the Verbose Log feature:

Procedure

1. Click Logs

2. Specify the Verbose Logs location. The default directory is </var/log/mashery/verbose>.

3. Enable Verbose Logs.
a) Select duration for capturing the logs (05, 10, 15, or 30 minutes).
b) Click Enable.

86

TIBCO Mashery® Local Installation and Configuration Guide for Docker

After you enable verbose logs, Mashery Local writes the call data logs that include inbound
request data, inbound processed data, outbound response data, and outbound processed data.
Verbose logs (call data capturing) is disabled after the selected time duration expires.
You must set the Verbose Logs Location on each node in the cluster including Master and all
Slaves. Enabling or disabling verbose logs can only occur on the Master node. The Slave nodes
just inherit the current verbose log enablement status from the Master.

Working with Verbose Logs
A directory is created every minute with the name format as YYYY-MM-DD-HH-MM. All the calls that
are logged in a minute become part of one directory and so on. For each call, a sub-directory is created
using the name <timestamp>-<Mashery Message ID>.

Mashery Message ID is a globally unique ID generated for every API call that is processed by TIBCO
Mashery. The Mashery Message ID provides a possible mechanism for administrators to create a
golden thread for debugging issues between TIBCO Mashery, your partners and your backend system.
To be able to include this GUID in request and response headers, you can toggle on Include X-
Mashery-Message-ID in Request and Include X-Mashery-Message-ID in Response properties on in
the Services>Endpoint>Properties page in the TIBCO Mashery Administration Dashboard.

Within each sub-directory, four log files are InboundRequest.log, InboundProcessed.log,
OutboundResponse.log, OutboundProcessed.log.

● InboundRequest contains the request data on the API call as it is originally received by Mashery
Local from the client application.

● InboundProcessed contains the Mashery processed version of the inbound request as sent to API
server (or to cache if enabled).

● OutboundResponse contains the response data as it is originally received by Mashery from the API
server (or from cache if enabled).

● OutboundProcessed contains the Mashery processed version of the outbound response as sent to
the client application.

Each of the four files contain some important metadata written as key-value pairs with 1 pair on one
line. After the metadata, a new delimiter line is written followed by the actual message.

The metadata included are:

87

TIBCO Mashery® Local Installation and Configuration Guide for Docker

● Key: Key a developer uses to get access to a Package Plan or API.
● Service ID: TIBCO Mashery generated unique ID to identify an API.
● Endpoint ID: TIBCO Mashery generated unique ID to identify an Endpoint.
● Site ID: TIBCO Mashery generated unique ID to identify your Site within the TIBCO Mashery

Network.
● IP address: IP address of the client application invoking the API call.
● Method (if available): Method that was being accessed in the API call (available if appropriate

Method Configuration settings are specified in Services>End-points>Properties tab in the TIBCO
Mashery Administration dashboard).

● Cache hit: 1 if cache is enabled and response is met from cache, 0 otherwise.
● Error message (if any): TIBCO Mashery generated error message on that API call (if any).

Mapping Endpoint IDs
TIBCO Mashery Local provides a script that allows fetching a list of endpoints with details such as the
Endpoint ID and the Endpoint name. The Endpoints associated with a service are displayed. The
Service ID is the parameter used to fetch the Endpoint details.
//Request searching with a particular service id
python getEndpointNames.py --service 95bpf2jv3f8p5x3xqsu657x5

//Response in json formatter
{
 "services":[
 {
 "endpoints":[
 {
 "id":"7xwgjatahmuwgrz79cgw286a",
 "name":"CORS-disabled"
 },
 {
 "id":"2m4zz8nw4n9w36uau7j2bnqb",
 "name":"Custom CORS(custom rest as the API key source)"
 },
 {
 "id":"g2qx6vhxubu4d4w66egqnxsh",
 "name":"CORS-enabled- EIN-112-dontallow"
 },
 {
 "id":"uavv2nm6yy7j94nhp8zp5kjf",
 "name":"CORS-enabled-EIN-112"
 },
 {
 "id":"pgbrzzu89dtyvumqht4ncnt4",
 "name":"preflight-requestmultipledomainno"
 },
 {
 "id":"7qcpe6dsss4kxp4u8c6fy5pr",
 "name":"EIN-222"
 }
],
 "id":"95bpf2jv3f8p5x3xqsu657x5"
 }
]
}

Debugging Utility
A debug utility is provided that can be used to capture information about system health and
configuration, connectivity to the cloud for synchronization, fix Slave registration issues, and resolve
any replication issues between Master and Slave. A command line console is available to run the
various options available. This utility is useful for gathering information to assist with trouble-shooting
common system configuration errors with TIBCO Mashery Local.

88

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Running the Debug Utility
Execute the following command to run the debug utility:
$ python /opt/mashery/utilities/debug_util.py

The following options are available. Some options are available to be run only on Master and some only
on Slave.
Select from the following:
1: Collect Logs
2: Test connectivity to Cloud Sync
3: Show Slave Status
4: Check IP address
5: Update record or Master IP address in Master (Master IP address has changed and
registration of new Slave with cluster fails)
6: Fix slave corruption (Restart slave at last valid read position)
7: Update record of Master IP address in old Slave node (Master IP address has
changed and cluster is not updated)
8: System manager (Remove non-functional or unused slaves form Master)
9: Collect system state (Disk health, process health, time setting, network
settings)
menu: Show this menu
exit: Quit

For option 9: Collect system state, the resulting files for this option are created in the home directory,
depending on the login users (root/administrator).

Collect Logs
This tool produces a tar.gz file that collects Traffic Manager component logs, sync status with the
cloud, the Slave and Master IP address checks, logs required to check replication issues between Master
and Slave and verbose logs for the day (if any).

This option can be run on Master and Slave nodes.

Test Connectivity to Cloud Sync
This tool helps to determine if there are any errors connecting to the TIBCO Mashery Cloud system for
synchronization.

This option can be run on Master and Slaves.

Show Slave Status
This option displays whether a Slave is functioning correctly, including its status, the Master systems IP
address and any replication errors that are present between Master and Slave.

This option can be run on a Slave node.

Check IP Address
This option allows you to check the current IP address of the Master.

This option can be run on a Master node.

Update Record of Master IP Address in Master
Sometimes if the IP address of a Master node changes, new Slave registration with the Master fails.
Running this option fixes the record of the Master IP address in the Master node for successful Slave
registration.

89

TIBCO Mashery® Local Installation and Configuration Guide for Docker

This option can be run on a Master node.

Fix Slave Corruption
This option allows you to resolve Master Slave replication issues.

This option can be run on a Slave node.

Update Record of Master IP Address in Old Slave Node
This option updates the record of the Master IP address in the Slave nodes and is useful for resolving
Master-Slave replication issues.

System Manager (Remove Non-functional or Unused Slaves from Master)
Sometimes Slave nodes are decommissioned and new Slave nodes are created. This option on Master
system can be used to remove unused slaves.

System Level Troubleshooting
TIBCO Mashery Local administrators have the ability to run the following select commands to
investigate and troubleshoot the network or system level issues.

● ping

● ping6

● tracepath

● tracepath6

● tcpdump

● traceroute

● arping

● tshark

● route

● ifconfig

● iptables

● dhclient

sudo edit for the following files:

● /etc/resolv.conf

● /etc/sysconfig/network-scripts/ifcfg-eth0

● /etc/sysconfig/network-scripts/ifcfg-eth1

● /etc/rc.local

● /etc/hosts

● /etc/securitylimits.conf

● /etc/nssswitch.conf

90

TIBCO Mashery® Local Installation and Configuration Guide for Docker

General Troubleshooting
The following table provides information for troubleshooting general Mashery Local (for Appliance
and Docker) issues.

Form
Factor Issue Notes

All API call returns
a 596 error

Possible Cause

API is configured with specific supported HTTP Methods, and the
HTTP Method used for this call is not allowed.

Diagnostic Steps

1. Test the API call using the SaaS domain
(<customer>.api.mashery.com)

2. If the call returns a 596 error, review the Key & Method
Detection settings for this endpoint and confirm that the HTTP
Method used in the API call is allowed.

Resolution

1. If the HTTP method used in this call is not configured on the
endpoint, update the supported HTTP Methods to include the
HTTP method.

2. Run a manual Mashery Local sync to update the configuration
in the on-prem traffic manager.

91

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Form
Factor Issue Notes

Appliance API call returns
a 596 error

Possible Cause

Memcached is not running

Diagnostic Steps

Check that the API configuration is loaded into memcache:

1. SSH into the Mashery Local Instance, for example: ssh
root@<IP ADDRESS OF THE INSTANCE>

2. TELNET to the Memcache port: telnet localhost <port>. Here
are the port numbers for the various memcache pools:

1. "memservicePool": 11214

2. "memcachePool": 11211

3. "memcachePackaged": 11215

4. "contentCachePool": 11213

5. "memcountPool": 11212

3. Run the stats items command.

4. Identify the item number with more than 1 record.

5. Run the command:
stats cachedump <ITEM NUMBER> <NUMBER
OF RECORDS>

Resolution

If the response is coming from the master and the settings are not
in memcache, you likely have a synchronization issue.

If the response is coming from the slave and the settings are not in
memcache, you like have a replication issue. Force a memcache
load of the service definitions:
/opt/javaproxy/proxy/memcacheloader --env production
--verbose --service

92

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Form
Factor Issue Notes

Docker API call returns
a 596 Error

Possible Cause

Memcached container is not running.

Diagnostic Steps

1. Check the proxy.log for Memcached errors.

2. Check whether the memcached is running:
docker exec -it ml-mem ps -ef

and look for the memcached process.

Resolution

1. If memcache is not running, ssh into the ml-mem container to
start it and see whether there's any error:
docker exec -it ml-mem /bin/bash

then:
service memcached start

2. If it's caused by running out of file limit, increase the ulimit
setting by editing the docker-compose.yml file, and if you are
using docker-compose, do a docker-compose down followed
by a docker-compose up to restart the containers.

Please see https://docs.docker.com/compose/compose-file/#/
ulimits.

Add those to the docker-compose.yml file under the container
section, most likelyml_memwould need this(if memcached
failed to start). For example:
ulimits:
 nproc: 65535
 nofile:
 soft: 20000
 hard: 40000

Watch out for the leading spaces. They must align
with others using the correct indentation.

93

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://docs.docker.com/compose/compose-file/#/ulimits
https://docs.docker.com/compose/compose-file/#/ulimits

Form
Factor Issue Notes

All API call returns
intermittent 596
error on a
previously
working slave.

Possible Cause

Sync between master and one or more slaves is not working.

Diagnostic Steps

Errors are intermittent indicating that there is a problem with one
slave.

Use the following command:
python
/opt/mashery/utilities/debug_util.py

Select Option 3 (Show Slave Status).

This option displays whether a Slave is functioning correctly,
including its status, the Master systems IP address and any
replication errors that are present between Master and Slave.

Resolution

If errors are present, recreate the Slave instance.

All API call returns
596 error on a
new slave.

Possible Cause

Sync between master and slave is not working.

Diagnostic Steps

When connecting a new slave to a Master, the customer sees this
error:
Registering as Slave ERROR: Failed to configure
the node as slave.

Resolution

This can happen if the IP Address of the Master was changed after
the initial installation of the Master. The built in Debug Utility
(debug_util.py) should be run on the Master in order to fix this.

Have the customer run the debug_util.py on the "Master", using
the following command:
python /opt/mashery/utilities/debug_util.py

Select Option 5. (Update record or Master IP address in Master.
(Master IP address has changed and registration of new Slave
with cluster fails)).

The customer should then be able to register the new Slave to the
Master node.

94

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Form
Factor Issue Notes

All Mashery Local
Web Console is
blank.

Possible Cause

Disk is full.

Diagnostic Steps

Review disk space using the "df -h" command. This will give you
a percentage usage of both disks (there are usually 2 disks, 1
"system" and the other "mnt" (mnt contains the logs and the mysql
database, the rest is on system)

Resolution

If disk space utilization is over 90% for either disk, customer
should ask their System Administrator to increase the size of the
respective disk.

All Mashery Local
Web Console is
blank.

Possible Cause

Available memory is low.

Diagnostic Steps

Review free memory using the "free -h" command.

Resolution

If available memory is low or the system is using swap, customer
should ask their System Administrator to increase the size of
memory on this instance or add more nodes to the cluster so that
this instance is not at capacity.

95

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Form
Factor Issue Notes

Appliance Mashery Local
Web Console is
blank.

Possible Cause

Basic processes are not running.

Diagnostic Steps

Review basic processes using the "ps aux | more" command.
Check for:

● memcached

● javaproxy

● mysqld

● vami-sfcbd

● lighttpd

Resolution

If any of these processes are not running, reboot Mashery Local
instance.

All Cannot
synchronize API
Settings.

Possible Cause

Connection to Mashery On-Prem Manager (MOM) is not present.

Diagnostic Steps
Run the following command:
dig api-mom.mashery.com

If you get a response, then try:
curl -k https://api-mom.mashery.com/ping

Resolution

If you get a response, then you do have a good connection to
MOM.

If you do not get a response, check your network configuration to
ensure outbound HTTPS / 443 access is allowed.

96

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Form
Factor Issue Notes

All Mashery Local
returns a 503
Service
Unavailable
error.

Possible Cause

Failsafe is being triggered for the endpoint in question.

Diagnostic Steps

Confirm that the error message of
503_Service_Unavailable_Proxy

is being returned.

Resolution

This means Mashery's failsafe has been triggered due to excessive
504 responses from the API over a short period of time.

It could be that the customer's origin servers are now taking
longer than the configured connection or response TTLs set on the
endpoint. If those values are low, then the customer should
increase the values. If they are already high, then the customer
needs to improve performance on their origin server to alleviate
the issue.

Docker Docker Instance
cannot be
reached.

Possible Cause

Docker containers need to be returned to a clean state.

Diagnostic Steps

Error checking TLS connection: Something went wrong running
an SSH command!

error getting ip address: host is not running

Docker-Machine instances in Timeout state

Resolution

If you are connected to the VPN, disconnect VPN

● Stop All containers

docker stop $(docker ps -a -q)

● Delete all containers

docker rm $(docker ps -a -q)

● Delete all images

docker rmi $(docker images -q)

● If using Virtualbox, remove host adapter -

Open Virtualbox, click File -> Preferences -> Network ->
Host-only Network, remove Vboxnet#

● Unsetting DOCKER variables

unset ${!DOCKER*}

Restart Docker Terminal and start creating new instance.

97

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Appendix

This appendix describes some configurations for using Mashery Local features.

Setup Examples
The following sections describe setup examples for Mashery Local deployments.

Example Cloud Deployments with CLI
The following examples demonstrate Mashery Local for Docker deployment to cloud environments
(Azure and AWS for now) using Command Line Interface (CLI). The advantage with CLI is that the
deployment process can be done repeatedly with scripts and an environment can be easily replicated
reliably.

These examples are for illustrating the concepts, they are not production-grade deployments. The
scripts used in these examples are in the examples directory.

In each example, two Mashery Local instances are created - one for Mashery Local master and one for
Mashery Local slave. Each Mashery Local instance is deployed to a cloud virtual machine (VM)
instance (each VM instance corresponding to a docker host). Then, both the master and slave are
connected to Mashery On-Prem Manager and are ready to handle traffic.

Cloud Deployment Prerequisites

● Docker, docker-machine, and docker-compose installed locally (for example, on a Mac).

● AWS or Azure accounts have been set up and CLI installed.

● Verify the command aws or az is on your path and you can do some simple CLI commands, for
example:

— az group list

— aws ec2 describe-vpcs

Deploying Mashery Local to Cloud Environment

1. Follow the instructions to build Mashery Local for Docker images locally with docker-machine.
Verify the images are correct (no errors during the build and the images can be seen with the
command docker images.

2. Prepare a directory that has the three image gz files, the modified (optional) docker-compose.yml
file, and azure-ml.sh, aws-ml.sh and init-ml.sh.

export MOM_KEY="<MOM key>" export MOM_SECRET="<MOM secret>"

chmod a+x *.sh

3. Set the following environmental variables for Azure or AWS:

For Azure:

export AZURE_USER="<azure user>"

export AZURE_PWD="<azure password>"

export AZURE_SUBSCRIPTION_ID="<your azure subscription id>"

export AZURE_IMAGE="<azure image for the location>"

(Default value "canonical:UbuntuServer:16.04.0-LTS:latest" for location "westus" if not specified.)

export ML_LOC_NAME="<azure location for ML>"

98

TIBCO Mashery® Local Installation and Configuration Guide for Docker

(Default value "westus" if not specified)

export ML_RESOURCE_GROUP="<azure resource group name for ML>"

(Default value "mlResourceGroup" if not specified)

export ML_DNS_NAME="<public IP DNS name>"

(Default value "testml" if not specified)

For AWS:

export AWS_ACCESS_KEY_ID="<AWS_ACCESS_KEY_ID>"

export AWS_SECRET_ACCESS_KEY="<AWS_SECRET_ACCESS_KEY>"

export AWS_DEFAULT_REGION="<default AWS region>"

(Default value "us-east-1" if not specified)

export AWS_ZONE="<AWS zone>"

(Default value "e" if not specified)

export AWS_AVAILABILITY_ZONE="<AWS availability zone>"

(Default value "us-east-1e" if not specified)

export AWS_AMI="<AWS AMI id>"

(Default value "ami-efe09bf8" if not specified)

Where the AWS AMI has to be an Ubuntu 16.04.* image available on the region

For eu-central-1, do NOT use ami-9346bcfc because there's some extra software running
inside that would cause performance degradation. Any public AWI needs be carefully
examined before being used.)

And the AWS availability zone must exist for that region.

Verify that the output format is json in your default configuration (check the file <home>/.aws/config
or use the command "aws configure to verify).

4. Run the following scripts:

For Azure, run the script azure-ml.sh.

For AWS, run the script aws-ml.sh.

It takes some time for the scripts to run (about 45 minutes for Azure and 100 minutes for AWS)
because images must be loaded to the cloud twice - once each for the master and slave.

It's better to save the output to a file for later examination, for example:

./aws-ml.sh 2>&1 |tee /tmp/aws-ml.out

If the script hangs in docker loading images, try the following:

1. Ctrl-C out of the script.

2. Execute the following commands (they take more than an hour):
execute the following commands (they take more than an hour)

docker-machine scp ml_db.tar.gz aws-ml-master:/tmp
docker-machine ssh aws-ml-master docker load -i /tmp/ml_db.tar.gz
docker-machine scp ml-mem.tar.gz aws-ml-master:/tmp
docker-machine ssh aws-ml-master docker load -i /tmp/ml-mem.tar.gz
docker-machine scp ml_core.tar.gz aws-ml-master:/tmp
docker-machine ssh aws-ml-master docker load -i /tmp/ml_core.tar.gz

docker-machine scp ml_db.tar.gz aws-ml-slave1:/tmp
docker-machine ssh aws-ml-slave1 docker load -i /tmp/ml_db.tar.gz

99

TIBCO Mashery® Local Installation and Configuration Guide for Docker

docker-machine scp ml-mem.tar.gz aws-ml-slave1:/tmp
docker-machine ssh aws-ml-slave1 docker load -i /tmp/ml-mem.tar.gz
docker-machine scp ml_core.tar.gz aws-ml-slave1:/tmp
docker-machine ssh aws-ml-slave1 docker load -i /tmp/ml_core.tar.gz

./init-ml.sh aws 2>&1 |tee /tmp/init-ml.out

If something goes wrong with AWS and you need to rerun the aws-ml.sh, perform the following
cleanup first:
docker-machine rm aws-ml-master aws-ml-slave1
docker-machine rm -f aws-ml-master aws-ml-slave1

aws ec2 delete-key-pair --key-name aws-ml-master
aws ec2 delete-key-pair --key-name aws-ml-slave1

aws elb delete-load-balancer --load-balancer-name MLLB
aws ec2 delete-vpc --vpc-id <vpc id value>

If you just cleaned up the previous install and the AWS instances were "Terminated" but still not
completely removed yet, you may get the following error when you rerun aws-ml.sh: "An error
occurred (InvalidInstance) when calling the RegisterInstancesWithLoadBalancer

operation: EC2 instance i-xxxx... is not in running state."

As a workaround if you don't want to wait till those AWS instances are completely removed, you
can modify the aws-ml.sh and init-ml.sh to replace to words ML-Master and ML-Slave1 to
something else, before executing the aws-ml.sh again.

Handling Errors on docker-machine create

Update your docker-machine version to 0.12.2+ if you encounter either of the following errors when
aws-ml.sh or azure-ml.sh is doing "docker-machine create":

● Error creating machine: Error running provisioning: Unable to verify the Docker

daemon is listening: Maximum number of retries (10) exceeded

● Error creating machine: Error running provisioning: ssh command error:command :

systemctl -f start dockererr : exit status 1output : Job for docker.service

failed because the control process exited with error code. See "systemctl status

docker.service" and "journalctl -xe" for details.

See https://github.com/docker/machine/releases for the latest release and installation instructions.

Before you retry aws-ml.sh or azure-ml.sh, make sure to remove the old broken docker-machines first:
docker-machine rm -f <docker machine name>

where the docker-machine name could be aws-ml-master, aws-ml-slave1, azure-ml-master, or azure-
ml-slave1.

Also, clean up the entities (AWS VPC or AZURE ResourceGroup ...) created on AWS or AZURE.

You may need to update your aws cli or azure cli to the latest version.

For reference, see:
● http://docs.aws.amazon.com/cli/latest/userguide/installing.html

● https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

The following are the versions that work on Mac:

● aws --version

returns

aws-cli/1.11.124 Python/3.5.1 Darwin/13.0.2 botocore/1.5.87

● az --version

returns

100

TIBCO Mashery® Local Installation and Configuration Guide for Docker

https://github.com/docker/machine/releases
HTTP://DOCS.AWS.AMAZON.COM/CLI/LATEST/USERGUIDE/INSTALLING.HTML
HTTPS://DOCS.MICROSOFT.COM/EN-US/CLI/AZURE/INSTALL-AZURE-CLI

azure-cli (2.0.10)

...

Python (Darwin) 3.5.1 (default, Jan 22 2016, 17:08:33)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)]

Python location '/usr/local/opt/python3/bin/python3.5'

Recreating Master and Slave

If docker-machines (AWS or Azure instances) are fine and Docker images are loaded, and you just want
to have a clean new master and slave, perform the following steps.

● For AWS: ./init-ml.sh aws 2>&1 |tee /tmp/init-ml.out

● For Azure: ./init-ml.sh azure 2>&1 |tee /tmp/init-ml.out

A load balancer is created for both Azure and AWS cases, and traffic would go through the load
balancer.

For Azure, to access the UI, you can use the docker host IP or load balancer IP with port 5480 for master
and port 5481 for slave1. For AWS, to access the UI, use the instance's public IP. You can find the public
IP from AWS UI or use the command for Master:

aws ec2 describe-instances --filters 'Name=tag:Name,Values=ML-Master'|grep

PublicIpAddres |cut -d '"' -f 4

For Slave, (Slave1, for example), use the command:

aws ec2 describe-instances --filters 'Name=tag:Name,Values=ML-Slave1'|grep

PublicIpAddres |cut -d '"' -f 4

There are other enhancements that could be made, for example, modify the security rules to restrict
internal traffics from within the virtual network only, or create docker-machine without public IP
address (all required access from outside could go through load balancer).

Example Setup to Run Mashery Local Master and Slave on a Local Machine

Prerequisites

Docker, docker-machine, and docker-compose installed locally (for example, on a Mac).

Procedure

1. Follow the instructions to build Mashery Local for Docker images locally with docker-machine.
Prepare a directory that has the three image gz files, the modified (optional) docker-compose.yml
file and init-ml.sh.

The docker-compose.yml and init-ml.sh can be found in the examples directory.

export MOM_HOST="<MOM host>"
export MOM_KEY="<MOM key>"
export MOM_SECRET="<MOM secret>"
chmod a+x *.sh

2. Create two docker machines: xxx-ml-master and xxx-ml_slave1, where xxx is replaced with your
own machine names, then start both docker-machines.

101

TIBCO Mashery® Local Installation and Configuration Guide for Docker

The docker machine names must be xxx-ml-master and xxx-ml_slave1 for the init-ml.sh
to work without modification.

Both docker-machines must be running (Use "docker-machine ls" to check their status.)

3. Execute the command:
init-ml.sh xxx load

(for the first time); or:
init-ml.sh xxx

This cleanly restarts the master and slave re-using the already loaded images (with all previous data
removed).

Adapter SDK Usage and Examples
The following sections describe a typical setup of a development environment for the Adapter SDK, as
well as examples of Adapter SDK usage in various projects.

Adapter SDK Development Environment Example Setup
The following is an example setup used for the Adapter SDK development environment. The
environment details are listed below for reference.

● Operating System: CentOS Linux release 7.3.1611
● JDK: OpenJDK version "1.8.0_121"
● Eclipse: Eclipse Java EE IDE for Web Developers

— Version: Mars.2 Release (4.5.2)
— Build id: 20160218-0600

● Ant: Apache Ant™ version 1.9.2 compiled on June 10 2014

yum install ant

● Maven: Apache Maven 3.0.5 (Red Hat 3.0.5-17)

yum install maven

Setting up the Adapter SDK for Maven
To set up the Adapter SDK for Maven, follow the steps below:

Procedure

1. Download the Adapter SDK from Mashery Local Cluster Manager.

2. Copy the Adapter SDK to your development environment, for example, /home/beta/Documents/
sdk.zip.

3. Unzip the Adapter SDK:
unzip sdk.zip -d sdk

4. Install Adapter SDK JARs in Maven local repository:
cd /home/beta/Documents/sdk
mvn install:install-file -Dfile=com.mashery.http_1.0.0.v20130130-0044.jar -
DgroupId=com.mashery \
-DartifactId=http -Dversion=1.0.0.v20130130-0044 -Dpackaging=jar -
DgeneratePom=true
mvn install:install-file -
Dfile=com.mashery.trafficmanager.sdk_1.1.0.v20130214-0043.jar -
DgroupId=com.mashery \

102

TIBCO Mashery® Local Installation and Configuration Guide for Docker

-DartifactId=trafficmanager -Dversion=1.1.0.v20130214-0043 -Dpackaging=jar -
DgeneratePom=true
mvn install:install-file -Dfile=com.mashery.util_1.0.0.v20130214-0015.jar -
DgroupId=com.mashery \
-DartifactId=util -Dversion=1.0.0.v20130214-0015 -Dpackaging=jar -
DgeneratePom=true

Using the Adapter SDK in Mashery Local with Single Processor
To use the Adapter SDK in Mashery Local with a single processor, follow the steps below:

Procedure

1. Create a new Maven Project in Eclipse. Go to File > New > Maven Project.

103

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. Add dependencies to the project. In Eclipse, go to Project Explorer > pom.xml >
Dependencies.

104

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Here is the list of dependencies:

3. Create new Java Class. In Eclipse, go to Project > New > Class.
In the package com.example.masherylocal.CustomAdapter, create the following class
CustomProcessor.

105

TIBCO Mashery® Local Installation and Configuration Guide for Docker

This is the reference code:
package com.example.masherylocal.CustomAdapter;

import com.mashery.http.server.HTTPServerRequest;
import com.mashery.http.server.HTTPServerResponse;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.model.TrafficEventCategory;
import com.mashery.trafficmanager.event.model.TrafficEventType;
import com.mashery.trafficmanager.event.processor.model.ProcessorEvent;
import com.mashery.trafficmanager.model.core.APICall;
import com.mashery.trafficmanager.model.core.ApplicationRequest;
import com.mashery.trafficmanager.model.core.TrafficManagerResponse;
import com.mashery.trafficmanager.processor.ProcessorBean;

@ProcessorBean(enabled=true,
name="com.example.masherylocal.CustomAdapter.CustomProcessor", immediate=true)
public class CustomProcessor implements TrafficEventListener {

 public void handleEvent(TrafficEvent event) {
 TrafficEventType eventType = event.getType();
 if (eventType.getCategory() != TrafficEventCategory.PROCESSOR)
 return;
 ProcessorEvent processorEvent = (ProcessorEvent) event;
 APICall apiCall = processorEvent.getCallContext();

 if (eventType.getName().contentEquals("Pre-Process Event")) {
 ApplicationRequest appRequest = apiCall.getRequest();
 HTTPServerRequest httpRequest = appRequest.getHTTPRequest();
 } else if (eventType.getName().contentEquals("Post-Process Event")) {
 TrafficManagerResponse tmResp = apiCall.getResponse();
 HTTPServerResponse httpResp = tmResp.getHTTPResponse();

httpResp.getHeaders().add("CustomAdapter.CustomProcessor::handleEvent", "Post-
Process Event");
 }

106

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 }
}

4. Build the project in the folder, for example, /home/beta/work_diysdk/CustomAdapter/:
mvn package

5. Use a simple zip command to package the project in the folder, for example, /home/beta/
work_diysdk/CustomAdapter/target/:
zip CustomAdapter-1.0.zip CustomAdapter-1.0.jar

6. Unload the zipped package using Mashery Local Cluster Manager.

7. Apply the Custom Processor on the Endpoint using Mashery SaaS Control Center.

Using the Adapter SDK in Mashery Local with Third-Party Libraries
To use the Adapter SDK in Mashery Local with third-party libraries, follow the steps below:

Procedure

1. Create a new Maven Project "Base64Adapter" in Eclipse, then add dependencies and class, as
described in Using the Adapter SDK in Mashery Local with a Single Processor.
The project layout should look like the following:

2. Install the third-party library in Maven local repository, for example:
mvn install:install-file -Dfile=org.apache.commons.codec_1.3.0.v201101211617.jar
-DgroupId=org.apache.commons \
 -DartifactId=codec -Dversion=1.3.0.v201101211617 -Dpackaging=jar -
DgeneratePom=true

3. Add dependency on third-party library in the project:

107

TIBCO Mashery® Local Installation and Configuration Guide for Docker

4. Use third-party library in the project, such as this example, which uses
org.apache.commons.codec_1.3.0.v201101211617.jar:
package com.example.masherylocal.Base64Adapter;

import java.io.UnsupportedEncodingException;

import org.apache.commons.codec.binary.Base64;

import com.mashery.http.server.HTTPServerRequest;
import com.mashery.http.server.HTTPServerResponse;
import com.mashery.trafficmanager.event.listener.TrafficEventListener;
import com.mashery.trafficmanager.event.model.TrafficEvent;
import com.mashery.trafficmanager.event.model.TrafficEventCategory;
import com.mashery.trafficmanager.event.model.TrafficEventType;
import com.mashery.trafficmanager.event.processor.model.ProcessorEvent;
import com.mashery.trafficmanager.model.core.APICall;
import com.mashery.trafficmanager.model.core.ApplicationRequest;
import com.mashery.trafficmanager.model.core.TrafficManagerResponse;
import com.mashery.trafficmanager.processor.ProcessorBean;

@ProcessorBean(enabled=true,
name="com.example.masherylocal.Base64Adapter.Base64Processor", immediate=true)
public class Base64Processor implements TrafficEventListener {

 public void handleEvent(TrafficEvent event) {
 TrafficEventType eventType = event.getType();
 if (eventType.getCategory() != TrafficEventCategory.PROCESSOR)
 return;
 ProcessorEvent processorEvent = (ProcessorEvent) event;
 APICall apiCall = processorEvent.getCallContext();

 if (eventType.getName().contentEquals("Pre-Process Event")) {
 ApplicationRequest appRequest = apiCall.getRequest();
 HTTPServerRequest httpRequest = appRequest.getHTTPRequest();
 } else if (eventType.getName().contentEquals("Post-Process Event")) {
 TrafficManagerResponse tmResp = apiCall.getResponse();

108

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 HTTPServerResponse httpResp = tmResp.getHTTPResponse();
 try {
 byte[] base64bytes = Base64.encodeBase64("Post-Process
Event".getBytes("UTF-8"));
 String base64str = new String(base64bytes, "UTF-8");

httpResp.getHeaders().add("Base64Adapter.Base64Processor_handleEvent",
base64str);
 } catch (UnsupportedEncodingException e) {
 // TODO Add logging
 }
 }
 }
}

5. Update build script to include Class-Path in MANIFEST.MF, as in this example Maven Project, this
is done by adding org.apache.maven.plugins.maven-jar-plugin to pom.xml:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.masherylocal</groupId>
 <artifactId>Base64Adapter</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <name>Base64Adapter</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version>
 <configuration>
 <archive>
 <index>true</index>
 <manifest>
 <addClasspath>true</addClasspath>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.mashery</groupId>
 <artifactId>http</artifactId>
 <version>1.0.0.v20130130-0044</version>
 </dependency>
 <dependency>
 <groupId>com.mashery</groupId>
 <artifactId>trafficmanager</artifactId>
 <version>1.1.0.v20130214-0043</version>
 </dependency>
 <dependency>

109

TIBCO Mashery® Local Installation and Configuration Guide for Docker

 <groupId>com.mashery</groupId>
 <artifactId>util</artifactId>
 <version>1.0.0.v20130214-0015</version>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>codec</artifactId>
 <version>1.3.0.v201101211617</version>
 </dependency>
 </dependencies>
</project>

Here is an example of MANIFEST.MF:
Manifest-Version: 1.0
Built-By: beta
Class-Path: http-1.0.0.v20130130-0044.jar trafficmanager-1.1.0.v201302
 14-0043.jar util-1.0.0.v20130214-0015.jar codec-1.3.0.v201101211617.j
 ar
Created-By: Apache Maven 3.0.5
Build-Jdk: 1.8.0_121

6. Build the project in the folder, for example, /home/beta/work_diysdk/Base64Adapter/:
mvn package

7. Use a simple zip command to package the project in the folder, for example, /home/beta/
work_diysdk/Base64Adapter/target/:
cd /home/beta/work_diysdk/Base64Adapter/target/
mkdir lib
cp /home/beta/.m2/repository/org/apache/commons/codec/1.3.0.v201101211617/
codec-1.3.0.v201101211617.jar lib/
zip Base64Adapter-1.0.zip Base64Adapter-1.0.jar lib/codec-1.3.0.v201101211617.jar

Here is an example of the zipped contents:

8. Unload the zipped package using Mashery Local Cluster Manager.

9. Apply the Custom Processor on the Endpoint using Mashery SaaS Control Center.

Using the Adapter SDK in Mashery Local with Multiple Processors in One Eclipse
Project

To use the Adapter SDK in Mashery Local with multiple processors in one Eclipse project, follow the
steps below:

Procedure

1. Create a new Maven Project "ComboAdapter" in Eclipse, then add dependencies, as described in
Using the Adapter SDK in Mashery Local with a Single Processor.
The project layout should look like the following:

110

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. Add the classes for three custom processors as shown below:

3. Build the project in the folder, for example:
cd /home/beta/work_diysdk/ComboAdapter
mvn package

4. Use a simple zip command to package the project in the folder, for example:
/home/beta/work_diysdk/ComboAdapter/target
zip ComboAdapter-1.0.zip ComboAdapter-1.0.jar

5. Unload the zipped package using Mashery Local Cluster Manager.

6. Apply the Custom Processor on the Endpoint using Mashery SaaS Control Center.

Using the Adapter SDK in Mashery Local with Multiple Processors in One Zip Package
To use the Adapter SDK in Mashery Local with multiple processors in one zip package, follow the steps
below:

111

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Procedure

1. Create a new Maven project "CustomAdapter2" in Eclipse, then add dependencies and class, as
described in Using the Adapter SDK in Mashery Local with a Single Processor.
The project layout should look like the following:

2. Create a new Maven Project "CustomAdapter3" in Eclipse, then add dependencies and class, as
described in Using the Adapter SDK in Mashery Local with a Single Processor.
The project layout should look like the following:

3. Build the projects in the folders, for example, /home/beta/work_diysdk/CustomAdapter2/ and /
home/beta/work_diysdk/CustomAdapter3/:
cd /home/beta/work_diysdk/CustomAdapter2/
mvn package

cd /home/beta/work_diysdk/CustomAdapter3/
mvn package

112

TIBCO Mashery® Local Installation and Configuration Guide for Docker

4. Use a simple zip command to package the project in the folder, for example, /home/beta/
work_diysdk/CustomAdapter/target/:
cd /home/beta/work_diysdk/CustomAdapter/target
cp /home/beta/work_diysdk/CustomAdapter2/target/CustomAdapter2-1.0.jar .
cp /home/beta/work_diysdk/CustomAdapter3/target/CustomAdapter3-1.0.jar .
zip CustomAdapters-1.0.zip CustomAdapter-1.0.jar CustomAdapter2-1.0.jar
CustomAdapter3-1.0.jar

5. Unload the zipped package using Mashery Local Cluster Manager.

6. Apply the Custom Processor on the Endpoint using Mashery SaaS Control Center.

Using the Adapter SDK in Mashery Local with Multiple Processors in One Package and
Third Party Libraries

To use the Adapter SDK in Mashery Local with multiple processors in one package and third party
libraries, note that the following package contains three custom processors: Base64Adapter-1.0.jar
references codec-1.3.0.v201101211617.jar, Base64UrlAdapter-1.0.jar and
Base64UrlAdapter2-1.0.jar reference codec-1.4.0.v201209201156.jar.

Setting up HTTPS Server using Self-Signed Certificate
To set up HTTPS Server to use a self-signed certificate, follow the steps below:

Procedure

1. On the Mashery Cluster Manager tab, click Instance Management.

2. Scroll down to HTTP Server Security Level section and select Enable HTTPS only.

113

TIBCO Mashery® Local Installation and Configuration Guide for Docker

3. In the HTTP Server Security Settings section, specify the HTTPS Port number (default is 443).

Administrators can change the port number to another number, such as 8443. For Linux
installations, it is not advised to choose a port number below 1000. In addition, the
following reserved port numbers are used by TIBCO Mashery Local: 3306, 8081, 8082,
8083, 5489, 11211, 11212, 11213, 11214, 11215, and 11216.

4. Use your server self-signed certificate. Click Create new certificate.
The Create SSL Certificate window is displayed.

5. Enter a name in the Certificate Common Name field, for example, acme.example.com, then click
Create.

6. Click Save to save all changes. It will take a few minutes for Mashery Local service to restart.

Setting up HTTPS Server using Customer-Provided Certificate
To set up HTTPS Server to use a self-signed certificate, follow the steps below:

Procedure

1. On the Mashery Cluster Manager tab, click Instance Management.

114

TIBCO Mashery® Local Installation and Configuration Guide for Docker

2. Scroll down to HTTP Server Security Level section and select Enable HTTPS only.

3. In the HTTP Server Security Settings section, specify the HTTPS Port number (default is 443).

Administrators can change the port number to another number, such as 8443. For Linux
installations, it is not advised to choose a port number below 1000. In addition, the
following reserved port numbers are used by TIBCO Mashery Local: 3306, 8081, 8082,
8083, 5489, 11211, 11212, 11213, 11214, 11215, and 11216.

4. Use your CA certificate. Click Upload new certificate.
The Upload SSL Certificate window is displayed.

5. In the Upload SSL Certificate window, click the Click here to select file link, browse to the CA
certificate file, then click Upload.

The Certificate File should be in PKCS#12 format.

6. Click Save to save all changes. It will take a few minutes for Mashery Local service to restart.

115

TIBCO Mashery® Local Installation and Configuration Guide for Docker

Configuring and Using the HTTPS Client Feature without Mutual
Authentication

To use the HTTPS Client Feature without Mutual Authentication, you will need to configure Trust
Management settings in Mashery Cluster Manager and configure an HTTPS Client Profile in Mashery
SaaS (Control Center).

For Mashery Local:

Procedure

1. On the Mashery Cluster Manager tab, click Trust Management.

2. Click Upload Trust. The Upload Trusted CA Certificate window is displayed.

3. In the Upload Trusted CA Certificate window, click the Click here to select file link, browse to the
CA certificate, then click Upload.

4. The CA Certificate is now added as a trusted certificate. Click the link next to the certificate name to
view the state.

116

TIBCO Mashery® Local Installation and Configuration Guide for Docker

5. In this example, the State is Certificate manifest will be synchronized with TIBCO
Mashery SaaS. Mashery Local will synchronize automatically, or you can manually trigger a sync
in Cloud Sync settings.

6. To manually trigger a sync, on the Mashery Cluster Manager tab, click Cloud Sync.

117

TIBCO Mashery® Local Installation and Configuration Guide for Docker

7. In the Developer and API Settings section, for API Settings, click the Sync button to manually
trigger a sync. This will make the certificate metadata available instantly in Mashery SaaS;
otherwise, the sync will occur according to the minutes defined for the Sync Interval setting.

8. After the certificate becomes available in SaaS, the State changes to Certificate manifest has
been synchronized with TIBCO Mashery SaaS.

118

TIBCO Mashery® Local Installation and Configuration Guide for Docker

What to do next

To create an HTTPS Client Profile in TIBCO Mashery SaaS, follow the steps below:

1. Click Manage > HTTPS Client Profiles. The HTTPS Client Profiles window is displayed.

2. Click the New HTTPS Client Profile button. The Create an HTTPS Client Profile window is
displayed.

119

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://docs.mashery.com/GUID-63587B88-0B02-479F-B44C-5A3043CB730C.html

3. On the Create an HTTPS Client Profiles window, enter information in the following fields:

Field Description

Profile name Enter a name for the HTTPS client profile.

Description (Optional) Enter a description for the HTTPS client profile.

Verify Hostname Select one of the following:

● Disabled: Click to not have the hostname verified.

● Enabled: Click to have the hostname verified.

Select an identity Select an identity for the HTTPS client profile.

4. Click Save and Continue.

5. A second Create an HTTPS Client Profile page displays.

120

TIBCO Mashery® Local Installation and Configuration Guide for Docker

6. In the Unselected list of the Trust stores section, click the Trusted CA Certificate you uploaded in
Mashery Cluster Manager to move it to the Current list, then click Save and continue to finish
creating the HTTPS Client Profile. Once the HTTPS Client Profile is created, you can then select the
profile when creating an endpoint on the Endpoint Create: New Endpoint Definition page.

7. To assign the HTTPS Client Profile to an endpoint, click Design > API Definitions > Domains &
Traffic Routing.

8. On the Domains & Traffic Routing page for the existing endpoint of your API definition (or,
Endpoint Create: New Endpoint Definition page for a new endpoint), use the Select HTTP Client
Profile field to select the HTTPS Client Profile you just created, then click Save (or Create). The
endpoint is now associated with the HTTPS Client Profile.

9. Log back into Mashery Cluster Manager, go to the Cloud Sync tab, and click the manual sync
button. This syncs the HTTPS Client Profile and Endpoint configuration updates to Mashery Local,
and the HTTP Client Profile is now in use for the customer.

121

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://docs.mashery.com/GUID-ED6652D3-3DB0-4E1E-8C47-2F84285E48E3.html

Configuring and Using the HTTPS Client Feature with Mutual
Authentication

To use the HTTPS Client Feature without Mutual Authentication, you will need to configure Trust
Management and Identity Management settings in Mashery Cluster Manager and configure an HTTPS
Client Profile in Mashery SaaS (Control Center).

For Mashery Local:

Procedure

1. On the Mashery Cluster Manager tab, click Trust Management.

2. Click Upload Trust. The Upload Trusted CA Certificate window is displayed.

3. In the Upload Trusted CA Certificate window, click the Click here to select file link, browse to the
CA certificate, then click Upload.

4. The CA Certificate is now added as a trusted certificate. Click the link next to the certificate name to
view the state.

122

TIBCO Mashery® Local Installation and Configuration Guide for Docker

5. In this example, the State is Certificate manifest will be synchronized with TIBCO
Mashery SaaS. Mashery Local will synchronize automatically, or you can manually trigger a sync
in Cloud Sync settings.

123

TIBCO Mashery® Local Installation and Configuration Guide for Docker

6. On the Mashery Cluster Manager tab, click Identity Management.

7. Click Upload Identity. The Upload Client Identity window is displayed.

124

TIBCO Mashery® Local Installation and Configuration Guide for Docker

8. In the Upload Client Identity window, click the Click here to select file link, browse to the identity
file (PKCS#12 format), enter the Password for Identity, then click Upload.

9. The Client Identity is now added as an Identity. Click the link next to the Identity name to view the
state.

10. In this example, the State is Identity manifest will be synchronized with TIBCO Mashery
SaaS. Mashery Local will synchronize automatically, or you can manually trigger the sync in Cloud
Sync settings.

125

TIBCO Mashery® Local Installation and Configuration Guide for Docker

11. To manually trigger a sync, on the Mashery Cluster Manager tab, click Cloud Sync.

126

TIBCO Mashery® Local Installation and Configuration Guide for Docker

12. In the Developer and API Settings section, for API Settings, click the Sync button to manually
trigger a sync. This will make the certificate and identity metadata available instantly in Mashery
SaaS; otherwise, the sync will occur according to the minutes defined for the Sync Interval setting.

13. On the Trust Management tab, after the certificate becomes available in SaaS, the State changes to
Certificate manifest has been synchronized with TIBCO Mashery SaaS.

14. On the Identity Management tab, after the Identity becomes available in SaaS, the State changes to:
Identity manifest has been synchronized with TIBCO Mashery SaaS.

127

TIBCO Mashery® Local Installation and Configuration Guide for Docker

What to do next

To create an HTTPS Client Profile in TIBCO Mashery SaaS, follow the steps below:

1. Click Manage > HTTPS Client Profiles. The HTTPS Client Profiles window is displayed.

2. Click the New HTTPS Client Profile button. The Create an HTTPS Client Profile window is
displayed.

128

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://docs.mashery.com/GUID-63587B88-0B02-479F-B44C-5A3043CB730C.html

3. On the Create an HTTPS Client Profiles window, enter information in the following fields:

Field Description

Profile name Enter a name for the HTTPS client profile.

Description (Optional) Enter a description for the HTTPS client profile.

Verify Hostname Select one of the following:

● Disabled: Click to not have the hostname verified.

● Enabled: Click to have the hostname verified.

Select an identity Select an identity for the HTTPS client profile.

4. Click Save and Continue.

5. A second Create an HTTPS Client Profile page displays.

129

TIBCO Mashery® Local Installation and Configuration Guide for Docker

6. In the Unselected list of the Trust stores section, click the Trusted CA Certificate you uploaded in
Mashery Cluster Manager to move it to the Current list, then click Save and continue to finish
creating the HTTPS Client Profile. Once the HTTPS Client Profile is created, you can then select the
profile when creating an endpoint on the Endpoint Create: New Endpoint Definition page.

7. To assign the HTTPS Client Profile to an endpoint, click Design > API Definitions > Domains &
Traffic Routing.

8. On the Domains & Traffic Routing page for the existing endpoint of your API definition (or,
Endpoint Create: New Endpoint Definition page for a new endpoint), use the Select HTTP Client
Profile field to select the HTTPS Client Profile you just created, then click Save (or Create). The
endpoint is now associated with the HTTPS Client Profile.

9. Log back into Mashery Cluster Manager, go to the Cloud Sync tab, and click the manual sync
button. This syncs the HTTPS Client Profile and Endpoint configuration updates to Mashery Local,
and the HTTP Client Profile is now in use for the customer.

130

TIBCO Mashery® Local Installation and Configuration Guide for Docker

http://docs.mashery.com/GUID-ED6652D3-3DB0-4E1E-8C47-2F84285E48E3.html

Enabling Java SSL Debug Logging
To enable Java SSL debug logging for Mashery Local, follow the steps below:

Procedure

1. Add the following setting in "/opt/javaproxy/proxy/proxy.ini" in ml-tm container:
-Djavax.net.debug=all

2. Restart javaproxy:
service javaproxy restart

3. Send requests to Mashery Local, watch log in "/var/log/javaproxy-runtime.log". For example:
tail -f /var/log/javaproxy-runtime.log

131

TIBCO Mashery® Local Installation and Configuration Guide for Docker

	Contents
	TIBCO Documentation and Support Services
	Introduction
	Assumptions
	Conventions
	Deployment Topology
	Overview of Installation and Configuration Process

	Mashery Local Failover Strategy Recommendations
	Cluster Management in Mashery Local
	Setting up a New Mashery Local Cluster
	Adding a Slave to a Running Mashery Local Cluster
	Changing the Master in a Mashery Local Cluster

	Installing and Configuring Mashery Local for Docker
	Required Docker Images
	Installing Mashery Local for Docker
	Additional Installation Tips
	Installing with Docker Toolbox
	Working with Amazon EC2 Instances

	Installation Troubleshooting Tips
	Changing the Traffic Manager Port
	How to Enable Additional Features That Require a New Port
	How to Telnet Memcache Port
	How to Troubleshoot 596 Error Caused by Memcache
	How to Change Ulimits for a Container
	How to Use NFS for Verbose Log
	Creating a Larger Memory for Memory Allocation
	How to Monitor the Health of Docker Containers
	How to Increase the CPU Share and Memory of a Container
	How to Do a Clean Restart of a Docker Instance
	How to Register Master or Slave with Commands
	How to Promote a Slave to Master with CLI
	How to Change Master to Slave with CLI

	Managing Docker Containers
	Installing and Running Mashery Local for Docker Using Kubernetes
	Verifying Installation on Kubernetes
	Invoking APIs via AWS ELB
	Customizing for Kubernetes

	Installing and Running Mashery Local for Docker Using GCP
	Invoking APIs via GCP Load Balancer
	Notes for Docker Installations Using GCP

	Configuring the Mashery Local Cluster
	Configuring a Mashery Local Master
	Configuring Slaves to the Local Master

	Configuring the Load Balancer
	Configuring the Instance
	Shutting Down a Master
	Promoting a Slave to Master
	Repointing Other Slaves to a New Master

	HTTPS Client Feature Overview
	HTTPS Server Feature Overview
	Advanced Configuration and Maintenance
	Configuring Quota Notifications
	Configuring OAuth 2.0 API Access
	Making OAuth 2.0 Calls
	Sample Call
	Understanding the OAuth 2.0 API

	Configuring JMX Reporting Access

	Using the Adapter SDK
	Adapter SDK Package
	TIBCO Mashery Domain SDK
	TIBCO Mashery Infrastructure SDK

	SDK Domain Model
	Extended Attributes

	Pre and Post Processor Extension Points
	Listener Pattern
	Event Types and Event
	Event Listener API

	Creating a Custom Authenticator
	Implementing and Registering Processors
	Downloading the SDK
	Implementing the Event Listener
	Implementing Lifecycle Callback Handling
	Adding Libraries to Classpath

	Deploying Processors to Runtime
	Packaging the Custom Processor
	Uploading the Custom Processor
	How Custom Processors are Updated

	Enabling Debugging
	Caching Content

	Terminating a Call During Processing of an Event
	Accessing Package Key EAVs in the Custom Processor

	Configuring Identity Management
	Configuring Trust Management
	Testing the New Instance
	Testing a New Instance
	Tracking the Database Restore and Replication Status

	Troubleshooting
	Verbose Logs
	Using the Verbose Logs Feature
	Working with Verbose Logs
	Mapping Endpoint IDs

	Debugging Utility
	Running the Debug Utility
	Collect Logs
	Test Connectivity to Cloud Sync
	Show Slave Status
	Check IP Address
	Update Record of Master IP Address in Master
	Fix Slave Corruption
	Update Record of Master IP Address in Old Slave Node
	System Manager (Remove Non-functional or Unused Slaves from Master)

	System Level Troubleshooting
	General Troubleshooting

	Appendix
	Setup Examples
	Example Cloud Deployments with CLI
	Example Setup to Run Mashery Local Master and Slave on a Local Machine

	Adapter SDK Usage and Examples
	Adapter SDK Development Environment Example Setup
	Setting up the Adapter SDK for Maven
	Using the Adapter SDK in Mashery Local with Single Processor
	Using the Adapter SDK in Mashery Local with Third-Party Libraries
	Using the Adapter SDK in Mashery Local with Multiple Processors in One Eclipse Project
	Using the Adapter SDK in Mashery Local with Multiple Processors in One Zip Package
	Using the Adapter SDK in Mashery Local with Multiple Processors in One Package and Third Party Libraries

	Setting up HTTPS Server using Self-Signed Certificate
	Setting up HTTPS Server using Customer-Provided Certificate
	Configuring and Using the HTTPS Client Feature without Mutual Authentication
	Configuring and Using the HTTPS Client Feature with Mutual Authentication
	Enabling Java SSL Debug Logging

