
TIBCO® Object Service Broker
for Open Systems

External Environments
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . ix

Related Documentation . x
TIBCO Object Service Broker Documentation . x

Typographical Conventions . xv

Connecting with TIBCO Resources . xviii
How to Join TIBCOmmunity . xviii
How to Access All TIBCO Documentation . xviii
How to Contact TIBCO Support . xviii

Chapter 1 About the TIBCO Object Service Broker System .1

About TIBCO Object Service Broker Architecture . 2
Client Services Layer . 2
Execution Environment. 2
Data Object Broker . 3

TIBCO Object Service Broker in the Client Server Model . 4
TIBCO Object Service Broker Interfaces for External Environments . 5

Accessing TIBCO Object Service Broker from an External Environment . 6
What is an External Environment? . 6
General Steps. 6

Chapter 2 Setting Session Parameters .11

Session Parameter Setting . 12
What is a Session?. 12
How to Set Session Parameters . 12

Starting Sessions. 13
How Do You Start Sessions? . 13

When a Session Ends Abnormally . 14
List of Execution Environment and Session Exit Codes . 14

Chapter 3 Accessing External Routines .19

Overview . 20
Functional Overview . 20

External Routines in C . 23
Steps Required to Use an External C Routine . 23

External Routines in Java . 33
 TIBCO Object Service Broker for Open Systems External Environments

iv | Contents
Steps Required to Use an External Java Routine . 33

Chapter 4 Using the Interface to TIBCO Enterprise Message Service™. 45

TIBCO Object Service Broker EMS Interface . 46
Purpose of TIBCO Enterprise Message Service . 46
Overview of TIBCO Object Service Broker EMS Interface . 46

Calling EMS . 47
Shareable Tools Available . 47
Argument Mapping . 47
Error Handling . 49

Configuration. 50
Initializing the EMS Interface . 50
Setting the Path Environment Variable . 50
Code Page Support . 50

Sample Applications . 51
Rules Samples. 51

Supported EMS Functions . 53

Chapter 5 Using the TIBCO Service Gateway for WMQ . 71

Overview . 72
Configuration . 72
Usage Notes . 72
Error Handling . 73
Example Rule . 73

Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC 75

Accessing TIBCO Object Service Broker Using 32-bit ODBC . 76
Overview of ODBC support . 76
Configuring the TIBCO Object Service Broker Adapter for ODBC . 77
Connecting to TIBCO Object Service Broker. 79
Constructing the Connect String . 79
Keyword Description . 80
Connecting Without a DSN . 81
Pre-Configured Data Sources . 82
Configuring TIBCO Object Service Broker Components . 83
Stored Procedures. 86
Writing TIBCO Object Service Broker Rules as ODBC Stored Procedures . 88
Creating Cursors in TIBCO Object Service Broker Adapter for JDBC-ODBC Stored Procedures 90
Object Service Broker ODBC Stored Procedures Emulator . 90
Sample. 91
Notes on Behavior . 92
Supported TIBCO Object Service Broker Table Types . 92
TIBCO Object Service Broker for Open Systems External Environments

Contents | v
Using Parameterized Tables . 93
How Rows are Replaced . 94
How Transactions are Handled. 94
Support for Distributed Transactions (Windows, Solaris) . 95
ODBC Conformance Levels . 96
ODBC API Conformance . 96
Error Codes and Messages . 96

Accessing TIBCO Object Service Broker Using 64-bit ODBC. 100
Overview of 64-bit ODBC Support . 100
Running the SQL Service . 100
Creating and Configuring a Data Source . 100
Using the 64-bit ODBC Driver. 102
Connecting Without a DSN. 102
ODBC Conformance Levels . 103

Accessing TIBCO Object Service Broker Using JDBC . 104
Overview of JDBC support . 104
Running the SQL Service . 104
Setting the CLASSPATH. 105
Registering the JDBC Client. 105
Specifying the JDBC Driver Connection URLs . 105
Using Stored Procedures . 107

Chapter 7 Using TIBCO Object Service Broker SDK (C/C++) .109

Overview . 110
Requirements . 110
How Does It Work?. 111
How Can It Be Used? . 111
Compiling and Linking . 111
Thread Safety . 112
Constants . 112

SDK (C/C++) Functions . 113
cliProc. 115
cliExecTran . 127
cliSetCodepage . 129
cliErrorReasonDescr. 131
cliCommCreate . 131
cliCommCreate1. 132
cliCommDelete . 132
cliCommFormat . 133
cliCommFormat1 . 133
cliCommSegment . 134
cliCommSegments . 134
cliCommSegSize . 135
 TIBCO Object Service Broker for Open Systems External Environments

vi | Contents
cliCommSize . 135
cliCommSizeCalc. 136
cliCommSizeCalc1. 136
LLCOPY_CSTR(listr, cstr) . 136
LLCOPY_MEM(listr, prt, len) . 136
LLDECLARE(name, len) . 137
LLSETLEN(listr, len) . 137
LLSTR(listr) . 137
LLSTRLEN(listr). 137

Sample Application Using the SDK (C/C++) . 138
Compiling and Running the Sample Program . 138
Rule Called by C Program . 140
Table Referenced by a Rule. 141
Output from C Program . 141

Chapter 8 Using TIBCO Object Service Broker SDK (Java) . 143

Overview . 144
Requirements . 144
How Does It Work? . 145
How Can It Be Used? . 145
Compiling. 145
Thread Safety . 145
Constants. 146

SDK (Java) Methods . 147
Classes . 147

Session Object Methods . 150
Session . 150
call . 152
endMessage . 155
execTran. 156
isActive. 158
reset . 158
shutdown . 159
start . 159
startTrans . 161
stop . 162
stopTrans . 163
transNestLevel . 163
userId. 164

SessionException Object Methods . 165
SessionException . 165
errorReasonDescr . 166
reasonCode . 166
TIBCO Object Service Broker for Open Systems External Environments

Contents | vii
rc. 167

Misc Object Methods . 168
commCreate . 168
commFormat. 169
commSegmentInd . 169
commSegments . 170
commSegSize. 170
commSize . 171
commSizeCalc . 171
readInt . 172
readShort . 172
writeInt . 173
writeShort . 173

Sample Application Using the SDK (Java). 175
Compiling and Running the Sample Program . 175
Sample Rule Called by Program . 176
Sample Table Referenced by a Rule . 177
Output from Program . 177

Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes .179

Listing of the Reason Codes . 180
Code Values and Explanations. 180

Index .185
 TIBCO Object Service Broker for Open Systems External Environments

viii | Contents
TIBCO Object Service Broker for Open Systems External Environments

| ix
Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual provides information on interfacing TIBCO Object Service Broker
with the Open Systems operating environments. It also includes information on
how to use C language programs to access TIBCO Object Service Broker data and
how to access C language programs from within TIBCO Object Service Broker.

Topics

• Related Documentation, page x

• Typographical Conventions, page xv

• Connecting with TIBCO Resources, page xviii
 TIBCO Object Service Broker for Open Systems External Environments

x | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
TIBCO Object Service Broker for Open Systems External Environments

Preface | xi
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
 TIBCO Object Service Broker for Open Systems External Environments

xii | Related Documentation
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
TIBCO Object Service Broker for Open Systems External Environments

Preface | xiii
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
 TIBCO Object Service Broker for Open Systems External Environments

xiv | Related Documentation
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
TIBCO Object Service Broker for Open Systems External Environments

Preface | xv
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

OSB_HOME

By default, all TIBCO products are installed into a folder referenced in the
documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C:\tibco\OSB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/OS, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName
 TIBCO Object Service Broker for Open Systems External Environments

xvi | Typographical Conventions
Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
TIBCO Object Service Broker for Open Systems External Environments

Preface | xvii
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
 TIBCO Object Service Broker for Open Systems External Environments

xviii | Connecting with TIBCO Resources
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO Object Service Broker for Open Systems External Environments

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

| 1
Chapter 1 About the TIBCO Object Service Broker
System

This chapter introduces the TIBCO Object Service Broker architecture within the
client server model and describes how to access it from an external environment.

Topics

• About TIBCO Object Service Broker Architecture, page 2

• TIBCO Object Service Broker in the Client Server Model, page 4

• Accessing TIBCO Object Service Broker from an External Environment, page 6
 TIBCO Object Service Broker for Open Systems External Environments

2 | Chapter 1 About the TIBCO Object Service Broker System
About TIBCO Object Service Broker Architecture

TIBCO Object Service Broker is a transactional processing environment consisting
of an application development interface, a code execution environment, and a
physical database.

These entities can all exist on one physical machine or they can be distributed
across different machines. The following diagram illustrates this relationship:

Client Services Layer
The client services layer provides the interface between TIBCO Object Service
Broker and its host operating environment, referred to as an external environment
in this manual. This layer provides support for TIBCO Object Service Broker
sessions running under, for example, SDK (C/C++), SDK (Java), Object
Integration Gateway, Telnet 3270, or external routines. Every TIBCO Object
Service Broker session that runs in an Execution Environment is started by a
client.

Execution Environment
The Execution Environment manages sessions where you execute TIBCO Object
Service Broker rules and access TIBCO Object Service Broker tables. The
Execution Environment has two parts: the TIBCO Object Service Broker monitor
(osMon) process and the osee program.

 Clients

Execution Environment

Data Object Broker

Physical Data StoreExternal Database Servers
TIBCO Object Service Broker for Open Systems External Environments

About TIBCO Object Service Broker Architecture | 3
The osMon process creates, manages, and terminates sessions. It establishes links
with entities outside the Execution Environment. You must run osMon before
starting a TIBCO Object Service Broker session and should terminate it only after
all sessions are done. When you request the start of a TIBCO Object Service Broker
session, osMon creates an osee as necessary for your use. The osee program
delegates actions to a session it has created and supervises the session while it
exists. Execution Environments are either single- or multiple-session.

More than one Execution Environment can reside on one machine, and multiple
Execution Environments can interact with the same Data Objext Broker. Although
one session can interact with only one Data Object Broker directly, it can interact
with other Data Object Brokers through distributed data access between Data
Object Brokers.

Data Object Broker
The Data Object Broker handles the co-ordination and management of
transactional table data. It acts as the transactional commit coordinator, and in
this capacity manages the integrity of transactional data. It can also route data
access traffic to another Data Object Broker or to an external database server. The
logical view of the data that it manages is kept in the MetaStor.

Physical Data Store

The physical data store, known as the Pagestore, is where the actual data is stored
on a physical device in a device dependent format. TIBCO Object Service Broker
makes use of this device dependent format to store its logical, relational table
view of data.

External Database Servers

External database servers allow TIBCO Object Service Broker to access other types
of data on external databases. For detailed information about external database
servers, refer to the TIBCO Service Gateway manual that accompanies each
external database server.

See Also TIBCO Object Service Broker for Open Systems Installing and Operating for
information about configuration setup.
 TIBCO Object Service Broker for Open Systems External Environments

4 | Chapter 1 About the TIBCO Object Service Broker System
TIBCO Object Service Broker in the Client Server Model

The client/server model reflects the relationship between a service requester
(client) and a service provider (server). The basic division of client processes and
server processes as applied to the TIBCO Object Service Broker architecture is
shown in the following diagram:

The two main components of the client/server relationship within TIBCO Object
Service Broker are the client interface layer and the Execution Environment. The
client interface layer includes TIBCO Object Service Broker clients and other
interfaces for external environments.

See Also TIBCO Object Service Broker for Open Systems Installing and Operating for
information about installing the TIBCO Object Service Broker clients.

Client
Processes

Client

Client interface

Server
Processes

Data Object Broker

Execution Environment
TIBCO Object Service Broker for Open Systems External Environments

TIBCO Object Service Broker in the Client Server Model | 5
TIBCO Object Service Broker Interfaces for External Environments
TIBCO Object Service Broker provides a way for other programs and applications
to make use of TIBCO Object Service Broker services. These external clients do not
have to exist in the same operating environment, and must be able to take
advantage of this interface:

ODBC A Microsoft standard application programming
interface to TIBCO Object Service Broker, described in
Chapter 6, Using TIBCO Object Service Broker
Adapter for JDBC-ODBC, on page 75, for accessing an
Execution Environment from a remote system

JDBC A Java standard application programming interface to
TIBCO Object Service Broker, described in Chapter 6,
Using TIBCO Object Service Broker Adapter for
JDBC-ODBC, on page 75, for accessing an Execution
Environment from a remote system

SDK (C/C++) An application programming interface to TIBCO
Object Service Broker, described in Chapter 7, Using
TIBCO Object Service Broker SDK (C/C++), on
page 109, for accessing an Execution Environment
from a remote system

SDK (Java) An application programming interface to TIBCO
Object Service Broker, described in Chapter 8, Using
TIBCO Object Service Broker SDK (Java), on page 143,
for accessing an Execution Environment from a
remote system in a Java environment

TIBCO Object
Service Broker UI

An Eclipse-based UI that provides a graphical
environment for TIBCO Object Service Broker
development and to access TIBCO Object Service
Broker data. For information about using the TIBCO
Object Service Broker UI, refer to the TIBCO Object
Service Broker UI online help.

Telnet 3270 With Telnet 3270, you can use external 3270 emulation
programs to get a text-only interface to access TIBCO
Object Service Broker data. For further information,
refer to TIBCO Object Service Broker Getting Started.
 TIBCO Object Service Broker for Open Systems External Environments

6 | Chapter 1 About the TIBCO Object Service Broker System
Accessing TIBCO Object Service Broker from an External

Environment

What is an External Environment?
All programs and applications run on a specific operating system platform (an
environment). Although written in different languages with different areas of
focus, they are sustained by and commonly share the resources of the
environment where they run.

TIBCO Object Service Broker is Open to Its External Environment

In a similar way, TIBCO Object Service Broker makes its data and resources
available to those applications that can make use of Object Integration Gateway,
the SDK (C/C++), SDK (Java), Telnet 3270, ODBC, or JDBC interfaces.

General Steps

For Telnet 3270

1. The system administrator starts the TIBCO Object Service Broker monitor
process (osMon).

2. The user starts their Telnet 3270 Emulator program, supplying the name of the
host where the active osMon resides and the number of the port where this
osMon is listening.

3. On the login screen that appears, they enter their user ID and password, and
any session parameters that they want to have override those in session.prm.

4. The Telnet 3270 Emulator program tells osMon, via Telnet 3270, that it wants
to start a session and run the first rule. The client passes the session
parameters to the osMon.

5. If no instance of an osee with the requested name is available, osMon starts
one.

6. The instance of osee from the previous step starts a session with the
parameters passed from the client during step #4..

7. The session starts a transaction and runs the first rule.

8. The rule populates screen tables and issues a DISPLAY statement.

9. The screen is delivered to the client and appears on the client console.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker from an External Environment | 7
10. The user modifies text on the console and presses a PF key or Enter. Modified
screen tables, along with the name of the PF key that the user pressed, are
made available to the rule. The rule continues its execution after the DISPLAY
statement.

11. When the rule is done, the session stops the transaction created on step 6.

12. osee stops the session.

Depending on the algorithm in the rule, step 7 to step 10 can be repeated any
number of times.

For SDK (C/C++)

1. The system administrator starts the TIBCO Object Service Broker monitor
process (osMon).

2. The user starts the application program.

3. The program requests a session startup by issuing a STARTSS SDK (C/C++)
request, supplying session parameters that include the name of the Execution
Environment to host the session.

4. The SDK (C/C++) client tells osMon that it wants to start a session with the
supplied session parameters.

5. If no instance of an osee with the requested name is available, osMon starts
one.

6. The instance of osee from the previous step starts a session with parameters
passed by the SDK (C/C++) client during step #4..

7. The program requests a new transaction by issuing a STARTTR.

8. The session starts a transaction.

Data
Object
Broker

osMon

Session

Transaction

osee

User 2
1

3

9

10

87

Execution Environment

12

11

6

Telnet 3270
Emulator

4

5

 TIBCO Object Service Broker for Open Systems External Environments

8 | Chapter 1 About the TIBCO Object Service Broker System
9. The program asks for a rule to be called by issuing a CALLRULE supplying a
rule name, parameters, and optionally some commarea data.

10. The session calls the rule.

11. On completion of the rule, all the return information, possibly including
output commarea data, is delivered to the client.

12. The program asks the session to stop the current transaction, committing or
rolling back any changes made by the rule, by issuing a STOPTR call.

13. The program asks the session to terminate, by issuing a STOPSS call.

14. The osee program stops the session.

Steps #3. to #13. can be repeated any number of times according to the program
algorithm. The order of these steps is not essential as long as it complies with
basic SDK (C/C++) sequencing rules. Also, a program can work with any number
of sessions at any time.

For SDK (Java)

1. The system administrator starts the TIBCO Object Service Broker monitor
process (osMon).

2. The user starts the application program.

3. The program requests a session startup by creating a Session object using the
second form of the Session constructor or by calling a start method on a
previously created Session object, supplying session parameters that include
the name of the Execution Environment to host the session.

4. The SDK (Java) client tells osMon that it wants to start a session with the
supplied session parameters.

Data
Object
Broker

osMon

Session

Transaction

osee

User 2
1

4

5

11
7

9

12

10

ClientProgram

13

Execution Environment

8

 6

3

14

88
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker from an External Environment | 9
5. If no instance of an osee with the requested name is available, osMon starts
one.

6. The instance of osee from the previous step starts a session with parameters
passed by the SDK (Java) client during step #4..

7. The program requests a new transaction by calling startTrans.

8. The session starts a transaction.

9. The program asks for a rule to be called by calling a call method supplying a
rule name, parameters, and optionally some commarea data.

10. The session calls the rule.

11. On completion of the rule, all the return information, possibly including
output commarea data, is delivered to the client.

12. The program asks the session to stop the current transaction, committing or
rolling back any changes made by the rule, by issuing a stopTrans call.

13. The program asks the session to terminate, by issuing a stop call.

14. The osee program stops the session.

Steps #3. to #13. can be repeated any number of times according to the program
algorithm. The order of these steps is not essential as long as it complies with
basic SDK (Java) sequencing rules. Also, a program can work with any number of
sessions at any time.

For osBatch

Because osBatch embeds the functionality of osee, the osBatch execution flow is
different from all other clients.

Data
Object
Broker

osMon

Session

Transaction

osee

User 2
1

4

5

11
7

9

12

10

ClientProgram

13

Execution Environment

8

 6

3

14

88
 TIBCO Object Service Broker for Open Systems External Environments

10 | Chapter 1 About the TIBCO Object Service Broker System
1. The user starts osBatch, supplying a parameter string that includes Execution
Environment parameters, including the name of the Data Object Broker to
connect to, and session parameters, including the first rule name.

2. osBatch initializes using the Execution Environment parameters supplied by
the user.

3. osBatch starts a session using the session parameters supplied by the user.

4. The session starts a transaction and runs the first rule.

5. After the rule is done, the session stops the transaction created in step #4.

6. osBatch stops the session.

7. osBatch terminates.
TIBCO Object Service Broker for Open Systems External Environments

| 11
Chapter 2 Setting Session Parameters

This chapter describes how to set session parameters, how to start a session, and
what to do when a session ends abnormally.

Topics

• Session Parameter Setting, page 12

• Starting Sessions, page 13

• When a Session Ends Abnormally, page 14
 TIBCO Object Service Broker for Open Systems External Environments

12 | Chapter 2 Setting Session Parameters
Session Parameter Setting

What is a Session?
A session is a unit of resources that permits a user to run TIBCO Object Service
Broker transactions. To create a session, users identify themselves through a
TIBCO Object Service Broker user ID and specify the runtime attributes for the
session. This identification and specification take place through the use of session
parameters. When a session ends, all resources held by the session on behalf of a
user are released.

How to Set Session Parameters
Use the following table to determine how to specify the parameter values of your
session and where to get additional information about setting the values. The
parameters that you can set are described in detail in TIBCO Object Service Broker
Parameters.

How to Set Parameters … Refer to …

Using TIBCO Object Service
Broker SDK (C/C++).

Chapter 7, Using TIBCO Object Service
Broker SDK (C/C++), on page 109.

Using TIBCO Object Service
Broker SDK (Java).

Chapter 8, Using TIBCO Object Service
Broker SDK (Java), on page 143.

Using the User Profile option of
the developer workbench, or the
Security Manager option of the
administrator workbench.

TIBCO Object Service Broker Managing
Security

Using parameter files. TIBCO Object Service Broker Parameters

Using Object Integration
Gateway.

TIBCO Object Service Broker Object
Integration Gateway
TIBCO Object Service Broker for Open Systems External Environments

Starting Sessions | 13
Starting Sessions

How Do You Start Sessions?
A session is started by a client. The client can be one that is supplied by TIBCO
Object Service Broker or an external Telnet 3270 Emulator program connected to
the TIBCO Object Service Broker 3270 Access Adapter. The following table lists
these clients and where you can get additional information about starting a
session:

Client Refer to…

3270 Access Adapter TIBCO Object Service Broker Getting Started

TIBCO Object Service
Broker UI

TIBCO Object Service Broker Getting Started

Object Integration Gateway TIBCO Object Service Broker Object Integration
Gateway

TIBCO Object Service
Broker Adapter for
JDBC-ODBC

Chapter 6, Using TIBCO Object Service Broker
Adapter for JDBC-ODBC, on page 75.

osBatch TIBCO Object Service Broker for Open Systems
Utilities

ostty TIBCO Object Service Broker Getting Started

SDK (C/C++) Chapter 7, Using TIBCO Object Service Broker
SDK (C/C++), on page 109.

SDK (Java) Chapter 8, Using TIBCO Object Service Broker
SDK (Java), on page 143.
 TIBCO Object Service Broker for Open Systems External Environments

14 | Chapter 2 Setting Session Parameters
When a Session Ends Abnormally

List of Execution Environment and Session Exit Codes
To help in diagnosing a failure, here is a list of codes that you can encounter, with
some action that you can take to fix the problem:

Code Description Action

0 The session exited successfully. No action is required.

128 The session stopped as a result of
an operator request or of a Data
Object Broker request.

No action is required.

129 The Execution Environment
stopped as a result of an operator
request.

No action is required.

130 The Execution Environment
closed as a result of an operator
request.

No action is required.

143 The first rule of the session ended
as a result of an uncaught
exception.

Check the session logs. Review your application. Place
the appropriate exception handler at the end of your
first rule to catch the exception.

154 No session startup rule is supplied. Add the startup rule parameter to your session
parameters.

155 You attempted to start a session with
no user ID.

Add the USERID parameter to your startup
parameters.

156 You specified an invalid password in
the startup parameters.

Restart your session with the password that
corresponds to the USERID parameter.

157 You attempted to start a session
during a restricted time.

Your user account is set up so that it can log in to the
system only during certain hours of the day. You
should either get your account updated, or wait until
you are permitted to log in.
TIBCO Object Service Broker for Open Systems External Environments

When a Session Ends Abnormally | 15
158 The TIBCO Object Service Broker
user ID does not match the
operating system user ID.

System security is set to require the TIBCO Object
Service Broker user ID to match the user's operating
system user ID. Either change the security setting or
log in with matching user IDs.

159 Your user account is suspended. Ask your system administrator to lift the suspension
from your account connection.

167 The Execution Environment to
Data Object Broker internal
connection limit is exceeded.

Contact TIBCO Support.

168 The peer server failed to log in to
the Data Object Broker.

Check the following:

• Whether the Data Object Broker is started

• Whether the Data Object Broker host is accessible
via your network

• That the DOB Execution Environment parameter is
correct

• That the SERVERS Execution Environment
parameter is correct

• That the PEERS Data Object Broker parameter is
correct in the crparm file

• Check the Data Object Broker node definition in
the TIBCO Object Service Broker directory file
(huron.dir)

Finally, check the log files (Data Object Broker,
Execution Environment, osMon, and session) for any
other possible clue.

169 The transaction ended because it
required more storage.

Increase the value of the TRANMEMMAX Execution
Environment parameter.

171 Initialization of the NLS system
failed.

Check the contents of the @NLS1 table. If necessary,
also check the log files (Data Object Broker, Execution
Environment, osMon, and session) for any other
possible clue.

173 The session ended because it
required more storage.

Increase the value of the SESSIONMEMMAX
Execution Environment parameter.

Code Description Action
 TIBCO Object Service Broker for Open Systems External Environments

16 | Chapter 2 Setting Session Parameters
174 TIBCO Object Service Broker cannot
locate the path specified by the
OS_ROOT environment variable.

Correct the value of OS_ROOT environment variable.

175 The audit log update failed. Check the log files (Data Object Broker, Execution
Environment, osMon, and session) for any possible
clue.

176 The prompt for user ID and
password failed.

No action is required.

191 The TIBCO Object Service Broker
session failed to log in to the Data
Object Broker.

Check the following:

• Whether the Data Object Broker is started

• Whether the Data Object Broker host is accessible
via your network

• That the DOB Execution Environment parameter is
correct

• That the MAXUSERS Data Object Broker
parameter is correct in the crparm file

• Check the Data Object Broker node definition in
the TIBCO Object Service Broker directory file
(huron.dir)

Finally, check the log files (Data Object Broker,
Execution Environment, osMon, and session) for any
other possible clue.

234 TIBCO Object Service Broker failed to
establish a connection to the client
process.

Check the operating system diagnostics for a possible
socket problem. Check your network connectivity.

235 The connection to the client process
broke.

If the client process was not explicitly killed, check
your network connectivity. Otherwise, no action is
required

Code Description Action
TIBCO Object Service Broker for Open Systems External Environments

When a Session Ends Abnormally | 17
236 The TIBCO Object Service Broker
session failed to open a connection to
the Data Object Broker.

Check the validity of the Data Object Broker node
definition in the TIBCO Object Service Broker
directory file (huron.dir).

Check whether the Data Object Broker host is
accessible via network.

Finally, check the log files (Data Object Broker,
Execution Environment, osMon, and session) for any
other possible clue.

237 The connection to the Data Object
Broker process broke.

Check whether the Data Object Broker host is still
accessible via the network. Check the log files (Data
Object Broker, Execution Environment, osMon, and
session) for any other possible clue.

238 TIBCO Object Service Broker failed to
establish a peer server connection to
the Data Object Broker process.

Check the SERVERS Execution Environment
parameter. Check the log files (Data Object Broker,
Execution Environment, osMon, and session) for any
other possible clue.

239 The peer server connection to the
Data Object Broker broke.

Check whether the Data Object Broker host is still
accessible via the network. Check the log files (Data
Object Broker, Execution Environment, osMon, and
session) for any other possible clue.

253 The Execution Environment
terminated due to a failure on its
listening named pipe.

Check the operating system diagnostics for possible
interprocess communication problems. For assistance,
contact TIBCO Support.

254 Execution Environment or session
initialization failed.

Check the log files (Data Object Broker, Execution
Environment, osMon, and session) for any possible
clue. For assistance, contact TIBCO Support.

255 The session failed with an unknown
error.

Check the log files (Data Object Broker, Execution
Environment, osMon, and session) for any possible
clue. For assistance, contact TIBCO Support.

Code Description Action
 TIBCO Object Service Broker for Open Systems External Environments

18 | Chapter 2 Setting Session Parameters
TIBCO Object Service Broker for Open Systems External Environments

| 19
Chapter 3 Accessing External Routines

This chapter describes how to access external routines from TIBCO Object Service
Broker.

Topics

• Overview, page 20

• External Routines in C, page 23

• External Routines in Java, page 33
 TIBCO Object Service Broker for Open Systems External Environments

20 | Chapter 3 Accessing External Routines
Overview

Functional Overview

How Does TIBCO Object Service Broker Process an External Routine?

From TIBCO Object Service Broker you can pass control to and receive control
back from a routine outside TIBCO Object Service Broker operating boundaries.
When an external routine is called, the following takes place:

1. The calling rule goes into a wait state.

2. TIBCO Object Service Broker calls the external routine and waits for control to
return to it.

The link to the external routine remains until the session ends.

What Languages are Supported?

TIBCO Object Service Broker for Open Systems supports external routines in C
and Java.

C

For routines in C, the following conditions must be met:

• The routine must be written in a language whose implementation is
compatible with the required C prototype.

• The routine must be compiled as 32-bit code.

The C compiler must be able to produce:

• A relocatable, executable file with some symbols left to be resolved at runtime

• A dynamically linked library entry

Java

Java routines must be static Java methods.

Even though TIBCO Object Service Broker allows only static methods as external
routines, non-static methods of a particular target class can be invoked indirectly,
as shown here:

1. Define a (mapping) class that manages a mapping of handles (for example,
integer values) to instances of a target class.
TIBCO Object Service Broker for Open Systems External Environments

Overview | 21
The mapping should be maintained in a static data structure within that class.

2. Have the mapping class implement a static method (a class factory) that
creates instances of the target class and returns a handle to the instance while
adding, to the internal data structure, the mapping from the handle to the
instance.

This class factory method can be called by a TIBCO Object Service Broker
application to create instances of the target class.

3. For each instance method of the target class that you want to invoke from the
TIBCO Object Service Broker application, have the mapping class implement
an intermediate static method. This method takes a target class instance
handle and arguments corresponding to the arguments of the instance
method to be invoked.

4. Call this intermediate static method from your TIBCO Object Service Broker
application.

The intermediate method should resolve the handle into a class instance
reference and call the instance method, passing the required arguments to it.

The mapping class methods should also check handles for validity and possibly
implement further (static) methods. These methods are then available for a
TIBCO Object Service Broker application to manage the life cycle of the target
class instances.

Syntax for Calling the Routine

The external routine can be invoked from within a rule either as a function or
explicitly with the CALL statement as in the following examples:

Explicit Invocation Invocation As a Function

CALL USERPROC(string); totalcost = USERFUNC (1.99, .07);

CALL EXT_ROUTINE_A; Y = 2*EXTERNAL_R6(arg1, arg2, arg3);
 TIBCO Object Service Broker for Open Systems External Environments

22 | Chapter 3 Accessing External Routines
Process Flow

The following shows the process flow between TIBCO Object Service Broker and
an external routine.

See Also TIBCO Object Service Broker Programming in Rules for information about coding
rules and the rules language

External
Routine

TIBCO Object Service Broker

Execution Environment

Invocation Response
TIBCO Object Service Broker for Open Systems External Environments

External Routines in C | 23
External Routines in C

Steps Required to Use an External C Routine

Syntax Mapping

The osextusr.h required header file, available in the install_path\extrc\include
folder, is used to map TIBCO Object Service Broker syntax to C syntax. It contains
a list of the supplied functions used to manipulate the arguments passed to
TIBCO Object Service Broker. It must be in your include library during
compilation.

How are Exceptions Handled?

There are no exceptions trapped during external routine invocation and
execution, such as, if the external routine is not found or it fails. A message is
written to the message log and a traceback is generated if a failure occurs.

Procedural Overview

The major tasks in preparing and executing an external C routine are:

1. Coding, compiling, and linking your program, page 23

2. Identifying the external routine to TIBCO Object Service Broker, page 27

When these tasks are completed, a TIBCO Object Service Broker rule can invoke
the external routine.

Task A Coding, compiling, and linking your program

Coding the External Routine

The external routine implementation must comply with the following C
prototype:

void user_routine (HRN_EXT_PARAM param);

If your Execution Environment is multi-threaded (that is, the MAXSESSION
Execution Environment parameter is greater than 1), your external routines must
be reentrant and thread-safe.
 TIBCO Object Service Broker for Open Systems External Environments

24 | Chapter 3 Accessing External Routines
The same prototype is used whether your routine is a function or a straight
procedure.

Key Elements The key elements in the prototype are:

Sample Routines for Compiling and Linking under Windows The following
contains a set of sample external routines for Windows. As noted in the
comments, they implement a function rule and a procedure rule:

/***/
/* Sample External Routines */
/* */
/***/

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

/* Include all the supplied access routines for manipulating
the arguments passed from TIBCO Object Service Broker. */

#include "osextusr.h"

/**
This function accepts two arguments: a cost and a tax rate.
It returns the cost with the tax applied. If an access
routine fails (indicated by the return of a value of -1)
the external routine returns immediately.

**/

void userFunc (HRN_EXT_PARAM param)
{

double cost;
double tax_rate;
double taxed_cost;

/* Get first argument. */
if (hrnGetDoubleArg (param, 1, &cost))
{

return;
}

/* Get second argument. */
if (hrnGetDoubleArg (param, 2, &tax_rate))

{
return;

user_routine This name must be exported exactly as it appears in the
LOADNAME field of the ROUTINES table. Refer to
Identifying the external routine to TIBCO Object Service
Broker, page 27 on page 23 for more information.

param Used to pass arguments for the external routine.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in C | 25
}

/* Calculate total cost with tax. */
taxed_cost = cost + cost * tax_rate;

/* Set returned value. Returned value is placed in
parameter in position 0.*/

if (hrnSetDoubleArg (param, 0, taxed_cost))
{

return;
}

}

void userProc (HRN_EXT_PARAM param)

/**
This function accepts one arguments: a string. It modifies
the string by concatenating "HELLO WORLD". If an access
routine fails (indicated by the return of a value of -1) the
external routine returns immediately.

**/
{

char *pszstring;
char *concat_string = "HELLO WORLD";
int concat_string_length = 11;
int string_length;
/* Get the length of the string argument.
If a negative string length is returned,
the access function failed - return immediately. */
string_length = hrnGetCharArgLen (param, 1);

if (string_length <= 0)
{

return;
}

/* Allocate and initialize memory for the length of the
string plus the concatenation string length plus the
trailing '\0' character. Return if unable to allocate the
memory. */

pszstring = malloc (
string_length + concat_string_length + 1);

if (!pszstring)
{

return;
}

memset (pszstring, 0,
string_length + concat_string_length + 1);

/* Get string argument. Concatenate "HELLO WORLD" to
the string. */

if (hrnGetCharArg (param, 1, pszstring,
string_length + 1))
{

return;
}

strcat (pszstring, concat_string);
 TIBCO Object Service Broker for Open Systems External Environments

26 | Chapter 3 Accessing External Routines
/* Replace the argument with the modified string.*/
if (hrnSetCharArg (param, 1, pszstring))

{
return;

}
}

Sample Import/Export Definitions File The sample code for the Import/Export
definitions (test.def) is:

LIBRARY Test
EXPORTS

USERFUNC = userFunc
USERPROC = userProc

Sample Routines for Compiling and Linking under Solaris The following contains a
set of sample external routines for Solaris:

#include "osextusr.h"

#if defined(__cplusplus)
extern "C" {
#endif

void EXTRTEST (HRN_EXT_PARAM param)
{

int op1;
int op2;
int sum;

if (hrnGetIntArg (param, 1, &op1))
return;

if (hrnGetIntArg(param, 2, &op2))
return;

sum = op1 + op2;

if (hrnSetIntArg(param, 0, sum))
return;

}

#if defined(__cplusplus)
} // extern "C"
#endif

Compiling and Linking

The routine must be compiled as 32-bit code by a compiler that can produce:

In this example, the mixed-case symbol names userFunc and userProc are
exported uppercase (USERFUNC and USERPROC), as required by LOADNAME field
of the ROUTINES table. Refer to Identifying the external routine to TIBCO Object
Service Broker, page 27 on page 23 for more information.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in C | 27
• A relocatable, executable file with some of its symbols unresolved until
runtime

• An entry for a dynamically linked library

External Routine for the Windows Platform The external routine DLL can be built
with any compiler able to produce 32-bit code compatible with the Microsoft
Visual C++ runtime environment. The DLL must be linked with the osextusr.lib
import library.

Compiling and Linking External Routines on Solaris On Solaris, external routines
are compiled as shared libraries. Use the following commands to create a C++
version of the shared libraries.

In this example, install_path refers to the TIBCO Object Service Broker installation
folder:

g++ -c -o extrtest.o -fPIC -D_POSIX_C_SOURCE=199506L\
-U_XOPEN_SOURCE -D_XOPEN_SOURCE -D__EXTENSIONS__ -D_REENTRANT\
-I<install_path>/extrc/include extrtest.c

g++ -o libextrtest.so -shared extrtest.o

Dynamic Linking

So that external routines can call functions external to TIBCO Object Service
Broker, the libraries containing these functions must reside in the search path for
osMon. In Windows, this is in the PATH environment variable. In Solaris, this is in
the LD_LIBRARY_PATH.

Task B Identifying the external routine to TIBCO Object Service Broker

Specify the Table Entries

The external routine and its load module name are identified to TIBCO Object
Service Broker through an entry in the ROUTINES table. If the routine has
arguments, these are specified in a table instance of the ARGUMENTS table.
Ensure that you have adequate security to insert data into these tables before
editing them.

Use the Table Editor to add information to these tables. To use this option, enter
the required table name beside the ED edit table option on the workbench and
press Enter to display the table.
 TIBCO Object Service Broker for Open Systems External Environments

28 | Chapter 3 Accessing External Routines
Add an Entry in the ROUTINES Table

The following illustration shows an extract of the ROUTINES table. You must
scroll right using PF11 to see additional fields.

 EDITING TABLE : ROUTINES
 COMMAND ==>
 SCROLL: P
 NAME LANGUAGE FUNCTION TYPE SYNTAX LENGTH DECIMAL
 _ ---------------- ---------------- - - - ------ ------
 _ ABEND N 0 0
 _ ADMCHART N 0 0
 _ ASMS_ASTRANSLATE N 0 0
 _ ASREAD N 0 0
 _ BINARY_TO_LOGIC Y L C 1 0
 _ BTOPACKD Y C 1 0
 _ CATROW N 0 0
 _ CCOB11 N 0 0
 _ CCOB12A N 0 0
 _ CCOB12B N 0 0
 _ CDIR50O N 0 0
 _ USERFUNC Y Q P 5 2
 _ USERPROC N 0 0

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL

Type the appropriate information about your external routine in fields of the
ROUTINES table, as described:

NAME The name used to invoke the external routine.
Syntax: C, Length: 16

LANGUAGE The language in which the external routine is written. This
field is used for descriptive purposes only and is not
required.
Syntax: C, Length: 16

FUNCTION Whether the external routine returns a value (Y or N).
Syntax: C, Length: 1

TYPE If the external routine is a function, specify the TIBCO
Object Service Broker semantic type of the value returned.
Syntax: C, Length: 1
TIBCO Object Service Broker for Open Systems External Environments

External Routines in C | 29
SYNTAX If the external routine is a function, specify the TIBCO
Object Service Broker syntax of the value returned.
Syntax: C, Length: 1

LENGTH If the external routine is a function, specify the length of
the value returned.
Syntax: B, Length: 2

DECIMAL If the external routine is a function that returns a value
with digits to the right of the decimal, specify the number
of digits.
Syntax: B, Length: 2

LOADNAME The name of the entry point from where the DLL should
be started.
Syntax: C, Length: 8

This name must be exported uppercase in the exports
definition file. The symbol to be loaded can be lowercase
or mixed case in the external routine, but it must be
exported uppercase to the LOADNAME field.

SCOPE The point when the external library is unloaded. At
present the only valid value is SESSION (that is, the
external library must be unloaded when the session ends).

NODENAME NODENAME can be either left blank or set to @SESSION,
meaning that the C routine executes in the same process as
the Execution Environment.
Syntax: V, Length: 255

LIBNAME Specify the full path name of the C routine. It must be a
dynamic link library for Windows or a shared object
library for Solaris.
Syntax: V, Length: 255
 TIBCO Object Service Broker for Open Systems External Environments

30 | Chapter 3 Accessing External Routines
Sample Entry

The single occurrence from the ROUTINES table for the routine XYZ follows. In
this example USERFUNC, whose source code you can find in Coding the External
Routine on page 23, is called as a function.

--- SINGLE OCCURRENCE EDITOR ---
 EDITING TABLE : ROUTINES
 TABLE TYPE : TDS
 COMMAND ==>
 --

 NAME : USERFUNC
 LANGUAGE : C
 FUNCTION : Y
 TYPE : Q
 SYNTAX : P
 LENGTH : 5
 DECIMAL : 2
 LOADNAME USERFUNC
 SCOPE : Session
 NODENAME : @SESSION

:
:
:
:

LIBNAME : D:\Test\dir\test.dll
 :
 PFKEYS: 1=HELP 2=DOCUMENTATION 3=SAVE 12=CANCEL 13=PRINT 22=DELETE

Add an Entry in the ARGUMENTS Table

If your external routine has arguments, to identify the arguments to TIBCO Object
Service Broker add a table instance to the ARGUMENTS table. The parameter
value for the table instance of the ARGUMENTS table must be the name of the
external routine (that is, the value in the NAME field of the ROUTINES table).
You can have a maximum of 16 arguments.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in C | 31
The instance of the ARGUMENTS table for the sample routine XYZ follows:

 EDITING TABLE : ARGUMENTS(USERFUNC)
 COMMAND ==>
 SCROLL: P
 NUMBER NAME INOUT TYPE SYNTAX LENGTH DECIMAL
 _ ------ ---------------- - - - ------ ------
 _ 1 COST N Q P 5 2
 _ 2 TAX_RATE N Q P 2 2

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL
 At TOP

Type the appropriate information in the fields of the ARGUMENTS table:

NUMBER The position of the argument in the argument list. The
positions must be sequential and start at 1.
Syntax: B, Length: 2

NAME The argument name.
Syntax: C, Length: 16

INOUT Whether the value of the argument can be changed by the
external routine. If it can be changed, the value passed to
the routine must be a local variable or the field of a table
and the field must have the same data definition as the
argument. Valid entries are Y or N.
Syntax: C, Length: 1

TYPE The argument semantic data type.
Syntax: C, Length: 1

SYNTAX The argument syntax.
Syntax: C, Length: 1
 TIBCO Object Service Broker for Open Systems External Environments

32 | Chapter 3 Accessing External Routines
See Also TIBCO Object Service Broker Managing Data for information about how to use the
Table Editor.

TIBCO Object Service Broker Programming in Rules about valid TIBCO Object
Service Broker syntax and semantic data types.

LENGTH The argument length.
Syntax: B, Length: 2

DECIMAL The number of digits to the right of the decimal, if any.
Syntax: B, Length: 2
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 33
External Routines in Java

Steps Required to Use an External Java Routine

TIBCO Object Service Broker String Conversions

Passing a TIBCO Object Service Broker String to a Java External Routine

A string is passed to a Java external routine as an argument in one of two ways.

If the corresponding Java argument is a one-dimensional array of type byte, the
following takes place:

1. A Java byte array is created.

2. The bytes in the TIBCO Object Service Broker string argument are used to
populate the array.

3. The array is passed to the Java routine.

4. The Java routine is invoked.

5. The array is released for garbage collection when the routine returns.

If the corresponding Java argument is of the predefined class String, the following
takes place:

1. A String class object is created and initialized using a constructor that accepts
a byte array and a code page indicator. The constructor interprets the TIBCO
Object Service Broker string passed as a byte array as a single-byte character
string in the code page indicated by the String argument and causes the value
of the String object to become the result of converting the single-byte character
string to UNICODE.

2. The String class object is passed to the Java routine.

3. The routine is invoked.

4. The String class object and other intermediate objects are released for garbage
collection when the routine returns.

Returning a TIBCO Object Service Broker String from a Java External
Routine

A TIBCO Object Service Broker string is returned from a Java external routine as a
return value in one of two ways:
 TIBCO Object Service Broker for Open Systems External Environments

34 | Chapter 3 Accessing External Routines
• If the corresponding Java return value is a one-dimensional array of type byte,
the bytes of that array are extracted and used to form the characters of the
string returned to the calling TIBCO Object Service Broker rule.

• If the corresponding Java return value is of class String, a single-byte character
string in the Execution Environment code page is extracted from the String
using a method that returns a byte array containing the character string
converted from UNICODE using the code page designation passed to it.

How are Exceptions Handled?

If a Java external routine raises a Java exception, the TIBCO Object Service Broker
JAVAFAIL exception is raised upon return from the external routine. This
exception can be caught in rules code and the error message and logs generated
by the Java exception can be checked.

Procedural Overview

The major tasks in preparing and executing an external Java routine are:

• Prepare the external program and environment, page 34

• Identify the external routine to TIBCO Object Service Broker, page 36

When these tasks are completed, a TIBCO Object Service Broker rule can invoke
the external routine.

Task A Prepare the external program and environment

Compiling Your Java Class

After writing your Java class, compile it using a Java version 1.6 or later compiler.

Java Virtual Machine

A Java Virtual Machine (JVM) must be invoked and attached to an Execution
Environment before a rule can execute a Java external routine. Each Execution
Environment can specify which JVM to attach, allowing different Java routines to
use different versions of JVM.

The JVM used must support code page Cp037.

If your Execution Environment is multi-threaded (that is, the MAXSESSION
Execution Environment parameter is greater than 1), your external routines must
be reentrant and thread-safe.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 35
You specify the JVM and the options to pass to it in the @JAVAOPTIONS table,
which is parameterized by EENAME:

Table: @JAVAOPTIONS Type: TDS Unit: JAVA IDgen: N
 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 EENAME S C 32 0 D ' _
 LOCATION I C 16 0 L ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 SEQ# I B 2 0 P
 TYPE S C 1 0 @JAVAOPTIONTYPE
 VALUE S V 64 0

When the first Java external routine is called after Execution Environment
start-up, by default the system searches for the EENAME instance that matches
the Execution Environment in use. If this instance does not exist, the instance with
EENAME equal to “*DEFAULT*” is used instead.

The SEQ# key field of @JAVAOPTIONS indicates the sequence in which the
occurrences are processed. The values of the SEQ# field do not have to be
contiguous.

There are 3 types of occurrences in the table:

• JVM location occurrences (indicated by a TYPE field equal to L).

There must be one and only one location occurrence in each instance of the
table. The VALUE field in this occurrence contains the path to the JVM to be
started. If the path is longer than this 64-character field, one or more
continuation occurrences follow, containing the remainder of the path in their
VALUE fields.

• JVM command line parameter occurrences (indicated by TYPE field equal to
P).

There can be zero or more parameter occurrences in each instance of the table.
A parameter occurrence contains a command line parameter that must be
passed to the JVM. Such parameters can be used to specify storage allocations
or debugging options to the JVM. The options are specific to the
implementation of the JVM and their names, form and meaning are specified
in the documentation of the JVM in question.

• Continuation occurrences (indicated by TYPE field equal to C).
 TIBCO Object Service Broker for Open Systems External Environments

36 | Chapter 3 Accessing External Routines
Here is an example of an instance of @JAVAOPTIONS on Windows:

SEQ# TYPE VALUE
------ - --
10 L E:\jdk1.6.0_30\jre\
15 C bin\server\jvm.dll
20 P -Djava.class.path=e:\testjava
30 P -verbose:class,gc

When an Execution Environment calls a Java external routine by using this
instance to determine the JVM to start, it attempts to load the following DLL:

E:\jdk1.6.0_30\jre\bin\server\jvm.dll

and pass it these parameters:

-Djava.class.path=e:\testjava -verbose:class,gc,jni

which, in the case of the Sun JVM for Windows cause it to use a CLASSPATH
variable value of e:\testjava and runtime options that indicate tracing output of
class loading and garbage collection is required.

The JVM remains attached to the Execution Environment until the Execution
Environment terminates.

Task B Identify the external routine to TIBCO Object Service Broker

Specify the Table Entries

The external routine and its load module name are identified to TIBCO Object
Service Broker through an entry in the ROUTINES table. If the routine has
arguments, these are specified in a table instance of the ARGUMENTS table.
Ensure that you have adequate security to insert data into these tables before
editing them.

Use the Table Editor to add information to these tables. To use this option, enter
the required table name beside the ED edit table option on the workbench and
press Enter to display the table.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 37
Add an Entry in the ROUTINES Table

The following illustration shows an extract of the ROUTINES table. You must
scroll right using PF11 to see additional fields.

 EDITING TABLE : ROUTINES
 COMMAND ==>
 SCROLL: P
 NAME LANGUAGE FUNCTION TYPE SYNTAX LENGTH DECIMAL
 _ ---------------- ---------------- - - - ------ ------
 _ ABEND N 0 0
 _ ADMCHART N 0 0
 _ ASMS_ASTRANSLATE N 0 0
 _ ASREAD N 0 0
 _ BINARY_TO_LOGIC Y L C 1 0
 _ BTOPACKD Y C 1 0
 _ CATROW N 0 0
 _ CCOB11 N 0 0
 _ CCOB12A N 0 0
 _ CCOB12B N 0 0
 _ CDIR50O N 0 0
 _ USERFUNC Y Q P 5 2
 _ USERPROC N 0 0

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL

Type the appropriate information about your external routine in fields of the
ROUTINES table, as described:

NAME The name used to invoke the external routine.
Syntax: C, Length: 16

LANGUAGE The language in which the external routine is written, in
this case JAVA.
Syntax: C, Length: 16

FUNCTION Whether the external routine returns a value (Y or N).
Syntax: C, Length: 1

TYPE If the external routine is a function, specify the TIBCO
Object Service Broker semantic type of the value returned.
Syntax: C, Length: 1
 TIBCO Object Service Broker for Open Systems External Environments

38 | Chapter 3 Accessing External Routines
This entry follows the format:

{ <package name> "/" } <class name> "." <method name> "(" <argument
types> ")" <return type>

where <package name>, <class name> and <method name> are the ASCII equivalents of
the UNICODE names of the package, class and method, <argument types> is a
(possibly empty) character sequence encoding the Java types of the arguments,
and <return type> is an encoding of the return value. The string beginning with left
parenthesis and spanning the rest of the specification is called the signature of the
method.

SYNTAX If the external routine is a function, specify the TIBCO
Object Service Broker syntax of the value returned.
Syntax: C, Length: 1

LENGTH If the external routine is a function, specify the length of
the value returned.
Syntax: B, Length: 2

DECIMAL If the external routine is a function, specify the value zero,
because Java does not support packed decimal values as a
basic type.
Syntax: B, Length: 2

LOADNAME Leave this field empty.
Syntax: C, Length: 8

SCOPE The point when the external library is unloaded. At
present the only valid value is SESSION (that is, the
external library must be unloaded when the session ends).

NODENAME Leave this field empty.
Syntax: V, Length: 255

LIBNAME Specify the name of the Java class containing the routine,
the name of the routine (that is, the method within the
class), and the Java type of the arguments and the return
value (if any).
Syntax: V, Length: 255
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 39
Java Types

A basic Java type is encoded with a single character as follows:

This is the standard Java encoding of the signature of a method. Thus, a method
taking a Java int as arguments and returning a double could be encoded as shown
here:

MyClass.MyMethod(I)D

A method taking a character and a double as an argument and returning no value
could be encoded as shown here:

MyClass.MyMethod2(CD)V

... using the special encoding character V (for void) to indicate the lack of a return
value.

In the standard encoding of signatures, a character encoding of a Java type can be
prefixed by one or more left square brackets ([), which indicate an array of the
Java type of dimensions equal to the number of brackets. As TIBCO Object
Service Broker does not support array type, the only Java type that can be
prefixed in this manner in a LIBNAME value is B (for byte) and then only with at
most one occurrence of the bracket. A one-dimensional byte array corresponds to
the characters of a TIBCO Object Service Broker string value passed to or from a
Java routine.

A class type can be encoded with the letter L followed by the fully qualified class
name, followed by a semicolon. The only class type supported is the Java class
String, which corresponds to TIBCO Object Service Broker strings when passed to
or from a Java routine.

Character Java Type Interpretation

B Byte Signed byte.

C Char Unicode character.

D Double Double-precision floating-point value.

F Float Single-precision floating-point value.

I Int Integer.

J Long Long integer.

S Short Signed short.

Z Boolean True or false.
 TIBCO Object Service Broker for Open Systems External Environments

40 | Chapter 3 Accessing External Routines
A method taking a Java string as parameter and returning another Java string
could be encoded:

Myclass.Mymethod(Ljava/lang/String;)Ljava/lang/String;

The Execution Environment uses the value of LIBNAME to instruct the JVM to
load the class containing the method, locate the method within the class, and
invoke the method, passing arguments to the method and returning a result (if
any) to the calling TIBCO Object Service Broker rule.

The call of the routine fails if the routine specification in field LIBNAME does not
conform to those rules.

Sample Entry

The single occurrence from the ROUTINES table for the routine ABC follows. In
this example USERFUNJ is called as a function.

 --- SINGLE OCCURRENCE EDITOR ---
 EDITING TABLE : ROUTINES
 TABLE TYPE : TDS
 COMMAND ==>
 --

 NAME : USERFUNJ
 LANGUAGE : JAVA
 FUNCTION : Y
 TYPE : Q
 SYNTAX : P
 LENGTH : 5
 DECIMAL : 0
 LOADNAME
 SCOPE : SESSION
 NODENAME :
 :
 :
 :
 :
 LIBNAME : MyClass.MyMoehot(I)D
 PFKEYS: 1=HELP 2=DOCUMENTATION 3=SAVE 12=CANCEL 13=PRINT 22=DELETE

Add an Entry in the ARGUMENTS Table

If your external routine has arguments, to identify the arguments to TIBCO Object
Service Broker add a table instance to the ARGUMENTS table. The parameter
value for the table instance of the ARGUMENTS table must be the name of the
external routine (that is, the value in the NAME field of the ROUTINES table).
You can have a maximum of 16 arguments.
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 41
The instance of the ARGUMENTS table for the sample routine ABC follows.

 EDITING TABLE : ARGUMENTS(USERFUNJ)
 COMMAND ==>
 SCROLL: P
 NUMBER NAME INOUT TYPE SYNTAX LENGTH DECIMAL
 _ ------ ---------------- - - - ------ ------
 _ 1 COST N Q P 5 2
 _ 2 TAX_RATE N Q P 2 2

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL
 At TOP

Type the appropriate information in the fields of the ARGUMENTS table:

NUMBER The position of the argument in the argument list. The
positions must be sequential and start at 1. Also, it must
correspond to the sequence of the encoded arguments in
the corresponding LIBNAME field.
Syntax: B, Length: 2

NAME The argument name. This is used only by the call-by-name
version of the TIBCO Object Service Broker CALL
statement, except in the following case: The string
“@THIS” has a special meaning if it appears in this field in
the first occurrence. The presence of this string indicates
that the Java routine is not a static method of its class, that
is, it has an implied “this” argument.
Syntax: C, Length: 16

INOUT Whether the value of the argument can be changed by the
external routine. Must have the value N as Java supports
only call-by-value parameter passing.
Syntax: C, Length: 1
 TIBCO Object Service Broker for Open Systems External Environments

42 | Chapter 3 Accessing External Routines
There must be exactly one occurrence (in an instance of table ARGUMENTS
corresponding to a Java routine) for each argument encoded in the field
LIBNAME of the corresponding occurrence in the ROUTINES table.

The data in the occurrences of ARGUMENTS and the arguments encoded in the
LIBNAME field must correspond in the following manner:

Similarly, if the return value encoded is not Z, it must match the same fields in the
ROUTINES occurrence describing the routine.

TYPE The argument semantic data type.
Syntax: C, Length: 1

SYNTAX The argument syntax.
Syntax: C, Length: 1

LENGTH The argument length.
Syntax: B, Length: 2

DECIMAL The number of digits to the right of the decimal, if any.
Must contain zero.
Syntax: B, Length: 2

Java type encoding Field TYPE Field SYNTAX Field LENGTH

B B 1

C S V or C 1

D F 8

F F 8

I B 4

J B 8

S B 2

Z L C 1

[B S V A valid string
field length

L/java/lang/String; S V or C A valid string
field length
TIBCO Object Service Broker for Open Systems External Environments

External Routines in Java | 43
The call of the routine fails if the routine specification in field LIBNAME and the
information in the parameter instance of ARGUMENTS do not conform to these
rules.

See Also TIBCO Object Service Broker Managing Data for information about how to use the
Table Editor.

TIBCO Object Service Broker Programming in Rules for information about valid
TIBCO Object Service Broker syntax and semantic data types.
 TIBCO Object Service Broker for Open Systems External Environments

44 | Chapter 3 Accessing External Routines
TIBCO Object Service Broker for Open Systems External Environments

| 45
Chapter 4 Using the Interface to TIBCO Enterprise
Message Service™

This chapter describes how to interface to TIBCO Enterprise Message Service
(EMS).

Topics

• TIBCO Object Service Broker EMS Interface, page 46

• Calling EMS, page 47

• Configuration, page 50

• Sample Applications, page 51

• Supported EMS Functions, page 53
 TIBCO Object Service Broker for Open Systems External Environments

46 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
TIBCO Object Service Broker EMS Interface

Purpose of TIBCO Enterprise Message Service
TIBCO Enterprise Message Service software lets application programs send and
receive messages according to the Java Message Service (JMS) protocol. EMS is
based on creation and delivery of messages. Messages are structured data that
one application sends to another. The creator of the message is known as the
producer and the receiver of the message is known as the consumer.

A TIBCO EMS server acts as an intermediary for the message and manages its
delivery to the correct destination. The server also provides enterprise-class
functionality such as fault-tolerance, message routing, and communication with
other messaging systems, such as TIBCO Rendezvous™ and TIBCO
SmartSockets™.

Overview of TIBCO Object Service Broker EMS Interface
The interface to EMS provides a set of tools that TIBCO Object Service Broker
rules applications running on z/OS and Open Systems can use to produce and
consume messages. These messages are transported via TIBCO EMS servers
which run on Open Systems platforms.

This message flow is illustrated in the following diagram:

User Application
EMS Messaging

TIBCO EMS
 Server

 EMS
 Application

 EMS
 Application

 EMS
 Application

 Rules
 Application

TIBCO EMS
 Library

 z/OS and / or
 Open Systems Open Systems

TIBCO Object Service Broker
TIBCO Object Service Broker for Open Systems External Environments

Calling EMS | 47
Calling EMS

Shareable Tools Available
The following shareable tools are used to interface with the TIBCO EMS Client
API:

The types of arguments and the return value are determined by the EMS C
routine being invoked. Most calls return a tibems_status value. It is possible for
S6BFUNCTION to return strings or integers that are not status codes for some
EMS functions.

The following is an example of a call to S6BFUNCTION:

STATUS = S6BFUNCTION(’tibemnsMsgProducer_Send’,PRODUCER,MESSAGE);

See Also TIBCO Object Service Broker Shareable Tools for details on the S6BCALL and
S6BFUNCTION tools.

TIBCO Enterprise Message Service: C and COBOL Reference for the definition of the
EMS API as implemented by S6BCALL and S6BFUNCTION

Argument Mapping

Mapping Data Types

C data types, as described in TIBCO Enterprise Message Service: C and COBOL
Reference, are mapped to S6BCALL and S6BFUNCTION. Simple data types are
passed as shown in the following table:

S6BCALL Used by a rule when the EMS function does not return a
value.

S6BFUNCTION Used by a rule when a value is returned.

EMS C data type S6BCALL type

tibems_byte; Binary of length 1

tibems_short; Binary of length 2

tibems_wchar; Binary of length 2
 TIBCO Object Service Broker for Open Systems External Environments

48 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
Handles to EMS Structures

Handles to EMS structures are passed and returned as binary values of length 4.
Examples of handle types include tibemsConnection, tibemsSession, and
tibemsTextMsg.

Handle Management

The TIBCO Object Service Broker system is designed to handle high transaction
volumes. The system therefore tracks the usage of some resources to ensure that
these are not exhausted needlessly. The resources tracked include EMS connection
structures, message structures, and SSL parameter structures. Whenever one of
these structures has been allocated through an invocation of an EMS API function
through S6BCALL or S6BFUNCTION in an TIBCO Object Service Broker
transaction, terminating the transaction will implicitly release the structure, as if
the TIBCO Object Service Broker application had invoked the proper EMS API
function to release the structure itself. Handles to such structures may thus be
used within a transaction and its child transactions, but not passed back to be
used in a parent transaction.

Text Strings

In general text strings are passed as a variable character strings. In the EMS C
interfaces, text strings are null terminated.

Some functions in the EMS API for C return text data using two arguments: a text
area and a maximum length for the area. A rule can pass a field or a local variable
for the text area. The functions are:

tibems_int; Binary of length 4

tibems_long; Binary of length 8

tibems_float; Float Point of length 4

tibems_double; Floating Point of length 8

tibems_uint; Binary of length 4

EMS C data type S6BCALL type

If a variable length syntax field contains a null character then the EMS interface
considers that the string is terminated at that null character. Any data following
will be ignored. This also holds true for UNICODE strings.
TIBCO Object Service Broker for Open Systems External Environments

Calling EMS | 49
• tibemsDestination_GetName

• tibemsQueue_GetQueueName

Byte Oriented Data

Byte oriented data, which is typically unstructured and does not depend on an
encoding, can be sent and returned through EMS using the tibemsBytes C type.
S6BCALL or S6BFUNCTION arguments that refer to byte areas are defined as
binary values of length 4.

Rules extract data from such areas through MAP tables. MAP areas are restricted
only by job memory limits. When an EMS functions returns a tibemsBytes area
then a rules program must register the area with the @MAP table before using it
with a MAP table. After registering the area a rule uses the binary value for the
area as a parameter for a MAP table. The parameter identifies the start of the area
to be mapped by the table.

The following functions get or write tibemsBytes areas:

• tibemsBytesMsg_GetBytes

• tibemsBytesMsg_WriteBytes

• tibemsMapMsg_GetBytes

• tibemsObjectMsg_GetObjectBytes

• tibemsStreamMsg_ReadBytes

• tibemsStreamMsg_WriteBytes

See Also TIBCO Object Service Broker Shareable Tools for details on the @MAP table and
registering MAP areas.

Error Handling
Most EMS functions return a tibems_status code if EMS detects an error. Status
codes are explained in an appendix of TIBCO Enterprise Message Service: C and
COBOL Reference.

If an abnormal termination occurs during rules processing the call to S6BCALL or
S6BFUNCTION is terminated and the ROUTINEFAIL exception raised. A rules
traceback is produced if the exception is not handled by the rules.

See Also TIBCO Object Service Broker Programming in Rules for more information about rules
processing and exception.
 TIBCO Object Service Broker for Open Systems External Environments

50 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
Configuration

Initializing the EMS Interface
The only requirement to initialize the EMS interface is to ensure that the correct
code page is being used. The first call to EMS by a rule initializes the environment
to run EMS and loads code related to invoking EMS.

Setting the Path Environment Variable
On Windows, the EMS 6.1 or later 32-bit client portion is required for the EMS
interface. The PATH environment variable must include the path to the EMS C
API library DLLs, usually TIBCO_HOME\ems\version\bin.

On Solaris, the LD_LIBRARY_PATH environment variable must include the path
to the EMS C API library shared objects, usually TIBCO_HOME/ems/version/lib.

Code Page Support
TIBCO Object Service Broker uses a single EBCDIC code page and a single ASCII
code page as defined in the @NLS1 table. Non-unicode text data is stored in this
EBCDIC code page in the Data Object Broker table store. By default this code page
is set to IBM-037 and the ASCII code page is set to ISO8859-1.

You use the EMSWIRECODEPAGE Execution Environment parameter to set the
code page that the EMS text data is transmitted in. The default value is ISO8859-1.
This wire code page can be either UTF-8, or it must match the value of the ASCII
code page. The wire code page is the same for all sessions running under an
Execution Environment..

See Also TIBCO Object Service Broker Parameters for more information about the
EMSWIRECODEPAGE Execution Environment parameter.

TIBCO Object Service Broker National Language Support for more information on
code pages and the @NLS1 table.

The EMS function tibems_SetCodePage is not available to rules programs.
TIBCO Object Service Broker for Open Systems External Environments

Sample Applications | 51
Sample Applications

Rules Samples
The @SAMPLES rules library distributed with TIBCO Object Service Broker
contains a set of sample rules for using the EMS interface. Three types of sample
rules are available:

1. The rules starting with S6B are generalized rules to enable the building of
EMS applications.

2. The rules PUBMAPMSG, PUBMAPMSGS, PUBTEXTMSG, PUBTEXTMSGS
and PUBXMLMSG are sample rules for publishing messages to EMS.

3. The rules SUBMAPMSG, SUBMAPMSGS, SUBTEXTMSG, SUBTEXTMSGS,
and SUBXMLMSG are the counterpart rules that subscribe and retrieve the
messages published by the publishing rules.

To use the rules listed in Sample Rules, edit the table S6BEMSURL, providing
your TIBCO Object Service Broker user ID (field USERID) and the URL for the
EMS server (field URL). If SSL-based message exchange is desired, combinations
of the following values must also be supplied:

• If server verification is required, the server name (field SSL_HOSTNAME)
and a reference to a file that contains a certificate that authenticate the server’s
certificate, as well as the encoding of the certificate (fields
SSL_TRUSTED_PATH and SSL_TRUSTED_ENCODING). See
tibemsSSLParams_AddTrustedCertFile in the EMS documentation.

• A reference to a file that contains a client certificate and its encoding (fields
SSL_IDENTITY_PATH and SSL_IDENTITY_ENCODING). See
tibemsSSLParams_SetIdentityFile in the EMS documentation.

• A reference to a file that contains a client private key and its encoding, if it has
not been supplied as part of the client certificate (fields SSL_KEY_PATH and
SSL_KEY_ENCODING). See tibemsSSLParams_SetPrivateKeyFile in the EMS
documentation.

• The private key password (field SSL_PASSWORD). See
tibemsConnection_CreateSSL in the EMS documentation.
 TIBCO Object Service Broker for Open Systems External Environments

52 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
Table 3 Sample Rules

Sample Rule Function

PUBMAPMSG Publishes the string ‘Hello from TIBCO OSB’ as a map
message to queue TIBCO.OSB.MAPTEST.

PUBMAPMSGS Publishes the contents of the contents of the BOOKS table
as a set of map messages to the queue
TIBCO.OSB.MAPTEST.

PUBTEXTMSG Publishes the string ‘Hello from TIBCO OSB’ as a text
message to queue TIBCO.OSB.TXTTEST.

PUBTEXTMSGS Publishes the contents of the contents of the BOOKS table
as a set of text messages to the queue
TIBCO.OSB.TXTTEST.

PUBXMLMSG Publishes the contents of the contents of the BOOKS table
as a XML document to the queue TIBCO.OSB.XMLTEST.

SUBMAPMSG Subscribes to queue TIBCO.OSB.MAPTEST and retrieves
one map message and displays the contents in the
message log. The counterpart to PUBMAPMSG above.

SUBMAPMSGS Subscribes to queue TIBCO.OSB.MAPTEST and retrieves
map messages and displays their contents in the message
log. The counterpart to PUBMAPMSGS above.

SUBTEXTMSG Subscribes to queue TIBCO.OSB.TXTTEST and retrieves
one text message and displays the contents in the message
log. The counterpart to PUBTEXTMSG above.

SUBTEXTMSGS Subscribes to queue TIBCO.OSB.TXTTEST and retrieves
text messages and displays their contents in the message
log. The counterpart to PUBTEXTMSGS above.

SUBXMLMSG Subscribes to queue TIBCO.OSB.XMLTEST and retrieves
an XML document and displays its contents in tabular
form in the message log. The counterpart to PUBXMLMSG
above.
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 53
Supported EMS Functions

The table below lists the functions of the EMS interface for C and COBOL that are
supported by TIBCO Object Service Broker. For each function that returns a
handle to a newly created tracked EMS structure, the word "Tracked" appears in
the Handle Action column, and the number of arguments of the function
returning the handle appears in the Handle Argument column. A zero in the
Handle Argument column indicates that the handle is returned as the actual
value of the EMS function.

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument

tibems_setExceptionOnFTSwitch

tibems_GetConnectAttemptCount

tibems_GetConnectAttemptDelay

tibems_GetConnectAttemptTimeout

tibems_getExceptionOnFTSwitch

tibems_GetMulticastDaemon

tibems_GetMulticastEnabled

tibems_GetReconnectAttemptCount

tibems_GetReconnectAttemptDelay

tibems_GetReconnectAttemptTimeout

tibems_GetSocketReceiveBufferSize

tibems_GetSocketSendBufferSize

tibems_IsConsumerMulticast

tibems_Open

tibems_SetConnectAttemptCount

tibems_SetConnectAttemptDelay
 TIBCO Object Service Broker for Open Systems External Environments

54 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibems_SetConnectAttemptTimeout

tibems_SetMulticastDaemon

tibems_SetMulticastEnabled

tibems_SetReconnectAttemptCount

tibems_SetReconnectAttemptDelay

tibems_SetReconnectAttemptTimeout

tibems_SetSocketReceiveBufferSize

tibems_SetSocketSendBufferSize

tibems_SetTraceFile

tibems_Sleep

tibems_Version

tibemsAdmin_Close

tibemsAdmin_Create

tibemsAdmin_GetCommandTimeout

tibemsAdmin_GetConsumer

tibemsAdmin_GetConsumers

tibemsAdmin_GetInfo

tibemsAdmin_GetProducerStatistics

tibemsAdmin_GetQueue

tibemsAdmin_GetQueues

tibemsAdmin_GetTopic

tibemsAdmin_GetTopics

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 55
tibemsAdmin_SetCommandTimeout

tibemsBytesMsg_Create Track 1

tibemsBytesMsg_GetBodyLength

tibemsBytesMsg_GetBytes

tibemsBytesMsg_ReadBoolean

tibemsBytesMsg_ReadByte

tibemsBytesMsg_ReadBytes

tibemsBytesMsg_ReadChar

tibemsBytesMsg_ReadDouble

tibemsBytesMsg_ReadFloat

tibemsBytesMsg_ReadInt

tibemsBytesMsg_ReadLong

tibemsBytesMsg_ReadShort

tibemsBytesMsg_ReadUnsignedByte

tibemsBytesMsg_ReadUnsignedShort

tibemsBytesMsg_ReadUTF

tibemsBytesMsg_Reset

tibemsBytesMsg_SetBytes

tibemsBytesMsg_WriteBoolean

tibemsBytesMsg_WriteByte

tibemsBytesMsg_WriteBytes

tibemsBytesMsg_WriteChar

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

56 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsBytesMsg_WriteDouble

tibemsBytesMsg_WriteFloat

tibemsBytesMsg_WriteInt

tibemsBytesMsg_WriteLong

tibemsBytesMsg_WriteShort

tibemsBytesMsg_WriteUTF

tibemsCollection_Destroy

tibemsCollection_GetCount

tibemsCollection_GetFirst

tibemsCollection_GetNext

tibemsConnection_Close Untrack 1

tibemsConnection_Create Track 1

tibemsConnection_CreateSession

tibemsConnection_CreateSSL Track 1

tibemsConnection_GetActiveURL

tibemsConnection_GetClientId

tibemsConnection_GetMetaData

tibemsConnection_IsDisconnected

tibemsConnection_SetClientId

tibemsConnection_Start

tibemsConnection_Stop

tibemsConnectionMetaData_GetEMSMajorVersion

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 57
tibemsConnectionMetaData_GetEMSMinorVersion

tibemsConnectionMetaData_GetEMSProviderName

tibemsConnectionMetaData_GetEMSVersion

tibemsConnectionMetaData_GetProviderMajor
Version

tibemsConnectionMetaData_GetProviderMinor
Version

tibemsConnectionMetaData_GetProviderVersion

tibemsConsumerInfo_Destroy

tibemsConsumerInfo_GetCreateTime

tibemsConsumerInfo_GetCurrentMsgCountSentBy
Server

tibemsConsumerInfo_GetCurrentMsgSizeSentBy
Server

tibemsConsumerInfo_GetDestinationName

tibemsConsumerInfo_GetDestinationType

tibemsConsumerInfo_GetDetailedStatistics

tibemsConsumerInfo_GetDurableName

tibemsConsumerInfo_GetElapsedSinceLast
Acknowledged

tibemsConsumerInfo_GetElapsedSinceLastSent

tibemsConsumerInfo_GetID

tibemsConsumerInfo_GetPendingMessageCount

tibemsConsumerInfo_GetPendingMessageSize

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

58 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsConsumerInfo_GetStatistics

tibemsConsumerInfo_GetTotalAcknowledgedCount

tibemsConsumerInfo_GetTotalMsgCountSentBy
Server

tibemsConsumerInfo_IsActive

tibemsConsumerInfo_IsConnected

tibemsConsumerInfo_IsConnectionConsumer

tibemsDestination_Copy

tibemsDestination_Create

tibemsDestination_Destroy

tibemsDestination_GetName

tibemsDestination_GetType

tibemsDetailedDestStat_GetDestinationName

tibemsDetailedDestStat_GetDestinationType

tibemsDetailedDestStat_GetStatData

tibemsErrorContext_Close

tibemsErrorContext_Create

tibemsErrorContext_GetLastErrorStackTrace

tibemsErrorContext_GetLastErrorString

tibemsMapMsg_Create Track 1

tibemsMapMsg_GetBoolean

tibemsMapMsg_GetByte

tibemsMapMsg_GetBytes

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 59
tibemsMapMsg_GetChar

tibemsMapMsg_GetDouble

tibemsMapMsg_GetField

tibemsMapMsg_GetFloat

tibemsMapMsg_GetInt

tibemsMapMsg_GetLong

tibemsMapMsg_GetMapMsg Track 3

tibemsMapMsg_GetMapNames

tibemsMapMsg_GetShort

tibemsMapMsg_GetString

tibemsMapMsg_ItemExists

tibemsMapMsg_SetBoolean

tibemsMapMsg_SetByte

tibemsMapMsg_SetBytes

tibemsMapMsg_SetChar

tibemsMapMsg_SetDouble

tibemsMapMsg_SetFloat

tibemsMapMsg_SetInt

tibemsMapMsg_SetLong

tibemsMapMsg_SetMapMsg

tibemsMapMsg_SetReferencedBytes

tibemsMapMsg_SetShort

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

60 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsMapMsg_SetStreamMsg

tibemsMapMsg_SetString

tibemsMsg_Acknowledge

tibemsMsg_ClearBody

tibemsMsg_ClearProperties

tibemsMsg_Create Track 1

tibemsMsg_CreateCopy Track 2

tibemsMsg_CreateFromBytes Track 1

tibemsMsg_Destroy Untrack 1

tibemsMsg_GetAsBytes

tibemsMsg_GetAsBytesCopy

tibemsMsg_GetBodyType

tibemsMsg_GetBooleanProperty

tibemsMsg_GetByteProperty

tibemsMsg_GetByteSize

tibemsMsg_GetCorrelationID

tibemsMsg_GetDeliveryMode

tibemsMsg_GetDestination

tibemsMsg_GetDoubleProperty

tibemsMsg_GetEncoding

tibemsMsg_GetExpiration

tibemsMsg_GetFloatProperty

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 61
tibemsMsg_GetIntProperty

tibemsMsg_GetLongProperty

tibemsMsg_GetMessageID

tibemsMsg_GetPriority

tibemsMsg_GetProperty

tibemsMsg_GetPropertyNames

tibemsMsg_GetRedelivered

tibemsMsg_GetReplyTo

tibemsMsg_GetShortProperty

tibemsMsg_GetStringProperty

tibemsMsg_GetTimestamp

tibemsMsg_GetType

tibemsMsg_MakeWriteable

tibemsMsg_Print

tibemsMsg_PrintToBuffer

tibemsMsg_PropertyExists

tibemsMsg_SetBooleanProperty

tibemsMsg_SetByteProperty

tibemsMsg_SetCorrelationID

tibemsMsg_SetDeliveryMode

tibemsMsg_SetDestination

tibemsMsg_SetDoubleProperty

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

62 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsMsg_SetEncoding

tibemsMsg_SetExpiration

tibemsMsg_SetFloatProperty

tibemsMsg_SetIntProperty

tibemsMsg_SetLongProperty

tibemsMsg_SetMessageID

tibemsMsg_SetPriority

tibemsMsg_SetRedelivered

tibemsMsg_SetReplyTo

tibemsMsg_SetShortProperty

tibemsMsg_SetStringProperty

tibemsMsg_SetTimestamp

tibemsMsg_SetType

tibemsMsgConsumer_Close

tibemsMsgConsumer_GetDestination

tibemsMsgConsumer_GetMsgSelector

tibemsMsgConsumer_GetNoLocal

tibemsMsgConsumer_Receive

tibemsMsgConsumer_ReceiveNoWait

tibemsMsgConsumer_ReceiveTimeout

tibemsMsgEnum_Destroy

tibemsMsgEnum_GetNextName

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 63
tibemsMsgField_PrintToBuffer

tibemsMsgProducer_Close

tibemsMsgProducer_GetDeliveryMode

tibemsMsgProducer_GetDestination

tibemsMsgProducer_GetDisableMessageID

tibemsMsgProducer_GetDisableMessageTimestamp

tibemsMsgProducer_GetNPSendCheckMode

tibemsMsgProducer_GetPriority

tibemsMsgProducer_GetTimeToLive

tibemsMsgProducer_Send

tibemsMsgProducer_SendEx

tibemsMsgProducer_SendToDestination

tibemsMsgProducer_SendToDestinationEx

tibemsMsgProducer_SetDeliveryMode

tibemsMsgProducer_SetDisableMessageID

tibemsMsgProducer_SetDisableMessageTimestamp

tibemsMsgProducer_SetNPSendCheckMode

tibemsMsgProducer_SetPriority

tibemsMsgProducer_SetTimeToLive

tibemsMsgRequestor_Close

tibemsMsgRequestor_Create

tibemsMsgRequestor_Request

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

64 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsObjectMsg_Create Track 1

tibemsObjectMsg_GetObjectBytes

tibemsObjectMsg_SetObjectBytes

tibemsProducerInfo_Destroy

tibemsProducerInfo_GetCreateTime

tibemsProducerInfo_GetDestinationName

tibemsProducerInfo_GetDestinationType

tibemsProducerInfo_GetDetailedStatistics

tibemsProducerInfo_GetID

tibemsProducerInfo_GetStatistics

tibemsQueue_Create

tibemsQueue_Destroy

tibemsQueue_GetQueueName

tibemsQueueBrowser_Close

tibemsQueueBrowser_GetMsgSelector

tibemsQueueBrowser_GetNext

tibemsQueueBrowser_GetQueue

tibemsQueueInfo_Create

tibemsQueueInfo_Destroy

tibemsQueueInfo_GetDeliveredMessageCount

tibemsQueueInfo_GetFlowControlMaxBytes

tibemsQueueInfo_GetInboundStatistics

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 65
tibemsQueueInfo_GetMaxBytes

tibemsQueueInfo_GetMaxMsgs

tibemsQueueInfo_GetName

tibemsQueueInfo_GetOutboundStatistics

tibemsQueueInfo_GetOverflowPolicy

tibemsQueueInfo_GetPendingMessageCount

tibemsQueueInfo_GetPendingMessageSize

tibemsQueueInfo_GetReceiverCount

tibemsQueueReceiver_GetQueue

tibemsServerInfo_Destroy

tibemsServerInfo_GetConsumerCount

tibemsServerInfo_GetProducerCount

tibemsServerInfo_GetQueueCount

tibemsServerInfo_GetTopicCount

tibemsSession_Close

tibemsSession_Commit

tibemsSession_CreateBrowser

tibemsSession_CreateBytesMessage Track 2

tibemsSession_CreateConsumer

tibemsSession_CreateDurableSubscriber

tibemsSession_CreateMapMessage Track 2

tibemsSession_CreateMessage Track 2

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

66 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsSession_CreateProducer

tibemsSession_CreateStreamMessage Track 2

tibemsSession_CreateTemporaryQueue

tibemsSession_CreateTemporaryTopic

tibemsSession_CreateTextMessage Track 2

tibemsSession_CreateTextMessageEx Track 2

tibemsSession_DeleteTemporaryQueue

tibemsSession_DeleteTemporaryTopic

tibemsSession_GetAcknowledgeMode

tibemsSession_GetTransacted

tibemsSession_Recover

tibemsSession_Rollback

tibemsSession_Unsubscribe

tibemsStatus_GetText

tibemsStatData_GetByteRate

tibemsStatData_GetMessageRate

tibemsStatData_GetTotalBytes

tibemsStatData_GetTotalMessages

tibemsStreamMsg_Create Track 1

tibemsStreamMsg_FreeField

tibemsStreamMsg_ReadBoolean

tibemsStreamMsg_ReadByte

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 67
tibemsStreamMsg_ReadBytes

tibemsStreamMsg_ReadChar

tibemsStreamMsg_ReadDouble

tibemsStreamMsg_ReadField

tibemsStreamMsg_ReadFloat

tibemsStreamMsg_ReadInt

tibemsStreamMsg_ReadLong

tibemsStreamMsg_ReadShort

tibemsStreamMsg_ReadString

tibemsStreamMsg_Reset

tibemsStreamMsg_WriteBoolean

tibemsStreamMsg_WriteByte

tibemsStreamMsg_WriteBytes

tibemsStreamMsg_WriteChar

tibemsStreamMsg_WriteDouble

tibemsStreamMsg_WriteFloat

tibemsStreamMsg_WriteInt

tibemsStreamMsg_WriteLong

tibemsStreamMsg_WriteMapMsg

tibemsStreamMsg_WriteShort

tibemsStreamMsg_WriteStreamMsg

tibemsStreamMsg_WriteString

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

68 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsSSL_GetDebugTrace

tibemsSSL_GetTrace

tibemsSSL_OpenSSLVersion

tibemsSSL_SetDebugTrace

tibemsSSL_SetTrace

tibemsSSLParams_AddIssuerCert

tibemsSSLParams_AddIssuerCertFile

tibemsSSLParams_AddTrustedCert

tibemsSSLParams_AddTrustedCertFile

tibemsSSLParams_Create Track 0

tibemsSSLParams_Destroy Untrack 1

tibemsSSLParams_GetIdentity

tibemsSSLParams_GetPrivateKey

tibemsSSLParams_SetAuthOnly

tibemsSSLParams_SetCiphers

tibemsSSLParams_SetExpectedHostName

tibemsSSLParams_SetIdentity

tibemsSSLParams_SetIdentityFile

tibemsSSLParams_SetPrivateKey

tibemsSSLParams_SetPrivateKeyFile

tibemsSSLParams_SetRandData

tibemsSSLParams_SetRandEGD

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

Supported EMS Functions | 69
tibemsSSLParams_SetRandFile

tibemsSSLParams_SetVerifyHost

tibemsSSLParams_SetVerifyHostName

tibemsTextMsg_Create Track 1

tibemsTextMsg_GetText

tibemsTextMsg_SetText

tibemsTopic_Create

tibemsTopic_Destroy

tibemsTopic_GetTopicName

tibemsTopicInfo_Create

tibemsTopicInfo_Destroy

tibemsTopicInfo_GetActiveDurableCount

tibemsTopicInfo_GetDurableCount

tibemsTopicInfo_GetFlowControlMaxBytes

tibemsTopicInfo_GetInboundStatistics

tibemsTopicInfo_GetMaxBytes

tibemsTopicInfo_GetMaxMsgs

tibemsTopicInfo_GetName

tibemsTopicInfo_GetOutboundStatistics

tibemsTopicInfo_GetOverflowPolicy

tibemsTopicInfo_GetPendingMessageCount

tibemsTopicInfo_GetPendingMessageSize

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for Open Systems External Environments

70 | Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
tibemsTopicInfo_GetSubscriberCount

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for Open Systems External Environments

| 71
Chapter 5 Using the TIBCO Service Gateway for WMQ

This chapter describes how to access IBM WebSphere MQ message queues, using
the TIBCO Service Gateway for WMQ.

Topics

• Overview, page 72
 TIBCO Object Service Broker for Open Systems External Environments

72 | Chapter 5 Using the TIBCO Service Gateway for WMQ
Overview

Service Gateway for WMQ is a Message Oriented Middleware (MOM)
application containing several shared tools. You use it to create, send, receive, and
process messages in a network of WebSphere MQ-enabled TIBCO Object Service
Broker and non-TIBCO Object Service Broker applications. This message
processing can take place across supported platforms.

Configuration
Because Service Gateway for WMQ is packaged as an external routine, it must
have routine and argument table entries. To create these entries, if you did not do
so at installation time, make sure you are using a level-7 TIBCO Object Service
Broker user ID and then run the @MOMSETUP rule.

Usage Notes

System Map Table

The interface between the rules and the WebSphere MQ software is controlled by
the internal @MOMMAP map table and the corresponding MOM-specific table,
for example, @MQSMAP_PORT. This is set up by the @MOMINIT shareable tool.

Required Local Variable

Prior to an @MOM... call, you must define a local variable called
@MOMMAP_ADDRESS, to be available to all subsequent @MOM... calls.

WebSphere MQ Environment

Only one WebSphere MQ environment can be active in any one session at a time.
The environment is owned by the transaction issuing the @MOMINIT call. The
environment can be shared only with transactions executed by that transaction.
You do this by passing @MOMMAP_ADDRESS.

For details about installing Service Gateway for WMQ, see TIBCO Object Service
Broker for Open Systems Installing and Operating.

Service Gateway for WMQ is a separately licensed add-on to TIBCO Object
Service Broker.
TIBCO Object Service Broker for Open Systems External Environments

Overview | 73
Error Handling
The return code and reason code from WebSphere MQ are stored in the map table;
refer to @MQSMAP in TIBCO Object Service Broker Shareable Tools for more
information about this table.You can check these codes in your rules.

Example Rule
The rule that follows moves all the messages from one queue to another. In this
rule, @MOMBUFFER is a MAP table set up by the writer of the rule to describe
the data being written.

MOMPASSER;
_ LOCAL @MOMMAP_ADDRESS, CONNECTION, QUEUE1, QUEUE2;
_ ---
_ --+------
_ CALL @MOMINIT(1000, 'MQSERIES'); ¦ 1
_ CONNECTION = @MOMCONNECT('CSQ1'); ¦ 2
_ CALL @MOMVALIDRC; ¦ 3
_ CALL @MOMSETOPT('MQOO_INPUT_SHARED'); ¦ 4
_ QUEUE2 = @MOMOPEN(CONNECTION, 'RON2'); ¦ 5
_ CALL @MOMVALIDRC; ¦ 6
_ CALL @MOMSETOPT('MQOO_OUTPUT'); ¦ 7
_ QUEUE1 = @MOMOPEN(CONNECTION, 'RON1'); ¦ 8
_ CALL @MOMVALIDRC; ¦ 9
_ CALL @MOMSETOPT('MQPMO_NONE'); ¦ A
_ @MQSMAP.GO_WAITINTERVAL = 10000000; ¦ B
_ @MQSMAP.GO_OPTIONS = @MOMOPTION('MQGMO_WAIT'); ¦ C
_ @MQSMAP.GO_MATCHOPTIONS = @MOMOPTION('MQGMO_NONE'); ¦ D
_ UNTIL MOM_SHUTDOWN : ¦ E
_ CALL @MOMGET(CONNECTION, QUEUE2, '@MOMBUFFER'); ¦
_ CALL @MOMVALIDRC; ¦
_ CALL @MOMPUT(CONNECTION, QUEUE1, '@MOMBUFFER', 80); ¦
_ CALL @MOMVALIDRC; ¦
_ CALL @MOMCOMMIT(CONNECTION); ¦
_ CALL @MOMVALIDRC; ¦
_ END; ¦
_ CALL MSGLOG('SHUTDOWN RECEIVED.'); ¦ F
_ QUEUE1 = @MOMCLOSE(CONNECTION, QUEUE1); ¦ G
_ CALL @MOMVALIDRC; ¦ H
_ QUEUE2 = @MOMCLOSE(CONNECTION, QUEUE2); ¦ I
_ CALL @MOMVALIDRC; ¦ J
_ CONNECTION = @MOMDISCONN(CONNECTION); ¦ K
_ CALL @MOMVALIDRC; ¦ L
_ CALL ENDMSG('NORMAL SHUTDOWN DETECTED.'); ¦ M
_ ---
_ ON MOM_INV_MOMMSG :
_ QUEUE1 = @MOMCLOSE(CONNECTION, QUEUE1);
_ QUEUE2 = @MOMCLOSE(CONNECTION, QUEUE2);
_ CONNECTION = @MOMDISCONN(CONNECTION);
_ CALL ENDMSG('INVALID MOM MSG DETECTED.');
 TIBCO Object Service Broker for Open Systems External Environments

74 | Chapter 5 Using the TIBCO Service Gateway for WMQ
See Also TIBCO Object Service Broker Shareable Tools about the MOM shareable tools.
TIBCO Object Service Broker for Open Systems External Environments

| 75
Chapter 6 Using TIBCO Object Service Broker Adapter
for JDBC-ODBC

This chapter describes how to use the TIBCO Object Service Broker Adapter for
JDBC-ODBC.

Topics

• Accessing TIBCO Object Service Broker Using 32-bit ODBC, page 76

• Accessing TIBCO Object Service Broker Using 64-bit ODBC, page 100

• Accessing TIBCO Object Service Broker Using JDBC, page 104
 TIBCO Object Service Broker for Open Systems External Environments

76 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Accessing TIBCO Object Service Broker Using 32-bit ODBC

Overview of ODBC support

What is TIBCO Object Service Broker Adapter for ODBC?

Microsoft’s Open Database Connectivity (ODBC) interface is used by a wide
variety of ODBC-aware applications to access data in ODBC-compliant data
sources. Such DBMSs expose ODBC functionality using Structured Query
Language (SQL).

The ODBC component of TIBCO Object Service Broker Adapter for JDBC-ODBC
is the TIBCO Object Service Broker-specific implementation of the ODBC
application programming interface (API). An application that is unaware of
TIBCO Object Service Broker’s specifics can use it to:

• Start and stop TIBCO Object Service Broker sessions

• Start and stop transactions within a session

• Run TIBCO Object Service Broker rules

• Request metadata related to TIBCO Object Service Broker tables and rules
designated as ODBC stored procedures

• Submit SQL statements to query and modify data in TIBCO Object Service
Broker tables

How Does it Work?

ODBC support for TIBCO Object Service Broker Adapter uses the OpenAccess™
product to expose the ODBC functionality to applications. OpenAccess accepts
SQL statements and translates them into a standardized subset of requests passed
to the TIBCO Object Service Broker-specific software layer. The latter uses the
TIBCO Object Service Broker SDK (C/C++) client layer to handle TIBCO Object
Service Broker sessions and transactions and to communicate with its rules-based
server layer.

When an application requests an ODBC connection to TIBCO Object Service
Broker, a regular TIBCO Object Service Broker session starts. The application uses
standard ODBC function calls to set required connection and statement options. It
submits a SQL statement that the OpenAccess layer parses and breaks into
irreducible units that can be translated into the basic TIBCO Object Service Broker
data requests: FORALL, INSERT, REPLACE, and DELETE. The required actions
are carried out via the SDK (C/C++) and the results are returned to the
OpenAccess layer.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 77
Any number of ODBC cursors can be opened against a TIBCO Object Service
Broker table simultaneously within a transaction. TIBCO Object Service Broker
security settings are fully honored by the ODBC driver for TIBCO Object Service
Broker when accessing tables. Because the SQL standard does not support the
concept of data-parameterized tables, the ODBC driver presents a parameterized
table to the ODBC caller as a flat construct, that is, data parameters are reported as
fields (members of a composite key).

How Can it be Used?

Normally, third party applications make use of the ODBC driver for TIBCO
Object Service Broker exactly the way they use other ODBC drivers. Users can,
however, write their own applications to issue standard ODBC function calls. For
details on programming environments and using ODBC, refer to relevant ODBC
documentation. Refer to ODBC Conformance Levels, page 96 for details on the
ODBC conformance levels supported by the TIBCO Object Service Broker
Adapter for JDBC-ODBC.

Configuring the TIBCO Object Service Broker Adapter for ODBC
The ODBC driver for TIBCO Object Service Broker uses a number of connection
attributes to connect to a TIBCO Object Service Broker node. These attributes are
provided via an ODBC Data Source Name (DSN) that the caller references at
connection time. Alternatively, a method without DSN can be used. Refer to
Connecting Without a DSN on page 81 for details on connecting without using a
DSN.

Creating and Configuring a DSN for the TIBCO Object Service Broker Adapter for JDBC-ODBC

1. Open the ODBC Data Source Administrator.

2. Click the Add... button.

3. In the Create New Data Source dialog, select the TIBCO ODBC driver for the
current release. For example, for the 6.0.0 release, select the TIBCO OSB
6.0.0.0 ODBC Adapter.
 TIBCO Object Service Broker for Open Systems External Environments

78 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
4. Click Finish. The TIBCO OSB ODBC Data Source Setup dialog appears. For
example:

5. In the Setup dialog, enter a name of your data source and, optionally, a
description for this data source.

6. Enter information in the Custom Properties field (refer to Constructing the
Connect String on page 79).

7. Optionally, enter an OSB user name and password. These fields can also be
entered in the Custom Properties field or not at all.

8. Make sure that correct driver is selected for the Service Name. The Service
Name should show the TIBCO ODBC driver selected in step 3.

9. Select Default in the Service Data Source field.

10. Click OK to save the data source configuration.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 79
Testing a Data Source

You can test a data source by pressing the Test button on the Setup dialog. A
Logon to Data Source dialog appears, allowing you to enter a OSB user name and
password and modify connection parameters.

Click the OK button to test whether a connection can be established for the data
source.

Updating a Data Source

You can edit an existing data source by selecting a data source in the ODBC Data
Source Administrator and clicking the Configure button. The dialog displayed is
the same dialog used to create a data source, and described above in Creating and
Configuring a DSN for the TIBCO Object Service Broker Adapter for
JDBC-ODBC.

Connecting to TIBCO Object Service Broker
Applications request a connection to TIBCO Object Service Broker via a
SQLConnect, a SQLDriverConnect, or a SQLBrowseConnect ODBC function call.
If a DSN is referenced, the ODBC driver for TIBCO Object Service Broker assumes
the session startup attributes to be available from the DSN. Therefore, it reads the
Connect String from the DSN. If the caller does not reference a DSN, it is expected
to provide a string that contains, along with the mandatory tokens, the same
elements as the Connect String field in a DSN. Refer to Connecting Without a
DSN on page 81 for details on connecting without using a DSN.

Constructing the Connect String
The value entered in the Connect String field is the actual configuration string of
an ODBC client session to be started by the SQLConnect, the SQLDriverConnect,
or the SQLBrowseConnect ODBC function call referring to this DSN.
 TIBCO Object Service Broker for Open Systems External Environments

80 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
The string is a sequence of keyword/value pairs, separated by semicolons. For
example:

OSBHOST=abc;OSBPORT=9000;UID=JOHN;PWD=JOHN

Keyword Description

OSBHOST A reference to the machine where the Execution
Environment (osMon in case of Windows/Solaris;
Native/CICS Execution Environment in case of z/OS)
is running (“localhost” if connecting locally). Must be
specified with PORT, if NODE is not specified. Cannot
be used with NODE.

OSBPORT The port number defined for the Execution
Environment denoted by HOST. Must be specified
with HOST, if NODE is not specified. Do not use with
NODE.

OSBNODE A reference to an entry in the huron.dir file describing
the TIBCO Object Service Broker nodes available for
connections. Cannot be used with HOST or PORT.
Must be specified if HOST and PORT are not specified.

OSBSESS [optional
Windows/Solaris
only]

The name of a section in the session.prm file. Defaults
to “DEFAULT”.

OSBEE [optional
Windows/Solaris
only]

The name of a section in the ee.prm file. Defaults to
“DEFAULT”.

UID [optional] The user ID for connecting to TIBCO Object Service
Broker. If not available either from the caller at the
connect time or from the connect string, UID defaults
to the value, if any, in the respective section of the
session.prm file.

PWD [optional] The user password corresponding to UID. If not
available either from the caller at the connect time or
from the connect string, PWD defaults to the value, if
any, in the respective section of the session.prm file.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 81
Connecting Without a DSN
The string supplied by way of SQLDriverConnect or SQLBrowseConnect must
contain the mandatory substring:

DRIVER={TIBCO OSB 6.0.0.0 ODBC Adapter};PRT=TIBCO OSB 6 0 0 0

The mandatory substring is followed by a substring constructed according to the
rules in Constructing the Connect String on page 79 and Keyword Description on
page 80. For example:

DRIVER={TIBCO OSB 6.0.0.0 ODBC Adapter};PRT=TIBCO OSB 6 0 0
0;UID=john;PWD=JOHN;OSBSESS=efg.

OSBBROWSE
[optional]

“Y” or “y” for TRUE; “D” or “d” for DEFAULT; any
other value stands for FALSE. TRUE means that TIBCO
Object Service Broker is to start up a BROWSE session.

FALSE means that TIBCO Object Service Broker is to
start up a NOBROWSE session.

DEFAULT means that the TIBCO Object Service Broker
session’s BROWSE attribute is set to the value, if any, in
the respective section of the session.prm file.

OSBCOML
[optional]

COMMIT or ROLLBACK at COMMITLIMIT time.
COMMIT means “commit updates and proceed with
transaction”; ROLLBACK means “roll back changes
and raise a COMMITLIMIT error condition” (standard
behavior).

OSBUNIT0,
OSBUNIT1,
OSBUNIT2,
OSBUNIT3,
OSBUNIT4
[all optional]

Values of the TIBCO Object Service Broker UNIT table
attribute to restrict the result set returned by the ODBC
SQLTables function.

OSBCPAD
[optional]

“Y” or “y” for TRUE; any other value stands for
FALSE. Determines whether fixed-length character
(CHAR) fields should be right- blank-padded by
TIBCO Object Service Broker Adapter for JDBC-ODBC.
 TIBCO Object Service Broker for Open Systems External Environments

82 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Pre-Configured Data Sources
The installation of the TIBCO Object Service Broker Adapter for JDBC-ODBC
creates two ODBC data sources with the following characteristics:

TIBCO Object Service Broker Local

TIBCO Object Service Broker Remote

If the TIBCO Object Service Broker Adapter for JDBC-ODBC is installed on a
computer along with TIBCO Object Service Broker, the TIBCO OSB version Local
DSN is ready for use by an ODBC-aware application. If the ODBC driver for
TIBCO Object Service Broker is to start a session on another computer (for
example, the TIBCO Object Service Broker Adapter for JDBC-ODBC is installed as
a stand-alone client), the TIBCO Object Service Broker Remote DSN must be
updated: namely, <host> should be replaced with the name or IP address of the
computer where the Execution Environment runs.

Data source name TIBCO OSB version Local.

where version is the current release of the
TIBCO Object Service Broker Adapter for
JDBC-ODBC. For example:
TIBCO OSB 6.0.0.0 Local

Connection string osbhost=localhost;osbport=9068

Data source name TIBCO OSB version Remote.

where version is the current release of the
TIBCO Object Service Broker Adapter for
JDBC-ODBC. For example:

TIBCO OSB 6.0.0.0 Remote

Connection string osbhost=localhost;osbport=9068

These two DSNs are removed when the TIBCO Object Service Broker Adapter for
JDBC-ODBC is uninstalled, and they are restored to their initial state when the
TIBCO Object Service Broker Adapter for JDBC-ODBC is reinstalled. Accordingly,
a new DSN should be created if it is to persist, as the installation of the TIBCO
Object Service Broker Adapter for JDBC-ODBC does not affect DSNs except
TIBCO OSB Local and TIBCO OSB Remote.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 83
Configuring TIBCO Object Service Broker Components
The ODBC driver for TIBCO Object Service Broker Adapter interacts with the
following TIBCO Object Service Broker components:

Component Description

Windows/Solaris

osMon The TIBCO Object Service Broker Adapter for JDBC-ODBC
attributes OSBHOST/OSBPORT or OSBNODE fully describe
the osMon instance to be used to establish connections to
TIBCO Object Service Broker.

Execution
Environment

On a connection request, osMon either creates or uses an
already available Execution Environment, which, in turn,
creates a TIBCO Object Service Broker session. The ODBC
driver connection parameters determine which Execution
Environment will be used. The DOB Execution Environment
parameter designates the node in the huron.dir file. This
parameter can be specified either in the mon.prm or in the
ee.prm file.

Note The target Data Object Broker can reside on any of the
platforms supported by TIBCO Object Service Broker.

Session The Execution Environment creates a session for each
connection requested by the ODBC driver for TIBCO Object
Service Broker. If the SESS attribute is included in the connect
string, its value refers to the name of a group in the session.prm
file. The OSBEE, UID,PWD, and OSBBROWSE attributes take
precedence, if they are part of the connect string.
 TIBCO Object Service Broker for Open Systems External Environments

84 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Determining the Rules Search Path (Windows / Solaris)

As part of a session startup procedure, TIBCO Object Service Broker looks up the
rules library denoted by the INSTLIB Execution Environment parameter (usually
referred to as the SITE library), to pre-bind the rules available. This can constitute
a performance setback for the user, especially when working with a Data Object
Broker on z/OS, should the site library contain a large number of rules. This
activity is mostly useless, as none of the TIBCO Object Service Broker Adapter for
JDBC-ODBC’s features depend on it, except for the invocation of trigger rules
associated with TIBCO Object Service Broker tables.

If no trigger rules are associated with TIBCO Object Service Broker tables to be
accessed by the ODBC driver for TIBCO Object Service Broker, the recommended
setting for the SEARCH session parameter is S (system).

If the trigger rules to be potentially invoked can be identified in advance and
moved into a separate library, specify that library as the INSTLIB Execution
Environment parameter, and set the SEARCH parameter to I (installation).

Setting the COML Attribute

Normally, TIBCO Object Service Broker raises a COMMITLIMIT exception
whenever its intent list becomes full. This behavior is the default for the TIBCO
Object Service Broker Adapter for JDBC-ODBC as well. An ODBC application
can, however, submit a SQL statement that would require a longer sequence of
updates than the intent list could hold.

Component Description

z/OS

Native/CICS
Execution
Environment

On a connection request, a standby session within an
Execution Environment is allocated. A reference to a
particular Execution Environment comes as part of the
connection request by the ODBC driver for TIBCO Object
Service Broker (OSBHOST/OSBPORT or OSBNODE). The
Execution Environment's TDS parameter designates the
TIBCO Object Service Broker node.

Session The TIBCO Object Service Broker Execution Environment
uses a standby session for each connection requested by the
ODBC driver for TIBCO Object Service Broker.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 85
If the COML attribute is set to COMMIT, the TIBCO Object Service Broker
Adapter for JDBC-ODBC issues a COMMIT request and proceeds with the SQL
statement until completion. This allows an ODBC application to overcome the
TIBCO Object Service Broker limitation on the intent list’s size. This feature
should be used with care, as transactional integrity is compromised by
intermediate commits during what appears to be one unit of work to the caller.

Setting the BROWSE Attribute

The ODBC driver for TIBCO Object Service Broker interprets the BROWSE
attribute as follows:

The application can effectively change the BROWSE attribute via a
SQLSetConnectOption function call to set the ODBC option
SQL_ACCESS_MODE to either SQL_MODE_READ_WRITE or
SQL_MODE_READ_ONLY.

Using the OSBUNITx Attributes

The connect string can contain the attributes OSBUNIT0, OSBUNIT1, OSBUNIT2,
OSBUNIT3, and OSBUNIT4 to request the TIBCO Object Service Broker Adapter
for JDBC-ODBC to restrict the result set returned by the SQLTables function. If
none of these attributes is specified, no restriction applies. The restriction, if any, is
effective throughout the entire session. The restriction looks similar to
UNIT0=<value1> OR UNIT3=<value1>. Only those of the UNITx attributes
assigned values in the connect string are included in the form of a logical OR
relationship.

TIBCO Object Service Broker Adapter for JDBC-ODBC and Distributed Data

The SQL-compliant notation used by the ODBC driver for TIBCO Object Service
Broker for tables in SQL statements includes three dot-delimited, case-insensitive
character strings:

• [Optional] Catalog, or qualifier: the only recognized value is “TIBCO”. If
used, schema must be specified.

• [Optional] Schema, or owner: the TIBCO Object Service Broker node name
known in TIBCO Object Service Broker as location table parameter.

TRUE All transactions are created in BROWSE mode. This means that no
lock on data is taken, and no update (INSERT, UPDATE, DELETE) is
carried out.

FALSE All transactions are created in NOBROWSE mode.
 TIBCO Object Service Broker for Open Systems External Environments

86 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
• Table: the TIBCO Object Service Broker table name.

Provided L is the home location, that is, the node name of the Data Object Broker
to which the ODBC driver for TIBCO Object Service Broker is connected, an
application can refer to the local instance of table T as follows: TIBCO.L.T, L.T, or
T, whereas TIBCO.R.T and R.T refer to a remote instance of table T residing on
node R. This is analogous to the TIBCO Object Service Broker native notation as in
T(R).

To provide access to a table remotely, the ODBC driver for TIBCO Object Service
Broker does not require that a definition of that table, whether full or minimal, be
available from the local node. Also, a location parameter is not required. The
following rules apply for location evaluation:

• If the location explicitly specified is different from the home location the
request is directed to that location.

• If the location explicitly specified is the home location and the table name
denotes:

— A full definition, the request is processed locally

— A minimal definition, the request is directed to the location derived from
the definition (standard TIBCO Object Service Broker behavior)

• If the location is omitted and the table name denotes:

— A full definition, the request is processed locally

— A minimal definition, the request is directed to the location derived from
the definition (standard TIBCO Object Service Broker behavior)

Locations derived from minimal definitions are honored, whereas locations
derived from full definitions are ignored. This is because the SQL standard
regards the notation T as identical to L.T, where L is T’s home location.

Stored Procedures

Available Function Calls

The ODBC specification provides the following function calls to handle stored
procedures:

Function Name Action

SQLProcedures Returns a result set of rows, each describing the name and
properties of a stored procedure
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 87
A procedure can return the following results:

• Result set (cursor): a tabular construct to be fetched by the client

• Result count: a number indicating how many rows have been affected (-1
means “unknown”)

Designating TIBCO Object Service Broker Rules as ODBC Stored Procedures

TIBCO Object Service Broker rules to be run as ODBC stored procedure must be
pre-registered in TIBCO Object Service Broker's persistent table @IP_PROCS that
has three columns:

• PROCNAME—the name (for example, PROC, for the discussion below) of the
rule

• ARGTAB (optional)—the name (for example, ARGT) of the table representing
the procedure's parameters

• SUMMARY (optional)—the description of the procedure

If ARGTAB is an empty value, PROC is considered neither to return a value nor to
have any parameters.

SQLProcedureCo
lumns

Returns a result set of rows, each describing the name and
properties of a parameter of a stored procedure

SQLPrepare
(SQLExecDirect)

Submits a SQL statement such as {[<r>=]call
<name>[(<v1>,<v2>,…)]}, where <name> is the name of
the procedure, <r> is an optional return value, and <v1>,
<v2>,… are optional parameters of the procedure

SQLExecute
(SQLExecDirect)

Invokes the procedure

SQLMoreResults Switches to the next result, if any, returned by the
procedure. In the discussion below, a sequence of one
SQLExecute or SQLExecDirect call, followed by a series of
SQLMoreResults calls on the same statement handle, is
referred to as stored procedure invocation cycle.

Function Name Action
 TIBCO Object Service Broker for Open Systems External Environments

88 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
If ARGTAB is a non-empty value, it must be the name of TIBCO Object Service
Broker table of type TEM, with the IDgen property set to Y, one data parameter
defined as B 4 and one primary key (for example, ARGK) defined as I B 4. All of
ARGT's fields except ARGK, in their positional order, represent PROC's optional
return value and parameters. If not designated otherwise, PROC is understood to
return no value and to accept INPUT parameters corresponding to all fields of
ARGT, except ARGK.

The designation of a field (for example, ARGF) of table ARGT as a return value or
parameter of a particular type is carried out by setting the field SOURCE of the
occurrence corresponding to ARGF in the FIELDS(ARGT) table instance:

• R – return value (only one per ARGT allowed)

• I (or blank) – INPUT parameter

• O – OUTPUT parameter

Writing TIBCO Object Service Broker Rules as ODBC Stored Procedures
The following requirements apply to the rule (for example, PROC) designated as
an ODBC stored procedure:

• PROC must have exactly two integer arguments (for example, HANDLE and
COUNT):

— On entry, the argument COUNT contains:

— The argument HANDLE is set by the adapter and is guaranteed to have the
same value throughout the entire invocation cycle.

• PROC must not use the RETURN statement

0 - the rule is being passed control for the first time within the current
invocation cycle of PROC (in other words, the client has issued
SQLExecute/SQLExecDirect to invoke PROC)

Positive integer (for example, N) - the rule is being passed control for
the (N+1)-th time within the current invocation cycle of PROC (in other
words, the client has issued SQLMoreResults for the Nth time).
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 89
• At the time PROC relinquishes control, it must have assigned the following
locals (defined by the TIBCO Object Service Broker Adapter for JDBC-ODBC):

— MORE_:

— RESULT_:

The client issues an SQLExecute (or SQLExecDirect) function call, followed by a
series of SQLMoreResults function calls, until it gets the
SQL_DATA_NOT_FOUND return code. On the adapter side, these function calls
are implemented as a respective series of invocations of PROC until it returns N in
MORE_. In TIBCO Object Service Broker terms, these invocations are performed
as separate events, meaning that PROC may maintain any number of any table
occurrences between the calls but must reestablish the current occurrence buffers
every time it is invoked.

In order to get hold of the parameter values passed by the caller, PROC is
expected to issue GET ARGT(HANDLE). In order to assign the procedure's return
value or OUTPUT/INPUTOUTPUT parameter values, PROC has to issue
REPLACE ARGT(HANDLE). These actions can be carried out any number of
times and in any sequence within an invocation cycle.

Y—the current invocation cycle is not over, that is, PROC expects to be
invoked later via at least one more SQLMoreResults call

N (preset by the TIBCO Object Service Broker Adapter for
JDBC-ODBC)—this is the last time PROC is entered within the current
invocation cycle, that is, a subsequent SQLMoreResults will return
SQL_DATA_NOT_FOUND

-1—no result set (cursor) is being returned, the number of rows
affected is unknown

an empty value (preset by the TIBCO Object Service Broker Adapter
for JDBC-ODBC)—neither a result set (cursor) nor a result count are
being returned (this is identical to returning -1)

a negative number other than -1—an error code is being returned;
PROC is not to be called again within the current invocation cycle

an alphanumeric value—the name (for example, CURT) of the TIBCO
Object Service Broker table representing the current cursor for the
client to fetch from
 TIBCO Object Service Broker for Open Systems External Environments

90 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Creating Cursors in TIBCO Object Service Broker Adapter for JDBC-ODBC
Stored Procedures

The TIBCO Object Service Broker Adapter for JDBC-ODBC implementation
allows any number of cursors to be returned by stored procedures, meaning that
no restrictions exist as to the number of times SQLMoreResults can return
SQL_SUCCESS after one SQLExecute/SQLExecDirect call. This is achieved by
having the procedure itself determine whether or not it is finished executing, and
if a result set (cursor) is available at a particular stage.

PROC notifies the caller that a cursor is available by returning a non-empty CURT
value in the RESULT_ local. This value is passed to the caller, so the ODBC fetch
sequence can be carried out by the application against the cursor. This operation
ends up issuing a request similar to FORALL CURT(HANDLE).

Normally, CURT refers to a table of type TEM with one data parameter defined as
B 4. If so, PROC is expected to populate a cursor by issuing INSERT
CURT(HANDLE). The TIBCO Object Service Broker Adapter for JDBC-ODBC
clears the instance CURT(HANDLE) after it has been discarded (for example,
upon a subsequent SQLMoreResults call). If, however, CURT is not of type TEM,
no table clearing occurs.

If CURT has no data parameters, the FORALL request works as if FORALL CURT
was issued. In other cases, an error message is returned.

Object Service Broker ODBC Stored Procedures Emulator
Prior to registering a stored procedure and driving its execution via an ODBC
client, TIBCO recommends to run and debug it in the Workbench using the
emulator provided as a standalone rule IP_PROC_DRV. This mode allows you to
detect most of the coding errors that are difficult to fix when running the rule as a
stored procedure, because rule dumps are not readily available then. Here are the
tasks to follow:

1. Start the workbench.

2. Write and save your stored procedure (rule), for example PROC.

3. If the stored procedure returns a value or accepts or modifies any parameters,
define a table, for example ARGT, of type TEM, with IDgen=Y and one data
parameter of syntax B 4.

4. Execute rule IP_SMPL_DRV(PROC,ARGT).

5. If ARGT is a non-empty name, a table editor screen is displayed. Enter the
initial values for parameters (represented by ARGT's fields).

6. Browse the message log that contains either a rule dump (in case of error) or a
collection of lines representing the output produced by PROC in a context
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 91
similar to one established by the TIBCO Object Service Broker Adapter for
JDBC-ODBC.

Sample
A sample rule IP _SMPL_PROC is provided with the TIBCO Object Service
Broker Adapter for JDBC-ODBC:

IP_SMPL_PROC (HANDLE, COUNT);
_ LOCAL @WHO;
_ ---
_ COUNT = 0; | Y N N N
_ COUNT = 1; | Y N N
_ COUNT = 2; | Y N
_ --+--------
_ GET @IP_SMPL_ARG(HANDLE); | 1 1
_ @WHO = @IP_SMPL_ARG.WHO; | 2 2
_ FORALL @IP_SMPL_DATA WHERE WHO = @WHO : | 3
_ @IP_SMPL_CUR.SENTENCE = @WHO || ' eats ' || |
_ @IP_SMPL_DATA.WHAT; |
_ INSERT @IP_SMPL_CUR(HANDLE); |
_ END; |
_ FORALL @IP_SMPL_DATA WHERE WHO ^= @WHO : | 3
_ @IP_SMPL_CUR.SENTENCE = @WHO || ' does not eat ' || |
_ @IP_SMPL_DATA.WHAT; |
_ INSERT @IP_SMPL_CUR(HANDLE); |
_ END; |
_ MORE_ = 'Y'; | 1 4
_ RESULT_ = '@IP_SMPL_CUR'; | 5 4
_ MORE_ = 'N'; | 5
_ ---

When invoked as stored procedure, this rule:

• On first call, produces no results and indicates more calls expected

• On second call, returns a cursor and indicates more calls expected

• On third call, returns a cursor and marks the invocation cycle as finished
 TIBCO Object Service Broker for Open Systems External Environments

92 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Execute IP_SMPL_DRV(IP_SMPL PROC_, @IP_SMPL_ARG); enter “man” (or
“bug”) for WHO in the table editor screen and save; the message log should look
similar to:

=== ARGUMENTS ===
1 man
Pass 0; MORE_: Y,
================
Pass 1; MORE_: Y; RESULT_: @IP_SMPL_CUR
================
1 man eats meat
2 man eats bread
3 man eats fish
Pass 2; MORE_: N; RESULT_: @IP_SMPL_CUR
================
1 man does not eat grass
2 man does not eat wood
=== ARGUMENTS ===
1 man

This rule is registered in @IP_PROCS as

PROCNAME ARGTAB
---------------- ----------------
IP_SMPL_PROC @IP_SMPL_ARG

Accordingly, executing the statement {call IP_SMPL_PROC(‘man’)} via the TIBCO
Object Service Broker Adapter for JDBC-ODBC must yield same results as above.

Notes on Behavior

Supported TIBCO Object Service Broker Table Types
The following TIBCO Object Service Broker internal table types are supported:

TDS EES SES

TEM SUB PRM

EXP IMP VSM

ADA DAT DB2

IDM IMS SLK
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 93
The TIBCO Object Service Broker Adapter for JDBC-ODBC is oblivious of the
tables of any other internal table type, even if they are present in the TIBCO
Object Service Broker database. Some restrictions apply due to the nature of a
particular table type, namely:

• EXP tables can only be inserted.

• PRM and IMP cannot be modified.

• EES, SES, TEM, EXP do not exhibit transactional behavior, that is, the updates
are applied immediately and cannot be rolled back.

• SUB tables against tables of the types listed above, if available, exhibit the
behavior of their respective base types.

TIBCO Object Service Broker internal table types are not exposed to an ODBC
caller. Instead, the following ODBC table types are assigned to table definitions:

See Also TIBCO Object Service Broker Managing Data for information about table types.

Using Parameterized Tables
As the SQL standard does not provide for the concept of data-parameterized
tables, the TIBCO Object Service Broker Adapter for JDBC-ODBC presents a
parameterized table to the ODBC caller as a “flat” construct, that is, data
parameters are reported as fields. They are considered, in their natural order, as
most-significant members of a composite primary key preceding the actual
primary keys in a table definition. In their capacity as fields, data parameters can
be used in field lists, WHERE clauses, and so on.

To enable the use of data parameters in a WHERE clause against a table, the
TIBCO Object Service Broker Adapter for JDBC-ODBC dynamically creates
against that table a PRM view that allows the full resolution of the logical
criterion. This is possible only for the TDS, EES, SES, and TEM table types, as well
as SUB tables against those.

SYSTEM
TABLE

All definitions whose TIBCO Object Service Broker internal table
type is supported and whose AUTHOR attribute is HURON or
HURON2.

VIEW All PRM and SUB definitions that are not considered SYSTEM
TYPE.

TABLE All the remaining definitions.
 TIBCO Object Service Broker for Open Systems External Environments

94 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
For those table types that do not allow a PRM definition, the following restriction
applies: if the parsing of the WHERE clause does not yield a well-defined set of
data parameter instances, the request is rejected as invalid. In this context, the
expression “well-defined set” means zero or more fully specified data parameter
instances, for example:

• WHERE P > 0 is rejected

• WHERE P LIKE '%A' is rejected

• WHERE P=1 OR P=7 is accepted if P is the only data parameter

• WHERE P1=1 AND P2='A' is accepted if P1 and P2 are the only two data
parameters

How Rows are Replaced
The TIBCO Object Service Broker Adapter for JDBC-ODBC replaces rows
whenever an UPDATE <table> SET… WHERE… statement is submitted. The
WHERE clause is optional but, if it is part of the statement, it can mention any
field, including data parameter and/or primary keys. The SET group could
require that these fields be assigned new values, for example, the following
statement is completely valid: UPDATE T SET p=0, k='a' WHERE p=1 AND
k='b'. In this example, p is assumed to be a data parameter and k, a primary key.

To carry out this UPDATE request, the TIBCO Object Service Broker Adapter for
JDBC-ODBC first deletes the row denoted by the WHERE clause and then inserts
a new row. This technique implies that two entries are added, transparently for
the caller, to the current transaction’s intent list.

How Transactions are Handled
The TIBCO Object Service Broker Adapter for JDBC-ODBC creates a TIBCO
Object Service Broker transaction upon establishing a connection to TIBCO Object
Service Broker. All subsequent activities are carried out within the boundaries of
this transaction, until a commit/rollback request is encountered. While ODBC
applications have no means to start transactions explicitly, they do control the
termination of transactions via the SQL_AUTOCOMMIT connection option
setting:

• If the SQL_AUTOCOMMIT option is set to SQL_AUTOCOMMIT_ON, every
successful update action triggers a transaction switch, that is, the currently
running transaction is implicitly terminated and a new transaction is created.

• If the SQL_AUTOCOMMIT option is set to SQL_AUTOCOMMIT_OFF, the
application can terminate the current transaction at any time via a
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 95
SQLTransact (SQLEndTrans) function call. A new transaction is created
immediately, that is, before control is returned to the caller of this function.

The TIBCO Object Service Broker Adapter for JDBC-ODBC closes all open cursors
at transaction termination time, but it preserves the state of all “prepared”
statement contexts. Nested transactions are neither supported nor created
implicitly.

Support for Distributed Transactions (Windows, Solaris)
The TIBCO Object Service Broker Adapter for JDBC-ODBC provides limited
support for distributed transactions that a caller initializes and manages via the
Microsoft Distributed Transaction Coordinator (MS DTC) product. To exercise
this functionality with a COM, OLE DB, or ODBC client, follow the specifications
described in the Microsoft documentation. There is no support for XA-compliant
callers, that is, the SQL_ATTR_ENLIST_IN_XA option is unsupported.

The sequence of events is as follows:

1. The caller starts a distributed transaction and requests, via MS DTC, that the
TIBCO Object Service Broker Adapter for JDBC-ODBC enlist.

2. MS DTC invokes the TIBCO Object Service Broker Adapter for JDBC-ODBC’s
SQLSetConnectOption function with SQL_ATTR_ENLIST_IN_DTC as option
notation and the transaction’s handle as option value.

3. The TIBCO Object Service Broker Adapter for JDBC-ODBC creates a resource
manager (RM) if one does not already exist. It marks the current connection as
busy and enlists it on the transaction via the RM.

The enlistment procedure effectively passes to MS DTC the pointers to the
prepare-to-commit, commit, and rollback callbacks.

4. The caller requests MS DTC to commit or roll back the transaction.

To commit the transaction, MS DTC invokes the prepare-to-commit callback,
which, in the current implementation of the TIBCO Object Service Broker
Adapter for JDBC-ODBC, always reports success. MS DTC invokes the
commit callback or the rollback callback in the TIBCO Object Service Broker
Adapter for JDBC-ODBC.

5. The TIBCO Object Service Broker Adapter for JDBC-ODBC schedules the
action to be carried out asynchronously and returns control to MS DTC.

Transactions inherit their BROWSE mode from the BROWSE attribute passed to
the TIBCO Object Service Broker Adapter for JDBC-ODBC at startup time (or
changed subsequently by the ODBC application). A BROWSE transaction can
exist indefinitely without running short of resources, as it refrains from taking
locks that can be released only at transaction end.
 TIBCO Object Service Broker for Open Systems External Environments

96 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
6. When the action is done, the TIBCO Object Service Broker Adapter for
JDBC-ODBC notifies MS DTC via MS DTC’s callback.

7. MS DTC invokes the TIBCO Object Service Broker Adapter for JDBC-ODBC’s
SQLSetConnectOption function with SQL_ATTR_ENLIST_IN_DTC as option
notation and NULL as option value.

8. The TIBCO Object Service Broker Adapter for JDBC-ODBC marks the
connection as free for use.

ODBC Conformance Levels
The 32-bit ODBC driver bases its ODBC Conformance Levels on those supported
by OpenAccess Software’s OpenAccess™. Currently, the TIBCO Object Service
Broker Adapter for JDBC-ODBC uses OpenAccess 7.0. Refer to the OpenAccess
manual for more information.

SQL Conformance

Level of support: Minimum+, which includes SELECT, INSERT, UPDATE,
DELETE, SELECT FOR UPDATE, Expressions, Nested queries, and Scalar
functions.

ODBC API Conformance
All core and Level 1 and most Level 2 Microsoft ODBC 3.51 API function calls are
supported. Use the SQL GetFunctions function call to see a full list.

Error Codes and Messages
The TIBCO Object Service Broker Adapter for JDBC-ODBC follows the ODBC
specification with respect to handling error situations, and returns the following
to the caller of the SQLError function:

• SQLSTATE: a five-character string identifying the error situation.

• Native error code: a numeric value specific to the TIBCO Object Service
Broker Adapter for JDBC-ODBC.

• The TIBCO Object Service Broker Adapter for JDBC-ODBC provides no DDL
functionality such as CREATE TABLE.

• TIBCO Object Service Broker table and field names cannot be longer than 16
characters.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 97
• Error message: a character string containing a text error message. The string is
prepended with one or more component identifiers in square brackets. If the
last of those identifiers is [TIBCO Object Service Broker ODBC], the message
comes from the TIBCO Object Service Broker Adapter for JDBC-ODBC.
Otherwise, another software layer between the caller and the TIBCO Object
Service Broker Adapter for JDBC-ODBC is responsible for the message.

SQLSTATE Native
Error Error Message

01000 -2 COMMITLIMIT has been reached.

23000 -4 NULL in non-nullable field.

S1000 -12 DEFINITION inaccessible/corrupt or unsupported
TABLE type.

S1000 -16 ACCESSFAIL: check your definition.

S1000 -24 Reference check on field failed.

23000 -28 Invalid data in WHERE clause.

22005 -32 Resource locked by another session.

40001 -36 Insufficient security clearance.

42000 -40 Unrecoverable error in TIBCO Object Service Broker.

S1000 -44 External Server unavailable.

S1000 -64 Peer/External Server unavailable (or invalid TIBCO
Object Service Broker NODE).

S1000 -68 SERVERFAIL.

S1000 -80 Data conversion error while handling row.

07006 -98 SDK (C/C++) general error.

S1000 -99 Software version mismatch: contact TIBCO support.

S1000 -200 Invalid table PARAMETER value(s).

S1000 -207 Error while invoking/running EVENT rule.

37000 -208 Attempt to modify a PRM- or IMP-type TABLE.
 TIBCO Object Service Broker for Open Systems External Environments

98 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
37000 -209 Action other than INSERT against an EXP-type table.

37000 -210 Attempt to modify an IMP-type TABLE.

37000 -211 Attempt to modify a PRM-type TABLE.

37000 -212 TRANSACTION is browse-only.

37000 -213 TABLE is read-only, or TRANSACTION is browse-only.

37000 -253 SOURCE definition inaccessible/corrupt or wrong
TABLE type.

23000 -255 Failure to INSERT row.

23000 -256 Failure to REPLACE row.

S1000 -257 Failure to DELETE row.

08001 -270 Unable to create SESSION (see the logs for details).

S1000 -271 CLI Tabular Interface general error.

S1000 -272 Failure to COMMIT data.

S1001 -275 Short of memory.

S1001 -276 Too many SESSIONs.

S1090 277 NAME too long.

37000 -278 Table PARAMETER too long.

S1000 -286 Value is NULL.

S1001 -288 Value too long to fit in buffer.

01004 -289 Data right-truncated.

S1090 -1100 Unexpected DAM request (internal logic error).

S1090 -1099 Only TIBCO supported as CATALOG (QUALIFIER).

S1C00 -1098 Search pattern for CATALOG (QUALIFIER) not
supported.

SQLSTATE Native
Error Error Message
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 32-bit ODBC | 99
For positive values of the Native Error Code, refer to Chapter 7, Using TIBCO
Object Service Broker SDK (C/C++), on page 109.

S1C00 -1097 Search pattern for SCHEMA (OWNER) not supported.

01S00 -1096 Only local SCHEMA (OWNER) supported for stored
procedures.

01S00 -1095 Invalid keyword in connection string.

S1001 -1094 Too many tables requested for transaction.

S1C00 -1093 PREPARE TO COMMIT not supported.

01S02 -1092 QUALIFIER (CATALOG) reset to TIBCO.

01S02 -1091 Asynchronous processing not supported. Option reset
to OFF.

37000 -1090 DATA SOURCE is read-only. Persistent data updates
disallowed.

S1C00 -1089 Option value not supported.

S1010 -1088 Attempt to release HENV while sessions active.

S1011 -1087 Unable to set TXN isolation while transaction open.

23000 -1086 Table PARAMETER[s] incomplete/ambiguous.

23000 -1085 NULL in table PARAMETER.

23000 -1084 NULL in primary key.

07005 -1083 No columns to describe.

S1002 -10824 Column number greater than number of columns in
result set.

SQLSTATE Native
Error Error Message
 TIBCO Object Service Broker for Open Systems External Environments

100 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Accessing TIBCO Object Service Broker Using 64-bit ODBC

Overview of 64-bit ODBC Support
The 64-bit ODBC driver for TIBCO Object Service Broker allows a 64-bit
application to access and modify TIBCO Object Service Broker table data and run
stored procedures. The 64-bit ODBC driver is implemented using a 3-tier
architecture. A "thin" 64-bit ODBC driver communicates via TCP/IP with a SQL
service that in turn passes data access request to TIBCO Object Server Broker SDK
using TIBCO Object Service Broker SDK for Java. The SQL service used by the
64-bit ODBC service is the same SQL service used by the JDBC driver and literally
can be shared with JDBC drivers.

The SQL service is installed automatically by the OSB SDK Client Installer.

Running the SQL Service
To use the 64-bit ODBC driver you must first start the SQL Service.

On Windows systems, the SQL Service is installed as a Windows Service and is
automatically started each time you reboot your machine. The services report
problems in log files located in the directory jdbc/service/logging. When
running production systems, you should periodically clear these directories of old
log files.

On UNIX systems, scripts are provided that enable a system administrator to set
the SQL Service up to run as a daemon process. See Running the SQL Service on
page 104.

Creating and Configuring a Data Source
The ODBC driver for TIBCO Object Service Broker uses a number of connection
attributes to connect to a TIBCO Object Service Broker node. These attributes are
provided via an ODBC Data Source Name (DSN) that the caller references at
connection time. The attributes supported by the 64-bit ODBC driver are the same
as the connection parameters for the ODBC driver for 32-bit applications. Please
refer to Keyword Description on page 80 for a description of the attributes.

The Microsoft ODBC Data Source Administrator is used to create ODBC data
sources. However, on 64-bit Windows systems there are two versions of the
administrator tool, one for 32-bit application and one for 64-bit application. For
the 64-bit ODBC driver, use the Data Source Administrator that's located in the
"Administrative Tools".
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 64-bit ODBC | 101
To create a new data source:

1. Open the ODBC Data Source Administrator from Administrative Tools menu
in the control panel.

2. Click the Add... button.

3. In the Create New Data Source dialog, select the 64-bit TIBCO ODBC driver
for the current release. For example, for the 6.0.0 release, select the driver
named TIBCO OSB 6.0.0.0 ODBC 64-bit Adapter.

4. Click the Finish button. The TIBCO OSB ODBC Data Source Setup dialog
appears. For example:

5. In the Data Source Name and Descriptions boxes, enter a name of your data
source and, optionally, a description for this data source.

6. Set the Service Host name to the name of the machine where the SQL service
is running. Normally this name is set to localhost.

7. Note: The Use LDAP check box and other tabs of the data source editor are
currently not supported.

8. Set the Service Port to the port number of the SQL service port. By default the
TIBCO client installer sets this to 19988.

9. Set the Service Data Source to OSB. Please note that Service Host and Service
Port must be set if you wish to browse what Service Data sources are
available.
 TIBCO Object Service Broker for Open Systems External Environments

102 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
10. In the Custom Properties field, enter the connection attributes required to
connect to the TIBCO Object Service Broker node. Please refer to Keyword
Description on page 80 for a description of the attributes.

11. Optionally, click on the Test Connection button to verify that the data source
is functional.

12. Click Apply to immediately save the values you have entered during the
editing processes.

13. Click OK to close the data source editor.

Editing an Existing Data Source

You can edit an existing data source by selecting a data source in the ODBC Data
Source Administrator and clicking the Configure button. The dialog displayed is
the same dialog used to create a data source.

Using the 64-bit ODBC Driver
The 64-bit ODBC, 32-bit ODBC, and the JDBC drivers share the same backend
implementation. Error codes, messages, implementation of stored procedures,
and table behavior are the same across the interfaces.

For details on these processes, see Accessing TIBCO Object Service Broker Using
32-bit ODBC on page 76.

Connecting Without a DSN
The string supplied by way of SQLDriverConnect or SQLBrowseConnect must
contain the mandatory substring:

DRIVER={"driver-name"};ServerDataSource=OSB;HOST=TIBCO-SQL-Service-host-na
me;PORT=TIBCO-SQL-Service-port;

where :

• driver-name is the name of the 64-bit TIBCO OSB driver for ODBC.

• TIBCO-SQL-Service-host-name is the name of the host where the TIBCO SQL
Service is running.

• TIBCO-SQL-Service-port is the port number of the TIBCO SQL Service.

When testing a data source please remember that the SQL service and your
TIBCO Object Service Broker must be started to successfully test a data source.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using 64-bit ODBC | 103
The mandatory substring is followed by a substring constructed according to the
rules in Constructing the Connect String and Keyword Description on page 80.
For example:

DRIVER={"TIBCO OSB 6.0.0.0 ODBC 64bit
Adapter"};ServerDataSource=OSB;HOST=localhost;PORT=19988;OSBHOST=l
ocalhost;OSBPORT=9068;UID=HURON1;PID=HURON1;

ODBC Conformance Levels
The 64-bit ODBC driver bases its ODBC conformance levels on those supported
by OpenAccess Software’s OpenAccess™. Currently, the TIBCO Object Service
Broker Adapter for JDBC-ODBC uses OpenAccess 7.0. Refer to the OpenAccess
manual for more information.
 TIBCO Object Service Broker for Open Systems External Environments

104 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
Accessing TIBCO Object Service Broker Using JDBC

Overview of JDBC support
The TIBCO Object Service Broker JDBC-ODBC Adapter provides JDBC access to
any Java-enabled applet, application, or application server. JDBC supports
interfaces for querying and updating data and running stored procedures in a
database. The JDBC driver for TIBCO Object Service Broker Adapter for
JDBC-ODBC is a type 4 driver and is compliant with the JDBC 3.0 specification.

The Adapter is implemented by a 3-tier architecture. Your Java application uses a
"thin" JDBC driver to access TIBCO Object Server Broker tables and rules. The
"thin" client communicates via TCP/IP with a SQL service which processes SQL
requests and handles joins. The SQL service runs only on Open Systems and uses
the TIBCO Object Server Broker SDK for Java to access and modify Object Service
Broker table data.

Running the SQL Service
To use the JDBC client driver you must first start the SQL Service.

On Windows the Service is installed as a Windows Service and can be
automatically started each time you reboot your machine.

On UNIX use the script files startservices.sh and stopservices.sh in the
directory jcbc/service/admin to start and stop the SQL Services. The services
run as daemon processes, so you can close the terminal window after starting the
services without terminating the services.

A UNIX system administrator can use these scripts to change system start-up so
that the SQL services automatically are started and stopped each time a system is
booted and shutdown. Similar scripts are available for a Windows installation.

The services report problems in log files located in the directory
jdbc/service/logging. When running production systems, you should
periodically clear these directories of old log files.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using JDBC | 105
Setting the CLASSPATH
The JDBC Client must be included in your CLASSPATH variable. The
CLASSPATH is the search string your Java Virtual Machine (JVM) uses to locate
the JDBC driver on your computer. If it is not defined on your CLASSPATH, you
will receive a "class not found" error when trying to load the JDBC Client. You can
find the driver jar file, oajc.jar, in the jdbc/client directory of your TIBCO Object
Service Broker JDBC Adapter install.

Registering the JDBC Client
To use the JDBC Client, you first must register it with the JDBC Driver Manager.
That can be accomplished in one of three ways:

1. Set the Java property jdbc.drivers using the Java -D option. The jdbc.drivers
property is defined as a colon-separated list of driver class names. For
example:
java -Djdbc.drivers=com.ddtek.jdbc.openaccess.OpenAccessDriver

2. Set the Java property jdbc.drivers from within your Java application or applet.
To do this, include the following code in your application or applet, and call
DriverManager.getConnection():
Properties p = System.getProperties();
p.put ("jdbc.drivers",
"com.ddtek.jdbc.openaccess.OpenAccessDriver");
System.setProperties (p);

3. Explicitly load the driver class using the standard Class.forName() method.
To do this, include the following code in your application or applet and call:
DriverManager.getConnection():
Class.forName("com.ddtek.jdbc.openaccess.OpenAccessDriver");

Specifying the JDBC Driver Connection URLs
When creating a JDBC connection you need to specify a connection URL that
includes Adapter SQL Service connection information and TIBCO Object Service
Broker parameters. A connection URL for the TIBCO Object Service Broker JDBC
driver follows the following format:

jdbc:openaccess://hostname:port;ServerDataSource=OSB;CustomProperties
=(key=value;...)

where:

hostname is the name of the host or the IP address where the SQL Service is
running. If the JDBC driver is running on the same machine where the Adaptor
SQL Service is running then LOCALHOST will suffice.
 TIBCO Object Service Broker for Open Systems External Environments

106 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
port is the TCP/IP port on which the SQL Server is listening. A default installation
of the SQL Server uses the port 19988.

ServerDataSource must be set to OSB.

CustomProperties is set to the connection parameter required to connect to your
Object Service Broker Execution Environment.

Note that JDBC URL parameters are separated by semicolons.

The following keywords are supported in CustomProperties JDBC parameter
and are the same properties supported by the Object Service Broker ODBC
Adapter:

Table 5 Supported JDBC Custom Properties Keywords

Keyword Description

OSBHOST is the reference to the machine where the Execution Environment (osMon in case
of Windows/Solaris; Native/CICS Execution Environment in case of z/OS) is
running ("localhost" if connecting locally). This parameter must be specified with
PORT, if NODE is not specified but cannot be used with NODE.

OSBPORT is the port number defined for the Execution Environment denoted by HOST. This
parameter must be specified with HOST, if NODE is not specified but cannot be
used with NODE.

OSBNODE is a node name entry in the huron.dir file that describes the TIBCO Object Service
Broker nodes available for connections. This parameter cannot be used with
HOST or PORT. It must be specified if HOST and PORT are not specified.

OSBSESS [optional Windows/Solaris only] is the name of a section in the session.prm file
and defaults to "DEFAULT".

OSBEE [optional Windows/Solaris only] is the name of a section in the ee.prm file and
defaults to "DEFAULT".

OSBUID [optional] is the user ID for connecting to TIBCO Object Service Broker. If not
available OSBUID defaults to the value, if any, in the respective section of the
session.prm file.

OSBPWD [optional] is the user password corresponding to OSBUID. If OSBPWD defaults to
the value, if any, in the respective section of the session.prm file.
TIBCO Object Service Broker for Open Systems External Environments

Accessing TIBCO Object Service Broker Using JDBC | 107
Using Stored Procedures
Object Service Broker Rules can be called as stored procedure through the JDBC
driver. Such Rules must be pre-registered in TIBCO Object Service Broker's
persistent table @IP_PROCS. Java client code can use the CallableStatement JDBC
interface object to pass parameters and execute Rules. Please refer to the "Using
TIBCO Object Service Broker ODBC Adapter" chapter and review the
"Designating TIBCO Object Service Broker Rules as ODBC Stored Procedures"
and the "Writing TIBCO Object Service Broker Rules as ODBC Stored Procedures"
sections for more information about defining a stored procedure in the TIBCO
Object Service Broker. Also review the stored procedure sample in the
jdbc/samples directory.

OSBBROWSE [optional] "Y" or "y" for TRUE; "D" or "d" for DEFAULT; any other value stands for
FALSE.

TRUE means that TIBCO Object Service Broker is to start up a BROWSE session.

FALSE means that TIBCO Object Service Broker is to start up a NOBROWSE
session.

DEFAULT means that the TIBCO Object Service Broker session's BROWSE
attribute is set to the value, if any, in the respective section of the session.prm file.

OSBCOML [optional] COMMIT or ROLLBACK at COMMITLIMIT time.

COMMIT means "commit updates and proceed with transaction";

ROLLBACK means "roll back changes and raise a COMMITLIMIT error
condition" (standard behavior).

OSBUNIT0,
OSBUNIT1,
OSBUNIT2,
OSBUNIT3,
OSBUNIT4

[all optional] are values of the TIBCO Object Service Broker UNIT table attribute
to restrict the table definitions returned.

OSBCPAD [optional] "Y" or "y" for TRUE; any other value stands for FALSE. Determines
whether fixed-length character (CHAR) fields should be right- blank-padded by
TIBCO Object Service

Table 5 Supported JDBC Custom Properties Keywords

Keyword Description
 TIBCO Object Service Broker for Open Systems External Environments

108 | Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
TIBCO Object Service Broker for Open Systems External Environments

| 109
Chapter 7 Using TIBCO Object Service Broker

SDK (C/C++)

This chapter describes how to use the TIBCO Object Service Broker SDK for C and
C++.

Topics

• Overview, page 110

• SDK (C/C++) Functions, page 113

• Sample Application Using the SDK (C/C++), page 138
 TIBCO Object Service Broker for Open Systems External Environments

110 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Overview

The TIBCO Object Service Broker SDK (C/C++) is an application programming
interface (API) used by an application to:

• Start and stop TIBCO Object Service Broker sessions

• Start and stop transactions within a session

• Call TIBCO Object Service Broker rules within the context of a transaction

The SDK (C/C++) is installed with TIBCO Object Service Broker.

Requirements

NLS

If you are connecting to an Execution Environment on z/OS, ensure that NLS is
set up, with values in @NLS1 similar to the following example, according to your
environment:

 BROWSING TABLE : @NLS1
 COMMAND ==>
 SCROLL: P
 KEY COMPTYPE COMPNAME LOCALE_CP
 ----------- ---------------- -------------------------------- -------------------
 _ 1 SELF ENGL.IBM-037
 _ 2 REMOTE ENGL.IBM-037

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 19=SHOW 13=PRINT 3=END 14=EXPAND
TIBCO Object Service Broker for Open Systems External Environments

Overview | 111
How Does It Work?
The SDK (C/C++) supplies a dataIn/dataOut commarea mechanism for
unformatted binary data exchange between an application and a TIBCO Object
Service Broker rule. A rule called via the SDK (C/C++) can use all the TIBCO
Object Service Broker facilities except the text-presentation DISPLAY statement.
To facilitate commarea binary data exchange between an application and a rule,
developers can use TIBCO Object Service Broker MAP tables to process data in
the dataIn commarea and to return data back to the application through the
dataOut commarea.

Remote Communication

The SDK (C/C++) is a remote interface that communicates with TIBCO Object
Service Broker. TIBCO Object Service Broker on all platforms supports this
interface in the same way. User applications can communicate with different
TIBCO Object Service Broker installations on different platforms with no change
to their code. They use the SDK (C/C++) whenever they want to control a session
in another computer or in another work space on the same z/OS computer.

How Can It Be Used?
With the SDK (C/C++), you write an application to manage a TIBCO Object
Service Broker session using a set of subroutines to an external program. Using
the SDK (C/C++) functions, you can code in whichever programming language
you prefer. To make the services of TIBCO Object Service Broker available to your
program, you write specific routines that make use of the SDK (C/C++) and that
exert complete control over TIBCO Object Service Broker sessions. Refer to
Sample Application Using the SDK (C/C++) on page 138.

Compiling and Linking
The SDK (C/C++) presents its interface to the client in an executable module
(oscli.dll on Windows, and liboscli.so on Solaris) that exposes its entry points. To
use the interface, an application links to the executable according to application
platform and environment rules. On Windows, the oscli.lib import library is
provided to link to oscli.dll. The format of the entry points is supplied in the
oscli.h C header file.
 TIBCO Object Service Broker for Open Systems External Environments

112 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Thread Safety
The SDK (C/C++) client is not thread safe at a session level. In other words, when
two threads try to issue an SDK (C/C++) cliProc call on the same session area, the
behavior of the second client is unpredictable.

Constants
To facilitate application development, oscli.h contains the following preprocessor
definitions:

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language,
writing rules, and transaction processing.

TIBCO Object Service Broker Parameters about starting sessions and session
Execution Environment parameters.

TIBCO Object Service Broker Shareable Tools about the ENDMSG shareable tool.

CLI_MAXRULEEXPRLEN The maximum length of a rules call string. For
more information, refer to CALLRULE – Call a
Rule on page 121.

The value is 514.

CLI_MAXENDMSGLEN The maximum length of a rules end message. For
more information, refer to GETENDMSG –
Retrieve a Rules End Message on page 125 and to
the ENDMSG shareable tool.

The value is 148.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 113
SDK (C/C++) Functions

This section contains a brief overview of the functions of the SDK (C/C++) client.

Rules Calls, Session and Transaction Management

Code Page Setting and Error Retrieval

Commarea Helper Functions

This group of functions facilitate dataIn and dataOut commarea processing. All
the functions work with the format described in CALLRULE – Call a Rule on
page 121. Generally, these functions do not validate memory pointers passed as
parameters.

Name Brief description On

cliProc Serves as the main SDK (C/C++) entry
point for processing STARTSS, STARTTR,
CALLRULE, STOPTR, STOPSS, RESETSS,
GETENDMSG, and SESSACTIVE requests.

page 115

cliExecTran Performs transaction start, rules call, and
transaction end as a single SDK (C/C++)
call.

page 127

Name Brief description On

cliSetCodepage Sets an SDK (C/C++)/SDK (Java) code
page.

page 129

cliErrorReasonDescr Retrieves the textual description of an error
reason code.

page 131

Name Brief description On

cliCommCreate Allocates memory and formats it according to
the commarea format.

page 131

cliCommCreate1 Allocates and formats a single-segment
commarea.

page 132
 TIBCO Object Service Broker for Open Systems External Environments

114 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
C Macros

cliCommDelete Deletes a commarea created by
cliCommCreate or by cliCommCreate1.

page 132

cliCommFormat Formats memory according to the commarea
format.

page 133

cliCommFormat1 Formats a single-segment commarea. page 133

cliCommSegment Retrieves a pointer to a commarea segment. page 134

cliCommSegments Retrieves the number of segments in a
commarea.

page 134

cliCommSegSize Retrieves the commarea segment size. page 135

cliCommSize Calculates the total commarea size. page 135

cliCommSizeCalc Calculates the size of a commarea for a given
structure.

page 136

cliCommSizeCalc1 Calculates the size of a single-segment
commarea, given the size of the segment.

page 136

Name Brief description On

Name Brief description On

LLCOPY_CSTR Copies a zero-terminated string to a string with
a two-byte length prefix.

page 136

LLCOPY_MEM Copies a string with an explicitly specified
length to a string with a two-byte length prefix.

page 136

LLDECLARE Declares a string with a two-byte length prefix. page 137

LLSETLEN Sets a two-byte length prefix. page 137

LLSTR Returns a pointer to the text part of a string that
has a two-byte length prefix.

page 137

LLSTRLEN Returns the string length from a string that has a
two-byte length prefix.

page 137
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 115
See Also Appendix A, SDK (C/C++) and SDK (Java) Error Reason Codes, on page 179 for
a list of error reason codes issued in relation to the SDK (C/C++).

cliProc
cliProc is the main SDK (C/C++) function. It accepts specific operation requests
and the meaning of most cliProc parameters depends on the specifics of the
request.

void cliProc(CLI_SESSION session,
 const char * operation,
 char * operand,
 const char * params,
 const void * dataIn,
 void * dataOut,
 char * retData,
 int * retCode);

Parameters:

session Application-supplied session work area. The
SDK (C/C++) client uses this area to store all session
related internal data. For the SDK (C/C++) client to
function properly, the application must not modify
contents of this area.

operation Pointer to the name of the request. Valid values are:

Operation Refer to ...

STARTSS STARTSS – Start a Session on page 118.

STARTTR STARTTR – Start a Transaction on page 120.

CALLRULE CALLRULE – Call a Rule on page 121.

STOPTR STOPTR – Stop a Transaction on page 124.

STOPSS STOPSS – Stop a Session on page 124.

RESETSS RESETSS – Drop a Connection to a Session on
page 125.
 TIBCO Object Service Broker for Open Systems External Environments

116 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
These values are in ASCII for Open Systems, and in EBCDIC for z/OS. The
strings do not have to be zero-terminated. To determine what operation is
requested, the SDK (C/C++) client compares the supplied request name to these
names until the match is found. If the request name is not one of these, cliProc
fails with CLI_INVREQUEST (2) as return code.

GETENDMSG GETENDMSG – Retrieve a Rules End Message
on page 125.

SESSACTIVE SESSACTIVE – Inquire Whether Session Is Active
on page 126.

Operation Refer to ...

operand Pointer to the operand. The meaning of this parameter
varies depending on the specific request (that is, the value
of the operation cliProc parameter, described above).

params Pointer to the operation parameters. The meaning of this
parameter varies depending on the specific request (that
is, the value of the operation cliProc parameter, described
above).

dataIn Pointer to the dataIn commarea. Used for CALLRULE
requests only.

dataOut Pointer to the dataOut commarea. Used for CALLRULE
requests only.

retData Pointer to the memory area where the result of the
operation is to be stored. The nature of the result depends
on the specific request (that is, the value of the operation
cliProc parameter, described above).

retCode Pointer to the memory area where return code of the
request is to be stored. If the request succeeds,
CLI_SUCCESS (0) is returned, if the request fails, the value
depends on the specific request (that is, the value of the
operation cliProc parameter, described above).

For some values of operation, some of these parameter are ignored. In this case, it
does not matter what the parameter contains. This is different from setting a
parameter to NULL, which has a specific meaning for that parameter.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 117
Return Value: None.

Comments All the requests accepted by cliProc are session-related. Sessions are distinguished
by the session parameter of cliProc. session points to application-provided storage
that the SDK (C/C++) client uses to store all the data related to a particular
session. The structure of this storage is internal and the application must not
modify data in storage. Type CLI_SESSION is provided to declare or allocate
variables large enough to hold all internal session data.

STARTSS properly formats the session area and the other operations assume that
the area is formatted correctly. For all cliProc calls except STARTSS, if session was
not previously passed to STARTSS or is corrupt, the behavior of the SDK (C/C++)
client is undefined. The SDK (C/C++) client checks an eyecatcher area in the
session area and, if the eyecatcher is corrupt, the operation fails with a
CLI_SESSINVALID (199) error reason code. Use this error reason code as an
indication of memory misuse when debugging the application.

Generally, cliProc does not perform memory accessibility checks for pointers that
the application supplies. However, there are a few exceptions from this rule, as
described in the cliProc request specifications that follows.

If two calls to STARTSS with the same session parameter are issued one right after
the other, the first session becomes inaccessible because all the internal
SDK (C/C++) data for that session is lost. To avoid this, always issue a STOPSS or
a RESETSS before issuing another STARTSS on the same session area.
 TIBCO Object Service Broker for Open Systems External Environments

118 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
STARTSS – Start a Session

The following table lists the cliProc parameters used by this operation:

STARTSS starts a new TIBCO Object Service Broker session.

Use the session parameters string (params) to define various session behavior
aspects. There are a number of parameters that are specific for the SDK (C/C++).
These are (names are case insensitive):

In operation Points to STARTSS.

operand Points to the SDK (C/C++)/SDK (Java) code page for the
new session. The SDK (C/C++) expects a 16-byte,
blank-padded code page name. If this parameter is NULL,
the SDK (C/C++) uses the code page set by the most recent
cliSetCodepage call. The code page name is in ASCII. For
valid values, refer to cliSetCodepage on page 129.

params Session parameters string. It must be prefixed by two bytes
giving its length, exclusive of the length of the prefix. The
string must be in the SDK (C/C++)/SDK (Java) code page
specified by the cliSetCodepage call or in the STARTSS
operand parameter. The endian type of the length prefix is
the same as the endian type of the SDK (C/C++) client
platform.

Out session Pointer to session storage area. The area does not have to be
initialized. STARTSS formats it properly.

retData Points to the operation return data buffer. If the STARTSS
operation succeeds, the session user ID (eight bytes,
blank-padded) is copied to the buffer. If STARTSS fails, an
error reason code (four bytes) is placed into the buffer.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STARTSS_FAILED (4).

CLIHOST TCP/IP host name of the machine that runs the TIBCO
Object Service Broker monitor process (Windows or
Solaris) or the Execution Environment (z/OS) where the
SDK (C/C++) client is to connect.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 119
CLIHOST, CLIPORT, and CLINODE are used to identify the TIBCO Object
Service Broker monitor process (Windows or Solaris) or the Execution
Environment (z/OS) on the network. You can do this in one of these two ways:

• Using the CLIHOST parameter to specify a TCP/IP host name and the
CLIPORT parameter to specify a TCP/IP port number.

• Indirectly via the CLINODE parameter.

osMon, or the Execution Environment on z/OS, must be defined as a node in
huron.dir as follows: use the host or ip node attributes to specify a TCP/IP
host, and use the port attribute to specify the listening port.

For more information on the CLINODE parameter, refer to TIBCO Object
Service Broker Parameters.

Make sure that your session parameter string contains either the CLIHOST and
CLIPORT parameters, or the CLINODE parameter. Otherwise, STARTSS fails
with a CLI_INVNODE (193) error reason code.

CLIPORT TCP/IP port number of the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the Execution
Environment (z/OS) where the SDK (C/C++) client is to
connect.

CLINODE Node name of the machine that runs the TIBCO Object
Service Broker monitor process (Windows or Solaris) or
the z/OS Execution Environment where the SDK (C/C++)
client is to connect.

CLIENDIAN Session endian type. This parameter affects the external
representation of MAP table fields with internal syntax B
and “*” external syntax. Valid entries are: BIG and LITTLE
(case insensitive).

CLIMODEL A model Execution Environment communications
identifier required only when VTAM connections are
used. If specified, the value must be compatible with the
configuration of the VTAM installation.

IPC node attributes are not supported for SDK (C/C++) osMon nodes. For
details on host, ip, and port, refer to TIBCO Object Service Broker for Open Systems
Installing and Operating.
 TIBCO Object Service Broker for Open Systems External Environments

120 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
CLIENDIAN provides a way to override the application endian type for a session.
This parameter affects the external representation of MAP table fields with
numeric internal syntaxes and the “*” external syntax. If CLIENDIAN is not
specified, the endian type natural for the SDK (C/C++) client platform is selected.
The session area is formatted to represent a session for subsequent cliProc calls.
Even if the STARTSS call fails, the area can be used in subsequent cliProc calls (all
calls except SESSACTIVE and GETENDMSG fail with a
CLI_CALLOUTOFSEQ (36) error reason code). Do not call a STARTSS passing
session area pointer that represents another active session, because the information
about it is overwritten.

STARTTR – Start a Transaction

The following table lists the cliProc parameters used by this operation:

STARTTR starts a transaction within a specified session. If the session already has
transactions started, STARTTR starts a child transaction.

Transaction parameters are specified in the form of a string (case insensitive):

A STARTSS cliProc request requires a password among the session parameters. If
you use external security to avoid supplying a password, use a dummy value for
the PASSWORD parameter.

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STARTTR.

params Transaction parameters string. It must be prefixed by two
bytes giving its length, exclusive of the length of the prefix.
The string must be in the session SDK (C/C++)/SDK (Java)
code page. The endian type of the length prefix is the same
as the endian type of the SDK (C/C++) client platform.

If the params pointer is NULL, all transaction parameters are
assigned based on session defaults.

Out retData Points to a memory area where the error reason code (four
bytes) is placed. If the operation succeeds, the area stays
unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STARTTR_FAILED (10).
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 121
BROWSE | UPDATE, TEST | NOTEST, SEARCH=S | I | L, LIBRARY=libname

If you omit a parameter, STARTTR uses session default value specified in the
session parameter string at STARTSS time. These session defaults are set by the
BROWSE, TEST, SEARCH, and LIBRARY session parameters. For more
information on these, refer to TIBCO Object Service Broker Parameters.

If the session is already stopped or abended, STARTTR fails with a
CLI_CALLOUTOFSEQ (36) error reason code.

If the maximum allowed number of transactions are already running in the
session, the operation fails with TOOMANYTRANS (106) error reason code. Refer
to TIBCO Object Service Broker Parameters for information on the TRANMAXNUM
Execution Environment parameter, which sets the maximum value.

CALLRULE – Call a Rule

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to CALLRULE.

operand Points to the maximum length for the rules return value
that is placed in the retData buffer, including the two-byte
length prefix and the terminating zero.
This parameter is an unsigned integer of length two bytes.
Its endian type is the same as the endian type of the
SDK (C/C++) client platform. If operand is NULL, no return
value is stored.
This parameter is In/Out. Refer to operand under Out.

params Rules call string of the following form:
'RULENAME(PARAM1, PARAM2,…,PARAMn)' It must be
prefixed by a two-byte string giving its length, exclusive of
the length of the prefix. The string must be in the session
SDK (C/C++)/SDK (Java) code page. The endian type of
the length prefix is the same as the endian type of the
SDK (C/C++) client platform. The maximum allowed
length of the call string (excluding the length prefix) is 514
(CLI_MAXRULEEXPRLEN in oscli.h).

dataIn Points to the dataIn commarea. To indicate that you do not
want this commarea used, set this parameter to NULL.

dataOut Points to the dataOut commarea populated by a rule. To
indicate that you are not using the dataOut commarea, set
this parameter to NULL.
 TIBCO Object Service Broker for Open Systems External Environments

122 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
CALLRULE performs a rules call. Rules name and parameters are supplied in a
textual form “RULENAME(PARAM1, PARAM2,…,PARAMn)”. The maximum
length of this string is 514 (CLI_MAXRULEEXPRLEN) excluding the length
prefix. If a longer string is passed, CALLRULE fails with a
CLI_RULEEXPRTOOLONG (3090) error reason code. If params is NULL,
CALLRULE fails with a CLI_NORULENAME (96) error reason code.

If the session is already abended or stopped, or no transaction is started within
the session, CALLRULE fails with a CLI_CALLOUTOFSEQ (36) error reason
code.

The rules return value is converted to text and placed in the memory pointed to
by the retData parameter. The operand parameter is used as an In/out parameter. An
application uses it to pass the number of bytes available to store the rules return
value and the SDK (C/C++) client uses the parameter to return the length of the
whole return value in text form, regardless of possible truncation. The returned
length does not include the two-byte length prefix and terminating zero. To
determine whether truncation occurred, the application can compare the resulting
value to the value of the length prefix of the string in retData buffer.

If the rule does not return a value, an empty string is stored in retData. An empty
string in this case is represented by three zero bytes, two for the length prefix, one
for the terminating zero.

Out operand Length (two bytes, unsigned integer, the SDK (C/C++)
client platform endian type) of the whole rules return value
in textual form (length prefix and terminating zero are
excluded). If the operand is NULL, no length is written.

retData Points to a memory area where the error reason code (four
bytes) is to be placed if the operation fails. If the operation
succeeds, the area is filled with the rules return value in
textual form. The maximum number of bytes written to
retData is passed through the operand parameter. The return
value is in the session SDK (C/C++)/SDK (Java) code
page. It is prefixed by two bytes stating its length and has a
terminating zero byte at the end. The endian type of the
length prefix is the same as the endian type of the
SDK (C/C++) client platform.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_CALLRULE_FAILED (11).
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 123
CALLRULE uses the dataIn and dataOut commareas for binary data exchange
between the application and the rule. The format of a commarea is as follows:

If dataIn or dataOut does not reside in accessible memory, CALLRULE fails with the
appropriate error reason code. The dataIn memory must be accessible for reading
and dataOut for reading and writing.

The TIBCO Object Service Broker Execution Environment creates a copy of dataIn
and makes the pointer to the area available to the rule through the
APIINHANDLE field of @SESSION(0). For dataOut, the Execution Environment
allocates memory for the whole area and copies the area header. A pointer to
dataOut is made available through the APIOUTHANDLE field of @SESSION(0).
For more information about the @SESSION table, refer to TIBCO Object Service
Broker Shareable Tools.

Access to dataIn and dataOut using MAP tables is always granted by the system
and MAP tables can be used without @MAP registration of the dataIn and
dataOut addresses. dataIn is accessible for reading and dataOut for reading and
writing. For more information about MAP tables, refer to TIBCO Object Service
Broker Managing Data.

When a rule successfully completes, contents of the dataOut are transferred back
from the Execution Environment to the application memory. Consider reducing
the number of bytes your rule transmits to the application. You do this by
properly reformatting the dataOut header, before transmitting data back, the
Execution Environment reevaluates the dataOut header to determine the correct
number of bytes to send back to the application.

Number
of blocks Length of

1st block
Length of
2nd block

COMMAREA

Header Section
 (each field 4 bytes)

1st block 2nd block nth block

zero zero zero

Length of
nth block
 TIBCO Object Service Broker for Open Systems External Environments

124 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
STOPTR – Stop a Transaction

The following table lists the cliProc parameters used by this operation:

STOPTR commits or rolls back changes and stops the transaction active within a
given session. The current transaction is destroyed and the session transaction
nesting level is decremented even if STOPTR fails.

If the session is stopped, if it abended, or if no transaction is started within the
session, STOPTR fails with a CLI_CALLOUTOFSEQ (36) error reason code.

STOPSS – Stop a Session

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STOPTR.

operand Points to COMMIT/ROLLBACK or NULL. NULL is
equivalent to COMMIT. The code page of the parameter is
ASCII for Open Systems, and EBCDIC for z/OS.

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STOPTR_FAILED (12).

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STOPSS.

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STOPSS_FAILED (9).
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 125
STOPSS stops the session.

If the session is already abended or stopped, STOPSS fails with a
CLI_CALLOUTOFSEQ (36) error reason code.

If there are transactions active within the session, STOPSS fails with a
CLI_TRANSACTIVE (128) error reason code, and the session stays active.

All other error reason codes mean that the session shutdown sequence did not
complete properly (for instance, network connection was lost during the session
shutdown), but the session became inactive anyway.

RESETSS – Drop a Connection to a Session

The following table lists the cliProc parameters used by this operation:

RESETSS forcefully closes the session by dropping the session connection as
opposed to an orderly shutdown by STOPSS. The session does not have to be
active for the call to succeed. When a connection is dropped, the Execution
Environment generates an error message, and closes the session. All uncommitted
data changes are lost.

If session is processed by STARTSS and is not modified directly by the application,
RESETSS does not fail. If session was not previously passed to STARTSS or became
corrupt, the operation can fail with CLI_SESSINVALID (199). Refer to cliProc on
page 115 for information about session area validity checks.

GETENDMSG – Retrieve a Rules End Message

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to RESETSS.

Out retCode Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to GETENDMSG.
 TIBCO Object Service Broker for Open Systems External Environments

126 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
GETENDMSG retrieves the most recent rules end message. The session does not
have to be active for the call to succeed. If no CALLRULE was issued within the
session or rules did not generate an end message, an empty string (three bytes of
zeroes) is returned.

If session is processed by STARTSS and is not modified directly by the application,
GETENDMSG does not fail. If session was not previously passed to STARTSS or
became corrupt, the operation can fail with CLI_SESSINVALID (199). Refer to
cliProc on page 115 for information about session area validity checks.

SESSACTIVE – Inquire Whether Session Is Active

The following table lists the cliProc parameters used by this operation:

Out retData Points to a memory area where the rules end message is to
be placed. The end message has a two-byte length prefix
and a terminating zero. The endian type of the length
prefix is the same as the endian type of the SDK (C/C++)
client platform. The maximum length of a TIBCO Object
Service Broker rules end message is 148
(CLI_MAXENDMSGLEN in oscli.h), therefore to
accommodate an end messages, the application must
provide a buffer of 151 bytes. The rules end message is in
the session SDK (C/C++)/SDK (Java) code page.
In case of an error, a four-byte error reason code is placed
in retData.

retCode Points to a buffer for the return code (four bytes). Possible
values are CLI_SUCCESS (0) and
CLI_GETENDMSG_FAILED (13).

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to SESSACTIVE.

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed in the case of an error. If the operation
succeeds, a value of 1 or 0 (four-bytes, endian type of the
SDK (C/C++) platform) is returned. 1 indicates that the
session is still active, 0, that it is not active (either abended
or stopped by STOPSS or by RESETSS).

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) or
CLI_SESSACTIVE_FAILED (14).
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 127
It is possible for a TIBCO Object Service Broker session to become inactive any
time after starting (due to network problems, Execution Environment abnormal
terminations, and so on).

When that happens, STARTTR, STOPTR, CALLRULE, and STOPSS operations on
this session fail with an appropriate error reason code. In addition, appropriate
changes to the session area are made to indicate that the session is no longer active,
so that subsequent STARTTR, STOPTR, CALLRULE, and STOPSS operations fail
with a CLI_CALLOUTOFSEQ (36) error reason code. Use a SESSACTIVE cliProc
request to determine whether the session is still active. If the session abends or is
stopped by STOPSS or by RESETSS, SESSACTIVE returns 0 in the retData area.

If session is processed by STARTSS and is not modified directly by the application,
SESSACTIVE should not fail. If session was not previously passed to STARTSS or
became corrupt, the operation can fail with CLI_SESSINVALID (199). Refer to
cliProc on page 115 for information about session area validity checks.

cliExecTran
This function combines the following cliProc actions:

• STARTTR

• CALLRULE

• STOPTR

void cliExecTran(CLI_SESSION session,
 const char * transParam,
 const char * ruleName,
 unsigned short * retBufLen,
 const void * dataIn,
 void * dataOut,
 char * retData,
 int * retCode);

Parameters: In:

session Pointer to a session area. If STARTSS did not process this
area, behavior is undefined.

transParam Transaction parameters string. For more detail, refer to
STARTTR – Start a Transaction on page 120.
 TIBCO Object Service Broker for Open Systems External Environments

128 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Out:

Return Value: None.

Comments If CALLRULE succeeds, STOPTR is called with the COMMIT parameter.
Otherwise, STOPTR is called with the ROLLBACK parameter.

ruleName Rules call in the form of the string RULE(PARAM1,
PARAM2,…PARAMn). For more detail, refer to CALLRULE –
Call a Rule on page 121.

retBufLen Maximum length of the retData buffer. For more detail,
refer to CALLRULE – Call a Rule on page 121.

dataIn dataIn commarea. For more detail, refer to CALLRULE –
Call a Rule on page 121.

dataOut dataOut commarea. For more detail, refer to CALLRULE –
Call a Rule on page 121.

retBufLen The length of the rules return value excluding the length
prefix and the terminating zero. For more detail, refer to
CALLRULE – Call a Rule on page 121.

retData Pointer to the area where the rules return value is to be
stored. For more detail, refer to CALLRULE – Call a Rule
on page 121.

If the call fails, the error reason code (four bytes) is stored
in the retData buffer.

retCode Pointer to the area where four bytes of a return code are to
be stored. Possible values are:

• CLI_SUCCESS(0)

• CLI_STARTTR_FAILED(10)

• CLI_CALLRULE_FAILED(11)

• CLI_STOPTR_FAILED(12)
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 129
cliSetCodepage
This function indicates the SDK (C/C++)/SDK (Java) code page, that is, the code
page that your application expects to use to communicate with TIBCO Object
Service Broker sessions.

void cliSetCodepage(const char * codepage)

Parameter:

The following translations occur:

codepage Address of the SDK (C/C++)/SDK (Java) code page
name. The code page name is expected to be 16-byte
blank-padded text. No terminating zero is required. The
code page name is expected to be in ASCII. The valid
values for this field are the code page names shown in
TIBCO Object Service Broker National Language Support.

• The initial value of the code page name is IBM-037.

• WIN-1252 is recommended for use in clients that do not depend on TIBCO
Object Service Broker code pages; it supports all TIBCO Object Service Broker
code pages.

• ISO8859-1 works only with code pages that do not support the euro sign.

• ISO8859-15 works only with code pages that support the euro sign.

Value of
code page

System specifies a non-euro
code page

System specifies a euro
code page

A euro code
page

x'9F' (the universal currency
symbol) in the non-euro code page
«-» a x'20' in the euro code page.
 TIBCO Object Service Broker for Open Systems External Environments

130 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Return Value: None.

Comments The code page setting determines the code page of certain cliProc IN/OUT
parameters as well as the external representation of MAP table fields with “*”
external syntax and textual internal syntaxes.

The following cliProc parameters are affected by the setting:

• STARTSS – the session parameters string is expected in the specified code
page

• STARTTR – the transaction parameter string is expected in the specified code
page

• CALLRULE – the rules call expression is expected in the specified code page

• GETENDMSG – the returned end message string is in the specified code page

The code page name set by cliSetCodepage affects all sessions started after the
cliSetCodepage call. Sessions that are already running are not affected.

There is a way to override this global setting on a session basis by specifying an
alternative code page name as a parameter for the STARTSS operation. Refer to
STARTSS – Start a Session on page 118.

cliSetCodepage stores, without validation, the code page name for future
STARTSS cliProc requests that have no overriding code page specified. If the code
page is not supported by TIBCO Object Service Broker, STARTSS fails with a
CLI_UNSUPPCODEPAG (161) error reason code.

A non-euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» x'20' in the euro code
page.

The
Windows
code page

x'80' (the euro symbol) in the
Windows code page «-» x'20' in the
non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code page
«-» code point x'9F' in the non-euro
code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» x'20' in the euro code
page.

x'80' (the euro symbol) in the
Windows code page «-» x'9F' in
the non-euro code page.

a. In this table, the “«-»” symbol means “translates to, in both directions”.

Value of
code page

System specifies a non-euro
code page

System specifies a euro
code page
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 131
cliSetCodepage is thread safe and can be called at any time by any application
thread. However, due to the fact that cliSetCodepage deals with the global data of
the SDK (C/C++) client, some contention can occur if many threads are issuing
cliSetCodepage or STARTSS cliProc requests that have no overriding code page
specified, at the same time. If you need to simultaneously start sessions with
varying code page settings, using the STARTSS operand parameter is a better choice
because it does not lead to resource access synchronization by the SDK (C/C++)
client.

cliErrorReasonDescr
This function retrieves a textual description of an error reason code returned by
cliProc or cliExecTran.

const char * cliErrorReasonDescr(int reasonCode)

Parameter:

Return Value: Pointer to the textual description of the error reason code. It has a two-byte long
prefix and a terminating zero.

Comments The application must not modify the contents of the description retrieved.

cliCommCreate
This function allocates memory for and formats a commarea with the given
structure.

void * cliCommCreate(unsigned int count,
 unsigned int * segmentSizes)

Parameters:

reasonCode Value of the error reason code returned by cliProc or
cliExecTran.

count Number of blocks in the commarea.

segmentSizes Array of block sizes.
 TIBCO Object Service Broker for Open Systems External Environments

132 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Return Value: Pointer to the beginning of the created commarea (to the count field of the header –
refer to the commarea format description in CALLRULE – Call a Rule on
page 121), or NULL if the memory allocation failed.

Comments If memory allocation fails, a NULL pointer is returned.

Segment memory is not initialized.

To delete a commarea created by cliCommCreate, you must use cliCommDelete.

cliCommCreate1
This function calls cliCommCreate to allocate memory for, and format, a
one-segment commarea.

void * cliCommCreate1(unsigned int segmentSize)

Parameter:

Return Value: Pointer to the newly created area or NULL if memory allocation failed.

Comments Use cliCommDelete to delete a commarea created by this function. The segment
memory is not initialized.

cliCommDelete
This function deletes a commarea created by cliCommCreate.

void cliCommDelete(void * area)

Parameter:

Return Value: None.

segmentSize Size of the only segment in the commarea.

area Commarea pointer returned by cliCommCreate or by
cliCommCreate1.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 133
cliCommFormat
This function formats a memory area according to the commarea format
specifications, as supplied through the count and segmentSizes parameters.

void cliCommFormat(void * area,
 unsigned int count,
 unsigned int * segmentSizes)

Parameters:

Return Value: None.

Comments For more about the commarea format, refer to CALLRULE – Call a Rule on
page 121.

Segment memory is not initialized.

Behavior of this operation is undefined if the area memory area is not large enough
to hold the header part of the commarea. Allocation and deallocation of the area
memory is the responsibility of the application. Do not use cliCommDelete to
deallocate the area memory.

cliCommFormat1
This function formats a one-segment memory area according to the commarea
format specifications.

void cliCommFormat1(const void * area, unsigned int segmentSize)

Parameters:

area Pointer to commarea memory.

count Number of blocks in the commarea.

segmentSizes Array of block sizes.

area Pointer to commarea memory.

segmentSize Size of the only segment in the commarea.
 TIBCO Object Service Broker for Open Systems External Environments

134 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Return Value: None.

Comments The commarea structure consists of one segment of segmentSize bytes. For details
about the commarea format, refer to CALLRULE – Call a Rule on page 121.

Segment memory is not initialized.

Behavior of this operation is undefined if the area memory area is not large enough
to hold the header part (12 bytes for the areas with one segment) of the commarea.
Allocation and deallocation of the area memory is the responsibility of the
application. Do not use cliCommDelete to deallocate the area memory.

cliCommSegment
This function calculates the pointer to a specific commarea segment.

void * cliCommSegment(const void * area,
 unsigned int segmentNum)

Parameters:

Return Value: Pointer to the commarea segment, or NULL if the segment does not exist (count
field of the header is less than or equal to segmentNum)

Comments If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 121), the behavior is undefined.

cliCommSegments
This function retrieves the number of segments in the commarea.

unsigned int cliCommSegments(const void * area)

Parameter:

area Pointer to the commarea.

segmentNum Number of a segment, starting with zero.

area Pointer to the commarea.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 135
Return Value: Number of segments in the commarea.

cliCommSegSize
This function retrieves the size of a specific commarea segment.

unsigned int cliCommSegSize(const void * area,
 unsigned int segmentNum);

Parameters:

Return Value: Size of the commarea segment based on the contents of the commarea header.

If the segment does not exist (that is, the count field in the header is less than or
equal to segmentNum), this function returns 0.

Comments If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 121), the behavior is undefined.

cliCommSize
This function calculates the total size of the commarea, including the header.

unsigned int cliCommSize(const void * area)

Parameter:

Return Value: Total size of the commarea.

Comments If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 121), the behavior is undefined.

area Pointer to the commarea.

segmentNum Number of a segment, starting with zero.

area Pointer to the commarea.
 TIBCO Object Service Broker for Open Systems External Environments

136 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
cliCommSizeCalc
This function calculates the total number of bytes needed for a commarea with
count blocks of sizes supplied in segmentSizes array.

unsigned int cliCommSizeCalc(unsigned int count,
 unsigned int * segmentSizes)

Parameters:

Return Value: Number of bytes needed to accommodate the commarea of the given structure.

cliCommSizeCalc1
This function calculates the total number of bytes needed for a commarea
consisting of one segment of segmentSize bytes.

unsigned int cliCommSizeCalc1(unsigned int segmentSize)

Parameter:

Return Value: Total size needed to accommodate a commarea with one segment of segmentSize
bytes

LLCOPY_CSTR(listr, cstr)
This C macro copies a zero-terminated string into a string with a two-byte length
prefix.

LLCOPY_MEM(listr, prt, len)
This C macro copies a string with an explicitly specified length into a string with a
two-byte length prefix.

count Number of blocks within the commarea.

segmentSizes Array of block sizes.

segmentSize Size of the only segment in the commarea.
TIBCO Object Service Broker for Open Systems External Environments

SDK (C/C++) Functions | 137
LLDECLARE(name, len)
This C macro declares a string with two bytes reserved for the length prefix.

LLSETLEN(listr, len)
This C macro sets a two-byte length prefix.

LLSTR(listr)
This macro retrieves a pointer to the text part of a string that has a two-byte length
prefix.

LLSTRLEN(listr)
This C macro retrieves a string length from the string’s two-byte length prefix.

See Also TIBCO Object Service Broker Managing Data about MAP tables.
 TIBCO Object Service Broker for Open Systems External Environments

138 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Sample Application Using the SDK (C/C++)

Compiling and Running the Sample Program
The sample program is available in the \install_folder\RemoteCLI\src folder.

In Windows

The Microsoft Visual C++ 6.0 compiler should be available. Microsoft provides a
script file (VCVARS32.BAT) to initialize environment variables for the development
environment. The following instructions assume that the OS_ROOT environment
variable is initialized and the following directories exist:

• MKDIR E:\src

• MKDIR E:\obj

• MKDIR E:\bin

1. Place the source code in file E:\src\RCLISAMP.cpp

2. Compile the source code using:
CALL "msvc-install-bin\VCVARS32.BAT"

@REM Search in the standard TIBCO Object Service Broker
libraries for '.h' files.

@REM Search in the standard TIBCO Object Service Broker
libraries for unsatisfied external references.

@REM (The following is one command, appearing here on several
lines for readability.)

CL /I "%OS_ROOT%\RemoteCLI\INCLUDE"
/I "%OS_ROOT%\EXTRC\INCLUDE"
/I "%OS_ROOT%\SRC\ENCRYPT"
/I "%OS_ROOT%\SRC\SECURITY"
/nologo /TP
/Fo"E:\obj\RCLISAMP.obj" "E:\src\RCLISAMP.cpp"
/link /DEFAULTLIB:"%OS_ROOT%\RemoteCLI\LIB\OSCLI"
/DEFAULTLIB:"%OS_ROOT%\EXTRC\LIB\OSEXTUSR"
/out:"E:\bin\RCLISAMP.EXE"

3. Start the TIBCO Object Service Broker Data Object Broker.

4. Start the osMon.

5. Call the program using the following statement:
TIBCO Object Service Broker for Open Systems External Environments

Sample Application Using the SDK (C/C++) | 139
E:\bin\RCLISAMP CLIHOST=localhost,CLIPORT=9068

In Solaris

The g++ compiler should be available in /usr/local/bin. The following
instructions assume that the OS_ROOT environment variable is initialized and
the following directories exist:

• mkdir $HOME/src

• mkdir $HOME/bin

1. Place the source code in file $HOME/src/RCLISAMP.cpp

2. Compile the source code using:
g++ -D_POSIX_C_SOURCE=199506L -U_XOPEN_SOURCE \

-D_XOPEN_SOURCE -D__EXTENSIONS__ -D_REENTRANT \
-I$OS_ROOT/RemoteCLI/include \
-L$OS_ROOT/sharedlib \
-loscli -losextusr -losscalar -loscs -losdobext \
-losmisc -losmsgs -losencryp -lossecur -lsocket \
-losbrand -lnsl -lpthread \
-lrt \
-o$HOME/bin/RCLISAMP \
$HOME/src/RCLISAMP.cpp

3. Start the TIBCO Object Service Broker Data Object Broker.

4. Start the osMon.

5. Call the program using the following statement:
$HOME/bin/RCLISAMP CLIHOST=localhost,CLIPORT=8302

The parameter string “CLIHOST=localhost,CLIPORT=9068” contains no
white space. Therefore it is passed to the program as a single parameter. The
sample assumes that the PORT parameter supplied to the osMon process is
defined as, or defaulted to, 9068.

The parameter string “CLIHOST=localhost,CLIPORT=8032” contains no
white space. Therefore it is passed to the program as a single parameter. The
sample assumes that the PORT parameter supplied to the osMon process is
defined as 8032.

The sample uses the HURON1 TIBCO Object Service Broker user with a
password of HURON1.
 TIBCO Object Service Broker for Open Systems External Environments

140 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
Rule Called by C Program
This is a sample of a rule that creates an occurrence of the LOG TDS table,
generates an end message, and returns a value. On completion of the rule, the
changes are not committed because the transaction is still active. The
SDK (C/C++) program explicitly stops the transaction by issuing STOPTR with a
COMMIT flag or a ROLLBACK flag to indicate whether the changes are to be
committed.

 RULE EDITOR ===> SCROLL: P
 TC007113RU02;
 _
 _ ---
 _ --+--------------
 _ TC007113TA01.TEXT = 'RULE "TC007113RU02" IS CALLED'; ¦ 1
 _ INSERT TC007113TA01; ¦ 2
 _ CALL ENDMSG('END MESSAGE GENERATED BY RULE "TC007113RU02"');¦ 3
 _ RETURN('RETURN VALUE OF RULE "TC007113RU02"'); ¦ 4
 _ ---
 _
TIBCO Object Service Broker for Open Systems External Environments

Sample Application Using the SDK (C/C++) | 141
Table Referenced by a Rule
The table TC007113TA01 is defined as follows:

 COMMAND==> TABLE DEFINITION

 Table: TC007113TA01 Type: TDS Unit: TC07113 IDgen: Y
 Source:
 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 _ KEY I B 4 0 P
 _ TEXT S C 50 0
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
 New table definition

Output from C Program
The output from the C program is as follows:

STARTSS completed. Session User ID = HURON1
STARTTR completed.
CALLRULE completed, return value: 'RETURN VALUE OF RULE
"TC007113RU002"'
Rule end message: 'END MESSAGE GENERATED BY RULE "TC007113RU002"'
STOPTR completed.
STOPSS completed.
 TIBCO Object Service Broker for Open Systems External Environments

142 | Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
TIBCO Object Service Broker for Open Systems External Environments

| 143
Chapter 8 Using TIBCO Object Service Broker
SDK (Java)

This chapter describes how to use the TIBCO Object Service Broker SDK for Java.

Topics

• Overview, page 144

• SDK (Java) Methods, page 147

• Session Object Methods, page 150

• SessionException Object Methods, page 165

• Misc Object Methods, page 168

• Sample Application Using the SDK (Java), page 175
 TIBCO Object Service Broker for Open Systems External Environments

144 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Overview

The TIBCO Object Service Broker SDK (Java) is an application programming
interface (API) used by an application in a Java environment to:

• Start and stop TIBCO Object Service Broker sessions

• Start and stop transactions within a session

• Call TIBCO Object Service Broker rules within the context of a transaction

It is a platform-independent version of the SDK (C/C++) described in Chapter 7,
Using TIBCO Object Service Broker SDK (C/C++), on page 109.

Requirements

NLS

If you are connecting to an Execution Environment on z/OS, ensure that NLS is
set up, with values in @NLS1 similar to the following example, according to your
environment:

 BROWSING TABLE : @NLS1
 COMMAND ==>
 SCROLL: P
 KEY COMPTYPE COMPNAME LOCALE_CP
 ----------- ---------------- -------------------------------- -------------------
 _ 1 SELF ENGL.IBM-037
 _ 2 REMOTE ENGL.IBM-037

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 19=SHOW 13=PRINT 3=END 14=EXPAND
TIBCO Object Service Broker for Open Systems External Environments

Overview | 145
How Does It Work?
The SDK (Java) supplies a dataIn/dataOut commarea mechanism for
unformatted binary data exchange between an application and a TIBCO Object
Service Broker rule. A rule called via the SDK (Java) can use all the TIBCO Object
Service Broker facilities except the text-presentation DISPLAY statement. To
facilitate commarea binary data exchange between an application and a rule,
developers can use TIBCO Object Service Broker MAP tables to process data in
the dataIn commarea and to return data back to the application through the
dataOut commarea.

Remote Communication

The SDK (Java) is a remote interface that communicates with TIBCO Object
Service Broker. TIBCO Object Service Broker supports this interface in the same
way on all platforms with no user application code change. In a Java
environment, applications use the SDK (Java) to control a session in the local or
another computer (on any platform), or in another work space on the same
computer (in z/OS only).

How Can It Be Used?
With the SDK (Java), you write an application to manage a TIBCO Object Service
Broker session using a set of Java classes. To make the services of TIBCO Object
Service Broker available to your program, you write specific code that makes use
of the SDK (Java) classes and that exerts complete control over TIBCO Object
Service Broker sessions. Refer to Sample Application Using the SDK (Java) on
page 175.

Compiling
The SDK (Java) is supplied as a cli.jar file. To use the interface, an application calls
the methods of the SDK (Java) classes. The classes within cli.jar can be made
accessible to the application via the CLASSPATH system environment variable or
can be embedded in your application .jar file.

Thread Safety
Most Session class methods are thread safe at a session level. In other words,
when two threads try to run a method of the same SDK (Java) Session object, the
behavior is unpredictable. This applies to the following: start, stop, reset,
startTrans, stopTrans, call, shutdown, and execTran.
 TIBCO Object Service Broker for Open Systems External Environments

146 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
transNestLevel, endMessage, isActive, and userId can be run at the same time as
any other method on the same Session object.

The methods of the SessionException and Misc classes are fully thread safe.

Constants
To facilitate application development, the Session class contains the following
constants, which are defined as static public final fields:

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language,
writing rules, and transaction processing.

TIBCO Object Service Broker Parameters about starting sessions and about session
Execution Environment parameters.

TIBCO Object Service Broker Shareable Tools about the ENDMSG shareable tool.

MAXRULEEXPRLEN The maximum length of a rules call string. For more
information, refer to call on page 152.

The value is 514.

MAXENDMSGLEN The maximum length of a rules end message. For
more information, refer to endMessage on page 155
and to the ENDMSG shareable tool.

The value is 148.
TIBCO Object Service Broker for Open Systems External Environments

SDK (Java) Methods | 147
SDK (Java) Methods

Classes
The SDK (Java) client comprises a set of Java classes that reside in the
com.Amdahl.Cli package:

The tables are followed by detailed information about each SDK (Java) method.

Session Class

Session A class representing an SDK (Java) session context, and
providing methods for session start up and stop,
transaction start up and stop, and rules invocation.

SessionException An exception class used to indicate Session method errors.

Misc A class providing commarea helper functions and
functions for converting numeric types to and from
big-endian byte array representation.

Method Brief description On

Session The class constructor. page 150

start Starts an SDK (Java) session. page 159

stop Stops an SDK (Java) session. page 162

reset Drops a connection to a session. page 158

startTrans Starts a transaction. page 161

stopTrans Stops the currently active transaction,
committing or rolling back the changes.

page 163

call Calls a rule. page 152

transNestLevel Returns the transaction nesting level of the
session.

page 163

isActive Returns the activity status of the session. page 158
 TIBCO Object Service Broker for Open Systems External Environments

148 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
SessionException Class

Refer to Appendix A, SDK (C/C++) and SDK (Java) Error Reason Codes, on
page 179 for a list of error reason codes issued by the SDK (Java).

Misc Class

These functions facilitate conversions between numeric types and their
big-endian representations in byte arrays. These functions do not validate input
parameters.

endMessage Returns the end message from the last rule called
within the session.

page 155

userId Returns the user ID of the session. page 164

shutdown Stops all transactions (committing or rolling
back the changes), and stops the session
regardless of the errors encountered.

page 159

execTran Equivalent to executing a sequence of startTrans,
call, and stopTrans methods.

page 156

Method Brief description On

Name Brief description On

SessionException The SessionException class constructor. page 165

rc Returns an SDK (Java) operation error code. page 167

reasonCode Returns an error reason code for an SDK (Java)
error.

page 166

errorReasonDescr Returns a textual description of a particular
SDK (Java) error reason code.

page 166

Name Brief description On

readShort Reads 2 bytes from a byte array and returns a value of
type short according to what these bytes represent in
big-endian format.

page 172

writeShort Writes, into a byte array, 2 bytes of a big-endian byte
representation of a value of type short.

page 173
TIBCO Object Service Broker for Open Systems External Environments

SDK (Java) Methods | 149
This group of functions facilitate dataIn and dataOut commarea processing. These
functions work with commareas of the format described in call on page 152.
Generally, these functions do not validate input parameters.

readInt Reads 4 bytes from a byte array and returns a value of
type int according to what these bytes represent in
big-endian format.

page 172

writeInt Writes, into a byte array, 4 bytes of a big-endian byte
representation of a value of type int.

page 173

Name Brief description On

commSizeCalc Calculates the number of bytes needed for a
commarea with the specified structure.

page 171

commCreate Creates a new byte array and formats it
according to the commarea specification.

page 168

commFormat Formats a byte array according to the
commarea specification.

page 169

commSegmentInd Returns the offset of a specified segment in a
commarea.

page 169

commSegSize Returns the size of a given commarea
segment.

page 170

commSize Calculates the number of bytes in a commarea
according to its header.

page 171

commSegments Returns the number of segments in a
commarea according to its header.

page 170

Name Brief description On
 TIBCO Object Service Broker for Open Systems External Environments

150 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Session Object Methods

Session
The class constructor.

public Session()

or

public Session(String sessParam,
 String codepage) throws SessionException

Parameters:

sessParam The session parameter string.

codepage The SDK (C/C++)/SDK (Java) code page to be used for
this session. The valid values for this field are the code
page names shown in TIBCO Object Service Broker National
Language Support.

• The initial value of the code page name is IBM-037.

• WIN-1252 is recommended for use in clients that do not depend on TIBCO
Object Service Broker code pages; it supports all TIBCO Object Service Broker
code pages.

• ISO8859-1 works only with code pages that do not support the euro sign.

• ISO8859-15 works only with code pages that support the euro sign.
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 151
The following translations occur:

For the second form of this method, these parameters are used to start a session.

Return Value: None.

Throws: The second form of this method throws SessionException with rc =
SessionException.STARTSS_FAILED (4) if a session cannot be started.

Comments An application program can use the first form of the Session method, which
constructs an object representing an inactive session, to create an object in
preparation for starting a session later. The second form also invokes the start
method to start a TIBCO Object Service Broker session.

Value of
code
page

System specifies a non-euro
code page

System specifies a euro
code page

A euro
code page

x'9F' (the universal currency
symbol) in the non-euro code page
«-» a x'20' in the euro code page.

a. In this table, the “«-»” symbol means “translates to, in both directions”.

A non-euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» x'20' in the euro code
page.

The
Windows
code page

x'80' (the euro symbol) in the
Windows code page «-» x'20' in the
non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code page
«-» code point x'9F' in the non-euro
code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» x'20' in the euro code
page.

x'80' (the euro symbol) in the
Windows code page «-» x'9F' in
the non-euro code page.
 TIBCO Object Service Broker for Open Systems External Environments

152 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
call
Calls a rule.

public String call(String func,
 byte[] dataIn,
 byte[] dataOut) throws SessionException

or

public int call(String func,
 byte[] dataIn,
 byte[] dataOut,
 byte[] ruleRetValue,
 int ruleRetValueStart,
 int ruleRetValueMaxLen) throws SessionException

Parameters:

Return Value: The first form of the method returns the rules return value as a String object.

The second form returns the actual length of the rules return value as returned by
the rule. Compare this length to the value passed as ruleRetValueMaxLen to
determine if truncation took place.

func The rules functional expression in a textual form:
RULENAME(ARG1,ARG2,...,ARGN). The expression length
must be less than or equal to 514
(Session.MAXRULEEXPRLEN constant).

dataIn The input commarea: a byte array, formatted in
accordance with the commarea format specification (refer
to Comments on page 153).

dataOut The output commarea: a byte array, formatted in
accordance with the commarea format specification.

ruleRetValue A byte array meant to hold the rules return value. If
ruleRetValue is null, no return value is stored.

ruleRetValue
Start

The index where the SDK (Java) should start storing the
return value in the ruleRetValue array.

ruleRetValue
MaxLen

The maximum number of bytes available for the rules
return value in the ruleRetValue array. If ruleRetValueMaxLen
is zero, no return value is stored.
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 153
The rules return value is the value that the called rule returns in a RETURN
statement.

Exceptions: SessionException with rc = SessionException.CALLRULE_FAILED (11) is thrown
in case of failure.

Comments If the func parameter value is NULL, both forms of the call method throw an
exception with an error reason code of SessionException.NORULENAME (96).
Also, if the func parameter value is longer than 514
(Session.MAXRULEEXPRLEN), both forms throw an exception with an error
reason code of Session.RULEEXPRTOOLONG (3090).

If the session already abends or is already stopped, or no transaction is started
within the session, the call method throws an exception with an error reason code
of SessionException.CALLOUTOFSEQ (36).

The two forms of the call method differ in how they handle the rules return value:

• The first form returns the rules return value as a newly created String object.

• The second form stores the value in the input ruleRetValue byte array. The value
is stored in the SDK (C/C++)/SDK (Java) code page (refer to start on
page 159), starting from the ruleRetValueStart index, for up to ruleRetValueMaxLen
bytes. This form returns the full length of the rules return value. Therefore, if
this full-length value is greater than the value passed in ruleRetValueMaxLen,
truncation occurred.

Passing null as ruleRetValue or zero as ruleRetValueMaxLen results in no rules
return value stored. This is not an error.

If the rule does not return a value, the first form of the call method returns an
empty string and the second form stores no bytes in ruleRetValue.
 TIBCO Object Service Broker for Open Systems External Environments

154 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Both forms of the call method use the dataIn and dataOut commareas for binary
data exchange between the application and the rule. The SDK (Java) commarea is
a byte array formatted as follows:

The total number of bytes in an SDK (Java) commarea is the number of bytes
indicated in the header, plus the size of the header. The size of the commarea byte
array does not matter as long as it is big enough. If the array is too small, both
forms of the call method fail with either a
SessionException.INCOMMLENERR (40) or a
SessionException.OUTCOMMLENERR (41) error reason code, depending on
where the commarea error is detected.

The TIBCO Object Service Broker Execution Environment creates a copy of dataIn
and makes the address to the area available to the rule through the
APIINHANDLE field of the @SESSION(0) table. For dataOut, the Execution
Environment allocates memory for the whole area and copies the area header. The
address to dataOut is made available through the APIOUTHANDLE field of the
@SESSION(0) table.

Access to dataIn and dataOut using MAP tables is always granted by the system
and MAP tables can be used without @MAP registration of the dataIn and
dataOut addresses. dataIn is accessible for reading and dataOut for reading and
writing. For more information about MAP tables, refer to TIBCO Service Gateway
for Files Installing and Operating.

When a rule completes successfully, the contents of the dataOut are transferred
back from the Execution Environment to the application memory. Consider
reducing the number of bytes your rule transmits to the application. You do this
by properly reformatting the dataOut header. The Execution Environment, before
transmitting data back, reevaluates the dataOut header to determine the correct

Number
of blocks Length of

1st block
Length of
2nd block

COMMAREA

Header Section
 (each field 4 bytes)

1st block 2nd block nth block

zero zero zero

Length of
nth block
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 155
number of bytes to send back to the application. Do not use this method to
increase the total size of the area. If the contents of the header indicate that the
total area size is larger than the original (at the beginning of the rules call), the call
fails with a SessionException.DATAOUTCORRUPT (49409) error reason code.

See Also • TIBCO Object Service Broker Programming in Rules about the rules language and
writing rules.

• TIBCO Object Service Broker Shareable Tools and TIBCO Object Service Broker
Managing Data about the @SESSION(0) table and the MAP table.

endMessage
Returns the end message from the last rule called within the session.

public String endMessage()

Parameters: None.

Return Value: The end message from the last rules call, via a call method, or an error message if
the rule failed. If neither an end message nor an error message is available from
the rule, returns null. The maximum length of the end message is 148
(Session.MAXENDMSGLEN constant).

Exceptions: None.

Comments endMessage returns a String object, not a null reference, in these cases:

• If the last rules call succeeded, endMessage returns the message generated by
the rule via an ENDMSG call, or an empty string if the rule did not generate a
message.

A performance consideration to do with return values, which can be as long as
32 KB:

• In its first form, the call method must create a temporary copy of the return
value to perform the code page translation. Therefore this form is not the best
option for applications dealing with long return values.

• In its second form, the call method does not convert the rules return value to
Unicode. It leaves it up to the application to store and convert the value in the
most optimal application-specific manner. No temporary copies of any kind
are created during the call in this form.
 TIBCO Object Service Broker for Open Systems External Environments

156 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
• If the last call failed with a SessionException.RULEFAILED (3091) error reason
code, endMessage returns a rules error message.

In all other cases, endMessage returns null. The java.lang.Throwable.getMessage
method returns a message that is formed according to the above. If the rules call
throws an exception with a SessionException.RULEFAILED (3091) error reason
code, the message text contains the rules error message instead of a reason code
description.

See Also TIBCO Object Service Broker Shareable Tools about ENDMSG.

execTran
Equivalent to executing a sequence of startTrans, call, and stopTrans methods.

The changes are committed if the rules call succeeds and rolled back if it throws
an exception.

The method supplies the return value from the rule in one of two ways:

• When used in its first form (shown below), execTran returns the return value,
via the RETURN rules statement, as a String object.

• In its second form, execTran stores the value, encoded using the SDK (C/C++)
/SDK (Java) code page, in a region of a caller-supplied byte array.

public String execTran(String transParams,
 String func,
 byte[] dataIn,
 byte[] dataOut) throws SessionException

or

public int execTran(String transParams,
 String func,
 byte[] dataIn,
 byte[] dataOut,
 byte[] ruleRetValue,
 int ruleRetValueStart,
 int ruleRetValueMaxLen) throws
SessionException

Parameter:

transParams The transaction parameter string. Refer to startTrans on
page 161.
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 157
Return Value: The first form of the method returns the rules return value as a String object.

The second form returns the actual length of the rules return value as returned by
the rule. Compare this length to the value passed as ruleRetValueMaxLen to
determine if truncation took place.

The rules return value is the value that the called rule returns in a RETURN
statement.

Exceptions SessionException is thrown if errors are encountered.

The value of rc is SessionException.STARTTR_FAILED (10),
SessionException.CALLRULE_FAILED (11), or
SessionException.STOPTR_FAILED (12), depending on the stage where the first
error occurred.

Comments This is a function that operates in several phases:

• Start a transaction

• Call a rule

• Stop the transaction with commit or rollback, depending on the success of the
rules call

The only phase able to interrupt the sequence is the startTrans phase. When that
phase is successful, the failure of the rules call stores the error information to
throw an exception only after the stopTrans method completes. In this case, errors
during the stopTrans phase are not reported.

func The rules functional expression in a textual form:
RULENAME(ARG1,ARG2,...,ARGN).

dataIn The input commarea: a byte array, formatted in
accordance to the commarea format specification (refer to
call on page 152).

dataOut The output commarea: a byte array, formatted in
accordance to the commarea format specification.

ruleRetValue The buffer meant to hold the return value from the rule.

ruleRetValueSt
art

The index where the program should start storing the
return value.

ruleRetValueMa
xLen

The maximum number of bytes available in the
ruleRetValue array.
 TIBCO Object Service Broker for Open Systems External Environments

158 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
isActive
Returns the activity status of the session.

public boolean isActive()

Parameters: None.

Return Value: True if the session is active; otherwise, false.

Exceptions: None.

Comments It is possible for a TIBCO Object Service Broker session to become inactive any
time after starting (due to network problems, Execution Environment abnormal
terminations, and so on). When that happens, the start, stop, startTrans,
stopTrans, shutdown, and execTran method calls on this session object fail with
an appropriate error reason code. In addition, the session object becomes inactive,
so that subsequent calls to these methods fail with a
SessionException.CALLOUTOFSEQ (36) error reason code.

Use an isActive method call to determine whether the session is still active. If the
session is stopped by a stop method call, by a reset method call, or by a shutdown
method call, or if it abends, isActive returns false.

reset
Drops a connection to a session.

public void reset

Parameters: None.

Return Value: None.

Throws: None.

Comments reset forcefully closes the session by dropping the session connection as opposed
to an orderly shutdown by stop. The session does not have to be active for the call
to succeed. When a connection is dropped, the Execution Environment generates
an error message, and closes the session. All uncommitted data changes are lost.
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 159
This method bring the session to an inactive state so that subsequent calls to the
start, stop, startTrans, stopTrans, shutdown, and execTran methods fail with a
SessionException.CALLOUTOFSEQ (36) error reason code. Subsequent calls to
isActive return false.

shutdown
Stops all transactions (committing or rolling back the changes), and stops the
session regardless of the errors encountered.

public void shutdown(boolean commit) throws SessionException

Parameters:

Return Value: None.

Exceptions SessionException is thrown if errors are encountered during the shutdown
sequence.

The value of rc is either SessionException.STOPTR_FAILED (12) or
SessionException.STOPSS_FAILED (9), depending on the stage where the first
error occurred.

Comments This method is a sequence of stopTrans method calls and a stop method call. Even
if an error occurs, the sequence continues to the end. Information on the first (or
only) error is stored and an exception is thrown after the sequence completes, and
all the transactions and the session are stopped.

start
Starts an SDK (Java) session.

public void start(String sessParam,
 String codepage) throws SessionException

commit True if the changes made within all transactions need to be
committed, otherwise false.
 TIBCO Object Service Broker for Open Systems External Environments

160 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Parameters:

Use the session parameters string (sessParam) to define various session behavior
aspects. There are a number of parameters that are specific for the SDK (Java)
(and SDK (C/C++)). These are (names are case insensitive):

CLIHOST and CLIPORT identify the TIBCO Object Service Broker monitor
process (Windows or Solaris) or the Execution Environment (z/OS) on the
network, using the CLIHOST parameter to specify a TCP/IP host name and the
CLIPORT parameter to specify a TCP/IP port number.

Make sure that your sessParam parameter string contains the CLIHOST and
CLIPORT parameters. (CLINODE is not supported by the SDK (Java).)
Otherwise, the start method throws an exception with error reason code
SessionException.INVNODE (193).

CLIENDIAN provides a way to override the application endian type for a session.
This parameter affects the external representation of MAP table fields with
numeric internal syntaxes and the “*” external syntax. If CLIENDIAN is not
specified, big endian is selected.

sessParam The session parameter string. This string must contain
CLIHOST and CLIPORT to specify an osMon (Windows
or Solaris) or an Execution Environment (z/OS) location.
Can contain CLIENDIAN.

codepage The SDK (C/C++)/SDK (Java) code page to be used for
this session. If it is null or empty, the method throws
SessionException with an error reason code of
SessionException.UNDEFCODEPAGE (161). For valid
values, refer to Session on page 150.

CLIHOST TCP/IP host name of the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the Execution
Environment (z/OS).

CLIPORT TCP/IP port number of the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the Execution
Environment (z/OS).

CLIENDIAN Session endian type. This parameter affects the external
representation of MAP table fields with internal syntax B
and “*” external syntax. Valid entries are: BIG and LITTLE
(case insensitive).
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 161
Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STARTSS_FAILED (4) if a session cannot be started.

Comments A successful start call changes a session from inactive to active. Use the isActive
method to query the current state of a session. If a start call is issued for an object
that is already active, the call throws an exception with a
SessionException.CALLOUTOFSEQ (36) error reason code. To bring a session
back to the inactive state, issue a stop, a reset, or a shutdown method call.

See Also TIBCO Object Service Broker Parameters about starting sessions and about session
Execution Environment parameters.

startTrans
Starts a transaction.

public void startTrans(String transParams) throws SessionException

Parameter:

Transaction parameters are specified as follows (all characters are case
insensitive):

BROWSE | UPDATE, TEST | NOTEST, SEARCH=S | I | L, LIBRARY=libname

If you omit a parameter, the startTrans method uses the session default value
specified in the session parameter string of the start method or of the Session
constructor. These session defaults are set by the BROWSE, TEST, SEARCH, and
LIBRARY session parameters. For more information, refer to TIBCO Object Service
Broker Parameters.

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STARTTR_FAILED (10) if the method fails.

Comments The startTrans method starts a transaction within the session. If the session
already has transactions started, the startTrans method starts a child transaction.

transParams The transaction parameter string.
 TIBCO Object Service Broker for Open Systems External Environments

162 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
If the session is already stopped or abended, the startTrans method throws an
exception with an error reason code of SessionException.CALLOUTOFSEQ (36).

Use the stopTrans method to stop the currently active transaction.

If the maximum allowed number of transactions are already running in the
session, startTrans throws an exception with an error reason code
SessionException.TOOMANYTRANS (106). Refer to TIBCO Object Service Broker
Parameters for information on the TRANMAXNUM Execution Environment
parameter, which sets the maximum value.

stop
Stops an SDK (Java) session.

public void stop() throws SessionException

Parameters: None.

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STOPSS_FAILED (9) if the method fails.

Comments If the session is inactive, the stop method call throws an exception with a
SessionException.CALLOUTOFSEQ (36) error reason code. You activate a session
by using either the Session constructor with the sessParam and codepage parameters,
or a start method call.

If a transaction is still active prior to the stop method call, the call throws an
exception with a SessionException.TRANSACTIVE (128) error reason code and
the session stays active.

Failures with error reason codes other than
SessionException.TRANSACTIVE (128) indicate a failure to complete normal
shutdown sequence. The session is rendered inactive anyway.

Use the isActive method to determine the current session state. Use the
transNestLevel method to determine the current depth of the transaction stack
TIBCO Object Service Broker for Open Systems External Environments

Session Object Methods | 163
stopTrans
Stops the currently active transaction, committing or rolling back the changes.

public void stopTrans(boolean commit) throws SessionException

Parameters:

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STOPTR_FAILED (12) if the method fails.

Comments If the session is not active or no transaction started prior to the call, the call throws
an exception with SessionException.CALLOUTOFSEQ (36) error reason code.

The current transaction is destroyed and the session nesting level is decremented
even if the call ends with an error. Use the transNestLevel method to determine
the current transaction nesting level.

transNestLevel
Returns the transaction nesting level of the session.

public int transNestLevel()

Parameters: None.

Return Value: The current transaction nesting level of the session. Returns zero if the session is
not active or no transaction is started.

Exceptions: None.

commit True if the changes made within the active transaction
need to be committed, otherwise false.
 TIBCO Object Service Broker for Open Systems External Environments

164 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
userId
Returns the user ID of the session.

public String userId()

Parameters: None.

Return Value: The session user ID if the session is active, otherwise null.

Exceptions: None.
TIBCO Object Service Broker for Open Systems External Environments

SessionException Object Methods | 165
SessionException Object Methods

SessionException
The SessionException class constructor.

This method has two forms:

public SessionException(int rc,
 int reasonCode)

or

public SessionException(String ruleErrorText)

In the first form, SessionException constructs a SessionException object with the
specified error code and error reason code. The resulting exception error message
string (available using a java.lang.Throwable.getMessage call) contains the
following: {error code description} - {error reason code description available via
errorReasonDescr}. For example, if a startTrans method throws an exception due
to the interface calls being out of sequence, the error message string is: “JCLI
transaction startup failed - Interface calls are out of sequence”. The SDK (Java)
uses this form of the SessionException constructor to report all errors with an
error reason code other than SessionException.RULEFAILED (3091).

In the second form, SessionException constructs a SessionException object with
the SessionException.CALLRULE_FAILED (11) return code, a
SessionException.RULEFAILED (3091) error reason code, and a specified error
message. The resulting exception error message string (available using a
java.lang.Throwable.getMessage call) contains the following: {error code
description} - {ruleErrorText}. For example, if a call("MYRULE"...) throws an
exception because the MYRULE rule encountered an access error on table named
MYTABLE, the error message string is “JCLI rule call failed - Access error on
TABLE "MYTABLE"”. The error reason code for these errors is always
SessionException.RULEFAILED (3091). The SDK (Java) uses this form of the
SessionException constructor to report rules failures, passing the string available
via endMessage at the end of the call as a ruleErrorText parameter.

Parameters:

rc The error code.

reasonCode The error reason code.
 TIBCO Object Service Broker for Open Systems External Environments

166 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Return Value: None.

Comments You can access the exception error message string using the getMessage() method
or the toString() method defined in the java.lang.Throwable class.

errorReasonDescr
Returns a textual description of a particular SDK (Java) error reason code.

public String errorReasonDescr(int reasonCode)

Parameters:

Return Value: For a list of error reason codes, refer to Appendix A, SDK (C/C++) and
SDK (Java) Error Reason Codes, on page 179.

Comments Use the reasonCode method to retrieve the value of a particular error reason code.

reasonCode
Returns an error reason code for an SDK (Java) error.

public int reasonCode()

Parameters: None.

Return Value: For a list of error reason codes, refer to Appendix A, SDK (C/C++) and
SDK (Java) Error Reason Codes, on page 179.

Comments Use the errorReasonDescr method to retrieve a textual description of a particular
error reason code.

ruleErrorText The rules error message.

reasonCode The error reason code.
TIBCO Object Service Broker for Open Systems External Environments

SessionException Object Methods | 167
rc
Returns an SDK (Java) operation error code.

public int rc()

Parameter: None.

Return Value: Depending on the method that failed, the error returned is one of the following:

• SessionException.STARTSS_FAILED= 4

• SessionException.STOPSS_FAILED= 9

• SessionException.STARTTR_FAILED= 10

• SessionException.CALLRULE_FAILED= 11

• SessionException.STOPTR_FAILED= 12
 TIBCO Object Service Broker for Open Systems External Environments

168 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Misc Object Methods

commCreate
Creates a new byte array and formats it according to the commarea specification.

The size of the new byte array is calculated based on the supplied segment
structure. In the second form, the structure is assumed to have one segment of
segmentSize bytes

public static byte[] commCreate(int[] segmentSizes)

or

public static byte[] commCreate(int segmentSize)

Parameters:

Return Value: A new commarea byte array.

Exceptions First form: OutOfMemoryError, NullPointerException.

Second form: OutOfMemoryError.

Comments The part of the array that belongs to the segment bodies is not initialized.

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.
TIBCO Object Service Broker for Open Systems External Environments

Misc Object Methods | 169
commFormat
Formats a byte array according to the commarea specification.

In the second form, the commarea is assumed to contain one segment of
segmentSize bytes.

public static void commFormat(byte[] area,
 int[] segmentSizes)

or

public static void commFormat(byte[] area,
 int segmentSize)

Parameters:

Return Value: None.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

commSegmentInd
Returns the offset of a specified segment in a commarea.

public static int commSegmentInd(byte[] area,
 int segmentNum)

Parameters:

Return Value: The offset of the beginning of the segment body, or 0 if the segment does not exist.

area Array to format.

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.

area Byte array formatted according to the commarea specification.

segmentNum The segment number.
 TIBCO Object Service Broker for Open Systems External Environments

170 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

commSegments
Returns the number of segments in a commarea according to its header.

public int commSegments(byte[] area)

Parameters:

Return Value: The number of segments in a commarea according to its header.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

commSegSize
Returns the size of a given commarea segment.

public int commSegSize(byte[] area,
 int segmentNum)

Parameters:

Return Value: The segment size, or 0 (zero) if the segment does not exist.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

area Byte array formatted according to the commarea specification.

area Byte array formatted according to the commarea specification.

segmentNum The segment number.
TIBCO Object Service Broker for Open Systems External Environments

Misc Object Methods | 171
commSize
Calculates the number of bytes in a commarea according to its header.

public int commSize(byte[] area)

Parameters:

Return Value: The total size of a commarea according to its header.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

commSizeCalc
Calculates the number of bytes needed for a commarea with the specified
structure.

This method has two forms:

public static int commSizeCalc(int[] segmentSizes)

or

public int commSizeCalc(int segmentSize)

In the first form, the commarea has a structure supplied by the input array.

In the second form, the commarea has one segment of a given size.

Parameters:

Return Value: The size of an area with the supplied structure.

area Byte array formatted according to the commarea specification.

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.
 TIBCO Object Service Broker for Open Systems External Environments

172 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Exceptions For the first form, since no verification of input parameters is performed,
standard array access exceptions can be thrown. The second form throws no
exceptions.

readInt
Reads 4 bytes from a byte array and returns a value of type int according to what
these bytes represent in big-endian format.

public static int readInt(byte[] b,
 int offset)

Parameters:

Return Value: The value of type int that the specified 4 bytes represent in big-endian format.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

readShort
Reads 2 bytes from a byte array and returns a value of type short according to
what these bytes represent in big-endian format.

public static short readShort(byte[] b,
 int offset)

Parameters:

Return Value: The value of type short that the specified 2 bytes represent in big-endian format.

b Input byte array.

offset Starting index.

b Input byte array.

offset Starting index.
TIBCO Object Service Broker for Open Systems External Environments

Misc Object Methods | 173
Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

writeInt
Writes, into a byte array, 4 bytes of a big-endian byte representation of a value of
type int.

public static void writeInt(int n,
 byte[] b,
 int offset)

Parameters:

Return Value: None.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

writeShort
Writes, into a byte array, 2 bytes of a big-endian byte representation of a value of
type short.

public static void writeShort(short s,
 byte[] b,
 int offset)

Parameters:

n Input value of type int.

b Output byte array.

offset Starting index.

s Input value of type short.

b Output byte array.
 TIBCO Object Service Broker for Open Systems External Environments

174 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
Return Value: None.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions can be thrown.

offset Starting index.
TIBCO Object Service Broker for Open Systems External Environments

Sample Application Using the SDK (Java) | 175
Sample Application Using the SDK (Java)

Compiling and Running the Sample Program
The sample is available in the /install_path/JavaCLI/src folder.

Windows

Using the Sun JDK 1.3, the sample program was compiled and executed with the
following assumptions:

• The Java program resides in the current directory, as JCLISAMP.java

• The OS_ROOT environment variable is initialized to the TIBCO Object Service
Broker install path

• The .jar file for the SDK (Java) is install_path\bin\cli.jar

• The TIBCO Object Service Broker Data Object Broker and TIBCO Object
Service Broker monitor (osMon) are running, with the osMon listening on port
9068

Compile and execute the program using these commands:

1. SET CLASSPATH=.;%OS_ROOT%\bin\cli.jar;%CLASSPATH%

2. javac JCLISAMP.java

3. java JCLISAMP clihost=localhost,cliport=9068 ISO8859-1

Solaris

The sample program was compiled and executed with the following
assumptions:

• The SDK (Java) .jar file exists as install_path/bin/cli.jar

• The source file JCLISAMP.java exists in the current directory

• The OS_ROOT environment variable is initialized to the TIBCO Object Service
Broker install path

• The TIBCO Object Service Broker Data Object Broker and TIBCO Object
Service Broker monitor (osMon) are running, with the osMon listening on port
9068

Use the following commands to compile and run the sample program:

1. export CLASSPATH=.:$OS_ROOT/bin/cli.jar:$CLASSPATH
 TIBCO Object Service Broker for Open Systems External Environments

176 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
2. javac JCLISAMP.java

3. java JCLISAMP clihost=localhost,cliport=9068 ISO8859-1

Sample Rule Called by Program
This is a sample of a rule that creates an occurrence of a TDS table, generates an
end message, and returns a value. On completion of the rule, the changes are not
committed because the transaction is still active. The SDK (Java) program
explicitly stops the transaction by issuing stopTrans with a true flag or a false flag
to indicate whether the changes are to be committed.

RULE EDITOR ===> SCROLL: P
 TC007124RU02;
 _
 _ ---
 _ --+--------------
 _ TC007124TA01.TEXT = 'RULE "TC007124RU02" IS CALLED'; | 1
 _ INSERT TC007124TA01; | 2
 _ CALL ENDMSG('END MESSAGE GENERATED BY RULE "TC007124RU02"' | 3
 _); |
 _ RETURN('RETURN VALUE OF RULE "TC007124RU02"'); | 4
 _ ---
 _

The sample uses the HURON1 TIBCO Object Service Broker user ID with a
password of HURON1.
TIBCO Object Service Broker for Open Systems External Environments

Sample Application Using the SDK (Java) | 177
Sample Table Referenced by a Rule
The table is defined as follows:

 COMMAND==> TABLE DEFINITION

 Table: TC007124TA01 Type: TDS Unit: TC007124 IDgen: Y

 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 _ KEY I B 4 0 P
 _ TEXT S C 50 0
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
 New table definition

Output from Program
The output from the program is as follows:

Start session completed
Start transaction completed
Rule call TC007124RU02 completed; Return value='RETURN VALUE OF
RULE "TC007124RU02"'; End message='END MESSAGE GENERATED BY RULE
"TC007124RU02"'
Stop transaction completed
Stop session completed
 TIBCO Object Service Broker for Open Systems External Environments

178 | Chapter 8 Using TIBCO Object Service Broker SDK (Java)
When the rule is done, a row is added to the table:

 EDITING TABLE : TC007124TA01
 COMMAND ==>
 SCROLL: P
 KEY TEXT
 _ ----------- --
 _ 1 RULE "TC007124RU02" IS CALLED
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _

 PFKEYS: 4=INS 16=DEL 5=FIND NXT 6=CHG NXT 18=EXCL 19=SHOW 3=SAVE 12=CANCEL
TIBCO Object Service Broker for Open Systems External Environments

| 179
Appendix A SDK (C/C++) and SDK (Java)
Error Reason Codes

This appendix lists the error reason codes for the C and C++ SDK and the Java
SDK.

Topics

• Listing of the Reason Codes, page 180
 TIBCO Object Service Broker for Open Systems External Environments

180 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
Listing of the Reason Codes

Code Values and Explanations
The following table lists the error reason codes. A listing of symbols is available
for your use in install_path/cli/include/oscl.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation

36 CALLOUTOFSEQ Interface calls are out of sequence.

37 NOSTANDBYSESS No standby sessions active in the
Execution Environment.

38 INCOMMAERROR Input commarea storage is inaccessible.

39 OUTCOMMAERROR Output commarea storage is
inaccessible.

40 INCOMMLENERR Input commarea length error.

41 OUTCOMMLENERR Output commarea length error.

43 DISPCODEPAGEV DISPLAYCODEPAGE value not
supported.

53 CICSEENOTSUPP This version of HRNDRAPI does not
support a CICS Execution
Environment.

65 INVALIDSSPARM Invalid session parameters.

66 INVALIDUSERID TIBCO Object Service Broker user ID is
longer than eight characters.

67 INVALIDCHARSET Invalid character set name.

68 INVALIDEXECMO Invalid execution mode.

69 SECLOGONFAIL Security login fail.

70 SECLOGOFFFAIL Security logout fail.
TIBCO Object Service Broker for Open Systems External Environments

Listing of the Reason Codes | 181
71 SESSSTORINITF Session scope storage initialization fail.

72 SESSSTORTERMF Session scope storage termination fail.

73 USEREXITRC Session rejected by user exit.

74 UNKNOWNEXITRC Unknown return code from user exit.

75 NLSINITFAIL NLS initialization failed.

86 INVALIDTRANOP Invalid transaction option.

96 NORULENAME Rule name not supplied.

97 RULENAMELNERR Rule name length error.

99 INVALIDENDTR Invalid stop transaction parameter.

102 COMMITFAIL Commit failed.

103 ROLLBACKFAIL Rollback failed.

104 RULEARGERROR Rule name or argument syntax error.

106 TOOMANYTRANS Too many transactions in a session.

128 TRANSACTIVE Transaction still active.

160 INCOMPATVERSN Incompatible client/server version.

161 UNSUPPCODEPAG Unsupported code page specified.

163 SESSINITERROR Session control storage not available.

164 CICSTASKFAIL Start CICS task failed.

165 ENVINITERROR Environment initialization error.

166 MSGTOOLONG SDK (C/C++) message length exceeds
maximum.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
 TIBCO Object Service Broker for Open Systems External Environments

182 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
167 MSGSTORNA SDK (C/C++) message storage not
available.

168 DATAOUTTOOLONG dataOut length exceeds maximum.

169 DATAOUTSTORNA dataOut storage not available.

170 USIDNOTSUPPL User ID not supplied.

171 LOGONINVALID1 User ID or password in not valid. a.

171 USIDINVALID User ID or password in not valid. a.

172 USIDSUSPENDED User ID suspended.

173 USIDCANTACCES User ID cannot access TIBCO Object
Service Broker at this time.

174 PSWDNOTSUPPL Password not supplied.

175 LOGONINVALID2 User ID or password in not valid. a.

175 PSWINVALID User ID or password in not valid. a.

176 PSWDEXPIRED Password expired, new password
missing.

177 NEWPSWDINVAL New password not valid.

178 PSWDUPGRADEFA Password upgrade fail.

179 PSWDDECRYPTFA Password decrypt fail.

180 CORRDATA Corrupt message received from server.

193 INVNODE Invalid host/node or host/port
specification.

194 UNDEFNODE Undefined node.

195 COMMFAILURE Communication failure.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
TIBCO Object Service Broker for Open Systems External Environments

Listing of the Reason Codes | 183
196 INVDATA Invalid message received from server.

197 MEMORY Client cannot allocate memory for
operation.

198 BADCOMMFORMAT Unsupported commarea format.

199 SESSINVALID Invalid CLI_SESSION parameter.

200 SESSCANCELLED Session was canceled or terminated.

201 BUFTOOSMALL Buffer for rules return value is too small
(< 3 bytes).

208 SINGLEUSER This version of the SDK (C/C++) client
allows connections to host “localhost”
only.

3088 SESSPARMTOOLONG Session parameter string is too long (>
65535).

3089 NODENOTSUPPORTED CLINODE parameter is not supported
by the SDK (Java).

3090 RULEEXPRTOOLONG Rules expression is too long.

3091 RULEFAILED Rules call failed.

3092 UNDEFCODEPAGE Undefined SDK (C/C++)/SDK (Java)
code page supplied.

3093 INVRETVALIND Invalid rules return value start index or
maximum length.

49408 UNIDENTEEERROR Internal Execution Environment error
or unidentified Execution Environment
error.

49409 DATAOUTCORRUPT Output commarea is corrupted after
rules call.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
 TIBCO Object Service Broker for Open Systems External Environments

184 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
a. Note that logon failures, depending on particular TIBCO Object Service
Broker system can be reported by either LOGONINVALID1 or
LOGONINVALID2 reason codes. Both codes mean that a user cannot login
using this User ID/password combination. USIDINVALID and
PSWDINVALID reason codes have the same values as LOGONINVALID1
and LOGONINVALID1 and are present for compatibility reasons only.
TIBCO Object Service Broker for Open Systems External Environments

| 185
Index

A

accessing TIBCO Object Service Broker from external
environments 6

Adapter for JDBC-ODBC 75–99
adding entries

to ARGUMENTS table 30, 40
to ROUTINES table 28, 37

architecture, TIBCO Object Service Broker 2
arguments

identifying to TIBCO Object Service Broker 30, 40
length 32, 42
name 31, 41
position in list 31, 41
semantic type 31, 42
syntax 31, 42
value changed by external routine 31, 41

ARGUMENTS table 30, 40

B

batch client, starting a session 13

C

calculate commarea size function
for segment of certain size. See cliCommCreate1
for segment of certain size. See cliCommSizeCalc1
for segment of certain structure. See cliComm-

SizeCalc
total. See cliCommSize

calculate commarea size function. See cliCommSize
call a rule operation. See callrule
call SDK (Java) method 152
callrule cliProc operation 121

class factories 20
cliCommCreate SDK (C/C++) function 131
cliCommCreate1 SDK (C/C++) function 132
cliCommDelete SDK (C/C++) function 132
cliCommFormat SDK (C/C++) function 133
cliCommFormat1 SDK (C/C++) function 133
cliCommSegment SDK (C/C++) function 134
cliCommSegments SDK (C/C++) function 134
cliCommSegSize SDK (C/C++) function 135
cliCommSize SDK (C/C++) function 131, 135
cliCommSizeCalc SDK (C/C++) function 136
cliCommSizeCalc1 SDK (C/C++) function 136
client defaults, setting via parameters 12
client services layer

explanation of 2
purpose of 2

client/server model, and TIBCO Object Service
Broker 4

cliExecTran SDK (C/C++) function 127
cliProc operations

callrule 121
getendmsg 125
resetss 125
sessactive 126
startss 118
starttr 120
stopss 124
stoptr 124

cliProc SDK (C/C++) function 115
cliSetCodepage SDK (C/C++) function 129
commarea 111, 113, 123
commCreate SDK (Java) method 168
commFormat SDK (Java) method 169
commSegmentInd SDK (Java) method 169
commSegments SDK (Java) method 170
commSegSize SDK (Java) method 170
commSize SDK (Java) method 171
commSizeCalc SDK (Java) method 171
compiler requirements for external routines 20
 TIBCO Object Service Broker for Open Systems External Environments

186 | Index
compiling and linking external routines
C

general requirements 26
Solaris 27
Windows 27

configuring, EMS interface 50
constants for SDK (C/C++) 112
constants for SDK (Java) 146
customer support xviii

D

Data Object Broker, description 3
data sources, pre-configured 82
data store, explanation of 3
decimal digits

in argument 32, 42
in value returned by external routine 29, 38

DECIMAL field
ARGUMENTS table 32, 42
ROUTINES table 29, 38

delete a commarea function. See cliCommDelete
DOB. See Data Object Broker 3
drop a connection to a session operation. See resetss

E

EE. See Execution Environment 2
EMS interface 46–70

code page support 50
configuration 50
sample applications 51
shareble tools 47
supported functions 52

endMessage SDK (Java) method 155
error codes and messages 96
error handling

by external routines 73
by MOM routines 49

error reason codes, SDK (C/C++)
106 121
128 125
161 130
193 119
199 117, 125
3090 122
36 120, 121, 122, 124, 125, 127, 163
96 122
listing and explanation of 180

error reason codes, SDK (Java)
106 162
193 160
3090 153
36 153, 162
96 153

errorReasonDescr SDK (Java) method 166
exception handling, for external routines

C 23
Java 34

execTran SDK (Java) method 156
execute a transaction function. See cliExecTran
Execution Environment, description 2
external database servers, explanation of 3
external environment

accessing TIBCO Object Service Broker from 6
explanation of 2
supported types 2

external library, point of unloading 29, 38
external routine

C
exception handling 23
preparing for use with TIBCO Object Service

Broker 23
changing argument value 31, 41
function 28, 37
identifying arguments 30, 40
identifying to TIBCO Object Service Broker 19, 27
Java

exception handling 34
identifying to TIBCO Object Service Broker 36

language field 28, 37
name 28, 37
path name 29, 38
preparing for use with TIBCO Object Service Broker
TIBCO Object Service Broker for Open Systems External Environments

Index | 187
Java 34
processing 20
syntax for calling external routine 21

external routines
compiler requirements 20
error handling 73
language requirements 20

F

format a commarea function
for multiple segments. See cliCommFormat
for one segment. See cliCommFormat1
for segment of certain structure. See cliCommCreate

FUNCTION field, ROUTINES table 28, 37
function of external routine 28, 37
functions, supported for EMS 52

G

getendmsg cliProc operation 125

I

identifying
arguments to TIBCO Object Service Broker 30, 40
external routine to TIBCO Object Service Broker 19,

27, 36
INOUT field, ARGUMENTS table 31, 41
inquire whether a session is active operation. See sess-

active
isActive SDK (Java) method 158

J

Java external routines 20
Java Virtual Machine 34

JDBC Adapter
starting a session 13

L

language
of external routine 28, 37
requirements for external routines 20

LANGUAGE field, ROUTINES table 28, 37
length

of argument 32, 42
of value returned by external routine 29, 38

LENGTH field
ARGUMENTS table 32, 42
ROUTINES table 29, 38

LIBNAME field, ROUTINES table 29, 38
LLCOPY CSTR(listr, cstr) SDK (C/C++) function 136
LLCOPY MEM(listr, prt, len) SDK (C/C++)

function 136
LLDECLARE(name, len) SDK (C/C++) function 137
LLSETLEN(listr, len) SDK (C/C++) function 137
LLSTR(listr) SDK (C/C++) function 137, 137
load module, name 29, 38
LOADNAME field, ROUTINES table 29, 38

M

Message Oriented Middleware
error handling 49
example rule 73
steps required to use 72
usage notes 47, 72

MetaStor, explanation of 3
monitor process, TIBCO Object Service Broker,

definition 2
MQ Series, accessing 72
 TIBCO Object Service Broker for Open Systems External Environments

188 | Index
N

NAME field
ARGUMENTS table 31, 41
ROUTINES table 28, 37

name to invoke external routine 28, 37
NLS requirement 110, 144
node name 29, 38
NODENAME field, ROUTINES table 29, 38
NUMBER field, ARGUMENTS table 31, 41

O

Object Integration Gateway, starting a session 13
ODBC Adapter

starting a session 13
ODBC conformance levels 96

API 96
SQL 96

osBatch, starting a session 13
osMon, definition 2
ostty, starting a session 13

P

Pagestore, purpose of 3
parameters, setting 11
path name of external routine 29, 38
pre-configured data sources 82
preparing external routines for use with TIBCO Object

Service Broker
C 23
Java 34

processing external routines 20

Q

query number of segments in commarea function,
total. See cliCommSegments

R

rc SDK (Java) method 167
readInt SDK (Java) method 172
readShort SDK (Java) method 172
reason codes, SDK (C/C++) errors

106 121
128 125
161 130
193 119
199 117, 125
3090 122
36 120, 121, 122, 124, 125, 127, 163
96 122
listing and explanation of 180

reason codes, SDK (Java) errors
106 162
193 160
3090 153
36 153, 162
96 153

reasonCode SDK (Java) method 166
requirements, for SDK 110

NLS 110, 144
reset SDK (Java) method 158
resetss cliProc operation 125
retrieve a rules end message operation. See getendmsg
retrieve segment size function. See cliCommSegSize
return pointer to commarea function. See cliCom-

mSegment
ROUTINES table 28, 37
rules 2

S

S6BCALL tool 47
S6BFUNCTION tool 47
sample application

using SDK (C/C++) 138
using SDK (Java) 175

sample applications, EMS interface 51
SCOPE field, ROUTINES table 29, 38
TIBCO Object Service Broker for Open Systems External Environments

Index | 189
SDK (C/C++)
error reason codes for 180
how to use 111
introduction 5
starting a session 13

SDK (C/C++) constants 112
SDK (C/C++) error reason codes

106 121
128 125
161 130
193 119
199 117, 125
3090 122
36 120, 121, 122, 124, 125, 127, 163
96 122
listing and explanation of 180

SDK (C/C++) functions
cliCommCreate 131
cliCommCreate1 132
cliCommDelete 132
cliCommFormat 133
cliCommFormat1 133
cliCommSegment 134
cliCommSegments 134
cliCommSegSize 135
cliCommSize 131, 135
cliCommSizeCalc 136
cliCommSizeCalc1 136
cliExecTran 127
cliProc 115
cliSetCodepage 129
LLCOPY CSTR(listr, cstr) 136
LLCOPY MEM(listr, prt, len) 136
LLDECLARE(name, len) 137
LLSETLEN(listr, len) 137
LLSTR(listr) 137, 137

SDK (Java)
how to use 145
introduction 5
starting a session 13

SDK (Java) constants 146

SDK (Java) error reason codes
106 162
193 160
3090 153
36 153, 162
96 153

SDK (Java) methods
call 152
commCreate 168
commFormat 169
commSegmentInd 169
commSegments 170
commSegSize 170
commSize 171
commSizeCalc 171
endMessage 155
errorReasonDescr 166
execTran 156
isActive 158
rc 167
readInt 172
readShort 172
reasonCode 166
reset 158
Session 150
SessionException 165
shutdown 159
start 159
startTrans 161
stop 162
stopTrans 163
transNestLevel 163
userId 164
writeInt 173
writeShort 173

semantic type
of argument 31, 42
of value returned by external routine 28, 37

server node name 29, 38
sessactive cliProc operation 126
session

description 12
starting 13

Session SDK (Java) method 150
SessionException SDK (Java) method 165
 TIBCO Object Service Broker for Open Systems External Environments

190 | Index
set code page function
See also cliSetCodepage

setting parameters
methods

Security Manager option 12
TIBCO Object Service Broker C routines 12
TIBCO Object Service Broker Java routines 12
User Profile option 12
using Object Integration Gateway 12
using parameter files 12

overview 12
shutdown SDK (Java) method 159
Solaris, compiling and linking external routines

C 27
specifying table entries for external routines

C 27
Java 36

start a session operation. See startss
start a transaction operation. See starttr
start SDK (Java) method 159
starting a session using

3270 Access Adapter 13
Object Integration Gateway 13
osBatch 13
ostty 13
SDK (C/C++) 13
SDK (Java) 13
TIBCO Object Service Broker ODBC Adapter 13
TIBCO Object Service Broker UI 13

startss cliProc operation 118
starttr cliProc operation 120
startTrans SDK (Java) method 161
stop a session operation. See stopss
stop a transaction operation. See stoptr
stop SDK (Java) method 162
stopss cliProc operation 124
stoptr cliProc operation 124
stopTrans SDK (Java) method 163
support, contacting xviii
syntax

for calling external routine 21
of arguments 31, 42
of value returned by external routines 29, 38

SYNTAX field
ARGUMENTS table 31, 42
ROUTINES table 29, 38

T

table entries for external routines, specifying
C 27
Java 36

technical support xviii
Telnet 3270

introduction 5
starting a session 13

TIBCO Enterprise Message Service See EMS
interface 46

TIBCO Object Service Broker
accessing from external environment 6
architecture, overview 2
client/server model 4
interfaces to external environments 5
session types 2

TIBCO Object Service Broker Adapter for JDBC-ODBC
configuring 77
configuring components 83
connecting to TIBCO Object Service Broker 79
connecting without a DSN 81
constructing the connect string 79
creating and configuring a DSN for 77
definition of 76
error codes and messages 96
keyword description 80
pre-configured data sources 82
replacing rows 94
steps required to use 76
support for distributed transactions 95
supported TIBCO Object Service Broker table

types 92
transaction processing 94
updating database entries 79
using 77
using parameterized tables 93

TIBCO Object Service Broker components, configuring
to work with TIBCO Object Service Broker
TIBCO Object Service Broker for Open Systems External Environments

Index | 191
Adapter for JDBC-ODBC 83
TIBCO Object Service Broker UI, starting a session 13
TIBCO Service Gateway for WMQ, using 72
TIBCO_HOME xv
transNestLevel SDK (Java) method 163
TYPE field

ARGUMENTS table 31, 42
ROUTINES table 28, 37

U

unloading external library 29, 38
userId SDK (Java) method 164

W

WebSphere MQ, accessing 72
Windows, compiling and linking external routines

C 27
WMQ, gateway for 72
writeInt SDK (Java) method 173
writeShort SDK (Java) method 173
 TIBCO Object Service Broker for Open Systems External Environments

	TIBCO® Object Service Broker for Open Systems
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 About the TIBCO Object Service Broker System
	About TIBCO Object Service Broker Architecture
	Client Services Layer
	Execution Environment
	Data Object Broker

	TIBCO Object Service Broker in the Client Server Model
	TIBCO Object Service Broker Interfaces for External Environments

	Accessing TIBCO Object Service Broker from an External Environment
	What is an External Environment?
	General Steps

	Chapter 2 Setting Session Parameters
	Session Parameter Setting
	What is a Session?
	How to Set Session Parameters

	Starting Sessions
	How Do You Start Sessions?

	When a Session Ends Abnormally
	List of Execution Environment and Session Exit Codes

	Chapter 3 Accessing External Routines
	Overview
	Functional Overview

	External Routines in C
	Steps Required to Use an External C Routine

	External Routines in Java
	Steps Required to Use an External Java Routine

	Chapter 4 Using the Interface to TIBCO Enterprise Message Service™
	TIBCO Object Service Broker EMS Interface
	Purpose of TIBCO Enterprise Message Service
	Overview of TIBCO Object Service Broker EMS Interface

	Calling EMS
	Shareable Tools Available
	Argument Mapping
	Error Handling

	Configuration
	Initializing the EMS Interface
	Setting the Path Environment Variable
	Code Page Support

	Sample Applications
	Rules Samples

	Supported EMS Functions

	Chapter 5 Using the TIBCO Service Gateway for WMQ
	Overview
	Configuration
	Usage Notes
	Error Handling
	Example Rule

	Chapter 6 Using TIBCO Object Service Broker Adapter for JDBC-ODBC
	Accessing TIBCO Object Service Broker Using 32-bit ODBC
	Overview of ODBC support
	Configuring the TIBCO Object Service Broker Adapter for ODBC
	Connecting to TIBCO Object Service Broker
	Constructing the Connect String
	Keyword Description
	Connecting Without a DSN
	Pre-Configured Data Sources
	Configuring TIBCO Object Service Broker Components
	Stored Procedures
	Writing TIBCO Object Service Broker Rules as ODBC Stored Procedures
	Creating Cursors in TIBCO Object Service Broker Adapter for JDBC-ODBC Stored Procedures
	Object Service Broker ODBC Stored Procedures Emulator
	Sample
	Notes on Behavior
	Supported TIBCO Object Service Broker Table Types
	Using Parameterized Tables
	How Rows are Replaced
	How Transactions are Handled
	Support for Distributed Transactions (Windows, Solaris)
	ODBC Conformance Levels
	ODBC API Conformance
	Error Codes and Messages

	Accessing TIBCO Object Service Broker Using 64-bit ODBC
	Overview of 64-bit ODBC Support
	Running the SQL Service
	Creating and Configuring a Data Source
	Using the 64-bit ODBC Driver
	Connecting Without a DSN
	ODBC Conformance Levels

	Accessing TIBCO Object Service Broker Using JDBC
	Overview of JDBC support
	Running the SQL Service
	Setting the CLASSPATH
	Registering the JDBC Client
	Specifying the JDBC Driver Connection URLs
	Using Stored Procedures

	Chapter 7 Using TIBCO Object Service Broker SDK (C/C++)
	Overview
	Requirements
	How Does It Work?
	How Can It Be Used?
	Compiling and Linking
	Thread Safety
	Constants

	SDK (C/C++) Functions
	cliProc
	cliExecTran
	cliSetCodepage
	cliErrorReasonDescr
	cliCommCreate
	cliCommCreate1
	cliCommDelete
	cliCommFormat
	cliCommFormat1
	cliCommSegment
	cliCommSegments
	cliCommSegSize
	cliCommSize
	cliCommSizeCalc
	cliCommSizeCalc1
	LLCOPY_CSTR(listr, cstr)
	LLCOPY_MEM(listr, prt, len)
	LLDECLARE(name, len)
	LLSETLEN(listr, len)
	LLSTR(listr)
	LLSTRLEN(listr)

	Sample Application Using the SDK (C/C++)
	Compiling and Running the Sample Program
	Rule Called by C Program
	Table Referenced by a Rule
	Output from C Program

	Chapter 8 Using TIBCO Object Service Broker SDK (Java)
	Overview
	Requirements
	How Does It Work?
	How Can It Be Used?
	Compiling
	Thread Safety
	Constants

	SDK (Java) Methods
	Classes

	Session Object Methods
	Session
	call
	endMessage
	execTran
	isActive
	reset
	shutdown
	start
	startTrans
	stop
	stopTrans
	transNestLevel
	userId

	SessionException Object Methods
	SessionException
	errorReasonDescr
	reasonCode
	rc

	Misc Object Methods
	commCreate
	commFormat
	commSegmentInd
	commSegments
	commSegSize
	commSize
	commSizeCalc
	readInt
	readShort
	writeInt
	writeShort

	Sample Application Using the SDK (Java)
	Compiling and Running the Sample Program
	Sample Rule Called by Program
	Sample Table Referenced by a Rule
	Output from Program

	Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
	Listing of the Reason Codes
	Code Values and Explanations

	Index

