TIBCO® Object Service Broker
Managing Data

Software Release 6.0
July 2012

WiTIBCO

two-second advantage™ The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:

Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
= =T Xi
Related Documentation Xii
TIBCO Object Service Broker Documentationt e Xii
Typographical CoONVENTIONSot e e e e e e e e e XVii
Connecting with TIBCO RESOUICES ot ittt et e e e e e e e e e e e e XX
How to Join TIBCOMMUNILYottt e e e e e e e e e e e e e e e XX
How to Access All TIBCO Documentationttt e XX
How to Contact TIBCO SUPPOIt ottt e e e e e e e e XX
Chapter 1 Overview of Data Structuresottt et a e aaannnns 1
Relationships of Data. 2
How is Data Viewed in TIBCO Object Service Broker? e 2
Three Views of Datao 2
VIeWS Of Data.o 3
First Level: Application View. o 3
Second Level: Logical VIEWo 3
Third Level: Physical Storeo 3
YoUr Data SOreo 4
What is Your Data Store?o e 4
Stored Types Of Data 4
Persistent Data 5
Non-persistent Data 5
Storage of TIBCO Object Service Broker Data e 7
Pagestore . . .o 7
Use of Tables in TIBCO Object Service BroKer e e e 8
What is @ Table?o e 8
What is the Purpose of a Table?. e 8
TIBCO Object Service Broker Ul e 8
What Does a Table LOOK LiKe? o e e e e 9
Available Table TYPes. e 10
What is @ Table TYPeot e e e e e 10
Determining the Appropriate Table Type 10
Re-usability of Data 13
Design OptioNSo 13
Option 1: Using Parameterized Tables 13
Option 2: Using Minimal Definition 14

TIBCO Object Service Broker Managing Data

iv | Contents

Option 3: Using Non-persistent Data. e 14
Option 4: Using Global Fields e 15
Accessing Table Data e 16
How Do I ACCess Data?.o e 16
Requirements before Accessing Data 16
Locatingthe Data.o 16
Order of Evaluation to Determine Location« ... 17
Chapter2 TheTable Definero ittt ittt tnnae s esnannnnnnnns 21
Whatis the Table Definer? 22
TIBCO Object Service Broker Ul o e e e e e 22
OVBIVIBW . . o ottt e e e e e e 22
Accessing the Table Definer e 22
Layout of the SCreeno 23
EXample. . .o 23
Tools Available from the Table Definer e e e 25
What Tools are Available? e 25
Table Editor, Table Browser, and Single Occurrence Editor. i 25
Global Field Selector e e 26
Selecting Global Fieldso 27
Types of Implementation 27
Types of Information Stored with a Global Field e 27
Global Fields Selector lllustratedo 28
Using the Global Fields Selector e e e 28
Chapter 3 Defining TDS, EES, SES,and TEM Tablescc i, 29
OV BIVIBW .« .« ottt e e e e e e e e e 30
TIBCO Object Service Broker Ulo e e e 30
Tasks for Defining a Table o 30
Task A: Define Table Properties 31
Purpose of this Task 31
Table, Type, Unit, and IDgen Fieldso 31
Task B: Define Parameterso 33
Purpose of this Task 33
Considerations for Defining Parameters e 33
Data Parameters 34
Defining Data Parameters 34
What is a Location Parameter? 35
Defining a Location Parameter e 35
Task C: Specify Event RUIES 37
Purpose of this Task 37
Considerations for Defining Event Rules 37

TIBCO Object Service Broker Managing Data

Contents | v

Event Rule, Typ, and ACC Fieldsottt e 38
Task D: Define Primary KeYSottt e e e e e e 39
Purpose of this Tasko 39
Composite Primary Keys e 39
Methods Available for Defining Primary Key Fields e 39
Creating a New Primary Key Field e 40
Task E: Define Non-Key Fields. e e 42
Purpose of this Task e 42
Methods Available for Defining Data Fields e 42
Creating a New Non-key Field e 43
Chapter 4 Defininga ViewofaSourceTablettt 45
Views of a Source Table e 46
TIBCO Object Service Broker Ul e 46
Whatis a View of a Source Table? 46
What Types of Views Can be Specified? 46
Defining a Subview (SUB) Table 47
Why Define @ SUbVIEW ?o 47
Behavior of SUDVIEWS o 47
Tasks Required to Define @ SUDVIEWo 48
Sample Subview Tableo 51
Defining a Calculation (CLC) Tableo e e 52
Why Define a Calculation View?. 52
Behavior of Calculation Tables e 52
Tasks Required to Define a Calculation Table e e 52
Defining a Parameter Value (PRM) Table e 55
Why Define a Table for Parameter Values? i e 55
Behavior of Parameter Tables. 55
Tasks Required to Define a Parameter Value Table i 55
Using the NUMBER Field ina Parameter Table e 56
Sample Parameter Value Table e 57
Example Rule for Parameter Valuesfora Table 57
Chapter 5 Editing a Table Definition.o i et enaens 59
Editing @ Definition. oo 60
TIBCO Object Service Broker Ul e e 60
OV IV . .\ ot ittt et e e e e e e e 60
Updating Specifications with a Definition 60
Permissible Editing Changesot 60
Non-permissible Editing Changes 61
Commands and PF Keys Available. 61
Copying a Definition.o 62

TIBCO Object Service Broker Managing Data

Vi | Contents

Copying a Definition Using the Table Definer. e 62
Copying a Definition Using Shareable TOOIS e 62
Editing a Definition for Distributed Development. e 64
Purpose of the Definition 64
Definition and Data Requirements for Distributed Data. 64
Copying a Definition.o 64
Defining a Minimal Definition 64
Deleting a Definition 67
Considerations when Deleting an Object. 67
Deleting a Definition Using the Table Definer e 67
Deleting a Definition Using a Shareable ToOL. e 68
Chapter 6 Manipulating DatainaTablecciiiiiiiiiiii it annns 69
Data Manipulation TOOISo e 70
TIBCO Object Service Broker Ul o e 70
Available Methods 70
ChooSiNg @ TOOL. . . .ottt e 70
Browsing Data with the Table Browser. 71
Manipulating Data with the Table Editor. 72
Manipulating Data with the Single Occurrence Editor 73
Invoking the Table Browser, Table Editor, and Single Occurrence Editor 74
Invoking the Table BroWser 74
Invoking the Table Editoro 74
Invoking the Single Occurrence Editor. 74
Replacing Data 76
Replacing Data Using the Table Editor 76
Replacing Data Using the CHANGE Command from the Table Editor 76
Controlling the Scope of the CHANGE Command.t e 76
Replacing Data Using the Single Occurrence Editor. e 77
Replacing Data Usinga Rules Statement 78
Inserting Data 79
Inserting Data Using the | Line Command in the Table Editor. 79
Inserting Data Using PF4 in the Table Editor. 79
Inserting Data Using the Single Occurrence Editor. i 79
Inserting Data Using a Rules Statement e 80
Replicating Data 81
Purpose of Replicating Data 81
Replicating Data Using the R Line Command in the Table Editor 81
Replicating Data Using the Single Occurrence Editor. e 81
Deleting Data 82
Deleting Data Using the D Line Command in the Table Editor 82
Deleting Data Using PF16 in the Table Editor e 82

TIBCO Object Service Broker Managing Data

Contents | vii

Deleting Data Using the Single Occurrence Editor. i 82
Deleting Data Using a Rules Statement. 82
Deleting Data Using a Workbench Option e 83
Deleting Data Using a Shareable ToOl 84
CoPYING Data . . . oot 85
Copying Data Using a Workbench Option e 85
Copying Data Using a Shareable ToOIl e 85
Committing Changesot e 86
Committing Changes Using the Table Editor e 86
Committing Changes Using the Single Occurrence Editor. 86
Committing Changes Using RUIES 86
Understanding EES Table Considerationst 87
Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules. 91
Coding Event Rules. 92
Conditions for Validation Rules. e 92
Conditions for Trigger Rules 92
Search Path 93
Sample Set of Event RUIES. o 93
Event Rule Processing Across NOdes 94
Coding Rules to Determine LoCation. oo 95
Conditions that APPIYot 95
Search Path 95
Sample Source Rule Definition. 95
Sample Set of Source RUIES 96
Modifying the Default Remote Location fora Session e 96
Coding Rulesto Derive Values 98
Conditions that APPIYo e 98
Search Path 98
Coding Rules for Remote Table ACCESS.o ottt 99
Remote Table ACCESS.o e 99
Peer-10-PEEr ACCESS . . . o ottt 99
Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions. 101
MAP TabIeS . . .o 102
Whatis a MAP Table? 102
Main STOrage ArBaottt e e 102
Who Should Use MAP Tables?. e e 103
How to Use MAP Tables. e 103
Initial Step for Defining Tables 104
Invoke the Table Definer. o 104
Specify the Table Type for New Tables e 104

TIBCO Object Service Broker Managing Data

viii | Contents

Using Data DiSCOVEIY oot e e e 105
Monitoring Copybook Changesot e 105
Running the Change Tracking Agent ot e e 105

Accessing Storage Data from TIBCO Object Service Broker e 107
Using a Copybook as the Source for the Definition. 107
Steps Required to Define a MAP Table 108

Task A: Identify the Table e 109
Purpose of this Task 109
Table, Type, Unit, and IDgen Fieldso 109

Task B: Specify Address, Count, and Location Parameters i 110
Purpose of this Step e e e 110
Address Parameter 110
Count Parameter 110
Location Parameter 111

Task C: Specify EVEnt RUIESo 112
Purpose of this Tasko 112
Event Rule, Typ, and ACC Fields i e e e e 112

Task D: Define Fieldso 113
Purpose of this Task e 113
CONSIAEratioNS o ot 113
Specifying External MAP Attributes. e 114
Specifying Internal TIBCO Object Service Broker Attributes. i i 115

Sample Definitionso 117
MAP_ONE Table lllustrated e e e 117
MAP_TWO Table lllustrated. e e e e e 117

Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables ... 119

Accessing TIBCO Object Service Broker MAP Tables e 120
Retrieving Meaningful Data 120
Accessing Storage Data 120
Using the Table Browser or Table Editor 120
UsSiNg RUIESo 121

Using Rules to Access Storage Data i 122
GET Statement . ..o 122
Examples of GET Statements 123
FORALL Statement e 123
Examples of FORALL Statements. 124
REPLACE Statement. o 124
Examples of REPLACE Statements 125

Using TIBCO Object Service Broker MAP Tables with COMMAREAS and Other External Data Areas. 126
@SESSION Table . . .o 126
IMS ENVIrONMENto 126

TIBCO Object Service Broker Managing Data

Contents | ix

Call Level Interface Environment e 126
Handling TIBCO Object Service Broker ReqQUESESot e 127
Synchronization and ReCOVErY o 127
Error Handlingo 127
ERROR EXCEPtON . ..o 127
ACCESSFAIL EXCEPtON. . .ot e e e e 128
INTEGRITYFAIL EXCEPON . . .ottt e e e e e e e e e e 128
RULERAIL . . . e e e 128
Understanding Security with TIBCO Object Service Broker MAP Tables 129
MAP Table Behavior 129
Accessing Data at a Particular Address witha MAP Table. 129
Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables 131
Sample Application e e 132
What does this Application do? 132
Pictorial Representation of the Sample Storage Areas i 132
The Application. 132
MAIN Sample RUIeo 134
MAIN Rule lllustrated 134
MAIN Rule EXplained 134
Sample MAP Tables. 137
COMM_HEADER Tableo e e e e e e e 137
INPUT_HEADER Table e e e e e e e s 137
EMPLOYEE_RECORD Table.ttt e e e e e e e e 138
EMPLOYEE_SUMMARY Table e e e 138
Appendix A Primary Command Syntax Referenceo 141
OV IV W . . e 142
Purpose of this AppendiX o e 142
NO At ON . . . 142
Primary Command SYntaX.ot 143
SELECT ComMmMaNndottt e e e e e e e e e e e 143
ORDERED COmMmMaNdottt et et e e e e e e e e e 144
FIND Commandottt e e e e e e e e e e e 144
CHANGE Command (Table EdIitor Only) o e e e 145
EDIT Command (Table EAIitor Only)o e e e 145
XEDIT Command (Table Editor Only). o e e e 145
BROWSE ComMmMaNndottt e e e e e e e e e e e e e e e e e 145
XBROWSE Command (Table Editor Only)o e e e 145
EXCLUDE Command.ottt e e e e e e e e e e e 146
EXPAND COomMmandottt e e e e e e 146

TIBCO Object Service Broker Managing Data

X | Contents

Appendix B MappingData Typesciiiii ettt anaman e annnns 147
Mapping Data Types for MAP Table Definitions e 148

Translation of External Data. 148
3T = 155

TIBCO Object Service Broker Managing Data

Topics

xi

Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual describes how to define, manipulate, and manage data that is
required for a TIBCO Object Service Broker application. It does not cover data that
is stored in external data sources; refer to the appropriate Service Gateway manuals
for external data accesses.

¢ Related Documentation, page xii
e Typographical Conventions, page xvii

¢ Connecting with TIBCO Resources, page xx

TIBCO Object Service Broker Managing Data

xii | Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation

The following documents form the TIBCO Object Service Broker documentation

set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.

TIBCO Object Service Broker Managing Data

Preface | xiii

Application Development and Management

The following manuals provide information about application development and
management:

e TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

e TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

e TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

e TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

e TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, NET and COM.

e TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

e TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ), and how to access programs written in external
programming languages from within TIBCO Object Service Broker.

TIBCO Object Service Broker Managing Data

Xiv | Related Documentation

TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.

TIBCO Object Service Broker Managing Data

Preface | XV

TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.

TIBCO Object Service Broker Managing Data

XVi | Related Documentation

e TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.

TIBCO Object Service Broker Managing Data

Preface | xvii

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME By default, all TIBCO products are installed into a folder referenced in the
0SB_HOME documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C: \tibco\0SB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/0S, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code Bold code font is used in the following ways:
font ¢ In procedures, to indicate what a user types. For example: Type admin.
e Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

e Toindicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

* To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

¢ Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

TIBCO Object Service Broker Managing Data

xviii | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

Ve The tip icon indicates an idea that could be useful, for example, a way to apply

N the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand paral | param2 | param3

TIBCO Object Service Broker Managing Data

Preface | Xix

Table 2 Syntax Typographical Conventions

Convention Use

{17 A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair paraml and param?, or the pair param3 and param4.

MyCommand {paraml param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either paraml or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be paraml. You can optionally include param? as the
second parameter. And the last parameter is either param3 or param4.

MyCommand paraml [param2] {param3 | param4}

TIBCO Object Service Broker Managing Data

XX | Connecting with TIBCO Resources

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http:/ /docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO Object Service Broker Managing Data

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

Chapter 1

Topics

| 1

Overview of Data Structures

This chapter provides an overview of the data structures used by TIBCO Object
Service Broker.

* Relationships of Data, page 2

* Views of Data, page 3

* Your Data Store, page 4

¢ Storage of TIBCO Object Service Broker Data, page 7
* Use of Tables in TIBCO Object Service Broker, page 8
* Available Table Types, page 10

* Re-usability of Data, page 13

® Accessing Table Data, page 16

TIBCO Object Service Broker Managing Data

2 | Chapter 1 Overview of Data Structures

Relationships of Data

How is Data Viewed in TIBCO Object Service Broker?

TIBCO Object Service Broker uses, accesses, and stores data from three different

perspectives, as shown in the following illustration. The three views are referred
to as:

e Application view
e Logical view
e Physical store view

The applications that you write use the application and logical views only to
access the data that they require. For more detail, refer to the following sections.

Three Views of Data

The following diagram illustrates the relationship between these views:

Application View Expenses

Screen

\Rules for accessing data /

Logica (tabular) View Employee Department Expenses
/ u‘ \ Table Table Table
\ Database /

Physica (storage) View

External Data TIBCO Object Service Broker Data

TIBCO Object Service Broker Managing Data

Views of Data | 3

Views of Data

First Level: Application View

The application view is the view of data as it is presented to an end user. It is a
selective view of data that you as an application developer define.

When you create an application you use many component pieces, for example,
presentation screens, input fields, and report writing capabilities. In TIBCO
Object Service Broker, all these diverse components are stored as tables. Your
application requires all or only some of the data that is defined to these tables.

How Do You Selectively View Data?

You selectively view data by writing programs that reference specific fields within
specific tables. Within TIBCO Object Service Broker this construction is referred to
as a table.field (t.f) format.

Second Level: Logical View

The logical view is a tabular view of data. You use this view to store and access
data. Using a definer, you must define a tabular view of data before an application
can use the data.

Third Level: Physical Store

The actual data that your application uses is stored in physical storage devices.
The data is accessed via a server layer referred to as the TIBCO Object Service
Broker engine. This physical store can contain data known as TIBCO Object
Service Broker data that is native to TIBCO Object Service Broker. It can also
contain data, known as external data, that belongs to external database
management systems (DBMSs) and external operating systems.

TIBCO Object Service Broker Managing Data

4 | Chapter 1 Overview of Data Structures

Your Data Store

What is Your Data Store?

Your data store is any data that can be accessed from a TIBCO Object Service
Broker system. In TIBCO Object Service Broker, your data is stored in a Pagestore.
Other DBMSs use their own storage structures. Your data can reside on your
TIBCO Object Service Broker local or remote node, or in files and databases
external to TIBCO Object Service Broker. This data can be persistent or transitory
(non-persistent) in nature. For more information on the Pagestore, refer to Storage
of TIBCO Object Service Broker Data on page 7.

Stored Types of Data

The type of data that you access determines the range of operations and behavior
that your data exhibits. You can access both TIBCO Object Service Broker and
external data.

TIBCO Object Service Broker Data

External Data

TIBCO Object Service Broker data is data that belongs to TIBCO Object Service
Broker. TIBCO Object Service Broker determines its storage, allowable syntax and
semantic type, and accessibility. It is physically stored as a table in the Pagestore.
You can access Pagestores that are local or remote to your node.

External data is data stored outside of TIBCO Object Service Broker. An external
operating system or DBMS controls its storage, its syntax and semantic type, and
some aspects of its security. The physical storage structure of the data depends on
its DBMS or operating system. TIBCO Object Service Broker uses an additional
definition layer to translate the logical structure to the physical structure. This
definition layer is provided through the appropriate Table Definer.

TIBCO Object Service Broker Managing Data

Your Data Store | 5

Persistent Data

Persistent data is data that is physically stored in a storage device. This data can
be either TIBCO Object Service Broker or external data. Data that is accessed via
the following types of tables is persistent in nature:

Table Type Description External Data
ADA Accesses Adabas data. Y
DAT Accesses Datacom data. Y
DB2 Accesses DB2 data. Y
EXP Exports data to an external file. Y
IDM Accesses CA-IDMS data. Y
IMS Accesses IMS/DB data. Y
IMP Imports data from an external file. Y
SLK Accesses various types of SQL databases. Y
SUB Holds a subview of data stored in another type
of table.
TDS Contains data stored in the default TIBCO N
Object Service Broker format.
VSM Accesses data stored in VSAM files. Y

Non-persistent Data

Non-persistent data is data that lives only for the duration of a TIBCO Object
Service Broker session or transaction. The data is based on some other data and is
not stored in a physical storage device. The following table types are used for data
that is non-persistent:

Table Type Description

CLC Holds calculated values based on data stored in a TDS table.

EES Holds data in Execution Environment level storage. The data
lasts for the duration of the Execution Environment.

TIBCO Object Service Broker Managing Data

6 | Chapter 1 Overview of Data Structures

Table Type

Description

MAP

Interfaces a memory storage area (DSECT or STRUCT).

PRM

Holds the parameter values for a parameterized TDS table.

RPT

Holds data for report generation. The data lasts as long as your
transaction.

SCR

Holds data for the purpose of a display.

It is used to display a text-based screen via a display statement
within a rule. The data lasts as long as your transaction unless a
DISPLAY & TRANSFERCALL statement is used in as the
display statement, in which case the data is brought into the
subsequent transaction.

SES

Holds data in session managed storage. The data lasts for the
duration of your session.

TEM

Holds data in transaction level storage. The data lasts for the
duration of the transaction.

TIBCO Object Service Broker Managing Data

Storage of TIBCO Object Service Broker Data | 7

Storage of TIBCO Object Service Broker Data

TIBCO Object Service Broker data is stored in TDS tables. These tables are stored
in the Pagestore.

Pagestore

The Pagestore is a physical store of data that is divided up into segments. A
segment holds TDS data. TDS storage supports the B+ tree index structure, which
allows fast direct access to a sequenced set of data. Each autonomous TIBCO
Object Service Broker system, known as a node, has its own Pagestore.

Description of the Data

The description of the data, including its location, is contained in a metadata file
called the MetaStor. The MetaStor is located on segment 0. The following
illustration shows this inter-relationship:

Pagestore
Segment 0 Segment 1 Segment 2 Segment n
MetaStor TDS data TDS data TDS data
EEE

TIBCO Object Service Broker Managing Data

8 | Chapter 1 Overview of Data Structures

Use of Tables in TIBCO Object Service Broker

What is a Table?

A table is a logical view of your stored data. At a conceptual level, each table is
comprised of rows and columns. A row is referred to as an occurrence and a
column is referred to as a field.

You must create a table definition before a table exists as an object that can be used
by other objects.

What is the Purpose of a Table?

In TIBCO Object Service Broker, tables are used to store data that is native to
TIBCO Object Service Broker, access data that is external to TIBCO Object Service
Broker, provide a location for the data, and access data that is contained in other
tables.

TIBCO Object Service Broker Ul

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to its online help.

TIBCO Object Service Broker Managing Data

Use of Tables in TIBCO Object Service Broker | 9

What Does a Table Look Like?

The following illustration shows how a TDS table, which is the default table type,
appears to a user when browsing the table:

BROWSING TABLE : @EMPLOYEES (MIDWEST)
COMMAND ==>
SCROLL: P
EMPNO LNAME POSITION MGR# DEPTNO SALARY
22001 |DRABEK CUST SUPPORT 56112 30 900.00
22007 |ROEDER CUST SUPPORT 56112 30 900.00
N\ 30058 |HOEGSON PRE- SALES 37219 20 675.00
- 11 |TERAMURA DRE-SALES 37219 20 710.00
| 34221 |LEES CUST SUPPORT 56112 30 700.00
36162 |MORANG JR OPERATOR 44798 80 575.00
41001 |CROFTON TECH WRITER 80002 70 675.00
41007 |STEVENSON EDUCATOR 80002 60 700.00
| 21009 |smMITH TESTER 79912 50 600.00
Occunence\\\\\<: 44385 |souza SALES 37219 10 719.00
44622 |SAUNDERS ACCOUNTANT 98895 40 800.00
]| ™11 [sRODEK ANALYST 79912 50 710.04
51121 | CANNON ANALYST 79912 50 700.00
51162 |KIMURA JR PROGRAMMER 79912 50 575.00
61219 |WONG SENIOR ANALYST 79912 50 820.00
61385 |DHILLON EDUCATOR 80002 60 685.00
| 61622 |scauLTZ SENIOR ANALYST 79912 50 800.00
PFREYS: 1=HELP 5-FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END
14=EXPAND

TIBCO Object Service Broker Managing Data

10 | Chapter 1 Overview of Data Structures

Available Table Types

What is a Table Type?

The table type is a characteristic of a table that determines how data can be stored
in the table or how data can be accessed from the table. When you define a table
you must define its table type.

Determining the Appropriate Table Type

The following table describes the table types available, what each type is used for,
and where you can get additional information about it.

Specify a table of type Refer to the following

manual...
Access Adabas ADA TIBCO Object TIBCO Service Gateway for
databases. Service Broker Files SDK
Adabas table.
Count a unique CLC Calculation table. This manual

combination of field
values in TDS tables.

Access CA Datacom DAT TIBCO Object TIBCO Service Gateway for
databases. Service Broker Files SDK
Datacom table.
Access DB2 DB2 TIBCO Object TIBCO Service Gateway for
databases. Service Broker DB2 Installing and
DB2 table. Operating
Create a temporary EES Execution This manual
table for the life of an Environment
Execution table
Environment.
Export data to a EXP Export table. TIBCO Service Gateway for
sequential file. Files Installing and
Operating

TIBCO Object Service Broker Managing Data

Specify a table of type

Available Table Types | 11

Refer to the following
manual...

Access CA-IDMS
databases.

Import data from a
sequential file.

Access IMS/DB
databases.

Interface to an
external program
through data.

List all the parameter
values for a data
table.

Create a report.

Create a text-based
screen.

Create a temporary
table for the life of a
session.

Access SQL
databases.

Provide a selection
view of a table with
one or all of the
following: excluded
fields, derived fields,
or derived values.

IDM

IMP

IMS

MAP

PRM

RPT

SCR

SES

SLK

SUB

TIBCO Object
Service Broker

IDMS/DB table.

Import table.

TIBCO Object
Service Broker
IMS table.

MAP table.

Parameter table.

Report table.

Screen table.

Session table.

TIBCO Object
Service Broker
SLK table.

Subview table.

TIBCO Service Gateway for
IDMS/DB Installing and
Operating

TIBCO Service Gateway for
Files Installing and
Operating

TIBCO Service Gateway for
IMS/DB Installing and
Operating

This manual

This manual

TIBCO Object Service
Broker Defining Reports

TIBCO Object Service
Broker Defining Screens and
Menus.

This manual

TIBCO Service Gateways
for ODBC and for Oracle
Installing and Operating

This manual

TIBCO Object Service Broker Managing Data

12 | Chapter 1 Overview of Data Structures

Specify a table of type

Refer to the following
manual...

Store data in the
default TIBCO
Object Service
Broker format.

Create a temporary
table for the life of a
transaction.

Access VSAM files.

TIBCO Object Service Broker Managing Data

TDS Table data store
table.

TEM Temporary table.

VSM TIBCO Object
Service Broker
VSAM table.

This manual

This manual

TIBCO Service Gateway for
Files Installing and
Operating

Re-usability of Data | 13

Re-usability of Data

Much of the data available to you can be used in a number of different ways. By
choosing the appropriate table types for your applications, you can limit the
number of objects that require modifications as your applications evolve.

Design Options

The following design options can be used to promote re-usability of application
code and data. You can use one or a combination of these design options.

Option Description

1 Parameterized tables.
2 Minimal definitions.
3 Non-persistent data.
4 Global fields.

Option 1: Using Parameterized Tables

A parameterized table is a table with one or more defined attributes that are used
to partition the data in the table. These attributes can be specific to the actual data,
the location of the data, or a combination of both the data and the location.

e Parameter attributes that are specific to data are referred to as data
parameters.

* A parameter attribute that is specific to a location is referred to as a location
parameter. You would use a location parameter if you require access to the
table from a number of different TIBCO Object Service Broker nodes.

Example of Data Parameterization

There are many employees submitting expenses to a company and it is important
to know when individual expenses are processed. In a case such as this, you could
define a parameterized expense table using employee number and processing
date as the parameters, for example, EXPENSES (empno, procdate).

TIBCO Object Service Broker Managing Data

14 | Chapter 1 Overview of Data Structures

When the data is accessed, you need to reference only the instance of the table that
is specific to your requirements. For example, in a rule, to get the first expense for
employee number 79912 for the date 2000-03-15, you would use the statement:
GET EXPENSES(77912, ’2000-03-15’);

If required, you can access all the instances of the table by defining a
parameterized (PRM) table on the base table. Refer to Defining a Parameter Value
(PRM) Table on page 55 for more information.

Example of Location Parameterization

A company stores data on one node and want access to the data from other nodes.
For example, all the information regarding exchange rates is stored at a central
location and employee expenses are stored at the location where each employee
works. In this case, the location of a rates table and its data can be specified
through the use of a location parameter and it is possible that the expenses table
does not require a location parameter.

Option 2: Using Minimal Definition

A minimal definition is a table definition that consists of only a table name and a
location parameter. It is used in environments where the same data is accessed
from a number of different nodes. The minimal definition points to the full
definition and data located on a node remote to where the initial access is being
made to the data.

Option 3: Using Non-persistent Data

Often, when building applications, a particular view of data is required that can
be obtained from an already existing data source. Because the real data already
exists, less maintenance and storage overhead is incurred if you can make use of
non-persistent data in your applications.

Table Types that Use Non-persistent Data

The following table types use non-persistent data:

CLC Calculation table.

EES Execution Environment table

PRM Parameter value table.

RPT Report table.

TIBCO Object Service Broker Managing Data

Re-usability of Data | 15

SCR Screen table.

SES Session table.

TEM Temporary table.

Refer to Defining a Calculation (CLC) Table on page 52 for information on
defining calculation (CLC), parameter value (PRM), Execution Environment
(EES), session (SES), and temporary (TEM) tables.

Example of Using Non-persistent Data

The data required for a parameter value (PRM) table, which holds the values of
the data parameters of a parameterized table, can be obtained from the data
already stored for the parameterized table. You do not need to add additional
data to the data store to be able to use these values. However, it is possible that
you require this specialized view of data to meet the requirements of your
application.

Option 4: Using Global Fields

A global field is a field defined by an application administrator to be used across
applications. The definition of the field and the help associated with it are stored
in the @ GLOBALFIELDS table. A link to the table can be made when you are
defining the fields of your tables. Your administrator determines your site’s global
fields implementation. Refer to Selecting Global Fields on page 27 for more
information.

TIBCO Object Service Broker Managing Data

16 | Chapter 1 Overview of Data Structures

Accessing Table Data

How Do | Access Data?

You access data through TIBCO Object Service Broker tools, programs that are
written in the TIBCO Object Service Broker rules language, and programs that are
external to TIBCO Object Service Broker. Language accesses to your external and
TIBCO Object Service Broker data are specified using a table.field construction.
You can use the same methods to access external and TIBCO Object Service
Broker data.

Requirements before Accessing Data
Before you can access data, you must meet the following requirements:
1. You must have a table defined for the data.
2. You must have security access to the table definition and data.
3. The table must be loaded with data.
4

If the table is located on a remote node, the server that accesses the remote
data must be connected to your local node. You must have definition and data
access to the table at the remote node.

5. If the table is an external table, the server accessing the external data must be
running. You must have external security access to the external data.

Locating the Data

The location of the data used by an application is provided through a value for a
location parameter. If a location parameter is not defined to the table, the data is
retrieved from the local data store.

The value used to determine location is the node name for the TIBCO Object
Service Broker system where the required data resides. At installation time, a
TIBCO Object Service Broker system is assigned a node name using the Data
Object Broker parameter NODENAME.

You can load and unload definitions of all table types using the LOAD and
%} UNLOAD tools. Only TDS, EES and SES table data can be loaded using these
tools.

TIBCO Object Service Broker Managing Data

Accessing Table Data | 17

Order of Evaluation to Determine Location

When data is accessed by a rule, the location of the data is determined by a
defined order of evaluation. The evaluation is based on a parameter defined as
CLASS=L (location) in the table definition. This evaluation continues until either
a non-null location value is found or the end of the list is reached, as shown in the
following illustration.

TIBCO Object Service Broker Managing Data

18 | Chapter 1 Overview of Data Structures

Request for data at a location

Is
location in table
definition?

WHERE
clause in access
statement?

What is
the value in
SRC field in
definition?

Use local
node

Use value
in clause as
location
parameter

returned by rule in
Sourcename
field null?

null?

Use local node

TIBCO Object Service Broker Managing Data

Is the Use value
global default for the global

nulr? default

Is the \ ! I
Default field se value

>
in definition in Default
field

Use derived

value returned
by rule in
Sourcename
field

See Also

Accessing Table Data | 19

This manual describes how to define, load, and manipulate data for TIBCO Object
Service Broker tables. For additional information on how to access data for
presentation and processing and on how to access remote and external data, refer

to the following manuals:

Processing data

TIBCO Object Service Broker Programming
in Rules and TIBCO Object Service Broker
Shareable Tools.

Presenting data

TIBCO Object Service Broker Defining
Screens and Menus and TIBCO Object
Service Broker Defining Reports.

Setting up security

TIBCO Object Service Broker Managing
Security

Starting a server for a remote node

Installing and Operating for your
operating environment.

Accessing external data

TIBCO Service Gateway for Files Installing
and Operating and the external TIBCO
Service Gateway manuals for the various
supported external data types.

LOAD and UNLOAD tools

TIBCO Object Service Broker Shareable Tools

TIBCO Object Service Broker Managing Data

20 | Chapter 1 Overview of Data Structures

TIBCO Object Service Broker Managing Data

|21

Chapter2 The Table Definer

This chapter describes the table definer.

Topics

¢ What is the Table Definer?, page 22
* Tools Available from the Table Definer, page 25
¢ Selecting Global Fields, page 27

TIBCO Object Service Broker Managing Data

22 | Chapter 2 The Table Definer

What is the Table Definer?

TIBCO Object Service Broker Ul

Overview

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker U, refer to the TIBCO Object Service Broker Ul
online help.

You use the Table Definer to specify and modify the definitions of your data
tables. This tool, as it is described here, is accessible from the developer’s
workbench via the Define Table option. It is also available from the
administrator’s workbench. Chapter 3, Defining TDS, EES, SES, and TEM Tables,
on page 29 and Chapter 4, Defining a View of a Source Table, on page 45 describe
the Table Definer as it is used to define the following table types:

e CLC

e EES

e PRM
e SES
e SUB
e TDS
e TEM

For descriptions of how to define other table types, refer to Chapter 1, Overview
of Data Structures, on page 1.

Accessing the Table Definer

You can access the Table Definer from the workbench by doing one of the
following:

¢ Type anew or existing table name to the right of the DT define table option
and press Enter. This displays the initial Table Definer screen.

TIBCO Object Service Broker Managing Data

What is the Table Definer? | 23

* Position your cursor to the right of the DT define table option and press Enter.
This displays the Object Manager screen for the Table Definer. Select an object
from this screen to invoke the Table Definer screen.

¢ Type DT and a new or existing table name in the command line.

e Execute the tool DEFINE_TABLE (tbl_name) where tbl_name is the name of a
table.

You can also access the Table Definer from within the OS object set workbench
option. To access the Table Definer, from within the first screen, position your
cursor on the name of a table object and press PF9.

Layout of the Screen

The initial screen that appears when you enter the Table Definer is used to define
TDS, TEM, EES and SES tables. This screen is divided into four segments:

e Table identification
e Parameter
e Eventrule
e Data field

The layout of the initial screen changes if you are editing the definition of a table
of type SUB, CLC, or PRM. For additional information refer to Chapter 4,
Defining a View of a Source Table, on page 45.

Example
The following example shows a definition screen for the @ EMPLOYEES table.
COMMAND==> TABLE DEFINITION
Table: @EMPLOYEES Type: TDS Unit: DOCEXMPL IDgen: N

’
’
’
’

_ REGION I C 16 O D _ DELETEMPNO T D
_ LOCATION I C 16 O L _ VALIDEMPNO \Y I
Field Name Typ Syn Len Dec Key Ord Rq Default Reference

_ EMPNO I P 3 0 P
_ LNAME S C 22 0 S Y
_ POSITION S C 14 O
_ MGR# I P 3 0 MANAGER
_ DEPTNO I B 2 0
_ SALARY Q P 4 2 0.00
ADDRESS S \% 38 O

TIBCO Object Service Broker Managing Data

24 | Chapter 2 The Table Definer

_ CITy S C 20 O
_ STATE_PROV S C 4 0
_ ZP_CODE S C 7 0
_ HIREDATE D B 4 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

See Also TIBCO Object Service Broker Application Administion for information on the
administrator’s workbench.

TIBCO Object Service Broker Managing Data

Tools Available from the Table Definer | 25

Tools Available from the Table Definer

What Tools are Available?
The following tools are available from within the Table Definer:
e Table Editor
e Table Browser
¢ Single Occurrence Editor (SOE)
e Global Field Selector

Table Editor, Table Browser, and Single Occurrence Editor

Use the Table Editor and Single Occurrence Editor to add or delete data in your
table. Use the Table Browser to view the data in your table. For more explanation
of how to use these tools, refer to Chapter 6, Manipulating Data in a Table, on
page 69.

To access the Table Editor or Table Browser, use PF21 from within your Definer
session. The table type that you are defining determines whether the Table
Browser or the Table Editor is invoked, as shown in the following table:

Table Type Tool Invoked

SUB Table Editor.

TDS Table Editor.

CLC Table Browser.
EES Table Browser.
PRM Table Browser.
TEM Table Browser.
SES Table Browser.

TIBCO Object Service Broker Managing Data

26 | Chapter 2 The Table Definer

Global Field Selector

Use the Global Field Selector to select predefined fields to be included in your
table definition. Global fields allow for the standardization of definitions across
the database. These fields are defined by your application administrator and are
stored in the @ GLOBALFIELDS shared table. For more information on global
fields and how to use them, refer to Selecting Global Fields on page 27.

TIBCO Object Service Broker Managing Data

Selecting Global Fields | 27

Selecting Global Fields

The use of global fields in your environment is determined by your application
administrator. This implementation is enforced at a table-type level.

Global fields are not supported in the graphical Table Definer supplied with the
%} TIBCO Object Service Broker Ul You must use the text-based definer if you are
going to use global fields.

Types of Implementation

The following implementations are available for the @ GLOBALFIELDS table.
Check with your application administrator for the implementation used in your
development environment.

Field Names Field Attributes

Each field must be linked to a The attributes of the field must match the

global field or you are not able to attributes of the global field to which you

save the definition. are linked or you are not able to save the
definition.

You are warned if a field is not You are warned if the field attributes do

linked to any field in the global not match the attributes of the global field

field dictionary. to which you are linked.

The fields are not linked to the The field attributes are not linked to the

global field dictionary. global field dictionary.

Types of Information Stored with a Global Field
The following types of information are stored with a global field:
¢ Field attributes such as name, unit, type, and syntax.
¢ A description of the field. It is optional for this to be defined.

¢ A display mask and/or a display length if the field is to be used in screens or
reports.

¢ Help specific to the field. It is optional for help to be defined.

TIBCO Object Service Broker Managing Data

28 | Chapter 2 The Table Definer

Global Fields Selector lllustrated

When you press PF14 from within the Table Definer screen, a screen similar to the
following appears:

Globalfields Scroll: P
COMMAND ==> Select All: N
Location: Deselect All: N
Show selection specs: Y
Selection Specification
Selection: NAME LIKE ’*’
AND Op Value
NAME
BUSINESSNAME
UNIT
CREATED
AUTHOR
Name Businessname Unit Created Aut
_ ACCESSTYPE ACCESS FOR DBMS EXT 2000-03-15 AMD
_ DATE CURRENT DATE USR40 1995-03-01 USR
_ DEPTNO DEPARTMENT NUMBER 1992-01-22 MGR
S MANAGER MANAGER NAME EMP 1989-03-01 WEA
_ TIME CURRENT TIME
S USERID USERID OF EMPLOYEE

PFKEYS: ENTER=UPDATE 3=SAVE 12=CANCEL

Using the Global

Fields Selector

To select global fields to copy from the Global Field dictionary, complete the
following tasks:

1.
2.

Press PF14. This displays a listing of the Global Field dictionary.
Type S beside the fields you want to copy.

The Selection Specification section of the screen can be used to narrow the
selection list by using specified selection criteria. The list of fields appears in
the lower portion of the screen. You can use more than one type of selection
criteria. For a list of valid values for each of these fields, position your cursor
on the field and press PF1. To narrow your selection, beside the appropriate
selections specify an operator in the Op field and appropriate values in the
Value field.

Press PF3 to save or copy. The Table Definer screen appears with the global
fields appended to the table, one per line in the order in which they are stored
in the @ GLOBALFIELDS table.

TIBCO Object Service Broker Managing Data

|29

Chapter 3 Defining TDS, EES, SES, and TEM Tables

This chapter describes how to define the TDS, EES, SES, and TEM tables.

Topics

¢ Opverview, page 30

* Task A: Define Table Properties, page 31
* Task B: Define Parameters, page 33

¢ Task C: Specify Event Rules, page 37

® Task D: Define Primary Keys, page 39

* Task E: Define Non-key Fields, page 42

TIBCO Object Service Broker Managing Data

30 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Overview

TIBCO Object Service Broker Ul

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker U, refer to the TIBCO Object Service Broker Ul
online help.

Tasks for Defining a Table

Complete the following tasks to define TDS, EES, SES, and TEM tables after you
invoke the Table Definer (refer to Accessing the Table Definer on page 22):

Task Required Refer to page...
Task A: Define Table Properties. Yes 31
Task B: Define Parameters. No 33
Task C: Specify Event Rules. No 37
Task D: Define Primary Keys. Yes 39
Task E: Define Non-key Fields. Yes 42

Processing of Execution Environment tables has unique characteristics. For
details, see Understanding EES Table Considerations on page 87.

TIBCO Object Service Broker Managing Data

Task A: Define Table Properties | 31

Task A: Define Table Properties

Purpose of this Task

In this task you:

¢ Uniquely identify the table

® Specify the table type

e Identify the application or developmental unit where it belongs

® Specify if the system should generate unique values for the primary key field

Use the table identification segment of the screen for this task.

Table Identification Segment

The following example illustrates the fields used to identify the table:

Table: @EMPLOYEES

Type TDS Unit: DOCEXMPLS IDgen: N

Table, Type, Unit, and IDgen Fields

The information for the Table, Type, Unit, and IDgen fields appears by default.
You can modify the Table and Unit fields, if necessary. You cannot modify the
Type field if data already exists in the table. For valid values, press PF1.

Table

The table name displayed in the Table field is the one you specified

when invoking the Table Definer. To save the definition of an existing
table under a new name, type in a new name. For more information
on how to copy TIBCO Object Service Broker objects, refer to TIBCO
Object Service Broker Shareable Tools.

Type

The type indicates how data is stored in the table or how data can be
accessed from a table. If the table is new, a default value of TDS is
supplied. You can change it to one of the allowed table types by
typing in a valid value or pressing PF1 and selecting from the
supplied list.

Refer to Available Table Types on page 10 to determine the
appropriate table type to define for your application requirements.

TIBCO Object Service Broker Managing Data

32 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Unit

The unit indicates that the table belongs to a particular application or
logical unit such as utilities, accounting, or network control.

IDgen

The IDgen field determines whether TIBCO Object Service Broker
should generate values for the primary key field. The default of N
means that users who insert data into the table must enter a unique
value for the primary key of each occurrence. A value of Y means
that the system generates the value for the primary key of each
occurrence. You must then use rules to populate the table with data.
For more information, refer to Chapter 6, Manipulating Data in a
Table, on page 69.

If the table contains data and the IDgen field is set to Y, you can
modify the field; however, if the field is set to N, you cannot modify
the field.

TIBCO Object Service Broker Managing Data

Task B: Define Parameters | 33

Task B: Define Parameters

Purpose of this Task

In this optional task you specify parameters. There are two types of parameters
you can specify using the parameter segment of the screen:

e Data

e Location

Parameter Segment

The following example illustrates the fields used to define the data (REGION) and
location (LOCATION) parameters. To view additional fields, press PF11.

Parameter Name Typ Syn Len Dec Class

- REGION I C 16 O D
- LOCATION I C 16 O L

Considerations for Defining Parameters

Use the following table to determine if you should define parameters and the type
of parameters to define if they are required.

Considerations Parameterize P;‘r)aen?;ter
The data is single dimensional. It does not N

partition easily or there is no need to partition

the data.

The data has more than one dimension. It Y Data

logically breaks down into one or more
partitions (called instances). These instances
can then be used to access the data.

The same type of data is used in more than one Y Location
location and can be stored in different TIBCO
Object Service Broker databases.

TIBCO Object Service Broker Managing Data

34 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Data Parameters

Data parameters are used to partition data. They can be defined for TDS,
Execution Environment ((EES), temporary (TEM), and session (SES) tables.

Defining Data Parameters

A maximum of four data parameters can be specified for a table, to a total
maximum length of 240 bytes. The following fields are used to define data
parameters. You can enter the information into the fields in any order. For valid
values, press PF1.

Parameter
Name

Enter the name of the data parameter. The order in which the
names are entered determines the order in which supplied values
are processed. Data parameters are relocated to the top of the
parameter list when the table definition is saved.

Typ

Enter the semantic data type of the parameter. Refer to TIBCO
Object Service Broker Programming in Rules for more information
and a list of valid values.

Syn

Enter the syntax of the parameter. Refer to TIBCO Object Service
Broker Programming in Rules for more information and a list of
valid values.

Len

Specify the length of the parameter value. The value is in bytes
and valid values are determined by the syntax of the parameter.
For valid lengths, refer to TIBCO Object Service Broker
Programming in Rules. Each data parameter must have a non-null
value.

Dec

Specify the number of digits to the right of the decimal point. In
most cases this is optional. It is relevant only for syntax P.

Class

Specify D to indicate that the parameter is a data parameter.

Reference

[Optional] Specify the name of a reference table. Specify a value
only if a table is to be referenced when a user is inserting or
replacing a value in the parameter. You then ensure that the user
enters valid values for the data parameter. The reference table
must be non-parameterized. If the new value does not exist as a
primary key value in the referenced table, the action fails
validation.

TIBCO Object Service Broker Managing Data

Task B: Define Parameters | 35

What is a Location Parameter?

A location parameter is used to identify the location (MetaStor) where the data in
a table is stored. It cannot be defined for SES tables. The name of a location
parameter is provided by default when a new table is being defined. Use the D
line command to delete the parameter if it is not required. The location parameter
is moved to the bottom of the parameter list when the table definition is saved.

When you access a table via a rule, which passes a location parameter, the value
%} for the location parameter must not be NULL or blank.

Defining a Location Parameter

The following fields are used to define the location parameter. You can enter the
information into the fields in any order. For valid values, press PF1.

Parameter Change the name of the location parameter, if required. The

Name value of LOCATION is provided by default but it can be
modified or deleted. The name of the location parameter must
be the last parameter name listed.

Typ Type I for the semantic data type.

Syn Type C for the syntax of the parameter.

Len Type 16 for the length.

Class Type L to indicate that the parameter is a location parameter.

Only one location parameter can be specified.

Reference Specify the name of a reference table (this is optional). Specify a
value only if a table is to be referenced when a user is inserting
or replacing a value in the table instance. You then ensure that
the user enters valid values for the location parameter. The
reference table must be non-parameterized. If the new value
does not exist as a primary key value in the referenced table,
the action fails validation.

The value in the reference field is ignored for a minimal table
definition. Refer to Defining a Minimal Definition on page 64.

TIBCO Object Service Broker Managing Data

36 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Default

Specify the name for the default node to be used on data access
(this is optional). Even if a value is provided, when an access is
made to the data, the location is determined using the order of
evaluation described in Order of Evaluation to Determine
Location on page 17.

Src

Indicate how the name of the node is to be determined (this is
optional). The value for the node name can be derived from a
functional rule named in the Sourcename field or provided
through the users’ session options. Even if a value is provided,
when an access is made to the data, the location is determined
using the order of evaluation described in Order of Evaluation
to Determine Location on page 17.

Sourcename

Identify the name of the source rule. This is used only if the Src
field is set to D. The rule named must be a functional rule that
returns the value for the node name. It must have an argument
for the table name and arguments for each of the data and
location parameters. For more information about coding
considerations, refer to Chapter 7, Coding Considerations for
Event, Location, and Derived Value Rules, on page 91.

TIBCO Object Service Broker Managing Data

Task C: Specify Event Rules | 37

Task C: Specify Event Rules

Purpose of this Task

In this optional task, you specify event rules if you need to associate business
rules and policies with the definition of a table. The rules that you name here are
run whenever data in the table is manipulated. There are two types of event rules
that you can specify using the event rule segment of the screen:

e Trigger rules
* Validation rules

For more information on trigger and validation rules, refer to Coding Event Rules
on page 92.

Event Rule Segment

The following example illustrates the fields used to specify event rules.

Event Rule Typ Acc

’_ DELETEMPNO T D
’_ VALIDEMPNO \% I

Considerations for Defining Event Rules

Use the following table to determine if you should define event rules, the type of
event rules to define if they are required, or the TIBCO Object Service Broker
option to use if they are not required.

Type of

Considerations Event Other Option
Rule

You need to validate data using Y Validation.

rules processing as it is being

accessed.

Simple validation of data is N Reference table.

required.

TIBCO Object Service Broker Managing Data

38 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Considerations Other Option

Additional processing should be Y Trigger.
initiated when a table is accessed,

for example, to maintain a

one-to-one relationship between

two tables.

Logging of accesses is required. N Logging on
option available
from TIBCO
Object Service

Broker security.

Event Rule, Typ, and Acc Fields

The rules that you enter here are run based on defined accesses. All the rules that
apply to a specific access are executed in the order in which they are entered in the
event rule segment. For valid values, press PF1.

Event Rule Specify the name of the event rule to be executed. For
information about coding considerations, refer to
Chapter 7, Coding Considerations for Event, Location,
and Derived Value Rules, on page 91.

Typ Specify the type of event rule to be executed.

Acc Specify the type of data access that invokes the event rule.
Only one access type can be specified for each entry to the
Typ field.

TIBCO Object Service Broker Managing Data

Task D: Define Primary Keys | 39

Task D: Define Primary Keys

Purpose of this Task

In this task you define the primary key fields for the table. At least one primary
key field must be specified for each table definition for a table of type TDS, EES
SES, and TEM. The value provided for the primary key field of each occurrence
must be unique to the table. If the table is parameterized, the value provided for
each primary key field must be unique to the table instance. The primary key
fields is used to identify and retrieve occurrences of data. Primary keys are
defined in the field segment of the Table Definer screen.

Field Segment

The following example illustrates the fields used to define the primary key
(EMPNO). To view additional fields, press PF11.

Field Name Typ Syn Len Dec Key Ord Rg Default Reference
- EMPNO I P 3 0 P
Secondary keys can also be specified for data access but they are not defined with
% the standard definer. For more information, refer to TIBCO Object Service Broker

Application Administion.

Composite Primary Keys

You can specify a single field or up to sixteen fields to be the primary key, to a
total maximum length of 127 bytes. The primary key is always stored as the first
field or series of fields.

Although TIBCO Object Service Broker allows a maximum of sixteen fields in a

% composite primary key, you can use only the Table Browser and the Table Editor
on tables that have a maximum of eight fields in the composite primary key. You
must use rules to access tables with more than eight fields in a composite primary
key.

Methods Available for Defining Primary Key Fields

You can use the following methods to define primary key fields:

TIBCO Object Service Broker Managing Data

40 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

* Use fields with predefined attributes.

For information about how to use fields with predefined attributes, refer to
Selecting Global Fields on page 27.

¢ Copy values from an existing definition.

For information about copying a definition, refer to Copying a Definition on
page 62.

e Create a new field.

The following section describes how to create a new primary key field.

Creating a New Primary Key Field

To define a primary key, type information in the following fields in any order in
the fields segment. Primary key fields must be the first fields in the definition. For
a list of valid values, press PF1.

Field Enter the name of the primary key field. The name of each field
Name must be unique to the table.
Typ Enter the semantic data type for the primary key field. For valid

values for users to supply, refer to TIBCO Object Service Broker
Programming in Rules. If the table has the IDgen field set to Y, the
semantic type must be defined as I (identifier).

Syn Enter the syntax of the primary key field. For valid values for
users to supply, refer to TIBCO Object Service Broker Programming
in Rules. If the table has the IDgen field set to Y, the syntax must
be defined as B (binary).

Len Specify the length of the primary key field. The value is in bytes
and the length is determined by the syntax of the field. For valid
lengths, refer to TIBCO Object Service Broker Programming in Rules.
Each primary key field must have a non-null value. If the table has
the IDgen field set to Y, the length must be defined as 4 bytes.

Dec Specify the number of digits to the right of the decimal point. In
most cases this is optional. It is relevant only for syntax P.

Key Type P to indicate that the field is a primary key field. At least one
field must be specified as the primary key field.

TIBCO Object Service Broker Managing Data

Task D: Define Primary Keys | 11

Ord

[Optional] Specify the ordering of the primary key field. The
default value of null returns occurrences in ascending order by
primary key. Specifying a value in this field incurs sorting
overhead, which can be significant in tables with a large number
of occurrences.

Rqd

[Optional] Indicate if a value for the primary key field is required.
By definition a value for a primary key field is required.

Reference

[Optional] Specify the name of a reference table. Specify a value
only if a table is to be referenced when a user is inserting or
replacing a value in the field. You then ensure that the user enters
valid values for the primary key field. The reference table must be
non-parameterized. If the new value does not exist as a primary
key value in the referenced table, the action fails validation.

TIBCO Object Service Broker Managing Data

42 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Task E: Define Non-key Fields

Purpose of this Task

In this task you define the non-key fields for your table. Non-key fields are
defined in the field segment of the Table Definer screen.

Field Segment

The following example illustrates the fields you use to define the fields of your
table. To view additional fields, press PF11.

Field Name Typ Syn Len Dec Key Ord Raqd Default Reference
- EMPNO I P 3 o P
- LNAME S C 22 0 S Y
- POSITION S C 14 0 MANAGER
- MGR# I P 3 0
- DEPTNO I B 2
- SALARY Q P 4 2 0.00
- ADDRESS S \Y 38 0
- CITY S C 20
- STATE_PROV S C 4 0
- ZP_CODE S C 7 0
- HIREDATE D B 4 0

Methods Available for Defining Data Fields
* Use fields with predefined attributes.

For information about how to use fields with predefined attributes, refer to
Selecting Global Fields on page 27.

* Copy values from an existing definition.

For information about copying a definition, refer to Copying a Definition on
page 62.

e Create a new field.

The following section describes how to create a new field.

TIBCO Object Service Broker Managing Data

Task E: Define Non-key Fields | 43

Creating a New Non-key Field

To define a new non-key field type information in the following fields in any
order, after the primary key fields. For valid values, press PF1.

Field Enter the name of the field. The name of each field must be unique

Name to the table.

Typ Enter the semantic data type of the field. For an explanation and
valid values, refer to TIBCO Object Service Broker Programming in
Rules.

Syn Enter the syntax of the field. For an explanation and valid values,

refer to TIBCO Object Service Broker Programming in Rules.

Len Specify the length of the field. The value is in bytes and valid
values are determined by the syntax of the field. For valid lengths,
refer to TIBCO Object Service Broker Programming in Rules.

Dec Specify the number of digits to the right of the decimal point. In
most cases this is optional. It is relevant only for syntax P.

Ord Specify the ordering of the field (this is optional). The default
value of null returns occurrences in ascending order by primary
key. When an ordering option is explicitly specified it takes
precedence over the default. When ordering is specified for more
than one field, the sort precedence is determined by the order of
the fields as they are listed in the table.

Specifying a value in this field incurs sorting overhead, which can
be significant in tables with a large number of occurrences.

Ordering is not permitted for fields with syntax RD (raw data) or
UN (Unicode).

Rqd Specify if a value for the field is required (this is optional).

Default Specify the value to be used for the field if none is supplied by the
user.

Default values are not permitted for fields with syntax RD or UN.

TIBCO Object Service Broker Managing Data

44 | Chapter 3 Defining TDS, EES, SES, and TEM Tables

Reference Specify the name of a reference table (this is optional). Specify a
value only if a table is to be referenced when a user is inserting or
replacing a value in the field. You then ensure that the user enters
valid values for the field. The reference table must be
non-parameterized. If the new value does not exist as a primary
key value in the referenced table, the action fails validation.

TIBCO Object Service Broker Managing Data

Chapter 4

Topics

|45

Defining a View of a Source Table

This chapter describes how to define a view of a source table and how to define
SUB, CLC, and PRM tables.

* Views of a Source Table, page 46

* Defining a Subview (SUB) Table, page 47

* Defining a Calculation (CLC) Table, page 52

* Defining a Parameter Value (PRM) Table, page 55

TIBCO Object Service Broker Managing Data

46 | Chapter 4 Defining a View of a Source Table

Views of a Source Table

TIBCO Object Service Broker Ul

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker U, refer to the TIBCO Object Service Broker Ul
online help.

What is a View of a Source Table?

A view of a source table is a predefined means of accessing specific kinds of data
stored in the source table. Views do not contain any data of their own, although
they look like tables and can be processed as though they are real tables. Views
simplify database access and enhance re-usability of data.

What Types of Views Can be Specified?

Providing you have adequate security access, you can create the following types
of views of a table:

e A view of selected fields, occurrences, or instances in a subview (SUB) table
* A count of specified fields in a calculation (CLC) table

e Aview of all data parameter values in a parameter value (PRM) table

TIBCO Object Service Broker Managing Data

Defining a Subview (SUB) Table

Defining a Subview (SUB) Table | 47

Why Define a Subview?

A subview, which is a limited view of a source data table at either a local or
remote location, aids in data privacy, increases data security, and often simplifies
data access. Changes made in a subview are reflected in the source table but a
user of a subview does not have full access to all the data in the source table. You
must have DEF_VIEW access to the source table to define a subview of it.

Behavior of Subviews

The following table describes the behavior of fields, event rules, and parameters
as defined in the source and subview tables:

Elements Defined in
Source Table

Required fields.

When Accessed Through the Subview

Constraints apply in the subview.

Referenced fields.

Constraints apply in the subview.

Event rules.

Are executed when access is made to the
subview.

Fields in the source table
not defined in the subview.

Take on default values in the source table.

Fields in the source table
defined in the subview.

Take on the new values provided through the
subview.

Data parameters.

Can be part of either the selection criteria or
defined as parameters to the subview.

Location parameters.

Must be defined as a location parameter in the
subview.

TIBCO Object Service Broker Managing Data

48 | Chapter 4 Defining a View of a Source Table

Tasks Required to Define a Subview

Complete the following tasks to define a subview table. These tasks are described
in the following sections.

Task Required Go to page ...
Specify the table type. Y 48
Specify the source table. Y 49
Specify the lock mode. Y 49
Select the data. Y 49
Define the parameters. N 50
Define the fields. Y 50

See Also Refer to Defining a Subview on a Minimal Definition on page 66 for the tasks
required to define a subview on a minimal table definition.

Task A Specify the table type

After entering the initial Table Definer screen, described in Accessing the Table
Definer on page 22, you must change the Type field to SUB. When you press
Enter, a screen similar to the following appears.

COMMAND==> TABLE DEFINITION

Table: @EMPLOYEES_SUB Type: SUB Unit: DOCEXMPL

Source:

Select:

Lock Mode:
Parameter Name Typ Syn Len Dec Class Src Source Name Default

B Synt Dec Order

Field Name Type Len Key Rad Default Src Source Name

" PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

TIBCO Object Service Broker Managing Data

Defining a Subview (SUB) Table | 49

Table type changed

Task B Specify the source table

In the Source field, type the name of the table that is your source of data. The
source table must already exist and it must be one of the following types of tables:
TDS,VSM, DB2, DAT, IDM, IMS, SLK, ADA, or IMP.

When the source name is provided and you press Enter, the screen is populated
with parameter and field names from the source table. The parameter types and
primary key are also identified. The values supplied can be edited.

Task C Specify the lock mode

In the Lock Mode field, type in B if you do not want locks to be taken on the data.
If locks are not taken, users can only browse the data. Type in D if you want the
transaction to determine whether updates are allowed.

Task D Select the data

In the Select field, enter selection criteria for data for the subview. Occurrences
being inserted into or deleted from the table must meet the selection criteria. For
occurrences being replaced, both the old and new must meet the selection criteria.
If no selection criteria is specified, all occurrences in the table are available for use.

The selection criteria must be a field name or a data parameter name from the
source table, followed by a relational operator, followed by one of: a value; a field
name from the source table; a new subview parameter; or an expression. The
expression can include only a source field and a constant, or a defined parameter
and a constant.

If a data parameter of the source table is not specified in the parameter area of the
% subview, it must be selected in the selection field as: source_parameter_name=value.

If a data parameter of the subview is a field of the source table, it must be selected
as: source_field_name=subview_parameter_name.

Example of Selection

To select occurrences that meet the following criteria: position of ANALYST or
employees earning more than $400.00, and the source field MGR# set to the
parameter MANAGER# in the subview, enter the following:

POSITION="ANALYST’ | SALARY > 400.00 & MGR# = MANAGER#

TIBCO Object Service Broker Managing Data

50 | Chapter 4 Defining a View of a Source Table

Task E Define the parameters

Define the parameters in the same way as described in Task B: Define Parameters
on page 33, except for the following differences:

e A data parameter of a source table, if it is not defined in the subview, must be
selected in the selection area of the subview screen as previously described.

e A data parameter in a subview can be a field of the source table, but it must be
selected in the selection area of the subview screen as previously described.

® The names of the parameters can differ between the subview and the source
table. If the names differ, the value in the Src field must be set to S and the
name of the parameter in the source table must be provided in the Source
Name field.

Task F Define the fields

Define the key and non-key fields in the same way as described in Task D: Define
Primary Keys on page 39 and Task E: Define Non-key Fields on page 42, noting
the following:

* Key fields in the source table must be defined as key fields in the subview.

* Some or all of the non-key fields named in the subview can be the same as
those in the source table.

e Some of the fields in the subview could be renamed from the source table but
still derive their values from the source table.

¢ Only the name and primary key setting of the source fields are imported from
the source table. The other attributes, such as syntax and length, are left
unspecified. Unless you override these other attributes in the subview table,
they are inherited from the source table.

® Ordering and default values are not permitted for fields with syntax RD (raw
data) or UN (Unicode).

* Some of the fields could be new fields unique to the subview and derive their
value through a functional rule.

Setting a Value or Name

Use the Src field and Source Name field to set the value or name to be used, as
shown in the following table:

gfgl":je SIC yalue in Source Name Field Value is ...

Blank Blank. Same as source.

TIBCO Object Service Broker Managing Data

Sample Subview Table

Value Src

Field

Defining a Subview (SUB) Table | 51

Value in Source Name Field Value is ...

S

Name of source field.

Derived from the source table.

D

Name of a functional rule.

Derived from a functional rule.

If a functional rule is named, the table must be viewed and edited using the
shareable tools STEBROWSE and STE. For information about these tools, refer to
TIBCO Object Service Broker Shareable Tools. For information about coding the
functional rule, refer to Chapter 7, Coding Considerations for Event, Location,
and Derived Value Rules, on page 91.

The following example illustrates a sample subview table:

BROWSING
COMMAND

EMPNO

TABLE : @EMPLOYEES_SUB(MIDWEST)
==>

POSITION

CUST SUPPORT
CUST SUPPORT
PRE-SALES
PRE-SALES
CUST SUPPORT
JR OPERATOR
TECH WRITER
EDUCATOR
TESTER

SALES
ACCOUNTANT
ANALYST
ANALYST

JR PROGRAMMER

SENIOR ANALYST

EDUCATOR

SENIOR ANALYST

79912

MANAGER# DEPTNO SALARY

SCROLL: P

600.
719.
800.
710.
700.
575.
820.
685.
800.

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE

13=PRINT 3=END 14=EXPAND

TIBCO Object Service Broker Managing Data

52 | Chapter 4 Defining a View of a Source Table

Defining a Calculation (CLC) Table

Why Define a Calculation View?

Often, when accessing data, a simple count of the fields that contain the same
values within a table is required as part of the data access. Using a calculation
table, the values can be accessed via a source table and counted. The values are
dynamically updated for you each time a change is made to the source table. You
must have DEF_VIEW access to the source table to define a calculation view of it.

Fields with either a syntax of F or with a definition length of more than 127 cause
the table to be unusable in a rule.

S

Behavior of Calculation Tables
Note the following when using a calculation table:

® The primary key values are assigned dynamically and are also updated with
each update to the source table.

¢ For performance reasons, if only one field is being counted, the field should
have a secondary key built on it, if this is allowed for its syntax, before the
calculation table is accessed.

See Also TIBCO Object Service Broker Programming in Rules for information on which

fields, depending on their syntax, can be defined as secondary keys.

e TIBCO Object Service Broker Application Administion for more information on
secondary keys.

Tasks Required to Define a Calculation Table

Complete the following tasks to define a calculation table:

Task Required Go to Page ...
Specify the table type. Y 53
Specify the source table. Y 53
Verify the parameters. N 53
Define the primary key and non-key fields. Y 54

TIBCO Object Service Broker Managing Data

Defining a Calculation (CLC) Table | 53

The following sections provide more information on these tasks.

Task A Specify the table type

After entering the initial Table Definer screen described in Accessing the Table
Definer on page 22, you must change the table type field to CLC. When you press
Enter, a screen similar to the following appears.

COMMAND==> TABLE DEFINITION

Table: @EMPLOYEES_CLC Type: CLC Unit: DOCEXMPL

Source:
Parameter Name Typ Syn Len Dec Class Default Src Sourcename

Field Name Type Syntax Length Decimal Key Ord Src Source Name

EFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
Table type changed

Task B Specify the source table

In the Source field, enter the name of the table that is your source of data. The
source table must already exist and it must be a TDS table. When you provide the
source name and press Enter, the screen is populated with values from the source
table.

Task C Verify the parameters

The parameter values are provided for you when you press Enter after specifying
a source table name. These values must not be changed.

TIBCO Object Service Broker Managing Data

54 | Chapter 4 Defining a View of a Source Table

Task D Define the primary key and non-key fields

The field values are provided for you when you press Enter after specifying a
source table name. In addition, a new primary key field named KEY and a new
non-key field named COUNT are added and defined, and two new fields called
Src and Source Name are added.

Except for the KEY and COUNT fields, delete the fields that are not to be
counted. You can use the D line command to delete the fields. The names for the
KEY and COUNT fields can be changed but you must not change the default
attributes for these fields.

Sample Calculation Table

The following example illustrates a sample calculation table:

BROWSING TABLE : @EMPLOYEES_CLC(MIDWEST)
COMMAND ==>
SCROLL: P

KEY POSITION MGR# COUNT
_ 1 ACCOUNTANT 98895 1
_ 2 ANALYST 79912 3
_ 3 CUST SUPPORT 56112 3
_ 4 EDUCATOR 80002 2
_ 5 EDUCATOR 98895 1
_ 6 JR OPERATOR 44798 1
_ 7 JR PROGRAMMER 79912 1
_ 8 MANAGER 99999 2
— 9 PRE-SAILES 37219 2
_ 10 SALES 37219 1
_ 11 SENIOR ANALYST 79912 2
_ 12 TECH WRITER 80002 2
13 TESTER 79912 1

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

TIBCO Object Service Broker Managing Data

Defining a Parameter Value (PRM) Table | 55

Defining a Parameter Value (PRM) Table

Why Define a Table for Parameter Values?

When accessing the data of a parameterized table, you often require access to data
in all the instances of the table. By defining a table to hold the data parameter
values, you can relate this information in your data access. This relationship can
be coded explicitly using a FORALL statement or implicitly using a tool interface.
You must have DEF_PRM access to the source table to define a subview of it.

Behavior of Parameter Tables
Note the following when using a parameter value table:

® The primary key values are assigned dynamically and are also updated with
each update to the source table.

¢ Only the values of data parameters are maintained in a parameter value table.

Tasks Required to Define a Parameter Value Table

Complete the following tasks to define a parameter value table:

Task Required Go to Page ...
Specify the table type. Y 55
Specifying the source table. Y 56

The following sections provide more information on these tasks.

Task A Specify the table type

After entering the initial Table Definer screen described in Accessing the Table
Definer on page 22, you must change the table type field to PRM. When you press
Enter, a screen similar to the following appears.

COMMAND==> TABLE DEFINITION
Table: $@EMPLOYEES Type: PRM Unit: DOCEXMPL
Source:

TIBCO Object Service Broker Managing Data

56 | Chapter 4 Defining a View of a Source Table

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

Task B Specifying the source table

In the Source field, type in the name of the table that is used as your source of
data. The source table must already exist and it must be a parameterized table of
one of the following;:

P
EES
SES
TDS
TEM
VSM

Using the NUMBER Field in a Parameter Table

A parameter table is a virtual table, meaning that its data is extracted from
dynamic source information. The NUMBER field of the parameter table depends
on the following;:

Current state of the parameter instances

Access path, for example, if the initial subset of the key information is
available

Selection string criteria

TIBCO Object Service Broker Managing Data

Defining a Parameter Value (PRM) Table | 57

Therefore, since the values in the NUMBER field are dynamic, it cannot be used
in any meaningful way and should be ignored. For example, the NUMBER field
for parameter instance A has a value of one but on the following day the
NUMBER field (for parameter instance A) could equal 2 because a new
parameter instance is added.

Sample Parameter Value Table

The following example illustrates a sample parameter value table:

BROWSING TABLE : $@EMPLOYEES
COMMAND ==>
SCROLL: P
NUMBER REGION
1 CANADA
2 MEXICO
3 MIDWEST
4 SOUTHWEST

PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND

Example Rule for Parameter Values for a Table

The following rule uses FORALL statements to access and process data parameter
values for a table.

RULE EDITOR ===> SCROLL: P
DEPT_EXPENSE(MEDIA);

_ FORALL $EMP_EXPENSE
DEPT_EXPENSE.MONTH_NUMBER = $EMP_EXPENSE.MONTH;
FORALL EMP_EXPENSE ($EMP_EXPENSE.MONTH)
DEPT_EXPENSE.* = EMP_EXPENSE. *;
INSERT DEPT_EXPNSE('DEPT_EXPENSE');

TIBCO Object Service Broker Managing Data

58 | Chapter 4 Defining a View of a Source Table

END;
END;

_ CALL $RPTPRINT('DEPT _EXPNSE', MEDIA);

Explanation of the Rule

The rule does the following:

1.

3.
4.
5.

Uses a FORALL statement to access parameter values held in the table
$EMP_EXPENSE.

Uses a FORALL statement to access all the instances of the source table
EMP_EXPENSE.

Assigns data to the report table DEPT_EXPENSE.
Inserts the data into the report table of a report also called DEPT_EXPENSE.
Prints the report to the specified output.

See Also TIBCO Object Service Broker Programming in Rules for information about the
FORALL statement.

TIBCO Object Service Broker Managing Data

|59

Chapter5 Editing a Table Definition

This chapter describes how to edit, copy, and delete a table definition.

Topics

¢ Editing a Definition, page 60

¢ Copying a Definition, page 62

e Editing a Definition for Distributed Development, page 64
* Deleting a Definition, page 67

TIBCO Object Service Broker Managing Data

60 | Chapter 5 Editing a Table Definition

Editing a Definition

TIBCO Object Service Broker Ul

Overview

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker U, refer to the TIBCO Object Service Broker Ul
online help.

The Table Definer provides editing facilities for making changes and additions to
a table definition. Permissible changes do not affect existing data. However,
changes are restricted in ways that ensure data integrity and security.

Updating Specifications with a Definition

You can update the specifications within a definition by:
¢ Positioning the cursor and over-typing

¢ Inserting or deleting characters

¢ Using line commands

¢ Using primary commands

Your updates are validated when you press PF3. An appropriate message appears
if the updates are not valid.

Permissible Editing Changes

After you load the table with data, you can still make the following selective
changes to the table definition:

¢ Change field names for fields that are not indexed (primary or secondary)
¢ Change required fields

* Change the unit

¢ Change the parameter names

* Add/delete location parameters

TIBCO Object Service Broker Managing Data

Editing a Definition | 61

¢ Change event rule specifications

¢ Change the semantic type

* Increase length of syntaxes B, C, RD, UN, V, W, and P

e Add fields (the fields must be added to the end of the table definition)

Non-permissible Editing Changes

After you load the table with data, the following changes are not permitted to the
table definition:

* Change table name (changing the table name creates a new table definition)
* Change the table type

* Change the IDgen specification

* Add/delete data parameters

* Change the length of parameters

¢ Change key fields or indexed fields

* Change the syntax type

¢ Change the length of syntax F

¢ Change the number of decimal places
* Delete fields

® Decrease the length of a field

Commands and PF Keys Available

To view a list of line and primary commands and PF keys available from the Table
Definer, press PF1.

TIBCO Object Service Broker Managing Data

62 | Chapter 5 Editing a Table Definition

Copying a Definition

There are a number of methods that you can use to copy an existing table
definition. Using an existing definition and modifying only the portions required
simplifies coding and the assignment of data. In the case of distributed
development, it also assists in the management of table definitions across nodes
as the table containing the data must be defined on the local and remote nodes.

You can copy a definition from within the Table Definer or through the use of
shareable tools. If the source table is on a TIBCO Object Service Broker node that
is remote to the one you are working on, you must copy the definition using a
shareable tool.

Copying a Definition Using the Table Definer

When you are within an existing definition in the Table Definer, you can copy a
definition by doing one of the following:

¢ Changing the name of the definition that you are viewing to a new name and
pressing Enter.

e Using the COPY command.
To use this command, at the primary command field type COPY tablename
where tablename is the name of the table that you are copying.
% When using the COPY command:
e The command fails if the displayed table already contains data.

¢ The name of the table that you are viewing is retained but all the other
information in the definition is overwritten with the values from the copied
table.

Copying a Definition Using Shareable Tools

Two shareable tools, COPY_DEFN and COPYDEEN, are available to you to copy
existing definitions. Using these tools, if the correct security access is set up, you
can copy definitions across TIBCO Object Service Broker nodes or within your
local node. COPY_DEEN is called from within a rule and COPYDEFN executed
via the workbench option CD copy defn.

TIBCO Object Service Broker Managing Data

Copying a Definition | 63

Example Rule

The following rule calls the tool COPY_DEFN to copy the definition of the
DEPARTMENTS table from Node A to Node B. Because a table definition is being
copied, values are not required for the arguments library, environment, or parentonly:

COPY_TABLEDEFN;

_ CALL COPY_DEFN(’'TABLE’, ’DEPARTMENTS’, '’, '’ , 'NODEA’, | 1
"NODEB’, '’); |

See Also TIBCO Object Service Broker Shareable Tools for information on the tools.

TIBCO Object Service Broker Managing Data

64 | Chapter 5 Editing a Table Definition

Editing a Definition for Distributed Development

Purpose of the Definition

If you are working in a distributed data environment and you are accessing data
across nodes, you must establish a relationship with the tables to be used. You
establish this relationship through the definitions of the related tables. When this
relationship is established, your data can be stored remotely or locally to the
definition.

Definition and Data Requirements for Distributed Data

To access data that resides on another node, the following conditions for the table
definitions must be met:

¢ The table containing the data must be defined with the same table name and
the same location parameter name on both the local and the remote nodes.

e If data is to reside on a particular node, the full definition for the table must
exist on that node.

e If data is not to reside on a particular node, only a minimal definition of that
table is required at that node. Optionally, you can have a full definition on
both nodes if you want.

e [If data resides on both a local and remote node, the data on both nodes must be
accessible when the data on the remote node is being accessed.

Copying a Definition

The simplest way to relate definitions is to copy a full definition from one node to
another. If required, you can moditfy it to be only a minimal definition by
following the tasks below. Because your tables are to be used in a distributed data
environment, you must use the shareable copy tools COPY_DEFN and
COPYDEEN to copy the definition. These tools are discussed in Copying a
Definition on page 62 and described fully in TIBCO Object Service Broker Shareable
Tools.

Defining a Minimal Definition

As previously noted, you can use a minimal definition on a node so long as data is
not to reside with the definition. A minimal definition consists of:

e The table name.

TIBCO Object Service Broker Managing Data

Editing a Definition for Distributed Development | 65

The location parameter name and attributes.

The name of the remote node where the full definition is located. This value is
determined using the order of evaluation described in Order of Evaluation to
Determine Location on page 17.

Modifying an Existing Full Definition

If you have already used one of the shareable copy tools, complete the following
tasks to create a minimal definition from the full definition. Refer to Definition
and Data Requirements for Distributed Data on page 64 for restrictions on values.

1.

Invoke the Table Definer with the name of your table.
The name must be same as the name of the table with the full definition.

Delete the values in all the fields of the table identification portion, leaving
only the Table field defined.

Using the D line command, delete all the parameters except for the
LOCATION parameter, and delete all the fields.

Define the location parameter as described in Defining a Location Parameter
on page 35.

The name of the location parameter must be the same as the location
parameter for the table with the full definition.

When defined, the source for the full definition is available through the location
parameter.

Creating a New Minimal Definition

If you have not already copied the definition, complete the following tasks to
create a minimal definition.

1.

Invoke the Table Definer with the name of your table.
The name must be the same as the name of the table with the full definition.

Delete the values in all the fields of the table identification portion, leaving
only the Table field defined.

Define the location parameter as described in Defining a Location Parameter
on page 35.

The name of the location parameter must the same as the location parameter
for the table with the full definition.

When defined, the source for the full definition is available through the location
parameter.

TIBCO Object Service Broker Managing Data

66 | Chapter 5 Editing a Table Definition

Defining a Subview on a Minimal Definition

You can also define a subview on the minimal definition of a table. The tasks
required are:

1. On the remote system complete each of the following:
— Define the full definition of the base table.
— Define a subview of the base table.

2. On the local system complete each of the following;:
— Define a minimal definition of the base table.

— Define a subview table with the same name as the remote subview and its
source is the minimal definition defined above.

TIBCO Object Service Broker Managing Data

Deleting a Definition | 67

Deleting a Definition

There are a number of methods that you can use to delete a table definition. Refer
to the following table to determine the appropriate method to use:

If the table ... Use ...

Was promoted to a target system. Promotion system
for that location.

Was not promoted and is on your local node. Table Definer or
DELETE_DEFN.

Was not promoted and is on a node remote to thenode DELETE_DEFN.
where you are presently working.

Considerations when Deleting an Object

If an object such as a table definition was promoted to another (target) system,
you must submit a change request through the Promotion system (of the source
system) to extend the deletion to the target system. If you do not issue a change
request to delete the definition, the following occurs:

¢ The table exists on the target system and no rights are associated with it on the
source system.

¢ If anew object with the same name is created on the source system, the creator
is unable to promote the object to the target system because an object with the
same name already exists there.

Deleting a Definition Using the Table Definer

When you are within an existing definition in the Table Definer, you can delete a
definition by doing one of the following:

e Press PF22.
e Use the DELETE command.

In either case you are prompted to confirm the deletion.

TIBCO Object Service Broker Managing Data

68 | Chapter 5 Editing a Table Definition

Deleting a Definition Using a Shareable Tool

The shareable tool DELETE_DEEFN is available to you to delete existing
definitions. Using this tool, if the correct security access is set up, you can delete
definitions across TIBCO Object Service Broker nodes or within your local node.
DELETE_DEEN is called from within a rule.

Example Rule

The following rule calls the DELETE_DEEFN tool to delete the definition of the
DEPARTMENTS table from Node A. Because a table definition is being deleted,
values are not required for the arguments library, environment, or parentonly:

DELETE_TABLEDEEFN;

_ Y |

SeeAlso TIBCO Object Service Broker Shareable Tools for information about the tools.

e TIBCO Object Service Broker Managing Deployment for information about
change requests.

TIBCO Object Service Broker Managing Data

|69

Chapter6 Manipulating Data in a Table

This chapter describes how to manipulate data in a table, including processing
differences for EES tables.

Topics

e Data Manipulation Tools, page 70

* Invoking the Table Browser, Table Editor, and Single Occurrence Editor,
page 74

¢ Replacing Data, page 76

¢ Inserting Data, page 79

¢ Replicating Data, page 81

¢ Deleting Data, page 82

¢ Copying Data, page 85

¢ Committing Changes, page 86

TIBCO Object Service Broker Managing Data

70 | Chapter 6 Manipulating Data in a Table

Data Manipulation Tools

TIBCO Object Service Broker Ul

This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker Ul, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker U, refer to the TIBCO Object Service Broker Ul
online help.

Available Methods

A number of methods are available for you to manipulate the data in your tables
from within TIBCO Object Service Broker. You can use:

¢ The Table Browser
The Table Editor
e The Single Occurrence Editor (SOE)

e Workbench options
¢ Rules statements

e Shareable tools

Choosing a Tool

The method that you choose determines the tool that you use. Your choice
depends on when and how you want to manipulate the data. Use the following
table to determine the best option for your requirements:

View the data without locking the table. Table Browser.

Do updates without locking the table. Single Occurrence Editor.
Make only a small set of updates. Single Occurrence Editor.
Insert new data. Table Editor or rules.

TIBCO Object Service Broker Managing Data

Data Manipulation Tools | 71

To do the following... Use the...

Update a table that has event rules Execute the shareable tool STE or
defined. use rules.

Copy data. CT copy table workbench option

or shareable tools.

Delete data from the whole table. CL clear table workbench option
or shareable tools.

Browsing Data with the Table Browser

You can use the Table Browser to browse data defined in the MetaStor. When you
are using the Table Browser, you do not lock access to data defined in tables. The
following section describe what you can and cannot do when browsing a table
with the Table Browser.

What You Can Do With the Table Browser
When browsing data with the Table Browser, you can:

¢ Browse TDS, SUB, CLC, EES, SES, IMS, PRM, VSM, DAT, DB2, ADA, SLK,
and IDM table types.

Refer to Available Table Types on page 10 for a description of each table type.
* Browse IMP table types if they have a primary key defined.

* Browse tables that have a maximum of eight fields in the composite primary
key, although TIBCO Object Service Broker allows a maximum of 16 fields in a
composite primary key.

* Browse tables with fields of syntax W (double-byte and single-byte character
strings).

* Browse tables with fields of syntax UN (UTF-16 Big Endian Unicode character
strings). Unicode strings are shown as sequences of groups of four
hexadecimal digits, each group representing a Unicode character.

* Browse tables with fields of syntax RD (strings of raw binary data bytes). Raw
data strings are shown as sequences of groups of two hexadecimal digits, each
group representing a raw data byte.

® Use the primary command SHOW (or its corresponding function key PF19) to
display and/or re-display fields excluded from the screen because of a long
primary key or because the EXCLUDE command was issued.

TIBCO Object Service Broker Managing Data

72 | Chapter 6 Manipulating Data in a Table

What You Cannot Do With the Table Browser
When browsing data with the Table Browser, you cannot:
¢ Browse EXP, RPT, or SCR table types.

* DBrowse tables that have more than eight fields in a composite primary key.
You must use rules to access the tables.

¢ Use Table Browser operations on fields of syntax W.

A dot (.) appears when the field length exceeds the maximum display size. To
view the field, use the Single Occurrence Editor.

&

Manipulating Data with the Table Editor

You can use the Table Editor to edit an entire table in the database. It combines the
features of a full-screen editor and a line editor. The Table Editor locks the table
instance if the table is parameterized that you are using so that other users cannot
access it to make editing changes. Therefore, if only minor changes are required to
the table, use the Single Occurrence Editor.

Note the following considerations when manipulating data with the Table Editor.

What You Can Do With the Table Editor
When manipulating data with the Table Editor, you can:
e Edit TDS, VSM, IMS, DB2, DAT, ADA, SLK, and SUB table types.

e [Edit tables that have a maximum of eight fields in the composite primary key,
although TIBCO Object Service Broker allows a maximum of 16 fields in a
composite primary key.

® Use the primary command SHOW (or its corresponding function key PF19) to
display and/or re-display fields excluded from the screen because of a long
primary key or because the EXCLUDE command was issued.

What You Cannot Do With the Table Editor
When manipulating data with the Table Editor, you cannot:
e Edit PRM, IDM, IMP, SCR, RPT, and EXP table types.

¢ Roll back editing changes made to VSM type tables. Changes are committed
as soon as they are made.

¢ [Edit a screen other than the current screen when using line commands.

TIBCO Object Service Broker Managing Data

Data Manipulation Tools | 73

¢ [Edit tables that have more than eight fields in a composite primary key. You
must use rules to access the tables.

A dot (.) appears when the field length exceeds the maximum display size. To
view the field, use the Single Occurrence Editor.

S

Manipulating Data with the Single Occurrence Editor

You can use the Single Occurrence Editor to update or display a single occurrence
in a table.

Note the following considerations when manipulating data with the Single
Occurrence Editor.

What You Can Do With the Single Occurrence Editor
When manipulating data with the Single Occurrence Editor, you can:

* Make changes to tables while using the Table Browser or Table Editor. The
Single Occurrence Editor locks a single occurrence rather than the whole table
or table instance if the table is parameterized.

¢ Display and edit fields that are too large for the display table in either the
Table Browser or the Table Editor.

What You Cannot Do With the Single Occurrence Editor

You cannot use the Single Occurrence Editor on IMP tables.

TIBCO Object Service Broker Managing Data

74 | Chapter 6 Manipulating Data in a Table

Invoking the Table Browser, Table Editor, and Single Occurrence

Editor

Invoking the Table Browser

You can access the Table Browser from the workbench by doing one of the
following:

Type an existing table name to the right of the BR browse table option and
press Enter. This displays the initial Table Browser screen.

Position your cursor to the right of the BR browse table option and press
Enter. This displays the Object Manger screen for the Table Browser. Select an
object from this screen to invoke the Table Browser screen.

Type BR and an existing table name in the command line.

Execute the tool STEBROWSE(input) where input is a string containing the
table name (and parameters, if any).

Invoking the Table Editor

You can access the Table Editor from the workbench by doing one of the
following:

Type an existing table name to the right of the ED edit table option and press
Enter. This displays the initial Table Editor screen.

Position your cursor to the right of the ED edit table option and press Enter.
This displays the Object Manager screen for the Table Editor. Select an object
from this screen to invoke the Table Editor screen.

Type ED and an existing table name in the command line.

Execute the STE(tablename) tool where tablename is the name of the source table
and any parameters.

Invoking the Single Occurrence Editor

You can access the Single Occurrence Editor by doing one of the following:

From either the Table Browser or Table Editor, type S in the line command
field of the required occurrence and press Enter.

Execute the tool SOE(tablespec) where tablespec is the name of the table and any
parameters containing the single occurrence that is to be edited.

TIBCO Object Service Broker Managing Data

Invoking the Table Browser, Table Editor, and Single Occurrence Editor | 75

If you do not supply a value for tablespec, pressing Enter displays a screen
prompting for a value.

See Also TIBCO Object Service Broker Shareable Tools for information about the tools.

TIBCO Object Service Broker Managing Data

76 | Chapter 6 Manipulating Data in a Table

Replacing Data

Replacing Data Using the Table Editor
To replace values in a field using the Table Editor, you can:
e Overtype existing values
* Delete existing values
e Use the primary command CHANGE

When you overtype or delete existing values, press Enter to update the table with
the new values.

Replacing Data Using the CHANGE Command from the Table Editor

When using the CHANGE command, you must enter the field name, the value that
is changed, and the new value. For example, type change deptno=10 60 in the
primary command field. Deptno is the field name, 10 is the value that is changed,
and 60 is the new value.

Notes on the CHANGE Command

¢ Enclose values (constants) with spaces or non-numeric characters in single
quotation marks. For example, type change position=’staff pe’
’resources’ in the primary command field.

e The search starts at the cursor position, not the beginning of the table.
e Press PF6 to change the next occurrence.

e Press PF5 if you want to inspect the occurrences before changing them.

Controlling the Scope of the CHANGE Command

You have three options that control the scope of the CHANGE command:

e PAGE
e REST
e ALL

TIBCO Object Service Broker Managing Data

Replacing Data | 77

The options REST and ALL, if used on large tables, could cause the commit limit
to be reached. If the commit limit is reached, save your updates to this point,
re-enter the command, and continue making the changes.

e If you have a large table, use rules to replace the data. Refer to Replacing Data
"!' Using a Rules Statement on page 78 for more information.

Controlling the Scope with the PAGE Option

The PAGE option limits the scope of the CHANGE command to occurrences on the
displayed page. Occurrences above or below the displayed page remain
unchanged. All changes are visible.

For example, typing change deptno=10 60 page in the primary command field
changes all occurrences that you can currently see with department number 10 to
department number 60. When the changes are made, the message line displays
the number of changes made (possibly 0).

Controlling the Scope with the REST Option

The REST option limits the scope of the CHANGE command to occurrences on the
displayed page or on the pages after the displayed one. Occurrences on pages
before the displayed one remain unchanged. Some changes could be invisible.

For example, typing change deptno=10 60 rest in the primary command field
changes all occurrences on the display screen and below with department
number 10 to department number 60. When the changes are made, the message
line displays the number of changes made (possibly 0).

Controlling the Scope with the ALL Option

The ALL option changes the scope of the CHANGE command to the entire table. All
occurrences with the specified field value are changed to the new value.

For example, typing change deptno=10 60 all in the primary command field
changes all occurrences with department number 10 to department number 60.
The message line displays the number of changes made (possibly 0).

Replacing Data Using the Single Occurrence Editor

To replace data using the Single Occurrence Editor, invoke the Single Occurrence
Editor and overtype or delete the existing data. Type SAVE or press PF3 to save the
changes, update the table, and exit from your editing session.

TIBCO Object Service Broker Managing Data

78 | Chapter 6 Manipulating Data in a Table

Replacing Data Using a Rules Statement

To replace data using a rules statement, use the REPLACE statement. First
retrieve the data that you want to modify using a GET or FORALL statement. You
cannot select a field using the REPLACE statement but you can use a WHERE
clause to select a table instance. You also cannot replace a primary key value using
the REPLACE statement.

Example Rule for of Replacing Data

REPLACE_DEPTNO(region, empno, deptno);

_ FORALL @EMPLOYEES WHERE REGION = REGION :
@EMPLOYEES .DEPTNO = DEPTNO;
REPLACE @EMPLOYEES WHERE REGION = REGION;
END;

Explanation of the Rule
The previous rule:

1. Retrieves an occurrence in the @EMPLOYEES table based on the parameter
value provided for the argument REGION and the value provided for
EMPNO.

2. Assigns a new value for DEPTNO, based on the argument DEPTNO.

3. Replaces the existing value for DEPTNO with the new value provided by the
argument DEPTNO.

See Also TIBCO Object Service Broker Programming in Rules for information on rules and the
REPLACE statement.

TIBCO Object Service Broker Managing Data

Inserting Data | 79

Inserting Data

Inserting Data Using the | Line Command in the Table Editor

The line command I creates a new occurrence or multiple occurrences. It is the
only line command that can be used on the top line command field. To use the line
command I to insert data, complete the following tasks:

1. Typelin aline command field.
You can type I in multiple line command fields at once.
2. Press Enter.

A new occurrence is created below the selected one. The cursor is positioned
in the first column of the primary key field, indicated by the ampersand (&).

3. Enter a unique value for the primary keys.
4. Type in values for the fields.

5. Press Enter.

Inserting Data Using PF4 in the Table Editor
To use PF4 to insert a new line, complete the following tasks:
1. Position the cursor anywhere on an occurrence.
2. Press PF4.

A new occurrence is created below the selected one, indicated by the
ampersand (&).

Type in a unique primary key for the new occurrence.
4. Type in values for the fields.

5. Press Enter.

Inserting Data Using the Single Occurrence Editor

To insert an occurrence from the Single Occurrence Editor, complete the following
tasks:

1. Type S in the line command field of an existing occurrence.
This invokes the Single Occurrence Editor.

2. Type CLEAR in the primary command field.

TIBCO Object Service Broker Managing Data

80 | Chapter 6 Manipulating Data in a Table

3. Press Enter.
This clears all the existing data from the occurrence.
4. Enter a unique value in the primary key field.

5. Enter the values for the other fields as required.

Repositioning of Data

If used from the Table Browser, the new occurrence is inserted in its correct
position based on the primary key as soon as you save from the Single Occurrence
Editor. If used from the Table Editor, the new occurrence is first inserted after the
selected occurrence and repositioned after you save from the Table Editor.

Inserting Data Using a Rules Statement

To insert data with a rules statement, use the INSERT statement. You can use a
WHERE clause to select a table instance. You cannot insert an occurrence into a
table if the primary key value for the occurrence already exists; you must delete
the occurrence first using the DELETE statement.

Example of Inserting Data

The following example illustrates a rule that inserts data:

RULE EDITOR ===> SCROLL: P
INSERT_EMPLOYEE (REGION, EMPNO) ;

_ FORALL @EMPLOYEES WHERE REGION = REGION: |
@EMPLOYEES.EMPNO = EMPNO ; |
INSERT @EMPLOYEES WHERE REGION = REGION; |
END ; [

This rule:

1. Gets the table instance of the @ EMPLOYEES table based on the parameter
value provided for the argument REGION.

2. Assigns a value for EMPNO, based on the argument EMPNO.

3. Inserts the new occurrence into the table.

See Also TIBCO Object Service Broker Programming in Rules for information on commits, the
use of rules, and the INSERT and DELETE statements.

TIBCO Object Service Broker Managing Data

Replicating Data | 81

Replicating Data

Purpose of Replicating Data

Replicating an occurrence provides a template for a new occurrence. No value is
provided for the primary key field for the replicated occurrence; you must enter a
unique value for the new occurrence. Any of the following methods leaves the
original occurrence unaltered and adds a new occurrence to the table.

Replicating Data Using the R Line Command in the Table Editor

From the Table Editor, use the R line command to create a replica of one or more
occurrences (you can replicate several occurrences at one time):

1. Type Rin the line command field beside the occurrences you want to
replicate.

2. Press Enter.

The replicated occurrences appears below the selected lines.
3. Enter a unique value for the primary keys.
4. Change the values in the fields, where appropriate.

The new occurrences are repositioned after you enter a unique primary key
and save.

Replicating Data Using the Single Occurrence Editor

You can replicate an existing occurrence by invoking the Single Occurrence Editor
for an existing occurrence. Change the primary key value to a value that does not
currently exist. You can then edit values for other fields as required.

For example, if the occurrence with primary key 80003 currently appears in the
Single Occurrence Editor and you change this value to 81033 (perhaps changing
values of other fields as well), a new occurrence is created.

Repositioning of Data

If used from the Table Browser, the new occurrence is inserted in its correct
position based on the primary key as soon as you save from the Single Occurrence
Editor. If used from the Table Editor, the new occurrence is first inserted after the
selected occurrence and repositioned after you save from the Table Editor.

TIBCO Object Service Broker Managing Data

82 | Chapter 6 Manipulating Data in a Table

Deleting Data

Deleting Data Using the D Line Command in the Table Editor

Using the D line command, you can delete multiple occurrences. To use the D line
command, complete the following tasks:

1. Type D in the line command field beside the occurrences you want to delete.

2. Press Enter.

The occurrences is deleted.

Deleting Data Using PF16 in the Table Editor

You can use PF16 to delete one occurrence (where the cursor is positioned) at a
time. To use PF16, complete the following tasks:

1. Place the cursor anywhere on the occurrence you want to delete.
2. Press PF16 to delete the occurrence.

The occurrence is deleted.

Deleting Data Using the Single Occurrence Editor

From the Single Occurrence Editor you have two options for deleting the
occurrence:

¢ The DELETE primary command

e PF22

To use either method, complete the following tasks:

1. Press PF22 or type DELETE in the primary command field.
2. Press PF22 to confirm the deletion.

If you decide to cancel the deletion, use any PF key other than PF22. When the
deletion is completed the screen re-appears with the updated table.

Deleting Data Using a Rules Statement

To delete data with a rules statement, use the DELETE statement. This statement
requires the primary key to be available, either via a previous GET or FORALL on
the table, or by explicit selection of the primary key.

TIBCO Object Service Broker Managing Data

Deleting Data | 83

You can use the WHERE clause and the primary key value to specify which
occurrence to delete (that is, WHERE primary key value =).

Example of Deleting Data

The following rule deletes a manager from the MANAGER table:

RULE EDITOR ===> SCROLL: P
DELETE_MANAGER(mgr#) ;

Deleting Data Using a Workbench Option

To delete data using the workbench, use the CL clear table option. To use this
option, complete the following tasks:

1. Position your cursor to the right of CL clear table ==>.
2. DPress Enter.
A prompt screen appears.

3. At the Table Name prompts, type in the table name and parameter values, if
the table is parameterized.

For example, to delete data from the MIDWEST region of the @EMPLOYEES
table, type: @EMPLOYEES (MIDWEST) .

4. If selection of data is required, at the Select Occurrences Where prompt, type
your selection criteria.

For example, to delete the occurrence for employee 22312, type: EMPNO=22312

5. Press Enter.

Alternative Method to Delete Data
Alternatively, you can use the CL clear table option as follows:
1. Position your cursor to the right of CL clear table ==>.

2. Type in the name of the table, and the parameter values if the table is
parameterized, followed by a comma (,).

For example, to delete data from the MIDWEST region of the @EMPLOYEES
table, type: @EMPLOYEES (MIDWEST),

TIBCO Object Service Broker Managing Data

84 | Chapter 6 Manipulating Data in a Table

3. Press Enter.

Deleting Data Using a Shareable Tool

A number of shareable tools are available for you to delete data from a table. Use
the tools as follows:

¢ To delete data at either a local or remote location, use DELETE_DATA. You
can selectively delete data using this tool.

¢ To delete data locally, use $CLRTAB. You can do only a selection on parameter
values using this tool.

SeeAlso * TIBCO Object Service Broker Shareable Tools for information on the tools.

e TIBCO Object Service Broker Programming in Rules for information about the
use of rules and the DELETE statement.

TIBCO Object Service Broker Managing Data

Copying Data | 85

Copying Data

Copying Data Using a Workbench Option

To copy data using the workbench, use the CT copy table option. To use this
option, complete the following tasks:

1. Position your cursor to the right of CT copy table ==>.
2. Press Enter.
A prompt screen appears.

3. At the Source Table Name prompt, type in the table name and, if the table is
parameterized, the parameter values.

For example, to copy data from the MIDWEST region of the @EMPLOYEES
table, type: @EMPLOYEES (MIDWEST).

4. At the Destination Table Name prompt, type in the table name and, if the table
is parameterized, the parameter values.

For example, to copy data to the TEST region of the @EMPLOYEES table,
type: @EMPLOYEES (TEST).

5. If selection of data is required, at the Select Occurrences Where prompt, type
your selection criteria.

For example, to copy the occurrence for employee 22312, type: EMPNO=22312.

6. Press Enter.

Copying Data Using a Shareable Tool

You can copy data from one table or table instance to another using the shareable
tool COPY_DATA. You can use this tool to copy data locally or remotely.

See Also TIBCO Object Service Broker Shareable Tools for information on the tools.

TIBCO Object Service Broker Managing Data

86 | Chapter 6 Manipulating Data in a Table

Committing Changes

Tables are not actually updated until one of the primary commands that commits
the changes is issued from the primary command field. These commands are:

® SAVE

¢ SELECT
¢ ORDERED
¢ BROWSE

¢ EDIT

Using PF3 also commits changes.

Committing Changes Using the Table Editor

To commit changes and continue with your editing session, use the primary
command SAVE. This commits changes without exiting the current session. To
commit changes and exit to the workbench, press PF3.

The Table Editor displays a message at the bottom of the screen to indicate
whether the changes are committed. For example, you see a message similar to:
Updates to table “EMPLOYEE(NORTHWEST)” saved. When changes are
committed, they are saved in the ascending order of the primary key.

When changes are not committed, a message at the bottom of the display screen
gives a reason for the failure and the Table Editor positions the cursor where
corrections are required.

Committing Changes Using the Single Occurrence Editor

To commit changes to an occurrence, press PF3 or use the primary command
SAVE. In either case, the new occurrence or the updates to an existing occurrence
are committed, the table is updated, and the editing session is terminated.

Committing Changes Using Rules

At the end of every transaction, TIBCO Object Service Broker implicitly commits
changes to the database made since the last synchronization point.
Synchronization points can be established using the COMMIT and ROLLBACK
statements from within a rule.

TIBCO Object Service Broker Managing Data

Committing Changes | 87

Understanding EES Table Considerations

This section defines EES tables and describes the procedure for processing them.

Definition

When the table type in the table definer is initially changed to EES, Object Service
Broker adds two predefined permanent fields to the bottom, as shown here:

Tabkle: EE3 EXRMPLE Iype: EES Tnit: CLARED IDgen: M
Zource:

Farameter Hame Typ 3yn Len Dec Class r Ewent Rule Typ Acc

TUPDATE COUNT

[ST]
w
I

E
EREF_ZOUNT

[

¢ The field @@UPDATE_COUNT maintains integrity of the table data.

¢ The field @@REF_COUNT contains a count of the number of times any given row
in the table has been referenced.

Do not modify the definitions of those two fields, which must always remain as
the last two fields in the table definition. If they are absent, Object Service Broker
rejects access to the EES table.

Processing

Because EES tables can be shared in a multiuser Execution Environment, although
their processing is similar to that of SES and TEM tables, some changes are
necessary to maintain data integrity. Read on for the details.

Table Access

For a nonupdate processing to an EES table, Object Service Broker obtains a
shared global lock for all the EES tables for the duration of the request. Whenever
a row in the table is referenced by a nonupdate request, Object Service Broker
increments the field @@REF_COUNT by 1.

TIBCO Object Service Broker Managing Data

88 | Chapter 6 Manipulating Data in a Table

Example: How the

Updates

For an update processing to an EES table, Object Service Broker obtains an
exclusive global lock for all the EES tables for the duration of the update request.
That is, once control is to return to the processing rule, Object Service Broker
releases the lock.

Insertion of Rows

To insert a row in a table in addition to normal processing of the fields, Object
Service Broker sets the @aUPDATE_COUNT and @@REF_COUNT fields to 1.

Replacement of Rows

To replace a row in a table, if the field @@UPDATE_COUNT exists in the replacement
buffer, Object Service Broker compares it with the value in the actual table data.
Depending on the result, either of the following occurs:

e If the comparison succeeds, Object Service Broker replaces the row in the
actual table data and increments the fields @@UPDATE_COUNT and @@REF_COUNT
by 1.

e If the comparison fails, Object Service Broker raises a LOCKFAIL exception and
no replacement occurs.

If the field @@UPDATE_COUNT does not exist in the replacement buffer, Object
Service Broker replaces the row in the actual table data and increments the fields
@UPDATE_COUNT and @eREF_COUNT by 1.

Deletions of Rows

To delete a row in a table, if the field @@UPDATE_COUNT exists in the deletion buffer,
Object Service Broker compares it with the value in the actual table data.
Depending on the result, either of the following occurs:

* If the comparison succeeds, Object Service Broker deletes the row.

¢ If the comparison fails, Object Service Broker raises a LOCKFAIL exception and
no deletion occurs.

If the field @@UPDATE_COUNT does not exist in the row buffer, Object Service Broker
deletes the row.

@@UPDATE_COUNT Field Maintains Data Integrity

Consider two transactions, A and B, both of which are attempting to update row
Xin an EES table. Assume that row Xis currently in its initially inserted state, that
is, fields @@REF_COUNT and @@UPDATE_COUNT are set to 1.

TIBCO Object Service Broker Managing Data

Committing Changes | 89

To maintain integrity, the rules for processing the table must read the data row
before attempting to replace it, as follows:

¢ Transaction A gets row X in its row buffer: The field @@UPDATE_COUNT is 1 and
the field @REF_COUNT is 2.

¢ Transaction B gets row X in its row buffer: The field @@UPDATE_COUNT is 1 and
the field @@REF_COUNT is 3.

¢ Transaction A updates the data in its row buffer and replaces the row. Since
UPDATE_COUNT is 1 in both its row buffer and the table data, the replacement
succeeds. Accordingly, the field @@UPDATE_COUNT becomes 2 and
@@REF_COUNT becomes 4.

* Transaction B updates the data in its row buffer and replaces the row. Since
field @@UPDATE_COUNT is 1 in its replacement buffer and is now 2 in the actual
table data because of the replacement operation by transaction A, the
replacement fails. Object Service Broker raises a LOCKFAIL exception.

See Also TIBCO Object Service Broker Programming in Rules for information on the COMMIT
and ROLLBACK statements and synchronization of the database.

TIBCO Object Service Broker Managing Data

90 | Chapter 6 Manipulating Data in a Table

TIBCO Object Service Broker Managing Data

|91

Chapter7 Coding Considerations for Event, Location,
and Derived Value Rules

This chapter describes coding considerations for event, location and derived
value rules.

Topics

¢ Coding Event Rules, page 92

* Coding Rules to Determine Location, page 95

¢ Coding Rules to Derive Values, page 98

¢ Coding Rules for Remote Table Access, page 99

TIBCO Object Service Broker Managing Data

92 | Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules

Coding Event Rules

Validation rule

Trigger rule

Using the event rule feature, you can associate business rules and policies with
the definition of a table. These rules are run whenever data in the table is
manipulated. You can code two types of event rules:

A validation rule is used when the table is being modified. It checks the validity
of modified values of fields in the table.

A trigger rule causes additional processing to take place when a table is accessed.
For example, it can be used to create an audit trail, or maintain a one-to-one
relationship between two tables.

These rules run based on defined accesses. All the rules that apply to a specific
access are executed in the order in which they are entered in the event rule
section.

Conditions for Validation Rules

The following conditions apply to the coding of a validation rule:

e No updates to tables holding persistent data (TDS, DB2, and so on) are
allowed during the validation process.

e Updates to tables holding temporary data (TEM, SES, and EES) are allowed.

¢ The rule must be a function. A successful validation must return Y. An
unsuccessful validation can return any non-Y value. It is recommended that
the rule return either N or a message explaining why the validation was not
successful.

¢ The validation must explicitly handle its own exceptions. If a validation does
not handle an exception, the transaction that caused the validation is
terminated.

Conditions for Trigger Rules

Trigger rules can be nested up to a maximum depth of five accesses. For example,
an access to one table can trigger access to another table, which in turn can trigger
access to another table, and so on. The following restrictions apply to the coding
of a trigger rule:

TIBCO Object Service Broker Managing Data

Coding Event Rules | 93

¢ [t must not be a function; however, other rules invoked within it can be
functions.

¢ [t cannot alter the contents of the triggering row.

e It must not terminate the transaction and therefore cannot contain the
TRANSFERCALL statement.

¢ It must explicitly handle its own exceptions. If a trigger does not handle an
exception, the transaction that caused the trigger is terminated.

¢ [t should not contain COMMIT or ROLLBACK statements. If you need to
explicitly keep changes to data, start a new transaction using the EXECUTE
statement.

When are Locks Released?

Locks taken by an event rule are released at the end of the transaction in which it
is running.

Search Path

The search path for the application invoking the event rule determines the search
path for the event rule. Because the Table Editor on the developer’s workbench
has a search path of S (system library), when you are accessing the table from the
workbench you must execute the shareable tools STEBROWSE or STE to browse
or edit a table using an event rule. For more information about these tools, refer to
TIBCO Object Service Broker Shareable Tools.

Sample Set of Event Rules

The sample table has two event rules defined, DELETEMPNO and
VALIDEMPNO. The following illustrations show the coding of these rules.

Sample Trigger Rule

The first rule, DELETEMPNO, inserts data into the table @ DELETEMPNO when
an occurrence is deleted from the @ EMPLOYEES table.

DELETEMPNO;

: @DELETEMPNO .EMPNO = @EMPLOYEES.EMPNO; | 1
_ INSERT @DELETEMPNO; | 2

TIBCO Object Service Broker Managing Data

94 | Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules

Sample Validation Rule

The second rule, VALIDEMPNO, determines if an employee number entered in as
data to the table is below an accepted numeric limit. It returns a message to the
screen if the supplied value is invalid.

VALIDEMPNO;

_ @EMPLOYEES.EMPNO <= 9999; | Y N

e o
_ RETURN(’The value for EMPNO must be greater than 9999°); | 1

_ RETURNC’Y’); | 1

Event Rule Processing Across Nodes

An event rule running on a local node can access data on a remote node. An event
rule running on a remote node as the result of a remote data access can only
access data on the same node. The following illustration shows the valid and
invalid accesses.

Local Node A Remote Node B Remote Node C

1 EventRule issued to
access data on Node B

2 Event Rule issued
3 dataonnode A CANNOT data on node B CAN data on node C CANNOT
be accessed be accessed be accessed

IR

TIBCO Object Service Broker Managing Data

Coding Rules to Determine Location | 95

Coding Rules to Determine Location

Conditions that Apply
If you are using a rule to derive a value for the location of data, it:
* Must be a function
® Must have its arguments defined in the following order:
a. An argument for the table name
b. An argument for each data parameter
c. An argument for the location parameter

e Should not contain COMMIT or ROLLBACK statements

Search Path

The search path is determined by the current search path for the session. Because
the Table Editor on the developer’s workbench has a search path of S (for system
library), when you are accessing the table from the workbench you must execute
the shareable tools STEBROWSE or STE to browse or edit a table using a derived
rule for location.

Sample Source Rule Definition

The following example illustrates a sample definition for the Src and Sourcename
fields for the NODENAME location parameter:

COMMAND==> TABLE DEFINITION
Table: @EMPLOYEES Type: TDS Unit: DOCEXMPL IDgen: N
Parameter Name ult Src Sourcename
_ REGION -
_ NODENAME D FIND_LOCATION

TIBCO Object Service Broker Managing Data

96 | Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules

Sample Set of Source Rules

The following is an example of a set of rules used to return the value of a location.
The rules use the table NODENAMES to determine the location. The two
arguments for the first rule refer to the table name, and the two parameters of the
@EMPLOYEES table, REGION and NODENAME.

RULE EDITOR ===> SCROLL: P
FIND_LOCATION(TABLENAME, DATAPARM, LOCPARM);

_ DATAPARM = NULL; | YN
e e T T E T e e et e
_ GET NODENAMES WHERE NAME = 'MASTER’; | 1

_ RETURN(NODENAMES . DEFAULT) ; | 2

_ GET NODENAMES WHERE NAME = DATAPARM; |1

_ RETURN(FIND_LOCATION2(DATAPARM)); |2

ON GETFAIL NODENAMES
RETURN (DATAPARM) ;

If the value for the data parameter is not null, the following rule is used to get the
value for the location.

RULE EDITOR ===> SCROLL: P
FIND_LOCATION2 (DATAPARM) ;

_ NODENAMES . PREFIX=HEADSTRING(P1, 3); | YN
Bttt ettt fomm -
_ RETURN(NODENAMES . DEPARTMENT) ; | 1

_ RETURN(NODENAMES . DEFAULT) ; |1

Modifying the Default Remote Location for a Session

The default remote location for your current session can be modified using the
tools SETREMOTELOC (remoteloc) and REMOTELOCATION:

SETREMOTELOC Sets the value for your default remote location

REMOTELOCATION Returns the current value for your default remote location

TIBCO Object Service Broker Managing Data

Coding Rules to Determine Location | 97

Setting the Peer Server

Using the shareable tool @°’EERSERVERID, you can also specify which peer
server you should be using.

Sample Rule to Change the Default Location

The following rule changes the default remote location, if it is not already the
value required.

RULE EDITOR ===> SCROLL: P
CHANGE_LOCATION(VALUE) ;

_ VALUE = REMOTELOCATION; | YN
T T Fommmmmm
_ CALL SETREMOTELOC(VALUE); | 1
_ CALL ENDMSG(’THE LOCATION IS ’ || VALUE); | 12

See Also TIBCO Object Service Broker Shareable Tools for information about the tools.

TIBCO Object Service Broker Managing Data

98 | Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules

Coding Rules to Derive Values

Conditions that Apply

If you are using a rule to derive a value for a field, the rule must be a function.

Search Path

The search path is determined by the current search path for the session. Because
the Table Editor on the developer’s workbench has a search path of S (system
library), when you are accessing the table from the workbench you must execute
STEBROWSE to browse, or STE or edit, a table using a derived rule for location.

Sample Definition

The following example illustrates a sample definition for the Src and Sourcename
fields in the @EMPLOYEES_SUB table. In this definition, the HIREDATE field has
the MODIFY_DISPLAY rule defined to it.

Synt Dec Order
Field Name Type Len Key Rqgd Default Src Source Name

0 P
LNAME 0
POSITION 0
MGR# 0
DEPTNO 0
HIREDATE S C 10

cNoNeoNoNoNoN
z2zzzz2z

D MODIFY_ DISPLAY

Sample Source Rule
The following example illustrates the sample source rule. The rule uses the
shareable tool $DATE_PIC to modify the display of the employee’s hire date.

MODIFY_DISPLAY;

_ RETURN($DATE_PIC(C’YY MMM DD’, EMPLOYEES.HIREDATE)); [1

See Also TIBCO Object Service Broker Shareable Tools for information about these tools.

TIBCO Object Service Broker Managing Data

Coding Rules for Remote Table Access | 99

Coding Rules for Remote Table Access

Remote Table Access

The following rule illustrates replacing data by remote table access.

RULE EDITOR ===> SCROLL: P
REMOTE_ACCESS (LOCATION_PARM) ;
_ LOCAL FLD2;
’Al

TABLEA.FIEID3 = 'B’;

FLD2 = TABLEA.FIELDZ2;

REPLACE TABLEA WHERE LOCATION = LOCATION_PARM;
END;

+
_ FORALL TABLEA WHERE LOCATION = LOCATION_PARM & FIELD2 = | 1
: |
|
|
|
|

Peer-to-peer Access

In peer-to-peer access, a remote FORALL generally performs better than a remote
INSERT or REPLACE. Example 1 provides better performance than Example 2
because in example 1 the system is able to buffer multiple occurrences from the
remote FORALL and return them in a single peer-to-peer operation; whereas, in
example 2, each occurrence requires an individual peer-to-peer data movement.

Example 1: A Single Peer-to-peer Operation

The following example illustrates a single peer-to-peer operation in a remote
FORALL:

RULE EDITOR ===> SCROLL: P
PEER_ACCESS1;

FORALL REMOTE_TABLE :
LOCAL_TABLE.* = REMOTE_TABLE. *;
INSERT LOCAL_TABLE;

END;

TIBCO Object Service Broker Managing Data

100 | Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules

Example 2: Individual Peer-to-peer Operations

The following example illustrates individual peer-to-peer operations in a local
FORALL:

RULE EDITOR ===> SCROLL: P
PEER_ACCESS2;

__ +______________
_ FORALL LOCAL_TABLE : | 1
REMOTE_TABLE.* = LOCAL_TABLE. *; |
INSERT REMOTE_TABLE; |
END; |

See Also TIBCO Object Service Broker Shareable Tools for information on tools for remote data
accessing.

TIBCO Object Service Broker Managing Data

Chapter 8

Topics

|101

Managing TIBCO Obiject Service Broker
MAP Data Definitions

This chapter describes how you use MAP tables to retrieve and manipulate
external data in main storage using the TIBCO Object Service Broker table model.

* MAP Tables, page 102

* Initial Step for Defining Tables, page 104

* Using Data Discovery, page 105

® Accessing Storage Data from TIBCO Object Service Broker, page 107
* Task A: Identify the Table, page 109

* Task B: Specify Address, Count, and Location Parameters, page 110
* Task C: Specify Event Rules, page 112

® Task D: Define Fields, page 113

* Sample Definitions, page 117

TIBCO Object Service Broker Managing Data

102 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

MAP Tables

What is a MAP Table?

A MAP table is a TIBCO Object Service Broker analog of a C or PL/I structure, an
assembler language DSECT, or COBOL file definition. Using the Table Definer,
you can define a MAP table so that its fields map an area of main storage. External
data can be in various storage locations such as: CICS COMMAREA, IMS SPA, or
COBOL structure.

Each field has an offset associated with it. The offset allows an external data type
to begin on any byte boundary and possibly to overlap the other fields in the
same table definition.

You use the Table Definer to define a MAP table. A pointer to the storage area is
provided by the external environment or program that calls TIBCO Object Service
Broker. TIBCO Object Service Broker itself also provides facilities for allocating
storage of several classes for use with MAP tables. Pointers to these areas can in
turn be passed to external programs called by TIBCO Object Service Broker.

Data Types Supported

Both external and internal (TIBCO Object Service Broker) data formats can be
specified. Since not all external data formats exactly match a TIBCO Object
Service Broker data format, conversion is provided between internal and external
formats as required.

Main Storage Area

The main storage area used by a MAP table is defined by the following three
values:

* A pointer to the beginning of the area
e The length of each row of the table
e The number of rows traversed

TIBCO Object Service Broker enforces certain security rules for storage access and
provides a mechanism for registering storage for use with MAP tables.

TIBCO Object Service Broker Managing Data

Who Should Use MAP Tables?

MAP Tables | 103

MAP tables are intended for use by experienced developers who are thoroughly
familiar with both TIBCO Object Service Broker and the environment where their
application executes. Incorrect or careless use of MAP tables could cause errors or
data corruption that extends beyond the application using these tables. Therefore,
TIBCO Object Service Broker provides restrictive default security controls for

MATP table use.

These controls should be overridden only to the extent necessary and all MAP
table applications should be carefully reviewed to ensure their correctness.

How to Use MAP Tables
To use MAP tables, complete the following tasks:

Task Refer to

A Define a table of type MAP. Accessing Storage Data from TIBCO
Object Service Broker, page 107.

B Acquire and register the @MAP in TIBCO Object Service Broker

memory space to be mapped to Shareable Tools and Chapter 9,

and accessed by the MAP table. Manipulating Storage Data Using
TIBCO Object Service Broker MAP

Tables, page 119.

C Perform the required accesses ~ Chapter 9, Manipulating Storage Data
to the MAP table. Using TIBCO Object Service Broker

MATP Tables, page 119.

See Also TIBCO Object Service Broker Shareable Tools for information on the @MAP tool

TIBCO Object Service Broker Managing Data

104 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Initial Step for Defining Tables

Invoke the Table Definer

Invoke the Table Definer from the workbench using the DT define table option or
the primary command field. You can access an existing definition or define a new
TIBCO Object Service Broker table.

Specify the Table Type for New Tables

After entering the initial Table Definer screen, you change the table type to MAP
and press Enter; the appropriate Table Definition screen appears.

To define a
table of type...

MAP This Chapter.

Refer to...

See Also TIBCO Object Service Broker Getting Started for information on invoking
workbench tools.

TIBCO Object Service Broker Managing Data

Using Data Discovery | 105

Using Data Discovery

When you create a MAP table in the TIBCO Object Service Broker UI, you can use
a copybook as the source for its definition using Data Discovery.

Monitoring Copybook Changes

TIBCO Object Service Broker can monitor changes to the copybook from the
TIBCO Object Service Broker Ul if the source is a member of a PDS. To do so, set
the Monitor flag for the table. To check for changes on all monitored tables, run
the Change Tracking Agent. Each table is also checked when the definition is
viewed in the TIBCO Object Service Broker UL

Running the Change Tracking Agent

Member CTA of the JCL data set contains JCL to run the Change Tracking Agent
in Batch mode. When you run the Agent, it checks the copybooks that were used
to create the tables in your TIBCO Object Service Broker system that have the
Monitor flag set. This job must be run from a TIBCO Object Service Broker level-7
user id.

The Change Tracking Agent then indicates (with the “TIMESTAMPS
DIFFERENT” message) that changes were made to the copybook since the last
time the member statistics were updated for the table. Also, the next time you
view the definition of the table in the TIBCO Object Service Broker UI, you see a
message telling you that the definition is out of sync with the copybook. To
remove this message, save the table (with or without changes) in the TIBCO
Object Service Broker Ul and confirm the request to reset this message.

Sample Output

Page 1

CHANGE TRACKING - DIFFERENCES REPORT

2007-03-11

OBJECT NAME DATASET NAME MEMBER STATUS

TABLE3 USR40.0SB.COBOL CBCUST < TIMESTAMPS DIFFERENT
TABLE USR40.0SB.COPYLIB CBCUST < OK, TIMESTAMPS EQUAL
TABLEZ2 USR40.0SB.COPYLIB CBCUST < OK, TIMESTAMPS EQUAL

#%% DIFFERENCES FOUND #**=*

TIBCO Object Service Broker Managing Data

106 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

See Also TIBCO Object Service Broker UI Help for more information on helping define MAP
tables with Data Discovery.

TIBCO Object Service Broker Managing Data

Accessing Storage Data from TIBCO Object Service Broker | 107

Accessing Storage Data from TIBCO Object Service Broker

To access storage data directly from TIBCO Object Service Broker, you must
define a TIBCO Object Service Broker table of type MAP. A MAP table has three
required parts: an address parameter, a primary key field, and one data field. It
can have additional data fields and an optional count and/or location parameter.

Table Definer Screen for a MAP Table

COMMAND==> TABLE DEFINITION
Table: MAP_TABLE Type: MAP Unit: USR40 IDgen: Y

Parameter Name Typ Syn Len Dc Cls Reference

_ ADDRESS B 4 0 A T

_ LOCATION I C 16 0 L _
B — EXTERNAL --——|----—mommm- MetaStor ---------———-- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default
KEY B 4 0 P I B 4 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

Using a Copybook as the Source for the Definition

When you create a table in the TIBCO Object Service Broker Ul, you can use a
copybook as the source for its definition. You can then have TIBCO Object Service
Broker monitor changes to the copybook. For more information, refer to Using
Data Discovery on page 105.

TIBCO Object Service Broker Managing Data

108 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Steps Required to Define a MAP Table

After invoking the Table Definer (refer to Initial Step for Defining Tables on
page 104 for information on invoking the Table Definer), complete the following
tasks to define a MAP table:

Task Required Refer to page

A Identify the table. Y 109
Specify address, count, and location Y 110
parameters.

Specify event rules. N 112

D Define fields. Y 113

TIBCO Object Service Broker Managing Data

Task A: Identify the Table | 109

Task A: Identify the Table

Purpose of this Task
This task is used to:
¢ Uniquely identify the table
® Verify the table type
e Identify the application or logical unit to which it belongs

® Specify if the system should generate unique values for the primary key field

Table Identification Segment

The following example illustrates the fields used to identify the table:

Table: MAP_ONE Type: MAP Unit: USR40 IDgen: Y

Table, Type, Unit, and IDgen Fields

The information for the Table, Type, Unit, and IDgen fields is entered by default.
You can modify the Table, Type, and Unit fields, if necessary.

Table The table name displayed in the Table field is the one you
specified when invoking the Table Definer. To save the
definition of an existing table under a new name, type in
the new name.

Type The type indicates how data is stored in the table or how
data is to be accessed from a table. This field displays
MAP, which you changed in Initial Step for Defining
Tables on page 104.

Unit The unit marks the table as belonging to a particular
application or logical unit such as utilities, accounting, or
network control.

IDgen The IDgen field must be set to Y for MAP tables.

TIBCO Object Service Broker Managing Data

110 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Task B: Specify Address, Count, and Location Parameters

Purpose of this Step
You can use this step to specify three types of parameters:
e Address
e Count

e Location

Parameter Segment

The following example illustrates the fields used to specify address, count, and
location parameters. To view additional fields, use PF11.

Parameter Name Typ Syn Len Dc Cls Reference

_ ADDRESS B 4 0 A
_ COUNT B 4 C
_ LOCATION ICcC 16 0 L

Address Parameter

You require an address parameter to access storage data. This parameter must
have syntax B, a length of 4, and class A (Cls field).

Count Parameter

You can use an optional count parameter to limit the number of occurrences
eligible for selection by a GET or FORALL statement. This does not mean the
number of occurrences that are retrieved; the number of occurrences selected is
equal to or lower than the count value, and could be zero. This parameter must
have syntax B, a length of 4, and class C (Cls field). If you do not specify this
parameter, a default value of infinity is used.

TIBCO Object Service Broker Managing Data

Task B: Specify Address, Count, and Location Parameters | 111

Location Parameter

Minimal Definition

Full Definition

S

See Also

You can use an optional location parameter to access external data through a peer
server associated with another Data Object Broker (remote node). If you do not
need to access remote data, use the D line command to delete the parameter. If you
always access the external file remotely, the node from which you request the
access can have either a minimal or full definition.

If you use a MAP table remotely, all storage references must be to addresses valid
on the remote system.

A minimal definition with a location parameter means you always access data at
a remote node. A minimal definition consists of the following;:

e The table name, which must be the same at both locations.
* The location parameter, which must be the same at both locations.

The name of the remote node where the full definition is located must be
supplied in the Default field, Src field, or Src and Sourcename field.

The table type specified in a minimal definition does not have to match the table
type of the full definition on the remote node.

A full table definition with a location parameter means you can access data at
either the local or the remote node. The table type of the full definition must
match the data on the local node.

Define address and count parameters on the full definition, not a minimal
definition.

TIBCO Object Service Broker Managing Data for more information on defining
parameters.

TIBCO Object Service Broker Managing Data

112 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Task C: Specify Event Rules

Purpose of this Task

This optional task is used to specify event rules if you need to associate business
rules and policies with the definition of a table. These rules allow you to validate
and automatically trigger other events based on specific access to MAP tables.

The rules that you name here are run whenever data in the table is manipulated.

Event Rule Segment

The following example illustrates the fields used to specify event rules:

Event Rule, Typ, and Acc Fields

The rules that you enter here are run based on defined accesses. You can specify
as many rules as you need in any logical order. The rules applying to specific
accesses are executed in the order in which they are entered in this field. For valid
values, use PF1.

Event Rule Specify the name of the event rule that is to be executed
when the table is accessed.

Typ Specify the type of event rule that is to be executed.

Acc Specify the type of data access or manipulation to be
performed on the data causing the event to be executed.

See Also TIBCO Object Service Broker Managing Data for more information on event rules.

TIBCO Object Service Broker Managing Data

Task D: Define Fields | 113

Task D: Define Fields

Purpose of this Task

This task is used to define the external MAP attributes and internal TIBCO Object
Service Broker attributes for the primary key fields and data fields of the table.

Field Definition Segment

The following example illustrates the fields used to define the fields of the map

table:
————— EXTERNAL ----|----------- MetaStor ------———---—--- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default
_ KEY B 4 0 P I B 4 0

Considerations
Note the following considerations:

¢ When defining fields, you can type in external attributes and the TIBCO
Object Service Broker attributes default to the external values, or vice versa.

® The number of fields you can access is dependent upon the Data Object
Broker parameter CTABLESIZE. You can use the ESTIMATETBLDEN tool to
estimate the size of this parameter.

TIBCO Object Service Broker Managing Data

114 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Specifying External MAP Attributes

The following fields are used to specify the external MAP attributes. For valid

values, use PF1.

Field Name

This field contains the name of the primary key or data
field you are creating. This name must be unique within
the table. You can use a name already used for as a field in
any other table; if you are moving data between this table
and another table, giving fields the same name simplifies
the process.

Xsyn

This field contains the external syntax for the field. The
external syntaxes E and] are not valid for OSB for z/OS.
For more information on external syntaxes, refer to
Mapping Data Types for MAP Table Definitions on
page 148.

Xlen

This field contains the external length for the field.

Xdec

This field contains the external number of decimal places
for the field.

Offset

This field contains the external offset of the field based on
the length of the field. The offset is calculated from the
start of the row (field) the cursor is on to the end of the
defined fields in the TIBCO Object Service Broker MAP
table definition. Overlaps of fields are allowed. You can
specify offsets in one of three ways:

* Assign the offset if you know it.
e Use PF3 to save the definition; this calculates the offset.

e Use PFé6 to calculate the offset based on the location of
the cursor.

The key field does not participate in offset calculations; the
first non-key field has offset 0 by default.

TIBCO Object Service Broker Managing Data

Task D: Define Fields | 115

Specifying Internal TIBCO Object Service Broker Attributes

The following fields are used to specify the internal TIBCO Object Service Broker
attributes. Use PF11 to view additional fields. For valid values, use PF1.

Key This field indicates if the MAP fields are to be used as a
primary key. This field must be the first one in the definition
and must have syntax B and length 4. Only a single key field
can be specified.

Typ This field contains the TIBCO Object Service Broker semantic
data type of the field. The default is null. You can specify any
valid TIBCO Object Service Broker semantic data type and
syntax combination supported for the external syntax. Valid
combinations are described in TIBCO Object Service Broker
Programming in Rules.

Syn This field contains the TIBCO Object Service Broker syntax of
the field. You can specify any valid TIBCO Object Service
Broker semantic data type and syntax combination supported
for the external syntax. Valid combinations are described in
TIBCO Object Service Broker Programming in Rules. If not
specified, this field defaults to an appropriate syntax based on
the external syntax and length (Xsyn and Xlen fields).

Len This field contains the length of the field. The default is 0. If
not specified, this field defaults to an appropriate length based
on external syntax and length (Xsyn and Xlen fields).

Dec This field contains the number of digits to appear to the right
of the decimal point. The default is 0. The data is padded or
truncated as necessary. Depending on the syntax specified in
the Syn field, define this field as follows:

¢ For syntax P, the number of decimal places must be smaller
than twice the length of the entire field.

e Forsyntaxes B, C, F, RD, UN, and V, the number of decimal
places must be 0.

Rad This field contains a value that determines whether a user is
required to provide a value in this field for each occurrence in
the table (for example, a primary key). The default is null (not
required).

TIBCO Object Service Broker Managing Data

116 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

Default This field contains the default value for the field. If no data is
available, the value provided in this field is used. For example,
if you specify a dot (.) as the default, it is used for an
occurrence that has no value assigned to it.

Default values are not permitted for fields of syntax F (float),
RD (raw data) or UN (Unicode).

Globalfield This field displays the name of the global field if you used
Name PF14 to select a field from the global field dictionary.

See Also * TIBCO Object Service Broker Shareable Tools for information on the
ESTIMATETBLDEN tool.

e TIBCO Object Service Broker Parameters for more information about the
CTABLESIZE Data Object Broker parameter.

TIBCO Object Service Broker Managing Data

Sample Definitions | 117

Sample Definitions

MAP_ONE Table lllustrated

The following illustrates a sample table definition for the MAP_ONE table. This
table definition illustrates the external attribute defaults supplied when you enter
the TIBCO Object Service Broker attributes for the fields.

COMMAND==> TABLE DEFINITION
Table: MAP_ONE Type: MAP Unit: USR40 IDgen: Y
Parameter Name Typ Syn Len Dc Cls Reference

ADDRESS B 4 0 A ’

_ COUNT B 4 0 C _
_ LOCATION I C 16 0 L _
| -=-=-- EXTERNAL -—-—--|-=-=------—-—- MetaStor -------—------- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default

_ KEY B 4 0 o P I B 4 0
_ FIELD1 \% 8 0 0 \% 8 0
_ FIELD2 B 3 0 9 B 4 0

FIELD3 \Y 32 0 12 \% 32 O

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

MAP_TWO Table lllustrated

The following illustrates a sample table definition for the MAP_TWO table. This
table definition illustrates the external attribute defaults supplied when you enter
the TIBCO Object Service Broker attributes for the fields.

COMMAND==> TABLE DEFINITION
Table: MAP_TWO Type: MAP Unit: USR40 IDgen: Y
Parameter Name Typ Syn Len Dc Cls Reference

_ ADDRESS B 4 0 A ’

TIBCO Object Service Broker Managing Data

118 | Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions

| -==-- EXTERNAL ----|-=-=--—----—- MetaStor -------------- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
_ KEY B 4 0 0o P I B 4 0
_ FIELD1 B 4 0 0 B 4 0
_ FIELD2 C 8 0 4 C 8 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0OFFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing Data

Chapter 9

Topics

|119

Manipulating Storage Data Using TIBCO
Object Service Broker MAP Tables

This chapter describes how to manipulate storage data using TIBCO Object
Service Broker MAP tables.

¢ Accessing TIBCO Object Service Broker MAP Tables, page 120
¢ Using Rules to Access Storage Data, page 122

e Using TIBCO Object Service Broker MAP Tables with COMMAREAS and
Other External Data Areas, page 126

¢ Handling TIBCO Object Service Broker Requests, page 127

* Understanding Security with TIBCO Object Service Broker MAP Tables,
page 129

TIBCO Object Service Broker Managing Data

120 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

Accessing TIBCO Object Service Broker MAP Tables

Retrieving Meaningful Data

MAP tables are unlike other TIBCO Object Service Broker tables because the
system has no inherent knowledge of how many occurrences exist in the table.
For this reason, it is your responsibility to ensure that GET and FORALL
statements do not sweep through storage unconstrained. A GET or FORALL
statement that attempts to access unregistered storage causes the
DATAREFERENCE exception to be raised; however, it is your responsibility to
ensure that registered storage contains meaningful data in a format suitable for
the syntax of the fields in the MAP table definition.

Recommendations

For FORALL statements, we strongly recommend using the count parameter to
limit the number of occurrences in storage that TIBCO Object Service Broker
attempts to process on a MAP table access request. Other approaches include
specifying suitable key ranges and condition testing using the UNTIL clause on
the FORALL statement.

Accessing Storage Data

You can access storage data by using;:

The Table Browser or Table Editor

Rules

Using the Table Browser or Table Editor

You can browse or edit a MAP table in the same way you would browse any other
TIBCO Object Service Broker table with the following exceptions:

Do not use the ORDERED primary command with the Table Browser or Table
Editor since ordering is not supported on MAP tables.

Data in transaction storage cannot be browsed or edited because the Table
Browser and Table Editor run in their own transaction.

TIBCO Object Service Broker Managing Data

Using Rules

S

See Also

Accessing TIBCO Object Service Broker MAP Tables | 121

Accessing storage data using the rules language is similar to accessing data. Refer
to Using Rules to Access Storage Data on page 122.

When using rules to access storage data:

* If you use the default parameter value, you can access at least 16 MAP tables
per transaction; more, depending on the size of the MAP table definitions,
because the more fields you define, the more space is required to hold the
definition in the memory in the Data Object Broker and the Execution
Environment.

e The INSERT and DELETE statements cannot be used with MAP tables.

TIBCO Object Service Broker Programming in Rules for information on writing rules
and transactions.

TIBCO Object Service Broker Managing Data

122 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

Using Rules to Access Storage Data

The following sections outline the differences encountered while using rules and
also point out normal rules behavior that you must consider when building
applications. The following rules statements are discussed:

e GET
¢ FORALL
e REPLACE

These statements are all used to move data between the table buffer and an area in
main storage.

Examples Used

It is assumed that the storage area to be accessed is at decimal location 1000.
Although it is unlikely that the storage address would be known before runtime,
this simplifies the examples. All example storage locations are in decimal format.

GET Statement

A GET statement returns a single occurrence from main storage. If no occurrence
matches the selection criteria specified, the GETFAIL exception is raised.

Evaluation Process

TIBCO Object Service Broker uses the value of the address parameter as the
address of the first row in main storage to be examined. This occurrence is
assigned the key value of 1. If the occurrence satisfies the selection criteria, it is
returned; otherwise, TIBCO Object Service Broker computes the address of the
next occurrence in storage by adding the length of a table occurrence to the
current address and increasing the key value by 1.

This process continues until either:
* A satisfactory occurrence is found.
e The value of the count parameter is exhausted.

® A selection on the primary key makes it impossible that a suitable occurrence
is found beyond this point.

TIBCO Object Service Broker Managing Data

Using Rules to Access Storage Data | 123

Examples of GET Statements

The following table illustrates examples of GET statements. The table definitions
discussed in the examples are illustrated in Chapter 8, Managing TIBCO Object
Service Broker MAP Data Definitions, on page 101.

GET MAP_TWO(1000); Retrieves the first row of table MAP_TWO starting
at address 1000. The system assigns the field KEY
the value 1.

GET MAP_TWO(1000) Retrieves the fourth row of table MAP_TWO,

WHERE KEY=4; starting at address 1036.

GET MAP_TWO(1036); Retrieves the same data from address 1036 as the

previous example; however, the row number
returned in KEY is 1. From this it can be seen that
row numbers are not persistently related to storage
addresses but are relative to the base address in the
address parameter.

GET MAP_TWO(1000) Returns the first row encountered where the value of
WHERE FIELD2 is ROBINSON. If this value is not found in
FIELD2="ROBINSON"; storage, the GET statement sweeps through main

storage without limit, until TIBCO Object Service
Broker or the operating system interrupts it.
Therefore, you should limit the search; for example,
if it is known that the row required should be within
the first 100 records in storage, use the following

example.
GET MAP_TWO(1000) Limits the search to the first 100 records. Avoid
WHERE specifying a condition that appears to limit the
FIELD2="ROBINSON’ search range but does not do so. Using a count
& KEY <=100; parameter is the safest way of ensuring that the

search always terminates predictably.

FORALL Statement

A FORALL statement is a looping construct that processes a set of occurrences.
The body of the loop consists of the statements to be executed for each occurrence
satisfying the selection criteria. FORALL statements can be nested, provided they
refer to different table names.

TIBCO Object Service Broker Managing Data

124 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

A FORALL statement returns multiple occurrences from main storage. If no
occurrences match the selection criteria specified, the FORALL ends without

error.

A FORALL statement that attempts to reference unregistered storage causes the
%} DATAREFERENCE exception to be raised. Occurrences are retrieved and

examined as for a GET statement.

Examples of FORALL Statements

The following table illustrates examples of FORALL statements. The table
definitions discussed in the examples are illustrated in Sample Definitions on

page 117.

FORALL MAP_TWO(1000)
WHERE KEY>=2 & KEY < 10:

END;

Returns rows 2 through 9.

FORALL MAP_ONE(1000,5)
WHERE FIELD3 LIKE ’EMPL*’:

END;

Returns any rows where FIELD3 begins
with the string EMPL. Only the first five
rows in storage are searched.

FORALL MAP_ONE(1000,5)

WHERE FIELD3 LIKE ’EMPL*’ &
KEY>3:

END;

Considers only the first 5 rows to be
eligible for searching for the EMPL*
string; however, the key selection further
restricts the search to those rows
numbered higher than 3. In effect, only
rows 4 and 5 are searched.

FORALL MAP_TWO(1000) UNTIL

Returns records starting at location 1000.

FINISHED: If the PROCESS_SAMPLE_DATA rule
CALL PROCESS_SAMPLE_DATA; raises the FINISHED exception, the
END; FORALL ends. If the FINISHED
exception is not raised, the FORALL
sweeps through registered storage
unconstrained.
REPLACE Statement

The REPLACE statement copies a single row from the table buffer to main
storage. The address parameter is used as the logical address of row 1 of the table.

TIBCO Object Service Broker Managing Data

Using Rules to Access Storage Data | 125

Evaluation Process

The value of the key field of the table is used to identify the row to be replaced.
TIBCO Object Service Broker computes the actual address by multiplying the key
value minus 1 by the row length and adding the result to the address of logical
row 1.

Examples of REPLACE Statements

The following table illustrates examples of REPLACE statements. The table
definitions discussed in the examples are illustrated in Sample Definitions on

page 117.
MAP_TWO.KEY=1; Replaces the content of storage from location
MAP_TWO.FIELD1=17; 1000 to location 1011 with the value of the fields

MAP_TWO.FIELD2='sMITH’; FIELD1 and FIELD2 of MAP_TWO.
REPLACE MAP_TWO(1000);

MAP_TWO.KEY=3; Replaces the content of storage from location
MAP_TWO.FIELD1=17; 1024 to location 1035 with the value of the fields
MAP_TWO.FIELD2='sMITH’; FIELD1 and FIELD2 of MAP_TWO.

REPLACE MAP_TWO(1000);

See Also TIBCO Object Service Broker Programming in Rules for information on using table
access statements.

TIBCO Object Service Broker Managing Data

126 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

Using TIBCO Object Service Broker MAP Tables with COMMAREAS

and Other External Data Areas

In some TIBCO Object Service Broker environments (CICS, TSO, z/OS batch), the
concept of a communications area or COMMAREA is provided. This is a block of
storage whose address is provided by the external environment and passed to the
TIBCO Object Service Broker application program. Alternatively, the TIBCO
Object Service Broker application program can obtain storage for use as a
COMMAREA and pass a COMMAREA pointer to an external program. Multiple
storage areas can be obtained for use as COMMAREAs; however, only one
COMMAREA is active at any one time.

@SESSION Table

The System Interpreted Table @SESSION is used to obtain and manipulate
COMMAREA pointers (sometimes called handles). If a COMMAREA is provided
by the calling external environment, the value of @ ESSION.COMMHANDLE is
its address and @SESSION.COMMLENGTH is its length.

IMS Environment

In the IMS environment three input and three output segments are provided and
can be accessed using the pointer in @SESSION.SEGnINHANDLE and
@SESSION.SEGnOUTHANDLE where is the segment number 0, 1, or 2.

Call Level Interface Environment

In the Call Level Interface environment any number of input and output
COMMAREASs can be passed in by the calling program and the list of pointers
can be accessed using @SESSION.APIINHANDLE and
@SESSION.APIOUTHANDLE.

See Also TIBCO Object Service Broker for z/OS External Environments for information on the
formats of COMMAREAS in the Call Level Interface environment.

TIBCO Object Service Broker Managing Data

Handling TIBCO Object Service Broker Requests | 127

Handling TIBCO Object Service Broker Requests

The following sections describe how requests are handled with respect to:
* Synchronization and recovery

® Error handling

Synchronization and Recovery

COMMIT and ROLLBACK statements have no effect on MAP tables; data in
storage is read or written directly by the GET, REPLACE, and FORALL
statements.

Error Handling

The TIBCO Object Service Broker runtime environment signals system exceptions
to permit an application to recover from an error. A three-level hierarchy of
exceptions exists. The ERROR exception is the top of the hierarchy and is
intended to be a catchall exception. Each exception traps the exceptions that
appear below it in the hierarchy.

All errors encountered when accessing external data through the MAP server are
trapped under one of the following exceptions:

e ERROR

e ACCESSFAIL

e INTEGRITYFAIL
e RULEFAIL

ERROR Exception

An ERROR exception indicates that an error is detected and no lower-level
exception exists in the application.

TIBCO Object Service Broker Managing Data

128 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

ACCESSFAIL Exception

An ACCESSFAIL exception indicates that a table access error is detected. The
following exceptions are valid under an ACCESSFAIL exception:

GETFAIL No occurrence satisfies the selection criteria
REPLACEFAIL The primary key provided for a REPLACE statement does
not exist

INTEGRITYFAIL Exception

An INTEGRITYFAIL exception indicates an attempt to violate data integrity is
detected. The following exceptions are valid under an INTEGRITYFAIL
exception:

DEFINITIONFAIL [Indicates an error is detected in the MAP table definition

SECURITYFAIL Indicates that permission for the requested action on the
object is denied

RULEFAIL

A RULEFAIL exception indicates that an error is provoked by incorrect rules
language coding. The following exceptions are valid under a RULEFAIL
exception:

CONVERSIONFAIL TIBCO Object Service Broker is unable to convert between
the internal and external data

OVERFLOW An address, count, or key value is out of range

DATAREFERENCE An attempt is being made to access unregistered storage,
that is, there is no row in @M AP to match the address
referenced

See Also TIBCO Object Service Broker Programming in Rules for more information on
exceptions.

TIBCO Object Service Broker Managing Data

Understanding Security with TIBCO Object Service Broker MAP Tables | 129

Understanding Security with TIBCO Object Service Broker MAP
Tables

Due to the nature of MAP tables, normal TIBCO Object Service Broker security
controls are largely inapplicable.

Behavior of Persistent Table Types

With ordinary persistent tables (for example, TDS), access to the table definition
controls access to the data contained in the table, that is, the definition of a table
uniquely identifies the data. Therefore, suitable setting of user and group access
to the definitions controls who can read and write the data.

Behavior of Non-Persistent Table Types

Ordinary non-persistent tables (EES, TEM and SES) have global definitions but
local data. Even if multiple users have access to the table definition, the data is
always local to the transaction or session and there is no possibility of
unauthorized access.

MAP Table Behavior

MAP tables are significantly different because the table definition plays no part in
controlling access to the data. The definition specifies the layout of the data in
storage and its mapping to fields but the location of the data in storage is
uniquely specified by the value of the address parameter of the table.

MAP table data access is controlled indirectly using the system interpreted table
@MAP. @MAP is used to allocate and register storage for use by MAP tables.
Without this control, a user who is denied access to a MAP table definition could
define a new MAP table and then at runtime supply the storage address of the
desired data via the address parameter.

Accessing Data at a Particular Address with a MAP Table

To access data at a particular address with a MAP table, an occurrence
representing that address must exist in the @MAP table. If no such occurrence
exists, the table access fails and the DATAREFERENCE exception is raised. The
ADDRESS field of @MAP can be thought of as a reference field for the address

TIBCO Object Service Broker Managing Data

130 | Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables

parameter of the MAP table. It is not necessary for the address of the occurrence
in @MAP to exactly match the address parameter of the MAP table; access
succeeds as long as the storage mapped by the MAP table does not extend outside
the boundaries described by the occurrence in @MAP.

In addition, occurrences in @M AP contain an implicit permission for read-only
access (GET and FORALL) or for read /write access (REPLACE). This permission
is based on the parameter set of @M AP where the occurrence appears. All
parameter sets except EXTERNALRO allow both read and write access.
EXTERNALRO allows read access only.

See Also TIBCO Object Service Broker Shareable Tools for more information on @MAP tool.

TIBCO Object Service Broker Managing Data

|131

Chapter 10 Sample Application Using TIBCO Obiject
Service Broker MAP Tables

This chapter provides a sample application using TIBCO Object Service Broker
MATP tables.

Topics

* Sample Application, page 132
e MAIN Sample Rule, page 134
e Sample MAP Tables, page 137

TIBCO Object Service Broker Managing Data

132 | Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables

Sample Application

What does this Application do?

This sample application receives a COMMAREA from its caller. The
COMMAREA contains pointers to information on a manager and the manager’s
employees. The application calls an external CICS program passing it a record for
each employee whose salary is $1000.00 or more.

This example runs in the CICS environment but the techniques used are
% applicable to other TIBCO Object Service Broker environments. Many irrelevant
details are omitted that would be present in a real application.

Pictorial Representation of the Sample Storage Areas

The following is a pictorial representation of the sample storage areas:

COMMAREA
nth
Header 1st Employee 2nd Employee = = sEmployee
Section Record Record Record
A N T A —
| I I

MANAGER_NAME EMPLOYEE_NAME EMPLOYEE_NAME
MANAGER_NUMBER EMPLOYEE_NUMBER EMPLOYEE_NUMBER
EMPLOYEE_COUNT SALARY SALARY

The Application

The application consists of the MAIN rule (illustrated in MAIN Sample Rule on
page 134) and the MAP tables illustrated inSample MAP Tables on page 137. In
this example, all the data passed to the MAIN rule is in the COMMAREA and
therefore can be accessed using MAP tables without special arrangements.

TIBCO Object Service Broker Managing Data

Sample Application | 133

Access to Data Outside of the COMMAREA

If the pointer provided in the COMMAREA contained the address of an area
outside the COMMAREA, TIBCO Object Service Broker does not permit access to
that area. To access such external data the area must first be registered using the
EXTERNALRO or EXTERNALRW parameter of the @MAP table.

TIBCO Object Service Broker Managing Data

134 | Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables

MAIN Sample Rule

MAIN Rule lllustrated

RULE EDITOR ===> SCROLL: P
MAIN;
_ LOCAL COMMAREA_PTR, COMMAREA_LEN, NEWCOMMAREA_PTR, EMPLOYEE_PTR;

+
GET @SESSION(0); |
COMMAREA_PTR = @SESSION.COMMHANDLE; |
COMMAREA_LEN = @SESSION.COMMLENGTH; |
@MAP.ADDRESS = 0; |
@MAP.SIZE = 32; |
INSERT @MAP(’ENVIRONMENT’); |
NEWCOMMAREA_PTR = @MAP.ADDRESS; |
@SESSION.COMMHANDLE = @MAP.ADDRESS; |
@SESSTON.COMMLENGTH = @MAP.SIZE; |
REPLACE @SESSION(O); |
|
I
I
I
|
I
|
I
I
I
I
|

GET COMM_HEADER(COMMAREA_PTR) ;
GET INPUT_HEADER(COMM_HEADER.POINTER) ;
EMPLOYEE_PTR = COMM_HEADER.POINTER + 40;
FORALL EMPLOYEE_RECORD(EMPLOYEE_PTR,
INPUT_HEADER.EMPLOYEE_COUNT) WHERE SALARY >= 1000
EMPLOYEE_SUMMARY.* = EMPLOYEE_RECORD. *;
EMPLOYEE_SUMMARY.KEY = 1;
REPLACE EMPLOYEE_SUMMARY (NEWCOMMAREA_PTR) ;
CALL CICS_ROUTINE;
END;
@SESSION.COMMHANDLE = COMMAREA_PTR;
@SESSION.COMMLENGTH = COMMAREA_LEN;
REPLACE @SESSIONC(O0);

HONAE P> ©O©o~NOUd wN R

MAIN Rule Explained

The following table contains line by line comments on the MAIN rule:

Line
Number Purpose of the Statement
1 Obtains data from the system interpreted table @SESSION.

2&3 Saves the address and length of the incoming COMMAREA in the
local variables COMMAREA_PTR and COMMAREA_LEN.

TIBCO Object Service Broker Managing Data

MAIN Sample Rule | 135

Iﬁil:‘;ber Purpose of the Statement

4 Sets @MAP.ADDRESS to zero as required to allocate
ENVIRONMENT storage.

5 Sets @MAP.SIZE to the size of a single row of the MAP table
EMPLOYEE_SUMMARY (shown in Sample MAP Tables on
page 137).

6 Obtains ENVIRONMENT storage using the system interpreted
table @MAP.

7 Saves the address of the newly allocated space in the local variable
NEWCOMMAREA_PTR.

8,9,and Sets the address and length of the newly allocated space in the table

A @SESSION, thus making the new block of storage the active
COMMAREA.

B Uses the MAP table COMM_HEADER (shown in Sample MAP
Tables on page 137) to map the area addressed by the original
COMMAREA pointer.

C Uses the MAP table INPUT_HEADER (shown in INPUT_HEADER
Table on page 137) to map the area addressed by the field
COMM_HEADER.POINTER.

D Calculates the address of the start of the EMPLOYEE_RECORD

data areas.

TIBCO Object Service Broker Managing Data

136 | Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables

Line

Number Purpose of the Statement

E The FORALL statement retrieves records starting at address
EMPLOYEE_PTR whose SALARY value is greater than or equal to
1000. The record count in INPUT_HEADER.EMPLOYEE_COUNT
is used to limit the number of occurrences in storage traversed by
the FORALL. Fields in the summary table EMPLOYEE_SUMMARY
(shown in EMPLOYEE_RECORD Table on page 138) are copied
from the MAP table EMPLOYEE_RECORD (shown in
EMPLOYEE_RECORD Table on page 138). The key field is set to 1
so that the first logical occurrence of the EMPLOYEE_SUMMARY
table is the one written.

The REPLACE statement writes the EMPLOYEE_SUMMARY data
to the storage area pointed to by NEWCOMMAREA_PTR. The
external routine CICS_ROUTINE (which must be listed in the
ROUTINES table) is called. Since the EMPLOYEE_SUMMARY
record was written to the storage area pointed to by
@SESSION.COMMAREA, the external CICS routine has access to it.

E G, Returns the COMMAREA pointer and length to their original
and H values for the original caller to use (for example, for another call to
this routine).

See Also TIBCO Object Service Broker for z/OS External Environments for more information
on the routines.

TIBCO Object Service Broker Managing Data

Sample MAP Tables | 137

Sample MAP Tables

COMM_HEADER Table

The following illustrates the COMM_HEADER table, which is pictorially
represented in the Sample Application on page 132:

COMMAND==> TABLE DEFINITION
Table: COMM_HEADER Type: MAP Unit: USR40 IDgen: Y

Parameter Name Typ Syn Len Dc Cls Reference

_ ADDRESS B 4 0 A _

_ LOCATION I C 16 0 L _

Bl [— EXTERNAL ————|----——o-- MetaStor ---------———-- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default

_ KEY B 4 0 o P I B 4 0

_ POINTER B 4 0 0 B 4 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=0FFSET 21=DATA 2=DOC

INPUT_HEADER Table
The following example illustrates the INPUT_HEADER table:

COMMAND==> TABLE DEFINITION
Table: INPUT_HEADER Type: MAP Unit: USR40 IDgen: Y
Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
ADDRESS B 404 S -
Y EXTERNAL ---—|----—mommm- MetaStor ---------———-- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default
Cxey B i o o» 1 B a0

TIBCO Object Service Broker Managing Data

138 | Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables

_ MANAGER_NUMBER B 4
_ MANAGER_NAME C 32
_ EMPLOYEE_COUNT B 4

[eNoNe)

N
©wOw

w
INECINS
coco

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

EMPLOYEE_RECORD Table

The following example illustrates the EMPLOYEE_RECORD table:

IDgen: Y

COMMAND==> TABLE DEFINITION

Table: EMPLOYEE_RECORD Type: MAP Unit: USR40
Parameter Name Typ Syn Len Dc Cls Reference ! Event Rule

_ ADDRESS B 4 0 A T

_ COUNT B 4 0 C T

B — EXTERNAL --——|----—mommm- MetaStor -----------
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rgd Default

_ KEY B 4 0 o P I B 4 0

_ EMPLOYEE_NUMBER B 4 0 0 B 4 0

_ NAME C 32 0 4 C 32 0

_ SALARY P 7 2 36 Q P 7 2

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT

14=FIELDS 6=0FFSET 21=DATA 2=DOC

EMPLOYEE_SUMMARY Table

COMMAND==>

TABLE DEFINITION

Table: EMPLOYEE_SUMMARY Type: MAP Unit: USR40

_ ADDRESS B 4
LOCATION I C 16

TIBCO Object Service Broker Managing Data

v
v
’
’

IDgen: Y

Sample MAP Tables | 139

’

[— EXTERNAL ————|-----—--- MetaStor ---------————- -
Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
_ KEY B 4 0 o P I B 4 0
_ EMPLOYEE_NUMBER P 3 0 0 I P 3 0
_ NAME C 32 0 0 S C 32 0

PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRT 14=FIELDS 6=OFFSET 21=DATA 2=DOC

TIBCO Object Service Broker Managing Data

140 | Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables

TIBCO Object Service Broker Managing Data

|141

Appendix A Primary Command Syntax Reference

This appendix describes the syntax of the primary commands that allow
operands and choices in the Table Browser and Table Editor.

Topics

¢ Overview, page 142
* Primary Command Syntax, page 143

TIBCO Object Service Broker Managing Data

142 | Appendix A Primary Command Syntax Reference

Overview

Purpose of this Appendix

This appendix describes the syntax of the primary commands that allow
operands and choices in the Table Browser and Table Editor. Unless otherwise
indicated, commands are available to both the Table Browser and Table Editor.

Notation
Note the following points about notation:

e Square brackets indicate optional items. For example, square brackets show
that an ORDERED clause in a SELECT command is optional:

[ORDERED <OrderList>]

® Curly brackets indicate items that can be repeated zero or more times. For
example, curly brackets show that in a selection expression a selection term
can be followed by zero or more items composed of a logical operator and a
selection term:

<SelExpr> ::= { <logicalOp> <SelTerm> }
* Round brackets indicate explicit grouping, in which case the round brackets
must appear literally. For example, a negated selection expression that

contains logical operators must be enclosed in parentheses to show that the
whole expression, not just its first term, is negated:

[NOT] (<SelExpr>)

TIBCO Object Service Broker Managing Data

Primary Command Syntax | 143

Primary Command Syntax

SELECT Command

This section describes the syntax for the SELECT command:

SEL[ECT] [<Sel Predicate> {<OrderList>}]

<Sel Predicate> ::= <Sel NRelation>{<Logop><Sel NRelation>}
<Sel NRelation> ::= [<Not>} <Sel Relation>
<Sel Relation> ::= <Field Name> <Relop> <Expression>

<Sel Predicate>)

<Expression> ::= {<Unary op>}<Expr Term>
{<Addop><Expr Term>}
<Expr Term> ::= <Expr Factor>{<Multop>

<Expr Factor>}

<Expr Factor> ::= <Expr Primary>{**
<Expr Primary>}

<Expr Primary> ::= <Field Name>
<Constant>
(<Expression>)
<Logop> = <AND>
<OR>
<Relop> ==
>
>=
<
<=
LIKE
<Addop> =4

TIBCO Object Service Broker Managing Data

144 | Appendix A Primary Command Syntax Reference

<Multop> = ¥
/
<Unary Op> =-
<And> == AND
&
<0r> == OR
|
<Not> = NOT
<Constant> ::= <Quoted String>
<Number>
<OrderList> ::= <OrderTerm>{<And>
<OrderTerm>}
<OrderTerm> ::== ORD[ERED] [<Ordering>]
<FieldName>
<Ordering> ::= DESC[ENDING]
ASC[ENDING]
<FieldName> ::= A field name of the table
<Quoted String> ::= A sequence of characters enclosed in quotes
<Number> = A sequence of numeric characters (or digits)

ORDERED Command

This section describes the syntax for the ORDERED command:
ORD[ERED] [<Ordering>] <FieldName> {<And> <OrderTerm>}

FIND Command

This section describes the syntax for the FIND command:

F[IND] <FieldName> <Relop> <Constant> {<And> <FieldName> <Relop>
<Contant>}

TIBCO Object Service Broker Managing Data

Primary Command Syntax | 145

CHANGE Command (Table Editor Only)

This section describes the syntax for the CHANGE command:
CH[ANGE] <FieldName> = <Constant>
<Constant> [<Change Option>]

<Change Option> = <PAGE>
<REST>
<ALL>
<PAGE> ::= Current screen
<REST> ::= Current screen and down
<ALL> ::= From top to bottom

EDIT Command (Table Editor Only)

This section describes the syntax for the EDIT command:

EDIIT] <TableSpec> [WHERE <Sel Predicate>] [<OrderList>]

<TableSpec> ::= <Table Name> [(<Constant> {, <Constant>})]

XEDIT Command (Table Editor Only)

This section describes the syntax for the XEDIT command:

XE[DIT] <TableSpec> [WHERE <Sel Predicate>] [<OrderList>]

BROWSE Command

This section describes the syntax for the BROWSE command:

BR[OWSE] <TableName> [WHERE <Sel Predicate>] [<OrderList>]
XBROWSE Command (Table Editor Only)

This section describes the syntax for the XBROWSE command:
XB[ROWSE] <TableName> [WHERE <Sel Predicate>] [<OrderList>]

TIBCO Object Service Broker Managing Data

146 | Appendix A Primary Command Syntax Reference

EXCLUDE Command

This section describes the syntax for the EXCLUDE command:
EXC[LUDE] <FieldName> {<FieldName>}

EXPAND Command

This section describes the syntax for the EXPAND command:
EXP[AND] <ObjectName> [<ObjectType>]

<ObjectName> = <field_name>
<report_name>
<screen_name>
<table_name>
<rule_name>
<builtin_name>

[<ObjectType>] = FIELD
FLD
REPORT
RPT
SCREEN
SCR
TABLE
TBL
RULE

TIBCO Object Service Broker Managing Data

|147

Appendix B Mapping Data Types

This appendix describes how to map data types for MAP Table Definitions.

Topics

* Mapping Data Types for MAP Table Definitions, page 148

TIBCO Object Service Broker Managing Data

148 | Appendix B Mapping Data Types

Mapping Data Types for MAP Table Definitions

Translation of External Data

The following table displays the default mapping of external syntax and length
(XSyn and Xlen fields) to TIBCO Object Service Broker syntax and length (Syn
and Len fields) for MAP table definitions. In every case, the TIBCO Object Service
Broker decimal (Dec field) value is equal to the external decimal length. TIBCO
Object Service Broker syntax is described more fully in TIBCO Object Service Broker
Programming in Rules.

TIBCO

: A TIBCO
Maximum Object :
gx:‘etrar)\(al External External Service (S)EESiccte
()Xs = Description Length Decimal Broker Broker
ASY (Xlen field) Length (Xdec Syntax
LCI)) field) (Syn Length
fie¥d) (Len field)
* Binary or character data, 1-31742 No default No No default
according to internal default

syntax. Binary data is
interpreted according to
endian value. Character
data is translated
according to code page.

Valid only for table type
MAP.
A Alphabetic (uppercase). 1-31742 0 C Xlen?
B b Binary, signed. 1 & Xdec=0 0 B 2
2-8&Xdec=0 0 B Same as Xlen
1 & Xdec>0 3 P 2
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6 & Xdec>0 15 P 8
7 & Xdec>0 17 P 9
8 & Xdec>0 19 P 10

TIBCO Object Service Broker Managing Data

Mapping Data Types for MAP Table Definitions | 149

TIBCO
. f TIBCO
Maximum Object :
Ex:‘etral;n(al External External Service ggg\?iccte
()%,s - Description Length Decimal Broker Broker
ASY (Xlen field) Length (Xdec Syntax
field) field) (Syn Length
field) (Len field)
Bl6 ¢ Unicode UTF-16-BE 2-31742, 0 UN Xlen?
encoded string. must be a
multiple of 2
B16B f Unicode UTF-16-BE 4-31742, 0 UN Xlen-22
encoded string with BOM. must be a
multiple of 2
B328 Unicode UTF-32-BE 4 - 31740, 0 UN Xlen/2
encoded string. must be a
multiple of 4
B32B I Unicode UTF-32-BE 8 — 31740, 0 UN (Xlen-4)/2
encoded string with BOM. must be a
multiple of 4
C Fixed length character 1-31742 0 C Xlen?
string, with trailing blanks
ignored.
Eoi Little-endian binary, 1 & Xdec=0 0 B 2
signed. 2-8& Xdec=0 0 B Same as Xlen
1 & Xdec>0 3 P 2
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6 & Xdec>0 15 P 8
7 & Xdec>0 17 P 9
8 & Xdec>0 19 P 10
F Floating point (short, long, 4 0 F 4
or extended). 8 8
16 16
G Packed, neutral (X'0F") 1-16 Xlen*2-1 P Xlen
sign when positive.
H Hexadecimal. 1-31742 0 RD 4 + Xlen?

TIBCO Object Service Broker Managing Data

150 | Appendix B Mapping Data Types

TIBCO
. : TIBCO
Maximum Object :
Ex:‘etral;n(al External External Service ggg\?iccte
()%,s - Description Length Decimal Broker Broker
ASY (Xlen field) Length (Xdec Syntax
field) field) (Syn Length
field) (Len field)
7 Mixed-case character 1-31742 0 A% Xlen?
string in the native code
page (EBCDIC for z/OS,
ASCII otherwise), with
trailing zeroes ignored.
Kk ! Binary, unsigned. 1 & Xdec=0 0 B 2
1 & Xdec>0 3 P 2
2-7&Xdec=0 0 B Xlen + 1
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6 & Xdec>0 15 P 8
7 & Xdec>0 17 P 9
8 & Xdec>0 21 P 11
8 & Xdec=0 0 P 11
L Long packed, signed (upto 1-16 Xlen*2-1 P Xlen
31 digits).
Ll6°¢ Unicode UTF-16-LE 2-31742, 0 UN Xlen?
encoded string. must be a
multiple of 2
L16B f Unicode UTF-16-LE 4-31742, 0 UN Xlen-22
encoded string with BOM. must be a
multiple of 2
L328 Unicode UTF-32-LE 4 - 31740, 0 UN Xlen/2
encoded string. must be a
multiple of 4
L32B 1 Unicode UTF-32-LE 8 - 31740, 0 UN (Xlen-4)/2
encoded string with BOM. must be a
multiple of 4
M™ Numeric (zoned), 1-31 Xlen P Xlen/2+1
unsigned. (round down)

TIBCO Object Service Broker Managing Data

External
Syntax

(Xsyn
field)

Description

External
Length
(Xlen field)

Mapping Data Types for MAP Table Definitions | 151

Maximum
External
Decimal
Length (Xdec
field)

TIBCO
Object
Service
Broker
Syntax
(Syn
field)

TIBCO
Object
Service
Broker
Length
(Len field)

N™ Numeric (zoned), signed. 1-31 Xlen P Xlen/2+1
(round down)
NL Numeric (zoned), signed, 2-32 Xlen -1 P XLen-1) /2
sign leading + 1 (round
down)
NT Numeric (zoned), signed, 2-32 Xlen -1 P XLen-1) /2
sign trailing + 1 (round
down)
o Packed, no sign stored (up 1 Xlen *2 P Xlen +1
to 31 digits). 2 & Xdec=0
2 & Xdec>0
3
4 & Xdec=0
4 & Xdec>0
5-7
8
pn Packed, signed (up to 31 1-4 Xlen*2-1 P Xlen
digits). 5 & Xdec=0
5 & Xdec>0
6-8
Q Quoted character string. 3-31742 0 \Y Xlen-2?2

TIBCO Object Service Broker Managing Data

152 | Appendix B Mapping Data Types

TIBCO
. z TIBCO
Maximum Object :
Ex:‘etral;n(al External External Service ggg\?iccte
()%,s - Description Length Decimal Broker Broker
ASY (Xlen field) Length (Xdec Syntax
field) field) (Syn Length
field) (Len field)
RUI Little-endian binary, 1 & Xdec=0 0 B 2
unsigned. 1 & Xdec>0 3 P 2
2-7 & Xdec=0 0 B Xlen + 1
2 & Xdec>0 5 P 3
3 & Xdec>0 9 P 5
4 & Xdec>0 11 P 6
5 & Xdec>0 13 P 7
6 & Xdec>0 15 P 8
7 & Xdec>0 17 P 9
8 & Xdec>0 21 P 11
8 & Xdec=0 0 P 11
RD Raw data. 5-31742 0 RD Xlen?
T Text numeric. 2-17 Xlen -2 P Xlen/2
(round down)
un Packed, unsigned (upto31 1-16 Xlen*2-1 P 1-16
digits).
U8 Unicode UTF8 encoded 1-31742 0 UN Xlen (+1 if
string. result is odd)?
USN Null terminated Unicode 1-31742 0 UN Xlen (+1 if
UTEFS8 encoded string. result is odd)?
U8B Unicode UTF8 encoded 4-31742 0 UN Xlen-3 (+1 if
string with BOM. result is odd)?
USNB Null terminated Unicode 4-31742 0 UN Xlen-3 (+1 if
UTEFS8 encoded string with result is odd)?
BOM.
UN ¢ Unicode. 2 -31742, 0 UN Xlen?
must be a
multiple of 2
\2 Variable character. 1-31742 0 \% Xlen?

TIBCO Object Service Broker Managing Data

Mapping Data Types for MAP Table Definitions | 153

TIBCO
. : TIBCO
Maximum Object :
Ex:‘etral;n(al External External Service gggs;:cte
()2'5 - Description Length Decimal Broker Broker
ASY (Xlen field) Length (Xdec Syntax

field) field) (Syn Length

field) (Len field)

W Double- & single-byte 4-31742 0 W Xlen®
character string.

X Fixed length, mixed case 1-31742 0 \% Xlen?
character string.

XCnn © Variable length, mixed 1-31742 0 UN Xlen (+1 if
case character string in one result is odd)?
of a possible 16 user
syntaxes.

VAl X’00’ fill character. 1-31742 0 \% Xlen®

a. The maximum Len field value is 31723 or 31722 if the syntax requires the
length to be even.

b. For the import type LENGTH_PREFIXED_EBCDIC_NATIVE_ENDIAN, the
endian is that of the processor where TIBCO Object Service Broker is running.
For example, on an Intel machine, the external syntax B for
LENGTH_PREFIXED_EBCDIC_NATIVE_ENDIAN import files is
little-endian.

c. The default mapping of B and E are identical.

d. On Open Systems, if there are more than 15 significant digits in the field, you
must assign the TIBCO Object Service Broker syntax C and length 26.

The default mappings of B16, L16, and UN are identical.

f. The default mappings of B16B and L16B are identical.
g. The default mappings of B32 and L32 are identical.
h. The default mappings of B32B and L32B are identical.

-

External syntaxes E and R are not valid on z/OS.

j. The default mappings of], V, X, and Z are identical.
k. The default mappings of K and R are identical.

. The default mappings of M and N are identical.

m. The default mappings of P and U are identical.

TIBCO Object Service Broker Managing Data

154 | Appendix B Mapping Data Types

n. There are 16 possible user syntaxes from XCO01 to XC16. These are typically
used to map DBCS characters to Unicode. To define the user syntaxes, refer to
the procedures described in the TIBCO Object Service Broker for z/OS Installing
and Operating or TIBCO Object Service Broker for Open Systems Installing and
Operating.

% About external data translation:

* Numeric nulls are translated to zeros. As a special case, null date fields are
interpreted as zero and represented internally as 1980-01-01.

* Null fixed-length character strings are padded with blanks as required. Null
variable-length strings (V or W) are imported as is.

TIBCO Object Service Broker Managing Data

Index

Symbols

@GLOBALFIELDS table 15, 26,27
@PEERSERVERID tool 97
@SESSION table 126

* (dynamic) external syntax 148
$CLRTAB tool 84

A

A (alphabetic uppercase) external syntax 148
Acc field 38, 38
MAP tables 112
access to data 16
ACCESSFAIL exception 128
accessing
data at specific addresses 129
MAP tables 120
storage data 107, 120
accessing Table Definer 22
ADA
source tables 49
table type 5
address parameter, specifying for MAP tables 110
addresses, accessing data from specific 129
ALL option 77
alphabetic uppercase (A) external syntax 148
application view 3
appropriate table types, determining 10
available
from Table Definer
Global Field Selector 25
Single Occurrence Editor 25
Table Browser 25

| 155

Table Editor 25
PF keys for Table Definer 61
table types 10
tools for data manipulation 70
tools from Table Definer 25

B16 (Unicode UTF 16-BE) external syntax 149
behavior

calculation tables 52

parameter value tables 55

subview tables 47
binary

signed (B) external syntax 148

unsigned (K), external syntax 150
BROWSE primary command 86
browsing data with Table Browser 71

Cc

C
fixed length (external syntax) character string 149
calculation
tables
behavior 52
defining 52
fields, specifying 54
parameters, specifying 53
source tables, specifying 53
table type, specifying 53
tasks for defining 52
view 52
Call Level Interface environment 126

TIBCO Object Service Broker Managing Data

156 | Index

CHANGE copying
controlling the scope 76 data 85
primary command 76, 76 definitions for distributed development 64
replacing data 76 existing definitions for primary key fields 40
Change Tracking Agent 105 Table Definer 62
changes, committing 86 tables 31, 62
commands for Table Editor 86 tool 62
Single Occurrence Editor 86, 86 copying definitions, available tools 62
Table Editor 86 count
choosing tools 70 parameter, specifying for MAP tables 110
clause, WHERE 78, 80, 83 creating
CLC table type 5, 5,14, 14, 22,22 new
CLEAR primary command 79 non-key fields 43
clear tab option, deleting data 83, 85 primary key fields 40
coding considerations 91 predefined attributes for primary key fields 40
commands CTABLESIZE parameter 113
D (delete) 111 customer support xx

COMMAREAs, using with MAP tables 126
COMMIT statement 86, 93, 95
committing changes 86

commands for Table Editor 86 D

Single Occurrence Editor 86, 86

Table Editor 86 D

using PF3 86 (delete) line command, deleting data 82
conditions line command 111

deriving values 98 DAT

determining locations 95 source tables 49
considerations table type 5

for defining parameters 33 data

for event rules 37 accessing 16, 16
controlling scope of CHANGE primary command 76 from storage 120

ALL 77 storage 107

PAGE 77 browsing with Table Browser 71

REST 77 copying tools 85, 85
CONVERSIONFAIL exception 128 deleting 82
COPY primary command 62 clear table option 83, 85
COPY_DATA tool 85 D line command 82
COPY_DEFN tool 62 DELETE command 82
COPYDEEN tool 62 PF16 82

PF22 82

rules statements 82

Single Occurrence Editor 82
Table Editor 82

tools 84

TIBCO Object Service Broker Managing Data

workbench option 83, 85
external 4
external, using with MAP tables 126
fields
area 23
methods for defining 42
inserting 79
with rules statements 80
with Single Occurrence Editor 79
with Table Editor 79
locating 16
managing
MAP definitions 101
manipulating
using Table Editor 72
with Single Occurrence Editor 73
manipulation tools 70
parameters 13
defining 34
for EES 34
for SES 34
for TDS 34
for TEM 34
REGION 33
purpose of replicating 81
relationships 2
replacing with
rules statements 78
Single Occurrence Editor 77
Table Editor 76
replicating 81
R line command 81
Single Occurrence Editor 81
Table Editor 81
repositioning 80, 81
requirements for distributed data 64
retrieving useful 120
re-usability 13

storage of TIBCO Object Service Broker 7

store
definition 4

Index | 157

types of data 4
stored 31
TDS 7
three tiers 2
TIBCO Object Service Broker 4
types stored 4
viewing 2,3
DATAREFERENCE exception 128
DB2
source tables 49
table type 5
Dec field
MAP tables 115
Default field
MAP tables 116
default, modifying for remote locations 96
defining
calculation (CLC) tables 52
considerations for parameters 33
data parameters 34
fields
MAP tables 113
location parameters 35
methods for primary key fields 39
non-key fields 42
parameter (PRM) value tables 55
parameters 33
primary keys 39
SES tables 29
subview (SUB) tables 47
tables for distributed access 64
TDS tables 29
TEM tables 29
views of source tables 45
DEFINITIONFAIL exception 128
definitions
deleting 67, 67
minimal 64
requirements for distributed data 64
definitions, managing
MAP data 101
DELETE
primary command 67, 82
deleting data 82
statement 80, 82

TIBCO Object Service Broker Managing Data

158 | Index

delete (D) line command 111 EES tables
DELETE statement 121 data integrity 88
DELETE_DATA tool 84 definition 87
DELETE_DEEN tool 68 processing 87
deleting environments
data 82 Call Level Interface 126
clear tab option 83, 85 IMS 126
D line command 82 ERROR exception 127
DELETE command 82 error handling 127
PF16 82 ESTIMATETBLDEEN rule 113
PF22 82 Event Rule
rules statements 82 field 38
Single Occurrence Editor 82 segment 37
Table Editor 82 Event Rule field
tools 84 MAP tables 112
workbench option 83, 85 event rule segment, illustrated
definitions MAP tables 112
considerations when deleting 67 event rules 92
tools available 68 area 23
using Table Definer 67 coding considerations 91
deleting a definition, available tools 67 considerations 37
derived values locks 93
coding considerations, rules 91 processing across nodes 94
rules for 98 releasing locks 93
deriving values, condition 98 search paths 93
determining specifying 37
appropriate table types 10 trigger rules 92, 92
locations, conditions 95 updating persistent and temporary data 92
dictionary, global field 116 validation rules 92, 92
distributed event rules, specifying
data, definitional and data requirements 64 MAP tables 112
development, copying definitions for 64 exceptions
double-byte and single-byte character string (W) ACCESSFAIL 128
external syntax 153 CONVERSIONFAIL 128
dynamic (*) external syntax 148 DATAREFERENCE 128
DEFINITIONFAIL 128
ERROR 127
GETFAIL 128
E INTEGRITYFAIL 128
OVERFLOW 128
E (little-endian binary signed) external syntax 149 REPLACEFAIL 128
EDIT primary command 86 RULEFAIL 128
editing SECURITYFAIL 128
permissible changes 60 EXECUTE statement 93
table definitions 59, 60 EXP table type 5

TIBCO Object Service Broker Managing Data

Index | 159

external attributes, specifying F
MAP tables 114
external data 4 F
external data areas, using with MAP tables 126 floating point external syntax 149
external syntaxes field definition segment, illustrated
alphabetic uppercase (A) 148 MAP tables 113
binary signed (B) 148 Field Name field
binary unsigned (K) 150 MAP tables 114
dynamic (*) 148 Field segment 39, 42
fixed length character string (C) 149 fields
fixed length mixed case character string (X) 153 Acc 38,112
floating point (F) 149 Dec 115
hexadecimal (H) 149 Default 116
little-endian binary signed (E) 149 defining
little-endian binary unsigned (R) 152 MAP tables 113
long packed signed (L) 150 Event Rule 38, 112
mixed-case character string (J) 150 Field Name 114
numeric signed (N) 151 Globalfield Name 116
numeric unsigned (M) 150 IDgen 32,109
packed neutral (G) 149 Key 115
packed signed (P) 151 Len 115
packed unsigned (U) 152 Offset 114
packed, no sign stored (O) 151 Rqd 115
quoted character string (Q) 151 Syn 115
raw data (RD) 152 Table 31,109
text numeric (T) 152 Typ 38,112,115
U8 (Unicode UTF8 encoded string) 152 Type 31,109
U8B (Unicode UTES8 encoded string with BOM) 152 Unit 32, 109
U8N (Null terminated Unicode UTF8 encoded Xdec 114
string) 152 Xlen 114
USNB (Null terminated Unicode UTF8 encoded Xsyn 114
string with BOM) 152 fixed length
UN (Unicode) 152 character string (C) external syntax 149
Unicode UTF 16-BE (B16) 149 mixed case character string (X) external syntax 153
Unicode UTF 16-LE (L16) 150 flagging changed copybooks 105
Unicode UTF 16-LE with BOM (L16B) 150 floating point (F)
Unicode UTF 32-LE (L32) 150 external syntax 149
Unicode UTF 32-LE with BOM (L32B) 150 FORALL statement 55,57, 78, 82,123
variable character (V) 152 full definition, location parameter 111

X’00’ fill character (Z) 153

G

G (packed neutral) external syntax 149

TIBCO Object Service Broker Managing Data

160 | Index

GET statement 78, 82,122 import tables
GETFAIL exception 128 Globalfield Name field 116
global IMS
default locations, modifying 96 source tables 49
fields 15 table type 5
selecting 27 IMS environment 126
stored information types 27 INSERT statement 80, 121
types of implementation 27 inserting data with
using 28 I line command 79
global field dictionary 116 PF4 79
Global Fields rules statements 80
dictionary 28 Single Occurrence Editor 79
selector 25 Table Editor 79
Globalfield Name field INTEGRITYFAIL exception 128
import tables 116 internal attributes, specifying
MAP tables 115
invoking
Single Occurrence Editor 74
H Table Browser 74
Table Editor 74
H (hexadecimal) external syntax 149 invoking the Table Definer 104
handling
errors 127
TIBCO Object Service Broker requests 127
hexadecimal (H) external syntax 149 J

J (mixed-case character string) external syntax 150

I K
inserting data 79
line command 79, 79 K (binary unsigned) external syntax 150
identification, verifying for tables 31 Key field
identifying MAP tables 115
tables
MAP 109
IDgen field 31, 32,109
IDM L
source tables 49
table type 5,5 L
IMP long packed signed external syntax 150
source tables 49, 56 L16 (Unicode UTF 16-LE) external syntax 150
table type 5 L16B (Unicode UTF 16-LE with BOM) external
implementation types for global fields 27 syntax 150

TIBCO Object Service Broker Managing Data

L32 (Unicode UTF 32-LE) external syntax 150
L32B (Unicode UTF 32-LE with BOM) external
syntax 150
layout
of Table Definer 23
Table Definer
data field area 23
event rule area 23
parameter area 23
table identification area 23
Len field
MAP tables 115
line commands
D (delete) 111
little
endian binary unsigned (R) external syntax 152
little-endian binary signed (E) external syntax 149
LOAD tool 16
loading and unloading data, supported table types 16
locating data 16
location
parameter 14
defining 35
LOCATION 33
rules
determining 95
LOCATION parameter 33
location parameter
full definition 111
minimal definition 111
specifying for
MAP tables 111
locations
determining, conditions 95
modifying global default 96
rules, coding considerations 91
locking
data for subview tables 49
locks 93
logical
views 3
long packed signed (L) external syntax 150

M (numeric unsigned) external syntax 150

main storage areas, MAP tables 102
managing
MAP data definitions 101
manipulating
data
Single Occurrence Editor 73
Table Editor 72
methods 69
MAP
displaying 109
main storage areas 102
managing data definitions 101
MAP server overview 101
MAP table type 6

Index | 161

TIBCO Object Service Broker Managing Data

162 | Index

MAP tables fields 40
Acc field 112 creating new primary key fields 40
accessing 120 defining
address parameter, specifying 110 data fields 42
behavior 129 primary key fields 39
COMMAREAs, using with 126 of manipulation 69
count parameter, specifying 110 predefined attributes for primary key fields 40
Dec field 115 minimal definition, location parameter 111
Default field 116 minimal definitions of tables 14, 64—66
defining fields 113 mixed-case character string (J) external syntax 150
definitions 102 modifying
Event Rule field 112, 112 default remote locations 96
event rule segment illustrated 112 global default locations 96

event rules, specifying 112
external attributes, specifying 114
external data areas, using with 126

field definition segment, illustrated 113 N

Field Name field 114

identifying tables 109 N (numeric signed) external syntax 151

IDgen field 109 NODENAME parameter 16

internal attributes, specifying 115 nodes, processing event rules across 94

Key field 115 non-key fields

Len field 115 creating new 43

location parameter, specifying 111 defining 42

Offset field 114 non-persistent data 5

parameter segment 110 non-persistent table types, security 129

Rqd field 115 Null terminated Unicode UTES8 encoded string (USN)
security 129 external syntax 152

Syn field 115 Null terminated Unicode UTFS8 encoded string with
Table Definer illustrated 107 BOM (U8NB) external syntax 152

Table field 109 numeric

table identification segment illustrated 109 signed (N) external syntax 151

Typ field 115 unsigned (M) external syntax 150

Type field 109
Unit field 109

users 103
using 103 (0]
Xdec field 114
Xlen field 114 O (packed, no sign stored) external syntax 151
Xsyn field 114 occurrence values, verifying 92
metadata 7 Offset field
MetaStor 7 MAP tables 114
methods

copying existing definitions for primary key

TIBCO Object Service Broker Managing Data

options

ALL 77

PAGE 77

REST 77
ORDERED primary command 86
OVERFLOW exception 128
overview

MAP server 101

P

P
packed
signed external syntax 151
packed
neutral (G) external syntax 149
no sign stored (O) external syntax 151
signed (P) external syntax 151
unsigned (U) external syntax 152
PAGE option 77
Pagestore 4,7
parameter segment, illustrated
MAP tables 110
parameterized tables 13
parameters
address, specifying for MAP tables 110
area 23,33
count, specifying for MAP tables 110
CTABLESIZE 113
data 13
defining 33, 33
LOCATION 33
location 14
full definition 111
MAP tables, specifying 111
minimal definition 111
REGION 33
value tables
behavior 55
specifying source tables 56
specifying table types 55
tasks for defining 55
values in tables 55

Index | 163

peer servers, setting 97
persistent data 5, 92
persistent table types, security 129
PF keys
available for Table Definer 61
Single Occurrence Editor PF22 (Delete) 82
Table Editor
PF16 (Delete) 82
PF3 (Commit Changes) 86
PF4 (Insert) 79
physical store 3
primary
commands
BROWSE 86
CHANGE 76,76
CLEAR 79
COPY 62
DELETE 67, 82, 82
EDIT 86
ORDERED 86
SAVE 77, 86
SELECT 86
key fields
copying existing definitions 40
creating new 40
defining 39
methods of defining 39
predefined attributes 40
specifying 39
keys for
EES table 39
SES table 39
TDS table 39
TEM table 39
PRM table type 6, 14, 22
PRM tables, defining 55
processing event rules across nodes 94

Q
Q

quoted character string external syntax 151
quoted character string (Q) external syntax 151

TIBCO Object Service Broker Managing Data

164 | Index

R deleting data 82
inserting data 80
R (little-endian binary unsigned) external syntax 152 replacing data 78
R line command, replicating data 81 to derive values 98
raw data (RD) external syntax 152 trigger 37
RD (raw data) external syntax 152 using 121,122
recovery 127 validation 37,92
REGION data parameter 33 running the Change Tracking Agent 105

relationships of data 2
releasing locks 93
remote location, modifying default 96

REMOTELOCATION tool 96 S
REPLACE statement 78, 124
REPLACEFAIL exception 128 samples
replacing data 76 source rules 96
replacing, data trigger rule 93
CHANGE command 76 validation rule 94
Table Editor 76 SAVE primary command 77, 86
with scope of CHANGE, controlling with
rules statements 78 ALL 77
Single Occurrence Editor 77 PAGE 77
replicating data 81 REST 77
purpose 81 SCR table type 6,15
R line command 81 search paths 95, 98
Single Occurrence Editor 81 for event rules 93
Table Editor 81 security
repositioning data 80, 81 for MAP tables 129
requests, handling for TIBCO Object Service non-persistent table types 129
Broker 127 persistent table types 129
requirements, distributed data 64 SECURITYFAIL exception 128
REST option 77 segments
retrieving useful data 120 event rule 112
re-usability of data 13 field definition 113
ROLLBACK statement 86, 93, 95 parameter 110
RPT table type 6, 14 table identification 109
Rqd field SELECT primary command 86
MAP tables 115 selecting
RULEFAIL exception 128 data for subview tables 49
rules global fields 27
coding considerations 91 selectively viewing data 3

determining location 95
ESTIMATETBLDEFN 113
event 92
SETREMOTELOC 96
statements

TIBCO Object Service Broker Managing Data

SES
data parameters 34
defining 29
primary keys 39, 39
source tables 56, 56
table types 6, 15,22
sessions, modifying default remote locations for 96
SETREMOTELOC rule 96
setting peer servers 97
single and double byte character string (W) external
syntax 153
Single Occurrence Editor 25
committing changes 86, 86
deleting data 82
inserting data 79
invoking 74
manipulating data 73
replacing data 77
replicating data 81
SLK
source tables 49
table type 5
SOE DEFINE_TABLE 23
SOE tool 25,74
source
rules, sample 96
tables
ADA 49
DAT 49
DB2 49
defining views 45
IDM 49
IMP 49, 56
IMS 49
SES 56, 56
SLK 49
specifying 49
TDS 49, 53, 56
TEM 56
types of views 46
view definitions 46
views 46
VSM 49, 56
specific addresses, accessing data from 129

Index | 165

specifying
address parameter for MAP tables 110
count parameter for MAP tables 110
event rules 37
MAP tables 112
external attributes
MAP tables 114
fields
for calculation tables 54
for subview tables 50
internal attributes
MAP tables 115
location parameter
MAP tables 111
parameters
for calculation tables 53
for subview tables 50
primary keys 39
source tables
calculation tables 53
parameter value tables 56
subview tables 49
table types 104
calculation tables 53
parameter value tables 55
subview tables 48
statements
COMMIT 86, 93, 95
DELETE 80, 82, 121
EXECUTE 93
FORALL 55,57,78,82,123
GET 78, 82,122
INSERT 80, 121
REPLACE 78, 124
ROLLBACK 86, 93, 95
STE tool 51, 74, 93, 95, 98
STEBROWSE tool 51, 74, 93, 95, 98
storage
accessing data 107
areas, MAP tables 102
data, accessing 120
storage of TIBCO Object Service Broker data 7
stored
data 31
information, types for global fields 27

TIBCO Object Service Broker Managing Data

166 | Index

SUB table type 5, 22 Table Editor 25, 25
subview tables 47 commands for committing changes 86
behavior 47 committing changes 86
defining 47 deleting data 82
defining for a minimal definition 66 inserting data 79
locking data 49 invoking 74
selecting data 49 manipulating data 72
specifying replacing data 76
parameters 50 replicating data 81
source tables 49 Table Editor, using 120
table types 48 Table field 31, 31
specifying fields 50 MAP tables 109
tasks for defining 48 table identification area 23, 31
support, contacting xx table identification segment, illustrated
Syn field MAP tables 109
MAP tables 115 table types, specifying 104
synchronization 127 tables

@GLOBALFIELDS 15, 26, 27
@SESSION 126
available types 10

T copying 31
copying definitions 62
T (text numeric) external syntax 152 defining
Table Browser 25,25 calculation (CLC) 52
browsing data 71 for distributed data 64
invoking 74 parameter (PRM) values 55
Table Browser, using 120 SES 29
Table Definer 21 subview (SUB) 47
accessing 22 TDS 29
available PF keys 61 TEM 29
copying definitions 62 definitions 8
definitions 22 editing definitions 59, 60
deleting definitions 67 MAP, accessing 120
layout 23 minimal definitions 14
data field area 23 parameter values 55
event rule area 23 parameterized 13
parameter area 23 permissible editing changes 60
table identification area 23 purpose 8
tools available from 25 security for
Table Definer for non-persistent types 129
MAP tables, illustrated 107 persistent types 129
Table Definer, invoking 104 source
ADA 49
DAT 49
DB2 49

TIBCO Object Service Broker Managing Data

EES 56
IDM 49
IMP 49, 56
IMS 49
SES 56
SLK 49
TDS 49, 53, 56
TEM 56
types of views 46
view definitions 46
views of 46
VSM 49, 56
types
ADA 5
CLC 5,14,22
DAT 5
DB2 5
definition 10
determining appropriate 10
EES 5, 14,22
EXP 5
IDM 5,5
IMP 5
IMS 5
MAP 6
PRM 6, 14,22
RPT 6,14
SCR 6,15
SES 6, 15,22
SLK 5
SUB 5,22
TDS 5,22
TEM 6, 15,22
VSM 5
using 8
verifying identification 31
tabular view of data 3
TDS
data 7
defining 29
parameters, data 34
primary keys 39
source tables 49, 53, 56
table type 5, 22
technical support xx

Index | 167

TEM
data parameters 34, 34
defining 29
primary keys 39
source tables 56
table type 6, 15,22
temporary data 92
text numeric (T) external syntax 152
three tiers of data 2
TIBCO Object Service Broker data 4
Pagestore 7
storage 7
TIBCO_HOME xvii
tools
@PEERSERVERID 97
$CLRTAB 84
available
for data manipulation 70
from Table Definer 25
Global Field selector 25
Single Occurrence Editor 25
Table Browser 25
Table Editor 25
choosing 70
COPY_DATA 85
COPY_DEFN 62, 62
COPYDEEFN 62
copying
data 85
definitions 62
data manipulation 70
DEFINE_TABLE 23
DELETE_DATA 84
DELETE_DEEN 67, 68
deleting
data 84
definitions 68
REMOTELOCATION 96
SOE 74
STE 51, 74,93, 95,98
STEBROWSE 51, 74, 93, 95, 98
tracking changes in copybooks 105
TRANSFERCALL statement, restrictions 93
trigger
rules 37,92

TIBCO Object Service Broker Managing Data

168 | Index

conditions 92
description 92
restrictions on coding 92
sample 93
validation, samples 94
Typ field 38, 38
MAP tables 112,115
Type field 31, 31
described 109
types
available for tables 10
of data, stored 4
of views of source tables 46
stored information for global fields 27

U

U (packed unsigned) external syntax 152

U8 (Unicode UTF8 encoded string) external
syntax 152

U8B (Unicode UTFS8 encoded string with BOM) exter-
nal syntax 152

USN (Null terminated Unicode UTF8 encoded string)
external syntax 152

USNB (Null terminated Unicode UTF8 encoded string
with BOM) external syntax 152

UN (Unicode) external syntax 152

Unicode (UN) external syntax 152

Unicode UTF 16-BE (B16) external syntax 149

Unicode UTF 16-LE (L16) external syntax 150

Unicode UTF 16-LE with BOM (L16B) external
syntax 150

Unicode UTF 32-LE (L32) external syntax 150

Unicode UTF 32-LE with BOM (L32B) external
syntax 150

Unicode UTFS8 encoded string (U8) external
syntax 152

Unicode UTFS8 encoded string with BOM (U8B) exter-
nal syntax 152

Unit field 31, 32

MAP tables 109
UNLOAD tool 16
unloading and loading data, supported table types 16

TIBCO Object Service Broker Managing Data

useful data, retrieving 120
users of MAP tables 103
using
global fields 28
MAP tables
steps 103
with COMMAREAs 126
with external data areas 126
rules 121, 122
Table Browser 120
Table Editor 120
tables 8

\'

V, variable

character external syntax 152
validation rules 37

conditions 92

description 92

restrictions on coding 92
variable

character (V) external syntax 152
verifying

occurrence values 92

table identification 31
viewing data 2,3

application view 3

logical view 3

physical store 3

selectively 3

tabular view 3
views of source tables 45, 46
VSM

source tables 49, 56

table type 5

w

WHERE clause 78, 80, 83

workbench option, deleting data 83, 85

Index | 169

X

X (fixed length mixed case character string) external
syntax 153
X’00’ fill character (Z) external syntax 153
Xdec field
MAP tables 114
Xlen field
MAP tables 114
Xsyn field
MAP tables 114

y4

Z (X'00’ fill character) external syntax 153

TIBCO Object Service Broker Managing Data

	TIBCO® Object Service Broker
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Overview of Data Structures
	Relationships of Data
	How is Data Viewed in TIBCO Object Service Broker?
	Three Views of Data

	Views of Data
	First Level: Application View
	Second Level: Logical View
	Third Level: Physical Store

	Your Data Store
	What is Your Data Store?
	Stored Types of Data
	Persistent Data
	Non-persistent Data

	Storage of TIBCO Object Service Broker Data
	Pagestore

	Use of Tables in TIBCO Object Service Broker
	What is a Table?
	What is the Purpose of a Table?
	TIBCO Object Service Broker UI
	What Does a Table Look Like?

	Available Table Types
	What is a Table Type?
	Determining the Appropriate Table Type

	Re-usability of Data
	Design Options
	Option 1: Using Parameterized Tables
	Option 2: Using Minimal Definition
	Option 3: Using Non-persistent Data
	Option 4: Using Global Fields

	Accessing Table Data
	How Do I Access Data?
	Requirements before Accessing Data
	Locating the Data
	Order of Evaluation to Determine Location

	Chapter 2 The Table Definer
	What is the Table Definer?
	TIBCO Object Service Broker UI
	Overview
	Accessing the Table Definer
	Layout of the Screen
	Example

	Tools Available from the Table Definer
	What Tools are Available?
	Table Editor, Table Browser, and Single Occurrence Editor
	Global Field Selector

	Selecting Global Fields
	Types of Implementation
	Types of Information Stored with a Global Field
	Global Fields Selector Illustrated
	Using the Global Fields Selector

	Chapter 3 Defining TDS, EES, SES, and TEM Tables
	Overview
	TIBCO Object Service Broker UI
	Tasks for Defining a Table

	Task A: Define Table Properties
	Purpose of this Task
	Table, Type, Unit, and IDgen Fields

	Task B: Define Parameters
	Purpose of this Task
	Considerations for Defining Parameters
	Data Parameters
	Defining Data Parameters
	What is a Location Parameter?
	Defining a Location Parameter

	Task C: Specify Event Rules
	Purpose of this Task
	Considerations for Defining Event Rules
	Event Rule, Typ, and Acc Fields

	Task D: Define Primary Keys
	Purpose of this Task
	Composite Primary Keys
	Methods Available for Defining Primary Key Fields
	Creating a New Primary Key Field

	Task E: Define Non-key Fields
	Purpose of this Task
	Methods Available for Defining Data Fields
	Creating a New Non-key Field

	Chapter 4 Defining a View of a Source Table
	Views of a Source Table
	TIBCO Object Service Broker UI
	What is a View of a Source Table?
	What Types of Views Can be Specified?

	Defining a Subview (SUB) Table
	Why Define a Subview?
	Behavior of Subviews
	Tasks Required to Define a Subview
	Sample Subview Table

	Defining a Calculation (CLC) Table
	Why Define a Calculation View?
	Behavior of Calculation Tables
	Tasks Required to Define a Calculation Table

	Defining a Parameter Value (PRM) Table
	Why Define a Table for Parameter Values?
	Behavior of Parameter Tables
	Tasks Required to Define a Parameter Value Table
	Using the NUMBER Field in a Parameter Table
	Sample Parameter Value Table
	Example Rule for Parameter Values for a Table

	Chapter 5 Editing a Table Definition
	Editing a Definition
	TIBCO Object Service Broker UI
	Overview
	Updating Specifications with a Definition
	Permissible Editing Changes
	Non-permissible Editing Changes
	Commands and PF Keys Available

	Copying a Definition
	Copying a Definition Using the Table Definer
	Copying a Definition Using Shareable Tools

	Editing a Definition for Distributed Development
	Purpose of the Definition
	Definition and Data Requirements for Distributed Data
	Copying a Definition
	Defining a Minimal Definition

	Deleting a Definition
	Considerations when Deleting an Object
	Deleting a Definition Using the Table Definer
	Deleting a Definition Using a Shareable Tool

	Chapter 6 Manipulating Data in a Table
	Data Manipulation Tools
	TIBCO Object Service Broker UI
	Available Methods
	Choosing a Tool
	Browsing Data with the Table Browser
	Manipulating Data with the Table Editor
	Manipulating Data with the Single Occurrence Editor

	Invoking the Table Browser, Table Editor, and Single Occurrence Editor
	Invoking the Table Browser
	Invoking the Table Editor
	Invoking the Single Occurrence Editor

	Replacing Data
	Replacing Data Using the Table Editor
	Replacing Data Using the CHANGE Command from the Table Editor
	Controlling the Scope of the CHANGE Command
	Replacing Data Using the Single Occurrence Editor
	Replacing Data Using a Rules Statement

	Inserting Data
	Inserting Data Using the I Line Command in the Table Editor
	Inserting Data Using PF4 in the Table Editor
	Inserting Data Using the Single Occurrence Editor
	Inserting Data Using a Rules Statement

	Replicating Data
	Purpose of Replicating Data
	Replicating Data Using the R Line Command in the Table Editor
	Replicating Data Using the Single Occurrence Editor

	Deleting Data
	Deleting Data Using the D Line Command in the Table Editor
	Deleting Data Using PF16 in the Table Editor
	Deleting Data Using the Single Occurrence Editor
	Deleting Data Using a Rules Statement
	Deleting Data Using a Workbench Option
	Deleting Data Using a Shareable Tool

	Copying Data
	Copying Data Using a Workbench Option
	Copying Data Using a Shareable Tool

	Committing Changes
	Committing Changes Using the Table Editor
	Committing Changes Using the Single Occurrence Editor
	Committing Changes Using Rules
	Understanding EES Table Considerations

	Chapter 7 Coding Considerations for Event, Location, and Derived Value Rules
	Coding Event Rules
	Conditions for Validation Rules
	Conditions for Trigger Rules
	Search Path
	Sample Set of Event Rules
	Event Rule Processing Across Nodes

	Coding Rules to Determine Location
	Conditions that Apply
	Search Path
	Sample Source Rule Definition
	Sample Set of Source Rules
	Modifying the Default Remote Location for a Session

	Coding Rules to Derive Values
	Conditions that Apply
	Search Path

	Coding Rules for Remote Table Access
	Remote Table Access
	Peer-to-peer Access

	Chapter 8 Managing TIBCO Object Service Broker MAP Data Definitions
	MAP Tables
	What is a MAP Table?
	Main Storage Area
	Who Should Use MAP Tables?
	How to Use MAP Tables

	Initial Step for Defining Tables
	Invoke the Table Definer
	Specify the Table Type for New Tables

	Using Data Discovery
	Monitoring Copybook Changes
	Running the Change Tracking Agent

	Accessing Storage Data from TIBCO Object Service Broker
	Using a Copybook as the Source for the Definition
	Steps Required to Define a MAP Table

	Task A: Identify the Table
	Purpose of this Task
	Table, Type, Unit, and IDgen Fields

	Task B: Specify Address, Count, and Location Parameters
	Purpose of this Step
	Address Parameter
	Count Parameter
	Location Parameter

	Task C: Specify Event Rules
	Purpose of this Task
	Event Rule, Typ, and Acc Fields

	Task D: Define Fields
	Purpose of this Task
	Considerations
	Specifying External MAP Attributes
	Specifying Internal TIBCO Object Service Broker Attributes

	Sample Definitions
	MAP_ONE Table Illustrated
	MAP_TWO Table Illustrated

	Chapter 9 Manipulating Storage Data Using TIBCO Object Service Broker MAP Tables
	Accessing TIBCO Object Service Broker MAP Tables
	Retrieving Meaningful Data
	Accessing Storage Data
	Using the Table Browser or Table Editor
	Using Rules

	Using Rules to Access Storage Data
	GET Statement
	Examples of GET Statements
	FORALL Statement
	Examples of FORALL Statements
	REPLACE Statement
	Examples of REPLACE Statements

	Using TIBCO Object Service Broker MAP Tables with COMMAREAS and Other External Data Areas
	@SESSION Table
	IMS Environment
	Call Level Interface Environment

	Handling TIBCO Object Service Broker Requests
	Synchronization and Recovery
	Error Handling
	ERROR Exception
	ACCESSFAIL Exception
	INTEGRITYFAIL Exception
	RULEFAIL

	Understanding Security with TIBCO Object Service Broker MAP Tables
	MAP Table Behavior
	Accessing Data at a Particular Address with a MAP Table

	Chapter 10 Sample Application Using TIBCO Object Service Broker MAP Tables
	Sample Application
	What does this Application do?
	Pictorial Representation of the Sample Storage Areas
	The Application

	MAIN Sample Rule
	MAIN Rule Illustrated
	MAIN Rule Explained

	Sample MAP Tables
	COMM_HEADER Table
	INPUT_HEADER Table
	EMPLOYEE_RECORD Table
	EMPLOYEE_SUMMARY Table

	Appendix A Primary Command Syntax Reference
	Overview
	Purpose of this Appendix
	Notation

	Primary Command Syntax
	SELECT Command
	ORDERED Command
	FIND Command
	CHANGE Command (Table Editor Only)
	EDIT Command (Table Editor Only)
	XEDIT Command (Table Editor Only)
	BROWSE Command
	XBROWSE Command (Table Editor Only)
	EXCLUDE Command
	EXPAND Command

	Appendix B Mapping Data Types
	Mapping Data Types for MAP Table Definitions
	Translation of External Data

	Index

