TIBCO® Object Service Broker

Object Integration Gateway

Software Release 6.0
July 2012

WiTIBCO

two-second advantage™ The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.

TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:

Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
= =T ix
Related Documentation X
TIBCO Object Service Broker Documentationt e X
Typographical CoONVENTIONSot e e e e e e e e e e XV
Connecting With TIBCO RESOUICES ottt ettt e e e e e e e e e e xviii
How to Join TIBCOMMUNILY oottt e e e e e e et e e xviii
How to Access All TIBCO Documentationottt e e e xviii
How to Contact TIBCO SUPPOItot e e e e e xviii
Chapter 1 Getting Started with Object Integration Gateway (OIG)ccoivinann. 1
OV BIVIBW . . oottt 2
What IS OlG T . . o 2
What Are the Key Components of OlG 2.o e 2
PrereqUISIEESo 3
J2EE Components on Open Systemst 3
COM COomMPONENT . . .ot e e e e e e e e 3
L1 o G N 3
OIG Components 0N Z/OSo 3
Installing the OIG Administration Interface e 5
Chapter 2 Designing an OIG Application.ttt aannns 7
OV BIVIBW . . oottt 8
Tools Available e 8
Components Available 8
Designing a Transaction. e 10
TrANSACH ON . . L o e 10
Linking Other OIG Objects to @ Transactionttt e e 10
Designing an XML DOCUMENT e e 11
XML Capabilities of OlGi e e 11
XML Field Map . . .o e e e e e e 11
Root Names for XML Document Tables e 11
Transferring OIG Objects Between Databases i e 14
Transferring ObJECtSo o e 14
OIG Object Types That Can Be Transferred? e 14
Using UNLOAD and LOADot e e e e e e e e e e e e 14

TIBCO Object Service Broker Object Integration Gateway

iv | Contents

Promoting OlIG ODbjJECtSot 14
Using Data ACCess Parameters 15
Data Access Parameters Can Be DynamicC.ttt 15
Passing Data to and Receiving Data from OIG. 16
Passing Parameters Data 16
Passing and Receiving Session Datat 16
Passing and Receiving Dataas Tables or XML. 17
Chapter3 Using OIG for INET ittt i et a s a e ans e ansnnsansnnnns 19
OVBIVIBW . . ettt e e e e e e 20
Object Integration Gateway Support for NET 20
Configuring Pools for the .NET Class Library o e e e 21
The Pool Configuration TOOL.t e e 21
Instantiating the eCTSsession Object. 22
CONSITUCIONS . . o ottt e e e 22
EXamMpI . . o 22
Passing Data to the eCTSsession Object. i e 23
SHIINgS .« o ot 23
Hashtable and NameValueCollection Classes.ttt e 23
ReCordsets. . .. 23
eCTSsesSIoN Methodso 24
Opening Object Integration Gateway SesSSiONS 24
Closing Object Integration Gateway SeSSIONS. it e 25
INVOKING Processing. oo 26
Handling Data 28
Handling HTML and MesSagesottt e e e e e e e e 34
Handling Errors from eCTSSessIioN oo 35
Managing Persistent Data for Web Sessions. 35
Managing Persistent Data for Non-Web Sessions. 36
Code EXamMPIES. . . ot 38
EXample 1 . 38
EXample 2 . o 39
Chapter 4 Usingthe OIGCOM Componentoiiiiiiiiinniinnarrnnnrrnnnesns 41
OV IV . o ottt et et e e e e e e 42
Object Integration Gateway COM COmMPONENt.ottt e e 42
Configuring the Object Integration Gateway COM Componentt 43
Object Integration Gateway COM Configurator e 43
Instantiating the Object Integration Gateway COM Componentttt 44
EXamplEs . . o o 44
Passing Data to the Object Integration Gateway COM Componentt 45

TIBCO Object Service Broker Object Integration Gateway

Contents | v

OV BIVIBW . o ot ittt et et e e e e e e e 45
SIS . oot 45
SN AT Y S . . o ottt e 45
RECOrdSetSo 46
eCTSsession Methods.o 47
Opening Object Integration Gateway SeSSIONSt 47
Closing Object Integration Gateway SESSIONSttt e 48
INVOKING ProCeSSINg . . . o o e 48
Handling Data. 50
Handling Other Data. o e e 54
Managing Persistent Data for Web Sessions e 55
Managing Persistent Data for Non-Web Sessions 56
Code EXamMPIES . . . oo 57
Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments 59
OV BIVIBW . . oottt e e e e 60
What Is an Enterprise JavaBean? 60
How Does Object Integration Gateway Support Enterprise JavaBeans?. 60
Object Integration Gateway EJB COMPONENtS.ottt e e 61
eCtS2EJBbase Base Classot 61
Home Interface oo 65
Remote Interface 65
Deployment DesCriplor.o e 65
WEDROWSET Class oo 65
EJB Code EXamples.ot e 68
Chapter 6 Usingthe OIGJCA Adapter.ciiiiiiiii et tin e naarrnanannnens 73
LT = 74
What Is J2EE Connector Architecture? 74
JCA Deployment DesCriplor. oot e 75
What is the Deployment DesCriptor? i e 75
Deployment Descriptor Example 75
Working with the Deployment DescCriptor. e 78
Changing Deployment Descriptor Settings.ot 78
Installation and Deployment e 80
Using the Adapier. . .. oo 81
Chapter 7 Using the OIG ApplicationBeant iiiiaiiinaarnnnens 83
OIG Application BEaN oot 84
ECIS2APPBEAN Classottt 84
ECIS2RESUIL Class. . . . oottt 90
ects2AppBeanEXception Class 91

TIBCO Object Service Broker Object Integration Gateway

Vi | Contents

Chapter 8 Using XALttt ittt it e et s saatsaaansanansnnnnsanneennness 93
OV BIVIBW . . o et et e e e e e e e e e 94
WAt I8 XA . o e e 94
HOW Does XAL WK . . .o 94
Creating an XAL Web Application. 95
Deploying the Sample JSP Application 95
How the Sample Web Application Works. 96
Handling Errors 97
Modifying the Sample JSP Application 97
Chapter 9 Using the OIG Rules Programming Interface.............. ..., 101
OV BT IBW . o o ettt e e e e e e 102
What Is the Rules Programming Interface? 102
Working with the RP I 102
What You Need to Know to Work withthe RPI 102
What Reference Material Is Provided? 103
TYPES Of RUIES. . . oo 104
RUIE TYPES . . .o ot 104
BUIId RUIES . . . 105
Pre-Build RUles 105
Post-Build RUlES 105
Format RUles. e 106
Applying Format RUIES.o 106
Utility RUlES . . oo 107
Accessing RPI ArgumMeENts 107
Accessing Object Integration Gateway Session Parameters. 107
MESSaAgING . . o o ottt 108
EXecUtion/Generation e 108
Formatting and LinKingo 109
Selecting an Application Profile e 109
Making an HTTP Request oo e e e 109
LOggiNg . . ottt 110
RPIVariables 111
Object Integration Gateway Interface Variables. 111
Appendix A Setting OIG Session Initialization Parameters 113
SeSSION Parameterso 114
DA AN . o 114
DA AU T . . ot 114
DEBUG . ..o 114
HO ST . o 115
L BRARY . . 115

TIBCO Object Service Broker Object Integration Gateway

Contents | vii

MAXSESSION . . o 115
PASSWORD . . .ot 116
POOLTIMEOUT . .o e e e e e e e e e e 116
PO R T . o 116
PREF DX, . . 116
SEARCH. . . 117
STAN D B Y W AL L e 118
TRACEMESSAGES 119
USERID . . 119
XAL-Specific Session Initialization Parameters i e 120
Appendix B Understanding the Data Access Parameter Syntax 123
Data Parameter Value SyntaXt 124
EXample . . . 124
Syntax in BNF NOtation 124
Data Key Value Syntax 125
EXamMPIE . . . e 125
Syntax in BNF Notation 125
Appendix C Creating XML Documentsciiiiiiiineiiirnnrnernnrnnsnnsnns 127
Performing the First Steps 128
Defining XML DOCUMENESottt e 129
Adding Tables 132
Adding Field Mapso 135
Understanding Other Field Attributes. 140
GroUP NaMEo 140
Format RUIES . . . 141
USaQE . . ottt 141
Table OVerride e 141
Empty Element Name. e 142
Understanding Child DOCUMENESot e e e 143
Using XML DOCUMENTSo e e e e e e e e 149
Defining Attribute Relationships. 152
Customizing XML Declarations 157
Appendix D Using the OIG Administrationinterface it 161
OVBIVIBW . . ettt e e 162
What Is the Administration Interface?. 162
Using the Administration Interface. 163
LOgaiNG IN. .o e 163

TIBCO Object Service Broker Object Integration Gateway

viii | Contents

Using the Pool List Pageo 163
Using the Pool Details Page e e 164
Exiting the Administration Interface e 165
Appendix E Creating a Silent Installer for the OIG COM Component 167
[Y=Y - 168
What Is a Silent Install? 168
Creating a Silent Installer e 169
What the Installer Hasto DOo o 169
After Installingo 170
3T = 171

TIBCO Object Service Broker Object Integration Gateway

Topics

ix

Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual describes how to install and use the Object Integration Gateway, a
component of TIBCO Object Service Broker.

* Related Documentation, page x
e Typographical Conventions, page xv

* Connecting with TIBCO Resources, page xviii

TIBCO Object Service Broker Object Integration Gateway

X | Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation

The following documents form the TIBCO Object Service Broker documentation

set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.

TIBCO Object Service Broker Object Integration Gateway

Preface | xi

Application Development and Management

The following manuals provide information about application development and
management:

e TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

e TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

e TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

e TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

e TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, NET and COM.

e TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

e TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ), and how to access programs written in external
programming languages from within TIBCO Object Service Broker.

TIBCO Object Service Broker Object Integration Gateway

xii | Related Documentation

TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.

TIBCO Object Service Broker Object Integration Gateway

Preface | xiii

TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.

TIBCO Object Service Broker Object Integration Gateway

Xiv | Related Documentation

e TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.

TIBCO Object Service Broker Object Integration Gateway

Preface | XV

Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME By default, all TIBCO products are installed into a folder referenced in the
0SB_HOME documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C: \tibco\0SB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/0S, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code Bold code font is used in the following ways:
font ¢ In procedures, to indicate what a user types. For example: Type admin.
e Inlarge code samples, to indicate the parts of the sample that are of
particular interest.

¢ In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

e Toindicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

* To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

¢ Toindicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

TIBCO Object Service Broker Object Integration Gateway

XVi | Typographical Conventions

Table 1 General Typographical Conventions (Cont’d)

Convention Use
Key Key name separated by a plus sign indicate keys pressed simultaneously. For
combinations example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
% example, an additional action required only in certain circumstances.

Ve The tip icon indicates an idea that could be useful, for example, a way to apply

N the information provided in the current section to achieve a specific result.
The warning icon indicates the potential for a damaging situation, for example,
A data loss or corruption if certain steps are taken or not taken.

Table 2 Syntax Typographical Conventions
Convention Use
[1] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand paral | param2 | param3

TIBCO Object Service Broker Object Integration Gateway

Preface | xvii

Table 2 Syntax Typographical Conventions

Convention Use

{17 A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair paraml and param?, or the pair param3 and param4.

MyCommand {paraml param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either paraml or param2 and the second can be either param3 or param4:

MyCommand {paraml | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be paraml. You can optionally include param? as the
second parameter. And the last parameter is either param3 or param4.

MyCommand paraml [param2] {param3 | param4}

TIBCO Object Service Broker Object Integration Gateway

xviii | Connecting with TIBCO Resources

Connecting with TIBCO Resources

How to Join TIBCOmmunity

TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http:/ /www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http:/ /docs.tibco.com

How to Contact TIBCO Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

¢ For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http:/ /www.tibco.com/services/support
¢ If you already have a valid maintenance or support contract, visit this site:
https:/ /support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO Object Service Broker Object Integration Gateway

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

Chapter 1

Topics

| 1

Getting Started with Object Integration
Gateway (OIG)

This chapter gives a brief overview of Object Integration Gateway, describes its
pre-requisites, and tells how to set up its administrative interface.

¢ Overview, page 2
® DPrerequisites, page 3

¢ Installing the OIG Administration Interface, page 5

TIBCO Object Service Broker Object Integration Gateway

2 | Chapter 1 Getting Started with Object Integration Gateway (OIG)

Overview

What Is OIG?

Object Integration Gateway (OIG) is a powerful application development tool for
delivering web-enabled and business-to-business applications. It has the
following key strengths:

¢ Legacy database integration
e Legacy application integration
e Highly scalable solutions, capable of running on z/0OS, Windows, and Solaris

e A powerful business rules language and an integrated active repository that
provide an application development tool set capable of very high levels of
productivity

What Are the Key Components of OIG?

Enterprise JavaBeans Support

Object Integration Gateway provides a set of components that enable you to
create EJB applications, including a base session bean component class, a home
interface class, and a remote interface class.

Application Bean

Object Integration Gateway includes an application JavaBean that provides a
standalone client-side implementation of all the functions provided by its EJB
base class. You can use this application bean in a non-EJB environment where you
need your standalone application or custom application server to access OIG.

JCA Adapter

Object Integration Gateway provides a Java Connector Architecture (JCA)
adapter so that J2EE applications can interface with it.

.NET Support
Object Integration Gateway supports NET applications via a .NET Class Library.

TIBCO Object Service Broker Object Integration Gateway

Prerequisites | 3

Prerequisites

J2EE Components on Open Systems

The OIG J2EE components for the different platforms require the Java 2 SDK,
Standard Edition, Version 1.4 or higher, or Java 2 Runtime Environment, Standard
Edition, Version 1.4 or higher (international edition).

You can download the Java SDK/JRE for free from the following web site:
http:/ /java.sun.com/j2se/

COM Component

Before you can install the OIG COM component, you must have the following
software already installed on the same computer:

e Java 2 SDK, Standard Edition, Version 1.4 or higher, or Java 2 Runtime
Environment, Standard Edition, Version 1.4 or higher (international version)

You can download the Java SDK/JRE for free from the following web site:
http:/ /java.sun.com/j2se/

OIG for .NET

To develop and run applications using OIG for .NET, you require the following
software:

* Microsoft NET Framework SDK Version 2.0
* Microsoft Visual J# NET Version 2.0 Redistributable Package

Before installing OIG for .NET, ensure that the required software is already
%} installed.
OIG Components on z/OS

If you plan to host your OIG web applications on z/OS, install the following
software:

e z/0S UNIX System Services
e Java2 forz/OS at the JDK 1.4 level or higher

TIBCO Object Service Broker Object Integration Gateway

http://java.sun.com/j2se/
http://java.sun.com/j2se/

4 | Chapter 1 Getting Started with Object Integration Gateway (OIG)

OIG Components Installation on z/OS

1. Modity the Execution Environment JCL to add STANDBYNUM=nn to the
Execution Environment’s HRNIN DD cards, where nn is a number greater
than the number of concurrent sessions on the Execution Environment to be
used by OIG applications. This logs in nn user IDs at Execution Environment
startup to accept connections from OIG, thus avoiding the overhead of
multiple login/logout processes.

You can use the MAXSESSION parameter to limit the number of sessions
%} for an OIG session pool. For more information, refer to Appendix A, Setting

OIG Session Initialization Parameters, on page 113.

2. Recycle the Execution Environment and Data Object Broker to implement the
changes.

TIBCO Object Service Broker Object Integration Gateway

Installing the OIG Administration Interface | 5

Installing the OIG Administration Interface

The OIG administration interface is a tool used to manage OIG session pools. The
web pages required to use the administration interface are placed in the
%0OS_ROOT%\admin directory.

Deploy the Administration Interface Web Pages

Before you can begin using the administration interface, deploy it as an OIG web
application. To do this, copy the required web pages (JSPs, ASPs or ASPX,
depending on your environment) from the %0OS_ROOT%\admin directory to an
application deployment directory.

The administration interface displays the status of OIG session pools within a
Java Virtual Machine (JVM). Therefore, deploy the administration interface so
that it runs in the same JVM as the applications you want it to monitor. Keep in
mind that servlet/]JSP applications can be deployed to run under one or more
JVMs. When using the OIG COM component under IIS, the number of JVMs
depends on the isolation level of your defined web applications.

The JSP version of the administration interface uses custom tags, so you must
copy the tag library definition file,
%OS_ROOT%\admin\jsp\WEB-INF\ectstaglib.tld, to the \WEB-INF directory
under the application deployment directory defined to your servlet engine.

For information about how to use the administration interface, refer to
Appendix D, Using the OIG Administration Interface, on page 161.

TIBCO Object Service Broker Object Integration Gateway

6 | Chapter 1 Getting Started with Object Integration Gateway (OIG)

TIBCO Object Service Broker Object Integration Gateway

Chapter 2

Topics

7

Designing an OIG Application

This chapter describes how to design an OIG application.

¢ Overview, page 8

* Designing a Transaction, page 10

® Designing an XML Document, page 11

* Transferring OIG Objects Between Databases, page 14
¢ Using Data Access Parameters, page 15

¢ Passing Data to and Receiving Data from OIG, page 16

TIBCO Object Service Broker Object Integration Gateway

8 | Chapter 2 Designing an OIG Application

Overview

Tools Available

Object Integration Gateway provides a powerful set of development tools and
components for building enterprise-scale web applications. Before you can build
your application, you must design it. In this chapter, we discuss the design
options available to you, and the impact that different design approaches can
have on your application.

TIBCO Object Service Broker Ul

The TIBCO Object Service Broker Ul is the companion tool to the TIBCO Object
Service Broker text workbench for developing an OIG application. The TIBCO
Object Service Broker Ul is a development interface for creating and modifying
TIBCO Object Service Broker and Object Integration Gateway objects. You use the
TIBCO Object Service Broker Ul to define the OIG objects that are the building
blocks of your TIBCO Object Service Broker application: applications,
transactions, XML documents, and XML field maps.

Components Available

Rules

Tables

You build an Object Integration Gateway application from the following
components, referred to as Object Integration Gateway objects.

Rules are the native programming instructions for the rules engine. Rules execute
the logic of your server-side application: they tell the rules engine what tasks to
perform, such as what data to access from which data tables, and what to do with
the data.

A data table is a defined unit of storage in the TIBCO Object Service Broker
database system, used for holding pieces of related information. A data table
contains fields (columns) and occurrences (rows). Each occurrence is uniquely
identified by a primary key. TIBCO Object Service Broker has many table types to
handle a wide range of permanent file storage types, from flat files to DB2 for IBM
z/OS systems. Transient (temporary) tables are also used to hold intermediate
results that are passed to the client or processed by another Object Integration
Gateway object.

TIBCO Object Service Broker Object Integration Gateway

Transactions

XML Documents

Overview | 9

An Object Integration Gateway transaction is a defined unit of processing that
either succeeds or fails entirely. That is, it does not partially succeed or otherwise
produce an ambiguous state after executing.

In Object Integration Gateway, an XML document is a definition that governs
how OIG consumes (reads) or produces (writes) a particular XML document —
that is, how the document is fed into or passed out of the TIBCO Object Service
Broker database.

TIBCO Object Service Broker Object Integration Gateway

10 | Chapter 2 Designing an OIG Application

Designing a Transaction

Transaction

A transaction is a defined unit of processing that either succeeds or fails entirely.
That is, it does not partially succeed or otherwise produce an ambiguous state
after executing. An exception to this is a transaction that is executed as part of a
larger compound transaction, specifically startTran and stopTran interfaces. This
transaction does not affect the calling transaction if it succeeds and commits only
data particular to that transaction. However, if the transaction fails, the
compound transaction in which it is nested also fails.

Transactions are one of the basic building blocks of an Object Integration Gateway
web application. They determine what data is accessed, and what actions are
performed on the data.

Linking Other OIG Objects to a Transaction

When a transaction is built, it makes sense to have other Object Integration
Gateway objects linked to the transaction. For example: you have a transaction
that accesses all the sales data for a particular region and summarizes it into an
intermediate table. You then need the results to appear on a web page containing
both static content and dynamic content.

When the Object Integration Gateway objects are linked to a transaction, they are
invoked every time the transaction is invoked. This is both a good thing and a bad
thing. Perhaps, in some situations, the linked object should not be invoked, unless
some condition is met. In this case, you can specify a post-build rule to be run at
the end of the transaction. The post-build rule can test the required condition to
determine whether the linked Gateway objects are invoked. For more information
about the available functions for post-build rules, and their syntax, refer to
Chapter 9, Using the OIG Rules Programming Interface, on page 101.

TIBCO Object Service Broker Object Integration Gateway

Designing an XML Document | 11

Designing an XML Document

XML Capabilities of OIG

Object Integration Gateway can both consume (read) and produce (write) XML
documents.

In OIG, all XML documents are mapped to a set of database tables and their
associated relational model. The OIG XML document definition is used to
determine the structure of the XML document produced from the relational
model by defining both the structure of the data and the formatting of the data.
When the XML document is produced, only the initial data selection and the
parent Gateway document definition are specified. The document definitions
supply the data access specifications to navigate the data model. When an XML
document is consumed, the OIG document definition is used to format the parsed
data and enter the data into the associated databases.

Re

S

For a detailed example, see “Creating XML Documents” on page 127.

XML Field Map

An XML field map has two complementary purposes. First, when an XML
document is being produced, the field map is used to define what data is to be
included in the document, and to determine how this data is represented in the
document. Second, when an XML document is being consumed, the field map
defines the way that data parsed from the document is processed and where the
data is entered into the database.

Root Names for XML Document Tables

Every table within an XML document has a root name. Unlike the root name for
an XML document, the root name element for a table will appear once for every
row of the table being mapped. Fields of a row of a table can be mapped to
attributes of the table root name or some sub-element of the table root name,
except as described in , Restrictions That Apply to Tables with No Root Name,
page 13. The following sections contain examples for your use.

TIBCO Object Service Broker Object Integration Gateway

12 | Chapter 2 Designing an OIG Application

Example 1

In the example below, a single table is mapped to an XML document. The element
“employees” is the root name of an XML document and “employee” is a table
root name.

<?xml version="1.0"7>
<employees>
<employee>
<empno>80002</empno>
<lname>SMYTHE</lname>
</employee>
<employee>
<empno>80003</empno>
<lname>CHANG</1lname>
</employee>
<employee>
<empno>80004</empno>
<lname>GARZA</1name>
</employee>
</employees>

Example 2

There are circumstances where an XML document required less structure. Such
documents can be consumed or produced by mapping a table with a single row
and not specify root name for the table. The following example shows this
structure: PolicyOwner is the root name of the XML document, followed by only
the field name Value.

<?xml version="1.0" 7>
<PolicyOwner>

<Value>Fred Smith</Value>
</PolicyOwner>

Example 3

Within a single XML document you can specify one table with only one row as
well as multi-row tables, as shown in the following example:

<?xml version="1.0" 7>
<PartRequest>
<PartCount>2</PartCount>
<Part>
<Number>874jqg</Number>
<Description>Cylinder head</Description>
</Part>
<Part>
<Number>860jg</Number>
<Description>Valve</Description>
</Part>
</PartRequest>

TIBCO Object Service Broker Object Integration Gateway

Designing an XML Document | 13

Restrictions That Apply to Tables with No Root Name

The following restrictions apply to specifying a table with no root name in your
XML document:

Only one table of an XML document can have no root name.

The fields of a table with no root name cannot be mapped to attributes. This is
true because the root element of an XML document cannot have attributes.

Pre and post-processing rules are not permitted for tables without a root
name.

TIBCO Object Service Broker Object Integration Gateway

14 | Chapter 2 Designing an OIG Application

Transferring OIG Objects Between Databases

Transferring Objects

To transfer Object Integration Gateway objects from one TIBCO Object Service
Broker database to another, you can use the UNLOAD and LOAD tools, or use the
TIBCO Object Service Broker promotion system.

OIG Object Types That Can Be Transferred?
Currently, you can transfer the following types of objects:
¢ TRAN—an OIG transaction
e XMLDOC—an XML document
e XMLFIELDMAP—an XML field map

Using UNLOAD and LOAD

You invoke the UNLOAD and LOAD tools from the TIBCO Object Service Broker
text workbench. You use UNLOAD to export an Object Integration Gateway
object from the TIBCO Object Service Broker database to an external UNLOAD
file. You transfer this UNLOAD file to the system where the other TIBCO Object
Service Broker database resides. Then, on the second system, you use LOAD to
import the object from the UNLOAD file into the other TIBCO Object Service
Broker database.

For more information about how to use the UNLOAD and LOAD tools, refer to
TIBCO Object Service Broker Shareable Tools in the TIBCO Object Service Broker
documentation set.

Promoting OIG Objects

Promoting Object Integration Gateway objects is no different than promoting
other TIBCO Object Service Broker objects. The promotable object types appear,
along with the other TIBCO Object Service Broker types, on the promotions
screen.

For more information about TIBCO Object Service Broker promotions, refer to
TIBCO Object Service Broker Managing Deployment in the TIBCO Object Service
Broker documentation set.

TIBCO Object Service Broker Object Integration Gateway

Using Data Access Parameters | 15

Using Data Access Parameters

When accessing data through generic data access rules and XML generation, you
can supply data access parameters. These take two forms: data parameter values
and data key values. A data parameter value specifies the criteria that enables
Object Integration Gateway to determine the parameter value required to access a
parameterized data table. A data key value specifies the selection criteria that OIG
uses to select data from the data table.

For information about the syntax required for data parameter values and data key
values, refer to Appendix B, Understanding the Data Access Parameter Syntax, on
page 123.

Data Access Parameters Can Be Dynamic

Data access parameters do not have to be static, but can be dynamic, either totally
or partially. Specifying data access parameters as static values is a valid, but
limiting, approach. The only requirement is that the resultant values make up a
valid data access specification.

For example, the specification to access all rows of data from the table MYTABLE,
where the field VALID is set to Y and the field VALUE is greater than a given
integer, could be as follows:

Key Value = "VALID = 'Y' AND VALUE > 123"

In this example we could have any part of the predicate string as dynamic. A
good example would be that we wanted to pass the value for the field VALUE
from the web application as a session data value or as a name-value pair
argument called SELECTEDVALUE. In this case, the key value for the object
would be:

Key Value = "VALID = 'Y' AND VALUE > {SELECTEDVALUE}"

TIBCO Object Service Broker Object Integration Gateway

16 | Chapter 2 Designing an OIG Application

Passing Data to and Receiving Data from OIG

You can exchange data with OIG via:
¢ Name and value pairs
* Table recordsets

e XML

Passing Parameters Data

Collections of names and values can be passed as parameter data for an OIG
transaction or XML document when the object is run. This data can be extracted
by rules using the ECTSGETARGS utility. Such data is held in a session table
called ECTSPARMS. Names for parameter data do not need to be unique. The
same parameter name may be passed more than once.

When the .NET or the COM interfaces of OIG are used on a web page, query data
for the page is automatically passed along with parameters for the OIG object.

Passing and Receiving Session Data

A collection of persistent data may also be passed when running an OIG object
and is automatically received when the request has completed. Once a name and
value pair has been added to the collection of persistent data, it will be passed for
all calls afterwards unless it is removed from the collection. The Java, .NET, and
COM OIG interfaces have functions to set and get these data. Unlike parameter
data, names must be unique in the collection of persistent data.

A rule can extract persistent data using the ECTSGETARG or ECTSGETSESS
utilities. ECTSGETSESS only gets persistent data whereas ECTSGETARG first
checks for parameter data and then searches the collection of persistent data.
Persistent data is placed in a session table named ECTSSESSION.

When called from a web page context, the .NET and COM interfaces of OIG
automatically pass all web session variables in the collection of persistent data.
Should a rule add a new name and value to the collection, then the value is

automatically copied to the web page’s session variable collection after the call to
OIG.

The amount of data passed as persistent data should be carefully considered, as it
can significantly affect the performance of your application.

TIBCO Object Service Broker Object Integration Gateway

Passing Data to and Receiving Data from OIG | 17

Passing and Receiving Data as Tables or XML

More complex data may be passed and received as a table or XML document.
XML is passed and received as strings but tables are exchanged using the
appropriate object for the technology being used.

Language/Platform Recordset Object

Java webRowSet
.NET ADO.NET recordset
COM ADO recordset

Tables and XML are passed and received using get and set methods as name and
value pairs. The name when setting a table or XML document corresponds to the
name of a table or XML document defined in TIBCO Object Service Broker.

To pass a collection of tables and XML, the OIG application must call set interfaces
to build the collection. On the subsequent call to run a transaction or XML
document, these documents and tables are also passed along with parameter data
for the object. Data from the collection is automatically available to rules for the
OIG object. Table data is assigned to the named table and the appropriate XML
document objects are invoked to process the XML before the OIG object is run.
Finally, the collection of tables and XML is cleared when the call to run an OIG
object is complete.

OIG XML documents and transactions can return XML and tables. Upon return
from calling an OIG object an application can use appropriate get functions to
extract the returned data.

TIBCO Object Service Broker Object Integration Gateway

18 | Chapter 2 Designing an OIG Application

TIBCO Object Service Broker Object Integration Gateway

Chapter 3

Topics

|19

Using OIG for .NET

This chapter describes how to use OIG for .NET.

¢ Overview, page 20

* Configuring Pools for the NET Class Library, page 21
¢ Instantiating the eCTSsession Object, page 22

* Passing Data to the eCTSsession Object, page 23

¢ eCTSsession Methods, page 24

* Code Examples, page 38

TIBCO Object Service Broker Object Integration Gateway

20 | Chapter 3 Using OIG for .NET

Overview

Object Integration Gateway Support for .NET

TIBCO Object Service Broker support for NET contains the components
necessary to define and execute transactions that access data residing in TIBCO
Object Service Broker (or third-party databases accessible through TIBCO Object
Service Broker) from a Microsoft Windows environment. A .NET class library
provides native access to TIBCO Object Service Broker for ASP.NET applications,
traditional forms-based applications, and COM+ applications. You can use an
ASPNET Web Control to paint web pages using the drag-and-drop painting
facilities of Microsoft Visual Studio .NET.

The .NET class library provides access to all the features of OIG that are available
from the OIG servlet and the OIG tag library, plus the ability to access data via an
ADO.NET recordset. The .NET class library supports two public interfaces: the
eCTSsession class, which provides all the methods needed to write an OIG
application, and the eCTSexception class (derived from the .NET
ApplicationException class), which is thrown should an error be detected.

The examples in this chapter use Visual Basic .NET syntax.

TIBCO Object Service Broker Object Integration Gateway

Configuring Pools for the .NET Class Library | 21

Configuring Pools for the .NET Class Library

The Pool Configuration Tool

The setup program automatically configures the .NET class library and the web
control. However, you can change configuration settings at any time, using

the NET Pool Definer. This tool enables you to create aliases for a defined set of
session parameters. You can then use the pool name in the code of your client
application to specify the session parameters for your application.

Unlike the OIG COM component, the .NET class library does not require the
% installation of a Java Virtual Machine on the installation machine.

When you make changes to a pool definition, you can use the OIG administration
K 2 interface to refresh the session pool, thereby putting the changes into effect
immediately. Refer to Appendix D, Using the OIG Administration Interface, on
page 161 for more information.

TIBCO Object Service Broker Object Integration Gateway

22 | Chapter 3 Using OIG for .NET

Instantiating the eCTSsession Object

Constructors

Example

Before any functionality can be invoked, you must instantiate an eCTSsession
object. The eCTSsession class has the following constructors:

eCTSsession()

eCTSsession(boolean useWebContext)

The second constructor enables you to instantiate an eCTSsession object that does
not send variables out of the web session’s request object to TIBCO Object Service
Broker when an interaction is invoked. This is useful in cases where the
component is instantiated in a web application, but the application programmer
wants to explicitly control what web variables are sent to TIBCO Object Service
Broker.

The first (default) constructor instantiates an eCTSsession object that sends all
variables to TIBCO Object Service Broker on each interaction.

The following example instantiates an eCTSsession object in Visual Basic .NET
code:

Dim MySession As eCTSsession = New eCTSsession
'Invoke methods...

MySession.Close() 'Closes the session immediately
MySession = Nothing 'Frees the session object

TIBCO Object Service Broker Object Integration Gateway

Passing Data to the eCTSsession Object | 23

Passing Data to the eCTSsession Object

The following sections describe the parameter syntax for the eCTSsession class
methods.

Strings
A simple string value:

Transaction = "DEMOTX"

Hashtable and NameValueCollection Classes

Sets of parameters are passed to methods of the eCTSsession class as name-value
pairs using .NET collection classes. Session parameters have unique key names,
and are passed via the Hashtable class. Transaction parameters can have more
than one value per key name, and so are passed via the NameValueCollection
class. The following is an example that passes both session and transaction
parameters:

Dim MySesssion As eCTSsession = new eCTSsession
Dim MySessParms As Hashtable = new Hashtable

MySessParms("U") = "USR40"
MySessParms("P") = "USR40"
MySessParms("L") = "USR40"

MySession.OpenApplication MySessParms

Dim MyArgs As new NameValueCollection
MyArgs.Add("DEPT", "Sales")
MyArgs.Add("EMPLOYEE", "Sally")
MyArgs.Add("EMPLOYEE", "Tom")
MySession.RunTrans ("DEMOTX", MyArgs)

Recordsets

An ADO.NET DataTable object can be used both as input to and a result from
eCTSsession methods. By definition, ADO.NET DataSets are disconnected from a
data source. This means that they are not actively connected to the source
database, so any updates made to a DataTable within a DataSet are not directly
reflected in the source database. However, a DataTable returned by an
eCTSsession object can be modified and passed back to TIBCO Object Service
Broker by another eCTSsession method call.

TIBCO Object Service Broker Object Integration Gateway

24 | Chapter 3 Using OIG for .NET

eCTSsession Methods

Opening Object Integration Gateway Sessions

OpenApplication

Opens an Object Integration Gateway session. An application must open an OIG
session to run an OIG transaction or XML document. The OpenApplication
method enables you to either create a new session, or borrow one from a pool of
existing sessions. Pooled sessions are shared between one or more applications.

Syntax:

MySession.OpenApplication()
MySession.OpenApplication(mode)
MySession.OpenApplication(poolName)
MySession.OpenApplication(poolName, mode)
MySession.OpenApplication(sessionParms)

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 25

MySession.OpenApplication(sessionParms, mode)

Parameter Type Value/Meaning

poolName String The case-sensitive name of a defined pool for a
set of OIG session parameters. Pool names are
held in the Windows registry. By default such
sessions are pooled.

sessionParms Hashtable A collection of names and their value. By
default the session created is not pooled. Refer
to Appendix A, Setting OIG Session
Initialization Parameters, on page 113.

mode enumeration If set to Mode.Pooled sessions are created once
and pooled for reuse after being released.

If set to Mode.Unpooled sessions are
terminated after being released.

If you call the OpenApplication method without specifying either the poolName
%} parameter or the sessionParms parameter, the default OIG session parameter
settings are used. The default session parameters are determined in one of the
following two ways:

e From the DEFAULT alias settings, if an alias of that name is defined using the
Pool Definer.

¢ From the default session parameter settings, if a DEFAULT pool is not
defined. For more information, refer to Appendix A, Setting OIG Session
Initialization Parameters, on page 113.

Closing Object Integration Gateway Sessions

Close

Immediately closes an OIG session. If the underlying session was pooled, the
session is returned to the pool of sessions for re-use by another application. If the
session was not pooled, the session is terminated and the TIBCO Object Service
Broker resources associated with the session are released. If there is a transaction
in progress, this transaction is terminated and any updates pending are rolled
back. Refer to “StartTran” on page 28.

Syntax:

TIBCO Object Service Broker Object Integration Gateway

26 | Chapter 3 Using OIG for .NET

Dispose

S

MySession.Close()

The storage for objects under NET’s Common Language Runtime (CLR)
Environment is managed by a garbage collector. Remember that objects are
reclaimed, and the destructor for the object is invoked, when the CLR garbage
collector chooses to do so.

A VB .NET programmer should not expect the underlying TIBCO Object Service
Broker session of an opened eCTSsesssion object to be released when the program
sets the variable’s object reference to Nothing. For example:

MySession = Nothing

It is good practice to invoke the Close method to release the underlying resources
for an eCTSsession when the object is no longer needed. Otherwise, your
application could run out of TIBCO Object Service Broker sessions because the
CLR garbage collector has not been invoked for a long period of time.

Immediately closes an OIG session. This is an alias for the Close method.

Syntax:

MySession.Dispose()

Invoking Processing

RunRule

The methods in this section can be used to invoke functionality defined to Object
Integration Gateway. Each of the OIG objects (for example, transactions) can be
explicitly invoked.

Runs a rule within the current transaction. Before a rule can be called, a
transaction must be started by calling the StartTran method.

Syntax:

MySession.RunRule(ruleName)

MySession.RunRule(ruleName, parms)

Parameter Type Value/Meaning

ruleName String The name of the rule to be executed.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 27

Parameter Type Value/Meaning

parm NameValueCollection A collection of names and their values to
be passed to the Gateway rule. The
parameters specified for this argument
override the parameters specified in the
URL query string or passed by a POST
from an HTML form.

RunTrans
Runs the named transaction.
Syntax:
MySession.RunTrans(transName)
MySession.RunTrans(transName, parms)
Parameter Type Value/Meaning
transName String The name of the transaction to be run.
parms NameValueCollection A collection of names and their values
to be passed to the transaction. The
parameters specified for this argument
override the parameters specified in the
URL query string or passed by a POST
from an HTML form.
RunXmlIDoc

Obtains or extracts the named XML Document.

Syntax:
MySession.RunXmlDoc (docName)

MySession.RunXmlDoc(docName, parms)

Parameter Type Value/Meaning

docName String The name of the XML document to be
obtained or extracted.

TIBCO Object Service Broker Object Integration Gateway

28 | Chapter 3 Using OIG for .NET

StartTran

StopTran

Handling Data

Parameter Type Value/Meaning

parms NameValueCollection A collection of names and their values to
be passed to the XML document. The
parameters specified for this argument
override the parameters specified in the
URL query string or passed by a POST
from an HTML form.

Starts an OIG transaction. Subsequent RunXmlDoc or RunRule calls run within
the transaction. The transaction is terminated by the next StopTran or Close call. A
call to RunTrans while a transaction is active results in the nesting of a TIBCO
Object Service Broker transaction to run the OIG transaction. Only one started
transaction can be active for an OIG session at one time. Starting a second
transaction results in an error.

Syntax:

MySession.StartTran(updateMode)

Parameter Type Value/Meaning

updateMode bool If true, updates are permitted while running the
transaction. Otherwise, updates are not permitted and
locks are not taken for tables.

Stops an OIG transaction.
Syntax:

MySession.StopTran(commit)

Parameter Type Value/Meaning

commit bool If true, updates made to tables during the transaction are
applied to the MetaStore when the transaction is
terminated.

The methods in this section can be used to pass data to and from Object
Integration Gateway either as a ADO.NET DataTable, or as an XML document.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 29

GetDataSet

Returns all the OIG tables returned by the last RunTrans, RunXmlDoc, or
RunRule call as a collection of ADO.NET DataTables in an ADO.NET DataSet
object. The name of a DataTable in the collection is the name of the interface table.

Return type: ADO.NET DataSet object

Syntax:
dataset = MySession.GetDataSet()

GetDocument

Returns an XML document generated by the last execution of the RunTrans or
RunXmlDoc methods.

Return type: String
Syntax:

xml = MySession.GetDocument()

xml = MySession.GetDocument(docName)

Parameter Type Value/Meaning

docName String The name of the XML document returned. If this
parameter is not specified, GetDocument returns the
first XML document in the result set.

GetDocumentFromTable

Returns the XML for an interface table returned by the last RunTrans or RunRule
call. Normally interface tables are returned as ADO.NET DataTables using the
GetTable method.

Return Type: String
Syntax:

dataset = MySession.GetDocumentFromTable(tableName)

Parameter Type Value/Meaning

tableName String The name of the table to be returned as a string.

TIBCO Object Service Broker Object Integration Gateway

30 | Chapter 3 Using OIG for .NET

GetTable

Converts an XML document from the last Run method call to an ADO.NET
DataTable object, and returns the DataTable object. The XML document must be
of type ADO.NET.

Return type: ADO.NET DataTable object

Syntax:
datatable = MySession.GetTable()

datatable = MySession.GetTable(documentName)

Parameter Type Value/Meaning

documentName String The name of the XML document to be extracted.
The XML document must be of type ADO.NET. If
this parameter is not specified, GetTable converts
the first XML document in memory.

GetTableFromDocument

Converts an XML document from the last Run method call to an ADO.NET
DataTable object, and returns the DataTable object. The XML document must be
of type ADO.NET and is produced as a result of running an XML document
rather than as a result of the Pass Data to Client option of an interface table.

Return type: ADO.NET DataTable
Syntax:

datatable = MySession.GetTableFromDocument (documentName)

Parameter Type Value/Meaning

documentName String The name of the XML document to be returned as
an ADO.NET DataTable.

GetTableOfContent

Returns all data returned by the last RunTrans, RunXmlDoc, or RunRule call as an
ADO.NET DataTable. This includes interface tables, XML documents, and
persistent variables.

The table-of content information related to persistent data is present only if the
OIG session has been opened with debug mode specified. Refer to the session
parameter DEBUG on page 114 for more information.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 31

The DataTable returned contains three columns, each row of the table describing a
result returned.

Columns Type Description

Name String Contains the name of the OIG result.
Type Integer Identifies the result.

Value String Contains the value of the returned data.

Possible types of returned data are as follows:

Value Description

3 XML for an interface table.

4 XML for a document.

10 Rules trace back in HTML format.
11 Rules trace back in text format.

30 Deleted persistent data.

31 Replaced persistent data.

32 Persistent data.

33 “Once only” persistent data.

Return type: ADO.NET DataTable object

Syntax:
datatable = MySession.GetTableOfContent()

GetXmiIDocument

Returns an XML document generated by the last execution of the RunTrans,
RunRule, or RunXmlDoc methods. The resultant XML data is held in a NET XML
DOM object.

Return type: System.Xml.XmlDocument object
Syntax:

xmlDoc = MySession.GetXmlDocument()

TIBCO Object Service Broker Object Integration Gateway

32 | Chapter 3 Using OIG for .NET

GetXmiTextReader

SetDocument

xmlDoc = MySession.GetXmlDocument (docName)

Parameter Type Value/Meaning

docName String The name of the XML document returned. If this
parameter is not specified, GetXmlDocument returns the
first XML document in the result set.

Returns an XML document generated by the last execution of the RunTrans or
RunXmlDoc methods. The resultant XML data is held in a .INET XmlTextReader
object. The XmlTextReader object provides a high-performance, forward-only and
read-only way of accessing XML data. The model is similar to the SAX XML
model, but implemented as a pull model rather than the SAX push model.

Return type: System.Xml. XmlTextReader object
Syntax:
xmlDoc = MySession.GetXmlTextReader()

xmlDoc = MySession.GetXmlTextReader(docName)

Parameter Type Value/Meaning

docName String The name of the XML document returned. If this
parameter is not specified, GetXmlTextReader returns
the first XML document in the result set.

Stages an XML document to be sent to OIG on the next Run method call. You can
call the SetDocument method multiple times to stage multiple documents for the
next Run method call.

Syntax:

MySession.SetDocument (docName, xmlDoc)

Parameter Type Value/Meaning

docName String The name of the OIG XML document definition used for
processing the incoming XML document.

xmlDoc String The XML document string to be passed to an OIG
application.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 33

SetDocumentFromFile

Stages an XML document to be sent to OIG on the next Run method call. The
source of the XML document is read from the file identified by the fileName
parameter. The filename can be a complete path name or a filename that is relative
to the current working directory.

Syntax:

MySession.SetDocumentFromFile(docName, fileName)

Parameter Type Value/Meaning

docName String The name of the document to be passed to TIBCO Object
Service Broker.

fileName String The name of the file containing the XML document.

SetTable

Passes the contents of an ADO.NET DataTable object to an TIBCO Object Service
Broker data table. The SetTable method converts the DataTable to an XML
document of type MSSCHEMA, so that when the next OIG object is invoked, the
XML document is sent along with any other parameters and loaded into the
named TIBCO Object Service Broker data table.

You can use the SetTable method to pass data to TIBCO Object Service Broker that
is required by an OIG object invoked by a subsequent Run method.

Syntax:

MySession.SetTable(tableName, datatable)

Parameter Type Value/Meaning

tableName String The name of the TIBCO Object Service Broker
table the DataTable is loaded into when the
next OIG object is invoked.

datatable ADO.NET The ADO.NET DataTable to be passed to
DataTable object TIBCO Object Service Broker.

When the destination table is a TIBCO Object Service Broker screen table, and the

%} subsequently invoked OIG transaction has an associated TIBCO Object Service
Broker screen, the data is loaded into that screen table for the screen named in the
OIG object definition.

TIBCO Object Service Broker Object Integration Gateway

34 | Chapter 3 Using OIG for .NET

SetXmiDocument

Stages an XML document to be sent to OIG on the next Run method call. The
document is passed via a .NET DOM object (System.Xml. XmlDocument). You can
call the SetXmlDocument method multiple times to stage multiple documents for
the next Run method call.

Syntax:

MySession.SetXmlDocument (docName, xmlDoc)

Parameter Type Value/Meaning

docName String The name of the OIG XML document
definition used for processing the
incoming XML document.

xmlDoc System.Xml. The XML document to be passed to an
XmlDocument object OIG application.

Handling HTML and Messages

GetEndMsg

GetResult

Returns the end message from the last execution of RunTrans or RunXmlDoc. The
GetEndMsg method is typically used after executing a Run method.

Return type: String

Syntax:
msg = MySession.GetEndMsg()

Returns the HTML generated by the last execution of a Run method.
Return type: String

Syntax:
html = MySession.GetResult()
ASPX Example:

MySession.RunTrans ("DEMOTX")
Response.Write(MySession.GetResult())

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 35

Handling Errors from eCTSsession

An eCTSsession object throws an eCTSexception object if an error occurs. The

eCTSexception class is derived from the .NET ApplicationException class, and
has additional properties you can use to get information about rule failures in

your OIG application.

You can use the eCTSexception object’s Message property to get the reason for the
error. You can also use the following two eCTSexception properties to obtain more
information about the error.

HtmlErrorLog

If a rule fails in the OIG application, the rules trace back is returned as string in
HTML format. If the error is not due to a rules failure, an empty string is returned.
Syntax:

html = MyeCTSexception.HtmlErrorLog

TextErrorLog

If a rule fails in the OIG application, the rules trace back is returned as string. Each
line of the trace back ends with a carriage return followed by a line feed. If the
error is not due to a rules failure, an empty string is returned.

Syntax:

text = MyeCTSexception.TextErrorLog

Managing Persistent Data for Web Sessions

When using OIG with ASPNET web applications, it is a common technique to
store application state information within the IIS Session object. You can use the
following methods for OIG to access relevant session variables by setting up a list
of variables that are automatically passed to a Run method. The data that is
passed is available via the {argname} syntax when you define OIG objects, or via
the ECTSGETARG and ECTSGETSESS utility rules. You can also use the
ECTSSETSESS utility rule to update the IIS Session object. The IIS Session object is
updated at the end of the Run method.

AddSessionParm

Adds a name to the list of session variables passed to the rules engine at execution
of RunTrans or RunXmlIDoc.

Syntax:

TIBCO Object Service Broker Object Integration Gateway

36 | Chapter 3 Using OIG for .NET

MySession.AddSessionParm(varName)

Parameter Type Value/Meaning

varName String The name of the session variable to be added to the list.

RemoveSessionParm

Removes a name from the list of session variables passed to the rules engine at
execution of RunTrans or RunXmlDoc.

Syntax:

MySession.RemoveSessionParm(varName)

Parameter Type Value/Meaning

varName String The name of the session variable to be removed from the
list.

Managing Persistent Data for Non-Web Sessions

&

GetPersistentData

Applications that run in a web environment, such as those using ASP.NET, can
use the AddSessionParm and RemoveSessionParm methods to manage a list of
web session variables stored in the IIS Session object. However, applications
running in non-web environments do not have access to the IIS Session object or
its variables. You can use the following methods for a non-web application to
create and access a list of session variables that is stored by the eCTSsession
object. These non-web session variables are stored as a collection of name-value
pairs that is passed to, and can be updated by, any of the Run methods.

The following methods can also be called by applications running in a web
environment such as ASP.NET. In such cases, the session variables are stored as
web session variables in the IIS Session object.

Returns the value of an OIG session variable.
Return type: String
Syntax:

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 37

varValue = MySession.GetPersistentData(varName)

Parameter Type Value/Meaning

varName String The name of the session variable whose value is to be
returned.

SetPersistentData

Sets the value of an OIG session variable. If the named session variable is not set,
the variable is added to the list of session variables passed to the rules engine on
subsequent Run method calls. If the session variable is set to an empty string, the
variable is removed from the list of variables passed.

Web applications can also use this method to add to, or remove from, the list of
web session variables normally managed by the AddSessionParm and
RemoveSessionParm methods.

Syntax:

MySession.SetPersistentData(varName, varValue)

Parameter Type Value/Meaning

varName String The name of the session variable whose value is to be
set.
varValue String The value to be set for the named session variable.

TIBCO Object Service Broker Object Integration Gateway

38 | Chapter 3 Using OIG for .NET

Code Examples

Example 1

The following code fragments show the Page_Load method of a sample ASPX
page. The page contains a single web control, a ListBox named listBooks. A
non-pooled session is opened and the BOOKLIST XML document is called to
return the data in the BOOKS TIBCO Object Service Broker table. The GetTable
method is used to extract the data as an ADO.NET DataTable object. A “For Each”
loop is used to extract the values of the TITLES attribute so that they can appear
in the ASPX page’s ListBox.

Visual Basic

Private Sub Page_Load(_
ByVal sender As System.Object,
ByVal e As System.EventArgs) _
Handles MyBase.Load

Dim eSession As eCTSnet.eCTSsession = New eCTSnet.eCTSsession
Dim sessParms As Hashtable = New Hashtable
Dim row As DataRow

sessParms("U") = "USR40"
sessParms("P") = "USR40"
sessParms("HOST") = "USR40"

eSession.OpenApplication(sessParms)

eSession.RunXmlDoc ("BOOKLISTNET")

Dim table As DataTable =

eSession.GetTableFromDocument ("BOOKLISTNET")

For Each row In table.Rows
listBooks.Items.Add(row("TITLE"))

Next

eSession.Dispose()
eSession = Nothing
End Sub

C#

using System;

using System.Collections;

using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;
using System.Web.UI;

using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

TIBCO Object Service Broker Object Integration Gateway

Code Examples | 39

using eCTSnet;

namespace OIGDocExamp
{
/// <summary>
/// Summary description for WebForm2.
/// </summary>
public class WebForm2 : System.Web.UI.Page

{
protected System.Web.UI.WebControls.ListBox listBooks;

private void Page_Load(object sender, System.EventArgs e)
{
// Put user code to initialize the page here
eCTSsession eSession = new eCTSnet.eCTSsession();
Hashtable sessParms = new Hashtable();
sessParms.Add("U", "USR40");
sessParms.Add("P", "USR40");
sessParms.Add("HOST", "USR40");
eSession.OpenApplication(sessParms,
eCTSnet.eCTSsession.Mode.Pooled);
eSession.RunXmlDoc ("BOOKLISTNET") ;
DataTable dt =
eSession.GetTableFromDocument ("BOOKLISTNET");
foreach (DataRow row in dt.Rows)
listBooks.Items.Add((string) (row["TITLE"]1));
eSession.Dispose();

3

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{
// CODEGEN: This call is required by the ASP.NET Web Form
Designer.
InitializeComponent();
base.OnInit(e);
}

/// <summary>

/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

Example 2

This example shows how you create an ASP.NET web service in Microsoft Visual
Studio .NET, using the .NET class library for OIG.

TIBCO Object Service Broker Object Integration Gateway

40 | Chapter 3 Using OIG for .NET

First, open Visual Studio and create a new project. For the project type, select
Visual Basic. For the template, select ASP.NET Web Service.

In the new project, add a reference to the .NET class library for OIG.

Next, in the generated .asmx file, add the following Visual Basic code:

<WebMethod()> Public Function GetBookDetails(ByVal BookID As
String) _
As DataTable
Dim oSession As eCTSnet.eCTSsession = New eCTSnet.eCTSsession
Dim userParms As NameValueCollection = New NameValueCollection
oSession.OpenApplication()
userParms ("KEY") = BookID
oSession.RunTrans("BOOKDETADO", userParms)
GetBookDetails = oSession.GetTable()
oSession.Dispose()
oSession = Nothing
End Function

Compile and run the project. In debug mode, the project presents a web-based
interface that you use to test the web service.

TIBCO Object Service Broker Object Integration Gateway

Chapter 4

Topics

|41

Using the OIG COM Component

This chapter describes how to use the OIG COM component.

* Overview, page 42

¢ Configuring the Object Integration Gateway COM Component, page 43

¢ Instantiating the Object Integration Gateway COM Component, page 44

® Passing Data to the Object Integration Gateway COM Component, page 45
¢ e(CTSsession Methods, page 47

¢ Code Examples, page 57

TIBCO Object Service Broker Object Integration Gateway

42 | Chapter 4 Using the OIG COM Component

Overview

Object Integration Gateway COM Component

Object Integration Gateway comes with a COM component that provides a simple
interface between the rules engine and any COM-enabled components, such as
Visual Basic applications and Active Server Pages. The COM component provides
access to all the features of Gateway that are available from the servlet and the tag
library, plus the ability to access data via an ADO recordset.

The Object Integration Gateway COM component contains one class,
eCTSsession. This class exposes all the methods needed to write an application.

The examples in this chapter use Visual Basic or ASP syntax.

TIBCO Object Service Broker Object Integration Gateway

Configuring the Object Integration Gateway COM Component | 43

Configuring the Object Integration Gateway COM Component

Object Integration Gateway COM Configurator

The Object Integration Gateway COM component is automatically configured
when you install it. However, you can change the COM component's
configuration settings at any time, using the COM Configurator. This tool enables
you to specify which Java Virtual Machine and which binaries the COM
component uses. It also enables you to create aliases for a defined set of session
parameters. You can then use the alias in the code of your client application to
easily set the session parameters for your application.

When you install the Object Integration Gateway COM component, the setup
program selects the most current Java Virtual Machine on the installation
machine. If the JVM’s directory location subsequently changes (because you
install a newer version of the Java Runtime Environment, for example), you need
to specify the new location of the JVM in the COM Configurator.

If you install a newer version of the JRE, you can simply delete the line in the

K 2 Object Integration Gateway COM Configurator that specifies the location of the
JVM. When you restart the COM Configurator, it automatically searches for and
selects the latest JVM.

When you make changes to an alias definition, you can use the administration
interface to refresh the session pool, thereby putting the changes into effect
immediately. Refer to Appendix D, Using the OIG Administration Interface, on
page 161 for more information.

TIBCO Object Service Broker Object Integration Gateway

44 | Chapter 4 Using the OIG COM Component

Instantiating the Object Integration Gateway COM Component

Examples

In Visual Basic

Before invoking any Object Integration Gateway functionality, you must
instantiate the COM component, as shown in the following examples.

Use the following syntax to instantiate a COM object in Visual Basic code:

Dim MySession As eCTSsession

Set MySession = New eCTSsession
'Invoke methods...

MySession.Close 'Closes the session
Set MySession = Nothing

On Active Server Pages

Use the following syntax to instantiate a COM object in ASP code:

Dim MySession

Set MySession = Server.CreateObject("eCTScom.eCTSsession")
'Invoke methods...

MySession.Close 'Closes the session

Set MySession = Nothing

TIBCO Object Service Broker Object Integration Gateway

Passing Data to the Object Integration Gateway COM Component | 45

Passing Data to the Object Integration Gateway COM Component

Overview
In the following method descriptions, the required format for parameters is
explained and the parameter syntax for the COM component methods is
described.

Strings

A simple string value:

Transaction = "DEMOTX"

String Arrays

The COM object can accept string arrays in two formats. The first is an array of
arrays, and the second is a two-dimensional array. The first format is an
easy-to-use format that does not require any variable to be declared. The second
format requires that a variable be defined, but the advantage of this is that the
defined variable and its values can be reused within the application.

Format 1: Array of Arrays (Object Integration Gateway 1.x Compatible)

Example:

MySession.RunTrans "DEMOTX", Array(Array("NAME", "VALUE"))

Format 2: Two-Dimensional Arrays
Array(x, y) = "stringvalue"

where x is the vertical dimension of the array (indexed from zero) and y is the
horizontal dimension of the array (indexed from zero).

® Visual Basic example passing arrays of strings:
Dim MyArgs(0,1) As String

MyArgs(0,0) "NAME"
MyArgs(0,1) "VALUE"
MySession.RunTrans "DEMOTX", MyArgs

® ASP and Visual Basic example passing variant arrays:
Dim MyArgs(0,1)

TIBCO Object Service Broker Object Integration Gateway

46 | Chapter 4 Using the OIG COM Component

MyArgs(0,0) "NAME"
MyArgs(0,1) "VALUE"
MySession.RunTrans "DEMOTX", MyArgs

Recordsets

An ADO 2.5 or later Recordset object can be used both as input to and a result
from Object Integration Gateway methods. In the case of the result recordset, this
is a disconnected recordset. This means that it is not actively connected to the
source database, so any updates made to the recordset do not get reflected in the
source database, only in the recordset. However, this result recordset can be
amended and used to pass data to another method call.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 47

eCTSsession Methods

Opening Object Integration Gateway Sessions

OpenApplication

Opens an Object Integration Gateway session. An application must open a session
to run a transaction or XML document. The OpenApplication method enables
you to either create a new session, or borrow one from a pool of existing sessions.
Pooled sessions are shared between one or more applications.

Syntax:

MySession.OpenApplication alias [,, mode]

MySession.OpenApplication , sessParms [, mode]

Parameter Type | Value/Meaning

alias (optional) String The case-sensitive name of a defined alias for a set
of session parameters. Aliases are held in the
Windows registry. By default, sessions are pooled.

sessParms String The list of session parameters. Refer to Appendix D,
(optional) Using the OIG Administration Interface, on
page 161. By default, sessions are unpooled.

mode (optional) ~ String If set to “POOLED”, sessions are created once and
pooled for reuse after being released. If set to
“UNPOOLED”, sessions are terminated after being
released.

but not both. If you pass the alias parameter, the session is pooled by default,
unless UNPOOLED is specified for the optional mode parameter. If you pass the
sessParms parameter, the session is unpooled by default, unless POOLED is
specified for the option mode parameter.

E: Re parameters You can pass either the alias parameter or the sessParms parameter,

TIBCO Object Service Broker Object Integration Gateway

48 | Chapter 4 Using the OIG COM Component

S

Re default behavior If you call the OpenApplication method without specifying
either the alias parameter or the sessParms parameter, the default Gateway session
parameter settings are used. The default session parameters are determined in
one of the following two ways:

* From the DEFAULT alias settings, if an alias of that name was defined using
the COM Configurator

* From the DEFAULT session parameter settings, if no DEFAULT alias is
defined. For more information, refer to Appendix D, Using the OIG
Administration Interface, on page 161

Closing Object Integration Gateway Sessions

Close

Immediately closes an OIG session. If the underlying session was pooled, the
session is returned to the pool of sessions for re-use by another application. If the
session was not pooled, the session is terminated and the TIBCO Object Service
Broker resources associated with the session are released. If there is a transaction
in progress, this transaction is terminated and any updates pending are rolled
back. Refer to StartTran on page 50.

Syntax: MySession.Close

Invoking Processing

RunRule

You can use the methods in this section to invoke functionality that is defined to
Object Integration Gateway. Each of the objects (for example, transactions) can be
explicitly invoked.

Runs a rule within the current transaction. A transaction must be started by
calling the StartTran method before a rule can be called.

Syntax: MySession.RunRule rulename[, parameters]

Parameter Type Value/Meaning

rulename String The name of the rule to be executed.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 49

Parameter Type Value/Meaning

parameters String An array of name-value pairs to be passed to the rule.

(optional) array The parameters specified for this argument override any
parameters specified in the URL query string or passed
by a POST from an HTML form.

RunTrans
Runs the named transaction.
Syntax: MySession.RunTrans transactionname[, parameters]
Parameter Type | Value/Meaning
transactionname String The name of the transaction to be run.
parameters String An array of name-value pairs to be passed to the
(optional) array transaction. The parameters specified for this
argument override any parameters specified in the
URL query string or passed by a POST from an
HTML form.
RunXMLDoc

Obtains or extracts the named XML document.

Syntax: MySession.RunXMLDoc xmldocname[, parameters]

Type Value/Meaning

xmldocname String The name of the XML document to be obtained or
extracted.

parameters String An array of name-value pairs to be passed to the XML

(optional) array document. The parameters specified for this argument

override any parameters specified in the URL query
string or passed by a POST from an HTML form.

TIBCO Object Service Broker Object Integration Gateway

50 | Chapter 4 Using the OIG COM Component

StartTran

StopTran

Handling Data

Starts an OIG transaction. Subsequent RuleXmlDoc or RunRule calls run within
the transaction. The transaction is terminated by the next StopTran or Close call. A
call to RunTrans while a transaction is active results in the nesting of a TIBCO
Object Service Broker transaction to run the OIG transaction. Only one started
transaction can be active for an OIG session at one time. Starting a second
transaction results in an error.

Syntax: MySession.StartTran updateMode

Parameter Type Value/Meaning

updateMode Boolean If this parameter is set to true, updates are
permitted while running the transaction.
Otherwise, updates are not permitted and locks are
not taken for tables.

Stops an OIG transaction.

Syntax: MySession.StopTran commit

Parameter Type Value/Meaning

commit Boolean If this parameter is set to true, updates made to tables
during the transaction are applied to the MetaStor
when the transaction is terminated.

You can use the methods in this section to pass data to and from Object
Integration Gateway, either as a recordset (ADO 2.5 or later) or as an XML
document.

GetDocumentFromTable

Returns the XML for an interface table returned by the last RunTrans,
RunXmlDoc, or RunRule call as a string. Normally interface tables are returned as
ADO Recordset using the GetTable method (refer to GetTable on page 51.)

Return type: String

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 51

Syntax: dataset = MySession.GetDocumentFromTable tablename

Parameter Type Value/Meaning

tablename String The name of the table to be returned as a string.

GetTable

Converts an XML document from the last Run method call to an ADO Recordset
object, and returns the recordset object. The XML document must be of type
MSSCHEMA.

Return type: ADO 2.5 Recordset object

Syntax: recordset = MySession.GetTable [xmldocname]

Parameter Type Value/Meaning

xmldocname String The name of the XML document to be extracted. The

(optional) XML document must be of type MSSCHEMA. If this
parameter is not specified, GetTable converts the first
XML document in memory.

GetTableFromDocument

Converts an XML document from the last Run method call to an ADO Recordset
object, and returns the recordset object. The XML document must be of type
MSSCHEMA and is produced as a result of running an XML document rather
than as a result of the Pass Data to Client option of an interface table.

Return type: ADO 2.5 Recordset object

Syntax: recordset = MySession.GetTableFromDocument docname

Parameter Type Value/Meaning

docname String The name of the XML document returned as an ADO
recordset.

GetTableOfContent

Returns all data returned by the last RunTrans, RunXmlDoc, or RunRule call as an
ADO Recordset. This includes interface tables, XML documents, and persistent
variables.

TIBCO Object Service Broker Object Integration Gateway

52 | Chapter 4 Using the OIG COM Component

SetDocument

The table-of content information related to persistent data is present only if the
OIG session has been opened with debug mode specified. Refer to the session
parameter DEBUG on page 114 for more information.

The Recordset returned contains three columns, each row of the table describing a
result returned.

Columns Type Description

Name String Contains the name of the OIG result.
Type Integer Identifies the result.

Value String Contains the value of the returned data.

Possible types of returned data are as follows:

Value Description

3 XML for an interface table.

4 XML for a document.

10 Rules trace back in HTML format.
11 Rules trace back in text format.

30 Deleted persistent data.

31 Replaced persistent data.

32 Persistent data.

33 “Once only” persistent data.

Return type: ADO 2.5 Recordset object

Syntax:
recordset = MySession.GetTableOfContent

Stages one or more XML documents to be sent to OIG on the next Run method
call.

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 53

Syntax: MySession.SetDocument docname, document

Parameter Type Value/Meaning

docname String The name of the OIG XML document definition used for
processing the incoming XML document.

document String The XML document string to be passed to an OIG
application.

SetDocumentFromFile

Stages an XML document to be sent to OIG on the next Run method call. The
source of the XML document is read from the file identified by the filename
parameter. The filename can be a complete path name or a filename that is relative
to the current working directory.

Syntax: MySession.SetDocumentFromFile docname, filename

Parameter Type Value/Meaning

docname String The name of the document to be passed to TIBCO
Object Service Broker.

filename String The name of file containing the XML document.

SetTable

Passes the contents of an ADO Recordset object to a TIBCO Object Service Broker
data table. The SetTable method converts the recordset to an XML document of
type MSSCHEMA, so that when the next OIG object is invoked, the XML
document is sent along with any other parameters and loaded into the named
TIBCO Object Service Broker data table.

You can use the SetTable method to pass data to TIBCO Object Service Broker that
is required by an OIG object invoked by a subsequent Run method.

Syntax: MySession.SetTable tablename, recordset

Parameter Type Value/Meaning

tablename String The name of the TIBCO Object Service Broker
table the recordset is loaded into when the
next OIG object is invoked.

TIBCO Object Service Broker Object Integration Gateway

54 | Chapter 4 Using the OIG COM Component

&

Parameter Type Value/Meaning

recordset ADO 2.5 The recordset to be passed to TIBCO Object
Recordset object Service Broker.

When the destination table is a TIBCO Object Service Broker screen table, and the
subsequently invoked OIG transaction has an associated TIBCO Object Service
Broker screen, the data is loaded into that screen table for the screen named in the
OIG object definition.

Handling Other Data

GetDocument

GetEndMsg

GetResult

In some situations, the result from the Run method is not to be processed as a
recordset. In these cases, the following methods manipulate the result string.

Returns an XML document generated by the last execution of the RunTrans or
RunXMLDoc methods.

Return type: String

Syntax: xml = MySession.GetDocument [xmldocname]

Parameter Type Value/Meaning

xmldocname ~ String The name of the XML document returned. If this
(optional) parameter is not specified, GetDocument returns the
first XML document in the result set.

Returns the end message from the last execution of RunTrans or RunXMLDoc.
The GetEndMsg method does not take parameters.

The GetEndMsg method is typically used after executing a Run method.
Return type: String

Syntax: msg = MySession.GetEndMsg

Returns the HTML generated by the last execution of a Run method. The
GetResult method does not take parameters.

Return type: String

TIBCO Object Service Broker Object Integration Gateway

eCTSsession Methods | 55

Syntax: html = MySession.GetResult
ASP Example:

MySession.RunTrans "DEMOTX"
Response.Write = MySession.GetResult

Managing Persistent Data for Web Sessions

When using OIG with web applications that use Active Server Pages or Visual
Basic, it is a common technique to store application state information within the
IIS Session object. You can use the following methods for OIG to access relevant
session variables by setting up a list of variables that are automatically passed to a
Run method. The data that is passed is available via the {argname} syntax when
you define OIG objects, or via the ECTSGETARG and ECTSGETSESS utility rules.
You can also use the ECTSSETSESS utility rule to update the IIS Session object.
The IIS Session object is updated at the end of the Run method.

AddSessionParm

Adds a name to the list of session variables passed to the rules engine at execution
of RunTrans or RunXMLDoc.

Syntax: MySession.AddSessionParm varname

Parameter Type Value/Meaning

varname String The name of the session variable to be added to the list.

RemoveSessionParm

Removes a name from the list of session variables passed to the rules engine at
execution of RunTrans or RunXMLDoc.

Syntax: MySession.RemoveSessionParm varname

Parameter Type Value/Meaning

varname String The name of the session variable to be removed from the
list.

TIBCO Object Service Broker Object Integration Gateway

56 | Chapter 4 Using the OIG COM Component

Managing Persistent Data for Non-Web Sessions

OIG applications that run in a web environment, such as those using Active
Server Pages, can use the AddSessionParm and RemoveSessionParm methods to
manage a list of web session variables stored in the IIS Session object. However,
OIG applications running in non-web environments do not have access to the IIS
Session object or its variables. You can use the following methods for a non-web
application to create and access a list of session variables that is stored by the
COM component. These non-web session variables are stored as a collection of
name-value pairs that is passed to, and can be updated by, any of the Run
methods.

The following methods can also be called by applications running in a web
%} environment such as Active Server Pages. In such cases, the session variables are
stored as web session variables in the IIS Session object.

GetPersistentData
Returns the value of an OIG session variable.
Return type: String

Syntax: value = MySession.GetPersistentData varname

Parameter Type Value/Meaning

varname String The name of the session variable whose value is to be
returned.

SetPersistentData

Sets the value of an OIG session variable. If the named session variable is not set,
the variable is added to the list of session variables passed to the rules engine on
subsequent Run method calls. If the session variable is set to an empty string, the
variable is removed from the list of variables passed.

Web applications can also use this method to add to, or remove from, the list of
web session variables normally managed by the AddSessionParm and
RemoveSessionParm methods.

Syntax: MySession.SetPersistentData varname, varvalue

Parameter Type Value/Meaning

varname String The name of the session variable whose value is to be set.

varvalue String The value to be set for the named session variable.

TIBCO Object Service Broker Object Integration Gateway

Code Examples | 57

Code Examples

Produces an XML document via the RunXMLDoc method, creates an ADO
Recordset object from the RunXMLDoc method's result, and renders it as HTML.

<HTML>

<HEAD><TITLE>Object Integration Gateway COM Example
2</TITLE></HEAD>

<BODY >

<h2>Rows of table BOOKS</h2>
<p>Formating via Simple VB Script</p>
<TABLE BORDER="0">

<%@ LANGUAGE="VBSCRIPT" %>

<%

Dim eSession

Dim fld

Dim rs

' Create an ADO recordset based on the table BOOKS

Set eSession = Server.CreateObject("eCTScom.eCTSsession")
eSession.OpenApplication ,"U=USR40,P=USR40,HOST=USR40"
eSession.RunXMLDoc "BOOKLIST"

Set rs = eSession.GetTableFromDocument ("BOOKLIST")

' Display the names of the fields of SCREEN as a title
Response.Write "<TR>"

For Each fld In rs.Fields

Response.Write "<TH bgcolor=PaleGreen>"

Response.Write fld.Name

Response.Write "</TH>"

Next

Response.Write "</TR>"

' Display the rows of BOOKS in a table
While Not rs.EOF

Response.Write "<TR>"

For Each fld In rs.Fields
Response.Write "<TD bgcolor=Wheat>"
Response.Write fld.Value & " "
Response.Write "</TD>"

Next

Response.Write "</TR>"

rs.MoveNext

Wend

Cleanup the objects created
rs.Close

Set rs = Nothing
eSession.Close

Set eSession = Nothing

%>

</TABLE>

</BODY>

</HTML>

TIBCO Object Service Broker Object Integration Gateway

58 | Chapter 4 Using the OIG COM Component

TIBCO Object Service Broker Object Integration Gateway

|59

Chapter5 Using OIG in Enterprise JavaBean (EJB)
Environments

This chapter describes how to use OIG in Enterprise JavaBean (EJB)
environments.

Topics

¢ Opverview, page 60

* Object Integration Gateway EJB Components, page 61

TIBCO Object Service Broker Object Integration Gateway

60 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

Overview

What Is an Enterprise JavaBean?

An Enterprise JavaBean (E]JB) is a Java component that ‘lives’ within an Enterprise
JavaBeans container running on a server. A client program creates an instance of
the component by calling the create() method of its home interface. The create()
method returns the EJB component’s remote interface back to the client. The client
can then access the services provided by the EJB component by calling methods
on its remote interface.

How Does Obiject Integration Gateway Support Enterprise JavaBeans?

Object Integration Gateway provides the following components for building EJB
applications:

Base class for creating Gateway E]B session bean components

EJB component home interface

EJB component remote interface

WebRowSet class for manipulating XML document data as recordsets
Sample base class and interface extensions

Sample deployment descriptor file

TIBCO Object Service Broker Object Integration Gateway

Object Integration Gateway EJB Components | 61

Object Integration Gateway EJB Components

ects2EJBbase Base Class

A ects2E]Bbase base class is provided for Object Integration Gateway E]B session
bean implementations. You extend this class to create your EJB session bean
components.

This class contains methods for running Gateway objects. The source code for a
sample class, ects2EJBSampleBean, is provided later in this chapter to illustrate

how to extend the base class for your own EJB component class.

Methods

Method

addSessionParm(String persistKey, String value)

throws java.rmi.RemoteException

Description

Adds a persistent data item to the
session data collection.

addSessionParms(java.util. HashMap
persistData)
throws java.rmi.RemoteException

Adds a set of persistent data items to
the session data collection.

deletePersistData()
throws java.rmi.RemoteException

Deletes all persistent data items from
the session data collection.

deletePersistData(String persistKey)
throws java.rmi.RemoteException

Deletes a persistent data item from
the session data collection.

ejbActivate()
throws javax.ejb.EJBException,
java.rmi.RemoteException

Implementation of the
javax.ejb.SessionBean interface
method.

ejbCreate()
throws javax.ejb.E]JBException,
java.rmi.RemoteException

Implementation of the
javax.ejb.SessionBean interface
method. Create without a session
pool.

ejbPassivate()
throws javax.ejb.EJBException,
java.rmi.RemoteException

Implementation of the
javax.ejb.SessionBean interface
method.

ejpRemove()
throws javax.ejb.EJBException,
java.rmi.RemoteException

Implementation of the
javax.ejb.SessionBean interface
method.

TIBCO Object Service Broker Object Integration Gateway

62 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

Method

String getDocument(String docnamie)
throws java.rmi.RemoteException

Description

Returns the XML document from the
last run method call. The XML
document must be of type ROWSET
or MSSCHEMA.

String getEndMsg()
throws java.rmi.RemoteException

Returns the end message set by the
last Gateway operation.

java.util. HashMap getPersistData()
throws java.rmi.RemoteException

Returns the session data collection.

String getResult()
throws java.rmi.RemoteException

Returns the HTML contents of the
results area.

String getSessionParm(String persistKey)
throws java.rmi.RemoteException

Returns a persistent data item from
the session data collection.

java.util. HashMap getSessionParms()
throws java.rmi.RemoteException

Returns the session data collection.

WebRowSet getTable(String docNarme)
throws java.rmi.RemoteException

Converts an XML document from
the last run method call to a
WebRowSet object, and returns the
WebRowSet object. The XML
document must be of type ROWSET
or MSSCHEMA.

WebRowSet getTableFromDoc(String docName)

Returns a WebRowSet by parsing an
XML document returned as a result
of running a defined XML document.

openApplication()
throws ects2EJBException

Obtains an unpooled session with
the parameters specified in the
deployment descriptor for this EJB.

openApplication(boolean pooled)
throws ects2EJBException

Obtains a pooled or unpooled
session with the parameters specified
in the deployment descriptor for this
EJB.

openApplication(java.util. HashMap parms,
boolean pooled)
throws ects2EJBException

Obtains a pooled or unpooled
session with the parameters supplied
in the parms argument. Parameters
not supplied in the parms argument
are provided by the deployment
descriptor for this EJB.

TIBCO Object Service Broker Object Integration Gateway

Object Integration Gateway EJB Components | 63

Method

removeSessionParm(String persistKey)
throws java.rmi.RemoteException

Description

Deletes a persistent data item from
the session data collection.

removeSessionParms()
throws java.rmi.RemoteException

Deletes all persistent data items from
the session data collection.

runRule(String RuleName)
throws java.rmi.RemoteException

Runs the named rule within the
context of the Object Integration
Gateway rules framework. The
named rule can access data
processed via setTable and
setDocument. The named rule can
also produce and return XML
documents, and so on.

runTrans(String transname)
throws java.rmi.RemoteException

Runs the named Gateway
transaction.

runXMLDoc(String docname)
throws java.rmi.RemoteException

Runs the named Gateway XML
document.

setDocument(String docname, String document)
throws java.rmi.RemoteException

Stages one or more XML documents
to be sent to the Gateway on the next
run method call.

setDocument(String docname, WebRowSet wrs)
throws java.rmi.RemoteException

Stages one or more XML documents
to be sent to the Gateway on the next
run method call.

setPersistData(java.util. HashMap persistData)
throws java.rmi.RemoteException

Adds a set of persistent data items to
the session data collection.

setTable(WebRowSet wrs)
throws java.sql.SQLException,
java.rmi.RemoteException

Passes the contents of a WebRowSet
object to a TIBCO Object Service
Broker data table. The method
converts the WebRowSet to an XML
document so that when the next
Gateway object is invoked, the XML
document is sent along with any
other parameters and loaded into a
TIBCO Object Service Broker data
table. Since no table name argument
is provided, the data table from
which the WebRowSet was created is
updated.

TIBCO Object Service Broker Object Integration Gateway

64 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

Method Description

setTable(WebRowSet wrs, String tablename) Passes the contents of a WebRowSet
throws java.sql.SQLException, object to a TIBCO Object Service
java.rmi.RemoteException Broker data table. The method

converts the WebRowSet to an XML
document so that when the next
Gateway object is invoked, the XML
document is sent along with any
other parameters and loaded into a
TIBCO Object Service Broker data
table. Since a table name argument is
provided, the specified data table is

updated.
setUserData(String userdata) Sets user data (name-value pairs)
throws java.rmi.RemoteException passed with run method calls.

Multiple name-value pairs must be
separated using commas. A value
that contains a space character must
be enclosed in single quotation

marks.
setUserData(String name, String value) Sets user data (name-value pairs)
throws java.rmi.RemoteException passed with run method calls. Each

call to this method adds a
name-value pair to the userdata
collection passed on the next
interaction. There are no restrictions
on the naming of user data; the same
name can be used multiple times.

startTran(boolean update) Starts a bean-managed transaction

throws java.rmi.RemoteException that can span multiple interactions.
The update parameter controls the
mode of the TIBCO Object Service
Broker transaction started.

stopTran(boolean commit) Stops a bean-managed transaction
throws java.rmi.RemoteException with either rollback or commit
processing.

TIBCO Object Service Broker Object Integration Gateway

Object Integration Gateway EJB Components | 65

Home Interface

The home interface exposes methods for creating instances of the EJB component
class (your extensions of the Object Integration Gateway base class). When a client
makes a call to a create() method of the home interface, the return value is the
remote interface of your EJB component class.

Methods
Method Description
ejbRemotelnterface create() Causes the E]B server to instantiate
throws javax.ejb.CreateException, an EJB session bean that does not
java.rmi.RemoteException participate in session pooling.

Returns an instance of this EJB’s
remote interface.

Remote Interface

The remote interface exposes to the client the methods of your EJB session bean
component. These are the methods that actually do the work of your Object
Integration Gateway application. The remote interface includes methods to run
Gateway objects such as transactions.

Deployment Descriptor

The deployment descriptor is an XML document that contains information about
the EJB components you want to deploy to your EJB container. It should be
packaged at the root of your applicationname-ejb jar file (where applicationname is
the name of your EJB application).

In the deployment descriptor you specify the JNDI names of your EJB component,
home interface, and remote interface classes. You can also specify Object
Integration Gateway session initialization parameters, and any other values you
want passed to your EJB component.

WebRowSet Class

You use WebRowSet objects to manipulate XML document data as recordsets. The
WebRowSet class is an implementation of the javax.sql.RowSet interface. For
information about the methods available in WebRowSet objects, refer to
“Methods” on page 61.

TIBCO Object Service Broker Object Integration Gateway

66 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

Following are some general notes you should be aware of when using
WebRowSet objects.

Column References

Because TIBCO Object Service Broker programmers are accustomed to
referencing fields by name, the WebRowSet class is extended to let users get data
by column name as well as by column number. If a column label is provided in
the XML document definition in the TIBCO Object Service Broker UI (as specified
in the Root Name field on the Properties tab), this value, and not the column
name, is used for the column label property.

Supported Schemas

Data Integrity

The WebRowSet class supports two XML schema types: MSSCHEMA and
ROWSET. MSSCHEMA is the preferred schema type of Microsoft, whereas
ROWSET is the preferred schema type of Sun Microsystems. MSSCHEMA is the
schema type used by Microsoft’s ADO components to encode recordsets. The
ROWSET schema is part of a prerelease of the JDBC 3.0 specification. Neither
requires a document type definition for validation.

There are some interesting differences between the two schema types:
¢ MSSCHEMA is an attribute-based schema.
¢ ROWSET is a character-based schema.

¢ ROWSET schemas tend to carry much more metadata than MSSCHEMA. You
could find that you need this metadata.

For various reasons, one schema outperforms the other in certain circumstances.
You should experiment to determine which schema type best suits your
application needs.

Because the WebRowSet object is a completely disconnected recordset,
modifications to its data are done without a transactional context. No locks are
held, and the data is not guaranteed to remain unchanged while the rowset
travels between various servers. It is up to the application programmer to use
these disconnected recordsets in such a manner that data integrity is maintained.

TIBCO Object Service Broker Object Integration Gateway

Data Sources

Constructors

Methods

Object Integration Gateway EJB Components | 67

A recordset can be created using a wide variety of data sources. You can then use
the recordset to populate a WebRowSet object, and send the WebRowSet to the
Object Integration Gateway to update a table. Sending data to the Gateway from
external data sources is not a supported feature but it should work correctly as
long as a compatible table definition can be created. This technique has risks that

you need to be aware of:

e TIBCO Object Service Broker is not guaranteed to support all the data types
available in other data sources. Incompatible fields can cause either the
population of the WebRowSet to fail, or the consumption of the XML

document to fail.

* Most unsupported data types cause a java.sql.SQLException to be thrown

from a WebRowSet object.

WebRowSet()
throws java.sql.SQLException

Default constructor. Instantiates the
WebRowSet but does not initialize any data
structures.

Methods

String getSchemaType()

Description

Returns the schema type that the
WebRowSet is currently set to
use.

readXml(java.io.Reader reader, int docType Reads an XML document from

throws java.sql.SQLException

the reader and initializes the
contents for the rowset
accordingly. This docType
provided to this method relieves
the parser of the burden of
dynamically detecting the
document' schema.

TIBCO Object Service Broker Object Integration Gateway

68 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

Methods Description
readXml(java.io.Reader reader) Reads an XML document from
throws java.sql.SQLException the reader and initializes the
contents for the ROWSET
accordingly.
setSchemaType(String schematype) Set the schema type that the
throws java.sql.SQLException ROWSET is to use.
writeUpdateOnly(java.io.Writer writer) Writes the contents of the
throws java.sql.SQLException WebRowSet to generate an XML

document consisting of only the
changed, deleted or inserted

rows.
writeXml(java.io.Writer writer) Writes the contents of the
throws java.sql.SQLException WebRowSet to generate an XML
document.
writeXml(java.sql.ResultSet resultset, Uses the contents of the named
java.io.Writer writer) WebRowSet to generate an XML
throws java.sql.SQLException document.

EJB Code Examples

This section presents code for a sample Object Integration Gateway EJB
component class, its home and remote interfaces, and its deployment descriptor
file.

ects2EJBSampleBean

The following is sample code for an EJB component class that extends the
Gateway EJB base class.

/* A reference implementation of the OIG EJB sessionbean. */
package com.ObjectStar.ects;

import javax.ejb.*;

import java.util.*;

import java.io.*;

import javax.naming.*;

import sun.jdbc.rowset.WebRowSet;
import com.ObjectStar.ects.*;

public class ects2EJBSampleBean extends ects2EJBbase implements
SessionBean {

TIBCO Object Service Broker Object Integration Gateway

Object Integration Gateway EJB Components | 69

// empty constructor
public ects2EJBSampleBean() {
¥

// EJB Container required methods. These are not available
// to the client program, but are used only by the container.

public void ejbActivate()
throws javax.ejb.EJBException, java.rmi.RemoteException {
System.out.println("ects2EJBSampleBean.activate");
super.ejbActivate();

}

public void ejbPassivate()
throws javax.ejb.EJBException, java.rmi.RemoteException {
System.out.println("ects2EJBSampleBean.passivate");
super.ejbPassivate();

}

public void ejbRemove()
throws javax.ejb.EJBException, java.rmi.RemoteException {
System.out.println("ects2EJBSampleBean.remove");
super.ejbRemove();

}

// Create with no pool. Called when client

// calls "create()" on the home interface

public void ejbCreate()
throws javax.ejb.EJBException, java.rmi.RemoteException {
System.out.println("ects2EJBSessionBean.create()");
super.ejbCreate(null);

¥

// Create with pool. Called when client calls "create(poolname)"

// on the home interface

public void ejbCreate(String poolname)
throws javax.ejb.EJBException, java.rmi.RemoteException {
System.out.println("ects2EJBSessionBean.create()");
super.ejbCreate(poolnm);

ects2EJBSampleHome

The following is sample code for the home interface class. The create () methods
of the home interface return an instance of the EJB component’s remote interface
to the client.

/* A reference implementation of the OIG EJB sessionHome class. */
package com.ObjectStar.ects;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ects2EJBSampleHome extends EJBHome {
ects2EJBSample create()

TIBCO Object Service Broker Object Integration Gateway

70 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

ects2EJBSample

throws RemoteException, CreateException;
ects2EJBSample create(String poolName)
throws RemoteException, CreateException;

The following is sample code for the remote interface class. The methods exposed
in the remote interface must match the methods of the EJB component class. A
client call to a remote interface method is executed by the corresponding method
of the EJB component.

/* A reference implementation of the OIG EJB session remote
interface. */

package com.ObjectStar.examples;

import com.ObjectStar.ects.*;
import javax.ejb.EJBObject;
import com.ObjectStar.jdbc.rowset.*;

public interface ects2EJBSample extends ects2EJBRemotelIntf {
StringBuffer runTag(String tagName)
throws java.rmi.RemoteException;
StringBuffer runXMLDoc(String docName)
throws java.rmi.RemoteException;
StringBuffer runTrans(String tranName)
throws java.rmi.RemoteException;

Deployment Descriptor

This is a sample deployment descriptor file for the ects2E]JBSample EJB
component.

<?xml version="1.0"7?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTID Enterprise
JavaBeans 2.0//EN" "http://www.java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<description>0IG EJB support</description>

<display-name>ectsEJB</display-name>

<enterprise-beans>
<session>
<description>no description</description>
<display-name>ectsSample</display-name>
<ejb-name>ects2EJBSample</ejb-name>
<home>com.ObjectStar.examples.ects2EJBSampleHome</home>
<remote>com.ObjectStar.examples.ects2EJBSample</remote>

<ejb-class>com.ObjectStar.examples.ects2EJBSampleBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>
<env-entry>
<env-entry-name>HOST</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

TIBCO Object Service Broker Object Integration Gateway

Object Integration Gateway EJB Components | 71

<env-entry-value>pipin</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>PORT</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>9068</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>USERID</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>HURONl</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>PASSWORD</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>HURON1l</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>LIBRARY</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>ECTSSAMP</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>SEARCH</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>L</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>MAXSESSION</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>3</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>POOLTIMEOUT</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>4000</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>DATAIN</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>16384</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>DATAOUT</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>16384</env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>XMLTRACEDIR</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><null/></env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>DEBUG</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>

TIBCO Object Service Broker Object Integration Gateway

72 | Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments

<env-entry>
<env-entry-name>TRACEMESSAGES</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><null/></env-entry-value>

</env-entry>

<env-entry>
<env-entry-name>XMLPARSER</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>org.apache.xerces.parsers.SAXParser</env-entry-va
lue>
</env-entry>
</session>
</enterprise-beans>

<assembly-descriptor>
<security-role>
<description>Users</description>
<role-name>users</role-name>
</security-role>
</assembly-descriptor>

</ejb-jar>

TIBCO Object Service Broker Object Integration Gateway

|73

Chapter6 Using the OIG JCA Adapter

This chapter describes how to use the OIG JCA adapter.

Topics

¢ Overview, page 74
¢ JCA Deployment Descriptor, page 75
¢ Working with the Deployment Descriptor, page 78

TIBCO Object Service Broker Object Integration Gateway

74 | Chapter 6 Using the OIG JCA Adapter

Overview

What Is J2EE Connector Architecture?

JCA adapters are just simple Java archives that have the file extension .rar instead
of jar. The structure of the archive looks like this:

oigadapter.rar

+
I
+
I
+
I
+

oigadapter.jar
ects.jar
xerces.jar
META-INF

+ - ra.xml

The following is a brief description of each of the resource archive files that are
listed above:

File Description

oigadapter.rar This file contains the implementations of the

javax.resource.cci.* and javax.resource.spi.* interfaces.
These interfaces embody the JCA specification.

ects.jar This file contains Object Integration Gateway utility
classes and the TIBCO Object Service Broker SDK (Java)
classes.

xerces.jar This file is the Xerces XML parser that is used for

WebRowSet and generic XML support.

META-INF/ra.xml This file is the deployment descriptor file for the adapter.

TIBCO Object Service Broker Object Integration Gateway

JCA Deployment Descriptor | 75

JCA Deployment Descriptor

What is the Deployment Descriptor?

The deployment descriptor is an XML document that contains information about
the adapter, including deployment settings. For more information on JCA
deployment descriptors, refer to the JCA 1.0 specification.

Deployment Descriptor Example

This section presents code for a sample Object Integration Gateway JCA
deployment descriptor file.

Deployment Descriptor

The following is a code sample of the default deployment descriptor for the
Object Integration Gateway JCA adapter:

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE connector PUBLIC '-//Sun Microsystems,
Inc.//DTD Connector 1.0//EN'
'http://java.sun.com/dtd/connector_1_0.dtd'>

<connector>

<display-name>0igAdapter</display-name>
<vendor-name>Objectstar Software Inc.</vendor-name>
<spec-version>1.0</spec-version>
<eis-type>ObjectStar Integration Gateway</eis-type>
<version>1.0</version>

<resourceadapter>

<managedconnectionfactory-class>
com.ObjectStar.connector.cci.CciManagedConnectionFactory

</managedconnectionfactory-class>

<connectionfactory-interface>
javax.resource.cci.ConnectionFactory

</connectionfactory-interface>

<connectionfactory-impl-class>
com.ObjectStar.connector.cci.CciConnectionFactory

</connectionfactory-impl-class>

<connection-interface>
javax.resource.cci.Connection

</connection-interface>

<connection-impl-class>
com.ObjectStar.connector.cci.CciConnection

</connection-impl-class>

<transaction-support>
LocalTransaction

</transaction-support>

<config-property>

TIBCO Object Service Broker Object Integration Gateway

76 | Chapter 6 Using the OIG JCA Adapter

<config-property-name>HOST</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>pipin</config-property-value>
</config-property>
<config-property>
<config-property-name>PORT</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>9068</config-property-value>
</config-property>
<config-property>
<config-property-name>USERID</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>HURON1</config-property-value>
</config-property>
<config-property>
<config-property-name>PASSWORD</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>HURON1</config-property-value>
</config-property>
<config-property>
<config-property-name>LIBRARY</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>ECTSSAMP</config-property-value>
</config-property>
<config-property>
<config-property-name>SEARCH</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>I</config-property-value>
</config-property>
<config-property>
<config-property-name>DATAIN</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>8000</config-property-value>
</config-property>
<config-property>
<config-property-name>DATAOUT</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>8000</config-property-value>
</config-property>
<config-property>
<config-property-name>DEBUG</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>FALSE</config-property-value>
</config-property>
<config-property>
<config-property-name>TRACEMESSAGES</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>

C:\TEMP\TRACEMESSAGES .LOG

</config-property-value>
</config-property>
<config-property>
<config-property-name>XMLPARSER</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>

org.apache.xerces.parsers.SAXParser
</config-property-value>

TIBCO Object Service Broker Object Integration Gateway

JCA Deployment Descriptor | 77

</config-property>
<config-property>
</config-property>
<authentication-mechanism>
<authentication-mechanism-type>
BasicPassword
</authentication-mechanism-type>
<credential-interface>
javax.resource.security.PasswordCredential
</credential-interface>
</authentication-mechanism>
<reauthentication-support>false</reauthentication-support>
</resourceadapter>
</connector>

TIBCO Object Service Broker Object Integration Gateway

78 | Chapter 6 Using the OIG JCA Adapter

Working with the Deployment Descriptor

Changing Deployment Descriptor Settings

You only need to change the <config-property> and the <transaction-support>

settings, under normal circumstances.

The following is a brief description of each of these settings:

Config-Property Settings

Setting Abbreviation
DATAIN

Default Value
32768

Description

The size of the datain
buffer to allocate for
adapter sessions. This
can be from 500 to 32 KB
bytes.

DATAOUT

32768

The size of the dataout
buffer to allocate for
adapter sessions. This
can be from 500 to 32 KB
bytes.

DEBUG

FALSE

Set to TRUE or FALSE.
Indicates whether
debugging messages
should be produced by
the server. If the
application server
specifies an adapter log
file, the debug messages
are sent there; otherwise
they go to the server’s
System.out stream.
Because this writer is
serialized, running in
debug mode can impact
server performance,
particularly in an SMP
environment.

TIBCO Object Service Broker Object Integration Gateway

Working with the Deployment Descriptor | 79

Setting Abbreviation Default Value Description
HOST H localhost The host name of the
Object Integration

Gateway where the
adapter connects.

LIBRARY L The library (if any) to
use for the session.

PASSWORD P HURON1 The password that the
adapter uses to log in.

PORT 9068 The port number of the
osMon task on the
HOST machine.

SEARCH SEA L The search path for the
adapter sessions.

TRACEMESSAGES (empty string) If the DEBUG parameter
is set to TRUE and a

filename is specified
here, the contents of the
datain and dataout
buffers are written to
this log file. There is a
significant performance
penalty for doing this.

USERID U HURON1 The user ID that the
adapter uses to log in.

XMLPARSER org.apache.xerces. The parser to use for
parsers.SAXParser operations involving

XML. The Xerces SAX
parser is the default.

Transaction-Support Settings

(Setting ———Deseripion =

LocalTransaction Use to deploy the adapter to support the JCA 1.0
LocalTransaction contracts. The Gateway starts and stops
LocalTransactions as per the deployment settings for the
EJB's that access the JCA adapter.

TIBCO Object Service Broker Object Integration Gateway

80 | Chapter 6 Using the OIG JCA Adapter

[Seting ———Deseripion

NoTransaction Use to deploy the adapter without supporting transaction
contracts. You are responsible for starting and stopping all
transactions.

Many of these settings are particular to the application and the Gateway where
the adapter is deployed. Some Gateways have facilities for modifying such
settings as needed via an admin console, and others do not.

To modify these settings prior to deployment, you must extract the ra.xml file
from the archive, modify it, and return it to the archive.

The following explains how you can modify these settings prior to deployment:
1. Open the Command Prompt.

2. Remove the deployment descriptor file with the command:
jar xf oigadapter.rar META-INF/ra.xml.

Edit the META-INF/ra.xml file.

4. Return the edited file to the archive with the command:
jar uf oigadapter.rar META-INF/ra.xml.

Some of these settings are not appropriate for use by all application sessions. You
can override any or all of the parameter settings when you instantiate a
connection in your application code. Applications have connections to multiple
Object Integration Gateways, or to the same Gateway in a variety of modes.

When an instantiated connection has unique properties, it creates a new session.
Creating multiple connections with unique properties that create new sessions
defeats the session pooling mechanism and quickly exhausts the available session
resources on the Gateway.

Installation and Deployment

The procedure for installing the adapter varies from server to server. Most servers
can deploy the adapter as is, and some require a server-specific deployment
descriptor to be included in the META-INF directory. Use the Gateway-specific
deployment descriptors to specify values that are outside the scope of the JCA
specification, such as pool size, idle timeout, and so on. The specification
explicitly states a number of areas that server vendors implement in any way they
choose, so long as the specification contracts are fulfilled. Refer to your
application server documentation for information about these settings and for
information about how to deploy JCA adapters.

TIBCO Object Service Broker Object Integration Gateway

Working with the Deployment Descriptor | 81

As of J2EE 1.3, the definition of an application is expanded to include JCA
adapters. Several examples are provided with Object Integration Gateway that
demonstrate this. To make a JCA adapter part of an application, simply add a new
<module> section to the application.xml file, and include the oigadapter.rar file in
the application’s .ear file.

This is an example of what such an application.xml would look like:

<application>
<display-name>
Object Integration Gateway 5.0 Sample Application
</display-name>
<module>
<web>
<web-uri>oigdemo.war</web-uri>
<context-root>/oigdemo</context-root>
</web>
</module>
<module>
<ejb>oigdemo-ejb.jar</ejb>
</module>
<module>
<connector>oigadapter.rar</connector>
</module>
</application>

This is the easiest way to install an adapter and usually circumvents
server-specific installation procedures.

Using the Adapter

One of the main advantages of using a JCA adapter in your application is that it
provides a standard programming interface. Developers have a very short
learning curve before they are able to use the adapter. In the case of the Object
Integration Gateway adapter, the interface employed is the CCI interface
described in the J2EE documentation for the javax.resource.cci package.

The following code sample shows one method of an EJB instantiating a JCA
connection in its setSessionContext method:

public void setSessionContext(SessionContext sc) throws

EJBException
{
this.sc = sc;
String adapterJndiName = null;
try
{
ic = new InitialContext();

// ADAPTER is a deployment parameter for this ejb
adapterJndiName = (String)ic.lookup("java:comp/env/ADAPTER");
// lookup the connection factory for this adapter

cf = (CciConnectionFactory)ic.lookup(adapterIndiName) ;

TIBCO Object Service Broker Object Integration Gateway

82 | Chapter 6 Using the OIG JCA Adapter

¥
catch(NamingException ex)
{
debugPrint(ex.getMessage());
ex.printStackTrace();
throw new EJBException(ex.getMessage());
¥

}

The E]JB now has a reference to the connection factory that it can to create a
connection, like this:

private Connection getCCIConnection() throws ResourceException

{

ConnectionSpec spec = new CciConnectionSpec(connectionParms);
return cf.getConnection(spec);

}
The connection object represents a session that a method uses to perform some
processing:

private void runInteraction(int interactionType,
String interactionName)
throws ResourceException

{
try
{
con = this.getCCIConnection();
Interaction ix = con.createInteraction();
iSpec.setFunctionName(interactionName) ;
iSpec.setFunctionType(interactionType);
((CciInteraction)ix) .execute(iSpec);
closeCciConnection();
¥
catch(ResourceException ex)
{
printException(ex);
if (con != null)
closeCciConnection();
iSpec.reset();
throw ex;
¥
¥

In this code sample, iSpec is a reference to the InteractionSpec object, which
would normally be allocated in the EJB's create or init method, as follows:

iSpec = new CciInteractionSpec();

With CCI, all the EIS-specific information is contained in the InteractionSpec
object. This enables a developer who is already familiar with CCI to use any JCA
adapter simply by learning how to use the InteractionSpec object.

See Also The Javadoc file, which is installed as a downloadable zip file with your OIG
installation, for information on OIG JCA Adapter APlIs.

TIBCO Object Service Broker Object Integration Gateway

|83

Chapter7 Using the OIG Application Bean

This chapter describes how to use the OIG application bean.

Topics

¢ OIG Application Bean, page 84

TIBCO Object Service Broker Object Integration Gateway

84 | Chapter 7 Using the OIG Application Bean

OIG Application Bean

ects2AppBean Class

The Object Integration Gateway application JavaBean, ects2AppBean, is a
standalone implementation of all the functions provided by the Gateway EJB base
class. You use the Gateway application bean in a non-EJB environment where a
standalone application or custom application server has to access the Gateway:.

Constructors
Constructor Description
ects2AppBean() No-args constructor. Requires

that you set session initialization
parameters manually.

ects2 AppBean(String alias, String sessParms, alias - A session pool alias name.

String mode) sessParms - Session parameters.
mode - Set to “pooled” for session
pooling.

ects2 AppBean(String alias, alias - A session pool alias name.

java.util.Hashtable sessParms, String mode) ~ sessParms - Session parameters.
mode - Set to “pooled” for session

pooling.
Methods
Method Description
addSessionParm(String persistKey, Adds a persistent data item to the
String value) session data collection.
addSessionParms(java.util. HashMap Adds a set of persistent data items to
persistData) the session data collection.

TIBCO Object Service Broker Object Integration Gateway

Method

close()

OIG Application Bean | 85

Description

Close the current TIBCO Object
Service Broker session.

Note A running transaction is rolled
back prior to the session being
closed.

getDocument()

Returns the first document in the
result area.

String getDocument(String docname)
throws ects2 AppBeanException

Returns the XML document from the
last run method call. The XML
document must be of type ROWSET
or MSSCHEMA.

String getDocumentFromTable(String
tableName) throws
ects2AppBeanException

Returns the named table’s XML
document from the message area.

String getEndMsg() Returns the end message set by the
last Gateway operation.
String getResult() Returns the HTML documents

returned from the last Object
Integration Gateway interaction.

String getSessionParm(String
persistKey)

Returns a persistent data item from
the session data collection.

java.util. HashMap getSessionParms()

Returns the session data collection.

WebRowSet getTable()
throws ects2AppBeanException

Returns a
com.ObjectStar.jdbc.rowset. WebRow
Set object via the “pass data to client”
option of the Object Integration
Gateway Transaction definition.

WebRowSet getTable(String docname)
throws ects2 AppBeanException

Converts an XML document from the
last run method call to a WebRowSet
object, and returns the WebRowSet
object. The XML document must be
of type ROWSET or MSSCHEMA.

WebRowSet getTable(String tableName)

throws ects2 AppBeanException

Returns a
com.ObjectStar.jdbc.rowset. WebRow

TIBCO Object Service Broker Object Integration Gateway

86 | Chapter 7 Using the OIG Application Bean

Method Description

WebRowSet getTableFromDoc(String Returns a

docname) com.ObjectStar.jdbc.rowset. WebRow
throws ects2 AppBeanException Set object constructed by parsing an
XML document from the current
interaction.
java.util.LinkedList getToc() Returns a java.util. LinkedList

containing the table of contents from
the last Object Integration Gateway
interaction. The table of contents can
be used in diagnostic or recovery
code to find out what the interaction
returned when unexpected results
are encountered.

boolean isOpen() Returns a boolean indication of
whether there is a current session or
not.
openApplication() Opens an unpooled application
throws ects2 AppBeanException based on default parameters.
openApplication(boolean pooled) Opens a pooled or unpooled
throws ects2 AppBeanException application based on default
parameters.
openApplication(Stringsessparms, Opens a pooled or unpooled
boolean pooled) application based on default
throws ects2 AppBeanException parameters.

openApplication(java.util. Hashtable Opens a pooled or unpooled

sessParms, boolean pooled) application based on default
throws ects2AppBeanException parameters.
removeSessionParm(String persistKey) Deletes a persistent data item from
throws ects2 AppBeanException the session data collection.
removeSessionParms() Deletes all persistent data items from

the session data collection.

TIBCO Object Service Broker Object Integration Gateway

Method

runRule(String ectsRuleName)
throws ects2AppBeanException

OIG Application Bean | 87

Description

Runs a TIBCO Object Service Broker
rule. The rule runs within the context
of the Object Integration Gateway
framework and can
programmatically interact with all
normal Gateway objects. This
method is provided as a way of
accomplishing some discreet rules
processing within the context of an
explicitly started transaction.

runTrans(String transname)
throws ects2 AppBeanException

Runs the named Gateway
transaction.

runXMLDoc(String docname)
throws ects2 AppBeanException

Runs the named Gateway XML
document.

setDocument(String docname, String
document)
throws ects2AppBeanException

Stages one or more XML documents
for sending to the Gateway on the
next run method call.

setDocument(String docname,
WebRowSet wrs)
throws java.sql.SQLException

Stages one or more XML documents
for sending to the Gateway on the
next run method call.

setDocumentFromFile(String docName,
java.lang.String fileName)
throws ects2 AppBeanException

Stores a file-based XML document so
that the next interaction sends it to
the Gateway for parsing.

setTable(WebRowSet wrs)
throws java.sql.SQLException

Passes the contents of a WebRowSet
object to a TIBCO Object Service
Broker data table. The method
converts the WebRowSet to an XML
document so that when the next
Gateway object is invoked, the XML
document is sent along with any
other parameters and loaded into a
TIBCO Object Service Broker data
table. Since no table name argument
is provided, the data table from
which the WebRowSet was created is
updated.

TIBCO Object Service Broker Object Integration Gateway

88 | Chapter 7 Using the OIG Application Bean

Method Description

setTable(WebRowSet wrs, String Passes the contents of a WebRowSet
tablename) object to a TIBCO Object Service
throws java.sql.SQLException Broker data table. The method

converts the WebRowSet to an XML
document so that when the next
Gateway object is invoked, the XML
document is sent along with any
other parameters and loaded into a
TIBCO Object Service Broker data
table. Since a table name argument is
provided, the specified data table is
updated.

setUserData(String userdata) Sets user data (name-value pairs)
passed with run method calls.
Multiple name-value pairs must be
separated using commas. A value
that contains a space character must
be enclosed in single quotation

marks.
setUserData(String name, String value) Sets user data (name-value pairs)
throws java.rmi.RemoteException passed with run method calls. Each

call to this method adds a
name-value pair to the userdata
collection passed on the next
interaction. There are no restrictions
on the naming of user data; the same
name can be used multiple times.

setUserid(String parmvalue) Sets the value of the USERID session
initialization parameter.

TIBCO Object Service Broker Object Integration Gateway

OIG Application Bean | 89

Method Description

startTran(boolean update) Explicitly starts an Object Integration

throws ects2 AppBeanException Gateway transaction. When started, a
transaction can span multiple
interactions of types runRule and
runXMLDoc. Data updated as a
result of these interactions is
committed when the stopTran(true)
method is called. The runTrans
interaction is always atomic and any
updates related to it are committed as
part of a nested transaction.

stopTran(boolean commit) Explicitly stops an Object Integration
throws ects2 AppBeanException Gateway transaction.

ects2AppBean Code Example

This example illustrates a simple compound transaction. If rules TEST_A and
TEST_B update tables, and if these updates are pending, they are committed at
the stopTrans statement.

package examples;
import com.Amdahl.Cli.*;
import com.ObjectStar.ects.*;
public class Ex1 implements Runnable {
ects2AppBean appBean = null;
java.util.Hashtable map = new java.util.Hashtable();

/** Creates a new instance of traceback */
public Ex1() {
¥

/a‘: *
* @param args the command line arguments
:‘:/
public static void main(String[] args) {
Ex1 me = new Ex1();
new java.lang.Thread(me).start();

public void run() {
map.put ("HOST", "localhost");
map.put ("PORT","9068");
map.put ("USERID", "HURON1") ;
map .put ("PASSWORD", "HURON1");
appBean = new ects2AppBean();
try {

// Open a pooled session.
appBean.openApplication(map, true);
//Start an update mode transaction
appBean.startTran(true);

TIBCO Object Service Broker Object Integration Gateway

90 | Chapter 7 Using the OIG Application Bean

//Run TEST_A but do not commit any updates.
appBean.runRule("TEST_A");

//Run TEST_b but do not commit any updates.
appBean.runRule("TEST_B");

//Stop the transaction and commit the data.
appBean.stopTran(true);
appBean.close();
}catch(ects2AppBeanException aex){
aex.printStackTrace();
}finally{
appBean.close();
}

return ;

[

ects2Result Class

The ects2Result class encapsulates the results of all OIG interactions. All
documents and error logs returned as a result of an interaction are stored in the
ects2Result. In debug mode persistent session data are also stored.

Inner Class

Class Description

ects2Result.TocEntry = The ects2Result encapsulates the results of all Gateway
interactions. All documents and error logs returned as a
result of an interaction are stored in the ects2Result. In
debug mode, persistent session data are also stored.

Methods

Methods Description

getTocEntryFromTable() throws Returns the table of contents entry
com.ObjectStar.ects.ects2ResultException for the first table document from
the result area.

getTocEntryFromTable(String Returns the table of contents entry
tableName) throws for the named table from the result
com.ObjectStar.ects.ects2ResultException area.

TIBCO Object Service Broker Object Integration Gateway

OIG Application Bean | 91

Methods Description

getTocEntryXMLDoc() throws Returns the table of contents entry
com.ObjectStar.ects.ects2ResultException for the first XML document in the
result area.

getTocEntryXMLDoc(String docName) Returns the table of contents entry
throws for the named XML document
com.ObjectStar.ects.ects2ResultException ~ from the result area.

ects2AppBeanException Class

The ects2AppBeanException class is a specialized exception class for the
ects2AppBean class. It provides a convenient way of capturing and retrieving
exception messages. Many ects2AppBean methods throw an
ects2AppBeanException object when an error is detected.

Constructors
Constructor Description
ects2 AppBeanException(String msg, A constructor requiring error
Throwable th) message text and a cause exception.

If the cause exception is an
ects2sessionbeanException the logs
from that exception are accessible
from the getlog and print stack trace
methods here.

ects2AppBeanException(String message) A constructor requiring only error
message text.

ects2AppBeanException(com.ObjectStar A constructor requiring an
.ects.ects2sessionbeanException sbex) ects2sessionbeanException cause
exception.

TIBCO Object Service Broker Object Integration Gateway

92 | Chapter 7 Using the OIG Application Bean

Methods

Method Description

String getHtmlErrorLog() Returns the text rules error log
for this exception, if one exists,
formatted as HTML.

String getLog() Returns the error log information
for this exception, if one exists,
formatted as either plain text or
HTML based on session or user
data containing an “HTMLMSG”
indication.

String getMessage() Returns the exception message.

String getTxtErrorLog() Returns the plain text rules error
log for this exception if one exists.

printStackTrace() Prints error information to the
System.err stream. If there is
TIBCO Object Service Broker
rules error information available
it is printed. If not, a Java
stacktrace is printed.

printStackTrace(java.io.PrintStream Writes error information to the
stream) indicated stream. If there is

TIBCO Object Service Broker
rules error information available
it is written. If not, a Java
stacktrace is written.

printStackTrace(java.io.PrintWriter writer) =~ Writes error information to the
indicated writer. If there is TIBCO
Object Service Broker rules error
information available it is
written. If not, a Java stacktrace is
written.

TIBCO Object Service Broker Object Integration Gateway

|93

Chapter8 Using XAL

This chapter describes how to use XAL.

Topics

¢ Overview, page 94

* Creating an XAL Web Application, page 95

TIBCO Object Service Broker Object Integration Gateway

94 | Chapter 8 Using XAL

Overview

What Is XAL?

XAL stands for XML Abstraction Layer. XAL is a toolkit for converting TIBCO
Object Service Broker text-based applications to web-based or GUI-based
applications, with little or no modification of the text-based application code.

The primary difficulty faced by customers when first adopting OIG is that TIBCO
Object Service Broker applications frequently have a great deal of display logic
embedded in the business portion of their code. To use the business logic from
such an application, much of the code must be restructured to separate the
business logic from the display logic.

What XAL provides is an ability to run a web site or a dedicated GUI application,
using only the data and metadata that exists in the TIBCO Object Service Broker
screens of a text-based application. This provides a way for users to benefit from
OIG immediately, while beginning to modify their applications.

How Does XAL Work?

XAL works by starting the text-based application in an OIG session. The XAL
framework is invoked just prior to the application relinquishing control at the
DISPLAY statement, and again just prior to its regaining control. In the
intervening period the screen data is encoded in XML and sent to the client along
with any SCREEN or SCREENTABLE metadata required. During this period the
XAL framework is available to service a wide variety of requests from its client,
including, but not limited to, requests for metadata relating to the currently
displayed screen.

The XAL client, which is constructed on top of the OIG client, is able to modify
the screen's XML-based data in any way supported by a TIBCO Object Service
Broker screen before returning it to the XAL framework for consumption. Things
like field display attributes are all taken care of by XAL and are available, on
request, in the client tier. The client supports data tables to which GUI controls
can be bound in the normal way. See the source code for the XAL sample
application for data binding examples.

Because a web browser is similar to a text terminal in its mode of operation, it is
expected that most XAL applications are web applications. To that end, XAL is
designed to work with web application servers and a sample web application is
provided with XAL.

TIBCO Object Service Broker Object Integration Gateway

Creating an XAL Web Application | 95

Creating an XAL Web Application

Before you can develop and run an XAL application, you must first install either
the OIG J2EE components (for Java environments) or the OIG .NET components
(for .NET environments). Refer to Chapter 1, Getting Started with Object
Integration Gateway (OIG), on page 1 for more information.

The fastest and easiest way to develop an XAL web application is to deploy the
sample XAL application, and to modify it to work with your existing text-based
application.

A sample JavaServer Pages (JSP) application for XAL is provided in the
WebFrame.war file, which is included when you install the J2EE components for
OIG. A sample XAL application for .NET is also available by request.

Deploying the Sample JSP Application
Use the following steps to deploy the sample JSP application for XAL:

1. Deploy the WebFrame.war application file to your servlet/JSP container,
using the procedures specific to your container.

For example, if you are using Tomcat, copy the WebFrame.war file into the
application deployment directory, which is named webapps by default.

2. Start your servlet/]JSP container.
3. Open your browser, and go to http:/ /localhost:8080/ WebFrame /Xal/

This assumes that your servlet/JSP container is also running as the web
server, and that it is listening on port 8080 for HTTP requests.

At this point you should be presented with a web page that has a single Start
XAL button on it.

4. On the web page, click the Start XAL button.

A login page should open in a separate browser window that has no
navigation buttons. To better emulate 3270-style navigation using PF keys, the
navigation buttons are absent.

5. On the login page, enter your TIBCO Object Service Broker connection
parameters, and the name of a startup rule for an existing text-based
application. The rule must take no arguments and the rule name must already
be entered into the @XAL_APPAUTH table on the TIBCO Object Service
Broker system where you are connected.

Entering the name of the startup rule in the @XAL_APPAUTH table
authorizes you to run the text-based application as an XAL application.

TIBCO Object Service Broker Object Integration Gateway

96 | Chapter 8 Using XAL

6.

On the login page, click the Start button.

You should see the first screen of the text-based application, displayed as a
web page.

The text-based application is now running as an XAL web application.

How the Sample Web Application Works

The sample web application is a very simple JSP application. Here is a more
detailed description of how it works:

1.

Entering the URL for the sample application in your web browser takes you to
the default page for the site: index.html.

The index.html page has a start button. Clicking the start button opens the
login.html page in a new browser window that has no forward /backward
navigation buttons. The navigation buttons are removed because a text-based
application requires that you use PF keys to display screens. Using browser
navigation buttons to move from screen to screen would ‘confuse’ the
text-based application and cause it to fail.

In the login.html page you enter the TIBCO Object Service Broker connection
parameters and the name of a no-argument startup rule for a text-based
application. When you click the submit button, the connection parameters and
rule name are passed to the login.jsp page.

The login.jsp page instantiates an XalSession object and initializes it with the
parameters in the web.xml file, as well as the connection parameters and
startup rule name passed from the login.html page. To specify your own
startup rule, simply enter the name of the rule in the RULE field on the
login.html page. Remember that the rule must take no arguments, and must
be entered in the @XAL_APPAUTH table.

The login.jsp page calls the XalSession object’s start() method, which starts the
text-based application and allows it to run until the first DISPLAY or
DISPLAY & TRANSFERCALL statement is encountered. At that point the
XAL framework extracts the displayed screen’s data and metadata and
returns them to the XalSession object. When all this is done the start() method
returns.

The login.jsp page instantiates an HtmlProducer object and calls its
paintScreen() method. The paintScreen() method writes HTML to the
browser’s output stream. The result is that the browser renders a web page
generated by the HtmlProducer object.

When you click a PF key, the form is posted to the response.jsp page. The
response.jsp page instantiates an HtmlConsumer object that, in turn,

TIBCO Object Service Broker Object Integration Gateway

Creating an XAL Web Application | 97

processes the fields in the response object such that the XalSession object is
updated with all changed data and cursor location information.

8. The response.jsp page calls XalSession.processFcnKey(). This method
validates the changed data, and sends it to the XAL framework running in the
TIBCO Object Service Broker Execution Environment. The XAL framework
updates all necessary screen data, positions the cursor, and returns control to
the application.

9. When another DISPLAY statement is encountered the process repeats.

Unless an error is encountered, the response.jsp page processes both the
%} display and response actions on every screen in the application.

Handling Errors

The sequence described in the previous section represents an error-free
interaction. This section describes what happens in the sample web application if
there is a validation error on a modified field.

1. When data is modified, the ScrRowSet object validates the data against the
metadata for the screen table, and throws an XalValidationException if
constraints are violated.

2. When data is modified, the ScrRowSet object validates the data against any
stored reference table information.

3. If a field has a reference table, but the data is not cached in the XalSession
object, the data is sent to the Execution Environment where the validation
occurs when the screen table is updated. If validation fails, an
XalValidationException object is thrown.

4. If an XalValidationException object is thrown in the demo application, the
ValidationError.jsp page is used to display the error message. You can correct
the input data and resume at this point.

Modifying the Sample JSP Application

There are three basic ways to modify the sample application to achieve the “look
and feel” you want for your XAL applications:

* Modifying the style sheet
* Modifying the screen metadata documents
¢ Extending the HtmlProducer and HtmlConsumer classes

This section describes each of these methods.

TIBCO Object Service Broker Object Integration Gateway

98 | Chapter 8 Using XAL

Modifying the Style Sheet

The sample application includes a cascading style sheet, xal.css, that is used to
control the appearance of the application. You can freely modify this style sheet,
or create a new style sheet, for your own applications.

The xal.css sample style sheet is listed here with comments describing the
function of each section.

/* Attributes particular to the helpkey, which is not an input
control, but a button. */
button.helpkey {

text-align: left;

font-family: monospace;

color: blue;
¥
/* Screentable data is placed in scrollable divs. In this case they
have a thin border so you can see their boundaries. */
div.screentable {

border-style: solid;

border-width: thin;

¥

input {
text-align: left;
font-family: monospace;
color: blue

¥

/* Display attributes for a text field that is protected. */
input.disabledinput {

color: red;

background-color: white;

border-width: 0
¥
/* Display attributes for a text field that is editable. */
input.enabledinput {

color: black;

background-color: white;

border-width: 1pt;
¥
/* Display attributes for a text field that is invisible. */
input.invisibleinput {

color: white;

background-color: white;

border-width: 0
¥
input.submitbutton {
¥
/* Fields with reference tables attached could be rendered as
select controls.

The default HtmlProducer does not do this because of horizontal
alignment problems. */
select.referenceselect {

color: white;

background-color: green;

border-width: 1px

TIBCO Object Service Broker Object Integration Gateway

Creating an XAL Web Application | 99

Modifying the Screen Metadata Documents

The screen metadata documents are XML documents. By default, they are
retrieved by the XAL client at runtime and parsed into a DOM. This DOM is used
by the HtmlProducer class to generate the HIML for the application web page.

A screen metadata document is composed of elements, each of which has several
attributes and, potentially, child elements. A screen metadata document must
conform to the XAL.xsd XML schema document, which is included with XAL.
You can use this schema to validate any changes you make. Several of the
attributes in a screen metadata document can by modified to affect the way
HTML is produced:

¢ Each element has an ENABLED attribute, which when set to false causes the
element and all its children to be skipped by the HtmlProducer object.

¢ Widths and heights can be adjusted as necessary.

* Text boxes can have their type property set to SUBMIT, BUTTON,
CHECKBOX, and so on. See the schema document for values.

* A text box with a reference field attached can have its type set to SELECT,
which causes a select control composed of the contents of the reference table
to be rendered.

* Any of the other properties can be modified. You can even modify any part of
the document in ways not supported by the default HtmIProducer class and
create a new custom producer class that supports the modification. You could
have to extend the XML schema as well.

To generate a metadata document for a screen, you run the XAL_GO_DSN rule in
a TIBCO Object Service Broker session started with DSBIFTYPE=TEXT. This rule
takes the following three arguments:

¢ SCREEN — The screen name. The resultant file is {SCREENNAME}.xml.

e SCHEMA_URL — The URL that is placed in the XML document for
validation purposes. You should copy the XAL.xsd file onto a local web server
and provide that URL. If null, no schema is included in the document and no
validation occurs.

¢ OUTPUTDIR — The directory where to write the metadata documents. If
null, the session's DSN directory is used.

After using the XAL_GO_DSN rule to write the screen metadata document to a
file, you can modify it.

To produce an HTML rendition of the currently displayed screen, the
HtmlProducer object must obtain the DOM representation of the screen’s
metadata. It does this by calling the XalSession.getScreenDomMetaData()
method, which returns the DOM for the currently displayed screen. If the DOM

TIBCO Object Service Broker Object Integration Gateway

100 | Chapter 8 Using XAL

for the screen is not cached, and if the XALMETADIR session parameter is
specified in the web.xml file, the XalSession.getScreenDomMetaData() method
builds the DOM by parsing the screen’s metadata document located in the
directory specified in the XALMETADIR session parameter. If the XALMETADIR
session parameter is not specified, a default DOM is retrieved from TIBCO Object
Service Broker. New DOMs are added to the cache.

Extending the HtmIProducer and HtmIConsumer Classes

See Also

The HtmlIProducer and HtmlConsumer classes are used in the sample application
JSPs to produce and consume HTML, and therefore play a significant role in
determining the ‘look and feel” of the application. The source code for these two
classes is provided with XAL so you can modify it for your own purposes.
Alternatively, you can create extensions of these classes and use them in your
JSPs.

When creating or modifying Java classes for use in XAL applications, refer to the
API documentation for the XAL components. The API documentation is provided
in Javadoc format, and is available in your installation folder under OIG for J2EE.

Appendix A, Setting OIG Session Initialization Parameters, on page 113 for
information about XAL-specific session initialization parameters.

TIBCO Object Service Broker Object Integration Gateway

|101

Chapter9 Using the OIG Rules Programming Interface

This chapter describes how to use the OIG rules programming interface.

Topics

¢ Overview, page 102

* Types of Rules, page 104
® Build Rules, page 105

¢ Format Rules, page 106
e Utility Rules, page 107

® RPI Variables, page 111

TIBCO Object Service Broker Object Integration Gateway

102 | Chapter 9 Using the OIG Rules Programming Interface

Overview

What Is the Rules Programming Interface?

The Object Integration Gateway rules programming interface, or RP], is the
standard interface by which you access the Gateway rules engine.

Object Integration Gateway is designed to provide a relatively easy way to create
sophisticated web applications, rapidly, without writing any code. The main
development tool, the TIBCO Object Service Broker Ul, is easy to use, yet
powerful. With the TIBCO Object Service Broker Ul, you can build complex
functionality into your web application. And when you need to develop
specialized functionality that goes beyond what can be achieved strictly within
the TIBCO Object Service Broker Ul, you must work directly with the Gateway
rules programming interface.

Working with the RPI

Working with the rules programming interface means writing rules, or modifying
existing rules, to achieve the functionality you need. Basically, rules are the native
programming instructions for the Object Integration Gateway rules engine. Rules
tell the Gateway rules engine what tasks to perform, such as what data to access
from which database tables, and what to do with the data.

To write or modify rules, you use the same tool you use to define data tables: the
TIBCO Object Service Broker UL

What You Need to Know to Work with the RPI

Before you can work with the rules programming interface, you need to know
how to perform tasks such as defining tables and editing rules in the TIBCO
Object Service Broker environment.

TIBCO Object Service Broker Object Integration Gateway

Overview | 103

What Reference Material Is Provided?

The following table describes the manuals to use when you are programming the
Object Integration Gateway rules interface. You access these manuals from our
web site at http://support.tibco.com/ .

Topic Manual

Defining and managing your TIBCO Object Service Broker Managing
data. External Data

Rules language statements and TIBCO Object Service Broker Programming
language usage. in Rules

Re-usable, shareable code for data ~ TIBCO Object Service Broker Shareable Tools
and definition manipulation.

See Also System-specific documentation appropriate to the operating environment where
Object Integration Gateway is used.

TIBCO Object Service Broker Object Integration Gateway

http://www.objectstar.com/support/

104 | Chapter 9 Using the OIG Rules Programming Interface

Types of Rules

Rule Types
Object Integration Gateway rules are divided into the following basic types:
¢ Build rules
e Format rules
® Process rules
e Utility rules

Each of these rule types is described in the following sections.

TIBCO Object Service Broker Object Integration Gateway

Build Rules | 105

Build Rules

Build rules perform work for Object Integration Gateway objects. There are two
types of build rules: pre-build rules, which perform initialization work, and
post-build rules, which perform termination work.

The following Gateway objects have the ability to run build rules:
* Transactions (pre-build and post-build rules)

¢ XML documents (post-build rules only, for document consumption only)

Pre-Build Rules

A pre-build rule is the first action executed, when an Object Integration Gateway
object, such as a transaction, is run. Its purpose is usually to perform some
initialization work for the Gateway object. For example, a pre-build rule can be

used to initialize a data table with data, set variables used by the object, or
perform validation.

Post-Build Rules

A post-build rule is the last action executed when an Object Integration Gateway
object, such as a transaction, is run. You can use it for additional processing or
clean-up work, after the object stops running.

TIBCO Object Service Broker Object Integration Gateway

106 | Chapter 9 Using the OIG Rules Programming Interface

Format Rules

Format rules transform, format, or otherwise process the data coming from a
source data table, before displaying it on a web page. For example, if you want a
date that is stored in the data table as 00/12/09 displayed as December 9, 2000,
use a format rule.

Applying Format Rules

You can specify a separate format rule for each data field. You apply a format rule
to a field using the TIBCO Object Service Broker U], in the field map XML
document. To apply a format rule to an XML document data field, enter the name
of the rule in the Output field or In field of an XML field map, as shown in the
following illustration.

Qukput Format rule Input Farmat rule
T4 BOOKSALTH |
T &

In the Output field, you specify the name of a rule that formats the data contained
in the field when producing the XML document. In the In field, you specify the
name of a rule that formats the data parsed from the XML document being
consumed.

TIBCO Object Service Broker Object Integration Gateway

Utility Rules | 107

Utility Rules

Accessing RPI Arguments

Object Integration Gateway provides the following utility rules to access
argument data passed from the client web application.

value = ECTSGETARG(argname)

Returns the value of the parameter argname as passed from the client application.
For example, the application could pass argname from a web browser via an
HTTP POST or as part of the URL query string, or on a method call on the COM
component. If argname is not found as a passed argument, the system looks for a
session data value of the same name. Throws an ArgNotFound exception, if the
parameter is not found.

value = ECTSRETURNARG(argname)

Same as ECTSGETARG, except that it returns an empty string if the parameter is
not found.

Accessing Object Integration Gateway Session Parameters

Object Integration Gateway provides the following utility rules to access Gateway
session parameters.

ECTSDELSESS(sessionparmname, sessionparmvalue)

Deletes the named value from both session context and the collection of variables
provided to the Gateway for subsequent interactions.

value = ECTSGETSESS(sessionparmname)

Returns the value of the named Gateway session parameter.
ECTSREMSESS(sessionparmname, sessionparmvalue)

Deletes the named value from the collection of variables provided to the Gateway
for subsequent interactions, but not session context.

TIBCO Object Service Broker Object Integration Gateway

108 | Chapter 9 Using the OIG Rules Programming Interface

ECTSSETONCE (sessionparmname, sessionparmvalue)

Sets the value of the named Gateway session parameter to the passed value such
that it is placed in the web application’s SESSION context, but not in the collection
of variables provided to the Gateway for subsequent interactions.

ECTSSETSESS(sessionparmname, sessionparmvalue)

Sets the value of the named Gateway session parameter to the passed value.

Messaging

You use the following rules to control Gateway messaging.

ECTSMSG(message)

Sets message text that is sent to the client by a rule. By default, the message is sent
via a persistent data parameter (session data on a web server) called ECTSMSG.

Execution/Generation

You use the following rules to execute or generate Object Integration Gateway
objects.

See also the TIBCO Object Service Broker Shareable Tools manual.

XMLPARSE(docname, validate, docsource, docdata)

Begins parsing an XML document.

XMLSTART(xmldocname, predicate, parm)

Generates an XML document based on the passed data access arguments.

XMLSTARTDSN(outdsn, predicate, parm)

Generates an XML document based on the passed data access arguments, and
places it in the specified file.

XMLSTARTSETDEST(tablespec, fieldspec)
Sets up the output table and field for XMLSTART.

TIBCO Object Service Broker Object Integration Gateway

Utility Rules | 109

XMLSTARTTAB(tablename, format, predicate, parm)
Returns a table to the OIG client.

Formatting and Linking

The following rules can be useful when writing format and link rules.

value = STRANXMLSTRING(string)

For use with XML document format rules. Translates the given string into a
format that is XML parser-safe, and returns it. For example, the string “x<y>z"
could be interpreted as a valid XML tag. Normally to prevent this the data is
automatically converted by Object Integration Gateway to an XML-safe format.
However, in a format rule it could be desirable to return additional XML data as
part of the string. In this case it is up to the developer to ensure that the result is
valid and safe.

value = SURLENCODE(string)

For use with link rules. Some special characters are not permissible in a query
string because they have meaning as part of the URL syntax. This rule translates
the given string to a URL-safe format that can be used as an argument, and
returns it.

Selecting an Application Profile

You can use the following rule to select an application profile. You use application
profiles, which are defined in the TIBCO Object Service Broker U], to specify
default settings for an application.

ECTSSETAPP(appname)

Selects the named application profile for use with the current application.

Making an HTTP Request
Use the following tool to make an HTTP request.

See also the TIBCO Object Service Broker Shareable Tools manual.

TIBCO Object Service Broker Object Integration Gateway

110 | Chapter 9 Using the OIG Rules Programming Interface

value = SHTTPREQUEST(requesttype, url, header, data, result, message)

The rule returns the HTTP response code as an integer value. The return value has

type C, syntax B, and length 4. A response code of 1000 indicates a non-HTTP
error.

The following illustration shows an example of how $SHTTPREQUEST can be
called in a rule:

GETTEST() ;
- LOCAL HTTPCODE, URL, HEADER, DATA, RESULT, MESSAGE;

P +-----
_ URL = 'HTTP://WWW.TIBCO.COM/POSTTEST.ASP?P1=1&P2=AAA"; | 1

_ HTTPCODE = $HTTPREQUEST('GET', URL, HEADER, DATA, RESULT, MESSAGE); | 2

_ CALL ENDMSG('RC=' || HTTPCODE || ', M=' || MESSAGE || ', R=' || RESULT); | 3

_ !
Logging

Use the following rule to write messages to the Object Integration Gateway log
file.

ECTSLOG

Writes a message to the Gateway log file.

TIBCO Object Service Broker Object Integration Gateway

RPI Variables | 111

RPI Variables

Object Integration Gateway Interface Variables

When a custom rule runs, it is executed in an environment that is not isolated
within the Object Integration Gateway rules engine. This means that the rule has
access to information about the environment where it is running and information
that is specifically made available. This section describes local variables that are
made available to custom rules and the information they can safely use. Be aware
that other information is available to these variables, but there is no guarantee
that this data is available across releases. Also, be aware that changing data
outside the variables listed below is unsupported and can cause unexpected

behavior.
Format Rule and Field Build Rule Variables

The following local variables are available when a format rule or field build rule is
invoked:

NEW_FIELD_VALUE The value field for which the format rule is invoked.
Changing this value changes the value displayed.

OUTPUT The current output buffer for the current field. Change
with extreme caution.

RECORDCOUNT The count of the number of rows processed so far.

Transaction Variables

The following additional local variables are available when an Object Integration
Gateway object is invoked by a transaction:

TRANS The name of the current transaction.
TXMODE The mode of the current transaction (BROWSE or
UPDATE).

TIBCO Object Service Broker Object Integration Gateway

112 | Chapter 9 Using the OIG Rules Programming Interface

TIBCO Object Service Broker Object Integration Gateway

|113

Appendix A Setting OIG Session Initialization
Parameters

This appendix describes the OIG session initialization parameters.

Topics

* Session Parameters, page 114

* XAL-Specific Session Initialization Parameters, page 120

TIBCO Object Service Broker Object Integration Gateway

114 | Appendix A Setting OIG Session Initialization Parameters

Session Parameters

DATAIN

DATAOUT

DEBUG

You can set the following initialization parameters for an Object Integration
Gateway session.

Specifies the datain size in bytes.

Valid Values 512 to 32768 bytes.

Default 32768 bytes

Specifies the dataout size in bytes.

Valid Values 512 to 32768 bytes.

Default 32768 bytes

Specifies whether debugging messages are written to the System.out stream for
significant internal events. It also causes session data to be included in the table of
contents. The information provided in the system log can be requested by support
if you have an issue under investigation.

Debug should be used carefully with high performance applications, because
access to the System.out stream is serialized and can adversely affect
performance.

Valid Values TRUE, FALSE

Default FALSE

TIBCO Object Service Broker Object Integration Gateway

Session Parameters | 115

HOST
The name of the host machine where the TIBCO Object Service Broker monitor
process is running.

Abbreviated Name H

Valid Values 0 to 64 characters.

Default localhost.

Effects HOST must be used in pair with the PORT parameter to
fully identify the target TIBCO Object Service Broker
monitor process (Open Systems) or Execution
Environment (z/OS).

LIBRARY
The name of the local library for rule calls.

Abbreviated Name L

Valid Values 0 to 8 characters.

Default None.

Effects The library specified here is searched when SEARCH=L
is specified.

MAXSESSION

The maximum number of sessions that the Gateway can execute simultaneously.

Valid Values Determined by the license key.

Default 1

Effects Exceeding the limit specified by the MAXSESSION
parameter setting results in the rejection of the offending
HTTP request.

TIBCO Object Service Broker Object Integration Gateway

116 | Appendix A Setting OIG Session Initialization Parameters

PASSWORD
The user’s login password to be passed to TIBCO Object Service Broker. The
value is case-sensitive on Open Systems.

Abbreviated Name P

Valid Values 1 to 8 characters.

Default HURON1

POOLTIMEOUT
The number of milliseconds the pool manager waits for a session to become
available if all sessions in the pool are busy.

Valid Values 0 to 2147483647 milliseconds.

Default 0 milliseconds.

Effects ¢ If a session becomes available within the specified
time, the pool manager returns the session to the
requesting client.

* If no session becomes available within the specified
time, an exception is thrown indicating that
MAXSESSION is exceeded.
PORT
The number of the TIBCO Object Service Broker monitor socket port.
Valid Values 0 to 65535.
Default 9068
PREFIX

The character value used as a prefix for generated user IDs.

Valid Values 1 to 7 characters.

Default None.

TIBCO Object Service Broker Object Integration Gateway

Session Parameters | 117

Effects * A generated user ID is composed of two parts: a

character prefix that is constant, and a numeric suffix
that is incremented. A generated user ID is always a
total of eight characters long, so the number of digits
used for the numeric suffix depends on the length of
the prefix: if a prefix is, say, five characters long, three
digits are used for the suffix (for example,
HURONQO01). The digits start numbering at zero, and
are incremented by one as each user ID is generated.

® The number of user IDs that can be generated depends
on the length of the prefix: if five characters are used
for the pretix, three digits are used for the numeric
suffix, accommodating a maximum of 1000 generated
user IDs.

e If no value is provided for the PREFIX parameter, user
IDs are not generated.

® You cannot specify an empty string for the PREFIX
parameter.

SEARCH

The library search environment for the first rule to be executed.

Abbreviated Name SEA

Valid Values S,I,L

Default L

Recommendation Specify I or L only when one or more required rules
reside in the site’s installation or local library.
Specification L causes overhead in finding rules; the local
library must be searched whenever a new rule name is
encountered for the first time in a transaction. Significant
performance benefits can be realized when frequently
used rules are promoted to the installation library.

TIBCO Object Service Broker Object Integration Gateway

118 | Appendix A Setting OIG Session Initialization Parameters

Effects If SEARCHS=S is specified, TIBCO Object Service Broker
searches for rules, external routines, or builtins in the
following order:

1. The builtin library

2. The system library, as specified by the parameter
SYSLIB

3. The external routines library that is contained in the
ROUTINES table

If SEARCH=I is specified, TIBCO Object Service Broker
searches for rules, external routines, or builtins in the
following order:

1. The installation library, as specified by the parameter
INSTLIB

2. The builtin library

3. The system library, as specified by the parameter
SYSLIB

4. The external routines library that is contained in the
ROUTINES table

If SEARCH=L is specified, TIBCO Object Service Broker
searches for rules, external routines, or builtins in the
following order:

1. The local library, as specified by the parameter
LIBRARY

2. The installation library, as specified by the parameter
INSTLIB

3. The builtin library

4. The system library, as specified by the parameter
SYSLIB

5. The external routines library that is contained in the
ROUTINES table

STANDBYWAIT

Specifies whether the start request of the Object Integration Gateway session is to
wait for an available standby session if all the standby sessions are busy.

* A NO setting causes a reject of the request.

TIBCO Object Service Broker Object Integration Gateway

Session Parameters | 119

* A YES setting puts the request on a wait queue for a standby session. The
STANDBYWAITLIMIT parameter controls the length of the wait time. See the
description of that parameter in the TIBCO Object Service Broker Parameters
manual. This value overrides STANDBYWAIT specified as a configuration or
EE initialization parameter in TIBCO Service Object Broker.

This parameter is accepted by Open Systems TIBCO Service Object Broker on
z/0S and Open Systems. However, it has no effect on Open Systems.

Valid User Values Y, YES, N, NO

Default Y

Effects Effect on TIBCO Service Object Broker on z/OS:

The exact behavior is defined by this parameter and the
STANDBYWAITLIMIT and STANDBYWAITMSG
settings of Object Service Broker. See TIBCO Object
Service Broker Parameters for details.

Effect on TIBCO Service Object Broker on Open Systems:
None.

TRACEMESSAGES

Specifies the file to which debug tracing messages are written, if the DEBUG
parameter is set to TRUE.

Default Empty string.

USERID
The TIBCO Object Service Broker session user ID.

Abbreviated Name U

Valid Values 1 to 8 characters.

Default HURONI1

TIBCO Object Service Broker Object Integration Gateway

120 | Appendix A Setting OIG Session Initialization Parameters

XAL-Specific Session Initialization Parameters

The following session initialization parameters are specific to XAL sessions.

Web or
Standalone

DATEFORMAT Both

Parameter Name

Description

The default TIBCO Object Service
Broker datemask for displaying
date fields. Should be equivalent to
the value in the session.prm file.

DEBUGDIR Both

The name of a directory where
debugging information for this
session can be written.

If a different directory is required
for each session specify a unique
value on the XAL constructor.

HTMLERRORLOG Both

Require that error logs print in
HTML format by default.

REFERENCECHECKING Both

TRUE or FALSE depending on
whether the user wants reference
data to be collected and cached for
screenfields with the autoprompt
flag set. Because some applications
use dynamic data for autoprompt
fields and this data is cached at
application context, it could be
necessary to turn reference
checking off in the web application.
Reference checking is still be done
in the execution environment if this
feature is turned off.

TIBCO Object Service Broker Object Integration Gateway

XAL-Specific Session Initialization Parameters | 121

Web or

Parameter Name Standalone

Description

SCREENRSMD_CACHE Web only This is the name of the collection
that either exists or is to be created
by the XAL session object for the
purpose of storing ScrRowSet
metadata documents. These
documents are copies of the screen
table definition and are cached at
application context for
performance reasons. This cache is
an ideal candidate for persistence
by the web application.

SCREENREFS_CACHE Web only This is the name of the collection
that either exists or is to be created
by the XAL component for the
purpose of storing reference field
information. Reference data is
collected only if the
REFERENCECHECKIG parameter
is set to true (or not specified). This
cache is an ideal candidate for
persistence by the web application.

SCREENMD_CACHE Web only This is the name of the collection
that either exists or is to be created
by the XAL session object for the
purpose of storing screen metadata
documents. These documents
reflect the definition of the TIBCO
Object Service Broker screen and
are cached at application context
for performance reasons. This
cache is an ideal candidate for
persistence by the web application.

SCREENROWS Both The number of rows in the virtual
screen used by the XAL session.
Valid values are 0 to 43. This is a
required parameter because the
default is 0, which causes a display
failure.

TIBCO Object Service Broker Object Integration Gateway

122 | Appendix A Setting OIG Session Initialization Parameters

Web or _—

Parameter Name Standalone Description

SCREENCOLS Both The number of columns in the
virtual screen used by the XAL
session. Valid values are 0 to 132.
This is a required parameter
because the default is 0, which
causes a display failure.

XALMETADIR Both The name of the directory where

the XAL session object should look
for custom edited screen metadata
documents. These documents are
produced by the XAL_GO_DSN
utility rule and can be hand edited
to achieve screen-by-screen control
of the rendering process.

TIBCO Object Service Broker Object Integration Gateway

|123

Appendix B Understanding the Data Access Parameter
Syntax

This appendix describes the syntax of the data access parameters.

Topics

® Data Parameter Value Syntax, page 124
e Data Key Value Syntax, page 125

TIBCO Object Service Broker Object Integration Gateway

124 | Appendix B Understanding the Data Access Parameter Syntax

Data Parameter Value Syntax

The data parameter value is provided in one or more comma-separated values
that represent either the data value itself, or a reference to the data value.

The following example specifies two dynamic substitutions, {ARG1} (a numeric
value) and ' {TABLEA}.{FIELDA}' (a string value). If the value to be substituted is
a string value, the expression must be enclosed in single quotation marks.

Example
'A Value', {ARG1l}, '{TABLEA}.{FIELDA}'

Syntax in BNF Notation

<parm> ::=
<parm value list>

<parm value list> ::=
<parm_value{,parm_value}>

<parm_value> ::=
<passed argument name>
<table reference>
<data value>

<passed argument name>
<{argument namel}>

<table reference> ::=
<{tablename}.{fieldname}>

<data value> ::=
<Numeric Value>
<Quoted String>

<Quoted String> ::=
<'string'>

TIBCO Object Service Broker Object Integration Gateway

Data Key Value Syntax | 125

Data Key Value Syntax

The data key value provides table access predicates in a syntax very similar to the
syntax used for rules, but without the table specification, the WHERE, or any
ordering.

The following example specifies two dynamic substitutions, {ARG1} (a numeric
value) and ' {TABLEA}. {FIELDA}' (a string value). If the value to be substituted is
a string value, the expression must be enclosed in single quotation marks.

Example

FIELD1 = 'A Value' AND FIELD2 > {ARG1l} OR FIELD3 =
'{TABLEA}.{FIELDA}'

Syntax in BNF Notation

<key predicate> ::=
<where not expression> {<logical operator>
<where not expression>}

<where not expression> ::=
[<not>] <where expression>

<where expression> ::=
<where relation>
(<where predicate>)

<where relation> ::=
<field reference> <relational operator>
<where expression>

<where expression> ::=
[<unary operator>] <where expression term>
{<add operator> <where expression term>}

<where expression term> ::=
<where expression factor> {<multiplication operator>
<where expression factor>}

<where expression factor> ::=
<where expression primary> [<exponent operator>
<where expression primary>]

<where expression primary> ::=
<passed argument name>
<table reference>
<data value>

<passed argument name> ::=
<{argument namel}>

<table reference> ::=

TIBCO Object Service Broker Object Integration Gateway

126 | Appendix B Understanding the Data Access Parameter Syntax

<{tablename}.{fieldname}>

<data value> ::=
<Numeric Value>
<Quoted String>

<Quoted String> ::=
<'string'>

TIBCO Object Service Broker Object Integration Gateway

Appendix C

Topics

|127

Creating XML Documents

This appendix is a tutorial on how to create XML documents with TIBCO Object
Integration Gateway and the TIBCO Object Service Broker Ul You must have
installed and must be familiar with that Ul For details on its use, see the TIBCO
Object Service Broker Ul online help.

* Performing the First Steps, page 128

* Defining XML Documents, page 129

* Adding Tables, page 132

* Adding Field Maps, page 135

¢ Understanding Other Field Attributes, page 140
¢ Understanding Child Documents, page 143

¢ Using XML Documents, page 149

* Defining Attribute Relationships, page 152

¢ Customizing XML Declarations, page 157

TIBCO Object Service Broker Object Integration Gateway

128 | Appendix C Creating XML Documents

Performing the First Steps

The tree view in the TIBCO Object Service Broker UI OSB Projects view (or the
Windows > Show View menu) shows two XML-related items: XML Documents
and XML Field Maps. Choosing XML Documents with no filter applied displays a
list of XML documents.

The documents you create are usually of the XML type. The MSSCHEMA, ADO . NET,
and ROWSET document types are mostly for use within TIBCO Object Integration
Gateway and you seldom need to create your own documents of those types.

TIBCO Object Integration Gateway assumes that the XML document being
processed is parsed and placed into a relational table structure by TIBCO Object
Service Broker for further processing and that the document is created by reading
the processing results from a relational table. The overall process looks like this:

data entry — document — table — processes — table — document — exit

To map this process into the TIBCO Object Service Broker UlI, create an XML
document definition to define the XML document’s format and content and the
relationship to the underlying relational table or tables.

An XML document definition contains two parts:
* The document definition itself.

* A table field map with the fields to be included in the document and their
attributes.

The document definition can include other XML documents, called child
documents, with which you process hierarchical data. For example, an XML
document might list all the departments in your organization and a child
document might list the employees within a department. A later section in this
tutorial describes child documents in more detail.

TIBCO Object Service Broker Object Integration Gateway

Defining XML Documents | 129

Defining XML Documents

To define an XML document:

1. Choose File > New > XML Document to open the New XML Document
wizard.

& New XML Document

AML Document
Create a new $ML document f,}

Create in project: ':'-"."':'-F'.E:Ir'-'11r'-1

Marme: | a |

s L.
() Finish Cancel

2. Type the name of the XML document in the Name field and click Finish.

TIBCO Object Service Broker Object Integration Gateway

130 | Appendix C Creating XML Documents

A template is displayed.
+u3) *PRIMER_EMPS 5 =0

Properties £

+ Identification

Title:
Descripkion:

Unik: S SADMIN
+ Runtime Attributes
Rook name: | @ Type: | XML v

[]validate document Build header [|Recurse Build OTD

+ Processing Options

Reqgular expression for data selection {(consumpion):

Production rules Consumption rules
Pre-process rule: |5 Pre-process rule: |5
Paost-process rule: | Post-process rule: |4

Properties | Child Documents | Tables | Tree

3. Fill in the name, title, description, and unit.

Even though the document name must be unique among all the XML
documents defined on your instance of TIBCO Object Service Broker, that
name can be the same as, for example, that of a table or transaction.

In the tutorial that follows, you create an XML document called PRIMER_EMPS to
display all the employee data from the table ECTS_EMPLOYEES. You must fill in all
the information in the Identification section.

Note that the Runtime Attributes section specifies the document type, which
defaults to XML. Leave it unchanged for your document.

You must also specify the name of the opening and closing tags, which enclose all
the occurrences, as a document root name in the “Root name” field under
Runtime Attributes.

TIBCO Object Service Broker Object Integration Gateway

Defining XML Documents | 131

Every XML document must be well-formed, that is, you must enclose all its XML
tags within an opening tag and a closing tag. Feel free to name those tags however
you desire.

For this tutorial, the root name is EMPLOYEES. Once you have set the root name
and saved it, your XML document definition is complete for now and you can
add the field map.

TIBCO Object Service Broker Object Integration Gateway

132 | Appendix C Creating XML Documents

Adding Tables

To add a table to the example XML document:

1.

Make the source table, ECTS_EMPLOYEES, known to the example XML
document: Click the Tables tab, locate the table in the Tables view, and then
drag the table name to the area called Table.

Type ects_employees in the “Root name” text field.

The table root name is the name assigned as the opening and closing tags for
all the occurrences of the table to be included in the XML document, that is,
the name of the tag that encloses one table occurrence. The table and
document root names must be different.

Type ECTS_EMPLOYEES in the “Map name” text field.
You will specify this map later.

Optional. To include all the fields even if they have null values, select
Generate empty.

Otherwise, if a field has a null value in an XML document, that field is
omitted.

Optional. Select the “Null after update” option to clear the table buffer after
each occurrence is loaded into the output table during the reading of an XML
document.

Otherwise, the buffer remains uncleared at the end of each occurrence. This
selection is important only if some occurrences in the XML document contain
missing fields. If the buffer is not cleared, a missing field from one occurrence
acquires a value anyway from a prior occurrence.

If all the fields are present for every occurrence, you can ignore this option.

Specify the parameters. For this tutorial, specify a selection criterion of
deptno=10 in the Key predicate field.

If you parameterize the source table, the criteria for selecting occurrences and
ordering field values apply only when you create an XML document. You can
specify variable values identified by curly brackets, for example, {REGION},
constants, or both as the format of the entries here.

Optional. Specify the preprocess and postprocess production and
consumption rules in their respective fields (Production Rules and
Consumption Rules).

TIBCO Object Service Broker Object Integration Gateway

Adding Tables | 133

Object Service Broker executes the production rules when producing the
document and the consumption rules when reading the document. for the
production of the document.

In the rest of the fields, specify how you want the output table updated when the
XML document is read, that is, when to commit the updates and whether the
updates replace existing data. Do the following;:

1. Optional. Select “Replace existing data” to cause the data from the XML
document to overwrite the existing table data.

Deselecting that checkbox means that you expect all the data occurrences in
the XML document to be new, that is, the primary key values do not already
exist in the table.

2. Optional. Select “Update at end of element” when specifying the options for
updating the occurrences of child XML documents in relation to updating the
occurrences of the parent document. This selection ensures simultaneous
processing for all the updates to each occurrence.

Deselecting that option means that processing of the updates from the child
documents occurs as partial-occurrence updates, after which the updates from
the parent document are processed separately. You usually select this option
for a child document definition to prevent a partially complete occurrence
from being added to the database.

3. Select a commit point.

The default is to commit updates at the end of all data processing or at every
COMMITLIMIT exception, whichever occurs first. Selecting None means no
explicit commit and that you opt for TIBCO Object Service Broker’s default
commit at the end of the transaction.

If you specify the attributes of a parent XML document, specify the handling of
the child documents by performing either of these two steps:

* Select “End of root” to set a commit point at the end of each child document
root.

* Select “After N roots” to set a commit point after every N roots from the child
document. An additional option is then displayed, in which you specify a
value for N.

TIBCO Object Service Broker Object Integration Gateway

134 | Appendix C Creating XML Documents

A dialog box similar to this one is then displayed:

w3 *PRIMER_EMPS ©72 — o
Tables o))
Tahle "ECTS_EMPLOYEES' Details
T ECTS_EMPLOVEES Tahle: =5 ECTS_EMPLOYEES
Rook name: ecks_emplovess
Map name: & | ECTS_EMPLOYEES

Pre-process consumption rule: ([,

Post-process consumption rule: ([T,

Pre-process production ruler ([T,

Post-process production rule: |

Lo

[J=zenerate empty Mull after update
Parameters:

Kev predicate: deptno=10

Crdering:

Update at end of element Replace existing data
Carnmit poirk: -

Remowve

Properties | Child Documents | Tables | Tree

Save the XML document.

When producing XML documents, you can specify any table type for the
N definition. Remember, however, that this table then applies to both the produce
and consume messages when it’s part of an XML document.

TDS tables work well for static data. For dynamic data, we suggest TEM tables to
avoid unnecessary updates and commits to TDS. Similarly, opt for TEM tables
when consuming XML documents.

TIBCO Object Service Broker Object Integration Gateway

Adding Field Maps | 135

Adding Field Maps

Now add a field map to your table for specifying fields in the XML document.

If the map already exists, click the icon beside the map in the Tables tab for the
XML document name and choose Open from the menu. Otherwise, create a new
XML Field Map in the XML Field Map wizard, as follows:

1. In the open XML Field Map editor, type the identification information on the
Properties tab, if desired, and click the Field Map tab.

2. Click “Add from table” for a list of the fields associated with the field map.

Note: To associate the XML field map name with a table, specify that name in
the XML document’s Tables tab.

Your Table Field Selector dialog box should look like this:

€& Table Field Selector X

EN Tvpe Synka Length | Decimal
EMPNC I - Identifier P - Packed 3 i {
LMAME 5 - Skring iZ - Char Fix 22 0
POSITION 5 - 5kring Z - Char Fix 14 0
MGR# I - Identifier P - Packed 3 1]
DEPTHO I - Identifier B - Binary z]
SOLARY) - Quankity P - Packed 3 z
HIREDATE [- Date E - Binary 4 0
ADDRESS 5 - Skring W - Yar Char 38 0
CITY 5 - Skring iZ - Char Fix 20 0
PROY 5 - Skring iZ - Char Fix 3 0
P_CODE 5 - Skring iZ - Char Fix 7 0

3. Select the fields you would like to include in your field map. For this tutorial,
select all the fields up to and including HIREDATE except MGR#.

You must exclude MGR# because it contains #, a special XML control character,
which, if it is part of a field name, cannot be correctly handled by Object
Service Broker. If your tables contain field names with the # character, rename
those fields for the XML document in the Root Name column.

4. Close the Table Field Selector.

TIBCO Object Service Broker Object Integration Gateway

136 | Appendix C Creating XML Documents

The selected fields are then displayed in the document field map, as shown in the
following figure.

Empty element name: |

Properties | Field Map

<a| PRIMER_EMPS f@ *ECTS_EMPLOYEES &3 =C
Field Map Foy
Field name
Field name Twpe Fook narnme Eroup nanme

EMPHO I N .

LMAME Element

POSITION Elerment:

DEPTMO Element

SALARY Element

HIREDATE Element

< I | >
[.ﬁ.dd From tal:ule...l [.ﬁ.dd] [Remuve]

 'EMPMNO" Details
Field name: | EMPMO |
Type: | Element v |
Roaok name: | |
SrOUp name: | |
Dukput Format rule: E}é} |
Input Format rule: E}é} |
Ilzage: | Input & Oukpuk b |
Table averride: | |

TIBCO Object Service Broker Object Integration Gateway

Adding Field Maps | 137

Next, assign an XML type to each field. After you've added the fields, each of
them in the Field Map is, by default, assigned an XML type of Element. Your type
choices are Attribute, Empty Element, and Element. What's their difference?
The following figure shows the XML code generated for one occurrence from the
table ECTS_EMPLOYEES with annotations to show how the three attribute types
affect the generated XML.

<7?xml version="1.0" 7=

«!-- XMLDOcCName=PRIMER_EMPS -->
«<!-- Generated By Objectstar Integrat Gatewa 2 -
3.07 --

- «EMPLOYEE:=

— - <ects_employees empno="83020"> empno is attribute
<lname =RICHARDSON =/Iname =
<position *>RECEPTIONIST </position= position s element
<deptno value="10" /> deptno s empty element
<salary =347.50</salary >
<hiredate=1981-01-01 </hiredate
«fects_employees>
</EMPLOYEE =

Root Hame
Table Root Mame

The field names that appear in the XML document are the actual table field
names. You can rename any of them by specifying a new, case-sensitive name in
the Field Map’s “Root name” column. The name must not contain the # character

or any spaces.

TIBCO Object Service Broker Object Integration Gateway

138 | Appendix C Creating XML Documents

Here is an example of the Field Map that shows several different names in the

same occurrence.

<ol PRIVER_EMPS [B] *ECTS_EMPLOYEES g

Empty element name: |

Field Map Fy
Field name
Field name Tvpe Fiaak name Group nane
EMPMO Akkribute D
LMAME Elerment LastMame
POSITION Elernent Paosition
DEPTHO Empty Element Cepartment
SOLARY Element Salary
HIREDATE JateHirs
& | B
[.ﬁ.dd fram table, ..] [ﬂ.dd] [Remwe]
+ "HIREDATE' Details
Field name: | HIREDATE |
Type: | Element v |
Rook name: | DakeHired |
(ErOUp Narne: | |
Oukput format rule; |%} |
|15
Input Farmat rule: |§]E1' |
sage: | Inpuk & Cukput i |
Table override: | |

TIBCO Object Service Broker Object Integration Gateway

Adding Field Maps | 139

To execute an XML document, select the document and choose Run As from the
short-cut menu in the XML Documents or OSB Projects view. The following figure
shows the Run XML Document dialog box.

& Run XML Document @

ML Document:

ML Docurnent: __ MER_EMPS |

lser Data

_ Mame Yalue | add
! | Remove

Run modes
[]JUpdate mode

[Run] [Zancel

Here is a segment of the resulting XML document:

<7xml version="1.0" 7=

<!-- XMLDOCName=PRIMER_EMPS -= =
<!-- Generated By Objectstar Integration Gatewa
-
- <EMPLOYEE=

- zects_employees ID="83020">
zLastMame >RICHARDSON </ LastMName =
=zPosition=RECEPTIONIST </Position =
<Department value="10" /=
<Salary=347.50</Salary =
zDateHired>1981-01-01 </DateHired=

</ects_employees>

</EMPLOYEE=

When an XML document is produced, the order of the elements changes if you
add a group to the field map associated with the document. This is the intended
behavior. The XML standard states that elements are not positional within a
document. The receiving application must be able to determine how to handle
each element according to the element name.

TIBCO Object Service Broker Object Integration Gateway

140 | Appendix C Creating XML Documents

Understanding Other Field Attributes

You'll have seen several other columns in the field map. Learn about them, from
left to right, in this section.

Group Name

Occasionally, you might have to have a starting tag and an ending tag that enclose
a group of related fields. For example, you might want to collect the fields
Position, Department, and Salary in a group called HRData to denote that they are
the responsibility of the Human Resources Department, as illustrated here:

<) PRIMER_EMPS5 ts-| *ECTS_EMPLOYEES 52 57,
Field Map £
Field name
Field name Type Roat name Group name Cukput Farr|

EEMF‘NO Attribute 1D o

LMAME Element LastrMarne

POSITION Element Pasition HR.Data

DERTMO Empty Element Departrment HRData

SALARY Element Salary HRData

HIREDATE Element DrakeHired

I ?

add from table... | | Add

k

Properties |Field Map

In this example, the three fields to be grouped happen to be in contiguous
locations in the field map, but that is not a requirement. Fields are grouped based
only on the case-sensitive value in the Group Name column. You can also set up
multiple group names.

TIBCO Object Service Broker Object Integration Gateway

Understanding Other Field Attributes | 141

The following figure shows an example of the XML code.

- <EMPLOYEE=
- <ects_employees ID="83020">
<lLastMame=RICHARDSON =/LastMame =
=DateHired=1981-01-01 </DateHired =
- <HRDatazx
<Position=RECEPTIONIST </Position =
<Department value="10" /=
<Salary>=347.50</Salary >
«/HRDataz=
=/ects_employees=
</EMPLOYEE=

Format Rules

In the two columns for format rules, you specify the name of a rule that reformats
the field value. One column applies to the production or writing of the XML
document and the other to its consumption or reading.

On entry to the rule, the local variable NEW_FIELD_VALUE contains the current
field value. Your rule can change that value to the one you want displayed (on
output) or passed to the database table (on input).

Usage

The Usage column defines the context for the field. For example, an XML
document can contain fields that are present only on input and not on production
of the document. For most of your applications, the fields have the default of
Input & Output.

Table Override

When an XML document is being consumed or read, the data normally updates
the table associated with the field map. To direct the data to a different table,
specify the table name in this column. This step could be useful, for example, for
saving incoming data away from production data until you have verified that the
former fully conforms to your requirements.

TIBCO Object Service Broker Object Integration Gateway

142 | Appendix C Creating XML Documents

Empty Element Name

In the display for Employee 83020, notice that the empty element DEPTNO appears
as <Department value="20" />.You can specify a name in the Empty Element

Name column to replace the word value, for example, replace it with number. See
the following figure.

<?xml version="1.0" 7=

<!-- M¥MLDOCMame=PRIMER_EMPS --=
«<l-- Generated By Objectstar Integrat
3.07 --=

- <EMPLOYEE=

- <ects_employees ID="83020"=
<L astMame=RICHARDSOMN =/LastMName =
=zDateHired=1981-01-01=/DateHired=
- <HRDataz=
<Position>RECEPTIONIST </Position =
zDepartment number="10" /=
<Salary=347.50</Salary >
«/HRDataz=
=jects_employees=
</ EMPLOYEE =

TIBCO Object Service Broker Object Integration Gateway

Understanding Child Documents | 143

Understanding Child Documents

A child XML document is one that is attached to a parent XML document and that
is processed at the end of each occurrence in the parent document.

Take the sample tables, ECTS_DEPTS and ECTS_EMPLOYEES. Suppose you want to
create an XML document that lists all the departments from ECTS_DEPTS and, for
each department, all its employees. You can do that with nested FORALL
statements in the TIBCO Object Service Broker rules language, like this:

FORALL ECTS_DEPTS:
FORALL ECTS_EMPLOYEES WHERE DEPTNO = ECTS_DEPTS.DEPTNO:
(process one employee)
END;

END;

In an XML document, you can perform that task with a child document. For the
preceding example, define an XML document for the ECTS_DEPTS table, which
then becomes your parent document, and name it PRIMER_DEPTS.

TIBCO Object Service Broker Object Integration Gateway

144 | Appendix C Creating XML Documents

Follow the steps as illustrated by the three figures below to define PRIMER_DEPTS.

o YPRIVER_DEPTS (0 =5

Properties EY)

» Identification

Title: [List of departments |

Description: | Sample list of departments |

Uit [o15PRIM |

+ Runtime Attributes

Raak name: | DEPARTMENT | Type: | HML v|

[Jvalidate document Build header Recurse [Build DTD

* Processing Options

Regular expression For data selection {consurmption):

Produckion rules Consumption rules

Pre-process rule: E%. | Pre-process rule: Ff’.ﬂ |
T [

Post-process rule: |%, | Post-process rule: E&: |

?P_roperties i_IEIIWEIEI_IE:IGcument;-i-'l'.;EI;i_'l'.;e_e- :

TIBCO Object Service Broker Object Integration Gateway

Understanding Child Documents | 145

<o) *PRIMER_DEPTS 7 =]
Tables £
Table 'ECTS_DEPTS® Details

“EE£cTs pEPTS Table: [ECTS_DEPTS |
Root name: i_[_:u_EPT |
Map name: LT'E_H_ECTS_DEPTS |
Pre-process consumption rule; i'l_i-".far
Post-process consurmpion rule: |5,

Pre-process production rule: :_Fg_

|
7 |
|
|

Post-process produckion rule: [Z,

[J=enerate empty Mull after update

FParameters:

key predicate:

Crdering:

Update at end of elerment Replace existing data

| <a3) PRIMER_DEPTS % | ECTS_DEPTS &2 =im|
Field Map £
Field name
Field name Tvpe Roak name Group name Usage
DERPTMC Attribute DERPTMC Input & Cukpuk
DMAME Akkribute DMAME Inpuk & Oukpuk
Lo Atktribute LoC Input & Cutput
ADDRESS Attribuke ADDRESS Input & CQukpuk
b2 *

Add From table, ..] [.ﬁ.ddl [Remwe]

e

F‘.rcupéét.iés. | Field Ma!:l.

TIBCO Object Service Broker Object Integration Gateway

146 | Appendix C Creating XML Documents

For simplicity, on the preceding image, the columns “Output format rule” and
“Input format rule” have been collapsed.

&

Earlier in this chapter, you created an XML document named PRIMER_EMPS to
display a list of employees. Perform the following steps to reuse that document
for selecting employees in one department by applying data- selection criteria:

1. Add the PRIMER_EMPS document to the PRIMER_DEPTS document as a child:
Open the XML Documents view and the PRIMER_DEPTS document definition.

2. Click the Child Documents tab.

3. Drag PRIMER_EMPS from the XML Documents view into the Select Child
Document box on the Child Documents tab. The result should look like this:

<) *FRIMER_DEPTS {7 1&| ECTS_DEPTS =t
Child Documents ey
Document 'PRIMER _EMPS' Details
| = PRIVER_EMPS | Document: (= PRIMER_EMPS
Parameters: =

kKev predicate: |

Rerowve

Properties | Child Documents | Tables | Tree

During processing of child documents, their document type is always inherited
% from the parent document regardless of the type defined in the child document.

TIBCO Object Service Broker Object Integration Gateway

Understanding Child Documents | 147

Now add a few selection criteria to our child document, keeping in mind that you
want to list only the employees in the department currently being processed. In
the PRIMER_DEPTS document definition under the Child Documents tab is an area
in which to specify parameter values for the table, as appropriate, and any
necessary data selection criteria. Those properties override the values that already
exist in the child document. That is, you need not revise any of the properties of
the child document that would change its function as a parent.

In this case, you do not need any parameter values because the ECTS_EMPLOYEES
table is not parameterized. Your selection criterion is to list all the employees in
the department currently being processed. Recall that the department number in
both tables is in the field DEPTNO. Simply apply the curly-bracket ({3}) notation to
access the field in the ECTS_DEPTS table to phrase the selection, as shown here:

<23 PRIMER_DEPTS &7 =Ll
Child Documents £t
Document 'PRIMER_EMPS" Details
= PRIMER_EMPS] Document: (} PRIMER_EMPS
Parameters: =

Key predicate: | DEPTNO={ECTS_DEFTS} {DEPTNO} |

Rermowve

Properties | Child Documents | Tables | Tree

TIBCO Object Service Broker Object Integration Gateway

148 | Appendix C Creating XML Documents

Finally, to test the result, run PRIMER_DEPTS by choosing Run As from the
short-cut menu for the selected PRIMER_DEPTS item in the XML Documents view.
Here is the output:

El console i3 wn i X% | A B-rf-=0
#ML Document PRIMER._DEPTS, Project SYSADMIMN (2-Dec-2008 4:12:52 PM)
<HEDatax> ~

<Position>S0CIAL DIR</Positions

<Departmwent wvalue="g0" /=

<@alary>36d.90</ 3alary:

</HRDatax>

</ects employees>

<ects ewployees ID="350Z20":>

<LastName>VEGNER</ LastHame:

<DateHired>1985-05-15</DateHired>

<HRDatax

<Pozition>PROGRAMMER</FPozitions>

<Department wvalue="g0" /=

<3alary>354.50</3alary>

</HRDatax>

</ects_employees»

</DEPT>

<DEPT DEPTHNO="90" DNAME="OPERATICNZ'™ LOC=CTORCNTOM™ ADDREIS="Z0O
</DEPT=>

<DEFT DEPTHO=7100" DNAME="ACCEIS METHODS™ LOC="TORONTO™ ADDRES
</DEPT>

<DEFT DEPTHO="110" DNAME="INTERFALCEZ"™ LOC="TORCONTO™ ADDREZS='4
</DEPT>

<DEFT DEPTHC="120" DNAME="DEVELOPOMENT" LOC="TORCHNTO™ ADDRESS=
</DEPT>

</DEPARTHMENT:

£ >

TIBCO Object Service Broker Object Integration Gateway

Using XML Documents | 149

Using XML Documents

You can use XML documents in many ways. A primary way is through the Object
Integration Gateway programmatic interfaces, such as the runXxMLDoc method of
the ects2AppBean class. You can also create a rule to output an XML document
into a file or a data set.

The following figure is an example of a rule that retrieves an XML document and
saves it to a file.

|2 wML_TESTE £3 i

Code £

ZML TEST1(]:
LocCal ;

CALL XMLSTARTDSN ('primer.xml', 'PRIMER DEPTS',
'DEPTHNO<30', ''}:

|| Code | Documentation

TIBCO Object Service Broker Object Integration Gateway

150 | Appendix C Creating XML Documents
This other example shows a transaction that uses the XML_TEST1 rule:

|74 ®ML_TESTL | ~% ¥ML_TESTL &7 i
Properties e
= Identification

application: =% DEMO

Title: | %ML Test 1
Description: |
Uinit: | SYSADMIN

[TIBCO Businessworks compatible

+ Runtime Attributes

Initial rule: ik #ML_TESTL

Post process rule: r;

[] Update mode
[] oump diagnostics ko log

Properties | Linked Documents | Oukpuks

Here is a segment of the primer.xml file produced by the transaction:

<?xml version="1.0" 7>
<!-- XMLDocName=PRIMER_DEPTS -->

<!-- Generated By ObjectStar Integration Gateway V2.5 - Code Level 1.00 -->
<DEPARTMENT>

<DEPT DEPTNO="10" DNAME="ACCOUNTING" LOC="TORONTO" ADDRESS="200 UNIVERSITY AVE, M8C
3V1i">

<ects_employees ID="80003">
<LastName>CHANG</LastName>
<DateHired>1987-02-21</DateHired>
<HRData>
<Position>ASSOC.ANALYST</Position>
<Department value="10" />
<Salary>589.91</Salary>

</HRData>

</ects_employees>

<ects_employees ID="80006">
<LastName>MILMAN</LastName>
<DateHired>1985-05-15</DateHired>
<HRData>
<Position>ANALYST</Position>
<Department value="10" />

TIBCO Object Service Broker Object Integration Gateway

Using XML Documents | 151

<Salary>699.49</Salary>

</HRData>

</ects_employees>

<ects_employees ID="82009">
<LastName>BOIVIN</LastName>
<DateHired>1983-10-30</DateHired>
<HRData>

<Position>ASSISTANT MGR</Position>
<Department value="10" />
<Salary>543.50</Salary>

</HRData>

</ects_employees>

You need not execute the rule you created through a transaction. Feel free to run
the rule from any other interface, such as the Text Workbench.

TIBCO Object Service Broker Object Integration Gateway

152 | Appendix C Creating XML Documents

Defining Attribute Relationships

This section shows you how to define attribute relationships with the XML Field
Map Attribute Of type.

Consider this XML field map from the Books example:

Field Map
Field name
Field name Type Root name | Group name
GEMRE Elerment genre
TITLE Elerment bkkitle

BUTHOR_LM Elerment author_In
BUTHOR_FM Elernent author_fn
PRICE Elerment price

KEY Attribuke
AUTHOR_LM Elerment name

63

&dd From kable. .. I [F'.u:lu:l] [Remnve]

b 'GEMRE’ Details

4 ¥
Properties | Field Map

Executing the XML document BOOKS normally produces an XML document, a
segment of which looks like this:

<book KEY="2">
<genre>Literature and Fiction</genre>
<bktitle>Pride and Prejudice</bktitle>
<author_ln>Austin</author_1ln>
<author_fn>Jane</author_ fn>
<price>4.80</price>

</book>

Follow these steps to learn how to use the Attribute Of type:

TIBCO Object Service Broker Object Integration Gateway

Defining Attribute Relationships | 153

1. Group the author’s first and last names in the XML Field Map group Name, as
illustrated here:

| BOOKS 02 =]
Field Map
Field name
. Field name | Type . Root name | Group name . o,
GEMRE Elerment genre

TITLE Elernent bhktitle

BUTHOR_LM Elernent author_In Marne
AUTHOR_FH Elerment author_fn Mame
PRICE Element price

FEY Aktribute

AUTHOR LM Elerment name

L.

&dd From kable... I [.ﬁ.u:lu:l] [Remu:w'e]

b 'GEMRE’ Details

< *
Properties | Field Map

The resulting XML document entry looks like this:

<book KEY="2">
<genre>Literature and Fiction</genre>
<bktitle>Pride and Prejudice</bktitle>
<price>4.80</price>
<Name>
<author_ln>Austin</author_1ln>
<author_fn>Jane</author_fn>
</Name>
</book>

TIBCO Object Service Broker Object Integration Gateway

154 | Appendix C Creating XML Documents

2. Make GENRE an attribute of the bktitle element, as illustrated here:

T | BOOKS 02 w5t]
Field Map
Field name
Field name Type Foot name | Group name
GEMRE attribuke OF Qenre bikkitle
TITLE Element biktitle
AUTHOR LM Element author_In Mame
AUTHOR_FM Element author_Ffn Mame
PRICE Element price
KEY Attribute
AUTHOR LM Element name

£

add from tal:ule...] [.ﬁ.dd] IRemDve]

b 'GENRE' Details

£ [¥
Properties | Field Map

The resulting XML document entry looks like this:

<book KEY="2">
<bktitle genre="Literature and Fiction">Pride and Prejudice</bktitle>
<price>4.80</price>
<Name>
<author_ln>Austin</author_1n>
<author_fn>Jane</author_fn>
</Name>
</book>

Next, create attributes within the groups:

TIBCO Object Service Broker Object Integration Gateway

Defining Attribute Relationships | 155

1. Make the last name an attribute of the group element Name, as illustrated by
the following figure.

T | BOOKS 2 =il)
Field Map
Field name
| Field name Type Rook name | Group name
GEMRE Attribuke OF genre bktitle
TITLE Element biktitle
AUTHOR LM Attribuke OF author_In Mame
AUTHOR_FMN Element author_fn Mame
PRICE Element price
KEY Attribute
AUTHOR_LM Element nanme

£

add from tal:-le...] [.ﬁ.dd] IRemDve]

b "AUTHOR_LN' Details

£ [¥
Properties | Field Map

The resulting XML document entry looks like this:

<book KEY="2">
<bktitle genre="Literature and Fiction">Pride and Prejudice</bktitle>
<price>4.80</price>
<Name author_ln="Austin">
<author_fn>Jane</author_fn>
</Name>
</book>

TIBCO Object Service Broker Object Integration Gateway

156 | Appendix C Creating XML Documents

2. Make the last name an attribute of the first name instead of the group element
Name, as illustrated by the following figure.

T | BOOKS 02 w5t]
Field Map
Field name
Field name Tvpe Fookt mame | Group name | On
GEMRE Attribuke OF Qenre bktitle :
TITLE Element biktitle
AUTHOR LM Attribute OF author_n author_Fn
AUTHOR_FM Element author_fn Mame
PRICE Element price
KEY Attribuke
AUTHOR_LM Element name

£

Add From tal:ule...] [.ﬁ.dd] IRemDve]

b "AUTHOR LN Details

£ [¥
Properties | Field Map

The resulting XML document entry looks like this:

<book KEY="2">
<bktitle genre="Literature and Fiction">Pride and Prejudice</bktitle>
<price>4.80</price>
<Name>
<author_fn author_ln="Austin'">Jane</author_fn>
</Name>
</book>

TIBCO Object Service Broker Object Integration Gateway

Customizing XML Declarations | 157

Customizing XML Declarations

This section shows you how to customize the XML namespaces that are based on
the function XMLDOCNAMESPACE called from the rule XMLSTART4 to produce the
soap:Envelope portion of the XML request message. See the following figure.

| 2 ¥MLDOCHAMESPACE 57 = B

Code ey

XMLDOCHAMESPACE () ;
LOCAL MNEW FIELD VALUE:

NSEULE = ''; 7|1
IMLWORE. RULE = NSRILE; 1
CALL IMLEUNRULE (XMLWORE.RULE) ; 2
RETURN (' ' || NEW FIELD VALUE); 3
RETURH (' '] ; 1

Code | Docurnentation
Here is the procedure:
1. Create a copy of the Books XML document and name it BOOKS_XMLNS.

2. Delete all the consumption rules and define a new preprocess production rule
BOOKS_XMLNS_PRE. Leave all the other settings unchanged.

TIBCO Object Service Broker Object Integration Gateway

158 | Appendix C Creating XML Documents

The resulting XML document looks like this:

<u3) EOOKS_5MLNS 57 = O
Properties £y

 Identification

Title: | M3 Bookstore example |
Diescription: | All the books in %ML format with the SOAF Envelope element |
Unit: | DEMO |

+ Runtime Attributes

Root name: | bookstare | Type:

[]validate document Build header [|Recurse []Buid DTD

+ Processing Options

Reqgular expression For data seleckion {consumption):

Production rules Consumpkion rules
Pre-process rule: E“W BOOKS _sMLNS_PRE | Pre-process rule: |{%‘3, |
Posk-process rule: E“W | Post-process rule: |{%‘3, |

Properties | Child Documents | Tables | Tree

TIBCO Object Service Broker Object Integration Gateway

Customizing XML Declarations | 159

3. Create a rule BOOKS_NAMESPACE that contains the required SOAP envelope
element in NEW_FIELD_VALUE, which will be used in the XMLDOCNAMESPACE
rule, as illustrated here:

@] BOOKS_KMLNS T BOOKS_KMLNS_PRE T BOOKS_NAMESPACE &3 =0

Code £y

BOOES NAMESPACE() ;
LOCAL

MNEW_FIELD WALUE =
'wmlns:soap="http://achemaz. xmlaoap.oryg/ soap/ enve lopes !
|| 'HEmwlns:xsi="http:/ wwwr. wl.org/ 2001/ ¥ML3chema-instance ™'
|| 'Hmlns:xsd="http:/ fvwr. w3 .org/ 2001/ XMLSchemar! ;

Code | Docurnentation

4. Create a rule BOOKS_XMLNS_PRE, which sets a local variable NSRULE to enable
BOOKS_NAMESPACE to run, as illustrated here:

4a) BOOKS_xMLNS i BOOKS_%MLNS_PRE 53 = B
Code el
BOOKS XMLNS PRE():
LOCAL ;
NSRULE = 'BOOKS NAMESPACE'; 1

Code | Documentation

5. Run the XML document BOOKS_XMLNS_PRE. The result looks like this:

End message:
OK

<?xml version="1.0" 7>

<!-- XMLDocName=BOOKS_XMLNS -->
<!-- Generated By ObjectStar Integration Gateway V2.5 - Code Level 1.00 -->

TIBCO Object Service Broker Object Integration Gateway

160 | Appendix C Creating XML Documents

<bookstore
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"xmlns:xsi="http://www.w3.org/
2001 /XMLSchema-instance"xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<book KEY="1">

<bktitle genre="Classics">The Odysey</bktitle>

<price>2.98</price>

<Name>

</Name>

</book>

<book KEY="2">

<bktitle genre="Literature and Fiction">Pride and Prejudice</bktitle>
<price>4.80</price>

<Name>

<author_fn author_ln="Austin">Jane</author_fn>

</Name>

</book>

<book KEY="3">

<bktitle genre="Science Fiction">Stranger In A Strange Land</bktitle>
<price>7.99</price>

<Name>

<author_fn author_ln="Heinlein">Robert A</author_ fn>

</Name>

</book>

<book KEY="4">

<bktitle genre="Science Fiction">I, Robot</bktitle>
<price>5.99</price>

<Name>

<author_fn author_ln="Asimov">Isaac</author_fn>

</Name>

</book>

TIBCO Object Service Broker Object Integration Gateway

|161

Appendix D Using the OIG Administration Interface

This appendix describes how to use the OIG administration interface.

Topics

¢ Overview, page 162
* Using the Administration Interface, page 163

TIBCO Object Service Broker Object Integration Gateway

162 | Appendix D Using the OIG Administration Interface

Overview

What Is the Administration Interface?

The OIG administration interface is an OIG web application you can use to
manage OIG session pools. Using the administration interface, you can view the
list of active pools and the current state of sessions in each pool. You can also use
the administration interface to recycle the sessions.

For information about how to install the administration interface, refer to
Installing the OIG Administration Interface on page 5.

TIBCO Object Service Broker Object Integration Gateway

Using the Administration Interface | 163

Using the Administration Interface

Logging In

To use the administration interface, you first navigate to the login page. The login
page is either eCTSadmin.jsp for a JSP web application, or eCTSadmin.asp for an
ASP web application, or eCTSadmin.aspx for a .NET web application. (The URL
you enter depends on where you installed the administration interface web
application.) You must log in with a user ID and password for a level-7 user, and
enter the host name and port number for your TIBCO Object Service Broker
Execution Environment. After you successfully log in, you should see the Pool
List page.

See Also TIBCO Object Service Broker Managing Security for information about TIBCO
Object Service Broker security levels.

Using the Pool List Page

The Pool List page displays a list of the active session pools. The session pool list
appears in a table that contains the following fields:

Field Name Description

Pool Name The name of the pool. For JSP or servlet applications, this is the
name of the eCTSSession bean or the name of the servlet. For
ASP, ASPX or COM applications, this is the alias name for the
pool, or a generated name if the OpenApplication method of the
COM component is called with the mode parameter set to
POOL.
Click the pool name to see details for the pool.

Sessions The number of sessions currently allocated to the pool.

Use Count The number of times a session was granted from the pool. For
servlet applications, it is the number of times a servlet was
invoked for the pool. For ASP, ASPX or COM applications, it is
the number of times an OpenApplication method call was made
for the pool.

Last Used The last time the pool was accessed.

TIBCO Object Service Broker Object Integration Gateway

164 | Appendix D Using the OIG Administration Interface

Options

Field Name Description

Action Click the Restart link to shut down all sessions in the pool. If a
session is active, the session is terminated after it completes the
request it is processing. After a restart, new requests for the pool
result in the creation of new sessions.

¢ To see the information for a pool on the Pool Details page, click the pool name.

e To recycle the sessions in a pool, click the pool’s Restart link.

Using the Pool Details Page

The Pool Details page displays detailed information about the session pool you
selected in the Pool List page. The information appears in two tables.

The first table, with the heading Pool Parameters, displays the initialization
parameter settings for sessions in that pool. For more information about session
initialization parameters, refer to Appendix A, Setting OIG Session Initialization
Parameters, on page 113.

The second table, with the heading Sessions in Pool, displays a list of active
sessions. It contains the following fields:

Field Name Description

Id The unique identifier for the session.

In Use The current processing state of the session. Displays True if the
session is processing a request; False if the session is idle.

Use Count The number of times the session was used.

Last Used The last time the session was used.

Last Function The name of the last operation and the object operated on.

TIBCO Object Service Broker Object Integration Gateway

Using the Administration Interface | 165

Field Name Description

To Server The number of message buffers sent to the Object Integration
Gateway for the session. Some requests require multiple
messages to be sent to the Gateway because of the amount of
persistent data and the size of the XML documents being sent.
You can manage this count by changing the size of outgoing
message buffers. Refer to the DATAOUT parameter in
Appendix A, Setting OIG Session Initialization Parameters, on
page 113 for more information.

From Server =~ The number of message buffers received from the Gateway.
Some requests require multiple buffers to hold returning
persistent data and large XML documents. You can manage
this count by changing the size of incoming message buffers.
Refer to the DATAIN parameter in Appendix A, Setting OIG
Session Initialization Parameters, on page 113 for more
information.

Exiting the Administration Interface

To exit the administration interface, just close your browser to end the session.
You do not have to explicitly log out.

TIBCO Object Service Broker Object Integration Gateway

166 | Appendix D Using the OIG Administration Interface

TIBCO Object Service Broker Object Integration Gateway

|167

Appendix E Creating a Silent Installer for the OIG COM
Component

This appendix describes how to create a silent installer for the OIG COM
component.

Topics

* Overview, page 168
* Creating a Silent Installer, page 169

TIBCO Object Service Broker Object Integration Gateway

168 | Appendix E Creating a Silent Installer for the OIG COM Component

Overview

What Is a Silent Install?

A silent install of software is one that is performed without user intervention, that
is, without a user executing installation commands on the target machine. Such an
install is described as silent because the user is not even aware that the installation
is taking place.

Silent installs are frequently executed on multiple target machines across a
network.

TIBCO Object Service Broker Object Integration Gateway

Creating a Silent Installer | 169

Creating a Silent Installer

What the Installer Has to Do
A silent installer for the COM Component must do the following three tasks:
1. Check for other required software, page 169
2. Install the program files, page 169
3. Make the registry entries, page 170

Task A Check for other required software

The COM Component requires you install the following software on each target
machine:

® Microsoft Data Access Components (MDAC) 2.5 or higher
e Java 2 Runtime Environment (JRE) 1.4 or higher

Refer to Prerequisites on page 3 for more information about the software versions
required by the COM Component.

The JRE can be installed silently on the target machine using the following steps:
1. Copy the JRE directory tree, intact, to any directory on the target machine.

2. Ensure that the Gateway JAVABINPATH registry entry on the target machine
points to the location of the jvm.dll file in the JRE directory.

For more information on redistributing the JRE files, refer to the README.txt file
in the JRE directory.

Task B Install the program files

The installer must copy the following COM Component files to a directory on the
target machine:

e eCTScom.dll
* ectsjar

After copying the files to the target machine, the installer must register the
eCTScom.dll file on the target machine, using the Windows registration utility
regsvr32.exe.

TIBCO Object Service Broker Object Integration Gateway

170 | Appendix E Creating a Silent Installer for the OIG COM Component

Registry Key

\HKEY_LOCAL_MACHINE\SOFTWARE\ObjectStar\eCTS

Task C Make the registry entries

The installer must make the following entries in the Windows registry on the
target machine. These registry entries specify the location of the JRE and the
ects jar file, and the alias definitions used by your OIG applications.

Refer to Chapter 4, Using the OIG COM Component, on page 41 for more
information about defining and using aliases.

Value Name Value Data

ECTSBINPATH An REG_SZ value that
specifies the full
pathname of the directory
where the ects jar file is

located.

\HKEY_LOCAL_MACHINE\SOFTWARE\ObjectStar\eCTS

JAVABINPATH An REG_SZ value that
specifies the full
pathname of the Java
Virtual Machine file,
jvm.dllL Java infers the
root directory of the JRE
from the path of the
jvm.dll file.

\HKEY_LOCAL_MACHINE\SOFTWARE\ObjectStar

\eCTS\Alias

DEFAULT An REG_SZ value that
specifies the default
Gateway session
parameters for the Object
Integration Gateway
COM Component, used if
no other aliases are
defined or specified.

After Installing

If other alias definitions are required, add them under the
\HKEY_LOCAL_MACHINE\SOFIWARE\ObjectStar\eCTS\Alias

registry key. Refer to Appendix A, Setting OIG Session Initialization Parameters,
on page 113 for more information about OIG session parameters.

After the silent install, applications can use the COM Component. You do not
have to restart Windows, if the prerequisite software is already installed.

TIBCO Object Service Broker Object Integration Gateway

| 171

Index

Symbols COM component methods
AddSessionParm 35, 36
NET, support for 2 Close 25,48
$HTTPREQUEST tool 110 Dispose 26
$TRANXMLSTRING rule 109 GetDataSet 29
$URLENCODE rule 109 GetDocument 29

GetDocumentFromTable 29
GetEndMsg 34
GetResult 34

A GetTable 30
GetTableFromDocument 30
Active Server Pages GetTableOfContent 30
OIG interface to 42 GetXmlDocument 31
AddSessionParm method (COM component) 35, 36, GetXmlTextReader 32
55, 56 HtmlErrorLog 35
administering session pools 162 OpenApplication 24
administration interface. See OIG administration inter- RemoveSessionParm 36, 37
face RunRule 26
Application Bean RunTrans 27
support for 2 RunXMLDoc 27
application bean 84 SetDocument 32
application design 8 SetTable 33
arguments, passing data with 107 SetXmlDocument 34

StartTran 28, 50
StopTran 28
TextErrorLog 35

B configuration
COM component 43
build rules, described 105 customer support xviii
C D
Close method (COM component) 25, 48 data
COM component passing 16
methods 24, 36, 37 passing with arguments 107
passing data 23 passing with COM component 23, 45
syntax 22 processing or formatting 106

TIBCO Object Service Broker Object Integration Gateway

172 | Index

data access parameters
data key values 125
data parameter values 124
syntax of 123-126
using 15
data tables, defined 8
DATAIN session initialization parameter 114, 165
DATAOUT session initialization parameter 114, 165

DATEFORMAT session initialization parameter, XAL

specific 120
DEBUG session initialization parameter 114
DEBUGDIRsession initialization parameter, XAL
specific 120
Deployment Descriptor
OIG support for 75
designing
transactions 10
XML documents 11
Dispose method (COM component) 26

E

ects2AppBean class 84
ects2AppBeanException class 91
ects2E]Bbase class 61
ECTSGETARG rule 35, 55, 107
ECTSGETSESS rule 35, 55, 107
ECTSLOG rule 110
ECTSMSG rule 108
ECTSRETURNARG rule 107
ECTSSETAPP rule 109
ECTSSETSESS rule 108
EJB components 61

base class 61

deployment descriptor 65

home interface 65

remote interface 65

sample code 68, 75

WebRowSet class 65

TIBCO Object Service Broker Object Integration Gateway

Enterprise JavaBeans

description of 60

OIG support for 60

support for 2

using with OIG 59-72
execute OIG objects, rules for 108
exporting objects 14

F

field maps
applying formatting 106
XML 11
format rules 106-106, 109
formatting data 106

G

generate OIG objects, rules for 108

GetDataSet method (COM component) 29

GetDocument method (COM component) 29, 54

GetDocumentFromTable method (COM
component) 29

GetEndMsg method (COM component) 34, 54

GetResult method (COM component) 34, 54

GetTable method (COM component) 30, 51

GetTableFromDocument method (COM
component) 30, 51

GetTableOfContent method (COM component) 30

GetTableTableOfContent method (COM
component) 51

GetXmlDocument method (COM component) 31

GetXmlTextReader method (COM component) 32

H

HOST session initialization parameter 115, 116
HtmlErrorLog method (COM component) 35
HTMLERRORLOG session initialization parameter,

Index | 173

XAL specific 120 N

non-Web session data, managing 36, 56

importing objects 14 (0]
initialization parameters. See session initialization
parameters OIG
installing OIG administration interface
administration interface 5 installing 5
prerequisites for 3 using 161-165
application bean 84
COM component
configuring 43
J creating silent installer 167-169
description 42
J2EE Connector Architecture methods 47-56
description of 74 passing data 45
using with OIG 73-82 syntax 44
JCA Adapter 2 COM component methods
AddSessionParm 55, 56
GetDocument 54
GetEndMsg 54
L GetResult 54
GetTable 51
LIBRARY session initialization parameter 115 GetTableFromDocument 51
link rules 109 GetTableOfContent 51
LOAD tool 14 OpenApplication method (COM component) 47
local variables 111-111 RemoveSessionParm 55, 56
logging, rules for 110 RunTrans 49
RunXMLDoc 49
SetDocument 52
SetTable 53
M COM Configurator 43
description 2
managing persistent data designing applications 8
for non-Web sessions 36, 56 EJB components 61
for Web sessions 35, 55 Enterprise JavaBeans support 59
MAXSESSION session initialization parameter 115 for NET 2
message buffers 165, 165 JCA Adapter 2
messaging, rules for 108 objects
methods, supplied 24, 36, 37, 47-56 components 8
promoting 14
rules 108

TIBCO Object Service Broker Object Integration Gateway

174 | Index

transferring between databases 14
rules programming interface. See RPI (rules pro-
gramming interface)
session initialization parameters. See session initial-
ization parameters
support for Deployment Descriptor 75
support for Enterprise JavaBeans 60
tools 8
XML capabilities 11
OIG, COM component 41
OpenApplication method (COM component) 24
operating systems, supported 2

P

PASSWORD session initialization parameter 116
pooling sessions

administering 162

with Active Server Pages 24, 47
POOLTIMEOUT session initialization parameter 116
PORT session initialization parameter 116
prerequisites, for installing OIG 3
processing data, with format rules 106
promoting objects 14

R

recordset, ADO 2.5 and methods 23, 46
REFERENCECHECKING session initialization
parameter, XAL specific 120
RemoveSessionParm method (COM component) 36,
37,55, 56
root names. for XML document tables 11
RPI (rules programming interface)
description 102
types of rules 104
RPI variables, OIG 2.x 111-111

TIBCO Object Service Broker Object Integration Gateway

rules
defined 8
for executing, generating 108
for logging 110
passing data, with arguments 107
utility
$TRANXMLSTRING 109
$URLENCODE 109
ECTSGETARG 107
ECTSGETSESS 107
ECTSLOG 110
ECTSMSG 108
ECTSRETURNARG 107
ECTSSETAPP 109
ECTSSETSESS 108
XMLSTART 108
XMLSTARTAB 109
XMLSTARTDSN 108
rules programming interface. See RPI (rules program-
ming interface)
rules, types of 104
build 105
format 106
utility 107
RunRule method (COM component 26
RunTrans method (COM component) 27, 49
RunXMLDoc method (COM component) 27, 49

S

sample code
COM component methods 38
OIG, COM component methods 57
SCREENCOLS session initialization parameter, XAL
specific 122
SCREENMD_CACHE session initialization parameter,
XAL specific 121
SCREENREFS_CACHE session initialization parame-
ter, XAL specific 121
SCREENROWS session initialization parameter, XAL
specific 121
SCREENRSMD_CACHE session initialization param-
eter, XAL specific 121

SEARCH session initialization parameter 117
session initialization parameters 114-119
accessing 107
DATAIN 114
DATAOUT 114
DEBUG 114
HOST 115, 116
LIBRARY 115
MAXSESSION 115
PASSWORD 116
POOLTIMEOUT 116
PORT 116
SEARCH 117
TRACEMESSAGES 119
USERID 119
session initialization parameters, XAL specific
DATEFORMAT 120
DEBUGDIR 120
HTMLERRORLOG 120
REFERNCECHECKING 120
SCREENCOLS 122
SCREENMD_CACHE 121
SCREENREFS_CACHE 121
SCREENROWS 121
SCREENRSMD_CACHE 121
XALMETADIR 122
session pooling with Active Server Pages 24, 47
session pools
determining the name 163
managing 162
recycling 164
SetDocument method (COM component) 32, 52
SetTable method (COM component) 33, 53
SetXmlDocument method (COM component) 34
Solaris platform, support for 2
StartTran method (COM component) 28, 50
StopTran method (COM component) 28
support, contacting xviii

T

tables, defined 8
tables, defining in XML document 11

technical support xviii
TextErrorLog method (COM component) 35
TIBCO Object Service Broker Ul, definition 8
TIBCO_HOME xv
tool, SHTTPREQUEST 110
TRACEMESSAGES session initialization
parameter 119

transactions

defined 9, 10

designing 10

linking, OIG objects to 10
transferring objects between databases 14

U

UNLOAD tool 14
USERID session initialization parameter 119
utility rules, described 107

\'

variables 111-111
Visual Basic applications, OIG interface to 42

w

Web session data, managing 35, 55
WebRowSet class 65
Windows platform, support for 2

X

Index | 175

XALMETADIR session initialization parameter, XAL

specific 122
XML capabilities of OIG 11

TIBCO Object Service Broker Object Integration Gateway

176 | Index

XML documents

and table definitions 11

applying formatting 106

defined 9

designing 11

field maps 11
XMLPARSE rule 108
XMLSTART rule 108
XMLSTARTAB rule 109
XMLSTARTDSN rule 108
XMLSTARTSETDEST rule 108

y4

z/0S platform
requirements 3
support for 2

TIBCO Object Service Broker Object Integration Gateway

	TIBCO® Object Service Broker
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Getting Started with Object Integration Gateway (OIG)
	Overview
	What Is OIG?
	What Are the Key Components of OIG?

	Prerequisites
	J2EE Components on Open Systems
	COM Component
	OIG for .NET
	OIG Components on z/OS

	Installing the OIG Administration Interface

	Chapter 2 Designing an OIG Application
	Overview
	Tools Available
	Components Available

	Designing a Transaction
	Transaction
	Linking Other OIG Objects to a Transaction

	Designing an XML Document
	XML Capabilities of OIG
	XML Field Map
	Root Names for XML Document Tables

	Transferring OIG Objects Between Databases
	Transferring Objects
	OIG Object Types That Can Be Transferred?
	Using UNLOAD and LOAD
	Promoting OIG Objects

	Using Data Access Parameters
	Data Access Parameters Can Be Dynamic

	Passing Data to and Receiving Data from OIG
	Passing Parameters Data
	Passing and Receiving Session Data
	Passing and Receiving Data as Tables or XML

	Chapter 3 Using OIG for .NET
	Overview
	Object Integration Gateway Support for .NET

	Configuring Pools for the .NET Class Library
	The Pool Configuration Tool

	Instantiating the eCTSsession Object
	Constructors
	Example

	Passing Data to the eCTSsession Object
	Strings
	Hashtable and NameValueCollection Classes
	Recordsets

	eCTSsession Methods
	Opening Object Integration Gateway Sessions
	Closing Object Integration Gateway Sessions
	Invoking Processing
	Handling Data
	Handling HTML and Messages
	Handling Errors from eCTSsession
	Managing Persistent Data for Web Sessions
	Managing Persistent Data for Non-Web Sessions

	Code Examples
	Example 1
	Example 2

	Chapter 4 Using the OIG COM Component
	Overview
	Object Integration Gateway COM Component

	Configuring the Object Integration Gateway COM Component
	Object Integration Gateway COM Configurator

	Instantiating the Object Integration Gateway COM Component
	Examples

	Passing Data to the Object Integration Gateway COM Component
	Overview
	Strings
	String Arrays
	Recordsets

	eCTSsession Methods
	Opening Object Integration Gateway Sessions
	Closing Object Integration Gateway Sessions
	Invoking Processing
	Handling Data
	Handling Other Data
	Managing Persistent Data for Web Sessions
	Managing Persistent Data for Non-Web Sessions

	Code Examples

	Chapter 5 Using OIG in Enterprise JavaBean (EJB) Environments
	Overview
	What Is an Enterprise JavaBean?
	How Does Object Integration Gateway Support Enterprise JavaBeans?

	Object Integration Gateway EJB Components
	ects2EJBbase Base Class
	Home Interface
	Remote Interface
	Deployment Descriptor
	WebRowSet Class
	EJB Code Examples

	Chapter 6 Using the OIG JCA Adapter
	Overview
	What Is J2EE Connector Architecture?

	JCA Deployment Descriptor
	What is the Deployment Descriptor?
	Deployment Descriptor Example

	Working with the Deployment Descriptor
	Changing Deployment Descriptor Settings
	Installation and Deployment
	Using the Adapter

	Chapter 7 Using the OIG Application Bean
	OIG Application Bean
	ects2AppBean Class
	ects2Result Class
	ects2AppBeanException Class

	Chapter 8 Using XAL
	Overview
	What Is XAL?
	How Does XAL Work?

	Creating an XAL Web Application
	Deploying the Sample JSP Application
	How the Sample Web Application Works
	Handling Errors
	Modifying the Sample JSP Application

	Chapter 9 Using the OIG Rules Programming Interface
	Overview
	What Is the Rules Programming Interface?
	Working with the RPI
	What You Need to Know to Work with the RPI
	What Reference Material Is Provided?

	Types of Rules
	Rule Types

	Build Rules
	Pre-Build Rules
	Post-Build Rules

	Format Rules
	Applying Format Rules

	Utility Rules
	Accessing RPI Arguments
	Accessing Object Integration Gateway Session Parameters
	Messaging
	Execution/Generation
	Formatting and Linking
	Selecting an Application Profile
	Making an HTTP Request
	Logging

	RPI Variables
	Object Integration Gateway Interface Variables

	Appendix A Setting OIG Session Initialization Parameters
	Session Parameters
	DATAIN
	DATAOUT
	DEBUG
	HOST
	LIBRARY
	MAXSESSION
	PASSWORD
	POOLTIMEOUT
	PORT
	PREFIX
	SEARCH
	STANDBYWAIT
	TRACEMESSAGES
	USERID

	XAL-Specific Session Initialization Parameters

	Appendix B Understanding the Data Access Parameter Syntax
	Data Parameter Value Syntax
	Example
	Syntax in BNF Notation

	Data Key Value Syntax
	Example
	Syntax in BNF Notation

	Appendix C Creating XML Documents
	Performing the First Steps
	Defining XML Documents
	Adding Tables
	Adding Field Maps
	Understanding Other Field Attributes
	Group Name
	Format Rules
	Usage
	Table Override
	Empty Element Name

	Understanding Child Documents
	Using XML Documents
	Defining Attribute Relationships
	Customizing XML Declarations

	Appendix D Using the OIG Administration Interface
	Overview
	What Is the Administration Interface?

	Using the Administration Interface
	Logging In
	Using the Pool List Page
	Using the Pool Details Page
	Exiting the Administration Interface

	Appendix E Creating a Silent Installer for the OIG COM Component
	Overview
	What Is a Silent Install?

	Creating a Silent Installer
	What the Installer Has to Do
	After Installing

	Index

