
TIBCO® Object Service Broker
for z/OS

External Environments
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface .xvii

Related Documentation . xviii
TIBCO Object Service Broker Documentation . xviii

Typographical Conventions . xxiii

Connecting with TIBCO Resources . xxv
How to Join TIBCOmmunity . xxv
How to Access All TIBCO Documentation . xxv
How to Contact TIBCO Support . xxv

Chapter 1 Introduction. .1

TIBCO Object Service Broker Architecture . 2
Client Services Layer . 2
Execution Environment. 3
Data Object Broker . 3

Accessing TIBCO Object Service Broker from an External Environment . 5
What is an External Environment? . 5
Facilities Available for Interfacing with External Environments . 6

Stages to Setting Up and Processing Within TIBCO Object Service Broker . 8
Main Stages . 8
Interaction with TIBCO Object Service Broker and its External Environments. 8

Chapter 2 The TIBCO Object Service Broker Client Model .11

Overview . 12
TIBCO Object Service Broker Clients. 12
User Clients . 13
TIBCO Object Service Broker SDK (C/C++) Client . 14
TIBCO Object Service Broker SDK (Java) Client . 14
Same Environments and Address Spaces . 14

TIBCO Object Service Broker Client Styles. 15
What Determines the Client Style?. 15
Seamless or Non-Seamless Client Styles . 15
External User or External Transaction Security . 16
Display or Non-Display Clients . 16
Conversational or Non-Conversational Clients . 17
Client Style Summary . 17

Setting Up the User Profile for Seamless Clients . 18
 TIBCO Object Service Broker for z/OS External Environments

iv | Contents
Setting up A User Profile . 18
Guidelines for Development Environments . 18

Chapter 3 Setting Execution Environment Parameters . 19

Usage of the Execution Environment Parameters . 20
Purpose . 20
Precedence of Values . 20

Determining Session Characteristics . 21
Where to Specify Parameters for Single-Session Clients . 21
Where to Specify Parameters for Multiple-Session Clients . 22

Available Execution Environment Parameters. 25
Parameters Specific to the Execution Environment . 25
Parameters for Your Session . 26

Specifying Session Parameters Using an Input File or a CLIST. 27
Format of the Input File . 27
Example of Instream Parameter List Using HRNIN in JCL . 27

Reducing Session Resources. 28
Bypassing the Workbench . 28
Operational Characteristics . 28
Changing the Invocation Options. 29
Non-seamless CICS Client . 29

Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch 31

How to Run Batch Applications. 32
Invocation. 32
Using the TIBCO Object Service Broker Supplied Batch Client Program . 32
Using A Customized (User) Batch Client . 34

How to Set Session Parameters . 36
Establishing Session Parameter Values . 36
Available DDnames . 37
Using an Instream Parameter List . 38

How to Manipulate Data in a TIBCO Object Service Broker Batch Client Session. 39
Passing Data to TIBCO Object Service Broker Batch Sessions . 39
Returning from the Batch Client. 39
Returning Data to a User Batch Client. 40
Using External Routines . 40

Chapter 5 TIBCO Object Service Broker Sessions Under TSO . 41

How to Run TSO Applications. 42
Invocation. 42
Using the TIBCO Object Service Broker Supplied TSO Client Program . 42
Using a Customized (User) TSO Client . 44
TIBCO Object Service Broker for z/OS External Environments

Contents | v
How to Set Session Parameters . 46
Establishing Session Parameter Values . 46
Using a CLIST to Invoke TIBCO Object Service Broker . 47
Specifying or Concatenating a Load Library. 48
USER CLIST Distributed with TIBCO Object Service Broker . 48

How to Manipulate Data in TSO Client Sessions. 49
Passing Data to TIBCO Object Service Broker TSO Sessions . 49
Returning from the TSO Client . 49
Using External Routines . 50

Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment 51

Overview of the Native Execution Environment . 52
What is the Native Execution Environment?. 52
VTAM and TIBCO Object Service Broker Interaction . 52

How to Set Session Parameters . 54
Where to Specify Session Parameters . 54
Available DDnames . 55
Print Destination Restrictions . 55
Establishing a TIBCO Object Service Broker VTAM LU2 Session . 55

Manipulating Data in VTAM LU2 Client Sessions . 57
Passing and Returning Data. 57
Determining the Next Step . 57
Calling External Routines . 57

Chapter 7 Using the TIBCO Service Gateway for CICS .59

How to Run CICS Applications . 60
CICS Client Programs . 60
Using the TIBCO Object Service Broker Supplied CICS Modules . 60
Using a Customized (User) CICS Client. 62

Session Initiation and Termination . 64
What Starts and Terminates an Execution Environment? . 64
Methods of Session Initiation and Termination . 64
Replacing a CICS Transaction with TIBCO Object Service Broker Rules . 65

Selecting a TIBCO Object Service Broker CICS Client Program. 66
TIBCO Object Service Broker CICS Client Programs . 66
Choosing the Right TIBCO Object Service Broker CICS Client Program. 67

How to Set Session Parameters . 68
Where to Specify CICS Execution Environment Parameters . 68
Available DDnames . 69
Print Destination Restrictions . 69
Synchronization of VSAM Files . 69

Starting TIBCO Object Service Broker Sessions. 70
 TIBCO Object Service Broker for z/OS External Environments

vi | Contents
Using the Command Line to Start a Session. 70
Using EXEC CICS START to Start a Session . 70
Using EXEC CICS START to Start a Session with Channel . 73
Using EXEC CICS LINK to Start a Session. 77
Using EXEC CICS LINK to Start a Session with Channel . 79
Using EXEC CICS XCTL to Start a Session . 81
Using EXEC CICS XCTL to Start a Session with Channel . 82

Passing the COMMAREA Between a TIBCO Object Service Broker CICS Client and a Session 85
Non-Seamless COMMAREA . 85
Seamless COMMAREA. 86
Retrieving the COMMAREA in a Rule . 86
Error Messages in the COMMAREA . 87

How Can Data Be Returned . 88
Returning Data From TIBCO Object Service Broker to CICS . 88
Steps to Returning an Occurrence . 88
Using MAP Tables to Return Data . 88
Using $SETENVCOMMAREA to Return Data. 89

Performing CICS Functions at Session End . 90
Starting a CICS Transaction . 90
Transferring to a CICS Program. 90

Calling External Routines . 91
Calling an External CICS Routine . 91
Requirements for Calling an External CICS Routine . 91
Restrictions for Calling an External CICS Routine. 91
Calling An External Routine With OS Linkage. 92

CICS Channels and Containers in the TIBCO Object Service Broker CICS Session Environment 93
CICS Channel and Container Tools . 93
Channel Scope . 95
Predefined Container Names. 95

Chapter 8 Using the TIBCO Service Gateway for IMS TM. 97

How to Run IMS TM Applications . 98
Functional Overview . 98
Using TIBCO Object Service Broker IMS TM Client Programs . 98
How a Client Session is Established . 98
IMS TM and TIBCO Object Service Broker Interaction . 100
Replacing IMS TM Programs with TIBCO Object Service Broker Rules . 100

Selecting a TIBCO Object Service Broker IMS TM Program Style . 101
TIBCO Object Service Broker IMS TM Client Programs . 101
Choosing the Right TIBCO Object Service Broker IMS TM Client Program . 102

Starting a TIBCO Object Service Broker Session. 103
How to Set Session Parameters . 103
TIBCO Object Service Broker for z/OS External Environments

Contents | vii
Using the IMS TM Terminal to Start a Session. 103
Usage of the Supplied Trancode. 103
Using Message Formatting Services (MFS) to Start a Session . 104
Program-to-Program Message Switching to Start a Session . 104

Terminal Changes at Session Startup . 105
Extended Terminal Support . 105
Additional Terminal Capabilities . 105
PF Key Changes. 105

Passing Data to TIBCO Object Service Broker IMS TM Sessions . 106
Using MAP Tables to Access Data . 106
Using the $GETENVCOMMAREA Tool to Access Data. 106

Input Message Segment Overview . 108
Message Segment Types . 108
 S6BIMxC1 Client Program Input Message Format . 109
 S6BIMxC2 Client Program Input Message Format . 109
 S6BIMxN1 Client Program Input Message Format . 110
 S6BIMxN2 Client Program Input Message Format . 111

Returning Data from TIBCO Object Service Broker to IMS TM. 112
Example using $SETENVCOMMAREA . 112

Passing Control to an IMS Transaction at Session End. 114
What are the Allowable Options for Passing Control . 114
What to Use to Direct the Destination of Message Segments . 114
Non-Conversational MFS Output . 114
Non-Conversational Program-to-Program Switch. 115
Conversational Deferred Message Switch . 115
Conversational Immediate Message Switch. 116

Ensuring Message Queue/Database Consistency . 117
TIBCO Object Service Broker Supplied Facility . 117
@IMSDCTRXS Table . 117
Sample Rules for Processing . 117

Customizing TIBCO Object Service Broker IMS TM Client Programs. 119
Using a Session Exit Routine . 119
Where to Enter the Exit Routine . 119
Exit Routine Indicators . 119

Getting Access to IMS TM Data. 120
Overview of the IMS TM Logger Exit . 120
Format 1 DATAIN . 120
Logger Exit Processing. 122
Example of Messages . 123

Chapter 9 Accessing IMS Via the OTMA Callable Interface .125

Functional Overview . 126
 TIBCO Object Service Broker for z/OS External Environments

viii | Contents
What is the OTMA Callable Interface?. 126

Programming for OTMA . 127
Requirements . 127
Sample Rules Provided . 127
Session Termination . 128

Usage Notes . 129
z/OS and IMS System Requirements . 129
Invoking the Tool and the System Map Table. 129
Interpreter TCB Held for Communications. 129
Error Handling . 129
Example Rules and Tables . 129

Chapter 10 Accessing External Routines . 131

Functional Overview . 132
How Does TIBCO Object Service Broker Process an External Routine? . 132
Steps Required to Use an External Routine . 132
Transaction Level of the Routine . 133
Cleanup of System Service Requests . 133
Error Handling . 133

Observing Standard Conventions . 134
Information Available to an External Routine . 134
Use of the AMODE and RMODE Attributes. 134
Storage Requirements . 135
Example Assembler Program . 136

Making a COBOL Program Compatible with TIBCO Object Service Broker. 138
Requirements . 138
COBOL Run-Units . 138
Link-Edit and Runtime Options . 139
Syntax Mapping . 140
Example COBOL Program. 141

Making a PL/I Program Compatible with TIBCO Object Service Broker. 143
Requirements . 143
Link-Edit Options . 143
Syntax Mapping . 144
Example PL/I Program. 144

Making a C Program Compatible with TIBCO Object Service Broker. 146
Requirements . 146
Syntax Mapping . 147
Sample. 148

Identifying Your External Routine to TIBCO Object Service Broker . 152
Specify the Table Entries . 152
Add an Entry in the ROUTINES Table . 152
TIBCO Object Service Broker for z/OS External Environments

Contents | ix
Adding an Entry to the ARGUMENTS Table. 155

Calling the Routine . 157
Put the Routine in a Load Library . 157
Call the Routine From TIBCO Object Service Broker. 157

Chapter 11 Using User Builtin Routines .159

Functional Overview . 160
What are User Builtin Routines?. 160
What Are the Requirements for User Builtin Routines? . 160

Programming Considerations . 161
Acquiring and Releasing Storage . 161
Using the $SAVE Macro . 161
$SAVE Macro Storage Usage . 162

Sample User Builtin Routines . 163
Samples Available . 163
USRSLEEP . 163

Chapter 12 Using the Interface to TIBCO Enterprise Message Service167

TIBCO Object Service Broker EMS Interface . 168
Purpose of TIBCO Enterprise Message Service (EMS). 168
Overview of TIBCO Object Service Broker EMS Interface . 168

Calling EMS . 169
Shareable Tools Available. 169
Argument Mapping . 169
Error Handling . 172

Configuration . 173
Initializing the EMS Interface . 173
Multi-threaded Environment . 173
Code Page Support . 173

Sample Applications . 175
Rules Samples . 175

Supported EMS Functions. 177

Chapter 13 Using the TIBCO Service Gateway for WMQ .195

Overview . 196
Usage Notes. 196
Error Handling . 197
Example Rule . 197

Chapter 14 Introduction to the Call Level Interface .199

Aspects of the Call Level Interface. 200
 TIBCO Object Service Broker for z/OS External Environments

x | Contents
Purpose of the Call Level Interface . 200
Supported Functionality . 200
Supported Connections . 201
Shared Addressing . 201
Accessing Table Data Using the Host Languages Interface . 201
Illustration of Generic User Client Using Call Level Interface . 202

Functionality of the Call Level Interface . 203
Start or Locate and Stop an Execution Environment . 203
Start and Stop a TIBCO Object Service Broker Session . 203
Start and End a TIBCO Object Service Broker Stream . 204
Start and End a TIBCO Object Service Broker Transaction . 204
Call a TIBCO Object Service Broker Rule . 205
Finding the Name of a Rule in A Transaction. 205

Operational Characteristics. 206
Supported 3GL Languages . 206
Multiple Execution Environments per Address Space . 206
Standby Sessions . 206
When Viewed by TIBCO Object Service Broker Administrator Tools. 206

Call Level Interface Specification . 207
What Is the Module to Call?. 207
Example CALL Formats. 207
Required Parameters. 207
Usage of the Parameters . 208

HRNHLLTM Module Parameters. 209
Valid Call Parameters. 209
Operational Parameters . 210

Valid Calling Sequences . 212
Calling Sequence. 212
Permissible Transitions Between the Call Level Interface Functions . 213

Examples of Typical Usage. 214
Batch Client Example. 214
Nested Execute Example. 215
TRANSFERCALL Example . 215

Using the Host Languages Interface. 216
Writing a COBOL Program Using a Combination of the Call Level Interface, TIBCO Object Service Broker
Access Statements, and SQL Statements. 216
Additional Steps. 217

Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes .
219

Preparing to Start or Locate the Execution Environment . 220
Preparatory Steps . 220
TIBCO Object Service Broker for z/OS External Environments

Contents | xi
How to Analyze the Return and Reason Codes, and Returned Message. 222
Evaluation of the Return and Reason Codes . 222
Capturing the Returned Values . 222
Examples . 222

Call Level Interface Return Codes . 225
Listing and Explanation . 225

Call Level Interface Reason Codes . 226
Listing and Explanation . 226

Committing and Rolling Back Persistent Table Changes . 231
Sample Calls . 231
Returned Values . 232

Chapter 16 Call Level Interface Functions. .233

Starting or Locating the Execution Environment – STARTEE . 234
Syntax. 234
Calling Parameters . 234
Starting an Execution Environment . 234
Obtaining Execution Environment Startup Parameters . 234
Locating an Execution Environment . 235
Returned Values . 236
Advanced STARTEE Batch Usage . 236

Stopping the Execution Environment – STOPEE . 237
Syntax. 237
Calling Parameters . 237
Sample Calls . 237
Returned Values . 238

Starting the Session – STARTSS. 239
Syntax. 239
Calling Parameters . 239
Sample Calls . 239
Returned Values . 240
Advanced STARTSS BATCH Usage. 240

Stopping the Session – STOPSS . 241
Syntax. 241
Calling Parameters . 241
Sample Code . 241
Returned Values . 242

Starting a Transaction – STARTTR . 243
Syntax. 243
Calling Parameters . 243
What Limits the Number of Transactions . 243
Sample Calls . 244
 TIBCO Object Service Broker for z/OS External Environments

xii | Contents
Returned Values . 244

Modifying Transactional Characteristics . 245
Calling Parameters . 245
What are the Transactional Characteristics? . 245
What is the Inheritance of Transactional Characteristics? . 245
Sample Calls . 246
Returned Values . 246

Ending a Transaction – STOPTR . 247
Syntax . 247
Calling Parameters . 247
Sample Calls . 247
Returned Values . 248

Calling a Rule – CALLRULE . 249
Syntax . 249
Calling Parameters . 249
DATA-IN and DATA-OUT Areas . 249
Accessing the Storage Areas. 251
Sample Calls . 252
Return Values . 253

Chapter 17 Multiple-Session Execution Environments in Batch . 255

Starting Multiple-Session Execution Environments in Batch. 256
What Facility Is Available? . 256
Implementation Guidelines . 256

Specifying an Environmental Wait Routine . 257
Listing of the HRNXD Copybook . 257
User Exit Types Supported . 258

STARTEE Call . 259
Behavior of STARTEE . 259
Behavior in the Sample Programs . 259

STARTSS Call . 261
Purpose of STARTSS . 261
Behavior in the Sample Programs . 261

Sample Programs . 262
Programs Provided . 262
S6BEWTIN . 262
S6BEWTSD . 262
S6BEWTSS . 263
COBCAPI3. 264

Chapter 18 TIBCO Object Service Broker SDK (C/C++) Server . 265

Introducing TIBCO Object Service Broker SDK (C/C++) . 266
TIBCO Object Service Broker for z/OS External Environments

Contents | xiii
Required Parameters . 266

Execution Environment Considerations . 267
Preparatory Steps. 267

Additional Requirements for CICS Execution Environments . 269
SIT Parameter Requirements . 269
Specifying the CICS Session Background Task Transaction . 269
Specifying RACF Definitions. 269

Chapter 19 Using TIBCO Object Service Broker SDK (C/C++) .271

Overview of the TIBCO Object Service Broker SDK (C/C++) . 272
What Is the TIBCO Object Service Broker SDK (C/C++)? . 272
How Does It Work?. 272
How Can It Be Used? . 272
Compiling and Running . 273
Thread Safety . 273
Constants . 273

SDK (C/C++) Functions . 275
cliProc. 277
cliExecTran . 289
cliSetCodepage . 291
cliErrorReasonDescr. 293
cliCommCreate . 294
cliCommCreate1. 294
cliCommDelete . 295
cliCommFormat . 295
cliCommFormat1 . 296
cliCommSegment . 297
cliCommSegments . 297
cliCommSegSize . 298
cliCommSize. 298
cliCommSizeCalc . 299
cliCommSizeCalc1 . 299
LLCOPY_CSTR(listr, cstr) . 300
LLCOPY_MEM(listr, prt, len) . 300
LLDECLARE(name, len). 300
LLSETLEN(listr, len) . 300
LLSTR(listr) . 300
LLSTRLEN(listr) . 300

Sample Application Using the SDK (C/C++) . 301
C Program . 301
Rule Called by Program . 301
Table Referenced by a Rule . 302
Output from the Program . 302
 TIBCO Object Service Broker for z/OS External Environments

xiv | Contents
Chapter 20 Using TIBCO Object Service Broker SDK (Java) . 303

Overview of TIBCO Object Service Broker SDK (Java) . 304
What Is the TIBCO Object Service Broker SDK (Java)? . 304
Requirements . 305
How Does It Work? . 305
How Can It Be Used? . 306
Compiling. 306
Thread Safety . 306
Constants. 307

SDK (Java) Methods . 308
Classes . 308

Session Object Methods . 312
Session . 312
call . 314
endMessage . 317
execTran. 318
isActive. 320
reset . 320
shutdown . 321
start . 321
startTrans . 323
stop . 324
stopTrans . 325
transNestLevel . 325
userId. 326

SessionException Object Methods . 327
SessionException . 327
errorReasonDescr . 328
reasonCode . 328
rc . 329

Misc Object Methods. 330
commCreate . 330
commFormat . 330
commSegmentInd . 331
commSegments . 331
commSegSize . 332
commSize . 332
commSizeCalc . 333
readInt . 333
readShort . 334
writeInt . 334
writeShort . 335

Sample Application Using the SDK (Java) . 336
TIBCO Object Service Broker for z/OS External Environments

Contents | xv
Compiling and Running the Sample Program . 336
Sample Rule Called by a Program . 337
Sample Table Referenced by a Rule . 337
Output from Program . 338

Chapter 21 Coding TIBCO Object Service Broker Access Statements 339

Overview . 340
How to Access TIBCO Object Service Broker Data . 340
Steps Required. 340
Samples Provided. 341

Writing COBOL with TIBCO Object Service Broker Access Statements. 342
Sample COBOL Program . 342
Sample TIBCO Object Service Broker Table Definition . 344

Coding the Access Statements . 345
Where Do You Code the Access Statements? . 345
Coding the Action Statements . 345

Coding Considerations. 346
Naming Differences Between TIBCO Object Service Broker and COBOL. 346
How to Rename TIBCO Object Service Broker Names to Valid COBOL Names. 346
Modifying the Join Character for Table.Field Names . 347
Checking TIBCO Object Service Broker Runtime Errors . 348
Coding Operators and Expressions . 348
Embedding TIBCO Object Service Broker Action Statements . 348

Chapter 22 Coding SQL Access Statements. .351

Writing a COBOL Program with Embedded SQL Statements . 352
Sample COBOL Program . 352
Sample TIBCO Object Service Broker Table Definition . 354

Coding SQL Access Statements . 356
Initial Statement . 356
Defining Valid Names . 356
Specifying Selection . 357
Specifying Data Areas . 357
Coding the Remaining SQL Statements. 357

Coding Considerations. 358
Differences to Consider . 358
Assigning Valid Names . 358
Coding Operators and Expressions . 359
Syntax Mapping . 360

Error Checking and Handling. 361
Error Checking . 361
Error Handling Status Variables . 361
 TIBCO Object Service Broker for z/OS External Environments

xvi | Contents
Statements Supported by the SQL Preprocessor. 363
SQL Statements . 363
Supported Keywords and Clauses for the SELECT Statement . 365

Chapter 23 Processing COBOL Programs. 367

Preprocessing the Access Statements . 368
Usage of HLIPREPROCESSOR . 368

Preparing the Program . 370
Steps Required . 370

Running the Program . 372
Steps Required . 372

Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes . 373

Listing of the Reason Codes. 374
Code Values and Explanations . 374

Index . 379
TIBCO Object Service Broker for z/OS External Environments

| xvii
Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual provides information on interfacing TIBCO Object Service Broker
with various external environments within a z/OS environment. It also includes
information on: how to access TIBCO Object Service Broker from different
terminal managers, how to write programs in external programming languages to
access TIBCO Object Service Broker data, and how to access programs written in
external programming languages from within TIBCO Object Service Broker.

Topics

• Related Documentation, page xviii

• Typographical Conventions, page xxiii

• Connecting with TIBCO Resources, page xxv
 TIBCO Object Service Broker for z/OS External Environments

xviii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
TIBCO Object Service Broker for z/OS External Environments

Preface | xix
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
 TIBCO Object Service Broker for z/OS External Environments

xx | Related Documentation
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
TIBCO Object Service Broker for z/OS External Environments

Preface | xxi
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
 TIBCO Object Service Broker for z/OS External Environments

xxii | Related Documentation
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
TIBCO Object Service Broker for z/OS External Environments

Preface | xxiii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.
 TIBCO Object Service Broker for z/OS External Environments

xxiv | Typographical Conventions
The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3

{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}
TIBCO Object Service Broker for z/OS External Environments

Preface | xxv
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO Object Service Broker for z/OS External Environments

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

xxvi | Connecting with TIBCO Resources
TIBCO Object Service Broker for z/OS External Environments

| 1
Chapter 1 Introduction

This chapter describes the TIBCO Object Service Broker architecture, how to
access TIBCO Object Service Broker from an external environment, and the main
stages to setting up and processing within TIBCO Object Service Broker from
within an external environment.

Topics

• TIBCO Object Service Broker Architecture, page 2

• Accessing TIBCO Object Service Broker from an External Environment, page 5

• Stages to Setting Up and Processing Within TIBCO Object Service Broker,
page 8
 TIBCO Object Service Broker for z/OS External Environments

2 | Chapter 1 Introduction
TIBCO Object Service Broker Architecture

TIBCO Object Service Broker consists of three components:

• Client services layer

• Execution Environment

• Data Object Broker

These entities can all exist on one physical machine or they can be distributed
across different machines. The following diagram illustrates this relationship:

Client Services Layer
The client services layer provides the interface between TIBCO Object Service
Broker and its host operating environment, referred to as an external environment
in this manual. This layer provides support for TIBCO Object Service Broker
sessions running as z/OS batch, TSO, CICS, IMS TM, or Native Execution
Environment clients. Every TIBCO Object Service Broker session that runs in an
Execution Environment is started by a client.

Execution Environment

Data Object Broker

Physical Data StoreExternal Database Server

Client Services Layer
TIBCO Object Service Broker for z/OS External Environments

TIBCO Object Service Broker Architecture | 3
Execution Environment
The Execution Environment manages TIBCO Object Service Broker sessions,
allowing you to execute rules and access tables and sessions. More than one
Execution Environment can reside on a machine. An Execution Environment can
reside on the same machine as a Data Object Broker or on a separate machine.
Although the Execution Environment can interact with only one Data Object
Broker directly, it can interact indirectly with other Data Object Brokers through
distributed data access between Data Object Brokers.

The Execution Environment creates, manages, and terminates sessions. It
establishes links with entities outside the Execution Environment. It delegates
actions to a session once it is created and supervises the session while it exists.

The Execution Environment is established before any TIBCO Object Service
Broker session is started and terminated after all sessions are done. Execution
Environments are either single- or multiple-session.

TIBCO Object Service Broker Sessions

Within a session there can be one or more data access transactions. The session
provides the context within which transactions can manipulate data and request
access to relational data. Within this context:

• TIBCO Object Service Broker rules statements are executed.

• Requests to read from or write to tables are executed.

• The boundaries of data access transactions are defined and maintained.

Data Object Broker
The Data Object Broker handles the co-ordination and management of
transactional table data. It acts as the transactional commit coordinator, and in
this capacity manages the integrity of transactional data. It can also route data
access traffic to another Data Object Broker or to an external database server. The
logical view of the data that it manages is kept in the MetaStor.

Physical Data Store

The physical data store, known as the Pagestore, is where the actual data is stored
on a physical device in a device dependent format. TIBCO Object Service Broker
makes use of this device dependent format to store its logical, relational table
view of data.
 TIBCO Object Service Broker for z/OS External Environments

4 | Chapter 1 Introduction
External Database Servers

External database servers allow TIBCO Object Service Broker to access other types
of data on external databases. For detailed information about external database
servers, refer to the TIBCO Service Gateway manual that accompanies each
external database server.
TIBCO Object Service Broker for z/OS External Environments

Accessing TIBCO Object Service Broker from an External Environment | 5
Accessing TIBCO Object Service Broker from an External

Environment

What is an External Environment?
All programs and applications run on an operating system platform, and often
within a transaction manager such as CICS. In this manual these systems and
transaction managers are referred to as external environments. Although
applications can be written in different languages and have different areas of
focus, they are sustained by, and commonly share the resources of, the
environment where they run, as shown in the following diagram:

TIBCO
Object
Service
Broker

Your Environment

Application A

Application B
Application C

Application E

Application D
 TIBCO Object Service Broker for z/OS External Environments

6 | Chapter 1 Introduction
TIBCO Object Service Broker is Open to Its External Environments

In a similar way, TIBCO Object Service Broker makes its data and resources
available to those applications that can make use of its Call Level Interface. Also,
from within TIBCO Object Service Broker, users can access external routines and
external data if they reside in the same address space as the session, as shown in
the following diagram:

Facilities Available for Interfacing with External Environments
The following facilities provide access to and from the TIBCO Object Service
Broker environment:

Your Environment

access access

Application A

Application B

TIBCO
Object
Service
Broker

Program B

Program A

Facility Refer to …

TIBCO Object Service
Broker clients

Chapter 4, TIBCO Object Service Broker Sessions Under z/OS
Batch, page 31.

Chapter 5, TIBCO Object Service Broker Sessions Under TSO,
page 41.

Chapter 6, TIBCO Object Service Broker Sessions Under the
Native Execution Environment, page 51.

Chapter 7, Using the TIBCO Service Gateway for CICS,
page 59.

Chapter 8, Using the TIBCO Service Gateway for IMS TM,
page 97.
TIBCO Object Service Broker for z/OS External Environments

Accessing TIBCO Object Service Broker from an External Environment | 7
External routine
interface

Chapter 10, Accessing External Routines, page 131.

Chapter 11, Using User Builtin Routines, page 159.

EMS Interface Chapter 12, Using the Interface to TIBCO Enterprise Message
Service, page 167.

TIBCO Service
Gateway for WMQ

Chapter 13, Using the TIBCO Service Gateway for WMQ,
page 195.

Call Level Interface Chapter 14, Introduction to the Call Level Interface, page 199.

Chapter 15, Preparing the Environment, Analyzing Returned
Values, and Modifying Changes, page 219.

Chapter 16, Call Level Interface Functions, page 233.

Chapter 17, Multiple-Session Execution Environments in
Batch, page 255.

TIBCO Object Service
Broker SDK (C/C++)

Chapter 18, TIBCO Object Service Broker SDK (C/C++)
Server, page 265.

Chapter 19, Using TIBCO Object Service Broker SDK (C/C++),
page 271.

TIBCO Object Service
Broker SDK (Java)

Chapter 20, Using TIBCO Object Service Broker SDK (Java),
page 303.

Host Languages
Interface

Chapter 21, Coding TIBCO Object Service Broker Access
Statements, page 339.

Chapter 22, Coding SQL Access Statements, page 351.

Chapter 23, Processing COBOL Programs, page 367.

Object Integration
Gateway

TIBCO Object Service Broker Object Integration Gateway

Batch TIBCO Object Service Broker Programming in Rules

TIBCO Object Service
Broker 3270 Access
Adapter

TIBCO Object Service Broker Getting Started

Facility Refer to …
 TIBCO Object Service Broker for z/OS External Environments

8 | Chapter 1 Introduction
Stages to Setting Up and Processing Within TIBCO Object Service

Broker

Main Stages
The following list outlines the main stages to setting up and processing within
TIBCO Object Service Broker from within an external environment:

1. The user establishes an Execution Environment.

2. The user initiates a transaction using a client process.

3. The client starts a TIBCO Object Service Broker session. Depending on the
client type, this step can be repeated for more than one session.

4. The Execution Environment gets environment and session parameters.

5. If TIBCO Object Service Broker security is in place, after connecting to the
Data Object Broker, login security is performed.

6. The client activates a transaction. This transaction can start other transactions,
call rules, and call external routines to manipulate data.

7. The sessions are terminated. As part of the termination, transactions are
completed and resources cleaned up.

8. The client is notified that the session ended.

9. Data is returned to the external environment to notify it of the status of the
session when the session ended.

See Also TIBCO Object Service Broker Parameters for more information about parameters.

Interaction with TIBCO Object Service Broker and its External Environments
The following figures illustrate the stages described above in the context of the
relationships between the Data Object Broker, the external environment, a TIBCO
Object Service Broker client or a user client, the Execution Environment, the
session, and the transaction. The details of these relationships are presented in the
following chapters.
TIBCO Object Service Broker for z/OS External Environments

Stages to Setting Up and Processing Within TIBCO Object Service Broker | 9
Data Flow When Using a TIBCO Object Service Broker Client

Client External Environment
Start

External Environment

Execution Environment

Session

Transaction

EE
Parameters

Data Object Broker

Rule
MAP Table Access

CALL

TIBCO Object Service Broker Client
StartEE Run Session Stop EE

Session
Parameters

Client
Directives

External
Routines

Data in
Memory

External
Routines

Data in
Memory

Data OutData In

TIBCO Object Service Broker supplied User supplied
 TIBCO Object Service Broker for z/OS External Environments

10 | Chapter 1 Introduction
Data Flow When Using a User Client

Client External Environment

External Environment

Execution Environment

Session

Transaction

Call Level Interface

Start

User Client

Start
EE

Stop
EE

Start
Session

Start
Transaction

Stop
Session

End
Transaction

Data Object Broker

Data OutData In

MAP Table Access

External
Routines

External
Routines

Data in
Memory

Rule

Data in
Memory

CALL

EE
Parameters

Session
Parameters

Rule
Parameters

Call Rule

TIBCO Object Service Broker supplied User supplied
TIBCO Object Service Broker for z/OS External Environments

| 11
Chapter 2 The TIBCO Object Service Broker Client
Model

This chapter describes the TIBCO Object Service Broker client model, the different
client styles, and how to set up the user profile for seamless clients.

Topics

• Overview, page 12

• TIBCO Object Service Broker Client Styles, page 15

• Setting Up the User Profile for Seamless Clients, page 18
 TIBCO Object Service Broker for z/OS External Environments

12 | Chapter 2 The TIBCO Object Service Broker Client Model
Overview

Clients can either be:

• TIBCO Object Service Broker clients, supplied with the product

• User clients, written in COBOL, PL/1, C, or assembler as part of an existing
application

The client environment you use determines whether:

• You can start one or more sessions from within your client process or
transaction

• The client shares the same external environment as the Execution
Environment

• The client and external environment share the same address space

TIBCO Object Service Broker Clients

Single-Session Clients

The following clients create and initialize a single-session Execution
Environment, and start a session. When a user terminates the session, the
Execution Environment is also terminated.

Batch client A batch client starts TIBCO Object Service Broker as a
z/OS batch process.

Batch clients are described in Chapter 4, TIBCO Object
Service Broker Sessions Under z/OS Batch, on page 31.

TSO client A TSO client starts TIBCO Object Service Broker as a z/OS
TSO process. All TSO clients support a full-screen
interface.

TSO clients are described in Chapter 5, TIBCO Object
Service Broker Sessions Under TSO, on page 41.
TIBCO Object Service Broker for z/OS External Environments

Overview | 13
Multiple-Session Clients

The following clients use multiple-session Execution Environments. These
Execution Environments must be started before clients can start one or more
sessions.

User Clients
You can write your own user client, if you require a client to be written as part of a
COBOL, PL/1, C, or assembler application. Use the Call Level Interface to create
user clients for batch, TSO, and CICS environments. Refer to Chapter 16, Call
Level Interface Functions, on page 233 for detailed information.

Native Execution
Environment client

You use a Native Execution Environment client to connect directly to
TIBCO Object Service Broker using VTAM 3270. These clients support
a full-screen interface. Sessions are started when the VTAM 3270
terminal is LOGON to the Native Execution Environment VTAM
APPLID.

Native Execution Environment clients are described in Chapter 6,
TIBCO Object Service Broker Sessions Under the Native Execution
Environment, on page 51.

CICS client A CICS client starts a TIBCO Object Service Broker session within a
CICS transaction. All CICS clients support a full-screen interface. CICS
sessions are started when one of the CICS client programs is run. The
CICS client and the session share the same address space. You can start
the client as a conversational or pseudo-conversational CICS
transaction or run it as a CICS program.

CICS clients are described in Chapter 7, Using the TIBCO Service
Gateway for CICS, on page 59.

IMS TM client An IMS TM client starts a TIBCO Object Service Broker session using
an IMS TM transaction. All TIBCO Object Service Broker IMS TM
clients support a full-screen interface. IMS TM sessions are started in
the Native Execution address space when one of the IMS TM programs
is run in a Message Processing Region. You can start the client as a
conversational or non-conversational IMS TM transaction.

 IMS TM clients are described in Chapter 8, Using the TIBCO Service
Gateway for IMS TM, on page 97.
 TIBCO Object Service Broker for z/OS External Environments

14 | Chapter 2 The TIBCO Object Service Broker Client Model
TIBCO Object Service Broker SDK (C/C++) Client
The TIBCO Object Service Broker SDK (C/C++) client is an extension of the Call
Level Interface. It extends the interface beyond the boundaries of the Execution
Environment address space. It can use any communications protocol supported
by TIBCO Object Service Broker.

The SDK (C/C++) client can reside in:

• Another address space in the same z/OS image

• Another z/OS system

• A platform other than z/OS

TIBCO Object Service Broker SDK (Java) Client
The TIBCO Object Service Broker SDK (Java) is an application programming
interface (API) used by a Java application to manage TIBCO Object Service Broker
sessions. It uses TCP/IP to connect to TIBCO Object Service Broker.

The SDK (Java) client can reside in any machine with a Java virtual environment.

See Also Chapter 18, TIBCO Object Service Broker SDK (C/C++) Server, on page 265 for
details about required setup steps in the Execution Environment for the
SDK (C/C++) server

TIBCO Object Service Broker for z/OS Installing and Operating for more information
about installing TIBCO Object Service Broker and its components.

Same Environments and Address Spaces
The external environment of the Execution Environment and the client are the
same, and share the same address space for TIBCO Object Service Broker TSO,
batch, and CICS clients, and all user clients using the Call Level Interface.
TIBCO Object Service Broker for z/OS External Environments

TIBCO Object Service Broker Client Styles | 15
TIBCO Object Service Broker Client Styles

Clients connecting from CICS or IMS TM can make choices within four TIBCO
Object Service Broker client styles:

• Seamless or non-seamless

• External user security or external transaction security

• Display or non-display

• Conversational or non-conversational

Default session attributes are applied to clients connecting from TSO, batch, and
Native Execution Environment.

What Determines the Client Style?
The name of the client program determines the TIBCO Object Service Broker
client style. Refer to the table in Client Style Summary on page 17 for a listing of
the program names and the types of styles for which they are used.

Seamless or Non-Seamless Client Styles

Seamless

To replace an existing non-TIBCO Object Service Broker transaction without
changing other non-TIBCO Object Service Broker programs, use a seamless client
program name. Seamless clients, by definition, cannot be passed a session
parameter string. The external transaction name is used as the TIBCO Object
Service Broker profile name. The startup rule named in the TIBCO Object Service
Broker profile is the first rule run. Refer to Setting Up the User Profile for
Seamless Clients on page 18.

Non-Seamless

To provide session parameters not supported in the user profile or to explicitly
specify the startup rule, use a non-seamless client program name. From the
viewpoint of the external application, the session parameter string followed by
application data is passed as data to TIBCO Object Service Broker.
 TIBCO Object Service Broker for z/OS External Environments

16 | Chapter 2 The TIBCO Object Service Broker Client Model
Overriding the Default User ID

If the client style is non-seamless, the default user ID can be overridden by the
USERID session parameter.

See Also TIBCO Object Service Broker Parameters for more information about parameters.

External User or External Transaction Security

External User Security

If you use an external user security program name, the default user ID of the
TIBCO Object Service Broker sessions is the user ID authenticated by the external
security manager. This ensures strict security on an individual user basis and
requires that the external security manager authenticate the user ID.

External Transaction Security

If you use an external transaction security program name, the TIBCO Object
Service Broker sessions uses the name of the external transaction as its TIBCO
Object Service Broker user ID. The external security manager is responsible for
authorizing the execution of this external transaction.

Minimizing TIBCO Object Service Broker User IDs

To avoid setting up a TIBCO Object Service Broker user ID for every external user
ID, use an external transaction client style. This sets the user ID to the external
transaction name.

Display or Non-Display Clients

Display

If you use a display client program name, the TIBCO Object Service Broker
sessions can use the TIBCO Object Service Broker DISPLAY, UNTIL... DISPLAY,
and DISPLAY & TRANSFERCALL rules language statements to present data to a
screen.

Non-Display

If you use a non-display client program name, screen I/O is not supported for the
TIBCO Object Service Broker sessions.
TIBCO Object Service Broker for z/OS External Environments

TIBCO Object Service Broker Client Styles | 17

)

)

Conversational or Non-Conversational Clients

Conversational

If you use a conversational client program name, the TIBCO Object Service Broker
session started under IMS TM has a Scratch Pad Area (SPA). Screen I/O is
supported.

Non-Conversational

If you use a non-conversational client program name, the TIBCO Object Service
Broker sessions started under IMS TM does not have a Scratch Pad Area (SPA).
Screen I/O is supported but an IMS Physical Terminal Input Edit exit routine
must be installed first.

Client Style Summary
The following table identifies the program name for a particular external
environment and client style. For details, refer to the appropriate chapter for each
client.

See Also TIBCO Object Service Broker Managing Security for the evaluation of user IDs and
passwords.

TIBCO Object Service Broker Programming in Rules for rules language statements.

CICS IMS TM Batch TSO VTAM LU2

Seamless S6BCSxx1 S6BIMxx1

Non-Seamless S6BCSxx2 S6BIMxx2 S6BBATCH S6BTSO LOGON
APPLID(x)DATA(x

External User S6BCSSxx S6BIMSxx

External

Transaction

S6BCSTxx S6BIMTxx

Display S6BCSxCx S6BTSO LOGON
APPLID(x)DATA(x

Non-Display S6BCSxNx S6BBATCH

Conversational S6BIMxCx

Non-Conversational S6BIMxNx
 TIBCO Object Service Broker for z/OS External Environments

18 | Chapter 2 The TIBCO Object Service Broker Client Model
Setting Up the User Profile for Seamless Clients

Every external transaction name that is to be used as a seamless TIBCO Object
Service Broker client must be defined to TIBCO Object Service Broker as a user ID.
At session startup, the seamless client uses the external transaction name to select
the user profile information to be used during the session.

Setting up A User Profile
Use the SE security manager workbench option to access the User Profile option
in the MANAGE USERS area to set the profile for an external transaction. At
minimum, provide a value in the Startup Rule field. You can also provide values
for the Action, Search, Browse, Library, and Current Group fields.

Guidelines for Development Environments
In a development environment, you could find the startup rule for a session in a
local library (that is, it was not promoted to the installation library). If this is the
case in your environment, the default library in the user profile should be set to
the local library 1.

If the user ID for the external environment is being used as the user ID for TIBCO
Object Service Broker, the startup rule must exist in the rules library for this user
ID or the library specified in the user profile. In TIBCO Object Service Broker, the
user ID determines permissible accesses to objects such as rules libraries and also
the clearance of data accesses (that is, reading the rule for execution). Therefore, a
user ID must have VIEW_DEFN to access a rule definition and READ to access
the library containing the rule.

See Also TIBCO Object Service Broker Managing Security about user profiles and logging in
to TIBCO Object Service Broker.

TIBCO Object Service Broker Programming in Rules for the rules language and rules
libraries.

1. The default login library is that of the user ID (that is, user ENV00 uses default library ENV00 during
login processing). If the default library is not set, the rule must reside in the library of the
environmental user (the login library).
TIBCO Object Service Broker for z/OS External Environments

| 19
Chapter 3 Setting Execution Environment Parameters

This chapter describes how to set the execution environment parameters.

Topics

• Usage of the Execution Environment Parameters, page 20

• Determining Session Characteristics, page 21

• Available Execution Environment Parameters, page 25

• Specifying Session Parameters Using an Input File or a CLIST, page 27

• Reducing Session Resources, page 28
 TIBCO Object Service Broker for z/OS External Environments

20 | Chapter 3 Setting Execution Environment Parameters
Usage of the Execution Environment Parameters

Purpose
An Execution Environment must be started before you can start a session. The
parameters listed in this chapter determine the characteristics of that environment
and of the session. When your session starts, your Execution Environment
parameter values are merged with the values of the Execution Environment
parameters that you specified for your session, to determine the characteristics of
your session.

Precedence of Values
Values provided as part of your session startup string take precedence over the
Execution Environment values. Refer to Determining Session Characteristics on
page 21 for more detail about session startup values and the order of evaluation
for startup.

See Also TIBCO Object Service Broker Parameters for detailed information about the
Execution Environment parameters.

TIBCO Object Service Broker for z/OS Installing and Operating for detailed
information about how to start batch, TSO, CICS, and Native Execution
Environments.

Chapter 14, Introduction to the Call Level Interface, on page 199 to Chapter 17,
Multiple-Session Execution Environments in Batch, on page 255 for information
about starting Execution Environments using the Call Level Interface
TIBCO Object Service Broker for z/OS External Environments

Determining Session Characteristics | 21
Determining Session Characteristics

You can set session parameters in a number of ways, as described in the following
sections. You can also configure your session to use either a pre-supplied
workbench or to execute a user-supplied or an installation-supplied rule.

When your session is activated, session parameter and Execution Environment
parameter values are merged to determine the characteristics of your session.
How this data is merged is decided by the order of evaluation described in the
two tables below.

Login Authentication Required

Before your session can be activated you must pass login authentication. This
authentication is based on the user ID you are using to activate your session.

See Also TIBCO Object Service Broker Parameters for more information about parameters.

Where to Specify Parameters for Single-Session Clients
The following table shows where you can specify the session parameters for
clients running single sessions. If the same parameter appears in more than one
place, the parameter value of the highest priority specification is used.

Specified In Priority
Single-Session

z/OS Batch z/OS TSO

Session startup string Highest Ya

a. Specified on the EXEC card using PARM='session startup string'. Maximum 100
characters.

— b

Session parameter input file Yc Yc

User Profile Yd, e Yd, e

Installation default Yf Yf

TIBCO Object Service
Broker-supplied default

Lowest Yg Yg

Default module name S6BDRCB0h S6BDRCT0h
 TIBCO Object Service Broker for z/OS External Environments

22 | Chapter 3 Setting Execution Environment Parameters
Where to Specify Parameters for Multiple-Session Clients
The following table shows where you can specify the parameters for clients
running multiple sessions. If the same parameter appears in more than one place,
the parameter value of the highest priority specification is used.

b. The TIBCO Object Service Broker CLIST creates a temporary file allocated to
DDname HRNIN to pass all parameters.

c. Parameter input file must be allocated to DDname HRNIN.

d. The User Profile is bypassed if the session parameter NOPROFILE is used.

e. The profile of the user ID is always used.

f. The installation default configuration module name is determined by the type of
Execution Environment. The default module name can be overridden by
specifying the Execution Environment CONFIGURATION parameter.

g. Refer to TIBCO Object Service Broker for z/OS Installing and Operating for TIBCO
Object Service Broker default values.

h. The second last character represents the type of Execution Environment, i.e.,
B=Batch and N=Native. This information is displayed in the Execution
Environment startup message.

Specified In Priority
Multiple-Session

CICS IMS TM Native

Session startup
string

Highest Ya Yb Yc

User Profile Yd, e Yd, e Yd, f

Execution
Environment
startup string

Yg Yh Yh

Execution
Environment
parameter input file

Yi Yi Yi

Installation default Yj Yj, k Yj
TIBCO Object Service Broker for z/OS External Environments

Determining Session Characteristics | 23
See Also TIBCO Object Service Broker Parameters for detailed information about session
parameters.

TIBCO Object
Service Broker
supplied default

Lowest Yl Yl Yl

Default module name S6BDRCC0m S6BDRCI0m S6BDRCN0m

a. Specified on the command line in the HURN session startup string or in the
parameter area of the COMMAREA passed to a non-seamless TIBCO Object
Service Broker/CICS interface program. Cannot be specified to a seamless TIBCO
Object Service Broker/CICS interface program.

b. Specified on the command line in the S6BLOGON session startup string or in
the parameter segment to a non-seamless TIBCO Object Service Broker IMS TM
client program.

c. Specified when logging in to the Native Execution Environment using the
DATA('session startup string') operand. Maximum 64 characters.

d. The User Profile is bypassed if the NOPROFILE session parameter is used.

e. The external transaction profile is used for seamless clients, and the user profile
is used for non-seamless clients.

f. The profile of the user ID is always used.

g. Specified in the command line HINT region startup string.

h. Specified on the EXEC PGM=S6BDR00 card in PARM='region startup string'.
Max: 100 characters.

i. Parameter input file must be allocated to the HRNIN DDname.

j. The installation default configuration module name is determined by the type of
Execution Environment. The default module name can be overridden by
specifying the CONFIGURATION Execution Environment parameter.

k. IMS TM sessions run in a Native Execution Environment.

l. Refer to TIBCO Object Service Broker for z/OS Installing and Operating for TIBCO
Object Service Broker default values.

m. The second last character represents the type of Execution Environment, i.e.,
C=CICS, I=IMS, and N=Native. This information is displayed in the Execution
Environment startup message.

Specified In Priority
Multiple-Session

CICS IMS TM Native
 TIBCO Object Service Broker for z/OS External Environments

24 | Chapter 3 Setting Execution Environment Parameters
TIBCO Object Service Broker for z/OS Installing and Operating for detailed
information about creating default configuration modules.

TIBCO Object Service Broker Managing Security about TIBCO Object Service Broker
security and logging in to TIBCO Object Service Broker.
TIBCO Object Service Broker for z/OS External Environments

Available Execution Environment Parameters | 25
Available Execution Environment Parameters

Parameters Specific to the Execution Environment
The parameters listed below determine the characteristics of your Execution
Environment. Some of the parameters in Parameters for Your Session on page 26
can also be used to set up your Execution Environment.

BLTINNUM CICSHURONTRAN CICSPSEUDOCONVERSE

CICSREGIONSIZE CICSVSAMSYNC CLIMSGLENMAX

COMMITSIZE CONFIGURATION EXECHASHSIZE

EXECLOCALNAMESIZE EXECSCOPESIZE IBMFLOAT, NOIBMFLOAT

IMSSCREENATTRIBU IMSSCREENTRAN IMSSCREENTRANNC

INSTLIBNUM LOGONRULENAME MDL

NOSMFDETAIL PEERSERVERID PEERSERVERNUM

REGIONTABLESIZE REGIONTRACE REGIONTRACESIZE

REGIONTRACESIZE SECACLSIZE SECADMINSIZE

SECAUDITLOG SECOBJSIZE SECPACLSIZE

SECURITY SECUSERSIZE SERVERID

SERVERS SERVERTYPE SMFTYPE

SORTEXTMEMMAX SORTINTMEMMAX SORTINTNUMMAX

SORTINTPAGESMAX SORTPGM SORTUNIT

STANDBYNUM STATSBUF TAMBMAX

TAMBMIN TAMBSTS TASKEXECNUM

TASKFILENUM TASKINITNUM TASKMISCNUM

TASKOPERNUM TASKSMFNUM TASKSORTNUM

TDS TEMPPRIMARYCYL TEMPSECONDARY
 TIBCO Object Service Broker for z/OS External Environments

26 | Chapter 3 Setting Execution Environment Parameters
Parameters for Your Session
The parameters listed below determine the characteristics of your session.

See Also TIBCO Object Service Broker Managing Security about user profiles and logging in
to TIBCO Object Service Broker.

TEMPUNIT TEMPUNITCOUNT TIMEOUTLIMIT

TRANMAXNUM

ACTION BROWSE, NOBROWSE CHARSET

CLIHOST CLINODE CLIPORT

DECIMALSEPARATOR EENAME ERRMESSAGESCREEN

EXECLOCALSIZE EXECSTACKSIZE FILEGDGSEARCH

INSTLIB LIBRARY MSGLOGMAX

OAIBLOCKFACTOR ONLINE, OFFLINE PASSWORD

PRINTCLASS PRINTCOPY PRINTDATASET

PRINTDEST PRINTFCB PRINTFORM

PRINTUCS PRINTXWTR PROFILE, NOPROFILE

PROMPT, NOPROMPT RULE SEARCH

SESSIONENDACTION SESSIONENDVALUE SESSIONFILEMAX

SESSIONMEMMAX SMFDETAIL SMFPERFORMANCE

SORTPRINT SORTWORKFILESMAX STAE, NOSTAE

SYSLIB TEST, NOTEST TRANMEMMAX

USERID VARLDELIMITER VARRDELIMITER
TIBCO Object Service Broker for z/OS External Environments

Specifying Session Parameters Using an Input File or a CLIST | 27
Specifying Session Parameters Using an Input File or a CLIST

You can specify additional TIBCO Object Service Broker parameters using the DD
statement HRNIN for all client styles, or a CLIST for TSO clients. The following
sections describe the use of an input file. For information about using a CLIST
refer to Using a CLIST to Invoke TIBCO Object Service Broker on page 47.

Format of the Input File
The data set associated with HRNIN can be sequential, partitioned, or instream.
The format of HRNIN must be as follows:

• The data set must be either RECFM=VB or RECFM=FB with LRECL=80

• Columns 73 through 80 are reserved for card sequence numbers for
RECFM=FB data sets

• Parameters can be separated by commas

• Spaces are ignored

• Quoted strings can span multiple lines

• Comments are denoted with an asterisk (*) in column 1, or delimited
anywhere between parameters by /* */

Example of Instream Parameter List Using HRNIN in JCL

...
//STEP1 EXEC PGM=S6BBATCH,REGION=4M,
// PARM=(OFFLINE,'U=USERID,TDS=VTAMID') > USER AND VTAM IDS
//STEPLIB DD DSN=S6B01.HURON.LOAD,DISP=SHR > SHOULD CUSTOMIZE
//HRNOUT DD SYSOUT=*
//HRNPRNT DD SYSOUT=*
//HRNIN DD * > RULE AND PARAMETERS
RULE=HLIPREPROCESSOR('COBOL','HURON','HURON AND COBOL SOURCE',
'COBOL ONLY SOURCE','HLL.HLLLIST','ERRORSTOP'),MSGLOGMAX=4M,
CHARSET=CDNB /* HRNIN comment */
/*

If a parameter is specified in both HRNIN and the PARM statement, the value in
the PARM statement takes precedence.
 TIBCO Object Service Broker for z/OS External Environments

28 | Chapter 3 Setting Execution Environment Parameters
Reducing Session Resources

Bypassing the Workbench
Bypassing the workbench at session startup lets you reduce session resources. To
bypass the workbench, run a rule at session startup:

• In seamless clients, the name of the rule to run is obtained from the user
profile with the same name as the client. The rule is run without arguments. In
your Security user profile you must also leave the Menu field blank and/or
transfercall to the rule, that is, set the Action field to T.

• In non-seamless clients, the RULE session parameter is used to execute a rule
at session startup. You can run this rule with arguments. Refer to TIBCO
Object Service Broker Parameters for information about the RULE parameter.

Operational Characteristics
When the session starts, you do not see the usual workbench menu; the rule
named in the Startup Rule field of the User profile for seamless clients or with the
RULE parameter for non-seamless clients is run immediately. If the rule fails, the
TIBCO Object Service Broker session ends with a traceback and control is
returned to the external environment.

Trapping Errors

You can trap any recoverable errors using an exception handler in the rule.

Obtaining Additional Data

For CICS, IMS TM, and the Call Level Interface, you can use MAP tables or the
$GETENVCOMMAREA tool to obtain additional data that was passed to the
session.
TIBCO Object Service Broker for z/OS External Environments

Reducing Session Resources | 29
Changing the Invocation Options
You can change the way to invoke a rule with the ACTION parameter or user
profile default. Instead of the default EXECUTE, use CALL (C) or
TRANSFERCALL (T):

Change other invocation attributes with parameters or user profile defaults such
as SEARCH, BROWSE/NOBROWSE, and TEST/NOTEST.

Non-seamless CICS Client
In a non-seamless CICS client you can invoke the HURN transaction with a
session startup string as follows:

HURN R=ABC(3,OPEN)

In this example, the ABC rule is passed two arguments: the first argument is the
number “3” and the second is the string “OPEN”.

See Also TIBCO Object Service Broker Programming in Rules for error handling.

TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Shareable Tools about tools.

TIBCO Object Service Broker Managing Security about user profiles.

TIBCO Object Service Broker Parameters about parameters.

EXECUTE The rule starts as a child transaction to the TIBCO Object
Service Broker login transaction.

TRANSFERCALL The rule is invoked as a new, separate transaction.

CALL The rule runs as part of the initial TIBCO Object Service
Broker login transaction.
 TIBCO Object Service Broker for z/OS External Environments

30 | Chapter 3 Setting Execution Environment Parameters
TIBCO Object Service Broker for z/OS External Environments

| 31
Chapter 4 TIBCO Object Service Broker Sessions
Under z/OS Batch

This chapter describes how to run and set TIBCO Object Service Broker sessions
under z/OS batch and how to manipulate data in batch client sessions

Topics

• How to Run Batch Applications, page 32

• How to Set Session Parameters, page 36

• How to Manipulate Data in a TIBCO Object Service Broker Batch Client
Session, page 39
 TIBCO Object Service Broker for z/OS External Environments

32 | Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
How to Run Batch Applications

Invocation
Use TIBCO Object Service Broker batch clients when you want to run batch
TIBCO Object Service Broker applications under JES2 or JES3 z/OS. You typically
invoke the batch application as a job step using JCL. The batch client can be either
the TIBCO Object Service Broker supplied batch client program S6BBATCH, or a
batch program you wrote using the TIBCO Object Service Broker Call Level
Interface.

Using the TIBCO Object Service Broker Supplied Batch Client Program
For a straightforward invocation of a batch application, use the S6BBATCH
program supplied with TIBCO Object Service Broker. S6BBATCH starts a
same-address space Execution Environment and runs the application as
determined by the startup rule in the session.

When the application ends, the following events take place:

1. The session is terminated.

2. The Execution Environment is stopped.

3. A return code is passed by S6BBATCH, which can be used to control the
execution of subsequent job steps.
TIBCO Object Service Broker for z/OS External Environments

How to Run Batch Applications | 33
Batch Client and the z/OS Environment

The following illustration shows how the TIBCO Object Service Broker batch
client program fits into the z/OS environment:

Batch Address Space
Start

Execution Environment

Session

Transaction

Data Object Broker

Rule
MAP Table Access

CALL

Batch Client
S6BBATCH

Start EE Run Session Stop EE

Data in
Memory

External
Routines

Data in
Memory

EE
Parameters

Session
Parameters

Client
Directives

TIBCO Object Service Broker supplied User supplied
 TIBCO Object Service Broker for z/OS External Environments

34 | Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
Using A Customized (User) Batch Client
If you want to access TIBCO Object Service Broker facilities from within a batch
COBOL or assembler application program, you can write your own batch client
using the TIBCO Object Service Broker Call Level Interface. In this case, your
batch client program uses calls to the TIBCO Object Service Broker Call Level
Interface to start a same address space Execution Environment, start a session,
start a transaction, and run one or more rules in that transaction environment.
Your batch client program is responsible for terminating the transaction, session,
and Execution Environment before returning to z/OS.
TIBCO Object Service Broker for z/OS External Environments

How to Run Batch Applications | 35
User Batch Client and the z/OS Environment

The following illustration shows how your user batch client program fits into the
z/OS environment. Refer to Chapter 14, Introduction to the Call Level Interface,
page 199 to Chapter 17, Multiple-Session Execution Environments in Batch,
page 255 for detailed information on how to write a batch application using the
Call Level Interface.

Batch Address Space

Execution Environment

Session

Transaction

Call Level Interface

EE
Parameters

Start

Session
Parameters

Rule
Parameters

User Batch Client
yourname

Start
EE

Stop
EE

Start
Session

Start
Transaction

Stop
Session

End
Transaction

Data Object Broker

MAP Table Access

External
Routines

Data in
Memory

Rule

Data in
Memory

CALL

Call Rule

Data OutData In

TIBCO Object Service Broker supplied User supplied
 TIBCO Object Service Broker for z/OS External Environments

36 | Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
How to Set Session Parameters

A number of options are available to you for determining the operational
characteristics of your session. You can also require additional facilities to start a
session. This section describes where to specify the options, the order of
evaluation for these options, and the additional facilities you require.

Establishing Session Parameter Values
The following table describes where to specify the values for your session
parameters and their order of evaluation, from highest to lowest:

Values Specified
In…

Priority of
Evaluation Notes

Session startup
string

Highest For PGM=S6BBATCH: specify on the EXEC
card using PARM=‘session startup string’.
Maximum 100 characters.

For TIBCO Object Service Broker Call Level
Interface: specify as fourth parameter to
HRNHLLTM to STARTSS operation. Refer
to Starting the Session – STARTSS on
page 239.

Session parameter
input file

The parameter input file must be allocated
to DDname HRNIN.

User Profile The profile of the TIBCO Object Service
Broker user ID is used unless the session
parameter NOPROFILE is specified.

Installation
default

The installation default module is loaded
from STEPLIB. The default configuration
module name is S6BDRCB0, except when
overridden by the CONFIGURATION
Execution Environment parameter.

Default supplied
by TIBCO Object
Service Broker

Lowest Refer to TIBCO Object Service Broker for z/OS
Installing and Operating for default values.
TIBCO Object Service Broker for z/OS External Environments

How to Set Session Parameters | 37
Available DDnames
The DDnames listed in this table are used to run a batch Execution Environment:

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on using HRNLIB to make sure that the TIBCO Object Service Broker load library
is authorized.

DDname Description

HRNEXTR Optional partitioned data set containing load modules for user
external routines.

HRNIN Sequential file containing the Execution Environment and
session parameters.

HRNLIB Optional APF authorized partitioned data set containing the load
modules required to run the Execution Environment when
STEPLIB is not APF authorized.

HRNOUT Sequential print file containing the system message log after an
error, including error messages and rules tracebacks.

HRNPRNT Sequential file containing print output generated by a rule with
the PRT output medium, including reports, print tools, and
TIBCO Object Service Broker tools such as PRINTTABLE.

STEPLIB Partitioned data set containing the load modules required to run
the Execution Environment.
 TIBCO Object Service Broker for z/OS External Environments

38 | Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
Using an Instream Parameter List
The following is an example of an instream parameter list using HRNIN in JCL.

//MYJOB JOB (,,), USER=USERIDB
//* DISPLAY CLIENT STATUS
//*
//STEP1 EXEC PGM=S6BBATCH,PARM='TDS=S6BTEST',REGION=0M
//STEPLIB DD DSN=S6B.TST.LOAD,DISP=SHR
//HRNEXTR DD DSN=S6B.TST.LOAD,DISP=SHR
// DD DSN=MYLIB.LOAD,DISP=SHR
//HRNOUT DD SYSOUT=*
//HRNPRNT DD SYSOUT=*
//HRNIN DD *

OFFLINE,
U=USERIDA,
P=USERPWD,
TDS=S6BPROD,
RULE=CLIENTSTATUS('X. SMITH') /*RUN THIS RULE*/

/*

See Also TIBCO Object Service Broker Programming in Rules about the rules language
statements and writing rules.

TIBCO Object Service Broker Shareable Tools about the use of the tools.

TIBCO Object Service Broker Parameters about parameters.

The following takes place in this example:

• TDS=TEST in the PARM EXEC statement overrides TDS=PROD in HRNIN.

• The user ID and password are explicitly specified in HRNIN with the U and P
session parameters, setting the TIBCO Object Service Broker user ID to
USERIDA. If they are omitted, the user ID is the external ID specified in the
USER parameter on the JOB card (that is, USERIDB).

• The OFFLINE parameter specifies that this is a non-conversational session. It
cannot issue DISPLAY or DISPLAY & TRANSFERCALL statements.
TIBCO Object Service Broker for z/OS External Environments

How to Manipulate Data in a TIBCO Object Service Broker Batch Client Session | 39
How to Manipulate Data in a TIBCO Object Service Broker Batch

Client Session

Passing Data to TIBCO Object Service Broker Batch Sessions
Batch clients can pass data to the session by:

• Placing data into the arguments of the rule to be called. Refer to Calling a Rule
– CALLRULE on page 249 for more information.

• Placing data into a block of storage pointed at by the DATA-IN area when a
rule is called. Refer to Calling a Rule – CALLRULE on page 249 for more
information.

• Placing data in a table occurrence mapped by the Host Language Interface
(HLI) and performing an INSERT or REPLACE. Refer to Using the Host
Languages Interface on page 216 for more information.

Returning from the Batch Client
Under normal circumstances, the batch client sets a return code of zero. You can
use the $SETSESSIONEND tool to set the return code to a value between zero and
3999:

CALL $SETSESSIONEND('RC',8);

or to cause a user abend:

CALL $SETSESSIONEND('ABEND',300);

Determining the Next Step

You can subsequently use JES2 or JES3 condition processing to control the
execution of subsequent job steps based on return or abend codes. For example:

//S1 EXEC PGM=S6BBATCH
 .
//S2 EXEC PGM=S6BBATCH,COND=(EQ,8)
 .

Step S2 runs only if step S1 sets a return code other than 8.
 TIBCO Object Service Broker for z/OS External Environments

40 | Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
Returning Data to a User Batch Client
Your called rule can return data to the user batch client by:

• Using MAP tables to REPLACE table occurrences in blocks of storage pointed
at by the DATA-OUT area. Refer to Calling a Rule – CALLRULE on page 249
for more information.

• Populating a temporary table and using the Host Language Interface to
perform a FORALL or GET to the table containing the required data. Refer to
Using the Host Languages Interface on page 216 for more information.

Using External Routines
Your session can invoke external routines defined using the ROUTINES and
ARGUMENTS tables to manipulate data. Refer to Chapter 10, Accessing External
Routines, on page 131 for more information.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language
statements and writing rules.

TIBCO Object Service Broker Shareable Tools about the use of the tools.
TIBCO Object Service Broker for z/OS External Environments

| 41
Chapter 5 TIBCO Object Service Broker Sessions
Under TSO

This chapter describes how to run and set TIBCO Object Service Broker sessions
under TSO and how to manipulate data in TSO client sessions.

Topics

• How to Run TSO Applications, page 42

• How to Set Session Parameters, page 46

• How to Manipulate Data in TSO Client Sessions, page 49
 TIBCO Object Service Broker for z/OS External Environments

42 | Chapter 5 TIBCO Object Service Broker Sessions Under TSO
How to Run TSO Applications

Invocation
Use TIBCO Object Service Broker TSO clients to run TSO applications in the
full-screen 3270 environment. You typically invoke the TSO client program via a
tailored TSO CLIST. The TSO client program can be either the TIBCO Object
Service Broker supplied program S6BTSO, or your own user TSO client program
written using the TIBCO Object Service Broker Call Level Interface.

CLISTs are provided and are customized for your needs at installation time. You
can choose to customize your CLIST to support more or fewer parameters. Refer
to Using a CLIST to Invoke TIBCO Object Service Broker on page 47. For the
CLIST name and available parameters, see your system administrator.

Using the TIBCO Object Service Broker Supplied TSO Client Program
For a straightforward invocation of a TSO application, use the TIBCO Object
Service Broker supplied S6BTSO program. S6BTSO first starts a
same-address-space Execution Environment, and runs the TIBCO Object Service
Broker application as determined by the start up rule in the session.

When the application ends, the following sequence of events occurs:

1. The session is terminated.

2. The Execution Environment is stopped.

3. A return code is returned by S6BTSO, which can be used to control the
execution of subsequent TSO statements.
TIBCO Object Service Broker for z/OS External Environments

How to Run TSO Applications | 43
S6BTSO Starting a Single User Session

The following illustration shows how the S6BTSO program fits into the TSO
environment:

TSO Address Space
Start

Execution Environment

Session

Transaction

Data Object Broker

Rule
MAP Table Access

CALL

TSO Client
S6BTSO

StartEE Run Session Stop EE

TIBCO Object Service Broker supplied User supplied

Data in
Memory

External
Routines

Data in
Memory

EE
Parameters

Session
Parameters

Client
Directives

3270 Terminal
 TIBCO Object Service Broker for z/OS External Environments

44 | Chapter 5 TIBCO Object Service Broker Sessions Under TSO
Using a Customized (User) TSO Client
To access TIBCO Object Service Broker facilities from within a TSO application
program, you can write your own TSO client using the TIBCO Object Service
Broker Call Level Interface. In this case, your application program calls to the Call
Level Interface to start a same-address-space Execution Environment, start a
session, start a transaction, and run one or more rules in that transaction. Your
TSO application program is responsible for terminating the transaction, session,
and Execution Environment before returning to z/OS.
TIBCO Object Service Broker for z/OS External Environments

How to Run TSO Applications | 45
User TSO Client and the z/OS Environment

The following illustration shows how your user TSO client runs a session in a
TSO address space. Refer to Chapter 14, Introduction to the Call Level Interface,
page 199 to Chapter 17, Multiple-Session Execution Environments in Batch,
page 255 for detailed information on how to write a TSO application using the
Call Level Interface.

TTSO Address Space

Execution Environment

Session

Transaction

Call Level Interface

EE
Parameters

Start

Session
Parameters

Rule
Parameters

User TSO Client

yourname

Start
EE

Stop
EE

Start
Session

Start
Transaction

Stop
Session

End
TransactionCall Rule

Data Object Broker

MAP Table Access

External
Routines

Data in
Memory

Data OutData In

Rule

Data in
Memory

CALL

3270 Terminal

TIBCO Object Service Broker supplied User supplied
 TIBCO Object Service Broker for z/OS External Environments

46 | Chapter 5 TIBCO Object Service Broker Sessions Under TSO
How to Set Session Parameters

A number of options are available to you for determining the operational
characteristics of your session. You can also require additional facilities to start a
session. This section describes where to specify the options, the order of
evaluation for these options, and the additional facilities you require.

Establishing Session Parameter Values
The following table describes where to specify the values for your session
parameters and their order of evaluation, from highest to lowest:

Values Specified
In …

Priority of
Evaluation Notes

Session startup
string

Highest Supported when editing the USER CLIST
only.

Session parameter
input file

CLIST parameters are written to a
parameter input file allocated to DDname
HRNIN.

User Profile The TIBCO Object Service Broker user
profile is used unless the session parameter
NOPROFILE is specified.

Installation
default

The installation default module is loaded
from the STEPLIB. Default configuration
name is S6BDRCT0, except when
overridden by the CONFIGURATION
Execution Environment parameter.

TIBCO Object
Service Broker
default

Lowest Refer to TIBCO Object Service Broker for z/OS
Installing and Operating for TIBCO Object
Service Broker-supplied default values.
TIBCO Object Service Broker for z/OS External Environments

How to Set Session Parameters | 47
Using a CLIST to Invoke TIBCO Object Service Broker
When you use parameters with your CLIST invocation of TIBCO Object Service
Broker under TSO, the syntax is:

CLIST_NAME [{parameter[(value)]}]

where:

You can use the USER CLIST to specify the Execution Environment load library
and the external routine load library as follows:

Example Invocation

The following example invokes a CLIST called OSTAR:

OSTAR NOBROWSE L(DEV00) RULE('TEST2(''A STRING'')')
EXLIB(USR30.OSTAR.ROUTINE)

In this example, the following takes place:

• This session starts with the parameters NOBROWSE (a parameter that does
not require a value), and LIBRARY (abbreviated to L), which has a value of
DEV00.

• The TEST2 startup rule is passed the text string: “A STRING”.

• TIBCO Object Service Broker uses the data set USR30.OSTAR.ROUTINE to
search for external routines.

CLIST_NAME Name of the CLIST that invokes TIBCO Object Service Broker.

parameter The parameter name or abbreviation. Specify more than one parameter
by leaving a space between each one.

value The parameter value (if required) must be enclosed in parentheses.

LOADLIB(libname) libname is the Execution Environment load library.

EXLIB(libname) libname is the external routine load library allocated to DDname
HRNEXTR. The programs in this library are written in a language
other than the rules language and can be called by TIBCO Object
Service Broker rules. You can specify or concatenate your own external
library containing your own external routines. Refer to Chapter 14,
Introduction to the Call Level Interface, page 199 to Chapter 17,
Multiple-Session Execution Environments in Batch, page 255 for more
information.
 TIBCO Object Service Broker for z/OS External Environments

48 | Chapter 5 TIBCO Object Service Broker Sessions Under TSO
If the USER CLIST does not provide the user ID to S6BTSO, the user ID is set
to the TSO ID.

Specifying or Concatenating a Load Library
If your installation does not have a common external routine load library, or if you
want to use your own load library, you can define your own library. To identify
your external routine load library to TIBCO Object Service Broker, specify or
concatenate a load library in the CLIST to invoke TIBCO Object Service Broker.

To specify a load library, provide its full name to the EXLIB parameter in the
CLIST. For example:

EXLIB(USR30.OSTAR.ROUTINE)

In this example, TIBCO Object Service Broker searches the data set
USR30.OSTAR.ROUTINE for external subroutines.

The order of the libraries determines the search order when you invoke an
external routine, and the block size of the first library determines the block size
for the others. If you cannot put the library with the largest block size first, use the
BLKSIZE argument to specify a sufficient block size for all concatenated libraries.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for information on
using HRNLIB to make sure that the TIBCO Object Service Broker load library is
authorized.

USER CLIST Distributed with TIBCO Object Service Broker
The USER CLIST, distributed with TIBCO Object Service Broker in the CLIST data
set, runs a TIBCO Object Service Broker TSO client. The list of parameters that
you can specify when you start your session—and the default values for some of
the parameters—should be customized for your installation usage.

See Also TIBCO Object Service Broker for z/OS Installing and Operating about installation.

TIBCO Object Service Broker Programming in Rules about rules libraries and rules.

TIBCO Object Service Broker Shareable Tools about the use of the tools.

The TIBCO Object Service Broker Parameters about parameters.

Your Execution Environment should run authorized and your Data Object Broker
must run authorized. (If you concatenate an authorized library with an
unauthorized library, the resulting load library concatenation becomes
unauthorized.)
TIBCO Object Service Broker for z/OS External Environments

How to Manipulate Data in TSO Client Sessions | 49
How to Manipulate Data in TSO Client Sessions

Passing Data to TIBCO Object Service Broker TSO Sessions
User TSO clients can pass data to the session by placing data into any of these:

• The arguments of the rule to be called. Refer to Calling a Rule – CALLRULE
on page 249 for more information.

• A block of storage pointed at by the DATA-IN area when a rule is called. Refer
to Calling a Rule – CALLRULE on page 249 for more information.

• A table occurrence mapped by the Host Languages Interface and performing
an INSERT or REPLACE. Refer to Using the Host Languages Interface on
page 216 for more information.

Returning from the TSO Client
Normally, S6BTSO sets a return code of 0. You can use the $SETSESSIONEND
tool to set the return code to a value between 0 and 3999, for example:

CALL $SETSESSIONEND('RC',8)

or, to cause a user abend at session end:

CALL $SETSESSIONEND('ABEND',300)

The called rule can return data to the user TSO client by:

• Using MAP tables to REPLACE table occurrences in blocks of storage pointed
at by the DATA-OUT area. Refer to Calling a Rule – CALLRULE on page 249
for more information.

• Populating a temporary table and, from the user TSO client, using the Host
Language Interface to perform a FORALL or GET on the table containing the
required data. Refer to Using the Host Languages Interface on page 216 for
more information.
 TIBCO Object Service Broker for z/OS External Environments

50 | Chapter 5 TIBCO Object Service Broker Sessions Under TSO
Using External Routines
Sessions can invoke external routines defined using the ROUTINES and
ARGUMENTS tables. Refer to Chapter 10, Accessing External Routines, on
page 131.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language
statements and writing rules.

TIBCO Object Service Broker Shareable Tools about the use of the tools.
TIBCO Object Service Broker for z/OS External Environments

| 51
Chapter 6 TIBCO Object Service Broker Sessions
Under the Native Execution Environment

This chapter describes how to run and set TIBCO Object Service Broker sessions
under native execution environment and how to manipulate data in VTAM LU2
client sessions

Topics

• Overview of the Native Execution Environment, page 52

• How to Set Session Parameters, page 54

• Manipulating Data in VTAM LU2 Client Sessions, page 57
 TIBCO Object Service Broker for z/OS External Environments

52 | Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment
Overview of the Native Execution Environment

What is the Native Execution Environment?
The Native Execution Environment is a VTAM application that allows concurrent
access to a Data Object Broker. Sessions are established by logging in through a
VTAM LU2 (3270) terminal or from remote clients such as IMS TM clients running
in an IMS TM Message Processing Region (MPR).

The Native Execution Environment is also optionally used to support remote peer
servers for distributed data and external data servers such as TIBCO Service
Gateway for Adabas, TIBCO Service Gateway for Datacom, and TIBCO Service
Gateway for IMS/DB.

VTAM and TIBCO Object Service Broker Interaction
By logging on to the VTAM APPLID associated with a Native Execution
Environment, you initiate a TIBCO Object Service Broker session. When the
session ends, you return to VTAM or the network solicitor, as shown in the
following figure:

VTAM

VTAM

TIBCO Object Service
Broker SessionLOGON APPLID (vtamapplid)

DATA (session parameter string)
TIBCO Object Service Broker for z/OS External Environments

Overview of the Native Execution Environment | 53
3270 Terminal Session in a Native Execution Environment

The following figure shows how VTAM LU2 3270 terminals establish a session in
a Native Execution Environment:

Native
Execution Environment

S6BDR00

Start

Execution Environment

Session

Transaction

Data Object Broker

Rule
MAP Table Access

CALL

TIBCO Object Service Broker
VTAM LU2 Client

APPLID=xxx

Start EE Stop EE

Run Session

Data in
Memory

External
Routines

Data in
Memory

3270 Terminal 3270 Terminal 3270 Terminal

Session
Parameters

Client
Directives

TIBCO Object Service Brokersupplied User supplied

EE
Parameters

Logon
APPLID(xxx)

Logon
APPLID(xxx)

Logon
APPLID(xxx)
 TIBCO Object Service Broker for z/OS External Environments

54 | Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment
How to Set Session Parameters

The following sections describe where Execution Environment and session
parameters are obtained and which DD names are required by the Native
Execution Environment.

Where to Specify Session Parameters
The Native Execution Environment session defaults apply to all sessions running
within it. The following table describes where to specify the values for your
sessions and their order of evaluation, from highest to lowest:

Other Applicable Sessions

In addition to providing session defaults for TIBCO Object Service Broker VTAM
LU2 sessions, the session defaults also apply to TIBCO Object Service Broker IMS
TM sessions, peer servers, and instances of TIBCO Service Gateway for Adabas,
TIBCO Service Gateway for Datacom, and TIBCO Service Gateway for IMS/DB
that are running in the Native Execution Environment. For further information
about these additional topics, refer to Chapter 8, Using the TIBCO Service
Gateway for IMS TM, on page 97 or the appropriate TIBCO Service Gateway.

Specified In Priority Notes

Execution
Environment
startup string

Highest Specified on the EXEC PGM= S6BDR000 card
in PARM=‘Execution Environment startup string’.

Execution
Environment
parameter input file

Allocated to DDname HRNIN.

TIBCO Object
Service Broker
default

Lowest Loaded from STEPLIB. Default configuration
is S6BDRCN0 except when overridden by the
CONFIGURATION parameter.

Certain parameters, such as SECURITY, cannot be specified in the HRNIN
PARM=‘Execution Environment startup string’. They must be added to the PARMNEE
member in the TIBCO Object Service Broker CNTL data set, and followed by an
EECONFIG assembly and link-edit job that creates a new S6BDRCN0 load
module.
TIBCO Object Service Broker for z/OS External Environments

How to Set Session Parameters | 55
Available DDnames
The DDnames listed in the following table are used to run a Native Execution
Environment:

See Also TIBCO Object Service Broker for z/OS Installing and Operating for more information
on using HRNLIB to make sure that the TIBCO Object Service Broker load library
is authorized.

Print Destination Restrictions
The following restrictions apply when specifying print destinations:

• Do not include the DDnames HRNOUT or HRNPRNT. These are session print
files for single-session Execution Environments such as batch or TSO.

• Do not use the name S6BDRPRT as a print destination in a JES complex. This
name is used by TIBCO Object Service Broker to run the SPOOLSTRIP job.

Establishing a TIBCO Object Service Broker VTAM LU2 Session
Communication is established with the Data Object Broker specified by the TDS
parameter. Use the syntax below to log in to the Native Execution Environment
that you require.

DDname Description

HRNEXTR Optional partitioned data set containing load modules for user
external routines.

HRNIN Sequential file containing the Execution Environment and session
parameter defaults.

HRNLIB Optional APF authorized partitioned data set containing the load
modules required to run the Execution Environment when
STEPLIB is not APF authorized.

STEPLIB The load library (partitioned data set) containing the load
modules required to run the Execution Environment. Optionally,
user external routines can be stored in this library.
 TIBCO Object Service Broker for z/OS External Environments

56 | Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment
Syntax

LOGON APPLID(vtamapplid) DATA('U=userid,P=password')

where:

Other session parameters can be specified in the DATA parameter, up to the
VTAM restriction on the length of the DATA parameter string (64 characters).

See Also TIBCO Object Service Broker for z/OS Installing and Operating for additional
information about installing and configuring the Native Execution Environment
interface.

TIBCO Object Service Broker Parameters about parameters.

vtamapplid The EENAME parameter value specified when the Native
Execution Environment was initialized. Ask your system
administrator to provide you with this value.

userid A valid TIBCO Object Service Broker user ID that the
Native Execution Environment uses to create a TIBCO
Object Service Broker session.

password The password of the user ID set by the U parameter can be
optionally specified
TIBCO Object Service Broker for z/OS External Environments

Manipulating Data in VTAM LU2 Client Sessions | 57
Manipulating Data in VTAM LU2 Client Sessions

Passing and Returning Data
No data can be passed to a TIBCO Object Service Broker VTAM LU2 session other
than through arguments to the RULE parameter. It is forbidden to return data
from the session.

Determining the Next Step
Upon termination of the TIBCO Object Service Broker VTAM LU2 session, the
LU2 device is returned to the network solicitor.

Calling External Routines
Sessions running in the Native Execution Environment can invoke external
routines using OS linkage defined in the ROUTINES and ARGUMENTS tables.
Depending on the use, external routines can be accessed through TIBCO Object
Service Broker VTAM LU2 sessions, TIBCO Object Service Broker IMS TM
sessions, or peer servers. Refer to Chapter 10, Accessing External Routines, on
page 131 for more information.
 TIBCO Object Service Broker for z/OS External Environments

58 | Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment
TIBCO Object Service Broker for z/OS External Environments

| 59
Chapter 7 Using the TIBCO Service Gateway for CICS

This chapter describes how to run and set TIBCO Object Service Broker sessions
under CICS, using the Service Gateway for CICS.

Topics

• How to Run CICS Applications, page 60

• Session Initiation and Termination, page 64

• Selecting a TIBCO Object Service Broker CICS Client Program, page 66

• How to Set Session Parameters, page 68

• Starting TIBCO Object Service Broker Sessions, page 70

• Passing the COMMAREA Between a TIBCO Object Service Broker CICS
Client and a Session, page 85

• How Can Data Be Returned, page 88

• Performing CICS Functions at Session End, page 90

• Calling External Routines, page 91

• CICS Channels and Containers in the TIBCO Object Service Broker CICS
Session Environment, page 93
 TIBCO Object Service Broker for z/OS External Environments

60 | Chapter 7 Using the TIBCO Service Gateway for CICS
How to Run CICS Applications

You can run CICS application using the Service Gateway for CICS, which enables
you to use TIBCO Object Service Broker CICS clients to run z/OS CICS
applications that access TIBCO Object Service Broker. The TIBCO Object Service
Broker CICS clients can start as conversational or pseudo-conversational CICS
transactions or you can run them as CICS programs.

CICS Client Programs
The CICS client program can be one of the eight TIBCO Object Service Broker
CICS clients (S6BCSxxx) or you can write your own user CICS client program
using the TIBCO Object Service Broker Call Level Interface. Refer to Selecting a
TIBCO Object Service Broker CICS Client Program on page 66 and Chapter 14,
Introduction to the Call Level Interface, page 199 to Chapter 17, Multiple-Session
Execution Environments in Batch, page 255 for more information about these
options.

Using the TIBCO Object Service Broker Supplied CICS Modules
For a straightforward invocation of a CICS client, use one of the S6BCSxxx client
programs (xxx can be any of eight different suffixes that represent different client
programs). These are described in Selecting a TIBCO Object Service Broker CICS
Client Program on page 66. When invoked, the S6BCSxxx module:

1. Locates the same-address-space Execution Environment.

Since CICS is a multi-user TP monitor, the Execution Environment is
established separately, typically by the startup PLT.

2. Starts a session and passes it the contents of the CICS COMMAREA, which
can include session parameters.

The session runs the application as determined by the startup rule.

At Application End

When the application ends:

1. It returns a possibly modified COMMAREA and CICS end session directives
to the CICS client S6BCSxxx.

Service Gateway for CICS is a separately licensed add-on to TIBCO Object Service
Broker.
TIBCO Object Service Broker for z/OS External Environments

How to Run CICS Applications | 61
2. The CICS client program terminates using the CICS end session directives.

TIBCO Object Service Broker CICS Client Running a Session in a CICS Address Space

The following illustration shows how a typical TIBCO Object Service Broker CICS
client (S6BCSxxx) runs a session in a CICS address space.
 TIBCO Object Service Broker for z/OS External Environments

62 | Chapter 7 Using the TIBCO Service Gateway for CICS
Using a Customized (User) CICS Client
To access TIBCO Object Service Broker facilities from within a CICS COBOL,
PL/1, C, or assembler program, use the TIBCO Object Service Broker Call Level
Interface to create your own user CICS client program. Your CICS client program:

• Uses calls to the TIBCO Object Service Broker Call Level Interface to locate the
same-address-space Execution Environment to start a session, start a
transaction, and run one or more rules in the transaction environment

• Is responsible for ending the transaction and stopping the session before
terminating
TIBCO Object Service Broker for z/OS External Environments

How to Run CICS Applications | 63
A User CICS Client Runs a Session in a CICS Address Space

The following illustration shows how a typical user CICS client runs a session in
CICS address space. Refer to Chapter 14, Introduction to the Call Level Interface,
page 199 to Chapter 17, Multiple-Session Execution Environments in Batch,
page 255 for detailed information about how to write a user CICS client program
using the Call Level Interface.

Client External Environment

External Environment

Execution Environment

Session

Transaction

Call Level Interface

Start

User Client

Start
EE

Stop
EE

Start
Session

Start
Transaction

Stop
Session

End
Transaction

Data Object Broker

Data OutData In

MAP Table Access

External
Routines

External
Routines

Data in
Memory

Rule

Data in
Memory

CALL

EE
Parameters

Session
Parameters

Rule
Parameters

Call Rule

TIBCO Object Service Broker supplied User supplied
 TIBCO Object Service Broker for z/OS External Environments

64 | Chapter 7 Using the TIBCO Service Gateway for CICS
Session Initiation and Termination

What Starts and Terminates an Execution Environment?
An Execution Environment must be started before a session can start. If the
startup PLT was installed by the CICS administrator, the TIBCO Object Service
Broker CICS Execution Environment is established at CICS region startup. You
can also use the TIBCO Object Service Broker supplied HINT transaction to start
the TIBCO Object Service Broker CICS Execution Environment. HINT accepts all
Execution Environment and session parameters.

The Execution Environment is terminated at CICS region shutdown if the
shutdown PLT is installed. You can also use the TIBCO Object Service Broker
supplied HTRM transaction to terminate a TIBCO Object Service Broker CICS
Execution Environment.

Methods of Session Initiation and Termination
When an Execution Environment is started, a CICS transaction can initiate a
TIBCO Object Service Broker session and pass user data to it via the
COMMAREA or Channel and Containers using one of the following methods:

• STARTing a CICS transaction code associated with a TIBCO Object Service
Broker CICS client program, as shown below:

• XCTLing to a TIBCO Object Service Broker CICS client program, as shown
below:

CICS
Transaction A

CICS
Transaction C

$SETSESSIONEND
(‘START’,‘C’)

1 2EXEC CICS
START(‘B’)

CICS
Transaction B
S6BCSxxx

1 2EXEC CICS
XCTL PROGRAM
(S6BCS)

CICS Program AA CICS Program CCCICS Client S6BCSxxx

$SETSESSIONEND
(‘XCTL’,‘CC’)
TIBCO Object Service Broker for z/OS External Environments

Session Initiation and Termination | 65
• LINKing to a TIBCO Object Service Broker CICS client program, as shown
below:

Replacing a CICS Transaction with TIBCO Object Service Broker Rules
Existing CICS transactions can be replaced by TIBCO Object Service Broker rules
without changing interfaces to the previous and succeeding transactions.

See Also TIBCO Object Service Broker for z/OS Installing and Operating about the required
PLTs and the available CICS transactions.

TIBCO Object Service Broker Parameters about parameters.

CICS Program

EXEC CICS LINK
PROGRAM (S6BCSxxx)

TIBCO Object Service Broker
 CICSClient Program

S6BCSxxx

1

2

Using these example programs, transaction A could START transaction B and
transaction B could START transaction C. Initially, these could all be CICS
transactions implemented as COBOL programs. Over time, the COBOL programs
can be replaced by TIBCO Object Service Broker CICS clients that implement the
same or enhanced functionality in TIBCO Object Service Broker rules. For
example, in the first illustration, transaction B is replaced with a TIBCO Object
Service Broker transaction.
 TIBCO Object Service Broker for z/OS External Environments

66 | Chapter 7 Using the TIBCO Service Gateway for CICS
Selecting a TIBCO Object Service Broker CICS Client Program

You can choose from among eight different client styles. Each style corresponds to
a different CICS program name. These programs are installed as part of the
TIBCO Object Service Broker CICS interface.

TIBCO Object Service Broker CICS Client Programs
The following table lists the available client programs:

Transaction
Name

Program
Name USERID set by Display Seamless

User supplied S6BCSSC1 External user ID Y Y

HURN or
user-supplied

S6BCSSC2 External user ID or

USERID parameter

Y N

User supplied S6BCSSN1 External user ID N Y

User supplied S6BCSSN2 External user ID or

USERID parameter

N N

User supplied S6BCSTC1 CICS transaction
name

Y Y

User supplied S6BCSTC2 CICS transaction
name or USERID
parameter

Y N

User supplied S6BCSTN1 CICS transaction
name

N Y

User supplied S6BCSTN2 CICS transaction
name or USERID
parameter

N N
TIBCO Object Service Broker for z/OS External Environments

Selecting a TIBCO Object Service Broker CICS Client Program | 67
Choosing the Right TIBCO Object Service Broker CICS Client Program
Match your style requirements with the appropriate TIBCO Object Service Broker
CICS client program name in the following table:

See Also TIBCO Object Service Broker for z/OS Installing and Operating about installing the
CICS component of TIBCO Object Service Broker.

TIBCO Object Service Broker Parameters about parameters.

S6BCSSxx TIBCO Object Service Broker user ID default is external user ID.

S6BCSTxx TIBCO Object Service Broker user ID default is the CICS
transaction name.

S6BCSxCx Display client style, supports TIBCO Object Service Broker
screen I/O.

S6BCSxNx Non-display client style, does not support TIBCO Object Service
Broker screen I/O.

S6BCSxx1 Seamless client, one data segment, uses transaction name to
determine startup rule (refer to Seamless COMMAREA on
page 86). a

a. When using a non-display seamless client TIBCO Object Service Broker cannot
prompt for a password; therefore, the Execution Environment SECURITY
parameter cannot be set to INTERNAL or null.

S6CSxx2 Non-seamless client, first segment is the session parameter
string, second segment is data. Use RULE= in session parameter
string or TIBCO Object Service Broker user ID’s profile to
determine the first rule (refer to Non-Seamless COMMAREA on
page 85). b

b. Seamless clients, by definition, do not support session parameter overrides. The
startup rule is obtained from the user profile associated with the transaction name.
This rule is run with no arguments and with ACTION, SEARCH,
BROWSE/NOBROWSE, and TEST/NOTEST parameters set based on user profile
values or on the defaults. The rule obtains its data from the COMMAREA using
MAP tables or the $GETENVCOMMAREA tool.
 TIBCO Object Service Broker for z/OS External Environments

68 | Chapter 7 Using the TIBCO Service Gateway for CICS
How to Set Session Parameters

A number of methods are available to you to set the operational characteristics for
your session. You could also require additional facilities to start a session. This
section describes these methods, their order of evaluation, and the additional
facilities you could require.

Where to Specify CICS Execution Environment Parameters
The following table describes where to specify session parameter values and their
order of evaluation, from highest to lowest:

Specified In Priority Notes

Execution
Environment
startup string

Highest Not available if the Execution Environment
is automatically started by the CICS startup
PLT. All Execution Environment and session
parameter defaults can be specified to the
HINT transaction.

Execution
Environment
parameter input file

 The parameter input file is allocated to
DDname HRNIN.

Installation default Lowest The installation default module is loaded
from the STEPLIB. The default configuration
name is S6BDRCC0 except when overridden
by the Execution Environment
CONFIGURATION parameter. S6BDRCC0
is still used to determine the TIBCO Object
Service Broker SVC number used to start the
Execution Environment.
TIBCO Object Service Broker for z/OS External Environments

How to Set Session Parameters | 69
Available DDnames
You can use the following DDnames to run a CICS Execution Environment:

Print Destination Restrictions
The following restrictions apply when specifying print destinations:

• Do not include the DDnames HRNOUT or HRNPRNT. These are session print
files for single-session Execution Environments such as batch or TSO.

• Do not use the name S6BDRPRT as a print destination in a JES complex. This
name is used by TIBCO Object Service Broker to run the SPOOLSTRIP job.

Synchronization of VSAM Files
You can control whether the VSAM server issues SYNCPOINTs under CICS using
the CICSVSAMSYNC Execution Environment parameter. Refer to TIBCO Object
Service Broker Managing Data for more information.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for sample JCL
needed to start a CICS region that supports an Execution Environment.

TIBCO Object Service Broker Parameters about the Execution Environment
parameters.

DDname Description

DFHRPL The external routine load library. It is used to load external
routines if the external routine is defined to CICS as a CICS
program. External routines that make CICS calls (EXEC CICS…)
must be defined to CICS. Refer to Chapter 10, Accessing External
Routines, on page 131 for more detail.

HRNEXTR Optional partitioned data set containing load modules for user
external routines. External routines not defined to CICS are
loaded by TIBCO Object Service Broker from this library.

HRNIN Sequential file containing the Execution Environment and session
parameter defaults.

STEPLIB The Execution Environment load library. The programs in this
library run the Execution Environment and contain the default
configuration module. In addition, external routines not defined
to CICS are loaded from this library if the routines cannot be
loaded from HRNEXTR.
 TIBCO Object Service Broker for z/OS External Environments

70 | Chapter 7 Using the TIBCO Service Gateway for CICS
Starting TIBCO Object Service Broker Sessions

Using the Command Line to Start a Session
To start a session from the CICS screen in command mode, enter a CICS
transaction name (for example, HURN) that is associated with a TIBCO Object
Service Broker CICS client program. Non-seamless client programs use screen
input following the transaction name as the session parameter string. No data is
passed to the TIBCO Object Service Broker session.

The TIBCO Object Service Broker transaction HURN uses the TIBCO Object Service
Broker CICS client S6BCSSC2. S6BCSSC2 is non-seamless, permits screen I/O,
and uses the CICS security user ID (which can be overridden with the USERID
session parameter). When you use parameters with your HURN transaction, the
syntax is:

HURN parameter[=value][,]

where:

Error messages generated by TIBCO Object Service Broker or by the ENDMSG
tool appear on your CICS screen.

Example of the HURN Transaction

An example of the HURN transaction is:

HURN U=USR09,PASSWORD=USR09

This establishes a session with the parameters USERID (abbreviated as U) and
PASSWORD. You do not have to specify a user ID and password if you logged on
to CICS using CESN or CSSN (or equivalent transactions). Since no rule is specified,
the workbench appears, unless the profile of the user ID specifies a rule.

Using EXEC CICS START to Start a Session
To start a TIBCO Object Service Broker CICS client with EXEC CICS START
TRANSID, do the following:

parameter The parameter name or abbreviation (valid abbreviations
are listed in TIBCO Object Service Broker Parameters).
Separate parameters on the command line with commas.

value The parameter value (if any) follows an equal sign (=).
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 71
1. Set up the COMMAREA.

For details, see Passing the COMMAREA Between a TIBCO Object Service
Broker CICS Client and a Session on page 85.

2. Execute the CICS ASSIGN FACILITY instruction to include the terminal ID in
the EXEC CICS START TRANSID instruction.

Note: If you run TIBCO Object Service Broker as a background (nonterminal)
task, skip this step.

3. Optional. For an additional level of security, execute the EXEC CICS START
TRANSID instruction with different transaction IDs to start TIBCO Object
Service Broker.

Assembler Example Using EXEC CICS START TRANSID

The following program shows EXEC CICS START TRANSID, which starts the TIBCO Object
Service Broker CICS client program S6BCSSC2 as a new transaction and does not return
to the assembler application.

BRTESTS TITLE 'CICS START TASK EXAMPLE PROGRAM'
* *
* BRTESTS *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. THIS *
* PROGRAM STARTS A OSB-CICS TRANSACTION AND PASSES *
* PARAMETERS TO OSB THROUGH A COMMAREA. THE MESSAGES *
* SENT FROM THIS PROGRAM INDICATE THE POINT AT WHICH THIS *
* PROGRAM IS PROCESSING. FURTHER COMMENTS CAN BE FOUND *
* AT EACH SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *

SPACE
BRTESTS DFHEIENT , X

CODEREG=R12
BRTESTS CSECT
BRTESTS AMODE 31
BRTESTS RMODE ANY
*
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*

EXEC CICS SEND X
FROM(BRTEXT1) X
LENGTH(BRTEXTL1) X
ERASE X
WAIT

*

 TIBCO Object Service Broker for z/OS External Environments

72 | Chapter 7 Using the TIBCO Service Gateway for CICS
*MOVE LENGTH OF PARMS INTO COMMAREA
* # NOTE # THIS IS THE LENGTH OF THE PARM STRING ONLY
* THE COMMAREA LENGTH MUST INCLUDE AT MINIMUM, THE PARM
* LENGTH PLUS THE LENGTH OF THE PARM LENGTH FIELD ITSELF.
*

MVC HURNPRML,=X'001B'
*
*MOVE PARMS INTO COMMAREA. RULE NAME AND PARMS SPECIFIED HERE ARE
*JUST EXAMPLES
*

MVC HURNPARM,=C'RULE=TESTX(3245,BANK,DATES)'
*
*GET USER'S TERMINAL ID FOR SUBSEQUENT EXECUTION OF OSB-CICS
*AS STARTED TASK. FOR NON-TERMINAL STARTED TASK, THIS STEP CAN BE
*IGNORED.
*

EXEC CICS ASSIGN X
FACILITY(TERM)

*
*START OSB AS SEPARATE TASK AT USER'S TERMINAL USING DATA AREA
*TO PASS RULES AND PARMS.
*

EXEC CICS START X
TRANSID('HURN') X
FROM(HURNPRML) X
LENGTH(X'00A3') X
TERMID(TERM)

*
* RETURN TO CICS
*
BREND EXEC CICS RETURN

SPACE
LTORG FORCE OUT ASSEMBLY LITERALS

BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTS - ABOUT TO START OSB-CICS TASK'

COPY REGEQU
> <
*****>THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE<*****
> <
*
* DSECT FOR BRTESTS
*
DFHEISTG DSECT
*
TERM DS CL4 TERMINAL ID
HURNCOMA DS 0F COMMAREA FOR STARTED TASK
HURNPRML DS H LENGTH OF PARMS IN HURNPARM
HURNPARM DS CL161 PARMS (CAN BE LARGER)
HURNCOML EQU *-HURNCOMA LENGTH OF DSECT

SPACE
END BRTESTS
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 73
COBOL Example Using EXEC CICS START TRANSID

The following program shows EXEC CICS START TRANSID, which starts the TIBCO Object
Service Broker CICS client program S6BCSSC2 as a new transaction and does not return
to the COBOL application.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CHISC2.
 AUTHOR. RICHARD PLANT
 INSTALLATION. CORPORATE.
 DATE-WRITTEN. 5 APRIL 2007.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.

 01 S6B-COMMAREA.
 02 S6B-PARM-AREA-LENGTH PIC S9(4) COMP VALUE +40.
 02 S6B-PARM-AREA PIC X(40) VALUE SPACES.
 02 S6B-DATA-AREA PIC X(90) VALUE SPACES.

 01 S6B-COMMAREA-LENGTH PIC S9(4) COMP VALUE +256.
 01 S6B-USERID PIC X(8) VALUE SPACES.

 LINKAGE SECTION.

 01 CICS-COMMAREA PIC X(256).

 PROCEDURE DIVISION USING CICS-COMMAREA.

 EXEC CICS ASSIGN USERID(S6B-USERID) END-EXEC.

 MOVE 'U=USR10' TO S6B-PARM-AREA.
 MOVE '== DATA AREA ==' TO S6B-DATA-AREA.
 MOVE S6B-COMMAREA TO CICS-COMMAREA.

 EXEC CICS TRANSID
 PROGRAM('S6BCSSC2')
 COMMAREA(CICS-COMMAREA)
 LENGTH(S6B-COMMAREA-LENGTH) END-EXEC.

 GOBACK.

Using EXEC CICS START to Start a Session with Channel
To start a TIBCO Object Service Broker CICS session with EXEC CICS START
TRANSID, do the following:
 TIBCO Object Service Broker for z/OS External Environments

74 | Chapter 7 Using the TIBCO Service Gateway for CICS
1. Create the Channel and Container to be passed to the TIBCO Object Service
Broker CICS Client.

For details, see CICS Channels and Containers in the TIBCO Object Service
Broker CICS Session Environment on page 93.

2. Execute the CICS ASSIGN FACILITY instruction to include the terminal ID in
the EXEC CICS START TRANSID instruction.

Note: If you run TIBCO Object Service Broker as a background (nonterminal)
task, skip this step.

3. Optional. For an additional level of security, execute the EXEC CICS START
TRANSID instruction with different transaction IDs to start TIBCO Object
Service Broker.

Assembler Example Using EXEC CICS START TRANSID with Channel

The following program shows EXEC CICS START TRANSID, which starts the
TIBCO Object Service Broker CICS client program S6BCSSC2 as a new transaction
and does not return to the assembler application.

BRTESTSH TITLE 'OSB-CICS START TASK EXAMPLE PROGRAM'
* *
* BRTESTSH *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. THIS *
* PROGRAM STARTS A OSB-CICS TRANSACTION AND PASSES *
* PARAMETERS TO OSB THROUGH A CHANNEL. THE MESSAGES *
* SENT FROM THIS PROGRAM INDICATE THE POINT AT WHICH THIS *
* PROGRAM IS PROCESSING. FURTHER COMMENTS CAN BE FOUND *
* AT EACH SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *
 SPACE
BRTESTSH DFHEIENT , X
 CODEREG=R12
BRTESTSH CSECT
BRTESTSH AMODE 31
BRTESTSH RMODE ANY
*
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*
 EXEC CICS SEND X
 FROM(BRTEXT1) X
 LENGTH(BRTEXTL1) X
 ERASE X
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 75
 WAIT
*
* PUT Container SESSIONDATA for user session data
*
 MVC STRSDATA,CC1SDATA Copy session data
 LA R0,L'STRSDATA Get session data length
 ST R0,STRSDATL Set the length
*
 EXEC CICS PUT CONTAINER('SESSIONDATA') CHANNEL('ABC') X
 FROM(STRSDATA) FLENGTH(STRSDATL) X
 RESP(STRQRESP)
*
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
*
* PUT Container PARMCONTAINER for session parameters
*
 MVC STRSPARM,CC1SPARM Copy session parm
 LA R0,L'CC1SPARM Get session parm length
 ST R0,STRSPRML Set the length
*
 EXEC CICS PUT CONTAINER('PARMCONTAINER') CHANNEL('ABC') X
 FROM(STRSPARM) FLENGTH(STRSPRML) X
 RESP(STRQRESP)
*
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
*
*GET USER'S TERMINAL ID FOR SUBSEQUENT EXECUTION OF OSB-CICS
*AS STARTED TASK. FOR NON-TERMINAL STARTED TASK, THIS STEP CAN BE
*IGNORED.
*
 EXEC CICS ASSIGN X
 FACILITY(TERM)
*
*START OSB AS SEPARATE TASK AT USER'S TERMINAL USING DATA AREA
*TO PASS RULES AND PARMS.
*
 EXEC CICS START TRANSID('HURN') CHANNEL('ABC') X
 TERMID(TERM)
*
 MVC STRERMSG,CC1MSG03 Trans HURN STARTed
 B CC1SENDM
*
* Send message and return to CICS
*
CC1SENDM EXEC CICS SEND FROM(STRERMSG) LENGTH(CC1ERMLN)
 EXEC CICS RETURN
*
 LTORG , FORCE OUT ASSEMBLY LITERALS
*
CC1SPARM DC CL16'U=USR10,P=PUSR10'
CC1SDATA DC CL36'This is user session data'
CC1ERMLN DC Y(L'STRERMSG)
*

 TIBCO Object Service Broker for z/OS External Environments

76 | Chapter 7 Using the TIBCO Service Gateway for CICS
BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTSH - ABOUT TO START OSB-CICS TASK'
CC1MSG02 DC CL20'PUT CONTAINER error'
CC1MSG03 DC CL20'Trans HURN STARTed'
*
 DFHREGS , EQUate registers
> <
*****>THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE<*****
> <
 DFHEISTG ,
*
TERM DS CL4
STRSDATL DS F
STRSDATA DS CL(L'CC1SDATA)
STRSPRML DS F
STRSPARM DS CL(L'CC1SPARM)
STRERMSG DS CL20
 END BRTESTSH

COBOL Example Using EXEC CICS START TRANSID with Channel

The following program shows EXEC CICS START TRANSID, which starts the
TIBCO Object Service Broker CICS client program S6BCSSC2 as a new transaction
and does not return to the COBOL application.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHISC2.
AUTHOR. RICHARD PLANT
INSTALLATION. CORPORATE.
DATE-WRITTEN. 8 DECEMBER 2010.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 S6B-CONTAINER.
 02 S6B-SESSION-PARM-LENGTH PIC S9(5) COMP VALUE +16.
 02 S6B-SESSION-PARM PIC X(16) VALUE SPACES.
 02 S6B-SESSION-DATA-LENGTH PIC S9(5) COMP VALUE +36.
 02 S6B-SESSION-DATA PIC X(36) VALUE SPACES.
 02 TERM PIC X(4) VALUE SPACES.

PROCEDURE DIVISION.

 EXEC CICS ASSIGN FACILITY(TERM) END-EXEC.

MOVE 'U=USR10,P=PUSR10' TO S6B-SESSION-PARM.

EXEC CICS PUT CONTAINER('PARMCONTAINER') CHANNEL('ABC')
 FROM(S6B-SESSION-PARM) FLENGTH(S6B-SESSION-PARM-LENGTH)
 END-EXEC.

 MOVE 'This is user session data' TO S6B-SESSION-DATA.
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 77
EXEC CICS PUT CONTAINER('SESSIONDATA') CHANNEL('ABC')
 FROM(S6B-SESSION-DATA) FLENGTH(S6B-SESSION-DATA-LENGTH)
 END-EXEC.

 EXEC CICS TRANSID('HURN') CHANNEL('ABC') TERMID(TERM) END-EXEC.

GOBACK.

Using EXEC CICS LINK to Start a Session
To start a TIBCO Object Service Broker session using EXEC CICS LINK, establish a
COMMAREA and LINK to the appropriate TIBCO Object Service Broker CICS
client program.

The following program shows EXEC CICS LINK, which accesses TIBCO Object
Service Broker CICS client program S6BCSSC2 and returns to the assembler
application.

BRTESTL TITLE 'OSB-CICS LINK EXAMPLE PROGRAM'
*
* BRTESTL *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. IT WILL *
* ASSEMBLE TO EXECUTABLE FORM. THIS PROGRAM LINKS TO *
* OSB-CICS BY PASSING PARAMETERS THROUGH A COMMAREA. *
* THE MESSAGES SENT FROM THIS PROGRAM INDICATE THE POINT *
* AT WHICH THIS PROGRAM IS PROCESSING. FURTHER COMMENTS *
* CAN BE FOUND AT EACH SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *

SPACE
BRTESTL DFHEIENT, X

CODEREG=R12
BRTESTL CSECT
BRTESTL AMODE 31
BRTESTL RMODE ANY
*
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*

EXEC CICS SEND X
FROM(BRTEXT1) X
LENGTH(BRTEXTL1) X
ERASE X
WAIT

*
*MOVE LENGTH OF PARMS INTO COMMAREA
* # NOTE # THIS IS THE LENGTH OF THE PARM STRING ONLY.
 TIBCO Object Service Broker for z/OS External Environments

78 | Chapter 7 Using the TIBCO Service Gateway for CICS
* THE COMMAREA LENGTH MUST INCLUDE AT MINIMUM, THE PARM
* LENGTH PLUS THE LENGTH OF THE PARM LENGTH FIELD ITSELF.
*

MVC HURNPRML,=X'001B'
*
*MOVE PARMS INTO COMMAREA. RULE NAME AND PARMS SPECIFIED HERE ARE
*JUST EXAMPLES.
*

MVC HURNPARM,=C'RULE=TESTX(3245,BANK,DATES)'
*
*LINK TO OSB CICS USING COMMAREA TO PASS RULES AND PARMS
*

EXEC CICS LINK X
PROGRAM('S6BCSSC2') X
COMMAREA(HURNCOMA) X
LENGTH(X'00A3')

*
*SEND MESSAGE INDICATING LINK RETURN
*

EXEC CICS SEND X
FROM(BRTEXT2) X
LENGTH(BRTEXTL2) X
ERASE X
WAIT

*
* RETURN TO CICS
*
BREND EXEC CICS RETURN

SPACE
BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTL - ABOUT TO LINK TO OSB/CICS'
BRTEXTL2 DC Y(L'BRTEXT2) LENGTH OF RETURN MESSAGE
BRTEXT2 DC C'BRTESTL- RETURNED SUCCESSFULLY FROM OSB/CICS'

LTORG FORCE OUT ASSEMBLY LITERALS
COPY REGEQU

> <
*****> THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE <*****
> <
*
* DSECT FOR BRTESTL
*
DFHEISTG DSECT
*
TERM DS CL4 TERMINAL ID
HURNCOMA DS 0F COMMAREA FOR LINK
HURNPRML DS H LENGTH OF PARTMS IN HURNPARM
HURNPARM DS CL161 PARMS (CAN BE LARGER)
HURNCOML EQU *-HURNCOMA LENGTH OF DSECT

SPACE
END BRTESTL
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 79
Using EXEC CICS LINK to Start a Session with Channel
To start a TIBCO Object Service Broker session with EXEC CICS LINK, create a
Channel with the desired Containers and LINK to the appropriate TIBCO Object
Service Broker CICS client program.

The following program shows EXEC CICS LINK, which accesses TIBCO Object
Service Broker CICS client program S6BCSSC2 and returns to the assembler
application.

BRTESTLH TITLE 'OSB-CICS LINK EXAMPLE PROGRAM'
* *
* BRTESTLH *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. THIS *
* PROGRAM LINKS TO OSB-CICS BY PASSING PARAMETERS THROUGH *
* A CHANNEL WITH CONTAINERS. THE MESSAGES SENT FROM THIS *
* PROGRAM INDICATES THE POINT AT WHICH THIS PROGRAM IS *
* PROCESSING. FURTHER COMMENTS CAN BE FOUND AT EACH *
* SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *
 SPACE
BRTESTLH DFHEIENT , X
 CODEREG=R12
BRTESTLH CSECT
BRTESTLH AMODE 31
BRTESTLH RMODE ANY
*
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*
 EXEC CICS SEND X
 FROM(BRTEXT1) X
 LENGTH(BRTEXTL1) X
 ERASE X
 WAIT
*
* PUT Container SESSIONDATA for user session data
*
 MVC STRSDATA,CC1SDATA Copy session data
 LA R0,L'STRSDATA Get session data length
 ST R0,STRSDATL Set the length
*
 EXEC CICS PUT CONTAINER('SESSIONDATA') CHANNEL('ABC') X
 FROM(STRSDATA) FLENGTH(STRSDATL) X
 RESP(STRQRESP)
*
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
 TIBCO Object Service Broker for z/OS External Environments

80 | Chapter 7 Using the TIBCO Service Gateway for CICS
*
* PUT Container PARMCONTAINER for session parameters
*
 MVC STRSPARM,CC1SPARM Copy session parm
 LA R0,L'CC1SPARM Get session parm length
 ST R0,STRSPRML Set the length
*
 EXEC CICS PUT CONTAINER('PARMCONTAINER') CHANNEL('ABC') X
 FROM(STRSPARM) FLENGTH(STRSPRML) X
 RESP(STRQRESP)
*
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
*
* LINK to OSB CICS using Channel to pass session PARMS and
* user session data.
*
 EXEC CICS LINK PROGRAM('S6BCSSC2') CHANNEL('ABC')
*
*SEND MESSAGE INDICATING LINK RETURN
*
 EXEC CICS SEND X
 FROM(BRTEXT2) X
 LENGTH(BRTEXTL2) X
 ERASE X
 WAIT
 B BREND
*
* Send message and return to CICS
*
CC1SENDM EXEC CICS SEND FROM(STRERMSG) LENGTH(CC1ERMLN)
*
* Return to CICS
*
BREND EXEC CICS RETURN
*
 LTORG , FORCE OUT ASSEMBLY LITERALS
*
CC1SPARM DC CL16'U=USR10,P=PUSR10'
CC1SDATA DC CL36'This is user session data'
CC1ERMLN DC Y(L'STRERMSG)
*
BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTLH - ABOUT TO LINK TO OSB/CICS'
BRTEXTL2 DC Y(L'BRTEXT2) LENGTH OF RETURN MESSAGE
BRTEXT2 DC C'BRTESTLH- RETURNED SUCCESSFULLY FROM OSB/CICS'
CC1MSG02 DC CL20'PUT CONTAINER error'
*
 DFHREGS , EQUate registers
> <
*****>THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE<*****
> <
 DFHEISTG ,
*
STRSDATL DS F
STRSDATA DS CL(L'CC1SDATA)
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 81
STRSPRML DS F
STRSPARM DS CL(L'CC1SPARM)
STRERMSG DS CL20
 END BRTESTLH

Using EXEC CICS XCTL to Start a Session
To start a TIBCO Object Service Broker session using EXEC CICS XCTL, establish a
COMMAREA and transfer to the appropriate TIBCO Object Service Broker CICS
client program.

The following program shows the use of EXEC CICS XCTL, which accesses the
TIBCO Object Service Broker CICS client program S6BCSSC2 and does not return
to the assembler application.

BRTESTX TITLE 'OSB-CICS XCTL EXAMPLE PROGRAM'
*
* BRTESTX *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. THIS *
* EXAMPLE PERFORMS A TRANSFER OF CONTROL TO OSB-CICS AND *
* PASSES PARAMETERS THROUGH A COMMAREA. THE MESSAGES SENT *
* FROM THIS PROGRAM INDICATE THE POINT AT WHICH THIS *
* PROGRAM IS PROCESSING. FURTHER COMMENTS CAN BE FOUND *
* AT EACH SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *
* *

SPACE
BRTESTX DFHEIENT , X

CODEREG=R12
BRTESTX CSECT
BRTESTX AMODE 31
BRTESTX RMODE ANY
*

B BEGIN-BRTESTX(,R12)
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*

EXEC CICS SEND X
FROM(BRTEXT1) X
LENGTH(X'0024') X
ERASE X
WAIT

*
*MOVE LENGTH OF PARMS INTO COMMAREA
* # NOTE # THIS IS THE LENGTH OF THE PARM STRING ONLY.
* THE COMMAREA LENGTH MUST INCLUDE AT MINIMUM, THE PARM
 TIBCO Object Service Broker for z/OS External Environments

82 | Chapter 7 Using the TIBCO Service Gateway for CICS
* LENGTH PLUS THE LENGTH OF THE PARM LENGTH FIELD ITSELF.
*

MVC HURNPRML,=X'001B'
*
*MOVE PARMS INTO COMMAREA. RULE NAME AND PARMS SPECIFIED HERE ARE
*JUST EXAMPLES.
*

MVC HURNPARM,=C'RULE=TESTX(3245,BANK,DATES)'
*
*TRANSFER CONTROL TO OSB-CICS USING COMMAREA TO PASS RULES,PARMS
*

EXEC CICS XCTL X
PROGRAM('S6BCSSC2') X
COMMAREA(HURNCOMA) X
LENGTH(X'00A3')

*
* RETURN TO CICS
*
BREND EXEC CICS RETURN

SPACE
LTORG FORCE OUT ASSEMBLY LITERALS

BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTX - ABOUT TO XCTL TO OSB-CICS'

COPY REGEQU
> <
*****>THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE<*****
> <
*
* DSECT FOR BRTESTX
*
DFHEISTG DSECT
*
TERM DS CL4 TERMINAL ID
OSBCOMA DS 0F COMMAREA FOR XCTL
OSBPRML DS H LENGTH OF PARMS IN HURNPARM
OSBPARM DS CL161 PARMS (CAN BE LARGER)
OSBCOML EQU *-OSBCOMA LENGTH OF DSECT

SPACE
END BRTESTX

Using EXEC CICS XCTL to Start a Session with Channel
To start a TIBCO Object Service Broker session with EXEC CICS XCTL, create a
Channel with the desired Containers and transfer to the appropriate TIBCO
Object Service Broker CICS client program.

The following program shows the use of EXEC CICS XCTL, which accesses the
TIBCO Object Service Broker CICS client program S6BCSSC2 and does not return
to the assembler application.
TIBCO Object Service Broker for z/OS External Environments

Starting TIBCO Object Service Broker Sessions | 83
BRTESTXH TITLE 'OSB-CICS XCTL EXAMPLE PROGRAM'
* *
* BRTESTXH *
* *
* FUNCTION: THIS PROGRAM SERVES AS AN EXAMPLE OF HOW OSB-CICS CAN *
* BE ACCESSED FROM A USER APPLICATION PROGRAM. THIS *
* EXAMPLE PERFORMS A TRANSFER OF CONTROL TO OSB-CICS AND *
* PASSES PARAMETERS TO OSB THROUGH A CHANNEL. THE *
* MESSAGES SENT FROM THIS PROGRAM INDICATE THE POINT AT *
* WHICH THIS PROGRAM IS PROCESSING. FURTHER COMMENTS CAN *
* BE FOUND AT EACH SECTION. *
* *
* LINKAGE:- *
* STANDARD CICS. *
* *
 SPACE
BRTESTXH DFHEIENT , X
 CODEREG=R12
BRTESTXH CSECT
BRTESTXH AMODE 31
BRTESTXH RMODE ANY
*
BEGIN DS 0H
*
* SEND MESSAGE INDICATING COMMENCEMENT
*
 EXEC CICS SEND X
 FROM(BRTEXT1) X
 LENGTH(BRTEXTL1) X
 ERASE X
 WAIT
*
* PUT Container SESSIONDATA for user session data
*
 MVC STRSDATA,CC1SDATA Copy session data
 LA R0,L'STRSDATA Get session data length
 ST R0,STRSDATL Set the length
*
 EXEC CICS PUT CONTAINER('SESSIONDATA') CHANNEL('ABC') X
 FROM(STRSDATA) FLENGTH(STRSDATL) X
 RESP(STRQRESP)
*
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
*
* PUT Container PARMCONTAINER for session parameters
*
 MVC STRSPARM,CC1SPARM Copy session parm
 LA R0,L'CC1SPARM Get session parm length
 ST R0,STRSPRML Set the length
*
 EXEC CICS PUT CONTAINER('PARMCONTAINER') CHANNEL('ABC') X
 FROM(STRSPARM) FLENGTH(STRSPRML) X
 RESP(STRQRESP)
*

 TIBCO Object Service Broker for z/OS External Environments

84 | Chapter 7 Using the TIBCO Service Gateway for CICS
 MVC STRERMSG,CC1MSG02 PUT container error message
 CLC STRQRESP,DFHRESP(NORMAL) Command ok?
 BNE CC1SENDM No, send error message
*
* Transfer control to OSB CICS using Channel to pass session PARMS
* and user session data.
*
 EXEC CICS XCTL PROGRAM('S6BCSSC2') CHANNEL('ABC')
*
* Send message and return to CICS
*
CC1SENDM EXEC CICS SEND FROM(STRERMSG) LENGTH(CC1ERMLN)
 EXEC CICS RETURN
*
 LTORG , FORCE OUT ASSEMBLY LITERALS
*
CC1SPARM DC CL16'U=USR10,P=PUSR10'
CC1SDATA DC CL36'This is user session data'
CC1ERMLN DC Y(L'STRERMSG)
*
BRTEXTL1 DC Y(L'BRTEXT1) LENGTH OF LINK MESSAGE
BRTEXT1 DC C'BRTESTXH - ABOUT TO XCTL TO OSB-CICS'
CC1MSG02 DC CL20'PUT CONTAINER error'
*
 DFHREGS , EQUate registers
> <
*****>THE FOLLOWING DSECTS ALL EXIST IN CICS DYNAMIC STORAGE<*****
> <
 DFHEISTG ,
*
TERM DS CL4
STRSDATL DS F
STRSDATA DS CL(L'CC1SDATA)
STRSPRML DS F
STRSPARM DS CL(L'CC1SPARM)
STRERMSG DS CL20
 END BRTESTSH
TIBCO Object Service Broker for z/OS External Environments

Passing the COMMAREA Between a TIBCO Object Service Broker CICS Client and a Session | 85
Passing the COMMAREA Between a TIBCO Object Service Broker

CICS Client and a Session

The CICS COMMAREA is used to:

• Pass data from the TIBCO Object Service Broker CICS client to the session at
session startup

• Pass data to CICS routines called by rules

• Return data back to the TIBCO Object Service Broker CICS client at session
end, when used by rules

• Return error messages generated by TIBCO Object Service Broker or by the
ENDMSG tool

Whether the TIBCO Object Service Broker CICS client is non-seamless or seamless
determines how the COMMAREA must be set up.

Non-Seamless COMMAREA
The non-seamless COMMAREA is arranged as shown in the following
illustration:

The non-seamless TIBCO Object Service Broker client passes the session
parameter string and the data area to the session when the session is started.
Using this method, the client can pass data to a session through the arguments to
the RULE parameter in the session parameter string or in the data area.

COMMAREA Requirements For the Non-Seamless TIBCO Object Service Broker Interface

Before you use any of the CICS instructions to invoke a non-seamless TIBCO
Object Service Broker client, the invoking CICS program must set up a
COMMAREA that meets the following requirements:

• The non-seamless TIBCO Object Service Broker client supports a session
parameter string and an optional data area, so the COMMAREA must be large
enough to contain the parameters you pass to TIBCO Object Service Broker
(preceded by a two-byte field containing the length of the parameters) and the
data itself.

2 bytes comsize - 2 - ll bytes

session parameter string data area

Size of COMMAREA = comsize

ll

ll bytes
 TIBCO Object Service Broker for z/OS External Environments

86 | Chapter 7 Using the TIBCO Service Gateway for CICS
• The COMMAREA should be a minimum of 256 bytes long to accommodate
error messages.

• The parameter length is a two-byte binary field (marked ll in the previous
figure), which must precede the session parameter string.

• The session parameter string must follow standard TIBCO Object Service Broker
syntax, with brackets and commas where required. The session parameter string
must not contain embedded nulls (0x00 characters), because a null is
interpreted as the end of the string.

• The value in the parameter length field must be at least the total length of the
parameters, including the parentheses and commas. The value does not
include the length of the parameter length field itself.

• The data area must directly follow the session parameter string.

Seamless COMMAREA
The seamless TIBCO Object Service Broker client uses the entire externally
established COMMAREA as a data area to be passed to the session when the
session is started, as shown in the following illustration:

COMMAREA Requirements for the Seamless TIBCO Object Service Broker Interface

The COMMAREA should be a minimum of 256 bytes long to accommodate error
messages.

Retrieving the COMMAREA in a Rule
Using TIBCO Object Service Broker rules, you can access only the data area
portion of the COMMAREA. If the client is non-seamless, you can access only the
data area following the session parameter string. If you use the seamless interface,
you can access the data area consisting of the entire COMMAREA. The data area
of the COMMAREA can be accessed using MAP tables or using the
$GETENVCOMMAREA tool.

data area

Size of COMMAREA = comsize
TIBCO Object Service Broker for z/OS External Environments

Passing the COMMAREA Between a TIBCO Object Service Broker CICS Client and a Session | 87
Using $GETENVCOMMAREA

$GETENVCOMMAREA returns the data portion of the COMMAREA as a syntax
V string including the two byte ll length header. The maximum length of the
returned string is 31K. To avoid local variable storage overflow, consider
increasing the values of the session parameters EXECLOCALSIZE and
EXECSTACKSIZE. Settings of 128K for both variables are usually sufficient.

The syntax for using the $GETENVCOMMAREA tool is:

COMM = $GETENVCOMMAREA(0);

The value returned in COMM is as follows:

Error Messages in the COMMAREA
If the session terminates abnormally or if you use the ENDMSG tool to generate
an error message, the message is put into the COMMAREA starting at the first
byte, overlaying other data in that area. It is the responsibility of the CICS
program that subsequently receives control to check for the four-byte error token
HERR at the start of the COMMAREA.

The format of the error message is shown in the following illustration:

If the error messages cannot fit into the COMMAREA, it is truncated. To avoid
truncating error messages, the size of the COMMAREA should be at least 256
bytes. For diagnostic purposes, a message that does not fit is sent to the console by
WTO and appended to the CICS joblog.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about parameters.

2 bytes ll bytes

ll data from COMMAREA

4 bytes n1 4 bytes n2 bytes

...error message 2

Size of COMMAREA = comsize

error message 1HERR HERR

bytes
 TIBCO Object Service Broker for z/OS External Environments

88 | Chapter 7 Using the TIBCO Service Gateway for CICS
How Can Data Be Returned

Returning Data From TIBCO Object Service Broker to CICS
Data can be returned by rules to the COMMAREA by using:

• MAP tables to overlay and replace records in the COMMAREA

• The $SETENVCOMMAREA tool to assign a string to the entire COMMAREA

Steps to Returning an Occurrence

To return an occurrence to the CICS program from TIBCO Object Service
Broker:

1. Prepare the COMMAREA in your CICS program.

2. Access TIBCO Object Service Broker using EXEC CICS LINK, EXEC CICS
START, or EXEC CICS XCTL.

Refer to Passing the COMMAREA Between a TIBCO Object Service Broker
CICS Client and a Session on page 85.

3. Use TIBCO Object Service Broker rules to return data to the COMMAREA.

When you return to CICS, you can retrieve the data from the COMMAREA. If you
have a CICS MRO (Multi-Region Option) system, your transaction must be
defined to run on the same CICS MRO region as the TIBCO Object Service Broker
startup module.

Using MAP Tables to Return Data
MAP tables are a convenient way to access the COMMAREA that is passed to the
session and returned by it. Use the System Interpreted Table @SESSION to obtain
and manipulate the pointer to the COMMAREA. For both seamless and
non-seamless clients, the value of @SESSION.COMMHANDLE is the address of
the COMMAREA, and @SESSION.COMMLENGTH is its length. Refer to
Non-Seamless COMMAREA on page 85 and Seamless COMMAREA on page 86
for the layout of the COMMAREAs.

MAP tables support FORALL, GET, and REPLACE statements. All MAP tables
are parameterized by a memory address, which you use to position your MAP
table access to a location within the COMMAREA.
TIBCO Object Service Broker for z/OS External Environments

How Can Data Be Returned | 89
Using $SETENVCOMMAREA to Return Data
The $SETENVCOMMAREA tool can be used to assign a string to the entire
COMMAREA. The syntax is:

length=$SETENVCOMMAREA(value, segment#);

where:

Example Usage of $SETENVCOMMAREA

For example, the rules statement:

LEN = $SETENVCOMMAREA(STRINGOUT, 0)

sets the entire COMMAREA to contain the string STRINGOUT, and sets LEN to the
number of bytes left remaining in the COMMAREA.

See Also TIBCO Object Service Broker for z/OS Installing and Operating about setting up
TIBCO Object Service Broker to use CICS MRO.

TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Shareable Tools about the tools and System Interpreted
Tables.

length On return, contains the number of bytes available in the
COMMAREA. If a COMMAREA does not exist, the length
remaining is zero.

value The data to be passed.

segment# The number of the segment where the tool is to store the
data. The value is always 0 for a CICS environment.
 TIBCO Object Service Broker for z/OS External Environments

90 | Chapter 7 Using the TIBCO Service Gateway for CICS
Performing CICS Functions at Session End

At session end, the default action taken by the TIBCO Object Service Broker CICS
client program is to issue an EXEC CICS RETURN. You can execute a CICS
command-level program written in COBOL, PL/I, assembler, or C at the end of
your TIBCO Object Service Broker session either directly or through a CICS
transid. Two methods are provided:

• Supply the SESSIONENDACTION and SESSIONENDVALUE session
parameters to TIBCO Object Service Broker at session startup

• CALL the $SETSESSIONEND tool, which overrides any value set by the
session parameters

Both methods require that you supply the COMMAREA: TIBCO Object Service
Broker does not create a COMMAREA for this purpose. In either case, the CICS
program or the CICS transid must be defined to CICS.

Starting a CICS Transaction
You can specify a CICS transaction to start after termination of the session and the
TIBCO Object Service Broker CICS client. For non-seamless CICS clients, specify
this using the following session parameters:

SESSIONENDACTION=START, SESSIONENDVALUE=transid

Alternatively, for all types of CICS clients, you can use the $SETSESSIONEND
tool from within a rule:

CALL $SETSESSIONEND('START','transid');

The COMMAREA and TERMINAL are passed to the started CICS transaction.

Transferring to a CICS Program
You can specify a CICS program to be XCTLed to after termination of the session
and the TIBCO Object Service Broker CICS client. For the non-seamless CICS
client, specify this using the following session parameters:

SESSIONENDACTION=XCTL, SESSIONENDVALUE=program_name

In all cases, $SETSESSIONEND can be used within a rule. The syntax is:

CALL $SETSESSIONEND('XCTL','program_name');

The COMMAREA is passed to program_name, which must be defined to CICS.

See Also TIBCO Object Service Broker Shareable Tools about the tools.
TIBCO Object Service Broker for z/OS External Environments

Calling External Routines | 91
Calling External Routines

Under CICS, rules can use the CALL statement to call CICS programs that use
CICS services or external routines that use OS linkage conventions. Refer to
Chapter 10, Accessing External Routines, on page 131 for detailed information
about external routine usage.

Calling an External CICS Routine
You can access an external CICS routine using a CALL with the syntax:

CALL program_name;

where program_name is the CICS program defined in the PPT table and located in
the DFHRPL library.

COMMAREA Preparation

If TIBCO Object Service Broker is invoked by a user application that defines a
COMMAREA, it passes that COMMAREA to the CICS external routine. The
COMMAREA can be modified using MAP tables or the $SETENVCOMMAREA
tool before invoking the CICS external routine.

Requirements for Calling an External CICS Routine
• The routine must be defined in the ROUTINES table and the value in the

LOADNAME field must be the same as the NAME field.

• The language specified in the LANGUAGE field of the ROUTINES table must
be CICS—not the language in which the routine is written, except in the case
of routines with OS linkage. Refer to Calling An External Routine With OS
Linkage on page 92.

• Error handling must return the routine to TIBCO Object Service Broker.

Restrictions for Calling an External CICS Routine
• If the TIBCO Object Service Broker session is initiated without a

COMMAREA, the external routine cannot create one and pass it to TIBCO
Object Service Broker for use.

• You cannot specify arguments in the ARGUMENTS table; therefore, the
external routines cannot be defined as functions.
 TIBCO Object Service Broker for z/OS External Environments

92 | Chapter 7 Using the TIBCO Service Gateway for CICS
• No parameter is allowed for the CALL. Data must be passed in the
COMMAREA.

• The CICS program must not contain TIBCO Object Service Broker access
statements. Refer to Chapter 21, Coding TIBCO Object Service Broker Access
Statements, on page 339 for more information.

• Stacked sessions are not allowed. A new session cannot be started through the
use of an external routine that invokes a TIBCO Object Service Broker CICS
client program from within an existing TIBCO Object Service Broker CICS
client session.

• The EXEC CICS HANDLE ABEND command is not allowed. All other EXEC CICS
HANDLE error_condition commands are permitted.

• When issuing an EXEC CICS ABEND ABCODE command to terminate the CICS
program abnormally, do not start your four-character code with an “H”. These
codes are reserved for internal TIBCO Object Service Broker use.

• When issuing an EXEC CICS ABEND ABCODE command from a CICS external
routine, the option CANCEL must not be specified. Use of this option may
cause your session to hang as TIBCO Object Service Broker's error handling is
bypassed.

Calling An External Routine With OS Linkage
Rules can call external routines defined using the ROUTINES and ARGUMENTS
tables. External routines with OS linkage conventions can also be defined as
functions. Refer to Chapter 10, Accessing External Routines, on page 131 for more
information.

Usage Note

For routines with OS linkage, the language specified in the LANGUAGE field of
the ROUTINES table must be the language in which the routine is written—do not
specify CICS.

See Also TIBCO Object Service Broker Shareable Tools about the tools.
TIBCO Object Service Broker for z/OS External Environments

CICS Channels and Containers in the TIBCO Object Service Broker CICS Session Environment | 93
CICS Channels and Containers in the TIBCO Object Service Broker

CICS Session Environment

You can do the following using the CICS Channel:

• Pass data to the TIBCO Object Service Broker CICS session at session startup.

• Pass data to CICS routines that are called by rules.

• Return data from the TICBCO Object Service Broker CICS session at session
end.

• Return the error messages generated by TIBCO Object Service Broker or by
the ENDMSG tool.

CICS Channel and Container Tools
TIBCO Service Gateway for CICS provides a set of tools for handling CICS
Channels and containers. See the following table for the tools along with the
equivalent CICS API commands.

CICS API Command Object Service Broker Tool

EXEC CICS ASSIGN CHANNEL(data-area) $SHOWCHANNEL(channel_name)

EXEC CICS STARTBROWSE CONTAINER

CHANNEL(name) BROWSETOKEN(data-value)
$BRCONTAINER(channel, container_list)

EXEC CICS GETNEXT CONTAINER(name)
BROWSETOKEN(data-value)

The previous tool includes this function.

EXEC CICS ENDBROWSE CONTAINER

BROWSETOKEN(data-value)
The previous tool includes this function.

EXEC CICS GET CONTAINER(name)
CHANNEL(name) INTO(data-area)
FLENGTH(data-area)

$GETCONTAINER(channel, container, area, length)

EXEC CICS PUT CONTAINER(name)
CHANNEL(name) FROM(data-area)
FLENGTH(data-area)

$PUTCONTAINER(channel, container, area, length)

EXEC CICS MOVE CONTAINER(name) AS(name)
CHANNEL(name) TOCHANNEL(name)

$MOVECONTAINER(fromchannel, fromcontainer,
tochannel, tocontainer)
 TIBCO Object Service Broker for z/OS External Environments

94 | Chapter 7 Using the TIBCO Service Gateway for CICS
For a detailed description of the tools, refer to the TIBCO Object Service Broker
Shareable Tools manual. For general information and the rules that govern the
scope of channels, see the CICS Transaction Server for z/OS CICS Application
Programming Guide.

The following table describes the tasks performed by the tools.

EXEC CICS DELETE CONTAINER(name)
CHANNEL(name)

$DELCONTAINER(channel, container)

$SETCHANNEL(channel_name)

EXEC CICS LINK PROGRAM(name) CHANNEL(name)

EXEC CICS RETURN TRANSID(name)
CHANNEL(name)

EXEC CICS START TRANSID(name)
CHANNEL(name)

EXEC CICS XCTL PROGRAM(name) CHANNEL(name)

CICS API Command Object Service Broker Tool

Tool Task

$SHOWCHANNEL Returns the 16-character name of the session’s current channel if one exists.
Otherwise, returns blanks.

$BRCONTAINER Lists the16-character container names and displays the count of the containers
associated with the channel. This tool combines the functions of the following
CICS API commands:

• STARTBROWSE CONTAINER

• GETNEXT CONTAINER

• ENDBROWSE CONTAINER

$GETCONTAINER Retrieves the data associated with the specified channel container.

$PUTCONTAINER Places data in a container associated with the specified channel.

$MOVECONTAINER Moves a container and its contents from one channel to another. Afterwards,
the source container no longer exists.
TIBCO Object Service Broker for z/OS External Environments

CICS Channels and Containers in the TIBCO Object Service Broker CICS Session Environment | 95
Channel Scope
In the TIBCO Object Service Broker CICS execution environment are two session
modes, as follows:

• Conversational mode (CICSPSEUDOCONVERSE=N) — In this mode, the entire
session is considered one program because no EXEC CICS RETURN command
is issued until at the end of the session. Therefore, the Current Channel, if one
exists, and the Channels created during the session are available throughout
the session.

The sessions that are started through LINK or XCTL from a CICS program run
in conversational mode.

• Pseudo-conversational mode (CICSPSEUDOCONVERSE=Y) — In this mode, a
screen display results in EXEC CICS RETURN with TRANSID and a CHANNEL
option. Therefore, the Current Channel, if one exists, is passed on to the next
leg of the pseudo-conversation. However, the Channels created during the
session are not passed and are hence out of scope.

You can configure both modes with the Execution Environment parameter
CICSPSEUDOCONVERSE=Y | N.

Predefined Container Names
Two Execution Environment parameters name the container for passing the
session parameter to a TIBCO Object Service Broker session and for returning the
error messages that are generated by the session, as follows:

• CICSPCONTAINER — This container passes the session parameter to an Object
Service Broker session for startup. The default name is PARMCONTAINER.

• CICSECONTAINER — This container enables the Object Service Broker session
to return error messages to the invoker of the session. The default name is
HERRCONTAINER.

For details, see the TIBCO Object Service Broker Parameters manual. You can pass
user data to and from the session in separate containers with names of your
choice.

$DELCONTAINER Deletes a container from a channel and discards the container’s data, if any.

$SETCHANNEL Nominates a channel for passing to a CICS routine when called in a rule or for
passing to a program or transaction through the SESSIONEND action. A blank
channel name cancels any previously nominated channel.

Tool Task
 TIBCO Object Service Broker for z/OS External Environments

96 | Chapter 7 Using the TIBCO Service Gateway for CICS
TIBCO Object Service Broker for z/OS External Environments

| 97
Chapter 8 Using the TIBCO Service Gateway for IMS
TM

This chapter describes how to run and set TIBCO Object Service Broker sessions
under IMS TM, using the Service Gateway for IMS TM.

Topics

• How to Run IMS TM Applications, page 98

• Selecting a TIBCO Object Service Broker IMS TM Program Style, page 101

• Starting a TIBCO Object Service Broker Session, page 103

• Terminal Changes at Session Startup, page 105

• Passing Data to TIBCO Object Service Broker IMS TM Sessions, page 106

• Input Message Segment Overview, page 108

• Returning Data from TIBCO Object Service Broker to IMS TM, page 112

• Passing Control to an IMS Transaction at Session End, page 114

• Ensuring Message Queue/Database Consistency, page 117

• Customizing TIBCO Object Service Broker IMS TM Client Programs, page 119

• Getting Access to IMS TM Data, page 120
 TIBCO Object Service Broker for z/OS External Environments

98 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
How to Run IMS TM Applications

Functional Overview
You can run IMS TM applications using the Service Gateway for IMS TM which
enables you to use IMS TM clients to run IMS TM applications that access TIBCO
Object Service Broker from an IMS TM Message Processing Region (MPR). You
can start the clients by either conversational or non-conversational IMS TM
transactions.

Using TIBCO Object Service Broker IMS TM Client Programs
When an IMS TM MPR has established communication with a Native Execution
Environment, you can establish a TIBCO Object Service Broker session by
scheduling an IMS TM transaction associated with one of the TIBCO Object
Service Broker IMS TM client programs. There are eight client programs with the
format S6BIMxxx. These are described in Selecting a TIBCO Object Service Broker
IMS TM Program Style on page 101.

Each S6BIMxxx program takes its messages from the IMS Message Queue and
sends these, together with session parameters, to the Native Execution
Environment, where a session is started. The session runs the application as
determined by the startup rule and, upon completion, returns output messages
and session and client directives to the TIBCO Object Service Broker IMS TM
client S6BIMxxx. The client terminates and the MPR schedules another
transaction.

How a Client Session is Established
When a client session is being established, the IMS TM client program in the MPR
first locates the Native Execution Environment and passes it the session start
request. Since IMS TM is a multiple-session TP monitor, the Native Execution
Environment is established separately, typically under operational control.

Service Gateway for IMS TM is a separately licensed add-on to TIBCO Object
Service Broker.

The TIBCO Object Service Broker Call Level Interface does not support an IMS
TM environment.
TIBCO Object Service Broker for z/OS External Environments

How to Run IMS TM Applications | 99
The following illustration shows how a typical supplied IMS TM client
establishes a session from the MPR in a Native Execution Environment:

Native
Execution
Environment

S6BDR00

Start

IMS MPR
Address
Space

Session

Transaction

Data Object Broker

Rule
MAP Table Access

CALL

TIBCO Object Service Broker IMS TM Client
S6BIMxxx

Start EE Stop EE

Run Session

Data in
Memory

External
Routines

Data in
Memory

3270
Terminals

Session Parameters

Input Message
Segments

Output Message
Segments

Client Directives

TIBCO Object Service Broker supplied User supplied

EE
Parameters

IMS Transaction

IMS TM
Message
Queue

IMS TM
Control
Region

Execution Environment
 TIBCO Object Service Broker for z/OS External Environments

100 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
IMS TM and TIBCO Object Service Broker Interaction
A user IMS transaction can start a TIBCO Object Service Broker based IMS
transaction and its associated IMS TM client by sending an output message to the
TIBCO Object Service Broker based IMS transaction, as shown below:

Similarly, a terminating TIBCO Object Service Broker session can pass data to a
subsequent IMS transaction or Message Formatting Services (MFS) MODname to
be scheduled in the IMS environment. Facilities are provided in the rules
language to specify the next IMS transaction or MFS MODname and the output
message segments.

Replacing IMS TM Programs with TIBCO Object Service Broker Rules
Existing IMS TM programs can be replaced by TIBCO Object Service Broker rules
without changing interfaces to the previous and succeeding programs.

See Also TIBCO Object Service Broker for z/OS Installing and Operating about installing the
IMS TM component of TIBCO Object Service Broker.

TIBCO Object Service Broker Programming in Rules about writing rules.

IMS TM
Transaction A

IMS TM
Transaction C

MFS (MID) MFS (MOD)

IMS TM
Transaction B

1 2input
message

input
message

input
message

output
message

output
message

S6BIMxxxoutput
message

Using this example, transaction A invokes transaction B and transaction B
invokes transaction C. Initially, these are all IMS transactions. Over time, these
transactions can be replaced by TIBCO Object Service Broker rules that implement
the same, or enhanced functionality. For example, in the illustration above, the
program in transaction B is replaced with a TIBCO Object Service Broker IMS TM
client.
TIBCO Object Service Broker for z/OS External Environments

Selecting a TIBCO Object Service Broker IMS TM Program Style | 101
Selecting a TIBCO Object Service Broker IMS TM Program Style

You can choose from among eight different client styles. Each style corresponds to
a different IMS TM program name. These programs are installed as part of the
TIBCO Object Service Broker IMS TM interface.

TIBCO Object Service Broker IMS TM Client Programs
The following table lists the available client programs. The IMS Program Type
column shows if the client is conversational (C) or non-conversational (NC).

Transaction
Name

Client
Program
Name

TIBCO Object Service Broker
user ID set by

IMS Program
Type Seamless

User supplied S6BIMSC1 External user ID a C Y

S6BLOGON
or user
supplied

S6BIMSC2 External user ID a or USERID
parameter

C N

User supplied S6BIMSN1 External user ID a NC Y

User supplied S6BIMSN2 External user ID a or USERID
parameter

NC N

User supplied S6BIMTC1 IMS TM transaction name C Y

User supplied S6BIMTC2 IMS TM transaction name or
USERID parameter

C N

User supplied S6BIMTN1 IMS TM transaction name NC Y

User supplied S6BIMTN2 IMS TM transaction name or
USERID parameter

NC N

S6BDCKRN S6BDCKRN NA - Resume Trans n/a n/a

a. The external user ID is obtained from the terminal I/O PCB or can be set by your installation TIBCO
Object Service Broker IMS TM exit routine (refer to Customizing TIBCO Object Service Broker IMS TM
Client Programs on page 119 for more information).
 TIBCO Object Service Broker for z/OS External Environments

102 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Choosing the Right TIBCO Object Service Broker IMS TM Client Program
Match your style requirements with the appropriate TIBCO Object Service Broker
IMS TM client program name listed in the following table.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about parameters.

Client
Program Description

 S6BIMSxx User ID default is the external user ID.

 S6BIMTxx User ID default is the transaction name (refer to Setting Up the
User Profile for Seamless Clients on page 18).

 S6BIMxCx IMS conversational transaction client: has a Scratch Pad Area
(SPA) and supports TIBCO Object Service Broker screen I/O.

 S6BIMxNx IMS non-conversational transaction client: no SPA. TIBCO
Object Service Broker supports TIBCO Object Service Broker
screen I/O but you must install the IMS Physical Input
Edit/Exit routine.

 S6BIMxx1 Seamless interface, one data segment, uses IMS transaction
name to determine startup rule.

 S6BIMxx2 Non-seamless interface, first segment is session parameter
string, second segment is user data. Use R= in session parameter
string or user ID’s user profile to set the first rule.

Seamless clients do not support the RULE parameter for session startup; the name
of the rule is obtained from the user profile associated with the IMS transaction
name. This rule is run with no arguments and with ACTION, SEARCH,
BROWSE/NOBROWSE, and TEST/NOTEST parameters set based on user
profile values or on the TIBCO Object Service Broker defaults. The rule obtains
the input message segments using MAP tables or the $GETENVCOMMAREA
tool.
TIBCO Object Service Broker for z/OS External Environments

Starting a TIBCO Object Service Broker Session | 103
Starting a TIBCO Object Service Broker Session

How to Set Session Parameters
The TIBCO Object Service Broker IMS TM session parameter values are those of
the Native Execution Environment connected to the MPR. These are determined
according to the table shown in Where to Specify Session Parameters on page 54
and are described in Chapter 6, TIBCO Object Service Broker Sessions Under the
Native Execution Environment, on page 51.

Using the IMS TM Terminal to Start a Session
To start a session from an IMS TM terminal, enter an IMS TM trancode associated
with a TIBCO Object Service Broker IMS TM client. Non-seamless client programs
use the screen input following the trancode as the session parameter string. No data is
passed to the TIBCO Object Service Broker session.

Usage of the Supplied Trancode
The supplied trancode is S6BLOGON, which is associated with the program
S6BIMSC2. S6BIMSC2 is non-seamless, permits screen I/O, and uses the external
security user ID (which can be overridden with the USERID parameter). When
you use parameters with the S6BLOGON transaction, the syntax is:

S6BLOGON parameter[=value][,]

where:

Example

An example of the S6BLOGON transaction is:

S6BLOGHON U=USR09,PASSWORD=USR09

parameter The parameter name or abbreviation (valid abbreviations
are listed in TIBCO Object Service Broker Parameters). Use
commas to separate multiple parameters.

value The parameter value (if required) follows an equal
sign (=).
 TIBCO Object Service Broker for z/OS External Environments

104 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
This establishes a session with parameters USERID (abbreviated as U) and
PASSWORD. You do not have to specify a user ID and password if you log in
using /SIGNON (or an equivalent transaction). Since no rule is specified, the
TIBCO Object Service Broker workbench appears, unless the user profile specifies
a rule.

You can associate an IMS transaction identifier with a TIBCO Object Service
Broker IMS TM client program and invoke it from the IMS TM terminal. Anything
following the transaction name is placed in the first message segment. If the client
program is conversational, the transaction name is in the SPA; if
non-conversational, the transaction name is included in the first message
segment.

Using Message Formatting Services (MFS) to Start a Session
To start a TIBCO Object Service Broker IMS TM transaction, MFS can schedule the
transaction as a result of:

• Calling up a format screen using /FORMAT MODname

The Message Output Descriptor (MOD) specifies a user-defined transaction
name associated with one of the TIBCO Object Service Broker IMS TM client
programs.

• Standard MFS processing of a Message Input Descriptor (MID) originated by
a non-conversational IMS program

• Deferred Message Switching originated by a conversational IMS program

Program-to-Program Message Switching to Start a Session
To start a TIBCO Object Service Broker IMS TM transaction by another
application program, use an alternate PCB to perform a program-to-program
message switch:

• Program-to-program message switching is supported from
non-conversational application programs to non-conversational TIBCO Object
Service Broker IMS TM client programs (S6BIMxNx).

• Deferred program switching is supported from conversational application
programs to conversational TIBCO Object Service Broker IMS TM client
programs (S6BIMxCx).
TIBCO Object Service Broker for z/OS External Environments

Terminal Changes at Session Startup | 105
Terminal Changes at Session Startup

Extended Terminal Support
Users of IMS TM terminals can take advantage of different model terminal screen
sizes and terminal extended attribute support. You can define the screen size in
the IMS sysgen TERMINAL macro and re-link the IMS nucleus with S6BDCSGN,
a new signon exit that includes the module HDRSBDRC. When you sign on to
IMS and TIBCO Object Service Broker, the workbench appears with the proper
size.

Additional Terminal Capabilities
Additional terminal capabilities with regard to extended attribute or extended
data stream are handled by the IMSSCREENATTRIBU Execution Environment
parameter. You can obtain and explicitly set the attributes using the $GETOPT
and $SETOPT tools.

PF Key Changes
As of session startup, all TIBCO Object Service Broker tools when used under IMS
TM make use of the following PF key assignments:

• PF24 replaces PF12 (for CANCEL)

• CLEAR replaces PF24 for (for RESHOW)

The changes are automatic and no user action is required. Also, IMS TM usually
uses PF12 for print screen.

See Also TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about the Execution Environment
parameters.
 TIBCO Object Service Broker for z/OS External Environments

106 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Passing Data to TIBCO Object Service Broker IMS TM Sessions

Depending on the seamless/non-seamless and
conversational/non-conversational style of the client, at session start your rules
can read or write up to three message segments. The rules can use MAP tables or
the $GETENVCOMMAREA and $SETENVCOMMAREA tools. The message
segments are the SPA, the session parameter string segment, and the data
segment. Every client sends the data segment to the session.

Using MAP Tables to Access Data
MAP tables are a convenient means of accessing the message segments that are
passed to the session and returned by it. Use the System Interpreted Table
@SESSION to obtain and manipulate the pointers to the message segments.

You can access the three input and output message segments by using the
memory pointers:

• @SESSION.SEGnINHANDLE

• @SESSION.SEGnOUTHANDLE

where n is the segment number 0, 1, or 2. Segment 0 corresponds to the SPA, and
is valid only for conversational style clients. The lengths of these message
segments are in @SESSION.SEGnINLENGTH and
@SESSION.SEGnOUTLENGTH.

MAP tables support FORALL, GET, and REPLACE statements. All MAP tables
are parameterized by a memory address that you use to position your MAP table
access to any location within the message segment.

Using the $GETENVCOMMAREA Tool to Access Data
$GETENVCOMMAREA returns all the message segment as a syntax V string,
including the llzz or llzzzz components. The maximum length of the returned
string is 31K. To avoid local variable storage overflow, consider increasing the
values of the session parameters EXECLOCALSIZE and EXECSTACKSIZE.
Setting each of these to 128K is usually more than sufficient.

The syntax is:

value = $GETENVCOMMAREA(segment#);

See Also TIBCO Object Service Broker Managing Data about MAP tables.
TIBCO Object Service Broker for z/OS External Environments

Passing Data to TIBCO Object Service Broker IMS TM Sessions | 107
TIBCO Object Service Broker Shareable Tools about the tools and System Interpreted
Tables.

TIBCO Object Service Broker Parameters about parameters.
 TIBCO Object Service Broker for z/OS External Environments

108 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Input Message Segment Overview

Message Segment Types
The TIBCO Object Service Broker IMS TM client style determines the number and
format of message segments sent to the session. Only conversational clients use a
Scratch Pad Area (SPA) designated as segment 0. Only non-seamless clients use a
session parameter string designated as segment 1. All clients have a data segment.

Scratch Pad Area (SPA)

IMS TM uses the first eight bytes of the SPA for the trancode. Your application can
use the remainder of the SPA (up to the maximum available SPA size) to pass data
to a conversational IMS TM client program.

$GETENVCOMMAREA(0) returns the SPA (including the trancode) if it exists.

Session Parameter String Segment

The session parameter string is the first message segment for non-seamless (
S6BIMxx2) TIBCO Object Service Broker IMS TM client programs. You can use this
segment to pass data by specifying values to the rule in the RULE session
parameter. $GETENVCOMMAREA(1) returns this segment for non-seamless IMS
TM clients (if non-conversational, the session parameter string follows the
trancode in the first eight bytes).

Data Segment

For seamless clients, data supplied by MFS or through program-to-program
switching is in segment 1. $GETENVCOMMAREA(1) returns the data segment. If
non-conversational, the data segment includes the trancode in the first eight
bytes.

For non-seamless clients, data supplied by MFS or through program-to-program
switching is in segment 2. $GETENVCOMMAREA(2) returns the data segment.
TIBCO Object Service Broker for z/OS External Environments

Input Message Segment Overview | 109
 S6BIMxC1 Client Program Input Message Format
The S6BIMxC1 client programs are seamless and conversational as shown in the
following table:

Input Message Format for S6BIMSC1 and S6BIMTC1

 S6BIMxC2 Client Program Input Message Format
The S6BIMxC2 client programs are non-seamless and conversational, as shown in
the following table:

Interface Program Conversational Seamless SPA a Segment 1 b

S6BIMSC1 Y Y Y User data

S6BIMTC1

a. The SPA is segment 0, in the cases where it exists.

b. Segment 1 can contain either user data (seamless interface) or the session parameter string
(non-seamless interface).

SPA

Segment 1

2 bytes

2 bytes

4 bytes

2 bytes

8 bytes

trancode

data

SPA datall zzzz

ll zz

Interface Program Conversational Seamless SPA a Segment 1 b Segment 2 c

 S6BIMSC2 Y N Y Session

parameter string

Data

 S6BIMTC2

a. The SPA is segment 0, in the cases where it exists.

b. Segment 1 can contain either user data (seamless interface) or the session parameter string
(non-seamless interface).

c. Segment 2 can contain only user data.
 TIBCO Object Service Broker for z/OS External Environments

110 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Input Message Format for S6BIMSC2 and S6BIMTC2

 S6BIMxN1 Client Program Input Message Format
The S6BIMxN1 client programs are seamless and non-conversational, as shown in
the following table:

Input Message Format for the S6BIMSN1 and S6BIMTN1

SPA

Segment 1

Segment 2

2 bytes

2 bytes

2 bytes

4 bytes

2 bytes

2 bytes

8 bytes

trancode

session parameter string

data

SPA datall zzzz

ll zz

ll zz

Interface Program Conversational Seamless SPA a Segment 1 b

 S6BIMSN1 N Y N Data

 S6BIMTN1

a. The SPA is segment 0, in the cases where it exists.

b. Segment 1 can contain either user data (seamless interface) or the session parameter string
(non-seamless interface).

Segment 1

2 bytes 2 bytes 8 bytes

trancode datall zz
TIBCO Object Service Broker for z/OS External Environments

Input Message Segment Overview | 111
 S6BIMxN2 Client Program Input Message Format
The S6BIMxN2 client programs are non-seamless and non-conversational, as
shown in the following table:

Input Message Format for S6BIMSN2 and S6BIMTN2

See Also TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about parameters.

Interface
Program Conver-sational Seamless SPA a Segment 1 b Segment 2 c

 S6BIMSN2 N N N Session
parameter
string

Data

 S6BIMTN2

a. The SPA is segment 0, in the cases where it exists.

b. Segment 1 can contain either user data (seamless interface) or the session parameter string
(non-seamless interface).

c. Segment 2 can contain only user data.

Segment 1

Segment 2

2 bytes

2 bytes

2 bytes

2 bytes

8 bytes

ll

ll

zz

zz

trancode

data

session parameter string
 TIBCO Object Service Broker for z/OS External Environments

112 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Returning Data from TIBCO Object Service Broker to IMS TM

You can set the contents of the SPA (for conversational programs) and up to two
output message segments in the I/O-PCB from TIBCO Object Service Broker rules
using either MAP tables or the $SETENVCOMMAREA tool.

Example using $SETENVCOMMAREA
Although MAP tables are likely to be more useful for real applications, for brevity
$SETENVCOMMAREA is used in the following example. Its syntax is:

LEN = $SETENVCOMMAREA(message, segment)

where:

LEN The amount of space available in this segment after
insertion

message A string comprising the entire output message segment

segment The segment number

If segment=0, the string is inserted into the SPA. When the
TIBCO Object Service Broker IMS TM client program
inserts these messages into the I/O-PCB on termination,
each message must have the format shown below, which
includes at least a valid llzz field:

Segment 0
(SPA)

Segment
1 or 2

2 bytes

2 bytes

4 bytes

2 bytes

8 bytes

trancode

value

valuell zzzz

ll zz
TIBCO Object Service Broker for z/OS External Environments

Returning Data from TIBCO Object Service Broker to IMS TM | 113
At Session End

Depending on the actions that you require at session end, you must construct
valid IMS output message segments. You must establish the length ll and preload
the IMS control area zz or zzzz components before issuing $SETENVCOMMAREA.
An example for segment 1 is:

LL_OUT = GENBIN(LENGTH(DATA) + 4, 2);
ZZ_OUT = GENBIN('00', 2);
STRING_OUT = LL_OUT || ZZ_OUT || DATA;
LEN = $SETENVCOMMAREA(STRING_OUT, SEGMENT);

where LEN, LL_OUT, DATA, STRING_OUT, SEGMENT are defined as local
variables, with SEGMENT set to the segment number.

The trancode to which a message is to be sent is reserved in the first eight bytes of
segment 1 if the destination is non-conversational. The first eight bytes are set by
the SWITCH facility described in Passing Control to an IMS Transaction at Session
End on page 114.

The returned data is directed either to your terminal or to another IMS program
as described in the following section.

See Also TIBCO Object Service Broker Managing Data about using MAP tables.

TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about parameters.

Do not change the first 14 bytes of segment 0 (the SPA). Use MAP tables or the
GENBIN tool to set up the first four bytes of segments 1 or 2.
 TIBCO Object Service Broker for z/OS External Environments

114 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Passing Control to an IMS Transaction at Session End

What are the Allowable Options for Passing Control
At session end, the TIBCO Object Service Broker IMS TM client program returns
control of the terminal to the user by default. You can direct the message segments
returned by the TIBCO Object Service Broker session directly to another IMS
application program, or to a terminal via MFS. Specifically, you can perform:

• MFS output from a non-conversational TIBCO Object Service Broker IMS TM
client program

• A program-to-program switch from a non-conversational IMS TM client
program to another IMS non-conversational program

• A deferred message switch from a conversational TIBCO Object Service
Broker IMS TM client program to another IMS conversational program

• An immediate program-to-program message switch from a conversational
TIBCO Object Service Broker IMS TM client program to another IMS
conversational program

What to Use to Direct the Destination of Message Segments
You can direct the destination of the message segments at session startup, or from
rules, by:

• Supplying the SESSIONENDACTION and SESSIONENDVALUE session
parameters to TIBCO Object Service Broker at session startup

• Using the $SETSESSIONEND tool within a rule

Non-Conversational MFS Output
All non-conversational TIBCO Object Service Broker IMS TM client programs (
S6BIMSN1, S6BIMSN2, S6BIMTN1, and S6BIMTN2) can send data to the terminal
at session end using MFS. The Message Output Descriptor (MOD) to be used can
be specified using:

• Session parameters:
SESSIONENDACTION=FORMAT, SESSIONENDVALUE=MODname

• A rule:
CALL $SETSESSIONEND('FORMAT','MODname');

The MODname set by the rule replaces any value set by session parameters.
TIBCO Object Service Broker for z/OS External Environments

Passing Control to an IMS Transaction at Session End | 115
Non-Conversational Program-to-Program Switch
All non-conversational TIBCO Object Service Broker IMS TM client programs of
the form S6BIMxNx can perform a program-to-program switch at session end.
The IMS application transaction that is being switched to can be specified using:

• Session parameters:
SESSIONENDACTION=SWITCH, SESSIONENDVALUE=trancode

• A rule:

CALL $SETSESSIONEND('SWITCH','trancode');

The trancode set by the rule replaces any value set by the session parameters. The
trancode replaces the first eight bytes of the first message segment at session end.

Conversational Deferred Message Switch
All conversational TIBCO Object Service Broker IMS TM client programs (
S6BIMSC1, S6BIMSC2, S6BIMTC1, and S6BIMTC2) can send data to the terminal
at session end using MFS and switch to another IMS application transaction after
the user responds to the terminal. You can specify this using:

• Session parameters. You can specify either the trancode or the MODname but
not both:
SESSIONENDACTION=SWITCH, SESSIONENDVALUE=trancode

SESSIONENDACTION=FORMAT, SESSIONENDVALUE=MODname

• A rule. You can specify both the trancode and the MODname:
CALL $SETSESSIONEND('SWITCH','trancode');

CALL $SETSESSIONEND('FORMAT','MODname');

The value specified by $SETSESSIONEND supersedes any value set by the
session parameters.

You must specify both the trancode and the MODname for a deferred message
switch to occur at session end. The trancode specified replaces the first eight bytes
of the SPA at session end.
 TIBCO Object Service Broker for z/OS External Environments

116 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Conversational Immediate Message Switch
All conversational TIBCO Object Service Broker IMS TM client programs (
S6BIMxCx) can directly switch to another conversational IMS application
transaction. You can specify the trancode of the IMS application transaction using:

• Session parameters:
$SESSIONENDACTION=SWITCH, SESSIONENDVALUE=trancode

• A rule:
CALL $SETSESSIONEND('SWITCH','trancode');

The trancode specified by the rule supersedes any value set by the session
parameters. The trancode replaces the first eight bytes of the SPA at session end.

See Also TIBCO Object Service Broker Programming in Rules about writing rules.

TIBCO Object Service Broker Shareable Tools about the tools.

TIBCO Object Service Broker Parameters about parameters.
TIBCO Object Service Broker for z/OS External Environments

Ensuring Message Queue/Database Consistency | 117
Ensuring Message Queue/Database Consistency

TIBCO Object Service Broker Supplied Facility
IMS TM includes message synchronization for messages destined to other
transactions or to terminals as part of the commit processing for a transaction. To
make this consistency available for TIBCO Object Service Broker transactions, the
TIBCO Object Service Broker-supplied table @IMSDCTRXS helps users to keep
track of the status of the most recently executed transaction.

@IMSDCTRXS Table
The @IMSDCTRXS table contains the following fields:

• LTERM

• REGION

• CODE

• DATE

• TIME

• COMPLETED

This table has a composite primary key of the LTERM and REGION fields. At the
beginning of each session you can have a startup rule access this table to
determine if any messages have to be re-sent, as indicated by the value in the
fields of the table.

Retrieval of Information

Use the $GETOPT tool to retrieve the LTERM, REGION, CODE, and any other
information required to make decisions about re-sending messages.

Sample Rules for Processing
A set of sample rules to do this processing is provided as part of the TIBCO Object
Service Broker IMS TM interface. These rules are in the @SAMPLES library
(Unit=IMSDC). The entry rule is SAMPLEIMSDCTRX.

The comparison is done on IMS LTERM (logical terminal) names and time/date
stamps. The message to be re-sent is stored in the table @IMSDCTRXOUT in
multiple segments of 1024 bytes.
 TIBCO Object Service Broker for z/OS External Environments

118 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
@IMSDCTRXOUT is parameterized by LTERM, REGION, and SEGMENT:

• LTERM and REGION are the values specified in table @IMSDCTRXS.
(REGION in this case refers to the name of the IMS Control Region from
which the message is sent.)

• SEGMENT is numbered from 1 to the number of segments in the message.

If the startup rule is invoked and there is a message to be sent, the sample rules
show how to send it back to IMS for processing by the TIBCO Object Service
Broker program running in the MPR.

See Also TIBCO Object Service Broker Programming in Rules about writing rules and rules
libraries.

TIBCO Object Service Broker Shareable Tools about the tools.
TIBCO Object Service Broker for z/OS External Environments

Customizing TIBCO Object Service Broker IMS TM Client Programs | 119
Customizing TIBCO Object Service Broker IMS TM Client Programs

Using a Session Exit Routine
Each TIBCO Object Service Broker IMS TM client program (S6BIMxxx) and the
screen I/O continuation program (S6BDCKRN) is link-edited with a
user-replaceable session exit routine S6BDCUSX. You can replace the session exit
routine to perform some additional processing to suit local requirements.

Where to Enter the Exit Routine
Enter the session exit routine in:

Exit Routine Indicators
S6BDCUSX uses standard OS linkage and is passed a TIBCO Object Service Broker
IMS TM Exit Parameter Block mapped by DSECT HDCUSXPB. HDCUSXPB
contains the following indicators:

• The exit phase

• The interface style (seamless, conversational, user ID derivation)

• MODname and trancode

• PCB parameter list

• Address of input/output message segments

You can use the session exit routine to provide substitute values for some of these
indicators and to bypass some processing in the TIBCO Object Service Broker IMS
TM client program or conversational continuation program. Further details are
described in HDCUSXPB in the MACRO data set in the TIBCO Object Service
Broker distribution library.

Phase 1 After the input messages are obtained from the I/O-PCB.

Phase 2 Before the session logs in to the Data Object Broker.

Phase 3 After the session is terminated and before the output messages are
inserted to the I/O-PCB.

Phase 4 After the output messages are inserted to the I/O-PCB.
 TIBCO Object Service Broker for z/OS External Environments

120 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Getting Access to IMS TM Data

Overview of the IMS TM Logger Exit
After writing a record to the IMS/DB database, if IMS TM ascertains that it is
appropriate according to user-supplied parameters, it calls the Logger Exit
routine, DFSFLGX0, if it exists. IMS passes to the exit routine all log data after the
data is all written to the IMS log. You use DFSFLGX0 to pass the log data to
TIBCO Object Service Broker for processing.

Format 1 DATAIN
Each field is 4 bytes long; COUNT contains the value of 2

Function-Specific parameter list

The parameter list is pointed to by ADDRESS1 and the length, 40 bytes, is in
LENGTH1

COUNT ADDRESS 1 LENGTH 1 ADDRESS 2 LENGTH 2

Field Name Offset Length Content

LGWXTYPE 0 1 Call type: 2

LGWXENVR 1 1 Environment type:
x'01' = DB/DC online system

x'02'= Batch IMS system (includes
CICS/DLI)

x'03'= Log Recovery utility

x'04' = DBCTL system

x'05' = DCCTL system

LGWXFLG1 2 1 Flag byte:
X'20'

 0 = Not /ERE log recovery,

 1 = /ERE log recovery

x'08'

 1 = field LGWTMST exists
TIBCO Object Service Broker for z/OS External Environments

Getting Access to IMS TM Data | 121
IMS Log block data

The block is pointed to by ADDRESS2 and the length is in LENGTH2.

3 1 Reserved

LGWXTOD 4 8 This field has been left here for
backward compatibility. The old
timestamp format value is in the
00YYDDDF HHMMSSTF format.

LGWXSSID C 8 IMS subsystem ID.

LGWXBUFR 14 4 Address of the IMS log block data that
has been successfully written to the
OLDS/SLDS. (This can be a copy of
the original IMS buffer.)

LGWXBSIZ 18 4 Length of the log data, in bytes.

LGWXTODN 1C 12 This field contains the current data
and time fields, but in the IMS
internal packed-decimal format. For
further information on the internal
packed-decimal time-stamp format,
refer to IMS Version 7 Application
Programming: Transaction Manager or
IMS Version 7 Database Recovery
Control (DBRC) Guide and Reference, or
subsequent manuals.

LGWXTMST 1C 12 This field contains the current date
and time fields, but in the IMS
internal packed-decimal format. For
further information on the internal
packed-decimal time-stamp format,
refer to IMS Version 7 Application
Programming: Transaction Manager or
IMS Version 7 Database Recovery
Control (DBRC) Guide and Reference, or
subsequent manuals. Refer the
LGWXTOD field for the timestamp
format used prior to IMS/ESA V6.

Field Name Offset Length Content
 TIBCO Object Service Broker for z/OS External Environments

122 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
Logger Exit Processing
IMS calls the Logger Exit routine with an initialization call when the logger is
opened and with a termination call when the logger is closed. IMS also calls the
exit routine and passes log data to it with a write call whenever a block of data is
written to the logger.

The Logger Exit routine uses the TIBCO Object Service Broker Call Level Interface
to communicate with TIBCO Object Service Broker.

To use this exit routine:

1. Using IEBCOPY, copy the IMS Logger Exit routine S6BFLGX0 and its alias
DFSFLGX0 as one entity into either the IMS.SDFSRESL library or another PDS
data set concatenated to STEPLIB. This library must be a PDS data set. If the
library is a PDSE or the module is not present in STEPLIB, the IMS Transaction
Manager control region will not load the exit nor issue any error message.

2. Modify the IMS Transaction Manager control region started task JCL as
follows:

— Include the TIBCO Object Service Broker supplied
$HLQNONV$.$INSTVER$.AUTH library in the STEPLIB concatenation in
the IMS control region.

//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
// DD DISP=SHR,DSN=customer.pds.containing.DFSFLGX0
...
// DD DISP=SHR,DSN=$HLQNONV$.$INSTVER$.AUTH
...

— Add a //HRNLIB DD statement pointing to the
$HLQNONV$.$INSTVER$.AUTH library:

//HRNLIB DD DISP=SHR,DSN=$HLQNONV$.$INSTVER$.AUTH

3. Include a DD statement for the HRNIN data set which should contain the
following Execution Environment parameters:

* This HRNIN is for IMS Logger exit routine, DFSFLGX0

CLIMSGLENMAX=0M,

EXECLOCALSIZE=128K,

EXECSTACKSIZE=128K,

TASKEXECNUM=1,

TASKFILENUM=1,

TASKINITNUM=2,

TASKMISCNUM=1,
TIBCO Object Service Broker for z/OS External Environments

Getting Access to IMS TM Data | 123
TASKOPERNUM=1,

TASKSORTNUM=1,

* EE PARM

TDS=dob_name,

STANDBY=5,

* Session PARM

U=user_name, for example USR40

P=password,

* Transaction options

LIBRARY=library_name, for example IMSLOGER

SEARCH=L

4. Start up the TIBCO Object Service Broker DOB before bringing up the IMS
control region

5. The named library (IMSLOGER in the example) should contain an entry rule
named IMS_LOGGER

6. The Logger exit will pass to the IMS_LOGGER rule a DATAIN area containing
2 format1 blocks of data: the first block is the IMS function-specific parameter
list and the second block is the IMS log block. For details refer to Format 1
DATAIN on page 120, and the IBM manual: IMS Customization Guide
(SC26-9427-05)

Example of Messages

Example 1:

 DFSFLGX0 - LGXINIT STARTEE error, RETCODE=0003, RETDATA=0033
*DFSFLGX0 - Logger Exit Routine disabled
 DFSFLGX0 - Reply GO to re-enable Exit Routine when problem is corrected
 DFSFLGX0 -Reply END at IMS shutdown to clear this message and end the WTOR task
*30 DFSFLGX0 - Reply GO or END
 R 30,GO
*DFSFLGX0 - Logger Exit Routine re-enabled and WTOR task terminated

This group of messages indicates:

• The Exit was doing the STARTEE operation and was not successful, in this
case the DOB was not up.

• The action taken by the exit was to disable itself.
 TIBCO Object Service Broker for z/OS External Environments

124 | Chapter 8 Using the TIBCO Service Gateway for IMS TM
• The options available were:

— GO – to re-enable the exit when the problem is corrected (in this case, bring
up the DOB)

— END – if the problem can not be corrected without re-cycling the IMS, then
reply END to the WTOR message to end the WTOR task so that IMS can be
shutdown gracefully.

Example 2:

22:27:00 IMS_LOGGER rule: ENTERING LIB=IMSLOGER,RULE=IMS_LOGGER !
22:27:00 IMS LOGGER rule: GOING TO SLEEP FOR 200000 MILLI-SECONDS.
 DFSFLGX0 - LGXWRITE CALLRULE error, RETCODE=000D, RETDATA=0000
 DFSFLGX0 - CLI request timed out
*DFSFLGX0 -Logger Exit Routine disabled
 DFSFLGX0 -Reply GO to re-enable Exit Routine when problem is corrected
 DFSFLGX0 -Reply END at IMS shutdown to clear this message and end the
 WTOR task
*31 DFSFLGX0 - Reply GO or END
 R 31,END
*DFSFLGX0 - WTOR task terminated

This group of messages indicates:

• The two first messages with the time stamp were put out by the test rule, they
were not from the Logger Exit.

• The Exit was doing the CALLRULE operation and was timed out, in this case
the IMS_LOGGER rule was deliberately in a “wait” and the wait time is
longer than the timeout interval set by the CLITIMEOUTLIMIT= value.

• The action taken by the exit was to disable itself and shutdown the Execution
Environment.

• The options available were:

— GO – to re-enable the exit when the problem is corrected.

END – if the problem can not be corrected without re-cycling the IMS, then reply
END to the WTOR message to end the WTOR task so that IMS can be shutdown
gracefully (illustrated in this case).

Refer to TIBCO Object Service Broker Parameters for information about the
CLITIMEOUTLIMIT Execution Environment parameter.
TIBCO Object Service Broker for z/OS External Environments

| 125
Chapter 9 Accessing IMS Via the OTMA Callable
Interface

This chapter describes how to access IMS applications via the IMS OTMA callable
interface.

Topics

• Functional Overview, page 126

• Programming for OTMA, page 127

• Usage Notes, page 129
 TIBCO Object Service Broker for z/OS External Environments

126 | Chapter 9 Accessing IMS Via the OTMA Callable Interface
Functional Overview

What is the OTMA Callable Interface?
The IMS OTMA Callable Interfaces (C/I) is a function in IMS that provides a
high-level interface for access to IMS applications from other z/OS address
spaces, including TIBCO Object Service Broker. OTMA consists of API calls that
you can use to:

1. Join the IMS/OTMA XCF group

2. Connect to IMS

3. Allocate a communications session

4. Send IMS transactions names and commands

5. Receive output from IMS

6. Close the communications session

7. Leave the XCF group

The TIBCO Object Service Broker OTMA Callable Interface supports IMS OTMA.
TIBCO Object Service Broker access is implemented using the TIBCO Object
Service Broker OTMA tools $OTMA and @OTMA_MAP, which is a system
interpreted table. For details about the use of these tools refer to TIBCO Object
Service Broker Shareable Tools.

See Also The IBM manual, IMS Open Transaction Manager Access Guide and Reference,
SC26-9434.
TIBCO Object Service Broker for z/OS External Environments

Programming for OTMA | 127
Programming for OTMA

Requirements
To communicate with IMS using TIBCO Object Service Broker OTMA, you need
the following:

• The $OTMA tool

• The OTMA interface control block mapped by MAP table @OTMA_MAP.

• You must refresh the contents of this control block mapping by issuing a

GET @OTMA_MAP(address_of_@OTMA_MAP)

request after each use of the $OTMA tool. All parameters and data passed to
OTMA must be set by updating this control block before calling the $OTMA
tool.

• Other user-defined MAP tables that map the RECEIVE and possibly the
SEND buffers used to transfer data between TIBCO Object Service Broker and
OTMA.

• You have to consult your IMS application documentation to understand the
data format to be used in running an IMS transaction via OTMA and to map
the output returned to your OTMA client.

Sample Rules Provided
To understand the elements of a basic TIBCO Object Service Broker application
that uses OTMA, you can use some of the sample rules in the COMMON library.
These rules execute the IMS TM PART installation verification transaction. Refer
to the IBM Installation Volume 1: Installation and Verification manual, in the “IMS
Sample Application” section, to find details of the PART Message Processing
Program (MPP) transaction.

The main rule is called

SAMPLE_OTMA_CALL

and executes the following OTMA steps by calling other rules:

1. Allocate SESSION storage for the OTMA interface control block using the
@MAP tool

2. Issue OTMA OPEN to connect with IMS and identify the XCF group, client
member name, OTMA server name and other attributes necessary to perform
the otma_open operation.
 TIBCO Object Service Broker for z/OS External Environments

128 | Chapter 9 Accessing IMS Via the OTMA Callable Interface
3. Issue OTMA ALLO to allocate an OTMA session to exchange messages.

This request issues the otma_allocate operation and you use it to specify the
transaction or command to run, the synchronization level you want to use,
and the RACF group name to be used for OTMA transactions and commands.

4. Allocate SESSION storage for the OTMA SEND and RECEIVE buffers using
the @MAP tool.

5. Set the transaction or command data into the SEND buffer and issue the
OTMA SEND request to transfer the request to the OTMA server via an
otma_send_receive interface call. Data is returned in your RECEIVE buffer.

You must set various fields in @OTMA_MAP to define: the length and
address of your SEND and RECEIVE buffers and the required transaction or
command data in your SEND buffer.

6. Map the returned data via your user-defined RECEIVE MAP table. Issue a

GET user_RECEIVE_TBL(address_of_RECEIVE_bufr)

to cause your MAP table to reflect the data returned via your OTMA
RECEIVE buffer.

At this point, you can display or process the data in your OTMA client
application. If no further transactions or IMS commands are to be run, you can
dismantle your OTMA structure by:

1. Issuing an OTMA FREE request to free the OTMA session via an otma_free
request. This releases the session created by the OTMA ALLO request.

2. Issuing an OTMA CLOS request to leave the XCF group and free up storage
used for communication with OTMA. This invokes the otma_close interface
call.

The SESSION storage allocated for SEND, RECEIVE, and @OTMA_MAP MAP
tables are freed automatically when the client OTMA session is terminated.

Session Termination
After each call of the $OTMA interface tool, check the return codes in
@OTMA_MAP to ensure that the operation completed successfully. If you decide
to terminate the session, perhaps because of an error, release the OTMA resources
in the reverse order they were acquired. The sample rules @OTMA_CHKRETRSN
and @OTMASIGNAL attempt to implement this recovery by signalling various
failures back to the invoking rule's “ON condition” routine.
TIBCO Object Service Broker for z/OS External Environments

Usage Notes | 129
Usage Notes

z/OS and IMS System Requirements
To use IMS OTMA, your system must meet certain minimum requirements such
as the IMS version, IMS startup parameters, XCF group name, OTMA
initialization after a z/OS IPL, and RACF resource definition. Check with your
systems programmer and systems administrator for details and set up.

Invoking the Tool and the System Map Table
The interface between the rules language and IMS OTMA is controlled by the
$OTMA tool and its corresponding system interpreted table @OTMA_MAP.

Interpreter TCB Held for Communications
The communications between the TIBCO Object Service Broker OTMA Callable
Interface and IMS OTMA is synchronous, therefore an interpreter TCB is held
while waiting for a response.

Error Handling
The return code and reason codes are stored in the map table; refer to
@OTMA_MAP in TIBCO Object Service Broker Shareable Tools for details. You can
check these codes in your rules. You can find a complete description of the return
codes and reason codes in the IBM manual, IMS Open Transaction Manager Access
Guide and Reference, SC26-9434.

Example Rules and Tables
Sample rules and tables are available that you can use as a template:

• The rule names start with @OTMA and are in the COMMON library

• The table names start with @OTMA, under UNIT=OTMA
 TIBCO Object Service Broker for z/OS External Environments

130 | Chapter 9 Accessing IMS Via the OTMA Callable Interface
TIBCO Object Service Broker for z/OS External Environments

| 131
Chapter 10 Accessing External Routines

This chapter describes how to access external routines from TIBCO Object Service
Broker.

Topics

• Functional Overview, page 132

• Observing Standard Conventions, page 134

• Making a COBOL Program Compatible with TIBCO Object Service Broker,
page 138

• Making a PL/I Program Compatible with TIBCO Object Service Broker on
page 143

• Making a C Program Compatible with TIBCO Object Service Broker, page 146

• Identifying Your External Routine to TIBCO Object Service Broker, page 152

• Calling the Routine, page 157
 TIBCO Object Service Broker for z/OS External Environments

132 | Chapter 10 Accessing External Routines
Functional Overview

How Does TIBCO Object Service Broker Process an External Routine?
You can pass and receive control back from a routine outside TIBCO Object
Service Broker operating boundaries. When an external routine is called, the
following takes place:

1. The calling rule goes into a wait state.

2. TIBCO Object Service Broker calls the routine and waits for control to be
passed back to it when the external routine is finished.

3. The link to the external routine is deleted when the transaction ends.

Process Flow

This illustration shows the process flow between TIBCO Object Service Broker
and an external routine.

Steps Required to Use an External Routine
The major steps in preparing and executing an external routine are:

1. Code, compile, and link the external routine.

External
Routine

TIBCO Object Service Broker

Execution Environment

Invocation Response
TIBCO Object Service Broker for z/OS External Environments

Functional Overview | 133
Routines should be re-entrant where possible. This is not a requirement but it
saves storage in a multiple-session system. Also, these routines should use
standard assembler linkage conventions.

2. Identify the external routine and its characteristics to TIBCO Object Service
Broker.

3. Prepare the location where the external routine is to execute.

When these steps are completed, a TIBCO Object Service Broker rule can invoke
the external routine.

Transaction Level of the Routine
TIBCO Object Service Broker treats all external routines in the following way:
during a transaction, the routine is loaded once per transaction level, TIBCO
Object Service Broker branches and links to the routine whenever it is called, and
deletes it when the transaction ends.

For example, if you execute the ABC rule from the workbench, and this rule calls
an external routine, the external routine is loaded for transaction level 0. The same
rule can access table XYZ, invoking a trigger rule in the process. If the trigger rule
calls an external routine, the routine is loaded for transaction level 1. This all takes
place in the same transaction but at different levels.

Cleanup of System Service Requests
If an external routine requests system services, it should perform any necessary
cleanup (for example, issuing FREEMAIN macros to release storage obtained by
the GETMAIN macros). Code these requests so that they operate independently
of the environment (TSO, CICS, IMS, and so on) where they execute.

Error Handling
An external routine can override TIBCO Object Service Broker error-handling. It
can have its own STAE/ESTAE macro to handle abnormal terminations and
SPIE/ESPIE to handle program interrupts. If it does, it must restore TIBCO Object
Service Broker error-handling, including the program mask, before returning.
Failure to do so causes unpredictable results.

See Also TIBCO Object Service Broker Programming in Rules about TIBCO Object Service
Broker transaction processing.
 TIBCO Object Service Broker for z/OS External Environments

134 | Chapter 10 Accessing External Routines
Observing Standard Conventions

TIBCO Object Service Broker executes as an assembler environment; you must
write and link your program so it can be called by an assembler program using
standard conventions as outlined below.

Information Available to an External Routine
When an external routine receives control, the following information is available:

Use of the AMODE and RMODE Attributes
TIBCO Object Service Broker uses the AMODE and RMODE attributes of the load
module (for an external routine) to determine:

• Whether the module is loaded below the line

• Whether the routine arguments must be built below the line

• Which addressing mode is in effect when the routine receives control

When control is passed back to TIBCO Object Service Broker, you can access a
return code in register 15 by using the RETURN_CODE tool.

Register Contents

1 The address of an argument list:

Each address in the argument list is a full word.

The last address has its left-most bit set.

If the routine is a function, the first address points to the area for the
returned value.

13 The address of an 18-word save area.

14 The return address of the calling routine.

15 The address of the called routine.
TIBCO Object Service Broker for z/OS External Environments

Observing Standard Conventions | 135
Storage Requirements
This table shows how TIBCO Object Service Broker syntax is mapped to
assembler storage requirements.

TIBCO Object Service Broker
Assembler Storage Requirements

Syntax Length Decimal

C n CLn

V n CLn+2

P n d PLn

B n XLn

F 4 E

F 8 D

F a

a. TIBCO Object Service Broker supports floating point, 16 bytes long, which is not
supported in COBOL and therefore cannot be used in COBOL subroutines.

16 Not available

RD b

b. An RD field consists of a four-byte non-exclusive binary length followed by the
data.

n XLn

UN n n/2CU

TIBCO Object Service Broker date (D) semantic type is not converted; it is
returned as a binary number.
 TIBCO Object Service Broker for z/OS External Environments

136 | Chapter 10 Accessing External Routines
Example Assembler Program
The following external routine returns the number of occurrences of a specified
character in a given string. The routine requires three arguments: STRING, CHAR,
and FOLD. It returns a value through COUNT. The routine and its arguments must
be identified to TIBCO Object Service Broker as described in Identifying Your
External Routine to TIBCO Object Service Broker on page 152.

* CHRINSTR(STRING,CHAR,FOLD) *
* *
* RETURNS THE NUMBER OF OCCURRENCES IN STRING OF THE SINGLE *
* CHARACTER CHAR; *
* IF FOLD IS 'Y' IGNORE CASE-SENSITIVITY; *
*

SPACE 2
PARMLIST DSECT
RCOUNT DS A ADDRESS OF RETURNED COUNT
* ... (C,P,4,0)
PSTRING DS A ADDRESS OF INPUT STRING
* ... (S,V,256,0)
PCHAR DS A ADDRESS OF INPUT CHAR
* ... (S,V,1,0)
PFOLD DS A ADDRESS OF INPUT FOLD
* ... (S,C,1,0)

SPACE 2
CHRINSTR AMODE 31 EXECUTES IN 31-BIT ADDRESSING
CHRINSTR RMODE ANY RESIDES ANYWHERE
CHRINSTR CSECT
*
* ESTABLISH ADDRESSABILITY
*

USING CHRINSTR,R12
USING PARMLIST,R11
STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
LR R12,R15 CSECT BASE REGISTER
LR R11,R1 ARGUMENT BASE REGISTER

*
* LOAD THE INPUT STRING AND CHARACTER
*

L R2,PSTRING POINT TO STRING ARGUMENT
LH R3,0(,R2) LOAD LENGTH
LA R2,2(,R2) SKIP PREFIX LENGTH
XR R4,R4 RESET COUNTER
LTR R3,R3 EMPTY STRING?
BZ RETURN YES, RETURN RESULT
L R5,PCHAR POINT TO CHAR ARGUMENT
LA R5,2(,R5) SKIP PREFIX LENGTH

*
* PROCESS FOLD INDICATOR
*

L R6,PFOLD POINT TO FOLD ARGUMENT
CLI 0(R6),C'Y' SHOULD WE FOLD?
BNE LOOP NO, CONTINUE

*

TIBCO Object Service Broker for z/OS External Environments

Observing Standard Conventions | 137
* CODE TO IGNORE DIFFERENCE OF CASE IF FOLD IS 'Y' CAN BE PUT HERE
*
* MAIN LOOP: PROCESS ONE CHARACTER AT A TIME
*
LOOP DS 0H

CLC 0(1,R2),0(R5) CURRENT CHAR MATCH?
BNE NEXTCHAR NO, CONTINUE
LA R4,1(,R4) ELSE, INCREMENT COUNTER

NEXTCHAR DS 0H
LA R2,1(,R2) ADVANCE TO NEXT CHARACTER
BCT R3,LOOP LOOP IF NOT END OF STRING

*
* COPY RESULT TO RETURN AREA
*
RETURN DS 0H

L R2,RCOUNT POINT TO RESULT AREA
CVD R4,PRESULT CONVERT RESULT TO DECIMAL
ZAP 0(4,R2),PRESULT+4(4) COPY TO RESULT AREA
LM R14,R12,12(R13) RESTORE CALLER'S REGISTERS
XR R15,R15 ZERO RETURN CODE
BR R14 RETURN TO CALLER

*
* DATA AREA
*

DS 0D ALIGN ON DOUBLE-WORD BOUNDARY
PRESULT DS PL8 AREA FOR CONVERSION

LTORG ,
COPY REGEQU REGISTER DEFINITIONS
END CHRINSTR

See Also TIBCO Object Service Broker Programming in Rules about TIBCO Object Service
Broker syntax.

TIBCO Object Service Broker Shareable Tools about the tools.
 TIBCO Object Service Broker for z/OS External Environments

138 | Chapter 10 Accessing External Routines
Making a COBOL Program Compatible with TIBCO Object Service

Broker

Requirements
Use IBM Enterprise COBOL for z/OS or later compiler if the external routine is to
be run on multiple threads of a multi-threaded application, such as a Native
Execution Environment. Older programs written in OS/VS Cobol or COBOL II
should be recompiled with this new compiler.

COBOL Run-Units
A COBOL run-unit is created when you invoke a COBOL external routine and
terminated when the COBOL program issues a GOBACK to return control to
TIBCO Object Service Broker. A subsequent call to the routine within the same
transaction causes the routine to be executed as though it were being called for the
first time. If the routine opens files or sets flags, expecting to use this environment
on subsequent calls, processing errors occur, with possible abends or incorrect
logic paths.

How to Prevent Premature Termination of the COBOL Run-Unit

To ensure that a COBOL run-unit is not terminated prematurely and is active for
the life of the current rule stream/transaction level, you can take the following
steps. Additional information can be found in the IBM “Enterprise COBOL for
z/OS Programming Guide”.

1. Define the COBOL routine to TIBCO Object Service Broker in the ROUTINES
table as LANGUAGE=LEPERSIST. This creates a CEEPIPI environment for
the COBOL run unit/Language Environment enclave.

2. Specify the COBOL compiler THREAD option for the compilation. (The
module will also execute successfully in a non-THREAD environment with
this option.)

3. Specify the PROGRAM-ID RECURSIVE option in your COBOL source code.

4. Linkedit the COBOL module with RENT option. Do not include any
IGZEOPT definition because this facility is not supported with the THREAD
option.

A sample COBOL external routine is included in the COBOL sample library and
is called COBENTXR.
TIBCO Object Service Broker for z/OS External Environments

Making a COBOL Program Compatible with TIBCO Object Service Broker | 139
Link-Edit and Runtime Options
Your COBOL external routine can override TIBCO Object Service Broker
error-handling with a runtime option. If the program has its own error handling,
it must restore TIBCO Object Service Broker error-handling, including the
program mask, before returning. Failure to do so produces unpredictable results.
 TIBCO Object Service Broker for z/OS External Environments

140 | Chapter 10 Accessing External Routines
Syntax Mapping
The following table shows how TIBCO Object Service Broker syntax is mapped to
COBOL syntax.

TIBCO Object Service Broker
COBOL Syntax Declaration #

Syntax Length Decimal

C n PIC X(n)

V n PIC 9(4) USAGE COMP-4 and PIC X(n) a

a. The first part of the COBOL syntax for V describes the length of the argument
and the second part contains the data. Refer to Example COBOL Program on
page 141 for an example of this usage.

P n d PIC S9(2n-1-d)V9(d) USAGE COMP-3

B n = 2 PIC S9(4) USAGE COMP-4

B n = 4 PIC S9(9) USAGE COMP-4

F n = 4 COMP-1

F n = 8 COMP-2

F n = 16 Not available b

b. TIBCO Object Service Broker supports floating point, 16 bytes long, which is not
supported in COBOL and therefore cannot be used in COBOL subroutines.

RD c

c. An RD field consists of a four-byte non-exclusive binary length followed by the
data.

n PIC X(n)

UN n PIC N(n/2) USAGE NATIONAL

TIBCO Object Service Broker date (D) semantic type is not converted; it is
returned as a binary number.
TIBCO Object Service Broker for z/OS External Environments

Making a COBOL Program Compatible with TIBCO Object Service Broker | 141
Example COBOL Program
The following routine shows how to define the arguments in COBOL. The sample
external routine requires five arguments. The routine and its arguments must be
identified to TIBCO Object Service Broker as described in Identifying Your
External Routine to TIBCO Object Service Broker on page 152.

CBL MAP,RENT,NOSEQUENCE,TEST(SYM),THREAD,VBREF
 IDENTIFICATION DIVISION.
 PROGRAM-ID. USEARG RECURSIVE.
 AUTHOR. JANET JONES.
 INSTALLATION. SITE.
 DATE-WRITTEN. 21/3/2007.
**
* *
* USEARG - SAMPLE PROGRAM: *
* *
* N.B.: CALLED FROM OSB WITH PARAMETERS; *
* CALL IS BY REFERENCE *
* *
* OSB ARGUMENTS(USEARG) TABLE CONTAINS THE FOLLOWING *
* DEFINITION FOR PARAMETERS *
* *
* B2: C B 2 0 *
* B4: C B 4 0 *
* C16: S C 16 0 *
* P5D2: Q P 5 2 *
* V128: S V 128 0 *
* *
**
 ENVIRONMENT DIVISION.
*
 DATA DIVISION.
*
 WORKING-STORAGE SECTION.
*
 LINKAGE SECTION.
 01 B2 PIC S9(4) USAGE COMP-4.
 01 B4 PIC S9(9) USAGE COMP-4.
 01 C16 PIC X(16).
 01 P5D2 PIC 9(7)V9(2) USAGE COMP-3.
 01 V128.
* FOR "V" SYNTAX PREFIX DATA WITH ACTUAL LENGTH OF DATA. (DOES
* NOT INCLUDE LENGTH OF ITSELF.)
 05 V128-LENGTH PIC 9(4) USAGE COMP-4.
 05 V128-TEXT PIC X(128).
*
 PROCEDURE DIVISION USING B2, B4, C16, P5D2, V128.
*
* YOUR CODE
*
 MOVE 12 TO B2.
 MOVE 605 TO B4.
 MOVE 'SUCCESS' TO C16.
 TIBCO Object Service Broker for z/OS External Environments

142 | Chapter 10 Accessing External Routines
 MOVE 311.73 TO P5D2.
 MOVE 12 TO V128-LENGTH.
 MOVE 'SOME MESSAGE' TO V128-TEXT.
 GOBACK.

See Also TIBCO Object Service Broker Programming in Rules about TIBCO Object Service
Broker syntax.
TIBCO Object Service Broker for z/OS External Environments

Making a PL/I Program Compatible with TIBCO Object Service Broker | 143
Making a PL/I Program Compatible with TIBCO Object Service

Broker

Requirements
You can write a PL/I program as a callable routine in TIBCO Object Service
Broker but you cannot write your PL/I program as a function (that is, you cannot
write your PL/I program to return a value unless you pass the value back
through an argument).

Link-Edit Options
Link-edit a PL/I program with option ENTRY PLICALLA.
 TIBCO Object Service Broker for z/OS External Environments

144 | Chapter 10 Accessing External Routines
Syntax Mapping
The following table shows how TIBCO Object Service Broker syntax is mapped to
PL/I syntax.

Example PL/I Program
The external routine in the following example takes a number in the first
argument and returns the logarithm of the number in the second argument. The
routine and its arguments must be identified to TIBCO Object Service Broker as
described in Identifying Your External Routine to TIBCO Object Service Broker on
page 152.

plilog: proc(number,result) options(main);
dcl (number,result) binary float (21);
dcl log10 builtin;
result= log10(number);

end plilog;

TIBCO Object Service Broker
PL/I Syntax Declaration #

Syntax Length Decimal

C n CHAR(n)

V n CHAR(n) VARYING

P n d DECIMAL FIXED(2n-1,d)

B n BINARY FIXED(8n-1)

F n = 4 BINARY FLOAT(21)

F n = 8 BINARY FLOAT(53)

F n = 16 BINARY FLOAT(109)

RD a

a. An RD field consists of a 4-byte non-exclusive binary length followed by the
data.

n CHAR(n) VARYING

UN n WIDECHAR(n/2)

TIBCO Object Service Broker date (D) semantic type is not converted; it is
returned as a binary number.
TIBCO Object Service Broker for z/OS External Environments

Making a PL/I Program Compatible with TIBCO Object Service Broker | 145
External PL/I Routine to Concatenate Strings for TIBCO Object Service Broker

The external routine in the following example concatenates a string to itself a
specified number of times. To return a value in a non-numeric argument, the PL/I
program must use a pointer to access the argument; therefore, STRING points to
the PSTRING argument. The routine and its arguments must be identified to
TIBCO Object Service Broker as described in Identifying Your External Routine to
TIBCO Object Service Broker on page 152.

/* PLISTR - EXAMPLE PROGRAM */
/* OSB ROUTINES table contains the following: */
/* PLISTR PL/I N 0 0 */
/* OSB ARGUMENTS(PLISTR) table contains the following: */
/* 1 PSTRING Y S C 128 */
/* 2 PLENGTH N Q B 2 */
plistr: proc(pstring,plength) options(main);
dcl (pstring) fixed bin(15)
dcl (plength) fixed bin(15);
dcl string char(128) based(p1),

p1 pointer init(addr(pstring));
string= repeat('xyz ' ,plength);

end plistr;

See Also TIBCO Object Service Broker Programming in Rules about TIBCO Object Service
Broker syntax.
 TIBCO Object Service Broker for z/OS External Environments

146 | Chapter 10 Accessing External Routines
Making a C Program Compatible with TIBCO Object Service Broker

Requirements
Your C program should be written and receive arguments according to standard
C coding conventions.
TIBCO Object Service Broker for z/OS External Environments

Making a C Program Compatible with TIBCO Object Service Broker | 147
Syntax Mapping
The following table shows how TIBCO Object Service Broker syntax is mapped to
C syntax.

See Also TIBCO Object Service Broker Programming in Rules about TIBCO Object Service
Broker syntax.

TIBCO Object Service Broker
C Syntax Declaration

Syntax Length Decimal

C n char [n]

V n short; char [n] a

a. The first part of the C syntax for V describes the length of the argument and the
second part contains the data.

P n d decimal [n,d] b

b. TIBCO Object Service Broker supports packed decimal and IBM hexadecimal
floating point. The C declarations are valid only for IBM’s mainframe C compiler.

B n = 2 short

B n = 4 long

F n = 4 float b

F n = 8 double b

F n = 16 long double b

RD n unsigned char[n] c

c. An RD field consists of a four-byte inclusive binary length followed by the data.

UN n unsigned char[n]

TIBCO Object Service Broker date (D) semantic type is not converted; it is
returned as a binary number.
 TIBCO Object Service Broker for z/OS External Environments

148 | Chapter 10 Accessing External Routines
Sample

C Program

The following routine shows how to define the arguments in C. The routine must
be identified to TIBCO Object Service Broker as described in Identifying Your
External Routine to TIBCO Object Service Broker on page 152. In the ROUTINES
table, for routines written in IBM C, the Language specified in the ROUTINES
table should be LEPERSIST.

/* dayXmasC - concatenate a number to a string */

static void join(
 char * * ptptr,
 char * sptr
)

{
 char c;
 char * tptr = *ptptr;

 do {
 *tptr++ = c = *sptr++;
 } while (c);
 ptptr = tptr; / update pointer for caller */
 (tptr-1) = ' '; / change null to a blank */
}

void DAYXMAS(
 char * result,
 int * count,
 char * item
)

{
 int len;
 char *p, *p0;
 short *p2;
 char temp[80];

 static char * numbers[14] = { "no", "a", "two", "three", "four", "five",
 "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "many" };
 static char * minus = "minus";

 int itemlen = (short) *((short *) item);
 int i = *count;
 p = p0 = result + 2;
 p2 = (short *) result;

 /* Make a C-format string from the input string. */
 for (len=0; len<itemlen; len++)
 temp[len] = item[len+2];
 temp[itemlen] = 0;
TIBCO Object Service Broker for z/OS External Environments

Making a C Program Compatible with TIBCO Object Service Broker | 149

 /* Adjust the count so that it is between 0 and 13 inclusive. */
 if (i < 0) {
 join(&p,minus);
 i = -i;
 }
 if (i > 12) i = 13;

 join(&p,numbers[i]);
 join(&p,temp);
 len = (int) (p-p0-1); /* length of output string */
 *p2 = (short) len;
}

Table ROUTINES

The table ROUTINES should contain:

EDITING TABLE : ROUTINES
TABLE TYPE : TDS
COMMAND ==>
--

NAME : DAYOFCHRISTMAS
LANGUAGE : LEPERSIST
FUNCTION : Y
TYPE :
SYNTAX : V
LENGTH : 80
DECIMAL : 0
LOADNAME : DAYXMAS
SCOPE :
NODENAME :
 :
 :
LIBNAME :
 :
 :
 TIBCO Object Service Broker for z/OS External Environments

150 | Chapter 10 Accessing External Routines
Table ARGUMENTS(DAYOFCHRISTMAS)

The table ARGUMENT(DAYOFCHRISTMAS) should contain:

BROWSING TABLE : ARGUMENTS(DAYOFCHRISTMAS)
COMMAND ==>

 NUMBER NAME INOUT TYPE SYNTAX LENGTH DECIMAL
_ ------ ---------------- - - - ------ ------
_ 1 COUNT N C B 4 0
_ 2 ITEM N S V 32 0

Rule That Calls the C Program

The first rule calls the second one, which calls the C routine.

 RULE EDITOR ===> SCROLL: P
 TWELVE;
 _
 _ ---
 _ --+--------------
 _ CALL XDAY(12, 'drummers drumming'); ¦ 1
 _ CALL XDAY(11, 'lords a-leaping'); ¦ 2
 _ CALL XDAY(10, 'pipers piping'); ¦ 3
 _ CALL XDAY(9, 'ladies dancing'); ¦ 4
 _ CALL XDAY(8, 'maids a-milking'); ¦ 5
 _ CALL XDAY(7, 'swans a-swimming'); ¦ 6
 _ CALL XDAY(6, 'geese a-laying'); ¦ 7
 _ CALL XDAY(5, 'gold rings'); ¦ 8
 _ CALL XDAY(4, 'calling birds'); ¦ 9
 _ CALL XDAY(3, 'French hens'); ¦ A
 _ CALL XDAY(2, 'turtle doves'); ¦ B
 _ CALL XDAY(1, 'partridge in a pear tree'); ¦ C
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker for z/OS External Environments

Making a C Program Compatible with TIBCO Object Service Broker | 151
 RULE EDITOR ===> SCROLL: P
 XDAY(N, X);
 _
 _ ---
 _ --+--------------
 _ CALL MSGLOG(DAYOFCHRISTMAS(N, X)); ¦ 1
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

JCL to compile and link the sample

//CMP6000 EXEC PROC=EDCCB,
// CPARM='RENT,SHOW,SO,XREF',
// INFILE='S6B.TST.C(DAYXMAS)',
// OUTFILE='S6B.TST.LOAD(DAYXMAS),DISP=SHR'
//BIND.SYSIN DD *
 ENTRY DAYXMAS
 NAME DAYXMAS(R)
/*
 TIBCO Object Service Broker for z/OS External Environments

152 | Chapter 10 Accessing External Routines
Identifying Your External Routine to TIBCO Object Service Broker

Specify the Table Entries
You identify the external routine and its load module name to TIBCO Object
Service Broker through an entry in the ROUTINES table. If the routine has
arguments, specify these in a table instance of the ARGUMENTS table. Ensure
that you have adequate security authorization to insert data into these tables
before editing them.

Use the Table Editor to add information to these tables. To use this option, enter
the required table name beside the ED edit table option on the workbench and
press Enter to display the table.

Add an Entry in the ROUTINES Table
The following screen shows an extract of the ROUTINES table. Scroll right using
PF11 to see additional fields.

 EDITING TABLE : ROUTINES
 COMMAND ==>
 SCROLL: P
 NAME LANGUAGE FUNCTION TYPE SYNTAX LENGTH DECIMAL
 _ ---------------- ---------------- - - - ------ ------
 _ ABEND ASSEMBLER N 0 0
 _ ADMCHART ASSEMBLER N 0 0
 _ ASREAD ASSEMBLER N 0 0
 _ BINARY_TO_LOGIC ASSEMBLER Y L C 1 0
 _ BTOPACKD ASSEMBLER Y C 1 0
 _ CATROW ASSEMBLER N 0 0
 _ CCOB11 HLLCOBOL N 0 0
 _ CCOB12A HLLCOBOL N 0 0
 _ CCOB12B HLLCOBOL N 0 0
 _ CDIR50O HLLCOBOL N 0 0
 _ CDIS51O HLLCOBOL N 0 0
 _ CFOR500 HLLCOBOL N 0 0
 _ CGET00O HLLCOBOL N 0 0
 _ CGET50O HLLCOBOL N 0 0
 _ CHHATT ASSEMBLER N 0 0
 _ CCHHEAD ASSEMBLER N 0 0
 _ CHHIST ASSEMBLER N 0 0
 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL
TIBCO Object Service Broker for z/OS External Environments

Identifying Your External Routine to TIBCO Object Service Broker | 153
Type the following information in the fields of the ROUTINES table for your
external routine:

NAME The name used to invoke the external routine. If this name is different
from the name of the load module, see the explanation for the
LOADNAME field.

LANGUAGE The language in which the external routine is written, mainly for
documentation purposes, with the exception of the following
keywords:

CICS Indicates that this is a CICS program to be run under the CICS
task in a CICS Execution Environment.

For an external routine with OS linkage that is to be run under a
TIBCO Object Service Broker task in a CICS Execution
Environment, specify the language used, not the value CICS.

COBOL For HLI routines.

LE Indicates that this routine is to be run in a pre-initialized
Language Environment (LE) enclave, the CEEPIPI environment.
This routine is a stand-alone routine that does not refer to global
variables.

For LANGUAGE=LE, you must provide the appropriate
CEEUOPT in your LE-compliant external routines, because the
CEEPIPI enclave is initialized according to the specification of
the first external routine called. You should use the same
CEEUOPT options for all external routines in the same class for
the same TIBCO Object Service Broker Execution Environment,
because the same CEEPIPI enclave cannot support different
runtime options.
 TIBCO Object Service Broker for z/OS External Environments

154 | Chapter 10 Accessing External Routines
For LANGUAGE values other than LE or LEPERSIST, the external routines are
run outside the CEEPIPI environment. Each time an LE-compliant external
routine is called, a fresh LE enclave is initialized according to the specification of
that external routine. Therefore this class of external routines can have different
runtime options within the same TIBCO Object Service Broker Execution
Environment. It is your responsibility to provide the appropriate CEEUOPT in
your external routines.

LEPERSIST Indicates that this routine is to be run in a pre-initialized LE
enclave, the CEEPIPI environment. This routine is one of a set of
routines that refer to global variables used by other routines in
the set.

For LANGUAGE=LEPERSIST, you must provide the
appropriate CEEUOPT in your LE-compliant external routines,
because the CEEPIPI enclave is initialized according to the
specification of the first external routine set being called. You
should use the same CEEUOPT options for all external routines
in the routine set, because the same CEEPIPI enclave cannot
support different runtime options after it is initialized. You can
use different CEEUOPT options for different routine sets,
because each set triggers a re-initialization of the LE enclave. The
routine set boundary is defined by the first call to the routine in
the set and the end of that stream level.

FUNCTION Specifies whether the external routine returns a value (Y or N).

TYPE If the external routine is a function, the TIBCO Object Service Broker
semantic type of the value returned.

SYNTAX If the external routine is a function, the TIBCO Object Service Broker
syntax of the value returned.

LENGTH If the external routine is a function, the length of the value returned.
TIBCO Object Service Broker for z/OS External Environments

Identifying Your External Routine to TIBCO Object Service Broker | 155
Adding an Entry to the ARGUMENTS Table
If your external routine has arguments, add a table instance to the ARGUMENTS
table to identify the arguments to TIBCO Object Service Broker. The parameter
value for the table instance must be the name of the external routine (that is, in the
NAME field of the ROUTINES table). The maximum number of arguments
allowed is 16.

DECIMAL If the external routine is a function that returns a value with digits to
the right of the decimal, the number of digits.

LOADNAME The name of the load module in the external routines load library. You
can leave this blank if the name of the load module is the same as the
routine name (that is, in the NAME field). You must scroll right to see
this field.

SCOPE Not used for z/OS

NODENAME Not used for z/OS

LIBNAME Not used for z/OS
 TIBCO Object Service Broker for z/OS External Environments

156 | Chapter 10 Accessing External Routines
The following arguments are for the assembler program shown in Example
Assembler Program on page 136.

 EDITING TABLE : ARGUMENTS(CHRINSTR)
 COMMAND ==>
 SCROLL: P
 NUMBER NAME INOUT TYPE SYNTAX LENGTH DECIMAL
 _ ------ ---------------- - - - ------ ------
 _ 1 COUNT Y C P 8
 _ 2 STRING N S V 256
 _ 3 CHAR N S V 1
 _ 4 FOLD N L C 1

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL

Type appropriate information in the fields of the ARGUMENTS table:

See Also TIBCO Object Service Broker Managing Data about the Table Editor

TIBCO Object Service Broker Programming in Rules about syntax and semantic data
types

NUMBER Position of the argument in the argument list. The positions
must be sequential starting at 1.

NAME Argument name

INOUT Specifies whether the value of the argument can be changed by
the external routine. If so, the value passed to the routine must
be a local variable or the field of a table, and the field must
have the same data definition as the argument. Valid entries
are Y and N.

TYPE Argument semantic type

SYNTAX Argument syntax

LENGTH Argument length

DECIMAL Number of digits to the right of the decimal, if any
TIBCO Object Service Broker for z/OS External Environments

Calling the Routine | 157
Calling the Routine

Put the Routine in a Load Library
Before you can call the routine from within TIBCO Object Service Broker you
must compile, link-edit, and place the routine in a load library:

• If the routine is to run in a CICS environment and the language specified in
the Language field of the ROUTINES table is set to CICS, the routine must be
placed in the CICS DFHRPL library. Refer to Add an Entry in the ROUTINES
Table on page 152 for information about the ROUTINES table.

• In all other cases, place the load module into a library concatenated to the DD
statement HRNEXTR.

Call the Routine From TIBCO Object Service Broker
When the executable code is in an external routine load library, and you made the
appropriate entries in the ROUTINES and ARGUMENTS tables, you can call the
routine from a TIBCO Object Service Broker rule.

Syntax for Calling the Routine

The external routine can be invoked from within a rule either as a function or
explicitly with the CALL statement, as in the following examples:

How are Exceptions Handled?

No exceptions are trapped by TIBCO Object Service Broker during external
routine invocation and execution, for example if the external routine is not found
or it fails. However, if a failure occurs, a message is returned to the message log.

See Also TIBCO Object Service Broker Programming in Rules about the rules language and
writing rules.

Explicit Invocation Invocation As a Function

CALL USERPROC(string); totalcost = USERFUNC (1.99, .07);

CALL EXT_ROUTINE_A; Y = 2*EXTERNAL_R6(arg1, arg2, arg3);
 TIBCO Object Service Broker for z/OS External Environments

158 | Chapter 10 Accessing External Routines
TIBCO Object Service Broker for z/OS External Environments

| 159
Chapter 11 Using User Builtin Routines

This chapter describes how to use user builtin routines.

Topics

• Functional Overview, page 160

• Programming Considerations, page 161

• Sample User Builtin Routines, page 163
 TIBCO Object Service Broker for z/OS External Environments

160 | Chapter 11 Using User Builtin Routines
Functional Overview

What are User Builtin Routines?
User builtin routines are user-written assembler routines that are similar to
external routines. They can be packaged and link-edited directly into TIBCO
Object Service Broker, unlike external routines, which are documented in
Chapter 10, Accessing External Routines, on page 131.

User builtin routine must be installed following the procedure in TIBCO Object
Service Broker for z/OS Installing and Operating.

What Are the Requirements for User Builtin Routines?
A user builtin routine must meet the following requirements:

• Be written in z/OS assembler

• Be fully re-entrant with AMODE31 and RMODE ANY

• Use standard assembler linkage conventions

• Receive and update parameters, and return values as documented in
Chapter 10, Accessing External Routines, on page 131

• Set one of the following values in Register 15 at the end of the routine before
returning control to TIBCO Object Service Broker:

Failure to set Register 15 to 0 or 8 causes unpredictable abends.

Available Examples

Refer to , Samples Available, on page 163 and the USRBLTIN member of the ASM
data set provided with TIBCO Object Service Broker for examples of user builtin
routines.

0 The routine was successful.

8 The routine failed. This also causes the calling rule to fail.
TIBCO Object Service Broker for z/OS External Environments

Programming Considerations | 161
Programming Considerations

Acquiring and Releasing Storage
If your routine calls another program or requires working storage, in most cases
use the z/OS GETMAIN and FREEMAIN macros to acquire and release the
storage. In some high activity programs, GETMAIN and FREEMAIN can have
significant overhead. In these cases, use the $SAVE macro to make use of storage
in the TIBCO Object Service Broker transaction save stack.

Using the $SAVE Macro

Syntax

The syntax of the $SAVE macro is as follows:
label $SAVE length,BASEREG=reg

where:

Requirements

If you use $SAVE, you must:

• Use R13 as the base register for this storage

• Use the first 72 bytes as a normal save area

• Not use the next 8 bytes as these are used by $SAVE

• Copy the WALIST copy book

The RETURN macro or other standard linkage conventions can be used to return
to the caller of the routine.

label The entry point name of the routine

length The number of bytes of working storage required. This is
in addition to the standard 80 bytes required for a 72 byte
save area, followed by 8 bytes for stack control pointers.

reg The base register to be used for the program. The default is
R12.
 TIBCO Object Service Broker for z/OS External Environments

162 | Chapter 11 Using User Builtin Routines
Available Examples

Refer to the USRWTO sample program in <Link> “Samples Available” on
page 163 and the USRBLTIN member of the ASM data set provided with TIBCO
Object Service Broker for examples of using $SAVE.

$SAVE Macro Storage Usage
The $SAVE macro does the following:

• Acquire storage of length length+80 and point Register 13 to it.

• Save all the registers in the save area of the caller.

• Chain the save area pointer between the caller and the $SAVE storage.

• Set the base register.
TIBCO Object Service Broker for z/OS External Environments

Sample User Builtin Routines | 163
Sample User Builtin Routines

Samples Available
The USRBLTIN member in the ASM data set includes these sample routines:

• USRSLEEP

• USRTUM

• USRWTO

The following section describes the entries required for USRSLEEP, and provides
a sample rule showing how to call it.

USRSLEEP
This routine has one argument, TIME of nn hundredths of a second.

USRBLTIN Entry

 $ROUTINE NAME=SLEEP,MODULE=USRSLEEP, X
 ARGS=((,B,4,0)), X
 ARGNAMES=(TIME)
 TIBCO Object Service Broker for z/OS External Environments

164 | Chapter 11 Using User Builtin Routines
USRCSECT Entry

TITLE 'A PROGRAM TO SLEEP FOR N 100THS OF A SECOND.'
*
* *
* WARNING: THIS ROUTINE WILL PUT THE INTERPRETER TASK INTO A WAIT. *
* IT SHOULD THEREFORE NOT BE USED IN A MULTI-USER EE SUCH AS CICS, *
* IMS, OR NATIVE. THIS ROUTINE IS SUITABLE ONLY FOR BATCH & TSO. *
* *
* THIS PROGRAM SLEEPS FOR A TIME SPECIFIED IN ARGUMENT1, WHICH IS *
* SPECIFIED IN 100THS OF A SECOND. *
* *
* THIS PROGRAM CAN EXECUTE AS AN OSB EXTERNAL ROUTINE AS DEFINED IN *
* THE EXTERNAL ENVIRONMENTS GUIDE; HOWEVER, THE IMPLEMENTATION SHOWN *
* HERE IS TO EXECUTE AS A USER DEFINED BUILTIN ROUTINE AS DOCUMENTED *
* IN THE TIBCO® OBJECT SERVICE BROKER FOR Z/OS INSTALLING AND *
* OPERATING MANUAL. *
* *
* ASSEMBLE & LINK TO HRNEXTR LOAD LIBRARY IF RUNNING AS AN EXTERNAL *
* ROUTINE. IF RUNNING AS A USER DEFINED BUILTIN ROUTINE, IMPLEMENT *
* WITH JCL MEMBER USERMOD8. *
* *
* ADD THE FOLLOWING TO THE ROUTINES & ARGUMENTS TABLES. *
* *
* ROUTINES ENTRY | ARGUMENTS(USRSLEEP) ENTRIES *
* NAME = USRSLEEP | *
* LANG = ASSEMBLER | 1) TIME N B 4 *
* FUNC = N | *
* TYPE = | *
* SYNT = | *
* LEN = | *
* *
*
USRSLEEP DS 0D
 ENTRY USRSLEEP
 L 1,0(1) ADDRESS ON PARM 1
 STIMER WAIT,BINTVL=(1)
 SR 15,15 SET RETURN CODE
 BR 14 RETURN TO CALLER
TIBCO Object Service Broker for z/OS External Environments

Sample User Builtin Routines | 165
Sample Rule

SAMPSLEEP(TIME);
_ LOCAL Y;
_ --
_ --+---
_ Y = $REALTIMER; ¦ 1
_ CALL SLEEP(TIME); ¦ 2
_ Y =($REALTIMER - Y) / 1000000; ¦ 3
_ CALL ENDMSG('SLEPT FOR ' || $PIC(Y, 'NNN,NN9V.999') || ¦ 4
_ ' SECONDS.'); ¦
_ ---
 TIBCO Object Service Broker for z/OS External Environments

166 | Chapter 11 Using User Builtin Routines
TIBCO Object Service Broker for z/OS External Environments

| 167
Chapter 12 Using the Interface to TIBCO Enterprise
Message Service

This chapter describes how to interface to TIBCO Enterprise Message Service
(EMS).

Topics

• TIBCO Object Service Broker EMS Interface, page 168

• Calling EMS, page 169

• Configuration, page 173

• Sample Applications, page 175

• Supported EMS Functions, page 177
 TIBCO Object Service Broker for z/OS External Environments

168 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
TIBCO Object Service Broker EMS Interface

Purpose of TIBCO Enterprise Message Service (EMS)
TIBCO Enterprise Message Service software lets application programs send and
receive messages according to the Java Message Service (JMS) protocol. EMS is
based on creation and delivery of messages. Messages are structured data that
one application sends to another. The creator of the message is known as the
producer and the receiver of the message is known as the consumer.

A TIBCO EMS server acts as an intermediary for the message and manages its
delivery to the correct destination. The server also provides enterprise-class
functionality such as fault-tolerance, message routing, and communication with
other messaging systems, such as TIBCO Rendezvous™ and TIBCO
SmartSockets™.

Overview of TIBCO Object Service Broker EMS Interface
The interface to EMS provides a set of tools that TIBCO Object Service Broker
rules applications running on z/OS and Open Systems can use to produce and
consume messages. These messages are transported via TIBCO EMS servers
which run on Open Systems platforms.

This message flow is illustrated in the following diagram:

User Application
EMS Messaging

TIBCO EMS
 Server

 EMS
 Application

 EMS
 Application

 EMS
 Application

 Rules
 Application

TIBCO EMS
 Library

 z/OS and / or
 Open Systems Open Systems

TIBCO Object Service Broker
TIBCO Object Service Broker for z/OS External Environments

Calling EMS | 169
Calling EMS

Shareable Tools Available
Two shareable tools are provided to interface with the TIBCO EMS Client API.
These tools are:

The types of arguments and the return value are determined by the EMS C
routine being invoked. Most calls return a tibems_status value. It is possible for
S6BFUNCTION to return strings or integers that are not status codes for some
EMS functions.

The following is an example of a call to S6BFUNCTION:

STATUS = S6BFUNCTION(’tibemnsMsgProducer_Send’,PRODUCER,MESSAGE);

See Also TIBCO Object Service Broker Shareable Tools for details on the S6BCALL and
S6BFUNCTION tools.

TIBCO Enterprise Message Service: C and COBOL Reference for the definition of the
EMS API as implemented by S6BCALL and S6BFUNCTION.

Argument Mapping

Mapping Data Types

C data types, as described in TIBCO Enterprise Message Service: C and COBOL
Reference, are mapped to S6BCALL and S6BFUNCTION. Simple data types are
passed as shown in the following table:

S6BCALL Used by a rule when the EMS function does not
return a value.

S6BFUNCTION Used by a rule when a value is returned.

EMS C data type S6BCALL type

tibems_byte; Binary of length 1

tibems_short; Binary of length 2

tibems_wchar; Binary of length 2
 TIBCO Object Service Broker for z/OS External Environments

170 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
Some EMS routines require that the name of a data set or data set member
containing encoded data to be used in SSL based message exchanges to be passed
as an argument. For example:

tibems_status tibemsSSLParams_AddTrustedCertFile(
tibemsSSLParams SSLParams,
const char* filename,
tibems_int encoding);

In such cases, add a DD name statement declaration to the JCL that invokes the
TIBCO Object Service Broker Execution Environment for each such data set or
data set member required by the application, such as the following:

//SSLSCERT DD DISP=SHR,DSN=TIBCO.SXJ.V5R0M0.Z16.CNTL(SSLSCERT)

//SSLCCERT DD DISP=SHR,DSN=TIBCO.SXJ.V5R0M0.Z16.CNTL(SSLCCERT)

//SSLCKEY DD DISP=SHR,DSN=TIBCO.SXJ.V5R0M0.Z16.CNTL(SSLCKEY)

and pass a string such as the following:

DD:SSLSCERT

in which the 3 characters "DD:" are prepended to the DD name, as an argument to
the EMS routines; in this case, as the filename argument to the routine
tibemsSSLParams_AddTrustedCertFile.

Furthermore, EMS routines that accept such encoded data must have the
encoding type explicitly stated, as automatic recognition of the encoding does not
occur when using EMS under z/OS. This means that a value of 0 (zero,
corresponding to the EMS C constant TIBEMS_SSL_ENCODING_AUTO) cannot
be passed as the encoding argument above; one of the other numeric values
corresponding to a certificate encoding must be used instead.

tibems_int; Binary of length 4

tibems_long; Binary of length 8

tibems_float; Float Point of length 4

tibems_double; Floating Point of length 8

tibems_uint; Binary of length 4

EMS C data type S6BCALL type
TIBCO Object Service Broker for z/OS External Environments

Calling EMS | 171
Handles to EMS Structures

Handles to EMS structures are passed and returned as binary values of length 4.
Examples of handle types include tibemsConnection, tibemsSession, and
tibemsTextMsg.

Handle Management

The TIBCO Object Service Broker system is designed to handle high transaction
volumes. The system therefore tracks the usage of some resources to ensure that
these are not exhausted needlessly. The resources tracked include EMS connection
structures, message structures, and SSL parameter structures. Whenever one of
these structures has been allocated through an invocation of an EMS API function
through S6BCALL or S6BFUNCTION in an TIBCO Object Service Broker
transaction, terminating the transaction will implicitly release the structure, as if
the TIBCO Object Service Broker application had invoked the proper EMS API
function to release the structure itself. Handles to such structures may thus be
used within a transaction and its child transactions, but not passed back to be
used in a parent transaction.

Text Strings

In general text strings are passed as a variable character strings. In the EMS C
interfaces, text strings are null terminated.

Some functions in the EMS API for C return text data using two arguments: a text
area and a maximum length for the area. A rule can pass a field or a local variable
for the text area. The functions are:

• tibemsDestination_GetName

• tibemsQueue_GetQueueName

Byte Oriented Data

Byte oriented data, which is typically unstructured and does not depend on an
encoding, can be sent and returned through EMS using the tibemsBytes C type.
S6BCALL or S6BFUNCTION arguments that refer to byte areas are defined as
binary values of length 4.

If a variable length syntax field contains a null character then the EMS interface
considers that the string is terminated at that null character. Any data following
will be ignored. This also holds true for UNICODE strings.
 TIBCO Object Service Broker for z/OS External Environments

172 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
Rules extract data from such areas through MAP tables. MAP areas are restricted
only by job memory limits. When an EMS functions returns a tibemsBytes area
then a rules program must register the area with the @MAP table before using it
with a MAP table. After registering the area a rule uses the binary value for the
area as a parameter for a MAP table. The parameter identifies the start of the area
to be mapped by the table.

The following functions get or write tibemsBytes areas:

• tibemsBytesMsg_GetBytes

• tibemsBytesMsg_WriteBytes

• tibemsMapMsg_GetBytes

• tibemsObjectMsg_GetObjectBytes

• tibemsStreamMsg_ReadBytes

• tibemsStreamMsg_WriteBytes

See Also TIBCO Object Service Broker Shareable Tools for more information about the @MAP
table and registering MAP areas.

Error Handling
Most EMS functions return a tibems_status code if EMS detects an error. The
explanation of the each of the status codes can be found in an appendix of TIBCO
Enterprise Message Service: C and COBOL Reference.

If an abnormal termination occurs during rules processing TIBCO Object Service
Broker creates an IBM LE formatted dump to report the problem. The dump
appears as a SYSOUT file for the Execution Environment job. The call to
S6BCALL or S6BFUNCTION is terminated and the ROUTINEFAIL exception
raised. A rules traceback is produced if the exception is not handled by the rules.

See Also TIBCO Object Service Broker Programming in Rules for more information about rules
processing and exceptions.
TIBCO Object Service Broker for z/OS External Environments

Configuration | 173
Configuration

Initializing the EMS Interface
The Execution Environment establishes a special LE Enclave to run EMS calls and
Execution Environment parameters exist to manage the environment. The
TASKPOSIXNUM Execution Environment parameter determines if the enclave is
started. By default the parameter is set to 0 and the LE Enclave is not started.

To enable EMS support for the Execution Environment set the TASKPOSIXNUM
parameter to 1. The first call to EMS by a rule initializes the environment to run
EMS and loads code related to invoking EMS.

Multi-threaded Environment
The LE Enclave used to run EMS calls is a multi-threaded USS environment. A
thread is used to call EMS for any blocking call. Examples of such calls are
tibemsConnection_Create and tibemsMsgConsumer_Receive.

Thread Processing

The THREADPOSIXNUM Execution Environment parameter defines the number
of threads that will be started to handle blocking EMS calls. In effect it controls the
number of concurrent EMS requests for an Execution Environment. If a thread is
not available for an EMS call from a rule then the request is put on a wait queue
until a thread is available. While a rule is waiting for an EMS call to complete,
unless the session holds external resources, no Execution Environment interpreter
tasks are blocked. The waiting session is rescheduled for execution when EMS
completes the request.

Code Page Support
TIBCO Object Service Broker uses a single EBCDIC code page as defined in the
@NLS1 table. Non-unicode text data is stored in this code page in the Data Object
Broker table store. By default this code page is set to IBM-037. The host code page
is automatically set to that specified in the @NLS1 table when EMS support in the
Execution Environment is initialized.
 TIBCO Object Service Broker for z/OS External Environments

174 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
The wire code page for EMS can be set using the EMSWIRECODEPAGE
Execution Environment parameter (default is ISO8859-1). The wire code page is
the same for all sessions running under an Execution Environment.

See Also TIBCO Object Service Broker Parameters for more information about the
TASKPOSIXNUM, THREADPOSIXNUM, and EMSWIRECODEPAGE Execution
Environment parameters.

TIBCO Object Service Broker National Language Support for more information on
code pages and the @NLS1 table.

The EMS function tibems_SetCodePage is not available to rules programs.
TIBCO Object Service Broker for z/OS External Environments

Sample Applications | 175
Sample Applications

Rules Samples
The @SAMPLES rules library distributed with TIBCO Object Service Broker
contains a set of sample rules for using the EMS interface. Three types of sample
rules are available:

1. The rules starting with S6B are generalized rules to enable the building of
EMS applications.

2. The rules PUBMAPMSG, PUBMAPMSGS, PUBTEXTMSG, PUBTEXTMSGS
and PUBXMLMSG are sample rules for publishing messages to EMS.

3. The rules SUBMAPMSG, SUBMAPMSGS, SUBTEXTMSG, SUBTEXTMSGS,
and SUBXMLMSG are the counterpart rules that subscribe and retrieve the
messages published by the publishing rules.

To use the rules listed in Sample Rules, edit the table S6BEMSURL, providing
your TIBCO Object Service Broker user ID (field USERID) and the URL for the
EMS server (field URL). If SSL-based message exchange is desired, combinations
of the following values must also be supplied:

• If server verification is required, the server name (field SSL_HOSTNAME)
and a reference to a data set (member) that contains a certificate that
authenticate the server’s certificate, as well as the encoding of the certificate
(fields SSL_TRUSTED_PATH and SSL_TRUSTED_ENCODING). See
tibemsSSLParams_AddTrustedCertFile in the EMS documentation.

• A reference to a data set (member) that contains a client certificate and its
encoding (fields SSL_IDENTITY_PATH and SSL_IDENTITY_ENCODING).
See tibemsSSLParams_SetIdentityFile in the EMS documentation.

• A reference to a data set (member) that contains a client private key and its
encoding, if it has not been supplied as part of the client certificate (fields
SSL_KEY_PATH and SSL_KEY_ENCODING). See
tibemsSSLParams_SetPrivateKeyFile in the EMS documentation.

• The private key password (field SSL_PASSWORD). See
tibemsConnection_CreateSSL in the EMS documentation.
 TIBCO Object Service Broker for z/OS External Environments

176 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
Table 3 Sample Rules

Sample Rule Function

PUBMAPMSG Publishes the string ‘Hello from TIBCO OSB’ as a map
message to queue TIBCO.OSB.MAPTEST.

PUBMAPMSGS Publishes the contents of the contents of the BOOKS table
as a set of map messages to the queue
TIBCO.OSB.MAPTEST.

PUBTEXTMSG Publishes the string ‘Hello from TIBCO OSB’ as a text
message to queue TIBCO.OSB.TXTTEST.

PUBTEXTMSGS Publishes the contents of the contents of the BOOKS table
as a set of text messages to the queue
TIBCO.OSB.TXTTEST.

PUBXMLMSG Publishes the contents of the contents of the BOOKS table
as a XML document to the queue TIBCO.OSB.XMLTEST.

SUBMAPMSG Subscribes to queue TIBCO.OSB.MAPTEST and retrieves
one map message and displays the contents in the
message log. The counterpart to PUBMAPMSG above.

SUBMAPMSGS Subscribes to queue TIBCO.OSB.MAPTEST and retrieves
map messages and displays their contents in the message
log. The counterpart to PUBMAPMSGS above.

SUBTEXTMSG Subscribes to queue TIBCO.OSB.TXTTEST and retrieves
one text message and displays the contents in the message
log. The counterpart to PUBTEXTMSG above.

SUBTEXTMSGS Subscribes to queue TIBCO.OSB.TXTTEST and retrieves
text messages and displays their contents in the message
log. The counterpart to PUBTEXTMSGS above.

SUBXMLMSG Subscribes to queue TIBCO.OSB.XMLTEST and retrieves
an XML document and displays its contents in tabular
form in the message log. The counterpart to PUBXMLMSG
above.
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 177
Supported EMS Functions

The table below lists the functions of the EMS interface for C and COBOL that are
supported by TIBCO Object Service Broker. For each function that returns a
handle to a newly created tracked EMS structure, the word "Tracked" appears in
the Handle Action column, and the number of arguments of the function
returning the handle appears in the Handle Argument column. A zero in the
Handle Argument column indicates that the handle is returned as the actual
value of the EMS function.

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument

tibems_setExceptionOnFTSwitch

tibems_GetConnectAttemptCount

tibems_GetConnectAttemptDelay

tibems_GetConnectAttemptTimeout

tibems_GetExceptionOnFTSwitch

tibems_GetMulticastDaemon

tibems_GetMulticastEnabled

tibems_GetReconnectAttemptCount

tibems_GetReconnectAttemptDelay

tibems_GetReconnectAttemptTimeout

tibems_GetSocketReceiveBufferSize

tibems_GetSocketSendBufferSize

tibems_IsConsumerMulticast

tibems_Open

tibems_SetConnectAttemptCount

tibems_SetConnectAttemptDelay
 TIBCO Object Service Broker for z/OS External Environments

178 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibems_SetConnectAttemptTimeout

tibems_SetMulticastDaemon

tibems_SetMulticastEnabled

tibems_SetReconnectAttemptCount

tibems_SetReconnectAttemptDelay

tibems_SetReconnectAttemptTimeout

tibems_SetSocketReceiveBufferSize

tibems_SetSocketSendBufferSize

tibems_SetTraceFile

tibems_Sleep

tibems_Version

tibemsAdmin_Close

tibemsAdmin_Create

tibemsAdmin_GetCommandTimeout

tibemsAdmin_GetConsumer

tibemsAdmin_GetConsumers

tibemsAdmin_GetInfo

tibemsAdmin_GetProducerStatistics

tibemsAdmin_GetQueue

tibemsAdmin_GetQueues

tibemsAdmin_GetTopic

tibemsAdmin_GetTopics

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 179
tibemsAdmin_SetCommandTimeout

tibemsBytesMsg_Create Track 1

tibemsBytesMsg_GetBodyLength

tibemsBytesMsg_GetBytes

tibemsBytesMsg_ReadBoolean

tibemsBytesMsg_ReadByte

tibemsBytesMsg_ReadBytes

tibemsBytesMsg_ReadChar

tibemsBytesMsg_ReadDouble

tibemsBytesMsg_ReadFloat

tibemsBytesMsg_ReadInt

tibemsBytesMsg_ReadLong

tibemsBytesMsg_ReadShort

tibemsBytesMsg_ReadUnsignedByte

tibemsBytesMsg_ReadUnsignedShort

tibemsBytesMsg_ReadUTF

tibemsBytesMsg_Reset

tibemsBytesMsg_SetBytes

tibemsBytesMsg_WriteBoolean

tibemsBytesMsg_WriteByte

tibemsBytesMsg_WriteBytes

tibemsBytesMsg_WriteChar

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

180 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsBytesMsg_WriteDouble

tibemsBytesMsg_WriteFloat

tibemsBytesMsg_WriteInt

tibemsBytesMsg_WriteLong

tibemsBytesMsg_WriteShort

tibemsBytesMsg_WriteUTF

tibemsCollection_Destroy

tibemsCollection_GetCount

tibemsCollection_GetFirst

tibemsCollection_GetNext

tibemsConnection_Close Untrack 1

tibemsConnection_Create Track 1

tibemsConnection_CreateSession

tibemsConnection_CreateSSL Track 1

tibemsConnection_GetActiveURL

tibemsConnection_GetClientId

tibemsConnection_GetMetaData

tibemsConnection_IsDisconnected

tibemsConnection_SetClientId

tibemsConnection_Start

tibemsConnection_Stop

tibemsConnectionMetaData_GetEMSMajorVersion

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 181
tibemsConnectionMetaData_GetEMSMinorVersion

tibemsConnectionMetaData_GetEMSProviderName

tibemsConnectionMetaData_GetEMSVersion

tibemsConnectionMetaData_GetProviderMajor
Version

tibemsConnectionMetaData_GetProviderMinor
Version

tibemsConnectionMetaData_GetProviderVersion

tibemsConsumerInfo_Destroy

tibemsConsumerInfo_GetCreateTime

tibemsConsumerInfo_GetCurrentMsgCountSentBy
Server

tibemsConsumerInfo_GetCurrentMsgSizeSentBy
Server

tibemsConsumerInfo_GetDestinationName

tibemsConsumerInfo_GetDestinationType

tibemsConsumerInfo_GetDetailedStatistics

tibemsConsumerInfo_GetDurableName

tibemsConsumerInfo_GetElapsedSinceLast
Acknowledged

tibemsConsumerInfo_GetElapsedSinceLastSent

tibemsConsumerInfo_GetID

tibemsConsumerInfo_GetPendingMessageCount

tibemsConsumerInfo_GetPendingMessageSize

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

182 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsConsumerInfo_GetStatistics

tibemsConsumerInfo_GetTotalAcknowledgedCount

tibemsConsumerInfo_GetTotalMsgCountSentBy
Server

tibemsConsumerInfo_IsActive

tibemsConsumerInfo_IsConnected

tibemsConsumerInfo_IsConnectionConsumer

tibemsDestination_Copy

tibemsDestination_Create

tibemsDestination_Destroy

tibemsDestination_GetName

tibemsDestination_GetType

tibemsDetailedDestStat_GetDestinationName

tibemsDetailedDestStat_GetDestinationType

tibemsDetailedDestStat_GetStatData

tibemsErrorContext_Close

tibemsErrorContext_Create

tibemsErrorContext_GetLastErrorStackTrace

tibemsErrorContext_GetLastErrorString

tibemsMapMsg_Create Track 1

tibemsMapMsg_GetBoolean

tibemsMapMsg_GetByte

tibemsMapMsg_GetBytes

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 183
tibemsMapMsg_GetChar

tibemsMapMsg_GetDouble

tibemsMapMsg_GetField

tibemsMapMsg_GetFloat

tibemsMapMsg_GetInt

tibemsMapMsg_GetLong

tibemsMapMsg_GetMapMsg Track 3

tibemsMapMsg_GetMapNames

tibemsMapMsg_GetShort

tibemsMapMsg_GetString

tibemsMapMsg_ItemExists

tibemsMapMsg_SetBoolean

tibemsMapMsg_SetByte

tibemsMapMsg_SetBytes

tibemsMapMsg_SetChar

tibemsMapMsg_SetDouble

tibemsMapMsg_SetFloat

tibemsMapMsg_SetInt

tibemsMapMsg_SetLong

tibemsMapMsg_SetMapMsg

tibemsMapMsg_SetReferencedBytes

tibemsMapMsg_SetShort

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

184 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsMapMsg_SetStreamMsg

tibemsMapMsg_SetString

tibemsMsg_Acknowledge

tibemsMsg_ClearBody

tibemsMsg_ClearProperties

tibemsMsg_Create Track 1

tibemsMsg_CreateCopy Track 2

tibemsMsg_CreateFromBytes Track 1

tibemsMsg_Destroy Untrack 1

tibemsMsg_GetAsBytes

tibemsMsg_GetAsBytesCopy

tibemsMsg_GetBodyType

tibemsMsg_GetBooleanProperty

tibemsMsg_GetByteProperty

tibemsMsg_GetByteSize

tibemsMsg_GetCorrelationID

tibemsMsg_GetDeliveryMode

tibemsMsg_GetDestination

tibemsMsg_GetDoubleProperty

tibemsMsg_GetEncoding

tibemsMsg_GetExpiration

tibemsMsg_GetFloatProperty

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 185
tibemsMsg_GetIntProperty

tibemsMsg_GetLongProperty

tibemsMsg_GetMessageID

tibemsMsg_GetPriority

tibemsMsg_GetProperty

tibemsMsg_GetPropertyNames

tibemsMsg_GetRedelivered

tibemsMsg_GetReplyTo

tibemsMsg_GetShortProperty

tibemsMsg_GetStringProperty

tibemsMsg_GetTimestamp

tibemsMsg_GetType

tibemsMsg_MakeWriteable

tibemsMsg_Print

tibemsMsg_PrintToBuffer

tibemsMsg_PropertyExists

tibemsMsg_SetBooleanProperty

tibemsMsg_SetByteProperty

tibemsMsg_SetCorrelationID

tibemsMsg_SetDeliveryMode

tibemsMsg_SetDestination

tibemsMsg_SetDoubleProperty

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

186 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsMsg_SetEncoding

tibemsMsg_SetExpiration

tibemsMsg_SetFloatProperty

tibemsMsg_SetIntProperty

tibemsMsg_SetLongProperty

tibemsMsg_SetMessageID

tibemsMsg_SetPriority

tibemsMsg_SetRedelivered

tibemsMsg_SetReplyTo

tibemsMsg_SetShortProperty

tibemsMsg_SetStringProperty

tibemsMsg_SetTimestamp

tibemsMsg_SetType

tibemsMsgConsumer_Close

tibemsMsgConsumer_GetDestination

tibemsMsgConsumer_GetMsgSelector

tibemsMsgConsumer_GetNoLocal

tibemsMsgConsumer_Receive

tibemsMsgConsumer_ReceiveNoWait

tibemsMsgConsumer_ReceiveTimeout

tibemsMsgEnum_Destroy

tibemsMsgEnum_GetNextName

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 187
tibemsMsgField_PrintToBuffer

tibemsMsgProducer_Close

tibemsMsgProducer_GetDeliveryMode

tibemsMsgProducer_GetDestination

tibemsMsgProducer_GetDisableMessageID

tibemsMsgProducer_GetDisableMessageTimestamp

tibemsMsgProducer_GetNPSendCheckMode

tibemsMsgProducer_GetPriority

tibemsMsgProducer_GetTimeToLive

tibemsMsgProducer_Send

tibemsMsgProducer_SendEx

tibemsMsgProducer_SendToDestination

tibemsMsgProducer_SendToDestinationEx

tibemsMsgProducer_SetDeliveryMode

tibemsMsgProducer_SetDisableMessageID

tibemsMsgProducer_SetDisableMessageTimestamp

tibemsMsgProducer_SetNPSendCheckMode

tibemsMsgProducer_SetPriority

tibemsMsgProducer_SetTimeToLive

tibemsMsgRequestor_Close

tibemsMsgRequestor_Create

tibemsMsgRequestor_Request

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

188 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsObjectMsg_Create Track 1

tibemsObjectMsg_GetObjectBytes

tibemsObjectMsg_SetObjectBytes

tibemsProducerInfo_Destroy

tibemsProducerInfo_GetCreateTime

tibemsProducerInfo_GetDestinationName

tibemsProducerInfo_GetDestinationType

tibemsProducerInfo_GetDetailedStatistics

tibemsProducerInfo_GetID

tibemsProducerInfo_GetStatistics

tibemsQueue_Create

tibemsQueue_Destroy

tibemsQueue_GetQueueName

tibemsQueueBrowser_Close

tibemsQueueBrowser_GetMsgSelector

tibemsQueueBrowser_GetNext

tibemsQueueBrowser_GetQueue

tibemsQueueInfo_Create

tibemsQueueInfo_Destroy

tibemsQueueInfo_GetDeliveredMessageCount

tibemsQueueInfo_GetFlowControlMaxBytes

tibemsQueueInfo_GetInboundStatistics

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 189
tibemsQueueInfo_GetMaxBytes

tibemsQueueInfo_GetMaxMsgs

tibemsQueueInfo_GetName

tibemsQueueInfo_GetOutboundStatistics

tibemsQueueInfo_GetOverflowPolicy

tibemsQueueInfo_GetPendingMessageCount

tibemsQueueInfo_GetPendingMessageSize

tibemsQueueInfo_GetReceiverCount

tibemsQueueReceiver_GetQueue

tibemsServerInfo_Destroy

tibemsServerInfo_GetConsumerCount

tibemsServerInfo_GetProducerCount

tibemsServerInfo_GetQueueCount

tibemsServerInfo_GetTopicCount

tibemsSession_Close

tibemsSession_Commit

tibemsSession_CreateBrowser

tibemsSession_CreateBytesMessage Track 2

tibemsSession_CreateConsumer

tibemsSession_CreateDurableSubscriber

tibemsSession_CreateMapMessage Track 2

tibemsSession_CreateMessage Track 2

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

190 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsSession_CreateProducer

tibemsSession_CreateStreamMessage Track 2

tibemsSession_CreateTemporaryQueue

tibemsSession_CreateTemporaryTopic

tibemsSession_CreateTextMessage Track 2

tibemsSession_CreateTextMessageEx Track 2

tibemsSession_DeleteTemporaryQueue

tibemsSession_DeleteTemporaryTopic

tibemsSession_GetAcknowledgeMode

tibemsSession_GetTransacted

tibemsSession_Recover

tibemsSession_Rollback

tibemsSession_Unsubscribe

tibemsStatus_GetText

tibemsStatData_GetByteRate

tibemsStatData_GetMessageRate

tibemsStatData_GetTotalBytes

tibemsStatData_GetTotalMessages

tibemsStreamMsg_Create Track 1

tibemsStreamMsg_FreeField

tibemsStreamMsg_ReadBoolean

tibemsStreamMsg_ReadByte

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 191
tibemsStreamMsg_ReadBytes

tibemsStreamMsg_ReadChar

tibemsStreamMsg_ReadDouble

tibemsStreamMsg_ReadField

tibemsStreamMsg_ReadFloat

tibemsStreamMsg_ReadInt

tibemsStreamMsg_ReadLong

tibemsStreamMsg_ReadShort

tibemsStreamMsg_ReadString

tibemsStreamMsg_Reset

tibemsStreamMsg_WriteBoolean

tibemsStreamMsg_WriteByte

tibemsStreamMsg_WriteBytes

tibemsStreamMsg_WriteChar

tibemsStreamMsg_WriteDouble

tibemsStreamMsg_WriteFloat

tibemsStreamMsg_WriteInt

tibemsStreamMsg_WriteLong

tibemsStreamMsg_WriteMapMsg

tibemsStreamMsg_WriteShort

tibemsStreamMsg_WriteStreamMsg

tibemsStreamMsg_WriteString

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

192 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsSSL_GetDebugTrace

tibemsSSL_GetTrace

tibemsSSL_OpenSSLVersion

tibemsSSL_SetDebugTrace

tibemsSSL_SetTrace

tibemsSSLParams_AddIssuerCert

tibemsSSLParams_AddIssuerCertFile

tibemsSSLParams_AddTrustedCert

tibemsSSLParams_AddTrustedCertFile

tibemsSSLParams_Create Track 0

tibemsSSLParams_Destroy Untrack 1

tibemsSSLParams_GetIdentity

tibemsSSLParams_GetPrivateKey

tibemsSSLParams_SetAuthOnly

tibemsSSLParams_SetCiphers

tibemsSSLParams_SetExpectedHostName

tibemsSSLParams_SetIdentity

tibemsSSLParams_SetIdentityFile

tibemsSSLParams_SetPrivateKey

tibemsSSLParams_SetPrivateKeyFile

tibemsSSLParams_SetRandData

tibemsSSLParams_SetRandEGD

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

Supported EMS Functions | 193
tibemsSSLParams_SetRandFile

tibemsSSLParams_SetVerifyHost

tibemsSSLParams_SetVerifyHostName

tibemsTextMsg_Create Track 1

tibemsTextMsg_GetText

tibemsTextMsg_SetText

tibemsTopic_Create

tibemsTopic_Destroy

tibemsTopic_GetTopicName

tibemsTopicInfo_Create

tibemsTopicInfo_Destroy

tibemsTopicInfo_GetActiveDurableCount

tibemsTopicInfo_GetDurableCount

tibemsTopicInfo_GetFlowControlMaxBytes

tibemsTopicInfo_GetInboundStatistics

tibemsTopicInfo_GetMaxBytes

tibemsTopicInfo_GetMaxMsgs

tibemsTopicInfo_GetName

tibemsTopicInfo_GetOutboundStatistics

tibemsTopicInfo_GetOverflowPolicy

tibemsTopicInfo_GetPendingMessageCount

tibemsTopicInfo_GetPendingMessageSize

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
 TIBCO Object Service Broker for z/OS External Environments

194 | Chapter 12 Using the Interface to TIBCO Enterprise Message Service
tibemsTopicInfo_GetSubscriberCount

Table 4 Supported EMS Functions

EMS Function Handle
Action

Handle
Argument
TIBCO Object Service Broker for z/OS External Environments

| 195
Chapter 13 Using the TIBCO Service Gateway for WMQ

This chapter describes how to access IBM WebSphere MQ message queues using
the TIBCO Service Gateway for WMQ.

Topics

• Overview, page 196
 TIBCO Object Service Broker for z/OS External Environments

196 | Chapter 13 Using the TIBCO Service Gateway for WMQ
Overview

Service Gateway for WMQ is a Message Oriented Middleware (MOM)
application containing several shared tools.You use it to create, send, receive, and
process messages in a network of WebSphere MQ-enabled TIBCO Object Service
Broker and non-TIBCO Object Service Broker applications. This message
processing can take place across supported platforms.

Usage Notes

System Map Table

The interface between the rules and WebSphere MQ is controlled by the internal
@MOMMAP map table and the corresponding MOM-specific table, for example,
@MQSMAP. This is set up by the @MOMINIT shareable tool.

Required Local Variable

Prior to your first @MOM... call, you must define a local variable called
@MOMMAP_ADDRESS, to be available to all subsequent @MOM... calls.

WebSphere MQ Environment

Only one MOM environment can be active in any one session at a time. The
environment is owned by the transaction issuing the @MOMINIT call. The
environment can be shared only with transactions executed by that transaction.
You do this by passing @MOMMAP_ADDRESS.

Possible TASKEXECNUM Increase

TIBCO Service Gateway for WMQ is TCB-specific. Therefore @MOMINIT sets
TCB affinity for the transaction. This means an interpreter TCB is held for the
duration of the transaction. In a multi-user Execution Environment, this can
require you to increase the TASKEXECNUM Execution Environment parameter.

See Also TIBCO Object Service Broker Parameters for details on the TASKEXECNUM
Execution Environment parameter.

For details about installing Service Gateway for WMQ, see TIBCO Object Service
Broker for z/OS Installing and Operating.

Service Gateway for WMQ is a separately licensed add-on to TIBCO Object
Service Broker.
TIBCO Object Service Broker for z/OS External Environments

Overview | 197
Error Handling
The return code and reason code from the MOM software are stored in the map
table @MQSMAP which is a shareable tool. You can check these stored codes in
your rules. Refer to @MQSMAP in TIBCO Object Service Broker Shareable Tools for
more information about this tool.

Example Rule
The following rule moves all the messages from one queue to another. In this rule,
@MOMBUFFER is a MAP table set up by the writer of the rule to describe the
data being written.

MOMPASSER;
_ LOCAL @MOMMAP_ADDRESS, CONNECTION, QUEUE1, QUEUE2;
_ ---
_ --+------
_ CALL @MOMINIT(1000, 'MQSERIES'); ¦ 1
_ CONNECTION = @MOMCONNECT('CSQ1'); ¦ 2
_ CALL @MOMVALIDRC; ¦ 3
_ CALL @MOMSETOPT('MQOO_INPUT_SHARED'); ¦ 4
_ QUEUE2 = @MOMOPEN(CONNECTION, 'RON2'); ¦ 5
_ CALL @MOMVALIDRC; ¦ 6
_ CALL @MOMSETOPT('MQOO_OUTPUT'); ¦ 7
_ QUEUE1 = @MOMOPEN(CONNECTION, 'RON1'); ¦ 8
_ CALL @MOMVALIDRC; ¦ 9
_ CALL @MOMSETOPT('MQPMO_NONE'); ¦ A
_ @MQSMAP.GO_WAITINTERVAL = 10000000; ¦ B
_ @MQSMAP.GO_OPTIONS = @MOMOPTION('MQGMO_WAIT'); ¦ C
_ @MQSMAP.GO_MATCHOPTIONS = @MOMOPTION('MQGMO_NONE'); ¦ D
_ UNTIL MOM_SHUTDOWN : ¦ E
_ CALL @MOMGET(CONNECTION, QUEUE2, '@MOMBUFFER'); ¦
_ CALL @MOMVALIDRC; ¦
_ CALL @MOMPUT(CONNECTION, QUEUE1, '@MOMBUFFER', 80); ¦
_ CALL @MOMVALIDRC; ¦
_ CALL @MOMCOMMIT(CONNECTION); ¦
_ CALL @MOMVALIDRC; ¦
_ END; ¦
_ CALL MSGLOG('SHUTDOWN RECEIVED.'); ¦ F
_ QUEUE1 = @MOMCLOSE(CONNECTION, QUEUE1); ¦ G
_ CALL @MOMVALIDRC; ¦ H
_ QUEUE2 = @MOMCLOSE(CONNECTION, QUEUE2); ¦ I
_ CALL @MOMVALIDRC; ¦ J
_ CONNECTION = @MOMDISCONN(CONNECTION); ¦ K
_ CALL @MOMVALIDRC; ¦ L
_ CALL ENDMSG('NORMAL SHUTDOWN DETECTED.'); ¦ M
_ ---
_ ON MOM_INV_MOMMSG :
_ QUEUE1 = @MOMCLOSE(CONNECTION, QUEUE1);
_ QUEUE2 = @MOMCLOSE(CONNECTION, QUEUE2);
_ CONNECTION = @MOMDISCONN(CONNECTION);
_ CALL ENDMSG('INVALID MOM MSG DETECTED.');
 TIBCO Object Service Broker for z/OS External Environments

198 | Chapter 13 Using the TIBCO Service Gateway for WMQ
See Also TIBCO Object Service Broker Shareable Tools about the MOM shareable tools.
TIBCO Object Service Broker for z/OS External Environments

| 199
Chapter 14 Introduction to the Call Level Interface

This chapter describes the call level interface.

Topics

• Aspects of the Call Level Interface, page 200

• Functionality of the Call Level Interface, page 203

• Operational Characteristics, page 206

• Call Level Interface Specification, page 207

• HRNHLLTM Module Parameters, page 209

• Valid Calling Sequences, page 212

• Examples of Typical Usage, page 214

• Using the Host Languages Interface, page 216
 TIBCO Object Service Broker for z/OS External Environments

200 | Chapter 14 Introduction to the Call Level Interface
Aspects of the Call Level Interface

Purpose of the Call Level Interface
The Call Level Interface provides facilities that you can code into client programs
written in a third-generation language (3GL) to access a TIBCO Object Service
Broker that is running in the same environment. These client programs can be
running in batch, TSO, or CICS environments. Using these facilities, you can:

• Write TIBCO Object Service Broker user client routines in a 3GL such as
assembler or COBOL

• Extend existing assembler or COBOL programs to include calls to the TIBCO
Object Service Broker Call Level Interface

TIBCO Object Service Broker Software Development Kits (SDKs)

If your external program resides in a different address space from the TIBCO
Object Service Broker it is accessing, you must use one of the TIBCO Object
Service Broker SDKs. For more information:

Supported Functionality
With the Call Level Interface, you can:

• Start and stop an Execution Environment

• Start and stop a session within a started Execution Environment

• Start a transaction, modify its transactional characteristic and start additional
transactions (streams) within the transaction

• Call a rule, commit or roll back table changes, and perform table access using
the HLI or SQL preprocessor interface within a started transaction

External
Environment Interface Refer to

C programs,
C++ programs

SDK (C/C++) Chapter 18, TIBCO Object Service Broker
SDK (C/C++) Server, page 265.

Chapter 19, Using TIBCO Object Service
Broker SDK (C/C++), page 271.

Java programs SDK (Java) Chapter 20, Using TIBCO Object Service
Broker SDK (Java), page 303.
TIBCO Object Service Broker for z/OS External Environments

Aspects of the Call Level Interface | 201
All these functions provide feedback indicating the success of the operation in the
form of a return code, a reason code, or a message.

Supported Connections
The Call Level Interface supports connections to the Execution Environment
within the same address space (batch, TSO, or CICS environments). The interface
is supported via standard z/OS calling conventions.

Shared Addressing
The user client routine can share an address space with the Execution
Environment and the session. As a consequence, by using the MAP table
interface:

• Rules are able to address common storage of the 3GL programs, if the
addresses are passed to TIBCO Object Service Broker.

• Registered storage explicitly obtained by the rule as part of processing, or as
data access triggered execution, are addressable by the 3GL program.

See Also TIBCO Service Gateway for Files Installing and Operating about MAP tables.

TIBCO Object Service Broker Programming in Rules for information on rules.

Accessing Table Data Using the Host Languages Interface
If your client program is a COBOL program, you can embed TIBCO Object
Service Broker access statements or SQL statements as outlined in Chapter 18,
TIBCO Object Service Broker SDK (C/C++) Server, page 265 to Chapter 20, Using
TIBCO Object Service Broker SDK (Java), page 303.
 TIBCO Object Service Broker for z/OS External Environments

202 | Chapter 14 Introduction to the Call Level Interface
Illustration of Generic User Client Using Call Level Interface
The following illustration shows how a generic user client uses the Call Level
Interface:

TTSO Address Space

Execution Environment

Session

Transaction

Call Level Interface

EE
Parameters

Start

Session
Parameters

Rule
Parameters

User TSO Client

yourname

Start
EE

Stop
EE

Start
Session

Start
Transaction

Stop
Session

End
TransactionCall Rule

Data Object Broker

MAP Table Access

External
Routines

Data in
Memory

Data OutData In

Rule

Data in
Memory

CALL

3270 Terminal

TIBCO Object Service Broker supplied User supplied
TIBCO Object Service Broker for z/OS External Environments

Functionality of the Call Level Interface | 203
Functionality of the Call Level Interface

Start or Locate and Stop an Execution Environment
When starting an Execution Environment, you can pass it environment
parameters. During the initialization, standby sessions are created that connect to
the Data Object Broker and wait for requests to start a TIBCO Object Service
Broker session.

Starting or Locating an Execution Environment

After the Execution Environment is started, TIBCO Object Service Broker returns
to your client program the name of the Table Data Store (TDS) to which your
Execution Environment is connected. When locating an Execution Environment, a
handle to an Execution Environment that is already started is returned to the
client program.

Stopping an Execution Environment

When the Execution Environment is stopped, all sessions are terminated and
disconnected from the Data Object Broker. Your handle to the Execution
Environment is no longer valid.

Start and Stop a TIBCO Object Service Broker Session
To start a session, you need a valid handle to an Execution Environment. When
starting a session you can pass it session parameters. During session initialization,
an available standby session is acquired, login security and profile processing is
performed, and the login transaction is completed. After the session is started, the
handle to the session is released back to the client program.

When stopping the session, the session is released back to the pool of standby
sessions and control is returned back to the client program. Your handle to the
session is no longer valid.
 TIBCO Object Service Broker for z/OS External Environments

204 | Chapter 14 Introduction to the Call Level Interface
Start and End a TIBCO Object Service Broker Stream
A stream is a transaction nesting level within which you can modify its
transactional characteristics, and start and end a transaction. When you start a
stream, the transaction nesting level increases by one and it temporarily suspends
the ability to access the parent transaction context. When you end a stream, it
decreases the nesting level by one and resets the transaction context to that of the
previous stream level.

Modifying Stream Characteristics

When starting a stream, you can specify the following characteristics:

• BROWSE or UPDATE

• TEST or NOTEST

• Local LIBRARY

• SEARCH order of the rules libraries

These characteristics are inherited from the user profile and the parent stream in
the same way that the EXECUTE statement provides for inheritance. You can
modify stream characteristics when the stream does not contain a started
transaction.

Start and End a TIBCO Object Service Broker Transaction
The first transaction starts a transaction stream. You can nest transactions within
transactions. Each nesting causes a transaction stream to start.

When you start a transaction stream the transaction nesting level increases by one
and it temporarily suspends the ability to access the parent transaction context.
When you end a stream, it decreases the nesting level by one, and resets the
transaction context to that of the previous stream level.

Modifying Transaction Characteristics

When starting a transaction, you can specify the following characteristics:

• BROWSE or UPDATE

• TEST or NOTEST

• Local LIBRARY

• SEARCH order of the rules libraries
TIBCO Object Service Broker for z/OS External Environments

Functionality of the Call Level Interface | 205
These characteristics are inherited from the user profile and the parent stream in
the same way that the EXECUTE statement provides for inheritance. When a
transaction ends, changes made to persistent table data are committed and all
locks are dropped.

Committing or Rolling Back Persistent Table Changes

You can commit persistent table changes to TDS and external database tables;
logical locks acquired during the course of the transaction are retained after the
commit. You can also roll back and discard all changes to TDS and external
database tables made since the last commit or transaction start.

Call a TIBCO Object Service Broker Rule
You specify the name of an entry rule to be called and its arguments. When the
rule completes within the transaction environment, control is returned back to the
client program. In addition, the client program can pass DATA-IN and
DATA-OUT areas to the session. The rule can read the DATA-IN areas using MAP
tables or tools such as $GETENVCOMMAREA. The rule can write to DATA-OUT
areas using MAP tables or tools such as $SETENVCOMMAREA. The rule can also
access other data in the address space if the storage is registered to the MAP table
facilities.

Finding the Name of a Rule in A Transaction
You can use the $RULENAME shareable tool to find out the name of a rule in the
current transaction or in a parent transaction.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Shareable Tools about the tools.
 TIBCO Object Service Broker for z/OS External Environments

206 | Chapter 14 Introduction to the Call Level Interface
Operational Characteristics

Supported 3GL Languages
The user client program can be written in any language. To also access data using
the Host Languages Interface, the program is restricted to COBOL.

Multiple Execution Environments per Address Space
Connections to an Execution Environment are restricted to one Execution
Environment for that address space. However, multiple-session connects are
allowed.

Standby Sessions
In multiple-session environments such as CICS, the number of programs allowed
to issue TIBCO Object Service Broker session interface calls is determined by the
STANDBYNUM Execution Environment parameter, and is limited to the number
of standby sessions started at Execution Environment startup. If there are more
calling programs than the number of available standby sessions, the affected
calling programs are put in a wait queue until one is available.

When Viewed by TIBCO Object Service Broker Administrator Tools
Standby sessions that are connected to the Data Object Broker and are not in use
by a client can be identified by the format of their session name:

$aaaannn

A standby session assumes the user profile specified in the STARTSS. Therefore,
multiple standby sessions can assume similar profiles from the same user ID.

A standby session remains connected until the calling program that started the
session ends it. The administrator tools see only the registered user ID, starting
with a dollar sign ($).

$ Is fixed and identifies that this is a standby session

aaaa Is the fixed address space ID (ASID) of the Execution Environment

nnn Is a generated sequence number
TIBCO Object Service Broker for z/OS External Environments

Call Level Interface Specification | 207
Call Level Interface Specification

What Is the Module to Call?
You access all facilities of the Call Level Interface by calling the module
HRNHLLTM. HRNHLLTM requires eight standard parameters, described in
HRNHLLTM Module Parameters on page 209. Additional parameters are
optional, and are used to convey exit information for advanced applications (refer
to Chapter 17, Multiple-Session Execution Environments in Batch, on page 255).

Standard operating system parameter passing and linkage conventions are used.
HRNHLLTM is link-edited with the calling application program. Refer to the
sample members COBCOLNK in the JCL data set distributed with TIBCO Object
Service Broker for an example link-edit of a user client program with the Call
Level Interface modules.

Example CALL Formats

COBOL Example

CALL 'HRNHLLTM' USING HRNHLLWA HRN-HRN-OPERATION HRN-OPERAND

HRN-PARM HRN-DATA-IN HRN-DATA-OUT HRN-RETURN-DATA HRN-RETURN-CODE.

Assembler Example

CALL HRNHLLTM,(HRNHLLWA,OPERATION,OPERAND,PARM,DATA-IN,

DATA-OUT,RETURN-DATA,RETURN-CODE),VL,MF=(E,CALLLIST)

Required Parameters
Every call to HRNHLLTM must provide a valid:

• HRNHLLWA work area

• OPERATION

• RETURN-DATA and RETURN-CODE

Depending on the Call Level Interface function, the other parameters are ignored.
 TIBCO Object Service Broker for z/OS External Environments

208 | Chapter 14 Introduction to the Call Level Interface
Usage of the Parameters
The call parameters passed into HRNHLLTM are used to:

• Convey the TIBCO Object Service Broker context of the client program
(HRNHLLWA)

• Specify the Call Level Interface function (OPERATION and OPERAND)

• Communicate data between the client and TIBCO Object Service Broker
(PARM, DATA-IN, DATA-OUT, RETURN-DATA, and RETURN-CODE)

Parameter Types

Parameters are of type IN, OUT, or IN/OUT. Storage for all parameters must be
allocated by the client program.

• IN-type parameters are set by the client and read by the Call Level Interface.

• OUT-type parameters are set by the Call Level Interface and read by the client.

• IN/OUT-type parameters are set and read by the client and by the Call Level
Interface.

NULL Parameters

Some Call Level Interface functions require a NULL call parameter. In this case, a
dummy value must be coded in that position. The value of the dummy parameter
is ignored.
TIBCO Object Service Broker for z/OS External Environments

HRNHLLTM Module Parameters | 209
HRNHLLTM Module Parameters

Valid Call Parameters
The following table provides a description of each parameter to HRNHLLTM and
tells whether each parameter is of type IN, OUT, or IN/OUT.

Parameter Description Type

HRNHLLWA Work area of 687-bytes, used by the Call Level Interface
to maintain the handles to the Execution Environment,
session, stream and transaction and cursor context. This
work area is in the same format as that used by the Host
Languages Interface.

IN/OUT

OPERATION Uppercase character string naming the type of interface
call to be performed. For example, the string STARTEE
designates the Start Execution Environment operation;
and STOPEE, the Stop Execution Environment
operation.

Refer to Operational Parameters on page 210 for a
listing of call OPERATION parameters.

IN

OPERAND Uppercase character string used as an operand of the
OPERATION to further qualify the operation. For
example, the string BATCH qualifies the STARTEE
operation.

IN

PARM Variable length uppercase character string used as a
parameter to the OPERATION/OPERAND. For
example, the assembler string:
AL2(10),C'TDS=DEV3'

can be used as a PARM to the STARTEE BATCH
function to specify that the Execution Environment is to
connect to a Data Object Broker called DEV3.

The variable-length string is made up of a two-byte
header containing the length of the string and the string
that must immediately follow the header. An empty
string of length zero is represented by two-byte header
with a value of binary 0. Rules arguments enclosed in
quotes can contain lowercase data.

IN
 TIBCO Object Service Broker for z/OS External Environments

210 | Chapter 14 Introduction to the Call Level Interface
Operational Parameters
The following table relates each Call Level Interface function to an OPERATION
and OPERAND parameter value. Ignored parameters are blank in the table.

 DATA-IN This parameter is used only when calling a rule. In this
case, DATA-IN is used to pass blocks of data from the
client to the session. Refer to Calling a Rule –
CALLRULE on page 249 for a detailed description of
this parameter.

IN

DATA-OUT This parameter is used only when calling a rule. In this
case DATA-OUT is used to pass data from the session
to the client. Refer to Calling a Rule – CALLRULE on
page 249 for a detailed description of this parameter.

OUT

RETURN-DATA For some interface functions, if the RETURN-CODE is
0, this parameter contains feedback data.

If the RETURN-CODE is non-zero, the parameter
contains either a reason-code or a variable length
message. RETURN-DATA should be at least 159 bytes
long to accommodate the largest possible return
message.

OUT

RETURN-CODE Four-byte return code returned by the interface
indicating the success of the requested operation. A
value of 0 indicates success; any other value indicates
that the operation did not complete successfully, with
the exception of the STARTEE and STOPEE calls. If the
return code is non-zero, the RETURN-DATA parameter
can contain a reason code or a message.

Refer to Starting or Locating the Execution
Environment – STARTEE on page 234 and Stopping the
Execution Environment – STOPEE on page 237 for
further explanation of return codes in the STARTEE
and STOPEE calls.

OUT

Parameter Description Type
TIBCO Object Service Broker for z/OS External Environments

HRNHLLTM Module Parameters | 211
Interface
Function Operation Operand Parameter DATA-IN DATA-OUT

DATA-RETURN
(if return code
= 0)

Start or locate
an Execution
Environment

STARTEE BATCH

TSO

CICS

Execution
Environment
parameters

TDS name

Start a session STARTSS Session
parameters

User ID

Start a
transaction
/stream and
set its
characteristics

STARTTR {BROWSE|
UPDATE}

{TEST|
NOTEST}

SEARCH=p

LIBRARY=
xxxxxxxx

Start a rule CALLRULE Rule and its
arguments

Block of
data

Block of data

End
transaction/
stream

STOPTR COMMIT

ROLLBACK

Stop a session STOPSS

Stop an
Execution
Environment

STOPEE
 TIBCO Object Service Broker for z/OS External Environments

212 | Chapter 14 Introduction to the Call Level Interface
Valid Calling Sequences

You must call Call Level Interface functions in a particular sequence. For example,
before you can start a session, you must first start an Execution Environment. In
general, you cannot use the functionality of a TIBCO Object Service Broker object
until it has been explicitly created by starting it and you cannot create a TIBCO
Object Service Broker object until the appropriate environment has been
established.

Calling Sequence

External
Environment Calling Sequence

Single-session

(Batch and TSO)

The client program must:

Establish the Execution Environment.

Start the session.

Invoke the TIBCO Object Service Broker functionality.

Termination of sessions and of the Execution Environment
is performed in the reverse sequence.

Multiple-session

(CICS)

In a multiple-session environment, the Execution
Environment must be started separately, which is normally
done as part of standard operations. This process
establishes, at start-up, the concurrent number of standby
sessions deemed necessary for the connect of the interface.

The client program, using the STARTEE function:

Locates the Execution Environment.

Starts a session (which acquires one of the available
standby sessions).

Invokes the TIBCO Object Service Broker functionality.

The STOPSS function terminates the session. Session
termination releases the standby session and makes it
available to other calling programs.
TIBCO Object Service Broker for z/OS External Environments

Valid Calling Sequences | 213
Permissible Transitions Between the Call Level Interface Functions
The following illustration shows the permissible transitions between the Call
Level Interface functions. Invalid calling sequences generate a non-zero
RETURN-CODE.

Client

Execution Environment exists

Session exists

Transaction exists
stream level = n

Transaction exists
stream level = n + 1

STOPEE

STOPSS

STOPTR
BROWSE
UPDATE
TEST
NOTEST
SEARCH
LIBRARY STOPTR

STARTEE

STARTSS

STARTTR

STARTTR STARTTR
level = level + 1

STOPTR
level = level - 1

COMMIT
CALLRULE
ROLLBACK

COMMIT
CALLRULE
ROLLBACK
 TIBCO Object Service Broker for z/OS External Environments

214 | Chapter 14 Introduction to the Call Level Interface
Examples of Typical Usage

You can use the Call Level Interface to write a client program that provides
features of the batch client and the rules language, but with a much finer line of
granularity. For economy of representation, only the OPERATION, OPERAND,
and PARM (if required) are explicitly stated. The COBOL or assembler call, null
parameters and RETURN-DATA and RETURN-MESSAGE processing should be
viewed as implicit.

Batch Client Example
In this example, the functionality of a simple invocation of the z/OS batch client is
translated into a series of Call Level Interface calls. Assume that we invoked the
batch client as follows (the session parameter NOBROWSE means UPDATE):

// EXEC PGM=S6BBATCH,
// PARM='TDS=DOB1,RULE=EMP_ADD(2),LIBRARY=EMPTEST,NOBROWSE,SEARCH=L,NOTEST'

This functionality could be implemented by a client program as follows:

STARTEE 'TDS=DOB1'
STARTSS
STARTTR UPDATE, NOTEST, LIBRARY=EMPTEST, SEARCH=L
CALLRULE EMP_ADD(2)
STOPTR
STOPSS
STOPEE
TIBCO Object Service Broker for z/OS External Environments

Examples of Typical Usage | 215
Nested Execute Example
This example shows how to create a nested transaction. Based on the Batch Client
Example on page 214, assume that we invoke a BROWSE transaction and call the
EMP_B rule before terminating the initial transaction. This functionality could be
implemented by a client program as follows:

STARTEE 'TDS=DOB1'
STARTSS
STARTTR UPDATE, NOTEST, LIBRARY=EMPTEST, SEARCH=L
CALLRULE EMP_ADD(2)
 .
 .
 STARTTR BROWSE, NOTEST, LIBRARY=EMPTEST, SEARCH=L
 CALLRULE EMP_B
 STOPTR
STOPTR
STOPSS
STOPEE

TRANSFERCALL Example
This example shows how to obtain the rules-based functionality of a
TRANSFERCALL using the Call Level Interface. Based on the Batch Client
Example on page 214, assume that we invoke a BROWSE transaction and call the
EMP_B rule after terminating the initial transaction. This functionality could be
implemented by a client program as follows:

STARTEE 'TDS=DOB1'
STARTSS
STARTTR UPDATE, NOTEST, LIBRARY=EMPTEST, SEARCH=L
CALLRULE EMP_ADD(2)
STOPTR
STARTTR BROWSE
CALLRULE EMP_B
STOPTR
STOPSS
STOPEE
 TIBCO Object Service Broker for z/OS External Environments

216 | Chapter 14 Introduction to the Call Level Interface
Using the Host Languages Interface

User COBOL source programs can use the Call Level Interface together with
either embedded TIBCO Object Service Broker access statements or embedded
SQL statements. After establishing a transaction environment using the Call Level
Interface STARTTR function, you can issue embedded TIBCO Object Service
Broker or SQL statements to access TIBCO Object Service Broker tables.

Writing a COBOL Program Using a Combination of the Call Level Interface,
TIBCO Object Service Broker Access Statements, and SQL Statements

The procedure for writing a COBOL program that uses the Call Level Interface
and TIBCO Object Service Broker access or embedded SQL statements is:

1. In the WORKING-STORAGE section, establish the access environment for
embedded access statements.

Refer to Chapter 21, Coding TIBCO Object Service Broker Access Statements,
on page 339 or Chapter 22, Coding SQL Access Statements, on page 351,
depending on whether you intend to use TIBCO Object Service Broker access
statements or SQL access statements. In either case, the HRNHLLWA, which
is shared between the Call Level Interface and the access statements, is
automatically generated for you.

2. In the WORKING-STORAGE section, copy in the copybook HRNHLIST
provided in the distribution MACRO data set.

This copybook provides you with the additional declarations used by the Call
Level Interface.

3. In the PROCEDURE DIVISION, create a transactional environment as
described in the previous sections before coding data access statements.

You are in a transactional environment after issuing the STARTTR function.

4. In the transactional environment, code access statements.

Refer to Chapter 21, Coding TIBCO Object Service Broker Access Statements,
on page 339 or Chapter 22, Coding SQL Access Statements, on page 351.
During program execution, these access statements can be preceded or
followed by the Call Level Interface CALLRULE function.

When you end a first-stream-level transaction using the STOPTR function, you
can no longer execute TIBCO Object Service Broker access statements or SQL
access statements. You can, however, resume coding these statements after a
STOPTR function, if this returns you to a lower transaction nesting level.
TIBCO Object Service Broker for z/OS External Environments

Using the Host Languages Interface | 217
Additional Steps
1. Precompile using the preprocessor

Precompile third-party programs with embedded data access calls through
the TIBCO Object Service Broker preprocessor, to allow for the TIBCO Object
Service Broker or SQL data access statements.

Convert the TIBCO Object Service Broker or SQL statements to COBOL using
the HLIPREPROCESSOR tool. Refer to Chapter 23, Processing COBOL
Programs, on page 367 for information on how to use this tool.

2. Compile and link your program

Refer to the member COBCOLNK in the JCL data set distributed with TIBCO
Object Service Broker, for an example of this step.

3. Invoke the COBOL user client program

Refer to the member COBBATCH in the JCL data set distributed with TIBCO
Object Service Broker, for an example of this invocation.

The STEPLIB DD must have the TIBCO Object Service Broker Load Library
concatenated to it. Since such a concatenation normally causes
de-authorization of the STEPLIB, you should also provide a HRNLIB DD
pointing to the TIBCO Object Service Broker Load Library.
 TIBCO Object Service Broker for z/OS External Environments

218 | Chapter 14 Introduction to the Call Level Interface
TIBCO Object Service Broker for z/OS External Environments

| 219
Chapter 15 Preparing the Environment, Analyzing
Returned Values, and Modifying Changes

This chapter describes how to prepare the environment, analyze returned values,
and modify changes.

Topics

• Preparing to Start or Locate the Execution Environment, page 220

• How to Analyze the Return and Reason Codes, and Returned Message,
page 222

• Call Level Interface Return Codes, page 225

• Call Level Interface Reason Codes, page 226

• Committing and Rolling Back Persistent Table Changes, page 231
 TIBCO Object Service Broker for z/OS External Environments

220 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
Preparing to Start or Locate the Execution Environment

Preparatory Steps
Complete the following tasks, starting with Allocate and Initialize Storage on
page 221, before you start or locate an Execution Environment in your client
program using the STARTEE function. Sample code is included to assist you with
developing your applications for the Call Level Interface. This code appears in the
MACRO and COBOL data sets.

MACRO Data Set

COBOL Data Set

Member
Name Description

HRNHLIST Copy book that defines constructs and parameter names for
COBOL clients calling HRNLLTM.

HRNHLWAA Copy book that defines an initialized HRNHLLWA for
assembler clients.

HRNHLWAC Copy book that allocates and initializes the HRNHLLWA work
area in COBOL before it is used by the HRNHLLTM program.

Member
Name Description

COBCAPI1 A program written using the current Call Level Interface
statements to start, prepare, and stop an Execution
Environment. It also checks and responds to the return and
reason codes issued by these operations.

COBBATCH Batch JCL for the Call Level Interface.

COBCOLNK JCL to pretranslate, compile, and link the sample COBOL
program COBCAPI1.
TIBCO Object Service Broker for z/OS External Environments

Preparing to Start or Locate the Execution Environment | 221
Task A Allocate and Initialize Storage

You must allocate and initialize storage for the work area HRNHLLWA, to
contain handles to all the TIBCO Object Service Broker objects.

Task B Allocate DD Names

If you are starting an Execution Environment using the TSO or BATCH operand,
you must ensure that all the DD names required by the Execution Environment
are allocated either through JCL or dynamic allocation:

1. Ensure that the TIBCO Object Service Broker load library is concatenated to
the STEPLIB.

If the other libraries in the STEPLIB are not authorized, add a HRNLIB DD
statement to point to the load library to run an authorized Execution
Environment.

2. Ensure that the DDname HRNIN points to an Execution Environment
parameter file.

Task C CICS only – Establish the Execution Environment

If your client program is intended for execution in the CICS environment, the
Execution Environment must be established at CICS initialization time, or via the
HINT transaction. Refer to Chapter 7, Using the TIBCO Service Gateway for
CICS, on page 59 for information on establishing a CICS Execution Environment.

S6BCALIN A Call Level Interface assembler program for the CICS
Execution Environment.

S6BCAPID Driver for testing the Call Level Interface in batch or from TSO
(assembler version).

Member
Name Description
 TIBCO Object Service Broker for z/OS External Environments

222 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
How to Analyze the Return and Reason Codes, and Returned

Message

After every call to HRNHLLTM you should check the return code to ensure that
the operation was successful. The Call Level Interface return code is set in the
eighth parameter to HRNHLLTM (HRN-RETURN-CODE in the COBOL
examples, CODE in the assembler examples). Possible values of return codes and
reason codes and their meanings are listed in Call Level Interface Return Codes
on page 225 and in Call Level Interface Reason Codes on page 226.

Evaluation of the Return and Reason Codes
The return and reason codes are evaluated as follows:

• If the return code is not zero, either a numeric reason code is returned, or a
message string is returned in the seventh parameter (S6BRETURN-DATA in
the COBOL examples, DATA in the assembler examples).

• If the first byte of RETURN-DATA is zero, the first four bytes of
RETURN-DATA contain the reason code.

• If the first byte of the reason code is not zero, a printable message string of
length 129 is returned. This message is the ENDMSG—a short error message
that typically appears at the bottom of the workbench during an online TIBCO
Object Service Broker session.

Capturing the Returned Values
Alternatively, you can use the MESSAGE_LOG tool to capture a message log and
place it in a TDS table for later viewing. This is an appropriate technique during
application development and debugging. You can also capture relevant parts of
the message log and place it in a commarea to pass back to the COBOL program.
This requires the ability to predict the error and handle it in your client program,
but it is appropriate for error handling in a production system.

Examples
The following two examples show how you can analyze and display the return
code, reason code, and returned message.
TIBCO Object Service Broker for z/OS External Environments

How to Analyze the Return and Reason Codes, and Returned Message | 223
Analyzing and Displaying in COBOL

 OSB-STATUS.
 DISPLAY 'CHECKING OSB STATUS'.
 IF OSB-CALL-OK
 NEXT SENTENCE
 ELSE
 IF REASON-CODE-EXISTS
 DISPLAY '***************************************'
 DISPLAY '*** Unsuccessful API Call ***'
 DISPLAY '***************************************'
 DISPLAY 'HRN-RETURN-CODE = ' HRN-RETURN-CODE
 DISPLAY 'HRN-REASON-CODE = ' HRN-REASON-CODE
 STOP RUN
 ELSE
 DISPLAY '***************************************'
 DISPLAY '*** Unsuccessful OSB Call ***'
 DISPLAY '***************************************'
 DISPLAY 'HRN-RETURN-CODE = ' HRN-RETURN-CODE
 DISPLAY 'HRN-RETURN-DATA = ' HRN-RETURN-DATA
 STOP RUN.
 OSB-STATUS-EXIT.
 EXIT.

Analyzing and Displaying in Assembler

* - *
* *
* SUBROUTINE - WRITE OUTPUT *
* *
* - *

S2SHOWRC DS 0H
 ST R14,STRLINK2 SAVE LINK REGISTER
*
 MVC STROUREC,BLANKS BLANK OUTPUT AREA
 MVC STRETURN,RETURNCO COPY 'RETURN CODE='
 L R1,HAPRCODE GET RETURN CODE ADDRESS
 HEXCHAR 2(R1),STRETCOD,2
*
 L R1,HAPRDATA GET REASON CODE ADDRESS
 CLI 0(R1),X'00' REASON CODE?
 BNE S2SHPUT1 NO, JUST PRINT THE RETURN CODE
*
 MVC STREASON,REASONCO COPY 'REASON CODE='
 HEXCHAR 2(R1),STREACOD,2
*
S2SHPUT1 DS 0H
 ADRMODE 24 USE AMODE(24) FOR PUT REQUEST
 PUT (OUTREG),STROUREC
 ADRMODE 31 RESTORE AMODE(31)
*

 TIBCO Object Service Broker for z/OS External Environments

224 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
 L R1,HAPRDATA GET REASON CODE ADDRESS
 CLI 0(R1),X'00' WAS IT REASON CODE?
 BE S2SDATAO YES, DONE
*
 MVC STRRDATA,RETURNDA COPY 'RETURN DATA='
 MVC STRETDAT,0(R1) COPY RETURN DATA
 MVC RETDATA(80),BLANKS BLANK OUTPUT AREA
*
 ADRMODE 24 USE AMODE(24) FOR PUT REQUEST
 PUT (OUTREG),STROUREC
 ADRMODE 31 RESTORE AMODE(31)
*
S2SDATAO DS 0H
TIBCO Object Service Broker for z/OS External Environments

Call Level Interface Return Codes | 225
Call Level Interface Return Codes

Listing and Explanation
The following table lists the return codes. A listing of symbols is available for
your use in member HRNAPIRC of the MACRO data set.

Return
Code Explanation

00 Request successful.

01 No operation code specified.

02 Invalid operation request.

03 STARTEE request failed.

04 STARTSS request failed: reason code in the RETURN-DATA area.

05 DO request failed: reason code in the RETURN-DATA area.

06 Execution Environment not started, but located.

07 STOPEE request failed.

08 HLLTAM routine not installed (User error) (returned when using
the TIBCO Object Service Broker Host Language Interface).

09 STOPSS request failed (reason code in the RETURN-DATA area).

10 STARTTR request failed.

11 CALLRULE request failed.

12 STOPTR request failed.

13 Session is canceled or terminated.
 TIBCO Object Service Broker for z/OS External Environments

226 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
Call Level Interface Reason Codes

Listing and Explanation
The following tables list the reason codes. A listing of symbols is available for
your use in member HRNAPIRC of the MACRO data set.

Common Reason

StartEE Fail Reasons

Reason
Code Explanation

32 Invalid Execution Environment type.

33 Execution Environment is not active.

34 Interface session is not active.

35 Interface calls not allowed from within the Execution Environment.

36 Interface calls are out of sequence.

37 No standby sessions active in the Execution Environment.

38 Input commarea storage is inaccessible.

39 Output commarea storage is inaccessible.

40 Input commarea length error.

41 Output commarea length error.

42 STOPEE already in progress.

Reason
Code Explanation

48 No Execution Environment specified.

49 TIBCO Object Service Broker CICS interface is not active.
TIBCO Object Service Broker for z/OS External Environments

Call Level Interface Reason Codes | 227
Start Session Fail Reasons

50 TIBCO Object Service Broker internal error.

51 Execution Environment initialization failed.

52 Locate CICS callers EIB failed.

Reason
Code Explanation

Reason
Code Explanation

64 Execution Environment is in quiesce mode.

65 Invalid session parameters.

66 TIBCO Object Service Broker user ID is longer than eight
characters.

67 Invalid character set name.

68 Invalid execution mode.

69 Security login fail.

70 Security logout fail.

71 Session scope storage initialization fail.

72 Session scope storage termination fail.

73 Session rejected by user exit.

74 Unknown return code from user exit.
 TIBCO Object Service Broker for z/OS External Environments

228 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
DO Fail Reasons

Reason
Code Explanation

80 Invalid interface DO function.

81 Invalid DO parameters.

82 STARTTR not issued.

83 STARTTR failed, transaction already active.

84 DO or transaction option not specified.

85 DO or transaction option not supplied.

86 Invalid transaction option.

87 Transaction options not accepted within a transaction.

88 Required transaction option parameter not supplied.

89 Invalid transaction option keyword parameter length.

96 Rule name not supplied.

97 Rule name length error.

98 Invalid stop transaction parameter length.

99 Invalid stop transaction parameter.

100 No stream work area (SMS) exists.

101 Table access method not active.

102 Commit failed.

103 Rollback failed.

104 Rules argument syntax error.

105 Host Languages Interface runtime environment does not exist
(that is, no CALLRULE was issued).

106 Attempt to nest too many transactions
TIBCO Object Service Broker for z/OS External Environments

Call Level Interface Reason Codes | 229
Stop Session Fail Reasons

StopEE Fail Reasons

 Call Level Interface Client/Server fail Reason Codes

Reason
Code Explanation

128 Stream and/or transaction still active.

Reason
Code Explanation

144 Execution Environment not stopped, but the STARTEE count is
decremented.

Reason
Code Explanation

160 Incompatible Call Level Interface Client/Server version.

161 Unsupported code page specified.

162 Invalid Endian type specified.

163 Session control storage not available.

164 Start CICS task failed.

165 Environment initialization error.

166 Call Level Interface message length exceeds maximum.

167 Call Level Interface message storage not available.

168 DATAOUT length exceeds maximum.

169 DATAOUT storage not available.

170 User ID not supplied.
 TIBCO Object Service Broker for z/OS External Environments

230 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
171 User ID or password is not valid. See Appendix A, SDK (C/C++)
and SDK (Java) Error Reason Codes, on page 373 for details.

172 User ID suspended.

173 User ID cannot access TIBCO Object Service Broker at this time.

174 Password not supplied.

176 Password expired, new password missing.

177 New password not valid.

178 Password upgrade fail.

179 Password decrypt fail.

Reason
Code Explanation
TIBCO Object Service Broker for z/OS External Environments

Committing and Rolling Back Persistent Table Changes | 231
Committing and Rolling Back Persistent Table Changes

If you specify COMMIT or ROLLBACK as the parameter to the STOPTR
operation, your client program can issue a COMMIT or ROLLBACK.

Notes

Within a started transaction, and before it is ended, you can COMMIT or
ROLLBACK changes made by the data access statements INSERT, REPLACE, and
DELETE to persistent TDS or external database tables.

Sample Calls

COBOL Call to Perform a COMMIT

COPY HRNHLWAC
COPY HRNHLIST
 .
 .
01 HRN-STOPPRARM.
 05 STOPPARMLEN PIC9(4) USAGE COMP-4 VALUE 6.
 05 STOPPARMDAT PICX(6) VALUE 'COMMIT'.
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STOPTR'
 HRN-NULL-LIST HRN-STOPPARM HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.

Non Re-entrant Assembler Call to Perform a COMMIT

 CALL HRNHLLTM,(HRNHLLWA,C'STOPTR',0,STOPPARM,0,0,DATA,CODE),VL
 .
 .
STOPPARM CD AL2(6),C'COMMIT'
DATA DS CL180 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 TIBCO Object Service Broker for z/OS External Environments

232 | Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
Returned Values

Return
Codes Description

0 STOPTR with COMMIT or ROLLBACK request succeeded.

9 STOPTR with COMMIT or ROLLBACK request failed. The first four
bytes of the RETURN-DATA parameter are set to the reason code.
Refer to Call Level Interface Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

| 233
Chapter 16 Call Level Interface Functions

This chapter describes the call level interface functions.

Topics

• Starting or Locating the Execution Environment – STARTEE, page 234

• Stopping the Execution Environment – STOPEE, page 237

• Starting the Session – STARTSS, page 239

• Stopping the Session – STOPSS, page 241

• Starting a Transaction – STARTTR, page 243

• Modifying Transactional Characteristics, page 245

• Ending a Transaction – STOPTR, page 247

• Calling a Rule – CALLRULE, page 249
 TIBCO Object Service Broker for z/OS External Environments

234 | Chapter 16 Call Level Interface Functions
Starting or Locating the Execution Environment – STARTEE

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
After preparing to start the Execution Environment, your client program starts or
locates the Execution Environment by specifying STARTEE as the OPERATION.

Starting an Execution Environment
You start either a TSO or batch Execution Environment by specifying TSO or
BATCH as the OPERAND parameter. Overrides to the Execution Environment
parameters are supplied through the variable length PARM parameter.

Obtaining Execution Environment Startup Parameters
When starting an Execution Environment, the PARM parameter contains the
Execution Environment startup parameter. This information is obtained
according to the following order of precedence:

1. EECONFIG member of the JCL data set

2. HRNIN data set

3. Parameter string, for example, TDS=HCDL1000

On successful execution, the value of RETURN-CODE is 0, and the first eight
characters of RETURN-DATA are the name of the Table Data Store (TDS) to which
your Execution Environment is connected, ‘HCDL1000’ in our example.

• For TSO, batch, and CICS, if an Execution Environment is already active in the
address space, the STARTEE operation locates the Execution Environment
and copies a handle to it into the HRNHLLWA workarea.

• For TSO and batch Execution Environments, if no Execution Environment
exists, a same-address space Execution Environment is started.

The Call Level Interface does not support starting a CICS Execution Environment.
TIBCO Object Service Broker for z/OS External Environments

Starting or Locating the Execution Environment – STARTEE | 235
See Also TIBCO Object Service Broker Parameters about Execution Environment parameters.

Locating an Execution Environment
You locate an Execution Environment by specifying its type as the OPERAND
(BATCH, TSO, or CICS). Overrides to the Execution Environment parameters
supplied through the variable length PARM are ignored when locating an
Execution Environment.

Sample COBOL Call

 .
COPY HRNHLWAC.
COPY HRNHLLIST.
 .
01 HRN-RGNPARM.
 05 RGNPARMLEN PIC 9(4) USAGE COMP-4 VALUE 12.
 05 RGNPARMDAT PIC X(12) VALUE 'TDS=HCDL1000'.

 .
 .
 .

CALL 'HRNHLLTM' USING HRNHLLWA 'STARTEE' 'BATCH'
 HRN-RGNPARM HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Sample Non Re-entrant Assembler Call

 .
CALL HRNHLLTM,(HRNHLLWA,C'STARTEE',C'BATCH', x
 PARM,0,0,DATA,CODE),VL
 .
 .
 .
PARM DC AL2(12),C'TDS=HCDL1000'
DATA DS CL159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 .
 TIBCO Object Service Broker for z/OS External Environments

236 | Chapter 16 Call Level Interface Functions
Returned Values

Advanced STARTEE Batch Usage
To interface with certain kinds of third-party environments, you can create a
multiple-session non-blocking batch Execution Environment by specifying an
environmental wait routine specific to the third-party environment. Using the
assembler interface, you can pass the address of the environmental wait routine to
the Execution Environment by specifying an exit descriptor as the ninth
parameter to HRNHLLTM. The exit descriptor is mapped by the assembler
DSECT called HRNXD and distributed in the MACRO distribution data set. It is
of Exit type SESENVWT. In addition, you can pass in an environmental anchor
block that can be subsequently accessed by other sessions executing in the
Execution Environment.

Additional Information

For an example of setting up an environmental wait routine, refer to the member
S6BCAPID, in the ASM data set distributed with TIBCO Object Service Broker.
For a complete description of this facility, refer to Chapter 17, Multiple-Session
Execution Environments in Batch, on page 255.

Return
Code Description

0 STARTEE request succeeded. The first eight bytes of
RETURN-DATA are set to the name of the TDS to which your
Execution Environment is connected (in the example it would be set
to HCDL1000).

3 STARTEE request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.

6 An existing Execution Environment was located.

Note The first eight bytes of the RETURN-DATA parameter could be
different from what you specified in the TDS parameter—they
contain the name of the Data Object Broker to which the active
Execution Environment is currently connected.
TIBCO Object Service Broker for z/OS External Environments

Stopping the Execution Environment – STOPEE | 237
Stopping the Execution Environment – STOPEE

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
When all Call Level Interface sessions are terminated in the Execution
Environment, your client program stops the Execution Environment by
specifying STOPEE as the OPERATION. All other parameters, except
RETURN-DATA and RETURN-CODE, are null.

Sample Calls

COBOL Call

 .
COPY HRNHLWAC
COPY HRNHLLIST
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STOPEE'
 HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST
HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,C'STOPEE', X
 0,0,0,0,DATA,CODE),VL
 .
 .
DATA DS CL159 REASON CODE FROM HRNHLLTM.
CODE DS F REASON CODE FROM HRNHLLTM
 .
 TIBCO Object Service Broker for z/OS External Environments

238 | Chapter 16 Call Level Interface Functions
Returned Values

Return
Codes Description

0 STOPEE request succeeded.

7 STOPEE request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.

The special reason code of 144 indicates that the Execution
Environment is still active with other users. Refer to Chapter 17,
Multiple-Session Execution Environments in Batch, on page 255 for
an explanation of why this would be an acceptable reason code.
TIBCO Object Service Broker for z/OS External Environments

Starting the Session – STARTSS | 239
Starting the Session – STARTSS

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
After an Execution Environment is started or located, your client program starts
the session by specifying STARTSS as the OPERATION parameter. The
OPERAND parameter is ignored. Overrides to the session parameters are
supplied through the variable length PARM parameter.

Sample Calls

COBOL Call

 .
COPY HRNHLWAC
COPY HRNHLIST
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STARTSS'
 HRN-NULL-LIST HRN-SESSPARM HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,C'STARTSS', X
 0,PARM,0,0,DATA,CODE),VL
 .
 .
PARM DC AL2(15),C'U=UUUUU,P=PPPPP'
DATA DS L159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 .
 TIBCO Object Service Broker for z/OS External Environments

240 | Chapter 16 Call Level Interface Functions
Returned Values

Advanced STARTSS BATCH Usage
To interface with certain kinds of third-party environments, you can create a
multi-session non-blocking batch Execution Environment by specifying an
environmental wait routine specific to the third-party environment. Using the
assembler interface, you can pass the address of a session context work area to the
environmental wait routine by specifying an exit descriptor as the ninth
parameter to HRNHLLTM. The exit descriptor is mapped by the assembler
DSECT called HRNXD and distributed in the MACRO data set. It is of type
SESHANDL.

Additional Information

For an example of setting up an environmental wait routine, refer to “Driver for
testing Call Level Interface in Batch or TSO (Assembler)” in the member
S6BCAPID in the ASM data set distributed with TIBCO Object Service Broker. For
a complete description of this facility, refer to Chapter 17, Multiple-Session
Execution Environments in Batch, on page 255.

Return
Codes Description

0 STARTSS request succeeded. The first eight bytes of the
RETURN-DATA parameter are set to the name of the TIBCO Object
Service Broker user ID (in the assembler example, it is set to ‘UUUUU’).

4 STARTSS request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

Stopping the Session – STOPSS | 241
Stopping the Session – STOPSS

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
When your client program has no active streams, it stops the session by specifying
STOPSS as the OPERATION parameter. All other parameters, except
RETURN-DATA and RETURN-CODE, are null.

Sample Code

COBOL Call

COPY HRNHLWAC
COPY HRNHLIST
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STOPSS'
 HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,C'STOPSS',0, X
 0,0,0,DATA,CODE),VL
 .
 .
DATA DS CL159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM

• After stopping the session, the client program can subsequently start another
session, possibly with different session parameters.

• If no sessions exist, the client program can stop the Execution Environment.
 TIBCO Object Service Broker for z/OS External Environments

242 | Chapter 16 Call Level Interface Functions
Returned Values

Return
Code Description

0 STOPSS request succeeded.

9 STOPSS request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

Starting a Transaction – STARTTR | 243
Starting a Transaction – STARTTR

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
Your client program starts a transaction by specifying STARTTR as the
OPERATION parameter. All other parameters, except the RETURN-DATA and
RETURN-CODE parameters, are null.

What Limits the Number of Transactions
The maximum nesting level of active streams is limited by the session parameter
TRANMAXNUM. If the Call Level Interface is used to call a rule that EXECUTEs
another rule, the number of active streams plus the number of nested EXECUTEs
is limited by TRANMAXNUM.

• Only one transaction can be active at a time.

• The transaction uses the transactional characteristics to determine the mode of
table access and which rules libraries to use when calling a rule.

• After starting a transaction, you can call a rule, commit, roll back, or end the
transaction. In addition, you can start another transaction (which starts at a
new stream level) and modify its characteristics if required, temporarily
suspending the current transaction.
 TIBCO Object Service Broker for z/OS External Environments

244 | Chapter 16 Call Level Interface Functions
Sample Calls

COBOL Call

COPY HRNHLWAC
COPY HRNHLIST
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STARTTR',
 HRN-NULL-LIST HRN-TRANPARM HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,C'STARTTR', X
 0,PARM,0,0,DATA,CODE),VL
 .
 .
DATA DS C159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 .

Returned Values

See Also TIBCO Object Service Broker Parameters about Execution Environment parameters.

Return
Codes Description

0 STARTTR request succeeded.

10 STARTTR request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

Modifying Transactional Characteristics | 245
Modifying Transactional Characteristics

Calling Parameters
Your client program can modify transactional characteristics by specifying the
characteristics, for example UPDATE, as transaction parameters to the STARTTR
operation. All other parameters, except RETURN-DATA and RETURN-CODE,
are null.

What are the Transactional Characteristics?
The transactional characteristics are:

• BROWSE and UPDATE

• TEST/NOTEST

• SEARCH=path

path can be one of S, I, or L, using the variable string notation (the length is
one).

• LIBRARY=libraryname

libraryname can be the name of a local library accessible to the TIBCO Object
Service Broker user ID of the session, using the variable string notation (the
maximum length is eight).

These are also session parameters. Refer to Parameters for Your Session on
page 26 for more information.

When Can the Modifications Be Made?

The transactional characteristics of a stream can be specified only when a
transaction is started.

What is the Inheritance of Transactional Characteristics?
A stream inherits the values of the transactional characteristics from its parent.
When the stream is the first stream in the session, the transactional characteristics
are inherited from the session. In all other cases, the parent is the transaction at
the lower transaction nesting level.
 TIBCO Object Service Broker for z/OS External Environments

246 | Chapter 16 Call Level Interface Functions
Sample Calls

COBOL Call

The following COBOL call sets the transactional characteristic defined in
HRN-TRANPARM:

COPY HRNHLWAC
COPY HRNHLIST
 .
01 HRN-TRANPARM.
 05 TRANPARMLEN PIC9(4) USAGE COMP-4 VALUE 36
 05 TRANPARMDAT PIC x(36)
 VALUE 'LIBRAY=TEST1,UPDATE,SEARCH=L,NOTEST
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STARTTR'
 HRN-NULL-LIST HRN-TRANPARM HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.
 .

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,C'STARTTR', X
 0,TRANPARM,0,0,DATA,CODE),VL
 .
 .
PARM DC AL2(36),C'LIBRARY=TEST1,UPDATE,SEARCH=L,NOTEST'
* TRANSACTION START LIST
DATA DS REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 .

Returned Values

Return
Codes Description

0 STARTTR request succeeded.

10 STARTTR request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

Ending a Transaction – STOPTR | 247
Ending a Transaction – STOPTR

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
Your client program ends a transaction by specifying STOPTR as the
OPERATION parameter. You can explicitly specify the COMMIT (the default if
neither is specified) or ROLLBACK parameters to STOPTR. All other parameters,
except RETURN-DATA and RETURN-CODE, are null.

Sample Calls

COBOL Call

COPY HRNHLWAC
COPY HRNHLIST
 .
 .
CALL 'HRNHLLTM' USING HRNHLLWA 'STOPTR'
 HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST HRN-NULL-LIST
 HRN-RETURN-DATA HRN-RETURN-CODE.

Non Re-entrant Assembler Call

 .
 CALL HRNHLLTM,(HRNHLLWA,,C'STOPTR', X
 0,0,0,0,DATA,CODE),VL
 .
 .
DATA DS CL159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM
 .

• A transaction can be ended only if it was started and is currently active.

• Ending a transaction implies committing uncommitted data and dropping
locks acquired during the course of the transaction.
 TIBCO Object Service Broker for z/OS External Environments

248 | Chapter 16 Call Level Interface Functions
Returned Values

Return
Codes Description

0 STOPTR request succeeded.

12 STOPTR request failed. The first four bytes of the RETURN-DATA
parameter are set to the reason code. Refer to Call Level Interface
Reason Codes on page 226.
TIBCO Object Service Broker for z/OS External Environments

Calling a Rule – CALLRULE | 249
Calling a Rule – CALLRULE

Syntax
For the syntax of all Call Level Interface functions, see Call Level Interface
Specification on page 207 and HRNHLLTM Module Parameters on page 209.

Calling Parameters
Your client program calls a rule by specifying CALLRULE as the OPERATION
parameter and a string consisting of the rule name as the PARM parameter. If the
rule takes arguments, the rule name is followed by the values for the arguments
in parentheses. The DATA-IN (the fifth) and the DATA-OUT (the sixth) parameter
are specified as described below. The RETURN-DATA (the seventh) parameter is
set to any message that is returned by ENDMSG when the RETURN-CODE
parameter is 0.

DATA-IN and DATA-OUT Areas
The client program can pass DATA-IN and DATA-OUT areas to the session:

The rule can read the DATA-IN areas using MAP tables or tools such as
$GETENVCOMMAREA.

The rule can write to the DATA-OUT areas using MAP tables or the
$SETENVCOMMAREA tool.

The DATA-IN and the DATA-OUT areas can have one of two formats and
describe one or more blocks of storage. In all cases, the client program is
responsible for allocating storage, and for storage blocks pointed to by their
structure.

The DATA-IN and the DATA-OUT areas are mapped by the same structure. The
structure is used to represent a list of blocks (or COMMAREAs). The structure
contains a count of the number of blocks, location and size.

• When your client program has started a transaction, it can call an entry rule
and pass values for its arguments. The rule has no real restrictions and can use
all TIBCO Object Service Broker facilities, that is, it can call other rules and use
the EXECUTE, DISPLAY, TRANSFERCALL, COMMIT, and ROLLBACK
statements.

• When the called rule completes, control is returned to the client program. The
transaction, however, ends only with a STOPTR call.
 TIBCO Object Service Broker for z/OS External Environments

250 | Chapter 16 Call Level Interface Functions
Format Types

Each block is in one of the following formats:

• Format 1: Represented by a pointer to the storage block

Format 1 works well in an assembler environment and permits segmentation
of the storage for each separate block. It requires pointer manipulation.

• Format 2: Implicitly follows the structure

Format 2 is suited to COBOL applications, as the structure describing the
blocks and the blocks themselves are passed as one large contiguous storage
area. It does not require pointer manipulation.

Format 1

The storage blocks are in separate locations, and are pointed to by addresses. This
technique is not well-supported by the COBOL language, but works well in
assembler.

Element Length (bytes) Description

Count 4 Number of blocks of storage in this group.

Address1 4 Pointer to block #1.

Length1 4 Length of block #1.

...

AddressN 4 Pointer to block #N.

LengthN 4 Length of block #N.
TIBCO Object Service Broker for z/OS External Environments

Calling a Rule – CALLRULE | 251
Format 2

The storage blocks are part of the area being passed. Use this implementation for
COBOL.

Accessing the Storage Areas
From your rules code, you can obtain the address of the DATA-IN block list by
using the value of the field APIINHANDLE of the System Interpreted Table
@SESSION(0). Similarly, you can obtain the address of the DATA-OUT block list
using the value of the field APIOUTHANDLE of @SESSION(0). Access to the
storage referenced by MAP tables is always granted and there is no need to
register these addresses in the @MAP table. APIINHANDLE memory is
accessible for reading and APIOUTHANDLE for reading and writing.

You can also use the $GETENVCOMMAREA and $SETENVCOMMAREA tools
to access the blocks of storage in the DATA-IN and DATA-OUT areas.

Element Length (bytes) Description

Count 4 Number of blocks in this group.

0 4 Storage blocks are always defined in pairs,
consisting of a full word of binary zeroes
followed by a full word containing the
length of the block. This is the first field of
binary zero for the first storage block.

Length1 4 This is the second field containing the
length of the first storage block.

... Repeat the pair of binary zero and length
for the 2nd through N-1th storage block.

0 4 This is the first field of binary zero for the
N-th storage block.

LengthN 4 This is the second field containing the
length of the N-th storage block.

Commarea1 length 1 First block

... 2nd through N-1th storage blocks

CommareaN length N Nth storage block
 TIBCO Object Service Broker for z/OS External Environments

252 | Chapter 16 Call Level Interface Functions
Since the user client is responsible for allocating storage for the DATA-IN and
DATA-OUT block lists, changing the value for APIINHANDLE and
APIOUTHANDLE is not supported. The contents of the block lists can, however,
be modified by rules code using MAP tables.

Sample Rule Code

The following rule fragment assigns the address of the DATA-OUT block list to
local variable OUT, and the address of the DATA-IN block list to local variable IN:

GET @SESSION(0);
IN=@SESSION.APIINHANDLE;
OUT=@SESSION.APIOUTHANDLE;

Sample Calls
These examples call the ABC rule with the two arguments: 1 and SCR. They pass
in one commarea via DATA-IN and expect up to 80 bytes of data to be returned in
DATA-OUT.

COBOL Call

01 HRN-CALLABC.
 05 RULEPARMLEN PIC 9(4) USAGE COMP-4 VALUE 12.
 05 RULEPARMDAT PIC X(12) VALUE 'ABC(1,''SCR'')'.
01 HRN-DATA-IN.
 05 IN-NO-COMMAREA PIC 9(9) USAGE COMP-4 VALUE 1.
 05 IN-ZEROES PIC 9(9) USAGE COMP-4 VALUE 0.
 05 DATAINPARMLEN PIC 9(9) USAGE COMP-4 VALUE 27.
 05 DATAINPARMDAT PIC X(49)
 VALUE 'CALLING OSB FROM COBOL II'.

01 HRN-DATA-OUT.
 05 OUT-NO-COMMAREA PIC 9(9) USAGE COMP-4 VALUE 1.
 05 OUT-ZEROES PIC 9(9) USAGE COMP-4 VALUE 0.
 05 DATAOUTPARMLEN PIC 9(9) USAGE COMP-4 VALUE 80.
 05 DATAOUTPARMDAT PIC X(80) VALUE SPACES.

 .
 .
 CALL 'HRNHLLTM' USING HRNHLLWA 'CALLRULE'
 HRN-NULL_DATA HRN-CALLABC HRN-DATA-IN HRN-DATA-OUT
 HRN-RETURN-DATA HRN-RETURN-CODE.
TIBCO Object Service Broker for z/OS External Environments

Calling a Rule – CALLRULE | 253
Non Re-entrant Assembler Call

 CALL HRNHLLTM,(HRNHLLWA,C'CALLRULE', X
 0,CALLABC,DATAIN,DATAOUT,DATA,CODE),VL
 .
 .
CALLABC DC AL2(12),C'ABC(1,''SCR'')'
DATAIN DC F(1),A(DATAINC),F(50)
DATAINC DC CL28'CALLING OSB FROM ASSEMBLER'
DATAOUT DC F(1),A(DATAOUTC),F(80)
DATAOUTC DS CL80
DATA DS CL159 REASON CODE FROM HRNHLLTM
CODE DS F RETURN CODE FROM HRNHLLTM

Return Values

Non-Zero Value Returned

Whenever a non-zero value is returned in RETURN-CODE, RETURN-DATA
contains either a reason code or an error message. The reason code is indicated by
binary zeros in the first byte of RETURN-DATA; otherwise, RETURN-DATA
contains a short error message similar to the ENDMSG that is returned to the
workbench.

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about writing rules.

TIBCO Object Service Broker Shareable Tools about the tools and System Interpreted
Tables.

Return
Codes Description

0 CALLRULE request succeeded.

11 CALLRULE request failed. The first four bytes of the
RETURN-DATA parameter are set to the reason code. Refer to Call
Level Interface Reason Codes on page 226.
 TIBCO Object Service Broker for z/OS External Environments

254 | Chapter 16 Call Level Interface Functions
TIBCO Object Service Broker for z/OS External Environments

| 255
Chapter 17 Multiple-Session Execution Environments
in Batch

This chapter describes how to use multiple-session environments in batch.

Topics

• Starting Multiple-Session Execution Environments in Batch, page 256

• Specifying an Environmental Wait Routine, page 257

• STARTEE Call, page 259

• STARTSS Call, page 261

• Sample Programs, page 262
 TIBCO Object Service Broker for z/OS External Environments

256 | Chapter 17 Multiple-Session Execution Environments in Batch
Starting Multiple-Session Execution Environments in Batch

You may want to allow multiple copies of a client program to use the Call Level
Interface to run in the same address space as a batch Execution Environment. For
example, if you are using a TP monitor other than CICS or IMS TM, you could
find this beneficial.

What Facility Is Available?
With the Call Level Interface, you can specify an environmental wait routine
specific to your platform. The environmental wait routine is specified as a user
exit routine in an optional ninth parameter to the STARTEE or to the STARTSS
interface function call.

Sample programs are provided to assist you in this specification of an
environmental wait routine. These programs are described in Sample Programs
on page 262.

Implementation Guidelines
Here are some guidelines for implementing multiple-session Execution
Environments:

• Write a startup transaction that is executed only once and is executed before
any other client program begins execution.

Consider using the facilities of your TP monitor to schedule this transaction
during startup. For example, in a CICS environment, you would do this
through the use of the PLT table.

• Issue the STARTEE call normally from your client programs. They pass a
ninth parameter to the STARTSS call (which is documented below).

• Invoke a shutdown transaction to stop the Execution Environment after all
client application programs are terminated.

Consider using the facilities of your TP monitor to perform this on shutdown
of the TP system. For example, in a CICS environment, you would do through
the use of the PLTSD= parameter in the SIT table.
TIBCO Object Service Broker for z/OS External Environments

Specifying an Environmental Wait Routine | 257
Specifying an Environmental Wait Routine

User exit routines are implemented by the use of an Exit Descriptor supplied as an
optional ninth parameter to the STARTEE and STARTSS interface function calls.
This optional ninth parameter is mapped by the assembler copybook HRNXD
provided in the distribution MACRO data set.

Listing of the HRNXD Copybook

Field Name Format Explanation

HRNXDTYP CL8 Indicate the type of user exit to be implemented.
The required type is identified below for each user
exit routine. The exit can be either SESENVWT or
SESHANDL.

HRNXDNAM CL8 Name of user exit routine.

HRNXDUSR A User field. Can be used to anchor common storage
used by the exit routine.

HRN#INTT H Number of Interpreter Tasks–returned field.

HRN#SMFT H Number of SMF Writer Tasks–returned field.

HRNXDRS2 A Reserved–must be 0.

HRNXDNXD A Reserved.

HRNXDRS3 CL8 Reserved–must be 0.

HRNXDRS4 XL2 Reserved–must be 0.

HRNXDXSZ H EXIT Block Extension size–maximum is 3K (3072
bytes).

HRNXDEP A Address of user exit routine (Entry Point Address).
 TIBCO Object Service Broker for z/OS External Environments

258 | Chapter 17 Multiple-Session Execution Environments in Batch
User Exit Types Supported
Two user exit types are supported:

SESENVWT Used to specify the entry point to the environmental wait
routine.

SESHANDL Used to pass the client’s session environment to the
environmental wait routine.
TIBCO Object Service Broker for z/OS External Environments

STARTEE Call | 259
STARTEE Call

Behavior of STARTEE
The first time a STARTEE call is executed, the Execution Environment is started in
the same address space as your client program. An internal counter, EECNT, is set
to one. You can use the ninth parameter to supply the Execution Environment
with the address of your user-written environmental wait routine.

Subsequent STARTEE calls cause the first parameter, HRNHLLWA, to be updated
with internal information established by the first STARTEE call. The internal
counter EECNT is incremented by one.

Storage of the User Routine Address

It is important to note that only on the first STARTEE call is the address of the
environmental wait routine stored in the Execution Environment. Subsequent
calls to STARTEE to locate the Execution Environment with this ninth parameter
return only the contents of the HRNXDUSR field with the value it was set to on
the initial STARTEE call. It is not necessary for your user application programs
(client programs) to supply this optional ninth parameter.

Behavior in the Sample Programs
In the sample programs provided with TIBCO Object Service Broker, the initial
STARTEE call is performed from a startup transaction program. Refer to Sample
Programs on page 262 for a description of these sample programs.
 TIBCO Object Service Broker for z/OS External Environments

260 | Chapter 17 Multiple-Session Execution Environments in Batch
Assembler Example

The following excerpt of assembler code illustrates the STARTEE call, with some
explanation following the example:

USEREXIT CSECT ,
 ..
 ..
 XC HRNXD(HRNXDSIZ),HRNXD CLEAR THE HRNXD DSECT
 MVC HRNXDTYP,=CL8'SESENVWT' INFORM EE OF THE EXIT TYPE
 MVC HRNXDNAM,=CL8'USEREXIT' OUR PROGRAM NAME
 LA R1,ENVWAIT THE ADDRESS OF OUR ENTRY
 ST R1,HRNXDEP POINT IN OUR CODE
 OI HRNXDEP,X'80' SET HIGH ORDER BIT
 CALL HRNHLLTM,(HRNHLLWA,STARTEE,BATCH,RGNPARM,0,0,RETDATA, x
 RETCODE,HRNXD),VL,MF=(E,CALLIST)
 RETURN RETURN TO TP MONITOR
 ..
 ..
 ..
ENVWAIT DS 0H CLIENT PROGRAM WAIT
*
 ROUTINE CODE HERE

Explanation of Values Provided for the Example

Field Name Format Value Explanation

HRNXDTYP CL8 SESENVWT Indicates the exit routine is to be
implemented.

HRNXDNAM CL8 user program
name

User-specified.

HRNXDUSR A A(eehandle) This can be an address of some
common storage for your
environmental wait routine.

It is returned to any caller of the
STARTEE call that provides the
optional ninth parameter.

HRNXDEP A A(EXIT RTN) This must be the address of the
Entry Point of your exit routine.

The high order bit must be set on.
TIBCO Object Service Broker for z/OS External Environments

STARTSS Call | 261
STARTSS Call

Purpose of STARTSS
You can use the Exit Descriptor in the STARTSS call to pass additional
information to the environmental wait routine you specified in the STARTEE call.
This additional information varies for each type of TP monitor or multiple-session
environment you are implementing. As a guideline, it is likely a copy of your
original save area upon entry to your client application, or some other control
block that is required by the TP monitor to re-establish its environment prior to
executing its own version of a wait macro.

Behavior in the Sample Programs
In the sample programs provided with TIBCO Object Service Broker, CICS is used
as the TP monitor, even though a native interface exists for a CICS environment,
that is, the OPERAND parameter is set to BATCH, not CICS on the STARTEE call.

In this particular environment CICS has a Control Block mapped in assembler by
the DFHEISTG macro. This is the first-level save area for a user program. It also
contains important pointers to other control blocks that CICS requires when you
issue a CICS request (Command Level Call). In the sample, it is a copy of this
Control Block that is to be passed to the environmental wait routine.

Explanation of the Possible Values

Field Name Format Value Explanation

HRNXDTYP CL8 SESHANDL Indicates the environmental wait
routine is to be implemented.

HRNXDNAM CL8 user
program
name

User-specified.

HRNXDUSR A A(eehandle) The address stored in this field is
passed to the environmental wait
routine in Register 0 (zero), when it
is called.

It should be a Control Block that you
use to re-establish the environment
of the calling client program.
 TIBCO Object Service Broker for z/OS External Environments

262 | Chapter 17 Multiple-Session Execution Environments in Batch
Sample Programs

Programs Provided
Four programs are provided as a guideline for you to implement your own
environmental wait routine. They can be found in the ASM and COBOL data sets
distributed with TIBCO Object Service Broker. These programs are:

• S6BEWTIN

• S6BEWTSD

• S6BEWTSS

• COBCAPI3

S6BEWTIN
This is an initialization transaction program to bring up the Execution
Environment and supply the address of the environmental wait routine (also
located in this program). A significant portion of this program involves setting up
the ninth parameter to the STARTEE call.

Must be Resident to TP Monitor

As this program contains the environmental wait routine it is extremely
important that it be marked resident to your TP monitor. This insures that the
code pointed to by HRNXDEP (the Entry Point of your wait routine) does not
relocate in memory. It is also mandatory that the environmental wait routine be
written as reentrant.

You can ensure that the environmental wait routine is resident by having the
initialization program use CSA storage to LOAD the exit routine there, or use
other facilities possibly available in your TP environment, such as making the
program resident.

S6BEWTSD
This transaction program is provided as the shutdown program. It should be
executed as the last program to call TIBCO Object Service Broker. Failure to
execute this program likely causes a System Abend Code A03.

These sample programs use CICS as the host TP monitor even though a standard
CICS interface exists for this.
TIBCO Object Service Broker for z/OS External Environments

Sample Programs | 263
Typically, this program would reside in your shutdown table. Its purpose is to tell
the Execution Environment to shutdown. It first performs a STARTEE to initialize
the HRNHLLWA work area, and performs the number of STOPEE calls required
according to the program logic.

Program Logic

The Execution Environment maintains one internal counter, EECNT, for the
number of STARTEE calls issued. When the shutdown program (S6BEWTSD) is
executed, under normal circumstances there is one outstanding STARTEE call,
from the initialization program (S6BEWTIN), plus one STARTEE call from this
program. Therefore, the shutdown transaction must issue at least two STOPEE
calls to quiesce the Execution Environment. The shutdown transaction contains
logic to catch the situation where a user application program fails to issue a
STOPEE call. In this case, extra STOPEE calls are issued and a warning message
appears.

S6BEWTSS
This assembler program would assist in setting up the Exit Descriptor (ninth
parameter) for the STARTSS call in your COBOL client programs. It takes two
input parameters. As part of the setup, a copy of the COBOL’s original first-level
save area (the CICS DFHEISTG Control Block) is made, and its address is placed
in the HRNXDUSR field of the data area named HRNXD further down in the
code.

Calling Requirements

• You must call this routine from the mainline of your COBOL program, before
the STARTSS call.

• You must not call it from within a subroutine as it is impossible to determine
where the original save area is located.

• If you use an external routine that is link-edited with your main program to
issue the STARTSS call, you must pass the HRNXD data field as a parameter
to that external routine. You must first initialize the data field in your mainline
code of the originating program with the call to S6BEWTSS.

• If the external routine is executed via the TP monitor’s LINK facility (such as a
CICS command-level EXEC CICS LINK call), it should be sufficient to place
the S6BEWTSS call in the external routines mainline code.
 TIBCO Object Service Broker for z/OS External Environments

264 | Chapter 17 Multiple-Session Execution Environments in Batch
Example

COBOL programmers do not need to be concerned with individual data elements
within the two following data areas, but they must provide adequate storage as
noted by the following example. Modify this example program according to the
TP monitor conventions for your TP environment.

*
* The following is used as the ninth parameter on the STARTSS Call.
*
 01 HRNXD PIC X(48).
 ..
 ..
* The following is used as a copy of the CICS DFHEISTG Control Block.
*
 01 HRNEISTG PIC X(248).
 ..
 ..
 CALL 'S6BEWTSS' USING HRNXD, HRNEISTG.
 ..

COBCAPI3
This is a COBOL program used to execute a TIBCO Object Service Broker rule.
TIBCO Object Service Broker for z/OS External Environments

| 265
Chapter 18 TIBCO Object Service Broker SDK (C/C++)
Server

This chapter describes the TIBCO Object Service Broker SDK server for C and
C++.

Topics

• Introducing TIBCO Object Service Broker SDK (C/C++), page 266

• Execution Environment Considerations, page 267

• Additional Requirements for CICS Execution Environments, page 269
 TIBCO Object Service Broker for z/OS External Environments

266 | Chapter 18 TIBCO Object Service Broker SDK (C/C++) Server
Introducing TIBCO Object Service Broker SDK (C/C++)

The TIBCO Object Service Broker SDK (C/C++) client is an extension of the Call
Level Interface. It extends the interface beyond the boundaries of the Execution
Environment. This chapter explains how to make the SDK (C/C++) available to
others to access your copy of TIBCO Object Service Broker.

Information on the Other Interfaces

Depending on your environment, you use one of the following:

Required Parameters
The following Execution Environment parameters must be set when setting up
SDK (C/C++). Refer to Set the Required Execution Environment Parameters on
page 267.

• CLIMSGLENMAX – Maximum length of an SDK (C/C++) or SDK (Java)
message that can be sent or received between clients and servers. The length
includes the message and control information.

• EENAME – Name of the Execution Environment to be used to run the session.

• STANDBYNUM – The number of Execution Environment standby sessions.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for information about
installing the TIBCO Object Service Broker SDK (C/C++) server.

External
Environment Interface Refer to

Programs running in
the same batch, TSO,
or CICS environment
as TIBCO Object
Service Broker

Call Level
Interface

Chapter 14, Introduction to the
Call Level Interface, page 199.

Chapter 15, Preparing the Environment,
Analyzing Returned Values, and
Modifying Changes, page 219.

Chapter 16, Call Level Interface
Functions, page 233.

Chapter 17, Multiple-Session Execution
Environments in Batch, page 255.

Java programs SDK (Java) Chapter 20, Using TIBCO Object Service
Broker SDK (Java), page 303.
TIBCO Object Service Broker for z/OS External Environments

Execution Environment Considerations | 267
Execution Environment Considerations

Preparatory Steps
As well as the tasks listed in Preparing to Start or Locate the Execution
Environment on page 220, complete the following tasks before you start a Native
Execution Environment or CICS Execution Environment.

Task A Enable and Initialize National Language Support (NLS)

The TIBCO Object Service Broker SDK (C/C++) for z/OS requires that the NLS
feature of TIBCO Object Service Broker be enabled and initialized in the
Execution Environment.

For detailed information on how to enable and configure NLS in the Execution
Environment, refer to TIBCO Object Service Broker National Language Support.

Task B Set the Required Execution Environment Parameters

You must set certain parameters for your Execution Environment:

• CLIMSGLENMAX – Specify the maximum length of an SDK (C/C++)
message

Set this parameter to limit the length of the messages between the client and
the Execution Environment. This length includes the SDK (C/C++) message
and the control information. The maximum you can specify is 32 MB.

• EENAME – Identify the TCP/IP socket

Set this parameter to the eight-byte ID of the IP address of the TCP/IP socket.
If the same Native Execution Environment is to support VTAM terminals, the
VTAM definitions should have the same APPLID.

• STANDBYNUM – Set the Number of Standby Sessions

Set this parameter to the number of standby sessions you want initialized in
this Execution Environment region:

TSO and Batch – Set STANDBYNUM=1

Native and CICS – Set STANDBYNUM to the anticipated maximum number
of concurrent SDK (C/C++) clients in the CICS region, to a maximum of 4096

A Standby Session is tied to the SDK (C/C++) client for the duration of a
session. Therefore the number of standby sessions controls the number of
concurrent SDK (C/C++) client sessions.
 TIBCO Object Service Broker for z/OS External Environments

268 | Chapter 18 TIBCO Object Service Broker SDK (C/C++) Server
To improve the performance of the SDK (C/C++) client/server sessions,
consider increasing the number of Session Initiator Tasks (using the
TASKINITNUM Execution Environment Region parameter). The number of
SIN tasks is independent of the number of concurrent SDK (C/C++) client
sessions.

See Also TIBCO Object Service Broker Parameters about Execution Environment parameters.

Task C If necessary, configure the Execution Environment for listening on
a TCP/IP port

To communicate with an SDK (C/C++) client from Windows or Solaris, the
Execution Environment in z/OS must be configured to listen on a TCP/IP port.

For detailed information on how to configure the Execution Environment, refer to
TIBCO Object Service Broker for z/OS Installing and Operating.

For the CLIMSGLENMAX parameter, you can specify 0M for a special meaning of
“no limit”. Use it with caution. Specifying 0M can cause storage constraint in the
system.
TIBCO Object Service Broker for z/OS External Environments

Additional Requirements for CICS Execution Environments | 269
Additional Requirements for CICS Execution Environments

SIT Parameter Requirements
To run the SDK (C/C++) session CICS background task under the SDK (C/C++)
client session’s user ID (USERID1) and to enable CICS surrogate user checking,
you must start CICS with the following SIT parameters:

DFLTUSER=USERID2,SEC=YES,XUSER=YES

The following parameters are optional, although you can specify these if you are
not implementing security for them at this time:

XCMD=NO
XDCT=NO
XFCT=NO
XJCT=NO
XPCT=NO
XPPT=NO
XPSB=NO
XTRAN=NO
XTST=NO

Specifying the CICS Session Background Task Transaction
To set up the SDK (C/C++), use the following background task:

• Transaction name: HCLI

• Program name: S6BCSCLI

Specifying RACF Definitions
When the TIBCO Object Service Broker CICS SDK (C/C++) server receives a
CONNECT request from the SDK (C/C++) client, it starts a special type of HURN
transaction (HCLI), which runs under USERID2, the value specified by the
DFLTUSER parameter, from the z/OS console. This HURN transaction in turn
starts the SDK (C/C++) background task by issuing:

EXEC CICS START TRANSID('HCLI') userid('USERID1')

USERID2 must be defined to your security system, as a surrogate of USERID1
(with READ authority) as illustrated in the following RACF definition
commands:

RDEFINE SURROGAT USERID1.DFHSTART UACC(NONE) OWNER(USERID1)
PERMIT USERID1.DFHSTART CLASS(SURROGAT) ID(USERID2) ACCESS(READ)

See Also Selecting a TIBCO Object Service Broker CICS Client Program on page 66
 TIBCO Object Service Broker for z/OS External Environments

270 | Chapter 18 TIBCO Object Service Broker SDK (C/C++) Server
TIBCO Object Service Broker for z/OS Installing and Operating about installing the
CICS component of TIBCO Object Service Broker.

TIBCO Object Service Broker Parameters about parameters.
TIBCO Object Service Broker for z/OS External Environments

| 271
Chapter 19 Using TIBCO Object Service Broker
SDK (C/C++)

This chapter describes the TIBCO Object Service Broker SDK for C and C++.

Topics

• Overview of the TIBCO Object Service Broker SDK (C/C++), page 272

• SDK (C/C++) Functions, page 275

• Sample Application Using the SDK (C/C++), page 301
 TIBCO Object Service Broker for z/OS External Environments

272 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Overview of the TIBCO Object Service Broker SDK (C/C++)

What Is the TIBCO Object Service Broker SDK (C/C++)?
The TIBCO Object Service Broker SDK (C/C++) is an application programming
interface (API) used by an application to

• Start and stop TIBCO Object Service Broker sessions

• Start and stop transactions within a session

• Call TIBCO Object Service Broker rules within the context of a transaction

The SDK (C/C++) is installed with TIBCO Object Service Broker.

How Does It Work?
The SDK (C/C++) supplies a dataIn/dataOut commarea mechanism for
unformatted binary data exchange between an application and a TIBCO Object
Service Broker rule. A rule called via SDK (C/C++) can use all the TIBCO Object
Service Broker facilities except the text-presentation DISPLAY statement. To
facilitate commarea binary data exchange between an application and a rule,
developers can use TIBCO Object Service Broker MAP tables to process data in
the dataIn commarea and to return data back to the application through the
dataOut commarea.

Remote Communication

The SDK (C/C++) is a remote interface that communicates with TIBCO Object
Service Broker. TIBCO Object Service Broker on all platforms supports this
interface in the same way. User applications can communicate with different
TIBCO Object Service Broker installations on different platforms with no change
to their code. They use the SDK (C/C++) whenever they want to control a session
in another computer or, in z/OS, in another work space on the same computer.

How Can It Be Used?
With the SDK (C/C++), you can write an application to manage a TIBCO Object
Service Broker session using a set of subroutines to an external program. Using
the SDK (C/C++) functions, you can code in the programming language of your
choice. To make the services of TIBCO Object Service Broker available to your
program, you write specific routines that make use of the SDK (C/C++) and that
exert complete control over TIBCO Object Service Broker sessions. Refer to
Sample Application Using the SDK (C/C++) on page 301.
TIBCO Object Service Broker for z/OS External Environments

Overview of the TIBCO Object Service Broker SDK (C/C++) | 273
Compiling and Running
1. Start your Data Object Broker.

For our example, we are using the following parameters:
COMMID=D364046@
NODENAME=A

2. Start a Native Execution Environment.

For our example, so that this Execution Environment connects to the Data
Object Broker referenced in step #1., we use the following parameters:
TD=D364046@
MD=N364046@ /* This value is supplied in the call to the sample
program */
STANDBYNUM=2
CLIMSGLENMAX=1M

3. Copy the source code for your program to hlq.SOURCE(RCLISAMP).

4. Compile, bind and run your program using the JCL in the RCLIJCL member
of the JCL data set provided with the SDK (C/C++) at installation.

Make sure that the IBM cataloged procedures CBCC, CBCB, and CBCG are
accessible by this job.

Thread Safety
The SDK (C/C++) client is not thread safe at a session level. In other words, when
two threads try to issue an SDK (C/C++) cliProc call on the same session area, the
behavior of the second client is unpredictable.

Constants
To facilitate application development, oscli.h contains the following preprocessor
definitions:

CLI_MAXRULEEXPRLEN The maximum length of a rules call string. For
more information, refer to CALLRULE – Call a
Rule on page 283.

The value is 514.
 TIBCO Object Service Broker for z/OS External Environments

274 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language,
writing rules, and transaction processing.

TIBCO Object Service Broker Parameters about starting sessions and session
Execution Environment parameters.

TIBCO Object Service Broker Shareable Tools about the ENDMSG shareable tool.

CLI_MAXENDMSGLEN The maximum length of a rules end message. For
more information, refer to GETENDMSG –
Retrieve a Rules End Message on page 287 and to
the ENDMSG shareable tool.

The value is 148.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 275
SDK (C/C++) Functions

This section contains a brief overview of the functions of the SDK (C/C++) client.

Rule Calls, Session and Transaction Management

Code Page Setting and Error Retrieval

Name Brief description On
page

cliProc Serves as the main SDK (C/C++) entry point
for processing STARTSS, STARTTR,
CALLRULE, STOPTR, STOPSS, RESETSS,
GETENDMSG, and SESSACTIVE requests.

277

cliExecTran Performs transaction start, rule call, and
transaction end as a single SDK (C/C++) call.

289

Name Brief description
On
pag
e

cliSetCodepage Sets an SDK (C/C++)/SDK (Java) code page. 291

cliErrorReasonDescr Retrieves the textual description of an error
reason code.

293
 TIBCO Object Service Broker for z/OS External Environments

276 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Commarea Helper Functions

This group of functions facilitate dataIn and dataOut commarea processing. All
the functions work with the format described in Calling a Rule – CALLRULE on
page 249. Generally, these functions do not validate memory pointers passed as
parameters.

Name Brief description On
page

cliCommCreate Allocates memory and formats it according to the
commarea format.

294

cliCommCreate1 Allocates and formats a single-segment
commarea.

294

cliCommDelete Deletes a commarea created by cliCommCreate
or by cliCommCreate1.

295

cliCommFormat Formats memory according to the commarea
format.

295

cliCommFormat1 Formats a single-segment commarea. 296

cliCommSegment Retrieves a pointer to a commarea segment. 297

cliCommSegments Retrieves the number of segments in a
commarea.

297

cliCommSegSize Retrieves the commarea segment size. 298

cliCommSize Calculates the total commarea size. 298

cliCommSizeCalc Calculates the size of a commarea for a given
structure.

299

cliCommSizeCalc1 Calculates the size of a single-segment
commarea, given the size of the segment.

299
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 277
C Macros

See Also Appendix A, SDK (C/C++) and SDK (Java) Error Reason Codes, on page 373 for
a list of error reason codes issued in relation to SDK (C/C++).

cliProc
cliProc is the main SDK (C/C++) function. It accepts specific operation requests
and the meaning of most cliProc parameters depends on the specifics of the
request.

void cliProc(CLI_SESSION session,
const char * operation,
char * operand,
const char * params,
const void * dataIn,
void * dataOut,
char * retData,
int * retCode);

Name Brief description On
page

LLCOPY_CSTR Copies a zero-terminated string to a string with a
two-byte length prefix.

300

LLCOPY_MEM Copies a string with an explicitly specified length to
a string with a two-byte length prefix.

300

LLDECLARE Declares a string with a two-byte length prefix. 300

LLSETLEN Sets a two-byte length prefix. 300

LLSTR Returns a pointer to the text part of a string that has
a two-byte length prefix.

300

LLSTRLEN Returns the string length from a string that has a
two-byte length prefix.

300
 TIBCO Object Service Broker for z/OS External Environments

278 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Parameters:

These values are in ASCII for Open Systems, and in EBCDIC for z/OS. The
strings do not have to be zero-terminated. To determine what operation is
requested, the SDK (C/C++) client compares the supplied request name to the
names until the match is found. If the request name is not one of the above, cliProc
fails with CLI_INVREQUEST (2) as return code.

session Application-supplied session work area. The SDK (C/C++) client uses
this area to store all session related internal data. For the SDK (C/C++)
client to function properly, the application must not modify contents of
this area.

operation Pointer to the name of the request. Valid values are:

Operation Refer to On page

STARTSS STARTSS – Start a Session. 280

STARTTR STARTTR – Start a Transaction. 282

CALLRULE CALLRULE – Call a Rule. 283

STOPTR STOPTR – Stop a Transaction. 286

STOPSS STOPSS – Stop a Session. 286

RESETSS RESETSS – Drop a Connection to a Session. 287

GETENDMSG GETENDMSG – Retrieve a Rules End Message. 287

SESSACTIVE SESSACTIVE – Inquire Whether Session Is Active. 288

operand Pointer to the operand. The meaning of this parameter varies
depending on the specific request (that is, the value of the operation
cliProc parameter, described above).

params Pointer to the operation parameters. The meaning of this parameter
varies depending on the specific request (that is, the value of the
operation cliProc parameter, described above).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 279
Return Value:

None.

Comments

All the requests accepted by cliProc are session-related. Sessions are distinguished
by the session parameter of cliProc. session points to application-provided storage
that the SDK (C/C++) client uses to store all the data related to a particular
session. The structure of this storage is internal and the application must not
modify data in storage. Type CLI_SESSION is provided to declare or allocate
variables large enough to hold all internal session data.

STARTSS properly formats the session area and the other operations assume that
the area is formatted correctly. For all cliProc calls except STARTSS, if session was
not previously passed to STARTSS or is corrupt, the behavior of the SDK (C/C++)
client is undefined. The SDK (C/C++) client checks an eyecatcher area in the
session area and, if the eyecatcher is corrupt, the operation fails with a
CLI_SESSINVALID (199) error reason code. Use this error reason code as an
indication of memory misuse when debugging the application.

dataIn Pointer to the dataIn commarea. Used for CALLRULE requests only.

dataOut Pointer to the dataOut commarea. Used for CALLRULE requests only.

retData Pointer to the memory area where the result of the operation is to be
stored. The nature of the result depends on the specific request (that is,
the value of the operation cliProc parameter, described above).

retCode Pointer to the memory area where return code of the request is to be
stored. If the request succeeds, CLI_SUCCESS (0) is returned, if the
request fails, the value depends on the specific request (that is, the
value of the operation cliProc parameter, described above).

For some values of operation, some of these parameter are ignored. In this case, it
does not matter what the parameter contains. This is different from setting a
parameter to NULL, which has a specific meaning for that parameter.
 TIBCO Object Service Broker for z/OS External Environments

280 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Generally, cliProc does not perform memory accessibility checks for pointers that
the application supplies. However, there are a few exceptions from this rule, as
described in the cliProc request specifications below.

STARTSS – Start a Session

STARTSS starts a new TIBCO Object Service Broker session. The following table
lists the cliProc parameters used by this operation:

If two calls to STARTSS with the same session parameter are issued one right after
the other, the first session becomes inaccessible because all the internal
SDK (C/C++) data for that session is lost. To avoid this, always issue a STOPSS or
a RESETSS before issuing another STARTSS on the same session area.

In operation Points to STARTSS.

operand Points to the SDK (C/C++)/SDK (Java) code page for the
new session. The SDK (C/C++) expects a 24-byte,
blank-padded code page name. If this parameter is NULL,
the SDK (C/C++) uses the code page set by the most recent
cliSetCodepage call. The code page name is in EBCDIC. For
valid values, refer to cliSetCodepage on page 291.

params Session parameters string. It must be prefixed by two bytes
giving its length, exclusive of the length of the prefix. The
string must be in the SDK (C/C++)/SDK (Java) code page
specified by the cliSetCodepage call or in the STARTSS
operand parameter. The endian type of the length prefix is
the same as the endian type of the SDK (C/C++) client
platform.

Out session Pointer to session storage area. The area does not have to be
initialized. STARTSS formats it properly.

retData Points to the operation return data buffer. If the STARTSS
operation succeeds, the session user ID (eight bytes,
blank-padded) is copied to the buffer. If STARTSS fails, an
error reason code (four bytes) is placed into the buffer.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STARTSS_FAILED (4).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 281
Use the session parameters string (params) to define various session behavior
aspects. There are a number of parameters that are specific for the SDK (C/C++).
These (case-insensitive) parameters are:

You use CLINODE to identify the TIBCO Object Service Broker monitor process
(Windows or Solaris) or the Execution Environment (z/OS) on the network. See
your TIBCO Object Service Broker administrator for the node name of the
Execution Environment, or osMon in Windows or Solaris, to which you want to
connect. For more information on the CLINODE parameter, refer to TIBCO Object
Service Broker Parameters.

Make sure that your session parameter string contains the CLINODE parameter.
Otherwise, STARTSS fails with a CLI_INVNODE (193) error reason code.

CLIENDIAN provides a way to override the application endian type for a session.
This parameter affects the external representation of MAP table fields with
numeric internal syntaxes and the “*” external syntax. If CLIENDIAN is not
specified the endian type natural for the SDK (C/C++) client platform is selected.

The session area is formatted to represent a session for subsequent cliProc calls.
Even if the STARTSS call fails, the area can be used in subsequent cliProc calls (all
calls except SESSACTIVE and GETENDMSG fail with a
CLI_CALLOUTOFSEQ (36) error reason code). Do not call a STARTSS passing
session area pointer that represents another active session, because the information
about it is overwritten.

CLINODE Node name of the machine that runs the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the z/OS Execution
Environment where the SDK (C/C++) client is to connect.

CLIENDIAN Session endian type. This parameter affects the external representation
of MAP table fields with internal syntax B, and “*” external syntax.
Valid entries are: BIG and LITTLE (case insensitive).

CLIMODEL A model Execution Environment communications identifier required
only when VTAM connections are used. If specified, the value must be
compatible with the configuration of the VTAM installation.

Open Systems programs using the SDK (C/C++) also have available the
CLIHOST and CLIPORT parameters as an alternative to CLINODE.

Use of a CLIHOST/CLIPORT pair on z/OS is not supported. It fails with a
COMMFAILURE (195) error reason code.
 TIBCO Object Service Broker for z/OS External Environments

282 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
STARTTR – Start a Transaction

The following table lists the cliProc parameters used by this operation:

STARTTR starts a transaction within a specified session. If the session already has
transactions started, STARTTR starts a child transaction.

Transaction parameters are specified in the form of a string (all characters are case
insensitive):

BROWSE | UPDATE, TEST | NOTEST, SEARCH=S | I | L, LIBRARY=libname

If you omit a parameter, STARTTR uses session default value specified in the
session parameter string at STARTSS time. These session defaults are set by the
BROWSE, TEST, SEARCH, and LIBRARY session parameters. For more
information on these, refer to TIBCO Object Service Broker Parameters.

If the session abends or is stopped, STARTTR fails with a CALLOUTOFSEQ (36)
error reason code.

If the maximum allowed number of transactions are already running in the
session, the operation fails with TOOMANYTRANS (106) error reason code. Refer
to TIBCO Object Service Broker Parameters for information on the TRANMAXNUM
Execution Environment parameter, which sets the maximum value.

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STARTTR.

params Transaction parameters string. It must be prefixed by two
bytes giving its length, exclusive of the length of the prefix.
The string must be in the session SDK (C/C++)/SDK (Java)
code page. The endian type of the length prefix is the same
as the endian type of the SDK (C/C++) client platform.

If the params pointer is NULL, all transaction parameters are
assigned based on session defaults.

Out retData Points to a memory area where the error reason code (four
bytes) is placed. If the operation succeeds, the area stays
unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STARTTR_FAILED (10).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 283
CALLRULE – Call a Rule

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to CALLRULE.

operand Points to the maximum length for the rules return value that
is placed in the retData buffer, including the two-byte length
prefix and the terminating zero.

This parameter is an unsigned integer of length two bytes.
Its endian type is the same as the endian type of the
SDK (C/C++) client platform. If operand is NULL, no return
value is stored.

This parameter is In/Out. Refer to operand under Out below.

params Rules call string of the following form:
'RULENAME(PARAM1, PARAM2,…,PARAMn)' It must be
prefixed by a two-byte string giving its length, exclusive of
the length of the prefix. The string must be in the session
SDK (C/C++)/SDK (Java) code page. The endian type of
the length prefix is the same as the endian type of the
SDK (C/C++) client platform. The maximum allowed
length of the call string (excluding the length prefix) is 514
(CLI_MAXRULEEXPRLEN in oscli.h).

dataIn Points to the dataIn commarea. To indicate that you do not
want this commarea used, set this parameter to NULL.

dataOut Points to the dataOut commarea populated by a rule. To
indicate that you are not using the dataOut commarea, set
this parameter to NULL.
 TIBCO Object Service Broker for z/OS External Environments

284 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
CALLRULE performs a rule call. Rule name and parameters are supplied in a
textual form: RULENAME(PARAM1, PARAM2,…,PARAMn). The maximum
length of this string is 514 (CLI_MAXRULEEXPRLEN) excluding the length
prefix. If a longer string is passed, CALLRULE fails with a
CLI_RULEEXPRTOOLONG (3090) error reason code. If params is NULL,
CALLRULE fails with a CLI_NORULENAME (96) error reason code.

If the session stops or abends, or no transaction was started within the session,
CALLRULE fails with a CLI_CALLOUTOFSEQ (36) error reason code.

The rules return value is converted to text and placed in the memory pointed to
by the retData parameter. The operand parameter is used as an In/out parameter. An
application uses it to pass the number of bytes available to store the rules return
value and the SDK (C/C++) client uses the parameter to return the length of the
whole return value in text form, regardless of possible truncation. The returned
length does not include the two-byte length prefix and terminating zero. To
determine whether truncation occurred, the application can compare the resulting
value to the value of the length prefix of the string in retData buffer.

If the rule does not return a value, an empty string is stored in retData. An empty
string in this case is represented by three zero bytes, two for the length prefix, one
for the terminating zero.

Out operand Length (two bytes, unsigned integer, the SDK (C/C++)
client platform endian type) of the whole rules return value
in textual form (length prefix and terminating zero are
excluded). If the operand is NULL, no length is written.

retData Points to a memory area where the error reason code (four
bytes) is to be placed if the operation fails. If the operation
succeeds, the area is filled with the rules return value in
textual form. The maximum number of bytes written to
retData is passed through the operand parameter. The return
value is in the session SDK (C/C++)/SDK (Java) code page.
It is prefixed by two bytes stating its length and has a
terminating zero byte at the end. The endian type of the
length prefix is the same as the endian type of the
SDK (C/C++) client platform.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_CALLRULE_FAILED(11).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 285
CALLRULE uses the dataIn and dataOut commareas for binary data exchange
between the application and the rule. The format of a commarea is as follows:

If dataIn or dataOut does not reside in accessible memory, CALLRULE fails with the
appropriate error reason code. The dataIn memory must be accessible for reading
and dataOut for reading and writing.

The TIBCO Object Service Broker Execution Environment creates a copy of dataIn
and makes the pointer to the area available to the rule through the
APIINHANDLE field of @SESSION(0). For dataOut, the Execution Environment
allocates memory for the whole area and copies the area header. A pointer to
dataOut is made available through the APIOUTHANDLE field of @SESSION(0).
For more information about the @SESSION table, refer to TIBCO Object Service
Broker Shareable Tools.

Access to dataIn and dataOut using MAP tables is always granted by the system
and MAP tables can be used without @MAP registration of the dataIn and
dataOut addresses. dataIn is accessible for reading and dataOut for reading and
writing. For more information about MAP tables, refer to TIBCO Object Service
Broker Managing Data.

When a rule successfully completes, contents of the dataOut are transferred back
from the Execution Environment to the application memory. Consider reducing
the number of bytes transmitted to the application by your rule. You do this by
properly reformatting the dataOut header, then, before transmitting data back,
the Execution Environment reevaluates the dataOut header to determine the
correct number of bytes to send back to the application.

Number
of blocks Length of

1st block
Length of
2nd block

COMMAREA

Header Section
 (each field 4 bytes)

1st block 2nd block nth block

zero zero zero

Length of
nth block
 TIBCO Object Service Broker for z/OS External Environments

286 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
STOPTR – Stop a Transaction

The following table lists the cliProc parameters used by this operation:

STOPTR commits or rolls back changes and stops the transaction active within a
given session. The current transaction is destroyed and the session transaction
nesting level is decremented even if STOPTR fails.

If the session is stops, if it abends, or if no transaction was started within the
session, STOPTR fails with a CLI_CALLOUTOFSEQ (36) error reason code.

STOPSS – Stop a Session

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STOPTR.

operand Points to COMMIT/ROLLBACK or NULL. NULL is
equivalent to COMMIT. The code page of the parameter is
ASCII for Open Systems, and EBCDIC for z/OS.

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STOPTR_FAILED (12).

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to STOPSS.

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) and
CLI_STOPSS_FAILED (9).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 287
STOPSS stops the session.

If the session abends or was stops, STOPSS fails with a
CLI_CALLOUTOFSEQ (36) error reason code.

If there are transactions active within the session, STOPSS fails with a
CLI_TRANSACTIVE (128) error reason code, and the session stays active.

All other error reason codes mean that the session shutdown sequence did not
complete properly (for instance, network connection was lost during the session
shutdown), but the session became inactive anyway.

RESETSS – Drop a Connection to a Session

The following table lists the cliProc parameters used by this operation:

RESETSS forcefully closes the session by dropping the session connection as
opposed to an orderly shutdown by STOPSS. The session does not have to be
active for the call to succeed. When a connection is dropped, the Execution
Environment generates an error message, and closes the session. All uncommitted
data changes are lost.

If session is processed by STARTSS and is not modified directly by the application,
RESETSS does not fail. If session is not previously passed to STARTSS or became
corrupt, the operation fails with CLI_SESSINVALID(199). Refer to cliProc on
page 277 for information about session area validity checks.

GETENDMSG – Retrieve a Rules End Message

The following table lists the cliProc parameters used by this operation:

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to RESETSS.

Out retCode Points to a memory area where the error reason code (four
bytes) is to be placed. If the operation succeeds, the area
stays unchanged.

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to GETENDMSG.
 TIBCO Object Service Broker for z/OS External Environments

288 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
GETENDMSG retrieves the most recent rules end message. The session does not
have to be active for the call to succeed. If no CALLRULE was issued within the
session or rules did not generate an end message, an empty string (three bytes of
zeroes) is returned.

If session is processed by STARTSS and is not modified directly by the application,
GETENDMSG does not fail. If session is not previously passed to STARTSS or
became corrupt, the operation fails with CLI_SESSINVALID(199). Refer to cliProc
on page 277 for information about session area validity checks.

SESSACTIVE – Inquire Whether Session Is Active

The following table lists the cliProc parameters used by this operation:

Out retData Points to a memory area where the rules end message is to
be placed. The end message has a two-byte length prefix
and a terminating zero. The endian type of the length prefix
is the same as the endian type of the SDK (C/C++) client
platform. The maximum length of TIBCO Object Service
Broker rules end message is 148 (CLI_MAXENDMSGLEN
in oscli.h), therefore, to accommodate a possible end
message, the application must provide a buffer of 151 bytes.
The rules end message is in the session
SDK (C/C++)/SDK (Java) code page.

In case of an error, a four-byte error reason code is placed in
retData.

retCode Points to a buffer for the return code (four bytes). Possible
values are CLI_SUCCESS (0) and
CLI_GETENDMSG_FAILED (13).

In session Points to a session area. If STARTSS did not process this
area, the SDK (C/C++) client behavior is undefined.

operation Points to SESSACTIVE.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 289
It is possible for a TIBCO Object Service Broker session to become inactive any
time after it starts (due to network problems, Execution Environment abnormal
terminations, and others).

When that happens, STARTTR, STOPTR, CALLRULE, and STOPSS operations on
this session fail with an appropriate error reason code. In addition, appropriate
changes to the session area are made to indicate that the session is no longer active,
so that subsequent STARTTR, STOPTR, CALLRULE, and STOPSS operations fail
with a CLI_CALLOUTOFSEQ (36) error reason code. Use a SESSACTIVE cliProc
request to determine whether the session is still active. If the session abends or is
stopped by STOPSS or RESETSS, SESSACTIVE returns 0 in the retData area.

If session is processed by STARTSS and is not modified directly by the application,
SESSACTIVE should not fail. If session is not previously passed to STARTSS or
became corrupt, the operation fails with CLI_SESSINVALID(199). Refer to cliProc
on page 277 for information about session area validity checks.

cliExecTran
This function combines the following cliProc actions:

• STARTTR

• CALLRULE

• STOPTR

void cliExecTran(CLI_SESSION session,
 const char * transParam,
 const char * ruleName,
 unsigned short * retBufLen,
 const void * dataIn,
 void * dataOut,
 char * retData,
 int * retCode);

Out retData Points to a memory area where the error reason code (four
bytes) is to be placed in the case of an error. If the operation
succeeds, a value of 1 or 0 (four-bytes, endian type of the
SDK (C/C++) platform) is returned. 1 indicates that the
session is still active, 0, that it is not active (either abended
or stopped by STOPSS or by RESETSS).

retCode Points to a buffer for the return code (four bytes). Possible
values of the return code are CLI_SUCCESS (0) or
CLI_SESSACTIVE_FAILED (14).
 TIBCO Object Service Broker for z/OS External Environments

290 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Parameters:

In:

Out:

Return Value:

None.

session Pointer to a session area. If STARTSS did not process this area,
behavior is undefined.

transParam Transaction parameters string. For more detail, refer to STARTTR –
Start a Transaction on page 282.

ruleName Rule call in the form of the string RULE(PARAM1, PARAM2,…PARAMn).
For more detail, refer to CALLRULE – Call a Rule on page 283.

retBufLen Maximum length of the retData buffer. For more detail, refer to
CALLRULE – Call a Rule on page 283.

dataIn dataIn commarea. For more detail, refer to CALLRULE – Call a Rule
on page 283.

dataOut dataOut commarea. For more detail, refer to CALLRULE – Call a Rule
on page 283.

retBufLen The length of the rules return value excluding the length prefix and the
terminating zero. For more detail, refer to CALLRULE – Call a Rule on
page 283.

retData Pointer to the area where the rules return value is to be stored. For
more detail, refer to CALLRULE – Call a Rule on page 283.

If the call fails, the error reason code (four bytes) is stored in the retData
buffer.

retCode Pointer to the area where four bytes of a return code are to be stored.
Possible values are:

– CLI_SUCCESS (0)
– CLI_STARTTR_FAILED (10),
– CLI_CALLRULE_FAILED (11),
– CLI_STOPTR_FAILED (12).
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 291
Comments

If CALLRULE succeeds, STOPTR is called with the COMMIT parameter.
Otherwise, STOPTR is called with the ROLLBACK parameter.

cliSetCodepage
This function indicates the SDK (C/C++)/SDK (Java) code page, that is, the code
page that your application expects to use to communicate with TIBCO Object
Service Broker sessions.

void cliSetCodepage(const char * codepage)

Parameter:

codepage Address of the SDK (C/C++)/SDK (Java) code page name. The code
page name is expected to be 16-byte blank-padded text. No
terminating zero is required. The code page name is expected to be in
EBCDIC. The valid values for this field are the code page names shown
in TIBCO Object Service Broker National Language Support.

• The initial value of the code page name is IBM-037.

• WIN-1252 is recommended for use in clients that do not depend on TIBCO
Object Service Broker code pages; it supports all TIBCO Object Service Broker
code pages.

• ISO8859-1 works only with code pages that do not support the euro sign.

• ISO8859-15 works only with code pages that support the euro sign.
 TIBCO Object Service Broker for z/OS External Environments

292 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Also, the following translations occur:

Return Value:

None.

Comments

The code page setting determines the code page of certain cliProc IN/OUT
parameters as well as the external representation of MAP table fields with “*”
external syntax and textual internal syntaxes.

The following cliProc parameters are affected by the setting:

• STARTSS – the session parameters string is expected in the specified code
page

• STARTTR – the transaction parameter string is expected in the specified code
page

• CALLRULE – the rules call expression is expected in the specified code page

• GETENDMSG – the returned end message string is in the specified code page

Value of
code page

System specifies a non-euro
code page

System specifies a euro
code page

A euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» a x'20' in the euro code
page.

a. In this table, the “«-»” symbol means “translates to, in both directions”.

A non-euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» x'20' in the euro code
page.

The
Windows
code page

x'80' (the euro symbol) in the
Windows code page «-» x'20' in
the non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» code point x'9F' in the
non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» x'20' in the euro code
page.

x'80' (the euro symbol) in the
Windows code page «-» x'9F'
in the non-euro code page.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 293
The code page name set by cliSetCodepage affects all sessions started after the
cliSetCodepage call. Sessions that are already running are not affected.

There is a way to override this global setting on a session basis by specifying an
alternative code page name as a parameter for the STARTSS operation. Refer to
STARTSS – Start a Session on page 280.

Initial value of the code page name is ISO8859-1 for Open Systems, and IBM-037
for z/OS.

cliSetCodepage stores, without validation, the code page name for future
STARTSS cliProc requests (with no overriding code page specified). If the code
page is not supported by TIBCO Object Service Broker, STARTSS fails with a
CLI_UNSUPPCODEPAG (161) error reason code.

cliSetCodepage is thread safe and can be called at any time by any application
thread. However, due to the fact that cliSetCodepage deals with the global data of
the SDK (C/C++) client, some contention can occur if many threads are issuing
cliSetCodepage or STARTSS cliProc requests (with no overriding code page
specified) at the same time. If you need to simultaneously start sessions with
varying code page settings, using the STARTSS operand parameter is a better choice
because it does not lead to resource access synchronization by the SDK (C/C++)
client.

cliErrorReasonDescr
This function retrieves a textual description of an error reason code returned by
cliProc or cliExecTran.

const char * cliErrorReasonDescr(int reasonCode)

Parameter:

Return Value:

Pointer to the textual description of the error reason code. It has a two-byte long
prefix and a terminating zero.

Comments

The application must not modify the contents of the description retrieved.

reasonCode Value of the error reason code returned by cliProc or cliExecTran.
 TIBCO Object Service Broker for z/OS External Environments

294 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
cliCommCreate
This function allocates memory for and formats a commarea with the given
structure.

void * cliCommCreate(unsigned int count,
 unsigned int * segmentSizes)

Parameters:

Return Value:

Pointer to the beginning of the created commarea (to the count field of the header -
refer to the commarea format description in CALLRULE – Call a Rule on
page 283), or NULL if the memory allocation failed.

Comments

If memory allocation fails, a NULL pointer is returned.

Segment memory is not initialized.

To delete a commarea created by cliCommCreate, you must use cliCommDelete.

cliCommCreate1
This function calls cliCommCreate to allocate memory for, and format, a
one-segment commarea.

void * cliCommCreate1(unsigned int segmentSize)

Parameter:

count Number of blocks in the commarea.

segmentSizes Array of block sizes.

segmentSize Size of the only segment in the commarea.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 295
Return Value:

Pointer to the newly created area or NULL if memory allocation failed.

Comments

Use cliCommDelete to delete a commarea created by this function. The segment
memory is not initialized.

cliCommDelete
This function deletes a commarea created by cliCommCreate.

void cliCommDelete(void * area)

Parameter:

Return Value:

None.

cliCommFormat
This function formats a memory area according to the commarea format
specifications, as supplied through the count and segmentSizes parameters.

void cliCommFormat(void * area,
 unsigned int count,
 unsigned int * segmentSizes)

Parameters:

area Commarea pointer returned by cliCommCreate or by
cliCommCreate1.

area Pointer to commarea memory.

count Number of blocks in the commarea.
 TIBCO Object Service Broker for z/OS External Environments

296 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Return Value:

None.

Comments

For more about the commarea format, refer to CALLRULE – Call a Rule on
page 283.

Segment memory is not initialized.

Behavior of this operation is undefined if the area memory area is not large enough
to hold the header part of the commarea. Allocation and deallocation of the area
memory is the responsibility of the application. Do not use cliCommDelete to
deallocate the area memory.

cliCommFormat1
This function formats a one-segment memory area according to the commarea
format specifications.

void cliCommFormat1(const void * area, unsigned int segmentSize)

Parameters:

Return Value:

None.

Comments

The commarea structure consists of one segment of segmentSize bytes. For details
about the commarea format, refer to CALLRULE – Call a Rule on page 283.

Segment memory is not initialized.

segmentSizes Array of block sizes.

area Pointer to commarea memory.

segmentSize Size of the only segment in the commarea.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 297
Behavior of this operation is undefined if the area memory area is not large enough
to hold the header part (12 bytes for the areas with one segment) of the commarea.
Allocation and deallocation of the area memory is the responsibility of the
application. Do not use cliCommDelete to deallocate the area memory.

cliCommSegment
This function calculates the pointer to a specific commarea segment.

void * cliCommSegment(const void * area,
 unsigned int segmentNum)

Parameters:

Return Value:

Pointer to the commarea segment, or NULL if the segment does not exist (count
field of the header is less than or equal to segmentNum)

Comments

If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 283), the behavior is undefined.

cliCommSegments
This function retrieves the number of segments in the commarea.

unsigned int cliCommSegments(const void * area)

Parameter:

area Pointer to the commarea.

segmentNum Number of a segment, starting with zero.

area Pointer to the commarea.
 TIBCO Object Service Broker for z/OS External Environments

298 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Return Value:

Number of segments in the commarea.

cliCommSegSize
This function retrieves the size of a specific commarea segment.

unsigned int cliCommSegSize(const void * area,
 unsigned int segmentNum);

Parameters:

Return Value:

Size of the commarea segment based on the contents of the commarea header.

If the segment does not exist (that is, the count field in the header is less than or
equal to segmentNum), this function returns 0.

Comments

If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 283), the behavior is undefined.

cliCommSize
This function calculates the total size of the commarea, including the header.

unsigned int cliCommSize(const void * area)v

Parameter:

area Pointer to the commarea.

segmentNum Number of a segment, starting with zero.

area Pointer to the commarea.
TIBCO Object Service Broker for z/OS External Environments

SDK (C/C++) Functions | 299
Return Value:

Total size of the commarea.

Comments

If the area memory does not comply to the commarea format rules (refer to
CALLRULE – Call a Rule on page 283), the behavior is undefined.

cliCommSizeCalc
This function calculates the total number of bytes needed for a commarea with
count blocks of sizes supplied in segmentSizes array.

unsigned int cliCommSizeCalc(unsigned int count,
 unsigned int * segmentSizes)

Parameters:

Return Value:

Number of bytes needed to accommodate the commarea of the given structure.

cliCommSizeCalc1
This function calculates the total number of bytes needed for a commarea
consisting of one segment of segmentSize bytes.

unsigned int cliCommSizeCalc1(unsigned int segmentSize)

Parameter:

count Number of blocks within the commarea.

segmentSizes Array of block sizes.

segmentSize Size of the only segment in the commarea.
 TIBCO Object Service Broker for z/OS External Environments

300 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Return Value:

Total size needed to accommodate a commarea with one segment of segmentSize
bytes

LLCOPY_CSTR(listr, cstr)
This C macro copies a zero-terminated string into a string with a two-byte length
prefix.

LLCOPY_MEM(listr, prt, len)
This C macro copies a string with an explicitly specified length into a string with a
two-byte length prefix.

LLDECLARE(name, len)
This C macro declares a string with two bytes reserved for the length prefix.

LLSETLEN(listr, len)
This C macro sets a two-byte length prefix.

LLSTR(listr)
This macro retrieves a pointer to the text part of a string that has a two-byte
length prefix.

LLSTRLEN(listr)
This C macro retrieves a string length from the string’s two-byte length prefix.

See Also TIBCO Object Service Broker Managing Data about MAP tables.
TIBCO Object Service Broker for z/OS External Environments

Sample Application Using the SDK (C/C++) | 301
Sample Application Using the SDK (C/C++)

C Program
The sample program is available in the RCLISAMP member of the C data set
distributed with TIBCO Object Service Broker SDK (C/C++).

The RCLIJCL member of the JCL data set distributed with TIBCO Object Service
Broker SDK (C/C++) contains JCL to compile and run the sample program.

Rule Called by Program
The TC007113RU02 rule creates an occurrence of the LOG TDS table, generates an
end message, and returns a value. On completion of the rule, the changes are not
committed because the transaction is still active. The SDK (C/C++) program
explicitly stops the transaction by issuing STOPTR with a COMMIT flag or a
ROLLBACK flag to indicate whether the changes are to be committed.

 RULE EDITOR ===> SCROLL: P
 TC007113RU02;
 _
 _ ---
 _ --+--------------
 _ TC007113TA01.TEXT = 'RULE "TC007113RU02" IS CALLED'; ¦ 1
 _ INSERT TC007113TA01; ¦ 2
 _ CALL ENDMSG('END MESSAGE GENERATED BY RULE "TC007113RU02"');¦ 3
 _ RETURN('RETURN VALUE OF RULE "TC007113RU02"'); ¦ 4
 _ ---
 _

The sample uses the HURON1 TIBCO Object Service Broker user with a
password of HURON1.
 TIBCO Object Service Broker for z/OS External Environments

302 | Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
Table Referenced by a Rule
The table TC007113TA01 is defined as follows:

 COMMAND==> TABLE DEFINITION

 Table: TC007113TA01 Type: TDS Unit: TC07113 IDgen: Y
 Source:
 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 _ KEY I B 4 0 P
 _ TEXT S C 50 0
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
 New table definition

Output from the Program
The out from the program is as follows:

STARTSS completed. Session User ID = HURON1
STARTTR completed.
CALLRULE completed, return value: 'RETURN VALUE OF RULE "TC007113RU002"'
Rule end message: 'END MESSAGE GENERATED BY RULE "TC007113RU002"'
STOPTR completed.
STOPSS completed.
TIBCO Object Service Broker for z/OS External Environments

| 303
Chapter 20 Using TIBCO Object Service Broker

SDK (Java)

This chapter describes the TIBCO Object Service Broker SDK for Java.

Topics

• Overview of TIBCO Object Service Broker SDK (Java), page 304

• SDK (Java) Methods, page 308

• Session Object Methods, page 312

• SessionException Object Methods, page 327

• Misc Object Methods, page 330

• Sample Application Using the SDK (Java), page 336
 TIBCO Object Service Broker for z/OS External Environments

304 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Overview of TIBCO Object Service Broker SDK (Java)

What Is the TIBCO Object Service Broker SDK (Java)?
The TIBCO Object Service Broker SDK (Java) is an application programming
interface (API) used by an application in a Java environment to:

• Start and stop TIBCO Object Service Broker sessions

• Start and stop transactions within a session

• Call TIBCO Object Service Broker rules within the context of a transaction

It is a platform-independent version of the TIBCO Object Service Broker
SDK (C/C++), which is described in Chapter 19, Using TIBCO Object Service
Broker SDK (C/C++), on page 271.

Information on the Other Interfaces

Depending on your environment, you use one of the following:

External
Environment Interface Refer to

Programs running
in the same batch,
TSO, or CICS
environment as
TIBCO Object
Service Broker

Call Level
Interface

Chapter 14, Introduction to the
Call Level Interface, page 199.

Chapter 15, Preparing the Environment,
Analyzing Returned Values, and
Modifying Changes, page 219.

Chapter 16, Call Level Interface
Functions, page 233.

Chapter 17, Multiple-Session Execution
Environments in Batch, page 255.

C programs, C++
programs

SDK (C/C++) Chapter 18, TIBCO Object Service Broker
SDK (C/C++) Server, page 265.

Chapter 19, Using TIBCO Object Service
Broker SDK (C/C++), page 271.
TIBCO Object Service Broker for z/OS External Environments

Overview of TIBCO Object Service Broker SDK (Java) | 305
Requirements

Java Runtime

The SDK (Java) classes were built using the Java 1.4.1 compiler relying on APIs
defined in version 1.1 of the Java platform. Therefore, according to the Java
specification, the SDK (Java) methods can run on Version 2.0 and should
“generally run on [the] 1.1 version of the Java virtual machine”.

NLS

If you are connecting to an Execution Environment on z/OS, ensure that NLS is
set up, with values in @NLS1 similar to the following example, according to your
environment:

 BROWSING TABLE : @NLS1
 COMMAND ==>
 SCROLL: P
 KEY COMPTYPE COMPNAME LOCALE_CP
 ----------- ---------------- -------------------------------- -------------------
 _ 1 SELF ENGL.IBM-037
 _ 2 REMOTE ENGL.IBM-037

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 19=SHOW 13=PRINT 3=END 14=EXPAND

How Does It Work?
The SDK (Java) supplies a dataIn/dataOut commarea mechanism for
unformatted binary data exchange between an application and a TIBCO Object
Service Broker rule. A rule called via the SDK (Java) can use all the TIBCO Object
Service Broker facilities except the text-presentation DISPLAY statement. To
 TIBCO Object Service Broker for z/OS External Environments

306 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
facilitate commarea binary data exchange between an application and a rule,
developers can use TIBCO Object Service Broker MAP tables to process data in
the dataIn commarea and to return data back to the application through the
dataOut commarea.

Remote Communication

The SDK (Java) is a remote interface that communicates with TIBCO Object
Service Broker. TIBCO Object Service Broker supports this interface in the same
way on all platforms with no user application code change. In a Java
environment, applications use the SDK (Java) to control a session in the local or
another computer (on any platform), or in another work space on the same
computer (in z/OS only).

How Can It Be Used?
With the SDK (Java), you write an application to manage a TIBCO Object Service
Broker session using a set of Java classes. To make the services of TIBCO Object
Service Broker available to your program, you write specific code that makes use
of the SDK (Java) classes and that exerts complete control over TIBCO Object
Service Broker sessions. Refer to Sample Application Using the SDK (Java) on
page 336.

Compiling
The SDK (Java) is supplied as a cli.jar file. To use the interface, an application calls
the methods of the SDK (Java) classes. The classes within cli.jar can be made
accessible to the application via the CLASSPATH system environment variable or
can be embedded in your application .jar file.

Thread Safety
Most Session class methods are thread safe at a session level. In other words,
when two threads try to run a method of the same SDK (Java) Session object, the
behavior is unpredictable. This applies to the following: start, stop, reset,
startTrans, stopTrans, call, shutdown, and execTran.

transNestLevel, endMessage, isActive, and user ID can be run at the same time as
any other method on the same Session object.

The methods of the SessionException and Misc classes are fully thread safe.
TIBCO Object Service Broker for z/OS External Environments

Overview of TIBCO Object Service Broker SDK (Java) | 307
Constants
To facilitate application development, the Session class contains the following
constants, which are defined as static public final fields:

See Also TIBCO Object Service Broker Managing Data about MAP tables.

TIBCO Object Service Broker Programming in Rules about the rules language,
writing rules, and transaction processing.

TIBCO Object Service Broker Parameters about starting sessions and about session
Execution Environment parameters.

TIBCO Object Service Broker Shareable Tools about the ENDMSG shareable tool.

MAXRULEEXPRLEN The maximum length of a rules call string. For more
information, refer to call on page 314.

The value is 514.

MAXENDMSGLEN The maximum length of a rules end message. For more
information, refer to endMessage on page 317 and to the
ENDMSG shareable tool.

The value is 148.
 TIBCO Object Service Broker for z/OS External Environments

308 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
SDK (Java) Methods

Classes
The SDK (Java) client comprises a set of Java classes that reside in the
com.Amdahl.Cli package:

The following tables are followed by detailed information about each SDK (Java)
method.

Session Class

Session A class representing an SDK (Java) session context, and
providing methods for session start up and stop,
transaction start up and stop, and rule invocation.

SessionException An exception class used to indicate Session method errors.

Misc A class providing commarea helper functions and
functions for converting numeric types to and from
big-endian byte array representation.

Method Brief description On
page

Session The class constructor. 312

start Starts an SDK (Java) session. 321

stop Stops an SDK (Java) session. 324

reset Drops a connection to a session. 320

startTrans Starts a transaction. 323

stopTrans Stops the currently active transaction, committing
or rolling back the changes.

325

call Calls a rule. 314

transNestLevel Returns the transaction nesting level of the session. 325

isActive Returns the activity status of the session. 320
TIBCO Object Service Broker for z/OS External Environments

SDK (Java) Methods | 309
SessionException Class

Refer to Appendix A, SDK (C/C++) and SDK (Java) Error Reason Codes, on
page 373 for a list of error reason codes issued by the SDK (Java).

endMessage Returns the end message from the last rule called
within the session.

317

userId Returns the user ID of the session. 326

shutdown Stops all transactions (committing or rolling back
the changes), and stops the session regardless of
the errors encountered.

321

execTran Equivalent to executing a sequence of startTrans,
call, and stopTrans methods. The changes are
committed if the rule call succeeds and rolled back
if it throws an exception.

318

Method Brief description On
page

Name Brief description On
page

SessionException The SessionException class constructor. 327

rc Returns an SDK (Java) operation error code. 329

reasonCode Returns an error reason code for an SDK (Java)
error.

328

errorReasonDescr Returns a textual description of a particular
SDK (Java) error reason code.

328
 TIBCO Object Service Broker for z/OS External Environments

310 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Misc Class

These functions facilitate conversion between numeric types and their big-endian
representations in byte arrays. These functions do not validate input parameters.

This group of functions facilitate dataIn and dataOut commarea processing. These
functions work with commareas of the format described in call on page 314.
Generally, these functions do not validate input parameters.

Name Brief description On
page

readShort Reads 2 bytes from a byte array and returns a
value of type short according to what these bytes
represent in big-endian format.

334

readShort Writes, into a byte array, 2 bytes of a big-endian
byte representation of a value of type short.

334

readShort Reads 4 bytes from a byte array and returns a
value of type int according to what these bytes
represent in big-endian format.

334

readShort Writes, into a byte array, 4 bytes of a big-endian
byte representation of a value of type int.

334

Name Brief description On
page

commSizeCalc Calculates the number of bytes needed for a
commarea with the specified structure.

333

commCreate Creates a new byte array and formats it according
to the commarea specification. The size of the
new byte array is calculated based on the
supplied segment structure. In the second form,
the structure is assumed to have one segment of
segmentSize bytes

330

commFormat Formats a byte array according to the commarea
specification.

330

commSegmentInd Returns the offset of a specified segment in a
commarea.

331

commSegSize Returns the size of a given commarea segment. 332
TIBCO Object Service Broker for z/OS External Environments

SDK (Java) Methods | 311
commSize Calculates the number of bytes in a commarea
according to its header.

332

commSegments Returns the number of segments in a commarea
according to its header.

331

Name Brief description On
page
 TIBCO Object Service Broker for z/OS External Environments

312 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Session Object Methods

Session
The class constructor.

public Session()

or

public Session(String sessParam,
 String codepage) throws SessionException

Parameters:

sessParam The session parameter string.

codepage The SDK (C/C++)/SDK (Java) code page to be used for
this session. The valid values for this field are the code
page names shown in TIBCO Object Service Broker National
Language Support.

• The initial value of the code page name is IBM-037.

• WIN-1252 is recommended for use in clients that do not depend on TIBCO
Object Service Broker code pages; it supports all TIBCO Object Service Broker
code pages.

• ISO8859-1 works only with code pages that do not support the euro sign.

• ISO8859-15 works only with code pages that support the euro sign.
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 313
Also, the following translations occur:

For the second form of this method, these parameters are used to start a session.

Return Value: None.

Throws: The second form of this method throws SessionException with rc =
SessionException.STARTSS_FAILED (4) if a session cannot be started.

Comments An application program can use the first form of the Session method, which
constructs an object representing an inactive session, to create an object in
preparation for starting a session later. The second form also invokes the start
method to start a TIBCO Object Service Broker session.

Value of
code page

System specifies a non-euro
code page

System specifies a euro
code page

A euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» a x'20' in the euro code
page.

a. In this table, the “«-»” symbol means “translates to, in both directions”.

A non-euro
code page

x'9F' (the universal currency
symbol) in the non-euro code
page «-» x'20' in the euro code
page.

The
Windows
code page

x'80' (the euro symbol) in the
Windows code page «-» x'20' in
the non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» code point x'9F' in the
non-euro code page.

x'A4' (the universal currency
symbol) in the Windows code
page «-» x'20' in the euro code
page.

x'80' (the euro symbol) in the
Windows code page «-» x'9F'
in the non-euro code page.
 TIBCO Object Service Broker for z/OS External Environments

314 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
call
Calls a rule.

public String call(String func,
 byte[] dataIn,
 byte[] dataOut) throws SessionException

or

public int call(String func,
 byte[] dataIn,
 byte[] dataOut,
 byte[] ruleRetValue,
 int ruleRetValueStart,
 int ruleRetValueMaxLen) throws
SessionException

Parameters:

Return Value: The first form of the method returns the rules return value as a String object.

The second form returns the actual length of the rules return value as returned by
the rule. Compare this length to the value passed as ruleRetValueMaxLen to
determine if truncation took place.

func The rules functional expression in a textual form:
RULENAME(ARG1,ARG2,...,ARGN). The expression
length must be less than or equal to 514
(Session.MAXRULEEXPRLEN constant).

dataIn The input commarea: a byte array, formatted in
accordance with the commarea format specification
(refer to Comments on page 315).

dataOut The output commarea: a byte array, formatted in
accordance with the commarea format specification.

ruleRetValue A byte array meant to hold the rules return value. If
ruleRetValue is null, no return value is stored.

ruleRetValueStart The index where the SDK (Java) should start storing
the return value in the ruleRetValue array.

ruleRetValueMaxLen The maximum number of bytes available for the
rules return value in the ruleRetValue array. If
ruleRetValueMaxLen is zero, no return value is stored.
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 315
The rules return value is the value that the called rule returns in a RETURN
statement.

Exceptions: SessionException with rc = SessionException.CALLRULE_FAILED (11) is thrown
in case of failure.

Comments If the func parameter value is NULL, both forms of the call method throw an
exception with an error reason code of SessionException.NORULENAME (96).
Also, if the func parameter value is longer than 514
(Session.MAXRULEEXPRLEN), both forms throw an exception with an error
reason code of Session.RULEEXPRTOOLONG (3090).

If the session abends or is stopped, or no transaction is started within the session,
the call method throws an exception with an error reason code of
SessionException.CALLOUTOFSEQ (36).

The two forms of the call method differ in how they handle the rules return value:

• The first form returns the rules return value as a newly created String object.

• The second form stores the value in the input ruleRetValue byte array. The value
is stored in the SDK (C/C++)/SDK (Java) code page (refer to start on
page 321), starting from the ruleRetValueStart index, for up to ruleRetValueMaxLen
bytes. This form returns the full length of the rules return value. Therefore, if
this full-length value is greater than the value passed in ruleRetValueMaxLen,
truncation occurred.

Passing null as ruleRetValue or zero as ruleRetValueStart results in no rules
return value stored. This is not an error.

If the rule does not return a value, the first form of the call method returns an
empty string and the second form stores no bytes in ruleRetValue.
 TIBCO Object Service Broker for z/OS External Environments

316 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Both forms of the call method use the dataIn and dataOut commareas for binary
data exchange between the application and the rule. The SDK (Java) commarea is
a byte array formatted as follows:

The total number of bytes in an SDK (Java) commarea is the number of bytes
indicated in the header, plus the size of the header. The size of the commarea byte
array does not matter as long as it is big enough. If the array is too small, both
forms of the call method fail with either a
SessionException.INCOMMLENERR (40) or a
SessionException.OUTCOMMLENERR (41) error reason code, depending on
where the commarea error is detected.

The TIBCO Object Service Broker Execution Environment creates a copy of dataIn
and makes the address to the area available to the rule through the
APIINHANDLE field of the @SESSION(0) table. For dataOut, the Execution
Environment allocates memory for the whole area and copies the area header. The
address to dataOut is made available through the APIOUTHANDLE field of the
@SESSION(0) table.

Access to dataIn and dataOut using MAP tables is always granted by the system
and MAP tables can be used without @MAP registration of the dataIn and
dataOut addresses. dataIn is accessible for reading and dataOut for reading and
writing. For more information about MAP tables, refer to TIBCO Object Service
Broker Managing Data.

When a rule completes successfully, contents of the dataOut are transferred back
from the Execution Environment to the application memory. Consider reducing
the number of bytes your rule transmits to the application. You do this by
properly reformatting the dataOut header. Then, before transmitting data back,
the Execution Environment reevaluates the dataOut header to determine the
correct number of bytes to send back to the application. You cannot use this

Number
of blocks Length of

1st block
Length of
2nd block

COMMAREA

Header Section
 (each field 4 bytes)

1st block 2nd block nth block

zero zero zero

Length of
nth block
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 317
method to increase the total size of the area. If the contents of the header indicate
that the total area size is larger than the original (at the beginning of the rule call),
the call fails with a SessionException.DATAOUTCORRUPT (49409) error reason
code.

See Also TIBCO Object Service Broker Programming in Rules about the rules language and
writing rules.

TIBCO Object Service Broker Shareable Tools and TIBCO Object Service Broker
Managing Data about the @SESSION(0) table and the MAP tables.

endMessage
Returns the end message from the last rule called within the session.

public String endMessage()

Parameters: None.

Return Value: The end message from the last rule call, via a call method, or an error message if
the rule failed. If neither an end message nor an error message is available from
the rule, returns null. The maximum length of the end message is 148
(Session.MAXENDMSGLEN constant).

Exceptions: None.

Comments endMessage returns a String object, not a null reference, in these cases:

• If the last rule call succeeded, endMessage returns the message generated by
the rule via an ENDMSG call, or an empty string if the rule did not generate a
message.

A performance consideration to do with return values, which can be as long as 32
KB:

• In its first form, the call method must create a temporary copy of the return
value to perform the code page translation. Therefore this form is not the best
option for applications dealing with long return values.

• In its second form, the call method does not convert the rules return value to
Unicode. It leaves it up to the application to store and convert the value in the
most optimal application-specific manner. No temporary copies of any kind
are created during the call in this form.
 TIBCO Object Service Broker for z/OS External Environments

318 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
• If the last call failed with a SessionException.RULEFAILED (3091) error reason
code, endMessage returns a rules error message.

In all other cases, endMessage returns null. The java.lang.Throwable.getMessage
method returns a message that is formed according to the above. If the rule call
throws an exception with a SessionException.RULEFAILED (3091) error reason
code, the message text contains the rules error message instead of a reason code
description.

See Also TIBCO Object Service Broker Shareable Tools about ENDMSG.

execTran
Equivalent to executing a sequence of startTrans, call, and stopTrans methods.
The changes are committed if the rule call succeeds and rolled back if it throws an
exception.

The method supplies the return value from the rule in one of two ways:

• When used in its first form (shown below), execTran returns the return value,
via the RETURN rules statement, as a String object.

• When used in its second form, execTran stores the value, encoded using the
SDK (C/C++)/SDK (Java) code page, in a region of a caller-supplied byte
array.

public String execTran(String transParams,
 String func,
 byte[] dataIn,
 byte[] dataOut) throws SessionException

or

public int execTran(String transParams,
 String func,
 byte[] dataIn,
 byte[] dataOut,
 byte[] ruleRetValue,
 int ruleRetValueStart,
 int ruleRetValueMaxLen) throws
SessionException

Parameters:

transParams The transaction parameter string. Refer to startTrans
on page 323.
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 319
Return Value: The first form of the method returns the rules return value as a String object.

The second form returns the actual length of the rules return value as returned by
the rule. Compare this length to the value passed as ruleRetValueMaxLen to
determine if truncation took place.

The rules return value is the value that the called rule returns in a RETURN
statement.

Exceptions SessionException is thrown if errors are encountered.

The value of rc is either SessionException.STARTTR_FAILED (10),
SessionException.CALLRULE_FAILED (11), or
SessionException.STOPTR_FAILED (12) depending on the stage where the first
error occurred.

Comments This is a function that operates in several phases:

• start a transaction

• call a rule

• stop the transaction with commit or rollback, depending on the success of the
rule call

The only phase able to interrupt the sequence is the startTrans phase. After that
phase has succeeded, the failure of the rule call stores the error information to
throw an exception only after the stopTrans method completes. In this case, errors
during the stopTrans phase are not reported.

func The rules functional expression in a textual form:
RULENAME(ARG1,ARG2,...,ARGN).

dataIn The input commarea: a byte array, formatted in
accordance to the commarea format specification
(refer to call on page 314).

dataOut The output commarea: a byte array, formatted in
accordance to the commarea format specification.

ruleRetValue The buffer meant to hold the return value from the
rule.

ruleRetValueStart The index where the program should start storing
the return value.

ruleRetValueMaxLen The maximum number of bytes available in the
ruleRetValue array.
 TIBCO Object Service Broker for z/OS External Environments

320 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
isActive
Returns the activity status of the session.

public boolean isActive()

Parameters: None.

Return Value: True if the session is active; otherwise, false.

Exceptions: None.

Comments It is possible for a TIBCO Object Service Broker session to become inactive any
time after starting (due to network problems, Execution Environment abnormal
terminations, and so on). When that happens, the start, stop, startTrans,
stopTrans, shutdown, and execTran method calls on this session object fail with
an appropriate error reason code. In addition, the session object becomes inactive,
so that subsequent calls to these methods fail with a
SessionException.CALLOUTOFSEQ (36) error reason code.

Use an isActive method call to determine whether the session is still active. If the
session is stopped by a stop method call, by a reset method call, or by a shutdown
method call, or abended, isActive returns false.

reset
Drops a connection to a session.

public void reset

Parameters: None.

Return Value: None.

Throws: None.

Comments reset forcefully closes the session by dropping the session connection as opposed
to an orderly shutdown by stop. The session does not have to be active for the call
to succeed. When a connection is dropped, the Execution Environment generates
an error message, and closes the session. All uncommitted data changes are lost.
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 321
This method bring the session to an inactive state so that subsequent calls to the
start, stop, startTrans, stopTrans, shutdown, and execTran methods fail with a
SessionException.CALLOUTOFSEQ (36) error reason code. Subsequent calls to
isActive return false.

shutdown
Stops all transactions (committing or rolling back the changes), and stops the
session regardless of the errors encountered.

public void shutdown(boolean commit) throws SessionException

Parameters:

Return Value: None.

Exceptions SessionException is thrown if errors are encountered during the shutdown
sequence.

The value of rc is either SessionException.STOPTR_FAILED (12) or
SessionException.STOPSS_FAILED (9) depending on the stage where the first
error occurred.

Comments This method is a sequence of stopTrans method calls and a stop method call. Even
if an error occurs, the sequence continues to the end. Information on the first (or
only) error is stored and an exception is thrown after the sequence completes, and
all the transactions and the session are stopped.

start
Starts an SDK (Java) session.

public void start(String sessParam,
 String codepage) throws SessionException

commit True if the changes made within all transactions need to be
committed, otherwise false.
 TIBCO Object Service Broker for z/OS External Environments

322 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Parameters:

Use the session parameters string (sessParam) to define various session behavior
aspects. There are a number of parameters that are specific for the SDK (Java)
(and SDK (C/C++)). These are (names are case insensitive):

CLIHOST and CLIPORT identify the TIBCO Object Service Broker monitor
process (Windows or Solaris) or the Execution Environment (z/OS) on the
network, using the CLIHOST parameter to specify a TCP/IP host name and the
CLIPORT parameter to specify a TCP/IP port number.

Make sure that your sessParam parameter string contains the CLIHOST and
CLIPORT parameters. (CLINODE is not supported by the SDK (Java).) If not, the
start method throws an exception with error reason code
SessionException.INVNODE (193).

CLIENDIAN provides a way to override the application endian type for a session.
This parameter affects the external representation of MAP table fields with
numeric internal syntaxes and the “*” external syntax. If CLIENDIAN is not
specified, big endian is selected.

sessParam The session parameter string. This string must contain
CLIHOST and CLIPORT to specify an osMon (Windows
or Solaris) or an Execution Environment (z/OS) location.
Can contain CLIENDIAN.

codepage The SDK (C/C++)/SDK (Java) code page to be used for
this session. If it is null or empty, the method throws
SessionException with an error reason code of
SessionException.UNDEFCODEPAGE (161). For valid
values, refer to Session on page 312.

CLIHOST TCP/IP host name of the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the Execution
Environment (z/OS).

CLIPORT TCP/IP port number of the TIBCO Object Service Broker
monitor process (Windows or Solaris) or the Execution
Environment (z/OS).

CLIENDIAN Session endian type. This parameter affects the external
representation of MAP table fields with internal syntax B
and “*” external syntax. Valid entries are: BIG and LITTLE
(case insensitive).
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 323
Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STARTSS_FAILED (4) if a session cannot be started.

Comments A successful start call changes a session from inactive to active. Use the isActive
method to query the current state of a session. If a start call is issued for an object
that is already active, the call throws an exception with a
SessionException.CALLOUTOFSEQ (36) error reason code. To bring a session
back to the inactive state, issue a stop, a reset, or a shutdown method call.

See Also TIBCO Object Service Broker Parameters about starting sessions and about session
Execution Environment parameters.

startTrans
Starts a transaction.

public void startTrans(String transParams) throws SessionException

Parameter:

Transaction parameters are specified as follows (all characters are case
insensitive):

BROWSE | UPDATE, TEST | NOTEST, SEARCH=S | I | L, LIBRARY=libname

If you omit a parameter, the startTrans method uses the session default value
specified in the session parameter string of the start method or of the Session
constructor. These session defaults are set by the BROWSE, TEST, SEARCH, and
LIBRARY session parameters. For more information, refer to TIBCO Object Service
Broker Parameters.

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STARTTR_FAILED (10) if the method fails.

Comments The startTrans method starts a transaction within the session. If the session
already has transactions started, the startTrans method starts a child transaction.

transParams The transaction parameter string.
 TIBCO Object Service Broker for z/OS External Environments

324 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
If the session abends or is stopped, the startTrans method throws an exception
with an error reason code of SessionException.CALLOUTOFSEQ (36).

Use the stopTrans method to stop the currently active transaction.

If the maximum allowed number of transactions are already running in the
session, startTrans throws an exception with an error reason code
SessionException.TOOMANYTRANS (106). Refer to TIBCO Object Service Broker
Parameters for information on the TRANMAXNUM Execution Environment
parameter, which sets the maximum value.

stop
Stops an SDK (Java) session.

public void stop() throws SessionException

Parameters: None.

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STOPSS_FAILED (9) if the method fails.

Comments If the session is inactive, the stop method call throws an exception with a
SessionException.CALLOUTOFSEQ (36) error reason code. You activate a session
by using either the Session constructor with the sessParam and codepage parameters,
or a start method call.

If a transaction is still active prior to the stop method call, the call throws an
exception with a SessionException.TRANSACTIVE (128) error reason code and
the session stays active.

Failures with error reason codes other than
SessionException.TRANSACTIVE (128) indicate a failure to complete normal
shutdown sequence. The session is rendered inactive anyway.

Use the isActive method to determine the current session state. Use the
transNestLevel method to determine the current depth of the transaction stack
TIBCO Object Service Broker for z/OS External Environments

Session Object Methods | 325
stopTrans
Stops the currently active transaction, committing or rolling back the changes.

public void stopTrans(boolean commit) throws SessionException

Parameters:

Return Value: None.

Throws: This method throws SessionException with rc =
SessionException.STOPTR_FAILED (12) if the method fails.

Comments If the session is not active or no transaction was started prior to the call, the call
throws an exception with SessionException.CALLOUTOFSEQ (36) error reason
code.

The current transaction is destroyed and the session nesting level is decremented
even if the call ends with an error. Use the transNestLevel method to determine
the current transaction nesting level.

transNestLevel
Returns the transaction nesting level of the session.

public int transNestLevel()

Parameters: None.

Return Value: The current transaction nesting level of the session. Returns zero if the session is
not active or no transaction was started.

Exceptions: None.

commit True if the changes made within the active transaction
need to be committed, otherwise false.
 TIBCO Object Service Broker for z/OS External Environments

326 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
userId
Returns the user ID of the session.

public String userId()

Parameters: None.

Return Value: The session user ID if the session is active, otherwise null.

Exceptions: None.
TIBCO Object Service Broker for z/OS External Environments

SessionException Object Methods | 327
SessionException Object Methods

SessionException
The SessionException class constructor.

This method has two forms:

public SessionException(int rc,
 int reasonCode)

or

public SessionException(String ruleErrorText)

In the first form, SessionException constructs a SessionException object with the
specified error code and error reason code. The resulting exception error message
string (available using a java.lang.Throwable.getMessage call) contains the
following: {error code description} - {error reason code description available via
errorReasonDescr}. For example, if a startTrans method throws an exception due
to the interface calls being out of sequence, the error message string is: “JCLI
transaction startup failed - Interface calls are out of sequence”. The SDK (Java)
uses this form of the SessionException constructor to report all errors with an
error reason code other than SessionException.RULEFAILED (3091).

In the second form, SessionException constructs a SessionException object with
the SessionException.CALLRULE_FAILED (11) return code, a
SessionException.RULEFAILED (3091) error reason code, and a specified error
message. The resulting exception error message string (available using a
java.lang.Throwable.getMessage call) contains the following: {error code
description} - {ruleErrorText}. For example, if a call("MYRULE"...) throws an
exception because the MYRULE rule encountered an access error on table named
MYTABLE, the error message string is “JCLI rule call failed - Access error on
TABLE "MYTABLE"”. The error reason code for these errors is always
SessionException.RULEFAILED (3091). The SDK (Java) uses this form of the
SessionException constructor to report rule failures, passing the string available
via endMessage at the end of the call as a ruleErrorText parameter.

Parameters:

rc The error code.

reasonCode The error reason code.
 TIBCO Object Service Broker for z/OS External Environments

328 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Return Value: None.

Comments You can access the exception error message string using the getMessage() method
or the toString() method defined in the java.lang.Throwable class.

errorReasonDescr
Returns a textual description of a particular SDK (Java) error reason code.

public String errorReasonDescr(int reasonCode)

Parameters:

Return Value: For a list of error reason codes, refer to Appendix A, SDK (C/C++) and
SDK (Java) Error Reason Codes, on page 373.

Comments Use the reasonCode method to retrieve the value of a particular error reason code.

reasonCode
Returns an error reason code for an SDK (Java) error.

public int reasonCode()

Parameters: None.

Return Value: For a list of error reason codes, refer to Appendix A, SDK (C/C++) and
SDK (Java) Error Reason Codes, on page 373.

Comments Use the errorReasonDescr method to retrieve a textual description of a particular
error reason code.

ruleErrorText The rules error message.

reasonCode The error reason code.
TIBCO Object Service Broker for z/OS External Environments

SessionException Object Methods | 329
rc
Returns an SDK (Java) operation error code.

public int rc()

Parameter: None.

Return Value: Depending on the method that failed, the error returned is one of the following:

• SessionException.STARTSS_FAILED= 4

• SessionException.STOPSS_FAILED= 9

• SessionException.STARTTR_FAILED= 10

• SessionException.CALLRULE_FAILED= 11

• SessionException.STOPTR_FAILED= 12
 TIBCO Object Service Broker for z/OS External Environments

330 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Misc Object Methods

commCreate
Creates a new byte array and formats it according to the commarea specification.
The size of the new byte array is calculated based on the supplied segment
structure. In the second form, the structure is assumed to have one segment of
segmentSize bytes

public static byte[] commCreate(int[] segmentSizes)

or

public static byte[] commCreate(int segmentSize)

Parameters:

Return Value: A new commarea byte array.

Exceptions First form: OutOfMemoryError, NullPointerException.
Second form: OutOfMemoryError.

Comments The part of the array that belongs to the segment bodies is not initialized.

commFormat
Formats a byte array according to the commarea specification.

In the second form, the commarea is assumed to contain one segment of
segmentSize bytes.

public static void commFormat(byte[] area,
 int[] segmentSizes)

or

public static void commFormat(byte[] area,
 int segmentSize)

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.
TIBCO Object Service Broker for z/OS External Environments

Misc Object Methods | 331
Parameters:

Return Value: None.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

commSegmentInd
Returns the offset of a specified segment in a commarea.

public static int commSegmentInd(byte[] area,
 int segmentNum)

Parameters:

Return Value: The offset of the beginning of the segment body, or 0 if the segment does not exist.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

commSegments
Returns the number of segments in a commarea according to its header.

public int commSegments(byte[] area)

Parameters:

area Array to format.

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.

area Byte array formatted according to the commarea specification.

segmentNum The segment number.

area Byte array formatted according to the commarea specification.
 TIBCO Object Service Broker for z/OS External Environments

332 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Return Value: The number of segments in a commarea according to its header.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

commSegSize
Returns the size of a given commarea segment.

public int commSegSize(byte[] area,
 int segmentNum)

Parameters:

Return Value: The segment size, or 0 (zero) if the segment does not exist.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

commSize
Calculates the number of bytes in a commarea according to its header.

public int commSize(byte[] area)

Parameters:

Return Value: The total size of a commarea according to its header.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

area Byte array formatted according to the commarea
specification.

segmentNum The segment number.

area Byte array formatted according to the commarea
specification.
TIBCO Object Service Broker for z/OS External Environments

Misc Object Methods | 333
commSizeCalc
Calculates the number of bytes needed for a commarea with the specified
structure.

This method has two forms:

public static int commSizeCalc(int[] segmentSizes)

or

public int commSizeCalc(int segmentSize)

In the first form, the commarea has a structure supplied by the input array.

In the second form, the commarea has one segment of a given size.

Parameters:

Return Value: The size of an area with the supplied structure.

Exceptions For the first form, since no verification of input parameters is performed,
standard array access exceptions are thrown. The second form throws no
exceptions.

readInt
Reads 4 bytes from a byte array and returns a value of type int according to what
these bytes represent in big-endian format.

public static int readInt(byte[] b,
 int offset)

Parameters:

Return Value: The value of type int that the specified 4 bytes represent in big-endian format.

segmentSizes Array of segment sizes.

segmentSize Size of the only commarea segment.

b Input byte array.

offset Starting index.
 TIBCO Object Service Broker for z/OS External Environments

334 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

readShort
Reads 2 bytes from a byte array and returns a value of type short according to
what these bytes represent in big-endian format.

public static short readShort(byte[] b,
 int offset)

Parameters:

Return Value: The value of type short that the specified 2 bytes represent in big-endian format.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

writeInt
Writes, into a byte array, 4 bytes of a big-endian byte representation of a value of
type int.

public static void writeInt(int n,
 byte[] b,
 int offset)

Parameters:

Return Value: None.

b Input byte array.

offset Starting index.

n Input value of type int.

b Output byte array.

offset Starting index.
TIBCO Object Service Broker for z/OS External Environments

Misc Object Methods | 335
Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

writeShort
Writes, into a byte array, 2 bytes of a big-endian byte representation of a value of
type short.

public static void writeShort(short s,
 byte[] b,
 int offset)

Parameters:

Return Value: None.

Exceptions Since no verification of input parameters is performed, standard array access
exceptions are thrown.

s Input value of type short.

b Output byte array.

offset Starting index.
 TIBCO Object Service Broker for z/OS External Environments

336 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Sample Application Using the SDK (Java)

Compiling and Running the Sample Program
The sample program was compiled and executed with the following
assumptions:

• The SDK (Java) .jar file and the source file JCLISAMP.java exist in the current
directory.

You can find JCLISAMP.java in the cli.jar file. To copy JCLISAMP.java to the
current directory, use the following command:
jar xf cli.jar JCLISAMP.java

• The Data Object Broker is running.

• A native Execution Environment, configured for TCP/IP, is connected to the
Data Object Broker and listening on port 9068.

• NLS is set up.

Use the following commands to compile and run the sample program:

1. TSO OMVS

This starts the z/OS shell.

2. export CLASSPATH=".:./cli.jar:$CLASSPATH"

3. javac JCLISAMP.java

4. java JCLISAMP clihost=os390a,cliport=9068 IBM-037

IBM-037 is the code page to be used.

See Also TIBCO Object Service Broker National Language Support about the @NLS1 table.

The sample uses the HURON1 TIBCO Object Service Broker user ID with a
password of HURON1.
TIBCO Object Service Broker for z/OS External Environments

Sample Application Using the SDK (Java) | 337
Sample Rule Called by a Program
This rule creates an occurrence of a TDS table, generates an end message, and
returns a value. On completion of the rule, the changes are not committed because
the transaction is still active. The SDK (Java) program explicitly stops the
transaction by issuing stopTrans with a true flag or a false flag to indicate whether
the changes are to be committed.

 RULE EDITOR ===> SCROLL: P
 TC007124RU02;
 _
 _ ---
 _ --+--------------
 _ TC007124TA01.TEXT = 'RULE "TC007124RU02" IS CALLED'; | 1
 _ INSERT TC007124TA01; | 2
 _ CALL ENDMSG('END MESSAGE GENERATED BY RULE "TC007124RU02"' | 3
 _); |
 _ RETURN('RETURN VALUE OF RULE "TC007124RU02"'); | 4
 _ ---

Sample Table Referenced by a Rule
The table is defined as follows:

 COMMAND==> TABLE DEFINITION

 Table: TC007124TA01 Type: TDS Unit: TC007124 IDgen: Y

 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 _ KEY I B 4 0 P
 _ TEXT S C 50 0
 _
 _
 _
 _
 _
 _
 _
 _
 _

 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
 New table definition
 TIBCO Object Service Broker for z/OS External Environments

338 | Chapter 20 Using TIBCO Object Service Broker SDK (Java)
Output from Program
The output from the program is as follows:

Start session completed
Start transaction completed
Rule call TC007124RU02 completed; Return value='RETURN VALUE OF
RULE "TC007124RU02"'; End message='END MESSAGE GENERATED BY RULE
"TC007124RU02"'
Stop transaction completed
Stop session completed

After the rule executes, a row is added to the table:

 EDITING TABLE : TC007124TA01
 COMMAND ==>
 SCROLL: P
 KEY TEXT
 _ ----------- --
 _ 1 RULE "TC007124RU02" IS CALLED
 _
 _
 _
 _
 _
 _
 _
 _
 _
 _

 PFKEYS: 4=INS 16=DEL 5=FIND NXT 6=CHG NXT 18=EXCL 19=SHOW 3=SAVE 12=CANCEL
TIBCO Object Service Broker for z/OS External Environments

| 339
Chapter 21 Coding TIBCO Object Service Broker
Access Statements

This chapter describes how to code TIBCO Object Service Broker access
statements.

Topics

• Overview, page 340

• Writing COBOL with TIBCO Object Service Broker Access Statements,
page 342

• Coding the Access Statements, page 345

• Coding Considerations, page 346
 TIBCO Object Service Broker for z/OS External Environments

340 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
Overview

How to Access TIBCO Object Service Broker Data
You can access a TIBCO Object Service Broker table from a COBOL source
program that contains embedded TIBCO Object Service Broker access statements
or SQL statements. The COBOL program participates with TIBCO Object Service
Broker as a client as opposed to a server as outlined in this manual.

If you have an existing COBOL program that accesses databases such as DB2, you
can modify the program to access the TIBCO Object Service Broker database. If
the COBOL program came as a package that normally accesses DB2 with SQL
statements, you can use the program with a few modifications to access the
TIBCO Object Service Broker database instead.

What if TIBCO Object Service Broker Table Access is Not Required?

If you want to use a COBOL program in TIBCO Object Service Broker that does
not have to access TIBCO Object Service Broker tables, refer to Chapter 14,
Introduction to the Call Level Interface, page 199 to Chapter 17, Multiple-Session
Execution Environments in Batch, page 255.

Steps Required
Accessing TIBCO Object Service Broker from a COBOL program requires the
following tasks:

• One of the following:

— Writing COBOL with TIBCO Object Service Broker Access Statements,
page 342

— Writing a COBOL Program with Embedded SQL Statements, page 352

• Preprocessing the Access Statements, page 368

• Preparing the Program, page 370

• Running the Program, page 372
TIBCO Object Service Broker for z/OS External Environments

Overview | 341
Samples Provided
Samples are provided showing COBOL programs with embedded TIBCO Object
Service Broker and SQL access statements. The following table lists the samples
that are shipped with TIBCO Object Service Broker in the COBOL and JCL data
sets:

Member
Name Description

COBOSTMT A COBOL program with TIBCO Object Service Broker access
statements.

JCLOSTMT JCL to:

Preprocess the COBOL program that contains TIBCO Object
Service Broker access statements, using the
HLIPREPROCESSOR.

Compile the processed program.

Link-edit the object modules.

COBSQL A COBOL program with SQL access statements.

JCLSQL JCL to:

Preprocess the COBOL program that contains SQL access
statements, using the HLIPREPROCESSOR.

Compile the processed program.

Link-edit the object modules.
 TIBCO Object Service Broker for z/OS External Environments

342 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
Writing COBOL with TIBCO Object Service Broker Access

Statements

To access a TIBCO Object Service Broker table from your COBOL program you
must add TIBCO Object Service Broker access statements. These statements are
converted into valid COBOL statements by the TIBCO Object Service Broker
preprocessor. This section provides an example of a COBOL program coded with
TIBCO Object Service Broker access statements and the associated TIBCO Object
Service Broker table definition. It also explains the statements you require for
your program. For information on coding SQL statements in a COBOL program,
refer to Chapter 22, Coding SQL Access Statements, on page 351.

Sample COBOL Program
The following sample shows a COBOL program containing TIBCO Object Service
Broker access statements. The following conventions are used in the example:

• Statements in mixed case letters starting with a dollar sign ($) are TIBCO
Object Service Broker access statements.

• Statements in uppercase letters are COBOL statements.

Example

 CBL MAP,RENT,NOSEQUENCE,TEST(SYM),THREAD,VBREF,OFFSET
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOSTMT RECURSIVE.
 AUTHOR. JOHN SMITH.
 INSTALLATION. TIBCO Software Inc.
 DATE-COMPILED.
 **
 * Demonstration of HLI Preprocessor *
 * A COBOL program with TIBCO Object Service Broker access statements *
 * for TSO or batch TIBCO Object Service Broker sessions. *
 * *
 * To execute this Cobol program, you must make an entry in the *
 * OSB ROUTINES table such as: *
 * NAME :COBOSTMT *
 * LANGUAGE :LEPERSIST *
 * FUNCTION :N *
 * LOADNAME :COBOSTMT *
 * *

Parameter values must be typed in UPPERCASE.
TIBCO Object Service Broker for z/OS External Environments

Writing COBOL with TIBCO Object Service Broker Access Statements | 343
 * Invoke the program via a RULE call: *
 * CALL 'COBOSTMT'; *
 * *
 * The program uses the table #ED_EMPLOYEES as its data source. *
 * *
 **
 ENVIRONMENT DIVISION.
 *
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 *
 * Variables in this section remain in their last state for
 * every invokation of this subroutine within a run-unit /
 * enclave.
 *
 77 USER-ID-77 PIC X(16) VALUE 'EDUC'.
 77 LOCATION-77 PIC X(16) VALUE 'A'.
 * Include Statement.
 $ Include Huron;
 * ***
 * Define table Employee and translate non-Cobol names
 * to acceptable Cobol names.
 * ***
 $ Define Table Employee = #ED_EMPLOYEES
 $ Parameter USER-ID = USERID,
 $ LOCATION-PARM = LOCATION
 $ Field mgrno = MGR#,
 $ zipcode = P_CODE;
 *
 LOCAL-STORAGE SECTION.
 *
 * Variables in this section are initialized at each invokation.
 *
 LINKAGE SECTION.
 *
 * Variables in this section are passed from/to caller on each
 * invokation. Use ARGUMENTS table to define parameters to pass
 * and the "PROCEDURE DIVISION USING parm1, parm2" etc to pass
 * entries to the external routine as necessary. Each parameter
 * should be a LINKAGE SECTION 01 entry.
 *
 PROCEDURE DIVISION.
 MAINLINE-CODE SECTION.
 $ Entry;
 DISPLAY 'ENTERED COBOSTMT COBOL PROGRAM'.
 * Get and display names of selected employees.
 * Set USER-ID-77 and LOCATION-77 to appropriate values
 * for your system
 $ Forall Employee(USER-ID-77,LOCATION-77)
 $ where mgrno = 84021 :
 DISPLAY EMPLOYEE-LNAME.
 $ end;
 EXIT-HERE.
 DISPLAY 'ABOUT TO EXIT COBOSTMT COBOL PROGRAM'.
 GOBACK.
 TIBCO Object Service Broker for z/OS External Environments

344 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
Sample TIBCO Object Service Broker Table Definition
The following definition is of the table #ED_EMPLOYEES. This is the TIBCO
Object Service Broker table used by the COBOL program with embedded TIBCO
Object Service Broker access statements. (Only the first 80 columns are shown.)

Partial Definition of the #ED_EMPLOYEES Table

 COMMAND==> TABLE DEFINITION

 Table: #ED_EMPLOYEES Type: TDS Unit: EDUC IDgen: N

 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ USERID I C 16 0 D ' _
 _ LOCATION I C 16 0 L ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- --------------
 _ EMPNO I P 3 0 P
 _ LNAME S C 22 0
 _ POSITION S C 14 0
 _ MGR# I P 3 0 MANAGER
 _ DEPTNO I B 2 0
 _ SALARY Q P 3 2
 _ HIREDATE D B 4 0
 _ ADDRESS S V 38 0
 _ CITY S C 20 0
 _ PROV S C 3 0
 _ P_CODE S C 7 0
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
TIBCO Object Service Broker for z/OS External Environments

Coding the Access Statements | 345
Coding the Access Statements

Where Do You Code the Access Statements?
Code the access statements in the Working Storage Section and Procedure
Division of your COBOL program. Each line of an access statement must start
with the dollar sign symbol ($) in column 7, followed by the statement itself
starting in column 12.

Coding the Working Storage Section

The first statement in the Working Storage Section must be:

$ Include Huron;

You then define the table or tables for your use. If table, parameter, or field names
are invalid for COBOL, you must also define valid COBOL names in these
statements. The following example defines the TDS table EMPLOYEE and
re-assigns a valid COBOL name (mgrno) to a TIBCO Object Service Broker field
(mgr#):

$ Define Table Employee = #ED_EMPLOYEES
$ Field mgrno = MGR#,

Refer to Coding Considerations on page 346 for more information about
assigning COBOL names to TIBCO Object Service Broker objects.

Coding the Procedure Division

In the Procedure Division, your first statement must be:

$ Entry;

Coding the Action Statements
The action statements must be at the end of the program, for example:

$ Forall Employee(USER-ID-77,LOCATION-77)
 $ where mgrno = 84021 :
 DISPLAY EMPLOYEE-LNAME.
 $ end;
 TIBCO Object Service Broker for z/OS External Environments

346 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
Coding Considerations

When coding your access statements, you must take into account the differences
between COBOL and the TIBCO Object Service Broker rules language. For
example:

• Valid TIBCO Object Service Broker names could be invalid in COBOL. For
example, table.field names are invalid in COBOL.

• Error messages and codes are returned for TIBCO Object Service Broker
access.

• The syntax of operators and expressions differ.

• The use of action statements differs.

Naming Differences Between TIBCO Object Service Broker and COBOL
The preprocessor creates COBOL names for each field by combining the table and
field names with a hyphen. COBOL does not allow special symbols in table, field,
and parameter names.

TIBCO Object Service Broker table and field names used in conjunction with a
joining period (.) can have a maximum of 33 characters, but COBOL names can
have a maximum of only 30 characters. The 30 character limit in COBOL is a
result of the way that the preprocessor assigns COBOL names to TIBCO Object
Service Broker fields (the TIBCO Object Service Broker identifier is two names
and a separator while the COBOL identifier is a single name).

How to Rename TIBCO Object Service Broker Names to Valid COBOL Names
Use the Define Table statement in the Working Storage Section of your program to
rename TIBCO Object Service Broker tables, fields, and parameters to valid
COBOL names. You must assign valid names to TIBCO Object Service Broker
invalid table, field, and parameter names in your table regardless of whether you
refer to them or not.

You can assign alternate COBOL names for TIBCO Object Service Broker tables,
fields, or parameters even though they are valid in COBOL. For example:

$ Define Table Employee = #ED_EMPLOYEES
$ Parameter USER-ID = USERID,
$ LOCATION-PARM = LOCATION,
$ Field mgrno = MGR#,
$ zipcode = P_CODE;
TIBCO Object Service Broker for z/OS External Environments

Coding Considerations | 347
Coding Conventions

Modifying the Join Character for Table.Field Names
Unlike the rules language, which uses a period (.) as the joining character to
identify a table and field specification, TIBCO Object Service Broker access
statements use a hyphen (-) to make them usable by COBOL. For example:

Employee.lname

is valid in the rules language, and

Employee-lname

is valid in a TIBCO Object Service Broker access statement.

Use the COBOL form to identify table and field specifications in TIBCO Object
Service Broker access statements as well as in COBOL statements. For example, to
specify this table and field in the Procedure Division, type:

DISPLAY EMPLOYEE-LNAME.

• The syntax of the reassigned names is:
COBOL-name = OSB_name

COBOL-name = OSB_name

• Unless the next declaration starts with a keyword such as PARAMETER or
FIELD, each declaration must end with a comma (,).

• The statement ends with a semicolon (;).
 TIBCO Object Service Broker for z/OS External Environments

348 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
Checking TIBCO Object Service Broker Runtime Errors
You can check for TIBCO Object Service Broker access errors in the following
variables:

Coding Operators and Expressions
In COBOL, blanks must be inserted between an operator or expression and a
variable. In TIBCO Object Service Broker, blanks are optional. The following
example shows a valid selection in the access statement:

$ Forall Employee(USER-ID-77,LOCATION-77)
$ where mgrno = 84021 :

An expression must be a valid COBOL expression. Since a parameter expression
is considered a literal expression in COBOL, you cannot use a parameter with a
non-numeric literal with a length of zero. An expression like:

$GET employee(' ') where salary> 800

is not valid. The following example shows a valid GET statement that you can
code in your access statement:

$GET employee where salary > 400

Embedding TIBCO Object Service Broker Action Statements
You can embed the following TIBCO Object Service Broker action statements in
your COBOL program:

• GET

HLL-RETURN-CODE Contains 0 if the statement was successful, or 4
if the end of the table was encountered.

An end-of-table is encountered when the
FORALL action statement cannot return any
more occurrences that satisfy the selection
criteria. Any other code indicates an error.
Refer to the entry HLL-RETURN-MESSAGE
for more information.

HLL-RETURN-EXCEPTION Contains the name of the exception that
occurred.

HLL-RETURN-MESSAGE Contains any generated TIBCO Object Service
Broker message.
TIBCO Object Service Broker for z/OS External Environments

Coding Considerations | 349
• INSERT

• DELETE

• REPLACE

• FORALL

• COMMIT

• ROLLBACK

In addition, the GETFIRST and GETNEXT statements are also supported.
GETFIRST and GETNEXT work together to retrieve occurrences from a table
within a COBOL looping structure.

GETFIRST Statement

The GETFIRST statement retrieves the first occurrence of a set of occurrences that
meet the selection criteria, if any. The syntax is:

GETFIRST tablespec [WHERE selection] [ORDERED [ASCENDING /
DESCENDING-] field] ;

where:

For example:

GETFIRST #ED_EMPLOYEES WHERE MGRNO = 79912 ORDERED ASCENDING LNAME;

This puts the occurrences in the order of ascending values in the LNAME field,
and retrieves the first occurrence where the MGRNO field of the #ED_EMPLOYEES
table is 79912. Other occurrences where the MGRNO field is 79912 are held in the
same order for the GETNEXT statement.

GETNEXT Statement

The GETNEXT statement retrieves subsequent occurrences of a set of occurrences
specified by the GETFIRST statement. The syntax is:

GETNEXT table;

tablespec Name of the table or table instance from which the occurrences are to
be retrieved.

selection Optional selection criteria to choose a set of occurrences.

field Optional field whose values determine the order of the occurrences.
The table can be ordered according to more than one field if you join
the ORDERED clauses with the logical operator AND (&).
 TIBCO Object Service Broker for z/OS External Environments

350 | Chapter 21 Coding TIBCO Object Service Broker Access Statements
table is the name of the table specified in the GETFIRST statement. You must
include parameter values if the table is parameterized. An example of a valid
GETNEXT statement is:

GETNEXT #ED_EMPLOYEES;

If this statement appears after the example for GETFIRST, it retrieves the next
occurrence from the #ED_EMPLOYEES table where the MGRNO field value is
79912.

See Also TIBCO Object Service Broker Programming in Rules about the rules language and
rules processing behavior.
TIBCO Object Service Broker for z/OS External Environments

| 351
Chapter 22 Coding SQL Access Statements

This chapter describes how to code SQL access statements.

Topics

• Writing a COBOL Program with Embedded SQL Statements, page 352

• Coding SQL Access Statements, page 356

• Coding Considerations, page 358

• Error Checking and Handling, page 361

• Statements Supported by the SQL Preprocessor, page 363
 TIBCO Object Service Broker for z/OS External Environments

352 | Chapter 22 Coding SQL Access Statements
Writing a COBOL Program with Embedded SQL Statements

TIBCO Object Service Broker tables can be accessed from your COBOL programs
if you have coded SQL statements within them. These statements are converted to
valid COBOL statements by the TIBCO Object Service Broker preprocessor. The
COBOL programs participate with TIBCO Object Service Broker as a client as
opposed to a server as outlined in this manual.

Sample COBOL Program
The following sample COBOL program contains embedded SQL statements. The
following conventions are used:

• Statements in uppercase letters are COBOL statements.

• Statements in mixed case letters are SQL access statements.

• Statements beginning with an asterisk (*) are comments.

 CBL MAP,RENT,NOSEQUENCE,TEST(SYM),THREAD,VBREF,OFFSET
 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBSQL RECURSIVE.
 AUTHOR. JANE SMITH.
 INSTALLATION. TIBCO Software Inc.
 DATE-COMPILED.

 *
 * Demonstration of HLI Preprocessor *
 * A COBOL program with SQL statements to access Object Service *
 * Broker tables a in TSO or batch Object Service Broker session.*
 * *
 * To execute this Cobol program, you must make an entry in the *
 * Object Service Broker ROUTINES table such as: *
 * NAME :COBSQL *
 * LANGUAGE :LEPERSIST *
 * FUNCTION :N *
 * LOADNAME :COBSQL *
 * *
 * *
 * Invoke the program via a RULE call: *
 * CALL 'COBSQL'; *
 * *
 * The program uses the table #ED_EMPLOYEES as its data source. *
 * *

Parameter values must be typed in UPPERCASE.
TIBCO Object Service Broker for z/OS External Environments

Writing a COBOL Program with Embedded SQL Statements | 353

 ENVIRONMENT DIVISION.
 *
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 * set the NODENAME for table LOCATION parameter
 77 LOCATION77 PIC X(16) VALUE 'A'.
 *
 * Variables in this section remain in their last state for
 * every invokation of this subroutine within a run-unit /
 * enclave.
 *
 * Include Statement.
 Exec Sql
 Include Sqlca
 End-Exec
 * Define table and fields of EMPLOYEE
 Exec Sql
 Define Employee Table = #ED_EMPLOYEES
 Parameter USER-ID = USERID,
 LOCATION77 = LOCATION
 Field mgrno = MGR#,
 state-prov = PROV,
 zipcode = P_CODE
 End-Exec
 Exec Sql
 Declare Cursa Cursor For
 Select EMPNO, LNAME, MGR#
 From #ED_EMPLOYEES('EDUC',LOCATION77) where
 MGR#= 84021
 End-Exec
 * Data areas to receive data from Object Service Broker
 01 COB-EMPNO PIC 9(7).
 01 LAST-NAME PIC X(22).
 01 MANAGER PIC 9(7).
 *
 LOCAL-STORAGE SECTION.
 *
 * Variables in this section are initialized at each invokation.
 *
 LINKAGE SECTION.
 *
 * Variables in this section are passed from/to caller on each
 * invokation. Use ARGUMENTS table to define parameters to pass
 * and the "PROCEDURE DIVISION USING parm1, parm2" etc to pass
 * entries to the external routine as necessary. Each parameter
 * should be a LINKAGE SECTION 01 entry.
 *
 PROCEDURE DIVISION.
 MAINLINE-CODE SECTION.
 DISPLAY 'ENTERED COBSQL COBOL PROGRAM'.
 * Open cursor
 DISPLAY 'ABOUT TO OPEN CURSOR'.
 Exec Sql
 Open Cursa
 End-Exec
 TIBCO Object Service Broker for z/OS External Environments

354 | Chapter 22 Coding SQL Access Statements
 DISPLAY 'CURSOR OPENED'.
 * Check for error on cursor open
 DISPLAY 'SQLCODE=', SQLCODE.
 * Put Object Service Broker values in data areas
 Exec Sql
 Fetch Cursa into :cob-EMPNO, :last-name, :manager
 End-Exec
 * Check for error on fetch
 DISPLAY 'SQLCODE=', SQLCODE.
 * Display contents of two of the data areas
 DISPLAY 'RESULT OF FETCH ', COB-EMPNO, ' ', LAST-NAME.
 * Close cursor
 Exec Sql
 Close Cursa
 End-Exec
 * Check for error on cursor close
 DISPLAY 'SQLCODE=', SQLCODE.
 NORMAL-EXIT-HERE.
 DISPLAY 'ABOUT TO EXIT COBSQL COBOL PROGRAM'.
 GOBACK.

Sample TIBCO Object Service Broker Table Definition
The following definition is of the table EMPLOYEE. This is the TIBCO Object
Service Broker table used by the COBOL program with embedded SQL
statements. (Only the first 80 columns are shown.)
TIBCO Object Service Broker for z/OS External Environments

Writing a COBOL Program with Embedded SQL Statements | 355
Partial Definition of the EMPLOYEE Table

 COMMAND==> TABLE DEFINITION

 Table: #ED_EMPLOYEES Type: TDS Unit: EDUC IDgen: N

 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - - --- -- - ' ---------------- - -
 _ USERID I C 16 0 D ' _
 _ LOCATION I C 16 0 L ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- --------------
 _ EMPNO I P 3 0 P
 _ LNAME S C 22 0
 _ POSITION S C 14 0
 _ MGR# I P 3 0 MANAGER
 _ DEPTNO I B 2 0
 _ SALARY Q P 3 2
 _ HIREDATE D B 4 0
 _ ADDRESS S V 38 0
 _ CITY S C 20 0
 _ PROV S C 3 0
 _ P_CODE S C 7 0
 _
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
 TIBCO Object Service Broker for z/OS External Environments

356 | Chapter 22 Coding SQL Access Statements
Coding SQL Access Statements

Code the SQL access statements within the Working Storage Section and
Procedure Division of your COBOL program. All SQL statements must be
preceded by:

Exec Sql

and followed by:

End-Exec

Initial Statement
The first SQL statement in the Working Storage Section must be one of:
Exec Sql
 Include Sqlca
End-Exec

or

Exec Sql Begin Declare Section End-Exec
Exec Sql

01 Sqlstate Pic x(5).
01 Sqlcode Pic 59 Comp.End-Exec

Exec Sql End Declare Section End-Exec.

The Sqlcode declaration can be used in addition to, or in place of, the Sqlstate
declaration. This is the method of error handling and error reporting through the
SQL Communications Area (SQLCA), and the status variables Sqlstate and Sqlcode.

Defining Valid Names
If table, parameter, or field names are invalid for COBOL, define valid names.
This example defines the TDS table #ED_EMPLOYEES and assigns a valid
COBOL name (MGRNO) to a TIBCO Object Service Broker field (MGR#):

Exec Sql
Define Employee Table = #ED_EMPLOYEES
 Field mgrno = MGR#,

Refer to Coding Considerations on page 358 for information about assigning
COBOL names to TIBCO Object Service Broker objects.
TIBCO Object Service Broker for z/OS External Environments

Coding SQL Access Statements | 357
Specifying Selection
Declare cursors to make selections from tables. Use standard SQL syntax and
TIBCO Object Service Broker names:

Exec Sql
 Declare Cursa Cursor For
 Select EMPNO, LNAME, MGR#
 From #ED_EMPLOYEES('EDUC',LOCATION77) where
 MGR#= 84021
 End-Exec

Specifying Data Areas
Specify data areas to receive data from TIBCO Object Service Broker:

01 COB-EMPNO PIC 9(7).
01 LAST-NAME PIC X(22).
01 MANAGER PIC 9(7).

Refer to Syntax Mapping on page 360 for conversions from TIBCO Object Service
Broker syntax to COBOL declarations.

Coding the Remaining SQL Statements
Code the remaining SQL statements as usual, such as FETCH CURSOR:

Exec Sql
 Fetch Cursa into :cob-EMPNO, :last-name, :manager
End-Exec

Close each cursor before using another cursor on the same table. You can use
CLOSE CURSOR to close specific cursors. All cursors are closed by COMMIT and
ROLLBACK statements.
 TIBCO Object Service Broker for z/OS External Environments

358 | Chapter 22 Coding SQL Access Statements
Coding Considerations

Differences to Consider
Since you are accessing a TIBCO Object Service Broker database you must take
into account differences between COBOL and TIBCO Object Service Broker. For
example:

• Valid TIBCO Object Service Broker names could be invalid in COBOL; for
example, TIBCO Object Service Broker table.field names are not valid in
COBOL.

• Error checking has additional features for TIBCO Object Service Broker access.

• The syntax of operators and expressions differs.

• The supported SQL statements are a subset of all SQL statements.

Assigning Valid Names
Unlike TIBCO Object Service Broker, COBOL does not allow special symbols in
table, field, and parameter names. TIBCO Object Service Broker table and field
names used in conjunction with a joining period (.) can have a maximum of 33
characters; COBOL names can have a maximum of only 30 characters.

Rename TIBCO Object Service Broker tables, fields, and parameters to valid
COBOL names using the Define Table statement in the Working Storage Section of
your program.

Underscores (_) in TIBCO Object Service Broker table, field, or parameter names
are automatically replaced with hyphens (-) if you do not explicitly rename them.
You must assign valid names to names that contain the characters “$”, “@”, or
“#”, regardless of whether you refer to them or not. You do not have to rename
those that are already valid or converted, but you can if you want.

Renaming Fields Example

Exec Sql
Define Employee Table = #ED_EMPLOYEES
 Parameter USER-ID = USERID,
 LOCATION77 = LOCATION
 Field mgrno = MGR#,
 state-prov = PROV,
 zipcode = P_CODE
End-Exec
TIBCO Object Service Broker for z/OS External Environments

Coding Considerations | 359
The field MGR# is renamed because the number sign (#) is an invalid COBOL
character. Fields STATE_PROV and ZP_CODE did not have to be explicitly
renamed. If they were left out of the Define Table statement, their COBOL names
would be STATE-PROV and ZP-CODE.

Use the TIBCO Object Service Broker names in SQL statements and use COBOL
names in COBOL statements.

The Form of a Statement

The Joining Character

Unlike SQL, which uses a period (.) as the joining character to identify a table and
field specification, COBOL requires a (-) hyphen to make them usable. For
example:

Employee.lname

is valid in SQL, and

Employee-lname

is valid in a COBOL statement. Use the SQL format in SQL statements and use the
COBOL format in COBOL statements. An example of specifying a table and field
in a COBOL statement in the Procedure Division is:

DISPLAY EMPLOYEE-LNAME

Coding Operators and Expressions
You can use either SQL or TIBCO Object Service Broker relational operators. All
data conversions and calculations are done by COBOL.

An expression must be a valid COBOL expression. Since a parameter expression
is considered a literal expression in COBOL, you cannot use a parameter with a
non-numeric literal with a length of zero. An expression like:

Select EMPNO from EMPLOYEE('') where salary> 400

would be considered invalid. This is an example of a SELECT statement that you
can code in your access statement:

• The syntax of the re-assigned name is:
COBOL-name = OSB_name

• Unless the next declaration starts with a keyword, such as PARAMETER or
FIELD, each declaration must end with a comma.

• The statement ends with no punctuation, and is followed by END-EXEC.
 TIBCO Object Service Broker for z/OS External Environments

360 | Chapter 22 Coding SQL Access Statements
 Select EMPNO, LNAME, MGR#
 From #ED_EMPLOYEES('EDUC',LOCATION77) where
 MGR#= 84021

Syntax Mapping
For information on how TIBCO Object Service Broker syntax is mapped to
COBOL syntax, refer to Syntax Mapping on page 140.

See Also TIBCO Object Service Broker Programming in Rules about the rules language, rules
processing behavior, and TIBCO Object Service Broker syntax.
TIBCO Object Service Broker for z/OS External Environments

Error Checking and Handling | 361
Error Checking and Handling

Error Checking
After every SQL statement, check for errors. TIBCO Object Service Broker returns
error information in the following variables:

If you are using SQLCA, the variable SQLERRMC contains either an SQL message
if an SQL error occurred or a TIBCO Object Service Broker error message.

Error Handling Status Variables
If SQLCA is present, it indicates that the Sqlcode variable is also present and error
information must be relayed through the provided variables.

The Sqlstate status variable can be used in place of, or in addition to, the Sqlcode and
SQLCA. It is a string of five characters that relays error codes. The following table
shows the possible error codes and their explanations:

Sqlcode 0 if the statement completed successfully, 100 if
it reached the end of the table, or -1 if an error
occurred.

Sqlstate A string of five characters, containing error
codes.

HRN-RETURN-EXCEPTION The name of the TIBCO Object Service Broker
exception that occurred.

HRN-RETURN-MESSAGE Any TIBCO Object Service Broker message that
was generated.

Sqlstate Sqlcode Explanation

00000 0 Successful completion.

02000 -1 No data (TABLEEND).

21000 -1 Cardinality violation (more than one item retrieved).

24000 -1 Invalid Cursor state.

42000 100 Syntax error/access violation.
 TIBCO Object Service Broker for z/OS External Environments

362 | Chapter 22 Coding SQL Access Statements
You must ensure that you use the correct level number and picture clause: the
preprocessor scans the host variables in the Declare section to see if Sqlstate is
mentioned. If so, it updates all successes/errors through it, in addition to Sqlcode
(if it was also mentioned in an Include SQLCA statement or on its own).

The Sqlcode status variable can be used on its own or together with Sqlstate. If
SQLCA is used, there is no need to declare Sqlcode. If it is declared with SQLCA,
the COBOL compiler can pick up two declarations and report it as an error at
compile time. If you use Sqlcode, you must ensure that the proper level number
and picture clause are used.

Any of these three methods can be used to get error information but the default
assumption is that Sqlcode was properly declared. If this is not true (that is, Sqlcode
was not declared), the compiler detects an undefined variable and reports it to
you at compile time.
TIBCO Object Service Broker for z/OS External Environments

Statements Supported by the SQL Preprocessor | 363
Statements Supported by the SQL Preprocessor

The following subset of SQL statements is supported by the SQL preprocessor. All
these statements are written in the usual format. After each SQL statement, you
should check for errors. Refer to Error Checking on page 361 for more
information.

SQL Statements

Statement Usage

CLOSE CURSOR You must close all the cursors before the end of the program.
COMMIT and ROLLBACK also close all cursors.

COMMIT Commits changes and closes all cursors.

DECLARE CURSOR The DECLARE CURSOR statement accesses data from multiple
tables or from a single table. Operation on a join type cursor (a
cursor that accesses multiple tables) is limited to a fetch. The
FOR UPDATE OF and ORDER BY clauses are not allowed on
join type cursors.

DELETE Delete all table occurrences satisfying the search condition. If no
search condition is specified, all table occurrences are deleted.

Both positioned delete (using WHERE CURRENT OF
cursor-name) and searched delete are supported.

FETCH You can have only one cursor open on a given table.

INSERT Insert occurrence values into a table. The values are either those
of a derived table of a query-specification or values specified
directly:

If the statement contains a query-specification, one row of values
is inserted into the base table for each of the rows of the searched
table that satisfy the search condition of the query-specification.

If no search condition is stated, all the values of all the rows of
the table in the query-specification are copied into the base table.
The insertion is done in the order specified (that is, the value of
the nth column of a row in the searched table, or the nth
insert-value in the VALUES list, is assigned to the nth column of
the base table).

OPEN CURSOR All values for selection are determined at this point.
WHENEVER is supported.
 TIBCO Object Service Broker for z/OS External Environments

364 | Chapter 22 Coding SQL Access Statements
ROLLBACK Rolls back changes and closes all cursors.

SELECT Assign values from the specified table to host variables. The
SELECT statement is supported only within the DECLARE
CURSOR statement. Refer to Supported Keywords and Clauses
for the SELECT Statement on page 365 for the keywords and
clauses that are supported for the SELECT statement.

UPDATE This statement updates zero or more occurrences of the specified
table. It behaves as follows:

Both positioned update (which uses WHERE CURRENT OF
cursor-name) and searched update are supported.

If the WHERE clause is specified, only those occurrences
satisfying the conditions are updated, otherwise all occurrences
of the specified table are updated.

Any expressions are evaluated in COBOL.

Parameter information is taken from the CURSOR, not the table
specification in UPDATE.

If the SET clause changes the primary key, TIBCO Object Service
Broker ignores the cursor. If the primary key exists, that
occurrence is updated. If the primary key does not exist, the
REPLACEFAIL exception is raised.

WHENEVER Used in the Procedure Division of the COBOL program to enable
or disable subsequent SQL statements from transferring control
if they produce exceptions. It behaves as follows:

The SQLERROR clause traps all errors except TABLEEND,
which is trapped by the NOT FOUND clause.

The WHENEVER statement affects those SQL statements that
follow it.

The keyword GOTO indicates the applicable SQL statements
that follow should transfer control to the specified host-label.

The keyword CONTINUE specifies no transfer of control in the
SQL statements that follow it: this is typically used to cancel the
redirection of a previous WHENEVER statement.

Statement Usage
TIBCO Object Service Broker for z/OS External Environments

Statements Supported by the SQL Preprocessor | 365
Supported Keywords and Clauses for the SELECT Statement
The keywords and clauses supported by the SELECT statement are listed in the
following table:

Keyword or
Clause Usage

ALL DISTINCT is not supported.

FROM
clause

The table specifications in the FROM clause can have
parameters.

INTO clause The specific host variables to retrieve values into.

ORDERED
BY clause

You can specify ASC (ascending order) or DESC (descending
order), and you can refer to the fields by number.

If the SELECT statement cannot find an occurrence that meets
the specified conditions, it raises a TABLEEND exception and
sets the applicable status variables with the appropriate codes.
If you used the WHENEVER statement, the exception is
trapped in the COBOL routine associated with the exception.

If the SELECT statement finds an occurrence, it checks to see if
there are any more occurrences that can be retrieved, and if so, it
reports an error (Sqlstate = 21000). This is the desired behavior
according to the various SQL standards. If there is only one
occurrence meeting the conditions, the retrieved values are
assigned to the corresponding host variables.

WHERE
clause

All search conditions are supported. You can use either SQL or
TIBCO Object Service Broker relational operators. BETWEEN,
AND, OR, and NOT are supported. NOT BETWEEN is not
supported. With LIKE, you can use SQL wildcards (% and _) or
TIBCO Object Service Broker wildcards (* and ?).
 TIBCO Object Service Broker for z/OS External Environments

366 | Chapter 22 Coding SQL Access Statements
TIBCO Object Service Broker for z/OS External Environments

| 367
Chapter 23 Processing COBOL Programs

This chapter describes how to process COBOL programs.

Topics

• Preprocessing the Access Statements, page 368

• Preparing the Program, page 370

• Running the Program, page 372
 TIBCO Object Service Broker for z/OS External Environments

368 | Chapter 23 Processing COBOL Programs
Preprocessing the Access Statements

Use the HLIPREPROCESSOR tool to preprocess your COBOL programs with
embedded TIBCO Object Service Broker or SQL access statements. You can run
this tool from the workbench. The output is a preprocessed COBOL program that
can be compiled and linked. Alternatively, you can call it from JCL outside of
TIBCO Object Service Broker. The JCL can preprocess, compile, and link in one
job. Sample JCL is provided in members JCLOSTMT and JCLSQL of the JCL data
set.

Usage of HLIPREPROCESSOR
The syntax for HLIPREPROCESSOR is as follows:

CALL HLIPREPROCESSOR(hostlang, imbedlang, infile, outfile, listfile, options);

where:

hostlang Name of a programming language; use the string COBOL

imbedlang The kind of statements that are embedded in the COBOL
program; use the string HURON or SQL

infile Name of the partitioned data set containing the COBOL program
to be processed

outfile Name of the allocated, partitioned data set to contain the
processed COBOL program, which can be passed to the COBOL
compiler

listfile Name of the allocated data set to contain the output listing. This is
optional if the COBOL program contains TIBCO Object Service
Broker statements, and not applicable if it contains SQL
statements.
TIBCO Object Service Broker for z/OS External Environments

Preprocessing the Access Statements | 369
options A combination of the following strings: LIST or NOLIST and
ERRORSTOP or NOERRORSTOP. This argument must be null if you
have SQL statements in the COBOL program.

• LIST – Produce a listing.

• NOLIST – Do not produce a listing.

• ERRORSTOP – If an error is detected, stop processing and raise
the exception STOP_AT_ERROR. If HLIPREPROCESSOR is
executed from JCL, the exception STOP_AT_ERROR raises a
completion code that prevents the next job step from
executing. If an error is detected, the exception can stop
processing before the compile and link-edit steps.

• NOERRORSTOP – If an error is detected, do not stop processing
and an exception is not raised.
 TIBCO Object Service Broker for z/OS External Environments

370 | Chapter 23 Processing COBOL Programs
Preparing the Program

Steps Required
Complete the following tasks to preprocess the program before executing it:

1. Call HLIPREPROCESSOR with the appropriate arguments, page 370

2. Compile and link the program, page 370

3. Place the executable code in a load library, page 371

4. Identify the program to TIBCO Object Service Broker, page 371

Task A Call HLIPREPROCESSOR with the appropriate arguments

The following options are available to you to run the HLIPREPROCESSOR tool:

• Use the workbench option EX execute rule, for example:
Ex execute rule ==> HLIPREPROCESSOR<Enter>

A screen appears where you enter values for its arguments.

• Call HLIPREPROCESSOR from within a rule, for example:

HLI_TEST;

-
CALL HLIPREPROCESSOR('COBOL', 'HURON', | 1
'HR01.COBOL.SRCIN(COBOST1)','HR01.COBOL.SRCOUT(COBOUT1)', |
'HLL.HLLLIST','ERRORSTOP'); |
--

• Call HLIPREPROCESSOR from within JCL using the RULE=rulename
statement, for example:
RULE=HLIPREPROCESSOR('COBOL','SQL','HUR01.COBOL.SRCIN(COBSQL1)',
'HUR01.COBOL.SRCOUT(COBOST1)','','');

Refer to the members JCLOSTMT and JCLSQL in the JCL data set for sample
RULE=HLIPREPROCESSOR statements coded into JCL.

Task B Compile and link the program

Compile and link the program. Refer to the members JCLOSTMT and JCLSQL in
the JCL data set for sample JCL to assist you in this procedure.
TIBCO Object Service Broker for z/OS External Environments

Preparing the Program | 371
Task C Place the executable code in a load library

Place the compiled and linked code load module into a library concatenated to
the DD statement HRNEXTR.

Task D Identify the program to TIBCO Object Service Broker

You must identify the program and its load module name to TIBCO Object
Service Broker through an entry in the ROUTINES table. If the program has
arguments, specify these in a table instance of the ARGUMENTS table. You must
have adequate security clearance to insert data into these tables before editing
them.

Refer to Identifying Your External Routine to TIBCO Object Service Broker on
page 152 for information about the ROUTINES and ARGUMENTS table.
 TIBCO Object Service Broker for z/OS External Environments

372 | Chapter 23 Processing COBOL Programs
Running the Program

Steps Required
After compiling and link-editing your preprocessed code, placing it in the load
library, and identifying the program to TIBCO Object Service Broker, complete the
following tasks to execute the COBOL program:

1. Create a rule to call the program, page 372

2. Call the COBOL program, page 372

Task A Create a rule to call the program

Using the ED edit rule option from the workbench, create a rule to call your
program. For example, create the DEMO2 rule, to call the COBOL program
named COBSQL:

DEMO2;
--
---+----------
CALL COBSQL; | 1
--

Task B Call the COBOL program

When the program is in an executable code load library, and you have made the
appropriate entries in the ROUTINES and ARGUMENTS tables, you can:

• Call the COBOL program from a TIBCO Object Service Broker rule, for
example:

CALL COBSQL;

• Run it using S6BBATCH. Provide the name of the rule to the RULE=rulename
parameter.

• Run it from S6BTSO. The data set containing the external routine must be
concatenated to the HRNEXTR DD name in the calling CLIST.

Refer to Chapter 4, TIBCO Object Service Broker Sessions Under z/OS Batch, on
page 31 for information about S6BBATCH, and to Chapter 5, TIBCO Object
Service Broker Sessions Under TSO, on page 41 for information about S6BTSO.

See Also TIBCO Object Service Broker Programming in Rules about writing rules.
TIBCO Object Service Broker for z/OS External Environments

| 373
Appendix A SDK (C/C++) and SDK (Java)
Error Reason Codes

This appendix lists the error reason codes for the C and C++ SDK and the Java
SDK.

Topics

• Listing of the Reason Codes, page 374
 TIBCO Object Service Broker for z/OS External Environments

374 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
Listing of the Reason Codes

Code Values and Explanations
The following table lists the error reason codes. A listing of symbols is available
for your use in the OSCLI member of the H data set.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation

36 CALLOUTOFSEQ Interface calls are out of sequence.

37 NOSTANDBYSESS No standby sessions active in the
Execution Environment.

38 INCOMMAERROR Input commarea storage is inaccessible.

39 OUTCOMMAERROR Output commarea storage is
inaccessible.

40 INCOMMLENERR Input commarea length error.

41 OUTCOMMLENERR Output commarea length error.

43 DISPCODEPAGEV DISPLAYCODEPAGE value not
supported.

53 CICSEENOTSUPP This version of S6BDRAPI does not
support a CICS Execution Environment.

65 INVALIDSSPARM Invalid session parameters.

66 INVALIDUSERID TIBCO Object Service Broker user ID is
longer than eight characters.

67 INVALIDCHARSET Invalid character set name.

68 INVALIDEXECMO Invalid execution mode.

69 SECLOGONFAIL Security login fail.

70 SECLOGOFFFAIL Security logout fail.
TIBCO Object Service Broker for z/OS External Environments

Listing of the Reason Codes | 375
71 SESSSTORINITF Session scope storage initialization fail.

72 SESSSTORTERMF Session scope storage termination fail.

73 USEREXITRC Session rejected by user exit.

74 UNKNOWNEXITRC Unknown return code from user exit.

75 NLSINITFAIL NLS initialization failed.

86 INVALIDTRANOP Invalid transaction option.

96 NORULENAME Rule name not supplied.

97 RULENAMELNERR Rule name length error.

99 INVALIDENDTR Invalid stop transaction parameter.

102 COMMITFAIL Commit failed.

103 ROLLBACKFAIL Rollback failed.

104 RULEARGERROR Rule name or argument syntax error.

106 TOOMANYTRANS Too many transactions in a session.

128 TRANSACTIVE Transaction still active.

160 INCOMPATVERSN Incompatible client/server version.

161 UNSUPPCODEPAG Unsupported code page specified.

163 SESSINITERROR Session control storage not available.

164 CICSTASKFAIL Start CICS task failed.

165 ENVINITERROR Environment initialization error.

166 MSGTOOLONG SDK (C/C++) message length exceeds
maximum.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
 TIBCO Object Service Broker for z/OS External Environments

376 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
167 MSGSTORNA SDK (C/C++) message storage not
available.

168 DATAOUTTOOLONG dataOut length exceeds maximum.

169 DATAOUTSTORNA dataOut storage not available.

170 USIDNOTSUPPL User ID not supplied.

171 LOGONINVALID1 User ID or password in not valid. a.

171 USIDINVALID User ID or password in not valid. a

172 USIDSUSPENDED User ID suspended.

173 USIDCANTACCES User ID cannot access TIBCO Object
Service Broker at this time.

174 PSWDNOTSUPPL Password not supplied.

175 LOGONINVALID2 User ID or password in not valid. a.

175 PSWDINVALID User ID or password in not valid. a

176 PSWDEXPIRED Password expired, new password
missing.

177 NEWPSWDINVAL New password not valid.

178 PSWDUPGRADEFA Password upgrade fail.

179 PSWDDECRYPTFA Password decrypt fail.

180 CORRDATA Corrupt message received from server.

193 INVNODE Invalid host/node or host/port
specification.

194 UNDEFNODE Undefined node.

195 COMMFAILURE Communication failure.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
TIBCO Object Service Broker for z/OS External Environments

Listing of the Reason Codes | 377
196 INVDATA Invalid message received from server.

197 MEMORY Client cannot allocate memory for
operation.

198 BADCOMMFORMAT Unsupported commarea format.

199 SESSINVALID Invalid CLI_SESSION parameter.

200 SESSCANCELLED Session was canceled or terminated.

201 BUFTOOSMALL Buffer for rules return value is too small
(< 3 bytes).

208 SINGLEUSER This version of the SDK (C/C++) client
allows connections to host “localhost”
only.

3088 SESSPARMTOOLONG Session parameter string is too long (>
65535).

3089 NODENOTSUPPORTED CLINODE parameter is not supported
by the SDK (Java).

3090 RULEEXPRTOOLONG Rules expression is too long.

3091 RULEFAILED Rule call failed.

3092 UNDEFCODEPAGE Undefined SDK (C/C++)/SDK (Java)
code page supplied.

3093 INVRETVALIND Invalid rules return value start index or
maximum length.

49408 UNIDENTEEERROR Internal Execution Environment error
or unidentified Execution Environment
error.

49409 DATAOUTCORRUPT Output commarea is corrupted after
rule call.

Reason
Code

Symbolic Name –
for full C name, add
“CLI_”; for full Java
name, add
“SessionException.”) Explanation
 TIBCO Object Service Broker for z/OS External Environments

378 | Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
a. Note that logon failures, depending on particular TIBCO Object Service Broker
system can be reported by either LOGONINVALID1 or LOGONINVALID2
reason codes. Both codes mean that a user cannot login using this User
ID/password combination. USIDINVALID and PSWDINVALID reason codes
have the same values as LOGONINVALID1 and LOGONINVALID1 and are
present for compatibility reasons only.
TIBCO Object Service Broker for z/OS External Environments

| 379
Index

Symbols

- (hyphen), as join character 359, 347, 358
_ (underscore), as join character 358
. (period) as join character 347, 358
@IMSDCTRXOUT table 117
@IMSDCTRXS table, description 117
@SESSION tool

and CICS clients 88
and the Call Level Interface 251

$GETENVCOMMAREA tool
and CICS clients 67
and the Call Level Interface 205
example for CICS client 86
passing data in, Call Level Interface 249
to retrieve data from a started session 28
to retrieve message input segments for IMS TM

clients 102
$GETOPT tool

to retrieve IMS TM message information 117
to set IMS TM terminal options 105

$SAVE macro, using for storage 161
$SETENVCOMMAREA tool

and the Call Level Interface 205
example for CICS client 89
example for IMS TM clients 112
passing data out, Call Level Interface 249

$SETSESSIONEND tool
and batch clients 39
and CICS clients 90
and TSO clients 49

Numerics

3270 terminal, logging in to session from 52
3GL languages, supported by Call Level Interface 206

A

access errors, variables for 348
access statements. See TIBCO Object Service Broker

access statements; SQL access statements
ACTION parameter, changing rules invocation 29
additional requirements for CICS Execution

Environments 269
address space

as used by Call Level Interface 201, 206
as used by TSO client 42
client types that share 14, 14, 14

AMODE/RMODE attributes, as used by external
routines 134

APF authorized data set, as used for the load
module 55

architecture of TIBCO Object Service Broker, introduc-
tion to 2

ARGUMENTS table
and batch clients 40
and CICS clients 91, 92
and Native Execution Environment 57
and TSO clients 50
as used by external routines 152, 155
as used by the Host Languages Interface 372

ASM data set, samples for environmental wait
routine 262

available DDnames 37

B

batch applications, running 32
batch client 31–40

See also Call Level Interface; client programs; client
styles; client types; Execution Environment
parameters; external routines; session parame-
 TIBCO Object Service Broker for z/OS External Environments

380 | Index
ters
and external routines 40
controlling steps in JCL 39
operation of TIBCO Object Service Broker client 33
operation of user written client 35
passing data to 39
returning data from 39
single-session type 12
starting 32
user written 34

batch session
invoking 32
passing data to 39
returning data from 39

C

C program, and external routines
as used with 146
compatibility for 146
sample program 148

calculate commarea size function
for segment of certain size. See cliCommCreate1
for segment of certain size. See cliCommSizeCalc1
for segment of certain structure. See cliComm-

SizeCalc
total. See cliCommSize

calculate commarea size function. See cliCommSize
call a rule operation. See callrule
Call Level Interface 199–253

calling a rule 205, 249
calling module 207
calling parameters 209
calling parameters, summary 210
calling sequence 212
committing data changes 205, 247
ending transaction 204, 247
functional overview 203
HRNHLLTM module parameters 209

summary of 210
modifying transaction 204, 245
obtaining startup parameters 234
openness to TIBCO Object Service Broker data and

resources 6
operational characteristics 206
purpose 200
reason codes for 226
return codes for 225
rolling back data changes 205, 247
samples provided in COBOL data set 220
samples provided in MACRO data set 220
specifying environmental wait routine 257
starting Execution Environment 203, 234
starting or ending stream 204, 243
starting or ending transaction 243
starting session 203, 239
starting transaction 204
stopping Execution Environment 203, 237
stopping session 203, 241
storage, obtaining 251
supported 3GL languages 206
supported connections 201
supported functionality 200
use of address space 201
user client usage 202

call SDK (Java) method 314
callrule cliProc operation 283
CALLRULE function, description 249
CICS applications, running 60
CICS client 60–92

See also Call Level Interface; client programs; client
styles; client types; Execution Environment
parameters; external routines; session parame-
ters

available DDnames 69
listing of available client programs 66
multiple-session type 13
non-seamless. See non-seamless client
operation of a user written client 62
operation of TIBCO Object Service Broker client 60
seamless. See seamless client
selecting client program 66
selecting client program for SDK (C/C++) 269
starting 60

CICS COMMAREA
description of non-seamless 85
description of seamless 86
passing to TIBCO Object Service Broker CICS
TIBCO Object Service Broker for z/OS External Environments

Index | 381
session 85
retrieving in a rule 86
usage by seamless TIBCO Object Service Broker

CICS client 86
usage by TIBCO Object Service Broker CICS

clients 85
CICS session

See also session parameter values
calling external routines from 91
CICS functions to perform 90
external routines restrictions 91
passing COMMAREA to 85
starting 64
starting at the command line 70
starting with EXEC CICS LINK 77
starting with EXEC CICS LINK with Channel 79
starting with EXEC CICS START 70
starting with EXEC CICS START with Channel 73
starting with EXEC CICS XCTL 81
starting with EXEC CICS XCTL with Channel 82
terminating 64

CICS session background task, program name 269
CICS transaction, replacing with rules 65
CICSVSAMSYNC Execution Environment

parameter 69
cliCommCreate SDK (C/C++) function 294
cliCommCreate1 SDK (C/C++) function 294
cliCommDelete SDK (C/C++) function 295
cliCommFormat SDK (C/C++) function 295
cliCommFormat1 SDK (C/C++) function 296
cliCommSegment SDK (C/C++) function 297
cliCommSegments SDK (C/C++) function 297
cliCommSegSize SDK (C/C++) function 298
cliCommSize SDK (C/C++) function 293, 298
cliCommSizeCalc SDK (C/C++) function 299
cliCommSizeCalc1 SDK (C/C++) function 299

client
conversational style, description 17
determining style for CICS and IMS TM 15
display style, description 16
external transaction style, description 16
invoking. See starting
model in TIBCO Object Service Broker 12
non-conversational style, description 17
non-display style, description 16
non-seamless style, description 15
seamless style, description 15
selecting CICS client program 66
selecting CICS client program for SDK (C/C++) 269
starting batch client 32
starting CICS client 60
starting IMS TM client 98
starting Native Execution Environment 52
starting TSO client 42
styles for CICS and IMS TM 15
types of 12, 12

client as part of COBOL, PL/1, C, or assembler
application 13

client programs
associating IMS transaction identifier 104
CICS client programs available 66
IMS TM client program input message

format 109–111
IMS TM client programs available 102
summary of programs available 17
use of exit routines with IMS TM client 119

client services layer
explanation of 2
purpose of 2

client style summary 17
client types, description 12
cliExecTran SDK (C/C++) function 289
cliProc operations

callrule 283
getendmsg 287
resetss 287
sessactive 288
startss 280
starttr 282
stopss 286
stoptr 286
 TIBCO Object Service Broker for z/OS External Environments

382 | Index
cliProc SDK (C/C++) function 277
cliSetCodepage SDK (C/C++) function 291
CLIST

distributed with TIBCO Object Service Broker 48
USER distributed with TIBCO Object Service

Broker 48
CLOSE CURSOR statement

and SQL access statements 357, 363
usage with SQL access statements 363

COBCAPI3 sample program 264
COBOL data set

samples for Call Level Interface 220
samples for Host Languages Interface 341

COBOL names
coding conventions for renaming 347
renaming TIBCO Object Service Broker names to

COBOL names 346, 358
COBOL program, and external routines

as used with 138
compatibility for 138
example program 141

COBOL program, and Host Languages Interface
compiling and linking 370
identifying to TIBCO Object Service Broker 371
preprocessing steps for 370
running after preprocessing 372

COBOL program, and SQL access statements
assigning valid names 358
coding 356
coding considerations 358
coding operators and expressions 359
defining valid names 356
differences between TIBCO Object Service Broker

and COBOL usages 358
how to access TIBCO Object Service Broker

data 340
initial statements for 356
sample program 352
specifying data areas 357
specifying selection 357
writing 352

COBOL program, and TIBCO Object Service Broker

access statements
checking for runtime errors 348
coding action statements 345
coding considerations 346
coding for 345
coding operators and expressions 348
coding Procedure Division 345
coding Working Storage Section 345
how to access TIBCO Object Service Broker

data 340
modifying table.field names 347
naming differences between TIBCO Object Service

Broker and COBOL 346
sample with 342
writing 342

COBOL program, sample source for TIBCO Object
Service Broker and SQL access statements 341

code page support, and EMS interface 173
COMMAREA. See CICS COMMAREA
commCreate SDK (Java) method 330
commFormat SDK (Java) method 330
COMMIT statement

and SQL access statements 357, 363
and TIBCO Object Service Broker action

statements 349
committing data changes, with Call Level

Interface 205, 231, 247
commSegmentInd SDK (Java) method 331
commSegments SDK (Java) method 331
commSegSize SDK (Java) method 332
commSize SDK (Java) method 332
commSizeCalc SDK (Java) method 333
constants for SDK (C/C++) 273
constants for SDK (Java) 307
controlling steps in JCL for batch client 39
conversational client

description 17
summary of program names 17

conversational interface 17
customer support xxv
TIBCO Object Service Broker for z/OS External Environments

Index | 383
D

data
access to 6
committing data changes with Call Level

Interface 205, 247
obtaining 28
retrieving from a CICS COMMAREA 86
rolling back data changes with Call Level

Interface 205, 247
stages to processing 8

data conversions, and COBOL 359
Data Object Broker, explanation of 3
data passing

to batch client 39
to Native Execution Environment 57
to TSO client 49, 49

data returning
from batch client 39
from TSO client 49
to CICS COMMAREA 88
to Native Execution Environment 57

data store, explanation of 3
DB2, modifying access to 340
DDnames

available for CICS client 69
available for Native Execution Environment 55
DFHRPL, description 69
HRNEXTR, description 37, 55, 69
HRNIN, description 37, 55, 69
HRNLIB, description 37, 55
HRNOUT, description 37
HRNPRNT, description 37
STEPLIB, description 37, 55, 69

DECLARE CURSOR statement
and SQL access statements 363
usage with SQL access statements 363

delete a commarea function. See cliCommDelete
DELETE statement

and SQL access statements 363
and TIBCO Object Service Broker action

statements 349
usage with SQL access statements 363

DFHRPL DDname, description 69
DISPLAY & TRANSFERCALL statement, using in a

display client 16
display client

description 16
ruled statements to use 16
summary of program names 17

DISPLAY statement, using in a display client 16
drop a connection to a session operation. See resetss

E

EECONFIG, and session configuration 54, 234
EMS interface 168–194

code page support 173
configuring 173
LE Enclave 173
sample applications 175
shareable tools 169
supported functions 177

endMessage SDK (Java) method 317
ENDMSG tool

and CICS COMMAREA 85
location of the end message 87

environmental wait routine
implementation 256
sample programs 259, 261, 262
specifying with Call Level Interface 257

error handling
by external routines 133
by MOM routines 172, 197
by OTMA 129
checking after SQL access statements 361
checking for runtime errors in TIBCO Object Service

Broker access statements 348
recoverable errors 28
 TIBCO Object Service Broker for z/OS External Environments

384 | Index
error reason codes, SDK (C/C++)
106 282
128 287
161 293
193 281
195 281
199 279, 287
3090 284
36 281, 282, 284, 286, 287, 289
96 284
listing and explanation of 374

error reason codes, SDK (Java)
106 324
193 322
3090 315
36 315, 324, 325
96 315

error trapping, and reducing session resources 28
errorReasonDescr SDK (Java) method 328
EXEC CICS LINK

assembler example 77, 79
starting CICS client with 77

EXEC CICS RETURN 90
EXEC CICS START

assembler example 71
COBOL example 73
starting CICS client with 70

EXEC CICS START TRANSID
assembler example 74
COBOL example 76

EXEC CICS XCTL
assembler example 81, 82
starting CICS client with 81

EXECLOCALSIZE parameter
CICS recommendations for 87

EXECSTACKSIZE parameter
CICS recommendations for 87

execTran SDK (Java) method 318
execute a transaction function. See cliExecTran

Execution Environment
batch client, sequential file for 37
determining type of 22, 23
explanation of 3
load modules 37
locating 235
obtaining startup parameters with Call Level

Interface 234
preparing to start or locate with Call Level

Interface 220
starting for CICS sessions 64
starting multiple sessions in batch 264
starting with Call Level Interface 203, 234, 235
stopping with Call Level Interface 203, 237

Execution Environment parameters
file containing 55
listed 25

exit routine, as used with IMS TM client programs 119
EXLIB CLIST parameter 48
external database servers

and Native Execution Environment 52
explanation of 4

external environment
explanation of 2, 5
interaction with TIBCO Object Service Broker 8
supported types 2
TIBCO Object Service Broker for z/OS External Environments

Index | 385
external routines 132–157
and batch client 40
and Native Execution Environment 57
and TSO client 50
C program compatibility 146
calling from CICS client 91
CICS restrictions 91
CICS usage with OS linkage 92
cleanup of system service requests 133
COBOL program compatibility 138
error handling 133
example assembler program 136
example COBOL program 141
example PL/I program 144
identifying to TIBCO Object Service Broker 152
information available 134
load library 48
load module for user external routines 55
load modules for user written 37
openness from TIBCO Object Service Broker 6
PL/I program compatibility 143
processing by TIBCO Object Service Broker 132
sample C program 148
steps required to use 132
storage requirements 135
transaction level 133
use of AMODE/RMODE attributes 134
use of ARGUMENTS table 152, 155
use of load library 157
use of ROUTINES table 152

external security
transaction security 16
user security 16
using TIBCO Object Service Broker ID as user ID 16

external transaction client
description 16
summary of program names 17

external transaction name, user ID required for 18
external user client, summary of program names 17

F

FETCH statement
and SQL access statements 363
usage with SQL access statements 363

file
sequential for batch client 37
session parameter input 27
session parameter, for batch 36
session parameter, for Native Execution

Environment 54
session parameter, for TSO 46

FORALL statement, and TIBCO Object Service Broker
action statements 349

format a commarea function
for multiple segments. See cliCommFormat
for one segment. See cliCommFormat1
for segment of certain structure. See cliCommCreate

functional overview of Call Level Interface 203
functions, of Call Level Interface

CALLRULE 249
STARTEE 234, 259
STARTSS 239, 261
STARTTR 243
STOPEE 237
STOPSS 241
STOPTR 247

functions, supported for EMS 177

G

Gateway
for Adabas and Native Execution Environment 52,

54
for Datacom and Native Execution Environment 52,

54
for IMS/DB and Native Execution Environment 52,

54
GENBIN tool, and IMS TM 113
GET statement, and TIBCO Object Service Broker

action statements 348
getendmsg cliProc operation 287
 TIBCO Object Service Broker for z/OS External Environments

386 | Index
GETFIRST statement
and TIBCO Object Service Broker action

statements 349
example 349

GETNEXT statement
and TIBCO Object Service Broker action

statements 349
example 349

H

HINT transaction, use of 64
HLIPREPROCESSOR tool

examples to run 370
usage to preprocess TIBCO Object Service Broker or

SQL access statements 368
HLL-RETURN-CODE variable, for TIBCO Object Ser-

vice Broker access statements 348
Host Languages Interface 340–372

See also batch client; Call Level Interface; external
routines; TSO client

HRNEXTR DDname
description 55

HRNEXTR DDname, description 37, 47, 69
HRNHLLTM module

and Call Level Interface 207
required parameters 207
valid parameters 209
valid parameters, summary 210

HRNIN DDname
description 37, 55, 69
format for use 27
restriction on use 54
sample usage 38

HRNLIB DDname, description 37, 55
HRNOUT DDname

description 37
restriction on use 55, 69

HRNPRNT DDname
description 37
restriction on use 55, 69

HRNXD copybook, usage with Call Level
Interface 257

HURN transaction
explanation 70
usage 70

HURON trancode, usage of 103
hyphen (-), as join character 347

I

IMS OTMA. See OTMA support
IMS TM applications, running 98
IMS TM client 98–119

See also Call Level Interface; client programs; client
styles; client types; Execution Environment
parameters; external routines; session parame-
ters

and the Call Level Interface 98
associating IMS transaction identifier 104
bypassing the user ID and password 104
establishing a session 98
listing of available programs 101
multiple-session type 13
operation of a user written client 100
operation of TIBCO Object Service Broker client 99
use of exit routines 119

IMS TM client programs, summarized 102
IMS TM programs, replacing with rules 100
IMS TM session

ensuring message queue and database
consistency 117

exit routine replacement 119
invoking. See starting
starting 103
starting with suppled trancode 103
using MFS to start 104

IMS TM terminals
extended terminal support 105
PF key changes 105
signon exit 105
starting a session from 103

IMS transaction identifier, associating with IMS TM
client program 104

IMSSCREENATTRIBU parameter
to set IMS TM terminal characteristics 105
TIBCO Object Service Broker for z/OS External Environments

Index | 387
inquire whether a session is active operation. See sess-
active

INSERT statement
and SQL access statements 363
and TIBCO Object Service Broker action

statements 349
usage with SQL access statements 363

invoking rules
as new transaction 29
as part of logon transaction 29

isActive SDK (Java) method 320

J

JCL
using to control steps in batch session 39
using to invoke batch session 32

JCL data set
samples for Host Languages Interface 341

JES2/JES3
conditional processing 39
starting batch session under 32

join character
for COBOL 347
for TIBCO Object Service Broker access

statements 347

L

LE Enclave, and EMS 173
list of Execution Environment parameters 25
list of session parameters 26
LLCOPY_CSTR(listr, cstr) SDK (C/C++) function 300
LLCOPY_MEM(listr, prt, len) SDK (C/C++)

function 300
LLDECLARE(name, len) SDK (C/C++) function 300
LLSETLEN(listr, len) SDK (C/C++) function 300
LLSTR(listr) SDK (C/C++) function 300, 300
load library

as used by external routines 157
specifying in a CLIST 48

load module
and external routines 134
for Execution Environment 37
for user external routines 55
for user written external routines 37
linking executable COBOL code 371
required to run Native Execution Environment 55

LOADLIB 47
LU2 (3270) terminal, logging in to session from 52

M

MACLIB data set, samples for the Call Level
Interface 220

MAP tables
accessing data with CICS client 86
as used by Call Level Interface 201
to access data with Call Level Interface 205
to pass data to IMS TM session 106
to return data from IMC/DC session 112
to return data to batch client 40
to return data to CICS client 88
to return data to TSO client 49
used to obtain input message segments 102
where used 28

Message Formatting Services (MFS)
and TIBCO Object Service Broker interaction 100
used to start an IMS TM session 104

Message Oriented Middleware
error handling 172, 197
example rule 197
usage notes 169, 196

Message Processing Region (MPR), and access to
TIBCO Object Service Broker 98

MESSAGE_LOG tool, as used by Call Level
Interface 222

MetaStor, explanation of 3
modifying, rules invocation 29
MOM. See Message Oriented Middleware
MQ Series, accessing 196
multiple-session client types 13
multiple-session Execution Environments 256–264
 TIBCO Object Service Broker for z/OS External Environments

388 | Index
N

Native Execution Environment 52–57
See also Call Level Interface; client types; Execution

Environment parameters; external routines;
session parameters

and remote peer server 52
and session parameter values 54
and VTAM LU2 52
starting 52

Native Execution Environment client 13, 13
multiple-session type 13

network solicitor, returning to 57
NLS requirement 305
non-conversational client

summary of program names 17
non-conversational client, description 17
non-conversational interface 17
non-display client

description 16
summary of program names 17

non-seamless client
and IMS TM 102
description 15
summary of program names 17
usage of CICS clients 67

non-seamless COMMAREA, description 85
non-seamless session, executing rule at startup 28

O

OPEN CURSOR statement, usage with SQL access
statements 363

OTMA support
definition of OTMA 126
error handling 129
example rules and tables 129
programming for 127
usage notes 129

P

Pagestore, purpose of 3
parameters, specifying for session 21

 See also batch client; Call Level Interface; CICS cli-
ent; Native Execution Environment; TSO client

passing COMMAREA, to TIBCO Object Service Bro-
ker CICS session 85

passing data
to Native Execution Environment 57
to TSO client 49

password, bypassing with IMS TM client 104
period (.) as join character 347, 358
PL/I

example program for external routines 144
program compatibility for external routines 143

Procedure Division, coding TIBCO Object Service Bro-
ker access statements in 345

processing data, stages to 8

Q

query number of segments in commarea function,
total. See cliCommSegments

R

rc SDK (Java) method 329
readInt SDK (Java) method 333
readShort SDK (Java) method 334
reason codes, listing and explanation of 226
TIBCO Object Service Broker for z/OS External Environments

Index | 389
reason codes, SDK (C/C++) errors
106 282
128 287
161 293
193 281
195 281
199 279, 287
3090 284
36 281, 282, 284, 286, 287, 289
96 284
listing and explanation of 374

reason codes, SDK (Java) errors
106 324
193 322
3090 315
36 315, 324, 325
96 315

reasonCode SDK (Java) method 328
recoverable errors, trapping 28
reducing session resources 28
remote peer server, and Native Execution

Environment 52
REPLACE statement, and TIBCO Object Service Bro-

ker action statements 349
requirements 127

NLS 305
runtime 305

reset SDK (Java) method 320
resetss cliProc operation 287
retrieve a rules end message operation. See getendmsg
retrieve segment size function. See cliCommSegSize
return codes

evaluating 222
listing and explanation of 225

return pointer to commarea function. See cliCom-
mSegment

RETURN_CODE tool, as used by external
routines 134

returning data
from batch session 39
from TSO client 49
to CICS COMMAREA 88
to Native Execution Environment 57

ROLLBACK statement
and SQL action statements 357
and TIBCO Object Service Broker action

statements 349
ROLLBACK statement, usage with SQL access

statements 364
rolling back data changes, with Call Level

Interface 205, 231, 247
routine, environmental wait. See environmental wait

routine
ROUTINES table

and batch clients 40
and CICS clients 91, 92
and Native Execution Environment 57
and TSO clients 50
as used by external routines 152
as used by Host Languages Interface 372

RULE parameter
and seamless clients 102
in non-seamless sessions 28
passing data to batch sessions 39
passing data to TSO sessions 49

rules
calling with Call Level Interface 205, 249
library search order specification in Call Level

Interface 204, 204
replacing CICS transaction with 65
replacing IMS TM programs with 100
retrieving CICS COMMAREA with 86

rules invocation
as new transaction 29
as part of logon transaction 29
for COBOL program with access statements 372

runtime requirement 305

S

S6BBATCH program
description 32
using to run a COBOL program with access

statements 372
S6BCALL tool 169
S6BCSCL1 program 269
 TIBCO Object Service Broker for z/OS External Environments

390 | Index
S6BCSCLI, CICS session background task
program 269

S6BCSSC1 program 66, 66
S6BCSSC2 program 66, 70, 74, 76, 77, 81, 82
S6BCSSN1 program 66
S6BCSSN2 program 66
S6BCSTC1 program 66
S6BCSTC2 program 66
S6BCSTN1 program 66
S6BCSTN2 program 66
S6BDCKRN program 101
S6BDCSGN signon exit 105
S6BDCUSX exit routine 119
S6BDR00 program 54
S6BDRCB0 module 36
S6BDRCN0 module 54
S6BDRCT0 module 46
S6BEWTIN program 262
S6BEWTSD sample program 262
S6BEWTSS sample program 263
S6BFUNCTION tool 169
S6BIMSC1 program

introduction 101
S6BIMSC1 program, input message format 109
S6BIMSC2 program

introduction 101
S6BIMSC2 program, input message format 109
S6BIMSN1 program

introduction 101
S6BIMSN1 program, input message format 110
S6BIMSN2 program

introduction 101
S6BIMSN2 program, input message format 111
S6BIMSxx program, description 102
S6BIMTC1 program

introduction 101
S6BIMTC1 program, input message format 109
S6BIMTC2 program

introduction 101
S6BIMTC2 program, input message format 109
S6BIMTN1 program

introduction 101
S6BIMTN1 program, input message format 110
S6BIMTN2 program

introduction 101

S6BIMTN2 program, input message format 111
S6BIMTxx program, description 102
S6BIMxCx program, description 102
S6BIMxNx program, description 102
S6BIMxx1 program, description 102
S6BIMxx2 program, description 102
S6B-RETURN-EXCEPTION variable

for SQL access statements 361
for TIBCO Object Service Broker access

statements 348
S6B-RETURN-MESSAGE variable

for SQL access statements 361
for TIBCO Object Service Broker access

statements 348
S6BSBDRC module, used by IMS TM terminals 105
S6BTSO program

description 42
using to run a COBOL program with access

statements 372
sample application

using SDK (C/C++) 301
using SDK (Java) 336

sample applications, for EMS interface 175
sample JCL, for preprocessing COBOL programs 368
sample rules 127
SDK (C/C++)

defined 272
error reason codes for 374
how to use 272

SDK (C/C++) constants 273
SDK (C/C++) error reason codes

106 282
128 287
161 293
193 281
195 281
199 279, 287
3090 284
36 281, 282, 284, 286, 287, 289
96 284
listing and explanation of 374
TIBCO Object Service Broker for z/OS External Environments

Index | 391
SDK (C/C++) functions
cliCommCreate 294
cliCommCreate1 294
cliCommDelete 295
cliCommFormat 295
cliCommFormat1 296
cliCommSegment 297
cliCommSegments 297
cliCommSegSize 298
cliCommSize 293, 298
cliCommSizeCalc 299
cliCommSizeCalc1 299
cliExecTran 289
cliProc 277
cliSetCodepage 291
LLCOPY_CSTR(listr, cstr) 300
LLCOPY_MEM(listr, prt, len) 300
LLDECLARE(name, len) 300
LLSETLEN(listr, len) 300
LLSTR(listr) 300, 300

SDK (C/C++), introduction 266
SDK (Java)

defined 304
how to use 306

SDK (Java) constants 307
SDK (Java) error reason codes

106 324
193 322
3090 315
36 315, 324, 325
96 315

SDK (Java) methods
call 314
commCreate 330
commFormat 330
commSegmentInd 331
commSegments 331
commSegSize 332
commSize 332
commSizeCalc 333
endMessage 317
errorReasonDescr 328
execTran 318
isActive 320
rc 329
readInt 333
readShort 334
reasonCode 328
reset 320
Session 312
SessionException 327
shutdown 321
start 321
startTrans 323
stop 324
stopTrans 325
transNestLevel 325
userId 326
writeInt 334
writeShort 335

seamless client
and CICS 67
and IMS TM 102
CICS COMMAREA usage 86
description 15
summary of program names 17

security
external transaction 16
external user 16

SELECT statement
keywords for 365
usage with SQL access statements 364

selecting client program
for CICS 66
for IMS TM 101
for SDK (C/C++) within CICS 269
 TIBCO Object Service Broker for z/OS External Environments

392 | Index
Service Gateway for CICS 60
Service Gateway for IMS TM 98
Service Gateway for WMQ 196
sessactive cliProc operation 288
session

defined 3
multiple-session types 13
reducing resources of 28
single-session types 12
standby for Call Level Interface 206
starting multiple-session Execution Environments

in batch 256
starting with Call Level Interface 203, 239
stopping with Call Level Interface 203, 241

session parameter input file 27
session parameter values

evaluating for batch client 36
evaluating for CICS client 68
evaluating for Native Execution Environment 54
evaluating for TSO session 46
instream list for batch client 38
sequential file containing for batch client 37
setting for batch session 36
setting for CICS session 68, 68
setting for IMS TM session 103, 103
setting for Native Execution Environment 54
setting for TSO session 46
starting CICS client at command line 70

session parameters
ACTION, changing rules invocation 29
listed 26
sequential file containing 55

session resources, reducing 28
Session SDK (Java) method 312
session startup

CLIST syntax for TSO clients 47
default for Native Execution Environment 54
installation defaults for batch clients 36
installation defaults for TSO clients 46
limitations to startup string and input file 54
load library in CLIST 48
parameter input file for a Native Execution

Environment 54
parameter input file for batch clients 36
parameter input file for TSO clients 46
sample CLIST for TSO client 47
startup string for batch clients 36
startup string for Native Execution Environment 54
startup string for TSO clients 46
TIBCO Object Service Broker defaults for batch

clients 36
TIBCO Object Service Broker defaults for TSO

clients 46
user profile for batch clients 36
user profile for TSO clients 46

session termination 128
CICS functions to perform 90
handling in CICS client 87

SESSIONENDACTION parameter
and CICS 90

SESSIONENDVALUE parameter
and CICS 90

SessionException SDK (Java) method 327
set code page function

See also cliSetCodepage
shutdown SDK (Java) method 321
SIGNON transaction, for IMS TM clients 104
single-session clients, types of 12
specifying

startup rule explicitly 15
SQL access statements

and COBOL programs 340
assigning valid names 358
coding 356
coding operators and expressions 359
defining valid names 356
differences between TIBCO Object Service Broker

and COBOL usages 358
initial statements for 356
sample program 352
specifying data areas 357
specifying selection 357
supported 363
writing COBOL program for 352

Sqlcode variable, for SQL access statements 361
Sqlstate variable, for SQL access statements 361
TIBCO Object Service Broker for z/OS External Environments

Index | 393
STANDBYNUM parameter
as used by Call Level Interface 206

start a session operation. See startss
start a transaction operation. See starttr
start SDK (Java) method 321
STARTEE function

description 234
environment wait routine, summary of usage 236
environmental wait routine 259

starting 98
batch client 32
CICS client 60
IMS TM client 98
Native Execution Environment client 52, 53
TSO client 42
VTAM LU2 (3270) terminal session 53

startss cliProc operation 280
STARTSS function

description 239
environmental wait routine 261
environmental wait routine, summary of usage 240

starttr cliProc operation 282
STARTTR function, description 243
startTrans SDK (Java) method 323
startup rule, explicitly specifying 15
STEPLIB DDname, description 37, 55, 69
steps in JCL for batch client, controlling 39
stop a session operation. See stopss
stop a transaction operation. See stoptr
stop SDK (Java) method 324
STOPEE function, description 237
stopss cliProc operation 286
STOPSS function, description 241
stoptr cliProc operation 286
STOPTR function, description 247
stopTrans SDK (Java) method 325
storage

assembler requirements and external routines 135
obtaining with Call Level Interface 251

storage, using $SAVE macro for 161
stream, starting or ending with Call Level

Interface 204, 243
summary of client styles 17
supplied session defaults, TSO session 46
support, contacting xxv

synchronization under CICS 69
syntax mapping

TIBCO Object Service Broker to C 147
TIBCO Object Service Broker to COBOL 140, 360
TIBCO Object Service Broker to PL/I 144

T

table definition, sample 344, 354
table.field names, modifying for TIBCO Object Service

Broker access statements 347
tables

@IMSDCTRXOUT 117
@IMSDCTRXS, description 117
ARGUMENTS. See ARGUMENTS table
MAP. See MAP tables
ROUTINES. See ROUTINES table

technical support xxv
termination

cleanup by external routine 133
IMS TM exit routine replacement 119
of VTAM session 57

TIBCO Enterprise Message Service See EMS
interface 168

TIBCO Object Service Broker
architecture, introduction to 2
client model 12
client styles 12
clients. See client
processing data within 8
session types 2
sessions

defined 3
See also session

TIBCO Object Service Broker access statements
and COBOL programs 340
checking for runtime errors 348
coding action statements in COBOL 345
coding considerations for COBOL 346
coding operators and expressions 348
modifying table.field names 347
naming differences between TIBCO Object Service
 TIBCO Object Service Broker for z/OS External Environments

394 | Index
Broker and COBOL 346
supported statements 348
writing COBOL program 342

TIBCO Object Service Broker batch session. See batch
session

TIBCO Object Service Broker CICS session. See CICS
session

TIBCO Object Service Broker ID
default, using as external security user ID 16

TIBCO Object Service Broker IMS TM session. See IMS
TM session

TIBCO Object Service Broker names, renaming to
COBOL names 346, 358

TIBCO Object Service Broker TSO session. See TSO
session

TIBCO Object Service Broker user ID
using external transaction as 16

TIBCO Service Gateway for CICS 60
TIBCO Service Gateway for IMS TM 98
TIBCO Service Gateway for WMQ, using 196
tools 49

@SESSION
and CICS clients 88
and the Call Level Interface 251

$GETENVCOMMAREA. See $GETENVCOM-
MAREA tool

$GETOPT
to retrieve IMS TM message information 117
to set IMS TM terminal options 105

$SETENVCOMMAREA
and the Call Level Interface 205
example for CICS client 89
example for IMS TM clients 112
passing data out, Call Level Interface 249

$SETSESSIONEND
and batch clients 39
and CICS clients 90
and TSO clients 49

ENDMSG
and CICS COMMAREA 85
location of the end message 87

GENBIN, and IMS TM 113
HLIPREPROCESSOR

examples to run 370
usage to preprocess TIBCO Object Service Broker

or SQL access statements 368
MESSAGE_LOG, as used by Call Level

Interface 222
RETURN_CODE, as used by external routines 134

trancode
supplied for IMS TM session 103
used to start IMS TM session 103

transaction
characteristics of 245
ending transaction with Call Level Interface 204,

247
ensuring consistency in IMC/DC clients 117
level of an external routine 133
modifying transaction with Call Level

Interface 204, 245
starting or ending a transaction with Call Level

Interface 243
starting or ending stream with Call Level

Interface 204, 243
starting transaction with Call Level Interface 204

transNestLevel SDK (Java) method 325
TSO applications, running 42
TSO client 42–50

See also Call Level Interface; client programs; client
styles; client types; Execution Environment
parameters; external routines; session parame-
ters

address space usage 42
and external routines 50
CLIST syntax for a session 47
invoking See starting
operation of TIBCO Object Service Broker client 43
operation of user written client 45
passing data to 49
returning data 49
sample CLIST 47
single-session type 12
starting 42

TSO session
authorized and unauthorized libraries 48
block size of external routine load library,
TIBCO Object Service Broker for z/OS External Environments

Index | 395
determining 48
concatenating load library 48
library concatenation 48
load library, identifying 48
search order for external routines 48
specifying load library 48
supplied default 46

types of clients 12

U

underscore (_), as join character 358
UNTIL... DISPLAY statement, use in a display

client 16
UPDATE statement, usage with SQL access

statements 364
user builtin routines 160–165

samples 163
steps required to use 160

user client
types of 13
usage of the Call Level Interface 202

USER CLIST 48
user ID

bypassing with IMS TM client 104
determining with a CICS client 66
guidelines for setting up 18
minimizing number required 16
overriding 16
setting up profile 18
using default 16

USERID parameter
overriding user ID 16

userId SDK (Java) method 326

V

variables, for SQL access statements
S6B-RETURN-EXCEPTION 361
S6B-RETURN-MESSAGE 361
Sqlcode 361
Sqlstate 361
usage of 361

variables, for TIBCO Object Service Broker access
statements

HLL-RETURN-CODE 348
S6B-RETURN-EXCEPTION 348
S6B-RETURN-MESSAGE 348

VSAM synchronization 69
VTAM LU2 (3270) terminal

logging in to session from 52
starting session from 53
syntax to establish session with 55

VTAM LU2 client
and Native Execution Environment 52

W

WebSphere MQ, accessing 196
WHENEVER statement, usage with SQL access

statements 364
WMQ, gateway for 196
Working Storage Section, coding TIBCO Object Ser-

vice Broker access statements in 345
writeInt SDK (Java) method 334
writeShort SDK (Java) method 335
 TIBCO Object Service Broker for z/OS External Environments

	TIBCO® Object Service Broker for z/OS
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction
	TIBCO Object Service Broker Architecture
	Client Services Layer
	Execution Environment
	Data Object Broker

	Accessing TIBCO Object Service Broker from an External Environment
	What is an External Environment?
	Facilities Available for Interfacing with External Environments

	Stages to Setting Up and Processing Within TIBCO Object Service Broker
	Main Stages
	Interaction with TIBCO Object Service Broker and its External Environments

	Chapter 2 The TIBCO Object Service Broker Client Model
	Overview
	TIBCO Object Service Broker Clients
	User Clients
	TIBCO Object Service Broker SDK (C/C++) Client
	TIBCO Object Service Broker SDK (Java) Client
	Same Environments and Address Spaces

	TIBCO Object Service Broker Client Styles
	What Determines the Client Style?
	Seamless or Non-Seamless Client Styles
	External User or External Transaction Security
	Display or Non-Display Clients
	Conversational or Non-Conversational Clients
	Client Style Summary

	Setting Up the User Profile for Seamless Clients
	Setting up A User Profile
	Guidelines for Development Environments

	Chapter 3 Setting Execution Environment Parameters
	Usage of the Execution Environment Parameters
	Purpose
	Precedence of Values

	Determining Session Characteristics
	Where to Specify Parameters for Single-Session Clients
	Where to Specify Parameters for Multiple-Session Clients

	Available Execution Environment Parameters
	Parameters Specific to the Execution Environment
	Parameters for Your Session

	Specifying Session Parameters Using an Input File or a CLIST
	Format of the Input File
	Example of Instream Parameter List Using HRNIN in JCL

	Reducing Session Resources
	Bypassing the Workbench
	Operational Characteristics
	Changing the Invocation Options
	Non-seamless CICS Client

	Chapter 4 TIBCO Object Service Broker Sessions Under z/OS Batch
	How to Run Batch Applications
	Invocation
	Using the TIBCO Object Service Broker Supplied Batch Client Program
	Using A Customized (User) Batch Client

	How to Set Session Parameters
	Establishing Session Parameter Values
	Available DDnames
	Using an Instream Parameter List

	How to Manipulate Data in a TIBCO Object Service Broker Batch Client Session
	Passing Data to TIBCO Object Service Broker Batch Sessions
	Returning from the Batch Client
	Returning Data to a User Batch Client
	Using External Routines

	Chapter 5 TIBCO Object Service Broker Sessions Under TSO
	How to Run TSO Applications
	Invocation
	Using the TIBCO Object Service Broker Supplied TSO Client Program
	Using a Customized (User) TSO Client

	How to Set Session Parameters
	Establishing Session Parameter Values
	Using a CLIST to Invoke TIBCO Object Service Broker
	Specifying or Concatenating a Load Library
	USER CLIST Distributed with TIBCO Object Service Broker

	How to Manipulate Data in TSO Client Sessions
	Passing Data to TIBCO Object Service Broker TSO Sessions
	Returning from the TSO Client
	Using External Routines

	Chapter 6 TIBCO Object Service Broker Sessions Under the Native Execution Environment
	Overview of the Native Execution Environment
	What is the Native Execution Environment?
	VTAM and TIBCO Object Service Broker Interaction

	How to Set Session Parameters
	Where to Specify Session Parameters
	Available DDnames
	Print Destination Restrictions
	Establishing a TIBCO Object Service Broker VTAM LU2 Session

	Manipulating Data in VTAM LU2 Client Sessions
	Passing and Returning Data
	Determining the Next Step
	Calling External Routines

	Chapter 7 Using the TIBCO Service Gateway for CICS
	How to Run CICS Applications
	CICS Client Programs
	Using the TIBCO Object Service Broker Supplied CICS Modules
	Using a Customized (User) CICS Client

	Session Initiation and Termination
	What Starts and Terminates an Execution Environment?
	Methods of Session Initiation and Termination
	Replacing a CICS Transaction with TIBCO Object Service Broker Rules

	Selecting a TIBCO Object Service Broker CICS Client Program
	TIBCO Object Service Broker CICS Client Programs
	Choosing the Right TIBCO Object Service Broker CICS Client Program

	How to Set Session Parameters
	Where to Specify CICS Execution Environment Parameters
	Available DDnames
	Print Destination Restrictions
	Synchronization of VSAM Files

	Starting TIBCO Object Service Broker Sessions
	Using the Command Line to Start a Session
	Using EXEC CICS START to Start a Session
	Using EXEC CICS START to Start a Session with Channel
	Using EXEC CICS LINK to Start a Session
	Using EXEC CICS LINK to Start a Session with Channel
	Using EXEC CICS XCTL to Start a Session
	Using EXEC CICS XCTL to Start a Session with Channel

	Passing the COMMAREA Between a TIBCO Object Service Broker CICS Client and a Session
	Non-Seamless COMMAREA
	Seamless COMMAREA
	Retrieving the COMMAREA in a Rule
	Error Messages in the COMMAREA

	How Can Data Be Returned
	Returning Data From TIBCO Object Service Broker to CICS
	Steps to Returning an Occurrence
	Using MAP Tables to Return Data
	Using $SETENVCOMMAREA to Return Data

	Performing CICS Functions at Session End
	Starting a CICS Transaction
	Transferring to a CICS Program

	Calling External Routines
	Calling an External CICS Routine
	Requirements for Calling an External CICS Routine
	Restrictions for Calling an External CICS Routine
	Calling An External Routine With OS Linkage

	CICS Channels and Containers in the TIBCO Object Service Broker CICS Session Environment
	CICS Channel and Container Tools
	Channel Scope
	Predefined Container Names

	Chapter 8 Using the TIBCO Service Gateway for IMS TM
	How to Run IMS TM Applications
	Functional Overview
	Using TIBCO Object Service Broker IMS TM Client Programs
	How a Client Session is Established
	IMS TM and TIBCO Object Service Broker Interaction
	Replacing IMS TM Programs with TIBCO Object Service Broker Rules

	Selecting a TIBCO Object Service Broker IMS TM Program Style
	TIBCO Object Service Broker IMS TM Client Programs
	Choosing the Right TIBCO Object Service Broker IMS TM Client Program

	Starting a TIBCO Object Service Broker Session
	How to Set Session Parameters
	Using the IMS TM Terminal to Start a Session
	Usage of the Supplied Trancode
	Using Message Formatting Services (MFS) to Start a Session
	Program-to-Program Message Switching to Start a Session

	Terminal Changes at Session Startup
	Extended Terminal Support
	Additional Terminal Capabilities
	PF Key Changes

	Passing Data to TIBCO Object Service Broker IMS TM Sessions
	Using MAP Tables to Access Data
	Using the $GETENVCOMMAREA Tool to Access Data

	Input Message Segment Overview
	Message Segment Types
	S6BIMxC1 Client Program Input Message Format
	S6BIMxC2 Client Program Input Message Format
	S6BIMxN1 Client Program Input Message Format
	S6BIMxN2 Client Program Input Message Format

	Returning Data from TIBCO Object Service Broker to IMS TM
	Example using $SETENVCOMMAREA

	Passing Control to an IMS Transaction at Session End
	What are the Allowable Options for Passing Control
	What to Use to Direct the Destination of Message Segments
	Non-Conversational MFS Output
	Non-Conversational Program-to-Program Switch
	Conversational Deferred Message Switch
	Conversational Immediate Message Switch

	Ensuring Message Queue/Database Consistency
	TIBCO Object Service Broker Supplied Facility
	@IMSDCTRXS Table
	Sample Rules for Processing

	Customizing TIBCO Object Service Broker IMS TM Client Programs
	Using a Session Exit Routine
	Where to Enter the Exit Routine
	Exit Routine Indicators

	Getting Access to IMS TM Data
	Overview of the IMS TM Logger Exit
	Format 1 DATAIN
	Logger Exit Processing
	Example of Messages

	Chapter 9 Accessing IMS Via the OTMA Callable Interface
	Functional Overview
	What is the OTMA Callable Interface?

	Programming for OTMA
	Requirements
	Sample Rules Provided
	Session Termination

	Usage Notes
	z/OS and IMS System Requirements
	Invoking the Tool and the System Map Table
	Interpreter TCB Held for Communications
	Error Handling
	Example Rules and Tables

	Chapter 10 Accessing External Routines
	Functional Overview
	How Does TIBCO Object Service Broker Process an External Routine?
	Steps Required to Use an External Routine
	Transaction Level of the Routine
	Cleanup of System Service Requests
	Error Handling

	Observing Standard Conventions
	Information Available to an External Routine
	Use of the AMODE and RMODE Attributes
	Storage Requirements
	Example Assembler Program

	Making a COBOL Program Compatible with TIBCO Object Service Broker
	Requirements
	COBOL Run-Units
	Link-Edit and Runtime Options
	Syntax Mapping
	Example COBOL Program

	Making a PL/I Program Compatible with TIBCO Object Service Broker
	Requirements
	Link-Edit Options
	Syntax Mapping
	Example PL/I Program

	Making a C Program Compatible with TIBCO Object Service Broker
	Requirements
	Syntax Mapping
	Sample

	Identifying Your External Routine to TIBCO Object Service Broker
	Specify the Table Entries
	Add an Entry in the ROUTINES Table
	Adding an Entry to the ARGUMENTS Table

	Calling the Routine
	Put the Routine in a Load Library
	Call the Routine From TIBCO Object Service Broker

	Chapter 11 Using User Builtin Routines
	Functional Overview
	What are User Builtin Routines?
	What Are the Requirements for User Builtin Routines?

	Programming Considerations
	Acquiring and Releasing Storage
	Using the $SAVE Macro
	$SAVE Macro Storage Usage

	Sample User Builtin Routines
	Samples Available
	USRSLEEP

	Chapter 12 Using the Interface to TIBCO Enterprise Message Service
	TIBCO Object Service Broker EMS Interface
	Purpose of TIBCO Enterprise Message Service (EMS)
	Overview of TIBCO Object Service Broker EMS Interface

	Calling EMS
	Shareable Tools Available
	Argument Mapping
	Error Handling

	Configuration
	Initializing the EMS Interface
	Multi-threaded Environment
	Code Page Support

	Sample Applications
	Rules Samples

	Supported EMS Functions

	Chapter 13 Using the TIBCO Service Gateway for WMQ
	Overview
	Usage Notes
	Error Handling
	Example Rule

	Chapter 14 Introduction to the Call Level Interface
	Aspects of the Call Level Interface
	Purpose of the Call Level Interface
	Supported Functionality
	Supported Connections
	Shared Addressing
	Accessing Table Data Using the Host Languages Interface
	Illustration of Generic User Client Using Call Level Interface

	Functionality of the Call Level Interface
	Start or Locate and Stop an Execution Environment
	Start and Stop a TIBCO Object Service Broker Session
	Start and End a TIBCO Object Service Broker Stream
	Start and End a TIBCO Object Service Broker Transaction
	Call a TIBCO Object Service Broker Rule
	Finding the Name of a Rule in A Transaction

	Operational Characteristics
	Supported 3GL Languages
	Multiple Execution Environments per Address Space
	Standby Sessions
	When Viewed by TIBCO Object Service Broker Administrator Tools

	Call Level Interface Specification
	What Is the Module to Call?
	Example CALL Formats
	Required Parameters
	Usage of the Parameters

	HRNHLLTM Module Parameters
	Valid Call Parameters
	Operational Parameters

	Valid Calling Sequences
	Calling Sequence
	Permissible Transitions Between the Call Level Interface Functions

	Examples of Typical Usage
	Batch Client Example
	Nested Execute Example
	TRANSFERCALL Example

	Using the Host Languages Interface
	Writing a COBOL Program Using a Combination of the Call Level Interface, TIBCO Object Service Broker Access Statements, and SQL Statements
	Additional Steps

	Chapter 15 Preparing the Environment, Analyzing Returned Values, and Modifying Changes
	Preparing to Start or Locate the Execution Environment
	Preparatory Steps

	How to Analyze the Return and Reason Codes, and Returned Message
	Evaluation of the Return and Reason Codes
	Capturing the Returned Values
	Examples

	Call Level Interface Return Codes
	Listing and Explanation

	Call Level Interface Reason Codes
	Listing and Explanation

	Committing and Rolling Back Persistent Table Changes
	Sample Calls
	Returned Values

	Chapter 16 Call Level Interface Functions
	Starting or Locating the Execution Environment – STARTEE
	Syntax
	Calling Parameters
	Starting an Execution Environment
	Obtaining Execution Environment Startup Parameters
	Locating an Execution Environment
	Returned Values
	Advanced STARTEE Batch Usage

	Stopping the Execution Environment – STOPEE
	Syntax
	Calling Parameters
	Sample Calls
	Returned Values

	Starting the Session – STARTSS
	Syntax
	Calling Parameters
	Sample Calls
	Returned Values
	Advanced STARTSS BATCH Usage

	Stopping the Session – STOPSS
	Syntax
	Calling Parameters
	Sample Code
	Returned Values

	Starting a Transaction – STARTTR
	Syntax
	Calling Parameters
	What Limits the Number of Transactions
	Sample Calls
	Returned Values

	Modifying Transactional Characteristics
	Calling Parameters
	What are the Transactional Characteristics?
	What is the Inheritance of Transactional Characteristics?
	Sample Calls
	Returned Values

	Ending a Transaction – STOPTR
	Syntax
	Calling Parameters
	Sample Calls
	Returned Values

	Calling a Rule – CALLRULE
	Syntax
	Calling Parameters
	DATA-IN and DATA-OUT Areas
	Accessing the Storage Areas
	Sample Calls
	Return Values

	Chapter 17 Multiple-Session Execution Environments in Batch
	Starting Multiple-Session Execution Environments in Batch
	What Facility Is Available?
	Implementation Guidelines

	Specifying an Environmental Wait Routine
	Listing of the HRNXD Copybook
	User Exit Types Supported

	STARTEE Call
	Behavior of STARTEE
	Behavior in the Sample Programs

	STARTSS Call
	Purpose of STARTSS
	Behavior in the Sample Programs

	Sample Programs
	Programs Provided
	S6BEWTIN
	S6BEWTSD
	S6BEWTSS
	COBCAPI3

	Chapter 18 TIBCO Object Service Broker SDK (C/C++) Server
	Introducing TIBCO Object Service Broker SDK (C/C++)
	Required Parameters

	Execution Environment Considerations
	Preparatory Steps

	Additional Requirements for CICS Execution Environments
	SIT Parameter Requirements
	Specifying the CICS Session Background Task Transaction
	Specifying RACF Definitions

	Chapter 19 Using TIBCO Object Service Broker SDK (C/C++)
	Overview of the TIBCO Object Service Broker SDK (C/C++)
	What Is the TIBCO Object Service Broker SDK (C/C++)?
	How Does It Work?
	How Can It Be Used?
	Compiling and Running
	Thread Safety
	Constants

	SDK (C/C++) Functions
	cliProc
	cliExecTran
	cliSetCodepage
	cliErrorReasonDescr
	cliCommCreate
	cliCommCreate1
	cliCommDelete
	cliCommFormat
	cliCommFormat1
	cliCommSegment
	cliCommSegments
	cliCommSegSize
	cliCommSize
	cliCommSizeCalc
	cliCommSizeCalc1
	LLCOPY_CSTR(listr, cstr)
	LLCOPY_MEM(listr, prt, len)
	LLDECLARE(name, len)
	LLSETLEN(listr, len)
	LLSTR(listr)
	LLSTRLEN(listr)

	Sample Application Using the SDK (C/C++)
	C Program
	Rule Called by Program
	Table Referenced by a Rule
	Output from the Program

	Chapter 20 Using TIBCO Object Service Broker SDK (Java)
	Overview of TIBCO Object Service Broker SDK (Java)
	What Is the TIBCO Object Service Broker SDK (Java)?
	Requirements
	How Does It Work?
	How Can It Be Used?
	Compiling
	Thread Safety
	Constants

	SDK (Java) Methods
	Classes

	Session Object Methods
	Session
	call
	endMessage
	execTran
	isActive
	reset
	shutdown
	start
	startTrans
	stop
	stopTrans
	transNestLevel
	userId

	SessionException Object Methods
	SessionException
	errorReasonDescr
	reasonCode
	rc

	Misc Object Methods
	commCreate
	commFormat
	commSegmentInd
	commSegments
	commSegSize
	commSize
	commSizeCalc
	readInt
	readShort
	writeInt
	writeShort

	Sample Application Using the SDK (Java)
	Compiling and Running the Sample Program
	Sample Rule Called by a Program
	Sample Table Referenced by a Rule
	Output from Program

	Chapter 21 Coding TIBCO Object Service Broker Access Statements
	Overview
	How to Access TIBCO Object Service Broker Data
	Steps Required
	Samples Provided

	Writing COBOL with TIBCO Object Service Broker Access Statements
	Sample COBOL Program
	Sample TIBCO Object Service Broker Table Definition

	Coding the Access Statements
	Where Do You Code the Access Statements?
	Coding the Action Statements

	Coding Considerations
	Naming Differences Between TIBCO Object Service Broker and COBOL
	How to Rename TIBCO Object Service Broker Names to Valid COBOL Names
	Modifying the Join Character for Table.Field Names
	Checking TIBCO Object Service Broker Runtime Errors
	Coding Operators and Expressions
	Embedding TIBCO Object Service Broker Action Statements

	Chapter 22 Coding SQL Access Statements
	Writing a COBOL Program with Embedded SQL Statements
	Sample COBOL Program
	Sample TIBCO Object Service Broker Table Definition

	Coding SQL Access Statements
	Initial Statement
	Defining Valid Names
	Specifying Selection
	Specifying Data Areas
	Coding the Remaining SQL Statements

	Coding Considerations
	Differences to Consider
	Assigning Valid Names
	Coding Operators and Expressions
	Syntax Mapping

	Error Checking and Handling
	Error Checking
	Error Handling Status Variables

	Statements Supported by the SQL Preprocessor
	SQL Statements
	Supported Keywords and Clauses for the SELECT Statement

	Chapter 23 Processing COBOL Programs
	Preprocessing the Access Statements
	Usage of HLIPREPROCESSOR

	Preparing the Program
	Steps Required

	Running the Program
	Steps Required

	Appendix A SDK (C/C++) and SDK (Java) Error Reason Codes
	Listing of the Reason Codes
	Code Values and Explanations

	Index

