
TIBCO Service Gateway™
for Files

SDK User’s Guide
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . xi

Related Documentation . xii
TIBCO Object Service Broker Documentation . xii

Typographical Conventions . xvii

Connecting with TIBCO Resources . xx
How to Join TIBCOmmunity . xx
How to Access All TIBCO Documentation . xx
How to Contact TIBCO Support . xx

Chapter 1 Introduction. .1

Overview . 2
Prerequisites for Use . 2
Outline of This Manual . 2
Installation of the SDK . 3

Support for the SDK. 4

Chapter 2 Configuring the Accesses to Adabas Data .5

Access of Adabas Data . 6

Supported Configurations . 7

Preparations for Installation . 8
Installation of the TIBCO Object Service Broker Base Component . 8
Installation of the Server . 8
Implementation of TIBCO Object Service Broker Security . 8
Adabas Security Considerations . 8
Fail Safe Processing Considerations . 8
Communications Requirements . 9

Startup Process . 10

Startup Parameters . 11
Required and Optional Parameters . 11
Startup Parameters in the EXEC Statement. 12
Startup Parameters in a Data Set. 12

Configuration Parameters . 13
@CONFIGURESERVER Tool . 13
Configuration Parameters for a New Server ID . 13
Customization of the Load Point and the Adabas Interface Module . 15
 TIBCO Service Gateway for Files SDK User’s Guide

iv | Contents
Available Configuration Parameters. 15

Startup Prerequisites . 19
Default Resource Settings (z/OS only) . 19
Customization of the Startup Batch JCL . 20

Startup of the Server. 21
Using the MODIFY Operator Command . 21
Increasing the Number of Server Tasks. 21
Setting the Maximum Number of Tasks . 22

Shutdown of the Server. 23
Shutdown Order. 23
Shutdown Methods . 23
Shutdown of the Native Execution Environment . 25

Connection to a Windows or Solaris Data Object Broker . 26
Configuring the TCP/IP Connection on z/OS. 26
Configuring the TIBCO Object Service Broker TCP/IP Environment. 27
Specifying the Number of Instances Connecting to the Data Object Broker . 28
Specifying the Server Parameter . 28

Chapter 3 Operational Requirements for Adabas Access . 29

Extracting Adabas Table Information . 30
Prerequisites . 30
Extraction of Table Information . 30

Binding TIBCO Object Service Broker ADA Table Definitions. 34

Supplying the Startup Parameters . 35
Available Parameters . 35
Estimation of the CTABLESIZE Parameter . 37

Dynamically Changing the Parameters . 38
Parameters That Can Be Overridden at Runtime . 38
Examples . 38

Adding Threads. 39

Implementing Fail Safe Processing. 40
Transaction Processing . 40
In-doubt Transactions. 40
Definition of a Transaction Database . 41

Understanding Other Operational Procedures . 42
Distributed Access . 42
Status Display . 42
Debugging . 43
Problem Reporting. 44
TIBCO Service Gateway for Files SDK User’s Guide

Contents | v
Chapter 4 Defining the Accesses to Adabas. .45

Overview . 46

Task A: Extract the Adabas File Definition . 47
Understanding the Prerequisites . 47
Extracting Table Information . 47

Task B: Invoke the Table Definer . 51
Accessing Existing Tables . 51
Defining a New Table . 52
Using Table Definer PF Keys . 53

Task C: Specify Header Information . 55
Representing Adabas Data in TIBCO Object Service Broker Tables . 55
Specifying ADA Table Header Fields . 56
Specifying Optional Location Parameter Information . 58
Specifying Optional Event Rule Information . 59

Task D: Define Fields for the ADA Table . 61
Fields in the External Field Definition Area. 61
Fields in the Metadata Definition Area . 62

Task E: Select Extracted Fields . 64

Task F: Map Adabas External Data to TIBCO Object Service Broker Types. 66
Understanding the Default Mapping of Adabas External Data Types. 66
Changing the Defaults . 66
Requesting Adabas Data Conversion. 67

Task G: Document ADA Tables . 68
Defining Field Values . 68
Using the PF Keys . 69

Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data.71

Processing the Data . 72
Transaction Process . 72
Restrictions on Adabas Processing . 73

Using the Table Browser and Table Editor . 74

Using Rules . 75
Transaction Streams . 75
Table Access Dependencies. 75
Retrieval Processing. 75
Replace (Update) Processing. 77
Delete Processing . 77
Insert Processing . 77

Taking Advantage of Adabas Features . 79
Understanding Descriptor Indexes . 79
Defining Effective ADA Tables . 82
 TIBCO Service Gateway for Files SDK User’s Guide

vi | Contents
Coding Efficient Adabas Accesses . 83
Preserving Data Sequence in FORALL Statements . 83
Using LIKE and NOT EQUAL with Other Operators . 84
Reducing CPU Consumption . 84
Understanding Adabas Direct Calls Generated from TIBCO Object Service Broker. 85

Handling of Errors . 86
Synchronization and Recovery . 86
Data Integrity . 86
Exceptions . 87
@SERVERERROR . 88
@SERVERERRORADA . 89

Chapter 6 Configuring Accesses to CA Datacom Data . 91

Accessing CA Datacom Data . 92

Supported Configurations . 93

Preparations for Installation . 94
Installation of the TIBCO Object Service Broker Base Component . 94
Installation of the Server . 94
Implementation of TIBCO Object Service Broker Security . 94
CA Datacom Security Considerations . 94
Fail Safe Processing Considerations . 94
Communications Requirements. 95

Prerequisites for the CA Datacom Environment . 96
Generating the CA Datacom User Requirements Table . 96
Populating Data Dictionary Tables . 96
Defining the CA Datacom Environment . 97

Startup Parameters . 98
Startup Parameters in the EXEC Statement . 98
Startup Parameters in a Data Set . 98

Startup Prerequisites . 99
Default Resource Settings (z/OS only) . 99
Customization of the Startup Batch JCL . 100

Startup of the Server. 101
Dynamic Startup . 101
Maximum Number of Server Instances . 102

Shutdown of the Server. 103
Shutdown of a Single Server . 103
Shutdown of the Native Execution Environment . 103
Closing and Opening of URTs . 104
Shutdown of a Group of Instances of the Server . 105

Connection to a Windows or Solaris Data Object Broker . 106
Sample Configuration . 106
TIBCO Service Gateway for Files SDK User’s Guide

Contents | vii
Configuration of the TCP/IP Connection on z/OS. 107
Configuration of the TIBCO Object Service Broker TCP/IP Environment. 107
Number of Server Instances Connecting to the Data Object Broker . 108
Server Parameter . 108

Chapter 7 Operational Requirements for CA Datacom Access. .109

Extracting CA Datacom Table Information . 110
Prerequisites. 110
Extraction of Table Information . 111
Extract Report. 113

Binding DAT Table Definitions . 114

Understanding Space Requirements . 115

Implementing Security . 116

Adding URT Names . 117
Populating the URT Table . 117
Determining the URT to Use. 117

Specifying the Startup Parameters . 119
Available Parameters . 119
Estimating the CTABLESIZE Parameter. 121

Dynamically Changing the Parameters . 123
Table Type Attributes . 123
Examples Using SETXPARM and RESETXPARM. 123

Adding Server Instances . 125

Implementing Fail Safe Processing . 126
Transaction Processing. 126
Implementation Procedure . 126

Performing Other Operational Procedures. 128
Using Distributed Data with the Server. 128
Displaying the Status of the Server . 128
Debugging Rules and Applications. 129
Debugging Server Problems. 130
Reporting Problems . 131

Chapter 8 Defining the Accesses to CA Datacom .133

Overview . 134

Task A: Define a DAT Table . 135
Invoking the Table Definer . 135
Accessing Existing Tables . 135
Defining a New Table . 135
Using the DATACOM Tool . 138

Task B: Define Fields for the DAT Table . 140
 TIBCO Service Gateway for Files SDK User’s Guide

viii | Contents
Defining Fields . 140
Editing Extensions Screen Fields . 140
Using Extensions Screen PF Keys . 143
Selecting Fields . 143
Translating Data Types. 144
Translating Nulls. 145
Changing the Defaults . 146

Task C: Add Control Information . 147
Core Screen Field Entries . 147
Parameters . 148
Event Rules . 149
Ordering Information . 150
Core Screen PF Keys . 151

Task D: Document the DAT Table . 152
Field Values . 152
PF Keys . 153

Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data. 155

Processing the Data . 156

Using the Table Browser . 157
Exceptions . 157
Insertion of Duplicate Primary Keys. 158

Using Rules. 159
Transaction Streams . 159
Transaction Limitations . 159
Retrieval Processing . 159
Replace (Update) or Delete Processing . 160
Insert Processing . 160

Handling of Errors in the Server . 162
Synchronization and Recovery . 162
Updates of TIBCO Object Service Broker and CA Datacom Data . 162
System Exceptions . 163
Error Handling . 164

Chapter 10 Accessing and Processing VSAM LDS Data . 167

Setup of Accesses to VSAM LDS Data. 168
Installation of the TIBCO Object Service Broker Base Component . 168
Installation of the SDK . 168
Required Tables . 168
Definition of VSAM LDS Data . 168
Definition of Associated MAP Table . 170

Operations for Processing Data . 171
TIBCO Service Gateway for Files SDK User’s Guide

Contents | ix
Supported Operations . 171
Insert Processing . 171

VSAM LDS Samples . 172
Creation of Initial Data Set . 172
Reading of VSAM LDS data . 174
Replacement of VSAM LDS Data. 175

Index .177
 TIBCO Service Gateway for Files SDK User’s Guide

x | Contents
TIBCO Service Gateway for Files SDK User’s Guide

| xi
Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual describes the SDK for the Service Gateway for Files for building
applications to access Adabas, CA Datacom, and VSAM LDS data.

Topics

• Related Documentation, page xii

• Typographical Conventions, page xvii

• Connecting with TIBCO Resources, page xx
 TIBCO Service Gateway for Files SDK User’s Guide

xii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
TIBCO Service Gateway for Files SDK User’s Guide

Preface | xiii
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
 TIBCO Service Gateway for Files SDK User’s Guide

xiv | Related Documentation
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
TIBCO Service Gateway for Files SDK User’s Guide

Preface | xv
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
 TIBCO Service Gateway for Files SDK User’s Guide

xvi | Related Documentation
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
TIBCO Service Gateway for Files SDK User’s Guide

Preface | xvii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

OSB_HOME

By default, all TIBCO products are installed into a folder referenced in the
documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C:\tibco\OSB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/OS, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName
 TIBCO Service Gateway for Files SDK User’s Guide

xviii | Typographical Conventions
Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
TIBCO Service Gateway for Files SDK User’s Guide

Preface | xix
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
 TIBCO Service Gateway for Files SDK User’s Guide

xx | Connecting with TIBCO Resources
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO Service Gateway for Files SDK User’s Guide

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

| 1
Chapter 1 Introduction

This chapter introduces the SDK for Service Gateway for Files.

Topics

• Overview, page 2

• Support for the SDK, page 4
 TIBCO Service Gateway for Files SDK User’s Guide

2 | Chapter 1 Introduction
Overview

The SDK for Service Gateway for Files is a software development kit that you can
use to build applications to query and update Adabas®, CA Datacom®, and
VSAM LDS data from within TIBCO Object Service Broker. It ensures that the
data is presented in a manner consistent with TIBCO Object Service Broker
behavior.

The SDK is included with the Service Gateway for Files, which is a separately
licensed add-on for TIBCO Object Service Broker.

Prerequisites for Use
Use of the SDK for the purposes of accessing Adabas data assumes you are
familiar with TIBCO Object Service Broker application development principles
and administration, and Adabas from Software AG.

Use of the SDK for the purposes of accessing CA Datacom data assumes you are
familiar with TIBCO Object Service Broker application development principles
and administration, and CA Datacom from CA.

Use of the SDK for the purposes of accessing VSAM LDS data assumes you are
familiar with TIBCO Object Service Broker application development principles
and administration, the Service Gateway for Files, other VSAM accesses, and
VSAM LDS.

See Also TIBCO Object Service Broker Managing External Data for information about the
Service Gateway for Files and TIBCO Object Service Broker accesses to other
forms of VSAM data.

Outline of This Manual
Setup, operations, and processing of the Adabas accesses are described in
Chapters 2-5 of this manual.

Setup, operations, and processing of the CA Datacom accesses are described in
Chapters 6-9 of this manual.

Setup and processing of the VSAM LDS accesses are described in Chapter 10 of
this manual.
TIBCO Service Gateway for Files SDK User’s Guide

Overview | 3
Installation of the SDK
Installation instructions for the Service Gateway for Files, which includes the
SDK, are in the TIBCO Object Service Broker Managing External Data manual.
 TIBCO Service Gateway for Files SDK User’s Guide

4 | Chapter 1 Introduction
Support for the SDK

TIBCO will handle SDK associated service requests submitted via the normal
TIBCO Support mechanism. No fixes will be provided between releases. See How
to Contact TIBCO Support on page xx for information about contacting Support.
TIBCO does not support the applications you build using the SDK.
TIBCO Service Gateway for Files SDK User’s Guide

| 5
Chapter 2 Configuring the Accesses to Adabas Data

This chapter provides information on configuring the accesses to Adabas data,
starting and stopping the server, and how to connect the server to a Data Object
Broker that resides on Windows or Solaris.

Topics

• Access of Adabas Data, page 6

• Startup Parameters, page 11

• Configuration Parameters, page 13

• Startup Prerequisites, page 19

• Startup of the Server, page 21

• Shutdown of the Server, page 23

• Connection to a Windows or Solaris Data Object Broker, page 26
 TIBCO Service Gateway for Files SDK User’s Guide

6 | Chapter 2 Configuring the Accesses to Adabas Data
Access of Adabas Data

Access to Adabas data is only supported via the Service Gateway for Files SDK.
Once the SDK has been installed, you need to define the appropriate tables to
facilitate the manipulation of the Adabas data, then write the rules or use
workbench tools to process the data. Your applications used to access the Adabas
data are comprised of table definitions and rules.

Once your Adabas server environment is set up, as described in the following
sections, you access Adabas data by:

1. Extracting the definition of the Adabas table to the TIBCO Object Service
Broker environment (optional).

2. Defining a table of type ADA based on an extracted Adabas table definition or
by manually entering known field definitions.

3. Using TIBCO Object Service Broker table access statements or workbench
tools to access the Adabas data.

The access uses the Adabas ADALNK call interface to connect to the Adabas
environment. This call interface is supplied with Adabas.

You use the components below to access Adabas data from TIBCO Object Service
Broker. Once your data is defined, you build your applications to process the data
using tools supplied with TIBCO Object Service Broker and its rules language.

Component Function

Table Definer Define TIBCO Object Service Broker ADA tables.

Server Access Adabas data when TIBCO Object Service Broker
data access is requested for an ADA table.

Extract utility Decode Adabas file definitions and provide Adabas fields
to assist in the definition of an ADA table (optional).

ADALNK call
interface

Connect to the Adabas environment.
TIBCO Service Gateway for Files SDK User’s Guide

Supported Configurations | 7
Supported Configurations

The Data Object Broker and the server can be configured to reside on the same, or
different domains and operating systems (z/OS, Windows or Solaris). The server
must be in the same domain as the Adabas database system. Once your
environment is set up, you can access Adabas data while having equal access to
TDS data, which is TIBCO Object Service Broker's native data type.

Refer to Connection to a Windows or Solaris Data Object Broker on page 26 for
information about configuring on different operating systems.

TIBCO Object Service Broker

Execution Environment

ADABAS
data

Native
Execution
Environment

ADABAS
ADALNK
Function

Server
#n

Server
#2#1

Server
address space

Data Object BrokerTDS data

Server
 TIBCO Service Gateway for Files SDK User’s Guide

8 | Chapter 2 Configuring the Accesses to Adabas Data
Preparations for Installation

This section discusses the preliminary steps for installation.

Installation of the TIBCO Object Service Broker Base Component
You must install the TIBCO Object Service Broker base component before
configuring the server. The base component can reside on z/OS, Windows or
Solaris. Installation instructions for all platforms are located in TIBCO Object
Service Broker Installation and Operations.

Installation of the Server
Installation instructions for the Service Gateway for Files, which includes the
SDK, are located in TIBCO Object Service Broker Managing External Data. The
Adabas server is installed as part of the SDK.

Implementation of TIBCO Object Service Broker Security
You can implement security for the server using standard TIBCO Object Service
Broker security:

• To restrict the ability to define ADA tables from within TIBCO Object Service
Broker, restrict read and update access to the @ADAFIELDS table.

• To restrict access to TIBCO Object Service Broker ADA tables after defining
them, proceed with security as for any other TIBCO Object Service Broker
table.

Adabas Security Considerations
Because Adabas does not provide an interface in ADALNK to pass security
information to Adabas, the server threads get their security permissions and user
identification from the server address space. It is possible, however, to pass some
information to Adabas through the ADALNK user exits. For information and
assistance, contact TIBCO Support.

Fail Safe Processing Considerations
To guarantee consistency when updating both TIBCO Object Service Broker TDS
and Adabas data from a single instance of the server in a single transaction, you
must use Fail Safe level-1 processing.
TIBCO Service Gateway for Files SDK User’s Guide

Preparations for Installation | 9
For more information, refer to Implementing Fail Safe Processing on page 40.

Communications Requirements
If all components reside in the same domain and in authorized libraries, Cross
Memory Services is used for communications. In all other cases, TCP/IP is used
for communications.

See Also TIBCO Object Service Broker for z/OS Installation and Operations for detailed
information about TIBCO Object Service Broker communications.

TIBCO Object Service Broker Messages with Identifiers for information on messages
produced by the server.

TIBCO Object Service Broker Security for information on security for tables.
 TIBCO Service Gateway for Files SDK User’s Guide

10 | Chapter 2 Configuring the Accesses to Adabas Data
Startup Process

The TIBCO Object Service Broker Execution Environment receives several
parameters at startup. The parameters are described in Startup Parameters on
page 11. The SERVERS parameter instructs this Execution Environment to attach
a specified number of instances of the server used to access Adabas, thus
accommodating multiple servers in a single address space.

Each server connects to Adabas with a unique Adabas session identifier. The
Adabas session is disconnected from Adabas only when the thread is
disconnected or the address space is terminated.

At Transaction Start

At the beginning of a TIBCO Object Service Broker transaction, the first request
for data from Adabas results in an Adabas OP (Open) command being sent to
Adabas. A TIBCO Object Service Broker transaction running in browse mode
causes the file to be opened with the ACCess argument. Transactions running in
update mode are opened with the UPDate argument.

At Transaction End

When the transaction ends, the Adabas session terminates. If the transaction
completes successfully, only an Adabas CL (Close) command is issued. This close
command implies an Adabas ET (End transaction), which is equivalent to a
TIBCO Object Service Broker commit point. However, if the transaction fails, an
Adabas BT (Backout Transaction) is sent before the CL (Close) command.

See Also TIBCO Object Service Broker External Environments for z/OS about Execution
Environments.
TIBCO Service Gateway for Files SDK User’s Guide

Startup Parameters | 11
Startup Parameters

This section describes the startup parameters.

Required and Optional Parameters
The table below lists all server parameters with their default values (if any). Those
you must set at installation time are shown as Required=Y, and those you can add
or modify at a later time as Required=N. All these parameters are described in
Supplying the Startup Parameters on page 35.

Specify the server startup parameters on the EXEC statement in the startup JCL,
in a data set, or both.

Parameter Default Required

IDPREFIX ADA Y

MDL OSB9999 Y

SERVERID none Y

SERVERTYPE ADA Y

TDS none Y

FSLEVEL 0 N

FSTABLENAME @ADAFSTRXDB N

SERVERS 1 N

If you specify parameters in both the EXEC statement and a data set, EXEC
statement parameters override data set parameters.
 TIBCO Service Gateway for Files SDK User’s Guide

12 | Chapter 2 Configuring the Accesses to Adabas Data
Startup Parameters in the EXEC Statement
Include parameters in any order, one per line, ending with a blank or a comma
(up to 100 bytes). The example below shows parameters specified on the EXEC
statement in the startup JCL.

//ADAGTW EXEC PGM=S6BDR000,
// REGION=4096K,
// PARM=(‘TDS=TDS’,
// ’SERVERS=6’,
// ’MDL=MDL’,
// ’SERVERTYPE=ADA’,
// ’SERVERID=HRNADA’,
// ’FSLEVEL=1’,
// ’FSTABLENAME=@ADAFSTRXDB’,
// ’IDPREFIX=ADA’)

Startup Parameters in a Data Set
Include parameters in any order, one per record, beginning in column one, and
ending with a blank or a comma. An asterisk (*) in column one indicates a
comment record. The data set must be defined as follows:

• DDname HRNIN

• Allocated FB LRECL=80

The example below shows parameters specified in a data set or inline JCL.

//HRNIN DD *
SERVERS=3
SERVERTYPE=ADA
SERVERID=HRNADA
FSLEVEL=0
FSTABLENAME=@ADAFSTRXDB
IDPREFIX=HRNDC
TIBCO Service Gateway for Files SDK User’s Guide

Configuration Parameters | 13
Configuration Parameters

This section describes the configuration parameters.

@CONFIGURESERVER Tool
Use the @CONFIGURESERVER tool to set and modify the configuration
parameters. Execute the following from the workbench:

EX @CONFIGURESERVER(ADA)

A screen similar to the one shown below appears.:

Command ==> Scroll P

NUMBER SERVERTYPE SERVERID
----------- ---------- --------
_ 1 ADA ANDY
_ 2 ADA EXTRACT
_ 3 ADA IMZADA
_ 4 ADA SUB

 A-ADD D-DELETE S-SELECT
 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL

Configuration Parameters for a New Server ID
To set the configuration parameters for a new server ID, complete the following
steps:

1. Type A beside an existing entry on the screen and use Enter.

A screen similar to the one shown below appears, prompting you to enter a
value into the SERVERTYPE and SERVERID fields.
 TIBCO Service Gateway for Files SDK User’s Guide

14 | Chapter 2 Configuring the Accesses to Adabas Data
To complete this command:
 NUMBER SERVERTYPE SERVERID
 ----------- ---------- --------
 A 1 ADA ADA001
 Enter parameter(s):

 SERVERTYPE ===> ADA

 SERVERID ===> EXTRACT

 PFKEYS: ENTER=PROCESS 3=PROCESS 12=CANCEL

2. Enter the SERVERTYPE ADA.

3. Type the server ID for which you want to set the configuration parameters
and press Enter. A default configuration settings screen appears similar to the
one shown below.

 External Server Configuration Utility
 COMMAND ==>
 Server Type: ADA Server ID: EXTRACT
 Recommended/
 Name Value Allowed Values
 ---------------- -- -------------------
 DEBUGLEVEL 0 '0...3'
 DUMP N Y, N
 DUMPLIMIT 512 '0...2147483647'
 EXTERNALROUTINE ADALNK
 KEEPLOG N Y, N
 LOGMEDIA TBL TBL, SCR, PRT
 PROGRAMLIBRARY EXL EXL, SMG
 RUNAWAY 0 '0...2147483647'
 SERVERSTATISTICS N Y, N
 TRACE N Y, N

 FCNKEYS: ENTER=VALIDATE 3=SAVE & EXIT 12=EXIT
TIBCO Service Gateway for Files SDK User’s Guide

Configuration Parameters | 15
4. Modify any default settings for the parameters in the Value field.

Valid values are shown in the Recommended/Allowed Values field. Refer to
Available Configuration Parameters on page 15 for parameter descriptions.

5. Press PF3 to save the settings and return to the workbench.

Customization of the Load Point and the Adabas Interface Module
Use the @CONFIGURESERVER tool for customization according to the server ID.
To modify the load point and the name of the Adabas interface module, add an
entry for a server type of ADA and a server ID that identifies the server to be
customized, and then set the appropriate values for the module.

For example, you can customize the Adabas extract utility by using
@CONFIGURESERVER to add an entry for a server type of ADA and a server ID
of EXTRACT, and then set the values appropriate for the interface module to be
used to issue Adabas LF commands.

Refer to Configuration Parameters on page 13 for more information on using the
@CONFIGURESERVER tool.

Available Configuration Parameters
The following table describes the configuration parameters that are available.

If the server you are modifying is active, it must be recycled for the new values to
be applied. Refer to TIBCO Object Service Broker for z/OS Installing and Operating
for instructions on recycling.

DEBUGLEVEL Used during problem analysis to determine which portion of code is in
error. Valid values are listed below. The default is 0.

0 – Used during normal processing.

1 – Produces TRACE and/or DUMP information if they are selected.
DUMP information shows the Adabas control blocks after the call to
ADALNK.

2 – Produces TRACE and/or DUMP information if they are selected.
DUMP information shows the Adabas control blocks before and after the
call to ADALNK.

3 – Produces TRACE and/or DUMP information if they are selected.
DUMP information shows the Adabas control blocks before and after the
call to ADALNK; ESTAE and ADALNK are not called.
 TIBCO Service Gateway for Files SDK User’s Guide

16 | Chapter 2 Configuring the Accesses to Adabas Data
DUMP Specifies whether Adabas messages and control blocks should be logged
(in the location specified in the LOGMEDIA configuration parameter).
Valid values are listed below. The default is N.

Y – Both TIBCO Object Service Broker and Adabas messages and control
blocks are logged.

N – No logging is in effect.

DUMPLIMIT Specifies the amount (in bytes) of TIBCO Object Service Broker and
Adabas messages and control blocks that can be logged. The default is
512 bytes. Valid values are between 0 and 2147483647 bytes.

EXTERNALROUTINE Specifies the name of the load module that provides the ADALNK
functionality. The default is ADALNK.

KEEPLOG Specifies whether to keep the previous server login startup. This applies
only if the LOGMEDIA configuration parameter is set to TBL. Valid
values are listed below. The default is N.

Y – The log that matches the current server type, server ID, and server
user ID is deleted on startup.

N – The log that matches the current server type, server ID, and server
user ID is kept on startup. Subsequent logs are appended.
TIBCO Service Gateway for Files SDK User’s Guide

Configuration Parameters | 17
LOGMEDIA Specifies where to store DUMP, TRACE, and error message information.
Valid values are listed below. The default is TBL.

PRT – DUMP, TRACE, and error message information is sent to the
default print file for the TIBCO Object Service Broker user ID. Set the
desired print destination with the UP user profile option on the
workbench.

SCR – DUMP, TRACE, and error message information appears in the
session.log file. This can be viewed only after the server is shut down.

TBL – DUMP, TRACE, and error message information is inserted into the
@SERVERLOG TDS table, which is parameterized by the servertype,
server ID, and server user ID. You can browse this table while the server
is running.

• The server type is always ADA for Adabas data, and is specified by
the SERVERTYPE startup parameter.

• The server ID is specified by the SERVERID startup parameter.

• The server user ID is the thread ID used by the transaction specified
by the IDPREFIX startup parameter. It is generated and consists of
the IDPREFIX concatenated with four characters derived from the
server number.

The Data Object Broker log displays the servertype (ADA), server ID
(ADANT), and server user ID (ADAB0001) in the S6BUA023I
message as follows:

06/01/08 15:07:55 3402 S6BUA023I

ADA server ADANT(ADAB0001) logged on from’@SOY5C01’

PROGRAMLIBRARY Specifies where the routine named by EXTERNALROUTINE is loaded
from. Valid values are listed below. The default is EXL.

EXL – DD statement HRNEXTR

SMG – Standard z/OS load library search path conventions STEPLIB,
JOBLIB, LINKLIB, and LPA
 TIBCO Service Gateway for Files SDK User’s Guide

18 | Chapter 2 Configuring the Accesses to Adabas Data
RUNAWAY Specifies the maximum number of calls to Adabas that can be issued to
satisfy one TIBCO Object Service Broker request. Valid values are
between 0 and 2147483647 bytes. The default is 0.

Use this feature in development to test access statements in the
application code. When the limit is exceeded, the request is terminated
with a SERVERERROR exception passing back an appropriate error
message, and a message is written to the @SERVERLOG table. A value of
0 disables this parameter.

SERVERSTATISTICS Controls how the server transaction is managed. Valid values are listed
below. The default is N.
Y – Transactions are recycled at the end of the TIBCO Object Service
Broker transaction.
N – An endless TIBCO Object Service Broker transaction runs.

For best performance, do not change the default of N, since this
transaction is independent of the client transaction.

TRACE Specifies whether TIBCO Object Service Broker requests and Adabas
statements should be logged (in the location specified in the LOGMEDIA
configuration parameter). Valid values are listed below. The default is N.
Y – Both TIBCO Object Service Broker requests and Adabas statements
are logged.
N – No logging is in effect.
TIBCO Service Gateway for Files SDK User’s Guide

Startup Prerequisites | 19
Startup Prerequisites

Before you can start the server, you must do either of the following:

• If the Data Object Broker is on z/OS and Dynamic Resource Creation is not
permitted (Data Object Broker Parameter DYNAMICRESOURCE = N), the
Gateway must be identified to the Data Object Broker in a permanent
resource. To do this, define Gateway resources to the Data Object Broker’s
resource management repository file.

If the Data Object Broker is on z/OS and Dynamic Resource Creation is
permitted (Data Object Broker Parameter DYNAMICRESOURCE = Y) and there is
no matching permanent resource a dynamic resource entry matching, the
Gateways requirements will be created when the Gateway connects to the
Data Object Broker. If there is a permanent entry for the Gateway it must
match the requirements for the Gateway. It is recommended that all
permanent entries for File, ADA and DAT Gateways are deleted from the
repository when dynamic resource creation is permitted.

• If the Data Object Broker is on Windows or Solaris, set up National Language
Support, if necessary. Refer to TIBCO Object Service Broker National Language
Support for setup and configuration information.

Default Resource Settings (z/OS only)
The table below lists the base defaults you must specify in the Resource Detail
(PF2) and the Resource Schedule (PF10) screens through the Resource
Management facility available from the Administration menu. Resource
Management is option 3 on the Administration menu. This option brings you to
the Resource Type list, on which you must supply a TYPE of ADA and a GROUP
corresponding to the server ID of your Adabas server.

If the FSLEVEL startup parameter equals 1, the COMMIT LEVEL value on the
Resource Detail screen must also be set to 1.

Resource Details
Resource
Schedule

Intermediate
Rollbk

Early
Release

Last User
Reuse

Commit
Level

Online
Only

N Y N 0 N
 TIBCO Service Gateway for Files SDK User’s Guide

20 | Chapter 2 Configuring the Accesses to Adabas Data
Refer to Supplying the Startup Parameters on page 35, for the description of the
FSLEVEL parameter.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on defining and managing TIBCO Object Service Broker resources using the
Resource Management option, and for information about the Administration
menu.

Customization of the Startup Batch JCL
Before starting the server, use the OSEMOD macro to customize the JCL for your
installation. Sample batch JCL is shipped as member S6BSJCL in the JCLSAMP
data set. Customize it as required.

By default, TIBCO Object Service Broker loads the Adabas interface module in the
HRNEXTR DD statement. This can be changed to load from the standard load
library search path STEPLIB, JOBLIB, LINKLIB, and LPA (Link Pack Area) using
the @CONFIGURESERVER tool. If the Adabas load library is part of the STEPLIB,
both the Adabas and TIBCO Object Service Broker load libraries should be
authorized.

Refer to Communications Requirements on page 9 for more information about the
OSEMOD macro. Refer to Configuration Parameters on page 13 for information
about @CONFIGURESERVER.
TIBCO Service Gateway for Files SDK User’s Guide

Startup of the Server | 21
Startup of the Server

To start the server, bring up the Native Execution Environment using the startup
parameters described in Supplying the Startup Parameters on page 35.

When you start the server, you are connected to both Adabas and TIBCO Object
Service Broker. When the Execution Environment requests an access to Adabas
data, a thread to Adabas is established.

Using the MODIFY Operator Command
When you have an instance running, use the MODIFY operator command from the
z/OS operator console to dynamically:

• Increase the number of server tasks.

• Set the maximum number of server tasks.

Increasing the Number of Server Tasks
If the number of server tasks is insufficient to process transaction requests,
unsatisfied requests raise a SERVERBUSY exception and are queued until a free
server is available. You can dynamically increase the number of tasks without
restarting the Execution Environment by using a MODIFY operator command of
the form:

MODIFY ee_jobname,STARTNUMSERVER=nn,TYPE=ADA

where

Because a separate Execution Environment is not required for each server, you
can combine the parameters for the server with other parameters.

ee_jobname Name of the batch job under which the Execution Environment
runs.

nn The number of new server tasks to start. This number can be from
1 to a value less than or equal to the value set in the Maximum
Connection Count field in your Network Configuration.

ADA The type of server to start.
 TIBCO Service Gateway for Files SDK User’s Guide

22 | Chapter 2 Configuring the Accesses to Adabas Data
Setting the Maximum Number of Tasks
Use the following MODIFY operator command to dynamically set the maximum
number of tasks available in a particular Execution Environment:

MODIFY ee_jobname,SETNUMSERVER=nn,TYPE=ADA

where

ee_jobname Name of the batch job under which the Execution Environment
runs.

nn The maximum number of tasks available for a particular Execution
Environment. This number can be from 1 to a value less than or
equal to the value set in the Maximum Connection Count field in
your Network Configuration.

ADA The type of server tasks to be made available.
TIBCO Service Gateway for Files SDK User’s Guide

Shutdown of the Server | 23
Shutdown of the Server

This section describes how to shut down the server.

Shutdown Order
Do a shutdown in the following order:

1. Shut down the server.

2. Shut down the Native Execution Environment.

For more information on shutting down the Native Execution Environment,
refer to Shutdown of the Native Execution Environment on page 25.

Shutdown Methods
Shut down the server in one of two ways:

• Use the MODIFY operator command from the z/OS operator console to shut
down a group of instances of the server.

• Use the RESOURCE MANAGEMENT option from the Administration menu.

Using the MODIFY Operator Command

The format of the MODIFY command is:

MODIFY dob_jobname,STOPSERVER=serveruserid

where

Use one the MODIFY operator command to do the following:

• Shut down all instances as follows:

dob_jobname The name of the batch job under which the Data Object Broker
runs.

 serveruserid Unique name of the server. This name is created by appending
a three-digit number to the IDPREFIX parameter specified in
the server startup JCL. The default is ADA. To see the unique
name assigned to existing instances of the server, select the
RESOURCE MANAGEMENT option from the Administration
menu.
 TIBCO Service Gateway for Files SDK User’s Guide

24 | Chapter 2 Configuring the Accesses to Adabas Data
MODIFY dob_jobname,STOPSERVER=ALLADA

• Shut down all instances of the server with a common IDPREFIX as follows:

MODIFY dob_jobname,STOPSERVER=idprefix

• Shut down all instances with a common server ID as follows:

MODIFY dob_jobname,STOPSERVER=SRVIDserverid

• Dynamically shut down one or more of the tasks without shutting down the
Execution Environment.

MODIFY ee_jobname,STOPNUMSERVER=nn,TYPE=ADA

where

Using the RESOURCE MANAGEMENT Option

Use the RESOURCE MANAGEMENT option from the Administration menu to
shut down one or more servers.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on defining and managing TIBCO Object Service Broker resources.

dob_jobname The name of the batch job under which the Data Object Broker
runs.

ee_jobname The name of the batch job under which the Execution
Environment runs.

idprefix The value of the IDPREFIX startup parameter. Used to
construct a unique name for each server. Must be a valid
TIBCO Object Service Broker user ID.

serverid The value of the SERVERID startup parameter. Identifies a
pool of servers with common characteristics.

nn The number of new tasks to stop. This number can be from 1 to
a value less than or equal to the value set in the Maximum
Connection Count field in your Network Configuration. For
more, refer to TIBCO Object Service Broker for z/OS Installing
and Operating.

ADA The type of server to stop.
TIBCO Service Gateway for Files SDK User’s Guide

Shutdown of the Server | 25
Shutdown of the Native Execution Environment
To shut down a Native Execution Environment, ensure that all users are logged
out and then issue one of the following commands from the z/OS operator
console:

• P ee_jobname

• MODIFY ee_jobname,SHUTDOWN

If you do not want to stop all the threads or have all users log out, use the
following command:

• MODIFY ee_jobname,SHUTIMMED

Use these values as follows:

P z/OS operator command (Stop).

MODIFY z/OS operator command (can be abbreviated to F).

ee_jobname The name of the batch job or started task used to start the Native
Execution Environment.
 TIBCO Service Gateway for Files SDK User’s Guide

26 | Chapter 2 Configuring the Accesses to Adabas Data
Connection to a Windows or Solaris Data Object Broker

You can configure the Data Object Broker and the server to reside on different
domains and operating systems (z/OS, Windows, or Solaris). The server must be
in the same domain as the Adabas database system.

The following configuration steps are required to access a Data Object Broker
from a different operating environment than your server:

• Configure the TCP/IP connection on the z/OS system where your server and
Adabas database reside.

• Configure the TCP/IP connection on the machine where your TIBCO Object
Service Broker resides.

• Specify the number of instances of the server that can connect to the Data
Object Broker.

• Specify the appropriate server parameters.

The following diagram shows a sample configuration.

Configuring the TCP/IP Connection on z/OS
Prepare the TIBCO Object Service Broker relay file – RELAYCFG member in the
CNTL data set. This file associates the TIBCO Object Service Broker
communications identifier with the TCP/IP application addressing information.
TIBCO Service Gateway for Files SDK User’s Guide

Connection to a Windows or Solaris Data Object Broker | 27
Following is a sample relay file assigned to DDNAME S6BRELAY:

<relay xmlns="http://www.tibco.com/OSB/relayparms.xsd">
 <tcpipparms tcbnum="3" maxtcbsockets="50" />
 <directory>
 <node name="OST01">
 <tcpip host="123.23.123.9" port="12000" />
 </node>
 </directory>
</relay>

See Also TIBCO Object Service Broker for z/OS Installing and Operating for detailed
information about preparing the TIBCO Object Service Broker relay file.

TIBCO Object Service Broker Parameters for details about the parameters and how
to specify them.

Configuring the TIBCO Object Service Broker TCP/IP Environment
Add the following parameters for the TCP/IP connection to the Data Object
Broker directory file, huron.dir:

The element and attribute names in the relay file are case sensitive.

name This must be the same value as the node name set in the relay
file described in Configuring the TCP/IP Connection on z/OS
on page 26.

host The name of the host machine where the TIBCO Object Service
Broker monitor process listens for connections.

port The number of the TIBCO Object Service Broker monitor
socket port.

ipckey The value of the IPC key.
 TIBCO Service Gateway for Files SDK User’s Guide

28 | Chapter 2 Configuring the Accesses to Adabas Data
Specifying the Number of Instances Connecting to the Data Object Broker
Specify the following value for the MAXDBMS parameter in the crparm file for
your Data Object Broker.

Specifying the Server Parameter
Specify the following value for the TDS=parameter HRNIN DD statement for
startup. Refer to Startup Parameters on page 11 for more details

MAXDBMS This must be equal to or greater than the value specified in the
SERVERS=parameter HRNIN DD statement for startup.
TIBCO Service Gateway for Files SDK User’s Guide

| 29
Chapter 3 Operational Requirements for Adabas
Access

This chapter details the operational requirements for accessing the Adabas data
from TIBCO Object Service Broker.

Topics

• Extracting Adabas Table Information, page 30

• Binding TIBCO Object Service Broker ADA Table Definitions, page 34

• Supplying the Startup Parameters, page 35

• Dynamically Changing the Parameters, page 38

• Adding Threads, page 39

• Implementing Fail Safe Processing, page 40

• Understanding Other Operational Procedures, page 42
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Extracting Adabas Table Information

You must define a table of type ADA from within TIBCO Object Service Broker to
access the Adabas data. To assist in the definition of ADA tables, Adabas file
definitions can be extracted so that their table information is available for the
definition process. The extracted Adabas file definition information is stored in a
TIBCO Object Service Broker TDS table. Because the extracted data is static, you
must re-extract the table information whenever changes are made to new or
existing Adabas table definitions.

Prerequisites
Before extracting Adabas file definition information:

• The Adabas system must be running.

• The Execution Environment performing the extract must have the Adabas
interface program ADALNK available. The load name and load DD can be
customized with the @CONFIGURESERVER tool.

Refer to Configuration Parameters on page 13 for information about using
@CONFIGURESERVER.

Extraction of Table Information
To extract the table information, complete the following steps:

1. Execute the @ADAEXTRACT rule using the EX execute rule option on the
workbench.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
The Adabas Extract Utilities Screen appears (shown here).

 2007-01-20 ADABAS EXTRACT UTILITIES USR40
 Cmd ==>

 Select Extract Functionality

 Extract one definition : _

 List all extracted definitions : _

 List all possible definitions : _

 Extract all possible definitions : _

 Extract all non-extracted definitions : _

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

2. On the displayed screen, position your cursor on one of the following menu
options and press Enter:

Menu Option Description

Extract one
definition

You can use this to specify the Database ID and the File
Number of a file to be extracted in isolation.

List all extracted
definitions

Displays a list of all Adabas files whose definitions
were extracted.

List all possible
definitions

Displays a list of all extracted definitions including
Adabas files not yet extracted.

Extract all
possible
definitions

Extracts definitions from all the Database IDs and File
Numbers defined to Adabas. The process also deletes
existing definitions before running the new extract.

Extract all
non-extracted
definitions

Performs the same processing as above except for
deleting or re-extracting previously extracted file
definitions.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Extracting or listing multiple definitions could take a significant time to
complete, depending on the number of Adabas databases and files in your
configuration. If you select List all extracted definitions, an Extract Screen
listing similar to the one shown below appears:

 2007-01-20 ADABAS EXTRACT UTILITIES USR40
 Cmd ==>

 Database File Extract
 ID No Date Description
 --- --- 2007-01-19 employees
 _ 1 2 2007-01-19 vehicles
 _ 1 3 2007-01-19 miscellaneous
 _ 1 4 2007-01-19 agent info
 _ 1 21 2007-01-19
 _ 1 22 2007-01-19
 _ 1 23 2007-01-19
 _ 1 24 2007-01-19
 _ 1 25 2007-01-19
 _ 1 26 2007-01-19
 _ 1 27 2007-01-19
 _ 1 66 2007-01-19
 _ 1 71 2007-01-19
 _ 1 99 2007-01-19

 S=Edit Description D=Delete X=Extract
 PFKEYS: 3=EXIT 12=CANCEL

From this screen, the following actions are available:

3. Select an Adabas file definition to delete, extract, or edit the description.

S Presents a screen for modifying the description.

D Deletes the extracted data from the TIBCO Object Service Broker
definition database.

X Extracts or re-extracts the selected definition.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
When you issue the S line command to edit the description, a screen similar to
the one shown below appears, enabling you to edit extracted Adabas file
descriptions.

2007-01-20 ADABAS EXTRACT UTILITIES USR40
Cmd ==>

 Database Id: 1 File Id: 2

 Description: vehicles

 PFKEYS: 3=EXTRACT & SAVE 12=CANCEL
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Binding TIBCO Object Service Broker ADA Table Definitions

You can bind the TIBCO Object Service Broker ADA table definition but not its
data. ADA tables for which you requested binding are bound to both the
Execution Environment and the server used to access Adabas, when they are
accessed from a TIBCO Object Service Broker rule.

See Also TIBCO Object Service Broker Application Administration for more information about
binding tables.

Before you request binding on an ADA table definition, ensure that the table
definition does not require changes, since it is bound to the server for the life of
the server.

If you want to change a definition, you can dynamically request a re-bind for the
Execution Environment and you must re-cycle the server for the change to be
recognized.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
Supplying the Startup Parameters

You can specify the server parameters on the EXEC statement in the startup JCL,
in a data set or both. For more information on how to specify the server
parameters, refer to Startup Parameters on page 11.

Available Parameters
The available parameters are as follows:

The SERVERID parameter can be overridden at runtime. Refer to Dynamically
Changing the Parameters on page 38 for more information.

FSLEVEL (FSL) Use to specify the level of Fail Safe processing. The default value is zero. Valid
values:

1 – Activate Fail Safe Level 1. The server informs the Data Object Broker that it
can support Fail Safe level-1 processing. If the server is to attach to a z/OS Data
Object Broker, the Data Object Broker’s connection attribute setting “commit
level” must be set to 1. If not, the connection is rejected. Refer to Implementing
Fail Safe Processing on page 40 for more information. You must specify the
TRXDB, FSTABLENAME, RECOVERYID, and RECOVERYPASSWORD
parameters.

0 – De-activate Fail Safe processing. If attaching to a z/OS Data Object Broker,
the Data Object Broker’s connection attribute setting “commit level” must be
set to 0. If not, the connection is rejected. Refer to Implementing Fail Safe
Processing on page 40 for more information.

FSTABLENAME The ADA table name of the Adabas transaction database. Required only if
FSLEVEL=1. A sample ADA table definition is supplied with the name
@ADAFSTRXDB (default). For more information, refer to Implementing Fail
Safe Processing on page 40.

IDPREFIX Prefix used to construct a unique name for each instance of the server. Four
decimal digits are appended to this prefix and the resulting value is used to log
in to TIBCO Object Service Broker. It uniquely identifies each instance to
TIBCO Object Service Broker. Each instance must have a unique IDPREFIX.
This parameter must be a valid TIBCO Object Service Broker user ID.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
MDL The pattern for selecting the VTAM ACB name that is used for
communications. If not specified, the TDS parameter is used as the pattern. If
you do not specify an MDL parameter, ensure that the TDS parameter is
always a valid VTAM ACB model.

SERVERID Identifies a pool of instances of the server with common characteristics.
SERVERID can have up to eight characters and you must specify one when you
are defining an ADA table.

The SERVERID parameter can be overridden at runtime. Refer to Dynamically
Changing the Parameters on page 38 for more information.

SERVERS The number of instances of the server that the initializer program should attach
to the server address space at startup.

This number can be from 1 to a value less than or equal to the value set in the
Maximum Connection Count field in your network configuration. The default
value is 1.

For more information, refer to TIBCO Object Service Broker for z/OS Installing and
Operating.

SERVERTYPE The value ADA must be specified.

TDS Supplies the Communications Identifier of the Data Object Broker with which
the server communicates.

If you have multiple server initializer programs with the same SERVERID value,
ensure that the FSLEVEL and FSTABLENAME Fail Safe server parameters are
assigned the same values for each server address space.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
Estimation of the CTABLESIZE Parameter
The number of fields in an ADA table definition is dependent upon the Data
Object Broker CTABLESIZE parameter. To estimate the number of bytes required
to support a specified number of fields, run the ESTIMATEBLDFN tool:

EX ESTIMATETBLDFN(num_fields)

You must supply a value for the argument num_fields, which is the maximum
number of fields accessed by any ADA table in your system. This tool returns an
estimate of the maximum CTABLESIZE that is required to support the number of
fields you specify.

Following is a sample result of executing ESTIMATETBLDFN for 50 fields:

----------------------------- INFORMATION LOG --------------------------------:
COMMAND ===> SCROLL ===> P
DATE: Mar 28,2007 REPORT ON ESTIMATE CTABLESIZE
 FOR "50" FIELDS

Table Type CTablesize(K) XTablesize(K)
---------- ------------- -------------

ADA 5
DAT 7
DB2 5
IDM 6
IMS 6 3
MAP 4
SLK 4
204 6
TDS 3

PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL

See Also TIBCO Object Service Broker Parameters for more information about the
CTABLESIZE parameter.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Dynamically Changing the Parameters

At runtime, you can dynamically modify the SERVERID startup parameter with
the SETXPARM and RESETXPARM tools. This reduces the number of table
definitions required to define the external data.

The changes to the server parameters are stored in either of two session tables:

The changes are in effect for the duration of the session, until SETXPARM is
invoked again, or the overrides are reset.

Parameters That Can Be Overridden at Runtime
The SERVERID startup parameter is the only parameter that can be dynamically
changed with SETXPARM and RESETXPARM.

Examples
The following example sets the SERVERID startup parameter for all ADA tables
to TORONTO:

CALL SETXPARM('TABLETYPE', 'ADA', 'SERVERID', 'TORONTO', '');

This example resets the SERVERID startup parameter for ADA tables to the Table
Definer default value:

CALL RESETXPARM ('TABLETYPE', 'ADA', 'SERVERID', '');

See Also TIBCO Object Service Broker Shareable Tools for detailed descriptions of the
SETXPARM and RESETXPARM tools.

@SRVRPRMS_TYP Manages global changes to all tables of a specified table
type, for example, all ADA tables.

@SRVRPRMS_TBL Manages specific changes to a single named table.

TIBCO Object Service Broker does not check the parameter values set or changed
at runtime by SETXPARM and RESETXPARM. Your application must ensure
appropriate values are set.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
Adding Threads

When you start the server you are connected to both Adabas and TIBCO Object
Service Broker. When the Execution Environment requests an access to Adabas
data, a thread to Adabas is established.

The number of instances of the server attached to the address space is specified in
the startup JCL. If you require additional instances, do one of the following:

• Shut down the server and start it again with an increased number of instances,
using the SERVERS startup parameter.

• Start another instance of the server with the same SERVERID value and a
different IDPREFIX.

• Use the MODIFY operator command to dynamically add instances of the server
to an existing TIBCO Object Service Broker Execution Environment. For more
information, refer to Using the MODIFY Operator Command on page 23.

For detailed instructions on starting the server, refer to Startup Prerequisites on
page 19.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Implementing Fail Safe Processing

Within a single instance of the server, Fail Safe level-1 processing ensures data
integrity for a TIBCO Object Service Broker transaction that updates both TDS
data and one Adabas database.

The base Adabas architecture does not ensure integrity of data across Adabas
databases, therefore placement of a TIBCO Object Service Broker Adabas
transaction database should be made with care. Fail Safe level-1 data integrity can
only be ensured to the Adabas database containing the transaction database.

Transaction Processing
At the successful end of a TIBCO Object Service Broker transaction, the Data
Object Broker requests that outstanding updates be committed. During this
process, the transaction database is updated.

The update to the transaction database and the Adabas data updates are
committed together by one Adabas CL (Close) command. When the server
responds with a successful completion to the Data Object Broker, the TIBCO
Object Service Broker data is committed.

In-doubt Transactions
If the Data Object Broker does not receive a response from the server, the TIBCO
Object Service Broker transaction is placed in-doubt. All outstanding TIBCO
Object Service Broker locks are held until the in-doubt condition is resolved.

When a connection is re-established with the same instance of the server, the Data
Object Broker asks the server to determine if the Adabas data for the in-doubt
transaction was committed. The server reads the transaction database to
determine the state of the Adabas data. If the Adabas data was updated, the Data
Object Broker rolls forward the in-doubt transaction by committing TIBCO Object
Service Broker data and releasing locks. If the Adabas data was not updated, the
Data Object Broker rolls back the in-doubt transaction by discarding the intent list
and releasing locks.

To ensure data integrity, configure the server for each Adabas database, each with
its own transaction database. This prevents one TIBCO Object Service Broker
transaction from updating files from more than one Adabas database.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
Definition of a Transaction Database
The transaction database is an Adabas file on an Adabas database. It is used by
the server to ensure data integrity during Fail Safe level-1 processing. You need to
define an ADA table that points to this transaction database. A sample ADA table
definition is supplied with the name @ADAFSTRXDB. Modify this definition to
choose the Name, DBID, and FILE No for your transaction database. Any valid
name can be used.

The FSTABLENAME startup parameter must equal the name of this ADA table,
for example:

FSTABLENAME=@ADAFSTRXDB

The transaction database can be managed in TIBCO Object Service Broker like any
other ADA table. For example, you can write a rule to clean up the Fail Safe
database on shutting down the server.

Following are sample definitions for a transaction database:

ADACMP FNDEF='01,AA,008,A,DE'
ADACMP FNDEF='01,AB,008,A,DE'
ADACMP FNDEF='01,AC,004,B'
ADACMP FNDEF='01,AD,004,B'
ADACMP FNDEF='01,AE,004,B'
ADACMP FNDEF='01,AF,025,A'

See Also TIBCO Object Service Broker for z/OS Managing Backup and Recovery for more
information on Fail Safe processing.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
Understanding Other Operational Procedures

This section describes other operational procedures: distribution access, status
display, debugging, and problem reporting.

Distributed Access
Distributed access between TIBCO Object Service Broker and Adabas is permitted
and is subject to the requirements of all distributed access. Refer to TIBCO Object
Service Broker Application Administration and TIBCO Object Service Broker for z/OS
Installing and Operating for more information on distributed access.

Status Display
Use the RESOURCE MANAGEMENT option from the Administration menu to
display the status of the instances of the server. The sample screen below shows
an example of the type of information displayed for resource type ADA.

S6BADM33 HTSTSRV RESOURCE DETAIL FOR ADA ADASRV 2007JAN02 16:40:52
INTERMEDIATE ROLLBK N EARLY RELEASE Y LAST USER REUSE N COMMIT LEVEL 0
RETRY INTERVAL 0 TP NAME USER ID PREFIX FAILURES 0
NODE MMMSYSTEMA01 INDOUBTS N DELETE

 CONNECTIONS IN-USE TRX MESSAGE
 CUR MAX LMT CUR MAX COUNT COUNT
 ONLINE 0 0 0 0 0 0 0
 COMMON 0 0 25 0 0 0 0

 SCHEDULE NAME IMSIMSDRASV

 APPLICABLE DAYS EXCEPTION START ONLINE CONNECTIONS
 MON TUE WED THR FRI SAT SUN DATE TIME ONLY MAX
 Y Y Y Y Y Y 00:00 N 25

 ENTER-PATHS PF2-TYPE PF4-GROUP PF5-PEER PF9-START PF10-SCHEDULES PF11-UPDATE
 THERE ARE NO ACTIVE PATHS TO BE DISPLAYED, REQUEST IGNORED

Refer to Connection to a Windows or Solaris Data Object Broker on page 26 for
information about connecting to a Data Object Broker on Open Systems.
TIBCO Service Gateway for Files SDK User’s Guide

Other Operational Procedures | 43
Debugging
Use the TIBCO Object Service Broker Rule Debugger to identify and fix errors in
your TIBCO Object Service Broker application. You can also make and test
changes to your rules. The Debugger stops the rule execution at events that you
specified from within the Debug screen.

Use the @CONFIGURESERVER tool to trace all Adabas calls that are made to the
Adabas nucleus and the control blocks.

Set the TRACE and DUMP configuration parameters to Y, and the LOGMEDIA
and DEBUGLEVEL configuration parameters as required to capture the log
information necessary for diagnosing the problem. Setting TRACE and DUMP to
Y logs all accesses and dumps the Adabas control blocks before and after the call
to ADALNK. Setting the DEBUGLEVEL value to 1, 2, or 3 enables the logging of
this data, and determines at what point the Adabas control blocks are dumped:

The LOGMEDIA configuration parameter determines where the output from the
trace goes:

For more information on the @CONFIGURESERVER tool, refer to Configuration
Parameters on page 13.

For more information on the TRACE, DUMP, DEBUGLEVEL, and LOGMEDIA
parameters, refer to Available Configuration Parameters on page 15.

1 The Adabas control blocks are dumped after the call to the Adabas
interface program ADALNK.

2 The Adabas control blocks are dumped both before and after the call to
ADALNK.

3 The Adabas control blocks are dumped both before and after the call to
ADALNK. ESTAE and ADALNK are not called.

PRT The default print destination for your TIBCO Object Service Broker
user ID. Set the desired print file with the UP user profile option on the
workbench.

SCR The HRNPRINT DDname.

TBL The @SERVERLOG table. The table is parameterized by the server type
(ADA for Adabas), the server ID specified by the SERVERID startup
parameter, and the thread ID used by the transaction, specified by the
IDPREFIX startup parameter.
 TIBCO Service Gateway for Files SDK User’s Guide

44 | Chapter 3 Operational Requirements for Adabas Access
For more information on the SERVERID and IDPREFIX parameters, refer to
Supplying the Startup Parameters on page 35.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on the RESOURCE MANAGEMENT option of the Administration menu.

TIBCO Object Service Broker Programming in Rules for more information on using
the Rule Debugger.

TIBCO Object Service Broker Parameters for more information about parameters.

Problem Reporting
Refer to How to Contact TIBCO Support on page xx for information about
reporting problems with the server to TIBCO Support.

Have the following information available when reporting server related problems
to TIBCO Support:

• The ADA table definitions and sample data.

• The server job log and control cards.

• Output from a server trace, if applicable. For more information on the trace
options, refer to Debugging on page 43.
TIBCO Service Gateway for Files SDK User’s Guide

| 45
Chapter 4 Defining the Accesses to Adabas

This chapter shows you how to define the TIBCO Object Service Broker ADA
tables for accessing Adabas data.

Topics

• Overview, page 46

• Task A: Extract the Adabas File Definition, page 47

• Task B: Invoke the Table Definer, page 51

• Task C: Specify Header Information, page 55

• Task D: Define Fields for the ADA Table, page 61

• Task E: Select Extracted Fields, page 64

• Task F: Map Adabas External Data to TIBCO Object Service Broker Types,
page 66

• Task G: Document ADA Tables, page 68
 TIBCO Service Gateway for Files SDK User’s Guide

46 | Chapter 4 Defining the Accesses to Adabas
Overview

To access Adabas data from TIBCO Object Service Broker, you must define a
TIBCO Object Service Broker table of type ADA. An ADA table can have one or
more Adabas fields as TIBCO Object Service Broker fields and an optional
location parameter.

To define an ADA table, complete the following tasks:

1. Task A: Extract the Adabas File Definition on page 47

2. Task B: Invoke the Table Definer on page 51

3. Task C: Specify Header Information on page 55

4. Task D: Define Fields for the ADA Table on page 61

5. Task E: Select Extracted Fields on page 64

6. Task F: Map Adabas External Data to TIBCO Object Service Broker Types on
page 66
TIBCO Service Gateway for Files SDK User’s Guide

Task A: Extract the Adabas File Definition | 47
Task A: Extract the Adabas File Definition

To assist in the definition of ADA tables, Adabas file definitions can be extracted
so that their table information is available for the definition process. Your system
administrator extracts the Adabas file definition information and stores it in
TIBCO Object Service Broker.

After extracting the Adabas file definition into TIBCO Object Service Broker, you
can use it to create a TIBCO Object Service Broker ADA table. If this information
does not exist or was not extracted, the definition is based on the known structure
of the Adabas file structure. If there is no extracted data, the Table Definer is
unable to verify that the structure is correct and issues a warning message before
the definition is saved.

Understanding the Prerequisites
Before extracting Adabas file definition information:

• The Adabas system must be running.

• The Execution Environment performing the extract must have the Adabas
interface program ADALNK available. The load name and load DD can be
customized with the @CONFIGURESERVER tool.

Refer to Configuration Parameters on page 13 for information about using
@CONFIGURESERVER.

Extracting Table Information
To extract the table information, complete the following steps:

1. Execute the @ADAEXTRACT rule using the EX execute rule option on the
workbench.

The extracted Adabas file definition information is stored in a TIBCO Object
Service Broker TDS table. Because the extracted data is static, you must re-extract
the table information whenever changes are made to new or existing Adabas table
definitions.
 TIBCO Service Gateway for Files SDK User’s Guide

48 | Chapter 4 Defining the Accesses to Adabas
The Adabas Extract Utilities Screen appears (shown here).

 2007-01-20 ADABAS EXTRACT UTILITIES USR40
 Cmd ==>

 Select Extract Functionality

 Extract one definition : _

 List all extracted definitions : _

 List all possible definitions : _

 Extract all possible definitions : _

 Extract all non-extracted definitions : _

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

2. On the displayed screen, position your cursor on one of the following menu
options and press Enter:

Menu Option Description

Extract one
definition

You can use this to specify the Database ID and the File
Number of a file to be extracted in isolation.

List all extracted
definitions

Displays a list of all Adabas files whose definitions
were extracted.

List all possible
definitions

Displays a list of all extracted definitions including
Adabas files not yet extracted.

Extract all
possible
definitions

Extracts definitions from all the Database IDs and File
Numbers defined to Adabas. The process also deletes
existing definitions before running the new extract.

Extract all
non-extracted
definitions

Performs the same processing as above except for
deleting or re-extracting previously extracted file
definitions.
TIBCO Service Gateway for Files SDK User’s Guide

Task A: Extract the Adabas File Definition | 49
Extracting or listing multiple definitions could take a significant time to
complete, depending on the number of Adabas databases and files in your
configuration. If you select List all extracted definitions, an Extract Screen
listing similar to the one shown below appears:

 2007-01-20 ADABAS EXTRACT UTILITIES USR40
 Cmd ==>

 Database File Extract
 ID No Date Description
 --- --- 2007-01-19 employees
 _ 1 2 2007-01-19 vehicles
 _ 1 3 2007-01-19 miscellaneous
 _ 1 4 2007-01-19 agent info
 _ 1 21 2007-01-19
 _ 1 22 2007-01-19
 _ 1 23 2007-01-19
 _ 1 24 2007-01-19
 _ 1 25 2007-01-19
 _ 1 26 2007-01-19
 _ 1 27 2007-01-19
 _ 1 66 2007-01-19
 _ 1 71 2007-01-19
 _ 1 99 2007-01-19

 S=Edit Description D=Delete X=Extract
 PFKEYS: 3=EXIT 12=CANCEL

From this screen, the following actions are available:

3. Select an Adabas file definition to delete, extract, or edit the description.

S Presents a screen for modifying the description.

D Deletes the extracted data from the TIBCO Object Service Broker
definition database.

X Extracts or re-extracts the selected definition.
 TIBCO Service Gateway for Files SDK User’s Guide

50 | Chapter 4 Defining the Accesses to Adabas
When you issue the S line command to edit the description, a screen similar to
the one shown below appears, enabling you to edit extracted Adabas file
descriptions.

2007-01-20 ADABAS EXTRACT UTILITIES USR40
Cmd ==>

 Database Id: 1 File Id: 2

 Description: vehicles

 PFKEYS: 3=EXTRACT & SAVE 12=CANCEL
TIBCO Service Gateway for Files SDK User’s Guide

Task B: Invoke the Table Definer | 51
Task B: Invoke the Table Definer

Invoke the Table Definer from the workbench using the DT define table option or
the primary command field. You can access an existing definition or define a new
TIBCO Object Service Broker ADA table.

Accessing Existing Tables
Display the definition of an existing ADA table from the workbench in one of
three ways:

• Use the DT define table option with the name of an existing table.

• Use the DT primary command with the name of an existing table, for
example:
DT EMPLOYEE<Enter>

• Use the DT define table option with no table name. This displays the Object
Manager screen, which lists existing tables in your TIBCO Object Service
Broker database.

Scroll through this list to see which table you require. Use the SELECT
command to filter the list to show only tables of type ADA:
SELECT TYPE=’ADA’

To select a table, type S in the line command field and press Enter.
 TIBCO Service Gateway for Files SDK User’s Guide

52 | Chapter 4 Defining the Accesses to Adabas
Defining a New Table
To define a new table, complete the following steps:

1. Type the name of a new ADA table beside the DT define table option or in the
primary command field.

This displays a TDS definition template.

2. Change the Type field at the top of the screen to ADA and press Enter.

A Table Definition screen similar to the following appears.

 COMMAND==> TABLE DEFINITION

 Table: ADAEXAMPLE Type: ADA Unit: USR40

 Serverid: DBID: FILE No.: Server->EE Block: 0
 ISN Assigner: SYSTEM (System/User) Use GF ID:N Name of countfield:
 Repeat Type: (PE/MU) MU/Special Fld in Grp: Y Occurs/Read: 5

 Location Parm Typ Syn Len Dec Default ' Event Rule Typ Acc
 ---------------- --- --- --- -- ---------------- ' ---------------- - -
 LOCATION I C 16 0 ' _
 ' _
 | -------- External Field -------- | ---------------- Metadata Field -------
 |Ext Name Syn Len Dec Upd Fmt Des| Name Typ Syn Len Dec Ord Def
 -------- - ----- -- - - - --------------- - --- ----- -- - ---
 _
 _
 _
 _
 _
 (K=Key D=Delete I=Insert R=Replicate)
 PFKEYS: 3=SAVE 12=CANCEL 22=DELETE 13=PRINT 2=DOC 5=COLUMNS
 New table definition

Following are the TIBCO Object Service Broker ADA Table Definition Screen
Segments

Header Where you specify the Adabas table on which to base your new ADA table
and address access control information. Refer to Task C: Specify Header
Information on page 55 for more information.

Location parameter Where you specify an optional location parameter for the new ADA table.
Refer to Specifying Optional Location Parameter Information on page 58
for more information.
TIBCO Service Gateway for Files SDK User’s Guide

Task B: Invoke the Table Definer | 53
Using Table Definer PF Keys
The following table describes the PF keys that are available from the Table Definer
screen and their corresponding primary commands or abbreviations:

Event rule Where you specify one or more optional event rules for the new ADA table.
Refer to Specifying Optional Event Rule Information on page 59 for more
information.

External field and
Metadata field

Displays the columns of the Adabas table on which your new ADA table is
based and the TIBCO Object Service Broker fields that you chose. Refer to
Task E: Select Extracted Fields on page 64 for more information.

PF keys Displays the PF keys available from this screen. Refer to Using Table
Definer PF Keys on page 53 for more information.

PF
Key

Primary
Command Description

- COPY Copies the definition of an existing ADA table into the
current definition.

1 HELP Displays help for the field or screen where your cursor is
placed.

2 DOCUMENT Displays the screen for documenting the table definition.
Refer to Task G: Document ADA Tables on page 68 for
more information.

3 END Saves changes to the existing definition and returns you to
the workbench.

5 COLUMNS Displays the external fields list from which you can select
Adabas fields.

To obtain information from the extracted Adabas file
definition, the fields DBID and FILE No must be entered
for PF5 to become active. When these fields are supplied,
use PF5 to list the fields that were in the Adabas definition
when the extract was performed. All relevant fields are set
when you return from Adabas field selection screen.

12 CANCEL Cancels the changes to the definition and returns you to
the workbench.
 TIBCO Service Gateway for Files SDK User’s Guide

54 | Chapter 4 Defining the Accesses to Adabas
13 PRINT Prints the definition of the table. You remain in the Table
Definer.

22 DELETE Deletes the definition of the ADA table. You are prompted
to confirm the deletion.

PF
Key

Primary
Command Description
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Specify Header Information | 55
Task C: Specify Header Information

An Adabas file has a specific structure that must be mapped to one or more ADA
tables. The primary key is made up from a field representing the record's Internal
Sequence Number (ISN), which is a unique Adabas identifier and, optionally, a
second key representing the occurrence number for a periodic group (PE) or a
multiple-value field (MU). A third key is required when mapping a
multiple-value field within a periodic group.

Representing Adabas Data in TIBCO Object Service Broker Tables
In this example, the Adabas file layout is represented by pseudo-COBOL storage
definitions.

For example:

01 AA
01 AB,PE (Periodic Group)

03 AC,PE
03 AD,PE

05 AE,MU,PE (Multiple-Value Field)
01 AF
01 AG,MU

This structure must be mapped to four TIBCO Object Service Broker tables, each
representing a different set of fields:

1. The non-periodic groups and multiple-value fields (AA and AF):

2. The fields of the periodic group fields AC and AD:

ISN

AA

AF

ISN

CNT1

AC

AD
 TIBCO Service Gateway for Files SDK User’s Guide

56 | Chapter 4 Defining the Accesses to Adabas
3. The multiple-value field AE within a periodic group:

4. The multiple-value field AG:

The ISN and count (CNT) fields are maintained by TIBCO Object Service Broker
and do not exist in the Adabas data as defined fields. They are used in this
example to identify the current Adabas record (ISN) and the relative occurrence
number of a repeating group and or a multiple value field, so that the data can be
represented as a relational view. The field names specified in the example are the
default values assigned by the Table Definer but these can be altered. These fields
can be specified in search arguments to retrieve a specific Adabas occurrence.

Specifying ADA Table Header Fields
The following fields are in the header segment of the ADA table definition screen:

ISN

CNT1

CNT2

AE

ISN

CNT1

AG

Table Displays the table name specified when you invoked the Table Definer.
Type a new name to save the definition of the current table under a
new name. For more information on how to copy TIBCO Object
Service Broker objects, refer to TIBCO Object Service Broker Shareable
Tools.

Valid entries: A character string of up to 16 characters beginning with a
letter (A - Z) or a special character ($ or #), and continuing with more
letters, special characters, digits (0 - 9), or underscore characters (_). A
table name starting with an @ symbol denotes a table supplied by
TIBCO Object Service Broker.
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Specify Header Information | 57
Type Displays the table type ADA, which you changed in Task B: Invoke the
Table Definer on page 51.

Unit Displays the user unit associated with the table. The unit marks a table
as belonging to a particular application or to a logical unit, for
example, utilities, accounting, or network control. The default unit for
your user ID is specified in your TIBCO Object Service Broker user
profile.

Valid entries: A character string of a maximum of 8 characters. These
are typically provided by your system administrator, for example, ACC.

Server ID Identifies a group of instances of the server with common
characteristics, and must match the SERVERID startup parameter
specified in the server JCL. Type the ID for the server or group of
servers to use when accessing the table you are defining. Refer to
Supplying the Startup Parameters on page 35 for more information.

The SERVERID parameter can be overridden at runtime. Refer to
Dynamically Changing the Parameters on page 38 for more
information.

Valid entries: A character string up to eight characters.

DBID Specifies the Adabas database number in which the Adabas file
resides.

FILE No. Specifies the Adabas file number of the file for which the table is being
defined.

Server->EE Block Specifies the number of rows passed to the Execution Environment in
any one interaction with the server. If set to 0, a full 31 KB buffer is
used. If set to the number of rows that satisfy the request, the buffer is
less than 31 KB.

Setting a large value for this field means that a 31 KB buffer is set when
required. Refer to Taking Advantage of Adabas Features on page 79 for
examples of how to use this field.

ISN Assigner Specifies whether the Internal Sequence Number (ISN) of the Adabas
file is assigned by Adabas or the user application. Valid entries: SYSTEM
or USER.

Use GFID Specifies that when the table is bound, a generated Global Format ID is
to be used when accessing the table.
 TIBCO Service Gateway for Files SDK User’s Guide

58 | Chapter 4 Defining the Accesses to Adabas
Specifying Optional Location Parameter Information
The location parameter segment of the screen is where you define a location
parameter for the ADA table. A location parameter is required only if you want to
access Adabas data through a peer server associated with a different Data Object
Broker (remote node). If you do not require a location parameter, position your
cursor in this segment, and then press PF4 and use the D line command to delete
the parameter. If you always access the Adabas table remotely, the node from
which you request the access can have either a minimal or a full definition.

Name of countfield Determines how many occurrences are in a periodic group or
multiple-value field. The field is used to turn on the count function. If a
definition contains fields from more than one periodic group, choose
the value for this field carefully.

Repeat Type Determines the type of repeating construct to be mapped for tables that
map a multiple field or a periodic group.

Valid entries: MU or PE.

Mu/Special field in Grp When set to N, the access to the Adabas file can be optimized. This field
has two meanings depending on whether a periodic group (PE) or
multiple field (MU) is being mapped.

For a periodic group, this field can be set to N if:

• The definition contains all the fields that are defined in the Adabas
group

• The fields are in the same order as that defined to Adabas

• The group does not contain a multiple value field

Otherwise, set it to Y.

For a multiple value field, the field must be set to N if the MU field
being mapped is not part of a PE group. If it is an MU within a PE
group the field must be set to Y.

Occurs/Read Sets the number of occurrences of a PE group or MU field that are
retrieved from Adabas for every Adabas call (occurrences per read). By
selecting a value based on the number of occurrences within your own
data structures, you can optimize the Adabas access that is performed.

Set this field to the average number of occurrences expected to be read
for each row or ISN.
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Specify Header Information | 59
Minimal Definition

A minimal definition consists of the following:

• The table name, which must be the same at both locations

• The location parameter, which must be the same at both locations

The name of the remote node where the full definition is located must be
supplied through the use of the Default field. Data parameters are defined on
the full definition, not a minimal definition.

A minimal definition with a location parameter means you always access data at
a remote node. The table type specified in a minimal definition need not match
the table type of the full definition on the remote node.

Full Definition

A full table definition with a location parameter indicates you can access data at
either the local node or a remote node.

The table type specified in a full definition must match the data on the local node.
For example, a full definition of type TDS used to access TDS data on the local
node can also be used to access an ADA table with the same name on a remote
node.

Specifying Optional Event Rule Information
Use the event rule segment of the Table Definition screen to provide additional
controls over the access to a table, and then define event rules based on these
accesses.

Event rules are always called when the table is accessed in the access type
specified. All the rules that apply to a specific access are executed in the order in
which they are entered in the event rule segment. They cannot access tables on a
remote node.

Types of Event Rules

You can define two types of event rules, as follows:

Validation Verify the value of an occurrence when the table is being modified, such as
checking the validity of a field value.

Trigger Cause additional processing to take place when a table is accessed. For example, a
trigger rule can be used to create an audit trail or update other tables.
 TIBCO Service Gateway for Files SDK User’s Guide

60 | Chapter 4 Defining the Accesses to Adabas
Field Definitions

The event rule information is entered in the scrollable event rule segment. To
define event rules, position your cursor in this segment and press PF4 to bring up
a definition screen. Complete the following fields:

See Also • TIBCO Object Service Broker Managing Data for more information on location
parameters, event rules and minimal table definitions.

• TIBCO Object Service Broker Programming in Rules for more information on the
TRANSFERCALL statement.

Line# Type in a line number, starting at 1 for the first line, with one event rule per line. The
line numbers must be numbered consecutively.

Typ The type of event rule. Valid entries:

V – Validation Rule. No database updates are allowed during the validation process.
The rule must be a function that returns Y (yes), the validation was successful,
N (no), the validation was not successful, or a message explaining why it was not
successful.

T – Trigger Rule. A trigger rule cannot be a function or change the contents of the
triggering row, and cannot use the TRANSFERCALL statement. Nested triggers are
permitted.

Acc The type of access (or manipulation) to be performed on the data, causing the event
to be executed. Valid entries:

Validation and Trigger Rules:

W - Any write (insert, replace, delete)

I - Only insert

R - Only replace

D - Only delete

Trigger Rules only:

G - Any retrieval
TIBCO Service Gateway for Files SDK User’s Guide

Task D: Define Fields for the ADA Table | 61
Task D: Define Fields for the ADA Table

Both the Adabas and TIBCO Object Service Broker definitions are required for a
complete field definition because the TIBCO Object Service Broker field definition
is extended by the Adabas field definition.

Some Adabas fields cannot easily be mapped to corresponding TIBCO Object
Service Broker definitions. For these fields it is possible to tell Adabas to pass the
field to TIBCO Object Service Broker in a specific format. Where the Adabas
definition maps directly to a TIBCO Object Service Broker definition, it is best to
use an identical mapping since no conversion is needed.

If you enter only Adabas field information, the Table Definer fills in the TIBCO
Object Service Broker field information based on the Adabas definition.

The field segment of the Table Definer screen is divided into two areas. The left
side is the Adabas (External Field) definition area, which must map exactly to the
original Adabas field definition. The right side is the TIBCO Object Service Broker
(Metadata Definition) definition area, which maps how the data is to be presented
to the application. These two definitions do not have to be the same.

Fields in the External Field Definition Area
These fields are found in the External Field (Adabas field) definition area:

Ext Name Specifies the two-character Adabas short name from the Adabas definition.
This name is ignored in the generated key fields (ISN, CNT1, and CNT2) but it
still must be entered.

Syn Specifies the external syntax of the field in the Adabas definition. Refer to
TIBCO Object Service Broker Managing External Data for a complete listing of
external syntaxes.

Where the trailing spaces are not significant, the external field should be
defined as X if it is mixed case or C if it contains only uppercase.

The external syntax affects the way that searches are resolved. For instance,
because Adabas always stores data space filled, syntax V is always returned at
the maximum length of the field. Therefore, to find the string ABC in a six byte
syntax V field, the predicate must be “ABC ” (the string ABC followed by
three spaces).

Len Specifies the length of the Adabas field, in bytes.
 TIBCO Service Gateway for Files SDK User’s Guide

62 | Chapter 4 Defining the Accesses to Adabas
Fields in the Metadata Definition Area
These fields are found in the Metadata definition area:

Dec Specifies the number of digits to the right of the decimal point. Valid entries:

Syntax P – Number of decimal places must be smaller than twice the length of
the entire field.

Syntax B – Maximum is 15 for 8 bytes, 11 for 4 bytes and 5 for 2 bytes.

All other syntax – 0.

Upd Specifies whether the field can be updated. Various Adabas fields,
subdescriptors and superdescriptors, for example, can be read, but not
updated.

A non-updateable field in a definition must be specified immediately
following the key fields.

Fmt Specifies whether this Adabas field is to be requested from Adabas in a format
different from the format in which it is stored in Adabas. Valid entries:

Y – The field is requested in the format indicated by the external syntax and
length.

N – The external syntax describes the format of the field as defined in Adabas.

Des Indicates that the field is a descriptor and can be accessed via the descriptor
index.

Name Specifies the field name. This name must be unique within the table and must be
the name referenced in the application. Valid entries: a character string of up to 16
characters beginning with a letter (A - Z) or a special character ($ or #), and
continuing with more letters, special characters, digits (0 - 9), or underscore
characters (_); for example, DEPTNO.

Typ Specifies the TIBCO Object Service Broker semantic data type of the field. Valid
entries: C – Count; D – Date; I – Identifier; L – Logical; Q – Quantity; S – String.

Refer to Task F: Map Adabas External Data to TIBCO Object Service Broker Types
on page 66 for information on the default mapping of Adabas data types to TIBCO
Object Service Broker semantic data types, syntax, and lengths.
TIBCO Service Gateway for Files SDK User’s Guide

Task D: Define Fields for the ADA Table | 63
Syn Specifies the TIBCO Object Service Broker syntax of the field. Valid entries are B, C,
F, P, and V. For details, refer to TIBCO Object Service Broker Programming in Rules.

Refer to Task F: Map Adabas External Data to TIBCO Object Service Broker Types
on page 66 for information on the default mapping of Adabas data types to TIBCO
Object Service Broker semantic data types, syntax, and lengths.

Len Specifies the TIBCO Object Service Broker length of the field, in bytes. For valid
entries, refer to TIBCO Object Service Broker Programming in Rules.

Refer to Task F: Map Adabas External Data to TIBCO Object Service Broker Types
on page 66 for the default mapping of Adabas data types to TIBCO Object Service
Broker semantic data types, syntax, and lengths.

Dec Specifies the number of digits to the right of the decimal point. Relevant only for
syntax P. Valid entries:

Syntax P – Value must be smaller than twice the length of the entire field.

Syntax B, C, F, V, and W – 0.

Data type C – 0.

Ord Specifies that data retrieved from this table is sorted on this field. Valid entries: A –
Ascending sequence; D – Descending sequence.

Default Specifies a default value to be assigned to the field if the field is null at insert time.
 TIBCO Service Gateway for Files SDK User’s Guide

64 | Chapter 4 Defining the Accesses to Adabas
Task E: Select Extracted Fields

To select extracted Adabas fields, complete the following steps:

1. From the Table Definer screen, press PF5 to list extracted fields.

A screen similar to the one shown below appears, listing extracted fields. For
information on using the Table Definer, refer to Defining a New Table on
page 52.

 Adabas Field Selection

 Non Repeating Fields

 Name Attributes Type Syntax Length Dictionary Name
 _ AA DE,UQ S V 8
 _ AC NU S V 20
 _ AE DE,PD,SD S V 20
 _ AD NU S V 20
 _ PH PHON S V 20
 _ AF FI S V 1
 _ AG FI S V 1
 _ AH DE C V 6
 _ AJ DE,NU S V 20

 Repeating Fields

 Group Name Name Attributes Type Syntax Length Dictionary Name
 _ AI AI MU,NU S V 20
 _ AQ PE
 _ AR NU,PE,SD S V 3
 _ AS NU,PE,SD P 5
 _ AT MU,NU,PE P 5
 _ S3 SUP,DE,NU,PE S V 12
 _ AW PE
 _ AX NU,PE C V 6
 _ AY NU,PE C V 6
 _ AZ AZ DE,MU,NU S V 3

 PFKEYS: 3=SAVE 12=CANCEL

2. Type an S next to each of the fields you require.

3. Press PF3 to save the selection and return to the Table Definer screen or press
PF12 to cancel and return without selecting any fields.
TIBCO Service Gateway for Files SDK User’s Guide

Task E: Select Extracted Fields | 65
Note the following when selecting Adabas fields for an ADA table definition:

• The screen is divided into two sections: the top half for non-repeating fields,
the bottom for repeating structures. You can select fields in either the
non-repeating or the repeating area of the screen, not both.

• In the repeating fields section, select either by group name or by individual
field names.

• Only one group-level repeating field can be selected. At this time no other
fields can be selected.

• When individual repeating fields are selected, an MU field cannot be mixed
with other fields.
 TIBCO Service Gateway for Files SDK User’s Guide

66 | Chapter 4 Defining the Accesses to Adabas
Task F: Map Adabas External Data to TIBCO Object Service Broker

Types

This section describes how to map Adabas external data to TIBCO Object Service
Broker types.

Understanding the Default Mapping of Adabas External Data Types
The following table shows the default mapping of Adabas external data types to
TIBCO Object Service Broker semantic data types, syntax, and lengths. Changing
the Defaults describes the Adabas data types that can be converted to TIBCO
Object Service Broker syntax. The supported TIBCO Object Service Broker
semantic data types, syntax, and lengths are described in TIBCO Object Service
Broker Programming in Rules.

Changing the Defaults
You can modify attributes in the TIBCO Object Service Broker field definition area
using the values described in Fields in the Metadata Definition Area on page 62.
The following options are available:

• Change the entry in the Name field to a new name to uniquely identify the field
within the ADA table. You can name a field the same as a field in another

Adabas Definition Adabas External
Definition

TIBCO Object Service
Broker Internal Definition

Field Type Sign Length Length Syntax Length Syntax

A Alphanumeric,
left-justified

N 1-253 1-253 V, C or X 1-253 V or C

B Binary,
right-justified

N 1-126 1-126 H 5-130 RD

F Fixed-point,
right-justified

Y 4 4 B 8 P

G Floating-point,
right-justified

Y 8 8 F 8 F

P Packed decimal Y 1-15 1-15 P 1-15 P

U Unpacked decimal,
Fixed-point,
space padded left and
right

Y 1-29 1-29 N 1-15 P

W Unicode N 1-253 2-126 UN 2-126 UN
TIBCO Service Gateway for Files SDK User’s Guide

Task F: Map Adabas External Data to TIBCO Object Service Broker Types | 67
table; if you are moving data between tables, giving the fields the same name
simplifies the process.

• Change the TIBCO Object Service Broker semantic data type (Typ field) and
syntax (Syn field) of the field. You can use any valid TIBCO Object Service
Broker semantic data type (except date) and syntax (except floating point),
provided the combination is valid. TIBCO Object Service Broker Programming in
Rules lists valid combinations.

Requesting Adabas Data Conversion
TIBCO Object Service Broker can request Adabas data in a different format than
the one in which the data is stored. Do the following:

1. Change the Fmt field from N to Y.

2. Change the external syntax and length to the value in which Adabas should
return it.

Having TIBCO Object Service Broker request the data from Adabas forces Adabas
to perform the conversion, which is more efficient.

TIBCO Object Service Broker can potentially convert this data again to the format
described by the Metadata half of the field definition. To avoid the overhead of
performing two data conversions, make these two formats the same.

Changing the TIBCO Object Service Broker field syntax can cause a
conversion error, since each affected field of each row to the new syntax as
defined in the ADA table definition must be converted.

If data contains only uppercase characters, use TIBCO Object Service Broker
syntax C.

The required syntax is specified as an TIBCO Object Service Broker external
syntax not an Adabas syntax. It is then converted to an Adabas syntax.
 TIBCO Service Gateway for Files SDK User’s Guide

68 | Chapter 4 Defining the Accesses to Adabas
Task G: Document ADA Tables

Each table definition in TIBCO Object Service Broker has a Documentation screen
associated with it. You use this screen to create or modify documentation for the
table. To display the Documentation screen for an ADA table, press PF2 from the
Table Definer. Following is a sample:

DESCRIPTION OF TABLE PERSONNELD UNIT: USR40

 MODIFIED ON 20 JAN 2007 BY ACC CREATED ON 15 JAN 2007 BY USR40

 KEYWORDS: PERSONNEL
 SUMMARY : TABLE CONTAINING EMPLOYEE DATA

 DESCRIPTION

 _ -
 _ This table contains all information on current employees.

 PFKEYS: 3=END 5=VIEW DOCUMENT 13=PRINT 12=EXIT

Defining Field Values
The Table Definer updates some of the fields on this screen, but you must
maintain the KEYWORDS, SUMMARY, and DESCRIPTION fields. Complete
these fields as follows:

KEYWORDS Type individual words that briefly describe the table. These words are used by
the Keyword Search facility in TIBCO Object Service Broker. This field is one-
line long and can contain multiple entries, separated by commas or blanks.

SUMMARY Type a one-line summary of the DESCRIPTION field.
TIBCO Service Gateway for Files SDK User’s Guide

Task G: Document ADA Tables | 69
Using the PF Keys
The following function keys are supported in the Documentation screen:

See Also TIBCO Object Service Broker Shareable Tools for more information the SCRIPT tool.

DESCRIPTION Type information about the table (for example, what its role is, what it does,
and how it works) using TIBCO Object Service Broker SCRIPT commands.
There is no limit to the amount of information you can type in this field.

1 Displays corresponding help for the field or screen where your
cursor is placed.

3 Saves changes and returns you to the Table Definer.

5 Toggles between browse and edit modes.

12 Cancels changes and returns you to the Table Definer.

13 Prints the version of the documentation that you are viewing.
 TIBCO Service Gateway for Files SDK User’s Guide

70 | Chapter 4 Defining the Accesses to Adabas
TIBCO Service Gateway for Files SDK User’s Guide

| 71
Chapter 5 Using TIBCO Object Service Broker to
Process Adabas Data

This chapter describes how to access and process data in TIBCO Object Service
Broker ADA tables and how to take advantage of the Adabas features in TIBCO
Object Service Broker.

Topics

• Processing the Data, page 72

• Using the Table Browser and Table Editor, page 74

• Using Rules, page 75

• Taking Advantage of Adabas Features, page 79

• Handling of Errors, page 86
 TIBCO Service Gateway for Files SDK User’s Guide

72 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
Processing the Data

When accessing Adabas data to process it from TIBCO Object Service Broker, the
following occurs:

• Requests are translated into native Adabas commands.

• Adabas field data types are translated to the TIBCO Object Service Broker
field types defined in the ADA table.

You can access the data using:

• Various workbench tools, e.g., Table Browser and Table Editor

• The rule language

The following sections describe the mechanisms available to process the data,
how to take advantage of Adabas functionality, and how to handle errors.

Transaction Process
When Adabas data is requested, a server starts a FORALL. Data is sent to the Data
Object Broker in variable length buffers up to a maximum of 31 KB, as shown in
the following figure. If a single request requires more than 31 KB of data, multiple
31 KB buffers are sent and processed until the request is complete.

Execut ion Environm ent

Data Object Broker

request
for data

data buffers
up to 31 KB

TIBCO Object Service Broker

 Server
TIBCO Service Gateway for Files SDK User’s Guide

Processing the Data | 73
Restrictions on Adabas Processing
Processing Adabas data through TIBCO Object Service Broker is subject to the
following limitations:

• TIBCO Object Service Broker Adabas must be initialized by a standard
ADALNK module that is identical to that provided by Software AG.

• TIBCO Object Service Broker has a maximum occurrence size of 3.9 KB.

• TIBCO Object Service Broker has no direct equivalent to the Natural
statements HISTOGRAM or FIND UNIQUE. Therefore TIBCO Object Service
Broker does not issue the Adabas commands L9, S1, or RC. Using TIBCO
Object Service Broker rules to manipulate the returned data can enable the
same functionality.

• TIBCO Object Service Broker table definitions for Adabas fields are based
solely on the FDT. Therefore Predict and Natural long field names as defined
in the DDM must be entered manually.
 TIBCO Service Gateway for Files SDK User’s Guide

74 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
Using the Table Browser and Table Editor

You can browse and edit an ADA table in the same way you would browse or edit
another TIBCO Object Service Broker table. Use the Table Browser to browse a
defined ADA table by typing the table name next to the BR browse table option
and pressing Enter. This displays a screen similar to the following example.

 BROWSING TABLE : ADDRESSD
COMMAND ==> SCROLL: P
 ISN KEY1 CLIENT_NUMBER SURNAME INITIALS POSTCODE
_ -------- ----------- ---------------- ------------------ --- --------
_ 2 HARGREAVES NR CR0 1 HARGREAVES (HQ) NR CR0 1AL
_ 3 O'LANE JE SK13 2 O'LANE (HQ) JE SK139XF
_ 6 HARGREAVES NJ CR0 3 HARGREAVES (HQ) NJ CR0 1AL
_ 1 O'LANE L SK13 4 O'LANE (HQ) L SK139XF
_ 17 POWELL FJ L23 5 POWELL (HQ) FJ L23 9ST
_ 18 KNIGHTS GC CR7 6 KNIGHTS (HQ) GC CR7 5DQ
_ 19 PEARCE V KT8 7 PEARCE (HQ) V KT8 0DQ
_ 20 TARZAN L KT1 8 TARZAN (HQ) L KT1 1PT
_ 21 BROWN TT CR0 99 BROWN (HQ) TT CR0 67RT
_ 22 HILARY HH TT56 98 HILARY (HQ) HH TT56 6TY
_ 27 O'REILLY B DU9 99 O'REILLY (HQ) B DU9 1TY
_ 31 BROWN X DU8 1004 BROWN (HQ) X DU8
_ 32 BLENKS BBBSK13 9999 BLENKS (HQ) BBB SK13 9XF

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

See Also TIBCO Object Service Broker Managing Data for more information about browsing
and editing tables in TIBCO Object Service Broker.
TIBCO Service Gateway for Files SDK User’s Guide

Using Rules | 75
Using Rules

Accessing Adabas data using the rules language is similar to accessing TIBCO
Object Service Broker data. The main difference is in the way Adabas interprets
the request.

The following sections outline differences encountered while using rules and also
point out normal TIBCO Object Service Broker rules behavior that you must
consider when building applications.

Transaction Streams
If you issue a TIBCO Object Service Broker EXECUTE statement within a main
(parent) transaction, it creates another transaction stream (child transaction), to a
maximum of nine streams. The number of streams allowed in a TIBCO Object
Service Broker transaction depends on the TRANMAXNUM Execution
Environment parameter, which has a default of nine streams. Each transaction
stream in TIBCO Object Service Broker that accesses Adabas data requires its own
thread.

Table Access Dependencies
The number of ADA tables you can access per transaction depends on the
POOLSIZE parameter. Refer to Supplying the Startup Parameters on page 35.

If you use the default startup and configuration parameter values, you can access
at least sixteen ADA tables in one transaction. Your ability to access more tables
depends on the size of the ADA table definitions. Refer to Estimation of the
CTABLESIZE Parameter on page 37 for more information.

Retrieval Processing
The Adabas Lx and Sx commands are used to retrieve data from Adabas for each
retrieval statement (GET or FORALL) in your rule. The command you use
depends on the request and the mode of the transaction.

Ensure that your system administrator is aware of the number of the threads
required to accommodate all transaction streams accessing Adabas data in a
single transaction.

Using TRANSFERCALL or DISPLAY & TRANSFERCALL statements in your
rules minimizes the threads and reduces the possibility of Adabas locking
contention.
 TIBCO Service Gateway for Files SDK User’s Guide

76 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
When TIBCO Object Service Broker runs in browse mode, no locks are taken in
Adabas. When TIBCO Object Service Broker runs in update mode, Adabas takes
an exclusive lock on every occurrence that is read. When an exclusive lock cannot
be obtained by Adabas, a LOCKFAIL exception is returned.

If the number of occurrences locked exceeds the maximum value for the NISNHQ
Adabas parameter, a SERVERERROR exception is returned to the requesting rule
along with a message documenting that this condition occurred.

Refer to Exceptions on page 87 for more information about LOCKFAIL and
SERVERERROR.

GET Statement

A GET statement retrieves the first occurrence in the ADA table that satisfies the
specified selection criteria.

A TIBCO Object Service Broker GET is equivalent to an Adabas FIND FIRST
statement.

FORALL Statement

A FORALL statement returns occurrences to TIBCO Object Service Broker in the
order in which Adabas passes them. If you require a different order, you must
include an ORDERED clause in your FORALL statement, or specify ordering in
the table definition.

If you know that you require only one record, use a GET statement rather than
FORALL.

The TIBCO Object Service Broker FORALL is equivalent to an Adabas READ or
FIND statement.

Some expressions cause the retrieval processing to do a complete sweep of the
Adabas file. Wherever possible, specify at least one equality operator to restrict
the amount of data retrieved. Refer to Taking Advantage of Adabas Features on
page 79 for more information on using rules efficiently.

When running in update mode, the equivalent of an exclusive lock is applied to
the occurrence being updated. To accommodate the largest number of
occurrences that can be updated within a single transaction, increase the size of
the NISNHQ parameter in the Adabas configuration as needed.
TIBCO Service Gateway for Files SDK User’s Guide

Using Rules | 77
Replace (Update) Processing
A REPLACE statement that contains an operator is allowed for non-Adabas data
only. This is not supported for ADA tables; the occurrence to be replaced must
first be retrieved by a GET or a FORALL.

Sample REPLACE Statement Wrapped in FORALL

FORALL TABLEA WHERE FIELD1 = ABCD:
 TABLEA.FIELDn=’A’;
 REPLACE TABLEA;
 END;

Delete Processing
Deleting an occurrence of a repeating structure whether it is a repeating group or
a multiple value field is not supported. However, if you want to remove data from
a repeating structure, use the same technique in TIBCO Object Service Broker as
you would in Adabas, which is to nullify all the fields in the occurrence and
replace this empty occurrence. For alphanumerics, set the field to spaces and for
numerics to zeros.

A DELETE statement that contains an operator is allowed for non-Adabas data
only. This is not supported for ADA tables; the occurrence to be DELETED must
first be retrieved by a GET or a FORALL.

Here is a sample DELETE statement:

GET TABLEA WHERE FIELD1 = ABCD;
DELETE TABLEA;

Insert Processing
Adabas supports two kinds of insert processing according to the Internal
Sequence Number (ISN). The ISN is either assigned by the system or the user
specifies the ISN at insert time. The kind of processing to be used is determined in
the table definition ISN Assigner field.

An ISN value must always be specified in the INSERT statement, even if it is
assigned by the system. When the ISN Assigner field is set to SYSTEM, the
supplied ISN value is ignored. This is because the ISN is a key field, which is a
required field in the TIBCO Object Service Broker rules language.
 TIBCO Service Gateway for Files SDK User’s Guide

78 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
See Also TIBCO Object Service Broker Programming in Rules for general information about
using the TIBCO Object Service Broker rules language and about TIBCO Object
Service Broker transaction processing.
TIBCO Service Gateway for Files SDK User’s Guide

Taking Advantage of Adabas Features | 79
Taking Advantage of Adabas Features

Two considerations take place when accessing data from Adabas:

• Maintaining a consistent interface across all external DBMSs and the TIBCO
Object Service Broker TDS database

• Providing an efficient access path to the external DBMS

You can tune several aspects of your application rules and tables to make
accessing Adabas data more efficient. This section provides some suggested
techniques for building efficient applications.

Understanding Descriptor Indexes
A descriptor index is built within the Adabas database to aid efficient access to
data in Adabas. It enables access to the data in an order determined by a
particular field, sub-component of a field, or a combination of multiple fields
(descriptor, subdescriptor and superdescriptor).

Using the Adabas direct call interface, you can choose the access path that Adabas
uses. In Natural, for example, you can tell Adabas to access by descriptor. You can
also do this with this SDK; unfortunately this breaks the consistent interface to
data that TIBCO Object Service Broker tries to provide across all data sources. An
application written using these techniques can lose some of its portability across
different data sources without code changes. That is, you can lose the ability to
move your data from Adabas into TDS or another DBMS without affecting the
application. Therefore, use this feature carefully.

If the data is moved to an RDMS from Adabas, it is unlikely that the logical or
physical design of the database mirrors that of the Adabas file structure.
 TIBCO Service Gateway for Files SDK User’s Guide

80 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
Data Reading

To access by descriptor index, the descriptor field in the table definition must be
marked as a descriptor by setting the Des field to Y. The access statement in the
TIBCO Object Service Broker rules should be in the form:

access_statement tablename WHERE descriptor_field >= ‘value’

where:

This statement uses the greater than or equal to (>=) operator instead of just equal
to (=). Although using equal to (=) is correct, greater than or equal to (>=) is more
efficient since access to the Adabas table is with a direct Adabas L3 or L6
command, which reads data via the descriptor index that makes up the
descriptor_field in the table definition. This requires the reading of only part of the
index instead of the entire index. For this to occur, set the Des column for the
descriptor field to a value of Y.

If you require more than one record, ensure that your rule has a means of ending
the loop as soon as all required records have been returned. This can be done by
calling a subsequent rule to do a check that issues a SIGNAL signal when all
qualifying records have been received.

Drawbacks

There are two drawbacks to using descriptor indexes to read data:

• The data is returned to the rule in the same order that it is retrieved from
Adabas, which is different from the TIBCO Object Service Broker TDS, which
retrieves the data in primary key sequence.

• This is an open-ended request which implies that the processing should start
at the point indicated by the WHERE statement, and end only at the end of the
file. If this is the desired found set, this is not a problem. However, it is more
likely that only part of this potential found set is actually required and
processing should really end when a particular value is reached.

access_statement Is either GET or FORALL.

tablename Is an ADA table.

descriptor_field Is a field marked as a descriptor.

value Is the starting value in the index.
TIBCO Service Gateway for Files SDK User’s Guide

Taking Advantage of Adabas Features | 81
The higher-level rule containing the FORALL should either have an ON signal...
exception or the access statement should take the form FORALL.....UNTIL signal.
The examples below show a combination of rules for narrowing access by
descriptor.

When the value of FIELD1 changes, the loop terminates and processing continues
at the next rules statement.

RULE EDITOR ===>
 ADATEST
 _
 _ ---
 _ ---
 _ FORALL TABLEA WHERE FIELD1 >= ABCD UNTIL END_OF_DATA:
 _ CALL TEST_FOR_END;
 _ CALL PROCESS_TABLEA;
 _ END;
 _ ---

 RULE EDITOR ===>
 TEST_FOR_END;
 _
 _ ---
 _ TABLEA.FIELD1 > 'ABCD'; | Y N
 _ --+----
 _ SIGNAL END_OF_DATA; | 1

Compensation for Performance Degradation

Using descriptor indexes can slow the performance since TIBCO Object Service
Broker tries to balance two factors when getting the external data. TIBCO Object
Service Broker compensates by reducing either of the following:

• The amount of work the external database is asked to do

• The communications overhead

This reduction is achieved by sending a request for data with the response being a
block of data from the external database. The maximum size of the data in this
block is approximately 3.9 KB. As a result, one message in response to the TIBCO
Object Service Broker rules code can contain many rows of data.
 TIBCO Service Gateway for Files SDK User’s Guide

82 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
In the previous example, more rows could have been read from Adabas than
required. To be efficient as possible, you are provided with the option of
predefining the number of rows that are returned in response to TIBCO Object
Service Broker rules code.

Defining Effective ADA Tables
Follow these recommendations to create well designed ADA tables:

• If you select all the fields in a periodic group and none of them are descriptors,
set the MU/Special Field in Grp field to N. This optimizes the processing of
the Adabas commands issued.

• For all Adabas fields of format A (Alphanumeric) that contain only uppercase
data and no significant trailing blanks, set the Syn field for both external field
syntax (default X) and the TIBCO Object Service Broker (Metadata Definition)
syntax (default V) for the field to C (character).

This simplifies data access in coding the rules and is also useful for
descriptors, superdescriptors, or subdescriptors.

• Use TIBCO Object Service Broker syntax P rather than B for Adabas fields
defined externally as syntax P. Also ensure that the lengths are the same.

• Although TIBCO Object Service Broker can store an Adabas P5 data value to a
TIBCO Object Service Broker B4 field, you can avoid the unnecessary
conversion overhead on each record retrieved by using identical syntax on
both sides of the field definition.

• Set the Occurs/Read (occurrences per read) field (default 5) to the most
appropriate value for your data.

This field determines how many occurrences of a repeating data structure are
asked of Adabas for in a single access. If you know that there are always 12
occurrences, set the value to 12, if always 3, set it to 3. If you are uncertain
whether there are more often 12 or 10, set it to 12. It is better to overestimate,
in order to minimize the number of accesses to the file.

Using the SERVER=>EE Block field to limit the number of occurrences accessed in
one case can have a detrimental effect on other accesses to that ADA table by
increasing the overhead of the message traffic. Refer to Specifying ADA Table
Header Fields on page 56 for the description of the SERVER=>EE Block field.
TIBCO Service Gateway for Files SDK User’s Guide

Taking Advantage of Adabas Features | 83
Coding Efficient Adabas Accesses
In general, an efficient data-access design via Natural is also efficient in TIBCO
Object Service Broker, since both generate direct calls and send them to Adabas
for resolution. Although both can optionally do some additional evaluation of the
found set returned from Adabas, it is more efficient in both cases for Adabas to do
the work wherever possible. This is especially true for sorting returned items and
is true of virtually all databases.

Preserving Data Sequence in FORALL Statements
When data sequence is important, code FORALL statements appropriately. It is
possible that the same FORALL statement, retrieving the same number of
similarly structured rows from either Adabas or TDS using the same table
definition, returns the data in a different sequence from each database. This
occurs because Adabas returns data in descriptor index sequence, if the search
expression uses one, whereas the same search on TDS returns data in primary-key
sequence, which is the ISN in the case of Adabas.

Optimized access for a TDS table can exhibit different behavior from optimized
access for an Adabas table.

Remember that in general:

• The TIBCO Object Service Broker GET is equivalent to Adabas FIND FIRST.

• The TIBCO Object Service Broker FORALL is equivalent to Adabas READ or
FIND.

Follow these recommendations for coding efficient TIBCO Object Service Broker
Adabas accesses:

• Ensure that all accesses to Adabas are done in browse mode, unless you want
to update data.

• This ensures that no locks are taken by Adabas, so that the data is not
requested in update mode.

• Use the UNTIL statement to end searches.

Except for accesses using the equality (=) operator, a search (for example greater
than or equal to (>=)) can trigger a long running request. To avoid this, you
should always consider including an UNTIL clause in the FORALL statement to
end the search and stop issuing requests to Adabas.
 TIBCO Service Gateway for Files SDK User’s Guide

84 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
This usually does not matter, as long as the same set of records is returned;
normally the same operations are carried out on all records retrieved. However, if
the record sequence is important, there are two possible solutions:

• Insert a condition at the top of the rule to determine (based on the value of the
LOCATION parameter for the table) whether for each execution of the rule
the access should be to local TDS or remote Adabas data. Replicate the
FORALL loop and add an ORDERED clause to the one to be used to access
TDS.

• Define the field to be used for access as a secondary index on the TDS table, so
that the behavior matches that found in the Adabas access.

Using LIKE and NOT EQUAL with Other Operators
Use the TIBCO Object Service Broker Partial Match LIKE operator and the NOT
EQUAL (¬= or NOT =) operator only in combination with other operators. There
is no direct command equivalent to these operators in Adabas, so using them
alone forces a full sweep of all records in the file to satisfy the request. Using them
with additional arguments enables Adabas to return a much smaller found set to
TIBCO Object Service Broker.

For example:

FORALL CLIENTS WHERE LNAME NOT EQUAL 'Smith' AND AreaCode='905'

or

FORALL CLIENTS WHERE LNAME LIKE 'Mac*' AND AreaCode='905'

The equality (=) operator is applied first to retrieve each occurrence with
AreaCode equal to 905 and then the NOT operator is applied before the data is
passed on to the Execution Environment.

Reducing CPU Consumption
The only area in which consumption of CPU can be affected is in the table
definition. Use the following techniques in your TIBCO Object Service Broker
tables to optimize system performance:

• Bind the table definition in a production environment.

• Avoid defining a single table consisting of a large number of fields. It is better
to define a number of small tables rather than one larger one. This can help
avoid unnecessary processing overhead and additional fields can easily be
added at any time as required.

• Define only the fields that are required in the ADA table definition. This
reduces the work to be done to access, process, and convert the required fields
TIBCO Service Gateway for Files SDK User’s Guide

Taking Advantage of Adabas Features | 85
and increase the number of occurrences contained in a given message,
reducing the communications overhead.

• Ensure that the external field definitions and the TIBCO Object Service Broker
field definitions specify identical syntax. It is better to have Adabas perform
data conversion, since it must convert from its internal storage format to the
predefined external format anyway.

Understanding Adabas Direct Calls Generated from TIBCO Object Service
Broker

The TIBCO Object Service Broker
Statement... Is Equivalent to Adabas...

GET TABLE WHERE FIELD = value FIND FIRST (S1)

FORALL TABLE WHERE FIELD = value FIND (S1 + L1’s)

FORALL TABLE WHERE FIELD >= value READ (L3’s from a start value
until EOF)

FORALL TABLE WHERE FIELD >= value
AND FIELD <= value

FIND (S1 + L1’s)

FORALL TABLE UNTIL signal READ PHYSICAL (L2’s) of whole
file

GET TABLE WHERE ISN = value GET ISN (L1)

GET TABLE WHERE FIELD = value FIND FIRST (S1)
 TIBCO Service Gateway for Files SDK User’s Guide

86 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
Handling of Errors

This section explains how TIBCO Object Service Broker requests are handled with
respect to the following:

• Synchronization and recovery

• Exception handling

Synchronization and Recovery
Synchronization and recovery are governed by the following:

• Adabas locks are not requested when the TIBCO Object Service Broker
transaction is running in browse mode and updates on Adabas data cannot be
performed.

• When a TIBCO Object Service Broker transaction ends successfully, an Adabas
CL (Close) command is issued, causing Adabas locks to be released. An
Adabas CL implies an ET (End Transaction) command. ET is equivalent to a
TIBCO Object Service Broker commit point.

• When a TIBCO Object Service Broker transaction ends unsuccessfully, an
Adabas BT (Backout Transaction) command is issued, immediately followed
by a CL, causing the Adabas updates to be backed out and the locks to be
released.

• Intermediate COMMIT and ROLLBACK requests are not supported because
the locking architecture of TIBCO Object Service Broker and Adabas is
fundamentally different. While TIBCO Object Service Broker frees locks at the
end of a transaction, Adabas frees locks at COMMIT (ET) or ROLLBACK (BT).

Data Integrity
Fail Safe level-1 processing is supported to ensure data integrity when updating
both TIBCO Object Service Broker and a single Adabas database from within one
TIBCO Object Service Broker transaction.

If you did not request Fail Safe processing, transactions that update both Adabas
and TIBCO Object Service Broker data can result in discrepancies if abnormal
termination occurs during the transaction end processing. Refer to Implementing
Fail Safe Processing on page 40 for more information.

COMMITLIMIT exception does not apply to ADA tables. Adabas update requests
are passed to Adabas as they are encountered. They are not held in the TIBCO
Object Service Broker intent list.
TIBCO Service Gateway for Files SDK User’s Guide

Handling of Errors | 87
Data integrity cannot be assured when updating TIBCO Object Service Broker
and multiple Adabas databases, because Adabas does not support updates to
multiple databases with integrity.

Exceptions
The TIBCO Object Service Broker runtime environment signals system exceptions
to enable an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catch all exception. Each exception traps the exceptions that
appear below it in the hierarchy.

All errors encountered when accessing Adabas data are trapped under one of the
following exceptions:

To ensure data integrity, only one Adabas database should be updated within a
single TIBCO Object Service Broker transaction.

ERROR An error is detected and no lower-level exception handler is coded in the
application.

ACCESSFAIL A table access error is detected.

GETFAIL – No occurrence satisfies the selection criteria. The Adabas error
code 14 raises this exception.

INSERTFAIL – The primary key provided for an INSERT statement already
exists. The Adabas error code 10 raises this exception.

INTEGRITYFAIL An attempt to violate data integrity is detected.

LOCKFAIL An attempt was made to read more occurrences with Adabas’s primary
exclusive lock. Restructure your application to take fewer locks in a
transaction, run in browse mode so locks are not taken, or increase the
NISNHQ parameter.

SERVERBUSY A new transaction requested an instance of the server processing the
request, but none is available. Control is passed back to the rule, giving the
rule the opportunity to try the transaction again. If this exception is raised
too often, consider requesting more server instances or reviewing the
amount of work being done in your transactions.
 TIBCO Service Gateway for Files SDK User’s Guide

88 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
See Also TIBCO Object Service Broker Programming in Rules for more information about
system exceptions.

@SERVERERROR
You must pass @SERVERERROR the contents of RETURN_MESSAGE, which has
the following format:

S6BADnnnx serverid serveruserid source: Message

The following table describes the variables necessary to pass the
RETURN_MESSAGE contents to @SERVERERROR:

If a specific message has some information that is required to process the error,
the table driven approach to the execution of @SERVERERROR causes a rule
(specified for that error by the developer using @SERVERERROR) to execute. The
error message is interpreted in the @SERVERERROR processing and put into a
temporary table until required.

SERVERERROR A request was made to Adabas and Adabas returned an error code that
does not map to one of the specific TIBCO Object Service Broker exceptions.
The ON SERVERERROR handler should call @SERVERERROR to parse the
error message (contained in ENDMSG).

Refer to @SERVERERROR on page 88 for more information.

SERVERFAIL A transaction was in progress when the connection to the server servicing
the request was broken, or the server failed. Control is passed back to the
rule, giving the rule responsibility for transaction cleanup.

nnn The Adabas external message number.

x The message severity (E for error, W for warning, and I for information).

serverid The ID of the server servicing the request.

serveruserid The user ID (IDPREFIX + ###) of the server.

source The code portion that trapped the error and returned the message (for example,
CSECT, rule, or function).

Message The actual error message text.
TIBCO Service Gateway for Files SDK User’s Guide

Handling of Errors | 89
Customization of Error Handling

To customize error handling, you must update data in the @SERVERMSGCNTL
control table. The definition of this table is owned by TIBCO Object Service Broker
and must not be modified. The data is owned by the users.

Processing of Table

Here is how the table is processed when the SERVERERROR exception is raised
and the @SERVERERROR rule is called by your application:

1. @SERVERERROR reads the @SERVERMSGCNTL table and looks up the
specific message identifier handlers.

2. The appropriate message handler looks up the external error codes in the
correct control tables.

3. If any codes are found, they call the associated user-written handler.

4. The user-written handler can use other functions and data stored in specific
tables to handle any specific external error/status code.

@SERVER ERROR can be called at any time, although it is useful only for parsing
TIBCO Object Service Broker messages generated due to external Adabas errors.
The original message can always be retrieved using the @SE_MSG rule after
@SERVERERROR is called. The information parsed by @SERVERERROR has
transaction scope.

You can add your own instances in the @SERVERMSGCNTL table, provided that
the OWNER specified begins with letters A to Z, and the key values in their
instance are message identifiers in the form S6BADnnnx mentioned above.

@SERVERERRORADA
Use the @SERVERERRORADA rule to reformat the message returned from a
SERVERERROR exception.

The @SERVERERRORADA rule populates the fields of a temporary table
@SERVERERRORADA by breaking up the returned message string into
individual fields. For example, it places the message number into field MSG_ID
and the thread ID into the field MSG_THREAD.

See Also TIBCO Object Service Broker Shareable Tools for more information on the
@SERVERERROR and RETURN_MESSAGE tools.
 TIBCO Service Gateway for Files SDK User’s Guide

90 | Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
TIBCO Service Gateway for Files SDK User’s Guide

| 91
Chapter 6 Configuring Accesses to CA Datacom Data

This chapter describes how to configure the accesses to CA Datacom data, how to
connect the server to a Data Object Broker, and how to start and stop the server.

Topics

• Accessing CA Datacom Data, page 92

• Supported Configurations, page 93

• Preparations for Installation, page 94

• Prerequisites for the CA Datacom Environment, page 96

• Populating Data Dictionary Tables, page 96

• Defining the CA Datacom Environment, page 97

• Startup Parameters, page 98

• Startup Prerequisites, page 99

• Startup Prerequisites, page 99

• Startup of the Server, page 101

• Shutdown of the Server, page 103

• Connection to a Windows or Solaris Data Object Broker, page 106
TIBCO Service Gateway for Files SDK User’s Guide

92 | Chapter 6 Configuring Accesses to CA Datacom Data
Accessing CA Datacom Data

Access to CA Datacom data is only supported via the Service Gateway for Files
SDK. After the SDK has been installed, you need to define the appropriate tables
to facilitate the manipulation of the CA Datacom data, then write the rules or use
tools to process the data. Your applications used to access the CA Datacom data
are comprised of table definitions and rules.

The access uses the CA Datacom User Requirement Tables (URT) to connect to the
CA Datacom environment. All CA Datacom I/O uses the Multi-User Facility.

You use the components below to access CA Datacom data from TIBCO Object
Service Broker:

Component Function

DATACOM shareable tool To extract CA Datacom metadata and generate or manage
TIBCO Object Service Broker DAT table definitions.

Workbench DAT Table Definer To create TIBCO Object Service Broker DAT table
definitions on the basis of the metadata extracted from CA
Datacom Data Dictionary through the DATACOM
shareable tool. Also, to view or edit all existing DAT table
definitions.

UI DAT Table Editor To create TIBCO Object Service Broker DAT table
definitions on the basis of a COBOL copybook. Also, to
view or edit all existing DAT table definitions.

DAT Server To access CA Datacom data when TIBCO Object Service
Broker data access is requested for a DAT table.

CA Datacom User Requirement
Table (URT)

To connect to the CA Datacom environment.
TIBCO Service Gateway for Files SDK User’s Guide

Supported Configurations | 93
Supported Configurations

The Data Object Broker and the server can be configured to reside on the same or
different domains and operating systems (z/OS, Windows, and Solaris). The
server must be on the same domain as the CA Datacom database system.

Once your environment is set up you can access CA Datacom data while having
equal access to TIBCO Object Service Broker’s tables of other types.
TIBCO Service Gateway for Files SDK User’s Guide

94 | Chapter 6 Configuring Accesses to CA Datacom Data
Preparations for Installation

This section describes the steps to take in preparation for installation.

Installation of the TIBCO Object Service Broker Base Component
You must install the TIBCO Object Service Broker base component before
configuring the server. The base component can reside on z/OS, Windows, or
Solaris. Installation instructions are in the TIBCO Object Service Broker for z/OS
Installation and Operations and TIBCO Object Service Broker for Open Systems
Installing and Operating manuals.

Installation of the Server
Installation instructions for the Service Gateway for Files, which includes the
SDK, are located in TIBCO Object Service Broker Managing External Data. The
Datacom server is shipped as part of the SDK.

Implementation of TIBCO Object Service Broker Security
You can implement security for the server using standard TIBCO Object Service
Broker security: To restrict access to DAT tables after they are defined, proceed
with security as for any TIBCO Object Service Broker table.

CA Datacom Security Considerations
The server places the user ID in positions 4 through 11 of the User Information
Block (UIB). When the X option is specified in the DEBUGPARMS field in the
@SERVERDEBUG(DAT) table, the literal PXX is placed in positions 1 through 3 of
the UIB. Additionally, user impersonation takes place if the startup parameter
SECLEVEL is set to 1.

Refer to Specifying the Startup Parameters on page 119.

Fail Safe Processing Considerations
To guarantee consistency when updating both TIBCO Object Service Broker TDS
data and CA Datacom data in a single transaction and through a single instance of
the server, you can use Fail Safe Level 1 processing.

For more information, refer to Implementing Fail Safe Processing on page 126.
TIBCO Service Gateway for Files SDK User’s Guide

Preparations for Installation | 95
Communications Requirements
If all components reside in the same domain and in authorized libraries, Cross
Memory Services is used for communications. In all other cases, TCP/IP is used
for communications.

See Also TIBCO Object Service Broker for z/OS Installation and Operations for detailed
information about TIBCO Object Service Broker communications.

TIBCO Object Service Broker Messages with Identifiers for information on messages
produced by the server.

TIBCO Object Service Broker Security for information on security for tables.
TIBCO Service Gateway for Files SDK User’s Guide

96 | Chapter 6 Configuring Accesses to CA Datacom Data
Prerequisites for the CA Datacom Environment

You must complete the following tasks for your CA Datacom environment before
you can access the CA Datacom data:

• Generate the CA Datacom User Requirements Tables.

• Optionally, populate the Data Dictionary tables.

• Define the CA Datacom environment.

For details, see the following sections.

Generating the CA Datacom User Requirements Table
The server can use multiple URTs to access your data. Those URTs are loaded at
runtime and must, therefore, reside in one of the load libraries available to the
server. You must ensure that any URTs that you provide have DBNTRY as the
main entry point.

Populating Data Dictionary Tables
Before defining the CA Datacom environment, you might want to extract some
metadata from the CA Data Dictionary into TIBCO Object Service Broker. Use the
DATACOM interactive tool to extract the metadata of your choice.

Also, you can run the extraction as a separate job. Member DCOMDEXT in the
JCL data set contains the JCL for extracting metadata from CA Datacom Data
Dictionary tables into TIBCO Object Service Broker.

The interactive DATACOM tool can be used for extracting metadata from CA
Datacom Data Dictionary only if your TIBCO Object Service Broker runs on z/OS.
In other cases (Windows or Solaris), your only choice is running the DCOMDEXT
JCL as a separate job on z/OS with the TDS parameter denoting your TIBCO
Object Service Broker.
TIBCO Service Gateway for Files SDK User’s Guide

Prerequisites for the CA Datacom Environment | 97
Defining the CA Datacom Environment
The CA Datacom Master List and the URT must be properly defined before the
server can run.

Defining the Master List

The following parameter must be set to control the CA Datacom environment:

Defining the User Requirement Table

Set the following parameters for the URT:

Your URT must have DBNTRY as the primary entry point (use the linkage editor's
ENTRY DBNTRY control statement). Also, you can provide multiple URTs. For
details, see Adding URT Names on page 117.

TASKS Specifies the maximum number of tasks that can operate concurrently within
CA Datacom. Each server that is running uses one task.

Parameter Macro Description

OPEN=USER DBURINF Indicates that the server is responsible for the open and close
processing of the URT.

URTABLE=ASM DBURINF Indicates that the CA Datacom macros are assembled as one
object when the URT is generated.

TIMEMIN=0,
TIMESEC=1

DBURSTR Indicates that control is to be returned to the caller immediately
upon a failed attempt to lock a row. This behavior is essential for
the TIBCO Object Service Broker DAT Server’s ability to signal
the LOCKFAIL exception when appropriate; the CA Datacom
default behavior is a “wait forever” condition.

TXNUNDO=YES DBURSTR Indicates that all tables described in this URT use logging when
modified (see UPDATE=YES), so TIBCO Object Service Broker's
ROLLBACK statement can be carried out against tables of type
DAT mapped to them (CA Datacom will commit data if
TXNUNDO=YES is not specified).

UPDATE=YES DBURTBL Indicates that the caller can modify the rows in this table. Also,
callers that issue CA Datacom’s SELxx commands (TIBCO
Object Service Broker DAT Server falls into this category) require
UPDATE=YES. See the CA Datacom documentation for details.
TIBCO Service Gateway for Files SDK User’s Guide

98 | Chapter 6 Configuring Accesses to CA Datacom Data
Startup Parameters

Once your environment is ready to access the CA Datacom data, you need to
specify the server startup parameters. You specify these parameters on the EXEC
statement in the startup JCL for the server, in a data set, or both.

Startup Parameters in the EXEC Statement
Include parameters in any order (up to 100 bytes). The following example shows
sample parameters specified on the EXEC statement in the startup JCL:

//DCOMGTW EXEC PGM=S6BDR000,
// REGION=0M,
// PARM=(’TDS=SAMPDOB’)

Startup Parameters in a Data Set
Include parameters in any order, one per record or comma-separated, beginning
in column one, and ending with a blank or a comma. An asterisk (*) in column
one indicates a comment record. The data set must be defined as follows:

• DDNAME HRNIN

• Allocated FB LRECL=80

The following example shows sample parameters specified in a data set:

//HRNIN DD *
SERVERS=3
SERVERTYPE=DAT
SERVERID=DATACOM1,IDPREFIX=DCOM

If you specify parameters in both the EXEC statement and a data set, EXEC
statement parameters override data set parameters.
TIBCO Service Gateway for Files SDK User’s Guide

Startup Prerequisites | 99
Startup Prerequisites

If the Data Object Broker is on z/OS and Dynamic Resource Creation is not
permitted (Data Object Broker Parameter DYNAMICRESOURCE = N) the server must
be identified to the Data Object Broker in a permanent resource. To do this, define
server resources to the Data Object Broker’s resource management repository file.

If the Data Object Broker is on z/OS and Dynamic Resource Creation is permitted
(Data Object Broker Parameter DYNAMICRESOURCE = Y) and there is no matching
permanent resource, a dynamic resource entry matching the servers requirements
will be created when the server connects to the Data Object Broker. If there is a
permanent entry for the server it must match the requirements for the server. It is
recommended that all permanent entries for Datacom servers are deleted from
the repository when dynamic resource creation is permitted.

Default Resource Settings (z/OS only)
Use the Resource Management option (option 3) available from the
Administration control group of the TIBCO Object Service Broker Administration
Menu. You need to use the Resource Details (PF5) and the Resource Schedules
(PF10) screens to specify the connection attributes. To get to the Resource Detail
screen you must first specify a type (SERVERTYPE) and group (SERVERID) on
the Resource Type screen.

The following table illustrates the attributes for SERVERID=DEFAULT.

If the FSLEVEL startup parameter equals 1 the COMMIT LEVEL value on the
Resource Detail screen must also be set to 1.

See Also TIBCO Object Service Broker for z/OS Installation and Operations for more
information on defining and managing resources, and the Administration Menu.

Resource Details
Resource
Schedule

Intermediate
Rollbk

Early
Release

Last User
Reuse

Commit
Level

Online
Only

Y Y N 0 N
TIBCO Service Gateway for Files SDK User’s Guide

100 | Chapter 6 Configuring Accesses to CA Datacom Data
Customization of the Startup Batch JCL
The CA Datacom load libraries must be part of the STEPLIB. Both the CA
Datacom and TIBCO Object Service Broker load libraries should be authorized. A
sample JCL for starting the server is distributed with TIBCO Object Service Broker
as member DCOMSJCL in the JCL data set.
TIBCO Service Gateway for Files SDK User’s Guide

Startup of the Server | 101
Startup of the Server

To start the server, bring up a Native Execution Environment using the startup
parameters described in Specifying the Startup Parameters on page 119.

When you start an instance of a server, you are connected to both CA Datacom
and TIBCO Object Service Broker. When the Execution Environment requests
access to CA Datacom data, a thread to CA Datacom is established.

See Also • TIBCO Object Service Broker Messages with Identifiers for information on
messages produced by the server

• TIBCO Object Service Broker Parameters for information on Execution
Environment parameters

Dynamic Startup
If the number of server instances is insufficient to process transaction requests,
unsatisfied requests receive a SERVERBUSY signal. You can dynamically increase
the number of server instances without restarting the Execution Environment by
using the MODIFY operator command from the z/OS operator console.

The format of the MODIFY command is:

MODIFY ee_jobname,STARTNUMSERVER=nn,TYPE=DAT

ee_jobname The name of the batch job under which the Execution Environment
is running.

nn The number of new server instances to start. Can be from one to a
value less than or equal to the value set in the Maximum
Connection Count field in your network configuration.

DAT Type of server to start.
TIBCO Service Gateway for Files SDK User’s Guide

102 | Chapter 6 Configuring Accesses to CA Datacom Data
Maximum Number of Server Instances
You can also use the following MODIFY command to dynamically set the
maximum number of server instances available in a particular Execution
Environment. The command format is:

MODIFY ee_jobname,SETNUMSERVER=nn,TYPE=DAT

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more
information on increasing the number of server instances.

ee_jobname The name of the batch job under which the Execution Environment
is running.

nn The maximum number of server instances available for this
particular Execution Environment. This number can be from one to
a value less than or equal to the value set in the Maximum
Connection Count field in your network configuration.

DAT Type of server instances to be made available.
TIBCO Service Gateway for Files SDK User’s Guide

Shutdown of the Server | 103
Shutdown of the Server

This section describes how to shut down the server.

Shutdown of a Single Server
If the server and the Native Execution Environment where it is running must be
shut down, shut down the server first, followed by the Native Execution
Environment. For more information, refer to Shutdown of the Native Execution
Environment on page 103.

You can shut down a server in one of two ways:

• Using the z/OS MODIFY command

• Using the RESOURCE MANAGEMENT option from the Administration
menu (S6BTLADM utility) (z/OS only)

The MODIFY Command

The format of the MODIFY command is:

MODIFY dob_jobname,STOPSERVER=idprefix

The RESOURCE MANAGEMENT Option

Use the RESOURCE MANAGEMENT option from the Administration menu to
shut down either one server or a group of instances of the server.

Shutdown of the Native Execution Environment
To shut down a Native Execution Environment, ensure that all users are logged
out and then issue one of the following commands from the z/OS operator
console:

dob_jobname Name of the batch job under which the Data Object Broker is
running.

idprefix The unique name of the server. The server creates this name by
appending a three-digit number to the IDPREFIX parameter
specified in the server startup JCL. The default is DAT. To view
the unique name assigned to existing servers, select the
RESOURCE MANAGEMENT option from the Administration
menu.
TIBCO Service Gateway for Files SDK User’s Guide

104 | Chapter 6 Configuring Accesses to CA Datacom Data
• P ee_jobname

• MODIFY ee_jobname,Shutdown

where

Closing and Opening of URTs
Specific URTs can be closed and re-opened via the console MODIFY command. The
command syntax is:

MODIFY dob_jobname,SERVERCOMMAND=servertype,serverid,command

Example 1

MODIFY PRODDOB,SERVERCOMMAND=DAT,DATACOM1,CLOSEURT=URT5000

This command instructs all the DAT server instances with serverid DATACOM1 to
issue a CLOSE for URT5000. Access to URT5000 is blocked until an
OPENURT=URT5000 is issued. If a server has a transaction active and using
URT5000, the Data Object Broker completes the transaction before sending the
command to the server.

Example 2

F PRODDOB,SERVERCOMMAND=DAT,DATACOM1,OPENURT=URT5000

This command instructs all the DAT server instances with serverid DATACOM1
group to mark URT5000 as available so it can be opened on the next database
access.

Example 3

F PRODDOB,SERVERCOMMAND=DAT,*,URTSTATUS

This command instructs all the DAT server instances to display the status of all
the URTs in each individual instance.

P z/OS operator command (Stop).

MODIFY z/OS operator command (can be abbreviated to F).

ee_jobname The name of the batch job or started task used to start the Native
Execution Environment.
TIBCO Service Gateway for Files SDK User’s Guide

Shutdown of the Server | 105
Shutdown of a Group of Instances of the Server
You can also use one of four variations of the MODIFY operator command to shut
down a group of instances of the server:

• Shut down all the DAT server instances:

MODIFY dob_jobname,STOPSERVER=ALLDAT

• Shut down all the server instances with a common IDPREFIX:

MODIFY dob_jobname,STOPSERVER=idprefix*

• Shut down all the server instances with a common SERVERID:

MODIFY dob_jobname,STOPSERVER=SRVIDserverid

• Shut down one or more DAT server instances without shutting down the
Execution Environment:

MODIFY ee_jobname,STOPNUMSERVER=nn,TYPE=DAT

where

See Also TIBCO Object Service Broker for z/OS Installing and Operating for information on:

• Shutting down various types of Execution Environments

• The Administration menu RESOURCE MANAGEMENT option

dob_jobname The name of the batch job under which the Data Object Broker is
running.

ee_jobname The name of the job under which the Execution Environment is
running.

nn The number of server instances to stop. This number can be from
one to a value less than or equal to the value set in the Maximum
Connection Count field in your Resource Management network
configuration. For more information, refer to TIBCO Object
Service Broker for z/OS Installing and Operating.

DAT The type of server to stop.
TIBCO Service Gateway for Files SDK User’s Guide

106 | Chapter 6 Configuring Accesses to CA Datacom Data
Connection to a Windows or Solaris Data Object Broker

You can configure the Data Object Broker and the server to reside on different
domains and operating systems (z/OS, Windows, or Solaris). The server must be
in the same domain as the CA Datacom database system.

The following configuration steps are required to access a Data Object Broker
from a different operating environment than your server:

• Configure the TCP/IP connection on the z/OS system where your server and
CA Datacom database reside. Note: You must code the keepalive attribute as
part of the description of your TIBCO Object Service Broker node.

• Configure the TCP/IP connection on the machine where your TIBCO Object
Service Broker for Open Systems resides.

• Specify the number of servers that can connect to the Data Object Broker.

• Specify the appropriate server parameters.

• If the code page of the data in your CA Datacom database is different than
IBM-037, refer to National Language Support for External Database Servers in
the TIBCO Object Service Broker National Language Support manual.

Sample Configuration
The following diagram shows a sample configuration.
TIBCO Service Gateway for Files SDK User’s Guide

Connection to a Windows or Solaris Data Object Broker | 107
Configuration of the TCP/IP Connection on z/OS
Prepare the TIBCO Object Service Broker relay file–RELAYCFG member in the
CNTL data set. This file associates the TIBCO Object Service Broker
communications identifier with the TCP/IP application addressing information.

Following is an example of the input:

<relay xmlns="http://www.tibco.com/OSB/relayparms.xsd">
 <tcpipparms tcbnum="3" maxtcbsockets="50" />
 <directory>
 <node name="OST01">
 <tcpip host="123.23.123.9" port="12000" keepalive="600" />
 </node>
 </directory>
</relay>

See Also • TIBCO Object Service Broker for z/OS Installation and Operations for detailed
information about preparing the TIBCO Object Service Broker relay file.

• TIBCO Object Service Broker Parameters for details about the parameters and
how to specify them.

Configuration of the TIBCO Object Service Broker TCP/IP Environment
Add the following parameters for the TCP/IP connection to the Data Object
Broker directory file, huron.dir:

The element and attribute names in the relay file are case sensitive.

name This must be the same value as the node name set in the relay
file described in Configuration of the TCP/IP Connection on
z/OS on page 107.

host The name of the host machine where the TIBCO Object Service
Broker monitor process listens for connections.

port The number of the TIBCO Object Service Broker monitor
socket port.
TIBCO Service Gateway for Files SDK User’s Guide

108 | Chapter 6 Configuring Accesses to CA Datacom Data
Number of Server Instances Connecting to the Data Object Broker
Specify the MAXDBMS parameter in the crparm file for your Data Object Broker:

Server Parameter
Specify the TDS parameter in the HRNIN DD statement for startup. Refer to
Specifying the Startup Parameters on page 119 for more details about specifying
server parameters.

See Also TIBCO Object Service Broker Installation and Operations for the procedures on how
to prepare the TIBCO Object Service Broker relay file and how to specify the
parameters.

MAXDBMS This must be equal to or greater than the value specified in the
SERVERS= parameter HRNIN DD statement for startup.

TDS This must be the same value as the node name set in the relay
file described in Configuration of the TCP/IP Connection on
z/OS on page 107.
TIBCO Service Gateway for Files SDK User’s Guide

| 109
Chapter 7 Operational Requirements for CA Datacom
Access

This chapter provides information about the operational requirements to access
CA Datacom data from TIBCO Object Service Broker.

Topics

• Extracting CA Datacom Table Information, page 110

• Binding DAT Table Definitions, page 114

• Understanding Space Requirements, page 115

• Implementing Security, page 116

• Adding URT Names, page 117

• Specifying the Startup Parameters, page 119

• Dynamically Changing the Parameters, page 123

• Adding Server Instances, page 125

• Implementing Fail Safe Processing, page 126

• Performing Other Operational Procedures, page 128
TIBCO Service Gateway for Files SDK User’s Guide

110 | Chapter 7 Operational Requirements for CA Datacom Access
Extracting CA Datacom Table Information

Use the TIBCO Object Service Broker tool DATACOM to extract metadata from
CA Datacom Data Dictionary and generate TIBCO Object Service Broker DAT
definitions. Note that the extractor only handles one-element CA Datacom tables
and cannot generate multiple-element DAT table definitions.

Use TIBCO Object Service Broker tools to create and manipulate the TIBCO
Object Service Broker DAT table definition, as follows:

• The screen-based definer, available as part of the 3270 Workbench, enables
you to generate TIBCO Object Service Broker table definitions of type DAT on
the basis of the metadata extracted from CA Datacom Data Dictionary. You
can inspect and modify definitions, including multiple-element ones, through
the screen-based definer.

• The UI DAT table editor, available as part of the TIBCO Object Service Broker
UI, enables the creation and manipulation of DAT table definitions, including
multiple-element ones, on the basis of a COBOL copybook available as a text
file at definition time. For details, refer to TIBCO Object Service Broker UI
Online Help.

You can use the Workbench table definer and the UI table editor against a
definition any number of times in any order.

Before defining TIBCO Object Service Broker DAT tables through the
screen-based definer, you must extract the CA Datacom metadata to make it
available for the definition process.

Prerequisites
Before you can extract CA Datacom information, the CA Datacom Multi-User
Facility must be running, but the server does not need to be.

The extracted CA Datacom table definition information is stored in a TIBCO
Object Service Broker TDS table. Because the data is static, you must re-extract the
table information whenever changes are made to new or existing CA Datacom
table definitions.

Only those CA Datacom tables that include an element spanning the entire row
can be processed by the extractor.
TIBCO Service Gateway for Files SDK User’s Guide

Extracting CA Datacom Table Information | 111
To run the extractor as a job in a separate address space, first do the following:

1. Customize the contents of the @SCHEDULEMODEL(MVS,DCOMDEXT)
table instance (the JOB name and the names of the libraries in the STEPLIB
concatenation).

2. Ensure that you are running your TIBCO Object Service Broker Workbench
session in a TSO Execution Environment.

To run the extractor in-process, ensure that the STEPLIB library used by the
Execution Environment includes the CA Datacom LOAD library (CAAXLOAD or
CABDLOAD) and the CA Datacom URT library (CUSLIB) in its concatenation.

Extraction of Table Information
To extract the table information:

1. Run the DATACOM tool with the execute rule option on the workbench.

A Table Management Facility screen appears similar to the following:

TIBCO OSB Facility for DAT-type Table Definition Management

_ Manage TIBCO OSB DAT-type table definitions

 _ Extract CA-Datacom metadata

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

2. On the displayed screen, position your cursor beside the Extract CA-Datacom
metadata menu option and press Enter.

At install time, the @SCHEDULEMODEL(MVS,DCOMDEXT) and
@SCHEDULESAMPLE(MVS,@DCOMDEXT) table instances contain identical
data. After modifying the former, you can use the latter for reference. If
maintenance needs to be applied in the future, TIBCO Object Service Broker will
deliver the changes to @SCHEDULESAMPLE(MVS,@DCOMDEXT) only.
TIBCO Service Gateway for Files SDK User’s Guide

112 | Chapter 7 Operational Requirements for CA Datacom Access
An Extract screen appears similar to the example shown:

--
| Extract CA-Datacom table metadata. Enter: |
| - name for a single table, or |
| - partial* where partial represents 0 to 31 first |
| characters of the table name (e.g. ACC*, *), or |
| - ALL (or *) for all tables. |

 --

 CA-Datacom table name : ________________________________

CA-Datacom DD Userid : ________________________________

 CA-Datacom DD Password: ____________

 PFKEYS: 12=EXIT 3=EXIT ENTER=PROCESS

3. In the CA-Datacom table name field, type one of the following:

— The dictionary name of a CA Datacom table

— ALL for all available CA Datacom tables

— partial* for all the tables whose name starts with partialname, where partial
is 0 to 31 characters long

4. In the CA-Datacom DD Userid field, type a valid CA-Datacom Data
Dictionary user ID.

5. If you do not specify a user ID, the default user ID specified during
installation of CA Datacom is used.

6. In the CA-Datacom DD Password field, type the CA-Datacom Data
Dictionary password that corresponds to the user ID entered in the previous
field.

If you do not specify a password, the default password specified during
installation of CA Datacom applies.

7. Press Enter.

The extractor is invoked and produces an extract report similar to the one
below.
TIBCO Service Gateway for Files SDK User’s Guide

Extracting CA Datacom Table Information | 113
2006-10-02 GENERATED DATACOM TABLES FROM DATADICTIONARY USERA

 ______ACTION TABLE_________________________ _ID'S__ ELEMENT EXCEPTIONS__________________________________
 SELECTED SYSAUTHOBJ 00015 AOB AOBRW DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSCOLAUTH 00015 ACL ACLRW DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSCONSTRDEP 00015 CND CNDEL DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 NOT SELECTED SYSCONSTROBJ 00015 CNO NO ELEMENT SPANNING ENTIRE RECORD
 SELECTED SYSCONSTRSRC 00015 CNS CNSEL DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSDBAUTH 00015 ADB ADBRW DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSPLANAUTH 00015 SPA SQLEL DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSPRIVDEP 00015 SPD SQLEL DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 SELECTED SYSTABAUTH 00015 ATB ATBRW DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 NOT SELECTED SYSTEM 00002 SYS NO ELEMENT SPANNING ENTIRE RECORD
 SELECTED SYSVIEWDEP 00015 VWD VWDEL DUPLICATE MASTER KEY - OPTIMIZED GENERATED
 NOT SELECTED TEXT 00002 TXT NO ELEMENT SPANNING ENTIRE RECORD
 NOT SELECTED TRIGGER 00002 TRG NO ELEMENT SPANNING ENTIRE RECORD
 NOT SELECTED TTM-TABLE 00017 TTM NO ELEMENT SPANNING ENTIRE RECORD

If you are running the extraction in a TSO session, the
@SCHEDULEMODEL(MVS,DCOMDEXT) table instance, which you must
customize for your site, spawns a separate job and thus determines where the
extract report is sent. Otherwise, a child transaction is executed and the resulting
log is available to you via PF2 upon termination.

Extract Report
The extract report shows the following information on the CA Datacom tables
whose metadata has been extracted:

• The names of selected tables whose definitions are now stored within TIBCO
Object Service Broker

• The names of the tables not selected and why they were not selected (for
example, the CA Datacom table does not have an element name spanning the
entire row)

• The names of the tables that enable duplication of the master key
TIBCO Service Gateway for Files SDK User’s Guide

114 | Chapter 7 Operational Requirements for CA Datacom Access
Binding DAT Table Definitions

You can bind a DAT table definition, but not its data. Refer to Task C: Add Control
Information on page 147 for information on binding. DAT tables for which you
request binding are bound to both the Execution Environment and the server
when they are accessed from a rule.

Rebinding

If you change a definition, it is automatically rebound in the server.
TIBCO Service Gateway for Files SDK User’s Guide

Understanding Space Requirements | 115
Understanding Space Requirements

You can specify the maximum amount of space available to hold all DAT table
definitions by using the POOLSIZE server startup parameter. Refer to Specifying
the Startup Parameters on page 119 for more information.

See Also TIBCO Object Service Broker Application Administration for more information on
binding tables.
TIBCO Service Gateway for Files SDK User’s Guide

116 | Chapter 7 Operational Requirements for CA Datacom Access
Implementing Security

Security can be implemented at both the CA Datacom and TIBCO Object Service
Broker levels of access:

CA Datacom • If the server Startup Parameter SECLEVEL is 0, the server
passes information on the user in the User Information Block
(UIB). The user ID is in positions 4 through 11 of the UIB.

If you specify the X option in the DEBUGPARMS field in the
@SERVERDEBUG(DAT) table, the literal PXX is inserted in
positions 1 through 3 of the UIB to denote that additional
statistics are to be collected. CA Datacom security can make
use of those statistics. For details, see Specifying the Startup
Parameters on page 119.

• If the server Startup Parameter SECLEVEL is 1, the CA
Datacom security is handled as follows:

— Users of a rules-based application that will access Datacom
tables must invoke the rule SET_DAT_SEC(userid, password)
from their sessions, setting the user credentials to be passed
to the server.

— When first allocated to a particular transaction, the server
instance accepts those credentials and creates or modifies a
respective ACEE. All the subsequent CA Datacom calls
within the boundaries of the current transaction are carried
out on behalf of the user identified by those credentials.

— As long as the caller does not invoke rule SET_DAT_SEC
again, any server instance allocated to this caller uses the
same user credentials when communicating with CA
Datacom.

— It is only at the transaction boundary that the server accepts
new user credentials set by the caller by invoking rule
SET_DAT_SEC.

TIBCO Object Service Broker To restrict access to the DAT tables after they are defined, proceed
with security as for any TIBCO Object Service Broker table. For
details, see the TIBCO Object Service Broker Managing Security
manual.
TIBCO Service Gateway for Files SDK User’s Guide

Adding URT Names | 117
Adding URT Names

You can define multiple URT names for use in a server group identified by a
server ID. These URTs are loaded into memory when the server is first initialized.
You can also add a new URT name to a server without recycling it.

Populating the URT Table
In the @DATACOM_URTS TDS table, parameterized by a server ID, define the
URT names for use in a server associated with this server ID. Populate the table
with all possible CA Datacom DBIDs.

Example TDS Table

EDITING TABLE :
@DATACOM_URTS (DATACOM1)

 DBID URTNAME
------------- ----------
 10 URT010
 11 URT010
 5000 URT5000

Determining the URT to Use
At startup, each server instance uses the multiple-URT method, that is, it attempts
to load the URTs referred to in the @DATACOM_URTS(serverid) table. If the latter
is empty, the server uses the single-URT method. When the single-URT method is
activated, the server cannot use the multiple-URT method until the next session.
When loading a URT, the server searches the STEPLIB concatenation of load
libraries first and then the load library denoted by the HRNEXTR DD statement.

A URT name can be associated with one or more DBIDs; all URT modules named
in the table must reside in the libraries referenced in either the STEPLIB or
HRNEXTR DD statement. Refer to Closing and Opening of URTs on page 104.

If you need to associate a new URT name to a server, add the new entry to the
@DATACOM_URTS(serverid) table. The new entry is automatically picked up by
the server, which does not require recycling.
TIBCO Service Gateway for Files SDK User’s Guide

118 | Chapter 7 Operational Requirements for CA Datacom Access
URT in the Table Definition Method

When a table is accessed that has a URT name associated with it, that URT will be
loaded into the server address space and marked as open.

Example 1

+DATACOM1 Starting CA-DATACOM Server DCOM001
+DATACOM1 Starting CA-DATACOM Server DCOM001
+DATACOM1 Starting CA-DATACOM Server DCOM001
+DATACOM1 DCOM002 URT name URT010 successfully loaded
+DATACOM1 DCOM001 URT name URT010 successfully loaded
+DATACOM1 DCOM002 URT name URT5000 successfully loaded
+DATACOM1 DCOM000 URT name URT010 successfully loaded
+DATACOM1 DCOM001 URT name URT5000 successfully loaded
+DATACOM1 DCOM000 URT name URT5000 successfully loaded
+DATACOM1 DCOM001 URT=URT010 STATUS=AVAILABLE
+DATACOM1 DCOM000 URT=URT5000 STATUS=AVAILABLE
+DATACOM1 DCOM001 URT=URT5000 STATUS=AVAILABLE
+DATACOM1 DCOM000 URT=URT010 STATUS=AVAILABLE
+DATACOM1 DCOM002 URT=URT5000 STATUS=AVAILABLE

At the first database call, the server loads or locates among the already loaded
URTs the corresponding URT and uses the same URT for the duration of the
transaction. A CA Datacom OPEN is issued and the URT is marked as open and
remains open, until it is specifically closed or the server is shut down.

Example 2

The URT5000 in server USR01002 is opened.

+DATACOM1 DCOM002 URT=URT010 STATUS=AVAILABLE
+DATACOM1 DCOM002 URT=URT5000 STATUS=OPEN
+DATACOM1 DCOM001 URT=URT010 STATUS=AVAILABLE
+DATACOM1 DCOM000 URT=URT5000 STATUS=AVAILABLE
+DATACOM1 DCOM001 URT=URT5000 STATUS=AVAILABLE

Multiple-URT Method

When the server starts up, all the URT names specified in the
DATACOM_URTS(serverid) table are loaded into the server address space and
marked as available. This indicates that the URT is loaded and left unopened.

Single-URT Method

Look for a URT named after the server ID. If one does not exist, look for a URT
named S6BDATDB.
TIBCO Service Gateway for Files SDK User’s Guide

Specifying the Startup Parameters | 119
Specifying the Startup Parameters

You can specify parameters on the EXEC statement of the startup JCL, in a data
set, or both.

Available Parameters
The available parameters are as follows:

IDPREFIX Required. The server appends three decimal digits to this prefix and uses the
result, which uniquely identifies each instance of the server, to log in to TIBCO
Object Service Broker. An IDPREFIX can have up to, or will be truncated down
to, five characters.

SERVERID Required. This parameter identifies a pool of server instances with common
characteristics. If you run multiple address spaces to start up servers with the
same SERVERID, ensure that the FSLEVEL and TRXDB parameters are assigned
the same values in each of these jobs.

A SERVERID can have up to eight characters and you must specify one when
you are defining a DAT table. The SERVERID specified in a DAT table definition
allocates a suitable server instance to your transaction when accessing the CA
Datacom data with this table definition.

The SERVERID parameter can be overridden at runtime. Refer to Dynamically
Changing the Parameters on page 123 for more information.

SERVERS Required. The number of server instances to be attached to the server address
space at startup. This number can be from one to a value less than or equal to the
value set in the Maximum Connection Count field in your network
configuration. The default value is 1.

SERVERTYPE Required. The type of server to be initialized. For CA Datacom the value is DAT
and it must be specified.

TDS Required. The Communications Identifier of the Data Object Broker for the
server to attach to.
TIBCO Service Gateway for Files SDK User’s Guide

120 | Chapter 7 Operational Requirements for CA Datacom Access
FSLEVEL (FSL) This parameter specifies the level of Fail Safe processing. The default value is 0.
The valid values are as follows:

1 – Activate Fail Safe processing. The server informs the Data Object Broker that
it can support Fail Safe level-1 processing. If the server is to attach to a z/OS
Data Object Broker, the Data Object Broker’s connection attribute setting
“commit level” must be set to 1. If not, the server connection is rejected. Refer to
Implementing Fail Safe Processing on page 126 for more information. You must
specify the TRXDB parameter.

0 – Deactivate Fail Safe processing. The server informs the Data Object Broker
that it does not support Fail Safe level-1 processing. If the server is to attach to a
z/OS Data Object Broker, the Data Object Broker’s connection attribute setting
“commit level” must be set to 0. If not, the server connection is rejected. Refer to
Implementing Fail Safe Processing on page 126 for more information.

POOLSIZE This parameter sets the amount of space (in kilobytes) to hold DAT table
definitions in the server. This parameter can be 4 KB through16384 KB. The
default value is 256 KB. An estimate of the number of DAT tables that can be
accessed in a single transaction is POOLSIZE divided by CTABLESIZE. Refer to
Estimating the CTABLESIZE Parameter on page 121 for more information.

SECLEVEL The valid values are 0 (default) and 1.

If SECLEVEL=0 or 1, the server passes to CA Datacom the caller’s TIBCO Object
Service Broker user ID in positions 4 through 11 of the User Information Block
(UIB).

If SECLEVEL=1, the server “impersonates” a CA Datacom client, as follows:

1. The TIBCO Object Service Broker caller passes to the server the credentials
(user ID and password) of the CA Datacom client.

2. The server verifies those credentials with the operating system, which either
rejects them or creates an ACEE (system control block representing a user).

3. The server associates the ACEE with its own task control block and invokes
CA Datacom to process the caller’s request.

4. CA Datacom checks the ACEE-represented client’s rights with respect to the
resources required for the current request.

If any of the above actions fails, the server raises the SECURITYFAIL exception.
TIBCO Service Gateway for Files SDK User’s Guide

Specifying the Startup Parameters | 121
Estimating the CTABLESIZE Parameter
When you select CA Datacom fields as TIBCO Object Service Broker DAT fields,
the number of fields that you can access using a DAT table definition depends on
the CTABLESIZE Data Object Broker parameter. To estimate the number of bytes
required to support a specified number of fields, execute the following shareable
tool:

ESTIMATETBLDFN(num_fields)

You must supply one argument, which is the maximum number of fields accessed
by a DAT table in your system. The tool returns an estimate of the maximum
CTABLESIZE required (for each TIBCO Object Service Broker table type) to
support this number of fields.

Result of Executing ESTIMATETBLDFN for 50 fields.

----------------------------- INFORMATION LOG --------------------------------
COMMAND ===> SCROLL ===> P
DATE: Nov 28,2006 REPORT ON ESTIMATE CTABLESIZE
 FOR "50" FIELDS

Table Type CTablesize(K)
---------- -------------

ADA 5
DAT 7
DB2 5
IDM 6
IMS 6
MAP 4
SLK 4

SCOPE The valid values are SESSION (default) and TRANSACTION.

If SCOPE=TRANSACTION, all the URTs opened by a server instance during a
user’s transaction are closed at transaction end. Otherwise, all those open URTs
stay open until explicitly closed by MODIFY … SERVERCOMMAND (see
Closing and Opening of URTs on page 104) or until the end of the session.

If CA Datacom MUF’s number of tasks is limited, consider specifying
SCOPE=TRANSACTION to release a task as quickly as possible. However, if
you repeatedly execute the same transaction in the server, specifying
SCOPE=SESSION might result in optimal performance.

TRXDB This parameter is required only if FSLEVEL=1. Specify the database number of
the CA-Datacom transaction database used to log Fail Safe records. The default
value is 888.
TIBCO Service Gateway for Files SDK User’s Guide

122 | Chapter 7 Operational Requirements for CA Datacom Access
TDS 3

PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL

See Also • TIBCO Object Service Broker Parameters for information about parameters.

• TIBCO Object Service Broker for z/OS Installing and Operating for more
information about network connections.
TIBCO Service Gateway for Files SDK User’s Guide

Dynamically Changing the Parameters | 123
Dynamically Changing the Parameters

You can change the parameters dynamically, as described in this section.

Table Type Attributes
When a table is defined, attributes specific to external DBMS table types are held
in the @SERVERPARMS control table, which is parameterized by table name.
Regarding the external environment, each occurrence in the table specifies a value
(such as SERVERID and SERVERTYPE) for the table.

Following is a sample @SERVERPARMS(PAYROL) control table:

TABLE : @SERVERPARMS(PAYROL)
 COMMAND ==>
 SCROLL:
 NUMBER NAME TYPE SYNTAX LENGTH DECIMAL DEFAULT USAGE
 _ ----------- ---------------- - - ------ ------ - -
 _ 1 SERVERID I C 8 0 . C
 _ 2 SERVERTYPE S C 3 0 . T
 _ 3 DATACOMNAME S C 3 0 . D
 _ 4 DBID Q B 2 0 . I
 _ 5 ELMNAME S C 5 0 . E
 _ 6 OPTIMIZE L C 1 0 . O
 _ 7 LENGTH Q B 2 0 . L
 _ 8 NAME S C 32 0 . N
 _ 9 VERSION Q V 8 0 . V
 _ 10 URTNAME S C 8 0 . U

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

Use the SETXPARM and RESETXPARM tools to modify the SERVERID.
Modifying this parameter reduces the number of table definitions required to
define the external data. The changes are stored in either of the following tables:

The changes are in effect for the duration of the session until SETXPARM is
invoked again or when the overrides are reset.

Examples Using SETXPARM and RESETXPARM
The following example sets the SERVERID for all DAT tables to TORONTO:

CALL SETXPARM('TABLETYPE', 'DAT', 'SERVERID', 'TORONTO', '');

@SRVRPRMS_TYP Manages global changes to the table type.

@SRVRPRMS_TBL Manages specific changes to an individual table.
TIBCO Service Gateway for Files SDK User’s Guide

124 | Chapter 7 Operational Requirements for CA Datacom Access
The following example resets the SERVERID for DAT tables to the Table Definer
default value:

CALL RESETXPARM ('TABLETYPE', 'DAT', 'SERVERID', '');

See Also TIBCO Object Service Broker Shareable Tools for detailed descriptions of the
SETXPARM and RESETXPARM tools.
TIBCO Service Gateway for Files SDK User’s Guide

Adding Server Instances | 125
Adding Server Instances

The number of instances of the server attached to the server address space is
specified in the server startup JCL. If you require additional instances of the
server, do one of the following:

• Shut down the server and start it again with an increased number of instances,
using the SERVERS startup parameter.

• Start another instance of the server with the same SERVERID but with a
different IDPREFIX.

• Use the z/OS MODIFY command to dynamically add the server to an existing
server Execution Environment. For more information, refer to Dynamic
Startup on page 101.
TIBCO Service Gateway for Files SDK User’s Guide

126 | Chapter 7 Operational Requirements for CA Datacom Access
Implementing Fail Safe Processing

Fail Safe level 1 processing guarantees consistency when you update both TIBCO
Object Service Broker TDS and CA Datacom data from a single instance of the
server in the same transaction.

Transaction Processing
At the end of a transaction, the Data Object Broker requests that the server
commit any outstanding updates. As part of the CA Datacom commit processing,
the server updates a CA Datacom transaction database to record the fact that the
commit was successful. If the server does not respond to the Data Object Broker in
a reasonable amount of time, the transaction is flagged as being in doubt. Locks
held on TDS data remain in place until the problem is resolved.

When a connection is re-established between the Data Object Broker and an
instance of the server with the same configuration as the one that failed, the Data
Object Broker asks the server if the in-doubt transaction completed. The server
checks the CA Datacom transaction database to determine this. If the update was
completed in CA Datacom, the TDS updates are applied and the locks are
released.

Implementation Procedure
For each CA Datacom environment with at least one instance of the server
running with Fail Safe processing, complete the following tasks:

1. Update CA Datacom Data Dictionary on page 127

2. Promote the CA Datacom Data Dictionary update on page 127

3. Update the CA Datacom CXX data set on page 127

4. Allocate and initialize the CA Datacom transaction database on page 127

These tasks are described in detail in the following sections.

You can resolve in-doubt transactions only by starting an instance of the server
with parameter settings that are exactly the same as the server in use at the time
the transaction is placed in doubt.
TIBCO Service Gateway for Files SDK User’s Guide

Implementing Fail Safe Processing | 127
Task A Update CA Datacom Data Dictionary

Member DCOMUDD in the JCL data set contains the JCL to update CA Datacom
Data Dictionary with TIBCO Object Service Broker Fail Safe definitions. It reads
member CNTL(XDCOMBTG), which contains data dictionary and database
specifications. Complete the following step:

1. Submit DCOMUDD.

It should end with RC=0.

Task B Promote the CA Datacom Data Dictionary update

Member DCOMUDD1 in the JCL data set contains the JCL to promote into
production the CA Datacom Data Dictionary update performed by step
DCOMUDD. Complete the following step:

1. Submit DCOMUDD1.

It should end with RC=0.

Task C Update the CA Datacom CXX data set

Member DCOMCXX in the JCL data set contains the JCL to update the CA
Datacom CXX data set with TIBCO Object Service Broker Fail Safe definitions.

Complete the following steps:

1. Submit DCOMCXX.

It should end with RC=0.

Task D Allocate and initialize the CA Datacom transaction database

To allocate and initialize the CA Datacom transaction database in the CA
Datacom environment, you must run the appropriate CA Datacom utilities.
Ensure that the transaction table is also referenced in the URT for the server.

See Also TIBCO Object Service Broker for z/OS Managing Backup and Recovery for more
information on Fail Safe processing

You should backup your CXX data set before performing this update.
TIBCO Service Gateway for Files SDK User’s Guide

128 | Chapter 7 Operational Requirements for CA Datacom Access
Performing Other Operational Procedures

This section describes other operational procedures.

Using Distributed Data with the Server
Distributed access between TIBCO Object Service Broker and CA Datacom is
permitted subject to requirements of all distributed access. This illustration shows
a sample TIBCO Object Service Broker CA Datacom distributed-data scenario:

Displaying the Status of the Server
Use the RESOURCE MANAGEMENT option from the Administration menu
(S6BTLADM utility) (z/OS only) to display the status of your server. The sample
screen below shows an example of the type of information displayed for resource
type DAT.

TIBCO Object Service Broker

CA-Datacom Data

#1

Data Object Broker

#2

Data Object Broker

Execution Environment

TIBCO
Gateway
for Datacom
TIBCO Service Gateway for Files SDK User’s Guide

Performing Other Operational Procedures | 129
Resource Detail

 S6BADM33 DCOMSRV RESOURCE DETAIL FOR DAT DEFAULT 2007MAR20 21:59:38

 INTERMEDIATE ROLLBK Y EARLY RELEASE Y LAST USER REUSE N COMMIT LEVEL 0
 RETRY INTERVAL 0 TP NAME USER ID PREFIX FAILURES 0
 NODE MMMSYSTEMA01 INDOUBTS N MONITOR/SMF Y

 CONNECTIONS IN-USE TRX MESSAGE
 CUR MAX LMT CUR MAX COUNT COUNT
 ONLINE 0 0 0 0 0 0 0
 COMMON 0 0 100 0 0 0 0

 SCHEDULE NAME DEFAULT

 APPLICABLE DAYS EXCEPTION START ONLINE CONNECTIONS
 MON TUE WED THR FRI SAT SUN DATE TIME ONLY MAX
 Y Y Y Y Y Y 00:00 N 100

 ENTER-PATHS PF2-TYPE PF4-GROUP PF5-PEER PF9-START PF10-SCHEDULES PF11-UPDATE
 NO MORE DATA TO BE DISPLAYED

Debugging Rules and Applications
Using the TIBCO Object Service Broker Rule Debugger you can identify and fix
errors within your application. You can also make and test certain ad hoc changes
to your rules. The Debugger stops the rules execution at events that you specify in
the Debug screen.

CBS Trace

To turn on the CBS Trace in CA Datacom, include the X option in the DEBUGPARMS
field in the @SERVERDEBUG(DAT) table. SERVERID is the primary key value for
this table. This records runtime information in the CA Datacom PXX.

SERVERID Parameter

To view only trace information associated with your rules, you require a
dedicated server. This can be accomplished using the SERVERID parameter. To
change the server ID of a DAT table definition to an alternate dedicated server ID,
execute the CHANGE_SERVERID tool as follows:

CHANGE_SERVERID(table_name,old_serverid,new_serverid)
TIBCO Service Gateway for Files SDK User’s Guide

130 | Chapter 7 Operational Requirements for CA Datacom Access
You can view the information included in the PXX Trace using the standard CA
Datacom PXX reporting utility.

See Also • Refer to TIBCO Object Service Broker Parameters for information about
parameters.

• TIBCO Object Service Broker Application Administration and TIBCO Object
Service Broker for z/OS Installing and Operating for more information on
distributed access, and on the RESOURCE MANAGEMENT option of the
Administration menu.

• TIBCO Object Service Broker Programming in Rules for more information on
the Rule Debugger.

Debugging Server Problems
To show CA Datacom errors as they are returned from CA Datacom or problems
processing the requests in the server, add one or more of the following values in
the field DEBUGPARMS in the @SERVERDEBUG(DAT) table. SERVERID is the
primary key value for this table.

A Prints resource usage statistics at the end of the transaction (for example,
CPU time or table access calls).

C Logs every CA Datacom return code in the trace. Use this value only for
support activities.

D Dumps CA Datacom specific work areas such as area, work area, request
qualification area, element list, and user information when an unexpected
CA Datacom return code is encountered. You should always specify this
value. Contact your CA Datacom database administrator for
interpretation.

E Logs non-CA Datacom errors when the server cannot convert data. You
should always specify this value.

F Causes the server to close all its tables at each synchronization point, while
the server continues to run. Use of this option can cause significant server
wait time as CA Datacom opens and closes the files. If the files are still in
use by other users, the wait time is minimal.

I Logs the messages received by the server. Use only for support activities.

O Logs the messages sent by the server. Use only for support activities.
TIBCO Service Gateway for Files SDK User’s Guide

Performing Other Operational Procedures | 131
Reporting Problems
Refer to How to Contact TIBCO Support on page xx for information about
reporting problems with the server to TIBCO Support.

Have the following information available when reporting server related problems
to TIBCO Support:

• DAT table definition(s) and sample data.

• Listings of all the TIBCO Object Service Broker Datacom control tables.

• Server job log and control cards.

• Output from the server trace (if applicable).

P Records trace information to SYSOUT. If not specified, the trace
information is recorded in the @DATTRACE TIBCO Object Service Broker
table.

T Logs the requests received by the server.

X Turns on CBS trace in CA Datacom. Reports can then be produced
analyzing CA Datacom access path usage. The first three characters of the
User Information Block are set to $$$. This causes additional recording of
CBS runtime information in the CA Datacom PXX.
TIBCO Service Gateway for Files SDK User’s Guide

132 | Chapter 7 Operational Requirements for CA Datacom Access
TIBCO Service Gateway for Files SDK User’s Guide

| 133
Chapter 8 Defining the Accesses to CA Datacom

This chapter describes how to define the TIBCO Object Service Broker DAT tables
for accessing the CA Datacom data.

Topics

• Overview, page 134

• Task A: Define a DAT Table, page 135

• Task B: Define Fields for the DAT Table, page 140

• Task C: Add Control Information, page 147

• Task D: Document the DAT Table, page 152
TIBCO Service Gateway for Files SDK User’s Guide

134 | Chapter 8 Defining the Accesses to CA Datacom
Overview

To access CA Datacom data from TIBCO Object Service Broker, you must define a
TIBCO Object Service Broker table of type DAT. A DAT table can have one or
more CA Datacom fields as fields, up to 16 CA Datacom fields as the composite
primary key, and an optional location parameter.

To define a DAT table, complete the following tasks

1. Task A: Define a DAT Table on page 135

2. Task B: Define Fields for the DAT Table on page 140

3. Task C: Add Control Information on page 147

4. Task D: Document the DAT Table on page 152
TIBCO Service Gateway for Files SDK User’s Guide

Task A: Define a DAT Table | 135
Task A: Define a DAT Table

There are three methods of defining a DAT table:

• Use the Workbench Table Definer.

• Use the TIBCO Object Service Broker UI.

• Use the DATACOM tool to generate DAT table definitions.

Invoking the Table Definer
Invoke the Table Definer from the workbench using the DT define table option or
the primary command field. You can modify an existing definition or define a
new DAT table. Use the DATACOM tool to specify the initial values for your
definition.

Accessing Existing Tables
To display the definition of an existing DAT table from the workbench, do one of
the following:

• Type the name of an existing table beside the DT define table option and press
Enter to display its definition.

• Type the name of an existing table in the primary command field, for example:

DT PERSONNEL<Enter>.

• Move the cursor to the DT define table option and press Enter to display the
Object Manager screen, which contains a list of existing tables.

Scroll through this list to see which table you require. To select a table, type S
beside the name and press Enter.

See Also TIBCO Object Service Broker Getting Started for more information on the Object
Manager.

Defining a New Table
To define a new table, complete the following steps:

An instance of the server does not have to be running to define a DAT table, as the
information that you extract in Extraction of Table Information on page 111 is
stored in a TIBCO Object Service Broker TDS table.
TIBCO Service Gateway for Files SDK User’s Guide

136 | Chapter 8 Defining the Accesses to CA Datacom
1. Type the name of a new DAT table beside the DT define table option or in the
primary command field and press Enter.

A TDS definition template appears.

2. Change the Type field at the top of the screen from TDS to DAT and press
Enter.

A Table Definition screen appears similar to the following:

 COMMAND==> TABLE DEFINITION

 Table: PERSONNELD Type: DAT Unit: USR40

 ServerId:
 URT Name:

 Dictionary Name:
 Cobol Copybook:
 DataCleansing:

Datacom Table Attributes

 DBID:
 Internal Name:
 Duplicate Key:

 Element List:

 PFKEYS: 1=HELP 4=CORE 5=EXTENSIONS 13=PRINT 3=SAVE 22=DELETE 12=CANCEL
TIBCO Service Gateway for Files SDK User’s Guide

Task A: Define a DAT Table | 137
Fill in the fields, as follows:

Table If the definition is generated using the DATACOM tool, this field displays
the table name supplied by default; otherwise, the field is blank. The default
is the name of the CA Datacom table converted to a valid TIBCO Object
Service Broker name. Modify the default name as required.

A valid entry is a character string up to 16 characters, beginning with a letter
(A-Z) or a special character ($ or #), and continuing with more letters, special
characters, digits (0-9), or underscore characters (_).

A table name starting with an @ symbol denotes a table supplied by TIBCO
Object Service Broker.

Type The table type DAT that you changed in Defining a New Table on page 135.

Unit The user unit associated with the table. To modify this field, use the Core
screen. Refer to Task C: Add Control Information on page 147 for more
information.

ServerId The ID for the server or group of servers associated with the table. This ID
must match the SERVERID parameter specified in the server JCL. Refer to
Specifying the Startup Parameters on page 119 for more information.

URT Name Optional. The URT name. Ensure that a load module with this name and
default entry point DBNTRY is available to load for the server at runtime.

Dictionary Name Optional. The Data Dictionary name of the CA Datacom table to be
accessed. A valid entry is any valid CA Datacom table name. Press PF1 to
access a list of the CA Datacom tables loaded into TIBCO Object Service
Broker.

COBOL Copybook The fully qualified name of the file that contains the respective COBOL
copybook if you created this definition with the Eclipse UI-based definer.
You cannot modify this field.

DataCleansing Optional. The data-cleansing actions, if any, the server is to carry out. This
field is optional.

DBID Optional. The CA Datacom identification number for the CA Datacom
database that is being used.

Internal Name Required. The CA Datacom name that uniquely identifies the table within
the CA Datacom database being used.
TIBCO Service Gateway for Files SDK User’s Guide

138 | Chapter 8 Defining the Accesses to CA Datacom
The fields DBID, Internal Name, and Duplicate Key are filled in with default
information after you have entered the value of the Dictionary Name field. Refer
to Using the DATACOM Tool on page 138 for more information.

You can, however, manually enter or modify the DBID, Internal Name, and
Duplicate Key fields. You cannot enter or modify the value of the Element List
field.

Using the DATACOM Tool
Execute the DATACOM tool from the EX execute rule option on the workbench to
display the CA Datacom table management facility screen illustrated below. Use
this facility to generate a definition for your DAT table. See the screen in
Extraction of Table Information on page 111.

Generating a Definition

To display a list of CA Datacom tables available for mapping as TIBCO Object
Service Broker DAT-table definitions (that is, those CA Datacom tables whose
metadata has previously been extracted) and the existing DAT definitions, follow
these steps:

1. Position your cursor next to the “Manage TIBCO OSB DAT-type table
definitions” option and press Enter.

A list of tables appears.

2. Find the table you need, type G in the line command field, and press Enter.

3. In the SERVERID field (prompted), type the name of the server that you are
using.

4. Scroll through the list to the name of the new table, type S in the line
command field, and press Enter.

Using the Table Definer PF Keys

Use the following PF keys and their corresponding primary commands (or their
abbreviations) from the Table Definition screen.

Duplicate Key A value of Y if duplicate master keys are allowed for the CA Datacom table;
a value of N if only a single master key is allowed for the CA Datacom table.

Element List The CA Datacom element list used by the server at runtime when this table
is accessed. You cannot modify this field.
TIBCO Service Gateway for Files SDK User’s Guide

Task A: Define a DAT Table | 139
PF
Key

Primary
Command Description

1 HELP Displays Help for the Table Definer. Also displays a list of available
CA Datacom table names if you position your cursor on the DATACOM
Name field. You can select one table from this list.

2 DOCUMENT Displays the documentation screen, where you can document the
table definition. Refer to , Task D: Document the DAT Table, on
page 152 for more information.

3 SAVE Validates the definition information specified in the Table Definition,
Core, and Extensions screens. If valid, it returns you to the
workbench.

4 CORE Displays the Core screen, where you define control information for
your table.

5 EXTENSIONS Displays the Extensions screen, where you select the Datacom fields
that you want defined as fields in the DAT table.

12 CANCEL Cancels the changes to the definition and returns you to the
workbench.

13 PRINT Prints the definition of the table. You remain in the Table Definer.

22 DELETE Deletes the definition of the DAT table. You are prompted to confirm
the deletion.
TIBCO Service Gateway for Files SDK User’s Guide

140 | Chapter 8 Defining the Accesses to CA Datacom
Task B: Define Fields for the DAT Table

A field definition consists of both the TIBCO Object Service Broker and CA
Datacom definitions. The TIBCO Object Service Broker field definition is
extended by the CA Datacom field definition. Use the Extensions screen to define
the TIBCO Object Service Broker portion of the field definition.

Defining Fields
To define fields, press PF5 on the Table Definition screen. The following
illustration shows the leftmost portion of the screen. Press PF11 to view the CA
Datacom field information displayed to the right.

Editing Extensions Screen Fields
Fields in CA Datacom are not necessarily in the same sequence as in TIBCO
Object Service Broker.

Either type in or modify values directly or press PF2 to display the Fields screen
for the selection of fields. If you select the fields using the Fields screen, default
values are provided for the definition. You can modify the following fields:

• If you enter the Table Definer with the DATACOM tool, TIBCO Object Service
Broker and CA Datacom field values are provided in this Extensions screen.
Modify the TIBCO Object Service Broker field values as required;
modifications cannot be made to the CA Datacom values.

• If you entered the Table Definer directly, values are not provided unless you
are modifying an existing DAT table.

Specifies the position of the field in the table. You can re-order the fields by typing
new values in this field or you can delete the field by blanking out the number.
TIBCO Service Gateway for Files SDK User’s Guide

Task B: Define Fields for the DAT Table | 141
Name Specifies the field name. This name must be unique within the table.

There is no limit as to the number of fields you can name, either using the Table
Definer or generating the definition.

The number of fields you can select depends on the length of the sum of all fields,
primary keys, and parameters. This sum plus control information must be less than
or equal to 31,744 bytes.

A valid entry is a character string of up to 16 characters beginning with a letter (A - Z)
or a special character ($ or #), and continuing with more letters, special characters,
digits (0 - 9), or underscore characters (_), for example, DEPTNO.

Elmnt Elements are field collections that CA Datacom rows consist of. Enter the
five-character element name on this screen, once per element, in the line that
corresponds to the field with the lowest row offset (Xoff) within that element. When
you return to the table screen, the element list there will contain all the element names
you have entered.

Key The value that uniquely identifies each occurrence in the table. At least one field must
be defined as a primary key field. The primary key can be a single field or a
composite of up to 16 fields, with a maximum length of 127 bytes. For more
information, see Selecting Fields on page 143. The valid entries are as follows:

• P — Primary key.

• Blank — Non-key field.

Type Specifies the TIBCO Object Service Broker semantic data type of the CA Datacom
field. The valid entries are as follows:

• C — Count.

• D — Date.

• I — Identifier.

• L — Logical.

• Q — Quantity.

• S — String.

Refer to Translating Data Types on page 144 for information on the default mapping
of Datacom data types to TIBCO Object Service Broker semantic types and syntax.

Syn Specifies the TIBCO Object Service Broker syntax of the CA Datacom field. The valid
entries are B, C, P, V, F, W, UN, and RD.

Refer to Translating Data Types on page 144 for information on the default mapping
of Datacom data types to TIBCO Object Service Broker semantic types and syntax.
TIBCO Service Gateway for Files SDK User’s Guide

142 | Chapter 8 Defining the Accesses to CA Datacom
Len Specifies the TIBCO Object Service Broker length of the Datacom field, in bytes. Refer
to Translating Data Types on page 144 for the default mapping of Datacom data types
to TIBCO Object Service Broker semantic types and syntax.

Xsyn,
Xlen,
Xdec, and
Xoff

When reading or writing data from or to CA Datacom, the server converts the data
from or to the format described by these attributes. Exercise caution if you change
them.

Xsyn — TIBCO Object Service Broker’s external syntax mapping the CA Datacom
data type of the field in the CA Datacom table row.

Xlen — The length in bytes of the field in the CA Datacom table row.

Xdec — The number of digits to the right of the decimal point in the field in the CA
Datacom table row.

Xoff — The offset of the field in the CA Datacom table row. You cannot change this
value, which has been computed either by the metadata extractor or by the UI Table
Editor, depending on which of these two tools you used to generate the definition.

Datacom/
Copybook
Name

The name that originates from either the CA Data Dictionary or, if you created your
DAT definition through the TIBCO Object Service Broker Eclipse UI table definer,
from the COBOL copybook you used.

Dec Specifies the number of digits to the right of the decimal point. This field is relevant
only for syntax P. The valid entries are as follows:

• Syntax P — Value must be smaller than twice the length of the entire field.

• Syntax B, C, W, V — 0.

• Semantic type C — 0.

Req Specifies if the field is required. Any field can be a required field. By definition, a
primary key field is a required field. The valid entries are as follows:

• Y — Required. Every occurrence in the table must have a value for this field.
Inserting or editing an occurrence without valid values in required fields causes
an exception to be raised.

• N — Not required.

• Blank — Not required.
TIBCO Service Gateway for Files SDK User’s Guide

Task B: Define Fields for the DAT Table | 143
Using Extensions Screen PF Keys
Use the following PF keys from the Extensions screen:

Selecting Fields
From the sample Extensions screen shown in Defining Fields on page 140, use PF2
to display a listing of available fields for selection.

Type an S in the line command field of each field that you require. Press PF3 to
save the selection and return to the Extensions screen. Press PF12 to cancel and
return to the Extensions screen.

Reference If a table is to be referenced when a user is inserting or replacing a value in the field,
enter the name of a table that is to be referenced. The added or modified value must
exist as a primary key value in the referenced table or the action fails.

Reference checking is not done if a null value is given for a field that is not required
and does not have a default value. A valid entry is the name of any table except a
table of type SCR, RPT, or EXP; the primary key field on the table must hold the
values for the referenced field. The table cannot be parameterized.

Default If you specify a default value for a field and no data is provided, the default value is
used instead of a null value. A valid entry is any valid value for the field. If arithmetic
operations are to be performed on numeric fields of type Q or C, you must enter a
numeric default value such as 0.00; arithmetic operations cannot be performed on
data containing null values.

PF2 Displays the Fields screen used to select the Datacom fields.

PF3 Validates changes and, if valid, returns you to the Table Definition
screen.

PF12 Cancels changes and returns you to the Table Definition screen.
TIBCO Service Gateway for Files SDK User’s Guide

144 | Chapter 8 Defining the Accesses to CA Datacom
t of Fields in DATACOM Table PERSONNEL

S DATACOM Field Name MKS Off Type Sign Len Semantic
- -------------------------------- --- ---- - - --- --------
_ NUMBER 1 0 N N 5
_ NAME 0 5 C N 24
_ STREET-ADDRESS 0 29 C N 24
_ CITY-ADDRESS 0 53 C N 15
_ STATE-ADDRESS 0 68 C N 2
_ ZIP-CODE-LOC 0 70 C N 5
_ SOCIAL-SECURITY 0 75 D Y 5

 < Place “S” beside the item(s) you wish to have Selected on PF3 >

 PFKEYS: 3=SAVE 12=CANCEL

Note the following when selecting CA Datacom fields for a DAT table definition:

• Group fields and simple fields are available for selection. You must not have
overlapping fields in your DAT table definition. Use the fields Off and Length
to determine if fields are overlapping. Pressing PF3 from the Extensions
screen also validates for overlapping.

• The primary key of the DAT table must include all the master key fields of the
CA Datacom table, with no overlapping of fields. You can include both group
fields and simple fields in the primary key.

TIBCO Object Service Broker holds a maximum of 16 fields in a composite
primary key; however, you can use the Table Editor and the Table Browser
only on tables that have a maximum of eight fields.

• Component fields of a master key must have the same order in the primary
key. If the field is part of a master key, a value greater than 0 in the MKS field
indicates the sequence of the fields in the master key.

• Newly selected fields are placed last in the order of existing fields, and are
automatically numbered when you return to the Extensions screen.

Translating Data Types
The following table illustrates CA Datacom data types that can be converted to
TIBCO Object Service Broker syntax. Default translations are shown in the
following table.
TIBCO Service Gateway for Files SDK User’s Guide

Task B: Define Fields for the DAT Table | 145
CA Datacom TIBCO Object Service Broker

TYPE SIGN LENGTH Xsyn Syn Len Meaning
---- - ------- -- -- ----- ------------------------------------
B N 2 K B 3 halfword unsigned
B N 3 H V 6 time, HHMMSS
B N 4 K B 5 word, unsigned
B N 8 K B 9 doubleword, unsigned
B N 10 H V 20 timestamp, CCYYMMDDHHMMSSNNNNNN
B Y 2 B B 2 halfword, signed
B Y 4 B B 4 word, signed
B Y 8 B B 8 doubleword, signed
C N 327191 V V L char
D N 161 U P L packed, unsigned
D Y 161 P P L packed, signed
DATE N 4 H V 8 date, CCYYMMDD
E Y 16 F F 16 expanded float
G N 327181 UN UN L graphic
H N 327181 V V L hexadecimal, two-byte display
K N 327181 UN UN L Kanji, same as G
L Y 8 F F 8 long float
N N 311 M P L/2+1 zoned decimal, unsigned
N Y 311 N P L/2+1 zoned decimal, signed
RAW N 327191 H RD L+4 all "other" data types
S Y 4 F F 4 small float
Y N 327181 UN UN L DBCS, same as G
Z N 327191 W W L mixed (DBCS & SBCS)
2 N 2 K B 3 halfword, unsigned
2 Y 2 B B 2 halfword, signed
4 N 4 K B 5 word, unsigned
4 Y 4 B B 4 word, signed
8 N 8 K B 9 doubleword, unsigned
8 Y 8 B B 8 doubleword, signed

1The reported/assumed length of the CA Datacom field is less or equal to this number. The notation L
in the Len column refers to this length.

Translating Nulls
The CA Datacom interface used by TIBCO Object Service Broker has no concept
of nulls. As a result, the following translations occur:

• Numeric nulls are translated to zeros.

• String nulls are translated to spaces.

For more information on null processing within TIBCO Object Service Broker,
refer to the TIBCO Object Service Broker Programming in Rules manual.
TIBCO Service Gateway for Files SDK User’s Guide

146 | Chapter 8 Defining the Accesses to CA Datacom
Changing the Defaults
You can modify any attribute in the TIBCO Object Service Broker field definition
section of the Extensions screen. You can:

• Change the default order in which the fields appear, by typing new numbers
in the # field. When you are defining the order, specify the primary key(s) as
the first field(s).

• The other selected fields follow the primary key(s) in numeric order from top
to bottom of the list. Fields without numbers are deleted.

• Change the entry in the Name field to a new name to uniquely identify the
field within the DAT table.

• You can name a field the same as a field in another table; if you are moving
data between tables, giving the fields the same name simplifies the process.

• Change the TIBCO Object Service Broker semantic type (Type field) and
syntax (Syn field) of the field.

You can use any valid TIBCO Object Service Broker semantic type (except
date) and syntax (except floating point), provided the combination is valid.
Refer to the TIBCO Object Service Broker Programming in Rules manual for a
list of valid combinations.

Changing the TIBCO Object Service Broker field syntax can cause a
conversion error, since the server must convert each affected field of each row
to the new syntax as defined in the DAT Table Definition.
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Add Control Information | 147
Task C: Add Control Information

Use the Core screen to add or delete additional control information in your
definition. To access this screen, press PF4 from the Table Definition screen.

 CONTROL TABLE INFORMATION for DAT Table PERSONNELD
 UNIT IDGEN Fix Source Segment#
 -------- - - ---------------- ---
 USR40 N N 0

 PARAMETERS INFORMATION:
 # Name Class Type Synt Lgth Reqd Decimal Src Source Name
 - ---------------- - - - --- - --- - ----------------
 1 LOCATION L I C 16 0
 EVENTRULE INFORMATION: | ORDERING INFORMATION:
 # Type Access Rule | # Field Name Sequence
 --- - - ---------------- | --- ---------------- -

 PFKEYS: 4=ADD 16=DELETE 3=SAVE 12=CANCEL

Core Screen Field Entries
The top portion of the screen contains the following fields:

UNIT The user unit with which the table is associated is entered here by default. The
Unit marks the table as belonging to a particular application or to a logical unit.
This value can be changed. The default unit for your user ID is specified in your
TIBCO Object Service Broker user profile.

A valid entry is a character string up to eight characters long. Valid units can be
provided by your system administrator.

IDGEN Not used for DAT tables.

Fix Whether the table definition is bound (Y) or not bound (N). For more information,
refer to Binding DAT Table Definitions on page 114 and TIBCO Object Service
Broker Application Administration.
TIBCO Service Gateway for Files SDK User’s Guide

148 | Chapter 8 Defining the Accesses to CA Datacom
You can also enter the following types of information into this screen:

• Modifications to the default location parameter information

• Event rules

• Ordering criteria

Parameters
Use this section of the Core screen to define a location parameter for the DAT
table. A location parameter is required only if you want to access Datacom data
through a peer server associated with a different Data Object Broker (remote
node). If you do not require a location parameter, position your cursor in this
section and press PF16 to delete the parameter.

If you always access the CA Datacom table remotely, the node from which you
request the access can have either a minimal or a full definition.

Minimal Definition

A minimal definition consists of the following:

• The table name, which must be the same at both locations

• The location parameter, which must be the same at both locations.

The name of the remote node where the full definition is located must be
supplied through the use of the Default field, Src field, or Src and
Sourcename field. Data parameters are defined on the full definition, not a
minimal definition.

A minimal definition with a location parameter means you always access data at
a remote node. The table type specified in a minimal definition does not have to
match the table type of the full definition on the remote node.

Full Table Definition

A full definition with a location parameter indicates you can access data at either
the local node or a remote node.

Source Not used for DAT tables.

Segment# Not used for DAT tables.
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Add Control Information | 149
The table type specified in a full definition must match the data on the local node.
For example, a full definition of type TDS used to access TDS data on the local
node can also be used to access a DAT table with the same name on a remote
node.

See Also TIBCO Object Service Broker Managing Data for more information on location
parameters, event rules and minimal table definitions.

Event Rules
Using the event rule feature, you can provide additional controls over access to a
table. To provide these controls you define event rules based on defined accesses.
These accesses can be one of the following, for each rule:

Types

The event rules are always called when the table is accessed in the access type
specified. All the rules that apply to a specific access are executed in the order in
which they are entered in the event rule section. They cannot access tables on a
remote node. You can define two types of event rules, as follows:

W Any write access.

I Insert only.

R Replace only.

D Delete only.

G Any retrieval access.

Validation Verify the value of an occurrence when the table is being modified,
such as checking the validity of a field value

Trigger Cause additional processing to take place when a table is accessed. For
example, a trigger rule can be used to create an audit trail or update
other tables.
TIBCO Service Gateway for Files SDK User’s Guide

150 | Chapter 8 Defining the Accesses to CA Datacom
Fields

The event rule information is entered in the scrollable event rule section. To define
event rules, position your cursor in this section and press PF4. Complete the
following fields:

See Also TIBCO Object Service Broker Managing Data for more information on event rules.

Ordering Information
Although ordering of fields is possible, it is more efficient to use the ORDERED
clause on a retrieval statement. However, to add ordering to your definition, use
the scrollable ordering information section.

Line# Type in a line number, starting at 1 for the first line, with one event rule per line. The
line numbers must be numbered consecutively.

Type The type of event rule. The valid entries are as follows:

• V — Validation rule. No database updates are allowed during the validation
process. The rule must be a function that returns Y (yes), the validation was
successful, N (no), the validation was not successful, or a message explaining why
it was not successful.

• T — Trigger rule. No restrictions on coding other than that it must not be a
function, it cannot change the contents of the triggering row, and it cannot use the
TRANSFERCALL statement. Nested triggers are possible.

Access The type of access (or manipulation) to be performed on the data, causing the event to
be executed. See the table below for the valid entries.

Validation Rules Trigger Rules

W — Any Write (Insert, Replace, Delete) W- Any Write (Insert, Replace, Delete)

I — Only Insert I - Only Insert

R — Only Replace R - Only Replace

D — Only Delete D - Only Delete

G - Any Retrieval

Restrictions: You will not be able to issue a GET on a table if you specify ordering
in the table definition or on a GET statement.
TIBCO Service Gateway for Files SDK User’s Guide

Task C: Add Control Information | 151
Position your cursor in this section, press PF4, and enter the following in the
fields:

Core Screen PF Keys
Use the following PF keys in the Core screen:

Line# Type in a line number, starting at 1 for the first line, with one field per
line. Lines must be numbered consecutively.

Sequence Specify if the field is to be ordered in ascending or descending order.
Rows are normally returned in primary key order. Valid entries:

A Ascending.

D Descending.

blank Ascending.

Field Name Type the name of the field that is to be used for ordering.

PF3 Validates changes and, if valid, returns you to the Table Definition
screen.

PF4 Adds an initial entry into the section of the screen where your cursor is
positioned.

PF12 Cancels changes and returns you to the Table Definition screen.

PF16 Deletes an entry. Position your cursor on the appropriate entry and use
the key.
TIBCO Service Gateway for Files SDK User’s Guide

152 | Chapter 8 Defining the Accesses to CA Datacom
Task D: Document the DAT Table

Each table definition in TIBCO Object Service Broker has a Documentation screen
associated with it. You use this screen to create or modify documentation for the
table. To display the Documentation screen for a DAT table, press PF2 from the
Table Definer.

The sample screen below shows the Documentation screen associated with the
PERSONNELD table:

 DESCRIPTION OF TABLE PERSONNELD UNIT: USR40

 MODIFIED ON 20 JAN 2000 BY ACC CREATED ON 02 JAN 2000 BY USR40

 KEYWORDS: PERSONNEL
 SUMMARY : DATACOM TABLE CONTAINING EMPLOYEE DATA

 DESCRIPTION
 _ -
 _ This table contains all information on current employees.

 PFKEYS: 3=END 5=VIEW DOCUMENT 13=PRINT 12=EXIT

Field Values
The Table Definer updates some of the fields on this screen, but you must
maintain the KEYWORDS, SUMMARY, and DESCRIPTION fields. Complete these
fields as follows:

KEYWORDS Type individual words that briefly describe the table. These
words are used by the Keyword Search facility in TIBCO
Object Service Broker. This field is one line long and can
contain multiple entries, separated by commas or blanks.
TIBCO Service Gateway for Files SDK User’s Guide

Task D: Document the DAT Table | 153
PF Keys
The Documentation screen supports the following program function keys:

See Also TIBCO Object Service Broker Shareable Tools for more information on the SCRIPT
tool.

SUMMARY Type a one line summary of the DESCRIPTION field.

DESCRIPTION Type information about the table (for example, what its role is,
what it does, and how it works) using TIBCO Object Service
Broker SCRIPT commands. There is no limit to the amount of
information you can type in this field.

1 Displays corresponding help for the field or screen where your cursor
appears.

3 Saves changes and returns you to the Table Definer.

5 Toggles between browse and edit modes.

12 Cancels changes and returns you to the Table Definer.

13 Prints the version of the documentation that you are viewing.
TIBCO Service Gateway for Files SDK User’s Guide

154 | Chapter 8 Defining the Accesses to CA Datacom
TIBCO Service Gateway for Files SDK User’s Guide

| 155
Chapter 9 Using TIBCO Object Service Broker to
Process CA Datacom Data

This chapter provides information on how to access and process data in TIBCO
Object Service Broker DAT tables and to take advantage of CA Datacom features
in TIBCO Object Service Broker

Topics

• Processing the Data, page 156

• Using the Table Browser, page 157

• Using Rules, page 159

• Handling of Errors in the Server, page 162
TIBCO Service Gateway for Files SDK User’s Guide

156 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
Processing the Data

When you access CA Datacom data from TIBCO Object Service Broker, the
following occurs:

1. TIBCO Object Service Broker requests are translated into native CA Datacom
commands.

2. CA Datacom field data types are translated to the TIBCO Object Service
Broker field types defined in the DAT table.

You can access the data using either of the following methods:

• The Table Browser and Table Editor

• The rules language

The following sections describe the mechanisms available to process the data and
the procedures for taking advantage of the CA Datacom functionality and for
handling handle errors.

The initializer program for the server is passed a number of parameters. One of
these parameters instructs the program to attach a number of instances of the
server, allowing multiple servers in a single server address space. Each instance of
the server uses a CA Datacom thread to connect to CA Datacom. The thread is
disconnected only when the server is disconnected.

When CA Datacom data is requested, the server starts a FORALL. Data is sent to
the Data Object Broker in variable length buffers up to a maximum of 31 KB, as
shown in the following illustration. If a single request requires more than 31 KB of
data, multiple 31 KB buffers are sent until the request is complete.
TIBCO Service Gateway for Files SDK User’s Guide

Using the Table Browser | 157
Using the Table Browser

You can use the Table Browser to browse a defined DAT table by typing the table
name next to the BR browse table option and using Enter.

In the sample screen below, PERSONNELD is the name of the DAT table. The CA
Datacom data is presented to you in TIBCO Object Service Broker table format.

 BROWSING TABLE : PERSONNELD
 COMMAND ==>
 SCROLL: P
 NUMBER NAME POSITION MGR# DEPTNO SALARY
 _ ------ ---------------------- -------------- ------ ------ ---------
 _ 22001 DRABEK CUST SUPPORT 56112 30 900.00
 _ 22007 ROEDER CUST SUPPORT 56112 30 900.00
 _ 30058 HOEGSON PRE-SALES 37219 20 675.00
 _ 34111 TERAMURA PRE-SALES 37219 20 710.00
 _ 34121 LEES CUST SUPPORT 56112 30 700.00
 _ 36162 MORANG JR OPERATOR 44798 80 575.00
 _ 41001 CROFTON TECH WRITER 80002 70 675.00
 _ 41007 STEVENSON EDUCATOR 80002 60 700.00
 _ 41009 SMITH TESTER 79912 50 600.00
 _ 44385 SOUZA SALES 37219 10 719.00
 _ 44622 SAUNDERS ACCOUNTANT 98895 40 800.00
 _ 51111 HRODEK ANALYST 79912 50 710.00
 _ 51121 CANNON ANALYST 79912 50 700.00
 _ 51162 KIMURA JR PROGRAMMER 79912 50 575.00
 _ 61219 WONG SENIOR ANALYST 79912 50 820.00
 _ 61385 DHILLON EDUCATOR 80002 60 685.00
 _ 61622 SCHULTZ SENIOR ANALYST 79912 50 800.00
 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

Exceptions
You can browse and edit a DAT table in the same way you would browse or edit
another table, except:

If… Then…

The Duplicate Master Keys field is set
to Y.

You cannot update the table using the Table Editor. You
can, however, use the Table Browser and the Single
Occurrence Editor.
TIBCO Service Gateway for Files SDK User’s Guide

158 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
Insertion of Duplicate Primary Keys
Depending on its indexes, you can use CA Datacom to insert duplicate primary
keys. A duplicate primary key results in the following:

• If you delete an occurrence using the Single Occurrence Editor, the occurrence
shown is deleted.

• If you delete or update an occurrence using a rule, the last occurrence
retrieved is the one deleted or updated.

See Also TIBCO Object Service Broker Managing Data for more information about browsing
and editing tables in TIBCO Object Service Broker.

Your table definition contains fields
that are longer than 260 bytes.

• You must use the Single Occurrence Editor from the
Table Editor to edit them.

• You must use SELECT LIKE instead of SELECT to
access fields of this length.

If… Then…
TIBCO Service Gateway for Files SDK User’s Guide

Using Rules | 159
Using Rules

Accessing CA Datacom data using the TIBCO Object Service Broker rules
language is similar to accessing TIBCO Object Service Broker data. The main
difference is in the way CA Datacom interprets the request.

The following sections outline the differences encountered while using rules and
point out normal TIBCO Object Service Broker rules behavior to consider when
building applications.

Transaction Streams
If you issue a TIBCO Object Service Broker EXECUTE statement within a main
(parent) transaction, it creates another (child) transaction stream, to a maximum
of ten streams. The number of streams allowed in a TIBCO Object Service Broker
transaction depends on the TRANMAXNUM Execution Environment parameter,
which has a default of nine streams. Each transaction stream in TIBCO Object
Service Broker that accesses CA Datacom data requires its own server thread.

Transaction Limitations
The number of DAT tables you can access per transaction depends on the
POOLSIZE server parameter. Refer to Specifying the Startup Parameters on
page 119 for more information.

If you use the default parameter values, you can access at least 16 DAT tables in
one transaction; more, depending on the size of the DAT table definitions. Refer to
Estimating the CTABLESIZE Parameter on page 121 for more information.

Retrieval Processing
The SELxx CA Datacom commands are used to retrieve data from CA Datacom
for each retrieval statement (GET or FORALL) in your rule.

Ensure that your system administrator is aware of the number of server threads
required to accommodate all transaction streams accessing CA Datacom data in a
single transaction.

Using TRANSFERCALL or DISPLAY & TRANSFERCALL statements in your
rules minimizes server threads and reduces the possibility of CA Datacom locking
contention.
TIBCO Service Gateway for Files SDK User’s Guide

160 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
When TIBCO Object Service Broker runs in browse mode, no locks are taken in
CA Datacom. When TIBCO Object Service Broker runs in update mode, the server
retains an image of all the occurrences read (CA Datacom imposes a primary
exclusive locking limit of 9999 occurrences). When the update to the occurrence
completes, the server re-reads the occurrence that is being updated, and if the
image matches the image originally retained, the occurrence is replaced or
deleted. If the images do not match, the update is not done and LOCKFAIL is
signalled.

GET Statement

A GET statement retrieves the first occurrence in the DAT table that satisfies the
specified selection criteria.

FORALL Statement

A FORALL statement returns rows to TIBCO Object Service Broker in the order in
which CA Datacom passes them. If you require a different order, you must
include an ORDERED clause in your FORALL statement.

When running in update mode, the equivalent of an exclusive lock is applied to
the row being updated. To accommodate the largest number of rows to be
updated within a single transaction, increase the size of the EXCTLNO parameter
in the CA Datacom master list.

Replace (Update) or Delete Processing
If the Duplicate Master Keys field is set to N, the row is re-read, checked
against its previous image, and if the images match it is replaced or deleted. If the
Duplicate Master Keys field is set to Y, only one row at a time is returned to the
Execution Environment and the last row retrieved is replaced or deleted.

Insert Processing
To insert rows to CA Datacom tables, ensure your DAT table definition includes
the entire row.

The DELETE where primary key= statement is not supported for DAT tables.
TIBCO Service Gateway for Files SDK User’s Guide

Using Rules | 161
See Also • TIBCO Object Service Broker Parameters for more information about Execution
Environment parameter.

• TIBCO Object Service Broker Programming in Rules for information about the
rules language and rules processing.
TIBCO Service Gateway for Files SDK User’s Guide

162 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
Handling of Errors in the Server

This section describes how the server handles TIBCO Object Service Broker
requests with respect to:

• Synchronization and recovery

• Error handling

Synchronization and Recovery
Locking of CA Datacom data is determined by the server and the CA Datacom
Multi-User Facility, not by TIBCO Object Service Broker. A CA Datacom
transaction spans the same length of time as a TIBCO Object Service Broker
transaction. A CA Datacom COMMIT causes all locks to be released. Therefore,
COMMITs are sent from the server to CA Datacom at the end of a transaction
(even if no updates were made, so any locks taken are released). The server insists
on transaction end after a TIBCO Object Service Broker rule issues a COMMIT.

• A COMMIT request sent to the server or a normal end of TIBCO Object
Service Broker transaction results in a COMMIT being sent to CA Datacom.

• A ROLLBACK request sent to the server or a transaction failure sends a
ROLLBACK to CA Datacom, and the TDS intent list is discarded.

• Intermediate ROLLBACKs are allowed and further updates can be made in
the same transaction.

• TRANSFERCALL and DISPLAY & TRANSFERCALL statements are allowed
after a ROLLBACK.

Updates of TIBCO Object Service Broker and CA Datacom Data
TIBCO Object Service Broker provides a method of ensuring data integrity when
both CA Datacom and TIBCO Object Service Broker data are updated in the same
transaction. This method is referred to as Fail Safe processing level 1.

COMMITLIMIT Exception The COMMITLIMIT exception does not apply to CA Datacom tables.
Requests to update CA Datacom data are processed as they are
encountered, and are not buffered in the Intent List. However, you can
be limited by CA Datacom’s limit of rows locked in primary exclusive
control (EXCTLNO Master List parameter). Refer to Defining the Master
List on page 97 for more information.
TIBCO Service Gateway for Files SDK User’s Guide

Handling of Errors in the Server | 163
If you do not request Fail Safe processing, transactions that update both CA
Datacom and TIBCO Object Service Broker data can result in discrepancies if the
server or the Data Object Broker abnormally terminates during the transaction
end processing. Refer to Implementing Fail Safe Processing on page 126 for more
information.

System Exceptions
The TIBCO Object Service Broker runtime environment signals system exceptions
to enable an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catchall exception. Each exception traps the exceptions that
appear below it in the hierarchy. All errors encountered when accessing CA
Datacom data through the server are trapped under one of the following
exceptions:

ERROR An error is detected and no lower level exception exists in the
application.

ACCESSFAIL A table access error is detected.

GETFAIL No occurrence satisfies the selection criteria. The CA Datacom error code 14
raises this exception.

DELETEFAIL The primary key specified for a DELETE statement does not exist.

INSERTFAIL The primary key provided for an INSERT statement already exists. The CA
Datacom error code 10 raises this exception.

REPLACEFAIL The primary key provided for a REPLACE statement does not exist.

INTEGRITYFAIL An attempt to violate data integrity is detected.

LOCKFAIL An attempt was made to read more rows with the CA Datacom
primary exclusive lock. Restructure your application to take fewer
locks in a transaction, run in browse mode so locks are not taken, or
increase the EXCTLNO parameter in the CA Datacom Master List.
TIBCO Service Gateway for Files SDK User’s Guide

164 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
Error Handling
You must pass @SERVERERROR the contents of RETURN_MESSAGE, which has
the following format:

pppDMnnnx serverid serveruserid source: message

The following list describes the variables necessary to pass the
RETURN_MESSAGE contents to @SERVERERROR:

SECURITYFAIL Permission for the requested action on the TIBCO Object Service
Broker object is denied. This also occurs if the CA Datacom
authorization ID does not have permission to perform the requested
action on the specified object.

SERVERBUSY A new transaction requested an instance of the server and no server is
available to process the request. Control is passed back to the rule,
giving the rule the opportunity to try the transaction again. If this
exception is raised too often, consider starting more servers or
reviewing the amount of work being done in your transactions.

SERVERERROR The server made a request to CA Datacom, and CA Datacom returned
an error code that does not map to one of the specific TIBCO Object
Service Broker exceptions. The ON SERVERERROR handler can call
@SERVERERROR to parse the error message (contained in ENDMSG).
Refer to Error Handling on page 164 for more information.

SERVERFAIL A transaction was in progress when the connection to a server was
broken or the server failed. Control is passed back to the rule, giving
the rule responsibility for transaction cleanup.

ppp Represents the user-specified 3 character product ID.

nnn The CA Datacom external message number.

x The message severity (E for error, W for warning, and I for information).

serverid The server ID of the server.

serveruserid The server user ID (IDPREFIX + ###) of the server.
TIBCO Service Gateway for Files SDK User’s Guide

Handling of Errors in the Server | 165
If a specific message from a specific server has some information that is required
to process the error, the table-driven approach to the execution of
@SERVERERROR causes a rule (specified for that error by the developer using
@SERVERERROR) to execute. The error message is interpreted in the
@SERVERERROR processing and put into a temporary table until required.

Customization

To customize error handling, you must update data in the @DATERRORCODES
control table. The definition of the @SERVERERROR and @DATERRORCODES
tables is owned by TIBCO Object Service Broker and must not be modified. The
data you update in them is owned by you.

Table Processing with SERVERERROR exception

Here is how the table is processed when the SERVERERROR exception is raised
and the @SERVERERROR rule is called by your application:

• @SERVERERROR reads the @SERVERMSGCNTL table and looks up the
specific message identifier handlers.

• The appropriate message handler looks up the external error codes in the
correct server control tables.

• If any codes are found, they call the associated user-written handler.

• The user-written handler can use other functions and data stored in specific
tables to handle any specific external error/status code.

@SERVERERROR can be called at any time, although it is useful only for parsing
server messages generated due to external CA Datacom errors. The original
message can always be retrieved using @SE_MSG after @SERVERERROR has
been called. The information parsed by @SERVERERROR has transaction scope.

You can add your own instances in the @SERVERMSGCNTL table, provided that
the OWNER specified begins with letters A to Z and the key values in the instance
are message identifiers in the form DMnnnx mentioned above.

See Also • TIBCO Object Service Broker Programming in Rules about system exceptions.

• TIBCO Object Service Broker Shareable Tools for more information on the
@SERVERERROR and RETURN_MESSAGE tools.

source The code portion of the server that trapped the error and returned the message (for
example, CSECT, rule, or function).

message The actual error message text.
TIBCO Service Gateway for Files SDK User’s Guide

166 | Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
TIBCO Service Gateway for Files SDK User’s Guide

| 167
Chapter 10 Accessing and Processing VSAM LDS Data

This chapter shows you how to access and process VSAM Linear Data Set (LDS)
data from within TIBCO Object Service Broker with the SDK.

Topics

• Setup of Accesses to VSAM LDS Data, page 168

• Operations for Processing Data, page 171

• VSAM LDS Samples, page 172
 TIBCO Service Gateway for Files SDK User’s Guide

168 | Chapter 10 Accessing and Processing VSAM LDS Data
Setup of Accesses to VSAM LDS Data

Access to VSAM LDS data is only supported via the SDK. Once the SDK has been
installed you need to define the appropriate tables to facilitate the manipulation
of the VSAM LDS data and then write the rules to process the data. Your
applications used to access the VSAM LDS data are comprised of these table
definitions and rules.

Installation of the TIBCO Object Service Broker Base Component
You must install TIBCO Object Service Broker base component in order to use the
SDK to access VSAM LDS data. The base component can reside on z/OS,
Windows or Solaris. Installation instructions for all platforms are located in
TIBCO Object Service Broker Installation and Operations.

Installation of the SDK
Installation instructions for the Service Gateway for Files, which includes the
SDK, are located in TIBCO Object Service Broker Managing External Data.

Required Tables
VSAM LDS data is accessed via a combination of TIBCO Object Service Broker
tables: VSAM LDS and VSAM MAP. An access to VSAM LDS is performed via a
VSAM LDS table. Data manipulation is performed via VSAM MAP table support.

See Also TIBCO Object Service Broker Managing External Data for information about the
Service Gateway for Files and about the VSAM accesses discussed in this chapter.

TIBCO Object Service Broker Managing Data for information about MAP tables.

TIBCO Object Service Broker Shareable Tools for information about the tools used for
MAP tables.

Definition of VSAM LDS Data
To access VSAM LDS data, first define a table of type of VSM from TIBCO Object
Service Broker. This table is used to map the VSAM data for use within TIBCO
Object Service Broker. For details on defining VSAM tables within TIBCO Object
Service Broker, refer to TIBCO Object Service Broker Managing External Data.

The VSAM LDS definition is very similar to that for other VSAM data sets, with
the following key differences:
TIBCO Service Gateway for Files SDK User’s Guide

Setup of Accesses to VSAM LDS Data | 169
• The Server ID field must be set as access is only permitted via the Service
Gateway for Files SDK

• The data set type must be LDS or L

• The load parameter is ignored

The definition of the table must consist of 3 binary fields of the length 4, the first
of which must be the primary key. While the Field names may be different their
usage will remain constant.

The fields of the table definition are as follows:

Following is the definition for a sample VSAM LDS table:

 COMMAND==> TABLE DEFINITION

 Table: LINEAR Type: VSM Unit: USR40 IDgen: N

 File : S6B.XX.LINEAR
 DDname: Read Only: N Load: N Data Set Type: LDS
 Ignore:
 Server ID: FGSERVER
 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - -- --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 -------- VSAM --------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
 ---------------- ---- ----- -- ----- - - -- ----- --- - - --------

 _ RBA B 4 0 0 P B 4 0
 _ ADDRESS B 4 0 4 B 4 0
 _ CISIZE B 4 0 8 B 4 0
 _
 _
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

Field Description

RBA This field is the Relative Byte Address of the LDS record to be processed. It must be
on a control interval boundary and for an INSERT must be higher than the current
High Used Relative Byte Address for the data set.

ADDRESS This is the storage address of the buffer that contains the LDS record being
processed.

CISIZE This is the control interval size of the VSAM LDS being processed.
 TIBCO Service Gateway for Files SDK User’s Guide

170 | Chapter 10 Accessing and Processing VSAM LDS Data
Definition of Associated MAP Table
In addition, you must also define an associated MAP table. For details on defining
MAP tables within TIBCO Object Service Broker, refer to TIBCO Object Service
Broker Managing Data.

The definition is very similar to a normal MAP table. For VSAM MAP tables the
following definition rules apply:

• The Data Set Type is set to MAP or M.

• The value of IDgen must be Y.

• The definition must contain an ADDRESS parameter as shown above.

• The key field must be of defined as shown above.

• The first non key field should start at offset 0.

The table definition may also contain a count parameter.

Following is the definition for a sample VSAM MAP table:

 COMMAND==> TABLE DEFINITION

 Table: LINEARMAP Type: VSM Unit: USR40 IDgen: Y

 File : S6B.XX.LINEAR
 DDname: Read Only: N Load: N Data Set Type: MAP
 Ignore:
 Server ID: FGSERVER
 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - -- --- -- - ' ---------------- - -
 _ ADDRESS I B 4 0 A ' _
 _ LOCATION I C 16 0 L _
 -------- VSAM --------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
 ---------------- ---- ----- -- ----- - - -- ----- --- - - --------

 _ KEY B 4 0 0 P I B 4 0
 _ DATA B 4 0 0 B 4 0
 _
 _
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

TIBCO Service Gateway for Files SDK User’s Guide

Operations for Processing Data | 171
Operations for Processing Data

You process the data using the TIBCO Object Service Broker rules language.
Access to the VSAM LDS returns the address of the data buffer that can be
manipulated using an associated VSAM MAP table.

Supported Operations
Only the GET, INSERT and REPLACE operations with fully qualified primary
keys (the relative byte address of the record) are supported. Samples are shown in
VSAM LDS Samples on page 172.

See Also TIBCO Object Service Broker Programming in Rules for detailed information about
processing data using the TIBCO Object Service Broker rules language.

Insert Processing
To commence INSERT processing if no previous GET accesses have been
performed the address of the buffer in the interface needs to be obtained. This is
achieved by accessing the VSAM LDS with a special key of -1:

GET vsamlds_table WHERE RBA=-1;

This access returns the address of the processing buffer in the VSAM LDS
interface. You can then use VSAM MAP table processing to manipulate this
buffer.

DELETE processing is not supported.
 TIBCO Service Gateway for Files SDK User’s Guide

172 | Chapter 10 Accessing and Processing VSAM LDS Data
VSAM LDS Samples

The following JCL defines the Linear Data Set (LDS) in the subsequent sample
rules.

//IDCAMS JOB (ACCT),'CREATE LINEAR VSAM',
// MSGCLASS=A,CLASS=A,TIME=30,
// NOTIFY=&SYSUID,MSGLEVEL=(1,1)
/*JOBPARM LINES=999999
// EXEC PGM=IDCAMS
//SYSIN DD *
DELETE S6B.XX.LINEAR SET LASTCC=0
DEFINE CLUSTER (NAME(S6B.XX.LINEAR) -

TRACKS(5) -
CISZ(8192) -
SHAREOPTIONS(1,3) -
LINEAR)

//SYSPRINT DD SYSOUT=*

Creation of Initial Data Set
You can use the following three rules to create control intervals in the sample
LDS. Each full word in the LDS contains its relative byte offset from the start of
the data set.

Rule LINEAR is key to this process. It obtains the CISIZE of the sample VSAM
LDS and the address of the buffer storage in the VSAM LDS interface. It then
populates this buffer with the desired data before inserting the contents of the
buffer into the physical LDS.

LINCREATE(FIRST, LAST);
_ LOCAL A, CISIZE;
_ --
_ --+-------
_ A = FIRST; ¦ 1
_ UNTIL EQ : ¦ 2
_ CALL LINEAR(A); ¦
_ A = A + CISIZE; ¦
_ CALL @EQ(A, LAST); ¦
_ END; ¦
_ --
TIBCO Service Gateway for Files SDK User’s Guide

VSAM LDS Samples | 173
LINEAR(RBA);
_ LOCAL OFFSET, ADDRESS;
_ --
_ ---+----
_ GET LINEAR WHERE RBA = - 1; ¦ 1
_ CISIZE = LINEAR.CISIZE; ¦ 2
_ LINEAR.RBA = RBA; ¦ 3
_ OFFSET = 0; ¦ 4
_ ADDRESS = LINEAR.ADDRESS; ¦ 5
_ UNTIL EQ : ¦ 6
_ CALL @EQ(OFFSET, CISIZE); ¦
_ LINEARMAP.DATA = RBA + OFFSET; ¦
_ LINEARMAP.KEY = 1; ¦
_ CALL LINEARREP; ¦
_ OFFSET = OFFSET + 4; ¦
_ END; ¦
_ INSERT LINEAR; ¦ 7
_ ---

LINEARREP;
_
_ ---
_ --+------
_ REPLACE LINEARMAP(LINEAR.ADDRESS + OFFSET); ¦ 1
_ ---
_ ON COMMITLIMIT :
_ COMMIT;
_ REPLACE LINEARMAP(LINEAR.ADDRESS + OFFSET);

The result of executing LINCREATE(0,8192) is that the first control interval in the
VSAM LDS is created as follows:

PRINT INDATASET(S6B.XX.LINEAR)
IDCAMS SYSTEM SERVICES TIME: 04:44:44
LISTING OF DATA SET -S6B.XX.LINEAR
RBA OF RECORD - 0
00000 00000000 00000004 00000008 0000000C 00000010 00000014 00000018 0000001C
00020 00000020 00000024 00000028 0000002C 00000030 00000034 00000038 0000003C
00040 00000040 00000044 00000048 0000004C 00000050 00000054 00000058 0000005C
00060 00000060 00000064 00000068 0000006C 00000070 00000074 00000078 0000007C
00080 00000080 00000084 00000088 0000008C 00000090 00000094 00000098 0000009C
000A0 000000A0 000000A4 000000A8 000000AC 000000B0 000000B4 000000B8 000000BC
000C0 000000C0 000000C4 000000C8 000000CC 000000D0 000000D4 000000D8 000000DC
000E0 000000E0 000000E4 000000E8 000000EC 000000F0 000000F4 000000F8 000000FC
etc., etc. until
01F80 00001F80 00001F84 00001F88 00001F8C 00001F90 00001F94 00001F98 00001F9C
01FA0 00001FA0 00001FA4 00001FA8 00001FAC 00001FB0 00001FB4 00001FB8 00001FBC
01FC0 00001FC0 00001FC4 00001FC8 00001FCC 00001FD0 00001FD4 00001FD8 00001FDC
01FE0 00001FE0 00001FE4 00001FE8 00001FEC 00001FF0 00001FF4 00001FF8 00001FFC
 TIBCO Service Gateway for Files SDK User’s Guide

174 | Chapter 10 Accessing and Processing VSAM LDS Data
Once this initial control interval has been created further control intervals may be
created starting from RBA 8192.

Reading of VSAM LDS data
You can use the following rule to read a word of data at a given RBA in the
sample VSAM LDS and display the results as a decimal number. It calculates the
control interval to be read, reads the LDS VSAM table to read this control interval
into the VSAM LDS interface buffer. It then uses the VSAM MAP table to read the
actual data from the correct word in this buffer.

LINGET(RBA);
_ LOCAL RECORD, OFFSET;
_ ---
_ REMAINDER(RBA, 4) = 0; ¦ Y N
_ --+--------
_ GET LINEAR WHERE RBA = - 1; ¦ 1
_ RECORD = RBA / LINEAR.CISIZE * LINEAR.CISIZE; ¦ 2
_ OFFSET = RBA - RECORD; ¦ 3
_ GET LINEAR WHERE RBA = RECORD; ¦ 4
_ GET LINEARMAP(LINEAR.ADDRESS + OFFSET); ¦ 5
_ RETURN(LINEARMAP.DATA); ¦ 6
_ RETURN('RBA MUST BE A MULTIPLE OF 4'); ¦ 1
_ --
_ ON GETFAIL :
_ RETURN('GETFAIL RBA ' || RBA);

For example, EX LINGET(2868) returns 2868.
TIBCO Service Gateway for Files SDK User’s Guide

VSAM LDS Samples | 175
Replacement of VSAM LDS Data
You can use the following rule to read a word of data at a given RBA, increment it
by 1, and replace the data in the sample VSAM LDS. It calculates the control
interval to be read and reads the LDS VSAM table to read this control interval into
the VSAM LDS interface buffer. It then uses the VSAM MAP table to read the
actual data from the correct word in this buffer. It increments it by 1 and replaces
the data in the VSAM LDS interface buffer using the VSAM MAP table and then
replaces the contents of the VSAM LDS control interval using the VSAM LDS
table.

LINREP(RBA)
_ LOCAL RECORD, OFFSET;
_ --
_ REMAINDER(RBA, 4) = 0; ¦ Y N
_ ---+------
_ GET LINEAR WHERE RBA = - 1; ¦ 1
_ RECORD = RBA / LINEAR.CISIZE * LINEAR.CISIZE; ¦ 2
_ OFFSET = RBA - RECORD; ¦ 3
_ GET LINEAR WHERE RBA = RECORD; ¦ 4
_ GET LINEARMAP(LINEAR.ADDRESS + OFFSET); ¦ 5
_ LINEARMAP.DATA = LINEARMAP.DATA + 1; ¦ 6
_ REPLACE LINEARMAP(LINEAR.ADDRESS + OFFSET); ¦ 7
_ REPLACE LINEAR; ¦ 8
_ RETURN('RBA ' || RBA || ' HAS BEEN INCREMENTED BY 1'); ¦ 9
_ RETURN('RBA MUST BE A MULTIPLE OF 4'); ¦ 1
_ ---
_ ON GETFAIL :
_ RETURN('GETFAIL RBA ' || RBA);

For example, EX LINREP(2868) returns the following:

RBA 2868 HAS BEEN INCREMENTED BY 1

EX LINGET(2868) now returns the following:

2869
 TIBCO Service Gateway for Files SDK User’s Guide

176 | Chapter 10 Accessing and Processing VSAM LDS Data
TIBCO Service Gateway for Files SDK User’s Guide

| 177
Index

Symbols

@ADAEXTRACT rule 30, 47
@ADAFIELDS table 8
@ADAFSTRXDB table 35, 41
@CONFIGURESERVER tool

description 13
using to trace Adabas calls 43

@DATERRORCODES control table 165
@DATTRACE table 131
@SE_MSG rule 89, 165
@SERVERDEBUG(DAT) table 129, 130
@SERVERERROR tool 88, 165
@SERVERERRORADA rule 89
@SERVERLOG table 43
@SERVERMSGCNTL table 89, 89, 165
@SERVERPARMS control table 123
@SRVRPRMS_TBL session table 123
@SRVRPRMS_TYP session table 123
field, Extensions screen 140

A

Acc field, event rule segment 60
access types 60, 150
ACCESSFAIL exceptions 87, 163
accessing

ADA tables 51
CA Datacom data 116, 117
DAT tables 135
Datacom fields 121
through event rules 59, 150

ADA Table Definition screen
PF keys 53
primary commands 53
segments 52

ADA tables
accessing 51, 72
defining 46–67
defining fields 61
extract options 31, 48
header information 55
re-binding 34

Adabas calls, tracing 43
Adabas data

accessing 6, 72
representing in tables 55
requests 72
types 66

Adabas direct calls 85
Adabas error code 14 87
Adabas Field Selection Screen 64
Adabas file definitions, extracting 47
Adabas interface program (ADALNK) 6, 30, 47
Adabas parameter, NISNHQ 76, 87
Adabas server

error handling 86–89
interface module (ADALNK) 15
load point 15
shutting down 23
startup parameters 35
status, displaying 42
synchronization and recovery 86
transaction database 40–41

Adabas table information, extracting 30
@ADAEXTRACT rule 30, 47
@ADAFIELDS table 8
@ADAFSTRXDB table 35, 41
ADALNK

call interface 6, 15
module 16, 30, 47
user exits 8

adding threads 39
Administration menu, RESOURCE MANAGEMENT

option 23, 42, 103, 128
 TIBCO Service Gateway for Files SDK User’s Guide

178 | Index
authorizing access to CA Datacom data 116, 117

B

Backout Transaction 10
binding ADA table definitions 34
binding DAT table definitions 114
BT (Backout Transaction) 10
BT browse table option 74

C

CA Datacom data
authorizing access to 116, 117
requests for 156
updating 162

CA Datacom Master List, defining 97
CA Datacom Multi-User Facility 92
CA Datacom tables

generating DAT tables from 138
generating definitions 138
master key fields 144
verifying access 116, 117

CA Datacom transaction database 121
CA-Datacom control tables and problem

reporting 131
calls, tracing 43
CANCEL primary command 53, 139
CBS trace, turning on 129
CHANGE_SERVERID tool 129
changing default data types 66
CL (Close) command 10
CNT (count field) 56
COBOL Copybook field, Table Definition screen 137
COLUMNS primary command 53
COMMIT requests 86, 162
COMMITLIMIT exception 86, 162
communications, requirements 9, 95
configuration parameters 15
configurations, support

for CA Datacom 93

@CONFIGURESERVER tool
description 13
using to trace Adabas calls 43

consistency of data 126
Control Region. See Data Object Broker
control tables and problem reporting 131
COPY primary command 53
CORE primary command 139
Core screen PF keys 151
count field (CNT) 56
CPU consumption, reducing 84
Cross Memory Services 9, 95
CTABLESIZE parameter, estimating 37
customer support xx
customizing, code exit points 26
CXX data set 127

D

D (delete only) access 149
DAT table definitions

binding 114
maximum space for 115
re-binding 114

DAT tables
accessing 135
defining

procedure 134–151
using the DATACOM tool 138
using the Table Definer 135

generating definitions 138
ordering fields 151
restricting ability to define 116

data integrity
and Fail Safe processing 126
overview 86
using Fail Safe processing 40
when updating 162

Data Object Broker
configuration with server for Adabas 26
configuration with server for CA Datacom 106
CTABLESIZE parameter 37
National Language Support 19
TIBCO Service Gateway for Files SDK User’s Guide

Index | 179
data recovery 162
data set creation, for VSAM LDS 172
data tables. See ADA tables
data types, changing defaults 66
data, distributed 42, 128
DataCleansing field, Table Definition screen 137
Datacom server

error handling 162–165
Fail Safe processing 126–127
initializer program

and SERVERID startup parameter 119
and SERVERS startup parameter 119

parameters, specifying 98
populating data dictionary tables 96
shutting down, Native Execution Environment 103
status, displaying 128

DATACOM tool 111, 138
Datacom/Copybook Name field, Extensions

screen 142
@DATERRORCODES control table 165
@DATTRACE table 131
DBID field

Table Definition screen 137
DBID field, Table Definition screen 57
debugging rules 43, 129
DEBUGLEVEL configuration parameter 15
DEBUGPARMS field 130
Dec field

Adabas external 62
TIBCO Object Service Broker definition 63

Dec field, Extensions screen 142
decimal places, for fields in TDS tables 63
dedicated server 129
Default field, Extensions screen 143
Default field, TIBCO Object Service Broker

definition 63
define table (DT) option 51
defining

ADA tables 46–67
DAT tables 134–151
fields 61

defining DAT tables
using the DATACOM tool 138
using the Table Definer 135

defining User Requirement Table (URT) 97

defining, VSAM LDS access 168
DELETE

primary command 54
statement 77

delete only (D) access 149
DELETE primary command 139
deleting occurrences 77
Des field, Adabas external 62
DESCRIPTION field, Documentation screen 69, 153
descriptor field, specifying 62
descriptor index 62, 79–82
Dictionary Name field, Table Definition screen 137
direct calls 85
DISPLAY & TRANSFERCALL statement 75, 159
distributed data 42, 128
DOB. See Data Object Broker
DOCUMENT primary command 53, 139
Documentation screen PF keys 69, 153
domain requirements 93
DT define table option 51
DUMP configuration parameter 16
dump information, capturing 17
DUMPLIMIT configuration parameter 16
Duplicate Key field, Table Definition screen 138
Duplicate Master Keys table definition field 157
duplicate primary key, implications 158

E

Element List field, Table Definition screen 138
Elmnt field, Extensions screen 141
END primary command 53
ERROR exceptions 87, 163
error handling 86–89, 162–165
error message information 17
ESTIMATETBLDEFN tool 37
ESTIMATETBLDFN tool 121
Event Rule Segment 53
event rules

specifying access 59, 150
type field 60
types 59, 150

EX execute rule option 13, 30, 47
 TIBCO Service Gateway for Files SDK User’s Guide

180 | Index
exception handling 87, 163
EXECUTE statement 75, 159
Execution Environment

adding threads 39
binding ADA table definitions 34
extracting Adabas table information 30, 47
restarting 21
server to EE block value 57
starting server for Adabas 21
TRANMAXNUM parameter 75

Ext Name field, Adabas external 61
EXTENSIONS primary command 139
Extensions screen PF keys 143
external data types, mapping 66
External fields and TIBCO Object Service Broker

fields 53
EXTERNALROUTINE configuration parameter 16
extract utilities options 31, 48
extracted Adabas fields, selecting 64
extracting

Adabas file definitions 47
Adabas table information 30
CA Datacom table information 111

F

Fail Safe processing
activating 35, 120
implementing 40, 126–127
initializing CA-Datacom transaction database 127
procedural overview 126
transaction database, sample ADA table 35, 41
transaction processing 126
updating CA-Datacom CXX data set 127
updating CA-Datacom dictionary 127

fields
attributes, modifying 146
ordering 151
selecting extracted 64
selecting from CA-Datacom tables 143

file definitions, extracting 47
FILE No. field, Table Definition screen 57
Fix field, Core screen 147

Fmt field, Adabas external 62
FORALL statement 160

preserving data sequence 83
returning occurrences 76

FSLEVEL startup parameter 35, 120
and path descriptor settings 99
path descriptor settings 19

FSTABLENAME startup parameter 35
full definition, location parameter 59, 148

G

G (retrieval) access 149
generating DAT table definitions 138
GET statement 76, 160
GETFAIL exceptions 87
Global Format ID 57

H

Header Segment
description 52
fields 56

HELP primary command 53
HELP, displaying 139

I

I (insert only) access 149
IDPREFIX startup parameter 35, 119
implementing

external security 116, 117
Fail Safe processing 126–127

increasing server tasks 21
in-doubt transactions 40
initializer program 36, 119

and SERVERID startup parameter 119
and SERVERS startup parameter 119

insert only (I) access 149
TIBCO Service Gateway for Files SDK User’s Guide

Index | 181
insert processing 160
INSERT statement 77
INSERTFAIL exceptions 87
inserting occurrences 77
installing

Adabas server 8
Datacom server 168
SDK 168

INTEGRITYFAIL exceptions 87, 163
intent list and CA-Datacom data 162
interface module (ADALNK) 15, 30, 47
Internal Name field

Table Definition screen 137
Internal Sequence Number (ISN)

Assigner field 57
description 55

invoking the Table Definer 51
ISN Assigner field, Table Definition screen 57

K

KEEPLOG configuration parameter 16
Key field, Extensions screen 141
KEYWORDS field, Documentation screen 68, 152

L

Len field, Adabas external 61
Len field, Extensions screen 142
Len field, TIBCO Object Service Broker definition 63
level

of Fail Safe processing 120
of system exceptions 163

level of Fail Safe processing 35
levels of system exceptions 87
Line# field 150, 151
Line# field, event rule segment 60
load module (ADALNK) 15
location parameter 46

full definition 59, 148
Location Parm Segment

description 52
settings 58

minimal definition 59
LOCKFAIL exceptions

description 87
on retrieval 76

locking CA Datacom data 162
locking contention, minimizing 75, 159
LOGMEDIA configuration parameter 17

M

mapping data types 66
master key fields 144
Master List, defining 97
maximum space for DAT table definitions 115
maximum transaction streams 75, 159
MDL startup parameter 36
minimal definition, for location parameter 59, 148
minimizing locking contention 75, 159
minimizing server threads 75, 159
MODIFY operator command 21

dynamic server startup 101
server shutdown 23
server tasks 21
setting maximum number of server tasks 22
shutting down server for Adabas 23
shutting down server for CA Datacom 103

modifying
field attributes 146
server IDs 129

Mu/Special field in Grp field, Table Definition
screen 58

Multiple-value (MU) field (MU) 55
Multi-User Facility (MUF) and Datacom server

interface 92

N

Name field, Extensions screen 141
Name field, TIBCO Object Service Broker
 TIBCO Service Gateway for Files SDK User’s Guide

182 | Index
definition 62
Name of countfield field, Table Definition screen 58
National Language Support 19
Native Execution Environment

shutting down 25
starting 21
startup process 10

NISNHQ Adabas parameter 76, 87
non-periodic group 55
nulls, translation of 145, 145
(number) field, Extensions screen 140

O

occurrences
deleting 77
inserting 77
ordering 76
replacing 77
retrieving 76

Occurs/Read field, Table Definition screen 58
OP (Open) command 10
OPEN parameter, User Requirement Table 97
operating systems 93
options

BT browse table 74
DT define table 51
EX execute rule 13, 30, 47

Ord field, TIBCO Object Service Broker definition 63
ORDERED clause 76
ordering fields for retrieval 151
ordering occurrences 76
overriding server parameters 124

P

parameters, specifying 11, 98
PE (Periodic Group) 55
Periodic Group (PE) 55

PF keys
Core screen 147, 151
Documentation screen 69, 153
Extensions screen 143
Table Definition screen 53, 138

pool of server 36
pool of servers 119
POOLSIZE startup parameter 75, 120
primary commands 53

CANCEL 139
CORE 139
DELETE 139
DOCUMENT 139
EXTENSIONS 139
HELP 139
PRINT 139
SAVE 139

primary key fields 144
primary keys 55
PRINT primary command 54, 139
problem reporting 44, 131
processing restrictions 73
PROGRAMLIBRARY configuration parameter 17
PXX statistics

and CA Datacom security 116
and CBS trace 131

R

R (replace only) access 149
reading, VSAM LDS data 174
re-binding ADA table definition 34
re-binding DAT table definitions 114
records. See occurrences
recovery 162
Reference field, Extensions screen 143
Repeat Type field, Table Definition screen 58
replace only (R) access 149
replace processing 77, 160
replacing, VSAM LDS data 175
reporting problems 44, 131
Req field, Extensions screen 142
requesting Adabas data 72
TIBCO Service Gateway for Files SDK User’s Guide

Index | 183
requests
COMMIT 86, 162
for CA Datacom data 156
ROLLBACK 86, 162

requirements, for VSAM LDS access 168
RESETXPARM tool 124
resource management 19
RESOURCE MANAGEMENT option 23, 42, 103, 128
resource repository file 19, 99
restricting ability to define DAT tables 116
retrieval (G) access 149
retrieval processing 159
retrieving occurrences 76
ROLLBACK requests 86, 162
rows. See occurrences
Rule Debugger 43, 129
rules

@ADAEXTRACT 30, 47
@SE_MSG 89
@SERVERERRORADA 89
debugging 43
SE_MSG 165
trigger 59
using to access Adabas data 75
using to access CA-Datacom data 159
validation 59

RUNAWAY configuration parameter 18

S

SAVE primary command 139
SCOPE startup parameter 121
@SE_MSG rule 89, 165
SECLEVEL startup parameter 120
security, implementing 8, 116, 117
selecting

extracted Adabas fields 64
fields 143

server
configuration requirements 26, 106
tasks, setting number of 22

Server -> EE Block field, Table Definition screen 57
server address space, number of server tasks

attached 36, 119
server calls, tracing 43
server exceptions 87
Server ID field, Table Definition screen 57
server parameters

listed 11
overriding 124
specifying 98

server pool 119
server status, displaying 42, 128
server threads

maximum 75
minimizing 75

server threads, minimizing 159
SERVERBUSY exceptions

description 87
for unsatisfied requests 21

@SERVERDEBUG(DAT) table 129, 130
SERVERERROR exceptions

description 88
on retrieval 76

@SERVERERROR tool 88, 165
@SERVERERRORADA rule 89
SERVERFAIL exceptions 88
ServerId field

Table Definition screen 137
SERVERID startup parameter

and server pools 36
changing 129
description 36
in table definition 57
specifying 119

@SERVERLOG table 43
@SERVERMSGCNTL table 89, 89, 165
@SERVERPARMS control table 123
SERVERS startup parameter 36, 119
SERVERSTATISTICS configuration parameter 18
servertasks, number attached to server address

space 119
SERVERTYPE startup parameter 36, 119
Service Gateway for Files SDK

description 2
installation 8, 168

session menu. See workbench
SETXPARM tool 124
 TIBCO Service Gateway for Files SDK User’s Guide

184 | Index
shareable tools
@SERVERERROR 165
DATACOM 111
RESETXPARM 124
SETXPARM 124

shareable tools. See tools
shutting down

groups of servers 23, 105
Native Execution Environment 25, 103
single server 23, 103

simple fields 144
Single Occurrence Editor, using to access CA Datacom

data 157
@SRVRPRMS_TBL session table 123
@SRVRPRMS_TYP session table 123
startup

batch JCL 12
parameters 35
prerequisites 19

statements
DELETE 77
DISPLAY & TRANSFERCALL 75
EXECUTE 75
FORALL 76
GET 76
INSERT 77
TRANSFERCALL 75

streams, transaction 75
SUMMARY field, Documentation screen 68, 153
support, contacting xx
Syn field

Adabas external 61
TIBCO Object Service Broker definition 63

Syn field, Extensions screen 141
synchronization and recovery 86, 162, 162
syntax, conversion between Adabas and TIBCO Object

Service Broker 66
system exceptions 87, 163

T

Table Browser, using to access Adabas data 74
Table Browser, using to access CA-Datacom data 157

Table Definer
invoking 51, 135
PF keys 53, 138
primary commands 53
screen segments 52
selecting extracted Adabas fields 64

table definitions. See DAT table definitions
Table Editor, using to access Adabas data 74
Table Editor, using to access CA Datacom data 157
Table field, Table Definition screen 56, 137
Table Header Segment fields 56
tables, for VSAM LDS access 168
tables. See ADA tables
tables. See DAT tables
TASKS parameter, Master List 97
tasks, setting maximum number of 22
TDS startup parameter 36, 119
technical support xx
threads, adding 39
TIBCO Object Server Broker DAT tables. See DAT

tables
TIBCO Object Service Broker Adabas data

See also Adabas data
mapping external data types 66
requesting 72
types, changing defaults 66

TIBCO Object Service Broker Adabas Field Selection
Screen 64

TIBCO Object Service Broker Rule Debugger 43
TIBCO Object Service Broker tables, representing Ada-

bas data 55
TIBCO Object Service Broker workbench

BT browse table option 74
EX execute rule option 13, 30, 47

TIBCO_HOME xvii
TIMEMIN and TIMESEC parameters, User Require-

ment Table 97
tools

@CONFIGURESERVER 13, 43
@SERVERERROR 88, 165
CHANGE_SERVERID 129
DATACOM 111, 138
ESTIMATETBLDFN 37
RESETXPARM 124
SETXPARM 124
TIBCO Service Gateway for Files SDK User’s Guide

Index | 185
TRACE configuration parameter 18
trace information, capturing 17
tracing Adabas calls 43
TRANMAXNUM parameter 75
transaction database 40–41
transaction processing 126
transaction requests

end (Close) 10
Open 10

transaction streams 75, 159
transactions

in-doubt 40
processing, Fail Safe level-1 40

TRANSFERCALL statement 75, 159
translating data types 66
translation of nulls 145, 145
trigger rules 59
TRXDB startup parameter 121
turning on the CBS Trace in CA Datacom 129
TXNUNDO parameter, User Requirement Table 97
Typ field

event rule segment 60
TIBCO Object Service Broker definition 62

Type field
Extensions screen 141
Table Definition screen 57, 137

U

UNIT field, Core screen 147
Unit field, Table Definition screen 57, 137
Upd field, Adabas external 62
UPDATE parameter, User Requirement Table 97
update processing. See replace processing
update processing. See replace processing
uppercase characters in Adabas data 67
URT field, Table Definition screen 137
URTABLE parameter, User Requirement Table 97
Use GFID field, Table Definition screen 57
User Information Block (UIB)

and CA Datacom security 116
and CBS trace 131

User Requirement Table (URT)
connecting to CA-Datacom 92
defining 97

V

validation rules 59
verifying CA Datacom table access 116, 117
VSAM LDS

sample definition 172
sample rules 172–175

VSAM LDS access
description 168
initial data set creation 172

VSAM LDS data
reading 174
replacing 175
requirements for access 168
supported operations 171

VSAM LDS table 168
VSAM MAP table 168
VSM table, for VSAM LDS access 168
VTAM

ACB name used for communications 36
applid of Data Object Broker 36

W

workbench options
BT browse table 74
DT define table 51
EX execute rule 13, 30, 47

write (W) access 149

X

Xsyn, Xlen, Xdec, and Xoff fields, Extensions
screen 142
 TIBCO Service Gateway for Files SDK User’s Guide

	TIBCO Service Gateway™ for Files
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction
	Overview
	Prerequisites for Use
	Outline of This Manual
	Installation of the SDK

	Support for the SDK

	Chapter 2 Configuring the Accesses to Adabas Data
	Access of Adabas Data
	Supported Configurations
	Preparations for Installation
	Installation of the TIBCO Object Service Broker Base Component
	Installation of the Server
	Implementation of TIBCO Object Service Broker Security
	Adabas Security Considerations
	Fail Safe Processing Considerations
	Communications Requirements

	Startup Process
	Startup Parameters
	Required and Optional Parameters
	Startup Parameters in the EXEC Statement
	Startup Parameters in a Data Set

	Configuration Parameters
	@CONFIGURESERVER Tool
	Configuration Parameters for a New Server ID
	Customization of the Load Point and the Adabas Interface Module
	Available Configuration Parameters

	Startup Prerequisites
	Default Resource Settings (z/OS only)
	Customization of the Startup Batch JCL

	Startup of the Server
	Using the MODIFY Operator Command
	Increasing the Number of Server Tasks
	Setting the Maximum Number of Tasks

	Shutdown of the Server
	Shutdown Order
	Shutdown Methods
	Shutdown of the Native Execution Environment

	Connection to a Windows or Solaris Data Object Broker
	Configuring the TCP/IP Connection on z/OS
	Configuring the TIBCO Object Service Broker TCP/IP Environment
	Specifying the Number of Instances Connecting to the Data Object Broker
	Specifying the Server Parameter

	Chapter 3 Operational Requirements for Adabas Access
	Extracting Adabas Table Information
	Prerequisites
	Extraction of Table Information

	Binding TIBCO Object Service Broker ADA Table Definitions
	Supplying the Startup Parameters
	Available Parameters
	Estimation of the CTABLESIZE Parameter

	Dynamically Changing the Parameters
	Parameters That Can Be Overridden at Runtime
	Examples

	Adding Threads
	Implementing Fail Safe Processing
	Transaction Processing
	In-doubt Transactions
	Definition of a Transaction Database

	Understanding Other Operational Procedures
	Distributed Access
	Status Display
	Debugging
	Problem Reporting

	Chapter 4 Defining the Accesses to Adabas
	Overview
	Task A: Extract the Adabas File Definition
	Understanding the Prerequisites
	Extracting Table Information

	Task B: Invoke the Table Definer
	Accessing Existing Tables
	Defining a New Table
	Using Table Definer PF Keys

	Task C: Specify Header Information
	Representing Adabas Data in TIBCO Object Service Broker Tables
	Specifying ADA Table Header Fields
	Specifying Optional Location Parameter Information
	Specifying Optional Event Rule Information

	Task D: Define Fields for the ADA Table
	Fields in the External Field Definition Area
	Fields in the Metadata Definition Area

	Task E: Select Extracted Fields
	Task F: Map Adabas External Data to TIBCO Object Service Broker Types
	Understanding the Default Mapping of Adabas External Data Types
	Changing the Defaults
	Requesting Adabas Data Conversion

	Task G: Document ADA Tables
	Defining Field Values
	Using the PF Keys

	Chapter 5 Using TIBCO Object Service Broker to Process Adabas Data
	Processing the Data
	Transaction Process
	Restrictions on Adabas Processing

	Using the Table Browser and Table Editor
	Using Rules
	Transaction Streams
	Table Access Dependencies
	Retrieval Processing
	Replace (Update) Processing
	Delete Processing
	Insert Processing

	Taking Advantage of Adabas Features
	Understanding Descriptor Indexes
	Defining Effective ADA Tables
	Coding Efficient Adabas Accesses
	Preserving Data Sequence in FORALL Statements
	Using LIKE and NOT EQUAL with Other Operators
	Reducing CPU Consumption
	Understanding Adabas Direct Calls Generated from TIBCO Object Service Broker

	Handling of Errors
	Synchronization and Recovery
	Data Integrity
	Exceptions
	@SERVERERROR
	@SERVERERRORADA

	Chapter 6 Configuring Accesses to CA Datacom Data
	Accessing CA Datacom Data
	Supported Configurations
	Preparations for Installation
	Installation of the TIBCO Object Service Broker Base Component
	Installation of the Server
	Implementation of TIBCO Object Service Broker Security
	CA Datacom Security Considerations
	Fail Safe Processing Considerations
	Communications Requirements

	Prerequisites for the CA Datacom Environment
	Generating the CA Datacom User Requirements Table
	Populating Data Dictionary Tables
	Defining the CA Datacom Environment

	Startup Parameters
	Startup Parameters in the EXEC Statement
	Startup Parameters in a Data Set

	Startup Prerequisites
	Default Resource Settings (z/OS only)
	Customization of the Startup Batch JCL

	Startup of the Server
	Dynamic Startup
	Maximum Number of Server Instances

	Shutdown of the Server
	Shutdown of a Single Server
	Shutdown of the Native Execution Environment
	Closing and Opening of URTs
	Shutdown of a Group of Instances of the Server

	Connection to a Windows or Solaris Data Object Broker
	Sample Configuration
	Configuration of the TCP/IP Connection on z/OS
	Configuration of the TIBCO Object Service Broker TCP/IP Environment
	Number of Server Instances Connecting to the Data Object Broker
	Server Parameter

	Chapter 7 Operational Requirements for CA Datacom Access
	Extracting CA Datacom Table Information
	Prerequisites
	Extraction of Table Information
	Extract Report

	Binding DAT Table Definitions
	Understanding Space Requirements
	Implementing Security
	Adding URT Names
	Populating the URT Table
	Determining the URT to Use

	Specifying the Startup Parameters
	Available Parameters
	Estimating the CTABLESIZE Parameter

	Dynamically Changing the Parameters
	Table Type Attributes
	Examples Using SETXPARM and RESETXPARM

	Adding Server Instances
	Implementing Fail Safe Processing
	Transaction Processing
	Implementation Procedure

	Performing Other Operational Procedures
	Using Distributed Data with the Server
	Displaying the Status of the Server
	Debugging Rules and Applications
	Debugging Server Problems
	Reporting Problems

	Chapter 8 Defining the Accesses to CA Datacom
	Overview
	Task A: Define a DAT Table
	Invoking the Table Definer
	Accessing Existing Tables
	Defining a New Table
	Using the DATACOM Tool

	Task B: Define Fields for the DAT Table
	Defining Fields
	Editing Extensions Screen Fields
	Using Extensions Screen PF Keys
	Selecting Fields
	Translating Data Types
	Translating Nulls
	Changing the Defaults

	Task C: Add Control Information
	Core Screen Field Entries
	Parameters
	Event Rules
	Ordering Information
	Core Screen PF Keys

	Task D: Document the DAT Table
	Field Values
	PF Keys

	Chapter 9 Using TIBCO Object Service Broker to Process CA Datacom Data
	Processing the Data
	Using the Table Browser
	Exceptions
	Insertion of Duplicate Primary Keys

	Using Rules
	Transaction Streams
	Transaction Limitations
	Retrieval Processing
	Replace (Update) or Delete Processing
	Insert Processing

	Handling of Errors in the Server
	Synchronization and Recovery
	Updates of TIBCO Object Service Broker and CA Datacom Data
	System Exceptions
	Error Handling

	Chapter 10 Accessing and Processing VSAM LDS Data
	Setup of Accesses to VSAM LDS Data
	Installation of the TIBCO Object Service Broker Base Component
	Installation of the SDK
	Required Tables
	Definition of VSAM LDS Data
	Definition of Associated MAP Table

	Operations for Processing Data
	Supported Operations
	Insert Processing

	VSAM LDS Samples
	Creation of Initial Data Set
	Reading of VSAM LDS data
	Replacement of VSAM LDS Data

	Index

