TIBCO® Object Service Broker

Managing External Data

Software Release 6.0
July 2012

WiTIBCO

two-second advantage™ The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:

Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
= =T ix
Related Documentation X
TIBCO Object Service Broker Documentationt e X
Typographical CoONVENTIONSot e e e e e e e e e e XV
Connecting With TIBCO RESOUICES ottt ettt e e e e e e e e e e xviii
How to Join TIBCOMMUNILY oottt e e e e e e et e e xviii
How to Access All TIBCO Documentationottt e e e xviii
How to Contact TIBCO SUPPOItot e e e e e xviii
Chapter 1 Introducing External Data Interfacescciiiiiiiiiiiiniiinnnnnnns 1
OV BIVIBW . . oottt 2
Service Gateway for Files. 2
Adabas, CA Datacom, and VSAM LDS ACCESSottt e e e e e e 2
External Data ACCESSES.ttt 3
IMP (MO . .ot e 3
EXP (EXPO). . oottt et 3
VO (VS AN) L 3
How TIBCO Object Service Broker Exchanges Data 4
Initial Step for Defining Tables oo 5
Invoke the Table Definer.o 5
Specify the Table Type for New Tableso e e 5
Using Data DiSCOVEIY e e e e 6
Monitoring Copybook Changes 6
Running the Change Tracking Agent 6
Chapter 2 Installing and Using TIBCO Service Gateway for Files. 9
OV BIVIBW . . oottt e e e e 10
Supported ConneCtiVIty e 10
Optional Field for Service Gateway for Files. 10
ReStriCtioNS IN USEot e 11
Shares Infrastructure Used by Peer Servers e e 11
ReqUESE FlOW . . o 11
Distribution Media and CoNtents i 12
Installation Media 12
Open Systems Distribution 12

TIBCO Object Service Broker Managing External Data

iv | Contents

Installing the Software on an Open Systems Host e 13
Installation TYPesSo 13
Installation Modeso 13
Preparation for Installation. 14
Installing the Service Gateway for Files. 15
Installation Modes — Using a Response File e 16
Post Installation 17
Uninstalling the Software 18

Installing the Software ona zZ/ OS HOSto 19
Installing Remote on Same Host. 19
Installing Remote on Separate HOSt 22
Configuration of TCOP/IP o e 30
Verification of Installation 32
Reruns of the Installation. 33
Restarts of the Installation 34

UNiNStallingo o 35

Configuring Service Gateway for Files 36
Configuring a Service Gateway for Files to Run on Open Systems. 36
Configuring a Service Gateway for Filesto Runon z/OS 38

Setting Up the Communications Infrastructure 40
PrereqUISItESo 40
Data Object Broker on z/OS to Communicate with a Service Gateway forFiles. 40
Definition of the Gateway as a ReSOUICE. it e 41

Management of Service Gateway for Files 43
Startup of a Service Gateway for Files e 43
Shutdown of a Service Gateway for Files 43
Automatic Restart of a Service Gateway for Files e 44

Monitoring of Service Gateway for Files 45
AdMINISIatioN . . . 45
LOg Files .o 45

Service Gateway for Files and National Language Support e 46

Chapter 3 Managing IMP Data Definitionsttt i rnnaeenns 49

Accessing External Data from TIBCO Object Service Broker. 50
Using a Copybook as the Source for the Definition. 50
Steps Required to Define an Import Table. 51

Task A: Identify the Table 52
Table, Type, Unit, and IDgen Fieldso 52

Task B: Identify the Data. o 54
File Field . o 54
DDNname Field 55
Server ID Field. . ..o 56

TIBCO Object Service Broker Managing External Data

Contents | v

Data Cleansing Field e 56
Task C: Specify Data and Location Parameters. i e 57
Data Parameter e 57
Location Parameter 58
Task D: Specify EVENt RUIESo 60
Event Rule, Typ, and ACC Fieldsottt e e 60
Task E: Define Fieldso o 62
Specifying External Import Attributes 62
Specifying Internal TIBCO Object Service Broker Attributes 64
Chapter 4 Defining Import Tables for Files with Multiple Record Formats. 67
How to Define Import Tables for Files with Multiple Record Formats 68
What is a Multiple Record Format? 68
What is @ Repeating Group?ot e 68
Definition ReqUIrEmMENtSo e 68
First Sample File — Personnel 70
Types of Records in Fileo e 70
Table Definitionso e 70
Second Sample File — INVeNTOryo 72
Types of Records in File e 72
Table Definitions oo 72
PrOCESSING . . .o oo 76
Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker. 79
Accessing Import Tables 80
Using the Table BrowWSer. o e e 80
UsSiNg RUIES . ..o 80
CONSIAEratioNSo 81
Retrieval Processing.o 81
Remote Table ACCESS.o e 82
Steps to Process a Multi-record Table Remotely 82
Sample RUles 83
Sample Rule 1: NOrmal ACCESS oo e e e e e e e 83
Sample Rule 2: Accessing Multiple Record Formats 83
Explanation of the EMPLOYEE_B Rule e e 84
Listing Members of a PDS (z/OS) or Files in a Directory (Open Systems), 85
Example for a PDS in z/OS 85
Example for a Directory in Windows or Solaris.o e 87
Handling TIBCO Object Service Broker Requests e 89
ERROR EXCEPION . .ttt e e e e e e 89
AC CESSFAIL EXCEPION. . o ot e e e e e e e 89
INTEGRITYFAIL EXCEPON . . .ottt e e e e e e e e 89

TIBCO Object Service Broker Managing External Data

Vi | Contents

External Routines (Pre-processingthe Data)ttt 90
Manipulating Data with External Routines (zZOS Only)t e 90
Parameters Passed to the External Routine 90
Valid Return COdesSottt e e e 91
Example of an EXit.o 92
Example of an Exit that Normalizes Data e 92

Chapter 6 Managing EXP Data Definitions.ot ns 95

Writing TIBCO Object Service Broker Tables to External Files. 96
Using a Copybook as the Source for the Definition. 96
Steps Required to Define Export Tables 97

Task A: Identify the Table 98
Table, Type, and Unit Fields. 98

Task B: Identify the Data.o 99
File Field . o 99
DDNname Field 100
Server ID Field.o 101
External Routine Name Field. e 101

Task C: Specify Data and Location Parameters 102
Data Parameter e 102
Location Parameter e 102

Task D: Specify Event RUIESo 104
Event Rule, Typ, and AcC Fields o 104

Task E: Define Fieldso 105
CONSIAEratiONS ot 105
Specifying External Export Attributes 106
Specifying Internal TIBCO Object Service Broker Attributes. 107

Chapter 7 Processing External Data Using TIBCO Object Service Broker............... 111

Writing Data to an Export File and Accessing the Exported Data 112
UsSiNg RUIES 112
USING COPY D AT A . o e e e 112
USING CopY Table. . . . oot e e 112
Accessing the Exported Data 113

Handling TIBCO Object Service Broker Requests e 114
Transaction Length. 114
Error Handlingo 114
ERROR EXCEPHON . . . oottt e e e e 114
ACCESSFAIL EXCEPLION . . .ot e e e e e 114
INTEGRITYFAIL EXCEPHON . . o oottt it ettt e e e e e e e e e e e e e e e 115

External Routines (Pre-processingthe Data) i 116
Manipulating Data with External Routines (zZOS Only) i e 116

TIBCO Object Service Broker Managing External Data

Contents | vii

Parameters Passed to the External Routine. 116
Valid Return Codes.ottt e e e 117
Example of an Exit that Exports Variable Length Records. 117
Chapter 8 Managing VSAM Data Definitions.cciiiiiiiiiii it 119
Accessing VSAM Data from TIBCO Object Service Broker e 120
Using a Copybook as the Source for the Definition 120
Steps Required to Define a VSAM Table 121
Task A: Identify the Table. e 122
Table, Type, Unit, and IDgen Fields e e 122
Task B: Identify the Datao 124
File Field . . o 124
DDName Field. . . .o e 124
Read Only Fieldo 125
Load Field.o e 125
Data Set Type Field e 125
Ignore Field. 125
Server 1D Field 126
Task C: Specify Data and Location Parameters. e 127
Data Parameter 127
Location Parameter e 128
Task D: Specify EVent RUIESo 129
Event Rule, Typ, and AcC Fields o e 129
Task E: Define Fieldso o 130
CONSIAEratioONSo 130
Specifying External VSAM Attributes e 131
Specifying Internal TIBCO Object Service Broker Attributes 132
Behavior of Numeric Key Fields in VSAM Tables e 134
Data Set ReqUIrements 135
KSDS ReqUIrEMENTS . . . o e e 135
ESDS ReqUIrEmMeENtS e 135
RRDS ReqUIrEmMENtSo e 136
Chapter 9 Defining VSAM Tables for Files with Multiple Record Formats 137
VSAM Tables for Files with Multiple Records. e 138
What is a Multiple Record Format? 138
What is a Repeating Group?ot e 138
Sample File. . . 138
Definition ReqUIrEMENTS. o e e 139
Base and Child Definitionsottt 139
Definition Requirements of a Child Table 139
Sample Definition (ReCOrd A) oo 140

TIBCO Object Service Broker Managing External Data

viii | Contents

Sample Definition (Record B) 140
Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker. 143
Access of TIBCO Object Service Broker VSAM Tables e 144

Editing OF BroOWSINgG oo oo e 144

Usingthe Table EAItOr 144

Using the Table Browsero e e e 144

USiNG RUIES . . o o 145

VSAM Files with Multiple Record Formats and Repeating Groups oo it 145

Retrieval ProCessing oo e 146
Sample RUIESo 147

Sample Rule 1: Accessing Multiple Record Formats. i e 147

Sample Rule 2: Inserting Parent Record with Children 147
Handling of TIBCO Object Service Broker Requests e 149

Synchronization and Recovery 149

Error Handlingo 150

ERROR EXCEPHON . . . oottt e e 150

ACCESSFAIL EXCEPLION . . .ot e e e e e 151

INTEGRITYFAIL EXCEPHON . . o oottt ittt e e e e e e e e e e e e e e e 151
Appendix A Mapping Data Typesccviiiniini e it ia et sannnrannrrnnnss 153
Appendix B Mapping File Names for Open Systemso iiiininnnn. 161
Access to External Files 161

Providing a File Name 161

Using the DSDIR Parameter to Provide aFile Name i 161

Using filespec.dsn to Provide a File Name e 162

Mapping a Partitioned Data Set. 164
AppendixC DataCleansingcoiuiiiiiiini i rnarnnsnnrnassnnsnnsnnsnns 167
OPtIONS . oot 168
EXamIPIES . . 170
3T = 171

TIBCO Object Service Broker Managing External Data

Topics

Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual describes the interfaces from TIBCO Object Service Broker to import,
export, and VSAM data. It also describes the Service Gateway for Files and how to
install and use it to access import, export and VSAM data that is remote to your
system.

* Related Documentation, page x
e Typographical Conventions, page xv

* Connecting with TIBCO Resources, page xviii

TIBCO Object Service Broker Managing External Data

ix

X | Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation

The following documents form the TIBCO Object Service Broker documentation

set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rule’s name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.

TIBCO Object Service Broker Managing External Data

Preface | xi

Application Development and Management

The following manuals provide information about application development and
management:

e TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

e TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

e TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

e TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

e TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, NET and COM.

e TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

e TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ), and how to access programs written in external
programming languages from within TIBCO Object Service Broker.

TIBCO Object Service Broker Managing External Data

xii | Related Documentation

TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.

TIBCO Object Service Broker Managing External Data

Preface | xiii

TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

TIBCO Service Gateway for Files Describes the TIBCO Object Service Broker
interface to Adabas and Datacom data. Using this interface, you can access
external Adabas and Datacom data and define TIBCO Object Service Broker
tables based on this data.

TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

TIBCO Object Service Broker Managing External Data

Xiv | Related Documentation

e TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.

e TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.

TIBCO Object Service Broker Managing External Data

Preface | XV

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME By default, all TIBCO products are installed into a folder referenced in the
0SB_HOME documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C: \tibco\0SB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/0S, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code Bold code font is used in the following ways:
font ¢ In procedures, to indicate what a user types. For example: Type admin.
e Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

e Toindicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

* To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

¢ Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

TIBCO Object Service Broker Managing External Data

XVi | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

Ve The tip icon indicates an idea that could be useful, for example, a way to apply

N the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand paral | param2 | param3

TIBCO Object Service Broker Managing External Data

Preface | xvii

Table 2 Syntax Typographical Conventions

Convention Use

{17 A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair paraml and param?, or the pair param3 and param4.

MyCommand {paraml param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either paraml or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be paraml. You can optionally include param? as the
second parameter. And the last parameter is either param3 or param4.

MyCommand paraml [param2] {param3 | param4}

TIBCO Object Service Broker Managing External Data

xviii | Connecting with TIBCO Resources

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http:/ /docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO Object Service Broker Managing External Data

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

Chapter 1

Topics

Introducing External Data Interfaces

This chapter describes the interfaces to external files. Those interfaces enable you
to access external data, such as import, export, and VSAM data, from TIBCO
Object Service Broker.

¢ Overview, page 2

e External Data Accesses, page 3

* How TIBCO Object Service Broker Exchanges Data, page 4
¢ Initial Step for Defining Tables, page 5

¢ Using Data Discovery on page 6

TIBCO Object Service Broker Managing External Data

2 | Chapter 1 Introducing External Data Interfaces

Overview

TIBCO Object Service Broker provides you with interfaces to import and export
files, Adabas data, CA Datacom data, and VSAM data sets, allowing you to access
data in these file types from within your applications. These interfaces ensure
data is presented to and received from TIBCO Object Service Broker rules in a
manner consistent with TIBCO Object Service Broker behavior. Some of these
access are provided with your base TIBCO Object Service Broker installation and
others require Service Gateway for Files.

Service Gateway for Files

Service Gateway for Files is available to enable you to easily access files and
VSAM data sets that are remote to your system, without requiring an additional
TIBCO Object Service Broker installation on the remote system. This enables, for
example, an ODBC request through a TIBCO Object Service Broker on Open
Systems to directly access flat files and VSAM files on a z/OS system.

Optionally, you can also use distributed data to access import, export and most
VSAM data set types across systems. This requires the installation of an

additional TIBCO Object Service Broker system. Refer to the Managing Data and
Application Administration manuals for more information about distributed data.

Adabas, CA Datacom, and VSAM LDS Access

&

To access Adabas and VSAM LDS data you require the Service Gateway for Files
SDK which is included with the Service Gateway for Files. For information about
the SDK refer to the TIBCO Service Gateway for Files SDK User’s Guide.

* Service Gateway for Files is a separately licensed add-on to TIBCO Object
Service Broker.

¢ Service Gateway for Files differs from external database gateways which are
discussed in the TIBCO Service Gateway manuals.

* Service Gateway for Files has its own installation procedure. Refer to
Chapter 2, Installing and Using TIBCO Service Gateway for Files, on page 9
for detailed information.

TIBCO Object Service Broker Managing External Data

External Data Accesses | 3

External Data Accesses

Accesses to import, export and most VSAM data sets are included with the base
TIBCO Object Service Broker product. These are described in the following
sections. Access to Adabas and VSAM LDS data are described in the TIBCO
Service Gateway for Files SDK User’s Guide.

IMP (Import)

You use IMP tables to read (import) external files directly into TIBCO Object
Service Broker. Depending on the operating system and type of organization,
external files can be sequential data sets or members of partitioned data sets
(z/0OS), or a file or files within a directory (Windows or Solaris).

You use the Table Definer to define an IMP table. At execution time, you specify
the file to import and access the data either online or in batch mode.

For more information on IMP tables, refer to Chapter 3, Managing IMP Data
Definitions, on page 49, and to Chapter 5, Manipulating Import Data Using
TIBCO Object Service Broker, on page 79.

EXP (Export)

You use EXP tables to write (export) TIBCO Object Service Broker tables directly
to external files. Depending on the operating system and type of organization,
external files can be sequential data sets or members of partitioned data sets
(z/0OS), or a file or files within a directory (Windows or Solaris).

You use the Table Definer to define an EXP table and insert data into the table
using TIBCO Object Service Broker tools. After data is inserted into the table, you
access the data outside of TIBCO Object Service Broker. At execution time, specify
the target export file and export this data either online or in batch mode.

For more information on EXP tables, refer to Chapter 6, Managing EXP Data
Definitions, on page 95, and Chapter 7, Processing External Data Using TIBCO
Object Service Broker, on page 111.

VSM (VSAM)

You use VSM tables to access data in a VSAM file. You use the Table Definer to
define a VSM table and use TIBCO Object Service Broker tools to access the data.
For more information on VSM tables, refer to Chapter 8, Managing VSAM Data
Definitions, on page 119, and to Chapter 10, Processing VSAM Data Using TIBCO
Object Service Broker, on page 143.

TIBCO Object Service Broker Managing External Data

4 | Chapter 1 Introducing External Data Interfaces

How TIBCO Object Service Broker Exchanges Data

The following diagram shows how you can read, write, and access external data,
or access a VSAM file, while still having access to TIBCO Object Service Broker
data:

Execution Environm ent
/ /

|
TIBCO Object Service Broker external data
TIBCO Object Service Broker data
I

i

Data Object Broker ~
~—

IMP/EXPNSM

extemal data files or data sets

s

TIBCO Object Service Broker Managing External Data

Initial Step for Defining Tables | 5

Initial Step for Defining Tables

Invoke the Table Definer

Invoke the Table Definer from the workbench using the DT define table option or
the primary command field. You can access an existing definition or define a new
TIBCO Object Service Broker table.

Specify the Table Type for New Tables

After entering the initial Table Definer screen, you change the table type to IMP,
EXP, or VSM and press Enter; the appropriate Table Definition screen appears.

To define a

table of type... Refer to...

IMP Chapter 3, Managing IMP Data Definitions, page 49.
EXP Chapter 6, Managing EXP Data Definitions, page 95.
VSM Chapter 8, Managing VSAM Data Definitions, page 119.

See Also TIBCO Object Service Broker Getting Started for information on invoking
workbench tools.

TIBCO Object Service Broker Managing External Data

6 | Chapter 1 Introducing External Data Interfaces

Using Data Discovery

When you create an IMP, EXP, or VSM table in the TIBCO Object Service Broker
UL, you can use a copybook as the source for its definition using Data Discovery.

Monitoring Copybook Changes

TIBCO Object Service Broker can monitor changes to the copybook from the
TIBCO Object Service Broker Ul if the source is a member of a PDS. To do so, set
the Monitor flag for the table. To check for changes on all monitored tables, run
the Change Tracking Agent. Each table is also checked when the definition is
viewed in the TIBCO Object Service Broker UL

Running the Change Tracking Agent

Member CTA of the JCL data set contains JCL to run the Change Tracking Agent
in Batch mode. When you run the Agent, it checks the copybooks that were used
to create the tables in your TIBCO Object Service Broker system that have the
Monitor flag set. This job must be run from a TIBCO Object Service Broker level-7
user id.

The Change Tracking Agent then indicates (with the “TIMESTAMPS
DIFFERENT” message) that changes were made to the copybook since the last
time the member statistics were updated for the table. Also, the next time you
view the definition of the table in the TIBCO Object Service Broker UI, you see a
message telling you that the definition is out of sync with the copybook. To
remove this message, save the table (with or without changes) in the TIBCO
Object Service Broker Ul and confirm the request to reset this message.

TIBCO Object Service Broker Managing External Data

Sample Output

Using Data Discovery | 7

Page 1
CHANGE TRACKING - DIFFERENCES REPORT
2007-03-11

OBJECT NAME DATASET NAME
TABLE3 USR40.0SB.COBOL
TABLE USR40.0SB.COPYLIB
TABLEZ2 USR40.0SB.COPYLIB

#%% DIFFERENCES FOUND #**=*

CBCUST < TIMESTAMPS DIFFERENT
CBCUST < OK, TIMESTAMPS EQUAL
CBCUST < OK, TIMESTAMPS EQUAL

See Also TIBCO Object Service Broker UI Help for more information about using Data
Discovery to help define IMP, EXP and VSM tables.

TIBCO Object Service Broker Managing External Data

8 | Chapter 1 Introducing External Data Interfaces

TIBCO Object Service Broker Managing External Data

Chapter 2

Topics

| 9

Installing and Using TIBCO Service
Gateway for Files

This chapter describes how to install and operate Service Gateway for Files on
z/0S.

* Overview, page 10

¢ Distribution Media and Contents, page 12

¢ Installing Remote on Separate Host, page 22

® Uninstalling, page 35

* Configuring Service Gateway for Files, page 36

¢ Setting Up the Communications Infrastructure, page 40
* Management of Service Gateway for Files, page 43

* Monitoring of Service Gateway for Files, page 45

¢ Service Gateway for Files and National Language Support, page 46

TIBCO Object Service Broker Managing External Data

10 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Overview

Service Gateway for Files provides access to import, export and VSAM files that
are remote to a Data Object Broker. Other supported accesses from rules to these
file types require a Data Object Broker to run on the target system or the use of
distributed data.

Service Gateway for Files (z/OS) provides interfaces to import, export and VSAM
files. The Gateway ensures that data is presented to and received from TIBCO
Object Service Broker rules in a manner consistent with TIBCO Object Service
Broker behavior.

Service Gateway for Files is a separately chargeable component. To order it,
contact your regional TIBCO sales office.

The Service Gateway for Files SDK is provided with the Service Gateway for Files.
You can use this SDK to build applications to access Adabas, Datacom, and
VSAM LDS data from TIBCO Object Service Broker. Refer to TIBCO Service
Gateway for Files SDK User’s Guide for information about using the SDK. You
must add database objects to your TIBCO Object Service Broker 6.0.0 system to
use the SDK. For details, refer to Installing Remote on Separate Host, page 22.

Supported Connectivity

Service Gateway for Files must run on the same system as the files that are being
accessed. A Service Gateway for Files running on a supported platform can
communicate freely with a Data Object Broker on the same or another platform as
long as the machines are attached through communications and they are properly
configured.

Optional Field for Service Gateway for Files

The table definitions for the IMP, EXP, and VSM tables contain an optional field,
Server ID. If you specify a value in this field, a Service Gateway for Files will be
used for the data access. This field also identifies which Service Gateway for Files
to be used.

Refer to Chapter 3, Managing IMP Data Definitions, on page 49, Chapter 6,
Managing EXP Data Definitions, on page 95, and Chapter 8, Managing VSAM
Data Definitions, on page 119 for details on defining the table types.

TIBCO Object Service Broker Managing External Data

Overview | 11

Restrictions in Use

Location parameters are permitted in the table definition but they must ultimately
resolve to your local Data Object Broker as your Service Gateway for Files is
logged on there.

Shares Infrastructure Used by Peer Servers

The Service Gateway for Files shares much of its infrastructure with Peer Servers
and is counted among the Peer Servers by the Data Object Broker.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for details on
configuring Peer Servers.

Request Flow

The following graphic shows a request for access to a remote file using the Service
Gateway for Files.

TIBCO Object Service Broker

LOCAL SYTEM REMOTE SYTEM

/ GET TABLEL,

Execution Environm;ant

—
\,// '
Data Object Brok&r—— | | Service Gateway
~— > for Files

|

files or data sets

s

IMP/EXP/NVSAM

TIBCO Object Service Broker Managing External Data

12 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Distribution Media and Contents

This section describes the software contents.

Installation Media
You can download the software from the TIBCO site by following these steps:
1. Contact TIBCO Software Inc. for a password, directory information, etc.
2. Connect to the TIBCO site with the required information.
3. Download the appropriate ZIP file as described below.

For details on installation on z/OS, see Installing Remote on Separate Host,
page 22.

Open Systems Distribution
The following zip files comprise the distribution media:
TIB_srvcgw_file 6.0.0_win.zip (Windows)

TIB_srvegw_file 6.0.0_sol.zip (Solaris)

z/0S Distribution

This software is distributed in .xm1 format within a zip file. The file is in a format
compatible with IBM System Modification Program/Extended (SMP/E) naming
conventions. The product is packaged in SMP/E tx1ib and 1k1lib format. The
following ZIP file comprises the distribution media:

TIB_srvcgw_file_6.0.0_zos.zip

TIBCO Object Service Broker Managing External Data

Installing the Software on an Open Systems Host | 13

Installing the Software on an Open Systems Host

Installation Types
You can install the Service Gateway for Files as follows:
e Standalone installation — You have two configuration choices:

— Configuration 1: Remote on a separate host — Install the software on a
host in which TIBCO Object Service Broker for Open Systems is not
present, that is, it is not local to the Data Object Broker.

— Configuration 2: Remote on the same host — Install the software on the
host in which TIBCO Object Service Broker for Open Systems is present,
but the components do not share configuration files. This configuration
would be suitable for implementations in which the Service Gateway for
Files will communicate with a Data Object Broker other than the one on the
local host.

¢ Local (Enablement) — Install the software as part of the TIBCO Object Service
Broker system, which is locally installed in the machine.

When you run the installer, it detects the presence of TIBCO Object Service Broker
for Open Systems if it is installed on the target host. At that time, you are given
the choice to install the software with the base product (shared configuration
files), or separately from the base product (components do not share
configuration files).

Installation Modes
The installers allow you to run in different modes:

¢ GUI mode — in this mode, the installer presents panels that allow you to
make choices about product selection, product location, and so on. When you
invoke the installer by double-clicking on the icon, GUI mode is used.

¢ Console mode — this mode allows you to run the installer from the command
prompt or terminal window. This is used primarily for non-Windows
environments.

¢ Silent mode — installs without prompting you for information. To use this
mode, you must first generate a response file (using GUI mode or Console
mode) that contains the input values you want to use for the installation. For
details, see Installation Modes — Using a Response File on page 16.

TIBCO Object Service Broker Managing External Data

14 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Preparation for Installation

Windows

Solaris

Windows

Prerequisite Software
To run the installers, you must first install JRE/JDK 1.5 or 1.6.

Installer Disk Space Requirements

The package is extracted into a temp folder, typically SystemDrive :\Temp or
SystemDrive:\Documents and Settings\<user_name>\Local Settings\Temp

The installer requires 60 MB of free space in the temp directory.

When a regular (non-root) user installs a TIBCO product, the installation registry
is maintained in the user's home directory. As more products are installed, entries
are added. The user's home directory must at least have 500 KB of free disk space.

Installer Account

You must have administrator privileges for the machine on which the Service
Gateway for Files is installed. If you do not have administrator privileges, the
installer exits. You must then log out of the system and log in as a user with the
required privileges, or request your system administrator to assign the privileges
to your account.

If you intend to install the product on a network drive, you must ensure that the
account used for installation has permission to access the network drive.

When installing on Windows terminal server, there are two modes: Execute and
Install. By default all users are logged on in Execute mode, which allows them
to run the applications. When you want to install the Service Gateway for Files for
use by everyone, the Administrator should change to Install mode.

The best way to install the Service Gateway for Files is to use the Add/Remove
Programs control panel applet, because this automatically sets the mode to
Install during the installation and then back to Execute at the end.
Alternatively, you can manually change your mode to Install by typing:

C:\> change user /install
Change back to execute:

C:\> change user /execute
Check your current mode:

C:\> change user /query

TIBCO Object Service Broker Managing External Data

Installing the Software on an Open Systems Host | 15

If you install in the Execute mode, the installation registry is maintained in your
user home directory. If you install in the Install mode, the installation registry is
maintained in the %SystemRoot% folder.

You must invoke the installer from a TIBCO Object Service Broker-enabled CMD
prompt or from a CMD shortcut created by the base installer, in which the TIBCO
Object Service Broker environment has already been set.

Solaris The Service Gateway for Files can be installed by a regular (non-root) user and
super-user (root). Different users can install the same product at different
locations.

Installing the Service Gateway for Files

Before starting the installation procedure, ensure that your system meets the
hardware and software requirements, and that you have reviewed the
pre-installation steps.

Installation Files

The following are the files for the installation. These files are contained in the zip
files described in Open Systems Distribution on page 12:

TIB_srvcgw_file 6.0.0_win_x86.exe (Windows)

TIB_srvcgw_file 6.0.0_sol.bin (Solaris)

Installing the Software

After starting the installer and accepting the license agreement, you are prompted
to specify the TIBCO_HOME directory (if not detected by the installer). Typically,
this is the top level installation directory for all TIBCO products; however, you
can specify a different directory if desired.

Use one of the following modes to install the software.

GUIMode This mode allows you input values in panels. Type the following at the command
prompt:
Windows

TIB_srvcgw_file 6.0.0_win x86.exe

Solaris
./TIB_srvcgw_file_6.0.0_sol.bin

TIBCO Object Service Broker Managing External Data

16 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Console Mode

This mode allows you to install the software in a non-Windows environment. The
installer will prompt you for values. Type the following at the command prompt:

Windows

TIB_srvcgw_file_6.0.0_win_x86.exe -console
Solaris

./TIB_srvcgw_file_6.0.0_sol.bin -console

If you wish to install using a response file, see Installation Modes — Using a
Response File on page 16 for details.

Installation Modes — Using a Response File

Installing Using
Silent Mode

Installing and
Generating a
Response File

Installation in
GUI or Console
Mode Using a
Response File

This section provides instructions on installation using a response file.

To use this mode, you must first generate a response file (using GUI mode or
Console mode) that contains the input values you want to use for the installation.
You generate a response file using the following command:

<installer> -options-record <filename>
where <installer> is the installer executable (or bin file on Solaris), and <filename> is
the name of the response file to be generated. For an example, see Installing and
Generating a Response File below.
Example:

TIB_srvcgw_file 6.0.0_win_x86.exe -silent -options <filename>

You can generate a response file during installation which you can later use to
invoke the installer with the selected values as default values (GUI mode) or as
selected values (silent mode).

Example:

TIB_srvcgw_file_6.0.0_win_x86.exe -options-record <filename>

(Windows)

You can use a previously generated response file for installation. For non-silent
modes, the response file determines the defaults that are presented. For silent
mode, the response file determines what will be installed.

Examples:

TIB_srvcgw_file 6.0.0_win_x86.exe -options <filename>

(GUI Mode)

TIB_srvcgw_file_6.0.0_win_x86.exe -console
-options <filename>
(Console Mode)

TIBCO Object Service Broker Managing External Data

Installing the Software on an Open Systems Host | 17

Combining You can combine the different available options. For example, to install using
Options Console mode and generate a response file, use:

TIB_srvcgw_file_6.0.0_win_x86.exe -console
-options-record <filename>

Installation ~ You have two installation choices, enablement and standalone, which apply to all
Choices installation modes.

* Enablement Installation To make the enablement choice available for
installation, you must have installed a TIBCO Object Service Broker base
system. Call the installer program from a TIBCO Object Service
Broker-enabled CMD prompt or from a CMD shortcut created by the base
installer, in which the HURON environment variable is already set.

When the installer prompts you to choose between enablement and
standalone, choose enablement.

The absence of a choice means that standalone installations already exist in
the same TIBCO_HOME folder.

¢ Standalone Installation Standalone installation is the default in all other cases
if no TIBCO Object Service Broker base system has been installed. This type of
installation applies regardless of whether or not other standalone installations
exist in the TIBCO_HOME folder.

Be extra-careful if you use silent mode because the target installation
environment plays a primary role in allowing the installation types that are
available.

Post Installation

After installing Service Gateway for Files, you must perform the tasks listed
below. The directory names referred to in the following instructions are
subdirectories of either OS_ROOT on Windows or ${OS_ROOT]} on Solaris if you
share configuration files with the base TIBCO Object Service Broker for Open
Systems, or in the directory you specified during the install if you do not share
configuration files.

Windows Configure the gateway by creating configuration files in the database directory.
Refer to Configuring Service Gateway for Files on page 36 for detailed
instructions.

You must modify the batch file launchFilesgw.bat, in the utils directory, to
A supply osMon with a NAME matching the NAME parameter value you choose for
Service Gateway for Files in mon. prm.

TIBCO Object Service Broker Managing External Data

18 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Solaris

A

Configure the gateway by creating configuration files in the database directory.

Refer to Configuring Service Gateway for Files on page 36 for detailed
instructions.

You must modify the shell script 1aunchFilesgw, in the utils directory, to supply
osMon with a NAME matching the NAME parameter value you choose for Service
Gateway for Files in mon. prm.

Uninstalling the Software

Windows

Solaris

If another product is dependent on the product you wish to uninstall, you are
informed that you must uninstall the other product first. The directory names
referred to in the following instructions are subdirectories of either 0S_ROOT on
Windows or ${0S_ROOT} on Solaris if you share configuration files with the base
TIBCO Object Service Broker for Open Systems, or in the directory you specified
during the install if you do not share configuration files.

Use one of the following to uninstall Service Gateway for Files:

* Use Add/Remove Programs from the Control Panel.

* Navigate to the following directory:

uninstaller archives\osbgateway_file\

and invoke the uninstall. exe program.

Navigate to the following directory:
uninstaller_archives/osbgateway_file/

and invoke the uninstall program.

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 19

Installing the Software on a zZ/OS Host

You can install the Service Gateway for Files as follows:
* Installing Remote on Same Host

The software is installed on the host where TIBCO Object Service Broker for
z/0S is present, but the components do not share configuration files. This
would be suitable for implementations where the Service Gateway for Files
will communicate with a Data Object Broker other than that on the local host.

You must install and accept (through SMP/E) the TIBCO Object Service
Broker base component before installing Service Gateway for Files. Also, you
must have the <HLQ>.INSTALL data set that was created during that
installation.

¢ Installing Remote on Separate Host

The software is installed on a host where TIBCO Object Service Broker for
z/0S is absent, that is, it is not local to the Data Object Broker.

Installing Remote on Same Host

If you have acquired the Service Gateway for Files by downloading it from the
TIBCO Software site, you must upload the software to the z/OS host system.

Preparing and Uploading the Product File

1. Download or copy the TIB_srvcgw_file_6.0.0_zos.zip file to a PC that
can connect to the z/OS host system.

2. Unzip the file to a temporary location on the PC. The zip file contains multiple
files; of these, the following file is the only file used in this installation:

file.xml — compressed file containing Service Gateway for Files.

The srvcgw.file.xml, install.bin, ostarrec.bin, property.bin, and
OSTAREDC files are not used in this procedure.

3. Pre-allocate the following sequential data set on the z/OS host system:

<HLQ>.FILE.XM1 (size 18 KB)

TIBCO Object Service Broker Managing External Data

20 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

& |

Use the same <HLQ> that you specified when you uploaded the base
component. Below is sample JCL to allocate this data set. Provide a JOB card
and submit the JCL.

The value assigned to <HLQ> should be consistent during the entire
installation cycle.

//ALLOC EXEC PGM=IEFBR14

//DD1 DD DSN=<HLQ>.FILE.XM1,

// DISP=(,CATLG,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=1024,BLKSIZE=0,DSORG=PS),
// SPACE=(TRK, (2,1))

4. FTP the file.xmi file in BIN mode to the <HLQ>.FILE.XM1 data set.

Installing the Software

This section describes the procedure for installing the Service Gateway for Files.
You must perform the installation under an ISPF environment only.

You can start the installation if you have the following data sets ready:

® <HLQ>.INSTALL

® <HLQ>.FILE.XM1

You must use the <HLQ>.INSTALL data set that was created during the
installation of the TIBCO Object Service Broker base component.

To install Service Gateway for Files, perform the following:

1. Edit the properties file by specifying the keywords for installing this
component.

2. Install the software.

These steps are described in depth below.

Task A Edit the Properties File

Edit the PROPERTY member in <HLQ> . INSTALL. Table 3 describes keywords in the
properties file for installing this component.

Table 3 Properties File Keywords

Keyword Description

INSTALL= To install Service Gateway for Files, specify FILES:
INSTALL=FILES

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 21

Table 3 Properties File Keywords

Keyword Description

If enabling the CA-Datacom interface, provide the following:

DCOMBASE= Data set name of your CA Datacom base load library.

DCOMIPC= Data set name of your CA IPC CAILIB load library.

Task B Initial Installation
1. Execute File Tailoring EXEC to start installation.

— Member in: <HLQ>.INSTALL

— Member: INSTALL (EX member)

The FILE.JCL data set is created at the successful completion of this step.
2. Run]Job FILE.JCL.

This batch job uncompresses the FILE.xM1 file to produce the distribution
library.

— JCL in: <HLQ>.FILE.JCL (Edit JOB card to your site's standards)

— Data Set: <HLQ>.FILE.JCL (SUB data set). Do not hold data set open in
ISPF edit.

Uncompressing <HLQ>.FILE.XM1 produces the distribution library
<HLQ>.FILE.FILEI.

3. Create and customize work copies of data sets.
— Member in: <HLQ>.FILE.FILEI
— Member: S6F1CUST (EX member)

The following work copies are created and customized with values specified
by OSEMOD variables:

Customized copy - Library Description
<HLQNONV>. <INSTVER>. JCL - Sample JCL
<HLQNONV>. <INSTVER>.FILE.JOBS - Install jobs for Files
4. Initiate install jobs.
— Member in: <HLQNONV> . <INSTVER> . FILE.JOBS

— Member: S6F2RUNJ (EX member)

TIBCO Object Service Broker Managing External Data

22 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

SEND messages are directed to the userid specified in the NOTIFY parameter of
each job submitted, informing user of submission and normal completion or
abnormal termination. The successful completion of the final job in JOBSF list is
accompanied by the message ALL MEMBERS PROCESSED.

This completes the installation process for Files.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on installing the base component.

Installing Remote on Separate Host

You can install Service Gateway for Files remotely on separate hosts, where
TIBCO Object Service Broker for z/OS is absent, that is, it is not local to the Data
Object Broker.

Preparing the Product Files and Utilities for Uploading

1. Download or copy the TIB_srvcgw_file_6.0.0_zos.zip file to a PC that
can connect to the z/OS host system.

2. Unzip the file to a temporary location on the PC. The file contains:

srvegw_file.xml — A compressed file containing the installation libraries.
install.bin - The REXX EXEC to perform the installation.
ostarrec.bin - The REXX EXEC to uncompress the .xm1 files.

property.bin — A template of mandatory install variables required for
product installation.

OSTAREDC — A decompression utility program.

3. Preallocate a PDS, fixed block data set on the z/OS host system:

HLQ.INSTALL

where HLQ is any valid high-level qualifier.

S

cycle.

The value assigned to HLQ should be consistent during the entire installation

See sample allocation JCL in Step 4.

4. Preallocate a sequential data set on the z/OS host system:

HLQ.OS.FILE.XM1 (size 50,000 KB)

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 23

Use the same HLQ as the previous data set. Below is a sample JCL to allocate
these data sets. Provide a JOB card and submit the JCL.
//ALLOC EXEC PGM=IEFBR14
//DD1 DD DSN=HLQ.INSTALL,
// DISP=(,CATLG,DELETE),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),
// SPACE=(TRK, (10,5,10))
//DD2 DD DSN=HLQ.OS.FILE.XM1,
// DISP=(,CATLG,DELETE),UNIT=SYSDA,
// DCB=(RECFM=FB,LRECL=1024,BLKSIZE=0,DSORG=PS),
// SPACE=(TRK, (1000,50))

5. FTP install.bin, ostarrec.bin and property.bin to your z/OS system in BIN
mode to the HLQ . INSTALL data set. Name these utilities INSTALL, OSTARREC,
and PROPERTY, respectively.

6. FTP the srvcgw_file.xmi file in BIN mode to the HLQ.0S.FILE.XM1 data set.

Installing the OSTAREDC Program

1. Upload the 0STAREDC file to z/OS in binary format to a data set with
LRECL=80 and RECFM=FB.

2. InISPF 3.4, type the following against this data set:
“RECEIVE INDA(/)”

When prompted, specify DA('HLQ.INSTLOAD' as the name of the load library
where you want the 0STAREDC program restored.

3. Edit OSTARREC as follows:
— Issue the command FIND OSTAREDC 1.

— Change the constant after the equal sign to contain the full data set name of
the program. The string must start with a double quote and a single quote,
and end with a single quote and a double quote (the double quotes delimit
the string and the single quotes tell TSO that the data set name is fully
qualified). For example, change the following:

OSTAREDC = "'HLQ.INSTLOAD(OSTAREDC)'"
to
OSTAREDC = "'your.load.library (OSTAREDC) ' "

where your.load.library is the name of the library referenced in Step 2.

TIBCO Object Service Broker Managing External Data

24 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Installing the Software

You can start the installation if you have uploaded the following data sets as
described in Preparing the Product Files and Utilities for Uploading on page 22:

e HLQ.INSTALL

e HLQ.O0S.FILE.XM1

The HLQ referenced throughout this chapter is the high-level qualifier you
specified when you uploaded the product software. This is the value of the
INSTALL and XM1 files you specified. It will be used as the default value for all
distribution files created when an XM1 is uncompressed. It is equivalent to the
value of symbolic parameter HLQ as described in OSEMOD.

Overview
To install Service Gateway for Files, perform the following:

1. Determine your system environment values listed in System Environment
Checklist.

2. Editing of the Properties File using the values determined in Step 1.

3. Installation.

Task A System Environment Checklist

Before installation, review the system-environment information in Table 4 and
determine whether to use the default value or provide your own value.

Table 4 OSEMOD Variables

- OSEMOD Your
Description Variable Default Value Value
High-level qualifier for uploaded data sets HLQ Specified on upload
INSTALL and 0S.FILE.XM1
High-level qualifier for non-VSAM and $HLQNONVS ~ TIBCO.TESTNV

VSAM data sets you are authorized to create

$HLQVSAMS$ TIBCO.TESTVS

Second-level qualifier for install files $INSTVERS INS60

Second-level qualifier for TIBCO Service $SLQS 0SB60
Gateway system files

Second-level qualifier for SMP/E libraries SMP SMP60

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 25

Table 4 OSEMOD Variables (Cont’d)

OSEMOD
Variable

Your

Default Value Value

Description

For SMS Shops — managementclass, dataclass and storageclass, if required

For new non-VSAM data sets $NMGTCLAS STANDARD
$NDATCLASS STANDARD
$NSTOCLASS S6BNONV

For new VSAM data sets $VMGTCLAS STANDARD
$VDATCLAS$ STANDARD
$VSTOCLAS$ S6BVSAM

High-level qualifier of Language $CEELIBS$ CEE
Environment libraries for SCEELKED and

SCEEBIND

High-level qualifier of IBM's Callable $CSSLIBS SYs1

Services library CSSLIB

If enabling the CA-Datacom interface provided with the Service Gateway for Files, provide the
following:

Data set name of your CA Datacom base $DCOMBASE ~ CA.DATACOM.CABDLOAD
load library

Data set name of your CA IPC CAILIB load $DCOMIPC$ CA.IPC.CAILIB
library

Data Object Broker communication ID TDS OSBDOB

For details, see the TIBCO Object Service Broker for z/OS Installing and Operating
manual.

TIBCO Object Service Broker Managing External Data

26 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Task B Editing of the Properties File

Use the PROPERTY member in HLQ. INSTALL as a template and modify it to suit
your requirements. Table 5 describes the keywords in the properties file that
correspond to the system-environment variables in System Environment
Checklist.

Table 5 Properties File Keywords

Keyword Description

INSTALL= To install Service Gateway for Files, specify REMOTEGATEWAY:
INSTALL=REMOTEGATEWAY
SERVICEGATEWAY= To install Service Gateway for Files, specify FILES:
SERVICEGATEWAY=FILES
HLQNONV= High-level qualifier for non-VSAM data sets.
HLQVSAM= High-level qualifier for VSAM data sets.
INSTVER= Second-level qualifier for install files.
SLQ= Second-level qualifier for TIBCO Object Service Broker system files.
SMP= Second-level qualifier for SMP/E libraries.
SMS= YES for SMS site, NO for non-SMS site.
Warning: If you select the SMS=YES option, be sure to specify SMS-managed
data-set names. The SMS automatic class selection (ACS) rules at your site
determine whether a data-set name is eligible for SMS management. If the
answer is yes, SMS manages that name. Otherwise, the result is unpredictable.
COMPAT= Use if SMs=YES. Valid values: YES for SMS compatible data set name classes;

NO for SMS non-compatible data set name classes.

If COMPAT=NO, specify the following:

® NMGTCLAS —MANAGEMENTCLASS for non-VSAM data sets
® NDATCLAS — DATACLASS for non-VSAM data sets

® NSTOCLAS — STORAGECLASS for non-VSAM data sets

® VMGTCLAS — MANAGEMENTCLASS for VSAM data sets

® VDATCLAS — DATACLASS for VSAM data sets

® VSTOCLAS — STORAGECLASS for VSAM data sets

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 27

Table 5 Properties File Keywords (Cont’d)

Keyword Description

VOLSER= If SMS=YES, specify one DASD volume for VSAM data set allocation. Default is
USERO1. If sSMS=No, specify three DASD volumes separated by commas.
Defaults are 0SBS06, 0SBD18, 0SBBO02.

¢ voll - DASD volser for temp work files
* vol2 - DASD volser for install files
* vol3 - DASD volser for TIBCO Object Service Broker system files

CEELIB= High-level qualifier of Language Environment libraries.
CSSLIB= High-level qualifier of IBM's Callable Services library CSSLIB.
TDS= Communication ID of the Data Object Broker.

If you are enabling the CA-Datacom interface provided with Service Gateway for Files, specify the
following:

DCOMBASE Data set name of your CA Datacom base load library.

DCOMIPC Data set name of your CA IPC CATILIB load library.

Task C Installation

To exit the interactive session at any time after executing REXX exec INSTALL, do
% the following;:

1. Press PA1.

2. Enter hi.

3. Press ENTER twice.

STEP 1: Execute File Tailoring EXEC to start installation.
Member in: HLQ.INSTALL
Member: INSTALL (EX member)

TIBCO Object Service Broker Managing External Data

28 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

STEP 2:

JCL in:
Data Set:

STEP 3:

Member in:

Member:

STEP 4:

Member in:

Member:

STEP 1 will verify that files can be allocated successfully using
the values provided in the PROPERTY file. Test files of type
sequential, PDS, PDSE, and VSAM will be allocated then deleted.
Installation will stop if any test allocation fails. You should
investigate the cause, correct the condition and repeat STEP 1.

The HLQ.FILE.JCL data set is created at the successful
completion of this step.

Edit the Job card to your site’s standards and run Job
HLQ.FILE.JCL.

HLQ.FILE.JCL (EditJob Card to your site’s standards.)

HLQ.FILE.JCL (SUB data set). Do not hold data set open in ISPF
edit.

This batch job will uncompress the 0S.FILE.XM1 file to produce
the distribution libraries. If you modify the job name, make sure
it does not exceed seven characters. The job should successfully
complete with a return code of 0.

Edit 0SEMOD.

To make additional changes to the values of the 0SEMOD variables,
make the changes now.

HLQ.FILECLS

OSEMOD

If Service Gateway for Files is connecting to a Data Object Broker
that runs in an Open Systems platform. you must specify the
values for these two OSEMOD variables: $HOST$ and $DOBPORTS.

These variables customize the member RELAYTCP in

HLQNONV . INSTVER . CNTL before it is copied to the data set
HLQNONV . SLQ.RELAYCFG. It is required to establish TCP/IP
connectivity. For further details, see Configuration of TCP/IP on
page 30.

Create and customize work copies of data sets.
HLQ.O0S.FILE.FILETI

S6M1CUST (EX member)

TIBCO Object Service Broker Managing External Data

STEP 5:

Member in:

Member:

STEP 6:

Member in:

Member:

Installing the Software on a z/OS Host | 29

The following work copies are created and customized with
values specified by OSEMOD variables:

Customized copy - Library Description
« HLONONV.INSTVER.CLIST - CLIST

« HLQONONV.INSTVER.CNTL - CNTL

« HLQONONV.INSTVER.JCL - Sample JCL

« HLQONONV.INSTVER.OS.FILE.JOBS - Install jobs for
remote Service Gateway for Files

Modify STATUS of installation jobs, as required.
HLQNONV . INSTVER.0S . FILE. JOBS

JOBSM (EDIT member)

Jobs in JOBSM are evaluated in the order they are listed and are
submitted based upon their specified STATUS. The next job is
submitted only if the previous one completed with its expected
return code RC.

Valid status: INSTALL (run the job), FUTURE/OPTIONAL (skip
the job), DONE (job already completed).

Status is modified from INSTALL to DONE only if the job's
completion code is equal to or less than the stated return code.

You can modify the STATUS of any job as per your requirement.
For example, if your shop normally ACCEPTs the product FMID
at some future time, then change the status of S6M4ACPT from
INSTALL to FUTURE.

Skip this step if the default STATUS of all the jobs is acceptable.

Initiate install jobs.
HLQNONV . INSTVER.OS . FILE.JOBS

S6M2RUNJ (EX member)

SEND messages are directed to the userid specified in the NOTIFY
parameter of each job submitted, informing user of submission
and normal completion or abnormal termination. The successful

completion of the final job in the J0BSM list is accompanied by the
message ALL MEMBERS PROCESSED.

This completes the installation process.

TIBCO Object Service Broker Managing External Data

30 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

STEP 7: Perform the final ACCEPT.

If you have opted to delay accepting the product as described in
step 5 by changing the original STATUS of job S6M4ACPT from
INSTALL to FUTURE in member JOBSM, then be sure to accept the
Service Gateway for Files product by performing the final ACCEPT
when ready. This step is required for future maintenance of the

product.
Member in: HLQNONV . INSTVER .0S . FILE . JOBS
Member: S6M4ACPT (SUB member)

Configuration of TCP/IP

You need TCP/IP to communicate between TIBCO Object Service Broker
components—client processes, Execution Environments, Data Object Brokers, and
external database gateways—on a z/OS system and TIBCO Object Service Broker
components on z/OS or non-z/OS platforms.

The relay file, RELAYTCP in the CNTL data set, contains information on the TIBCO
Object Service Broker components that use TCP/IP. The file associates TCP /IP
host names and port numbers with the TIBCO Object Service Broker
communication identifiers that are used by those components that run on any
supported platform. Also, the file is a text file in XML format, which you must
modify when changes to the TCP/IP environment are required. Each component
could have a separate relay file or a common file could be shared across a number
of components.

If XCF communications relay is deployed, TCP/IP parameters must be merged
with the XCF parameters; the combined parameters are in RELAYCFG in the CNTL
data set. For details on the XCF parameters, see Configuring XCF
Communications in Chapter 2 of the TIBCO Object Service Broker for z/OS Installing
and Operating manual.

The order of the relay parameters for each node name is the order of selection for
that node. If merged with XCF parameters, XCF is considered before TCP/IP.

Run USERMODD in the JCL data set to customize the data set name of the relay file.

If you specify DSNAME=NULLFILE in USERMODD, you disable TCP/IP access. In jobs
and started tasks where you want to use TCP/IP, add an S6BRELAY DD statement
to point to the relay file. If you specify a non-null relay file in a batch job, it is
likely to have a short-term region requirement at startup of over 64 MB as it runs
XMLPARSER and might cause jobs to fail. USERMODD with DSNAME=NULLFILE or an
S6BRELAY DD DUMMY JCL statement removes this storage requirement.

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 31

The installation process for TIBCO Object Service Broker copies RELAYTCP to the
data set SHLQNOVNS . SLQ . RELAYCFG, which contains your live TCP/IP
information. To change your TCP/IP configuration, use the CNTL member
RELAYTCP to make and verify your changes, and then copy the new information to
$HLQNOVNS . SLQ . RELAYCFG. To override the data set name set by USERMODD, add
a DDNAME S6BRELAY to your TIBCO Object Service Broker component or any other
z/0OS components that require TCP/IP communications. If this override is invalid
during the component’s initialization, support for TCP/IP is disabled until you
specify a valid parameter file. Once the relay file has been processed during
component initialization, it is freed.

The relay file contains a set of protocol specific parameters, followed by a
directory that maps communication identifiers to protocol-specific parameters.
When configuring a TIBCO Service Gateway on z/OS to attach with a TIBCO
Data Object Broker on Windows or Solaris, be sure to specify the keepalive
attribute for the node that describes the TIBCO Data Object Broker (WINDOB in the
sample below).

Following is a sample of the TCP/IP section of the HCS relay file:

<relay xmlns="http://www.tibco.com/0OSB/relayparms.xsd">
<tcpipparms tcbnum="3" maxtcbsockets="50" />
<directory>
<node name="PRODZDOB">
<tcpip host="zosl.mydomain.com" service="emprec" />
</node>
<node name="PRODSDOB">
<tcpip host="solaris5.mydomain.com" port="26360" />
</node>
<node name="FILEZGW">
<tcpip host="zosl.mydomain.com" port="22636" />
</node>
<node name="WINDOB">
<tcpip host="168.192.0.101" port="26362" keepalive="600"/>
</node>
</directory>

</relay>

For a detailed description of TCP/IP protocol parameters, see TCP /IP Protocol
Parameters for the Relay File in Chapter 2 of the TIBCO Object Service Broker for
z/OS Installing and Operating manual.

TIBCO Object Service Broker Managing External Data

32 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Verification of Installation

Installation verification for an external DBMS provides a quick method to verify
that the installation of a TIBCO Object Service Broker DOB and one or more
DBMS Service Gateways was successful. This verifies that the communication
between the DOB and a Service Gateway, and a Service Gateway and the DBMS,
is functioning properly.

Verification can be accomplished by including sample TIBCO Object Service
Broker table definitions for DB2, IMS, CA-IDMS and CA-Datacom. Each of these
comes with sample tables or demo databases.

If a DBMS does not have sample tables or a demo database, or these were not
% included in its installation, you need to manually verify access to one of your
databases. Instructions to perform this can be found later in this manual.

The TIBCO Object Service Broker tables are prefixed with the name S6BIVP*, for
example S6BIVP_DATACOM.

Requirements
Installation verification requires the following:

¢ The complete installation of a TIBCO Object Service Broker DOB on z/OS,
Windows or UNIX.

* The installation of a Service Gateway.

* Sample tables or demo databases, often bundled with a DBMS and installed at
most shops, are generally available for use.

e If the DOB is on Windows or UNIX, the crparm file must contain in the
OPERATOR parameter the name of the TSO ID for submitting the JCL(IVPDAT)
job. For example:

OPERATOR = winuserl, TSOID1

Note:

- winuserl is a Windows login ID, from which the Windows DOB is
administered.

- TSOID1 is a TSO ID, from which the JCL(IVPDAT) job is
submitted.

Data set HLQNONV . INSTVER . JCL(IVPDAT) contains all the job steps required to
execute the verification process. If all requirements are met customize the JCL and
run it.

TIBCO Object Service Broker Managing External Data

Installing the Software on a z/OS Host | 33

Have your z/OS systems programmer APF-authorize the library
HLQNONV . INSTVER . AUTH so that you can use TCP/IP or z/OS cross-memory
communications in IVPDAT.

Process
The steps in the verification process are as follows:
1. Submit JCL to start the Service Gateway for Files and wait for it to start.

2. Run a TIBCO Object Service Broker batch job to access the predefined DBMS
sample table.

3. Shutdown the Service Gateway for Files.

4. Check the results.

Reruns of the Installation
To do a rerun of the installation:

® Check to make sure you still have these two files:
— HLQ.INSTALL
— HLQ.0S.FILE.XM1

* Run the job HLQNONV.INSTVER.0S . FILE.JOBS (S6MICLEN). It will delete all the
data sets previously created by job S6M3APLY, i.e., SMP/E-related libraries, etc.

* Manually delete the customized copies of the installation files:
1. HLQNONV . INSTVER .CLIST
2. HLQNONV.INSTVER.CNTL

3. HLQNONV .INSTVER.JCL
4. HLQNONV .INSTVER.OS.FILE.JOBS

¢ Manually delete the source files created from the uncompress of XM1:
There are 12 of them, with a high-level qualifier of HLQ

¢ Go back to Installing Remote on Separate Host on page 22 to do a rerun.

TIBCO Object Service Broker Managing External Data

34 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Restarts of the Installation

To do a restart of the SMP/E installation, assuming that there are no data set name
changes:

¢ Manually run these three jobs in HLQNONV . INSTVER.0S . FILE . JOBS in the
following order:

Insert a
5 //PROCLIB JCLLIB ORDER=HLQ.OS.FILE.FILEI

statement to the first two jobs in order to pick up SMPPROC.

1. S6MBAPLY — Should complete with a return code of 4.
2. S6M4ACPT — Should complete with a return code of 4.
3. S6M5CFGR — Should complete with a return code of 0.

To change the second-level qualifier of SMP/E libraries from its default of SMP60
to one of your choice, do the following:

* Run the job HLQNONV.INSTVER. 0S.FILE.JOBS(S6MICLEN) to delete all
previous SMP/E libraries.

¢ [Edit the members S6M3APLY, S6M4ACPT, S6M5CFGR, and S6MICLEN in
HLQNONV . INSTVER . OS . FILE . JOBS, changing all occurrences of SMP60 to that of
your choice and then manually run these jobs:

Insert a
5 //PROCLIB JCLLIB ORDER=HLQ.OS.FILE.FILEI

statement to the first two jobs in order to pick up SMPPROC.

1. S6MBAPLY — Should complete with a return code of 4.
2. S6M4ACPT — Should complete with a return code of 4.

3. S6M5CFGR — Should complete with a return code of 0.

TIBCO Object Service Broker Managing External Data

Uninstalling

Uninstalling | 35

To uninstall Service Gateway for Files:

1.

Run the job HLQNONV . INSTVER . 0S . FILE. JOBS (S6M9CLEN), which deletes all
the data sets previously created by the job S6M3APLY, that is, the
SMP /E-related libraries and so forth.

Manually delete the customized copies of the installation files, as follows:

HLQNONV .INSTVER.CLIST
HLQNONV .INSTVER.CNTL

HLQNONV . INSTVER.JCL

HLQNONV .INSTVER.OS.FILE.JOBS

Manually delete the 11 source files with the high-level qualifier of HLQ

Those files were created from the uncompression of xM1.

Manually delete the rest of the installation files: HLQ. INSTALL and
HLQ.O0S.FILE.XM1.

TIBCO Object Service Broker Managing External Data

36 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Configuring Service Gateway for Files

Configuring a Service Gateway for Files to Run on Open Systems

See Also

To configure a Service Gateway for Files for Open Systems, you must edit the
following parameter files:

e mon.prm

e session.prm

e ee.prm

The parameter files will be located in the database directory in either %0S_R0OOT on
Windows or ${0S_ROO0T} on Solaris if you share configuration files with the base
TIBCO Object Service Broker for Open Systems, or in the directory you specified
during the install if you do not share configuration files. Sample template files are
provided in these directories (they have the extension . template).

If the parameter files already exist in your database directory, modify each file as
required for installation. If the parameter files do not already exist, perform the
following:

1. Make a copy of each template file.
2. Modify each copy as required for your installation.
3. Rename the files as appropriate to mon.prm, session.prm, or ee.prm.

TIBCO Object Service Broker Parameters for details about the Execution
Environment parameters.

Sample Configuration

The following is a sample mon. prm file. This file is used by the osMon process
which starts the Service Gateway for Files:

#mon.prm file: Sample Configuration

NAME=DEFAULT

SERVERS="2 FILEGATEWAYS"
DOB=S6LSDOBA

Explanations of the parameters in the sample mon. prm file:

SERVERS="2 Two Service Gateway for Files will be started. The name
FILEGATEWAYS” supplied must match a NAME parameter in your

session.prn file.

TIBCO Object Service Broker Managing External Data

Configuring Service Gateway for Files | 37

DOB=S6LSDOBA S6LSDOBA represents the Communications Identifier of
the Data Object Broker your Service Gateway for Files
will attach to.

The following sample session. prm file shows the session parameters you must
set.

#session.prm file: Sample Configuration
NAME=FILEGATEWAYS

EENAME=FGSRVEE

SERVERID=FGSERVER

SERVERTYPE=PRS
DSIXFTYPE=LINE_SEPARATED_ASCII

NAME=FILEGATEWAYS Matches the value specified in the SERVERS
parameter in your mon. prm file.

EENAME=FGSRVEE FGSRVEE represents an EE Name, which matches
a NAME parameter in your ee. prm file.

SERVERID=FGSERVER The SERVERID parameter supplies the server ID of
the Service Gateway for Files. (The corresponding
z/0OS parameter is PEERSERVERID).

SERVERTYPE=PRS Must appear as shown.

DSIXFTYPE=LINE_SEPA Optional. The DSIXFTYPE parameter controls,

RATED_ASCII among other things, whether EBCDIC-to-ASCII
conversions will be made on IMP and EXP tables.
LINE_SEPARATED_ASCII is the default value
and is typically the value you will need for remote
access from Z/OS to ordinary flat files in an Open
Systems environment.

The following sample ee . prm file shows the necessary Execution Environment
parameters.

#ee.prm: Sample Configuration
NAME=FGSRVEE
DOB=S6LSDOBA
MAXSESSTION=20

NAME=FGSRVEE Matches the value specified in the EENAME
parameter in your session.prm file.

TIBCO Object Service Broker Managing External Data

38 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

DOB=S6LSDOBA S6LSDOBA represents the Communications
Identifier of the Data Object Broker your Service
Gateway for Files will attach to.

MAXSESSION=20 Optional. The MAXSESSION parameter controls
how many concurrent sessions will be started
before another EE will be started.

Configuring a Service Gateway for Files to Run on z/0S

This section shows you how to configure Service Gateway for Files on z/OS
through the Execution Environment parameters supplied to the Service Gateway
for Files in the JCL that starts it.

See Also TIBCO Object Service Broker Parameters for details about the Execution
Environment parameters.

Preliminary Steps
Before starting the Service Gateway for Files, do the following:

1. Configure the communications and target Data Object Broker. See Setting Up
the Communications Infrastructure on page 40.

2. Have your z/0OS systems programmer APF authorize the library
HLQNONV . INSTVER . AUTH in order to use TCP/IP or z/OS cross memory
communications. The S6BRELAY DD statement in the sample JCL configures a
TCP/IP path to your remote Data Object Broker.

3. Run EECONFIG from HLONONV.INSTVER.JCL. Before submitting job EECONFIG,
be sure to specify a valid SVC number in the SVC parameter for members
PARMNEE and PARMBAT, which are located in HLQNONV . INSTVER . CNTL.

Sample Configuration

The following sample JCL starts a Service Gateway for Files named FGSERVER,
and connects to a Data Object Broker with a COMMID of S6LSDOBA.

//S6LSQQPP JOB (1), ’FILE GATEWAY’ ,MSGCLASS=Y,TIME=1440
/*JOBPARM SYSAFF=*,TIME=1440

//REMSRVR EXEC PGM=S6BDR0O00,REGION=0M,TIME=1440
//STEPLIB DD DSN=HLQNONV.INSTVER.AUTH,DISP=SHR
//HRNEXTR DD DSN=HLQNONV .INSTVER.AUTH,DISP=SHR

//HRNIN DD *

PEERSERVERNUM=4,

TDS=S6LSDOBA,

PEERSERVERID=FGSERVER

TIBCO Object Service Broker Managing External Data

Configuring Service Gateway for Files | 39

VA

//* TCP/IP definitions to communicate with remote DOB
//S6BRELAY DD DISP=SHR,DSN=HLQNONV.SLQ.RELAYCFG

/a‘:

See HLQNONV .INSTVER.JCL(FILEGTWY).

Include the following Execution Environment parameters in your JCL (these are
shown with the values supplied for the sample JCL):

PEERSERVERNUM=4 Specifies the number of instances of the Service Gateway for Files.
Service Gateway for Files will occupy this number of inbound
connections on the Data Object Broker.

MDL= Optional. If not specified, defaults to 0SB9999 where 9999 is the
suffix that represents that a four-digit number, starting at 0001, is to
be used by the identifiers as they are assigned.

TDS=S6LSDOBA The communications identifier of the Data Object Broker.
Corresponds to the node name in RELAYCFG when using TCP/IP
communications.

PEERSERVERID=FGSERVER This is mandatory for a Service Gateway for Files. If this is

defaulted, Service Gateway for Files functionality will not be
enabled. Note that the parameter PEERSERVERID specifies the server
ID of a Service Gateway for Files on z/OS. In the Open Systems
environment, the parameter to use is SERVERID.

TIBCO Object Service Broker Managing External Data

40 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Setting Up the Communications Infrastructure

You can set up communications between a Service Gateway for Files and a Data
Object Broker.

Prerequisites

The operating system of the Service Gateway for Files determines the
communications prerequisites, as follows:

Before a Service Gateway for Files running on z/OS can communicate with a
remote Data Object Broker, the name and IP port number of the Data Object
Broker must be added to the RELAYCFG member in the CNTL data set for Service
Gateway for Files.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for details about the
RELAYCFG member.

Data Object Broker on z/0S to Communicate with a Service Gateway for Files

Use ISPF EDIT to modify the contents of the sample TCP/IP Relay configuration
data set, identified by the S6BRELAY DD statement in your Service Gateway for
Files JCL. You need only modify the last sample entry as follows:

<!--
Definition for remote/localhost Windows DOB connectivity
(e.g. for DB2 or ODBC gateway)
-—>
<node name="WINDOB">
<tcpip host="192.168.1.1" port="12000"
keepalive="600" /> </node>
</node>
</directory>
</relay>

where:

node Identifies the node name of your remote Data Object
name="... Brokel‘

tepip Replace with either the IP address or symbolic domain
host="... name of your remote Data Object Broker.

TIBCO Object Service Broker Managing External Data

Setting Up the Communications Infrastructure | 41

port="..." The IP port assigned for exclusive use of your Data Object
Broker.

Ensure that you retain the double quotes around the assigned values.

Definition of the Gateway as a Resource

A Resource Management entry is automatically created for the Service Gateway
for Files when these conditions are satisfied:

e The Data Object Broker is on z/OS
e The Data Object Broker Parameter DYNAMICRESOURCE = Y

¢ There is no permanent resource in the Resource Management Facility that
matches the requirements for the Service Gateway for Files

For best results, delete all permanent entries for Service Gateway for Files from
the repository when dynamic resource creation is enabled.

If the Data Object Broker is on z/OS and Dynamic Resource Creation is not
enabled (Data Object Broker Parameter DYNAMICRESOURCE = N) the Service
Gateway for Files must be defined through the Resource Management facility
available from the Administration menu. Resource Management is option 3 on
the Administration menu. This option brings you to the Resource Type List, on
which you must supply a TYPE of API and a GROUP corresponding to the server
ID of your Service Gateway for Files. You must also have a schedule defined for
the resource (a default schedule is provided with TIBCO Object Service Broker).

On the Resource Type Menu, PF5 allows you to configure a new Service Gateway
for Files. PF2 can be used to view the configuration of an existing Service
Gateway for Files. Once you are viewing such a configuration, PF11 allows you to
edit it.

The configuration is substantially the same as for a Peer Server; the following
values can be used. Other options can also be set on this menu.

Field Value [\ [o] (=1

RESOURCE DETAIL FOR APIname name is the server ID you wish to use for Service
Gateway for Files. This is the same name as in
session.prm.

INTERMEDIATE N
ROLLBACK

TIBCO Object Service Broker Managing External Data

42 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Field Value Notes
EARLY RELEASE Y
COMMIT LEVEL 0 Service Gateway for Files provides update support for

table types (EXP and VSM) that are always updated
immediately rather than via commit processing. As a
consequence, it must operate at Commit Level 0.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for details about the
Resource Management facility.

TIBCO Object Service Broker Managing External Data

Management of Service Gateway for Files | 43

Management of Service Gateway for Files

This section describes how to start, shut down, or automatically restart Service
Gateway for Files.

Startup of a Service Gateway for Files

On z/0S, you start the Service Gateway for Files by submitting JCL as that
described under Sample Configuration on page 38.

Shutdown of a Service Gateway for Files

On z/0S, you shut down a Service Gateway for Files using the Data Object
Broker operator command STOPSERVER. The following shows the format of the
command, where ALLHURON and ALLAPI refer to servers that are either
Service Gateway for Files or Peer Servers.

MODIFY dob_jobname,Stopserver=ALLHURON
MODIFY dob_jobname,Stopserver=ALLAPT

MODIFY dob_jobname,Stopserver=SRVIDserverid
MODIFY gateway_jobname, SHUTDOWN

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
about the STOPSERVER command.

Service Gateway for Files can be shut down using their server user ID. Server user
IDs are auto-generated in the following format:

@EERRRXX

where:
@ is the at sign, with which all server user IDs start, to differentiate servers from regular users.
EE contains the first two characters of the name for the Execution Environment.

RRR is the three-character string resulting from a hash on the Execution Environment name.

XX XX contains the two alphanumeric characters (base 6) derived from the server number for
the server in the Execution Environment. An Execution Environment associates a unique
identifier for each Service Gateway for Files or Peer Server it starts. Alphanumeric characters
are used rather than numbers to allow for more than 99 servers. Example: @SV2WUOL.

TIBCO Object Service Broker Managing External Data

44 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Automatic Restart of a Service Gateway for Files

If a logical error is detected during Service Gateway for Files operation and the
server terminates, the Execution Environment logs the error and restarts the
server.

When a Service Gateway for Files terminates normally, the server session is not
restarted.

TIBCO Object Service Broker Managing External Data

Monitoring of Service Gateway for Files | 45

Monitoring of Service Gateway for Files

Administration

See Also

Log Files

This section how to browse information on Service Gateway for Files.

In the TIBCO Object Service Broker Administration menu, Service Gateway for
Files are grouped with Peer Servers. Use the User Activity option (option I) to
display Peer Server and Service Gateway for Files activity. Press PF2 to view a
region list.

Select SERVER and press PF2 to display servers.

On Open Systems, you can also use the rsview utility to view, on standard out
(stdout), a report about your Peer Server and Service Gateway for Files
connections.

TIBCO Object Service Broker for z/OS Installing and Operating for details about the
Administration menu.

On z/0S, corresponding messages will be written to the job log for the Data
Object Broker.

TIBCO Object Service Broker Managing External Data

46 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

Service Gateway for Files and National Language Support

A Service Gateway for Files does not need to operate in the same code page as the
Data Object Broker to which it attaches.

You can use the NLS shareable tool to configure this behavior. In the main menu
of the NLS tool place the cursor on the field labeled Service Gateway for Files and
press PF5 to edit or PF6 to add. On the displayed Table Editor screen, define the
code page you intend to use, as follows:

Field Value Notes
NAME Server ID Specifies the server ID of your Service Gateway for Files.
TYPE S Describes the value that appears in the field VALUE.
SYNTAX C Describes the value that appears in the field VALUE.
LENGTH 31 Describes the value that appears in the field VALUE.
DECIMAL 0 Describes the value that appears in the field VALUE.
VALUE ENGL.IBM-273 Specifies the code page you intend to use.
MODIFY N

Note the following:

¢ If you do not supply values for LOCAL and REMOTE code pages in the NLS
tool, National Language Support will not be enabled, and any code page you
specify for the Service Gateway for Files will be ignored.

* A Service Gateway for Files running in the Open Systems environment will
perform ascii-to-ebcdic mapping as well as mapping between EBCDIC code
pages. The session parameter DSIXFTYPE controls this behavior, together with
your choice of code pages. If your data appear garbled in an IMP or EXP table
access in an Open Systems environment, you may need to adjust the value of
this parameter.

® In the Open Systems environment, the following code pages can be specified
for the Service Gateway for Files: IBM-037, IBM-273, IBM-277, IBM-278,
IBM-280, IBM-282, IBM-284, IBM-285, IBM-297, IBM-500, IBM-1140, IBM-1141,
IBM-1142, IBM-1143, IBM-1144, IBM-1145, IBM-1146, IBM-1147, and IBM-2248.

TIBCO Object Service Broker Managing External Data

See Also

Service Gateway for Files and National Language Support | 47

TIBCO Object Service Broker Shareable Tools for detailed information about the NLS
tool.

TIBCO Object Service Broker National Language Support for detailed information
about TIBCO Object Service Broker NLS implementation.

TIBCO Object Service Broker Parameters for detailed information about the
DSIXFTYPE parameter.

TIBCO Object Service Broker Managing External Data

48 | Chapter 2 Installing and Using TIBCO Service Gateway for Files

TIBCO Object Service Broker Managing External Data

|49

Chapter3 Managing IMP Data Definitions

This chapter describes how to manage IMP data definitions.

Topics

® Accessing External Data from TIBCO Object Service Broker, page 50
* Task A: Identify the Table, page 52

* Task B: Identify the Data, page 54

¢ Task C: Specify Data and Location Parameters, page 57

¢ Task D: Specify Event Rules, page 60

* Task E: Define Fields, page 62

TIBCO Object Service Broker Managing External Data

50 | Chapter 3 Managing IMP Data Definitions

Accessing External Data from TIBCO Object Service Broker

To read external data directly from TIBCO Object Service Broker, you must define
a TIBCO Object Service Broker table of type IMP. An import table can have one or
more fields, up to 16 fields in a composite primary key (to a total maximum
length of 127 bytes), and optional data and location parameters. The table can also
contain multiple record formats.

Table Definer Screen for an Import Table

f
COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_IMP Type: IMP Unit: USR40 IDgen: N
File:
DDname : External Routine Name:

Server ID:
Parameter Name Typ Syn Len Dec Class Src

_ LOCATION I C 16 O L

——————— IMP ————————|—————————_Metadata Definition ------

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

Using a Copybook as the Source for the Definition

When you create a table in the TIBCO Object Service Broker Ul, you can use a
copybook as the source for its definition. You can then have TIBCO Object Service
Broker monitor changes to the copybook. For more information, refer to Using
Data Discovery on page 6.

TIBCO Object Service Broker Managing External Data

Accessing External Data from TIBCO Object Service Broker | 51

Steps Required to Define an Import Table

After invoking the Table Definer (refer to Initial Step for Defining Tables on
page 5 for information on invoking the Table Definer), complete the following
tasks to define an import table:

Task Required Refer to page
A Identify the table. Y 52
B Identify the data. Y 54
C Specify data and location parameters. N 57
D Specify event rules. N 60
E Define fields. Y 62

TIBCO Object Service Broker Managing External Data

52 | Chapter 3 Managing IMP Data Definitions

Task A: Identify the Table

This task is used to:

¢ Uniquely identify the table

* Verify the table type

¢ Identify the application or logical unit to which the table belongs

® Specify whether the system should generate unique values for the primary
key field

Table Identification Segment

The following example illustrates the fields used to identify the table:

Table: EMPLOYEE_IMP Type: IMP Unit: USR40 IDgen: N

Table, Type, Unit, and IDgen Fields

The information for the Table, Type, Unit, and IDgen fields is entered by default.
You can modify the Table and Unit fields, if necessary.

Table The table name displayed in the Table field is the one you
specified when invoking the Table Definer. You can type in a new
name to save the definition of an existing table under the new
name. Refer to TIBCO Object Service Broker Shareable Tools for more
information on the tools you can use to copy tables.

Type The type indicates how data is stored in the table or how data is to
be accessed from a table. This field displays IMP, which you
changed in Initial Step for Defining Tables on page 5.

Unit The unit marks the table as belonging to a particular application or
logical unit such as utilities, accounting, or network control.

TIBCO Object Service Broker Managing External Data

Task A: Identify the Table | 53

IDgen

The IDgen field determines whether values should be generated
for the primary key field.

A value of Y means that the system generates the value for the
primary key of each occurrence. Type Y if you are defining an
import table for an external file that contains multiple record
formats, multiple occurrences, or if you want a unique key for the
import table.

If you specify Y in this field, you must also specify the following
for the primary key:

Semantic Data Type -1
Syntax - B

Length -4

Key -P

TIBCO Object Service Broker Managing External Data

54 | Chapter 3 Managing IMP Data Definitions

Task B: Identify the Data

You can use this task to specify the data you want to import and the name of
external routines if you want to manipulate the data at its source before
importing.

Data Identification Segment

The following example illustrates the fields used to identify the data:

File: USR40.EMPLOYEE.IMPORT
DDname : External Routine Name:
Server ID:

File Field

The File field contains the name of the data set or file that contains the data you
want to import. The maximum record size is 31,744 bytes for all platforms. The
record length for fixed-length files must be at least equal to the total length of the
fields. The record length for variable-length files must be at least four more than
the total length of the fields.

The External Routine Name field, which is valid only for the z/OS platform,
contains the name of an external routine that you can use to manipulate data in
the source file before importing it into TIBCO Object Service Broker. This routine
is a load module resulting from an assembler program and resides in a data set
that is concatenated to the external utilities data set. For more information, refer to
External Routines (Pre-processing the Data) on page 90.

Notes on the File * z/0S: Under CICS, you do not have to define the data set in a Destination
Control Table (DCT) but the CICS region must have external security access to
the data set.

* Open Systems: To specify the format of the data in external files to be
processed by TIBCO Object Service Broker, use the DSIXFTYPE Execution
Environment parameter. For more information on the DSIXFTYPE Execution
Environment parameter, refer to TIBCO Object Service Broker Parameters.

* Open Systems: This filename maps to an entry in the filespec.dsn file. This file
describes the absolute path name through which this file can be accessed.
Refer to Appendix B, Mapping File Names for Open Systems, on page 161 for
more information about this file.

TIBCO Object Service Broker Managing External Data

See Also

DDname Field

Notes on
DDname

Task B: Identify the Data | 55

¢ If you use FTP to transfer a variable-length import table file between z/OS
and Windows or Solaris, you must reformat the file using the TIBCO Object
Service Broker z/OS utility S BBRFRU. If the import file is fixed length, you
do not need to reformat the file.

¢ If you use FTP to transfer from z/OS to Windows or Solaris, the transfer must
be in binary mode with the z/OS FTP LOCSITE subcommand with the
NORDW parameter specified.

¢ For parameterized import tables other than those defining a file of multiple
record formats, the File field must specify a partitioned data set or a directory.
Neither of these have to exist before you define the import table, and must
exist before you access the data. Parameter values you provide become the
data set member names or the filenames in the directory.

¢ For non-parameterized import tables, you can import data from any file or
member of a partitioned data set.

¢ If you are accessing multiple IMP tables from a single file, the File name in all
the tables must be the same.

e If you specify both a File name and a DD name, the File name is used.

TIBCO Object Service Broker for z/OS Utilities for more information on S6(BBRFRU

The DDname field points to the file that contains the data you want to import.
The DDname can be specified if you want to import from an uncataloged data set
(possibly tape), or if you want to change the import file without changing the
table definition.

e 7/0S: You must associate DDname with the data set that is the source of the
data. To do this, use the DDNAME in your JCL or your TSO ALLOCATE
command.

e z/0S: To import data from a partitioned data set, specify the member in the
DD statement of your JCL or TSO ALLOCATE command.

* Open Systems: In the DDname field, specify either the name of the
environment variable that contains the fully qualified name of the file, or the
name of a DD definition in the filespec.dsn file.

e If you are accessing multiple import tables from a single file, the DDname in
all the import tables must be the same.

¢ The import table cannot have data parameters except for those defining a file
of multiple record formats.

TIBCO Object Service Broker Managing External Data

56 | Chapter 3 Managing IMP Data Definitions

¢ If you specify both a File name and a DD name, the File name is used.

Server ID Field

The Server ID field points to the gateway that is to be used if the table is to be
accessed remotely via the Service Gateway for Files. This is an optional
specification. The value in this field is determined from the SERVERID Execution
Environment parameter.

Refer to Monitoring of Service Gateway for Files on page 45 for details about the
Server ID and the Service Gateway for Files.

See Also TIBCO Object Service Broker Parameters for information about the SERVERID
parameter.

Data Cleansing Field
Specify the data cleansing attributes as described in Appendix C (z/OS only).

TIBCO Object Service Broker Managing External Data

Task C: Specify Data and Location Parameters | 57

Task C: Specify Data and Location Parameters

You can use this optional task to specify two types of parameters:
e Data

e [ocation

Parameter Segment

The following example illustrates the fields used to define data (DEPTNAME)
and location (LOCATION) parameters. To view additional fields, use PF11.

Parameter Name Typ Syn Len Dec Class Src

_ DEPTNAME I C 8 0 D
_ LOCATION I C 16 O L

Data Parameter

You can use a data parameter to read data from a partitioned data set or a
directory. The parameter value you provide becomes the data set member name
or the filename in the directory.

TIBCO Object Service Broker Managing External Data

58 | Chapter 3 Managing IMP Data Definitions

Data Parameter Validation

The data parameter is validated as follows:

If the

and the . - .
iSsyntax Length is TIBCO Object Service Broker interprets
C 8 the parameter value as a member name of a
partitioned data set (z/OS) or a file within a directory
(Open Systems).
B 4 the parameter value as an indicator for multiple

record types or repeating groups. Refer to Chapter 4,
Defining Import Tables for Files with Multiple
Record Formats, on page 67 for more information.

¢ IfIDgen=Y, you cannot use the data parameter to view different members of a
% partitioned data set (PDS).

e IfIDgen=N, the data parameter must have a syntax of C and be no longer than
8 characters.

Location Parameter

You use a location parameter to access external data through a peer server
associated with another Data Object Broker (remote node). If you do not need to
access remote data, use the D line command to delete the parameter. If you always
access the external file remotely, the node from which you request the access can
have either a minimal or full definition.

Minimal Definition

A minimal definition with a location parameter means you always access data at
a remote node. A minimal definition consists of the following;:

e The table name, which must be the same at both locations
* The location parameter, which must be the same at both locations

The location parameter indicates that you always access data at a remote
node. The name of the remote node where the full definition is located must
be supplied in the Default field, Src field, or Src and Sourcename fields.

The table type specified in a minimal definition does not have to match the table
type of the full definition on the remote node.

TIBCO Object Service Broker Managing External Data

Task C: Specify Data and Location Parameters | 59

Full Definition

A full table definition with a location parameter means you can access data at
either the local or the remote node. The table type of the full definition must
match the data on the local node. For example, a full definition of type TDS used
to access TDS data on the local node can also be used to access an import table
with the same name on a remote node.

See Also TIBCO Object Service Broker Managing Data for more information on defining
parameters.

TIBCO Object Service Broker Managing External Data

60 | Chapter 3 Managing IMP Data Definitions

Task D: Specify Event Rules

Use this optional task to specify event rules to associate business rules and
policies with the definition of a table. With these rules you can validate the data
and automatically trigger other events based on specific retrieval access to import
tables. The rules that you name here are run whenever data in the table is
manipulated.

Event Rule Segment

The following example illustrates the fields used to specify event rules:

’
’
’
’

Event Rule, Typ, and Acc Fields

The rules that you enter here are run based on defined accesses. You can specify
as many rules as you need in any logical order. The rules applying to specific
accesses are executed in the order in which they are entered in Event Rule field.

Event Rule Specify the name of the event rule to be executed when the
table is accessed.

Typ Specify T (trigger rule) as the type of event rule that is to be
accessed. Type V is not applicable for import tables. For a
trigger rule there is no restriction on coding except for the
following:

e The rule must not be a function.
e [t cannot change the contents of the triggering row.
e [t cannot use the TRANSFERCALL statement.

* Nested triggers are possible.

TIBCO Object Service Broker Managing External Data

Task D: Specify Event Rules | 61

Acc Specify G (any retrieval) as the type of data access. The type of
access can invoke the event rule or specify the manipulation to
be performed on the data causing the event rule to be
executed.

See Also TIBCO Object Service Broker Managing Data for information on event rules.

TIBCO Object Service Broker Managing External Data

62 | Chapter 3 Managing IMP Data Definitions

Task E: Define Fields

This task is used to define the external import and internal TIBCO Object Service
Broker attributes for the primary key fields and non-key fields of the table.

Field Definition Segment

This example illustrates the fields used to define the fields of the import table:

———————— IMP --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
_ EMPNO C 5 0 I C 5 0
Ef When defining an import table, note the following:

* When defining fields, you can type in external import attributes and the
TIBCO Object Service Broker attributes default to the external values, or vice
versa.

* The number of fields you can access is dependent upon the Data Object
Broker parameter CTABLESIZE. You can use the ESTIMATETBLDEN tool to
estimate the size of this parameter.

Specifying External Import Attributes

The following fields are used to specify the external import attributes. Use PF1 to
see valid values for each field:

Field Name This field contains the name of the import field. It must be a
unique name within the table. You can use the same name as a
field in any other table; if you are moving data between this
table and another table, giving fields the same names
simplifies the process.

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 63

Xsyn This field contains the external syntax for the import field. If
not specified, the Xsyn field defaults to the specified TIBCO
Object Service Broker syntax (Syn field). On Open System:s,
numeric external syntaxes are treated as C or V for TEXT files.
For information on external syntax, refer to Appendix A,
Mapping Data Types, on page 153.

External syntax T is not supported for import tables.

Xlen This field contains the external length for the import field. If
not specified, the Xlen field defaults to the specified TIBCO
Object Service Broker length (Len field). For information on
external lengths, refer to Appendix A, Mapping Data Types,
on page 153.

On Open Systems platforms, the Xlen field is ignored for
TEXT files with a field separator character defined.

Xdec This field indicates the external number of decimal places for
the import field. If not specified, the Xdec field defaults to the
specified TIBCO Object Service Broker decimal place (Dec
field).

Offset This field specifies the offset. The offset maps to the start of the
external record in the import file. The origin is zero. Overlaps
are allowed and you do not have to define fillers, since the
offset can be used to skip undefined locations in the
occurrence. You can specify offsets in one of three ways:

¢ Assign the offset if you know it.
e Use PF3 to save the definition; this calculates the offset.

e Use PFé6 to calculate the offset based on the location of the
CUrsor.

On the Open Systems platforms, the Offset field is ignored for
TEXT files with a field separator character defined.

TIBCO Object Service Broker Managing External Data

64 | Chapter 3 Managing IMP Data Definitions

Specifying Internal TIBCO Object Service Broker Attributes

The following fields are used to specify the internal TIBCO Object Service Broker
attributes. Use PF1 for valid values for each field. Use PF11 to view additional
fields.

Key This field indicates whether the import fields are to be used in
the primary key. You can select any field as the primary key
using the P line command, without respect to uniqueness of
data. You can select up to 16 contiguous fields for a composite
primary key, to a maximum length of 127 bytes.

You must specify a primary key if you want to use the Table
Browser or if you want to read multiple record types or
repeating groups.

Typ This field contains the TIBCO Object Service Broker semantic
data type of the field. The default is null. You can specify any
valid TIBCO Object Service Broker semantic data type and
syntax combination supported for the external syntax. For
valid combinations, refer to TIBCO Object Service Broker
Programming in Rules.

Syn This field contains the TIBCO Object Service Broker syntax of
the field. You can specify any valid TIBCO Object Service
Broker semantic data type and syntax combination supported
for the external syntax. For valid combinations, refer to TIBCO
Object Service Broker Programming in Rules. If a syntax is not
specified, the Syn field defaults to an appropriate syntax based
on the external syntax and length (Xsyn and Xlen fields). For
more information on external syntax, refer to Appendix A,
Mapping Data Types, on page 153.

Syntaxes F, RD, and UN are not supported for a primary key
field.

Len This field indicates the length of the import field. The data is
padded or truncated as necessary. If a length is not specified,
the Len field defaults to an appropriate length based on the
external syntax and length (Xsyn and Xlen fields).

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 65

Dec This field specifies the number of digits to appear to the right
of the decimal point. The data is padded or truncated as
necessary. If not specified, the Dec field defaults to the
specified external number of decimal places (Xdec field).

Depending on the syntax specified in the Syn field, define this
field as follows:

e For syntax P, the number of decimal places must be smaller
than twice the length of the entire field.

e Forsyntaxes B, C, F, RD, UN, and V, the number of decimal
places must be 0.

Ord This field indicates the order (ascending or descending) in
which the occurrences in this field are sorted. The default
value of null returns occurrences in ascending order by
primary key. When an ordering option is explicitly specified, it
takes precedence over the default. When ordering is specified
for more than one field, the sort precedence is determined by
the order of the fields as they are listed in the table.

Specifying a value in this field incurs sorting overhead, which
can be significant in tables with a large number of occurrences.

Ordering is not permitted for fields of syntax F (float), RD (raw
data) or UN (Unicode).

In Open Systems, if you have an import table with duplicate
records and you want to sort, the sort results can be
unpredictable since the internal sort does not maintain the
input order of duplicate records. You must specify the
ordering for each field to ensure you get the ordering you

want.
Rad This field is ignored for an IMP table.
Default This field is ignored for an IMP table.

Globalfield This field displays the name of the global field if you used
Name PF14 to select a field from the global field dictionary.

See Also TIBCO Object Service Broker Shareable Tools for information on the
ESTIMATETBLDEN tool.

TIBCO Object Service Broker Managing Data for information on global fields.

TIBCO Object Service Broker Managing External Data

66 | Chapter 3 Managing IMP Data Definitions

TIBCO Object Service Broker Parameters for more information about the
CTABLESIZE Data Object Broker parameter.

TIBCO Object Service Broker Managing External Data

Chapter 4

Topics

|67

Defining Import Tables for Files with
Multiple Record Formats

This chapter describes how to define import tables for files with multiple record
formats.

* How to Define Import Tables for Files with Multiple Record Formats, page 68
* First Sample File — Personnel, page 70
* Second Sample File — Inventory, page 72

TIBCO Object Service Broker Managing External Data

68 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

How to Define Import Tables for Files with Multiple Record Formats

What is a Multiple Record Format?

An import table can reference or access a file of records that have different
formats. For example, a personnel file contains records that record employee
benefits, payroll information, and training. To access this type of file, you must
define multiple, related tables for each record format.

Usually the first table defines the base portion of the record, which identifies
subsequent record formats by a flag or record type indicator. To process the
record, you GET the first base table and then determine the subsequent record
format by examining the flag byte. The corresponding related table is then
accessed for the particular record format following the base portion of the record.

What is a Repeating Group?

A repeating group is a collection of data that occurs multiple times in a record. For
example, a time collection system could have 52 repeating groups to record hours
worked for each week of the year.

Definition Requirements

To define an import table for the file shown in First Sample File — Personnel on
page 70, define each table as described in Chapter 3, Managing IMP Data
Definitions, on page 49, with the following additional considerations:

® Specify Y for the IDgen field.
* Specify the same filename or DD name for all the import tables.

e If the file is partitioned, specify the fully qualified filename in the File field,
for example, File: USER40.EMPL(ALLMGRS). You cannot use a parameter to
specify members or files for these types of input files.

* Define a parameter for the import table that describes the second record
format. The import table describing the first record format does not have to
have a parameter. The parameter must be defined with the following:f

Semantic Data Type. I
Syntax. B
Length. 4

TIBCO Object Service Broker Managing External Data

How to Define Import Tables for Files with Multiple Record Formats | 69

¢ The primary key field of each table must be defined as an IDgen field, as
follows:

Semantic Data Type. I
Syntax. B
Length. 4

Do not provide data for this field; the system generates these values. As a
result, the IDgen field provides each record in the import table with a unique
identifier.

TIBCO Object Service Broker Managing External Data

70 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

First Sample File — Personnel

Types of Records in File

This example illustrates a sample file that has two record types. Each record
contains sections of different formats (A and B), including a repeating group (B).

B B B B B
B
B B B

Table Definitions

Sample File Parent Table Definition for Record A

The following example illustrates an import table definition for record A (parent):

COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_IMP_A Type: IMP Unit: USR40 IDgen: Y
File: USR40.EMPLOYEE.IMPORT
DDname : External Routine Name:
ServerID:

Parameter Name Typ Syn Len Dec Class Src

———————— IMP --------|--------- Metadata Definition ------

Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
_ DEPTNO B 4 0 0 C B 4 0
_ DEPTNAME C 9 0 4 S C 9 0

TIBCO Object Service Broker Managing External Data

First Sample File — Personnel | 71

_ PFKEYS:3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

S

To use the Table Browser or read multiple record types or repeating groups, you
must specify a primary key. This example does not specify a primary key;

therefore, to access the information, you must use rules.

Sample File Table Definition for Record B

The following example illustrates an import table definition for record B (child):

COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_IMP_B Type: IMP Unit: USR40 IDgen: Y
File: USR40.EMPLOYEE.IMPORT
DDname : External Routine Name:
ServerID:
Parameter Name Typ Syn Len Dec Class Src Event Rule Typ Acc

_ RECORD_A I B 4 0 D _
S IMP -------- |-======= - Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
KEY B 4 0 0 P I B 4 0
_ LNAME C 22 0 4 C 22 0
_ FNAME C 10 0 26 C 10 0
_ PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing External Data

72 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

Second Sample File — Inventory

Types of Records in File

This Inventory System sample has a transaction file with several record types.
Each record is of a specific format (A to D):

e e K Tt It S s Rttt e ¢ B
AWIDGET VENDOR WIDGET-001

AGLUE MAKER ADHESIVE-001

ABOARD MAKER BOARD-001

BO0OOO100WIDGET-001
BOOOO0O10ADHESIVE-001
BO0O00O500BOARD-001

CO000005WIDGET-001 BUILD-001
COO0O0O002ADHESIVE-001 BUILD-001
CO000005BOARD-001 BUILD-001

D0000005PRODUCT-001

The record types are:

A Addition of new supplier or part to inventory file
B Receipt of parts into inventory

c Withdrawal of parts from inventory

D Record of assemblies built and stored in inventor

Table Definitions

Parent Table

The following example illustrates an import table definition for the header
common to all the inventory records:

COMMAND==> TABLE DEFINITION
Table: INVENTORY Type: IMP Unit: USR40 IDgen: Y
File: USR40.INVENTORY.IMPORT
DDname : External Routine Name:
ServerID:

TIBCO Object Service Broker Managing External Data

Second Sample File — Inventory | 73

Parameter Name Typ Syn Len Dec Class Src ! Event Rule Typ Acc
_ LOCATION I C 16 0 L v
S IMP --—--—---- |---—--—- - Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
_ GENKEY B 4 0 0 P I B 4 0
_ RCDTYPE C 1 0 4 S C 1 0

_7PFKEYS:3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

Record Type A
The following example illustrates an import table definition for record type A:

COMMAND==> TABLE DEFINITION

Table: INV_SUPPLIER Type: IMP Unit: USR40 IDgen: Y

File: USR40.INVENTORY.IMPORT
DDname : External Routine Name:
ServerID:
Parameter Name Typ Syn Len Dec Class Src ! Event Rule Typ Acc
_ GENKEY I B 4 0 D v
_ LOCATION I C 16 O L o
———————— IMP --------|--------- Metadata Definition ------

Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
_ INV_SUP_KEY B 4 0 0 P I B 4 0
_ SUPPLIER_NAME C 30 0 4 S C 30 0
_ PART_NAME C 30 0 34 S C 30 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing External Data

74 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

Record Type B

The following example illustrates an import table definition for record type B:

COMMAND==> TABLE DEFINITION
Table: INV_REC_PARTS Type: IMP Unit: USR40 IDgen: Y
File: USR40.INVENTORY.IMPORT
DDname : External Routine Name:
ServerID:
Parameter Name Typ Syn Len Dec Class Src ' Event Rule Typ Acc
_ GENKEY I B 4 0 D v
_ LOCATION I C 16 0 L v
———————— IMP --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
_ INV_REC_PART_KEY B 4 0 0 P I B 4 0
_ QTY N 7 0 4 C B 4 0
PART C 30 0 11 S C 30 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing External Data

Second Sample File — Inventory | 75

Record Type C
The following example illustrates an import table definition for record type C:
COMMAND==> TABLE DEFINITION
Table: INV_WD_PARTS Type: IMP Unit: USR40 IDgen: Y
File: USR40.INVENTORY.IMPORT
DDname : External Routine Name:
ServerlID:

Parameter Name Typ Syn Len Dec Class Src

_ GENKEY I B 4 0 D v
_ LOCATION I C 16 O L v
———————— IMP --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqgd Default
_ INV_WD_PART_KEY B 4 0 0 P I B 4 0
_ QTY_OouT N 7 0 4 C B 4 0
_ PART_OUT C 30 0 11 S C 30 0
COMPONENT__NAME C 30 0 41 S C 30 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

Record Type D

The following example illustrates an import table definition for record type D:

COMMAND==> TABLE DEFINITION
Table: INV_ASSBLY Type: IMP Unit: USR40 IDgen: Y
File: USR40.INVENTORY.IMPORT
DDname : External Routine Name:
ServerID:

Parameter Name Typ Syn Len Dec Class Src

_ GENKEY I B 4 0 D v
_ LOCATION I C 16 O L v
———————— IMP --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
_ INV_ASSBLY_KEY B 4 0 0 P I B 4 0
_ QTY_ASSBLY N 7 0 4 C B 4 0
_ PART_ASSBLY C 30 0 11 S C 30 0

TIBCO Object Service Broker Managing External Data

76 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

_ PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

Processing

Programming Considerations

* For the parent record, which defines the header, the table definition contains
IDgen =Y, no parameters, and a B4 field at the beginning for the key.

* For the child records, the table definition contains IDgen =Y, a parameter of
the parent primary key, and a B4 field at the beginning for the key.

e The child record table definitions do not include the common header
accounted for by the parent table definition.

* The offsets in both the parent and child record table definitions start at 0 for
the IDgen key and continue at 4 for the first field from the external file.

Sample Rules

RULE EDITOR ===> SCROLL: P
READ_PARENT;

FORALL INVENTORY :
CALL INVENTORY_PROC(INVENTORY.RCDTYPE, INVENTORY.GENKEY);

END;
This is a portion of the called rule, which calls other rules for more detail
processing:
RULE EDITOR ===> SCROLL: P

INVENTORY_PROC (RCD, KEY);

RCD = A’ | YNNNN
RCD = ’B’ | YNNN
RCD = 'C’ | Y NN
RCD = ’D’ | YN

TIBCO Object Service Broker Managing External Data

Second Sample File — Inventory | 77

__ +______________
_ CALL MSGLOG(’Record type ’ || QUOTE(RCD)); | 11111
_ GET INV_SUPPLIER (KEY); | 2
_ CALL MSGLOG(’Supp: ’ || QUOTE(INV_SUPLIER.SUPPLIER NAME)); | 3
_ CALL MSGLOG(’Part: ’ || QUOTE(INV_SUPLIER.PART NAME)); | 4
_ CALL INV_SUPP_PART_PROC; | 5
_ GET INV_REC_PARTS (KEY); | 2
_ CALL MSGLOG(’Qty: ’ || QUOTE(INV_REC_PARTS.QTY)); | 3
_ CALL MSGLOG(’Part: ' || QUOTE(INV_REC_PARTS.PART)); | 4
_ CALL INV_REC_PARTS_PROC; | 5
_ GET INV_WD_PARTS (KEY); | 2
_ CALL MSGLOG(’Qty: ’ || QUOTE(INV_WD_PARTS.QTY_OUT)); | 3
_ CALL MSGLOG(’Part: ’ || QUOTE(INV_WD_PARTS.PART OUT)); | 4
_ CALL MSGLOG(’Comp: ’ || QUOTE(INV_WD_PARTS.COMPONENT_NAME)); | 5
_ CALL INV_WD_PARTS_PROC; | 6
_ GET INV_ASSBLY (KEY); | 2
_ CALL MSGLOG(’Qty: ’ || QUOTE(INV_ASSBLY.QTY_ASSBLY)); | 3
_ CALL MSGLOG(’Assembly: ’ || QUOTE(INV_ASSBLY.PART ASSBLY)); | 4
_ CALL INV_ASSBLY PROC; | 5
SIGNAL UNEXPECTED_REC; | 2

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

This is the output from this rule with the file shown under Types of Records in
File on page 72:

COMMAND ===> SCROLL ===> P
Record Type 'A'
Supp. : '"WIDGET VENDOR'
Part: 'WIDGET-001'
Record Type 'A'
Supp. : 'GLUE MAKER'
Part: 'ADHESIVE-001"'
Record Type 'A'
Supp: 'BOARD MAKER'
Part: 'BOARD-001"
Record Type 'B'
Qty:'0000100"'

Part: 'WIDGET-001'
Record Type 'B'
Qty:'0000010"

Part: 'ADHESIVE-001"
Record Type 'B'
Qty:'0000500"'

Part: 'BOARD-001'
Record Type 'C'
Qty:'0000005"

Part: 'WIDGET-001"
Comp: 'BUILD-001"
Record Type 'C'

TIBCO Object Service Broker Managing External Data

78 | Chapter 4 Defining Import Tables for Files with Multiple Record Formats

Qty:'0000002"'

Part: 'ADHESIVE-001"
Comp: 'BUILD-001"
Record Type 'C'
Qty:'0000005"

Part: 'BOARD-001'

Comp: 'BUILD-001"
Record Type 'D'
Qty:'0000005"
Assembly ’PRODUCT-001’

PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL

TIBCO Object Service Broker Managing External Data

Chapter 5

Topics

|79

Manipulating Import Data Using TIBCO
Object Service Broker

This chapter describes how to manipulate import data using TIBCO Object
Service Broker.

® Accessing Import Tables, page 80
¢ Sample Rules, page 83

e Listing Members of a PDS (z/OS) or Files in a Directory (Open Systems),
page 85

¢ Handling TIBCO Object Service Broker Requests, page 89

e External Routines (Pre-processing the Data), page 90

TIBCO Object Service Broker Managing External Data

80 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

Accessing Import Tables

When you access external data from TIBCO Object Service Broker, import field
data types are translated to the field types defined in the IMP table. You can
access the data using:

e Table Browser
e Rules

In the Open Systems versions of TIBCO Object Service Broker, use the
DSBIFTYPE Execution Environment parameter to set the file type to
LENGTH_PREFIXED_EBCDIC type files when migrating data from one TIBCO
Object Service Broker system to another.

Using the Table Browser

Using Rules

You can browse an import table in the same way you would browse any other
table with the following exceptions:

¢ The table definition must have one to eight primary keys, but the data in the
table does not have to result in unique values in the key fields for each row.

e If your table definition contains fields of syntax C or V that are longer than 260
bytes, or fields of syntax RD or UN that are longer than 130 bytes, you must
use SELECT LIKE instead of SELECT to access fields of this length.

* You cannot use the Table Browser to access multiple record formats of an
import file.

® Accessing import data using the rules language is similar to accessing native
TIBCO Object Service Broker data. You can access external data online or in
batch mode using tools such as COPY_DATA to copy external data to a
TIBCO Object Service Broker table that you can update.

Import Files with Multiple Record Formats

Because multiple record formats for import tables are implemented by accessing
parent and child tables, workbench tools such as the Table Browser cannot be
used. Use either rules or the TIBCO Object Service Broker Host Language
Interface. For a sample rule, refer to Sample Rules on page 83.

TIBCO Object Service Broker Managing External Data

Considerations

S

Accessing Import Tables | 81

When using rules to access import tables, note the following:

* Each transaction stream accessing external data requires its own server thread.
Ensure your system administrator is aware of the number of server threads
required to accommodate all transaction streams accessing external data in a
single transaction.

e If you use the default CTABLESIZE Data Object Broker parameter value, you
can access at least 16 import tables per transaction; more, depending on the
size of the import table definitions, since the more fields you define, the more
space is required to hold the definition in the memory in the Data Object
Broker and the Execution Environment.

Retrieval Processing

GET Statement

A single cursor is used to retrieve import data for the following retrieval
statements in your rule:

e GET
e FORALL

Import files with multiple record formats cannot be sorted (ORDERED clause) or
selected (WHERE clause) by field values.

A GET statement to an import table causes the search for the first occurrence that
satisfies the specified selection criteria to be started at the beginning of the import
table.

A GET ... ORDERED statement must retrieve all import data that satisfies the
selection criteria and sort it in the Execution Environment before returning the
first occurrence that meets the selection criteria.

FORALL Statement

When using a FORALL statement, occurrences are returned to TIBCO Object
Service Broker in the order in which the import server passes them. If you require
a different order, you must include an ORDERED clause in your FORALL
statement. TIBCO Object Service Broker orders only occurrences specified in the
selection criteria.

TIBCO Object Service Broker Managing External Data

82 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

Remote Table Access

Remote table access can cause a significant increase in message traffic. This is
especially true with import tables that have the IDgen field set to Y, which is a
normal requirement for handling data in multiple record import tables.

Steps to Process a Multi-record Table Remotely

To overcome remote table access limitations when processing a multi-record table,
complete the following steps:

1. Define the import table with IDgen = N.

2. Access the import table remotely. Refer to the example rule that follows for an
example of accessing an import table remotely.

3. Process the nested records locally using MAP tables.

For more information on MAP tables, refer to TIBCO Object Service Broker
Managing Data.

Example Rule

RULE EDITOR ===> SCROLL: P
PEER_ACCESS1;

_ FORALL REMOTE_TABLE :
LOCAL_TABLE.* = REMOTE_TABLE. *;
INSERT LOCAL_TABILE;

END;

See Also TIBCO Object Service Broker Parameters for more information about the

DSBIFTYPE Execution Environment parameter and the CTABLESIZE Data
Object Broker parameter.

e TIBCO Object Service Broker Managing Data for more information on browsing
tables.

e TIBCO Object Service Broker for z/OS External Environments for more
information about the Host Language Interface.

e TIBCO Object Service Broker Programming in Rules for more information on
transactions and writing rules.

e TIBCO Object Service Broker Shareable Tools for more information on the
COPY_DATA tool.

TIBCO Object Service Broker Managing External Data

Sample Rules | 83

Sample Rules

Sample Rule 1: Normal Access

The following example illustrates a sample rule for normal access to import data.

RULE EDITOR ===> SCROLL: P
EMPLOYEE_A;

_ FORALL EMPLOYEE_A
DEPARTMENT .DEPTNAME = EMPLOYEE_IMP.DEPTNAME;
INSERT DEPARTMENT;
END;

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Sample Rule 2: Accessing Multiple Record Formats

The following example illustrates a sample rule for accessing multiple record
formats. The tables in this rule are the ones defined in Table Definitions on
page 72.

RULE EDITOR ===> SCROLL: P
EMPLOYEE_B;

_ FORALL EMPLOYEE_IMP_A
FORALL EMPLOYEE_IMP_B(EMPLOYEE_IMP_A.KEY)
CALL MSGLOG(EMPLOYEE_IMP_B.LNAME) ;
END;
END;

TIBCO Object Service Broker Managing External Data

84 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Explanation of the EMPLOYEE_B Rule

¢

To access multi-record formats, a parent import table and one or more child
import tables must be defined. In the EMPLOYEE_B rule definition, you need two
tables: one for the parent (EMPLOYEE_IMP_A) and a second for the child
(EMPLOYEE_IMP_B).

The parameter value of the EMPLOYEE_IMP_B table ensures that all the record
formats for this file are accessed from a single physical record.

To access the record B data, you must first access the parent record A data. This
causes the import record to be read into a buffer and an internal cursor set to
determine the positioning of data being accessed within the buffer.

In this rule, the FORALL EMPLOYEE_IMP_A: causes the first record to be read and
buffered. The data contained within the format A record is returned to the rule
and the cursor set to the end of the record data A area (in this case the first record
B data portion).

The second FORALL EMPLOYEE_IMP_B(EMPLOYEE_IMP_A.KEY): then returns the
first format B data and moves the cursor to the next piece of data (in this case, the
second record format B data). Employee last names are written into the message
log. This continues until the data within the buffer is exhausted. At this point, the
second FORALL terminates and the next parent record A is retrieved by the first
FORALL statement.

The parent import occurrence must always be accessed prior to any child table. If
the child import table is accessed first, the GET or FORALL operation fails as no
current occurrence is buffered and the internal cursor is undefined.

TIBCO Object Service Broker Managing External Data

Listing Members of a PDS (z/OS) or Files in a Directory (Open Systems) | 85

Listing Members of a PDS (z/OS) or Files in a Directory (Open
Systems)

To list the names of the members of a partitioned data set (PDS) or the names of
the files in a directory, you define:

1. Animport (IMP) table that references the data set or directory in the FILE
parameter

2. A parameter value (PRM) table with a source of the IMP table previously
defined

Example for a PDS in z/0S

To list the member names of a PDS called USR40.EXAMPLE.PDS:
1. Define an IMP table as follows:

COMMAND==> TABLE DEFINITION
Table: PDS_EXAMPLE Type: IMP Unit: USR40 IDgen: N
File: USR40.EXAMPLE.PDS
DDname : External Routine Name:
ServerID:

Parameter Name Typ Syn Len Dec Class Src

_ MEMBER I C 8 0 D _
_ LOCATION I C 16 0 L _
———————— IMP --------|--------- Metadata Definition ------

Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default

KEY C 8 0 0 P S C 8 0

_ PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing External Data

86 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

2. Define a PRM table as follows:

COMMAND==> TABLE DEFINITION

Table: PDS_EXAMPLE_PRM Type: PRM Unit: USR40
Source: PDS_EXAMPLE

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

3. Use rules to access the PRM table, or from the workbench, use the Table
Browser to produce the PDS member name list.

BROWSING TABLE : PDS_EXAMPLE_PRM
COMMAND ==>

NUMBER MEMBER
1 MEMBERO1
2 MEMBERO2
3 MEMBERO3

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 19=SHOW 13=PRINT 3=END 14=EXPAN

TIBCO Object Service Broker Managing External Data

Listing Members of a PDS (z/OS) or Files in a Directory (Open Systems) | 87

Example for a Directory in Windows or Solaris

To list the names of the files in a directory called
D:\ObjectStar\database\JOURNAL.:

1. Define an IMP table as follows:

COMMAND==> TABLE DEFINITION
Table: PDS_EXAMPLE Type: IMP Unit: USR40 IDgen: N
File: D:\ObjectStar\database\JOURNAL
DDname : External Routine Name:
ServerID:
Parameter Name Typ Syn Len Dec Class Src ! Event Rule Typ Acc
_ MEMBER I C 8 0 D T
_ LOCATION I C 16 O L o
———————— IMP --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
_ KEY C 8 0 0 P S C 8 0
DATA C 64 0 8 S C 64 0

_ PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

2. Define a PRM table as follows:

COMMAND==> TABLE DEFINITION

Table: PDS_EXAMPLE_PRM Type: PRM Unit: USR40
Source: PDS_EXAMPLE

TIBCO Object Service Broker Managing External Data

88 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

3. Use rules to access the PRM table, or from the workbench use the Table
Browser to produce the PDS member name list.

BROWSING TABLE : PDS_EXAMPLE_PRM
COMMAND ==>
SCROLL: P
NUMBER MBMBER
1 JOURNAL1
2 JOURNAL2

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

See Also TIBCO Object Service Broker Managing Data for more information on creating PRM
tables and on browsing tables.

TIBCO Object Service Broker Managing External Data

Handling TIBCO Object Service Broker Requests | 89

Handling TIBCO Object Service Broker Requests

The TIBCO Object Service Broker runtime environment signals system exceptions
to permit an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catchall exception. Each exception traps the exceptions appear
below it in the hierarchy.

All errors encountered when accessing external data through the IMP tables are
trapped under one of the following exceptions:

e ERROR
e ACCESSFAIL
e INTEGRITYFAIL

ERROR Exception

An ERROR exception indicates that an error is detected and no lower-level
exception exists in the application.

ACCESSFAIL Exception

An ACCESSFAIL exception indicates that a table access error is detected. The only
valid exception under an ACCESSFAIL exception is a GETFAIL, indicating that
no occurrence satisfies the selection criteria.

INTEGRITYFAIL Exception

An INTEGRITYFAIL exception indicates an attempt to violate data integrity is
detected. The following exceptions are valid under a this exception:

DEFINITIONFAIL [ndicates that the data set or file specified is not found

LOCKFAIL Indicates that there is a lock on an occurrence or a table is
unavailable
SECURITYFAIL Indicates that permission for the requested action on the

object is denied

See Also TIBCO Object Service Broker Programming in Rules for more information on
exceptions.

TIBCO Object Service Broker Managing External Data

90 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

External Routines (Pre-processing the Data)

Manipulating Data with External Routines (z/OS Only)

When accessing an external data set through an import table in z/OS, you can
write an external routine to manipulate the data. The external routine must be
written in assembler and can:

e Pass the record to a destination (the import table)
e Cause the record to be skipped
e Alter the record before passing it to its destination

¢ Insert multiple records to TIBCO Object Service Broker based on one record
from a data set

You can concatenate the library in the CLIST that you use to log in to TIBCO
%} Object Service Broker or if you are importing the data in batch, you can
concatenate the library in the batch JCL DD statement HRNEXTR.

Parameters Passed to the External Routine

To write an external routine, use the IMPXPARM macro found in the MACRO
data set distributed with TIBCO Object Service Broker to describe the DSECT of
the parameters that are passed to the external routine.

Parameter Description

HRNXRLEN Represents the record length. If the record length is changed
by the external routine, the server uses the changed length for
input or output. HRNXRLEN is set to zero upon entry to the
import external routine when the end of the file is reached.
You can use this to insert additional records into TIBCO Object
Service Broker.

HRNXRECA Points to the I/O record buffer. If the buffer pointer is changed
by the external routine, the server uses the new buffer for
input or output. Do not change the data in this buffer.

HRNXWRKA A 4 KB work area that is preserved between calls to the
external routine. It is cleared to X’00” at the start of the
FORALL.

TIBCO Object Service Broker Managing External Data

External Routines (Pre-processing the Data) |91

Parameter Description

HRNXRECE A 4 KB work area that is not preserved between calls to the
external routine. It is also not cleared before the external
routine call. It can be used as the work area where you
compose the record to be inserted.

HRNXTABN Points to the 16 character TIBCO Object Service Broker table
name.

HRNXDSN Points to the 44 character external data set name.

HRNXTPRM Points to the 8 character table parameter value.

Valid Return Codes

At the end of the external routine, Register 15 contains a return code that indicates
the action the server should take. The valid return codes whose description
follows are located in the IMPXPARM macro.

@HRNXKEP Import the record.

@HRNXDEL Do not import the record (equivalent to a logical DELETE).

@HRNXDON Do not call the external routine again for this transaction. No
more physical records are read or written and the external
routine is not called again for this transaction. For an import
table, end of file is indicated when HRNXRLEN is zero and
you should return @ HRNXDON to prevent its external
routine from being called again.

@HRNXINX A new record is to be inserted. The external routine must set
HRNXRECA to the address of the new record and
HRNXRLEN to the length of the new record.

TIBCO Object Service Broker Managing External Data

92 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

Example of an Exit

The following is a simple example of an external routine. A file is being imported
but only records having a length of 32 are imported; other records are ignored.

COPY EQUATES STANDARD EQUATES.
COPY IMPXPARM EXIT PARAMETERS.
IMPEXIT CSECT
SAVE (14,12),,* SAVE THEM ... STANDARD LINKAGE
USING IMPEXIT,R12 R12
LR R12,R15 BASE REGISTER
USING HRNXPARM,R1 ADDR CALLING PARMS.
L R2 ,HRNXRLEN R2 = RECORD LENGTH
LTR R2,R2 IS IT A NORMAL RECORD?
BNZ NORMAL YES

LA R15, @HRNXDON RC = DON’T CALL ANY MORE
B RETURN RETURN
* IGNORE INPUT RECORDS THAT HAVE LENGTHS NOT EQUAL TO 32. *
NORMAL LA R15, @HRNXKEP SET 'KEEP’ RC.
C R2,=F’32’ GET VARIABLE STRING LENGTH
BE RETURN RETURN.
LA R15, @HRNXDEL SET 'IGNORE’ RC.
RETURN DS OH
RETURN (14,12),,RC=(15)
LTORG
END

Example of an Exit that Normalizes Data

The following example illustrates a more complex example of an external routine.
All records in the data set to be imported begin with a fixed portion but then have
a repeating portion on the same record. The number of occurrences of the
repeating portion is stored in two bytes after the fixed portion. For a table to
describe the data presented to it, the external routine attaches the fixed portion to
the beginning of each repeating portion in the same record and each becomes an
occurrence in the table.

COPY EQUATES STANDARD EQUATES.
COPY IMPXPARM EXIT PARAMETERS.
EJECT

WORKA DSECT
VARPOINT DS F
TIMEFLAG DS CL1
OCCURS DS PL2

TIBCO Object Service Broker Managing External Data

FIXEDDTA DS

VARDTA DS

IMPEXIT CSECT
SAVE
USING
LR
USING
L
USING
CLI
BE

CL20
CL40
(14,12),,*
IMPEXIT,R12
R12,R15

HRNXPARM, R1
R2 , HRNXWRKA

SAVE THEM
R12
BASE

External Routines (Pre-processing the Data) |93

STANDARD LINKAGE

REGISTER

ADDR CALLING PARMS.

R2 = WORK AREA

WORKA, R2

TIMEFLAG,X’01’ SECOND TIME FOR THIS RECORD?
SECOND SECOND TIME FOR THIS RECORD
R7,HRNXRLEN R7 = RECORD LENGTH

R7,R7 IS IT A NORMAL RECORD?

NORMAL YES

BEEN CALLED AT THE END OF ALL NORMAL RECORDS. *
R15, @HRNXDON RC = DON’T CALL ANY MORE

RETURN RETURN

FIRST OCCURRENCE FROM VARIABLE OCCURRENCE RECORD *
R15, @HRNXINS SET ’'INSERT’ RC.

R4 ,HRNXRECA GET ADDRESS OF RECORD

MVI

MVC
LA
MVC

SECOND CP

OCCURS, 20(R4)
OCCURS,=P’0’
IGNORE
OCCURS,=P’1’
TIMEFLAG,X’01’
R8,=F’60’

R8, HRNXRLEN
FIXEDDTA,O0(R4)
R4,22(R4)
VARDTA, 0(R4)

R4 ,VARPOINT
R8,FIXEDDTA
R8 ,HRNXRECA
RETURN

GET NUMBER OF

COMPARE NUMBER
IGNORE THIS RE
SUBTRACT ONE O
SET FLAG FOR S
R8 = NEW RECOR
SAVE NEW RECOR
MOVE FIXED PAR
INCREMENT R4 T
FIRST VARIABLE

SAVE THE VARTA
GET THE ADDRES
SAVE POINTER T

VARIABLE OCCURS

OF OCCURS TO ZERO
CORD

CCURANCE FROM COUNTER
ECOND TIME PROCESS
D LENGTH
D LENGTH
T OF RECORD

O FIRST OCCUR

PART OF RECORD

BLE POINTER
S OF THE FIXED PART
O RECORD

SUBSEQUENT OCCURRENCE FROM VARIABLE OCCURRENCE RECORD *

OCCURS,=P’0’
IGNORE
OCCURS,=P’1’
R15, @HRNXINS
R8,=F’60’
R8, HRNXRLEN
R4 ,VARPOINT
R4,40(R4)
VARDTA, 0(R4)
R4 ,VARPOINT
R8, FIXEDDTA
R8 ,HRNXRECA
RETURN

COMPARE REMAIN
YES IGNORE IT.
SUBTRACT ONE O

ING OCCURS TO ZERO

CCURANCE FROM COUNTER

SET ’'INSERT’ RC.
R8 = NEW RECORD LENGTH
SAVE NEW RECORD LENGTH

R4 = VARIABLE

DATA POINTER

INCREMENT R4 TO NEXT OCCUR

NEXT VARIABLE

PART OF RECORD

SAVE THE VARIABLE POINTER

GET THE ADDRES

S OF THE FIXED PART

SAVE POINTER TO RECORD

TIBCO Object Service Broker Managing External Data

94 | Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker

* IGNORE THE CURRENT RECORD AND SETUP FOR FIRST TIME PROCESS *
IGNORE LA R15, @HRNXDEL SET ’'DELETE’ RC.
MVI TIMEFLAG,X’00’ SET FLAG FOR FIRST TIME PROCESS

RETURN DS OH
RETURN (14,12),,RC=(15)
LTORG
END

TIBCO Object Service Broker Managing External Data

Chapter 6

Topics

|95

Managing EXP Data Definitions

This chapter describes how to manage TIBCO Object Service Broker EXP data
definitions.

¢ Writing TIBCO Object Service Broker Tables to External Files, page 96
* Task A: Identify the Table, page 98

* Task B: Identify the Data, page 99

¢ Task C: Specify Data and Location Parameters, page 102

¢ Task D: Specify Event Rules, page 104

* Task E: Define Fields, page 105

TIBCO Object Service Broker Managing External Data

96 | Chapter 6 Managing EXP Data Definitions

Writing TIBCO Object Service Broker Tables to External Files

To write TIBCO Object Service Broker tables to external files, you must define a
TIBCO Object Service Broker table of type EXP. An export table can have one or
more fields, up to 16 fields in a composite primary key (to a total maximum of 127
bytes), and optional data and location parameters.

Table Definer Screen for an Export Table

COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_EXP Type: EXP Unit: USR40
File:
DDname : External Routine Name:
Server ID:
Parameter Name Typ Syn Len Dec Class ! Event Rule Typ Acc
_ LOCATION I C 16 O L T
S EXP ------ |- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqgd Default

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

Using a Copybook as the Source for the Definition

When you create a table in the TIBCO Object Service Broker Ul, you can use a
copybook as the source for its definition. You can then have TIBCO Object Service
Broker monitor changes to the copybook. For more information, refer to Using
Data Discovery on page 6.

TIBCO Object Service Broker Managing External Data

Writing TIBCO Object Service Broker Tables to External Files | 97

Steps Required to Define Export Tables

After invoking the Table Definer (refer to Initial Step for Defining Tables on
page 5 for information on invoking the Table Definer), complete the following

tasks to define an export table:

Task Required

A Identify the table. Y 98
B Identify the data. Y 99
C Specify data and location parameters. N 102
D Specify event rules. N 104
E Define fields. Y 105

TIBCO Object Service Broker Managing External Data

98 | Chapter 6 Managing EXP Data Definitions

Task A: Identify the Table

This task is used to:
¢ Uniquely identify the table
* Verify the table type

¢ Identify the application or logical unit where it belongs

Table Identification Segment

The following example illustrates the fields used to identify the table:

Table: EMPLOYEE_EXP Type: EXP Unit: USR40

Table, Type, and Unit Fields

The information for the Table and Unit fields is entered by default. You can
modify the Table, Type, and Unit fields, if necessary.

Table The table name displayed in the Table field is the one you
specified when invoking the Table Definer. To save the
definition of an existing table under a new name, type a new
name in the field.

Type The type indicates how data is stored in the table or how data
is to be accessed from a table. This field displays EXP, which
you changed in Initial Step for Defining Tables on page 5.

Unit The unit marks the table as belonging to a particular
application or logical unit such as utilities, accounting, or
network control.

See Also TIBCO Object Service Broker Shareable Tools for more information about the tools
used to copy tables.

TIBCO Object Service Broker Managing External Data

Task B: Identify the Data | 99

Task B: Identify the Data

You can use this task to specify the destination of the export table as well as the
name of external routines if you want to manipulate the data at its source before
exporting.

Data Identification Segment

File Field

Notes on the File

The following example illustrates the fields used to identify data:

File:
DDname : External Routine Name:
Server ID:

The File field contains the name of the file to which you are exporting the data.
The maximum record size is 31,744 bytes on all platforms. The record length for
fixed length files must be at least equal to, and the record length for variable
length files must be at least four more than, the total length of the fields.

e z/0S: Under CICS, you do not have to define the data set in a Destination
Control Table (DCT) but the CICS Region must have external security access
to the data set.

* Open Systems: To specify the format of the data in external files to be
processed by TIBCO Object Service Broker, use the DSIXFTYPE Execution
Environment parameter. For more information on the DSIXFTYPE Execution
Environment parameter, refer to TIBCO Object Service Broker Parameters.

® Open Systems: This filename maps to an entry in the filespec.dsn file. This file
describes the absolute path through which this filename can be accessed along
with other file attributes. If the filename is mapped to an entry in the file,
special characters (*, ?, <, >) included in the filename are ignored. If a default
path name is used, special characters in the filename are replaced and you do
not receive the intended filename. For more information on filespec.dsn, refer
to the Appendix B, Mapping File Names for Open Systems, on page 161.

e If you use FTP to transfer a variable length export table file between z/OS and
Windows or Solaris, you must reformat the file using the TIBCO Object
Service Broker z/OS utility S BBRFRU. If the export file is fixed length, you
do not have to reformat the file.

e If you specify both a filename and a DD name, the filename is used.

TIBCO Object Service Broker Managing External Data

100 | Chapter 6 Managing EXP Data Definitions

For parameterized export tables, you must specify a partitioned data set or a
directory. Neither of these has to exist before you define the export table but
must exist before you insert data. Parameter values you provide become the
data set member names or the filenames in the directory. You can create only
one table instance per TIBCO Object Service Broker transaction.

The parameter must have syntax C. On z/OS, the parameter’s length must be
8. In Open Systems, its length must be 8 or less.

With non-parameterized export tables you can export data to any file or
member of a partitioned data set.

See Also TIBCO Object Service Broker for z/OS Utilities for more information about
S6BBRFRU.

DDname Field

The DDname field points to the file to which you are exporting the data. You
specify a DDname if you want to change the export data set without changing the
table definition or if you want to export to an uncataloged data set (possibly tape).

Using a DDname

% If you use a DDname:

z/0OS: You must associate DDname with the data set that is the destination of
the data. To do this, use JCL or the TSO ALLOCATE command.

z/0OS: To export data to a partitioned data set, specify the member in the DD
statement of your JCL or your TSO ALLOCATE command.

z/0S: The DDname field is valid in TIBCO Object Service Broker multiple
session environments under CICS, IMS TM, or Native Execution Environment
only if you use a file disposition other than DISP=SHR in the definition of
these environments. This is to prevent concurrent updates.

Open Systems: In the DDname field, specify either the name of the
environment variable that contains the fully qualified name of the file, or the
name of a DD definition in the filespec.dsn file.

If you are writing multiple export tables to a single file, the DDname in all the
export tables must be the same.

The export table cannot have data parameters.

If you specify both a File name and a DD name, the File name is used.

TIBCO Object Service Broker Managing External Data

Server ID Field

See Also

Task B: Identify the Data | 101

The Server ID field points to the gateway that is to be used if the table is to be
accessed remotely via the Service Gateway for Files. This is an optional
specification. The value in this field is determined from the SERVERID Execution
Environment parameter.

Refer to Monitoring of Service Gateway for Files on page 45 for details about the
Server ID and the Service Gateway for Files.

TIBCO Object Service Broker Parameters for information about the SERVERID
parameter.

External Routine Name Field

The External Routine Name field, which is valid only for the z/OS platform,
contains the name of an external routine that you can use to manipulate data
before exporting it to the destination data set. This routine is a load module
resulting from an assembler program and resides in a data set that is concatenated
to the external utilities data set. For more information, refer to External Routines
(Pre-processing the Data) on page 116.

TIBCO Object Service Broker Managing External Data

102 | Chapter 6 Managing EXP Data Definitions

Task C: Specify Data and Location Parameters

You can use this optional task to specify two types of parameters:

e Data

e [ocation

Parameter Segment

The following example illustrates the fields used to define the location
(illustrated) and data parameters. To view additional fields, use PF11.

Parameter Name Typ Syn Len Dec Class

_ LOCATION I C 16 O L

Data Parameter

You require a data parameter if you want to write data to a partitioned data set or
a directory. The parameter value you provide becomes the data set member name
or the filename in the directory. Data parameters must be defined with syntax C.

On z/0S, the parameter length must be 8. In Open Systems, the length must be 8
or less.

Location Parameter

You can use a location parameter to write data to a peer server associated with
another Data Object Broker (remote node). If you do not need to access remote
data, use the D line command to delete the parameter. If you always access the
external file remotely, the node from which you request the access can have either
a minimal or full definition.

Minimal Definition

A minimal definition with a location parameter means you always access data at
a remote node. A minimal definition consists of the following;:

¢ The table name, which must be the same at both locations

* The location parameter, which must be the same at both locations

TIBCO Object Service Broker Managing External Data

Task C: Specify Data and Location Parameters | 103

The location parameter indicates that you always access data at a remote
node. The name of the remote node where the full definition is located must
be supplied in the Default field, Src field, or Src and Sourcename fields.

The table type specified in a minimal definition does not have to match the table
type of the full definition on the remote node.

Full Definition

A full table definition with a location parameter means you can access data at
either the local or the remote node. The table type of the full definition must
match the data on the local node. For example, a full definition of type TDS used
to access TDS data on the local node can also be used to access an export table
with the same name on a remote node.

See Also TIBCO Object Service Broker Managing Data for more information on parameters.

TIBCO Object Service Broker Managing External Data

104 | Chapter 6 Managing EXP Data Definitions

Task D: Specify Event Rules

This optional task is used to specify event rules if you need to associate business
rules and policies with the definition of a table. These rules allow you to validate
and automatically trigger other events based on specific retrieval access to import
tables. The rules that you name here are run whenever data in the table is
manipulated.

Event Rule Segment

The following example illustrates the fields used to specify event rules:

Event Rule, Typ, and Acc Fields

The rules that you enter here are run based on defined accesses. You can specify
as many rules as you need in any logical order. The rules applying to specific
accesses are executed in the order in which they are entered in this field. For valid
values, use PF1.

Event Rule Specify the name of the event rule that is to be executed
when the table is accessed.

Typ Specify the type of event rule that is to be executed.

Acc Specify the type of data access that invokes the event rule.
Only one access type can be specified for each entry of the
Typ field.

See Also TIBCO Object Service Broker Managing Data for more information on event rules.

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 105

Task E: Define Fields

You use this task to define the external export and internal TIBCO Object Service
Broker attributes for the primary key fields and non-key fields of a table.

Field Definition Segment

The following example illustrates the fields used to define the fields of an export

table:
————————— EXP ------|---------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default
Considerations
Ef When defining an export table:

* When defining fields, you can type in external export attributes and the
TIBCO Object Service Broker attributes default to the external values, or vice
versa.

¢ The number of fields you can access is dependent upon the Data Object
Broker parameter CTABLESIZE. You can use the ESTIMATETBLDEN tool to
estimate the size of this parameter.

e Areas of the record not defined as fields contain hex zeros when written.

e If LRECL is not specified in the DCB information at runtime, the position of
the last byte of the right-most field (as specified in the external field
definition) is used to calculate the LRECL.

TIBCO Object Service Broker Managing External Data

106 | Chapter 6 Managing EXP Data Definitions

Specifying External Export Attributes

The following fields are used to specify the external export attributes. Use PF1 for
valid values for each field:

Field Name This field contains the name of the export field within the table
definition. You can use the same name as a field in any other
table. If you are moving data between this table and another
table, giving fields the same names simplifies the process.

Xsyn This field contains the external syntax for the export field. If
not specified, the Xsyn field defaults to the specified TIBCO
Object Service Broker syntax (Syn field). On Open Systems,
numeric external syntaxes are treated as C or V for TEXT files.
For information on external syntax, refer to Appendix A,
Mapping Data Types, on page 153.

Xlen This field contains the external length for the export field. If
not specified, the Xlen field defaults to the specified TIBCO
Object Service Broker length (Len field). For information on
external lengths, refer to Appendix A, Mapping Data Types,
on page 153.

On the Open Systems platforms, the Xlen field is ignored for
TEXT files with a field separator character defined.

Xdec This field indicates the external number of decimal places for
the export field. If not specified, the Xdec field defaults to the
specified TIBCO Object Service Broker decimal place (Dec
field).

Offset This field specifies the offset of the export field relative to the
start of the external record. The origin is zero. You do not need
to define fillers, since the offset can be used to skip undefined
locations in the row. You can specify offsets in one of three
ways:

* Assign the offset if you know it.
e Use PF3 to save the definition; this calculates the offset.

e Use PFé6 to calculate the offset based on the location of the
cursor.

On the Open Systems platforms, the Offset field is ignored for
TEXT files with a field separator character defined.

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 107

Specifying Internal TIBCO Object Service Broker Attributes

The following fields are used to specify the internal TIBCO Object Service Broker
attributes. Use PF1 for valid values for each field. To view additional fields, use

PF11:

Key

This field indicates if the export fields are to be used in the
primary key. You can select any field as the primary key using
the P line command, without respect to uniqueness of data.
You can select up to 16 contiguous fields for a composite
primary key, to a total maximum length of 127 bytes.

Typ

This field contains the TIBCO Object Service Broker semantic
data type of the export field. The default is null. You can
specify any valid TIBCO Object Service Broker semantic data
type and syntax combination supported for the external
syntax. For valid combinations, refer to TIBCO Object Service
Broker Programming in Rules.

Syn

This field contains the TIBCO Object Service Broker syntax of
the export field. You can specify any valid TIBCO Object
Service Broker semantic type and syntax combination
supported for the external syntax. For valid combinations,
refer to TIBCO Object Service Broker Programming in Rules. If a
syntax is not specified, the Syn field defaults to an appropriate
syntax based on the external syntax and length (Xsyn and
Xlen fields). For more information on external syntax, refer to
Appendix A, Mapping Data Types, on page 153.

Syntaxes F, RD, and UN are not supported for a primary key
field.

Len

This field indicates the length of the export field. The data is
padded or truncated as necessary. If a length is not specified,
the Len field defaults to an appropriate length based on the
external syntax and length (Xsyn and Xlen fields).

TIBCO Object Service Broker Managing External Data

108 | Chapter 6 Managing EXP Data Definitions

Dec

This field specifies the number of digits to appear to the right
of the decimal point. The data is padded or truncated as
necessary. If not specified, the Dec field defaults to the
specified external number of decimal places (Xdec field).

Depending on the syntax specified in the Syn field, define this
field as follows:

e For syntax P, the number of decimal places must be smaller
than twice the length of the entire field.

e Forsyntaxes B, C, F, RD, UN, and V, the number of decimal
places must be 0.

Ord

This field indicates the order (ascending or descending) in
which the occurrences in this field are sorted. The default
value of null returns occurrences unsorted. When an ordering
option is explicitly specified, it takes precedence over the
default. When ordering is specified for more than one field, the
sort precedence is determined by the order of the fields as they
are listed in the table.

Specifying a value in this field incurs sorting overhead, which
can be significant in tables with a large number of occurrences.

Ordering is not permitted for fields of syntax F (float), RD (raw
data) or UN (Unicode).

Rad

This field indicates whether the user is required to provide a
value for each occurrence in the table. The default is null (not
required).

Default

This field contains the default value for the field when it
appears. If no data is available, the value provided in this field
is used. For example, if you specify a dot (.) as the default, it
appears for a field that does not have any values. If you do not
specify anything, a blank space appears.

For numeric fields of Q or C, specify a value such as 0.00 if
arithmetic operations are to be performed on the field;
arithmetic operations cannot be performed on data containing
null values.

Default values are not permitted for fields of syntax RD or UN.

Globalfield
Name

This field displays the name of the global field if you used
PF14 to select a field from the global field dictionary.

TIBCO Object Service Broker Managing Extern

al Data

Task E: Define Fields | 109

See Also TIBCO Object Service Broker Shareable Tools for information on the
ESTIMATETBLDEN tool.

TIBCO Object Service Broker Managing Data for information on global fields.

TIBCO Object Service Broker Parameters for more information about the
CTABLESIZE Data Object Broker parameter.

TIBCO Object Service Broker Managing External Data

110 | Chapter 6 Managing EXP Data Definitions

TIBCO Object Service Broker Managing External Data

Chapter 7

Topics

|111

Processing External Data Using TIBCO
Object Service Broker

This chapter describes how to process external data using TIBCO Object Service
Broker. For a description of how to process Adabas data refer to the Service
Gateway for Files SDK User’s Guide.

* Writing Data to an Export File and Accessing the Exported Data, page 112
¢ Handling TIBCO Object Service Broker Requests, page 114

e External Routines (Pre-processing the Data), page 116

TIBCO Object Service Broker Managing External Data

112 | Chapter 7 Processing External Data Using TIBCO Object Service Broker

Writing Data to an Export File and Accessing the Exported Data

When you insert data into an export table, the data is immediately exported to the
associated file. You cannot roll back the changes. You can insert data into an
export table using:

Using Rules

Rules
COPY_DATA tool
CT copy table workbench option

When writing data to an export file using rules, you can:

& .

Update the data before it is exported
Write data to the file in batch
Write multiple record formats to the same file or data set

If the File name or DD name for each export table is the same, you can define
multiple export tables to write data to a single data set. Then, if you use rules
to insert data into the tables within the same transaction, the data set remains
open to receive the occurrences from each table. Providing that the parameter
value is the same, the resulting records in the data set have a variety of
layouts.

INSERT is the only statement you can use to access an export table.

Transactions that run in browse mode can still update the export table.

Using COPY_DATA

You can use the COPY_DATA tool to copy data from a TIBCO Object Service
Broker table to the export table.

Using Copy Table

You can use the workbench option CT copy table to copy data from a TIBCO
Object Service Broker table to the export table.

TIBCO Object Service Broker Managing External Data

Writing Data to an Export File and Accessing the Exported Data | 113

Accessing the Exported Data

To access the exported data, exit to your non-TIBCO Object Service Broker system
and browse, edit, or process the data as required. You can also terminate the
creating transaction and access the file with a different table name of type IMP.

See Also * TIBCO Object Service Broker Programming in Rules for information about the
rules language and batch processing.

e TIBCO Object Service Broker Shareable Tools for information on the copy tools.

TIBCO Object Service Broker Managing External Data

114 | Chapter 7 Processing External Data Using TIBCO Object Service Broker

Handling TIBCO Object Service Broker Requests

The following sections describe how EXP tables handle requests with respect to:
* Synchronization and recovery
* Error handling

By understanding these operations, you can take full advantage available features
when you develop applications.

Transaction Length

An export transaction spans the same length of time as a TIBCO Object Service
Broker transaction.

Error Handling

The TIBCO Object Service Broker runtime environment signals system exceptions
to permit an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catchall exception. Each exception traps the exceptions that
appear below it in the hierarchy.

All errors encountered when accessing external data the EXP tables are trapped
under one of the following TIBCO Object Service Broker exceptions:

e ERROR
e ACCESSFAIL
e INTEGRITYFAIL

ERROR Exception

An ERROR exception indicates that an error is detected and no lower-level
exception exists in the application.

ACCESSFAIL Exception

An ACCESSFAIL exception indicates that a table access error is detected. The only
valid exception under an ACCESSFAIL exception is a GETFAIL, indicating that
no occurrence satisfies the selection criteria.

TIBCO Object Service Broker Managing External Data

Handling TIBCO Object Service Broker Requests | 115

INTEGRITYFAIL Exception

An INTEGRITYFAIL exception indicates an attempt to violate data integrity is
detected. The following exceptions are valid under an INTEGRITYFAIL
exception:

DEFINITIONFAIL [ndicates that the data set or file specified is not found

LOCKFATL Indicates that there is a lock on an occurrence or a table is
unavailable
SECURITYFAIL Indicates that permission for the requested action on the

TIBCO Object Service Broker object is denied

See Also TIBCO Object Service Broker Programming in Rules for more information on
exceptions.

TIBCO Object Service Broker Managing External Data

116 | Chapter 7 Processing External Data Using TIBCO Object Service Broker

External Routines (Pre-processing the Data)

Manipulating Data with External Routines (z/OS Only)

When accessing an external data set through an export table in z/OS, you can
write an external routine to manipulate the data. The external routine must be
written in assembler and can:

e Pass the record to a destination (export to a data set)
e Cause the record to be skipped
e Alter the record before passing it to its destination

¢ Insert multiple records to the external file based on one record from TIBCO
Object Service Broker

You can concatenate the library in the CLIST that you use to log in to TIBCO
%} Object Service Broker or if you are exporting the data in batch, you can
concatenate the library in the batch JCL DD statement HRNEXTR.

Parameters Passed to the External Routine

To write an external routine use the IMPXPARM macro found in the MACRO
data set distributed with TIBCO Object Service Broker to describe the DSECT of
the parameters that are passed to the external routine.

Parameter Description

HRNXRLEN Represents the record length. If the record length is changed
by the external routine, the server uses the changed length for
input or output. HRNXRLEN is set to zero upon entry to the
import external routine when the end of the file is reached.
You can use this to insert additional records into TIBCO Object
Service Broker.

HRNXRECA Points to the I/O record buffer. If the buffer pointer is changed
by the external routine, the server uses the new buffer for
input or output. Do not change the data in this buffer.

HRNXWRKA A 4 KB work area that is preserved between calls to the
external routine. It is cleared to X’00” at the first rules-based
INSERT to an export table.

TIBCO Object Service Broker Managing External Data

External Routines (Pre-processing the Data) | 117

Parameter Description

HRNXRECE A 4 KB work area that is not preserved between calls to the
external routine. It is also not cleared before the external
routine call. It can be used as the work area where you
compose the record to be inserted.

HRNXTABN Points to the 16 character TIBCO Object Service Broker table
name.

HRNXDSN Points to the 44 character external data set name.

HRNXTPRM Points to the 8 character table parameter value.

Valid Return Codes

At the end of the external routine, Register 15 contains a return code that indicates
the action the server should take. The valid return codes whose description
follows are located in the IMPXPARM macro.

@HRNXKEP Export the record.

@HRNXDEL Do not export the record (equivalent to a logical DELETE).

@HRNXDON Do not call the external routine again for this transaction. No
more physical records are read or written and the external
routine is not called again for this transaction. For an export
table, end of file is indicated when HRNXRLEN is zero and
you should return @ HRNXDON to prevent its external
routine from being called again.

@HRNXINX A new record is to be inserted. The external routine must set
HRNXRECA to the address of the new record and
HRNXRLEN to the length of the new record.

Example of an Exit that Exports Variable Length Records

The following example calculates record size based on data in the record. The
record size is modified to create variable length records in the output data set.

COPY EQUATES STANDARD EQUATES.
COPY IMPXPARM EXIT PARAMETERS.
EXPREC DSECT

TIBCO Object Service Broker Managing External Data

118 | Chapter 7 Processing External Data Using TIBCO Object Service Broker

EXPDLEN DS H
EXPTYPE DS CL1

DS CL1
EXPDATA DS 4CL1000
SCREXIT CSECT

SAVE (14,12),,* SAVE THEM ... STANDARD LINKAGE
USING SCREXIT,R12 R12 ...
LR R12,R15 BASE REGISTER
USING HRNXPARM, R1 ADDR CALLING PARMS.
L R2,HRNXRLEN R2 = RECORD LENGTH
LTR R2,R2 IS IT A NORMAL RECORD?
BNZ NORMAL YES
* WE’VE BEEN CALLED AT THE END OF ALL NORMAL RECORDS. *
LA R15, @HRNXDON RC = DON'T CALL ANY MORE
B RETURN RETURN
* CORRECT RECORD LENGTH ON OUTPUT VB RECORD. *
NORMAL L R9,HRNXRECA GET ADDRESS OF RECORD
USING EXPREC,R9 TELL ASSEMBLER
LH R3,EXPDLEN GET DATA LENGTH
LA R3,4(,R3) ADD 4 TO LENGTH FOR HEADER
ST R3, HRNXRLEN SAVE AS RECORD LENGTH
LA R15, @HRNXKEP SET 'KEEP’ RC.

RETURN DS OH
RETURN (14,12),,RC=(15)
LTORG
END

TIBCO Object Service Broker Managing External Data

Chapter 8

Topics

|119

Managing VSAM Data Definitions

This chapter describes how to manage TIBCO Object Service Broker VSAM data
definitions.

® Accessing VSAM Data from TIBCO Object Service Broker on page 120
¢ Task A: Identify the Table, page 122

¢ Task B: Identify the Data, page 124

¢ Task C: Specify Data and Location Parameters, page 127

¢ Task D: Specify Event Rules, page 129

* Task E: Define Fields, page 130

¢ Data Set Requirements, page 135

TIBCO Object Service Broker Managing External Data

120 | Chapter 8 Managing VSAM Data Definitions

Accessing VSAM Data from TIBCO Object Service Broker

To access VSAM data directly from TIBCO Object Service Broker, you must define
a TIBCO Object Service Broker table of type VSM. A VSAM table can have one or
more fields, one or more data parameters (to a total maximum length of 255
bytes), up to 16 fields in a composite primary key (to a total maximum of 127
bytes), and an optional location parameter. The table can also contain multiple
record formats.

Table Definer Screen for a VSAM Table

COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_VSAM_KS Type: VSM Unit: USR40 IDgen: N
File
DDname : Read Only: Y Load: N Data Set Type: KSDS
Ignore:

Server ID:
Parameter Name Typ Syn Len Dec Class

_ LOCATION I C 16 O L

Event Rule Typ Acc

v
v
’
’

——————— VSAM --—————— | ——=—————— Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

Using a Copybook as the Source for the Definition

When you create a table in the TIBCO Object Service Broker Ul, you can use a
copybook as the source for its definition. You can then have TIBCO Object Service
Broker monitor changes to the copybook. For more information, refer to Using
Data Discovery on page 6.

TIBCO Object Service Broker Managing External Data

Accessing VSAM Data from TIBCO Object Service Broker | 121

Steps Required to Define a VSAM Table

After invoking the Table Definer (refer to Initial Step for Defining Tables on
page 5 for information on invoking the Table Definer), complete the following
tasks to define a VSAM table:

Task Required Refer to page
Task A: Identify the Table. Y 122
Task B: Identify the Data. Y 124
Task C: Specify Data and Location Parameters. N 127
Task D: Specify Event Rules. N 129
Task E: Define Fields. Y 130

See Also TIBCO Object Service Broker Managing Data for more information on minimal
definitions.

TIBCO Object Service Broker Managing External Data

122 | Chapter 8 Managing VSAM Data Definitions

Task A: Identify the Table

This step is used to:

¢ Uniquely identify the table

* Verify the table type

¢ Identify the application or logical unit to which it belongs

® Specify if the system should generate unique values for the primary key field

Table Identification Segment

The following example illustrates the fields used to identify the table:

Table: EMPLOYEE_VSM_KS Type: VSM Unit: USR40 IDgen: N

Table, Type, Unit, and IDgen Fields

The information for the Table, Type, Unit, and IDgen fields is entered by default.
You can modify these fields, if necessary.

Table The table name displayed in the Table field is the one you
specified when invoking the Table Definer. To save the
definition of an existing table under a new name, type in the
new name.

Type The type indicates how data is stored in the table or how data
is to be accessed from a table. This field displays VSM, which
you changed in Initial Step for Defining Tables on page 5.

Unit The unit marks the table as belonging to a particular
application or logical unit such as utilities, accounting, or
network control.

TIBCO Object Service Broker Managing External Data

Task A: Identify the Table | 123

IDgen

The IDgen field determines whether a value should be
generated for the primary key field. The default of N means
that users who insert data into the table must enter a unique
value for the primary key of each occurrence. A value of Y
means that the system generates the value for the primary key
of each occurrence. Type Y if you are defining a VSAM table
for an external file that contains multiple record formats or
multiple occurrences, or if you want a unique key for the
VSAM table (so you can use the Table Browser).

If the table contains data and the IDgen field is set to Y, you
can modify the field; however, if the field is set to N, you
cannot modify the field.

TIBCO Object Service Broker Managing External Data

124 | Chapter 8 Managing VSAM Data Definitions

Task B: Identify the Data

You use this step to specify the location of the data you want to access and the
type of data set.

Data Identification Segment

The following example illustrates the fields used to identify the data:

File : USR40.EMPLOYEE.VSAM
DDname : Read Only: Y Load: N Data Set Type: KSDS
Ignore:

Server ID:

File Field

DDname Field

The File field contains the name of the VSAM file that holds the data you want to
access. The maximum record size is 31,744 bytes. The record length must be equal
to or greater than the total length of the table fields.

e If you are accessing multiple VSAM files with the same record layout, you can
omit both the File name and DD name and instead specify the data set name
as the first data parameter (it must have syntax C and a length of 44).

e Under CICS, define the VSAM data set in the File Control Table (FCT) and in
the JCL. You must provide the key length of the VSAM records in the File
Control Table.

e If you specify both a File name and a parameter, the File name is used.

The DDname field contains the name of the JCL DD statement defining the file
containing the data you want to access.

TIBCO Object Service Broker Managing External Data

Using a DDname

Task B: Identify the Data | 125

If you use a DDname, note the following:

¢ It must already be allocated by the TIBCO Object Service Broker Execution
Environment, using a JCL DD statement or the TSO ALLOCATE command.

e If you are accessing multiple VSAM tables from a single data set, the DDname
in all the VSAM tables must be the same.

Read Only Field

S

Load Field

The Read Only field contains a logical value that determines whether the data in
the table can be modified. If Read Only=Y, the data can only be read. If
Read Only=N, the data can be both read and modified.

Field overlaps are allowed only for Read Only tables. If your definition has
overlapping fields when the Read Only flag is N, you are not allowed to save the
definition.

The Load field contains a logical value to signal whether the VSAM table is to be
initialized with data. The default is N. Type Y if you are initializing the data. You
can change the value in this field to N after loading the initial data. You cannot
read or change the loaded data; however, records are inserted into KSDS and
RRDS types more efficiently.

Data Set Type Field

Ignore Field

The Data Set Type field contains a 1 to 4 byte string identifying the type of VSAM
data set.

The Ignore field contains a value to identify the records to ignore in a KSDS data
set. The Ignore field is defined and used as follows:

¢ The syntaxis V.
* The length is 35.

* The value entered in the field is compared to the start of each record’s key.

TIBCO Object Service Broker Managing External Data

126 | Chapter 8 Managing VSAM Data Definitions

¢ If the key field is a string containing any unprintable characters, you can
specify a hexadecimal string using X’ as a prefix and a single quotation mark
(") as a suffix. For example:

X’hhh..hh’

Processing Records
Records are processed as follows:

e If you request a sequence of records (a FORALL statement) or a non-specific
record (a GET statement without a WHERE clause) and the ignore value
matches the start of a record’s key, that record is ignored and the next one is
obtained.

¢ If you request a specific record (a GET statement with a WHERE clause) or
perform update operations, no records are ignored.

Server ID Field

The Server ID field points to the gateway that is to be used if the table is to be
accessed remotely via the Service Gateway for Files (z/OS). This is an optional
specification. The value in this field is determined from the SERVERID Execution
Environment parameter.

Refer to Monitoring of Service Gateway for Files on page 45 for details on
ServerlID and Service Gateway for Files.

See Also TIBCO Object Service Broker Parameters for information about the SERVERVID
parameter.

TIBCO Object Service Broker Managing External Data

Task C: Specify Data and Location Parameters | 127

Task C: Specify Data and Location Parameters

You can use this optional task to specify two types of parameters:
e Data

e Location

Parameter Segment

The following example illustrates the fields used to specify data and location
(illustrated) parameters. To view additional fields, use PF11.

Parameter Name Typ Syn Len Dec Class

_ LOCATION I C 16 O L

Data Parameter

You can use a data parameter to access external data in different data sets using
the same table definition or to access multiple record types or multiple
occurrences. Depending on the syntax and length you assign the data parameter,
TIBCO Object Service Broker interprets it as follows:

IfiDgen and the and the TIBCO Object Service Broker

is Syntax is Length is
N C 44 interprets the parameter value as the
name of a data set.
Y Any Any length uses the parameters for reading
character multiple record types or multiple

occurrences. The parameter definitions
must match the primary key definition
of the base table.

TIBCO Object Service Broker Managing External Data

128 | Chapter 8 Managing VSAM Data Definitions

Location Parameter

Minimal Definition

Full Definition

See Also

You can use a location parameter to access external data through a peer server
associated with another Data Object Broker (remote node). If you do not need to
access remote data, use the D line command to delete the parameter. If you always
access the external file remotely, the node from which you request the access can
have either a minimal or full definition.

A minimal definition with a location parameter means you always access data at
a remote node. A minimal definition consists of the following;:

e The table name, which must be the same at both locations
* The location parameter, which must be the same at both locations

The location parameter indicates that you always access data at a remote
node. The name of the remote node where the full definition is located must
be supplied in the Default field, Src field, or Src and Sourcename fields.

The table type specified in a minimal definition does not have to match the table
type of the full definition on the remote node.

A full table definition with a location parameter means you can access data at
either the local or the remote node. The table type of the full definition must
match the data on the local node. For example, a full definition of type TDS used
to access TDS data on the local node can also be used to access a VSAM table with
the same name on a remote node.

TIBCO Object Service Broker Managing Data for more information on defining
parameters.

TIBCO Object Service Broker Managing External Data

Task D: Specify Event Rules | 129

Task D: Specify Event Rules

This optional task is used to specify event rules if you need to associate business
rules and policies with the definition of a table. These rules allow you to validate
and automatically trigger other events based on specific retrieval access to VSAM
tables. The rules that you name here are run whenever data in the table is
manipulated.

Event Rule Segment

The following example illustrates the fields used to specify event rules:

’
’
’
’

Event Rule, Typ, and Acc Fields

The rules that you enter here are run based on defined accesses. You can specify
as many rules as you need in any logical order. The rules applying to specific
accesses are executed in the order in which they are entered in this field. For valid
values, use PF1.

Event Rule Specify the name of the event rule that is to be executed when
the table is accessed.

Typ Specify the type of event rule that is to be executed.

Acc Specify the type of data access or manipulation to be
performed on the data causing the event to be executed.

See Also TIBCO Object Service Broker Managing Data for more information on event rules.

TIBCO Object Service Broker Managing External Data

130 | Chapter 8 Managing VSAM Data Definitions

Task E: Define Fields

This task is used to define the external VSAM attributes and the internal TIBCO
Object Service Broker attributes for the primary key fields and data fields of the
table.

The Field Definition Segment
The following example illustrates the fields used to define the fields of the VSAM

table:
——————— VSAM --------|--------- Metadata Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
_ KEY B 2 0 0O P I B 2 0
_ DEPTNO B 4 0 2 I B 4 0
_ DEPTNAME C 9 0 6 S C 9 0

Considerations
Note the following when defining a VSAM table:

¢ When defining fields you can type in external VSAM attributes and the
TIBCO Object Service Broker attributes default to the external values, or vice
versa.

* The number of fields you can access is dependent upon the Data Object
Broker parameter CTABLESIZE. You can use the ESTIMATETBLDEN tool to
estimate the size of the parameter.

e The number of occurrences allowed in a VSAM table is based on VSAM data
set allocation specifications.

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 131

Specifying External VSAM Attributes

The following fields are used to specify the external VSAM attributes. Use FP1 for
valid values for each field.

Field Name This field contains the name of the VSAM field that must be
unique within the table definition. You can use a field name
that already exists in any other table; if you are moving data
between this table and another table, giving fields the same
names simplifies the process.

Xsyn This field contains the external syntax for the VSAM field. If
Xsyn is not specified, it defaults to the specified TIBCO Object
Service Broker syntax (Syn field). For information on external
syntax, refer to Appendix A, Mapping Data Types, on
page 153.

Xlen This field contains the external length for the VSAM field. If
Xlen is not specified, it defaults to the specified TIBCO Object
Service Broker length (Len field). For information on external
lengths, refer to Appendix A, Mapping Data Types, on
page 153.

Xdec This field indicates the external number of decimal places for
the VSAM field. If Xdec is not specified, it defaults to the
specified TIBCO Object Service Broker number of decimal
places (Dec field).

Offset This field specifies the offset. The offset maps to the start of the
external record relative to the VSAM field. The origin is zero.
Overlaps are allowed for read-only tables and you do not need
to define fillers, since the offset can be used to skip undefined
locations in the row. You can specify offsets in one of three
ways:

¢ If you know the offset, enter it.

e If all offsets are unspecified and you want the offsets
calculated from the first field, use PF3 to save the
definition; this calculates the offsets.

e To calculate the offset from the field where the cursor is
located, press PF6 once to verify your intention by reading
the message at the bottom of the screen, and a second time
to calculate the offsets from that field.

TIBCO Object Service Broker Managing External Data

132 | Chapter 8 Managing VSAM Data Definitions

Specifying Internal TIBCO Object Service Broker Attributes

The following fields are used to specify the internal TIBCO Object Service Broker
attributes. For each field, use PF1 for a list of valid values. To view additional
fields, use PF11.

Key This field indicates if the VSAM fields are to be used as a
primary key. You can select any field as the primary key using
the P line command, without respect to uniqueness of data.
You can select up to 16 contiguous fields for a composite
primary key, to a total maximum of 127 bytes.

For information on how primary key fields handle numeric
syntaxes, refer to Behavior of Numeric Key Fields in VSAM
Tables on page 134.

Typ This field contains the TIBCO Object Service Broker semantic
data type of the field. The default is null. You can specify any
valid TIBCO Object Service Broker semantic data type and
syntax combination supported for the external syntax. For
valid combinations, refer to TIBCO Object Service Broker
Programming in Rules.

Syn This field contains the TIBCO Object Service Broker syntax of
the field. You can specify any valid TIBCO Object Service
Broker semantic type and syntax combination supported for
the external syntax. For valid combinations, refer to TIBCO
Object Service Broker Programming in Rules. If a syntax is not
specified, the Syn field defaults to an appropriate syntax based
on the external syntax and length (Xsyn and Xlen fields). For
more information on external syntax, refer to Appendix A,
Mapping Data Types, on page 153.

Syntaxes F, RD, and UN are not supported for a primary key
field. For information on how primary key fields handle
numeric syntaxes, refer to Behavior of Numeric Key Fields in
VSAM Tables on page 134.

Len This field indicates the length of the VSAM field. The data is
padded or truncated as necessary. If a length is not specified,
the Len field defaults to an appropriate length based on the
external syntax and length (Xsyn and Xlen fields).

TIBCO Object Service Broker Managing External Data

Task E: Define Fields | 133

Dec This field specifies the number of digits to appear to the right
of the decimal point. The data is padded or truncated as
necessary. If not specified, the Dec field defaults to the
specified external number of decimal places (Xdec field).

Depending on the syntax specified in the Syn field, define this
field as follows:

e For syntax P, the number of decimal places must be smaller
than twice the length of the entire field.

e Forsyntaxes B, C, F, RD, UN, and V, the number of decimal
places must be 0.

Ord This field indicates the order (ascending or descending) in
which the occurrences in this field are sorted. The default is
null (unsorted).

Ordering is not permitted for fields of syntax f (float), RD (raw
data) or UN (Unicode).

Rad This field indicates if the user is required to provide a value for
each occurrence in the table. The default is null (not required).

Default This field contains the default value for the field. If no data is
available, the value provided in this field is used. For example,
if you specify a dot (.) as the default, it appears for a field that
has no values. If you do not specify anything, a blank space
appears.

Default values are not permitted for fields of syntax RD or UN.

Globalfield This field displays the name of the global field if you used
Name PF14 to select a field from the @ GLOBALFIELDS table.

See Also TIBCO Object Service Broker Shareable Tools for information on the
ESTIMATETBLDEN tool.

TIBCO Object Service Broker Managing Data for information on global fields.

TIBCO Object Service Broker Parameters for more information about the
CTABLESIZE Data Object Broker parameter.

TIBCO Object Service Broker Managing External Data

134 | Chapter 8 Managing VSAM Data Definitions

Behavior of Numeric Key Fields in VSAM Tables

Unexpected results can occur if a field of syntax B or P is defined as a primary or
secondary key field of a VSM table. The results occur because the two numeric
syntaxes represent signed values, whereas VSAM key fields are always
interpreted as unsigned values. Therefore, records can be placed out of sequence
if the data contains both negative and positive values for the key fields. Records
are ordered correctly in the following situations:

¢ The primary or secondary key field contains only negative or positive values

¢ A non-key field of numeric syntax contains both negative and positive value
and an ORDERED clause is used for selection

Example

The key field has semantic type DATE and syntax B, containing dates both before
and after January 1, 1980. Dates before January 1, 1980 are represented as negative
integers and dates after this date are represented as positive integers. Since VSAM
treats all dates as unsigned integers, the dates prior to January 1, 1980 are ordered
after January 1, 1980.

TIBCO Object Service Broker Managing External Data

Data Set Requirements | 135

Data Set Requirements

KSDS Requirements
Note the following when defining fields for the KSDS data set:

e The sum of the external field lengths must be less than or equal to the VSAM
data set record length.

¢ The data set can be a variable length file.

¢ Composite key fields must be contiguous but do not have to start at the
beginning of the record.

e Toaccess a VSAM file by an alternate index, define the alternate index as the
primary key in the TIBCO Object Service Broker table and specify the
alternate index path as the data set name.

e Toupdate a VSAM file via its alternate index, it must be defined through
IDCAMS using the UPGRADE option.

e Updates to rows with duplicate secondary indexes must be done using a
definition that has the primary key set to the VSAM primary key.

e The architecture of KSDS type files specifies that the initial record can only be
added by a sequential write operation. There are two ways to handle the
initialization of a VSAM KSDS file:

— The IDCAMS utility can populate the data set using the REPRO statement.
This can be done in the same job that initializes the VSAM KSDS data set.

— Using TIBCO Object Service Broker, ensure the Load option on the Table
Definer is set to Y.

At least one record must then be inserted into the table. When a record is
inserted, the Load option can be set to N, if desired.

ESDS Requirements
Note the following when defining fields for the ESDS data set:

¢ The sum of the field lengths, excluding the primary key, must be less than or
equal to the VSAM data set record length.

¢ The primary key field must be a 4-byte binary. This field represents a relative
byte address (RBA). It specifies the relative offset in the data set of the record
being accessed. The first record has an RBA of 0.

¢ The data set can be a variable length file.

TIBCO Object Service Broker Managing External Data

136 | Chapter 8 Managing VSAM Data Definitions

Access by alternate index can be accomplished by defining the secondary
index as the primary key in TIBCO Object Service Broker and using the
secondary index path as the data set name.

Identical records can be inserted into a VSAM table holding the alternate
index data.

RRDS Requirements

Note the following when defining fields for the RRDS data set:

The sum of the field lengths, excluding the primary key, must be less than or
equal to the VSAM data set record length.

The primary key field must be a 4-byte binary. This field represents a record
number that identifies each record in the data set. The first record has a record
number of at least 1.

Alternate indexes cannot be used in the table definitions.

TIBCO Object Service Broker Managing External Data

Chapter 9

Topics

|137

Defining VSAM Tables for Files with
Multiple Record Formats

This chapter describes how to define VSAM tables for files with multiple record
formats.

* VSAM Tables for Files with Multiple Records, page 138

* Definition Requirements, page 139

TIBCO Object Service Broker Managing External Data

138 | Chapter 9 Defining VSAM Tables for Files with Multiple Record Formats

VSAM Tables for Files with Multiple Records

What is a Multiple Record Format?

A VSAM table can reference or access a file of records that have different formats.
For example, a personnel file has records that record employee benefits, payroll
information, and training. To access this type of file with TIBCO Object Service
Broker, you need to define multiple, related tables for each record format.

Usually the first table defines the base portion of the record that identifies
subsequent record formats by a flag or record type indicator. To process the
record, you GET the first base table then determine the subsequent record format
by examining the flag byte. The corresponding related table is then accessed for
the particular record format following the base portion of the record.

What is a Repeating Group?

Sample File

A repeating group is a collection of data that occurs multiple times in a record. For
example, a time collection system could have 52 repeating groups to record hours
worked for each week of the year. You define VSAM tables for a file containing
repeating groups using the same technique as with a file containing multiple
record formats. That is, you define separate VSAM tables for the base portion of
the record and the repeating group.

The following example illustrates a sample file that has multiple record types.
Each record contains sections of different formats (A and B), including a repeating

group (B).

B B B B B
B
B B B

TIBCO Object Service Broker Managing External Data

Definition Requirements | 139

Definition Requirements

Base and Child Definitions

You must define a base table and a separate table for each child record format.
Define each of your required VSAM tables as described in Chapter 8, Managing
VSAM Data Definitions, on page 119.

Definition Requirements of a Child Table
You must also include the following for each of the child tables:
® Specify the same data set name or DDname for both base and child tables.
® Specify IDgen=Y.
¢ Define the primary key field as an IDgen field with:

Semantic Data Type. I
Syntax. B
Length. 4

Do not provide data for this field; the system generates these values. As a
result, each record in the TIBCO Object Service Broker VSAM table has a
unique identifier provided by the IDgen field.

* Define a data parameter that reflects the format of the associated base table
key field. The base VSAM table definition does not require a parameter
definition.

Data Parameter Requirements of a Child Table

* The parameter name can be any valid TIBCO Object Service Broker field
name, but TYPE, SYNTAX, LENGTH and DECIMALS must match the base
VSAM table definition key fields.

* You must also specify in the REFERENCE field the name of the associated
base VSAM table.

¢ You must set CLASS to D.

TIBCO Object Service Broker Managing External Data

140 | Chapter 9 Defining VSAM Tables for Files with Multiple Record Formats

Sample Definition (Record A)

The following is an example of a VSAM table definition for record A shown in the
sample file on page , Sample File, on page 138:

COMMAND==> TABLE DEFINITION
Table: EMPLOYEE_VSAM_A Type: VSM Unit: USR40 IDgen: N
File : USR40.EMPLOYEE.VSAM
DDname : Read Only: Y Load: N Data Set Type: KSDS
Ignore:
ServerID:

------- VSAM ----—--—|----—---- ObjectStar Definition ------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
_ KEY B 2 0 0O P T B 2 0
_ DEPTNO B 4 0 2 I B 4 0
_ DEPTNAME C 9 0 6 S C 9 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0OFFSET 21=DATA 2=DOC

Sample Definition (Record B)

The following is an example of a VSAM table definition for record B shown in the
sample file on page <Link> “Sample File”. It includes a value for the
REFERENCE field (scroll right to see this field):

COMMAND==> TABLE DEFINITION

Table: EMPLOYEE_VSAM_B Type: VSM Unit: USR40 IDgen: Y

File : USR40.EMPLOYEE.VSAM

DDname : Read Only: Y Load: N Data Set Type: KSDS

Ignore:

ServerID:

Parameter Name Reference Default ! Event Rule Typ Acc

_ RECORD_A EMPLOYEE_VSAM_A v
. VSAM --—————— | —==—————— ObjgctStar Definition ------

TIBCO Object Service Broker Managing External Data

Definition Requirements | 141

Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rgd Default
_ KEY B 4 0 P I B 4 0
_ LNAME C 22 0 S C 22 0
_ FNAME C 10 0 S C 10 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0OFFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing External Data

142 | Chapter 9 Defining VSAM Tables for Files with Multiple Record Formats

TIBCO Object Service Broker Managing External Data

Chapter 10

Topics

|143

Processing VSAM Data Using TIBCO Object
Service Broker

This chapter describes how to process VSAM data using TIBCO Object Service
Broker. For a description of how to process VSAM LDS data refer to the TIBCO
Service Gateway for Files SDK User’s Guide.

¢ Access of TIBCO Object Service Broker VSAM Tables, page 144
* Sample Rules, page 147
¢ Handling of TIBCO Object Service Broker Requests, page 149

TIBCO Object Service Broker Managing External Data

144 | Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker

Access of TIBCO Object Service Broker VSAM Tables

Editing or Browsing

The setting of the Read Only field in the TIBCO Object Service Broker VSAM
table definition determines how you can access the VSAM data:

If Read Only=N, you can edit the table using the Table Editor or rules.

You cannot delete records through an ESDS table definition or through a
KSDS table definition representing an alternate index of an ESDS data set.

If Read Only=Y, you can only browse the table using the Table Browser or
rules.

Using the Table Editor

You can edit a VSAM table in the same way you would edit any other table with
the following exceptions:

If your table definition contains fields of syntax C or V that are longer than 260
bytes, or fields of syntax RD or UN that are longer than 130 bytes, you must
use SELECT LIKE instead of SELECT to access fields of this length.

You can define and access KSDS and ESDS type definitions via alternate
indexes. Full read and update access is available if you define the alternate
index as the primary key.

In TIBCO Object Service Broker you cannot cancel changes made in the Table
Editor. VSAM changes are immediate; there is no ROLLBACK.

Using the Table Browser

You can browse a VSAM table in the same way you would browse any other table
except for the following;:

You cannot use the Table Browser to access a VSAM file with multiple record
formats.

Using the Single Occurrence Editor from the Table Browser begins a
dependent transaction in TIBCO Object Service Broker. Therefore, the table
must have a unique key because access in the row transaction is by key.

TIBCO Object Service Broker Managing External Data

Access of TIBCO Object Service Broker VSAM Tables | 145

Using Rules

You can access VSAM data using the rules language in the same way you would
access data in any other table except for the following:

* You cannot roll back INSERTs, DELETEs, or REPLACEs even by transaction
failure.

e If you issue a EXECUTE statement within a main (parent) transaction, it
creates another transaction stream (child), to a maximum of nine streams.

The number of streams allowed in a transaction depends on the Execution

Environment parameter TRANMAXNUM. Each transaction stream accessing
external data requires its own server thread. Additional transactions can cause
parent-child locking conflicts if more than one transaction stream is in update.

e Using TRANSFERCALL or DISPLAY & TRANSFERCALL statements in a rule
minimizes server threads and reduces the possibility of locking contention.

* Under CICS, write applications that allow pseudo-conversational processing
using TRANSFERCALL or DISPLAY & TRANSFERCALL statements. This
can minimize recovery problems after an abend.

e If you use the default session parameter values, you can access at least 16
VSAM tables per transaction; more, depending on the size of the VSAM table
definitions.

VSAM Files with Multiple Record Formats and Repeating Groups

When a file contains multiple record formats, you must use rules to access the
data.

Repeating Groups
Note the following about repeating groups:

* Before a repeating group occurrence can be accessed, its immediate parent
must be accessed.

* Changes to repeating group occurrences are not written to the VSAM data set
until an INSERT or REPLACE on the parent table.

* The maximum number of INSERTs of repeating group occurrences is
determined by the VSAM record length.

e For ESDS and RRDS, the record must be full after all INSERTs and DELETEs
of repeating group occurrences.

TIBCO Object Service Broker Managing External Data

146 | Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker

Retrieval Processing

GET Statement

When a TIBCO Object Service Broker transaction runs in browse mode, locks are
not taken on the TIBCO Object Service Broker data; however, locks are taken on
the VSAM data in accordance to the transaction mode being set to Browse or No
Browse.

The WHERE clause recognizes ranges. For example, if you use the clause WHERE
KEY > 5 & KEY < 10, the server skips to > 5 and then stops processing when Key
= 10. The following two rules statements differ from regular processing:

e GET
¢ FORALL

VSAM files with multiple record formats cannot be sorted (ORDERED clause) or
selected (WHERE clause) by field values because the files are defined by several
tables.

A GET statement retrieves the first occurrence in the VSAM table that satisfies the
specified selection criteria.

A GET... ORDERED statement must retrieve all VSAM data that satisfies the
selection criteria and sort it in the Execution Environment before returning the
first occurrence that meets the selection criteria.

FORALL Statement

See Also

When using a FORALL statement, occurrences are returned in primary key order.
If you require a different order, you must include an ORDERED clause in your
FORALL statement. TIBCO Object Service Broker orders only occurrences
specified in the selection criteria.

e TIBCO Object Service Broker Managing Data for information on the Table Editor.

® TIBCO Object Service Broker Programming in Rules for information on using
rules, transactions, and table access statements.

TIBCO Object Service Broker Managing External Data

Sample Rules | 147

Sample Rules

Sample Rule 1: Accessing Multiple Record Formats

If the file contains multiple record formats in one physical record, you can access
all the records in the file by using rules statements similar to those that follow. To
update a record, you must update the base table after updating the other multiple
record format tables. The tables in this rule are the ones defined in Sample
Definition (Record A) and Sample Definition (Record B) on page 140.

RULE EDITOR ===> SCROLL: P
VSAMREPEAT (NEW_NAME) ;

+
_ FORALL EMPLOYEE_VSAM_A : |
FORALL EMPLOYEE_VSAM_B(EMPLOYEE_VSAM_A.KEY) |
EMPLOYEE_VSAM_B.LNAME = NEW_NAME;
EMPLOYEE_VSAM_B.FNAME = EMPLOYEE_VSAM_B.FNAME | | |
’ STUDENT’ ; |
REPLACE EMPLOYEE_VSAM_B(EMPLOYEE_VSAM_A.KEY); |
END; [
REPLACE EMPLOYEE_VSAM_A; |
END; |

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Sample Rule 2: Inserting Parent Record with Children

The following is a sample rule illustrating how to insert a parent record with
children.

When the physical record is written as indicated by INSERT EMPLOYEE_A; the
%} record must be full.

TIBCO Object Service Broker Managing External Data

148 | Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker

The tables in this rule are the ones defined in Sample Definition (Record A) and
Sample Definition (Record B) on page 140 except the data set type is ESDS instead
of KSDS.

RULE EDITOR ===> SCROLL: P
INSERT_VSAM;

__ +______________
_ EMPLOYEE_A.KEY = 1; | 2
_ EMPLOYEE_A.DEPTNO = 10; | 3
_ EMPLOYEE_B.LNAME = ’'DOE’; | 4
_ EMPLOYEE_B.FNAME = 'JOHN’; | 5
_ INSERT EMPLOYEE_B(EMPLOYEE_A.KEY); | 6
_ EMPLOYEE_B.LNAME = ’'ANN’; | 7
_ EMPLOYEE_B.FNAME = ’'MARY’; | 8
_ INSERT EMPLOYEE_B(EMPLOYEE_A.KEY); | 9
_ EMPLOYEE_B.LNAME = ’'DICK’; | A
_ EMPLOYEE_B.FNAME = ’TRACY’; | B
_ INSERT EMPLOYEE_B(EMPLOYEE_A.KEY); | C

INSERT EMPLOYEE_A; | D

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

TIBCO Object Service Broker Managing External Data

Handling of TIBCO Object Service Broker Requests | 149

Handling of TIBCO Object Service Broker Requests

The following sections describe how requests are handled with respect to:
* Synchronization and recovery

® Error handling

Synchronization and Recovery

% About synchronization and recovery:

e A VSAM transaction spans the same length of time as a TIBCO Object Service
Broker transaction.

e A COMMIT causes all locks to be released.

¢ Intermediate COMMITs are necessary when concurrent updates are
performed within the same system or cross-system if SHAREOPTIONS 3 is
specified for a VSAM file. These intermediate COMMITs avoid data integrity
problems, data loss, or unpredictable results (they cause buffered updates to
be flushed from the task buffers).

e Under CICS, consider setting the CICSVSAMSYNC Execution Environment
parameter to control when SYNCPOINTSs are issued by the VSAM server.

These tables summarize the behavior of the VSAM server under CICS:

Mode Pseudo-Conversational Conversational

Operation SYNCPOINT | ROLLBACK | SYNCPOINT | ROLLBACK

CICSVSAMSYNC= YES NO | YES NO | YES NO | YES NO
Event
DISPLAY Yes No | No No | Yes No | No No
DISPLAY & Yes No | No No | Yes No | No No
TRANSFERCALL
TRANSFERCALL Yes No | No No | Yes No | No No
CALL No No | No No | No No | No No

TIBCO Object Service Broker Managing External Data

150 | Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker

Mode Pseudo-Conversational Conversational
EXECUTE Yes @ No No No Yes @ No No No
TIBCO Object Yes No | No No | No No | No No

Service Broker
trans. abend

CICS trans. abend No No | Yes? Yes | No No | Yes€ Yes
COMMIT Yes No | No No | Yes No | No No
ROLLBACK No No No No No No No No
TIBCO Object Yes No | No No | Yes No | No No
Service Broker

trans. end

a. SYNCPOINT is done at the end of the executed transaction
b. Only updates since the last DISPLAY are rolled back
c. Only updates since last intermediate SYNCPOINT are rolled back

Error Handling

The TIBCO Object Service Broker runtime environment signals system exceptions
to permit an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catchall exception. Each exception traps the exceptions that
appear below it in the hierarchy.

All errors encountered when accessing external data are trapped under one of the
following TIBCO Object Service Broker exceptions:

¢ ERROR
e ACCESSFAIL
e INTEGRITYFAIL

ERROR Exception

An ERROR exception indicates that an error is detected and no lower-level
exception exists in the application.

TIBCO Object Service Broker Managing External Data

Handling of TIBCO Object Service Broker Requests | 151

ACCESSFAIL Exception

An ACCESSFAIL exception indicates that a table access error is detected. The
following exceptions are valid under an ACCESSFAIL exception:

GETFATL Indicates that no occurrence satisfies the selection criteria

DELETEFAIL Indicates that the primary key specified for a DELETE
statement does not exist

INSERTFAIL [ndicates that the primary key provided for an INSERT
statement already exists

REPLACEFAIL [ndicates that the primary key provided for a REPLACE
statement does not exist

INTEGRITYFAIL Exception

An INTEGRITYFAIL exception indicates an attempt to violate data integrity is
detected. The following exceptions are valid under an INTEGRITYFAIL
exception:

DEFINITIONFAIL [Indicates that the data set specified is not found

LOCKFATL Indicates that there is a lock on an occurrence or a table is
unavailable
SECURITYFAIL Indicates that permission for the requested action on the

object is denied

SERVERERROR External database server error detected

If a failure occurs when the data set is first opened, either the SERVERERROR or
DEFINITIONFAIL exception can result.

S

See Also TIBCO Object Service Broker Programming in Rules for more information on
exceptions.

TIBCO Object Service Broker Managing External Data

152 | Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker

TIBCO Object Service Broker Managing External Data

|153

AppendixA Mapping Data Types

External
Syntax

(Xsyn
field)

This appendix describes how to map data types for IMP, EXP, and VSM table
definitions.

The following table displays the default mapping of external syntax and length
(XSyn and Xlen fields) to TIBCO Object Service Broker syntax and length (Syn
and Len fields) for MAP table definitions. In every case, the TIBCO Object Service
Broker decimal (Dec field) value is equal to the external decimal length. TIBCO
Object Service Broker syntax is described more fully in TIBCO Object Service Broker
Programming in Rules.

TIBCO TIBCO
Object Object

o External II\EA)?t)gmglm Service Service
Description %)agﬁt;}eld) &e:;?ﬁlalfg)ngth Broker E;gl;ttarr‘
(Len
field)
Binary or character data, 1-31742 No default No No default
according to internal default

syntax. Binary data is
interpreted according to
endian value. Character
data is translated
according to code page.

Valid only for table type
MAP.

AO

Alphabetic (Uppercase). 1-31742 0 C Xlen?

TIBCO Object Service Broker Managing External Data

154 | Appendix A Mapping Data Types

TIBCO TIBCO
; Object Object
Ex:‘etral;n(al External II\EA)?t)gm;P Service Service
()%,syn Description Length Decimal Length Broker Broker
: (Xlen field) : Syntax Length
field) (Xdec field) (Syn (Len
field) field)
B b Binary, signed. 1 & Xdec=0 0 B 2
2-12 & Xdec=0 0 B same as
Xlen
1 & Xdec>0 3 P 2
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6& Xdec>0 15 P 8
7& Xdec>0 17 P 9
8& Xdec>0 19 P 10
Bl6 ¢ Unicode UTF-16-BE 2 -31742, must 0 UN Xlen?
encoded string. be a multiple of
2
B16B f Unicode UTF-16-BE 4 - 31742, must 0 UN Xlen-22
encoded string with BOM. be a multiple of
2
B328 Unicode UTF-32-BE 4 - 31740, must 0 UN Xlen/2
encoded string. be a multiple of
4
B32B M Unicode UTE-32-BE 8 — 31740, must 0 UN (Xlen-4)/2
encoded string with BOM. be a multiple of
4
C° Fixed length character 1-31742 0 C Xlen?

string, with trailing blanks
ignored.

TIBCO Object Service Broker Managing External Data

Mapping Data Types | 155

TIBCO TIBCO
Object Object

External Maximum : .
Syntax 5 - Extertr;‘al External ger\ll(lce ger\ll(lce
ey’ Descrpton endth) Decmallengin Broler Broke
field) (Xdec field) (Syn (Len
field) field)
Eoi Little-endian binary, 1 & Xdec=0 0 B 2
signed. 2-12 & Xdec=0 0 B same as
Xlen
1 & Xdec>0 3 P 2
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6& Xdec>0 15 P 8
7& Xdec>0 17 P 9
8& Xdec>0 19 P 10
F Floating point (short, long, 4 0 F 4
or extended). 8 8
16 16
G Packed, neutral (X'0F") 1-16 Xlen*2-1 P Xlen
sign when positive and
(X'0D') when negative.
H Hexadecimal. 1-31742 0 RD 4 + Xlen?
7 Mixed-case character 1-31742 0 \Y Xlen?
string in the native code
page (EBCDIC for z/OS,
ASCII otherwise), with

trailing zeroes ignored.

TIBCO Object Service Broker Managing External Data

156 | Appendix A Mapping Data Types

TIBCO TIBCO
Object Object

Ex:‘etral;n(al External II\EA)?t)gm;P Service Service
()%,syn Description Length Decimal Length Broker Broker
: (Xlen field) : Syntax Length
field) (Xdec field) (Syn (Len
field) field)
KX Binary, unsigned. 1 & Xdec=0 0 B 2
1 & Xdec>0 3 P 2
2-11& Xdec=0 0 B Xlen + 1
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6& Xdec>0 15 P 8
7& Xdec>0 17 P 9
8& Xdec>0 21 P 11
L Long packed, up to 31 1-16 Xlen*2-1 P Xlen
digits, (X’0F’) sign when
positive and (X'0D') when
negative. Syntax P is
recommended in place of
this syntax.
Ll6°¢ Unicode UTF-16-LE 2 -31742, must 0 UN Xlen?
encoded string. be a multiple of
2
L16B f Unicode UTF-16-LE 4 - 31742, must 0 UN Xlen-22
encoded string with BOM. be a multiple of
2
L328 Unicode UTF-32-LE 4 - 31740, must 0 UN Xlen/2
encoded string. be a multiple of
4
L32B 1 Unicode UTF-32-LE 8 — 31740, must 0 UN (Xlen-4)/2
encoded string with BOM. be a multiple of
4
M! Numeric (zoned), 1-31 Xlen P Xlen/2+1
unsigned. (round
down)

TIBCO Object Service Broker Managing External Data

Mapping Data Types | 157

TIBCO TIBCO
Object Object

Ex:‘etral;n(al External II\EA)?t)gm;P Service Service
()%,syn Description Length Decimal Length Broker Broker
: (Xlen field) : Syntax Length
field) (Xdec field) (Syn (Len
field) field)
N! Numeric (zoned), signed. 1-31 Xlen P Xlen/2+1
(round
down)
NL Numeric (zoned), signed, 2-32 Xlen -1 P (XLen-1)
sign leading /2+1
(round
down)
NT Numeric (zoned), signed, 2-32 Xlen -1 P (XLen - 1)
sign trailing /2+1
(round
down)
@) Packed, no sign stored 1-16 Xlen*2-1 P Xlen + 1
(up to 31 digits).
Assignment of negative
values is not allowed.
pm Packed, signed, (X'0C’) 1-16 Xlen*2-1 P Xlen
sign when positive and
(X'0D’) when negative.(up
to 31 digits).
Q° Quoted character string. 3-31742 0 v Xlen-2?2
Rk Little-endian binary, 1 & Xdec=0 0 B 2
unsigned. 1 & Xdec>0 3 P 2
2-11& Xdec=0 0 B Xlen + 1
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6& Xdec>0 15 P 8
7& Xdec>0 17 P 9
8& Xdec>0 21 P 11
RD Raw data. 5-31742 0 RD Xlen?

TIBCO Object Service Broker Managing External Data

158 | Appendix A Mapping Data Types

TIBCO TIBCO
Object Object

External Maximum : -
External Service Service
(S)y;';ﬁx Description Length E)étceirmnaall Length Broker Broker
: (Xlen field) : Syntax Length
field) (Xdec field) (Syn (Len
field) field)

T Text numeric. 2-17 Xlen - 2 P Xlen/2
(round
down)

um Packed, unsigned, neutral 1-16 Xlen*2-1 P Xlen

(X’0F’) sign when positive
(up to 31 digits).
Assignment of negative
values is not allowed.

U8 Unicode UTF8 encoded 1-31742 0 UN Xlen (+1 if
string. result is

odd)?

USN Null terminated Unicode 1-31742 0 UN Xlen (+1 if
UTEFS8 encoded string. result is

odd)?

U8B Unicode UTF8 encoded 4-31742 0 UN Xlen-3 (+1
string with BOM. if result is

odd)?

USNB Null terminated Unicode 4 -31742 0 UN Xlen-3 (+1
UTEFS8 encoded string with if result is
BOM. odd)?

UN € Unicode. 2 — 31742, must 0 UN Xlen?

be a multiple of
2

vie Variable character. 1-31742 0 \Y Xlen?

we Double- & single-byte 4-31742 0 w Xlen®
character string.

X0 Fixed length, mixed case 1-31742 0 A% Xlen?
character string.

XCnn ™ Variable length, mixed 1-31742 0 UN Xlen (+1 if
case character string in one result is
of a possible 16 user odd)?
syntaxes.

TIBCO Object Service Broker Managing External Data

Mapping Data Types | 159

TIBCO TIBCO
Object Object
Service Service
groker Broker
: yntax Length
(Xdec field) (Syn (Len
field) field)

zio X’00’ fill character. 1-31742 0 \Y4 Xlen?

Maximum
External

External

Syntax External

Description Length

(Xsyn (Xlen field) Decimal Length

field)

a.The maximum Len field value is 31723 or 31722 if the syntax requires the length to be even.

b.For the import type LENGTH_PREFIXED_EBCDIC_NATIVE_ENDIAN, the endian is that of the
processor where TIBCO Object Service Broker is running. For example, on an Intel machine, the
external syntax B for LENGTH_PREFIXED_EBCDIC_NATIVE_ENDIAN import files is little-endian.

c.The default mapping of B and E are identical.

d.On Open Systems, if there are more than 15 significant digits in the field, you must assign the TIBCO
Object Service Broker syntax C and length 26.

e.The default mappings of B16, L16, and UN are identical.
f.The default mappings of B16B and L16B are identical.
g.The default mappings of B32 and L32 are identical.
h.The default mappings of B32B and L32B are identical.
i.External syntaxes E and R are not valid on z/OS.

j-The default mappings of J, V, X, and Z are identical.
k.The default mappings of K and R are identical.

1. The default mappings of M and N are identical.

m.The default mappings of P and U are identical.

n.There are 16 possible user syntaxes from XC01 to XC16. These are typically used to map DBCS
characters to Unicode. To define the user syntaxes, refer to the procedures described in TIBCO Object
Service Broker for z/OS Installing and Operating or TIBCO Object Service Broker for Open Systems Installing
and Operating.

o.Data cleansing is supported for syntaxes A, C, Q, V, W, X, and Z.

% About external data translation:

* Numeric nulls are translated to zeros. As a special case, null date fields are
interpreted as zero and represented internally as 1980-01-01.

* Null fixed-length character strings are padded with blanks as required. Null
variable-length strings (V or W) are imported as is.

TIBCO Object Service Broker Managing External Data

160 | Appendix A Mapping Data Types

TIBCO Object Service Broker Managing External Data

|161

Appendix B Mapping File Names for Open Systems

This appendix describes how to map file names for Open Systems.

Access to External Files

Providing a File Name

On z/0S, you must provide a fully qualified data set name when opening a data
set. On Open Systems, you can provide a full path name to your external files in
your CALL to the file, for example:

CALL @OPENDSN(‘/usrl/osb/dsn/UNLOAD.TST’);
CALL @OPENDSN(‘D:\usrl\osb\dsn\UNLOAD.TST’);

or you can also provide partial path, for example:
CALL @OPENDSN(‘UNLOAD.TST’);

If you provide an incomplete file name, the following facilities are used to direct
the CALL to the appropriate directory:

e The DSDIR Execution Environment parameter

* Indirect name mapping through the filespec.dsn file

Using the DSDIR Parameter to Provide a File Name

You can specify the name of the path to be used to create a full file name using the
DSDIR Execution Environment parameter. For example, if you provide the value
usrl/osb/dsn or D:\usr1\osb\dsn and the following call is made:

CALL @OPENDSN(‘UNLOAD.TST’);

the full path is /usrl/osb/dsn/UNLOAD.TST or
D:\usr1\osb\dsn\UNLOAD.TST.

TIBCO Object Service Broker Managing External Data

162 | Appendix B Mapping File Names for Open Systems

Using filespec.dsn to Provide a File Name

You can create a file called filespec.dsn to be used to map a z/OS data set name or
Windows or Solaris file name to another value. For example, if the original file
name is in mixed case and your TIBCO Object Service Broker application requires
it to be in uppercase, you can map the values in filespec.dsn or if you require
special characters (*, ?, <, >), map your file name to the filespec.dsn file to avoid
having them replaced.

filespec.dsn must be in the same directory as the one you specified in the DSDIR
Execution Environment parameter. Using an editor such as Notepad or vi, put
each entry on a separate line in the following format:

originalfile filetouse rlength [filetype][fldsep][quote]

originalfile

The name to be mapped; it can be the name of a z/OS partitioned or
non-partitioned data set, or of a Windows or Solaris file.

filetouse

The Windows or Solaris file to be used.

If a relative file name is specified, the value for filetouse is appended to the directory
specified in your DSDIR Execution Environment parameter. For example, if the
value for filetouse is file2use and the directory named in the parameter is
/usrl/osb/dsn the value for originalfile is mapped to the path
/usrl/osb/dsn/file2use.

If a complete file name is specified, such as /usrl/osb/dsn/unload.tst, the value
for originalfile is mapped to this file.

rlength

The length of each record in a native file format. Otherwise, specify 0 (zero). The
last record in the file can be shorter than this length.

TIBCO Object Service Broker Managing External Data

Access to External Files | 163

filetype

[Optional] It can be one of the following values.

e LENGTH_PREFIXED_EBCDIC - Native TIBCO Object Service Broker format.
This data is stored in EBCDIC and big-endian format. The length of a record is
determined by a length stored in the first two bytes of a record.

e LENGTH_PREFIXED_EBCDIC_NATIVE_ENDIAN - The native format for
the platform. The length of the record is defined using the filespec.dsn mapping
file.

e LINE_SEPARATED_ASCII — ASCII line-oriented data where the end of a line
is delimited by the new line character or the end of the file.

If filetype is not specified, the default value depends on its use: if the file is used in
file access calls (QOPENDSN, @READDSN, @WRITEDSN, and @ CLOSEDSN, the
default value is the value provided by the DSBIFTYPE Execution Environment
parameter.

If the file is used in import or export tables, the default value is the value provided
by the DSIXFTYPE Execution Environment parameter.

If filetype is not specified, the following options (fldsep and quote) must not be
specified.

fldsep

Used only if fieldtype is LINE_SEPARATED_ASCII; otherwise it is ignored. It
specifies the field separator to be used in LINE_SEPARATED_ASCII files for
import and export tables. The value for fldsep must be one of the following:

¢ NONE - No field separator: input is in columns.

¢ SPACE - Spaces (tabs and blanks) are used as field separators.
¢ TAB - Only tabs are used as field separators.

¢ COMMA - Only commas are used as field separators.

If fldsep is not specified when filetype is LINE_SEPARATED_ASCII, the default value
is NONE and can be modified by the DSFIELDSEP Execution Environment
parameter.

TIBCO Object Service Broker Managing External Data

164 | Appendix B Mapping File Names for Open Systems

quote

Used only if filetype is LINE_SEPARATED_ASCII and fldsep is something other than
NONE; otherwise it is ignored. It specifies the character to be used for quotation
marks in LINE_SEPARATED_ASCII files being used for import and export tables.
The value for quote must be one of the following;:

* NONE - No quote characters.
* SINGLE - A single quotation mark (*) is used as the quote character.
e DOUBLE - A double quotation mark (“) is used as the quote character.

If quote is not specified when required, the default value is SINGLE and can be
modified by the DSQUOTE Execution Environment parameter.

Example

If the DSDIR Execution Environment parameter is set to /usrl/osb/dsn, to map a
file called /usrl/testone/workfile to D:\testone\workfile, the entry for
filespec.dsn, is:

D:\testone\workfile /usrl/testone/workfile O LINE_SEPARATED_ASCII
TAB SINGLE

The file type is TEXT, tabs separate each field in the file, and the quotation mark
character is a single quotation mark. Record length is ignored for TEXT files and
therefore is set to zero (0).

Mapping a Partitioned Data Set

See Also

If a z/OS partitioned data set name is being mapped in filespec.dsn, its name
must be set with a “()” (parenthetic) suffix to distinguish it from non-partitioned
data sets. The file attributes specified in the map entry are applied to all members
in the data set. filetouse becomes the name of the directory for the members in the
data set. The directory is created automatically. Names of members are mapped
into uppercase file names to be located in the directory filetouse.

Example
The partitioned data set PART.DATA.SET has the following entry in filespec.dsn:
PART.DATA.SET() partdataset 0 TEXT SPACE SINGLE

If the DSDIR Execution Environment parameter is set to /usrl/osb/dsn, the
member PART.DATA.SET(MEMBER) is mapped to the file
/usrl/osb/dsn/partdataset/ MEMBER.

e TIBCO Object Service Broker Parameters for information about the Execution
Environment parameters

TIBCO Object Service Broker Managing External Data

Access to External Files | 165

e TIBCO Object Service Broker Shareable Tools for information about the
(@OPENDSN, @READDSN, @WRITEDSN, and @ CLOSEDSN tools.

TIBCO Object Service Broker Managing External Data

166 | Appendix B Mapping File Names for Open Systems

TIBCO Object Service Broker Managing External Data

|167

Appendix C Data Cleansing

Data cleansing is a new feature that enables an installation to specify that, for
certain external table types, the data must be cleaned up before being used by
TIBCO Object Service Broker.

The table types that make use of data cleansing are IMP, VSM, MAP, IMS, IDM,
and DAT.

Topics

¢ Options, page 168
* Examples, page 170

TIBCO Object Service Broker Managing External Data

168 | Appendix C Data Cleansing

Options

Two options for data cleansing are available, as follows:

¢ Invalid numeric data can be ignored (the field in the table occurrence is set to
anull value). This option can apply to all invalid numeric data or only to those
whose input contains low values (all bytes X'00'). Numeric data are indicated
by the fields with an external numeric syntax, thatis, B, F, G, K, L, M, N, NL,
NT,O, P, T,and U.

¢ Character data can have undesirable characters removed or replaced.
Character data are indicated by the fields with an external character syntax,
thatis, A,C,Q,V,W, X, and Z.

You can use the Table Definer to specify data cleansing for a particular table. The
Data Cleansing field on the primary Table Definer screen specifies the data
cleansing options for the table in question.

The possible options, which you can abbreviate, are as follows:

¢ LOWVALUES — Treat invalid numeric data as null if low values (all bytes
X'00").

¢ INVALID — Treat invalid numeric data as null.

e TRLOAD=modname — Load one or more translate tables from the load
module with the name modname.

e TRTABLE=iname — Load one or more translate tables from the @ TRTABLES
instance with the TRNAME parameter value iname.

For example, INV,TRL=MYTRANS denotes the following:
¢ Any invalid numeric data input is to be treated as a null field.

e Translate tables for processing character data are to be provided by a load
module with the name MYTRANS.

The translate tables to be used are specified as follows:

* For a load module, which must be in a load library accessible to the DOB,
there can be one or two entries, each 264 bytes long. Each entry contains an
8-byte blank padded field, which denotes the type of translate table, either
REPLACE or DELETE, followed by a 256-byte translate table.

e For a @TRTABLES instance, there can be one or two occurrences. The key field
TYPE (IC8) can be REPLACE or DELETE. The field TRTABLE (V256) must
contain the corresponding translate table.

TIBCO Object Service Broker Managing External Data

Options | 169

If the type is REPLACE, then the 256-byte translate table represents a regular
translate table in which each input data byte is replaced by the byte at the
corresponding offset in the table.

If the type is DELETE, then the 256-byte translate table contains X'00' bytes for
the characters that are to be retained, and non-zero bytes for the input
characters that are to be deleted.

Please be aware that changes made to a translate table (either load module or
@TRTABLES format) will not be seen by any active table that references that
translate table. This is because the translation data is bound to the table
definition when the table is first referenced by any user. To be certain of using
the updated translate table, it may be necessary to recycle the DOB.

TIBCO Object Service Broker Managing External Data

170 | Appendix C Data Cleansing

Examples

Following are a few examples:

Table SALES2011 is an IMS table that might contain uninitialized packed
decimal data represented as low values. To ignore that invalid data, set the
Data Cleansing field in the Table Definer to LOW. The input character data
will be unchanged.

Table MYIMP1 is an IMP table that contains character data you would like to
clean up before processing it. In addition, to ignore any invalid numeric data,
set the Data Cleansing field to INV,TRLOAD=CLEANUP. The load module
CLEANUP is based on the following Assembler source file:

CLEANUP CSECT
DC

TABLE1 DC
ORG
DC
ORG
DC
ORG
DC

TABLEZ2 DC
ORG
DC
ORG
END

CL8'REPLACE' Function = character replacement
256AL1(*-TABLE1)
TABLE1+X'80'

c’ Replace X'80' with a blank
TABLE1+X'FA'

6C’ ’ Replace X'FA' to X'FF' with blanks
CL8'DELETE' Function = character removal
XL256'00"

TABLE2+X'0A'

4X'01" Characters X'0A'-X'0OD' to be deleted

Using this definition, any carriage returns, line feeds, or form feeds will be
removed from the input data before processing. Also, several undesirable
characters will be replaced with blanks should they exist in the input data.

Table MAP47 is a MAP table with character fields that contain X'FF', which

you would like to remove. To do so, set Data Cleansing for the table definition
to TRTAB=NOFE.

Table instance @ TRTABLES(NOFF) contains one occurrence with the field
TYPE = 'DELETE' and the field TRTABLE that contains a 256-byte string with
the first 255 bytes zero and the last one, non-zero.

TIBCO Object Service Broker Managing External Data

Index

Symbols

@CLOSEDSN tool 163, 165
@HRNXDEL return code 91, 117
@HRNXDON return code 91, 117
@HRNXINX return code 91, 117
@HRNXKEP return code 91, 117
@OPENDSN tool 163,165, 165
@READDSN tool 163,165
@WRITEDSN tool 163, 165

* (dynamic) external syntax 153

A

A (alphabetic uppercase) external syntax 153

Acc field
export tables 104
import tables 61
VSAM tables 129

ACCESSFAIL exception 89, 114, 151

accessing
exported data 112, 113
external data 50
external files 161
import tables 80
remote tables 82
VSAM data 120
VSAM tables 144

Adabas data
accessing 2, 10
processing 111

Administration menu, and Service Gateway for

Files 45

ALLOCATE command 55, 100, 125
alphabetic uppercase (A) external syntax 153

| 171

B16 (Unicode UTF 16-BE) external syntax 154
backup files, transferring with FTP 55
binary

signed (B) external syntax 154

unsigned (K), external syntax 156

Cc

C, fixed length (external syntax) character string 154
Change Tracking Agent 6
CICSVSAMSYNC Execution Environment
parameter 149
commands
ALLOCATE 55, 100, 125
D (delete) 58,102, 128
P (primary key) 64, 107
SELECT 80, 144
SELECT LIKE 80, 144
communications, setting up for Service Gateway for
Files 40
configuring
Service Gateway for Files, sample configuration for
z/0S 38
TCP/IP 30
Copy Table option, using 112
COPY_DATA tool, using 112
CTABLESIZE parameter 62, 105, 130
customer support xviii

D

D line command 58, 102, 128

TIBCO Object Service Broker Managing External Data

172 | Index

data
accessing
external 50
VSAM 120
exchanging 4
managing
import definitions 49
VSAM definitions 119
data cleansing
examples 170
options 168
Data Cleansing field, import tables 56
data identification segment, illustrated
export tables 99
import tables 54
VSAM tables 124
data parameter validation 58
data set requirements 135
Data Set Type field, VSAM tables 125
DDname field
export tables 100
import tables 55
VSAM tables 124
Dec field
export tables 108
import tables 65
VSAM tables 133
Default field
export tables 108
import tables 65
VSAM tables 133
defining
fields
export tables 105
import tables 62
VSAM tables 130
import tables for multiple record formats 68
VSAM tables for multiple record formats 138
DEFINITIONFAIL exception 89, 115, 151
definitions, managing
export data 95
import data 49
VSAM data 119
delete (D) line command 58, 102, 128
DELETEFAIL exception 151

TIBCO Object Service Broker Managing External Data

dictionary, global field 65, 108
double-byte and single-byte character string (W)
external syntax 158

DSIXFTYPE Execution Environment parameter 54, 99

dynamic (*) external syntax 153

E

E (little-endian binary signed) external syntax 155
ERROR exception 89, 114, 150
error handling 89, 114, 150
ESDS requirements 135
ESTIMATETBLDEEN rule 62, 105, 130
Event Rule field
export tables 104
import tables 60
VSAM tables 129
event rule segment, illustrated
export tables 104
import tables 60
VSAM tables 129
event rules, specifying
export tables 104
import tables 60
VSAM tables 129
exceptions
ACCESSFAIL 89, 114, 151
DEFINITIONFAIL 89, 115, 151
DELETEFAIL 151
ERROR 89, 114, 150
GETFAIL 151
INSERTFAIL 151
INTEGRITYFAIL 89, 115, 151
LOCKFAIL 89, 115, 151
REPLACEFAIL 151
SECURITYFAIL 89, 115, 151
SERVERERROR 151
exchanging data 4
EXP server. See export server 3
export files
FTPing 99
writing data to 112
export server, overview 3

export tables
Acc field 104
data identification segment 99
data parameters, specifying 102
DDname field 100
Dec field 108
Default field 108
defining fields 105
Event Rule field 104
event rule segment 104
External Routine Name field 101
field definition segment 105
Field Name field 106
File field 99
Globalfield Name field 108
identifying data 99
identifying tables 98
internal attributes, specifying 107
Key field 107
Len field 107
location parameter, specifying 102, 102, 128
Offset field 106
Ord field 108
parameter segment 102
Rqd field 108
Server ID field 101
specifying external attributes 106
Syn field 107
Table field 98
table identification segment 98
Typ field 104, 107
Type field 98
Unit field 98
Xdec field 106
Xlen field 106
Xsyn field 106
exported data, accessing 112, 113
exporting
managing data definitions 95
Table Definer illustrated 96
external attributes, specifying
export tables 106
import tables 62
VSAM tables 131
external data set name parameter 91, 117

Index | 173

external data, accessing 50
external files 161
external files, writing TIBCO Object Service Broker
tables to 96
External Routine Name field
export tables 101
external routines
manipulating 90
manipulating data 116
overview 116
parameters passed 90, 116
pre-processing data 90
valid return codes 91, 117
external syntaxes
alphabetic uppercase (A) 153
binary signed (B) 154
binary unsigned (K) 156
dynamic (*) 153
fixed length character string (C) 154
fixed length mixed case character string (X) 158
floating point (F) 155
hexadecimal (H) 155
little-endian binary
signed (E) 155
unsigned (R) 157
long packed signed (L) 156
mixed-case character string (J) 155
numeric signed (N) 157
numeric unsigned (M) 156
packed neutral (G) 155
packed signed (P) 157
packed unsigned (U) 158
packed, no sign stored (O) 157
quoted character string (Q) 157
raw data (RD) 157
text numeric (T) 158
U8 (Unicode UTF8 encoded string) 158
U8B (Unicode UTES8 encoded string with BOM) 158
USN (Null terminated Unicode UTF8 encoded
string) 158
USNB (Null terminated Unicode UTFE8 encoded

TIBCO Object Service Broker Managing External Data

174 | Index

string with BOM) 158 VSAM tables 130
UN (Unicode) 158 Event Rule 60, 104, 129
Unicode UTF 16-BE (B16) 154 External Routine Name 101
Unicode UTF 16-LE (L16) 156 Field Name 62, 106, 131
Unicode UTF 16-LE with BOM (L16B) 156 File 54,99, 124
Unicode UTF 32-LE (L32) 156 Globalfield Name 65, 108, 133
Unicode UTF 32-LE with BOM (L32B) 156 IDgen 53,123
variable character (V) 158 Ignore 125
X’00" fill character (Z) 159 Key 64,107,132
Len 64,107,132
Load 125
Offset 63, 106, 131
F Ord 65, 108, 133
Read Only 125
F, floating point external syntax 155 Rqd 65,108, 133
field definition segment, illustrated Server ID 56, 101, 126
export tables 105 Syn 64,107,132
import tables 62 Table 52,98, 122
VSAM tables 130 Typ 60, 64,104,107, 129, 132
Field Name field Type 52,98, 122
export tables 106 Unit 52,98, 122
import tables 62 Xdec 63, 106, 131
VSAM tables 131 Xlen 63, 106, 131
fields Xsyn 63,106, 131

Acc 61,104,129
Data Cleansing 56
Data Set Type 125
DDname 55, 100, 124
Dec 65, 108, 133
Default 65,108, 133

File field
export tables 99
import tables 54
VSAM tables 124
file, filespec.dsn 99
filespec.dsn file 99

defining fixed length
export tables 105 character string (C) external syntax 154
import tables 62 mixed case character string (X) external syntax 158

flagging changed copybooks 6
floating point (F), external syntax 155
FORALL statement 81, 146
FTP, using to transfer backup files 55
FIPing
export files 99
import files 55
full definition, location parameter 59, 103, 128

TIBCO Object Service Broker Managing External Data

Index | 175

G import files, FTPing 55
import tables 62, 64

G (packed neutral) external syntax 155 Acc field 61
GET statement 81, 146 accessing 80
GETFAIL exception 151 Data Cleansing field 56
global field dictionary 65, 108 data identification segment illustrated 54
Globalfield Name field data parameters, specifying 57

export tables 108 DDname field 55

import tables 65 Dec field 65

VSAM tables 133 Default field 65

defining fields 62, 130
Event Rule field 60, 60
event rule segment illustrated 60

H event rules, specifying 60
external attributes, specifying 62

H (hexadecimal) external syntax 155 field definition segment illustrated 62
handling Field Name field 62

errors 89, 114, 150 File field 54

TIBCO Object Service Broker requests 89, 114, 149 Globalfield Name field 65
hexadecimal (H) external syntax 155 identifying data 54
HRNXDSN parameter 91, 117 identifying tables 52
HRNXRECA parameter 90, 116 IDgen field 53
HRNXRECE parameter 91, 117 internal attributes, specifying 64
HRNXRLEN parameter 90, 116 Key field 64
HRNXTABN parameter 91, 117 Len field 64
HRNXTPRM parameter 91, 117 location parameter, specifying 57
HRNXWRKA parameter 90, 116 multiple record formats, defining 68

Offset field 63
Ord field 65
parameter segment illustrated 57

| Rqd field 65
Server ID field 56
I/0O record buffer parameter 90, 116 Syn field 64
identifying Table Definer illustrated 50
data Table field 52
export tables 99 table identification segment illustrated 52
import tables 54 Typ field 64
VSAM tables 124 Type field 52
tables Unit field 52
export 98 Xdec field 63
import 52 Xlen field 63
VSAM 122 Xsyn field 63
IDgen field 53,123 IMPXPARM macro 90
Ignore field, VSAM tables 125 INSERTFAIL exception 151
import data definitions, managing 49 installation process 22

TIBCO Object Service Broker Managing External Data

176 | Index

INTEGRITYFAIL exception 89, 115, 151
internal attributes, specifying

export tables 107

import tables 64

VSAM tables 132
invoking the Table Definer 5

J

J (mixed-case character string) external syntax 155

K

K (binary unsigned) external syntax 156
Key field

export tables 107

import tables 64

VSAM tables 132
KSDS requirements 135

L

L, long packed signed external syntax 156
L16 (Unicode UTF 16-LE) external syntax 156
L16B (Unicode UTF 16-LE with BOM) external
syntax 156
L32 (Unicode UTF 32-LE) external syntax 156
L32B (Unicode UTF 32-LE with BOM) external
syntax 156
LDS,VSAM 2
Len field
export tables 107
import tables 64
VSAM tables 132
line commands
D (delete) 58,102, 128
P (primary key) 64, 107
Linear Data Sets, VSAM 2

TIBCO Object Service Broker Managing External Data

listing members of a PDS or files in a directory 85
example for Windows and UNIX 87
example for z/OS 85

little-endian binary
signed (E) external syntax 155
unsigned (R) external syntax 157

Load field, VSAM tables 125

location parameter
full definition 59, 103, 128
minimal definition 58,102, 128
specifying for

export tables 102, 128
import tables 58

LOCKFAIL exception 89, 115, 151

log files, for Service Gateway for Files 45

long packed signed (L) external syntax 156

M (numeric unsigned) external syntax 156
macro, IMPXPARM 90
managing
export data definitions 95
import data definitions 49
VSAM data definitions 119
manipulating
data with external routines 116
external routines 90
minimal definition, location parameter 58, 102, 128
mixed-case character string (J) external syntax 155
multiple record formats
defined 68, 138
defining VSAM tables 138
definition requirements 68
VSAM tables 145

N

N (numeric signed) external syntax 157
NLS, and Service Gateway for Files 46
Null terminated Unicode UTES8 encoded string (USN)

Index | 177

external syntax 158 VSAM tables, specifying 127
Null terminated Unicode UTFS8 encoded string with HRNXDSN 91, 117
BOM (U8NB) external syntax 158 HRNXRECA 90, 116
numeric HRNXRECE 91, 117
signed (N) external syntax 157 HRNXRLEN 90, 116
unsigned (M) external syntax 156 HRNXTABN 91, 117

HRNXTPRM 91, 117
HRNXWRKA 90, 116

location
(9] export tables, specifying 102, 128
full definition 59, 103, 128
O (packed, no sign stored) external syntax 157 import tables, specifying 57, 57
Offset field minimal definition 58,102, 128
export tables 106 VSAM tables, specifying 102, 127
import tables 63 passed to external routines 90, 116
VSAM tables 131 primary commands
Ord field SELECT 80, 144
export tables 108 SELECT LIKE 80, 144
import tables 65 primary key line command 64, 107
VSAM tables 133 processing records 126
P Q
P Q quoted character string external syntax 157
line command 64, 107 quoted character string (Q) external syntax 157
packed signed external syntax 157
packed
neutral (G) external syntax 155
no sign stored (O) external syntax 157 R
signed (P) external syntax 157
unsigned (U) external syntax 158 R (little-endian binary unsigned) external syntax 157
parameter segment, illustrated raw data (RD) external syntax 157
export tables 102 RD (raw data) external syntax 157
import tables 57 Read Only field for VSAM tables 125
VSAM tables 127 record length parameter 90, 116
parameters records, processing 126
CTABLESIZE 62, 105, 130 recovery 114,149
data remote table access 82
export tables, specifying 102 repeating groups
import tables, specifying 57 defined 68, 138
validation 58 import tables 68

VSAM tables 145
REPLACEFAIL exception 151

TIBCO Object Service Broker Managing External Data

178 | Index

requests, handling for TIBCO Object Service
Broker 89, 114, 149
requirements
data sets 135

SERVERID parameter
export table 101
import table 56
VSAM table 126

ESDS 135 Service Gateway for Files 1047
KSDS 135 log files 45
RRDS 136 managing 43

retrieval processing 81, 146
return codes
@HRNXDEL 91, 117
@HRNXDON 91, 117
@HRNXINX 91, 117

monitoring 45

National Language Support (NLS) 46
Service Gateway for Files SDK, description 2
shutting down, Service Gateway for Files 43
single and double byte character string (W) external

@HRNXKEP 91, 117 syntax 158
routines, external 116 specifying
Rqd field data parameters

export tables 108
import tables 65
VSAM tables 133
RRDS requirements 136
rules
ESTIMATETBLDEEN 62, 105, 130
using 80, 112, 145
running the Change Tracking Agent 6

S

SDK, Service Gateway for Files 2
SECURITYFAIL exception 89, 115, 151
segments

data identification 54, 99, 124

event rule 60, 104, 129

field definition 62, 105, 130

parameter 57,102, 127

table identification 52, 98, 122
SELECT LIKE primary command 80, 144
SELECT primary command 80, 144
Server ID field

import tables 56

VSAM tables 126
Server ID field, export tables 101
Server User ID, and Service Gateway for Files 43
SERVERERROR exception 151

TIBCO Object Service Broker Managing External Data

export tables 102
import tables 57
VSAM tables 127
event rules
export tables 104
import tables 60
VSAM tables 129
external attributes
export tables 106
import tables 62
VSAM tables 131
internal attributes
export tables 107
import tables 64
VSAM tables 132
location parameter
export tables 102
import tables 57
VSAM tables 127
table types 5

starting, Service Gateway for Files 43
statements

FORALL 81, 146
GET 81, 146
TRANSFERCALL 60

support, contacting xviii
Syn field

export tables 107
import tables 64
VSAM tables 132

synchronization 114, 149
synchronization under CICS 149

T

T (text numeric) external syntax 158
Table Browser, using 80, 144
Table Definer for
export tables, illustrated 96
import tables, illustrated 50
VSAM tables, illustrated 120
Table Definer, invoking 5
Table Editor, using 144
Table field
export tables 98
import tables 52
VSAM tables 122
table identification segment, illustrated
export tables 98
import tables 52
VSAM tables 122
table name parameter 117
table parameter value 117
table types, specifying 5
tables
identifying as export 98
import
accessing 80
defining for multiple record formats 68
names, parameters 91
parameter values 91
remote, access 82
VSAM
accessing 144
defining for multiple record formats 138
multiple record formats 145
repeating groups 145
TCP/IP, configuration of 30
technical support xviii
text numeric (T) external syntax 158
TIBCO Object Service Broker tables, writing to exter-
nal files 96
TIBCO_HOME xv

Index | 179

tools
@CLOSEDSN 163, 165
@OPENDSN 163, 165, 165
@READDSN 163, 165
@WRITEDSN 163, 165
NLS 46
tools, COPY_DATA, using 112
tracking changes in copybooks 6
TRANSFERCALL statement 60
transferring backup files with FTP 55
Typ field
export tables 104, 107
import tables 60, 64
VSAM tables 129, 132
Type field
described 52, 122
export tables 98

U

U (packed unsigned) external syntax 158
U8 (Unicode UTF8 encoded string) external
syntax 158
U8B (Unicode UTFS8 encoded string with BOM) exter-
nal syntax 158
USN (Null terminated Unicode UTF8 encoded string)
external syntax 158
USNB (Null terminated Unicode UTF8 encoded string
with BOM) external syntax 158
UN (Unicode) external syntax 158
Unicode
UTF 16-BE (B16) external syntax 154
UTF 16-LE (L16) external syntax 156
UTF 16-LE with BOM (L16B) external syntax 156
UTF 32-LE (L32) external syntax 156
UTF 32-LE with BOM (L32B) external syntax 156
UTE8 encoded string (U8) external syntax 158
UTES encoded string with BOM (U8B) external
syntax 158
Unicode (UN) external syntax 158
uninstallation process 35

TIBCO Object Service Broker Managing External Data

180 | Index

Unit field VSAM tables 131

export tables 98 Acc field 129

import tables 52 accessing 144

VSAM tables 122 data identification segment illustrated 124
using data parameters, specifying 127

Copy Table option 112 Data Set Type field 125

COPY_DATA tool 112 data, identifying 124

rules 80, 112, 145 DDname field 124

Table Browser 80, 144 Dec field 133

Table Editor 144 Default field 133

Event Rule field 129, 129
event rule segment illustrated 129
external attributes, specifying 131

V field definition segment, illustrated 130
Field Name field 131
V, variable character external syntax 158 File field 124
valid return codes 91, 117 Globalfield Name field 133
validation for data parameters 58 IDgen field 123
variable Ignore field 125
character (V) external syntax 158 internal attributes, specifying 132
VSAM 122 Key field 132
accessing data 120 Len field 132
managing data definitions 119 Load field 125
Table Definer illustrated 120 location parameters, specifying 127
VSAM LDS data multiple record formats 145
accessing 2,10 Offset field 131
processing 143 Ord field 133
VSAM server overview 3 parameter segment illustrated 127

Read Only field 125
repeating groups 145
Rqd field 133
Server ID field 126
Syn field 132
Table field 122
table identification segment illustrated 122
tables, identifying 122
Typ field 132
Type field 122
Unit field 122
Xdec field 131
Xlen field 131
Xsyn field 131
VSM server. See VSAM server.

TIBCO Object Service Broker Managing External Data

w

work area parameter 90, 91, 116, 117
writing
data to export files 112
TIBCO Object Service Broker tables to external
files 96

X

X (fixed length mixed case character string) external
syntax 158
X’00’ fill character (Z) external syntax 159
Xdec field
export tables 106
import tables 63
VSAM tables 131
Xlen field
export tables 106
import tables 63
VSAM tables 131
Xsyn field
export tables 106
import tables 63
VSAM tables 131

y4

Z (X'00’ fill character) external syntax 159

Index | 181

TIBCO Object Service Broker Managing External Data

	TIBCO® Object Service Broker
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introducing External Data Interfaces
	Overview
	Service Gateway for Files
	Adabas, CA Datacom, and VSAM LDS Access

	External Data Accesses
	IMP (Import)
	EXP (Export)
	VSM (VSAM)

	How TIBCO Object Service Broker Exchanges Data
	Initial Step for Defining Tables
	Invoke the Table Definer
	Specify the Table Type for New Tables

	Using Data Discovery
	Monitoring Copybook Changes
	Running the Change Tracking Agent

	Chapter 2 Installing and Using TIBCO Service Gateway for Files
	Overview
	Supported Connectivity
	Optional Field for Service Gateway for Files
	Restrictions in Use
	Shares Infrastructure Used by Peer Servers
	Request Flow

	Distribution Media and Contents
	Installation Media
	Open Systems Distribution

	Installing the Software on an Open Systems Host
	Installation Types
	Installation Modes
	Preparation for Installation
	Installing the Service Gateway for Files
	Installation Modes — Using a Response File
	Post Installation
	Uninstalling the Software

	Installing the Software on a z/OS Host
	Installing Remote on Same Host
	Installing Remote on Separate Host
	Configuration of TCP/IP
	Verification of Installation
	Reruns of the Installation
	Restarts of the Installation

	Uninstalling
	Configuring Service Gateway for Files
	Configuring a Service Gateway for Files to Run on Open Systems
	Configuring a Service Gateway for Files to Run on z/OS

	Setting Up the Communications Infrastructure
	Prerequisites
	Data Object Broker on z/OS to Communicate with a Service Gateway for Files
	Definition of the Gateway as a Resource

	Management of Service Gateway for Files
	Startup of a Service Gateway for Files
	Shutdown of a Service Gateway for Files
	Automatic Restart of a Service Gateway for Files

	Monitoring of Service Gateway for Files
	Administration
	Log Files

	Service Gateway for Files and National Language Support

	Chapter 3 Managing IMP Data Definitions
	Accessing External Data from TIBCO Object Service Broker
	Using a Copybook as the Source for the Definition
	Steps Required to Define an Import Table

	Task A: Identify the Table
	Table, Type, Unit, and IDgen Fields

	Task B: Identify the Data
	File Field
	DDname Field
	Server ID Field
	Data Cleansing Field

	Task C: Specify Data and Location Parameters
	Data Parameter
	Location Parameter

	Task D: Specify Event Rules
	Event Rule, Typ, and Acc Fields

	Task E: Define Fields
	Specifying External Import Attributes
	Specifying Internal TIBCO Object Service Broker Attributes

	Chapter 4 Defining Import Tables for Files with Multiple Record Formats
	How to Define Import Tables for Files with Multiple Record Formats
	What is a Multiple Record Format?
	What is a Repeating Group?
	Definition Requirements

	First Sample File – Personnel
	Types of Records in File
	Table Definitions

	Second Sample File – Inventory
	Types of Records in File
	Table Definitions
	Processing

	Chapter 5 Manipulating Import Data Using TIBCO Object Service Broker
	Accessing Import Tables
	Using the Table Browser
	Using Rules
	Considerations
	Retrieval Processing
	Remote Table Access
	Steps to Process a Multi-record Table Remotely

	Sample Rules
	Sample Rule 1: Normal Access
	Sample Rule 2: Accessing Multiple Record Formats
	Explanation of the EMPLOYEE_B Rule

	Listing Members of a PDS (z/OS) or Files in a Directory (Open Systems)
	Example for a PDS in z/OS
	Example for a Directory in Windows or Solaris

	Handling TIBCO Object Service Broker Requests
	ERROR Exception
	ACCESSFAIL Exception
	INTEGRITYFAIL Exception

	External Routines (Pre-processing the Data)
	Manipulating Data with External Routines (z/OS Only)
	Parameters Passed to the External Routine
	Valid Return Codes
	Example of an Exit
	Example of an Exit that Normalizes Data

	Chapter 6 Managing EXP Data Definitions
	Writing TIBCO Object Service Broker Tables to External Files
	Using a Copybook as the Source for the Definition
	Steps Required to Define Export Tables

	Task A: Identify the Table
	Table, Type, and Unit Fields

	Task B: Identify the Data
	File Field
	DDname Field
	Server ID Field
	External Routine Name Field

	Task C: Specify Data and Location Parameters
	Data Parameter
	Location Parameter

	Task D: Specify Event Rules
	Event Rule, Typ, and Acc Fields

	Task E: Define Fields
	Considerations
	Specifying External Export Attributes
	Specifying Internal TIBCO Object Service Broker Attributes

	Chapter 7 Processing External Data Using TIBCO Object Service Broker
	Writing Data to an Export File and Accessing the Exported Data
	Using Rules
	Using COPY_DATA
	Using Copy Table
	Accessing the Exported Data

	Handling TIBCO Object Service Broker Requests
	Transaction Length
	Error Handling
	ERROR Exception
	ACCESSFAIL Exception
	INTEGRITYFAIL Exception

	External Routines (Pre-processing the Data)
	Manipulating Data with External Routines (z/OS Only)
	Parameters Passed to the External Routine
	Valid Return Codes
	Example of an Exit that Exports Variable Length Records

	Chapter 8 Managing VSAM Data Definitions
	Accessing VSAM Data from TIBCO Object Service Broker
	Using a Copybook as the Source for the Definition
	Steps Required to Define a VSAM Table

	Task A: Identify the Table
	Table, Type, Unit, and IDgen Fields

	Task B: Identify the Data
	File Field
	DDname Field
	Read Only Field
	Load Field
	Data Set Type Field
	Ignore Field
	Server ID Field

	Task C: Specify Data and Location Parameters
	Data Parameter
	Location Parameter

	Task D: Specify Event Rules
	Event Rule, Typ, and Acc Fields

	Task E: Define Fields
	Considerations
	Specifying External VSAM Attributes
	Specifying Internal TIBCO Object Service Broker Attributes
	Behavior of Numeric Key Fields in VSAM Tables

	Data Set Requirements
	KSDS Requirements
	ESDS Requirements
	RRDS Requirements

	Chapter 9 Defining VSAM Tables for Files with Multiple Record Formats
	VSAM Tables for Files with Multiple Records
	What is a Multiple Record Format?
	What is a Repeating Group?
	Sample File

	Definition Requirements
	Base and Child Definitions
	Definition Requirements of a Child Table
	Sample Definition (Record A)
	Sample Definition (Record B)

	Chapter 10 Processing VSAM Data Using TIBCO Object Service Broker
	Access of TIBCO Object Service Broker VSAM Tables
	Editing or Browsing
	Using the Table Editor
	Using the Table Browser
	Using Rules
	VSAM Files with Multiple Record Formats and Repeating Groups
	Retrieval Processing

	Sample Rules
	Sample Rule 1: Accessing Multiple Record Formats
	Sample Rule 2: Inserting Parent Record with Children

	Handling of TIBCO Object Service Broker Requests
	Synchronization and Recovery
	Error Handling
	ERROR Exception
	ACCESSFAIL Exception
	INTEGRITYFAIL Exception

	Appendix A Mapping Data Types
	Appendix B Mapping File Names for Open Systems
	Access to External Files
	Providing a File Name
	Using the DSDIR Parameter to Provide a File Name
	Using filespec.dsn to Provide a File Name
	Mapping a Partitioned Data Set

	Appendix C Data Cleansing
	Options
	Examples

	Index

