
TIBCO® Object Service Broker
for Open Systems

Managing Backup and Recovery
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface .vii

Related Documentation .viii
TIBCO Object Service Broker Documentation .viii

Typographical Conventions .xiii

Connecting with TIBCO Resources .xvi
How to Join TIBCOmmunity .xvi
How to Access All TIBCO Documentation .xvi
How to Contact TIBCO Support .xvi

Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components1

Overview . 2
Operational Components . 2
File Components . 2

Data Object Broker . 3
Definition. 3
Data Object Broker Functionality . 3
The Role of the Data Object Broker and Related Data Sets . 4
Data Object Broker Communication . 4

Execution Environment . 5
Definition. 5
Execution Environment Functionality . 5
Types of Execution Environments. 5
Parameters . 5

TIBCO Object Service Broker Files . 7
Pagestore . 7
Redolog . 8
Contingency Log. 9
Journals . 9
Database Definition File . 10

Chapter 2 Understanding Transaction Processing. .11

Overview . 12
Key Components Involved in Transaction Processing . 12

Sample Transaction . 13
Implications for Backup and Recovery . 15
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

iv | Contents
Chapter 3 Understanding Fail Safe Processing. 17

Fail Safe Processing . 18
Definition . 18

Fail Safe Strategies . 19
Determining a Fail Safe Strategy . 19
Fail Safe Level 0 (Serial) . 20
Fail Safe Level 1 (Contingent) . 20
Fail Safe Level 2 (Two-Phase Commit) . 21
Contingent Two-Phase Commit . 21

Components Supporting Fail Safe Processing . 22
Transaction Database . 22
Contingency Log . 23

Sample Distributed Processing Scenarios . 24
Two Data Object Brokers . 24
Two Data Object Brokers with an External Database Server. 25
Three Data Object Brokers . 26
Multiple Data Object Brokers with an External Database Server . 27
Commit Behavior Across Multiple Data Object Brokers. 28

Chapter 4 Understanding Checkpoint Processing . 31

Checkpoint Processing . 32
What is a TIBCO Object Service Broker Checkpoint? . 32
When is a Checkpoint Created? . 32
Steps Performed by the Checkpoint Process . 32
Completing Pending Transactions . 34
Checkpoint Process Illustration . 35

Chapter 5 Understanding Journal Processing . 37

Journal Processing . 38
Definition . 38
Overview . 38
When are Journals Spun? . 38
Tailoring the Spin Batch Files/Scripts . 38
Journal Spin Process. 40
Journal Spin Process Illustration . 41

Journal Operations . 42
Merging the Journals . 42
Setting Journal Size. 42
Full Journals . 43
Spin Batch File/Script Failures. 43
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Contents | v
Chapter 6 Backing Up Your System .45

Overview . 46
Introduction. 46
Backup Approaches . 46
Full System Backup . 46
Continuous Backup. 47

TIBCO Object Service Broker Backup Utilities . 48
Advantages to this Approach . 48
Using TIBCO Object Service Broker Backup Utilities . 48

Using Non-TIBCO Object Service Broker Backup Utilities . 50
Limitations to this Approach . 50
Creating a Backup Using Non-TIBCO Object Service Broker Methods . 50

Performing Continuous Backup . 51
Using the Continuous Backup Process . 51
Alternate Method to Refresh the Latest Backup. 52

Sample Continuous Backup Implementation . 53

Chapter 7 Recovering From Errors .55

Overview . 56
Types of Recovery . 56
Deciding How Much To Restore . 56

Full Recovery . 57
When Should the Entire System be Restored? . 57
Deciding on a Restoration Point . 57
Using TIBCO Object Service Broker Backup Utilities to Perform a Full Recovery . 57
Restoring from a Non-TIBCO Object Service Broker Backup . 59

Partial Recovery. 60
Implementing a Partial Recovery . 60

Recovering From Non-Page File Failures . 61
Redolog Failure . 61
Contingency Log Failure. 61
Journal Failure . 61

Index .63
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

vi | Contents
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| vii
Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual explains the backup and recovery features of TIBCO Object Service
Broker for Open Systems. It describes system key components and describes how
you can back up your data and recover from errors. You can use this information,
with assistance from your TIBCO Support representative, to develop the best
customized solution for your unique backup and recovery requirements.

Topics

• Related Documentation, page viii

• Typographical Conventions, page xiii

• Connecting with TIBCO Resources, page xvi
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

viii | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Preface | ix
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

x | Related Documentation
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Preface | xi
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

xii | Related Documentation
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Preface | xiii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

OSB_HOME

By default, all TIBCO products are installed into a folder referenced in the
documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C:\tibco\OSB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/OS, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

xiv | Typographical Conventions
Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Preface | xv
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

xvi | Connecting with TIBCO Resources
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

| 1
Chapter 1 Introducing TIBCO Object Service Broker
Backup and Recovery Components

This chapter describes the TIBCO Object Service Broker backup and recovery
components for open systems.

Topics

• Overview, page 2

• Data Object Broker, page 3

• Execution Environment, page 5

• TIBCO Object Service Broker Files, page 7
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

2 | Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
Overview

Operational Components
There are two major operational components of a TIBCO Object Service Broker
system that are key elements of a backup and recovery strategy. They are:

• Data Object Broker

• Execution Environment

These components are discussed in the following sections.

File Components
The Data Object Broker uses a number of key operational files to provide
complete data integrity and maximum recoverability:

File Refer to page…

Pagestore 7

Redolog 8

Contingency log 9

Journals 9

dbdef file 10
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Data Object Broker | 3
Data Object Broker

Definition
The Data Object Broker is the server for TIBCO Object Service Broker data. It is
responsible for most operations against the Pagestore, which is the repository for
all TIBCO Object Service Broker data. For more information about the Pagestore,
refer to Pagestore on page 7.

Data Object Broker Functionality
When the Data Object Broker receives a commit request from the Execution
Environment, it performs the following:

1. Obtains and locks the required data pages from the Pagestore

2. Places the pages in memory

3. Records the update requests in the redolog

4. Updates the pages, placing them on a queue for checkpoint processing

5. When a checkpoint occurs, writes the pages to the journal and propagates the
changes to the Pagestore

Committing Updates

Most accesses and changes to the Pagestore go through the Data Object Broker. If
a commit request involves another system (an external database or a peer TIBCO
Object Service Broker system), the Data Object Broker logs the request in the
contingency log until the update request is confirmed by the other system. For
more detail, refer to Chapter 3, Understanding Fail Safe Processing, on page 17.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

4 | Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
The Role of the Data Object Broker and Related Data Sets

Data Object Broker Communication
The method of communication between the Data Object Broker and Execution
Environments depends upon their location. If they are on the same machine, they
use Inter-Process Communication (IPC), while communication between regions
on different machines uses TCP/IP.

TIBCO Object
Service Broker

Execution Environment

Execution Environment

Intent List
Redolog

Contingency Log

Pagestore

Data Object Broker

Intent List
Journals

TIBCO Object
Service Broker
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Execution Environment | 5
Execution Environment

Definition
The Execution Environment runs, or executes, the TIBCO Object Service Broker
applications for the end user. It manages such things as:

• Screen I/O

• Rules interpretation

• Logical data control

Execution Environment Functionality
The Execution Environment deals with the Data Object Broker on behalf of the
user or application and passes on requests for data and commands to update the
database.

The Execution Environment makes requests to the Data Object Broker to obtain
information, processes the information, and presents it in the form of screen
displays or reports. An Execution Environment can connect to only one Data
Object Broker, whereas a Data Object Broker can support many Execution
Environments. In short, the Execution Environment provides the user and
application interface to the physical data.

Types of Execution Environments
You can have several types of Execution Environments. These include:

• Multi-user Execution Environment accessed through the Object Integration
Gateway (OIG), ostty, TIBCO Object Service Broker SDK (C/C++), or TIBCO
Object Service Broker SDK (Java) clients, or via a 3270 emulator using Telnet
3270.

• Batch Execution Environment (osBatch), which is single-user.

Parameters
Execution Environments require a number of parameters. System-wide defaults
for each type of Execution Environment are defined during installation and each
Execution Environment can specify its own defaults at startup.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

6 | Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
See Also • TIBCO Object Service Broker Parameters for more information about Execution
Environment parameters.

• TIBCO Object Service Broker Object Integration Gateway for more information
about Object Integration Gateway.

• TIBCO Object Service Broker for Open Systems External Environments for more
information about the SDK (C/C++) and the SDK (Java) clients.

• TIBCO Object Service Broker for Open Systems Utilities for more information
about osBatch.

• TIBCO Object Service Broker Getting Started for more information about the
Telnet 3270 access.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

TIBCO Object Service Broker Files | 7
TIBCO Object Service Broker Files

The following sections describe the files used by TIBCO Object Service Broker.
For better performance, each TIBCO Object Service Broker file should be located
on a different device. This is very important for high-use files such as the
MetaStor, the redolog, and the contingency log.

See Also TIBCO Object Service Broker for Open Systems Installing and Operating for more
information on the definition, placement, and sizing of these files.

Pagestore
The Pagestore is a collection of files used by TIBCO Object Service Broker for
storing data in tables. In simple terms, this is the database. The Pagestore stores
data using the TDS (Table Data Store) method. TDS tables are stored in a B+ tree
structure.

Pagestore Segments

The Pagestore is divided into partitions known as segments. Each segment
consists of a number of files containing data, as shown in the following
illustration.

Segment 0: The MetaStor

The base segment (segment 0) contains the MetaStor, the central repository for all
metadata: definitions, characteristics, access paths, and storage locations of all
data and programs in TIBCO Object Service Broker. Segment 0 is the most heavily
used segment. It contains three files by default (PAGE1, PAGE2, and PAGE3).
These files can be expanded as required.

Pagestore

Segment 0 Segment 1 Segment 99 Segment n

Pagestore at installation

page data sets page data sets page data sets page data sets
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

8 | Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
Pagestore Capacity

The Pagestore can consist of up to 256 segments. Each segment can consist of up
to 128 files. A file can hold 500,000 x 4 KB pages. Given these parameters, the
potential capacity of the Pagestore is approximately 256 GB per segment. When
you initially set up your Pagestore, leave room for expansion in each page file. For
example, if you require a 6 GB segment 1, define six page files with 250,000 4 KB
pages rather than three page files with 500,000 x 4 KB pages.

Page File Usage

Each segment of the Pagestore contains a number of page files. If possible, each
file should be stored in a different directory within a different SCSI controller than
the one containing the redolog and journals. This allows TIBCO Object Service
Broker to minimize I/O contention in the segment. When a new 4-KB page is
allocated to a segment, TIBCO Object Service Broker uses the files contained in
the segment in sequence. It places each new page on the next file in turn so that
the pages are evenly distributed across the files.

Initial Pagestore Configuration

When you first install TIBCO Object Service Broker, your Pagestore configuration
consists of six components:

• Base segment or MetaStor (segment 0), which initially contains three page files

• Segment 1, which contains one page file

• Segment 99, which contains the security audit log (ACCESSLOG table)

• Redolog

• Contingency log

• Journals

See Also TIBCO Object Service Broker Application Administion for information about
expanding the Pagestore.

Redolog
The redolog contains records of all update operations recently performed, or
about to be performed, against the database. TIBCO Object Service Broker uses
the redolog to reconstruct the committed updates made between checkpoints and
maintain database integrity.

The capacity of each segment of the Pagestore is effectively limited by the
maximum size of the backup files.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

TIBCO Object Service Broker Files | 9
The redolog file should be defined at the head of a SCSI controller that is a
different controller than the one containing the Pagestore page files.

Contingency Log
The contingency log contains a record of every in-doubt or contingent transaction.

Contingent Transactions

Contingent transactions are the local TIBCO Object Service Broker portion of a
transaction that can perform either of the following updates:

• Updates both local and remote TIBCO Object Service Broker data in a single
transaction

• Updates local TIBCO Object Service Broker data and external database data in
a single transaction

In-doubt Transactions

In-doubt transactions are those that involve an external database server or a peer
TIBCO Object Service Broker and that could not be completed. They are kept in
the contingency log until the update is confirmed by the other systems, then
written to the redolog.

In the event of a power failure or external system failure, TIBCO Object Service
Broker uses the contingency log to ensure consistency of updates across external
database, peer, and local TIBCO Object Service Broker systems.

For more information about the role of the contingency log in distributed data
environments, refer to Chapter 3, Understanding Fail Safe Processing, on page 17.

Journals
TIBCO Object Service Broker contains two journals that perform the following
tasks:

• Create write-ahead logs for checkpoint recovery

When the system performs a checkpoint, all modified data pages in the resident
page manager buffers are copied to the cache portion of the journal, therefore
assuring their recoverability in the event of a failure. The resident page manager
is the internal Data Object Broker component that manages local memory
containing images of all Pagestore pages currently in use.

• Provide an audit trail of all changed physical pages
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

10 | Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
The system switches between journals when one reaches capacity and the
contents of the full journal are saved. The procedure to save the full journal is
called a spin. Refer to Chapter 5, Understanding Journal Processing, on page 37
for more information. The journals can be placed on the same SCSI controller as
the redolog, but they must be in a different directory.

Database Definition File
The database definition file, dbdef, defines the Pagestore. The dbdef file contains:

• Definitions of the segments comprising the Pagestore

• Definitions of the redolog, journals, and contingency log

TIBCO Object Service Broker uses the dbdef file during initialization. The dbdef
file centralizes most control information. For more information on the TIBCO
Object Service Broker Pagestore, refer to Pagestore on page 7.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 11
Chapter 2 Understanding Transaction Processing

This chapter describes transaction processing in TIBCO Object Service Broker.

Topics

• Overview, page 12

• Sample Transaction, page 13
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

12 | Chapter 2 Understanding Transaction Processing
Overview

This chapter takes you through a typical TIBCO Object Service Broker transaction
and explains what goes on behind the scenes from an operations perspective. The
transaction used in the example is assumed to be running in update mode and
updates a local TDS table.

Key Components Involved in Transaction Processing

TIBCO Object
Service Broker

Execution Environment

Execution Environment

Intent List
Redolog

Contingency Log

Pagestore

Data Object Broker

Intent List
Journals

TIBCO Object
Service Broker
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Transaction | 13
Sample Transaction

Task A The transaction requests data from a table

This request can be a GET or a FORALL on a table. The following occurs:

1. The Execution Environment sends the request to the Data Object Broker
requesting a logical shared-lock on the rows being accessed.

2. The Data Object Broker checks whether the required data pages are in the
resident page manager buffers.

If the required data pages are already in the buffers, they are available for use.
If the pages are not in the buffers, the Data Object Broker retrieves them from
the Pagestore and loads them into the buffers.

3. The logical row in the table has a shared-lock placed on it because the
transaction is running in update mode.

4. The Data Object Broker passes the data to the Execution Environment.

Task B The transaction performs an update

Update requests include:

• INSERT

• DELETE

• REPLACE

During the update request, the following occurs:

1. If no other transaction has a shared-lock on the rows being updated, the
Execution Environment stores the updates in its intent list.

2. An exclusive lock is requested for the updated rows. This means that no other
transaction can obtain a shared-lock on the rows until the transaction
terminates.

The data is not yet physically changed, and is not until a commit is issued. The
Execution Environment keeps track of the changes, however, to ensure integrity
and consistency are maintained.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

14 | Chapter 2 Understanding Transaction Processing
Task C A commit command is issued

The following occurs after the commit command is issued:

1. The Execution Environment passes the database update request (intent list) to
the Data Object Broker.

2. The Data Object Broker writes the intent list to the redolog. This operation
guarantees that all committed updates are written to the database.

3. The Data Object Broker updates the data pages in the resident page manager
buffers. This ensures that these new database updates are reflected in future
accesses to the same data by other transactions.

4. If an updated segment reaches its predefined capacity threshold, that is, it is
nearing full capacity, warning messages are sent to the operator console.

5. The Execution Environment is notified to proceed with the application. It
clears the intent list, but not the database locks that are held by the Data
Object Broker, and continues execution of the application.

6. If a checkpoint is required, the Data Object Broker invokes its asynchronous
checkpoint processor, which writes all the updated pages to the journals and
the Pagestore.

7. If the current journal fills up during a checkpoint, the Data Object Broker
starts the spin process and switches to the other journal.

Task D The transaction ends

The following occurs:

1. The Execution Environment passes the updates left in the intent list to the
Data Object Broker. These are updates made after the most recent commit.

2. The Data Object Broker processes the database updates as before, writing
them to the redolog, updating the resident page manager buffers, and so on.

3. All locks held on behalf of the transaction are released.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Transaction | 15
Implications for Backup and Recovery

Note the following potential implications of transaction processing on your
backup and recovery system:

Frequency of Checkpoints

You must ensure that you monitor the frequency of checkpoints incurred when
new batch processes are added to your TIBCO Object Service Broker system. If the
process causes a large number of pages to be updated, the resident page manager
buffers fill quickly causing a significant increase in checkpoint requests. Both the
redolog and journals must be large enough to accommodate the increased activity.
If a new batch process causes a sharp increase in checkpoints, examine the
application to see if updates can be clustered together to reduce the number of
data pages that require updating.

Merge Process Speed

You must ensure that the merge process completes before the redolog or resident
page manager buffers fill up. Otherwise, the system quiesces or abends.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

16 | Chapter 2 Understanding Transaction Processing
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 17
Chapter 3 Understanding Fail Safe Processing

This chapter describes fail safe processing in TIBCO Object Service Broker.

Topics

• Fail Safe Processing, page 18

• Fail Safe Strategies, page 19

• Components Supporting Fail Safe Processing, page 22

• Sample Distributed Processing Scenarios, page 24
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

18 | Chapter 3 Understanding Fail Safe Processing
Fail Safe Processing

Definition
Fail Safe is the TIBCO Object Service Broker term for the commit strategy.

Fail Safe processing is controlled and co-ordinated by the Data Object Broker
where the commit for the unit of work is issued. The co-ordinating Data Object
Broker synchronizes all participating service providers to ensure that all updates,
local and remote, either commit or rollback as one unit of work. This ensures data
integrity.

A service provider is one of the following:

• A local Data Object Broker

• A local service for TDS tables

• A peer Data Object Broker

• An external database server
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Fail Safe Strategies | 19
Fail Safe Strategies

Determining a Fail Safe Strategy
If you have a multiple-systems environment, you must decide on an appropriate
Fail Safe strategy. To do this, you must determine the Fail Safe level that meets
your needs.

Fail Safe Levels

Use the following table to determine your required Fail Safe level:

The following sections describe each Fail Safe level in detail.

Transaction Requirements
Fail Safe

Level

Commits can be handled serially. External service providers
commit first followed by local updates to TDS tables.

0

Transaction involves a local service for TDS tables and an external
service provider. Local updates are contingent upon the
completion of external updates.

1

Transaction involves multiple Data Object Brokers. 2

During commit processing, the commit coordinator determines, within defined
limits, which commit strategy to use:

Type of Update a Type of Commit
Given to Peer Server

One resource only (local resource or remote resource). Fail Safe level 0

Local and one remote resource. Fail Safe level 1

Local and/or at least two remote resources. Fail Safe level 2

a. For all three update types, the local resource is TDS on the local node and the
remote resource is a peer.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

20 | Chapter 3 Understanding Fail Safe Processing
Fail Safe Level 0 (Serial)
Fail Safe level 0 provides for the issuance of commit requests to each service
provider in a commit group, one at a time. If there is only one updated resource,
Fail Safe level 0 is adequate. When there are two or more service providers, there
is potential for data to get out of sync if an error occurs.

Consider, for example, a commit group that has three service providers:

• Server 1

• Server 2

• Local TDS tables

This is how the Fail Safe process proceeds:

1. Server 1 is issued a commit. When it responds successfully, the commit
continues. Otherwise, the commit aborts.

2. Server 2 is issued a commit. When it responds successfully, the commit
continues. Otherwise, if DBPROFILE=1, the commit group is terminated,
abandoning all further updates; if DBPROFILE=0, the commit continues.

3. The local TDS tables are issued a commit.

Data synchronization errors between the service providers can occur if failures or
communication loss happens after Server 1 responds successfully to the commit.
If Server 1 does not respond, it is unknown whether it committed or not.

Fail Safe Level 1 (Contingent)
Fail Safe level 1 is restricted to environments where there are local updates and
one service provider with remote (external) updates. An external service provider
is capable of Fail Safe level-1 processing if a transaction database is defined and
available. Refer to Transaction Database on page 22 for more information.

Commit processing under Fail Safe level 1 functions as follows:

1. The (local) Data Object Broker saves the intent list (that is, the TIBCO Object
Service Broker component of the transaction) in the contingency log.

2. The (remote) external service provider generates a transaction control record
and adds it to the pending database updates, then commits. The (local) Data
Object Broker commits the intent list after receiving confirmation that the
external update was successful.

3. If connection to the external service provider is lost before commit success or
failure notification is received by the originating Data Object Broker, the
associated transaction on the contingency log becomes an in-doubt
transaction.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Fail Safe Strategies | 21
4. When communication is re-established, the external service provider can be
queried for the presence or absence of the transaction control record that it
added to the pending database updates. This verifies whether it was able to
commit the unit of work.

5. If the control data is not found, the external system did not successfully
commit and therefore any associated updates must be abandoned. If it is
found, the updates are committed.

Fail Safe Level 2 (Two-Phase Commit)
Fail Safe level 2 coordinates the commit of a database unit of work that is
distributed across multiple service providers. To operate at Fail Safe level 2, the
participating service providers—a combination of Data Object Brokers and
external database servers—must be capable of working with the TIBCO Object
Service Broker commit coordination protocol.

In phase 1, when the co-ordinating service provider signals all other participants
to prepare to commit, each participating service provider logs the pending unit of
work in its own contingency log.

Having received acknowledgments of a successful phase 1, the co-ordinator starts
phase 2, giving the commit signal, and each service provider actually performs
the commit.

Contingent Two-Phase Commit
In this instance, a unit of work is spread across multiple Fail Safe level-2 capable
resources, and one Fail Safe level-1-capable resource.

Commit processing under this condition functions as follows:

1. Fail Safe level 2 begins and the commit coordinator signals a prepare to
commit to all participants.

2. The Fail Safe level-1-capable resource is signalled to commit and all its
commits are completed.

3. Fail Safe level-2 commits are completed.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

22 | Chapter 3 Understanding Fail Safe Processing
Components Supporting Fail Safe Processing

There are two key components that support Fail Safe processing:

• Transaction database

• Contingency log

These components are described in the following sections.

Transaction Database
The transaction database, which resides on the external database system, is a part
of Fail Safe processing for all external service providers. It consists of a table (or
equivalent in the external database’s terminology) containing a number of fields
identified by TIBCO Object Service Broker. In the case of a peer TIBCO Object
Service Broker Data Object Broker, the peer’s local contingency log is used as the
transaction database. The fields are:

Each field is assigned a name. The field name varies depending on the
requirements of the external database. In most cases, this table (or equivalent) has
a default name (such as HRNTRXDB). This name can be customized provided
that the customized name is reflected in the server parameter TRXDB.

See Also The appropriate TIBCO Service Gateway manual for more information on the
server parameters.

Contents of field Syntax Length

Data Object Broker name. C 8

Server identifier. C 8

Transaction ID. B a

a. Some databases require defining binary fields as character syntax.

4

Date/Time. B 8

Server registration data. C 25
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Components Supporting Fail Safe Processing | 23
Contingency Log
The second file is the contingency log, which is used by the Data Object Broker to
hold transaction updates that are contingent upon service provider
acknowledgments. This file is used when updates to multiple databases (whether
local TDS or external service providers) have occurred in the same TIBCO Object
Service Broker transaction.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

24 | Chapter 3 Understanding Fail Safe Processing
Sample Distributed Processing Scenarios

The following scenarios illustrate Fail Safe processing in environments where
there are multiple TIBCO Object Service Broker systems with or without external
database servers.

Two Data Object Brokers
Consider a transaction in which a TDS table is updated in Data Object Broker #1
and another TDS table is updated in Data Object Broker #2. The Data Object
Brokers are assumed to be connected by a link where the Fail Safe level is 2 as
illustrated in the following diagram:

In this case, Data Object Broker #2 is capable of Fail Safe level 2; however, because
there is only one service provider and local TDS updates, Fail Safe level 1
provides adequate data integrity.

Commit Cycle for Two Data Object Brokers

The sequence of events for this commit cycle is as follows:

1. Data Object Broker #1 stores its pending updates in the contingency log.

2. Data Object Broker #1 sends a Fail Safe level-1 commit to Data Object Broker
#2.

3. Data Object Broker #2 stores its pending updates in its contingency log.

4. Data Object Broker #2 commits its updates.

5. When Data Object Broker #1 receives the success message from Data Object
Broker #2, it commits its updates (if a failure message is received, it abandons
the updates).

6. Data Object Broker #1 sends a contingency log release directive to Data Object
Broker #2 so that the remote contingency log entry can be released.

Link FSlevel=2L
#1 #2

Data Object Broker Data Object Broker

The same processing occurs if Data Object Broker #2 is an external database
server, except for steps #3 and #6.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Distributed Processing Scenarios | 25
Two Data Object Brokers with an External Database Server
If Data Object Broker #2 has an external database server attached to it involved in
the same transaction, it processes the request as for Fail Safe level 1. This process
is illustrated as follows:

Commit Cycle for Two Data Object Brokers with an External Database Server

The sequence of events for this commit cycle is as follows:

1. Data Object Broker #1 logs its intent list to the contingency log.

2. Data Object Broker #1 issues a Fail Safe level-1 commit to Data Object Broker
#2.

3. Data Object Broker #2 writes its intent list to the contingency log.

4. Data Object Broker #2 sends a Fail Safe level-1 commit to the external
database.

5. Data Object Broker #2 commits its TIBCO Object Service Broker transaction,
previously saved in the contingency log, and signals Data Object Broker #1
(the commit coordinator) that the commit was successful.

shared Data
Object Broker

Link FS level=2
#1 #2*

*

*

Link FS level=1

Data Object Broker Data Object Broker

External Data Server
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

26 | Chapter 3 Understanding Fail Safe Processing
6. Data Object Broker #1 completes its commit processing.

Three Data Object Brokers
Another possible scenario is a TIBCO Object Service Broker transaction with TDS
table updates on three Data Object Brokers, illustrated as follows:

Commit Cycle for Three Data Object Brokers

Since more than one updated service provider is involved in the transaction and
each is capable of supporting Fail Safe level-2 processing, the sequence of events
becomes:

1. Data Object Broker #1 issues a prepare to commit to Data Object Brokers #2
and #3.

2. Data Object Broker #1 saves its intent list in its contingency log.

3. Data Object Brokers #2 and #3 each save their intent lists in their contingency
logs and then signal Data Object Broker #1 that the prepare to commit was
successful.

4. Data Object Broker #1 issues a commit to Data Object Brokers #2 and #3 and
does its own local commit.

5. After Data Object Brokers #2 and #3 confirm their commits and release their
contingency logs, the user is notified.

Data Object Broker #1 is not aware that the commit protocol between Data Object
Broker #2 and the External Data Server is at Fail Safe level 1.

Contingency Log

Data Object Broker

#1#3 #2

Data Object Broker Data Object Broker

Link FSlevel=2Link FSlevel=2

Contingency Log Contingency Log

Fail Safe level 2 does not require a contingency log release after the commit
request.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Distributed Processing Scenarios | 27
Multiple Data Object Brokers with an External Database Server
The following scenario involves three Data Object Brokers and an external
database server:

Commit Cycle for Three Data Object Brokers with an External Database Server

At transaction end, the sequence of events is as follows:

1. Data Object Broker #1 issues a prepare to commit request to Data Object
Brokers #2 and #3 and it writes its intent list to the contingency log.

2. Data Object Broker #3 responds that the prepare to commit was successful.

3. Data Object Broker #2 sends back a message indicating it can handle only Fail
Safe level-1 requests.

4. Data Object Broker #1 sends another message to Data Object Broker #2 telling
it to perform a Fail Safe level-1 commit.

5. When this is complete, Data Object Broker #2 sends a success message back to
Data Object Broker #1, which then completes the commits in Data Object
Brokers #1 and #3.

#1#3 #2*

*

*

Data Object Broker Data Object Broker Data Object Broker

Link FSlevel=2 Link FSlevel=2

Link FSlevel=1

External Data Server

shared Data
Object Broker
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

28 | Chapter 3 Understanding Fail Safe Processing
Commit Behavior Across Multiple Data Object Brokers
The following table shows the commit-related actions for the more common
combinations of TDS and Fail Safe level settings across two service providers:

 Transaction updated:
Action

TDS Service
Provider #1

Service
Provider #2

Y Y, FSlevel = 0 N 1. Commit service provider #1.

2. Commit TDS.

Y Y, FSlevel = 1 N 1. Write TDS updates to contingency
log.

2. Commit service provider #1
including updates to the transaction
database or equivalent. a

3. Commit TDS.

N Y, FSlevel = 1 N Commit service provider #1.

Y Y, FSlevel = 1 Y, FSlevel = 1 Commit is rejected because a single
transaction is not allowed to update
more than one service provider with
FSlevel=1.

Y Y, FSlevel = 1 Y, FSlevel = 0 Commit is rejected because you cannot
mix FSlevel=0 with FSlevel>0 in the
same transaction.

N Y, FSlevel = 1 Y, FSlevel = 0 Commit is rejected.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Distributed Processing Scenarios | 29
Y Y, FSlevel = 1 Y, FSlevel = 2 1. Write intent to contingency log.

2. Issue prepare to commit to service
provider #2.

3. Wait for response.

4. Issue Fail Safe level 1 commit to
service provider #1.

5. Wait for response.

6. Commit local intent and issue
commit to service provider #2.

Y Y, FSlevel = 2 Y, FSlevel = 2 1. Prepare to commit issued for all
three.

2. All three are committed.

a. When the service provider is another Data Object Broker, the contingency log
provides an equivalent function to the transaction database for Fail Safe level-1
commits. This database is identified by the TRXDB server parameter. Refer to
Transaction Database on page 22 for information on the TRXDB parameter.

 Transaction updated:
Action

TDS Service
Provider #1

Service
Provider #2
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

30 | Chapter 3 Understanding Fail Safe Processing
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 31
Chapter 4 Understanding Checkpoint Processing

This chapter describes checkpoint processing in TIBCO Object Service Broker.

Topics

• Checkpoint Processing, page 32
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

32 | Chapter 4 Understanding Checkpoint Processing
Checkpoint Processing

What is a TIBCO Object Service Broker Checkpoint?
A TIBCO Object Service Broker checkpoint is the process that synchronizes the
committed transactions held in the redolog and the affected pages held in the
resident page manager buffers with journals and the physical Pagestore.

When is a Checkpoint Created?

Steps Performed by the Checkpoint Process
There are three major steps performed by the checkpoint process.

1. Compress the data pages.

The checkpoint process compresses all affected data pages in the resident
page manager by removing the part of each page that does not contain data.

2. Calculate checkpoint size.

Based on... A checkpoint starts when...

System
administrator
action

The administrator forces a checkpoint.

The administrator forces a journal spin.

The administrator varies a segment offline.

Time The number of minutes elapsed since the last checkpoint
reaches the limit set in the CHPTINTERVAL Data Object
Broker parameter.

File usage The redolog is 50% full.

The resident page manager buffers are 15% full.

Activity on
the database

The number of changed pages reaches the limit set in the
CHPAGELIMIT Data Object Broker parameter.

The number of commits issued from Execution Environments
connected to this Data Object Broker reaches the limit set in
the CHTRANLIMIT Data Object Broker parameter.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Checkpoint Processing | 33
The process calculates how much space is required to write the checkpoint to
the active journal.

3. Check active journal space availability.

The process checks to see if the active journal has enough space to hold the
checkpoint, and finds one of the following conditions:

— Active journal has sufficient space for checkpoint.

— Active journal has insufficient space for checkpoint.

Refer to the following sections for more information.

Active Journal has Sufficient Space for Checkpoint

When the active journal has sufficient space to hold the checkpoint, the following
occurs:

1. The changed data pages are written to the active journal.

2. The affected area of the redolog is released back to the system.

3. The changed data pages are physically written to the Pagestore.

4. A control page in the journal is updated to indicate that the checkpoint was
successful.

The journal pages written out in the checkpoint are now available for use by
the continuous backup process. They are no longer considered to be part of
the cached portion of the journal.

Active Journal has Insufficient Space for Checkpoint

When the active journal does not have sufficient space to hold the checkpoint, the
following occurs:

1. The journal is off-loaded to a spin file. The checkpoint process starts the
spin01 or spin02 batch file/script, depending on which journal is active.

2. The alternate journal is made active.

3. The number of spin files is checked against the SPINLIM environment variable
to determine if a merge of the spin files is required.

4. If a merge is required, the checkpoint process starts the spin03 batch
file/script to merge all existing spin files into a master journal accumulation
file (spinout.000).
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

34 | Chapter 4 Understanding Checkpoint Processing
5. The spun journal is released back to the system.

Completing Pending Transactions
At system startup, the active journal is checked to see if the last checkpoint
completed. If it did not complete, the checkpoint is restarted using the cached
portion of the journal. This portion contains the changed pages that were not
physically written to the Pagestore. In addition, the redolog is checked and used
to complete any pending transactions.

Only one checkpoint can be in progress at a time. If a segment is being varied
offline while a checkpoint is in progress, its state is internally adjusted to indicate
that it is not available for transactions, but it is actually put offline only after the
next checkpoint (which propagates all related changes) is finished.

If a journal spin is forced during a checkpoint, it is also delayed until the
checkpoint in progress is finished. The request for the checkpoint is ignored if the
checkpoint is already in progress.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Checkpoint Processing | 35
Checkpoint Process Illustration
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

36 | Chapter 4 Understanding Checkpoint Processing
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 37
Chapter 5 Understanding Journal Processing

This chapter describes journal processing in TIBCO Object Service Broker.

Topics

• Journal Processing, page 38

• Journal Operations, page 42
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

38 | Chapter 5 Understanding Journal Processing
Journal Processing

Definition
TIBCO Object Service Broker journals are data sets that provide a record of all
modified page images. Journals are essential to the TIBCO Object Service Broker
continuous backup and recovery procedures.

Overview
This chapter explains how TIBCO Object Service Broker:

• Spins (off-loads) a journal

• Switches between journals

Journal backups can be merged together and used to refresh your current system
backup. For guidance in developing a continuous backup procedure that meets
your unique backup and recovery requirements, read this chapter and then refer
to Chapter 6, Backing Up Your System, on page 45.

When are Journals Spun?
When one journal file reaches capacity, the Data Object Broker automatically
switches to the other. The Data Object Broker still continues processing
transactions during this switch. The journal that is almost full is then spun
(emptied of its contents) and made available for use again.

Journal spinning is normally performed under the control of the batch files (for
Windows) or scripts (Solaris): spin01, spin02, and spin03. These files are shipped
with a default behavior, which can be tailored at any time by the TIBCO Object
Service Broker system administrator.

Tailoring the Spin Batch Files/Scripts
The sample batch files or scripts for journal spinning can be found in the
following directory:

• Windows: %OS_ROOT%\bin

• Solaris: ${OS_ROOT}/bin

By default, continous backup is not enabled. It must be explicitly enabled for a
system. Refer to , Performing Continuous Backup, page 51 for more details.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Journal Processing | 39
In Windows, the spin01.bat and spin02.bat files reset the journal for reuse. In
Solaris, the spin01 and spin02 scripts reset the journal for reuse. To turn on journal
spinning for continuous backup, do one of the following:

• Windows: Copy the spin01.nt, spin02.nt, spin03.nt, spin03A.nt, spin04.nt,
spin05.nt and spin05A.nt files to the corresponding name with a .bat
extension.

• Solaris: Copy the spin01.alt and spin02.alt scripts to the corresponding name
without an extension.

Edit each batch file/script to ensure the following environment variables are set
correctly:

SPINLIM The number of spin files to be merged into a master accumulation file.
Set this variable only in spin01.bat and spin02.bat in Windows or
spin01 and spin02 in Solaris.

SPINDIR Set this variable as follows:

Windows:

• In spin01.bat and spin02.bat:

Type the full path name of where the spin files are to be located, for
example:
c:\Ostar\database\JOURNAL

• In spin03.bat and spin05.bat:

Type the path name of the spin files without specifying the drive,
for example:
\Ostar\database\JOURNAL

Solaris:

In spin01, spin02, spin03, and spin05, type the full path name where
the spin files are to be located, for example:

${OS_ROOT}/database/JOURNAL

SPINVOL (Windows only) The drive where the spin files are to be located, for example: C. Set this
variable in spin03.bat and spin05.bat only.

BACKNAME The name of your latest full backup. Set this variable only in spin05.bat
in Windows or spin05 in Solaris. The default is backup.000.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

40 | Chapter 5 Understanding Journal Processing
Journal Spin Process
The journal spin process uses the hrnspjex (Journal Extraction) utility to extract
relevant records from JOURNAL1 or JOURNAL2 and produces an audit trail. At
the end of the journal off-load, the hrnspset (Reset Journal) utility resets the
journal and changes its state to EMPTY so that it can be reused.

See Also TIBCO Object Service Broker for Open Systems Utilities for information about the
hrnspjex and hrnspset utilities.

If the second journal fills up before hrnspset can be run for the first journal, the
system abends.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Journal Processing | 41
Journal Spin Process Illustration

(hrnspjex)
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

42 | Chapter 5 Understanding Journal Processing
Journal Operations

Merging the Journals
When the hrnspset utility is done, the spin process determines how many journal
accumulations exist. If the limit is exceeded (default is 3), spin03 uses the
hrntlmrg (Journal Merge) utility to merge the journal accumulations, as shown in
the following diagram:

Adjusting the Accumulation Limit

Adjust your accumulation limit according to the following:

• Disk space availability

For example, to reduce the amount of disk space taken up by journal
accumulation files, reduce the limit.

• Your requirements for immediate recovery of critical data

For example, if your data is critical, merge your journal accumulation files
after every generation, then merge your master accumulation with your latest
backup.

Setting Journal Size
Journals must be large enough so they do not fill too often during the day, but
they must also be small enough that the contents of a full journal can be saved
before the other journal fills up. Experiment to find a good journal size for your
system. As a guideline, try sizing your journals to hold about four hours of work
(that is, a journal fills up in about four hours under average conditions).

New master accumulationJournal accumulation 1
Journal accumulation 2

merge journal
accumulation

spin03
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Journal Operations | 43
Minimum Journal Size

There is a minimum size for journals: the journal should have at least as many
pages as there are resident pages defined in the crparm file. Both formatting and
opening fail if the journal has fewer pages than the minimum size, as determined
by the current value of the RESIDENTPAGES Data Object Broker parameter.

Full Journals
If a journal fills before the other journal is available, the Data Object Broker
abends and displays a message indicating that the journal is unavailable.

Upon the restart of the Data Object Broker under this condition, the Data Object
Broker reruns the spin job on the journal that is currently active. If the original
problem that caused the filling up of the journal is not corrected before restart, the
Data Object Broker shuts down again. It is therefore necessary to correct whatever
condition caused the other journal to be unavailable before restarting the Data
Object Broker. To retain the journal data, spin the journals manually using the
hrnspjex utility before restarting the Data Object Broker.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on using the
hrnspjex and hrntlmrg utilities.

Spin Batch File/Script Failures
If a spin job fails, a spinlog.nnn file is created, where nnn matches the TIBCO
Object Service Broker Data Object Broker log file (hrncr.nnn) number in use when
the error occurred. The log contains the date and time of the error along with any
messages from the hrnspjex and/or hrnspset utilities. Messages concerning any
errors encountered in the following are available in the Data Object Broker log:

• Windows: the spin batch files or the spinctrl C program

• Solaris: the spin scripts

In the illustration in Journal Spin Process Illustration on page 41, several exit
codes are included. They correspond to the following conditions:

Exit Code Description

1 Invalid spin # — must be 1 or 2.

(or) Environment variables incorrect.

2 More than 999 spinout files.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

44 | Chapter 5 Understanding Journal Processing
3 hrnspjex error — check spinlog.nnn for information.

4 Could not open SPINTEMP to SPINOUT.

5 hrnspset failed — check spinlog.nnn for information.

6 spin03 failed.

Exit Code Description
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 45
Chapter 6 Backing Up Your System

This chapter describes different option for backing up your system.

Topics

• Overview, page 46

• TIBCO Object Service Broker Backup Utilities, page 48

• Using Non-TIBCO Object Service Broker Backup Utilities, page 50

• Performing Continuous Backup, page 51

• Sample Continuous Backup Implementation, page 53
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

46 | Chapter 6 Backing Up Your System
Overview

Introduction
You can use TIBCO Object Service Broker to meet your backup and recovery
requirements, whether you need regularly scheduled full system backups or a
continuous backup approach that you can use to stay fully operational at all
times.

You can also back up and recover your Data Object Broker database using the
TIBCO Object Service Broker Database Administrator tool. Refer to TIBCO Object
Service Broker for Open Systems Installing and Operating.

Backup Approaches
There are two different approaches to developing a backup strategy for your
TIBCO Object Service Broker system:

• Full system backup

• Continuous backup

These approaches are outlined in the following sections. Your TIBCO Support
representative can help you build a backup and recovery plan that integrates one
or both of these approaches to suit your requirements.

Full System Backup
We recommend that you perform a full backup immediately after you install
TIBCO Object Service Broker. You can also use this method as part of your
regularly scheduled backup procedure. There are two ways you can perform a
traditional full system backup:

Full System Backup… Refer to page…

Using TIBCO Object Service Broker backup
utilities.

48

Using non-TIBCO Object Service Broker backup
utilities.

50
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Overview | 47
Continuous Backup
The TIBCO Object Service Broker continuous backup process enables you to
maintain 24-hour operations and ensure full system recoverability at all times.
Using continuous backup, you never have to shut down TIBCO Object Service
Broker for a routine backup. Continuous backup combines the most recent
backups with updates in the journals to produce a complete and current backup
copy.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

48 | Chapter 6 Backing Up Your System
TIBCO Object Service Broker Backup Utilities

Advantages to this Approach
There are several advantages to using the TIBCO Object Service Broker backup
utilities method over other backup tools:

• You can back up the entire system or individual segments. You can back up
any segment other than segment 0 by varying the segment offline, backing it
up, and varying it back online. To back up segment 0, you must shut down
TIBCO Object Service Broker.

• The backup copies only those data pages actually being used and compresses
the data before writing it to disk.

• The backup can be merged with journals created at a later time to create a
more up-to-date backup.

• The hrnbrptr (Batch Pointer Check) utility can be used to verify backup
integrity.

Using TIBCO Object Service Broker Backup Utilities
Before starting this procedure, you must shut down the Data Object Broker.
Complete the following steps from a Windows or Solaris command prompt:

1. Change to the directory that contains your backup files.

It is recommended that you place backup files in a different directory than
TIBCO Object Service Broker, for example:
c:\OSTAR_BKUPS (Windows)

/usr1/OSTAR/OSTAR_BKUPS (Solaris)

2. Use the hrntlbps (Backup Pagestore) utility to create a backup of the MetaStor
and segment 1.

The following two commands create a backup in the file backup.000:
hrntlbps -s 00 -w backup.000

hrntlbps -s 01 -a backup.000

If you use FTP to transfer segment backups between Windows or Solaris and
z/OS, you must reformat the unloaded data using the S6BBRFRU (Reformat
TIBCO Object Service Broker Files Transferred with FTP) z/OS utility before it can
be used by TIBCO Object Service Broker for z/OS. Refer to TIBCO Object Service
Broker for z/OS Utilities for more information on the S6BBRFRU utility.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

TIBCO Object Service Broker Backup Utilities | 49
where:

3. Restart the Data Object Broker.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on using the
hrnbrptr and hrntlbps utilities.

-w Specifies overwrite backup file if it exists.

-a Specifies append to end of an existing backup file.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

50 | Chapter 6 Backing Up Your System
Using Non-TIBCO Object Service Broker Backup Utilities

Limitations to this Approach
While non-TIBCO Object Service Broker backup methods have the advantage of
being relatively simple and fast, they are not space efficient. They save the entire
Pagestore instead of just the used pages. when you have backed up your system
using one of these methods, your only method of restoring the system is to
completely overlay the existing system with the backup copy. In addition, you
cannot use the hrnbrptr (Batch Pointer Check) utility to verify backups taken
using non-TIBCO Object Service Broker backup utilities.

Creating a Backup Using Non-TIBCO Object Service Broker Methods
To create a backup of the system using a non-TIBCO Object Service Broker backup
utility, complete the following steps:

1. Shut down TIBCO Object Service Broker.

2. Use the product normally.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Performing Continuous Backup | 51
Performing Continuous Backup

Using the Continuous Backup Process
Instead of taking full or partial system backups at regular intervals, use the
following continuous backup process and journals to update the latest backup:

1. Customize the spin01, spin02 and spin03 batch files/scripts.

The checkpoint process automatically submits spin01 and spin02 as required.
When spin01 and spin02 are customized, they invoke spin03 when the spin
limit is reached. The remaining steps are not started automatically and must
be scheduled to run as required.

For the full procedure to customize the spin files, refer to Chapter 5,
Understanding Journal Processing, on page 37.

2. Merge your journal accumulation files into a master accumulation file
(spin03.bat in Windows, spin03 in Solaris).

Spin03.bat in Windows and spin03 in Solaris are provided to perform this
step. The output from this step is a master accumulation file called
spinout.000. The next time the merge process runs, the spinout.000 file is
merged with the existing journal accumulation files.

3. Merge your master accumulation file with your latest complete backup
(sample process in spin05.bat in Windows, spin05 in Solaris).

You can merge your master accumulation file with your latest complete
backup as frequently as required. In most cases, we recommend a daily
refresh of your complete backup. The spin05 batch file/script is provided as a
sample to perform this merge. Alternatively, you can use the method
described in Alternate Method to Refresh the Latest Backup.

4. Run the hrnbrptr (Batch Pointer Check) utility against any complete backup
you produce to validate the integrity of all pages.

For Windows, the merge is automatically performed by spinctrl when the
number of journal accumulation files reaches the value of the SPINLIM
variable set in spin01 and spin02.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

52 | Chapter 6 Backing Up Your System
Alternate Method to Refresh the Latest Backup
Use the hrntlmrg (Journal Merge) utility to read in your journal accumulation file
(or files) and your latest complete backup. The output is a new and complete
backup that includes all page updates recorded in the journal accumulation files.
For example, the following command creates a new backup file (backup.new)
from the old backup file (backup.old) and the journal accumulation files
(SPINOUT.001 and SPINOUT.002):

hrntlmrg backup.old SPINOUT.001 SPINOUT.002 backup.new

Since no segment is specified, all pages from all segments in the journal
accumulation files are included in the new backup file. You must manually delete
the old files.

Considerations

• Make sure your master accumulation file (spinout.000) is not in use by the
automatic merge process spin03.bat when you run this step. This process
should be scheduled to run at a time when the system is not busy running
frequent spins.

• There is a limit to the number of bytes that can be passed as a parameter on
the command line: approximately 200 bytes or 16 filenames that are each 12
bytes in length. If your SPINLIM variable is set higher than 14, ensure your
procedure merges only 14 journal accumulation files at a time.

• Continuous backup and recovery works on completed (committed)
transactions. Transactions in the contingency log are not complete and are not
part of the backup process. For more information on the contingency log, refer
to Chapter 1, Introducing TIBCO Object Service Broker Backup and Recovery
Components, on page 1.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on using the
hrnbrptr and hrntlmrg utilities.

Some utilities can modify the contents of the database but do not write journal
records. After running such utilities, you must recommence your continuous
backup.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Sample Continuous Backup Implementation | 53
Sample Continuous Backup Implementation

The following diagram illustrates a sample continuous backup strategy.

consolidate
all SPIN files into
the continuous
backup

compress journals
into spinout file(s)
after Data Object
Broker terminates

consolidate
all spinout
files

backup all
segments

spin05

spin04

spin03

spin01
spin02
compress Data
Object Broker
journal files into
spinout file(s)

hrntlbps

5

4

3

2

1

backup.000

JOURNAL1
JOURNAL2

spinout.001
spinout.002
spinout.003

spinout.000

spinout.000

backup.000

Pagestore

recycle into next run all spinout files on save spinout.*

*

*

*

**

*

*

run batch pointer
check (hrnbrptr)
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

54 | Chapter 6 Backing Up Your System
Continuous Backup Steps

To develop a customized plan, consult TIBCO Support. The numbers in this
diagram correspond to the following steps:

1. Prime the continuous backup process with an initial set of page images using
hrntlbps (backup.000).

2. All page update images are saved in JOURNAL1 and JOURNAL2. When one
fills, the Data Object Broker automatically starts spin01 or spin02 to save the
journal data.

— For Windows, spin01 and spin02 start a C program called spinctrl. Spinctrl
copies journal update images into journal accumulation files called
spinout.001, spinout.002, spinout.003, and so on

— For Solaris, spin01 and spin02 copy journal update images into journal
accumulation files called spinout.001, spinout.002, spinout.003, and so on

3. The defined limit of the SPINLIM variable is checked each time spinctrl (for
Windows) or spin01/spin02 (for Solaris) is started. When the number of spinout
files reaches the limit, spin03 consolidates them into one file, spinout.000. All
other spinout files are deleted. The hrntlmrg utility keeps only the most
current page images.

4. The information in JOURNAL1 and JOURNAL2 is merged with existing
spinout files by executing the spin04 batch file/script. The Data Object Broker
must be shut down for spin04 to be successful.

5. Run spin05 on a regular basis to consolidate all updated journal page images
into the continuous backup file backup.000. After spin04 and spin05 have run,
backup.000 is identical to a complete TIBCO Object Service Broker backup of
all segments using hrntlbps.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on using the
hrntlbps and hrntlmrg utilities.

The MetaStor (segment 0) must be included in your backup. The MetaStor
identifies in which segment each table resides. Always run the hrnbrptr utility
to ensure valid database pointers.

When spin03 is run again, it merges spinout.000 with any new spinout files to
create a new spinout.000.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 55
Chapter 7 Recovering From Errors

This chapter describes different options for recovering your system from errors.

Topics

• Overview, page 56

• Full Recovery, page 57

• Partial Recovery, page 60

• Recovering From Non-Page File Failures, page 61
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

56 | Chapter 7 Recovering From Errors
Overview

Types of Recovery
There are two types of recovery to consider:

• Restoring your entire system from a previous full backup

• Restoring portions of your system through the continuous backup procedures

This chapter discusses both of these approaches.

Running the Batch Pointer Check Utility

We recommend that you run the hrnbrptr (Batch Pointer Check) utility against
each new backup to ensure its integrity. If you did not run this utility against the
backup you plan to use for recovery, you should do so before attempting your
recovery.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on the
hrnbrptr utility.

Deciding How Much To Restore
The first step in the recovery process is to determine the nature and scope of the
damage from which you need to recover.

Task Type of
Recovery

Refer to
page…

Restore entire system to its level just before problem
occurred.

Full
recovery

57

Restore only affected segments to their level before the
problem occurred.

Partial
recovery

60
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Full Recovery | 57
Full Recovery

When Should the Entire System be Restored?
A full system recovery replaces the entire current system with a backup copy. You
normally perform a full recovery only when the system is corrupted (data is
altered or destroyed) or after a media failure.

Deciding on a Restoration Point
Before beginning, decide on an appropriate restoration point. You can:

• Restore your most recent full backup copy.

If the backup was taken three days ago, at the end of the restore process,
TIBCO Object Service Broker is exactly as it was three days ago. None of the
changes made to the system since the backup was taken are reflected.

• Use the continuous method to update the backup before you restore.

Run the spin04 and spin05 batch files/scripts, if necessary, to ensure that the
backup is as up-to-date as possible.

Using TIBCO Object Service Broker Backup Utilities to Perform a Full Recovery
1. Determine the number of 4 KB pages assigned to each TIBCO Object Service

Broker file to be restored.

This can include:

— The page files in segment 0 and segment 1

— The redolog

— The journals

— The contingency log

2. Shut down TIBCO Object Service Broker.

3. Create a file containing the latest page images.

These images are used to restore the damaged segment. For recovery up to
your last checkpoint, off-load the journals and merge them with the journal
accumulations and your system backup using the spin04 and spin05 batch
files/scripts.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

58 | Chapter 7 Recovering From Errors
4. Rebuild each segment as follows:

a. Reformat the page data files using the hrntlfps (Format Pagestore) utility.
For example:

b. Restore the files. Use the hrntlrps (Restore Pagestore) utility for each
affected segment to restore its contents from the backup file. For example:
hrntlrps -s 0 backup.000

hrntlrps -s 1 backup.000

5. Rebuild the operations files:

a. Use the hrntlfjr (Format Journal) utility to reformat JOURNAL1 and
JOURNAL2. For example:

b. Use the hrntlfrl (Format Redolog) utility to initialize the redolog. For
example:

Windows hrntlfps -w %OS_ROOT%\database\seg01\PAGE1

hrntlfps -w %OS_ROOT%\database\seg01\PAGE2

hrntlfps -w %OS_ROOT%\database\seg01\PAGE3

Solaris hrntlfps -w ${OS_ROOT}/database/seg01/PAGE1

hrntlfps -w ${OS_ROOT}/database/seg01/PAGE2

hrntlfps -w ${OS_ROOT}/database/seg01/PAGE3

The MetaStor and each segment must be restored using backups taken in
the same time frame. The MetaStor defines all tables, their fields, and the
segment where each table resides.

Ensure you spin any pages held in the journals (spin04.bat in Windows,
spin04 in Solaris) prior to executing this step.

Windows hrntlfjr -w %OS_ROOT%\database\JOURNAL\JOURNAL1

hrntlfjr -w %OS_ROOT%\database\JOURNAL\JOURNAL2

Solaris hrntlfjr -w ${OS_ROOT}/database/JOURNAL/JOURNAL1

hrntlfjr -w ${OS_ROOT}/database/JOURNAL/JOURNAL2

Windows hrntlfrl -w %OS_ROOT%\database\REDO\REDOLOG

Solaris hrntlfrl -w ${OS_ROOT}/database/REDO/REDOLOG
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Full Recovery | 59
6. Manually abort any in-doubt transactions in the contingency log affecting the
restored segments and timestamped later than the time to which the segments
were restored.

To do this, invoke the hrntlfcl (Format Contingency Log) utility as follows:

7. Restart TIBCO Object Service Broker.

Restoring from a Non-TIBCO Object Service Broker Backup
If the system is backed up using a third-party backup program, it must be
restored in the same way as any other disk backed up using that utility. After
restoration, your system is back to the state at which the backup was taken; all
subsequent changes are lost.

See Also TIBCO Object Service Broker for Open Systems Installing and Operating or TIBCO
Object Service Broker for Open Systems Utilities for detailed instructions for using
the utilities in the examples provided.

Windows hrntlfcl -w %OS_ROOT%\database\CLOG\CLOG

Solaris hrntlfcl -w ${OS_ROOT}/database/CLOG/CLOG
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

60 | Chapter 7 Recovering From Errors
Partial Recovery

If your analysis indicates that the damage is isolated to a specific Pagestore
segment, the following steps indicates how to recover just that segment. If you are
unsure if other segments are affected, the safest approach is to restore all
segments.

Implementing a Partial Recovery
1. Make sure that there are no pending updates.

a. To restore segment 0 (the MetaStor), shut down TIBCO Object Service
Broker.

b. To restore any other segment, vary the affected segment offline by using
the following command:
hrncr dboffline=segmentname or segmentnumber

For example:
hrncr dboffline=sales

hrncr dboffline=3

You can also vary a segment offline using the Administration menu. Refer to
TIBCO Object Service Broker for Open Systems Installing and Operating for more
information about the menu’s options and operator commands.

2. Use the hrntlrps (Restore Pagestore) utility to rebuild the segment to be
recovered from the backup.

Use a recent backup of the affected segment or your most recent full system
backup. For example, to rebuild segment 1 only, type the following:
hrntlrps -s 1 backup.000

3. Bring the affected segment online or restart TIBCO Object Service Broker.

The command to vary a segment online is:
hrncr dbonline=segmentname or segmentnumber

You can also bring the segment online from the Administration menu.

Do not restore a segment to a point prior to the last physical definition change for
any table held in that segment. Access errors can result when users attempt to use
the table, due to a mismatch between the physical data and the recovered table
definition. Make sure your MetaStor (segment 0) backup corresponds with the
segment being restored.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Recovering From Non-Page File Failures | 61
Recovering From Non-Page File Failures

While journal and backup information can be used to recover page data files, you
can encounter other failures from which you must be prepared to recover. Other
files that can fail include: JOURNAL1, JOURNAL2, the redolog, or the
contingency log. The following describes these situations.

Redolog Failure
If the redolog becomes damaged, delete and re-initialize it.

• Windows: %OS_ROOT%\database\REDO\REDOLOG

• Solaris: ${OS_ROOT}/database/REDO/REDOLOG

All committed changes made since the last checkpoint are lost in the event of the
loss of the redolog.

Run hrntlfrl to re-initialize the redolog. When the redolog is re-initialized, restart
the Data Object Broker.

Contingency Log Failure
If the contingency log becomes damaged, delete and re-initialize it using the
hrntlfcl (Format Contingency Log) utility.

• Windows: %OS_ROOT%\database\CLOG\CLOG

• Solaris: ${OS_ROOT}/database/CLOG/CLOG

Loss of contingency log data can result in data inconsistency in a distributed data
environment. If your contingency log fails, contact TIBCO Support for assistance.

Journal Failure
The journals provide an audit trail of all changed physical pages. If one of your
journals fails, you are unable to recover for subsequent page file failures. For this
reason, you should immediately reset the continuous backup process with a new
master backup.

Failure of the contingency log impacts the distributed network of which the node
is a part. This can require manual intervention, using the Administration menu
(hrntladm), on some or all of the other networked nodes.
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

62 | Chapter 7 Recovering From Errors
After the Data Object Broker is started, use subsequent journal images, along with
your backup, to recover any page file failures up to the time of failure. Although
the page images contained within the failing journal are lost, your repository and
other control files are still intact.

Recovering a Journal

1. Back up your segments immediately.

This primes your continuous or discrete backup process.

2. Check the backups using the hrnbrptr (Batch Pointer Check) utility.

3. Reformat and re-initialize your journal files using the hrntlfjr (Format Journal)
utility.

4. Restart the Data Object Broker.

The journal has a two-fold function: as part of continuous backup, and as part of
checkpoint processing. When acting as a part of continuous backup, the loss of the
journal means that a new full system backup must be created. For checkpoint
processing, the journal is performing a caching role; if it is damaged before the
last checkpoint is fully propagated to the Pagestore, it can impact Pagestore
integrity.

See Also TIBCO Object Service Broker for Open Systems Utilities for information on the
utilities.
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

| 63
Index

Numerics

0, Fail Safe level 20
1, Fail Safe level 20
2, Fail Safe level 21

A

aborting in-doubt transactions manually 59
accesses to Pagestore 3
audit trail of changed physical pages 9

B

B+ tree structure 7
backups

approaches 46
planning 46
system 45

base segment 7
Batch Pointer Check utility. See hrnbrptr utility

C

changes to Pagestore 3
CHPAGELIMIT Data Object Broker parameter 32
CHPTINTERVAL Data Object Broker parameter 32
CHTRANLIMIT Data Object Broker parameter 32
CLOG file 59, 61
communication between Control and Execution

Environments 4
complete backup, merging Master Accumulation file

with 51

components, Fail Safe processing 22
contingency log

and continuous backup 52
dbdef file 10, 10
description 9, 23
failure, recovering from 61

contingent transaction. See in-doubt transaction
continuous backup

description 51
sample implementation 53

corrupted system, recovering 57
critical data and journal accumulation threshold 42
customer support xvi

D

damage, determining scope of 56
damaged

contingency log, recovering from 61
journal, recovering from 61
redolog, recovering from 61

Data Object Broker
communication with Execution Environment 4
dbdef file 10
description 3
functionality 3
information repository file 10
name field 22
Pagestore definition file 10

Data Object Broker database management 46
data resources, synchronizing 18
data storage methods 7
Database Administrator 46
database management 46
database server. See Data Object Broker
date field 22
dbdef file 10
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

64 | Index
disk space availability and journal accumulation
threshold 42

E

entire system, restoring 57
Execution Environment

communication with Data Object Broker 4
description 5
functionality 5
parameters 5
types 5

external backup utilities, disadvantages 50
external server, Fail Safe processing with 27

F

Fail Safe level 0 20
Fail Safe level 1 20
Fail Safe level 2 21
Fail Safe processing

description 18
scenarios 24

Fail Safe strategies 19
file components 1
file Database Administrator 46
files

dbdef 10
in base segment 7
page 7

Format Journal utility. See hrntlfjr utility
Format Pagestore utility. See hrntlfps utility
Format Redolog utility. See hrntlfrl utility
FTPing segment backup 48
full journals 43
full system backup product, using 50

H

hrnbrptr utility 56, 56
hrnspjex utility 40, 40
hrnspset utility 40
hrntlfjr utility 58
hrntlfps utility 58
hrntlfrl utility 58
hrntlmrg utility 52
hrntlrps utility 58, 60
HRNTRXDB table 22

I

in-doubt transactions
aborting manually 59
description 9, 20
logging 9

J

Journal Extraction utility. See hrnspjex utility
Journal Merge utility. See hrntlmrg utility
Journal Spin utility. See hrnspjex utility
JOURNALn file 40, 54, 58, 61
journals

audit trail 9
dbdef file 10, 10
definition 38
description 9
failure, recovering from 61
merging 42
size 42
spinning 38, 43
switching 38

L

level 0, Fail Safe 20
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

Index | 65
level 1, Fail Safe 20
level 2, Fail Safe 21
logging

in-doubt transactions 9
update operations 8

logical data control 5

M

Master Accumulation file, merging with complete
backup 51

media failure, recovering 57
merging

journals 42
Master Accumulation file with complete backup 51

MetaStor, description of 7
methods of storing data 7
multiple service providers and Fail Safe processing 18

N

non-page file failure, recovering from 61

O

offline, varying segments 60
online, varying segments 60
operations files, rebuilding 58

P

page files 7

Pagestore
accesses to 3
capacity 8
changes to 3
dbdef file 10, 10
description 7
initial configuration 8
page file usage 8

phase 1 and phase 2 commits 21
planning backups 46
prepare to commit phase 21
preparing recovery files 57

R

rebuilding
operations files 58
segments 58

recovering from
contingency log failure 61
journal failure 61
non-page file failure 61

recovery
description 57
files

contingency log 9
preparing 57
redolog 8

redolog
dbdef file 10, 10
description 8
failure, recovering from 61
requirements 9

REDOLOG file 58, 61
Reformat file Files Transferred with FTP utility. See

S6BBRFRU utility
requirements, redolog 9
Reset Journal utility. See hrnspset utility
Restore Pagestore utility. See hrntlrps utility
restoring

entire system 57
segments 60

rules interpretation 5
 TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

66 | Index
S

S6BBRFRU utility 48
scope of damage, determining 56
screen I/O management 5
scripts

spin04 57
spin05 57

segments
backup, FTPing 48
dbdef file 10
rebuilding 58
restoring 60
varying offline and online 60

server identifier field 22
server registration data field 22
size of journals 42
spin04 script 57
spin05 script 57
spinning journals 38, 43
strategies, Fail Safe 19
support, contacting xvi
switching journals 38
synchronizing data resources 18
system

backing up 45
restoring entire 57

system backups, planning 46

T

Table Data Store table. See TDS table
TDS table 7
technical support xvi
three file Data Object Brokers, Fail Safe processing

in 26
TIBCO_HOME xiii
time field 22
transaction ID field 22
transaction processing 11
transaction, database 22
TRXDB parameter 22
two file Data Object Brokers, Fail Safe processing in 24

two-phase commit 21

U

uncommitted transactions and continuous backup 52
update operations, logging 8
utilities

hrnbrptr 56, 56
hrnspjex 40, 40
hrnspset 40
hrntlfjr 58
hrntlfps 58
hrntlfrl 58
hrntlmrg 52
hrntlrps 58, 60
S6BBRFRU 48

V

varying segments
offline 60
online 60
TIBCO Object Service Broker for Open Systems Managing Backup and Recovery

	TIBCO® Object Service Broker for Open Systems
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introducing TIBCO Object Service Broker Backup and Recovery Components
	Overview
	Operational Components
	File Components

	Data Object Broker
	Definition
	Data Object Broker Functionality
	The Role of the Data Object Broker and Related Data Sets
	Data Object Broker Communication

	Execution Environment
	Definition
	Execution Environment Functionality
	Types of Execution Environments
	Parameters

	TIBCO Object Service Broker Files
	Pagestore
	Redolog
	Contingency Log
	Journals
	Database Definition File

	Chapter 2 Understanding Transaction Processing
	Overview
	Key Components Involved in Transaction Processing

	Sample Transaction
	Implications for Backup and Recovery

	Chapter 3 Understanding Fail Safe Processing
	Fail Safe Processing
	Definition

	Fail Safe Strategies
	Determining a Fail Safe Strategy
	Fail Safe Level 0 (Serial)
	Fail Safe Level 1 (Contingent)
	Fail Safe Level 2 (Two-Phase Commit)
	Contingent Two-Phase Commit

	Components Supporting Fail Safe Processing
	Transaction Database
	Contingency Log

	Sample Distributed Processing Scenarios
	Two Data Object Brokers
	Two Data Object Brokers with an External Database Server
	Three Data Object Brokers
	Multiple Data Object Brokers with an External Database Server
	Commit Behavior Across Multiple Data Object Brokers

	Chapter 4 Understanding Checkpoint Processing
	Checkpoint Processing
	What is a TIBCO Object Service Broker Checkpoint?
	When is a Checkpoint Created?
	Steps Performed by the Checkpoint Process
	Completing Pending Transactions
	Checkpoint Process Illustration

	Chapter 5 Understanding Journal Processing
	Journal Processing
	Definition
	Overview
	When are Journals Spun?
	Tailoring the Spin Batch Files/Scripts
	Journal Spin Process
	Journal Spin Process Illustration

	Journal Operations
	Merging the Journals
	Setting Journal Size
	Full Journals
	Spin Batch File/Script Failures

	Chapter 6 Backing Up Your System
	Overview
	Introduction
	Backup Approaches
	Full System Backup
	Continuous Backup

	TIBCO Object Service Broker Backup Utilities
	Advantages to this Approach
	Using TIBCO Object Service Broker Backup Utilities

	Using Non-TIBCO Object Service Broker Backup Utilities
	Limitations to this Approach
	Creating a Backup Using Non-TIBCO Object Service Broker Methods

	Performing Continuous Backup
	Using the Continuous Backup Process
	Alternate Method to Refresh the Latest Backup

	Sample Continuous Backup Implementation

	Chapter 7 Recovering From Errors
	Overview
	Types of Recovery
	Deciding How Much To Restore

	Full Recovery
	When Should the Entire System be Restored?
	Deciding on a Restoration Point
	Using TIBCO Object Service Broker Backup Utilities to Perform a Full Recovery
	Restoring from a Non-TIBCO Object Service Broker Backup

	Partial Recovery
	Implementing a Partial Recovery

	Recovering From Non-Page File Failures
	Redolog Failure
	Contingency Log Failure
	Journal Failure

	Index

