
TIBCO® Object Service Broker

Shareable Tools
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Related Documentation . xv
TIBCO Object Service Broker Documentation . xv

Typographical Conventions . xx

Connecting with TIBCO Resources . xxiii
How to Join TIBCOmmunity . xxiii
How to Access All TIBCO Documentation . xxiii
How to Contact TIBCO Support . xxiii

Chapter 1 Introduction to the Shareable Tools .1

Overview . 2
Main Types of Tools . 2
Categories of Tools. 2

Functional List of Shareable Tools . 4
Batch Jobs (z/OS) . 4
CICS Channels and Containers . 4
Data Object Broker Information and Operations. 5
Dates and Times . 5
Debugging . 6
Definitions of Objects . 7
External Databases and Servers . 7
External Memory and Routines . 8
Installation of Components . 8
Load from/Unload to External Files . 9
Mathematical Calculation . 9
Menus. 10
Messages and Message Logs . 10
Message Oriented Middleware . 10
Printing and Output. 11
Promotions . 12
Read from/Write to External Files. 13
Reports . 13
Rules and Rules Libraries . 14
Screens . 15
Searches for Objects . 16
Secondary Indexes . 17
Security. 17
Selection Lists . 18
 TIBCO Object Service Broker Shareable Tools

iv | Contents
Session Options and Parameters . 18
Strings and Text . 18
Table Definitions and Data . 21
Trigger or Validation Rules . 23

Chapter 2 Using User Exits in Workbench Tools. 25

Overview . 26
Purpose of the User Exits . 26
Tools Supporting the User Exits. 26

Description of the User Exits. 27
@ENTRY_VALIDATE(caller, type, name, library, new) . 27
@PRE_SAVE_OBJECT(caller, type, name, library, new) . 27
@SAVED_OBJECT(caller, type, name, library, new) . 27
Arguments . 28

How to Use the Exits. 29

Chapter 3 Tools. 33

ABS. 34

$ADD_DATE . 35

ADMIN_RIGHTS. 37

ALLOCDSN. 38

@ARCH_ACCESSLOGI . 39

AUDITLOG . 40

BATCH . 41

BATCH_ENABLE . 55

BATCHLOAD_CARDS . 56

$BATCHOPT. 69

BATCHUNLD_CARDS . 71

$BEEP . 76

$BLANKPAGE. 77

$BRCONTAINER . 79

BROWSER . 81

$CALLRULE . 84

CHANGE_SERVERID . 86

CHANGERULE . 88

CLEARTABLE_APPL . 91

@CLOSEDSN. 94

$CLRTAB . 95
TIBCO Object Service Broker Shareable Tools

Contents | v
@CONFIGURESERVER . 98

CONFIRMACTION. 100

COPY_DATA . 102

COPY_DEFN. 104

COPYDEFN. 108

COPYLIB . 116

COPYTABLE_APPL. 117

COUNTOCCURRENCES . 119

$CREATE_DATE . 120

CREATEUSERS . 123

CROSSREFSEARCH . 126

CURSOR_FLDCOL . 129

CURSORFIELD . 130

CURSOROCC# . 132

CURSOROCC_VALUE . 134

CURSORTABLE . 137

DASTATS . 139

DATACOM . 140

$DATE_DEFAULT . 141

$DATE_LENGTH . 143

$DATE_PIC . 146

$DATE_REF. 149

DBMAINTLVL. 152

DEBUG . 154

DEFINE_LIBRARY . 155

DEFINE_MENU . 156

DEFINE_OBJECTSET. 157

DEFINE_OBJLIST . 168

DEFINE_REPORT. 173

DEFINE_TABLE. 174

$DELCONTAINER . 175

DELETE_DATA . 176

DELETE_DEFN . 178

DELETESCREENDATA . 180

DIFF_DATA . 182

DIFF_DEFN . 185
 TIBCO Object Service Broker Shareable Tools

vi | Contents
DIFFDEFN . 188

DISPLAY_MENU. 194

DISPLAY_USERS. 195

DRAW . 197

EDITRULE . 198

ENDMSG . 199

ENTERKEY. 200

ESTIMATETBLDFN. 202

EVENTFIELD . 205

EVENTSCREEN . 206

EVENTSUBVIEW . 209

EVENTTABLE . 210

$EXCEPTION . 212

$EXCEPTIONOBJECT . 213

EXIT_DISPLAY . 214

EXPOCC_SIZE. 215

FCNKEY_MSG . 216

FLDMGR. 219

$FLUSHPRINT . 223

FORALLA . 224

@FORALLA . 231

FORALLB . 238

FORALLE . 241

FROM_UNICODE. 243

$FUNCTION . 244

GEN_TED . 246

GENBIN . 250

GENERATE_REPORT . 252

GENFLOAT . 253

GENPACK . 254

$GETCONTAINER . 256

$GET_DECIMALS . 258

$GET_MAXSIZE. 259

$GET_SIZE. 260

$GET_SYNTAX. 261

$GET_TYPE . 262
TIBCO Object Service Broker Shareable Tools

Contents | vii
$GETATTRIBUTE . 263

$GETBINARY . 265

GETCHAR . 267

$GETCOLOUR . 269

GETENDMSG . 271

$GETENVCOMMAREA. 273

$GETFLOAT . 274

$GETOPT . 276

$GETPACKED . 278

$GETTRANSACTION . 280

$GTFSET. 281

HEADSTRING . 284

HLIPREPROCESSOR. 286

HOUR . 288

HURON_STATS . 289

$HTTPREQUEST . 291

IDMS . 293

IMS . 294

INDEXCHK . 295

@INSTALL . 297

INSTALLIB . 299

KEYWORDMGR . 300

KEYWORDSEARCH . 303

LEAPYEAR . 305

LENGTH . 307

LIBID . 308

$LISTDSN . 309

$LISTPDS . 314

LIT_TO_VAL . 318

LLOAD . 319

LOAD . 322

LOADER . 325

LOCALTIME. 330

LOG_BROWSE . 332

LOWER_EBCDIC . 335

LOWER_UNICODE . 337
 TIBCO Object Service Broker Shareable Tools

viii | Contents
LOWERCASE . 339

@MAKEMEMBERS . 341

MANAGE_APPLY . 343

MANAGE_REQUESTS. 344

MANAGE_RIGHTS . 345

@MAP. 346

MATCH . 352

MAX . 354

MESSAGE . 355

MESSAGE_LOG. 357

@MESSAGEDUMP . 361

@MESSAGETRACE. 363

MIN . 368

MINUTE . 369

@MNG_USERS . 370

MOD . 371

@MOMCLOSE . 373

@MOMCOMMIT . 374

@MOMCONNECT . 375

@MOMDISCONN . 377

@MOMGET . 378

@MOMINIT. 379

@MOMMAPLENGTH . 381

@MOMOPEN . 382

@MOMOPTION . 383

@MOMPUT . 384

@MOMROLLBACK. 386

@MOMSETOPT . 387

@MOMSPECIALCMD . 388

@MOMVALIDRC . 389

$MOVECONTAINER. 390

MOVTAB . 391

@MQSMAP and @MQSMAP_PORT. 394

MSGLOG . 396

$NEWPAGE . 398

NLS . 400
TIBCO Object Service Broker Shareable Tools

Contents | ix
NOOP . 403

NUM_CHK . 404

OBJECT_MGMT . 405

OBJECTMGR . 408

@OPENDSN . 411

OPSTATS. 413

OPTIONLISTER. 414

$OTMA. 419

@OTMA_MAP . 421

PAD . 428

PARMVALUE . 430

PARSE . 432

PARSE_TAM . 443

PATTERN_MATCH. 446

PEEL . 447

PEEL_HEAD . 449

PEEL_TAIL. 451

@PEERSERVERID . 453

$PIC. 455

@PRESENTATIONENV. 462

PRINT_DATA . 463

PRINT_DEFN . 465

$PRINTFIELD . 467

$PRINTLINE . 469

PRINTTABLE . 471

PROCESS_FCNKEY. 473

PROCESS_TABLE . 474

@PROMBINDOBJS. 477

PROM_MAIN . 478

@PROMUNBINDOBJS . 479

PRT_VSCR . 481

PURGELOG_BATCH. 483

PURGELOG_SCREEN . 485

$PUTCONTAINER. 487

$PUTLINE . 489

QUOTE . 490
 TIBCO Object Service Broker Shareable Tools

x | Contents
RANDOM . 491

RANDOMSEED . 493

@READDSN. 495

REALTIME . 497

$REALTIMER . 498

REFMAKER . 499

REMAINDER. 501

REMOTELOCATION. 503

$RESETPRINT . 504

RESETXPARM . 506

RETURN_CODE. 508

RETURN_MESSAGE . 509

RETURN_SYSMSG . 510

RMANAGE_REQUESTS . 511

ROUND. 512

$RPTIMMEDIATE . 513

$RPTOCCLIMIT . 515

$RPTOVERLAP . 517

$RPTPARMS. 519

$RPTPRINT . 521

$RPTSKIPLINES . 523

$RULE_EXISTS . 525

$RULENAME . 526

RULEPRINTER. 531

S6BCALL . 537

S6BFUNCTION. 539

S6BNOTIFY . 541

S6BTROFF . 543

S6BTRON . 545

SCREENCOL . 548

SCREENMSG. 549

SCREENROW . 551

SCRIPT. 552

SEARCH . 561

SEARCH_REPLACE . 567

SEARCHLIB . 568
TIBCO Object Service Broker Shareable Tools

Contents | xi
SEC_REBIND . 571

SECOND . 572

SECURITY. 573

SELECT_OBJ . 574

@SERVERERROR . 577

@SESSION . 583

@SESSIONCOUNTS . 587

SESSMGR. 590

$SETATTRIBUTE. 597

$SETCHANNEL. 599

$SETCOLOUR. 600

SETCURSOR . 602

SETCURSOR_POS. 604

$SETENVCOMMAREA . 606

SETNLSBIT . 608

$SETOPT. 609

$SETP#POS . 614

$SETPRINT . 617

SETREMOTELOC . 620

$SETRPTATTRIBUTE . 621

$SETRPTMEDIUM . 623

$SETSESSIONEND . 625

$SETTITLE . 627

$SETTRANSACTION . 629

SETXPARM . 630

$SHOWCHANNEL. 632

$SIGNAL . 633

SIXBUILD. 634

SIMPLESELECT . 637

SIXBUILD_CARDS . 639

SIXDELETE . 644

$SKIPLINE. 647

$SLEEP . 649

SOE . 650

@STATICSQL . 652

STE . 653
 TIBCO Object Service Broker Shareable Tools

xii | Contents
STEBROWSE . 657

SUBSTRING . 658

$SYSTEMDATE . 660

SYSTEMLIB . 661

TABLEPRINT . 662

TAILSTRING . 666

TED. 667

TEXTSETUP. 672

TIME . 679

$TOCPRINT . 680

$TOCPUT . 682

TOKEN . 685

TO_UNICODE. 691

@TRACEMESSAGES . 692

$TRXDATE . 695

$TRXMODE . 696

$TYPECAST . 697

@UNINSTALL . 699

UNLOAD . 701

UNLOAD_DATA. 712

UNLOAD_DEFN . 714

UNLOADLIBRARY . 716

$UNPIC. 718

UNQUOTE . 720

UPPER_EBCDIC . 721

UPPER_UNICODE . 723

UPPERCASE . 725

USERID. 727

UTCDATE . 728

UTCTIME . 729

VAL_TO_LIT . 730

VALID_NAME . 732

@WRITEDSN . 733

XMLPARSE. 735

XMLSTART . 737

XMLSTARTDSN . 743
TIBCO Object Service Broker Shareable Tools

Contents | xiii
XMLSTARTSETDEST . 745

XMLSTARTTAB . 747

YEAR . 748

Index .749
 TIBCO Object Service Broker Shareable Tools

| xiv
Preface

TIBCO® Object Service Broker provides an application development environment
that allows you to create applications that integrate various systems in your
enterprise.

Topics

• Related Documentation, page xv

• Typographical Conventions, page xx

• Connecting with TIBCO Resources, page xxiii
 TIBCO Object Service Broker Shareable Tools

Preface | xv
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
 TIBCO Object Service Broker Shareable Tools

xvi | Related Documentation
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
TIBCO Object Service Broker Shareable Tools

Preface | xvii
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
 TIBCO Object Service Broker Shareable Tools

xviii | Related Documentation
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
TIBCO Object Service Broker Shareable Tools

Preface | xix
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
 TIBCO Object Service Broker Shareable Tools

xx | Typographical Conventions
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

OSB_HOME

By default, all TIBCO products are installed into a folder referenced in the
documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C:\tibco\OSB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/OS, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName
TIBCO Object Service Broker Shareable Tools

Preface | xxi
Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
 TIBCO Object Service Broker Shareable Tools

xxii | Typographical Conventions
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
TIBCO Object Service Broker Shareable Tools

Preface | xxiii
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
 TIBCO Object Service Broker Shareable Tools

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

xxiv | Connecting with TIBCO Resources
TIBCO Object Service Broker Shareable Tools

| 1
Chapter 1 Introduction to the Shareable Tools

This chapter introduces shareable tools, explains the different categories of
shareable tools, and provides a list of those tools by category.

Topics

• Overview, page 2

• Functional List of Shareable Tools, page 4
 TIBCO Object Service Broker Shareable Tools

2 | Chapter 1 Introduction to the Shareable Tools
Overview

Shareable tools are programs supplied with TIBCO Object Service Broker that
expedite rules language programming and application development. The
shareable tools perform common TIBCO Object Service Broker functions and
facilitate such tasks as string manipulation, mathematical calculation, and object
handling.

Main Types of Tools
Each tool is identified according to its behavior, as summarized in this table:

Categories of Tools
The shareable tools can be categorized according to the process they facilitate or
the object they affect. The list in Functional List of Shareable Tools on page 4 can
be useful if you know what task you want to perform but do not know if there is a
tool that can assist you. The tools are divided into the following categories

Identifier Type of Tool Description

C Callable Called from within a rule.

E Executable Invoked from the workbench.

CE Callable &
Executable

Called from within a rule or invoked from the
workbench.

F Function Return a value that can be assigned.

TBL Table System interpreted table.

Category Page

Batch Jobs (z/OS) 4

Data Object Broker Information and Operations 5

Dates and Times 5

Debugging 6

Definitions of Objects 7
TIBCO Object Service Broker Shareable Tools

Overview | 3
External Databases and Servers 7

External Memory and Routines 8

Installation of Components 8

Load from/Unload to External Files 9

Mathematical Calculation 9

Menus 10

Messages and Message Logs 10

Message Oriented Middleware 10

Printing and Output 11

Promotions 12

Read from/Write to External Files 13

Reports 13

Rules and Rules Libraries 14

Screens 15

Searches for Objects 16

Secondary Indexes 17

Security 17

Selection Lists 18

Session Options and Parameters 18

Strings and Text 18

Strings and Text 18

Table Definitions and Data 21

Category Page
 TIBCO Object Service Broker Shareable Tools

4 | Chapter 1 Introduction to the Shareable Tools
Functional List of Shareable Tools

Following is a functional list of all the available TIBCO Object Service Broker
tools, including the arguments and function of each tool. Some tools appear under
more than one category.

Batch Jobs (z/OS)
BATCH – Submits a batch job to a particular queue, views the status of the batch
jobs, and views the queues that are available. (E)

BATCHLOAD_CARDS – Defines input and output to the Batch Load utilities
(S6BBRTBL/hrnbrtbl). (E)

$BATCHOPT(batch_option, option_value) – Sets the batch options associated with a
SCHEDULE TO statement’s batch request, which sends the batch job to a queue.
(C)

BATCHUNLD_CARDS(unload_source) – Defines the control cards required by the
Batch Unload utilities. (E)

CICS Channels and Containers
$BRCONTAINER(channel, container-list, length, count) – Lists the16-character
container names and displays the count of the containers associated with the
channel. (C)

$DELCONTAINER(channel, container) – Deletes a container from a channel and
discards the container’s data, if any. (C)

$GETCONTAINER(channel, container, area, length, intoccsid) – Retrieves data from the
specified channel container. (C)

$MOVECONTAINER(frchannel, frcontainer, tochannel, tocontainer) – Moves a container
and its contents from one channel to another. Afterwards, the source container no
longer exists. (C)

$PUTCONTAINER(channel, container, area, length, fromccsid, datatype) – Places data in a
container associated with the specified channel. (C)

$SETCHANNEL(channel) – Nominates a channel for passing to a a program or
transaction. (C)

$SHOWCHANNEL – Returns the 16-character name of the current channel, if one
exists; otherwise, returns blanks. (F)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 5
Data Object Broker Information and Operations
DASTATS(segment) – Returns statistical data collected by the Data Object Broker
for an individual segment. (F)

DISPLAY_USERS – Displays a list of all users currently logged in to TIBCO Object
Service Broker. (E)

HURON_STATS – Displays statistics for performance analysis and problem
determination. (E)

OPSTATS(request-value) – Returns statistical data collected by the Data Object
Broker. (F)

S6BNOTIFY(msgnum, severity, action, source, subsource, correlation, msgtext) – Sends a
Notification message to TIBCO Hawk. (C)

S6BTROFF – Terminates tracing initiated by the complementary shareable tool
S6BTRON. (C)

S6BTRON(data_set_or_file_name) – Initiates tracing of rules execution in the current
session. (C)

Dates and Times
$ADD_DATE(date, component, amount) – Adds or subtracts a component (such as a
day, week, month, or year) to or from a date and returns a new date value. (F)

$CREATE_DATE(pic_string, date_string) – Converts a string with a specified format
to a value of semantic type date. (F)

$DATE_DEFAULT – Returns the default date format used by the installation. (F)

$DATE_LENGTH(pic_string) – Returns the maximum string length of a given date
format. (F)

$DATE_PIC(pic_string, date) – Converts a value of semantic type date to a semantic
type string. (F)

$DATE_REF(component, duration, date, round) – Adds or subtracts a given number of
days to or from a reference date, and converts the number of days returned to
units of a day, a week, a month, or a year. (F)

HOUR – Returns the hour of the day when the current transaction started based
on the local machine’s time zone in which the Execution Environment is running.
(F)

LEAPYEAR(year) – Returns a logical value indicating whether a given year is a
leap year. (F)

LOCALTIME – Returns the local time when the transaction started. (F)
 TIBCO Object Service Broker Shareable Tools

6 | Chapter 1 Introduction to the Shareable Tools
MINUTE – Returns the minute in the hour the transaction started based on the
local machine’s time zone in which the Execution Environment is running. (F)

REALTIME – Returns a string containing the current time of day. (F)

$REALTIMER – Returns the number of micro-seconds since 1 January 1980. (F)

SECOND – Returns the second within the minute that the transaction started
based on the local machine’s time zone in which the Execution Environment is
running. (F)

$SLEEP(milliseconds) – Causes the Execution Environment to go dormant. (C)

$SYSTEMDATE – Returns the date when $SYSTEMDATE is called based on the
local machine’s time zone in which the Execution Environment is running. (F)

TIME – Returns a string containing the time of the day when the transaction
started. (F)

$TRXDATE – Returns the start date of the transaction that called this tool based
on the local machine’s time zone in which the Execution Environment is running.
(F)

UTCDATE – Returns the Coordinated Universal Time (UTC) date when
UTCDATE is called. (F)

UTCTIME – Returns a string containing the current Coordinated Universal Time
(UTC) time. (F)

YEAR – Returns the two-digit year when the transaction started based on the
local machine ’s time zone in which the Execution Environment is running. (F)

Debugging
DEBUG(rulename) – Invokes the interactive Rule Debugger. (CE)

$GTFSET(function, keyname, userid, termid, all, dob) – Enables or disables the rules
tracing facility in the Execution Environment and the Data Object Broker.

@MESSAGEDUMP – Writes traced messages to this table in HEX form, when
@TRACEMESSAGES.DUMP is set to Y. (TBL)

@MESSAGETRACE – Stores table access message requests between the Execution
Environment and the Data Object Broker collected when using trace facility. (TBL)

@TRACEMESSAGES – Records message traffic between the Execution
Environment and the Data Object Broker. (TBL)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 7
Definitions of Objects
COPY_DEFN(objecttype, instancename, library, environment, srclocation, destlocation,
parentonly) – Copies the definition of one or more objects from a source location to
a destination location. (C)

COPYDEFN – Copies the definition of one or more TIBCO Object Service Broker
objects or object sets. (E)

DEFINE_OBJECTSET(objsetname) – Defines a set of objects or modifies an existing
set. (E)

DELETE_DEFN(objecttype, instancename, library, environment, location, parentonly) –
Deletes the definition of an object. (C)

DIFF_DEFN(objecttype, instance1, library1, environment1, location1, instance2, library2,
environment2, location2, details) – Compares the definitions of two objects and list the
differences. (F)

DIFF_DEFN – Compares the definitions of one or more pairs of objects and list
the differences. (E)

External Databases and Servers
CHANGE_SERVERID(table_name, old_serverid, new_serverid) – Updates the server ID
of any external TIBCO Object Service Broker data types. (E)

@CONFIGURESERVER(type) – Sets and modifies the server configuration
parameters for a particular server ID. (E)

DATACOM – Displays a menu to manage the definition of CA-Datacom data. (E)

ESTIMATETBLDFN(num_fields) – Returns an estimate of the maximum
CTABLESIZE and XTABLESIZE required for each table type. (E)

$HTTPREQUEST – Issues an HTTP request and returns the response code and
result. (F)

IDMS – Displays the main menu used to define a CA-IDMS database to TIBCO
Object Service Broker. (E)

IMS – Displays the main menu used to define an IMS/DB database to TIBCO
Object Service Broker. (E)

$OTMA – Invoke IMS OTMA Callable Interface calls. (C)

@OTMA_MAP – Register and allocate storage for use with the @OTMA_MAP
table. (TBL)

@PEERSERVERID – Directs remote TIBCO Object Service Broker table accesses to
a particular peer server on a remote TIBCO Object Service Broker system. (TBL)
 TIBCO Object Service Broker Shareable Tools

8 | Chapter 1 Introduction to the Shareable Tools
RESETXPARM(component, entity, parm name, location) – Resets overrides on server
parameters or on default field values set in the Table Definer. (C)

@SERVERERROR(RETURN_MESSAGE) – Invokes special parsing and handling of
the last message, which resulted from a request to the TIBCO Object Service
Broker external DBMS server. (C)

SETXPARM(component, entity, parm name, value, location) – Overrides a server
parameter or the Table Definer default value for a field at table access time. (C)

@STATICSQL – Defines and generates static SQL to be used to access DB2 data.
(E)

External Memory and Routines
$GETENVCOMMAREA(segment#) – Retrieves data passed into TIBCO Object
Service Broker from a calling environment that is not TIBCO Object Service
Broker. (F)

HLIPREPROCESSOR(hostlang, imbedlang, infile, outfile, listfile, options) – Invokes a
language pre-processor to run against COBOL source programs that contain
embedded TIBCO Object Service Broker access statements or SQL statements. (C)

@MAP – Registers and allocates storage for use with MAP tables. (TBL)

RETURN_CODE – Returns the return code from the last call of a TIBCO Object
Service Broker external routine. (F)

S6BCALL – Invokes a TIBCO-supplied callable routine that requires a specialized
environment. (C)

S6BFUNCTION – Invokes a TIBCO supplied function that requires a specialized
environment. (F)

$SETENVCOMMAREA(value, segment#) – Passes data from TIBCO Object Service
Broker into a calling environment that is not TIBCO Object Service Broker. (F)

$SETSESSIONEND(action, value) – Sets what execution is to take place when a
TIBCO Object Service Broker session ends by returning data from the session to
an external environment. (C)

Installation of Components
@INSTALL(component [path]) – Requests the installation of the specified
component. (CE)

@UNINSTALL(component) – Requests that the specified component be uninstalled.
(CE)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 9
Load from/Unload to External Files
BATCHLOAD_CARDS – Defines input and output to the Batch Load utilities
(S6BBRTBL/hrnbrtbl). (E)

BATCHUNLD_CARDS(unload_source) – Defines the control cards required by the
Batch Unload utilities. (E)

EXPOCC_SIZE(table) – Returns the minimum record size required to hold the
occurrences of the table being unloaded. (F)

LLOAD(importfile, media) – Loads definitions and data of TIBCO Object Service
Broker objects that were previously unloaded from files with names in mixed case
or lowercase. (CE)

LOAD(importfile, media) – Loads definitions and data of TIBCO Object Service
Broker objects that were previously unloaded. (CE)

LOADER – Loads definitions and data of TIBCO Object Service Broker objects
that were previously unloaded, with selection control. (CE)

UNLOAD – Unloads definitions of valid TIBCO Object Service Broker object
types from a source system to a z/OS data set or a Windows or Solaris file. Data
from table object types could also be unloaded. (E)

UNLOAD_DATA(tablespec, selection, location) – Unloads the data of a table to a z/OS
data set or a Windows or Solaris file. (C)

UNLOAD_DEFN(objecttype, objectname, library, location, presentationenv, parentonly) –
Unloads the definition of a TIBCO Object Service Broker object to a z/OS data set
or a Windows or Solaris file. (C)

UNLOADLIBRARY(library, location) – Unloads all rules in the specified library at
the specified location to a z/OS data set or a Windows or Solaris file. (C)

Mathematical Calculation
ABS(value) – Returns the absolute value of a number. (F)

MAX(x, y) – Returns the larger of two given values. (F)

MIN(x, y) – Returns the smaller of two given values. (F)

MOD(dividend, divisor) – Returns the modulus from dividing the dividend by the
divisor. The function MOD handles negative dividends and divisors. (F)

NUM_CHK(val) – Determines if a given string satisfies the TIBCO Object Service
Broker definition of a numeric literal. (F)

RANDOM(rangelimit) – Returns a random integer greater than or equal to 1 and
less than or equal to the specified limit. (F)
 TIBCO Object Service Broker Shareable Tools

10 | Chapter 1 Introduction to the Shareable Tools
RANDOMSEED(seed) – Sets the starting seed for the random number generator.
(C)

REMAINDER(dividend, divisor) – Returns the remainder from dividing the
dividend by the divisor. (F)

ROUND(value) – Returns the specified value rounded to the nearest integer. (F)

Menus
DEFINE_MENU(menu) – Creates and modifies menus and login screens used
within TIBCO Object Service Broker user-defined applications. (E)

DISPLAY_MENU(menuname) – Calls a specific menu into an application. (C)

Messages and Message Logs
ENDMSG(message) – Sets the transaction completion message. (C)

GETENDMSG – Returns the current value of the end-of-transaction message. (F)

LOG_BROWSE – Displays the contents of the message log. (C)

MESSAGE(utility, msg_num, tokenlist) – Returns a customized message by taking a
root message in the MESSAGES table and inserting customizing tokens. (F)

MESSAGE_LOG(msglog, destin) – Preserves the contents of the message log across
transactions. (C)

MSGLOG(string) – Inserts the specified string as a line in the TIBCO Object Service
Broker message log. (C)

RETURN_SYSMSG – Returns the last $SYSCALL system error message when an
exception is raised. RETURN_SYSMSG is a low-level tool that must be called
immediately after an exception is trapped. (F)

S6BCALL(’api_call’,parameters) – Invokes a TIBCO-supplied callable routine that
requires a specialized environment. (C)

S6BNOTIFY(msgnum, severity, action, source, subsource, correlation, msgtext) – Sends a
Notification message to TIBCO Hawk. (C)

Message Oriented Middleware
@MOMCLOSE(connection, queue) – Closes a Message Oriented Middleware
(MOM) message queue. (F)

@MOMCOMMIT(connection) – Commits all changes to queues from a single
Message Oriented Middleware (MOM) message manager. (C)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 11
@MOMCONNECT(name) – Connects to a Message Oriented Middleware (MOM)
message queue (MQ) manager. (F)

@MOMDISCONN(connection) – Disconnects from a Message Oriented
Middleware (MOM) message manager. (F)

@MOMGET(connection, queue, table) – Reads a message from a Message Oriented
Middleware (MOM) message queue. (C)

@MOMINIT(buflen, mon_type) – Identifies the type of Message Oriented
Middleware (MOM) message manager, and initializes its environment (map and
control structures) to enable subsequent @MOM calls. (C)

@MOMMAPLENGTH(table_name) – Returns the length of a MAP table. (F)

@MOMOPEN(connection, name) – Opens a Message Oriented Middleware (MOM)
message queue. (F)

@MOMOPTION(description) – Queries the numeric equivalent of a Message
Oriented Middleware (MOM) option. (F)

@MOMPUT(connection, queue, table, len) – Writes a message to a Message
Oriented Middleware (MOM) message queue. (C)

@MOMROLLBACK(connection) – Backs out all database changes from a single
Message Oriented Middleware (MOM) message manager since the start of the
transaction or since the previous @MOMCOMMIT. (C)

@MOMSETOPT(description) – Sets a MOM option to a specified value. (C)

@MOMSPECIALCMD(manager_name, queue_name, command) – Sends a Message
Oriented Middleware (MOM) command to a queue listener task. (C)

@MOMVALIDRC – Checks the return code of a previous command. (C)

@MQSMAP and @MQSMAP_PORT – Registers and allocates storage for use with
the MQSMAP table. @MQSMAP is for use on z/OS and @MQSMAP_PORT on
Open Systems. (TBL)

Printing and Output
$BLANKPAGE(titles_yn) – Outputs a blank page. (C)

$FLUSHPRINT – Releases output into the print spool. (C)

$NEWPAGE – Positions subsequent output to the top of a new page. (C)

PRINT_DATA(tablespec, select, sourceloc) – Prints the data of a TIBCO Object Service
Broker table. (C)

PRINT_DEFN(object, instance, library, environment, srcloc, parentonly) – Prints the
definition of a TIBCO Object Service Broker object. (C)
 TIBCO Object Service Broker Shareable Tools

12 | Chapter 1 Introduction to the Shareable Tools
$PRINTFIELD(string, pos, length, fill, just) – Writes the specified string into the
current printline. (C)

$PRINTLINE(text) – Prints a string. (C)

PRINTTABLE(tablespec, pagelength, pagewidth, media) – Prints a table. (C)

PRT_VSCR(vscr, page_length, page_width, page_start, media, mask) – Prints the screen
fields of a defined screen in a page format, with or without a mask. (C)

$PUTLINE – Prints the current line constructed by $PRINTFIELD. (C)

$RESETPRINT(length, width, page_number, media) – Resets the output arguments. (C)

$SETP#POS(line_number, left_string, center_string, right_string) – Defines the position
and content of page number lines. (C)

$SETPRINT(length, width, page_number, media, clear_title_yn) – Initializes the print
attributes or, if they are already set, uses it to clear the titles for the output on the
following pages. (C)

$SETTITLE(line_number, left_string, center_string, right_string) – Sets a title or footer to
be printed on subsequent pages of output. (C)

$SKIPLINE(count) – Outputs zero or more blank lines. (C)

$TOCPRINT(fill_char) – Prints the table of contents. (C)

$TOCPUT(section_name, spacing, numbering_yn) – Puts a line in the table of contents.
(C)

Promotions
ADMIN_RIGHTS – Obtains, releases, or transfers the promotion rights on objects.
(E)

DBMAINTLVL – Displays the maintenance level of your TIBCO Object Service
Broker database, including any database PTFs applied beyond the maintenance
level. (E)

MANAGE_APPLY – Invokes the Promotion facility on the target system. (E)

MANAGE_REQUESTS – Invokes the Promotion facility on the source system. (E)

MANAGE_RIGHTS – Releases or transfers a user’s promotion rights on rules,
screens, reports, menus, object sets, and tables. (E)

@PROMBINDOBJS – Restores the bind flag settings for the objects updated by
@PROMUNBINDOBJS. (E)

PROM_MAIN – Invokes directly the Promotion system. (E)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 13
@PROMUNBINDOBJS – Stores the current setting of the bind flag for a set of
objects and resets the values to N in the metadata tables. (E)

RMANAGE_REQUESTS – Manages change requests for systems where the
source system is remote to the target system. (E)

Read from/Write to External Files
ALLOCDSN(ddname, dsname) – Allocates a file to a z/OS DDNAME. (C)

@CLOSEDSN – Closes and frees the current file. (C)

$LISTDSN(dsname_level, buffer_address) – Lists the non-VSAM data sets and
Generation Data Group (GDG) data sets of a certain level, using the z/OS Catalog
Search Interface services. (C)

$LISTPDS(pds_name, buffer_address, member_name) – Lists the member names of a
partitioned data set (PDS), or retrieves the statistics for a PDS member. (C)

@OPENDSN(dsname) – Specifies the name of the file that is subsequently used by
@READDSN or @WRITEDSN. (C)

@READDSN – Returns the next record from the current file. (F)

@WRITEDSN(string) – Writes a record to the current file. (C)

XMLPARSE(docname, validate, docsource, docdata) – Initiates the parsing of an XML
document. (C)

XMLSTART(xmldocname, predicate, parm) – Generates an XML document based on
the passed data access arguments. (C)

XMLSTARTDSN(outdsn, xmldocname, predicate, parm) – Generates an XML document
based on the passed data access arguments and places it in the specified file. (C)

XMLSTARTSETDEST(tablespec, fieldspec) – Sets up the output table and field for
XMLSTART. (C)

XMLSTARTTAB(tablename, format, predicate, parm) – Returns the data of a table
instance to the OIG client. (C)

Reports
DEFINE_REPORT(reportname) – Defines a new TIBCO Object Service Broker report
or modifies an existing one. (E)

GENERATE_REPORT(reportname) – Defines a new report or modifies an existing
report using the Report Generator. (E)

$RPTIMMEDIATE(reportname, media) – Sends the records to the output as they are
read, without sorting. (C)
 TIBCO Object Service Broker Shareable Tools

14 | Chapter 1 Introduction to the Shareable Tools
$RPTOCCLIMIT(reportname, occlimit) – Limits the number of occurrences used to
generate the report. (C)

$RPTOVERLAP(report, reporttable, reportfield, BLANKOVERLAP) – Designates the
report tables or report fields that are not to be printed on the overlapping page of
a merged report. (C)

$RPTPARMS(reportname, length, width, eject, pagenumber) – Controls explicitly the
physical output of a report. (C)

$RPTPRINT(reportname, media) – Prints a report to the medium specified. (C)

$RPTSKIPLINES(reportname, reporttable, element, linesbefore, linesafter) – Controls
explicitly the spacing of a report. (C)

$SETRPTATTRIBUTE(report, attribute, value) – Sets the attributes of the report that is
to be printed. (C)

$SETRPTMEDIUM(report, mediumtype, medium) – Sets the medium to which a report
is to be printed. (C)

Rules and Rules Libraries
$CALLRULE(rulecall) – Invokes a procedural rule. (C)

CHANGERULE – Makes multiple text changes across multiple rules in a library.
(CE)

COPYLIB(source_lib, dest_lib) – Copies all the rules from a source library to a
destination library. (C)

DEFINE_LIBRARY(libraryname) – Defines a new library, displays a list of the rules
in a library, or displays a list of the rules libraries. (E)

EDITRULE(rulename) – Defines a new TIBCO Object Service Broker rule or
modifies an existing one. (E)

$EXCEPTION – Returns the name of the last exception signalled within the
current transaction by either a SIGNAL statement, a $SIGNAL call, or the system
(GETFAIL, ZERODIVIDE, and so on). (F)

$EXCEPTIONOBJECT – Returns the name of the object (for example, a table)
associated with the last exception signalled within the current transaction, if that
exception is of the type that can be trapped with an ON exception_name
object_name: statement. (F)

$FUNCTION(rulecall) – Invokes a functional rule. (F)

INSTALLIB – Returns the name of the currently designated installation library. (F)

LIBID – Returns the name of the currently designated local library. (F)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 15
NOOP – Does nothing. (C)

$RULE_EXISTS(rule) – Checks whether a rule with the given name would be a
candidate for execution. The rule can be a rule in the current search path, a TIBCO
Object Service Broker routine, or an external routine with an available and
executable load module. (F)

$RULENAME(level, transactioncount) – Retrieves the name of a rule from the current
execution stack. (F)

RULEPRINTER(rule) – Prints a rule or prints an application structure using the
root rule as the base. (E)

SEARCHLIB – Searches all rules or specified rules in a library for a given string.
(CE)

$SIGNAL(exception, tablename) – Raises the specified exception. (C)

SYSTEMLIB – Returns the name of the currently designated system library. (F)

$TRXMODE – Retrieves the transaction mode of the current rule. (F)

$TYPECAST – Converts a variable according to the arguments supplied. (F)

Screens
$BEEP(repetition) – Issues the specified number of beeps from the terminal. (C)

CONFIRMACTION(screen, confirmmsg, key, defaultmsg, table, commandfield) – Issues a
confirmation message for a PF key action or for a specified command. (C)

CURSOR_FLDCOL(screen) – Returns the relative column number within the field
containing the cursor. (F)

CURSORFIELD(screen) – Returns the name of the field where the cursor is located.
(F)

CURSOROCC#(screen) – Returns the occurrence number within the screen table
where the cursor is positioned. (F)

CURSOROCC_VALUE(screen, scrtbl, scrfld) – Returns the value of a particular
screen field that is selected by the cursor. (F)

CURSORTABLE(screen) – Returns the name of the screen table where the cursor is
positioned. (F)

DELETESCREENDATA(screen) – Deletes all the occurrences from all the screen
tables of a screen. (C)

DRAW(screenname) – Defines a new TIBCO Object Service Broker screen or
modifies an existing one. (E)
 TIBCO Object Service Broker Shareable Tools

16 | Chapter 1 Introduction to the Shareable Tools
ENTERKEY(screen) – Returns the name of last key used when the specified screen
appeared. (F)

EVENTSCREEN – Returns the name of the screen that activated the current
screen validation rule. (F)

EXIT_DISPLAY – Signals the standard exception EXIT_DISPLAY. (C)

FCNKEY_MSG(screen) – Creates a string containing the function keys defined for
a screen. (F)

$GETATTRIBUTE(screen, table, field, attribute) – Queries the current attributes for the
field of the screen table, in the specified screen. (F)

$GETCOLOUR(screen, table, field, color_type) – Queries the current color of a screen
field. (F)

@PRESENTATIONENV – Returns the name of the presentation environment for
the current session. (F)

PROCESS_FCNKEY(screen) – Processes the function keys while a screen is being
displayed. (C)

SCREENCOL – Returns the number of columns on the user’s physical screen. (F)

SCREENMSG(name, msg) – Displays the given message in the message area of the
specified screen. (C)

SCREENROW – Returns the number of rows on the user’s physical screen. (F)

$SETATTRIBUTE(screen, table, field, attribute, flag) – Sets attributes for the field of the
screen table, in the specified screen. (C)

$SETCOLOUR(screen, table, field, color_type, color) – Sets the color of a screen field. (C)

SETCURSOR(screen, table, field) – Positions the cursor in the field of the screen table,
in the specified screen. (C)

SETCURSOR_POS(screen, table, field, occurrence_number, column_offset) – Positions the
cursor in the column of the field of the occurrence, in the screen table of the
screen. (C)

Searches for Objects
CROSSREFSEARCH(querystring, querykind, library) – Searches the cross reference
index of the specified library to answer a query. (C)

KEYWORDMGR – Ensures that the TIBCO Object Service Broker keyword
system conforms to the established formatting standards and that the keyword
index table is up-to-date. (E)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 17
KEYWORDSEARCH(querystring, object_type) – Searches the keyword index of a
default library to answer a query. (C)

REFMAKER(library) – Rebuilds the global cross reference index. (E)

SEARCH – Searches the keyword or cross reference indexes to answer a query. (E)

SEARCHLIB – Searches all rules or specified rules in a library for a given string.
(CE)

Secondary Indexes
SIXBUILD(table, secondary_key) – Creates a secondary index online for a TDS table.
(C)

SIXBUILD_CARDS – Defines the control cards required by the Batch Secondary
Index Build utilities. (E)

SIXDELETE(table, secondary_key) – Deletes an existing secondary index. (CE)

Security
AUDITLOG – Invokes the Query Audit Log tool. (CE)

BATCH_ENABLE(wipe_existing) – Enables all the object sets previously processed
using @MAKEMEMBERS. (C)

CREATEUSERS(input_table, modeluser) – Creates a list of new user IDs and adds
them to the TIBCO Object Service Broker system. (E)

@MAKEMEMBERS(objectset) – Creates the member list for an object set to be
enabled through the BATCH_ENABLE utility. (CE)

@MNG_USERS – Modifies your user security profile. (E)

PURGELOG_BATCH(fromdate, todate, file) – Purges the audit log data from the
TIBCO Object Service Broker audit log table and archives it to an external file.
(CE)

PURGELOG_SCREEN – Specifies the archive file for the audit log data and
purges the audit log data after writing it to the specified archive file. (CE)

SEC_REBIND(object, parmcat, name) – Rebinds all security data previously bound in
the Execution Environment storage. (C)

SECURITY – Invokes the TIBCO Object Service Broker Security Manager main
menu. (E)
 TIBCO Object Service Broker Shareable Tools

18 | Chapter 1 Introduction to the Shareable Tools
Selection Lists
DEFINE_OBJLIST(table) – Defines, for a table, an object list to appear using the
Object Manager or modifies an existing object list definition. (E)

OBJECT_MGMT(tablespec) – Displays the contents of a table and enables a
predefined set of commands that are unique to the table to operate on the display.
(E)

OBJECTMGR(tablespec) – Displays the contents of a table and enables a predefined
set of commands that are unique to the table to operate on the display. (C)

OPTIONLISTER(optionlistname) – Displays options in columns and returns the
ones selected (C).

SELECT_OBJ(name, type, unit, author, library, location, children, subtype) – Provides a
screen that can be used to list and select objects that meet specified criteria. (C)

Session Options and Parameters
$GETOPT(option_name) – Returns the value of a session parameter or option. (F)

$GETTRANSACTION(name) – Gets a transaction name set by
$SETTRANSACTION. (F)

REMOTELOCATION – Returns the current value of the default remote location.
(F)

@SESSION – Alters session-related items maintained by this table. (TBL)

@SESSIONCOUNTS – Obtains information on events occurring within the
Execution Environment during a session. (TBL)

SESSMGR – Displays the login interface to the Session Manager (workbench).

$SETOPT(parameter, value) – Sets the value of a session parameter or option. (C)

$SETTRANSACTION(field, value) – Returns the current name of a TIBCO Object
Service Broker transaction and sets a new name. (F)

SETREMOTELOC(remoteloc) – Sets the default remote location for distributed data
processing. (C)

USERID – Returns a string containing the user ID. (F)

Strings and Text
FROM_UNICODE(unistring, externalcodepage) – Converts a Unicode string to Raw
Data encoded in an external Code page.(F)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 19
GEN_TED(tablespec, screenname, screentablename) – Presents a screen where text can be
entered and edited under the control of the text editor. (C)

GENBIN(value, length) – Returns a syntax V string containing the same internal
binary value as the input numeric value, right-justified.(F)

GENFLOAT(value, length) – Returns a syntax V string containing the same internal
float representation as the input float value, left-justified. (F)

GENPACK(value, length, decimal) – Returns a syntax V string containing the same
internal packed decimal value as the input syntax P value, right-justified. (F)

$GET_DECIMALS(value) – Retrieves the number of decimal places for an
expression. (F)

$GET_MAXSIZE(value) – Retrieves the dictionary size of an expression. (F)

$GET_SIZE(value) – Retrieves the size of an expression. (F)

$GET_SYNTAX(value) – Retrieves the syntax of an expression. (F)

$GET_TYPE(value) – Retrieves the semantic type of an expression. (F)

$GETBINARY(string, offset, length) – Stores character data in binary format. (F)

GETCHAR(string) – Returns the first character from the specified string, removing
it from the string. (F)

$GETFLOAT(string, offset, length) – Stores character data in floating format. (F)

$GETPACKED(string, offset, length) – Stores character data in packed decimal
format. (F)

HEADSTRING(string, length) – Returns the head portion of the specified string. (F)

LENGTH(string) – Returns the length of the specified string. (F)

LIT_TO_VAL(string) – Converts a string to a typeless value as described in the
string. (F)

LOWER_EBCDIC(string) – Converts a string to lowercase EBCDIC characters. (F)

LOWER_UNICODE(string) –Converts a string to lowercase Unicode characters.
(F)

LOWERCASE(string) – Converts all uppercase characters in a string to lowercase
characters. (F)

MATCH(string, pattern) – Returns the starting position, in characters, of the
specified pattern in the specified string, relative to the start of the string. (F)

PAD(string, length, padcharacter, just) – Returns a string padded to a specified length
using a pad character, positioning the string to the left, right or center of the
padding. (F)
 TIBCO Object Service Broker Shareable Tools

20 | Chapter 1 Introduction to the Shareable Tools
PARSE(grammar_usage, string) – Breaks up an input string into tokens and applies
grammar rules to the tokens. (C)

PATTERN_MATCH(string, pattern) – Determines whether a string matches a given
pattern. (F)

PEEL(peelchars, string) – Returns the result of removing the specified leading and
trailing characters from the specified string. (F)

PEEL_HEAD(char, string) – Removes the specified leading characters from a given
string. (F)

PEEL_TAIL(char, string) – Removes the specified trailing characters from a given
string. (F)

$PIC(value, mask) – Returns a number in a format specified by a mask. (F)

QUOTE(string) – Returns a string with single quotation marks around it and
doubles any single quotation marks in the string. (F)

SCRIPT(source, dest) – Uses commands to format text from a table and store the
formatted text in another table. (C)

SEARCH_REPLACE(input_string, replace_this, with_this, else_with_this) – Replaces all
occurrences of a pattern with specified characters. (F)

SUBSTRING(string, start, length) – Returns a selected portion of a string. (F)

TAILSTRING(string, length) – Returns the tail portion of the string. (F)

TED(text_input) – Displays a table for text editing. (E)

TEXTSETUP(setupname) – Defines a setup for formatting a text document. (E)

TOKEN(string) – Parses an input string and returns the first token and the string
with the token removed. (F)

TO_UNICODE(rdstring, externalcodepage) – Converts a raw data string encoded in an
external code page to Unicode.(F)

$TYPECAST(type, syntax, size, decimals, value) – Converts a variable according to the
arguments supplied. (F)

$UNPIC(picVal, mask) – Determines the original value submitted given a masked
value produced by $PIC and the display mask that produced it. (F)

UNQUOTE(string) – Returns a string with the single quotation marks removed.
(F)

UPPER_EBCDIC(string) – Converts a string to uppercase EBCDIC characters. (F)

UPPER_UNICODE(string) – Converts a string to uppercase Unicode characters.
(F)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 21
UPPERCASE(string) – Converts all lowercase characters in a string to uppercase
characters. (F)

VAL_TO_LIT(string) – Converts a value to a string containing a token describing
its value. (F)

VALID_NAME(name) – Determines if a given string satisfies the TIBCO Object
Service Broker definition of an identifier. (F)

Table Definitions and Data
BROWSER(tablespec) – Displays the contents of a TIBCO Object Service Broker
table for viewing. (CE)

CLEARTABLE_APPL(table, select) – Deletes occurrences from a table or table
instance. (E)

$CLRTAB(tablename, parm1, parm2, parm3, parm4) – Deletes (clears) the data rows
from a table or table instance without reading the data rows. (C)

COPY_DATA(srctabspec, select, desttabspec, srclocation, destlocation, overwrite) – Copies
data from one table or table instance to another table or table instance. (C)

COPYTABLE_APPL – Copies selected occurrences from a source table to a
destination table. (E)

COUNTOCCURRENCES(table, selection) – Returns the number of occurrences that
meet a selection criteria. (F)

DEFINE_TABLE(tbl_name) – Defines a new TIBCO Object Service Broker table or
modifies an existing one. (E)

DELETE_DATA(tablespec, select, location) – Deletes the data from a table or table
instance. (C)

DIFF_DATA(table1, field1, location1, selection1, table2, field2, location2, selection2,
printresult) – Compares the data of two tables or table instances and lists the
differences. (F)

EVENTFIELD – Returns the name of the field of the subview table that activated
the current derived field rule, trigger rule, or validation rule. (F).

EVENTSUBVIEW – Returns the name of the subview table that activated the
current derived field rule. (F)

EVENTTABLE – Returns the name of the table that activated the current derived
field rule, trigger rule, or validation rule. (F)

FLDMGR(fieldname) – Adds fields to the global field dictionary. (E)
 TIBCO Object Service Broker Shareable Tools

22 | Chapter 1 Introduction to the Shareable Tools
FORALLA(table, parm, selection, ordering) – Returns the first table occurrence that
satisfies the selection criteria. Use if the value of every table parameter and every
selection criterion is 99 or fewer characters long. (C)

@FORALLA(table, parm, selection, ordering) – Returns the first table occurrence that
satisfies the selection criteria. Use if the value of any table parameter or of any
selection criterion is 100 or more characters long. (C)

FORALLB(table) – Returns the next table occurrence that satisfies the selection
criteria following a call to FORALLA. (C)

FORALLE(table) – Releases internally the resources used by FORALLA on a table.
(C)

MOVTAB(tablename, segmentID) – Changes the segment number of a table. (CE)

INDEXCHK – Estimates the maximum number of data rows a table can contain
before reaching the maximum index levels. (E)

NLS – Enables the database administrator to set code page values in translation
tables. (E)

OBJECTMGR(tablespec) – Displays the contents of a table and enables a predefined
set of commands that are unique to the table to operate on the display. (C)

PARMVALUE(parmname) – Returns the value of the parameter from the table that
was accessed when the trigger or validation rule was activated. (F)

PARSE_TAM(string) – Breaks up an input string into a table specification, and
optionally, the WHERE clause and the ORDERED clause of the corresponding
table access statement. (C)

PROCESS_TABLE(tablespec, selection, ordering, processrule) – Provides specific
processing for every occurrence in a table that is selected, ordered, or both
selected and ordered. (C)

RETURN_MESSAGE – Returns the system error message whenever an exception
is raised. RETURN_MESSAGE is a low-level tool that must be called immediately
after an exception is trapped. (F)

SETNLSBIT(table, flag) – Sets the NLS bit for the specified table, in the RESERVED
field of the TABLES table. (C)

SIMPLESELECT(selection) – Processes a selection string into a format that can be
used by the FORALLA tool. (C)

SOE(tablespec) – Edits a single occurrence in a table. (CE)

STE(tablename) – Invokes the Table Editor. (CE)

STEBROWSE(input) – Views the contents of a TIBCO Object Service Broker table.
(E)
TIBCO Object Service Broker Shareable Tools

Functional List of Shareable Tools | 23
TABLEPRINT(tablespec) – Prints the contents of a table or of a set of joined tables.
(E)

Trigger or Validation Rules
EVENTSCREEN – Returns the name of the screen that activated the current
screen validation rule. (F)

EVENTTABLE – Returns the name of the table that activated the current derived
field rule, trigger rule, or validation rule. (F)

PARMVALUE(parmname) – Returns the value of the parameter from the table that
was accessed when the trigger or validation rule was activated. (F)
 TIBCO Object Service Broker Shareable Tools

24 | Chapter 1 Introduction to the Shareable Tools
TIBCO Object Service Broker Shareable Tools

| 25
Chapter 2 Using User Exits in Workbench Tools

This chapter describes how to use user exits in workbench tools.

Topics

• Overview, page 26

• Description of the User Exits, page 27

• How to Use the Exits, page 29
 TIBCO Object Service Broker Shareable Tools

26 | Chapter 2 Using User Exits in Workbench Tools
Overview

Purpose of the User Exits
User exits are provided to customize the access and activity for a subset of the
workbench tools provided with TIBCO Object Service Broker. You can implement
these exits in the following places when executing one of these tools:

• The entry to the tool, where the exit can be used for some kind of validation,
such as verifying user access defined to meet a standard.

• Immediately before the definition of an object is committed to the database.
This can be used for validation, and possibly manipulation, of the object being
saved.

• After the definition is committed into the database. At this point the object can
still be manipulated and logging can be implemented.

Tools Supporting the User Exits
The following tools, supplied with the default developer workbench, support the
use of the user exit rules:

• Rule Editor

• Rule Debugger

• Table Browser

• Table Editor

• Single Occurrence Editor

• Screen Definer

• Table Definer

• Report Definer

• Library Definer

• Screen Table Definer

• Report Table Definer
TIBCO Object Service Broker Shareable Tools

Description of the User Exits | 27
Description of the User Exits

There are three user exit rules. All are functions and all have the same arguments.
The purpose of each of these is described below.

@ENTRY_VALIDATE(caller, type, name, library, new)
This rule is called before the tool makes its first display. If it returns “Y”, the tool
continues. If it returns any other string, the tool terminates with no display, and
the returned string appears as a message on the workbench. Tools where you can
create a new object by changing the name or type of the object call this rule again
for the new definition.

@PRE_SAVE_OBJECT(caller, type, name, library, new)
This rule is called after PF3 is pressed and before changes are committed into the
database. If it returns any string except “Y”, the returned string appears as a
message by the tool and the tool does not save the changes. At this point, a user
can press PF12 to exit, or possibly change the object so it can be saved.

@SAVED_OBJECT(caller, type, name, library, new)
This rule is called after PF3 is pressed and the changes are committed into the
database. If it returns any string except “Y”, the returned string appears as a
message on the workbench.
 TIBCO Object Service Broker Shareable Tools

28 | Chapter 2 Using User Exits in Workbench Tools
Arguments
Use the arguments as follows:

caller The name of the entry rule of the tool calling the exit. The rule
name for each of the tools are:

• Rule Editor – EDITRULE

• Rule Debugger – DEBUG

• Table Browser – STEBROWSE

• Table Editor – STE

• Single Occurrence Editor – SOE

• Screen Definer – DRAW

• Table Definer – DEFINE_TABLE

• Report Definer – DEFINE_REPORT

• Library Definer – DEFINE_LIBRARY

• Screen Table Definer – STABLE_PAINT

• Report Table Definer – PAINT_RPT

type The type of object being defined. This is the type used by the object
model, such as TEM_TABLE. For other possible values, refer to the
@OBJECTTYPES table.

name The name of the object.

library The name of the library for a rule, otherwise an empty string.

new “Y” if the object is new, “N” otherwise. The Table Editor and
Browser pass “Y” for an empty table, and the Single Occurrence
Editor passes “Y” for a new occurrence.
TIBCO Object Service Broker Shareable Tools

How to Use the Exits | 29
How to Use the Exits

Location of the Rules

The exit rules are stored in the system (COMMON) library. They are provided as
stub rules and always return the string “Y”. This causes the affected tools to
function as they did in the past.

Modifying an Exit

Using the appropriate sample stub rule as a base, modify the exit rule. The
modified rule must return a string to the tool. Save the modified rule in the
appropriate library, usually the installation (SITE) library.

Set the Search Path

You must ensure that the correct library search path for the modified tool is set in
the workbench menu definition. Refer to TIBCO Object Service Broker Defining
Screens and Menus for details about using the DEFINE_MENU tool to define
workbenches and about using DEFINE_OBJLIST for object manager prompts.

Examples

The following examples show how you can:

• Force users to observe a naming convention on rules

• Restrict a certain set of users to define only TEM or SES tables

The rules @ENTRY_VALIDATE and @PRE_SAVE_OBJECT are changed to test the
CALLER argument.

 RULE EDITOR ===> SCROLL: P
 @ENTRY_VALIDATE(CALLER, TYPE, NAME, LIBRARY, NEW);
 _
 _ ---
 _ CALLER = 'EDITRULE'; ¦ Y N N
 _ CALLER = 'DEFINE_TABLE'; ¦ Y N
 _ --+--------------
 _ RETURN(VALIDRULENAME(NAME, LIBRARY)); ¦ 1
 _ RETURN(VALIDTABLETYPE(TYPE, NEW)); ¦ 1
 _ RETURN('Y'); ¦ 1
 _ ---

If @ENTRY_VALIDATE is called by the Rule Editor, it calls VALIDRULENAME.
If it is called by the Table Definer, it calls VALIDTABLETYPE.
 TIBCO Object Service Broker Shareable Tools

30 | Chapter 2 Using User Exits in Workbench Tools
 RULE EDITOR ===> SCROLL: P
 @PRE_SAVE_OBJECT(CALLER, TYPE, NAME, LIBRARY, NEW);
_
_ ---
_ CALLER = 'EDITRULE'; ¦ Y N N
_ CALLER = 'DEFINE_TABLE'; ¦ Y N
_ --+------
_ RETURN(VALIDRULENAME(NAME, LIBRARY)); ¦ 1
_ RETURN(VALIDTABLETYPE2(TYPE)); ¦ 1
_ RETURN('Y'); ¦ 1
_ ---

If @PRE_SAVE_OBJECT is called by the Rule Editor, it calls VALIDRULENAME.
If it is called by the Table Definer, it calls VALIDTABLETYPE2.

 RULE EDITOR ===> SCROLL: P
 VALIDRULENAME(NAME, LIBRARY);
_
_ ---
_ LIBRARY ¬= 'ORDERED'; ¦ Y N N
_ HEADSTRING(NAME, 3) ¬= 'ED_'; ¦ Y N
_ --+------
_ RETURN('Y'); ¦ 1 1
_ RETURN('You can only edit rules starting with "ED_" in ' ¦ 1
_ || 'this library'); ¦
_ ---

VALIDRULENAME ensures that if a rule is to be edited or saved in this library, it
must start with ED_.

 RULE EDITOR ===> SCROLL: P
 VALIDTABLETYPE(TYPE, NEW);
_
_ ---
_ NEW; ¦ Y N N N N
_ HEADSTRING(USERID, 2) ¬= 'WE'; ¦ Y N N N
_ TYPE = 'TEM_TABLE'; ¦ Y N N
_ TYPE = 'SES_TABLE'; ¦ Y N
_ --+----------
_ RETURN('Y'); ¦ 1 1 1 1
_ RETURN(¦ 1
_ 'Your user group can only define TEM and SES tables'); ¦

VALIDTABLETYPE and VALIDTABLETYPE2 ensure that users whose user ID
starts with WE can define only a SES_TABLE or a TEM_TABLE.

VALIDTABLETYPE first checks the NEW flag because when a new definition is
created, it starts out as a TDS_TABLE. Without this extra check, a user whose
user ID starts with WE would be unable to create a new table.
TIBCO Object Service Broker Shareable Tools

How to Use the Exits | 31
 RULE EDITOR ===> SCROLL: P
VALIDTABLETYPE2(TYPE);
_
_ ---
_ HEADSTRING(USERID, 2) ¬= 'WE'; ¦ Y N N N
_ TYPE = 'TEM_TABLE'; ¦ Y N N
_ TYPE = 'SES_TABLE'; ¦ Y N
_ --+--------
_ RETURN('Y'); ¦ 1 1 1
_ RETURN(¦ 1
_ 'Your user group can only define TEM and SES tables'); ¦

 TIBCO Object Service Broker Shareable Tools

32 | Chapter 2 Using User Exits in Workbench Tools
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 33

Chapter 3 Tools

This chapter describes all the shareable tools. The tools are listed in alphabetical
order ignoring the $ and @ that are in front of some tools’ names. For example, the
tools CLEARTABLE_APPL, @CLOSEDSN, and $CLRTAB follow each other in the
list.

 TIBCO Object Service Broker Shareable Tools

| 34

ABS

Returns the absolute value of a number. (F)

Invocation number = ABS(value)

Example The following rule determines the absolute value of -1 and prints it to the
workbench or screen:

 RULE EDITOR ===> SCROLL: P
 ABS_1;
 _ LOCAL NUMBER, VALUE;
 _ ---
 _ --+--------------
 _ VALUE = - 1; | 1
 _ NUMBER = ABS(VALUE); | 2
 _ CALL ENDMSG('THE ABSOLUTE VALUE OF ' || VALUE || ' IS ' || | 3
 _ NUMBER ||'.'); |
 _ ---

The following end message appears after the rule is executed:

THE ABSOLUTE VALUE OF -1 IS 1.

number On return, contains the absolute value

value The integer, packed decimal, or float number to be evaluated

| 35
$ADD_DATE

Adds or subtracts a component (such as a day, week, month, or year) to or from a
date and returns a new date value. (F)

Invocation new_date = $ADD_DATE(date, component, amount)

Usage Notes • The result appears in the default date format for your system installation.

• If the component being added or subtracted is a month, $ADD_DATE returns
the last possible date in the resultant month if the resultant day does not exist
in the resultant month. For example, one month subtracted from MARCH 31,
2000 returns a value of FEBRUARY 29, 2000.

• The default century for two-digit year values depends on the setting of
YYCENTURYRANGE.

• Treat with caution values returned for dates prior to the adoption of the
Gregorian calendar in 1582 or for dates in the very far future that could be
subject to calendar adjustments (for example, it is not yet clear if the year 4000
is a leap year). $ADD_DATE accurately returns values for dates 200 years
before or after the present date.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for information on
YYCENTURYRANGE in z/OS. See TIBCO Object Service Broker Parameters for
information on YYCENTURYRANGE in Open Systems.

new_date On return, contains the new date value.

date A specific date.

component Must be one of the following date components:

• D (day)

• W (week)

• M (month)

• Y (year)

Its syntax is C (fixed-length character string) with a length of
one.

amount An integer specifying the amount to be added or subtracted.

Its syntax is B (binary) with a length of four.
 TIBCO Object Service Broker Shareable Tools

36 |
Exceptions

Example The following rule returns the employee names and the dates when they reach
their five-year anniversaries, and displays the result in the message log:

ADD_DATE;
 _ LOCAL ANNIV_DATE;
 _ ---
 _ --+--------------
 _ CALL MSGLOG('THE ANNIVERSARY DATES FOR THE EMPLOYEES ARE') | 1
 _ ; |
 _ FORALL EMPLOYEE_DATE WHERE HIREDATE >= $CREATE_DATE(| 2
 _ 'YYYY/MM/DD', '1997/04/01') : |
 _ ANNIV_DATE = $ADD_DATE(EMPLOYEE_DATE.HIREDATE, 'Y', 5); |
 _ CALL MSGLOG(PAD(EMPLOYEE_DATE.LNAME, 22, ' ', 'L') |
 _ || ANNIV_DATE); |
 _ END; |
 _ ---

Pressing PF2 after executing the rule displays the following screen:

---------------------------- INFORMATION LOG ----------------------
 COMMAND ===> SCROLL: P

 THE ANNIVERSARY DATES FOR THE EMPLOYEES ARE
 SMYTHE 2003-09-18
 CHANG 2003-04-05
 GARZA 2002-06-30
 TOWNSEND 2002-05-13
 .

CONVERSION Signaled if date is not a valid date or if the value given for
amount is not a number.

OVERFLOW Raised if the resulting date cannot be expressed as a semantic
type date, binary 4.

RANGERROR Signaled if the value given for component is not one of D, W, M,
or Y.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 37

ADMIN_RIGHTS

Obtains, releases, or transfers the promotion rights on objects. (E)

Invocation Do one of the following:

See Also TIBCO Object Service Broker Managing Deployment for information about using
ADMIN_RIGHTS.

From the… Move the cursor to the… And …

Administrator’s
workbench

PA Promotion Rights
Admin option

Press Enter

Developer’s
workbench

EX Execute Rule option Type ADMIN_RIGHTS
<Enter>

COMMAND prompt Type EX ADMIN_RIGHTS
<Enter>

 TIBCO Object Service Broker Shareable Tools

| 38

ALLOCDSN

Allocates a file to a z/OS DDNAME. (C)

Invocation CALL ALLOCDSN(ddname, dsname)

Usage Notes • If ddname is already in use, the old file is freed before the new file is allocated.
Otherwise, a data set allocated by ALLOCDSN is not freed automatically by
TIBCO Object Service Broker.

• The file referred to must be a z/OS sequential file. A member of a partitioned
data set, such as PRODUCT.MAIN.SOURCE(DOB), is not allowed.

• ALLOCDSN is used only with the z/OS version of TIBCO Object Service
Broker.

• ALLOCDSN is not meant to be used with the @CLOSEDSN, @OPENDSN,
@READDSN, and @WRITEDSN tools.

Exceptions

Example The following rule allocates the example file to a z/OS DDNAME:

 ALLOCDSN_1;
 _ --
 _ --+-----------
 _ CALL ALLOCDSN('EXAMPLES', TSOID || '.EXAMPLES.DATA'); | 1
 _ --

ddname A character string specifying the DDNAME. Its syntax is
C (fixed-length character string) with length 8.

dsname A character string specifying the filename. Its syntax is C with
length 44.

ROUTINEFAIL Raised if the allocation cannot be successfully completed.

 TIBCO Object Service Broker Shareable Tools

| 39

@ARCH_ACCESSLOGI

Enables analysis of archived audit log data.

The following technique may be used to analyze archived data on z/OS or Open
Systems.

Two tables are provided:

1. @ARCH_ACCESSLOGI is an IMP table.

As supplied, it uses DD name ARCHIVE rather than a file name. If required, a
level-7 user should be used to modify the definition of this table to use either a
file name or DD name of your choice. The file or DD name should be specified
according to instructions in "TIBCO Object Service Broker Managing External
Data".

2. @ARCH_ACCESSLOG is a subview of the IMP table.

Browse this table to review the archived data.

For example:

- TSO ALLOC F(ARCHIVE) DA('S6B.ARCHIVE.DATA(D111007)') SHR REUSE

- Log on as level-7 user

- BR @ARCH_ACCESSLOG

BROWSING TABLE : @ARCH_ACCESSLOG

COMMAND ==> SEL TIME >'06:08:39' & TIME < '06:08:42'

IDKEY DATE TIME MSG

--

4 111007 06:08:40 Insert access to TABLE @OBJECTSETS(SYSADMIN) by SYSADMIN

5 111007 06:08:40 Insert access to TABLE @COMPONENTS(TESTCXEC) by SYSADMIN

 TIBCO Object Service Broker Shareable Tools

| 40

AUDITLOG

Invokes the Query Audit Log tool. (CE)

Invocation Do one of the following:

Prerequisites The @AUDITLOG object set must be enabled before you can use this utility.

Usage Notes This tool enables users to do the following:

• Query the audit log using a default filter or a user-defined filter

• Create a new filter and update the existing user-defined filter

• Initiate a reporting session

See Also TIBCO Object Service Broker Managing Security for information on the audit log.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type AUDITLOG <Enter>

COMMAND prompt Type EX AUDITLOG <Enter>

From a rule Type CALL AUDITLOG

| 41
BATCH

Submits a batch job to a particular queue, views the status of the batch jobs, and
views the queues that are available. (E)

Invocation Do one of the following:

Either method displays the screen shown in Batch Submission Main Menu
Illustrated below.

Usage Notes • $BATCHOPT is the version of this tool called from within a rule.

• If you want to submit a batch job to a queue as part of a rule or application,
use the SCHEDULE statement with the TO clause.

• The queue must be defined first before you can submit a job to it.

See Also TIBCO Object Service Broker Programming in Rules for information about the
SCHEDULE statement. See TIBCO Object Service Broker for z/OS Installing and
Operating for information about defining queues.

Batch Submission Main Menu Illustrated

The Batch Submission Main menu screen shown here appears when you execute
BATCH:

 Batch Submission Facility

 Submit Batch Request _

 Build Batch Commands _

 View Batch Status _

 Queue Definition _

From the… Move the cursor to the… And …

Developer’s
workbench

EX Execute Rule option Type BATCH <Enter>

COMMAND prompt Type EX BATCH <Enter>
 TIBCO Object Service Broker Shareable Tools

42 |
 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

Main Menu Options

From the main menu, you can choose to:

• Submit a batch request to a specific queue

• Update existing batch commands or create new batch commands for the batch
job

• View all the requests you submitted

• Look at the definitions of available queues

To select an option from the menu, place the cursor next to the option and press
Enter.
TIBCO Object Service Broker Shareable Tools

BATCH | 43
Submit Batch Request Option

If you choose the Submit Batch Request option, the Submit Batch Request Screen
appears.

Submit Batch Request Screen

 Command ===>
 Batch Submission Facility

 Rule Settings:
 Queue Name ==> Requestor ID ==> USR40
 Rule Name ==> Batch Command Name ==> *DEFAULT*
 Search Path ==> L (S/I/L) Security Group ==> DEVELOPERS
 Local Library ==> USR40 Browse Mode ==> N (Y/N)
 Parameter Values ==>

 Output Settings:
 Print Destination ==> Print Form ==>
 Print Class ==> External Writer ==>
 Number of Copies ==> FCB ==>
 UCS ==>

 PFKEYS: 1=HELP 3=SAVE 12=EXIT 6=SUBMIT 4=PREV REQUEST 2=OPTIONS

The screen is divided into two parts:

• Rule Settings

Most of these fields are filled in for you with default values. You can change
these values, and you must provide values for the Queue Name and Rule
Name fields.

• Output Settings

Optionally, you can fill in these fields.

Rule Settings

The following fields describe the attributes for the rule that you want to execute in
batch (refer to the Rule Settings in Batch Submission Main Menu Illustrated on
page 41).
 TIBCO Object Service Broker Shareable Tools

44 |
Queue Name

You must provide the name of the queue that executes your TIBCO Object Service
Broker rule in batch mode. The queue name is validated to ensure that a queue
with that name exists. To view valid queue names, place the cursor in this field
and press PF2. A screen similar to the following appears:

Valid Queue Names Screen

 LIST OF VALID QUEUE NAMES

 COMMAND ==> SCROLL: P

 NAME DESCRIPTION
 ------------------- ---
 _ AFTERNOON Job executed between 12 noon and 5 p.m.
 _ IMMEDIATE Job executed immediately
 _ SUNDAY Job executed on Sunday
 _ OVERNIGHT Job executed between 8 p.m and 4 a.m.

 < Place "S" beside the items you wish to have Selected on PF3 >
 PFKEYS: 1=HELP 3=SELECT 13=PRINT 12=EXIT

You can select a queue from the screen by typing an S next to the queue name and
pressing PF3.

To see the definition of a queue, use the fourth option (Queue Definition) on the
main menu shown in Batch Submission Main Menu Illustrated on page 41.

Rule Name Provide the name of the rule to be executed in batch mode.
The rule name is not validated.

Search Path Enter the order of libraries to search for the rule: S - System
library only; I - Installation library, then system library; L -
Local library, installation library, then system library.

Local Library Enter the name of the local library to access as the local
library when the requested rule is executed.
TIBCO Object Service Broker Shareable Tools

BATCH | 45
List of JCL Names Screen

 LIST OF JCL NAMES

 COMMAND ==> SCROLL: P

 _ *DEFAULT*
 _ FML_EXPORT
 _ MY_JCL
 _ RULE1

 < Place "S" beside the item(s) you wish to have Selected on PF3 >

 PFKEYS: 1=HELP 3=SELECT 13=PRINT 12=EXIT

Parameter

Values

If the requested rule has arguments, enter the values here,
separated by commas. Single quotation marks are not
necessary.

Requestor Id Currently, you can submit only your own requests for
batch jobs; therefore, this field defaults to your user ID and
you cannot change it.

Batch Command

Name

Enter the name of the batch command that you created to
run your batch request. You can create or modify batch
commands with the Build Batch Commands option on the
main menu shown in Batch Submission Main Menu
Illustrated on page 41. To view a list of all the batch
commands you created, place the cursor on the BATCH
COMMAND NAME field and press PF2 to display the
LIST OF JCL NAMES screen:
 TIBCO Object Service Broker Shareable Tools

46 |
You can select a batch command by typing an S next to the batch command name
and pressing Enter.

Output Settings

The following fields describe the print file options (Output Settings in Batch
Submission Main Menu Illustrated on page 41) for the output generated by the
rule run in batch. All these print options are optional. If you do not specify
anything for the output settings, the batch server uses the default options
specified in the queue definition.

Security
Group

Specify the security group that is in effect when the rule is run in
batch mode. You can specify any of your valid groups.

Browse
Mode

Specify whether the rule runs in browse mode or update mode. Y
indicates browse mode and N indicates update mode.

Print

Destination

Enter the symbolic name of the printer. If you want to
include the node name of the printer, specify the print
destination in the form:

• node - The node name

• char - A non-alphanumeric character that separates the
node name from the printer name

• printer - The printer name

Print Class Enter the output class.

Number Of

Copies

You can specify a number of copies of output from 1 to
255.

Print Form If the output data should be printed or punched on a
special output form, enter Y. This flag takes effect in z/OS
only.

External

Writer

If you want to direct system output to an unsupported
device, you can specify an external routine to direct the
output. You must leave this field blank if you specify a
node name in the Print Destination field.

FCB Enter the FCB (Forms Control Block) value for the type of
output format.
TIBCO Object Service Broker Shareable Tools

BATCH | 47
Instead of entering information in all the fields for a batch job request, you can
recall the specifications for a previous request by pressing PF4. A screen similar to
the following appears:

Previous Requests Screen

 List of Previous Requests USERID: USR40

 COMMAND ==> Scroll P

 RULE QUEUE SEARCH_PATH LOCAL_LIB REQUESTOR_ID JCL_*
 ------------ --------------- ----------- --------- ------------ -----
 _ AFDASF IMMEDIATE L USR40 USR40 PRODU
 _ BACKUP SUNDAY L USR40 USR40 *DEFA
 _ RESTORE OVERNIGHT S USR40 USR40 *DEFA

 D-Delete S-Select
 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL

Use PF11 to scroll to the right to view more of the attributes for previous requests.
To select a request, use the S line command; to delete a request, use the D line
command.

After displaying the selected request on your Submit Batch Request screen, you
can modify it to suit your present needs. After entering the information, use one
of the following PF keys:

• PF3 - Save the request.

• PF6 - Submit the batch request.

• PF12 - Exit the batch request screen without saving the request.

UCS Enter the UCS (Universal Character Set) value that should
be used for printing the output data set.
 TIBCO Object Service Broker Shareable Tools

48 |
Build Batch Commands Option

If you choose the Build Batch Commands option from the Batch Submission Main
menu, you see a screen similar to the following:

Build Batch Command Screen

COMMAND ===>
 Batch Submission Facility
 Batch Command list for Userid: USR40

 < Create New Batch Command > ________________

 DEFAULT _
 MY_JCL _
 BATCHEXP _

PFKEYS: 1=HELP 3=EXIT 12=EXIT ENTER=SELECT

On this screen, you can do one of the following:

• You can select one of the batch command names that you previously defined
by placing the cursor next to the name and pressing Enter. Each person has a
private copy of the *DEFAULT* batch command and these can be individually
customized.

• You can create new batch commands by typing a new name in the Create
New Batch Command field and pressing Enter to display a screen similar to
the following:

New Batch Command Screen

 Batch Submission Facility

 Batch Command Name : BATCHIMP
 Command ==>

 Batch Command
TIBCO Object Service Broker Shareable Tools

BATCH | 49
 _ ---
 _

PFKEYS: 12=QUIT 22=DELETE 3=SAVE 9=REPEAT CMND 1=HELP

In this environment, you can enter batch commands and edit them with the TED
editing facility (refer to TED). When you build your batch command, you can use
the following symbols, which are filled in for you when the job is submitted:

• {USERID} - This is replaced with the requestor user ID as specified in the
Requestor Id field of the Submit Batch Request Screen (refer to Submit Batch
Request Option on page 43).

• {QUEUE} - This is replaced with the queue name.

• {TDS} - This is replaced with the communications identifier (for example,
VTAM name) that identifies the Data Object Broker that is connected to the
batch server.

• {CLASS} - This is replaced with the print class specified for the batch queue.

All the TED commands are available. A particularly helpful command for
copying existing batch commands is the COPY command. Specify the text table
that is your source of data and the data is copied to the table that you are
currently editing with TED. For example, to copy the default batch command
(named *DEFAULT*) of user USR50, type the following on the command line:

COPY @BATCH_JCL(USR50,'*DEFAULT*')

@BATCH_JCL is a text table that requires a user ID and the name of the batch
command as parameters. For more information about @BATCH_JCL refer to the
TIBCO Object Service Broker for z/OS Installing and Operating manual.

The copied batch command can look similar to the batch command shown here:

Copied Batch Command Screen

 Batch Submission Facility
 TIBCO Object Service Broker Shareable Tools

50 |

 Batch Command Name : BATCHIMP
 Command ==>

 Batch Command
 _ ---
 {USERID}A JOB ('{USERID}'},
 'JOBCARD',
 NOTIFY={USERID},
 MSGCLASS={CLASS},
 REGION=4096K,
 MSGLEVEL=(1,1),
 TIME=10

 PFKEYS: 12=QUIT 22=DELETE 3=SAVE 9=REPEAT CMND 1=HELP

You can add more steps to the batch command provided in the default. Do not,
however, add a step to execute the requested rule because this step is appended to
the end of the batch command when the batch request is submitted.

View Batch Status Option

If you choose the View Batch Status option from the Batch Submission Main
menu, you see a screen similar to the following:

View Batch Status Screen

COMMAND ===>
 Batch Submission Facility
 Job Status for Userid: AKS40
 Submit
 Rule Name Queue Name Status Date Time
 ---------------- ---------------- ----------- -------- --------
 _ AFDASF IMMEDIATE DONE
 _ BACKUP SUNDAY PENDING 01/14/98 10:35:03
 _ RESTORE OVERNIGHT SUBMITTED

TIBCO Object Service Broker Shareable Tools

BATCH | 51

 D - Delete
 PFKEYS: 1=HELP ENTER=REFRESH 3=EXIT 12=EXIT

This screen shows all the requests that you submitted. The screen is refreshed
every time you press Enter. The following information is provided:

Rule

Name

The name of the rule that you submitted for execution in batch

Queue

Name

The name of the queue to which you submitted your batch job

Status The present state of a batch job. The status can be:

• SUBMITTED - The request is submitted to the operating
system.

• PENDING - The request is waiting in the queue.

• EXECUTING - The request is currently being executed in batch
mode.

• DONE - The execution of the request is finished.

FAILED - The execution of the request failed.You can use the D line
command to remove requests from the queue, and if the status is
SUBMITTED or EXECUTING, you must remove the job from the
operating system.

NOTE: View Batch Status cannot replace your normal methods of
monitoring batch jobs because TIBCO Object Service Broker has no
knowledge of jobs that fail due to batch command errors or
cancellation by an operator.

Submit

Date

The date that you submitted your request to the queue, not the
date when the actual job was submitted to the operating system

Submit

Time

The time that you submitted your request to the queue, not the
time when the actual job was submitted to the operating system
 TIBCO Object Service Broker Shareable Tools

52 |
Queue Definition Option

If you choose the Queue Definition option from the Batch Submission Main
menu, you see a screen similar to the following one. For more information about
defining new queues, refer to the TIBCO Object Service Broker for z/OS Installing
and Operating manual.

Queue Definition

COMMAND ===>
 Batch Submission Facility
 Queue Definitions

 < Define New Queue > _______________

 AFTERNOON _
 IMMEDIATE _
 OVERNIGHT _
 SUNDAY _

 PFKEYS: 1=HELP 3=EXIT 12=EXIT

The example screen shows four existing queues: AFTERNOON, IMMEDIATE,
OVERNIGHT, and SUNDAY. To view the definition of one of these queues,
position your cursor on the field beside the name of that queue and press Enter.
The definition of the queue appears as shown here:

Queue Definition Screen

COMMAND ===>
 Batch Submission Facility
 Queue Definitions for: SUNDAY

 Wait Duration ==> 15 (# of seconds to wait when queue empty)
 Wait Limit ==> 12 (# of waits before queue shut down)

 Default Output Settings:
 Print Destination ==> PRINTER2 Print Form ==>
 Print Class ==> Y External Writer ==>
TIBCO Object Service Broker Shareable Tools

BATCH | 53
 Number of Copies ==> 1 FCB ==>
 UCS ==>

 Description:

 PFKEYS: 1=HELP 3=SAVE 12=CANCEL 22=DELETE

The fields on this screen are defined as follows:

Wait Duration The time in seconds that the batch server waits when the
queue becomes empty

Wait Limit The number of times the batch server goes into a wait state
before shutting itself down

Print

Destination

The name of the printer where you want the batch job
output sent. If you want to include the node name of the
printer, specify the print destination in the form: node-
The node name; char - A non-alphanumeric character that
separates the node name from the printer name; printer -
The printer name

Print Class The class of the output

Number Of

Copies

The number of output copies desired

Print Form Whether the output data should be printed or punched on
a special output form

External

Writer

Specifies the external routine that directs the output, if the
system output is to be directed to an unsupported device

FCB (Forms Control Block) Specifies the type of output format

UCS (Universal Character Set) Describes the character set that
should be used for printing the output data set

Description A brief description explaining the purpose of this queue
 TIBCO Object Service Broker Shareable Tools

54 |
The default print option values defined on the Queue Definition screen are used
when the user submitting a batch request does not supply those values on the
Submit Batch Request screen or through a call to $BATCHOPT.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 55

BATCH_ENABLE

Enables all the object sets previously processed using @MAKEMEMBERS. (C)

Invocation CALL BATCH_ENABLE(wipe_existing)

Prerequisites All users must be suspended from the system while BATCH_ENABLE is running.

Usage Notes Run this tool after the members of an object list have been set up using
@MAKEMEMBERS. Refer to @MAKEMEMBERS for further information about
this associated tool.

Example An installation has a large number of enabled object sets used by a large user
community. Updating member lists of an object set by changing the Enable Lists
of that object set involves a lot of processing and can be subject to lock failure due
to ongoing use of the objects by users. To make such updates easier, it is preferable
to suspend the system and run a batch job. New enable lists for object sets are
created ahead of time (using @MAKEMEMBERS), so as not to affect current use of
objects within these object sets. The system is suspended during off-hours and the
job is scheduled:

SCHEDULE BATCH_ENABLE(“Y”);

After this is done, only those members on the enable list specified via
@MAKEMEMBERS have the object set enabled for them. Users previously on the
enable list who are not specified in @MAKEMEMBERS are no longer on the
enable list and therefore no longer are able to access the objects through that
object set.

wipe_existing This argument saves or deletes permissions for existing
members. Valid values are Y (delete existing memberships) or
N (save existing memberships).

| 56
BATCHLOAD_CARDS

Defines input and output to the Batch Load utilities (S6BBRTBL/hrnbrtbl). (E)

Invocation Do one of the following:

Preparation of File and Table Definitions

Before using BATCHLOAD_CARDS, complete the following steps:

1. Depending on your platform:

— On z/OS systems, allocate a file to hold the control cards. This fixed block
file must have a record length of 80 bytes.

— On non-z/OS systems, set the DSBIFTYPE Execution Environment
parameter to TEXT.

2. Define the TDS table that is to receive the data.

If the table is non-parameterized, it must be empty. If the table is
parameterized, the table instance you plan to load must not already exist.

3. [Optional] Define a table that reflects the format and layout of the input file to
be loaded.

This step is required if you do not have a table that reflects the layout of the
input file.

BATCHLOAD_CARDS references the table definition to establish the format
and layout of the input file. If the definition of the table you are going to load
closely resembles the layout of the input file, BATCHLOAD_CARDS
references this table definition instead.

See the TIBCO Object Service Broker Parameters manual for information on the
DSBIFTYPE Execution Environment parameter.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type BATCHLOAD_CARDS
<Enter>

COMMAND prompt Type EX BATCHLOAD_CARDS
<Enter>

This setting could affect the behavior of other tools.
 TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 57
Defining Control Cards with BATCHLOAD_CARDS

To define your control cards with BATCHLOAD_CARDS, you describe your
input and output data in a series of screens. BATCHLOAD_CARDS then writes
the necessary control cards in a file. Complete the following tasks:

1. Execute BATCHLOAD_CARDS from a TIBCO Object Service Broker
workbench

2. Supply an input file definition

3. Match input file parameters and fields with data table parameters and fields

4. Specify constant values or ignore fields

5. View the fields with secondary indexes

These tasks are detailed in the following sections.

Task A Execute BATCHLOAD_CARDS from a TIBCO Object Service Broker
workbench

Execute BATCHLOAD_CARDS from the workbench as follows:

EX execute rule ==> BATCHLOAD_CARDS

The Control Card Definition screen appears.

Control Card Definition Screen

 Control Card Definition for BATCH LOAD

 Control Card File : USR01.BATCH.CNTLCARD(FEB2000)

 Table : EMP_MSTR_TDS Character Set : ENGL

 PAGE FILL LEVELS : (Default = 75 % if blank)
 Group Index : Primary Index :
 Secondary Index : Data Pages :

 # of Input Records : (Default = 100000 if blank)

 Total # of Fields : (Default = 50 if blank)

 Dynamic Unit Name : (Default = SYSDA if blank)

 Dynamic Block Size : (Default = 4096 if blank)

Consider the effect of the following procedures on your continuous backup.
 TIBCO Object Service Broker Shareable Tools

58 |
 PFKEYS: 1=HELP 3=EXIT 4=CONTINUE 12=CANCEL

Fields You must supply values for the following fields:

Character Set Values

Supported character set values are listed here.

Control Card

File

The file (and member name if the file is a z/OS partitioned
data set) to contain the BATCHLOAD_CARDS output.
You can change the filename by typing over it.

Table The name of the table that is to be loaded by S6BBRTBL or
hrnbrtbl.

Character Set The character set ID for the language of the data. If the
data being loaded is in a language other than the one
shown, specify the appropriate character set in this field.
Values are listed in Character Set Values below.

Char Set ID Language Territory/Country

CDNB Canadian Bilingual Canada

DANS Danish Denmark

DEUT German Austria, Germany

ENGB English Great Britain

ENGL English USA

ESPA Spanish Latin America, Spain

FRAN French France

ITAL Italian Italy

NORS Norwegian Norway

PORT Portuguese Portugal
TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 59
Specify Control Card Field Values

The lower portion of the Control Card Definition screen specifies the values to be
used to create the S (specification) type control card. To override the defaults, type
a new value in the space provided.

Use PF4 to move to the next screen.

Task B Supply an input file definition

Input File Definition Screen

To define your input file, use the Input File Definition screen as illustrated here:

 Control Card Definition for BATCH LOAD

 INPUT FILE DEFINITION:

 Was input data unloaded from an archive: N
 Input Data File Length Format (Fixed of Variable): F

 Define the input file by either specifying the name of the table that

SCHW French, German Switzerland

SUOM Finnish Finland

SVEN Swedish Sweden

PAGE FILL

LEVELS

The percentage of usable page space that is filled during
the load process. For more information about adjusting
Page fill levels for TDS tables, refer to TIBCO Object Service
Broker for z/OS Utilities.

of Input

Records

The number of records in the input file.

Dynamic Block

Size

The block size used for table instances and for temporary
work files required to process secondary indexes. The
small default block size can be detrimental to good
performance and could require optimizing if secondary
indexes are to be built for large tables, that is, tables with
large numbers of rows.

Char Set ID Language Territory/Country
 TIBCO Object Service Broker Shareable Tools

60 |
 matches the input file layout or specifying the fields explicitly in
 the space provided.

 Table: EMP_MSTR_TDS

 Name Syntax Length Decimal Offset(optional)
 ------------------------------------ ---- ---- -- ----
 _ PK C 9 0
 _ F1 C 15 0
 _ F2 C 15 0
 _ F3 C 25 0
 _ F4 C 25 0
 _ F5 P 6 2
 _ F6 C 8 0
 _ F7 B 2 0

 PFKEYS: 1=HELP 3=EXIT 4=CONTINUE 12=CANCEL

Specify Whether the File Was Loaded From an Archive

To specify whether the input file was created using S6BBRULA or hrnbrula, type
Y or N at the prompt:

Was input data unloaded from an archive: N

If you type Y, you must specify V (variable) as the file length format in the Input
Data File Length Format field that follows.

Specify File Length

To specify whether the input file is fixed or variable length, type F or V at the
prompt:

Input Data File Length Format (Fixed or Variable): F

The name of the table you specified in the Table field on the previous screen
appears in the Table field by default, because the table you are loading could
resemble the layout of the input file.

Specify File Format

To define the format of the input file, do one of the following on this screen:

Specify a Table whose Definition Reflects the Input File Layout

1. Keep the default Table value or change it to a table that reflects the format of
the input file. If you defined a table for your input file, enter the name of that
table in this field.
TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 61
2. To see the fields in the Table, press Enter. All the field definitions for that table
appear on the screen.

3. To edit the field definitions, remove the table name from the Table field, and
press Enter again.

Specify the Layout of the Input File Explicitly

1. Delete the Table value.

2. Type the names and definitions of the fields in the input file.

3. Press Enter.

Input File Fields

The lower portion of the Input File Definition Screen displays field definitions for
the input file named on the Table Field. If, for example, you define a table named
INPUT_FILE and change the Table value in the Input File Definition Screen to
INPUT_FILE, the screen displays the fields of the INPUT_FILE table, as shown
here:

 Control Card Definition for BATCH LOAD

 INPUT FILE DEFINITION:

 Was input data unloaded from an archive: N
 Input Data File Length Format (Fixed of Variable): F

 Define the input file by either specifying the name of the table that
 matches the input file layout or specifying the fields explicitly in
 the space provided.

 Table: INPUT_FILE

 Name Syntax Length Decimal Offset(optional)
 ----------------------------------- ---- ---- -- ----
 _ SOCIAL_SECURITY C 9 0
 _ LAST_NAME V 15 0
 _ FIRST_NAME V 15 0
 _ SALARY P 6 2
 _ ADDRESS_LINE1 V 25 0
 _ ADDRESS_LINE2 UN 25 0
 _ AGE N 2 0
 _ SEX C 1 0
 _ DEPARTMENT_# RD 5 0

 PFKEYS: 1=HELP 3=EXIT 4=CONTINUE 12=CANCEL
 TIBCO Object Service Broker Shareable Tools

62 |
Editing Field Definitions

To edit the field definitions displayed, clear the INPUT_FILE name from the Table
field and press Enter. Now you can make changes to the other fields on the screen:

After defining all the input fields, press PF4 to move to the next screen.

Task C Match input file parameters and fields with data table parameters
and fields

Field Matching Screen

To match an input field with a receiving field, type the number of the input field
in the blank area before the receiving field name. For example, in the screen that
follows, SOCIAL_SECURITY (field 1) maps to PK, LAST NAME maps to F1, and
so on:

 Control Card Definition BATCH LOAD

 Input File: INPUT_FILE Table: EMP_MSTR_TDS

 1 SOCIAL_SECURITY __ PRM1
 2 LAST_NAME 9_ PRM2
 3 FIRST_NAME 1_ PK
 4 SALARY 2_ F1
 5 ADDRESS_LINE1 3_ F2
 6 ADDRESS_LINE2 5_ F3
 7 AGE 6_ F4
 8 SEX 4_ F5
 9 DEPARTMENT_# __ F6
 __ F7

Name The input file field name (maximum of 35 characters).

Syntax The syntax of the input field.

Length The maximum field length of the input field.

Decimal The number of post decimal positions for a numeric field. If
omitted, the decimal number defaults to 0 and appears on the
control cards as blank. The number of decimals is required to
accurately convert the value to TIBCO Object Service Broker
syntax.

Offset The location of the field within the input record. The offset is
optional. If specified, it must start at 0 for position 1.
TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 63
 PFKEYS: 1=HELP 3=EXIT 4=CONTINUE 12=CANCEL

Screen Layout

The names of the input file/import table and the TDS table appear at the top of
the screen. If an input file is described by a table, the table name appears in the
Input File field; otherwise, it is left blank. The Table is the name of the TDS table
that is loaded by S6BBRTBL or hrnbrtbl (the Batch Load utilities).

Input fields not mapped are not loaded into the receiving table.

Task D Specify constant values or ignore fields

Procedure

If some fields are not mapped to input fields, you can load a constant value into
each occurrence of a field or ignore fields of the table. If you want to specify a
value for the field displayed, provide one in the VALUE field (to a maximum of 250
bytes). To ignore the displayed field, leave the VALUE field blank.

Sample Screen

Fields that are not mapped to an input file field appear on the screen below.

In the following example, a common city and FAX number are added to each
employee record loaded into the TDS table. Field F7 is ignored. If more fields than
the ones displayed have not been mapped, use PF8 to scroll down.

 Control Card Definition BATCH LOAD

 The table fields that have not been matched to the input file fields
 appear below. To specify a value for the field, type the value in the
 given area next to the field.

 Table: EMP_MSTR_TDS

 FIELD VALUE
 --------------- --
 PRM1 TORONTO

 TIBCO Object Service Broker Shareable Tools

64 |
 F6 555-1234

 F7

 PFKEYS: 1=HELP 3=SAVE 4=CONTINUE 12=CANCEL

Press PF4 to continue.

Task E View the fields with secondary indexes

The following screen displays a list of TDS fields with the currently assigned
primary and secondary keys. After viewing the secondary index fields, press PF4
to complete the control cards definition and write them in your file.

Secondary Index View Screen

 Control Card Definition BATCH LOAD

 These are the fields and their key types for the selected table.

 Table: EMP_MSTR_TDS

 Primary Secondary Field Name
 Y _ PK
 Y F1
 F2
 F3
 F4
 F5
 F6

• Primary key fields must be either cross-referenced to an input field or system
generated (that is, an IDgen key). They must not appear on value cards.

• Fields of syntax RD (raw data) and UN (Unicode) must not appear on value
cards.
TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 65
 PFKEYS: 1=HELP 3=EXIT 4=CREATE CTL CARDS 12=CANCEL
 TIBCO Object Service Broker Shareable Tools

66 |
Review the Output File

An example of an output file containing the control cards is shown here:

 S 75 75 75 75 000000000100000 050 SYSDA
 I 001 F SOCIAL_SECURITY C 009 PK
 I 002 F LAST_NAME V 015 F1
 I 003 F FIRST_NAME V 015 F2
 I 004 F SALARY P 006 02 F5
 I 005 F ADDRESS_LINE_1 V 025 F3
 I 006 F ADDRESS_LINE_2 V 025 F4
 I 007 F AGE B 002
 I 008 F SEX C 001
 I 009 F DEPARTMENT_# C 004 PRM2
 H 001 R ENGL EMP_MSTR_TDS
 H 002 P PRM1 S C 015
 H 003 P PRM2 S C 004
 H 004 F PK I C 009 P
 H 005 F F1 S C 015 S
 H 006 F F2 S C 015
 H 007 F F3 S C 025
 H 008 F F4 S C 025
 H 009 F F5 Q P 006 02
 H 010 F F6 S C 008
 H 011 F F7 C B 002
 V PRM1 TORONTO
 V F6 555-1234

BATCHLOAD_CARDS Record Layout

The following tables relate control fields on the screens with their equivalent
fields in the control records:

Notice the P and S designations for the PK and F1 fields. These letters mean that
PK is a primary key and F1 is a secondary index. If a field is both a primary key
and a secondary index, the designation is Q.
TIBCO Object Service Broker Shareable Tools

BATCHLOAD_CARDS | 67
Table Attributes

Input File Definitions

Table Attribute Screen Record ID/Type Columns

Table Name 1 H/R 64 – 79

Character Set 1 H/R 9 – 12

Page Fill Levels:

Group Index 1 S 3 – 4

Primary Index 1 S 6 – 7

Secondary Index 1 S 9 – 10

Data Pages 1 S 12 – 13

of Input Records 1 S 15 – 29

Total # of Fields 1 S 31 – 33

Dynamic Unit Name 1 S 35 – 42

Dynamic Block Size 1 S 44 – 48

Volumes for work file n/a S 50 – 51

Input File Definition Screen Record ID/Type Columns

Name n/a I/F 9 – 44

Syntax 1 n/a I/F 45 – 48

Length n/a I/F 49 – 52

Decimal n/a I/F 54 – 55

Offset n/a I/F 60 – 62

Variable Length Indicator 2 I/R 46

Cross Reference 2 I/F 64 – 79
 TIBCO Object Service Broker Shareable Tools

68 |
Field Definitions

1. Syntax is left-justified if it is a raw data or Unicode syntax; otherwise, it is
right-justified.

Field Definition Screen Record ID/Type Columns

Name n/a H/F or P 9 – 44

For fields other than raw data (RD) or Unicode (UN):

Semantic Type n/a H/F or P 46

Syntax n/a H/F or P 48

For fields of syntax RD or UN:

Syntax n/a H/F or P 45 – 48

Continue for all fields:

Length n/a H/F or P 49 – 52

Decimal n/a H/F or P 54 – 55

Key Type n/a H/F 57

Null-Equivalent Value n/a H/F 64 – 79

Static Values 4

Target table field 4 V 3 – 18

Continuation sequence # 4 V 20

Table field static value 4 V 22 – 71

I and H records contain a sequence number in columns 3 – 5, which must be
consecutive and must start with 001. The types within these records must be in
the order: R, if any, followed by P, if any, followed by F.
TIBCO Object Service Broker Shareable Tools

| 69
$BATCHOPT

Sets the batch options associated with a SCHEDULE TO statement’s batch
request, which sends the batch job to a queue. (C)

Invocation CALL $BATCHOPT(batch_option,option_value)

batch_option The name of the option you want to set. It can be one of the
following:

search_path Where to start searching for the rule. Valid
values: S – system library, I – installation
library, L – local library

local_lib The name of the library to access as the local
library when the requested rule is executed.

jcl_name The name of the JCL that you created to run
your batch request.

security_
group

The security group that is in effect when the
rule is run in batch mode. You can specify any
of your valid groups.

print_class The output class.

print_dest The symbolic name of the printer. If you want
to include the node name of the printer,
specify the print destination in the form:

node char printer

• node is the name of the node.

• char is a non-alphanumeric character that
separates the node name from the printer
name.

• printer is the name of the printer.

print_copies The number of copies (1 to 255) to output.

print_form The form name, if the output data should be
printed on a special output form.
 TIBCO Object Service Broker Shareable Tools

70 |
Usage Notes • BATCH is the interactive version of this tool used on the developer
workbench.

• Use $BATCHOPT before using a SCHEDULE TO statement (refer to TIBCO
Object Service Broker Programming in Rules for a description of the SCHEDULE
statement with the TO clause). Because $BATCHOPT applies only in
conjunction with scheduling to a queue, it does not affect a SCHEDULE
statement without a TO clause.

• When an option is set, it remains the same throughout the session until it is
reset again.

• If you do not set batch options with $BATCHOPT, the default for JCL_NAME
is *DEFAULT*, and the values for the rest of the options are determined by the
default values for the current session.

Example The rule shown here sets the local library and the JCL name before scheduling the
rule, BACKUP, in browse mode to a queue called OVERNIGHT.

 SCHED_RULE;
 _
 _ ---
 _ --+--------------
 _ CALL $BATCHOPT('LOCAL_LIB','TEST'); | 1
 _ CALL $BATCHOPT('JCL_NAME','MY_JCL'); | 2
 _ SCHEDULE IN BROWSE TO 'OVERNIGHT' BACKUP; | 3
 _ ---

When the rule called BACKUP is executed in batch mode, the JCL that is used is
MY_JCL, and the local library TEST runs in browse mode.

print_xwtr An external routine to direct the output, if you
want to direct system output to an
unsupported device (z/OS and Solaris only).
Leave this field blank if you specify a node
name in the PRINT_DESTINATION field.

print_fcb The FCB (Forms Control Block) to use, if you
want to use an output format other than the
default

print_ucs The UCS (Universal Character Set) to use, if
you want to use a character set other than the
default

option_value Specify the value that you want for the selected option.
TIBCO Object Service Broker Shareable Tools

| 71
BATCHUNLD_CARDS

Defines the control cards required by the Batch Unload utilities. (E)

Invocation Do one of the following:

Where:

Usage Notes BATCHUNLD_CARDS helps you define the control cards required by the Batch
Unload utilities. There are three Batch Unload utilities:

• S6BBRULH/hrnbrulh (Batch Unload while TIBCO Object Service Broker is
running and the segment is online)

• S6BBRULB/hrnbrulb (Batch Unload while TIBCO Object Service Broker is
shut down or the segment is offline)

• S6BBRULA/hrnbrula (Table Unload From Archive)

BATCHUNLD_CARDS displays a screen for you to specify the table or tables to
unload, and if the table is parameterized, you can choose table instances. The
utility then defines control cards and selection criteria in two separate files.

If you are using FTP to transfer unloaded data between z/OS and Windows,
Solaris, or UNIX, it is no longer mandatory to use the S6BBRFRU z/OS utility
before the data can be used by TIBCO Object Service Broker. Refer to TIBCO
Object Service Broker for z/OS Utilities for more information about S6BBRFRU.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type BATCHUNLD_CARDS
(unload_source) <Enter>

COMMAND prompt Type EX
BATCHUNLD_CARDS
(unload_source) <Enter>

unload_source One of the following:

• DATABASE - If you are preparing control cards for the
S6BBRULH/hrnbrulh or S6BBRULB/hrnbrulb utilities.

• ARCHIVE - If you are preparing control cards for the
S6BBRULA/hrnbrula utility.
 TIBCO Object Service Broker Shareable Tools

72 |
See TIBCO Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for
Open Systems Utilities for information on the method used by the unload utilities
to preserve null values in the unload file. The unload utilities use specific field
values to represent nulls in the unload file.

Preparation Allocate File

On z/OS systems, before you can use BATCHUNLD_CARDS, you must allocate a
file for the control cards, and if you are going to specify table instances, also
allocate a file for the selection criteria. The file attributes are as follows:

• CNTRL - The control card file specifies the definition of the table to be
unloaded. The CNTRL file should be defined as fixed block, record length 80.

• SELECT - [Optional] The selection criteria file contains criteria for selecting
table instances from a parameterized table set. If a SELECT file is required, it
should be defined as fixed block, record length 530.

Specify the File Type

On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter to
TEXT.

See TIBCO Object Service Broker Parameters for information on the DSBIFTYPE
Execution Environment parameter.

Procedure to Invoke the Control Card Preparation Facility

To invoke the control card preparation facility, complete the following tasks:

1. Run BATCHUNLD_CARDS from the workbench

2. Supply field values

3. Select table instances for a parameterized table

These tasks are described here.

Task A Run BATCHUNLD_CARDS from the workbench

EX execute rule ==> BATCHUNLD_CARDS(unload_source)

where unload_source is one of the following:

• DATABASE if you intend to use S6BBRULH/hrnbrulh or
S6BBRULB/hrnbrulb

This setting can affect the behavior of other tools.
TIBCO Object Service Broker Shareable Tools

BATCHUNLD_CARDS | 73
• ARCHIVE if you intend to use S6BBRULA/hrnbrula

The screen displayed is illustrated with sample input as follows:

 CONTROL CARD SPECIFICATION FOR BATCH UNLOAD FROM DATABASE
 Control Card File
 USR01.BATCH.CNTLCARD(JAN2000)

 Selection Criteria File
 USR01.BATCH.SELECT(JAN2000)

 Tables Selection of table instances for parameterized table set
 ---------------- --
 _ EMPLOYEE REGION = 'MIDWEST'

 _ EMPLOYEE REGION = 'SOUTHWEST'

 _

 PFKEYS: 1=HELP 3=SAVE 12=CANCEL

Task B Supply field values

Supply values for the following fields:

Control Card File The file (and its member name if the file is a z/OS partitioned data set)
to contain the BATCHUNLD_CARDS output. You can change the
filename by typing over it.

Selection Criteria

File

The file (and its member name if the file is a z/OS partitioned data set)
to contain the selection criteria, if you are selecting table instances of a
parameterized table.

Otherwise, ensure that this field is blank.

Tables The TDS table to be unloaded. You can specify only one table for
S6BBRULH/hrnbrulh or S6BBRULB/hrnbrulb and up to 999 for
S6BBRULA/hrnbrula.
 TIBCO Object Service Broker Shareable Tools

74 |
Task C Select table instances for a parameterized table

If you want to select table instances of a parameterized table for inclusion in the
unload file, specify selection criteria for each data parameter. The selection criteria
are subject to the following constraints:

• You must make a selection for each data parameter and join the parameters
with the AND (&) logical operator. For example, if the EMPLOYEE table had
REGION and CITY data parameters, you must specify both REGION and
CITY:

REGION = 'MIDWEST' & CITY = 'CHICAGO'

• You must use the same operator for each parameter specification in one
selection. Operators you can use are:

For example, a correct use of operator for two parameters is:

REGION = 'MIDWEST' & CITY = 'CHICAGO'

• You can make more than one selection, but you can use only one of the
following operators on a table:

For example, valid selection criteria are:

REGION = 'MIDWEST' & CITY = 'CHICAGO'

REGION = 'SOUTHWEST' & CITY = 'DALLAS'

After specifying the table and any table instances to be unloaded, press PF3 to
write the control cards and selection file to your files. The control cards definition
is then complete.

Review the Output File

A sample output file containing the control cards is shown here:

= Equal to

¬= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to
TIBCO Object Service Broker Shareable Tools

BATCHUNLD_CARDS | 75
 H 000 T EMPLOYEE 001 014
 H 000 P REGION I C 016 000
 H 000 F EMPNO I P 003 000
 H 000 F LNAME S C 022 000
 H 000 F POSITION S C 014 000
 H 000 F MGR# I P 003 000
 H 000 F DEPTNO I B 002 000
 H 000 F SALARY Q P 004 002
 H 000 F HIREDATE S C 009 000
 H 000 F ADDRESS S V 038 000
 H 000 F CITY S C 020 000
 H 000 F STATE_PROV S C 004 000
 H 000 F ZP_CODE S C 007 000
 H 000 F BIRTHDATE S C 010 000
 H 000 F SEC_GROUP I C 016 000
 H 000 F ACCESSTYPE S C 001 000
 H 000 R

An example of a selection criteria file is shown here:

 **************** 0002
 EMPLOYEE I=MIDWEST
 EMPLOYEE I=SOUTHWEST
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 76

$BEEP

Issues the specified number of beeps from the terminal. (C)

Invocation CALL $BEEP(repetition)

Usage Notes • This command is available across all platforms.

• In an IMS TM environment, only one beep is issued, regardless of the number
of beeps specified for repetition.

Example This rule, which uses an employee’s last name as input, gets an employee name
and then calls a second rule for further processing. If the employee does not exist,
the terminal emits two beeps and displays the end message.

 RULE EDITOR ===> SCROLL: P
 GET_EMPLOYEE(LAST_NAME);
 _
 _ ---
 _ --+--------------
 _ GET EMPLOYEES WHERE EMPLOYEE = LAST_NAME; | 1
 _ CALL PROCESS_EMPLOYEE; | 2
 _ ---
 _ ON GETFAIL :
 _ CALL $BEEP(2);
 _ CALL ENDMSG('EMPLOYEE NOT FOUND');

repetition A positive number that indicates to the terminal how many short
beeps to issue.

| 77
$BLANKPAGE

Outputs a blank page. (C)

Invocation CALL $BLANKPAGE(titles_yn)

Prerequisites • The print arguments must be previously set with a call to either $SETPRINT
or $RESETPRINT.

• The titles are previously specified with $SETP#POS or $SETTITLE.

Exceptions

Example The following rule prints three blank pages to the message log:

 BLANKPAGE_1;
 _
 _ ---
 _ --+--------------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $BLANKPAGE('Y'); | 2
 _ CALL $BLANKPAGE('N'); | 3
 _ CALL $BLANKPAGE('Y'); | 4
 _ ---

titles_yn One of the following:

Y – Specifies to print a title on the blank page.

N or '' (NULL) – Specifies not to print a title.

Its syntax is C (fixed-length character string), with length 1.

LOGLIMIT Too much output is sent to the message log.

RANGERROR titles_yn is neither Y nor N (or '' (NULL), which is treated as N.)

ROUTINEFAIL $BLANKPAGE is not preceded by a call to $RESETPRINT or
$SETPRINT.

STRINGSIZE This exception is raised if the left, center, or right titles overlap
or if the combined length of the character strings exceeds the
width (where width is the page width set by $RESETPRINT or
$SETPRINT) or 132, whichever is less.
 TIBCO Object Service Broker Shareable Tools

78 |
Pressing PF2 after executing this rule displays the following screen:

 ------------------------ INFORMATIONAL MESSAGE LOG ------------------
 COMMAND ===> SCROLL ===> P

 ----------------------------- NEW PAGE ------------------------------

 Page 1

 ----------------------------- NEW PAGE ------------------------------

 ----------------------------- NEW PAGE ------------------------------

 Page 3

The first and third pages are printed with titles, the second page without titles.
TIBCO Object Service Broker Shareable Tools

| 79
$BRCONTAINER

Lists the16-character container names and displays the count of the containers
associated with the channel. (C)

This tool combines the functions of three CICS API commands, as follows:

• STARTBROWSE CONTAINER

• GETNEXT CONTAINER

• ENDBROWSE CONTAINER

Invocation CALL $BRCONTAINER(channel, container-list, length, count)

Usage Notes The channel must be within the scope of the program. For details, see Chapter 7,
“Using the TIBCO Service Gateway for CICS,” in the TIBCO Service Broker for z/OS
External Environments manual.

Example Following is a sample rule.

RULE EDITOR ===> SCROLL: P
C_$BRCONTAINER(CHANNEL);
_ LOCAL AREA, CONTLIST, LISTSIZE, COUNT, I;
_ --
_ ---+----
_ @MAP.ADDRESS = 0; ¦ 1
_ @MAP.SIZE = 80; ¦ 2
_ INSERT @MAP('ENVIRONMENT'); ¦ 3
_ CONTLIST = @MAP.ADDRESS; ¦ 4
_ LISTSIZE = @MAP.SIZE; ¦ 5
_ CALL $BRCONTAINER(CHANNEL, CONTLIST, LISTSIZE, COUNT); ¦ 6
_ CALL MSGLOG('$BRCONTAINER(CHANNEL, CONTLIST, LISTSIZE, COUNT)'); ¦ 7
_ CALL MSGLOG('Channel name is: ===> ' || CHANNEL); ¦ 8

channel The name (1-16 characters) of the channel whose containers
are to be browsed. channel must be the name of either the
current channel or a channel created by the session that issues
$BRCONTAINER.

container-list The pointer to an area large enough to contain all the
16-character container names returned.

length The length of the container-list area in question.

count The total number of containers associated with the channel.
container-list might not list all the names if it is not large
enough for count.
 TIBCO Object Service Broker Shareable Tools

80 |
_ CALL MSGLOG('Count of container is: ' || COUNT); ¦ 9
_ CALL MSGLOG('Containers are: '); ¦ A
_ UNTIL EQ : ¦ B
_ GET CCN_CONTLIST(CONTLIST); ¦
_ CALL MSGLOG(' ' || CCN_CONTLIST.CONTAINER1); ¦
_ I = I + 1; ¦
_ CALL @EQ(I, COUNT); ¦
_ CONTLIST = CONTLIST + 16; ¦
_ END; ¦
_ --

Following is the MAP table CCN_CONTLIST:

COMMAND==> TABLE DEFINITION

 Table: CCN_CONTLIST Type: MAP Unit: HZS80 IDgen: Y

 Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
 ---------------- - -- --- -- - ---------------- ' ---------------- - -
_ ADDRESS B 4 0 A ' _
_ LOCATION I C 16 0 L ' _
_ ' _
 ------ EXTERNAL ------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
 ---------------- ---- ----- -- ------ - - -- ----- -- - -------------
_ KEY B 4 0 0 P I B 4 0
_ CONTAINER1 C 16 0 0 C 16 0
_ CONTAINER2 C 16 0 16 C 16 0
_ CONTAINER3 C 16 0 32 C 16 0
_

TIBCO Object Service Broker Shareable Tools

BROWSER | 81
BROWSER

Displays the contents of a TIBCO Object Service Broker table for viewing. (CE)

Invocation Do one of the following:

Where:

You should set the BROWSE flag to Y to ensure the data is not locked.

Usage Notes • If you are using BROWSER to browse a table, you cannot edit an occurrence.
You can use all the other commands supported within the Browser facility.

• STEBROWSE is the interactive version of this tool used on the developer
workbench.

See Also TIBCO Object Service Broker Managing Data for additional information on the Table
Browser.

Example In the following screen, the user can browse a table containing data on the
employees of a selected region:

 Date: 2000-01-11 Employees by Region

 _ East
 _ Mideast
 _ Central
 _ Midwest
 _ West

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type BROWSER(tablespec)
<Enter>

COMMAND prompt Type EX BROWSER(tablespec)
<Enter>

From a rule Type CALL
BROWSER(tablespec)

tablespec The table name and the parameter, if necessary.
 TIBCO Object Service Broker Shareable Tools

82 |

 FCNKEYS: ENTER=GET EMPLOYEES 12=EXIT

Screen Table Definition

The fields of the screen table containing the regions are named to match the
parameters of the EMPLOYEES table, which is also parameterized by region:

 SCREEN PAINTER COMMAND ==> Scroll: P
+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
 ¬A East
 ¬A Mideast
 ¬A Central
 ¬A Midwest
 ¬A West

 Table: REGIONS Unit: BZDD0
 ROW COL FIELD NAME Type Syn Len Dec Just Fill Prot Show Rqd Hi Skip Null
 --- --- --------------- - - ---- --- - - - - - - - -
 1 2 EAST C 1 0 L _ N Y N N Y Y
 2 2 MIDEAST C 1 0 L _ N Y N N Y Y
 3 2 CENTRAL C 1 0 L _ N Y N N Y Y
 4 2 MIDWEST C 1 0 L _ N Y N N Y Y
 5 2 WEST C 1 0 L _ N Y N N Y Y

PFKEYS: 6=+FLD 18=-FLD 4=+LINE 5=CUT 19=FLD_HELP 17=PASTE 16=-LINE 13=PRINT

GETREGION Rule

When you press Enter, the following rule returns the name of the field where the
cursor is placed and calls BROWSER to display the contents of the table:

 RULE EDITOR ===> SCROLL: P
 GETREGION;
 _ LOCAL REG;
 _ ---
 _ --+--------------
 _ REG = CURSORFIELD('EMPLOYEE_SCR_C'); | 1
 _ CALL BROWSER('EMPLOYEES(' || REG ||')'); | 2
 _ ---
TIBCO Object Service Broker Shareable Tools

BROWSER | 83
Resulting Output

When you place the cursor beside Midwest and press Enter, the following data
appears for browsing:

 BROWSING TABLE : EMPLOYEES(MIDWEST)
 COMMAND ==>
 SCROLL: P
 EMPNO LNAME POSITION MGR# DEPTNO SALARY
 _ ------ ---------------------- -------------- ------ ------ ---------
 _ 22001 DRABEK CUST SUPPORT 56112 30 900.00
 _ 22007 ROEDER CUST SUPPORT 56112 30 900.00
 _ 30058 HOEGSON PRE-SALES 37219 20 675.00
 _ 34111 TERAMURA PRE-SALES 37219 20 710.00
 _ 34121 LEES CUST SUPPORT 56112 30 700.00
 _ 36162 MORANG JR OPERATOR 44798 80 575.00
 _ 41001 CROFTON TECH WRITER 80002 70 675.00
 _ 41007 STEVENSON EDUCATOR 80002 60 700.00
 _ 41009 SMITH TESTER 79912 50 600.00
 _ 44385 SOUZA SALES 37219 10 719.00
 _ 44622 SAUNDERS ACCOUNTANT 98895 40 800.00
 _ 51111 HRODEK ANALYST 79912 50 710.00
 _ 51121 CANNON ANALYST 79912 50 700.00
 _ 51162 KIMURA JR PROGRAMMER 79912 50 575.00
 _ 61219 WONG SENIOR ANALYST 79912 50 820.00
 _ 61385 DHILLON EDUCATOR 80002 60 685.00
 _ 61622 SCHULTZ SENIOR ANALYST 79912 50 800.00
 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND
 TIBCO Object Service Broker Shareable Tools

| 84
$CALLRULE

Invokes a procedural rule. (C)

Invocation CALL $CALLRULE(rulecall)

Usage Notes • You can pass a NULL value to the rule by omitting an actual value from the
list of parameters in the position of the parameter to be passed the NULL. For
example, in the sample rule below, to call ADDC without a value for B, you
would use:

CALL $CALLRULE('ADDC(' || A || ',)');

• If the rule to be invoked does not exist in a library in the current search order
of the transaction, an untrappable error occurs. You can use the
$RULE_EXISTS shareable tool to test for the existence of a rule before trying to
invoke it.

Exceptions

Example This rule receives a request to process two numbers by adding them together or
subtracting them from each other. It then calls the appropriate user-written rule to
do that processing. If one of the rules does not exist, the terminal displays an end
message.

 RULE EDITOR ===> SCROLL: P
ARITHC(A, OPERATION, B);
_ LOCAL C;
_ ---
_ $RULE_EXISTS('ADDC') = 'N'; ¦ Y N N N N
_ $RULE_EXISTS('SUBTRACTC') = 'N'; ¦ Y N N N
_ OPERATION = '+'; ¦ Y N N
_ OPERATION = '-'; ¦ Y N
_ --+------------
_ SIGNAL NORULE; ¦ 1 1
_ CALL $CALLRULE('ADDC(' || A || ' , ' || B ||')'); ¦ 1
_ CALL $CALLRULE('SUBTRACTC(' || A || ' , ' || B ||')'); ¦ 1

rulecall A character string of syntax V (variable-length character string) or
UN (Unicode) containing the name of the rule to be invoked, and,
if the rule takes one or more arguments, a left parenthesis, a list of
the comma-separated arguments, and a right parenthesis.

EXECUTEFAIL Raised if rulecall is not a string conforming to the format
described above.
 TIBCO Object Service Broker Shareable Tools

$CALLRULE | 85
_ CALL ENDMSG('THE RESULT OF ' || A || OPERATION || B || ¦ 2 2
_ ' IS ' || C); ¦
_ ---
_ ON NORULE :
_ CALL ENDMSG('RULE NOT FOUND');
_ ON EXECUTEFAIL :
_ CALL ENDMSG('CHECK SYNTAX IN RULE');

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

This is one of the rules ARITHC calls:

 RULE EDITOR ===> SCROLL: P
ADDC(A, B);
_
_ ---
_ --+--------------
_ C = A + B; ¦ 1
_ ---

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

The output message from ARITHC is similar to:

THE RESULT OF 7+2 IS 9
 TIBCO Object Service Broker Shareable Tools

| 86
CHANGE_SERVERID

Updates the server ID of any external TIBCO Object Service Broker data types. (E)

Invocation Do one of the following:

Where:

Usage Notes • This tool is especially useful when a dedicated server is required to obtain
trace information.

• CHANGE_SERVERID provides an alternate way to update the server ID.
Normally, one would update the server ID of an external table type through
the Table Definer of that type.

• The server for the external table does not have to be running.

• For DB2, the new server ID must be predefined by the system administrator
who manages DB2 table definition. Refer to TIBCO Service Gateway for DB2
Installing and Operating.

• If a match of tablename and server ID is not found, the tool returns with OK,
does not update the server ID of the table specified, and writes the details to
the MSGLOG.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type CHANGE_SERVERID
(table_name, old_serverid,
new_serverid) <Enter>

COMMAND prompt Type CHANGE_SERVERID
(table_name, old_serverid,
new_serverid) <Enter>

table_name The TIBCO Object Service Broker name of the external table.

Note: You do not have to specify the table type.

old_serverid The current value of the server ID

new_serverid The new value for the server ID

There is no check in place to ensure that the new server ID is valid. These checks
are built in under the Table Definer.
 TIBCO Object Service Broker Shareable Tools

CHANGE_SERVERID | 87
Example The server ID for DB2_EMPLOYEE is to be changed from DB2SVR1 to dedicated
server DB2SVR2 to improve access performance. From the workbench, an
authorized user goes to the EX Execute rule entry on the menu and types:

CHANGE_SERVERID(DB2_EMPLOYEE,DB2SVR1,DB2SVR2)

Accesses to the DB2_EMPLOYEE table are then serviced by server DB2SVR2.
 TIBCO Object Service Broker Shareable Tools

| 88
CHANGERULE

Makes multiple text changes across multiple rules in a library. (CE)

Invocation Do one of the following:

Usage Notes With CHANGERULE, you can make multiple text changes to all or some of the
rules in a library. It changes any occurrences of the string that appear as the
following:

• LOCAL definition

• LOCAL reference

• Table name

• Argument

• Rule name

• Total string

To use CHANGERULE, complete the following steps:

1. Enter the name of the library you are making the changes in.

2. To restrict the changes to a specific rule or set of rules, enter the rule name
with the appropriate wildcard characters.

You can use an exact string or use the wildcard characters “?” (single
character) or “*” (multiple characters) in your search string.

3. To restrict the changes to a specific unit or set of units, enter the unit name
with the appropriate wildcard characters.

You can use an exact string or use the wildcard characters “?” (single
character) or “*” (multiple characters) in your search string.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type CHANGERULE <Enter>

COMMAND prompt Type EX CHANGERULE
<Enter>

From a rule Type CALL CHANGERULE

To guard against unexpected changes, consider applying changes to a copy of the
rules library.
 TIBCO Object Service Broker Shareable Tools

CHANGERULE | 89
4. Enter the tokens or strings you want to change and the values to which you
want to change them.

Changing is done on a token basis, so you cannot change an entire string like
TABLENAME.FIELDNAME, although you can enter separate changes for
TABLENAME and FIELDNAME.

5. Press PF5 to make the changes.

Example This screen makes the following changes to all rules in library DOCMSGS2 with
names like CUSTINFO*:

• The tables $CUST and CUST are changed to $CUSTOMER and CUSTOMER.

• The fields NUM and LNAME are changed to NUMBER and LASTNAME.

 Global Change Rules Utility

 Library: DOCMSGS2 Rules Like: custinfo* Unit Like: *

 From Value To Value
 ---------------- ----------------
 $cust___________ $customer_______
 cust____________ customer________
 num_____________ number__________
 lname___________ lastname________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 ________________ ________________
 PFKEYS: 5=CHANGE 2=LOG 12=EXIT

Message Log

When you press PF5, the following text appears in the message log:

 Preparing to change from $CUST to $CUSTOMER
 Preparing to change from CUST to CUSTOMER
 Preparing to change from NUM to NUMBER
 Preparing to change from LNAME to LASTNAME

 Start scan at 1:36:32

 TIBCO Object Service Broker Shareable Tools

90 |
 Checking rule CUSTINFO1
 Token found
 Token found
 Token found
 Rule CUSTINFO1 - Changed $CUST to $CUSTOMER
 Rule CUSTINFO1 - Changed CUST to CUSTOMER
 Rule CUSTINFO1 - Changed NUM to NUMBER

 Checking rule CUSTINFO2
 Token found
 Token found
 Token found
 Rule CUSTINFO2 - Changed $CUST to $CUSTOMER
 Rule CUSTINFO2 - Changed CUST to CUSTOMER
 Rule CUSTINFO2 - Changed LNAME to LASTNAME

 End scan at 1:36:33
TIBCO Object Service Broker Shareable Tools

| 91
CLEARTABLE_APPL

Deletes occurrences from a table or table instance. (E)

Invocation Do one of the following:

Where:

Usage Notes CLEARTABLE_APPL deletes occurrences from a single table or table instance. To
clear occurrences from a set of table instances, use the $CLRTAB rule.

Using CLEARTABLE_APPL From the Workbench

• To delete all occurrences in a non-parameterized table or a table instance, type
the name of the table, the parameter if applicable, and a comma. For example:

CL Clear Table ==> EMPLOYEES(MIDWEST),

• To delete selected occurrences, type the name of the table, the parameter if
applicable, a comma, and a selection string. For example:

CL Clear Table ==> EMPLOYEES(MIDWEST),NUM>2

From the… Move the cursor to the… And…

Developer’s
workbench

CL Clear Table Option Press <Enter>. The prompt
screen appears.

CL Clear Table Option Type table[, select] <Enter>

EX Execute Rule option Type CLEARTABLE_APPL
<Enter>. The prompt screen
appears.

COMMAND prompt Type EX CLEARTABLE_APPL
<Enter>. The prompt screen
appears.

table Name of the table and, if applicable, the parameter

select [Optional] Selection string consisting of a field name, a relational
operator, and a value
 TIBCO Object Service Broker Shareable Tools

92 |
Using CLEARTABLE_APPL from the Prompt Screen

• To delete all occurrences within a non-parameterized table or a table instance,
type the name of the table and the parameter if applicable in the Table Name
field and press Enter. For example:

Table Name ==> EMPLOYEES(MIDWEST)

• To delete selected occurrences, type the name of the table and the parameter if
applicable in the Table Name field, and then type a selection string in the
Select Occurrences Where field. For example, to delete all employees named
Smith from EMPLOYEES(MIDWEST), type the following:

Rule Execute Utility CLEAR TABLE

 Table Name ===> EMPLOYEES(MIDWEST)

 Select Occurrences Where
 ===> LNAME='Smith'

Example The following example uses the CL Clear Table option to remove all occurrences
in EMPLOYEE_DEPT(10):

CL Clear Table ==> EMPLOYEE_DEPT(10),

Using the prompt screen, the following entries remove all occurrences in the
non-parameterized table EMPLOYEE that have the field DEPTNO equal to or
greater than 20:

Rule Execute Utility CLEAR TABLE

 Table Name ===> EMPLOYEE

 Select Occurrences Where
 ===> deptno>=20

When invoking CLEARTABLE_APPL from the workbench, the selection string
must be based on a field that contains numeric rather than alphabetic data. To
select on alphabetic data, execute CLEARTABLE_APPL from the prompt screen
and refer to the following section.
TIBCO Object Service Broker Shareable Tools

CLEARTABLE_APPL | 93
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 94

@CLOSEDSN

Closes and frees the current file. (C)

Invocation CALL @CLOSEDSN

Usage Notes • @WRITEDSN and @READDSN can be used to write to and read from the file.

• If @CLOSEDSN is not used after @READDSN or @WRITEDSN, the file is
closed automatically at the end of the transaction.

• If no file is open, @CLOSEDSN is treated as NOOP.

• @CLOSEDSN accesses a z/OS file using the data set name. There is no
provision for using a DDNAME with this tool instead of a data set name.

Example The following rule specifies the file to use, writes data from the example table to
it, closes the file, re-specifies it, reads back the first record from it, and prints that
record to the message log:

CLOSEDSN_1;
 _ LOCAL RECORD;
 _ --
 _ --+-----------
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 1
 _ FORALL EMPLOYEE : | 2
 _ CALL @WRITEDSN(EMPLOYEE.LNAME); |
 _ END; |
 _ CALL @CLOSEDSN; | 3
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 4
 _ RECORD = @READDSN; | 5
 _ CALL MSGLOG(RECORD); | 6
 _ CALL @CLOSEDSN; | 7
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following output:

------------------------ INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 SMYTHE

| 95
$CLRTAB

Deletes (clears) the data rows from a table or table instance without reading the
data rows. (C)

Invocation CALL $CLRTAB(tablename, parm1, parm2, parm3, parm4)

Usage Notes • $CLRTAB is a replacement for the CLRTAB tool. CLRTAB exists for backward
compatibility only.

• Because $CLRTAB does not take part in the TIBCO Object Service Broker
two-phase commit protocol, it does not clear the intent list. It affects only the
information in the specified table. Therefore, if you use $CLRTAB in a
transaction that also updates data within the cleared table, you can get the
following, possibly undesired, result: occurrences previously in the intent list
are saved to the table at the next commit after the clearing of the table.

To prevent this, commit insertions and deletions before calling $CLRTAB.

• $CLRTAB does not clear the current-occurrence buffer. It affects only the
information in the specified table. For example, if you do the following:

a. Assign values to the fields of a table

b. Run $CLRTAB

c. Update one field

d. INSERT the occurrence

the other fields of the inserted occurrence still contain the values you
assigned. If you intend that the table be empty except for your newly assigned
value, run $CLRTAB as a separate transaction followed by the update.

• The table must be of type TDS, TEM, SES, EES, SCR, or DB2.

• If called from within a transaction in BROWSE mode, $CLRTAB clears TEM,
SES, EES, and SCR tables; it does not clear TDS or DB2 tables.

tablename The name of the table to be cleared. Its syntax is C with length 16.

parm1 The value for the first data parameter of tablename.

parm2 The value for the second data parameter of tablename.

parm3 The value for the third data parameter of tablename.

parm4 The value for the fourth data parameter of tablename.
 TIBCO Object Service Broker Shareable Tools

96 |
• You must have delete (DEL) access to the table to use $CLRTAB successfully.

• If the table is parameterized, the number of data parameter values supplied
must equal the number of data parameters in the table definition. For
example, if the table has fewer than four data parameters, type two single
quotation marks ('') for each argument that is not required. If the quotation
marks are not included for the excess arguments, the transaction fails with a
ROUTINEFAIL exception.

• $CLRTAB ignores location parameters. In case of minimal table definition,
$CLRTAB does nothing.

• In the case of an SCR table, there must be exactly one parameter: the screen
name.

• $CLRTAB does not trigger any event rules during its execution.

• The parameter values supplied must be convertible to the syntax of the
parameter definitions.

• To delete a specific table instance, specify its parameter values in the
arguments parm1, parm2, parm3, and parm4.

• To delete all the data in a parameterized table, specify a set of single quotation
marks ('') for each of the arguments parm1, parm2, parm3, and parm4.

• CLEARTABLE_APPL, which you can use from the CL clear table option on
the standard workbench, can also be used to clear table data. This interactive
tool reads and deletes each table row.

Exceptions

If $CLRTAB fails, you must run it again before doing another database update to
prevent damage to the database. If $CLRTAB fails again, contact your database
administrator or TIBCO Support immediately.

DEFINITIONFAIL Raised if the definition of the table does not exist or is
inconsistent.

SECURITYFAIL Raised if the user is not authorized to delete from the
table.

ROUTINEFAIL Raised if any argument fails validation, that is, for
conversion errors or incorrect table type

It is also raised if, when clearing an instance of a table that
has multiple data parameters, some of the data parameters
for the instance are missing as arguments.
TIBCO Object Service Broker Shareable Tools

$CLRTAB | 97
Example The following example deletes a table instance from the table EMPLOYEE_DEPT:

 $CLRTAB_1;
 _
 _ ---
 _ ---+-------------
 _ CALL $CLRTAB('EMPLOYEE_DEPT','30','','',''); | 1
 _ ---

The following example deletes all the data from all table instances of the table
EMPLOYEE_DEPT:

 $CLRTAB_2;
 _
 _ ---
 _ ---+-------------
 _ CALL $CLRTAB('EMPLOYEE_DEPT','','','',''); | 1
 _ ---
 TIBCO Object Service Broker Shareable Tools

| 98
@CONFIGURESERVER

Sets and modifies the server configuration parameters for a particular server ID.
(E)

Invocation Do one of the following:

Where:

Usage Notes

See Also The appropriate TIBCO Service Gateway manual for information on installing
servers and on available server configuration parameters for each server type.

Example The following example illustrates how to add a new server ID and set its
configuration parameters.

1. Type @CONFIGURESERVER at the EX execute rule option on the workbench.

2. Press Enter. This displays existing server IDs for the specified type (in this
example, IMS is specified for type). The following screen appears:

 Command ==> Scroll P

 NUMBER SERVERTYPE SERVERID

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type
@CONFIGURESERVER(type)
<Enter>

COMMAND prompt Type EX
@CONFIGURESERVER(type)
<Enter>

type The type of server for which you want to set or modify
configuration parameters. Valid values are ADA, IMS, ORS, and
SLK.

If for type you specify… Do this

ADA, IMS Only the server IDs for the specified type appear.

ORS, SLK or nothing All server IDs appear.
 TIBCO Object Service Broker Shareable Tools

@CONFIGURESERVER | 99
 ----------- ---------- --------
 _ 5 IMS AZI11
 _ 6 IMS NJSIMS
 _ 7 IMS NJSIMS1
 _ 8 IMS NJS30
 _ 9 IMS NJS32IMS

3. Type an A beside one of the SERVERID entries.

4. Press Enter. The following screen appears:

 To complete this command:
 NUMBER SERVERTYPE SERVERID
 ----------- ---------- --------
 A 5 IMS AZI11
 Enter parameter(s):

 SERVERTYPE ===>

 SERVERID ===>

5. Enter the appropriate values for SERVERTYPE and SERVERID.

6. Press Enter.

The following screen appears, enabling you to set or modify the configuration
parameters for the server ID you specified:

 External Server Configuration Utility
 COMMAND ==>
 Server Type: IMS Server ID: IMS1
 Recommended/
 Name Value Allowed Values
 ---------------- -- -----------------
 DEBUGLEVEL 0 '0...9'
 DUMP N Y, N
 DUMPLIMIT 512 '0...2147483647'
 EXTIOBUFFERSIZE 32768 32768
 KEEPLOG N Y, N
 LOGMEDIA SCR * TBL, SCR, PRT
 TRACE N Y, N

7. After setting or modifying the parameters, press PF3 to save the settings and
return to the workbench.
 TIBCO Object Service Broker Shareable Tools

| 100
CONFIRMACTION

Issues a confirmation message for a PF key action or for a specified command. (C)

Invocation CALL CONFIRMACTION(screen, confirmmsg, key, defaultmsg, table, commandfield)

Usage Notes Text is concatenated to confirmmsg telling the user how to confirm the action.

Exceptions

Example The rules in this example do the following:

1. Display a screen for data entry.

2. Get an occurrence to be deleted.

3. Ask for confirmation of the deletion.

4. Accept or cancel the deletion depending on the answer.

DELETE_EMPLOYEE Rule

DELETE_EMPLOYEE displays the screen DELETE_EMPLOYEE and initializes
the function keys:

 RULE EDITOR ===> SCROLL: P
 DELETE_EMPLOYEE;
 _

screen The name of an existing screen

confirmmsg The confirmation message

key Enter the name of the PF key that is to be used to confirm the
action

defaultmsg A string containing the default message that is to appear when
the action is completed

table The name of the screen table used for primary commands

commandfield The name of the screen field used for primary commands

ACTION_CANCELLED Raised when the PF key used for confirmation is not
the key specified in key
 TIBCO Object Service Broker Shareable Tools

CONFIRMACTION | 101
 _ ---
 _ --+--------------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('DELETE_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('DELETE_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY DELETE_EMPLOYEE : | 3
 _ CALL PROCESS_FCNKEY('DELETE_EMPLOYEE'); |
 _ END; |
 _ ---

DEL_EMP_1 Rule

DEL_EMP_1 is the rule initiated when you press PF22. It gets the requested
occurrence, prompts for confirmation with CONFIRMACTION and deletes the
occurrence if confirmation is given:

 RULE EDITOR ===> SCROLL: P
 DEL_EMP_1;
 _
 _ ---
 _ --+--------------
 _ GET EMPLOYEE_INFO('DELETE_EMPLOYEE'); | 1
 _ GET EMPLOYEES(EMPLOYEE_INFO.REGION) WHERE EMPNO = | 2
 _ EMPLOYEE_INFO.EMPNO; |
 _ CALL CONFIRMACTION('DELETE_EMPLOYEE', | 3
 _ 'ABOUT TO DELETE EMPLOYEE ' || EMPLOYEE_INFO.EMPNO, |
 _ 'OK', '', '', ''); |
 _ DELETE EMPLOYEE(EMPLOYEE_INFO.REGION); | 4
 _ CALL SCREENMSG('DELETE_EMPLOYEE', | 5
 _ 'Deleted employee with no.: ' || EMPLOYEE_INFO.EMPNO || |
 _ '.'); |
 _ ---
 _ ON ACTION_CANCELLED :
 _ CALL SCREENMSG('DELETE_EMPLOYEE', 'Deletion cancelled');
 _ ON GETFAIL :
 _ CALL SCREENMSG('DELETE_EMPLOYEE',
 _ 'Employee does not exist, re-enter a valid employee number');
 TIBCO Object Service Broker Shareable Tools

| 102
COPY_DATA

Copies data from one table or table instance to another table or table instance. (C)

Invocation CALL COPY_DATA(srctabspec, select, desttabspec, srclocation, destlocation, overwrite)

Usage Notes • If the tables specified in srctabspec and desttabspec are parameterized, specify
only data parameters, not location parameters.

• If you specify an empty string for select, all occurrences are copied from the
table.

• When copying IDgen tables, the IDgen key values are regenerated on the
target table. IDgen key values do not change if batch utilities are used.

• The syntax for select is field_name relational_operator value.

• Specify only values for srclocation and destlocation if the data are located on
different nodes.

Exceptions

srctabspec The name of the source table or table instance

select The selection criteria to be used, if selection is required

desttabspec The name of the destination table or table instance

srclocation The name of the node where the source data is located

destlocation The name of the node where the destination data is to be
located

overwrite Specifies whether to overwrite existing occurrences, if the
table exists. Valid values are:

Y – Overwrite existing occurrences.

N – Do not overwrite existing occurrences.

NO_DATA_FOUND Raised if the source table/instance is empty

COPYFAILED Raised if anything goes wrong with the copy operation
 TIBCO Object Service Broker Shareable Tools

COPY_DATA | 103
Both exceptions should be handled by the calling rule. More information
describing the circumstances of the failure is in the @OBJECTMSG.MSG field.

Example COPY_DATA_1 Rule

The following rule copies selected occurrences from the table instance
EMPLOYEES_REMOTE(CANADA) on node NODE3, to the table
EMPLOYEE_CENTRAL on node NODE3B:

 RULE EDITOR ===> SCROLL: P
 COPY_DATA_1;
 _
 _ ---
 _ --+--------------
 _ CALL COPY_DATA('EMPLOYEES_REMOTE(CANADA)', 'MGR#=56112', | 1
 _ 'EMPLOYEE_CENTRAL', 'NODE3', 'NODE3B', ''); |
 _ ---

COPY_DATA_2 Rule

The following rule copies all instances from table EMPLOYEES_REM to
EMPLOYEES. Both tables are on the same node.

 RULE EDITOR ===> SCROLL: P
 COPY_DATA_2;
 _ LOCAL A, B;
 _ ---
 _ --+--------------
 _ FORALL $EMPLOYEES_REM : | 1
 _ A = 'EMPLOYEES_REM(' || $EMPLOYEES_REM.REGION || ')'; |
 _ B = 'EMPLOYEES(' || $EMPLOYEES_REM.REGION || ')'; |
 _ CALL COPY_DATA(A, '', B, '', '', ''); |
 _ END; |
 _ ---
 TIBCO Object Service Broker Shareable Tools

| 104
COPY_DEFN

Copies the definition of one or more objects from a source location to a destination
location. (C)

Invocation CALL COPY_DEFN(objecttype, instancename, library, environment, srclocation,
destlocation, parentonly)

objecttype The TIBCO Object Service Broker object type of the object that
is to be copied. Valid object types are:

• GLOBALFIELDLIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

instancename Specifies the name of the object that is to be copied.

library Specifies the name of the rules library where the rule is stored
if the object is a rule.

environment This argument, although not currently used, must be supplied.
You can enter a null ('') value.

srclocation Specifies the name of the node where the source object is
located.

destlocation Specifies the name of the node where the destination object is
located.

parentonly Specifies if all the objects or only the parent object should be
copied. Valid values are:

Y – Copy only the parent.

N – Copy the parent and child objects.
 TIBCO Object Service Broker Shareable Tools

COPY_DEFN | 105
Populating the @DEFNS Table

Before invoking COPY_DEFN, you must populate the @DEFNS table.

If you do not populate the table, it is populated automatically with
newname=name, newlibrary=library, and overwrite=N.

Use rules statements to populate the @DEFNS table, before calling COPY_DEFN.

Parameters of @DEFNS

The parameters of the @DEFNS table are as follows:

Fields of @DEFNS

The fields of the @DEFNS table are as follows:

OBJECTTYPE The type of object being copied

INSTANCENAME The name of the object being copied

NAME The name of the object to be copied

NEWNAME The name of the new object

TYPE The type of the object (for example, rule or screen). If the object
is a table, use the subtype name, such as TDS_TABLE or
SCR_TABLE, or execute the OBTAINSUBTYPE(objtype, objname,
lib, env, srcloc) rule to determine the subtype name, where the
following are the arguments:

• objtype – The general type of the object (for example,
TABLE).

• objname – The name of the object.

• lib – The library, if the object is a rule.

• env – The environment (default is 3270).

• srcloc – The node where the object exists.

LIBRARY The name of the library where the rule resides, if the object is a
rule

NEWLIBRARY The name of the library where the rule is copied
 TIBCO Object Service Broker Shareable Tools

106 |
Usage Notes • COPYDEFN is an interactive version of this tool used on the workbench.

• You must specify values for srclocation and destlocation.

• The definition is copied to segment 0 on the destination location.

• Specify a value for parentonly if the object is composed of one or more other
objects, for example, a report is composed of report tables.

• The definition must not exist on the destination location.

• References to event rules and reference tables are copied, not the rules and
tables themselves.

• Help text is copied for a screen since it is part of the definition of the screen.

• The original statistics for the object or object set (for example, CREATED,
AUTHOR, UNIT, and SEGMENT) are also copied to the new library.

• If you are copying to a remote node, your user ID must be identical on both
nodes or security complications could occur.

Exceptions

Example The following rule copies the definition of the screen NEW_EMPLOYEES and its
child objects from NODE1 to NODE2:

 RULE EDITOR ===> SCROLL: P
 COPY_DEFN_1;
 _
 _ ---
 _ --+--------------
 _ @DEFNS.NAME = 'NEW_EMPLOYEES'; | 1
 _ @DEFNS.NEWNAME = 'NEW_EMPLOYEES'; | 2
 _ @DEFNS.TYPE = 'SCREEN'; | 3
 _ @DEFNS.LIBRARY = ''; | 4
 _ @DEFNS.NEWLIBRARY = ''; | 5
 _ @DEFNS.VERSIONED = 'N'; | 6
 _ @DEFNS.OVERWRITE = 'Y'; | 7
 _ INSERT @DEFNS('SCREEN', 'NEW_EMPLOYEES'); | 8

VERSIONED Y if the object is a rule; otherwise, N

OVERWRITE Y if an object that already exists should be overwritten

COPYFAILED Raised if anything goes wrong with the copy operation. The
exception should be handled by the calling rule.

Further information describing the circumstances of the failure
is in the @OBJECTMSG.MSG field.
TIBCO Object Service Broker Shareable Tools

COPY_DEFN | 107
 _ CALL COPY_DEFN('SCREEN', 'NEW_EMPLOYEES', '', '', 'NODE1', | 9
 _ 'NODE2', 'N'); |
 _ ---
 TIBCO Object Service Broker Shareable Tools

| 108
COPYDEFN

Copies the definition of one or more TIBCO Object Service Broker objects or object
sets. (E)

Invocation Do one of the following:

Usage Notes • COPY_DEFN is the callable version of this tool.

• COPYDEFN cannot be run in browse mode.

• Help text is copied for a screen since it is part of the definition of a screen. The
definition is copied to segment 0 on the destination location. The original
statistics for the object or object set (for example, CREATED, AUTHOR, UNIT,
and SEGMENT) are also copied. References to event rules and reference tables
are copied, not the rules and tables themselves.

• PF keys and their associated rules are not copied since they are not part of the
definition of a screen.

• Invoking COPYDEFN displays the following screen:

 COPY DEFINITION
 COMMAND ==> Scroll: P

 Source Destination
 --------------------------------- --------------------------
 Location : Location:
 Default Library: Library :
 Environment :
 Over Parent
 Name Type Library x Name xwrite Only
 ---------------- ---------------- -------- x ---------------- x - -
 _ x x
 _ x x
 _ x x
 _ x x
 _ x x
 _ x x
 _ x x
 _ x x

From the… Move the cursor to the… And…

Developer’s
workbench

CD Copy Defn option Press <Enter>

EX Execute Rule option Type CD <Enter>

COMMAND prompt Type EX CD <Enter>
 TIBCO Object Service Broker Shareable Tools

COPYDEFN | 109
 PFKEYS: 2=LOG 4=COPY 7=UP 8=DOWN 3=EXIT 12=EXIT 5=SELECT OBJECTS

To view additional fields from the screen, position your cursor in the appropriate
section and use PF11 to scroll right. You can type data directly into the fields
displayed or you can use PF5 from within the Copy Definition screen to display a
screen that you can use to select the objects that you require.

Copy Definition Screen

The Copy Definition screen is composed of five sections. Each section is described
below.

Optional base settings

This section identifies any outside nodes and rules libraries for the copy process.
Information entered here applies to all source and destination objects listed in
subsequent sections, unless specifically overridden on a line-by-line basis. Entries
in this section are optional, as the cursor immediately homes to the next section—
Source Object Attributes—when executing this tool.

Source Location If the objects are to be copied to a remote location,
type the name of the node where the source
objects are located.

Source Default

Library

Using this field, you can specify a default library
that contains the rules to be copied. Type in the
name directly, or press PF1 for a list of available
libraries. The default library can be overridden on
a line-by-line basis by individual entries in the
LIBRARY field.

Source Environment This field is currently not in use.

Destination Location If the objects are to be copied from a source
location, type the name of the node where the
objects are being copied.

Destination Library If the object is a rule, enter the name of the library
where the rule is copied. Use PF1 for a list of valid
values.
 TIBCO Object Service Broker Shareable Tools

110 |
Source Object Attributes

Each line in this section names a source object and gives additional information
about it. You can enter in this information a line at a time or pull it all across from
the section screen.

Destination Object Attributes

This section is used to enter information about the destination objects.

Copy Attributes

This section contains further information relating to the copy objects.

Name The name of the object to be copied. Use PF5 to display a screen for
selection. Refer to Select Objects Screen on page 112 for more
information about selecting objects.

Type The name of the object type. Use PF1 a list of valid values.

Library If the object is a rule, type the name of the rules library where the
rule to be copied is located. Use PF1 for a list of valid values.
Entries in this field override any value displayed in the Source
Default Library field.

Name The name that the copied object is to be called. If the object is to be
copied to a remote location, you do not have to specify a new
name. If you do not specify a value, the name of the source object is
used.

Overwrite If the object exists, specify whether to overwrite the existing
definition. Valid values are:

Y – Overwrite existing definition.

N – Do not overwrite existing definition.
TIBCO Object Service Broker Shareable Tools

COPYDEFN | 111
Object’s Parent Attributes

This section contains further information relating to the object’s parent attributes.

PF Keys Available

You can use the following PF keys from within this screen:

Parent Only If the object is composed of child objects (for example, an
object set is composed of objects), specify if the definitions of
the child objects should also be copied. Valid values are:

Y – Copy only the definition of the parent.

N – Copy the definitions of the parent and children without
specifying the child objects as individual items.

Name If you are copying a parent object and a child object and you are
renaming the child object in the destination location, type the
name of the source parent object on the line where you are
specifying the child object information.

Use this only if you still want the child object to be a part of the
parent definition. References to the child object in the definition of
the parent object are then changed to refer to the child by its new
name.

Type Specifies the object type of the object specified in the Name field.

PF2 Displays the message log.

PF3 Exits the screen and return to the workbench.

PF4 Copies the definition as defined.

PF5 Displays a screen to be used to select objects.

PF7 Scrolls up.

PF8 Scrolls down.

PF10 Scrolls left.

PF11 Scrolls right.
 TIBCO Object Service Broker Shareable Tools

112 |
Select Objects Screen

Pressing PF5 from the Copy Definition screen displays the following screen:

 O b j e c t S e l e c t i o n
 COMMAND ==>
 Location: Select All: N
 Library (for RULES): List Children: N
 Presentation Environment:
 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME ____ ________________ AND unspecified |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll:
 Name Type Library Environment Unit
 ---------------- ---------------- ---------------- ---------------- --------

 PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL

Specify the following information in the fields:

PF12 Exits the screen and return to the workbench.

Location Specify the name of the node where the selection criteria
are applied.

Library If the selection list is to contain rules, type the name of the
rules library that is searched. Press PF1 for a list of valid
values.

Presentation

Environment

This field is currently not in use.
TIBCO Object Service Broker Shareable Tools

COPYDEFN | 113
Select All Specify whether all the items displayed, based on the
selection criteria, should be copied into the Copy
Definition screen.

Y – Copy all items displayed.

N – Do not copy all items displayed.

List Children Specify if you want to list all the child objects that an object
is composed of. Valid values are:

Y – List all child objects.

N – Do not list child objects.

The middle section of the screen can be used to select the
items to be copied or to narrow down the selection list.
You can use more than one type of selection criteria for
each object type and you can specify multiple object types
within one session. For a list of valid values for each of
these fields, press PF1.

When you use Enter after specifying the selection criteria,
the selected items appear in the bottom portion of the
screen. You can select the objects displayed in this section
by typing an S in the line command field beside the
objects.

NAME If you know the name of the item, in the Op field type the
logical operator to be used. In the Value field, type the
name of the object.

TYPE The name of the object type. Use PF1 for a list of valid
values. If you do not supply an object type, you must
specify a value in at least one of the other selection fields.

If you specify an object type and no further selection
values, a listing of the items for the object type defined in
your TIBCO Object Service Broker database appears for
further selection.

UNIT In the Op field, type the logical operator to be used. In the
Value field, type the name of the Unit associated with the
object.

AUTHOR In the Op field, type the logical operator to be used. In the
Value field, type the name of the author of the object.
 TIBCO Object Service Broker Shareable Tools

114 |
PF Keys Available

You can use the following PF keys from within this screen:

Example This example copies the EMPLOYEES_3DPARM table to the EMPTABLE_3NEW
table.

 COPY DEFINITION
 COMMAND ==> Scroll: P

 Source Destination
 --------------------------------- --------------------------
 Location : Location:
 Default Library: Library :
 Environment :
 Over Parent
 Name Type Library | Name |write Only
 ---------------- ---------------- -------- | ---------------- | - -
 _ EMPLOYEES_3DPARM TABLE | EMPTABLE_3NEW | N N
 _ | |
 _ | |
 _ | |
 _ | |
 _ | |
 _ | |
 _ | |
 _ | |

 PFKEYS: 2=LOG 4=COPY 7=UP 8=DOWN 3=EXIT 12=EXIT 5=SELECT OBJECTS

Message Log

Press PF4 to copy the definition. Pressing PF2 displays a log similar to the
following listing the results of the copy.

 ------------------------- INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 **** Begin to copy object “EMPLOYEES_3DPARM” ****
 Object 'EMPLOYEES_3DPARM' is copied to 'EMPTABLE_3NEW'
 **** Copy process ended ****

Enter Updates the screen.

PF3 Saves the selection and returns to the Copy Definition screen.

PF12 Exits without selecting objects and returns to the Copy Definition
screen.
TIBCO Object Service Broker Shareable Tools

COPYDEFN | 115
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 116

COPYLIB

Copies all the rules from a source library to a destination library. (C)

Invocation CALL COPYLIB(source_lib, dest_lib)

Usage Notes • The local variable MSG must be declared by the calling rule. It contains a
message indicating how many rules were copied, if the copy is successful, or a
message indicating that the copy failed.

• If a rule in the copied library exists in the destination library it is overwritten.

Exceptions

Example The following rule copies the rules from the USR40 library to the DOCUMENT
library and returns the status of the copy to the ENDMSG:

 RULE EDITOR ===> SCROLL: P
 COPYLIB_EX;
 _ LOCAL MSG;
 _ ---
 _ --+--------------
 _ CALL COPYLIB('USR40', 'DOCUMENT'); | 1
 _ CALL ENDMSG(MSG); | 2
 _ ---
 _ ON LIBCOPYFAILED:
 _ CALL ENDMSG(MSG);

It returns the following ENDMSG:

Library copy succeeded, 75 rules copied.

source_lib The name of the source library

dest_lib The name of a predefined destination library

LIBCOPYFAILED Returns a message if the copy fails.

The exception must be handled by the calling rule.

| 117
COPYTABLE_APPL

Copies selected occurrences from a source table to a destination table. (E)

Invocation Do one of the following:

The following screen appears when COPYTABLE_APPL is executed:

 Rule Execute Utility COPY TABLE

 Source Table Name ===>

 Destination Table Name ===>

 Select Occurrences Where
 ===>

 PFKEYS: ENTER=COPYTABLE 1=HELP 3=EXIT 12=EXIT

Usage Notes • Only those fields with the same name in both the source and destination
tables are copied. If the occurrence already exists in the destination table, the
occurrence is replaced.

• COPYTABLE_APPL fails if source data is too large for a destination field.

• When copying IDgen tables, the IDgen key values are regenerated on the
target table. IDgen key values are not changed if batch utilities are used.

From the… Move the cursor to the… And…

Developer’s
workbench

CT Copy Table option Press <Enter>

EX Execute Rule option Type CT <Enter>

COMMAND prompt Type EX CT <Enter>
 TIBCO Object Service Broker Shareable Tools

118 |
• An empty string specified for Select Occurrences results in the selection of all
occurrences.

• The syntax for selection is <field name> <relational operator> <value>.

Example The following entries to the prompt screen copy all occurrences from the table
EMPLOYEE_DEPT(10) to the table EMPLOYEE_DEPT(30):

 Rule Execute Utility COPY TABLE

 Source Table Name ===> EMPLOYEE_DEPT(10)

 Destination Table Name ===> EMPLOYEE_DEPT(30)

 Select Occurrences Where
 ===>

 PFKEYS: ENTER=COPYTABLE 1=HELP 3=EXIT 12=EXIT
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 119

COUNTOCCURRENCES

Returns the number of occurrences that meet a selection criteria. (F)

Invocation count = COUNTOCCURRENCES(table, selection)

Usage Notes • COUNTOCCURRENCES can be used for TDS, parameter (PRM), temporary
(TEM), calculation (CLC), session (SES) tables, and Execution Environment
(EES) tables.

• COUNTOCCURRENCES cannot be used for remote tables.

• If the table is parameterized, specify the parameter values in the selection
criteria.

• You can base the selection criteria on any field of the table. For optimum
performance, base the selection on a secondary index field.

Example The following rule returns the number of employees who work for a regional
company. The EMPLOYEE_REGION table is parameterized by region and MGR#
is a secondary index field.

 COUNT_STAFF(AREA, MANAGER);
 _ LOCAL SELECTION;
 _ ---
 _ --+--------
 _ SELECTION = 'REGION = ''' || AREA || ''' & MGR# = ''' || | 1
 _ MANAGER || ''''; |
 _ RETURN(COUNTOCCURRENCES('EMPLOYEE_REGION', SELECTION)); | 2
 _ ---

If you executed this rule from the workbench and passed in the values of
MIDWEST for the argument AREA and 56112 for the MGR#, the following result
is returned at the bottom of your screen:

8:41:03 Result of rule COUNT_STAFF is 3

count The number of occurrences meeting the selection criteria.

table The table name.

selection The selection criteria. Its syntax can be C (fixed-length character
string), V (variable-length character string), or UN (Unicode).

| 120
$CREATE_DATE

Converts a string with a specified format to a value of semantic type date. (F)

Invocation date = $CREATE_DATE(pic_string, date_string)

Usage Notes • The following lists valid date formats:

date On return, contains the date. Its syntax is B (binary).

pic_string The date format to be used. Its syntax is C (fixed-length character
string), UN (Unicode), or V (variable-length character string).

date_string The string that is to be converted. Its format must be the same as
the format given in pic_string. Its syntax is C, UN, or V.

Format
Code Meaning Example

W One- or two-digit week # (of year), with no leading
0.

1 or 25

WW Two-digit week # (of year). 01

WWW Abbreviated weekday. Thur

WWWW Full weekday. Thursday

M Numeric month, with no leading 0 (1 or 2 digits). 3 or 10

MM Numeric month (2 digits). 02

MMM Abbreviated month. Mar

MMMM Full month. March

D Day in month, with no leading 0 (1 or 2 digits). 5 or 14

DD Day in month (2 digits). 02

DDD Day in year (3 digits). 074

 YY Last two digits in a year. 98

YYYY Full year. 2000
 TIBCO Object Service Broker Shareable Tools

$CREATE_DATE | 121
• A separator character can be any one of the following:

/ \ ; : , . * - blank

• If no date format is specified, the default installation date format is used.

• A week is defined to begin on a Monday and end on the following Sunday.
However, January 1st always begins week one, regardless of where it falls in
the week, and week two starts on the following Monday.

Exceptions

Example The following rule:

• Inserts the occurrences from the table EMPLOYEE into the table
EMPLOYEE_DATE

• Creates values with the date semantic type, for the field HIRE_DATE

COPY_EMPLOYEE;
 _
 _ ---
 _ --+--------------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATE.* = EMPLOYEE.*; |

QQ Two-character quarter. 2Q

JD Julian date. 98.074

CC Two-digit century. 19

Format
Code Meaning Example

You can specify just a portion of a date field within your mask (for example,
entering only MMMM displays the month). Partial date occurrences cannot be
accessed using a GET or FORALL statement, as the data cannot be interpreted as
a complete date. At least the year portion of a date must be present in the mask to
make it accessible to these statements.

CONVERSION Signaled if date_string does not match pic_string.

OVERFLOW Raised if the resulting date cannot be expressed as a semantic
type date, binary 4.

RANGERROR Signaled if pic_string contains invalid characters, or if it is not
in a valid date format.
 TIBCO Object Service Broker Shareable Tools

122 |
 _ EMPLOYEE_DATE.HIRE_DATE = $CREATE_DATE('YYYY/DD/MM', |
 _ EMPLOYEE.HIREDATE); |
 _ INSERT EMPLOYEE_DATE; |
 _ COMMIT; |
 _ END; |
 _ ---
TIBCO Object Service Broker Shareable Tools

| 123
CREATEUSERS

Creates a list of new user IDs and adds them to the TIBCO Object Service Broker
system. (E)

Invocation Do one of the following:

Where
:

Prerequisites To use CREATEUSER, a user must satisfy all the following:

• The user must have CREATE_USER capability, that is, be either a level-7 user
or a SecAdmin with CREATE_USER capability.

• The table that stores the list of user IDs to be created must have a field called
HURON_USERID with syntax C and length 8.

• The user should have sufficient security clearance to access the profile of the
MODELUSERID.

TIBCO Object Service Broker checks for the above conditions and generates error
messages accordingly if they are not fulfilled.

Usage Notes • You can extract the user IDs from elsewhere and put them into the
HURON_USERID field of the input table (that is, the table can be an import
(IMP) table).

• Create the model user profile using the MANAGE USERS area of the
SECURITY MANAGEMENT MAIN MENU, which you access through the SE
Security Administration option of the workbench. This enables the login,

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type CREATEUSERS
(input_table, modeluser)
<Enter>

COMMAND prompt Type EX CREATEUSERS
(input_table, modeluser)
<Enter>

input_table The name of a table containing the user IDs to be added.

modeluser The name of a model user profile on which the new user IDs are to
be based
 TIBCO Object Service Broker Shareable Tools

124 |
print, and other parameters specified for the model user profile to be inherited
by the new user IDs. Individual users can further customize their profiles
when they log in to the system.

Example Input Table

The following shows a sample input table. It contains a list of the user IDs to be
added to the system:

 EDITING TABLE : NEWUSERS
 COMMAND ==>
 SCROLL: P
 HURON_USERID
 _ --------
 _ BJ000
 _ BJ002
 _ BJ003
 _ BJ004
 _ BJ005
 _ BJ006
 _ BJ008
 _ BJ009
 _ BJ014
 _ BJ019
 _ BJ020
 _ BJ021
 _ BJ024
 _ BJ033

 PFKEYS: 4=INSERT 16=DELETE 5=FIND NEXT 6=CHG NEXT 18=EXCLUDE 3=SAVE 12=CANCEL

User Profile

The following shows a sample user profile. All the new user IDs in the sample
input table take on the characteristics of this model profile:

 Command ===>
 --
 MANAGE USERID: EAG00 (Clearance = 1)
 --
 Full Name: Gardiner, Earl Phone: 305-842-3309 Timezone: 0
 CURRENT GROUP: DEVELOPERS SecAdmin: DBA

 Change Password Logon Parameters
 ------------------------------- -----------------------------------
 Password: Logon Restricted from 0 to 0
 Verify Password: Session Menu: DEVELOPER
 Security Group: DEVELOPERS
 Library:
TIBCO Object Service Broker Shareable Tools

CREATEUSERS | 125
 Startup Rule:
 Print Parameters Action: Browse: Search:

 Destination: HRNPRT9 Application Parameters
 Form: Class: Y ---------------------------------------
 FCB: UCS: Character Set: Fold PFkeys: N
 Number of Copies: 1 Borrower: Y Default Unit: EAG00
 External Writer: TDS Segment: 0 HDS Segment: 1
 File:
 PFKEYS: 1=HELP ENTER=CHANGE GROUP 5=MEMBERSHIPS 3=SAVE 12=CANCEL 22=DELETE

Message Log

CREATEUSER was run giving the sample table and model user ID from above as
input parameters. Here is the confirmation of a successful execution as it appears
in the message log:

 ------------------------ INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 CREATING USERIDS:

 Userid BJ000 has been created
 Userid BJ002 has been created
 Userid BJ003 has been created
 Userid BJ004 has been created
 Userid BJ005 has been created
 Userid BJ006 has been created
 Userid BJ008 has been created
 Userid BJ009 has been created
 Userid BJ014 has been created
 Userid BJ019 has been created
 Userid BJ020 has been created
 Userid BJ021 has been created
 Userid BJ024 has been created
 Userid BJ033 has been created

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT 12=EXIT 13=PRINT
 TIBCO Object Service Broker Shareable Tools

| 126
CROSSREFSEARCH

Searches the cross reference index of the specified library to answer a query. (C)

Invocation CALL CROSSREFSEARCH(querystring, querykind, library)

querystring A string of one or more names or keywords (the wild card
characters asterisk (*) and question mark (?) can be used if they
are enclosed in single quotation marks), the AND (&) or OR (|)
logical operators, the NOT operator or the not sign (¬), and the
open and closed parentheses symbols

querykind A string specifying the type of search is to be carried out on the
global cross reference. The valid search types are:

RULE – Searches for objects that refer to the named rules.

TABLE – Searches for objects that refer to the named tables. The
search can be based on a whole table, on the field of a table, or on
just a field. Enter one of the following for querystring:

— A table name (for example, EMPLOYEE)

— A table name and a field name (for example,
EMPLOYEE.DEPTNO)

— A field name (for example, *.DEPTNO)

SCREEN – Searches for objects that refer to the screens named in
the query.

REPORT – Searches for objects that refer to the reports named in
the query.

GLOBALFIELD – Searches for objects that refer to the global
fields named in the query.

OBJECTSET – Searches for objects that refer to the Object Sets
named in the query.

LIBRARY – Searches for objects that refer to the libraries named in
the query.

MENU – Searches for objects that refer to the menus named in the
query.

SIGNAL – Searches for rules that raise the exceptions named in
the query.
 TIBCO Object Service Broker Shareable Tools

CROSSREFSEARCH | 127
Usage Notes • SEARCH is the interactive version of this tool used on the developer’s
workbench. It also searches the cross reference index.

• Before using CROSSREFSEARCH, the cross reference index must first be built
for the library. Refer to REFMAKER for more information about building the
index.

• The local variable MSG must be declared by the calling rule.

• The results of the search are sent to the temporary table @RESULTLIST.

Exceptions

Example The following rule searches the SYSADMIN library for the FCNKEY table and
sends the results to the message log:

 CROSSREFSEARCH_1;
 LOCAL MSG;
 _ --
 _ --+-----------
 _ CALL CROSSREFSEARCH('FCNKEYS', 'TABLE', 'SYSADMIN'); | 1
 _ CALL $RESETPRINT(60, 80, 1 'SCR'); | 2
 _ FORALL @RESULTLIST : | 3
 _ CALL $PRINTLINE(PAD(@RESULTLIST.INDEX, 4, ' ', 'R') || |
 _ PAD(@RESULTLIST.NAME, 18, ' ', 'R') || ' ' || |
 _ @RESULTLIST.TYPE); |
 _ END;
 _ --

Resulting Output

Pressing PF2 displays the following output:

 -----------------------------INFORMATIONAL MESSAGE LOG-----------------
 COMMAND ===> SCROLL: P

 ---------------------------------NEW PAGE------------------------------

 1 FCNKEY_MSG RULE

library A string consisting of the name of the TIBCO Object Service
Broker library to search

SYNTAX_ERROR Raised when there is a syntax error in the querystring, the
value for querystring is invalid, the value for querykind is
invalid, or the library does not exist. In each of these cases, a
message is placed in MSG.
 TIBCO Object Service Broker Shareable Tools

128 |
 2 PROCESS_FCNKEY RULE
 3 RESTORE_ENTRY RULE
 4 SCRDEF_INIT RULE
 5 WRITE_FCNKEYS RULE
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 129

CURSOR_FLDCOL

Returns the relative column number within the field containing the cursor. (F)

Invocation column = CURSOR_FLDCOL(screen)

Usage Notes • Relative column numbering begins with 1.

• A zero (0) is returned if the cursor is not in a valid field.

Example The following rule fills the example screen with data from the example table,
displays it, determines the column where the cursor is positioned, and prints it to
the message log:

 CURSOR_FLDCOL_1;
 _ LOCAL COLUMN_NUM;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_SCR'); | 2
 _ INSERT FCNKEY_SPECS('EMPLOYEE_SCR'); | 3
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_SCR: | 4
 _ CALL PROCESS_FCNKEY('EMPLOYEE_SCR'); |
 _ END; |
 _ COLUMN_NUM = CURSOR_FLDCOL('EMPLOYEE_SCR'); | 5
 _ CALL MSGLOG(| 6
 _ 'THE CURSOR IS POSITIONED ON COLUMN NUMBER ' || |
 _ COLUMN_NUM); |
 _ --

column On return, contains the column number. Its syntax is B (binary)
with length 2.

screen A character string specifying the name of the screen. Its syntax is
C (fixed-length character string) with length 16.

| 130
CURSORFIELD

Returns the name of the field where the cursor is located. (F)

Invocation field_name = CURSORFIELD(screen)

Usage Notes An empty string is returned if the cursor is not positioned on a field on the
specified screen.

Example This rule fills the example screen with data from the example table, displays it,
determines the name of the current field, and prints it to the message log:

 CURSORFIELD_1;
 _ LOCAL FIELD_NAME;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_SCR'); | 2
 _ INSERT FCNKEY_SPECS('EMPLOYEE_SCR'); | 3
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_SCR: | 4
 _ CALL PROCESS_FCNKEY('EMPLOYEE_SCR'); |
 _ END; |
 _ FIELD_NAME = CURSORFIELD('EMPLOYEE_SCR'); | 5
 _ CALL MSGLOG(| 6
 _ 'THE CURSOR IS POSITIONED ON THE SCREEN FIELD ' || |
 _ FIELD_NAME); |
 _ --

field_name On return, contains the name of the field. Its syntax is
C (fixed-length character string) with length 16.

screen The name of the screen. Its syntax is C with length 16.
 TIBCO Object Service Broker Shareable Tools

CURSORFIELD | 131
Sample Output 1

Executing this rule displays the following output:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033

 On your screen, a single highlighted character identifies the cursor position.

Sample Output 2

After the rule ends, press PF2 to display the following output.

 ------------------------- INFORMATIONAL MESSAGE LOG -------------------
 COMMAND ===> SCROLL ===> P
 THE CURSOR IS POSITIONED ON THE SCREEN FIELD LNAME
 TIBCO Object Service Broker Shareable Tools

| 132
CURSOROCC#

Returns the occurrence number within the screen table where the cursor is
positioned. (F)

Invocation occ_num = CURSOROCC#(screen)

Usage Notes • A zero (0) is returned if the cursor is not on an occurrence on the screen.

• If the screen table is populated with occurrences and the cursor is positioned
on a title row, CURSOROCC# returns an occurrence number of 1. If the screen
table is not populated with occurrences and the cursor is positioned on a title
row, CURSOROCC# returns an occurrence number of 0.

Example The following rule fills the example screen with data from the example table,
displays it, determines the number of the occurrence within the table where the
cursor is positioned, and prints it to the message log:

 CURSOROCC#_1;
 _ LOCAL OCCURRENCE_NUM;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_SCR'); | 2
 _ INSERT FCNKEY_SPECS('EMPLOYEE_SCR'); | 3
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_SCR: | 4
 _ CALL PROCESS_FCNKEY('EMPLOYEE_SCR'); |
 _ END; |
 _ OCCURRENCE_NUM = CURSOROCC#('EMPLOYEE_SCR'); | 5
 _ CALL MSGLOG(| 6
 _ 'THE CURSOR IS POSITIONED ON OCCURRENCE NUMBER ' || |
 _ OCCURRENCE_NUM); |
 _ --

occ_num On return, contains the occurrence number. Its syntax is B (binary)
with length 2.

screen A character string and specifies the name of the screen. Its syntax is
C (fixed-length character string), with length 16.

There are differences between where z/OS and Open Systems applications allow
the cursor to be positioned.
 TIBCO Object Service Broker Shareable Tools

CURSOROCC# | 133
Sample Output

Executing this rule displays the following output:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033

The cursor position is indicated by a bold letter.

Message Log

After the rule ends, press PF2 to display the following output:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE CURSOR IS POSITIONED ON OCCURRENCE NUMBER 1
 TIBCO Object Service Broker Shareable Tools

| 134
CURSOROCC_VALUE

Returns the value of a particular screen field that is selected by the cursor. (F)

Invocation selected_value = CURSOROCC_VALUE(screen, scrtbl, scrfld)

Example The rules below do the following:

1. Display the EMPLOYEE_SCR screen.

2. Display the EMPLOYEE_INFORM screen when a specific function key is used
from the EMPLOYEE_SCR screen.

EMPLOYEE_CURSOR Rule

 EMPLOYEE_CURSOR;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_SCR'); | 2
 _ INSERT FCNKEY_SPECS('EMPLOYEE_SCR'); | 3
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_SCR: | 4
 _ CALL PROCESS_FCNKEY('EMPLOYEE_SCR'); |
 _ END; |
 _ --

selected_value On return, contains the value of the field.

screen A character string specifying the screen name.

scrtbl A character string specifying the screen table.

scrfld A character string specifying the screen field.
 TIBCO Object Service Broker Shareable Tools

CURSOROCC_VALUE | 135
Sample Output 1

Executing this rule displays the following screen:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033
 NELSON 81000
 CAREY 81001
 CHIU 81003
 LYNGBAEK 81014
 KINGSON 81019

 FCNKEYS: 3=END 14=EXPAND

CURSOR_EXPAND Rule

Positioning the cursor anywhere on the line containing the employee number and
pressing PF14 (Expand) invokes the CURSOR_EXPAND rule. This rule uses
CURSOROCC_VALUE:

CURSOR_EXPAND;
 _ LOCAL SELECTED_VALUE;
 _ --
 _ --+-----------
 _ SELECTED_VALUE = CURSOROCC_VALUE('EMPLOYEE_SCR', | 1
 _ 'EMPLOYEE_DATA', 'EMPNO'); |
 _ GET EMPLOYEE WHERE EMPNO = SELECTED_VALUE; | 2
 _ CALL DELETESCREENDATA('EMPLOYEE_INFORM'); | 3
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_INFORM'); | 4
 _ INSERT FCNKEY_SPECS('EMPLOYEE_INFORM'); | 5
 _ EMPLOYEE_INFO.* = EMPLOYEE.*; | 6
 _ INSERT EMPLOYEE_INFO('EMPLOYEE_INFORM'); | 7
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_INFORM: | 8
 _ CALL PROCESS_FCNKEY('EMPLOYEE_INFORM'); |
 _ END; |
 _ --
 TIBCO Object Service Broker Shareable Tools

136 |
Sample Output 2

Positioning the cursor on the line of EMPNO 80003 displays
EMPLOYEE_INFORM as follows:

 Employee Information
 EMPNO: 80003
 LNAME: CHANG
 POSITION: Assoc Analyst
 MGR# : 83020
 DEPTNO: 10
 SALARY: 589.00
TIBCO Object Service Broker Shareable Tools

| 137
CURSORTABLE

Returns the name of the screen table where the cursor is positioned. (F)

Invocation table_name = CURSORTABLE(screen)

Usage Notes An empty string is returned if the cursor is not positioned in a screen table.

Example The following rule fills the example screen with data from the example table,
displays it, determines the name of the screen table where the cursor is
positioned, and prints it to the message log:

 CURSORTABLE_1;
 _ LOCAL TABLE_NAME;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('EMPLOYEE_SCR'); | 2
 _ INSERT FCNKEY_SPECS('EMPLOYEE_SCR'); | 3
 _ UNTIL EXIT_DISPLAY DISPLAY EMPLOYEE_SCR: | 4
 _ CALL PROCESS_FCNKEY('EMPLOYEE_SCR'); |
 _ END; |
 _ TABLE_NAME = CURSORTABLE('EMPLOYEE_SCR'); | 5
 _ CALL MSGLOG(| 6
 _ 'THE CURSOR IS POSITIONED ON THE SCREEN TABLE ' || |
 _ TABLE_NAME); |
 _ --

table_name On return, contains the name of the screen table. Its syntax is
C (fixed-length character string) with length 16.

screen A character string specifying the name of the screen. Its syntax
is C with length 16.

There are differences between where z/OS and Open Systems applications allow
the cursor to be positioned.
 TIBCO Object Service Broker Shareable Tools

138 |
Sample Output

Executing this rule displays the following output:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024

Message Log

The cursor position is indicated by a bold letter. After the rule ends, press PF2 to
display the following output:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE CURSOR IS POSITIONED ON THE SCREEN TABLE EMPLOYEE_DATA
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 139

DASTATS

Returns statistical data collected by the Data Object Broker for an individual
segment. (F)

Invocation string = DASTATS(segment)

Usage Notes A sample rule S6BSEGSTATS is supplied in library SAMPLE. This rule retrieves
the data from the Data Object Broker and uses MAP and TEM table functionality
to display the data using the Table Browser. The associated tables are
S6BSEGSTAT_MAP, S6BSEGSTAT_TEM and S6BSEGSTATN_MAP.

string On return contains the statistical data.

segment A valid segment number.

 TIBCO Object Service Broker Shareable Tools

| 140

DATACOM

Displays a menu to manage the definition of CA-Datacom data. (E)

Invocation Do one of the following:

Executing DATACOM displays the following screen:

 CA-Datacom Table Management Facility

 _ Generate metadata tables from CA-Datacom definitions

 _ Display table/serverid information

 _ Extract CA-Datacom information

 _ Generate DB2 CREATE TABLE from CA-Datacom definitions

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type DATACOM <Enter>

COMMAND prompt Type EX DATACOM <Enter>

| 141
$DATE_DEFAULT

Returns the default date format used by the installation. (F)

Invocation string = $DATE_DEFAULT

Usage Notes The valid date formats are listed here:

string On return, contains the default date format.

Format
Code Meaning Example

W One- or two-digit week # (of year), with no leading 0. 1 or 25

WW Two-digit week # (of year). 01

WWW Abbreviated weekday. Thur

WWWW Full weekday. Thursday

M Numeric month, with no leading 0 (1 or 2 digits). 3 or 10

MM Numeric month (2 digits). 02

MMM Abbreviated month. Mar

MMMM Full month. March

D Day in month, with no leading 0 (1 or 2 digits). 5 or 14

DD Day in month (2 digits). 02

DDD Day in year (3 digits). 074

 YY Last two digits in a year. 98

YYYY Full year. 2000

QQ Two-character quarter. 2Q

JD Julian date. 98.074

CC Two-digit century. 19
 TIBCO Object Service Broker Shareable Tools

142 |
• A separator character can be any one of the following:

/ \ ; : , . * - blank

• If no date format is specified, the installation default date format is used.

• A week is defined to begin on a Monday and end on the following Sunday.
However, January 1st always begins week one, regardless of where it falls in
the week, and week two starts on the following Monday.

• The default century for two-digit year values depends on the setting of
YYCENTURYRANGE.

See TIBCO Object Service Broker for z/OS Installing and Operating for information on
YYCENTURYRANGE. See TIBCO Object Service Broker Parameters for information
on YYCENTURYRANGE in Open Systems.

Example The following rule returns the date default format for the installation to the
message line on the workbench:

DATE_DEFAULT;
 _
 _ ---
 _ --+--------------
 _ CALL ENDMSG($DATE_DEFAULT); | 1
 _ ---

It returns: YYYY-MM-DD

You can specify just a portion of a date field within your mask (for example,
entering only MMMM displays the month). Partial date occurrences cannot be
accessed using a GET or FORALL statement, as the data cannot be interpreted as
a complete date. At least the year portion of a date must be present in the mask to
make it accessible to these statements.
TIBCO Object Service Broker Shareable Tools

| 143
$DATE_LENGTH

Returns the maximum string length of a given date format. (F)

Invocation length = $DATE_LENGTH(pic_string)

Usage Notes The valid display masks are listed here:

length On return, contains the maximum length, in characters, of the date
format.

pic_string The given date format. Its syntax is C (fixed-length character
string), UN (Unicode), or V (variable-length character string).

Format
Code Meaning Example

W One- or two-digit week # (of year), with no leading 0. 1 or 25

WW Two-digit week # (of year). 01

WWW Abbreviated weekday. Thur

WWWW Full weekday. Thursday

M Numeric month, with no leading 0 (1 or 2 digits). 3 or 10

MM Numeric month (2 digits). 02

MMM Abbreviated month. Mar

MMMM Full month. March

D Day in month, with no leading 0 (1 or 2 digits). 5 or 14

DD Day in month (2 digits). 02

DDD Day in year (3 digits). 074

 YY Last two digits in a year. 98

YYYY Full year. 2000

QQ Two-character quarter. 2Q
 TIBCO Object Service Broker Shareable Tools

144 |
• A separator character can be any one of the following:

/ \ ; : , . * - blank

• If no date format is specified, the installation default date format is used.

• A week is defined to begin on a Monday and end on the following Sunday.
However, January 1st always begins week one, regardless of where it falls in
the week, and week two starts on the following Monday.

Exceptions

Example The following rule returns the maximum length of the date format, which is given
as an argument, and displays the result on the message line of the workbench:

DATE_LENGTH;
 _
 _ ---
 _ --+--------------
 _ CALL ENDMSG('THE LENGTH OF THE DATE FORMAT IS ' || | 1
 _ $DATE_LENGTH('MMMM,D,YYYY')); |
 _ ---

It returns: THE LENGTH OF THE DATE FORMAT IS 17

Basis for the Value Returned

This length is based on the following:

• The longest value for MMMM is 9 (for example, September).

• The longest value for D is 2.

JD Julian date. 98.074

CC Two-digit century. 19

Format
Code Meaning Example

You can specify just a portion of a date field within your mask (for example,
entering only MMMM displays the month). Partial date occurrences cannot be
accessed using a GET or FORALL statement, as the data cannot be interpreted as
a complete date. At least the year portion of a date must be present in the mask to
make it accessible to these statements.

RANGERROR Signalled if pic_string is not a valid date format.
TIBCO Object Service Broker Shareable Tools

$DATE_LENGTH | 145
• The longest value for YYYY is 4.

• The separators have a length of 2.

These values total up to 17.
 TIBCO Object Service Broker Shareable Tools

| 146
$DATE_PIC

Converts a value of semantic type date to a semantic type string. (F)

Invocation date_string = $DATE_PIC(pic_string, date)

Usage Notes • Only the date components explicitly mentioned in pic_string are converted.

• If pic_string is null the installation default is used.

• The following display mask components are valid for semantic type date
fields:

date_string Contains the resulting string. Its syntax is V (variable-length
character string).\

pic_string The format of the resulting string. Its syntax is C (fixed-length
character string), UN (Unicode), or V.

date The date value that is to be converted to a string. Its syntax is B
(binary).

Format
Code Meaning Example

W One- or two-digit week # (of year), with no leading 0. 1 or 25

WW Two-digit week # (of year). 01

WWW Abbreviated weekday. Thur

WWWW Full weekday. Thursday

M Numeric month, with no leading 0 (1 or 2 digits). 3 or 10

MM Numeric month (2 digits). 02

MMM Abbreviated month. Mar

MMMM Full month. March

D Day in month, with no leading 0 (1 or 2 digits). 5 or 14

DD Day in month (2 digits). 02
 TIBCO Object Service Broker Shareable Tools

$DATE_PIC | 147
• A separator character can be any one of the following:

/ \ ; : , . * - blank

• If no date format is specified, the installation default date format is used.

• A week is defined to begin on a Monday and end on the following Sunday.
However, January 1 always begins week one, regardless of where it falls in the
week, and week two starts on the following Monday.

Exceptions

Example The following rule:

1. Creates values with the string semantic type, for the field BIRTHDATE, in the
format YY/MM/DD.

2. Replaces the occurrences in the EMPLOYEE table.

INSERT_BIRTHDATE;
 _
 _ ---

DDD Day in year (3 digits). 074

 YY Last two digits in a year. 98

YYYY Full year. 2000

QQ Two-character quarter. 2Q

JD Julian date. 98.074

CC Two-digit century. 19

Format
Code Meaning Example

You can specify just a portion of a date field within your mask (for example,
entering only MMMM displays the month). Partial date occurrences cannot be
accessed using a GET or FORALL statement, as the data cannot be interpreted as
a complete date. At least the year portion of a date must be present in the mask to
make it accessible to these statements.

CONVERSION Signalled if pic_string is not a string, or if date is not a date.

RANGERROR Signalled if pic_string contains invalid characters, or if it is not
in a valid date format.
 TIBCO Object Service Broker Shareable Tools

148 |
 _ --+--------------
 _ FORALL EMPLOYEE_DATE : | 1
 _ GET EMPLOYEE WHERE EMPNO = EMPLOYEE_DATE.EMPNO; |
 _ EMPLOYEE.BIRTHDATE = $DATE_PIC('YY/MM/DD', |
 _ EMPLOYEE_DATE.BIRTHDATE); |
 _ REPLACE EMPLOYEE; |
 _ COMMIT; |
 _ END; |
 _ ---

The format of the BIRTHDATE field in the table EMPLOYEE_DATE is illustrated
here. It appears in the default date format for the installation.

 EMPNO BIRTHDATE
 ------ ----------
 80000 1960-06-13
 80002 1972-09-11
 80003 1962-12-30
 80004 1964-04-22
 80014 1970-09-21

It is converted to the format illustrated below, in the EMPLOYEE table:

 EMPNO BIRTHDATE
 ------ ----------
 80000 60/06/13
 80002 72/09/11
 80003 62/12/30
 80004 64/04/22
 80014 70/09/21
TIBCO Object Service Broker Shareable Tools

| 149
$DATE_REF

Adds or subtracts a given number of days to or from a reference date, and
converts the number of days returned to units of a day, a week, a month, or a year.
(F)

Invocation value = $DATE_REF(component, duration, date, round)

Usage Notes • The valid date formats are listed here:

value On return, contains the number of units.

component The type of component to be extracted. It is one of the following:

• D - Day

• W - Week

• M - Month

• Y - Year

Its syntax is C (fixed-length character string), with length 1.

duration An integer specifying the number of days to be added or
subtracted. Its syntax is B (binary) with length 4.

date The date used as the reference point

round One of the following:

• Y - Round the answer.

• N - Truncate the answer.

Format
Code Meaning Example

W One- or two-digit week # (of year), with no leading
0.

1 or 25

WW Two-digit week # (of year). 01

WWW Abbreviated weekday. Thur

WWWW Full weekday. Thursday
 TIBCO Object Service Broker Shareable Tools

150 |
• A separator character can be any one of the following:

/ \ ; : , . * - blank

• If no date format is specified, the installation default date format is used.

• A week is defined to begin on a Monday and end on the following Sunday.
However, January 1st always begins week one, regardless of where it falls in
the week, and week two starts on the following Monday.

• Treat with caution values returned for dates prior to the adoption of the
Gregorian calendar in 1582 or for dates in the very far future that could be
subject to calendar adjustments (for example, it is not yet clear if the year 4000
is a leap year). $DATE_REF accurately returns values for dates 200 years
before or after the present date.

• The default century for two-digit year values depends on the setting of
YYCENTURYRANGE.

M Numeric month, with no leading 0 (1 or 2 digits). 3 or 10

MM Numeric month (2 digits). 02

MMM Abbreviated month. Mar

MMMM Full month. March

D Day in month, with no leading 0 (1 or 2 digits). 5 or 14

DD Day in month (2 digits). 02

DDD Day in year (3 digits). 074

 YY Last two digits in a year. 98

YYYY Full year. 2000

QQ Two-character quarter. 2Q

JD Julian date. 98.074

CC Two-digit century. 19

Format
Code Meaning Example
TIBCO Object Service Broker Shareable Tools

$DATE_REF | 151
See TIBCO Object Service Broker for z/OS Installing and Operating for information on
YYCENTURYRANGE. See TIBCO Object Service Broker Parameters for information
on YYCENTURYRANGE in Open Systems.

Exceptions

Example The following rule references the date 98/05/03, subtracts 100 days from it, and
returns the number of months, truncated to the nearest month. It displays the
result on the message line of the workbench.

DATE_REF;
 _
 _ ---
 _ --+--------------
 _ CALL ENDMSG('-100 DAYS IS ' || $DATE_REF('M', - 100, | 1
 _ $CREATE_DATE('YY/MM/DD', '98/05/03'), 'N') || |
 _ ' MONTHS FROM THE REFERENCE DATE'); |
 _ ---

It returns:

-100 DAYS is -3 MONTHS FROM THE REFERENCE DATE

You can specify just a portion of a date field within your mask (for example,
entering only MMMM displays the month). Partial date occurrences cannot be
accessed using a GET or FORALL statement, as the data cannot be interpreted as
a complete date. At least the year portion of a date must be present in the mask to
make it accessible to these statements.

CONVERSION Signalled if component is not a number or if date is not a date.

OVERFLOW Raised if the value returned is too large for the length of the
syntax.

RANGERROR Signalled if the value given for component is not one of D, W,
M, or Y, or if the value given for duration is not valid for
component.
 TIBCO Object Service Broker Shareable Tools

| 152
DBMAINTLVL

Displays the maintenance level of your TIBCO Object Service Broker database,
including any database PTFs applied beyond the maintenance level. (E)

Invocation Do one of the following:

Usage Notes The database maintenance level appears on the message line at the bottom of the
workbench screen. Press PF2 to see a list of the PTFs applied beyond that level, if
any.

Exceptions None.

Example The following example shows the workbench screen after execution of
DBMAINTLVL:

H U R O N USR40 TEST: N BROWSE: N 12:48 AM THURSDAY OCT 25 2001

 ER edit rule ==> SU MO TU WE TH FR SA
 EX execute rule ==> DBMAINTLVL 1 2 3 4 5 6
 DB debug rule ==> 7 8 9 10 11 12 13
 BR browse table ==> 14 15 16 17 18 19 20
 ED edit table ==> 21 22 23 24 25 26 27
 28 29 30 31
 OS object set ==>
 DS define screen ==>
 DR define report ==>
 DT define table ==>
 DL define library ==>
 GR generate rpt ==>

 COMMAND ==> __
 execute rule: EX DBMAINTLVL

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

 3:45:32 Database maintenance level 3.2.00 - PF2 for additional PTFs applied

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type DBMAINTLVL <Enter>

COMMAND prompt Type EX DBMAINTLVL
<Enter>
 TIBCO Object Service Broker Shareable Tools

DBMAINTLVL | 153
On pressing PF2, you see information similar to the following:

 ----------------------------- INFORMATION LOG -------------------
 COMMAND ===> SCROLL ===> P
 Database maintenance level 3.2.00
 8946 3.2.01
 8947 3.2.01
 8948 3.2.01
 8949 3.2.01
 8950 3.2.01
 8951 3.2.01
 8952 3.2.01
 9036 3.2.01
 9037 3.2.01
 9038 3.2.01
 9039 3.2.01
 9093 3.2.01

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 154

DEBUG

Invokes the interactive Rule Debugger. (CE)

Invocation Do one of the following:

Where:

Usage

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Rule Debugger.

TIBCO Object Service Broker Programming in Rules for information on the Rule
Debugger.

From the… Move the cursor to the… And…

Developer’s
workbench

DB debug rule option Type rulename <Enter>

EX execute rule option Type EDEBUG(rulename)
<Enter>

COMMAND prompt Type DB rulename <Enter>

From a rule Type CALL DEBUG(rulename)

In the Rule
Editor or in
Execute Rule

Object manager screen G line command

rulename A string containing the name of the rule to debug.

If you supply
for rulename… When using… Pressing Enter displays:

A value All methods A screen that you use to debug the rule

No value DB debug rule or
Command line

A listing of rules defined in your local
library. You can select the rule that you
require from this list.

EX execute rule A screen prompting for a rule name

 TIBCO Object Service Broker Shareable Tools

| 155

DEFINE_LIBRARY

Defines a new library, displays a list of the rules in a library, or displays a list of
the rules libraries. (E)

Invocation Do one of the following:

Where:

Usage

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Library Definer.

TIBCO Object Service Broker Programming in Rules for additional information on
the use of DEFINE_LIBRARY and defining libraries.

From the… Move the cursor to the… And…

Developer’s
workbench

DL define library option Type libraryname <Enter>

EX Execute Rule option Type DEFINE_LIBRARY
(libraryname) <Enter>

COMMAND prompt Type EX DEFINE_LIBRARY
(libraryname) <Enter>

libraryname The name of a rules library

If you supply this for
libraryname… Pressing Enter displays…

A new value A screen that you use to define a library

An existing value A listing of the rules in the specified library

No value A list of libraries defined in your TIBCO Object
Service Broker database

You can select the library name that you require
from this list.

 TIBCO Object Service Broker Shareable Tools

| 156

DEFINE_MENU

Creates and modifies menus and login screens used within TIBCO Object Service
Broker user-defined applications. (E)

Invocation Do one of the following:

Where:

See Also TIBCO Object Service Broker Defining Screens and Menus for information on
DEFINE_MENU.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type DEFINE_MENU(menu)
<Enter>

COMMAND prompt Type EX DEFINE_MENU
<Enter>

menu The name of the menu.

| 157
DEFINE_OBJECTSET

Defines a set of objects or modifies an existing set. (E)

Invocation Do one of the following:

Where:

Usage Notes You can specify security later only for those objects that are identified explicitly as
components of the object set.

Steps for Defining Object Sets

Overview

To define an object set, complete the following tasks:

From the… Move the cursor to the… And…

Developer’s
workbench

OS object set option Type objsetname <Enter>

EX Execute Rule option Type DEFINE_OBJECTSET
(objsetname)<Enter>

COMMAND prompt Type OS objsetname <Enter>

objsetname The name of the object set to be defined.

Task Description Optional

A Access the Object Set Definition tool. N

B Specify a valid object type. N

C Specify a value for the Name field. N

D Specify additional object types. Y

E Specify access permissions. Y

F View the full object definition. Y
 TIBCO Object Service Broker Shareable Tools

158 |
The following sections provide a detailed description for defining object sets.

Task A Access the Object Set Definition tool

To access the Object Set Definition tool, use one of the following methods. The
objsetname is the name of the new or existing object set you are defining.

• Type define_objectset(objsetname) at the EX execute rule option on the
workbench and press Enter.

• Type an objsetname at the OS object set option on the workbench and press
Enter.

• Type os objsetname at the command prompt and press Enter.

Example

The following is an example of the Object Definition screen for the object set
SAMPLAPP:

 DEFINE OBJECTSET: SAMPLAPP UNIT: SAMPLAPP
 COMMAND ==> Scroll: P

 OBJECT TYPE:

 Name Type Unit Author Created Modifier Modified
 ---------------- ---------------- -------- -------- ------- -------- -------
 SAMPLAPP LIBRARY SAMPLAPP USR40 97.339 USR40 98.094
 @EXPENSE_ITEMS REPORT
 @EXPENSE_SUMMARY REPORT
 @EXPENSE_ITEMS SCREEN
 @EXPENSE_SELECT SCREEN
 @CURRENCIES TABLE
 @DETAIL_DATE_BRK TABLE
 @DETAIL_FINALBRK TABLE
 @EXCHANGE TABLE
 @EXCHANGE_RATES TABLE
 @EXCHANGE_RATES$ TABLE
 @EXPENSE_BODY TABLE
 @EXPENSE_EMP TABLE
 @EXPENSE_FOOTER TABLE
 @EXPENSE_HEADER TABLE
 PFKEYS: 1=HELP 3=SAVE 12=CANCEL 2=DOC 22=DEL 4=SAVE & SEC 9=DEFINE 21=MSGLOG

G Print the object set definition. Y

H Save the definition. N

Task Description Optional
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJECTSET | 159
Task B Specify a valid object type

In the OBJECT TYPE field, specify a valid object type by using one of the
following methods:

• Type in a value directly and press Enter.

• Position your cursor on the OBJECT TYPE field and then press PF1. This
displays a listing of values from which you can select a value and press PF3 to
return to the Object Set Definition screen. Press Enter when the value appears
in the Object Type field.

• Press PF5 without specifying an object type. The Object Selection screen
appears and you can select from a list of all types of objects. Refer to Selecting
Objects for Object Set Definitions on page 161 for more information.

Task C Specify a value for the Name field

To specify a value for the Name field, use one of the following methods:

• In the Name field, type the name of an existing object of the type specified in
the OBJECT TYPE field and press Enter.

• In the Name field, type the name of a new object of the type specified in the
OBJECT TYPE field.

You can use one of the following options to define the new object:

• Press PF5 to display a screen that you can use to select the objects that you
require. Refer to Selecting Objects for Object Set Definitions on page 161 for
more information.

Task D Specify additional object types

If you want to specify additional object types, repeat the above tasks. A
sub-screen appears for each object type that you are defining.

PF3 Save the object set definition and return to the workbench. Access the
appropriate definer for the object and define the object.

PF9 Invoke the Definer for the object type specified. Define the object as
required. When you press PF3 or PF12 from the Definer screen, you
are returned to the Object Set Definer.

If the object is a table, refer to Using Tables in Object Set Definitions on page 164
for more information on adding tables to the object set definition.
 TIBCO Object Service Broker Shareable Tools

160 |
Task E Specify access permissions

If you want to specify access permissions to any of the objects, complete the
following steps:

1. Press PF4 from the Object Definition screen.

This saves the definition of the object set and invokes the Manage Permissions
screen for TIBCO Object Service Broker security.

2. Use the primary command FETCH to retrieve any or all of the securable
objects within an object set.

For more information on the FETCH command and access permissions, refer to
TIBCO Object Service Broker Managing Security.

Task F View the full object definition

To view the full definition of your object set, leave the Object Type field on the
Object Definition screen blank and press Enter.

Task G Print the object set definition

The following is an example of the screen used for printing object set definitions:

 DEFINE OBJECTSET: DOCEXAMPLE
 COMMAND ==>

 ENTER ARGUMENTS FOR PRINTING:

 LIBRARY ==>

 ENVIRONMENT ==>

 LOCATION ==>

 PARENT ONLY ==> Y

To print the object set definition, complete the following steps:

1. Press PF13 from the Object Set Definition screen.

The Print screen appears.

2. Indicate the name of the rules library.
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJECTSET | 161
Provide a library name only if the object set contains rules.

3. Leave the ENVIRONMENT field blank.

This field is currently not in use.

4. Specify the node name.

Provide a node name in the LOCATION field only if the objects are located on
a node other than your home node. If this field is left blank, it defaults to your
home node.

5. Indicate if all the objects should be printed.

If PARENT ONLY is Y, only the definition of the object set (parent) is printed.
If it is N, the object set and all the objects it contains (children) have their
definitions printed.

Task H Save the definition

Press PF3 from the Object Definition screen to save your definition and exit to the
workbench.

Selecting Objects for Object Set Definitions

Overview

To select objects for object set definitions or modify a series of objects that are
selected by default, complete the following tasks:

• Invoking the Object Selection screen

• Narrowing the selection scope

• Selecting objects

Task A Invoking the Object Selection screen

To invoke the Object Selection screen, complete the following steps:

1. Press PF5 from the Object Definition screen.

The Object Selection screen appears. The screen displays a series of objects
that are selected by default based on the values in the UNIT field and the
OBJECT TYPE field provided in the Object Set Definition screen. The
OBJECT TYPE field could be blank if you pressed PF5 before specifying an
object type.

The following is an example of the Object Selection screen:
 TIBCO Object Service Broker Shareable Tools

162 |
 O b j e c t S e l e c t i o n Scroll: P
 COMMAND ==>
 Location: Select All: N
 Library (for RULES): Deselect All: N
 Presentation Environment: List Children: N
 Show selection specs: Y
 ========================== Selection Specification ============================
 Attr Op Value
 ------ ---- ----------------
 NAME ____ ________________ AND unspecified
 TYPE = SCREEN__________ AND attributes will
 UNIT =___ SAMPLAPP AND be ignored
 AUTHOR ____ ________
 ===
 Name Type Library Environment Unit
 ---------------- ---------------- -------- ---------------- --------
 _ @EXPENSE_ITEMS SCREEN SAMPLAPP
 _ @EXPENSE_SELECT SCREEN SAMPLAPP

2. Modify the listing as required.

You can modify the listing by excluding fields that are not required when you
are searching through the list of objects. This helps in object selection, since
many lists are long and you must narrow down your selection requirements.

Task B Narrowing the selection scope

If you want to narrow the selection scope, you can use two different portions of
the screen:

• Specify values in the header portion.

• Specify selection specifications.

Specifying Values in the Header Portion

You can use the Location, Library, and Presentation Environment fields in the
header portion of the screen to narrow the selection scope for objects.

Specifying a
Location

In the Location field, you can specify a node where the selection criteria are to be
applied. If you do not specify a value in this field, your home node is used.

Specifying a
Library

If your selection list contains rules or if the OBJECT TYPE field is empty, you can
specify the name of the rules library to be searched. If the OBJECT TYPE field is
empty, a library should be specified to ensure that all object types are included in
the list. Press PF1 to display a list of valid values from which you can select.
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJECTSET | 163
Specifying a
Presentation
Environment

This field is currently not in use.

Listing Child
Objects

If some objects have child objects associated with them, you can specify if you
want to list all the child objects that compose the parent objects.

Specifying Selection Specifications

The middle section of the screen can be used to select items to be included in the
definition or to narrow the selection list. You can use more than one type of
selection criteria for each object type and you can specify multiple object types
within one session. For a list of valid values for each of these fields, position your
cursor on the field and press PF1.

Do the following when specifying selection criteria:

Considerations

Note the following about the object type selection criteria:

• If you do not supply an object type, you must specify a value in at least one of
the other selection fields.

• If you specify only an object type and no further selection values, a listing of
the items for the object type defined in your TIBCO Object Service Broker
database appears for further selection.

Task C Selecting objects

There are two ways you can select objects:

• Select objects using the header portion of the screen.

• Select objects from the list of objects at the bottom of the screen.

When specifying In the Op Field, specify In the Value Field, specify

Name The logical operator to be
used

The name of the object

Type The name of the object type

Unit The logical operator to be
used

The name of the unit
associated with the object

Author The logical operator to be
used

The name of the author of
the object
 TIBCO Object Service Broker Shareable Tools

164 |
Select Objects from Header Portion

Using the Select All field, you can specify whether all the items displayed, based
on selection criteria, should be copied into the Object Definition screen.

Deselecting All
Objects

Use the Deselect All field if you want to deselect the items that you selected.

Select Objects from the List of Objects

After you specify the selection criteria and press Enter, the selected items appear
in the bottom portion of the screen. You can select the objects displayed in this
section by typing an S in the line command fields beside the objects.

After selecting the items that you require, press PF3 to save the selections and
return to the Object Set Definition screen. The items are listed in the appropriate
type sub-screen within the Object Set Definition screen.

To un-select items that you selected, use the Deselect All field.

Using Tables in Object Set Definitions

Adding Tables to the Object Set Definition

When adding table objects, you are prompted to supply a value for the following:

At least one of these fields must contain a Y.

Security Requirements for a Table

If security is to be specified for temporary (TEM) or TDS tables, the following
values must be set to Y:

Defn Y – Include the definition of the table.

N – Do not include the definition of the table.

Data Y – Include the data in the table.

N – Do not include data in the table.

Temporary (TEM). Defn

TDS unparameterized. Defn and Data

TDS parameterized and all instances. Defn and Data
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJECTSET | 165
Specifying Table Instances

If the object is a parameterized table, press PF6 to display one of two screens for
selecting table instances to be part of your definition. The screen that appears
depends on whether the table has a parameter value table (table of type PRM)
associated with it.

Screen for Table with No PRM Table

The Specifying Table Instances screen appears when the table does not have a
parameter (PRM) table associated with it. Use this screen to individually specify
all the table instances that are to be part of the object set definition. If no values are
specified, the default is all instances of the table.

 --
 SPECIFY INSTANCE OF TABLE: @EXPENSES
 --

 Table Parameters: REGION =

 (ALL DATA: Y)
 < specify all parameter values or set ALL DATA = Y for whole table >

Screen for Table with a PRM Table

The Parameters for table screen appears when the table has a parameter (PRM)
table associated with it. Use this screen to select all the table instances that are to
be part of the object set definition. If no values are specified, the default is all
instances of the table.

 Parameters for table EMPLOYEES Scroll: P
 COMMAND ==> Select All: N
 Location: Deselect All: N
 Show selection specs: Y
 ========================== Selection Specification ============================
 Selection: REGION LIKE '*'
 AND Op Value
 ---- ---
 REGION
 ===
 Region

 _ A
 _ CANADA
 _ CENTCANADA

TDS parameterized and specific instances. Data
 TIBCO Object Service Broker Shareable Tools

166 |
 _ MEXICO
 _ MIDWEST
 _ SOUTHWEST

 PFKEYS: ENTER=UPDATE 3=SAVE 12=CANCEL

Example The following example shows defined sub-screens for objects of type screen,
table, and rule as well as the final screen with all the objects listed.

Subscreen for Screen Objects

 DEFINE OBJECTSET: UPDATE_EMPLOYEES UNIT: USR40
 COMMAND ==> Scroll: P

 OBJECT TYPE: SCREEN

 Name Type Unit Author Created Modifier Modified
 ---------------- ---------------- -------- -------- ------- -------- -------
 DELETE_EMPLOYEE SCREEN USR40 USR40 97.312 USR50 98.175
 NEW_EMPLOYEE SCREEN USR40 USR40 97.310 USR50 98.173

Subscreen for Table Objects

 DEFINE OBJECTSET: UPDATE_EMPLOYEES UNIT: USR40
 COMMAND ==> Scroll: P

 OBJECT TYPE: TABLE

 Name Parms Defn Data Type Unit Author Created Modifier Modified
 ---------------- - - - --- -------- -------- ------ -------- -----
 $EMPLOYEES N Y Y PRM USR60 USR60 96.350 USR50 96.35
 EMPLOYEES Y Y Y TDS ACC USR40 97.110 USR40 98.14
 MANAGER N Y Y TDS DOC01 USR40 97.290 USB80 98.11

 PFKEYS: 1=HELP 3=SAVE 12=CANCEL 2=DOC 22=DELETE 4=SAVE & SECURITY 9=DEFINE
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJECTSET | 167
Subscreen for Rule Objects

 DEFINE OBJECTSET: UPDATE_EMPLOYEES UNIT: USR40
 COMMAND ==> Scroll: P

 OBJECT TYPE: RULE

 Name Unit Author Created Modifier Modified
 ---------------- -------- -------- ------- -------- ------ ------------------
 DEL_EMP USR40 USR40 96.312 USR40 97.175
 DELETE_EMPLOYEE USR40 USR40 96.312 USR40 97.165
 NEW_EMPLOYEE USR40 USR40 96.310 USL12 97.175
 PRINT_EMP USR40 USR40 95.317 USR40 96.310
 SAVE_EMP USR40 USR40 96.310 USR40 97.160

Defined Object Set

 DEFINE OBJECTSET: UPDATE_EMPLOYEES UNIT: USR40
 COMMAND ==> Scroll: P

 OBJECT TYPE:

 Name Type Unit Author Created Modifier Modified
 ---------------- ---------------- -------- -------- ------- -------- ------ -
DEL_EMP RULE USR40 USR40 96.312 USR40 98.145
DELETE_EMPLOYEE RULE USR40 USR40 96.312 USR40 97.165
NEW_EMPLOYEE RULE USR40 USR40 96.310 USL12 97.175
PRINT_EMP RULE USR40 USR40 96.317 USR40 98.115
SAVE_EMP RULE USR40 USR40 96.310 USR40 97.160
DELETE_EMPLOYEE SCREEN USR40 USR40 96.312 USR40 97.175
NEW_EMPLOYEE SCREEN USR40 USR40 96.310 USR40 97.173
$EMPLOYEES TABLE ACE60 USR40 97.350 USG60 97.350
EMPLOYEES TABLE ACC USR40 95.110 USR40 96.149
MANAGER TABLE DOC01 USR40 96.290 USB80 97.110
 TIBCO Object Service Broker Shareable Tools

| 168
DEFINE_OBJLIST

Defines, for a table, an object list to appear using the Object Manager or modifies
an existing object list definition. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you supply a new value for table, executing DEFINE_OBJLIST displays an
empty Define Object List screen.

• If you supply an existing value for table, executing DEFINE_OBJLIST displays
a screen with the current characteristics of the table.

• In both cases, more fields are available than can appear at one time on the
screen. To view additional fields, press PF11 to move one screen to the right.
This tool comprises four full lateral screens of fields.

• DEFINE_OBJLIST defines rules, specifies how they should be executed, and
arranges up to two lines of titling. This information is then applied against the
table given as an argument to OBJECT_MGMT (or its interactive version
OBJECTMGR, as both of these tools use DEFINE_OBJLIST when they are
invoked).

Initial Screen

This initial screen appears when you execute DEFINE_OBJLIST:

 Object Commands for Table: EMPLOYEES_0DPARM
 Command ===>

 Command Description Rule New Trans Browse Search Prompt
 - ---------------- ---------------- - - - -

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type DEFINE_OBJLIST(table)
<Enter>

COMMAND prompt Type EX DEFINE_OBJLIST
(table) <Enter>

table The name of the table containing the list of objects to appear.
 TIBCO Object Service Broker Shareable Tools

DEFINE_OBJLIST | 169
 Titles to Appear Above and Below the Command Line
 -
 try this
 try this again

 PFKEYS: 12=CANCEL 16=DELLINE 22=DELETE 3=SAVE 4=ADDLINE

Top Segment

The top segment of the screen contains the name of the table and the primary
command line. By changing the name of a previously defined object list you can
use an existing definition as a template.

The following primary commands are supported:

Middle Segment

You use the middle segment to define the line commands. To see all the fields,
position your cursor within this segment and press PF11 to scroll right. It contains
the following fields:

SAVE Save the definition and exit.

CANCEL Cancel the definition and exit.

ADDLINE Add a line for input. The line is added after the line where your
cursor is positioned.

DELLINE Delete a line of input. The line the cursor is positioned on is
deleted.

Command The letter to be associated with the output command. For example,
type S for select.

Description A short description of the command. It appears at the bottom of
the object manager screen, for example, S for select.
 TIBCO Object Service Broker Shareable Tools

170 |
Rule The name of a rule. This rule is processed when the line command
is invoked, for example, STE.

New Trans Enter one of Y (the rule is to be executed) or N (the rule is to be
called).

Browse If the rule is executed, type Y (run in browse mode) or N (run in
update mode).

If the rule is called, this field has no effect; this field is ignored if
New Trans is N. In the standard session manager, the mode is
taken from the Browse field at the top of the screen, while in all
other session managers, the mode is also taken from the menu.

Search If the Object Manager is called by an application and a new
transaction is required, the search path for the new transaction is
determined by the character in this field, that is, one of:

S Search the system library only.

I Search the installation and system libraries.

L Search the local, installation and system libraries.

However, if the Object Manager is prompting for a session
manager menu, the rule is executed with the search path specified
for the menu item. If the rule is called, this field has no effect.

Prompt Type one of:

N Do not prompt for rule arguments.

A Use the actual argument names as prompts.

S Use the strings in the Prompt String field described below.

The rule must have two or more arguments if prompting is
expected; the first parameter is assigned a value from a specified
field of the table.

If Prompt is A, the actual names of all but the first arguments of the
rule appear and the user is requested to supply values for them. If
Prompt is S, the strings contained in fields ARG2, ARG3, and
ARG4 appear, and the user is requested to supply values that are
passed as the second, third, and fourth arguments of the rule.

Confirm Type either Y (confirmation is required) or N (confirmation is not
required).

Confirm Key Type the key to use for confirmation, for example, PF22.
TIBCO Object Service Broker Shareable Tools

DEFINE_OBJLIST | 171
Refresh Type one of:

Y The screen is to be refreshed after the command is processed.
Use this option if the command changed the object list, for
example, if an object is deleted.

N The screen is not to be refreshed after the command is
processed.

Field Source of
First Argument

If the rule in the Rule field has at least one argument, the entry
must be the name of one of the fields in the table. This field is then
used as the source of values passed into the argument. Type the
name of the appropriate field to be used. If the entry is NULL, no
arguments are passed to the rule being invoked.

Field Names or
Prompt Strings
For Rule
Arguments

Up to four arguments can be used by the rule in the Rule field.
Enter the appropriate value based on which of the following
appears in the Prompt field:

N Type the names of the fields to be used; these must be the
names of fields in the table or null.

If ARG2 is null, only one argument is passed to the rule. If
ARG2 contains the name of a field of the table, the contents of
this field are passed as the second argument of the rule.
ARG3 and ARG4 have similar effects.

S Type in a string to be used as a prompt for each of the
arguments.

The Prompt screen appears. If ARG2 is not null, the string it
contains appears as the prompt for the second argument of
the rule.

Note There is no prompting for the first argument; it is
always taken from the table. ARG3, and ARG4 are similar.

A The Object Manager displays the actual arguments of the rule
named in the Rule field. No entries are required.

Title for Prompt
Screen

If prompts are given for a command, the Object Manager displays
a screen for the prompts. Use this field for the title of the prompt
screen.

Titles to Appear
Above and
Below the
Command Line

The title to appear above the command line. Optionally, type the
title to appear below the command line.
 TIBCO Object Service Broker Shareable Tools

172 |
Function Keys

The following function keys are recognized while the screen appears:

Example After executing DEFINE_OBJLIST (EMPLOYEE_LIST) the following screen
appears:

 Object Commands for Table: EMPLOYEE_LIST
 Command ===>

 Command Description Rule New Trans Browse Search Prompt
 - ---------------- ---------------- - - - -
 D Delete DEL_OCC Y N S S
 S Select STE Y N S N

 Titles to Appear Above and Below the Command Line
 -
 Listing of Employee Information

 PFKEYS: 12=CANCEL 16=DELLINE 22=DELETE 3=SAVE 4=ADDLINE

Press PF11 to scroll to additional parts of the screen not visible on your terminal
display.

PF3 Save the definition and return to the workbench.

PF4 Add a line to enter information for the definition.

PF12 Cancel the definition and return to the workbench.

PF16 Delete a line of defined information.

PF22 Delete the definition of a defined object list. You are prompted to
confirm the deletion.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 173

DEFINE_REPORT

Defines a new TIBCO Object Service Broker report or modifies an existing one. (E)

Invocation Do one of the following:

Where

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Report Definer.

TIBCO Object Service Broker Defining Reports for information on how to define
reports.

From the… Move the cursor to the… And…

Developer’s
workbench

DR define report option Type reportname <Enter>

EX execute rule option Type DEFINE_REPORT

(reportname) <Enter>

COMMAND prompt Type DR reportname <Enter>

reportname The name of the report.

 TIBCO Object Service Broker Shareable Tools

| 174

DEFINE_TABLE

Defines a new TIBCO Object Service Broker table or modifies an existing one. (E)

Invocation Do one of the following:

Where:

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Table Definer.

TIBCO Object Service Broker Managing Data for information on how to define
tables.

From the… Move the cursor to the… And…

Developer’s
workbench

DT define table option Type tbl_name <Enter>

EX Execute Rule option Type DEFINE_TABLE
(tbl_name) <Enter>

COMMAND prompt Type DT tbl_name <Enter>

tbl_name The name of a table.

| 175
$DELCONTAINER

Deletes a container from a channel and discards the container’s data, if any. (C)

Invocation CALL $DELCONTAINER(channel, container)

channel The name (1-16 characters) of the channel that owns the container.

container The name (1-16 characters) of the container to be deleted.
 TIBCO Object Service Broker Shareable Tools

176 |
DELETE_DATA

Deletes the data from a table or table instance. (C)

Invocation CALL DELETE_DATA(tablespec, select, location)

Usage Notes • If the table specified in tablespec is parameterized, you specify only the data
parameters, not the location parameter.

• If you specify an empty string for select, all occurrences are deleted from the
table and table instance.

• The syntax for select is <field name> <relational operator> <value>.

Specify a value for location only if the data is located on a different node.

• DELETE_DATA commits any updates.

Exceptions

In both cases the exception should be handled by the calling rule. More
information describing the circumstances of the failure is available in the
@OBJECTMSG.MSG field.

Example The following rule deletes selected occurrences from the table
EMPLOYEES_REMOTE. The rule is accessing local data.

 RULE EDITOR ===> SCROLL: P
 DELETE_DATA_1;
 _
 _ ---
 _ --+--------------
 _ CALL DELETE_DATA('EMPLOYEES_REMOTE(CANADA)', 'MGR#=79912', | 1
 _ ''); |
 _ ---

tablespec The name of the table or table instance.

select The selection criteria to be used.

location The node name where the data is located.

NO_DATA_FOUND Raised if the table is empty.

TRIGGER_FAIL Raised for any other error situations.
TIBCO Object Service Broker Shareable Tools

DELETE_DATA | 177
The following rule deletes all occurrences of the DEPTS table, which is
parameterized by region:

 RULE EDITOR ===> SCROLL: P
 DELETE_DEPTS;
 _
 _ ---
 _ --+--------------
 _ FORALL $DEPTS : | 1
 _ CALL DELETE_DATA('DEPTS(' || $DEPTS.REGION ||')', '', |
 _ ''); |
 _ END; |
 _ ---
 TIBCO Object Service Broker Shareable Tools

| 178
DELETE_DEFN

Deletes the definition of an object. (C)

Invocation CALL DELETE_DEFN(objecttype, instancename, library, environment, location,
parentonly)

objecttype The TIBCO Object Service Broker object type of the object that
is to be deleted. Valid values are:

• GLOBALFIELD

• LIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

instancename The name of the object to be deleted.

library If the object is a rule, the name of the rules library where it is
stored.

environment This argument, although not currently used, must be supplied.
You can enter a null (“”) value.

location If the object is located on a different node, the name of the
node.

parentonly Specifies if all the objects or only the parent object should be
deleted. Valid values are:

Y – Delete only the parent.

N – Delete the parent and child objects.
 TIBCO Object Service Broker Shareable Tools

DELETE_DEFN | 179
Usage Notes Specify a value for parentonly only if the object is composed of one or more other
objects (if, for example, a report is composed of report tables).

Exceptions

Example • The following statement deletes the screen NEW_EMPLOYEE2 and its child
objects:

CALL DELETE_DEFN('SCREEN', 'NEW_EMPLOYEE2', '', '', '', 'N');

• The following statement deletes the library USR42:

CALL DELETE_DEFN('LIBRARY', 'USR42', '','','','');

DELETE_DEFN eventually calls FORALLA on the tables that define an object. If
the call to DELETE_DEFN is nested within a FORALL that specifies the same
table and parameter values, unexpected behavior occurs, because the set of values
returned by the outer FORALL is replaced by the occurrence returned by the
FORALLA. To work around this, consider buffering the set of objects to be deleted
in another temporary or TDS table and do the FORALL on that table instead.

TRIGGER_FAIL Raised for any error situation. The exception should be
handled by the calling rule.

Further information describing the circumstances of the
failure is available in the @OBJECTMSG.MSG field.
 TIBCO Object Service Broker Shareable Tools

| 180
DELETESCREENDATA

Deletes all the occurrences from all the screen tables of a screen. (C)

Invocation CALL DELETESCREENDATA(screen)

Example The rules in this example do the following:

1. Display a screen for data entry.

2. Save the entered data when the Enter key is pressed.

3. Clear the screen tables and re-display the function keys screen table.

NEW_EMPLOYEE Rule

NEW_EMPLOYEE displays the screen NEW_EMPLOYEE and initializes the
function keys:

 NEW_EMPLOYEE;
 _
 _ ---
 _ --+--------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE : | 3
 _ CALL PROCESS_FCNKEY('NEW_EMPLOYEE'); |
 _ END; |
 _ ---

Rule using DELETESCREENDATA

SAVE_EMP is the rule initiated when Enter is used. It saves the data, clears the
screen tables with DELETESCREENDATA, and re-displays the data contained in
the function keys screen table:

 SAVE_EMP;
 _
 _ ---
 _ --+--------
 _ GET ADD_EMPLOYEE('NEW_EMPLOYEE'); | 1
 _ EMPLOYEE.* = ADD_EMPLOYEE.*; | 2
 _ INSERT EMPLOYEE(ADD_EMPLOYEE.REGION); | 3

screen The name of the parent screen from which all the occurrences in its
screen tables are deleted.
 TIBCO Object Service Broker Shareable Tools

DELETESCREENDATA | 181
 _ CALL DELETESCREENDATA('NEW_EMPLOYEE'); | 4
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 5
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 6
 _ CALL SCREENMSG('NEW_EMPLOYEE', 'EMPLOYEE ADDED'); | 7
 _ ---
 _ ON INSERTFAIL :
 _ CALL SCREENMSG('NEW_EMPLOYEE', 'EMPLOYEE ALREADY EXISTS');
 _ ON GETFAIL :
 _ CALL SCREENMSG('NEW_EMPLOYEE', 'ENTER DATA');
 TIBCO Object Service Broker Shareable Tools

| 182
DIFF_DATA

Compares the data of two tables or table instances and lists the differences. (F)

Invocation differences = DIFF_DATA(table1, field1, location1, selection1, table2, field2,
location2, selection2, printresult)

differences On return, contains N if there are no differences and Y if there
are any differences. The actual differences, if any, are listed in
the message log.

table1 The name of the first table or table instance to be compared.
Valid values are:

• tablename

• tablename[(parm_value{,parm_value})]

field1 Specific fields within table1 to compare. Valid values are:

• “” – The comparison is based on primary key values only.

• * – The comparison is based on all fields.

• fieldnames – Indicates the comparison is based on primary
key values and the fields specified in field1 and field2.
Specify a series of fieldnames in the format: fieldname
fieldname fieldname.

location1 The name of the node where table1 is located.

selection1 A selection string used to designate which occurrences in table1
are to be used for comparison. Valid operators are:

=, <, >, <=, >=, and LIKE

table2 The name of the second table or table instance to be compared.
Valid values are the same as for table1.

field2 Specific fields within table2 to compare. Valid values are the
same as for field1.

location2 The name of the node where table2 is located

selection2 A selection string used to designate which occurrences in table2
are to be used for comparison. Valid operators are the same as
for selection1.
 TIBCO Object Service Broker Shareable Tools

DIFF_DATA | 183
Usage Notes • If the tables specified in table1 and table2 are parameterized, specify only the
data parameters, not the location parameters.

• Values for location1 and location2 are specified only if the tables are located on
different nodes.

• Concatenated primary keys are not supported with DIFF_DATA.

• DIFF_DATA can fail if you do a comparison for all fields between tables
whose definitions differ.

• In the output, the letters D and I indicate which items are to be deleted or
inserted to make the specified data of table2 match the specified data of table1.

Exceptions

Example This example compares the primary key fields and the DEPTNO fields within
each occurrence and returns the results of the comparison to the message log:

 RULE EDITOR ===> SCROLL: P
 DIFF_DATA_1;
 _ LOCAL DIFFERENCES;
 _ ---
 _ --+--------------
 _ DIFFERENCES = DIFF_DATA('EMPLOYEES(MIDWEST)', 'DEPTNO', '' | 1
 _ , '', 'EMPLOYEES(CANADA)', 'DEPTNO', '', '', 'Y'); |
 _ ---

Extract of the Results

The results indicate the changes that should be made to the tables to make the
data the same:

printresult Specifies type of output for the result. Valid arguments are:

Y – Print details of the differences in the message log.

N – Do not print any details.

DIFFFAILED Raised when:

• A table definition is incorrect (DEFINITIONFAIL)

• An external or remote table is inaccessible (SERVERBUSY)

• There are an unequal number of fields listed for the two
tables being compared
 TIBCO Object Service Broker Shareable Tools

184 |
 COMMAND ===> SCROLL ===> P
 SOURCE TABLE C KEYFIELD (EMPNO) REASON
 -------------------------- - --------------------------- ----------------------
 EMPLOYEES(MIDWEST) D 22001
 ...
 EMPLOYEES(MIDWEST) D 41007
 EMPLOYEES(MIDWEST) D 41009 (DEPTNO) = 50
 EMPLOYEES(MIDWEST) D 44385
 EMPLOYEES(MIDWEST) D 44622 (DEPTNO) = 40
 EMPLOYEES(MIDWEST) D 61622
 .
 EMPLOYEES(CANADA) I 32001
 EMPLOYEES(CANADA) I 32007
 EMPLOYEES(CANADA) I 40058
 EMPLOYEES(CANADA) I 41009 (DEPTNO) = 150
 ...
TIBCO Object Service Broker Shareable Tools

| 185
DIFF_DEFN

Compares the definitions of two objects and list the differences. (F)

Invocation differences = DIFF_DEFN(objecttype, instance1, library1, environment1, location1,
instance2, library2, environment2, location2, details)

differences On return, contains the results of the comparison, Y or N.

objecttype The TIBCO Object Service Broker object type that is to be
compared. Valid values are:

• GLOBALFIELD

• LIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

instance1 The name of the first object to be compared.

library1 If the object is a rule, the name of the rules library where
instance1 is stored.

environment1 This argument, although not currently used, must be supplied.
You can enter a null ('') value.

location1 An identifier indicating the node where instance1 is located.

instance2 The name of the second object to be compared.

library2 If the object is a rule, the name of the library where instance2 is
stored.

environment2 This argument, although not currently used, must be supplied.
You can enter a null ('') value.

location2 An identifier indicating the node where instance2 is located
 TIBCO Object Service Broker Shareable Tools

186 |
Usage Notes • DIFFDEFN is the version of this tool used on the developer’s workbench.

• DIFFDEFN locks the definitions of the items being compared while the
comparison is in progress.

• In the output, the letters D and I indicate which items should be deleted or
inserted to make the definition of instance2 match the definition of instance1.

Exceptions

Example The DIFF_DEFN_1 rule compares the definitions of two tables and sends a
detailed listing of differences to the message log.

 RULE EDITOR ===> SCROLL: P
 DIFF_DEFN_1;
 _ LOCAL DIFFERENCES;
 _ ---
 _ --+--------------
 _ DIFFERENCES = DIFF_DEFN('TABLE', 'EMPLOYEES', '', '', '', | 1
 _ 'EMPLOYEES_REMOTE', '', '', '', 'Y'); |
 _ ---

The following message log is produced:

 ------------------------- INFORMATIONAL MESSAGE LOG ---------------------------
 COMMAND ===> SCROLL ===> P
 SOURCE TABLE C KEYFIELD (NAME) REASON
 -------------------------- - --------------------------- ----------------------
 FIELDS(EMPLOYEES) D LNAME (KEYTYPE) = S
 FIELDS(EMPLOYEES_REMOTE) I LNAME (KEYTYPE) = ---

 SOURCE TABLE C KEYFIELD (NUMBER) REASON
 -------------------------- - --------------------------- ----------------------
 PARMS(EMPLOYEES_REMOTE) I 2

details Specifies whether details of the differences are printed. Valid
arguments are:

Y – Print details of the differences in the message log.

N – Do not print into message log.

DIFFFAILED Raised for any error situation. The exception should be
handled by the calling rule.

More information describing the circumstances of the failure is
in the @OBJECTMSG.MSG field.
TIBCO Object Service Broker Shareable Tools

DIFF_DEFN | 187
 SOURCE TABLE C KEYFIELD (NAME) REASON
 -------------------------- - --------------------------- ----------------------
 TABLES D EMPLOYEES
 TABLES I EMPLOYEES_REMOTE

DIFF_DEFN_2 compares the definitions of two rules and sends an end message
indicating whether there are differences. The results are sent to the message log.

 RULE EDITOR ===> SCROLL: P
 DIFF_DEFN_2;
 _ LOCAL DIFFERENCES;
 _ ---
 _ --+--------------
 _ DIFFERENCES = DIFF_DEFN('RULE', 'DELETE_EMPLOYEE', 'USR40' | 1
 _ , '', '', 'NEW_EMPLOYEE', 'USR40', '', '', 'N'); |
 _ CALL ENDMSG('ARE THERE DIFFERENCES? ' || DIFFERENCES); | 2
 _ ---

The following message appears in the end message:

 1:44:56 ARE THERE DIFFERENCES? Y
 TIBCO Object Service Broker Shareable Tools

| 188
DIFFDEFN

Compares the definitions of one or more pairs of objects and list the differences.
(E)

Invocation Do one of the following:

Usage Notes • DIFF_DEFN is the callable version of this tool.

• Using Enter displays the following screen:

 COMPARE DEFINITIONS
 COMMAND ==> Scroll: P

 LIST1 LIST2
 ------------------------------------- --------------------------
 Location : Location:
 Default Library : Library :
 Default Environment:
 FIRST List of Objects SECOND List
 ___|__________________|Parent
 Name Type Library/Env | Name |Only
 ---------------- ---------------- ---------------- | -----------------| -
 _ | | N
 _ | | N
 _ | | N
 _ | | N
 _ | | N
 _ | | N
 _ | | N

 PFKEYS: 5=SELECT OBJECTS 4=COMPARE 2=LOG 3=EXIT 12=EXIT

• To view additional fields from this screen, position your cursor in the
appropriate section and press PF11 to scroll right.

From the… Move the cursor to the… And…

Developer’s
workbench

DD diff defn option Press Enter

EX Execute Rule option Type DIFFDEFN <Enter>

COMMAND prompt Type DD <Enter>
 TIBCO Object Service Broker Shareable Tools

DIFFDEFN | 189
• You can type data directly into the fields displayed or you can use PF5 from
within the Compare Definitions screen to display a screen that you can use to
select the objects that you require.

• After specifying your objects for comparison, press PF4 to list the differences.
In the listing, an I indicates that the item should be inserted to make the
objects the same and a D indicates that the item should be deleted.

Compare Definitions Screen

The Compare Definitions screen is composed of three sections. Each section is
described below:

Specification Section

The specification section contains the following fields:

List of Objects

This section contains fields for listing the items that are to be compared. Only two
items per line can be compared and the items on each line must be the same object
type. Different types of objects can be compared within one comparison session.

Location If the objects to be compared in List1 or List2 are located
on a remote node, enter the name of the node.

Default Library/

Library

These fields indicate the library in which to look for rule
objects in List1 and List2. The library specification for
objects in List1 can be overridden by typing the name of
another library in the section below.

Name In the first list, type the name of the object that is to be
compared. If you position your cursor in the FIRST List of
Objects section and press PF5, a screen appears for
selection.

In the second list, type the name of the object that is to be
used for comparison. If you position your cursor in the
SECOND List of Objects section and press PF5, a screen
appears for selection.

Refer to Select Objects Screen on page 190 for more
information about selecting objects.
 TIBCO Object Service Broker Shareable Tools

190 |
Compare Attribute

PF Keys

In addition to the standard PF keys, the following PF keys are available:

Select Objects Screen

Pressing PF5 from the Compare Definitions screen displays the following screen:

 O b j e c t S e l e c t i o n
 COMMAND ==>
 Location: Select All: N
 Library (for RULES): List Children: N
 Presentation Environment:
 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME ____ ________________ AND unspecified |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll:

Type The name of the object type. Use PF1 for a list of valid
values.

Library/Env If the object is a rule, type the name of the rules library
where the rule is located.

Parent Only If the objects are composed of child objects (for example, an
object set is composed of objects), specifies if the definitions
of the child objects should also be compared. Valid values
are:

Y – Compare only the definition of the parent.

N – Compare the definitions of the parent and children
without specifying the child objects as individual items.

PF4 Compare the definitions as defined.

PF5 Display a screen to select objects.
TIBCO Object Service Broker Shareable Tools

DIFFDEFN | 191
 Name Type Library Environment Unit
 ---------------- ---------------- ---------------- ---------------- --------

 PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL

Top Section

Specify the following information in the fields. Press PF1 for valid values.

Middle Section

The middle section of the screen can be used to select the items to be copied or to
narrow the selection list. You can use more than one type of selection criteria for
each object type and you can specify multiple object types within one session. For
a list of valid values for each of these fields, position your cursor on the field and
press PF1.

Location The name of the node where the selection criteria are
applied. If you do not specify a value, your home location
is used.

Library If the selection list is to contain rules, type the name of the
rules library to be searched.

Presentation

Environment

This field is currently not in use.

Select All Specify if all the items displayed, based on the selection
criteria, should be copied into the Compare Definitions
screen.

Y – Copy all the items displayed.

N – Do not copy all the items displayed.

List Children Specify if you want to list all the child objects from which
an object is composed. Valid values are:

Y – List all the child objects.

N – Do not list the child objects.
 TIBCO Object Service Broker Shareable Tools

192 |
Bottom Section

When you press Enter after specifying the selection criteria, the selected items
appear in the bottom portion of the screen. Select the objects displayed in this
section by entering an S in the line command field beside the objects. Press PF1 for
valid values.

PF Keys

You can use the following PF keys from within this screen:

Example The following example compares the DEPT_EXPENSE_SUM and
DEPT_EXPENSE reports and lists the differences. Both parent and child objects
are compared:

 COMPARE DEFINITIONS
 COMMAND ==> Scroll: P

 LIST1 LIST2
 ------------------------------------- --------------------------
 Location : Location:
 Default Library : Library :
 Default Environment:

NAME If you know the name of the item, type the logical operator to be
used in the Op field. Type the name of the object in the Value field.

TYPE The name of the object type. If you do not supply an object type,
you must specify a value in at least one of the other selection fields.

If you specify an object type and no further selection values, a
listing of the items for the object type defined in your TIBCO
Object Service Broker database appears for further selection.

UNIT In the Op field, type the logical operator to be used. In the Value
field, type the name of the unit associated with the object.

AUTHOR In the Op field, type the logical operator to be used. In the Value
field, type the name of the author of the object.

Enter Update the screen.

PF3 Save the selection and return the Compare Definitions screen.

PF12 Exit without selecting objects and return to the Compare Definitions
screen.
TIBCO Object Service Broker Shareable Tools

DIFFDEFN | 193
 FIRST List of Objects SECOND List
 |__|_________________|Parent
 Name Type Library/Env | Name |Only
 ---------------- ---------------- ----------------| -----------------| -
 _ DEPT_EXPENSE_SUM REPORT | DEPT_EXPENSE | N
 _ | | N
 _ | | N
 _ | | N
 _ | | N
 _ | | N

 PFKEYS: 5=SELECT OBJECTS 4=COMPARE 2=LOG 3=EXIT 12=EXIT

Listing of Differences

The following list, produced after pressing PF4, indicates what items should be
changed and the reason for the differences:

 ------------------------ INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 Differences between @REPORTS of REPORT DEPT_EXPENSE_SUM and @REPORTS of REPORT
 SOURCE TABLE C KEYFIELD (NAME) REASON
 -------------------------- - --------------------------- ----------------------
 @REPORTS D DEPT_EXPENSE_SUM
 @REPORTS I DEPT_EXPENSE

 Differences between @REPORTTABLES of REPORT DEPT_EXPENSE_SUM and @REPORTTABLES
 SOURCE TABLE C KEYFIELD (NAME) REASON
 -------------------------- - --------------------------- ----------------------
 @REPORTTABLES(DEPT_EXPENS D BANNER_1
 @REPORTTABLES(DEPT_EXPENS D DEPT_EXPENSE_SUM
 @REPORTTABLES(DEPT_EXPENS D HUR_TITLE (BLANKOVERLAP) = N
 @REPORTTABLES(DEPT_EXPENS D TOTAL_EXP_BR
 @REPORTTABLES(DEPT_EXPENS I BANNER
 @REPORTTABLES(DEPT_EXPENS I DEPT_EXPENSE
 @REPORTTABLES(DEPT_EXPENS I HUR_TITLE (BLANKOVERLAP) = ---

 Object “HUR_TITLE” in LIST1 and object “HUR_TITLE” in LIST2 are alike
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 194

DISPLAY_MENU

Calls a specific menu into an application. (C)

Invocation CALL DISPLAY_MENU(menuname)

Usage Notes • The menu called must have been defined with DEFINE_MENU.

• If the menu has sub-menus embedded within it, these menus are also called.

See Also TIBCO Object Service Broker Defining Screens and Menus for information on
defining menus.

Example The following example displays the menu SCR_EMPLOYEE:

 RULE EDITOR ===> SCROLL: P
 DISPLAY_SCR_EMP;
 _
 _ ---
 _ --+--------------
 _ CALL DISPLAY_MENU('SCR_EMPLOYEE'); | 1
 _ ---

menuname The name of an existing menu.

| 195
DISPLAY_USERS

Displays a list of all users currently logged in to TIBCO Object Service Broker. (E)

Invocation Do one of the following to invoke DISPLAY_USERS:

Executing any of the above commands displays a screen similar to the one
illustrated in the example below.

Usage Notes • DISPLAY_USERS shows only TAM type users, not servers.

• Pressing Enter from the displayed screen refreshes the screen, updating the
displayed list and the number of users currently logged in to TIBCO Object
Service Broker.

• You can also display users by issuing the TIBCO Object Service Broker
operator command MODIFY job_name, USERLIST from the z/OS operator
console.

See Also TIBCO Object Service Broker for z/OS Installing and Operating or TIBCO Object
Service Broker for Open Systems Installing and Operating for information on operator
commands.

Example The following is an example of the DISPLAY_USERS screen:

 Users logged on

 USR20 Callas, Bill 703-481-6536 TSO User
 USR30 Max, Jane 703-481-6300 TSO User
 USR04 Hill, David 703-221-8989 TSO User
 USR11 Wodlinger, Susan 703-481-6300 TSO User
 USR13 Babalao, Nelson 703-481-6511 CICS User
 USR43 Knight, Darelle 703-481-6543 CICS User
 USR40 Baraldi, Henry 905-481-6377 TSO User
 USR27 Simmons, Susan 408-737-5876 TSO User
 USR12 Fernandez, Nellie 705-481-6300 CICS User
 USR80 Finn, Tom 703-481-6300 TSO User

From the Move the cursor to the And

Administrator’s
workbench

DU Display Users option Press Enter.

Developer’s
workbench

EX Execute Rule option Type DISPLAY_USERS.

COMMAND prompt Type EX DISPLAY_USERS.
 TIBCO Object Service Broker Shareable Tools

196 |
 USR88 Hudson, Janet 703-481-6308 TSO User
 USR33 Strand, Milan 408-982-0880 TSO User
 USR44 Dhillon, Al 905-481-6300 TSO User
 USR79 Brine, Maureen 408-992-2849 TSO User
 USR25 Hrodek, Maxine 703-481-6539 CICS User
 USR63 Roeder, Henning 905-481-6326 TSO User

 Number of users logged on: 55
 Maximum number of users : 200
 PFKEYS: ENTER=REFRESH 3=EXIT 12=EXIT
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 197

DRAW

Defines a new TIBCO Object Service Broker screen or modifies an existing one. (E)

Invocation Do one of the following:

Where:

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Screen Definer

TIBCO Object Service Broker Defining Screens and Menus for information on
defining or modifying screens.

From the… Move the cursor to the… And…

Developer’s
workbench

DS define screen option Type screenname <Enter>

EX execute rule option Type DRAW(screenname)
<Enter>

COMMAND prompt Type DS screenname <Enter>

screenname The name of a screen.

 TIBCO Object Service Broker Shareable Tools

| 198

EDITRULE

Defines a new TIBCO Object Service Broker rule or modifies an existing one. (E)

Invocation Do one of the following:

Where:

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Rule Editor

TIBCO Object Service Broker Programming in Rules for information on creating and
editing rules.

From the… Move the cursor to the… And…

Developer’s
workbench

ER edit rule option Type rulename <Enter>

EX execute rule option Type EDITRULE(rulename)
<Enter>

COMMAND prompt Type ER rulename <Enter>

rulename The name of a rule.

 TIBCO Object Service Broker Shareable Tools

| 199

ENDMSG

Sets the transaction completion message. (C)

Invocation CALL ENDMSG(message)

Usage Notes • The transaction completion message displays only if the transaction
completes normally.

• Only the first 148 characters are returned. Longer lengths can be passed in.

• The last message of multiple calls to ENDMSG within the same transaction is
printed as the transaction completion message.

• If the value of message is of syntax UN and it cannot be coerced to syntax V,
ENDMSG returns a Unicode literal.

Example The CHECK_EMP rule checks the EMPLOYEES table for a particular region to
see if an employee exists. If the employee does exist, the name, number, position,
and city of the employee appear in the end message. If the employee does not
exist, the end message informs the user.

 RULE EDITOR ===> SCROLL: P
 CHECK_EMP(REGION, LAST_NAME);
 _
 _ ---
 _ --+--------------
 _ GET EMPLOYEES(REGION) WHERE LNAME = LAST_NAME; | 1
 _ CALL ENDMSG('NAME: ' || 'EMPLOYEES'.LNAME || | 2
 _ ' EMPLOYEE #: ' || EMPLOYEES.EMPNO || ' POSITION: ' || |
 _ EMPLOYEES.POSITION || ' CITY: ' || EMPLOYEES.CITY); |
 _ ---
 _ ON GETFAIL :
 _ CALL ENDMSG(LAST_NAME || ' NOT FOUND');

Entering the value midwest for REGION and smith for LASTNAME results in the
following end message:

NAME: SMITH EMPLOYEE #: 41009 POSITION: TESTER CITY: MILTON

Entering the value midwest for REGION and Takada for LAST_NAME results in :

TAKADA NOT FOUND

message A string specifying the new transaction completion message. Its
syntax can be C (fixed-length character string), UN (Unicode),
V (variable-length character string), or W (double-byte character).

| 200
ENTERKEY

Returns the name of last key used when the specified screen appeared. (F)

Invocation key_name = ENTERKEY(screen)

Usage Notes The value returned is one of the following:

• ENTER

• CLEAR

• PF1 to PF24

• PA1 to PA3

Exceptions

Example The following rule fills the example screen with data from the example table,
displays it, determines the key used to end the rule, and prints its name to the
message log:

 ENTERKEY_1;
 _ LOCAL KEY_NAME;
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE: | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ DISPLAY EMPLOYEE_SCR; | 2
 _ KEY_NAME = ENTERKEY('EMPLOYEE_SCR'); | 3
 _ CALL MSGLOG('THE NAME OF THE LAST KEY PRESSED IS: ' || | 4

key_name On return, contains the name of the key used. Its syntax is
V (variable-length character string) with length 7.

screen A character string specifying the screen name. Its syntax is
C (fixed-length character string) with length 16.

In some environments, the CLEAR key and the PA keys may be reserved by the
external system and would therefore not be detected by TIBCO Object Service
Broker or returned by ENTERKEY.

RULEFAIL The request is being made on a non-existent screen or a screen
that never appeared.
 TIBCO Object Service Broker Shareable Tools

ENTERKEY | 201
 _ KEY_NAME); |
 _ --

Resulting Output

Executing this rule displays the following output:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033
 NELSON 81000
 CAREY 81001
 CHIU 81003
 LYNGBAEK 81014
 KINGSON 81019

Press Enter to end the rule. Pressing PF2 after the rule ends displays the following
output:

 ------------------------ INFORMATIONAL MESSAGE LOG -----------------------
 COMMAND ===> SCROLL ===> P
 THE NAME OF THE LAST KEY PRESSED IS: ENTER
 TIBCO Object Service Broker Shareable Tools

| 202
ESTIMATETBLDFN

Returns an estimate of the maximum CTABLESIZE and XTABLESIZE required
for each table type. (E)

Invocation Do one of the following:

Where:

Usage Notes • This function returns an estimate of the maximum CTABLESIZE and
XTABLESIZE required (for each TIBCO Object Service Broker table type) to
support the number of fields entered as an argument.

• The default CTABLESIZE shipped is 8 KB, which supports 150 fields.

See Also TIBCO Object Service Broker Parameters or the TIBCO Service Gateway manual for
the appropriate external database for information on the CTABLESIZE and
XTABLESIZE Data Object Broker parameters.

Example The screen below displays the results of executing this rule supplied with a
parameter of 150 fields:

----------------------------- INFORMATION LOG --------------------------------
 COMMAND ===> SCROLL ===> P
 DATE: Nov 27,2006 REPORT ON ESTIMATE CTABLESIZE
 FOR "150" FIELDS

 Table Type CTablesize(K) XTablesize(K)
 ---------- ------------- -------------

 ADA 11
 DAT 19
 DB2 12
 IDM 13

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type ESTIMATETBLDFN
(num_fields) <Enter>

COMMAND prompt Type EX ESTIMATETBLDFN
(num_fields) <Enter>

num_fields The maximum number of fields to be accessible for a table defined
in TIBCO Object Service Broker.
 TIBCO Object Service Broker Shareable Tools

ESTIMATETBLDFN | 203
 IMS 14 10
 MAP 9
 SLK 9
 204 15
 TDS 8

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL
 TIBCO Object Service Broker Shareable Tools

204 |
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 205

EVENTFIELD

Returns the name of the field of the subview table that activated the current
derived field rule, trigger rule, or validation rule. (F)

Invocation string = EVENTFIELD

Usage Notes EVENTFIELD can be called only by derived field rules.

Example The following derived field rule doubles the value of the field of the same name in
the underlying base table:

DOUBLEFIELD;
_
_ ---
_ ---+---
_ RETURN(FLDVAL(EVENTTABLE, EVENTFIELD) * 2); | 1
_ ---

string On return, contains the name of the field of the subview table
that activated the current derived field rule. Its syntax is C
(fixed-length character string) with length 16.

| 206
EVENTSCREEN

Returns the name of the screen that activated the current screen validation rule.
(F)

Invocation string = EVENTSCREEN

Usage Notes • EVENTSCREEN can be called only by a screen validation rule. It returns the
current screen name to the rule.

• Applications that use EVENTSCREEN cannot use XAL (XML Abstraction
Layer).

Example The following validation rule uses EVENTSCREEN:

 EVENTSCREEN_1;
 _
 _ --
 _ EMPLOYEE_SCR.EMPNO < 1111; | Y N N
 _ EMPLOYEE_SCR.EMPNO > 12000; | Y N
 _ --+-----------
 _ CALL SETHILIGHT (EVENTSCREEN, EVENTTABLE, 'EMPNO' , 'Y'); | 1 1
 _ CALL SETCURSOR (EVENTSCREEN, EVENTTABLE, 'EMPNO'); | 2 2
 _ RETURN ('EMPNO CANNOT BE LESS THAN 1111'); | 3
 _ RETURN ('EMPNO CANNOT BE MORE THAN 12000'); | 3
 _ RETURN ('Y'); | 1
 _ --

string On return, contains the name of the screen that activated the
current screen validation rule. Its syntax is C (fixed-length
character string) with length 16.
 TIBCO Object Service Broker Shareable Tools

EVENTSCREEN | 207
Resulting Output

When an invalid value of 12003 is entered into the field EMPNO, the output
appears as follows:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033
 NELSON 81000
 CAREY 81001
 CHIU 81003
 LYNGBAEK 81014
 KINGSON 120003
 _

 EMPNO CANNOT EXCEED 12000
 TIBCO Object Service Broker Shareable Tools

208 |
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 209

EVENTSUBVIEW

Returns the name of the subview table that activated the current derived field
rule. (F)

Invocation string = EVENTSUBVIEW

Usage Notes EVENTSUBVIEW can be called only by derived field rules.

Example The following derived field rule doubles the value of the field of the same name in
the underlying base table, if the name of the subview employing this derived rule
begins with the string 'DOUBLE':

DOUBLEFIELDIF;
_
_ ---
_ HEADSTRING(EVENTSUBVIEW, 6) = 'DOUBLE'; | Y N
_ ---+-----
_ RETURN(FLDVAL(EVENTTABLE, EVENTFIELD) * 2); | 1
_ RETURN(FLDVAL(EVENTTABLE, EVENTFIELD)); | 1
_ ---

string On return, contains the name of the field of the subview table
that activated the current derived field rule. Its syntax is C
(fixed-length character string) with length 16.

| 210
EVENTTABLE

Returns the name of the table that activated the current derived field rule, trigger
rule, or validation rule. (F)

Invocation string = EVENTTABLE

Usage Notes • EVENTTABLE can be called only by derived field, trigger, or validation rules.

• Applications that use EVENTTABLE cannot use XAL (XML Abstraction
Layer).

Example The following validation rule uses EVENTTABLE:

 EVENTTABLE_1;
 _
 _ --
 _ EMPLOYEE_DATA.EMPNO < 1111; | Y N N
 _ EMPLOYEE_DATA.EMPNO > 12000; | Y N
 _ --+-----------
 _ CALL SETHILIGHT (EVENTSCREEN, EVENTTABLE, 'EMPNO' , 'Y'); | 1 1
 _ CALL SETCURSOR (EVENTSCREEN, EVENTTABLE, 'EMPNO'); | 2 2
 _ RETURN ('EMPNO CANNOT BE LESS THAN 1111'); | 3
 _ RETURN ('EMPNO CANNOT BE MORE THAN 12000'); | 3
 _ RETURN ('Y'); | 1
 _ --

string On return, contains the name of the table that activated the
current derived field rule, trigger rule, or validation rule. Its
syntax is C (fixed-length character string) with length 16.

EVENTTABLE Used within a validation rule. Its syntax is C (fixed-length
character string) with length 16.
 TIBCO Object Service Broker Shareable Tools

EVENTTABLE | 211
Resulting Output

When an invalid value of 12003 is entered into the EMPNO field in the screen
table EMPLOYEE_DATA, the output appears as follows:

Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 CHESSEL 80020
 TOWENSEND 80021
 NAPIER 80024
 CANON 80033
 NELSON 81000
 CAREY 81001
 CHIU 81003
 LYNGBAEK 81014
 KINGSON 120003

 EMPNO CANNOT EXCEED 12000
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 212

$EXCEPTION

Returns the name of the last exception signalled within the current transaction by
either a SIGNAL statement, a $SIGNAL call, or the system (GETFAIL,
ZERODIVIDE, and so on). (F)

Invocation exception_name = $EXCEPTION

Usage Note If no exception is signalled in the transaction, $EXCEPTION returns a null string.

Example This rule uses $EXCEPTION.

 TESTEXCEPTION_1;
 _
 _ ---
 _ --+--------------
 _ SIGNAL STOP; | 1
 _ |
 _ ---
 _ ON ERROR: |
 _ CALL ENDMSG('Exception = "' || $EXCEPTION || |
 _ '" object = "' || $EXCEPTIONOBJECT || '"') |

The resulting end message is shown here:

Exception = "STOP" object = ""

See Also The $EXCEPTIONOBJECT shareable tool.

exception_name On return, contains the name of the last exception
signalled.

 TIBCO Object Service Broker Shareable Tools

| 213

$EXCEPTIONOBJECT

Returns the name of the object (for example, a table) associated with the last
exception signalled within the current transaction, if that exception is of the type
that can be trapped with an ON exception_name object_name: statement. (F)

Invocation exception_object = $EXCEPTIONOBJECT

Usage Note $EXCEPTIONOBJECT returns a null string under the following conditions:

• If no exception is signalled in the transaction

• If the exception signalled is not of the type that can be trapped with an ON
exception_name object_name: statement

Example This rule uses $EXCEPTIONOBJECT.

 TESTEXCEPTION_2;
 _
 _ ---
 _ --+--------------
 _ GET TABLES WHERE NAME = 'DOESNOTEXIST'; | 1
 _ |
 _ ---
 _ ON ERROR: |
 _ CALL ENDMSG('Exception = "' || $EXCEPTION || |
 _ '" object = "' || $EXCEPTIONOBJECT || '"') |

The resulting end message is shown here:

Exception = "GETFAIL" object = "TABLES"

See Also The $EXCEPTION shareable tool.

exception_object On return, contains the name of the object associated
with the last exception signalled.

 TIBCO Object Service Broker Shareable Tools

| 214

EXIT_DISPLAY

Signals the standard exception EXIT_DISPLAY. (C)

Invocation CALL EXIT_DISPLAY

Exceptions

Example In the following example, EXIT_DISPLAY is associated with PF3 in the
FCNKEYS(DELETE_EMPLOYEE) table:

EDITING TABLE : FCNKEYS(DELETE_EMPLOYEE)
 COMMAND ==>
 PF_KEY NAME COMMAND ROUTINE
 ----- ---------------- ---------------- ----------------
 _ PF22 DELETE DEL_EMP
 _ PF3 EXIT EXIT_DISPLAY

You use the UNTIL clause with the exception EXIT_DISPLAY, as in this rule:

 DELETE_EMPLOYEE;
 _
 _ ---
 _ --+--------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('DELETE_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('DELETE_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY DELETE_EMPLOYEE : | 3
 _ CALL PROCESS_FCNKEY('DELETE_EMPLOYEE'); |
 _ END; |
 _ ---

When you press PF3, the EXIT_DISPLAY rule is called. This raises the exception
EXIT_DISPLAY, causing the UNTIL loop to end.

EXIT_DISPLAY Signalled when this rule is called.

 TIBCO Object Service Broker Shareable Tools

| 215

EXPOCC_SIZE

Returns the minimum record size required to hold the occurrences of the table
being unloaded. (F)

Invocation MAXSIZE = EXPOCC_SIZE(table)

Usage Notes Use this function to help determine the record length needed in an output data set
when using UNLOAD.

Example The following rule, when executed, determines the record size needed to store
data unloaded from a given UNIT and returns the size to the end message:

 RULE EDITOR ===> SCROLL: P
 EXPOCC_SIZE_1(UNIT_TO_UNLOAD);
 _ LOCAL MAXSIZE;
 _ ---
 _ --+--------------
 _ MAXSIZE = 0; | 1
 _ FORALL TABLES WHERE UNIT = UNIT_TO_UNLOAD & TYPE = 'TDS' : | 2
 _ MAXSIZE = MAX(MAXSIZE, EXPOCC_SIZE(TABLES.NAME)); |
 _ END; |
 _ CALL ENDMSG('MINIMUM DATA SET RELOAD SIZE TO UNLOAD' || | 3
 _ ' TABLES IN ' || UNIT_TO_UNLOAD || ' IS ' || MAXSIZE); |
 _ ---

table The name of a TDS table being unloaded.

| 216
FCNKEY_MSG

Creates a string containing the function keys defined for a screen. (F)

Invocation screentable.field = FCNKEY_MSG(screen)

Prerequisites • The PF keys must be predefined to the table FCNKEYS.

• A screen table with a field large enough to contain the function key string
must already exist.

Usage Notes • This tool is used together with PROCESS_FCNKEY to initialize the function
key screen table with the function keys defined for a screen.

• The field MSG_INCLUDE in the FCNKEYS table determines whether the
function key appears on the screen.

• The field MSG_ORDER in the FCNKEYS tables determines the order of the
function keys displayed on the screen.

• The PF_KEY and NAME fields in the FCNKEYS table determine the function
key number and name displayed on the screen.

Example The rule in this example prepares a screen called NEW_EMPLOYEE for display
by using FCNKEY_MSG to initialize the function key screen table. First you must
define the screen NEW_EMPLOYEE. This screen should contain a screen table
called FCNKEY_SPECS, which, in turn, has a field called FCNKEYS. This is
where the function key string appears.

When the screen appears in an application, the user sees the function keys
available from the screen in the function key line.

FCNKEYS(NEW_EMPLOYEE) Table

The FCNKEYS (NEW_EMPLOYEE) table displays the function keys and
associated routines defines for the NEW_EMPLOYEE screen:

 BROWSING TABLE : FCNKEYS(NEW_EMPLOYEE)
 COMMAND ==>
 SCROLL: P
 PF_KEY NAME COMMAND ROUTINE

screentable.field The name of the screen table field that displays the
function key string.

screen The name of the screen being displayed.
 TIBCO Object Service Broker Shareable Tools

FCNKEY_MSG | 217
 _ ----- ---------------- ---------------- ----------------
 _ ENTER INPUT DATA RU_DELSCRDATA_2
 _ PF1 HELP
 _ PF12 EXIT EXIT_DISPLAY
 _ PF13 PRINT PRINT_SCREEN
 _ PF2 OPTION SELECT_OPTION
 _ PF3 SAVE SAVE_EMP

CREATE_EMPLOYEE Rule

Inside an application, the CREATE_EMPLOYEE rule displays the screen:

 CREATE_EMPLOYEE(EMPNO);
 _
 _ ---
 _ --+--------------
 _ CALL DELETESCREENDATA('NEW_EMPLOYEE'); | 1
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW EMPLOYEE'); | 2
 _ INSERT FCNKEY.SPECS('NEW_EMPLOYEE'); | 3
 _ EMPLOYEE_INFO.EMPNO = EMPNO; | 4
 _ INSERT EMPLOYEE_INFO('NEW EMPLOYEE'); | 5
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE : | 6
 _ CALL PROCESS_FCNKEY('NEW EMPLOYEE'); |
 _ END; |
 _ ---
 TIBCO Object Service Broker Shareable Tools

218 |
Displayed Screen

When CREATE_EMPLOYEE is executed, with 04334 as the EMPNO argument,
the screen looks as follows:

Region: Employee No.: 04334

Last Name:

Position:

MGR#:

Deptno:

Salary:

Date Hired:

Address:

City:

State or Prov:

Code:

FCNKEYS: 3=SAVE 13=PRINT 12=CANCEL
TIBCO Object Service Broker Shareable Tools

| 219
FLDMGR

Adds fields to the global field dictionary. (E)

Invocation Do one of the following:

Where:

Usage

From the… Move the cursor to the… And…

Administrator’s
workbench

DF define field option Type fieldname <Enter>

EX execute rule option Type FLDMGR(fieldname)
<Enter>

COMMAND prompt Type DF fieldname <Enter>

fieldname The name of the field to be added to the field dictionary.

If you supply
the following
value for
fieldname…

Executing FLDMGR displays…

A new value A screen that you use to define a field.

An existing value The definition for the field.

No value A list of fields in the global field dictionary when you press
Enter.

You can select fields from this list by typing an S in the line
command area beside the field name. When you select a
field, the definition appears as shown below.
 TIBCO Object Service Broker Shareable Tools

220 |
Define Global Field Screen

 Define Global Field: USERID Unit: ADMIN

 Command ==>

 Type : I Syntax : C Length : 8 Decimal : 0
 Reference :

 Business Name : TIBCO Object Service Broker USER ID

 Display Mask :
 Display Length : 8

The fields on this screen are described below. They are required unless marked
otherwise. For more information about defining fields, refer to the TIBCO Object
Service Broker Managing Data manual.

Define Global

Field

The name of the field to be added to the global field
dictionary. It must be a valid TIBCO Object Service
Broker identifier.

Unit [Optional] The user unit with which the field is
associated. The UNIT marks the field as belonging to a
particular application or a logical unit.

Type The semantic data type of the field.

Syntax The syntax of the field.

Length The length of the field.

Decimal [Optional] The number of digits to the right of the
decimal point. This specification is relevant only for
syntax P.

Reference [Optional] The name of a table that contains a valid set
of values for this table. The table must be
un-parameterized, and the values must exist as
primary key values in the reference table.

Business Name [Optional] Business description of the field. Maximum
36 characters.

Display Mask [Optional] The mask to be used on screens and
reports.
TIBCO Object Service Broker Shareable Tools

FLDMGR | 221
To save any changes to the global field dictionary, press PF3. To cancel an update,
press PF12. If you want to delete the field from the global field dictionary, press
PF22.

Adding Help to a Field

Text Editing Screen

Help information can be added to the field definition using PF19. It displays a
screen for text editing, as shown here:

Enter HELP text for field USERID
 _ ---
_

Defined Help Screen

You use this screen to build and edit the users’ help screen associated with the
field, using TIBCO Object Service Broker SCRIPT (refer also to TED for more
details). To initialize the help format use the TEXTSETUP SETUP HELP. An
example of a defined help screen is illustrated here:

 Enter HELP text for field USERID
 _ ---
 _
 _ .setup help
 _ .p.Enter the date in the format of MMM YYYY.

Display Length The display length to be used on screens and reports.
 TIBCO Object Service Broker Shareable Tools

222 |
Scripted Help Screen

When the screen appears, you can position the cursor on a field and press PF1 to
get the help specified for the field, as illustrated here:

 Formatted Output Scroll: P

 Enter the date in the format of MMM YYYY.

This help information can then be linked to a screen table, if the field is added to a
screen, and appear from within the screen.

If help for the field is not required, or if you want to modify the screen, you can
edit the help text that appears within the Screen Table Painter. This new help text
overrides the help associated with the global field definition.

Field Dictionary Implementation

As the system administrator, you decide to what extent you want the global field
dictionary used. For information on the field dictionary implementation, refer to
TIBCO Object Service Broker Application Administration.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 223

$FLUSHPRINT

Releases output into the print spool. (C)

Invocation CALL $FLUSHPRINT

Usage Notes • Calls to $PRINTLINE are printed after the transaction completes.

• Each call to $FLUSHPRINT starts a new print job.

Exceptions

Example The following rule flushes the print spooler, causing two jobs to be printed to the
message log:

 FLUSHPRINT_1;
 _
 _ ---
 _ --+--------------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS IS THE FIRST PRINT TRANSACTION.'); | 2
 _ CALL $FLUSHPRINT; | 3
 _ CALL $PRINTLINE('THIS IS THE SECOND PRINT TRANSACTION.'); | 4
 _ ---

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 Page 1
 THIS IS THE FIRST PRINT TRANSACTION

 ------------------------------ NEW PAGE ------------------------------

 Page 2
 THIS IS THE SECOND PRINT TRANSACTION

If the output is directed to a printer, each of the pages prints as a separate job; each
has its own banner pages.

ROUTINEFAIL $FLUSHPRINT is not preceded by a call to $RESETPRINT or
$SETPRINT.

| 224
FORALLA

Returns the first table occurrence that satisfies the selection criteria. Use if the
value of every table parameter and every selection criterion is 99 or fewer
characters long. (C)

Invocation CALL FORALLA(table, parm, selection, ordering)

The following sections describe the format of each of the arguments.

Table The name of the table. For example, to access the table EMPLOYEE, pass
‘EMPLOYEE’ as the value for the table argument.

Parm The string specified for parm consists of a list of parameter values. Each parameter
value consists of a two-character length descriptor and a parameter value. For
example, the string 06CANADA0580002 represents two parameters. The first is six
characters long with the value CANADA. The second is five characters long with
the value 80002.

Both the data parameters and the location parameter can be specified in this
manner. If the table has no parameters or the parameters are being specified in the
selection parameter of FORALLA, the value of parm can be null (NULL).

Selection The string specified for selection is a postfix representation of the rules language
WHERE clause. It is comprised of one or more terms joined by logical operators.
Each term consists of the following:

• A field reference

table A string specifying the table from which to select. Its syntax is
C (fixed-length character string), with a length of 16.

parm A string specifying the parameter set for the table. Its syntax is
V (variable-length character string) with length of 512.

selection A string specifying the selection criteria. Its syntax can be UN
(Unicode) or V with a length of 1024.

ordering A string specifying the order in which to return the occurrences
during selection. Its syntax is V, with a length of 512.

If the format of the arguments for FORALLA is incorrect, a fatal error can occur
with no indication of the cause of the error.
 TIBCO Object Service Broker Shareable Tools

FORALLA | 225
• An expression

These elements are described here.

Field Reference

A field reference consists of the following:

• A two-character descriptor consisting of a space followed by an R (' R').

• A 16 character field name. If the name is not 16 characters long, it must be
padded to 16 characters with spaces.

Expression

An expression consists of the following:

• A two-character value syntax descriptor consisting of a space followed by one
of the following (for example, ' V') to denote the syntax of the value:

— A – syntax RD (raw data): FORALLA uses, or coerces the value to, syntax
V; and then coerces it to syntax RD (see note below)

— E – syntax V (variable-length character string): FORALLA uses, or coerces
the value to, syntax V; if the coercion to V fails, it raises an exception

— M – a numeric string: FORALLA uses, or coerces the string to, syntax V; and
then coerces it to syntax B (binary), P (packed), or F (floating point); if either
coercion fails, it raises an exception

— N – a null value: no length or value should follow this descriptor

— U – syntax UN (Unicode)

— V – syntax UN or V. FORALLA uses, or coerces the value to, syntax V; if the
coercion to syntax V fails, it uses syntax UN

• A two-character value length descriptor (prefix a length of one digit with a
zero if needed)

You must specify the length as returned by the LENGTH shareable tool.

• The value

• A relational operator

The relational operators are: =, ¬= (not equal to), >, >=, <, <=, and L (LIKE).

• If necessary, an arithmetic or a logical operator

The relational operators must be two characters in length. Prefix a space
before an operator that consists of only one character.
 TIBCO Object Service Broker Shareable Tools

226 |
The arithmetic operators are: +, -, *, /, **, and ||.

The logical operators are: &, |, and ¬.

The arithmetic operators must be two characters in length. Prefix with a space
an operator that consists of only one character. For unary minus, place a space
after the -.

The logical operators must be two characters in length. Prefix a space before
the operator.

The syntax of selection determines the representation of values in the expression.
The usual technique for building selection is to use a series of concatenations. Here
are some examples (where the local variable VAL contains the value in the
expression to be built):

• SEL_STR = SEL_STR || ' V' || $PIC(LENGTH(VAL),'99') || VAL

If VAL is of syntax V, SEL_STR preserves its syntax; if VAL is of syntax UN,
SEL_STR is coerced to syntax UN.

• SEL_STR = SEL_STR || ' U' || $PIC(LENGTH(VAL),'99') || VAL

This makes sense only if VAL is of syntax UN.

• SEL_STR = SEL_STR || ' E' || $PIC(LENGTH(VAL),'99') || VAL

Regardless of selection's and VAL's syntax, FORALLA coerces the value to
syntax V.

• SEL_STR = SEL_STR || ' M' || $PIC(LENGTH(VAL),'99') || VAL

Regardless of selection's and VAL's syntax, FORALLA coerces the value to
syntax B, P, or F, whichever is appropriate.

To include a raw-data value in the expression, use descriptor ' A', keeping in mind
that a direct concatenation involving an RD value coerces the result to RD. If, as a
result, the selection string is of syntax RD, FORALLA coerces it to syntax V prior
to any processing, so some data loss is possible (for example, if the selection
contains a value of syntax UN). Accordingly, the following is recommended:
assuming VAL is of syntax RD, first cast it to syntax V:

VAL1 = $TYPECAST('','V',LENGTH(VAL),0,VAL)

and then concatenate the regular way:

SEL_STR = SEL_STR || ' A' || $PIC(LENGTH(VAL1),'99') || VAL1

Even if SEL_STR is of syntax UN prior to the latter action, FORALLA coerces
correctly the value to RD.
TIBCO Object Service Broker Shareable Tools

FORALLA | 227
Examples of Selections

In these examples, the “ß” represents a mandatory space.

• The following represents the selection CITY='TORONTO':

ßRCITYßßßßßßßßßßßßßV07TORONTOß=

The pattern is the name of the field, followed by the value, followed by the
relational operator.

• The following represents the selection CITY='TORONTO' AND SALARY > 600:

ßRCITYßßßßßßßßßßßßßV07TORONTOß=ßRSALARYßßßßßßßßßßßßßM03600ß>ß&

The field name (CITY) is followed by the value (TORONTO) and relational
operator (=), and then another sequence of field (SALARY), value (600), and
relational operator (>), followed by the logical operator (&) that joins the two
expressions.

• The following represents the selection CITY='TORONTO' & SALARY > 600 |
MGR# = 80002:

ßRCITYßßßßßßßßßßßßßV07TORONTOß=ßRSALARYßßßßßßßßßßßM03600ß>ß&ßRM

GR#ßßßßßßßßßßßßßM0580002ß=ß|

The first and second expressions are the same, and are followed by a third
sequence of field (MGR#), value (80002), relational operator (=), and a logical
operator (|) that joins the third expression to the selection string.

If Selection is Not Required

If selection on a table is not required, you can pass an empty value ('') for the
selection parameter.

Ordering The string specified for the ordering parameter is a list of terms consisting of the
following:

• A 16-character field name. If the field name is less than 16 characters long, it
must be padded to 16 characters.

• A one-character ordering specifier. The ordering specifier is A for ascending
and D for descending.

The ORDERED clause ORDERED DESCENDING LNAME AND ORDERED ASCENDING
EMPNO would translate to an ordering parameter like this:

LNAMEßßßßßßßßßßDEMPNOßßßßßßßßßßßA
 TIBCO Object Service Broker Shareable Tools

228 |
If Ordering is Not Required

If you do not need ordering, you can pass an empty value ('') for the ordering
parameter. In this case, the occurrences are sorted by primary key.

Usage Notes • If the value of any table parameter or of the selection criterion is 100 or more
characters long, use @FORALLA rather than FORALLA.

• Using FORALLA in conjunction with FORALLB and FORALLE, you can
dynamically build a selection criterion to retrieve table occurrences.

• The table parameters can be specified in either the parm or selection arguments.

• There are a maximum of 16 tables per transaction that can be actively accessed
with FORALLA. When you are finished accessing a table, you should call
FORALLE to indicate that you are finished and to free up resources for
another table to be accessed.

• The PARSE_TAM tool can be used to create the necessary arguments for
FORALLA, or if you only need to build the selection argument you can use
the SIMPLESELECT tool.

Exceptions

Example Using the following rule, QUERY_EMPS, users can construct a query against the
EMPLOYEE table. The rule retrieves employee names based on the selection
criteria associated with one field, or with a combination of two fields, and prints
them to the message log. Users can execute the rule directly or the rule could be
part of a larger application in which input values are entered via a screen.

The rule supports queries such as:

• Which employees working for a particular manager have a salary greater than
a given amount?

• Which employees in a given position live in a particular city?

A FORALLA within a FORALL on the same table (and with the same parameter
values) can result in unexpected behavior because the set of occurrences returned
by the outer FORALL is replaced by the occurrence returned by FORALLA.

TABLEEND No occurrences satisfy the selection criteria.

CONVERSION One or more of the supplied parameters are invalid.
TIBCO Object Service Broker Shareable Tools

FORALLA | 229
The QUERY_EMPS Rule

QUERY_EMPS pads input data to appropriate lengths, constructs a FORALLA
statement using the data from one or two fields, and then uses FORALLB,
FORALLE, and MSGLOG to retrieve and display the names of all employees
meeting the selection criteria in the FORALLA statement.

 RULE EDITOR ===> SCROLL: P
 QUERY_EMPS(REGION, FIELD1, OPER1, VALUE1, ORD1, OPER3, FIELD2, OPER2,
 _ VALUE2, ORD2);
 _ LOCAL REGLEN, VALLEN1, VALLEN2, FLD1, OP1, FLD2, OP2;
 _ ---
 _ OPER3 = ''; | Y N
 _ --+--------------
 _ REGLEN = PAD(LENGTH(REGION), 2, '0', 'R'); | 1 1
 _ VALLEN1 = PAD(LENGTH(VALUE1), 2, '0', 'R'); | 2 2
 _ VALLEN2 = PAD(LENGTH(VALUE2), 2, '0', 'R'); | 3
 _ FLD1 = PAD(FIELD1, 16, ' ', 'L'); | 3 4
 _ FLD2 = PAD(FIELD2, 16, ' ', 'L'); | 5
 _ OP1 = PAD(OPER1, 2, ' ', 'R'); | 4 6
 _ OP2 = PAD(OPER2, 2, ' ', 'R'); | 7
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ':' | 5
 _); |
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ' ' | 8
 _ || OPER3 || ' ' || FIELD2 || ' ' || OPER2 || ' ' || |
 _ VALUE2 || ':'); |
 _ CALL MSGLOG(' '); | 6 9
 _ CALL FORALLA('EMPLOYEE', REGLEN || REGION, ' R' || FLD1 || | 7
 _ ' V' || VALLEN1 || VALUE1 || OP1 || ' R' || FLD2 || ' V' |
 _ || VALLEN2 || VALUE2 || OP2 || ' ' || OPER3, FLD1 || |
 _ ORD1 || FLD2 || ORD2); |
 _ UNTIL TABLEEND : | 8 B
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ CALL FORALLB('EMPLOYEE'); |
 _ END; |
 _ CALL FORALLE('EMPLOYEE'); | 9 C
 _ CALL ENDMSG('PRESS PF2 FOR LIST'); | A D
 _ ---
 _ ON TABLEEND :
 _ CALL FORALLE('EMPLOYEE');
 _ CALL ENDMSG('NO MATCHING OCCURRENCES FOUND');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Query

To find those employees who work for manager number 79912 and have a salary
of more than $700.00, the following input values are supplied:

 ------------------------ H U R O N RULE EXECUTION -----------------------

 TIBCO Object Service Broker Shareable Tools

230 |
 ENTER ARGUMENTS FOR RULE QUERY_EMPS

 REGION ===> midwest

 FIELD1 ===> mgr#

 OPER1 ===> =

 VALUE1 ===> 79912

 ORD1 ===> a

 OPER3 ===> &

 FIELD2 ===> salary

 OPER2 ===> >

 VALUE2 ===> 700

 ORD2 ===> a

The message log displays the following employee names, arranged in order of
ascending salary:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 MGR# = 79912 & SALARY > 700:

 HRODEK
 BOIVIN
 SCHULTZ
 WONG
TIBCO Object Service Broker Shareable Tools

| 231
@FORALLA

Returns the first table occurrence that satisfies the selection criteria. Use if the
value of any table parameter or of any selection criterion is 100 or more characters
long. (C)

Invocation CALL @FORALLA(table, parm, selection, ordering)

The following sections describe the format of each of the arguments.

Table The name of the table. For example, to access the table EMPLOYEE, pass
‘EMPLOYEE’ as the value for the table argument.

Parm The string specified for parm consists of a list of parameter values. Each parameter
value consists of:

• A three-character length descriptor

• A parameter value

The string 006CANADA00580002 contains two parameters. The first is 6 characters
long with the value CANADA. The second is 5 characters long with the value
80002.

Both the data parameters and the location parameter can be specified in this
manner. If the table has no parameters or the parameters are being specified in the
selection parameter of @FORALLA, the value of parm can be null (NULL).

table A string specifying the table from which to select. Its syntax is
C (fixed-length character string), with a length of 16.

parm A string specifying the parameter set for the table. Its syntax is
V (variable-length character string) with length of 512.

selection A string specifying the selection criteria. Its syntax can be UN
(Unicode) or V with length of 4096.

ordering A string specifying the order in which to return the occurrences
during selection. Its syntax is V, with a length of 512.

If the format of the arguments for @FORALLA is incorrect a fatal error can occur
with no indication of the cause of the error.
 TIBCO Object Service Broker Shareable Tools

232 |
Selection The string specified for selection is a postfix representation of the rules language
WHERE clause. It is comprised of one or more terms joined by logical operators.
Each term consists of the following:

• A field reference

• An expression

These elements are described here.

Field Reference

A field reference consists of the following:

• A two-character descriptor consisting of a space followed by an R (' R').

• A 16-character field name. If the name is not 16 characters long, it must be
padded to 16 characters with spaces.

Expression

An expression consists of the following:

• A two-character value syntax descriptor consisting of a space followed by one
of the following (for example, ' V') to denote the syntax of the value:

— A – syntax RD (raw data): @FORALLA uses, or coerces the value to, syntax
V; and then coerces it to syntax RD (see note below)

— E – syntax V (variable-length character string): @FORALLA uses, or coerces
the value to, syntax V; if the coercion to V fails, it raises an exception

— M – a numeric string: @FORALLA uses, or coerces the string to, syntax V;
and then coerces it to syntax B (binary), P (packed), or F (floating point); if
either coercion fails, it raises an exception

— N – a null value: no length or value should follow this descriptor

— U – syntax UN (Unicode)

— V – syntax UN or V. @FORALLA uses, or coerces the value to, syntax V; if
the coercion to syntax V fails, it uses syntax UN

• A four-character value length descriptor (prefix a length shorter than four
digits with zeroes as needed)

You must specify the length as returned by the LENGTH shareable tool

• The value

• A relational operator
TIBCO Object Service Broker Shareable Tools

@FORALLA | 233
The relational operators are: =, ¬= (not equal to), >, >=, <, <=, and L (LIKE).

• If necessary, an arithmetic or a logical operator

The arithmetic operators are: +, -, *, /, **, and ||.

The logical operators are: &, |, and ¬.

The relational operators must be two characters in length. Prefix a space
before an operator that consists of only one character.

The arithmetic operators must be two characters in length. Prefix with a space
an operator that consists of only one character. For unary minus, place a space
after the -.

The logical operators must be two characters in length. Prefix the operator
with a space.

The syntax of selection determines the representation of values in the expression.
The usual technique for building selection is to use a series of concatenations. Here
are some examples (where the local variable VAL contains the value in the
expression to be built):

• SEL_STR = SEL_STR || ' V' || $PIC(LENGTH(VAL),'9999') || VAL

If VAL is of syntax V, SEL_STR preserves its syntax; if VAL is of syntax UN,
SEL_STR is coerced to syntax UN.

• SEL_STR = SEL_STR || ' U' || $PIC(LENGTH(VAL),'9999') || VAL

This makes sense only if VAL is of syntax UN.

• SEL_STR = SEL_STR || ' E' || $PIC(LENGTH(VAL),'9999') || VAL

Regardless of selection's and VAL's syntax, @FORALLA coerces the value to
syntax V.

• SEL_STR = SEL_STR || ' M' || $PIC(LENGTH(VAL),'9999') || VAL

Regardless of selection's and VAL's syntax, @FORALLA coerces the value to
syntax B, P, or F, whichever is appropriate.
 TIBCO Object Service Broker Shareable Tools

234 |
Examples of Selections

In these examples, the “ß” represents a mandatory space.

• The following represents the selection CITY='TORONTO':

ßRCITYßßßßßßßßßßßßßV0007TORONTOß=

The pattern is the name of the field, followed by the value, followed by the
relational operator.

• The following represents the selection CITY='TORONTO' AND SALARY > 600:

ßRCITYßßßßßßßßßßßßßV0007TORONTOß=ßRSALARYßßßßßßßßßßßßßM0003600ß

>ß&

The name of the field (CITY) is followed by the value (TORONTO) and
relational operator (=), and then another sequence of field (SALARY), value
(600), relational operator (>), followed by the logical operator (&) that joins the
two expressions.

• The following represents the selection CITY='TORONTO' & SALARY > 600 |
MGR# = 80002:

ßRCITYßßßßßßßßßßßßßV0007TORONTOß=ßRSALARYßßßßßßßßßßßM0003600ß>ß&ßR

MGR#ßßßßßßßßßßßßßM000580002ß=ß|

The first and second expressions are the same, and are followed by a third
sequence of field (MGR#), value (80002), relational operator (=), and a logical
operator (|) that joins the third expression to the selection string.

If Selection is Not Required

If selection on a table is not required, you can pass an empty value ('') for the
selection parameter.

To include a raw-data value in the expression, use descriptor ' A', keeping in mind
that a direct concatenation involving an RD value coerces the result to RD. If, as a
result, the selection string is of syntax RD, FORALLA coerces it to syntax V prior
to any processing, so some data loss is possible (for example, if the selection
contains a value of syntax UN). Accordingly, the following is recommended:
assuming VAL is of syntax RD, first cast it to syntax V:

VAL1 = $TYPECAST('','V',LENGTH(VAL),0,VAL)

and then concatenate the regular way:

SEL_STR = SEL_STR || ' A' || $PIC(LENGTH(VAL1),'9999') || VAL1

Even if SEL_STR is of syntax UN prior to the latter action, FORALLA coerces
correctly the value to RD.
TIBCO Object Service Broker Shareable Tools

@FORALLA | 235
Ordering The string specified for the ordering parameter is a list of terms consisting of the
following:

• A 16-character field name. If the field name is less than 16 characters long, it
must be padded to 16 characters.

• A one-character ordering specifier, which is A for ascending and D for
descending.

The ORDERED clause ORDERED DESCENDING LNAME AND ORDERED ASCENDING
EMPNO would translate to an ordering parameter like this:

LNAMEßßßßßßßßßßDEMPNOßßßßßßßßßßßA

If Ordering is Not Required

If you do not need ordering, you can pass an empty value ('') for the ordering
parameter. In this case, the occurrences are sorted by primary key.

Usage Notes • If the value of every table parameter and of the selection criterion is 99 or
fewer characters long, use FORALLA rather than @FORALLA.

• Using @FORALLA in conjunction with FORALLB and FORALLE, you can
dynamically build a selection criterion to retrieve table occurrences.

• The table parameters can be specified in either the parm or selection arguments.

• There are a maximum of 16 tables per transaction that can be actively accessed
with @FORALLA. When you finish accessing a table, you should call
FORALLE to indicate that you are finished and to free up resources for
another table to be accessed.

• If you cannot create the necessary arguments for @FORALLA, consider using
PROCESS_TABLE.

Exceptions

An @FORALLA within a FORALL on the same table (and with the same
parameter values) can result in unexpected behavior because the set of
occurrences returned by the outer FORALL is replaced by the occurrence
returned by @FORALLA.

TABLEEND No occurrences satisfy the selection criteria.

CONVERSION One or more of the supplied parameters are invalid.
 TIBCO Object Service Broker Shareable Tools

236 |
Example Using the following rule, QUERY_EMPLOYEES, users can construct a query
against the EMPLOYEE table. The rule retrieves employee names based on the
selection criteria associated with one field, or with a combination of two fields,
and prints them to the message log. Users can execute the rule directly or the rule
could be part of a larger application in which input values are entered via a
screen.

The rule supports queries such as:

• Which employees working for a particular manager have a salary greater than
a given amount?

• Which employees in a given position live in a particular city?

The QUERY_EMPLOYEES Rule

QUERY_EMPLOYEES pads input data to appropriate lengths, constructs a
@FORALLA statement using the data from one or two fields, and then uses
FORALLA, FORALLE, and MSGLOG to retrieve and display the names of all
employees meeting the selection criteria in the @FORALLA statement.

 RULE EDITOR ===> SCROLL: P
 QUERY_EMPLOYEES(REGION, FIELD1, OPER1, VALUE1, ORD1, OPER3, FIELD2, OPER2,
 _ VALUE2, ORD2);
 _ LOCAL REGLEN, VALLEN1, VALLEN2, FLD1, OP1, FLD2, OP2;
 _ ---
 _ OPER3 = ''; | Y N
 _ --+--------------
 _ REGLEN = PAD(LENGTH(REGION), 3, '0', 'R'); | 1 1
 _ VALLEN1 = PAD(LENGTH(VALUE1), 4, '0', 'R'); | 2 2
 _ VALLEN2 = PAD(LENGTH(VALUE2), 4, '0', 'R'); | 3
 _ FLD1 = PAD(FIELD1, 16, ' ', 'L'); | 3 4
 _ FLD2 = PAD(FIELD2, 16, ' ', 'L'); | 5
 _ OP1 = PAD(OPER1, 2, ' ', 'R'); | 4 6
 _ OP2 = PAD(OPER2, 2, ' ', 'R'); | 7
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ':' | 5
 _); |
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ' ' | 8
 _ || OPER3 || ' ' || FIELD2 || ' ' || OPER2 || ' ' || |
 _ VALUE2 || ':'); |
 _ CALL MSGLOG(' '); | 6 9
 _ CALL @FORALLA('EMPLOYEE', REGLEN || REGION, ' R' || FLD1 || | 7
 _ ' V' || VALLEN1 || VALUE1 || OP1 || ' R' || FLD2 || ' V' |
 _ || VALLEN2 || VALUE2 || OP2 || ' ' || OPER3, FLD1 || |
 _ ORD1 || FLD2 || ORD2); |
 _ UNTIL TABLEEND : | 8 B
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ CALL FORALLB('EMPLOYEE'); |
 _ END; |
 _ CALL FORALLE('EMPLOYEE'); | 9 C
 _ CALL ENDMSG('PRESS PF2 FOR LIST'); | A D
 _ ---
 _ ON TABLEEND :
TIBCO Object Service Broker Shareable Tools

@FORALLA | 237
 _ CALL FORALLE('EMPLOYEE');
 _ CALL ENDMSG('NO MATCHING OCCURRENCES FOUND');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Query

To find those employees who work for manager number 79912 and have a salary
of more than $700.00, the following input values are supplied:

 ------------------------ H U R O N RULE EXECUTION -----------------------

 ENTER ARGUMENTS FOR RULE QUERY_EMPLOYEES

 REGION ===> midwest

 FIELD1 ===> mgr#

 OPER1 ===> =

 VALUE1 ===> 79912

 ORD1 ===> a

 OPER3 ===> &

 FIELD2 ===> salary

 OPER2 ===> >

 VALUE2 ===> 700

 ORD2 ===> a

The message log displays the following employee names, arranged in order of
ascending salary:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 MGR# = 79912 & SALARY > 700:

 HRODEK
 BOIVIN
 SCHULTZ
 WONG
 TIBCO Object Service Broker Shareable Tools

| 238
FORALLB

Returns the next table occurrence that satisfies the selection criteria following a
call to FORALLA. (C)

Invocation CALL FORALLB(table)

Prerequisites Before FORALLB can be called the table must be initialized by a call to
FORALLA.

Usage Notes • FORALLB continues to retrieve occurrences based on the selection and
ordering criteria specified in the call to FORALLA. After one initial call to
FORALLA, FORALLB can be called repeatedly to retrieve multiple
occurrences from a table.

• To use FORALLB to retrieve all the occurrences in the table that match the
selection criteria specified in a preceding call to FORALLA, call FORALLB
within a loop created by an UNTIL TABLEEND statement. FORALLB
continues to retrieve occurrences until there are no more occurrences that
satisfy the criteria. At that point, FORALLB raises the TABLEEND exception
and the loop exits.

• There are a maximum of 16 tables that can be actively accessed with
FORALLB per transaction. When you are finished accessing a table, you
should call FORALLE to indicate that you are finished and to free up a slot for
another table to be accessed.

See Also TIBCO Object Service Broker Programming in Rules for information on the rules
language.

Exception

Example Using the following rule, QUERY_EMPS, users can construct a query against the
EMPLOYEE table. The rule retrieves employee names based on the selection
criteria associated with one field or with a combination of two fields and prints
them to the message log. Users can execute the rule directly, or the rule could be
part of a larger application in which input values are entered via a screen.

table This is a string specifying the name of the table to retrieve from. It
is syntax C (fixed-length character string) and length 16.

TABLEEND There are no more occurrences to process that satisfy the
selection criteria.
 TIBCO Object Service Broker Shareable Tools

FORALLB | 239
The rule supports queries such as:

• Which employees work for a given manager and earn a given amount?

• Which employees in a given position live in a particular city?

The QUERY_EMPS Rule

QUERY_EMPS pads input data to appropriate lengths, constructs a FORALLA
statement using the data from one or two fields, and then uses FORALLB,
FORALLE, and MSGLOG to retrieve and display the names of all employees
meeting the selection criteria in the FORALLA statement.

The FORALLB statement at action 8 in the Y column shows the use of an UNTIL
TABLEEND loop.

 RULE EDITOR ===> SCROLL: P
 QUERY_EMPS(REGION, FIELD1, OPER1, VALUE1, ORD1, OPER3, FIELD2, OPER2,
 _ VALUE2, ORD2);
 _ LOCAL REGLEN, VALLEN1, VALLEN2, FLD1, OP1, FLD2, OP2;
 _ ---
 _ OPER3 = ''; | Y N
 _ --+--------------
 _ REGLEN = PAD(LENGTH(REGION), 2, '0', 'R'); | 1 1
 _ VALLEN1 = PAD(LENGTH(VALUE1), 2, '0', 'R'); | 2 2
 _ VALLEN2 = PAD(LENGTH(VALUE2), 2, '0', 'R'); | 3
 _ FLD1 = PAD(FIELD1, 16, ' ', 'L'); | 3 4
 _ FLD2 = PAD(FIELD2, 16, ' ', 'L'); | 5
 _ OP1 = PAD(OPER1, 2, ' ', 'R'); | 4 6
 _ OP2 = PAD(OPER2, 2, ' ', 'R'); | 7
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ':' | 5
 _); |
 _ CALL MSGLOG(FIELD1 || ' ' || OPER1 || ' ' || VALUE1 || ' ' | 8
 _ || OPER3 || ' ' || FIELD2 || ' ' || OPER2 || ' ' || |
 _ VALUE2 || ':'); |
 _ CALL MSGLOG(' '); | 6 9
 _ CALL FORALLA('EMPLOYEE', REGLEN || REGION, ' R' || FLD1 || | 7
 _ ' V' || VALLEN1 || VALUE1 || OP1, FLD1 || ORD1); |
 _ || VALLEN2 || VALUE2 || OP2 || ' ' || OPER3, FLD1 || |
 _ ORD1 || FLD2 || ORD2); |
 _ UNTIL TABLEEND : | 8 B
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ CALL FORALLB('EMPLOYEE'); |
 _ END; |
 _ CALL FORALLE('EMPLOYEE'); | 9 C
 _ CALL ENDMSG('PRESS PF2 FOR LIST'); | A D
 _ ---
 _ ON TABLEEND :
 _ CALL FORALLE('EMPLOYEE');
 _ CALL ENDMSG('NO MATCHING OCCURRENCES FOUND');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
 TIBCO Object Service Broker Shareable Tools

240 |
Query

To find which employees working for manager number 79912 have a salary of
more than $700.00, the following input values are supplied:

 ------------------------ H U R O N RULE EXECUTION -----------------------

 ENTER ARGUMENTS FOR RULE QUERY_EMPS

 REGION ===> midwest

 FIELD1 ===> mgr#

 OPER1 ===> =

 VALUE1 ===> 79912

 ORD1 ===> a

 OPER3 ===> &

 FIELD2 ===> salary

 OPER2 ===> >

 VALUE2 ===> 700

 ORD2 ===> a

The message log displays the following employee names, arranged in order of
ascending salary:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 MGR# = 79912 & SALARY > 700:

 HRODEK
 BOIVIN
 SCHULTZ
 WONG
TIBCO Object Service Broker Shareable Tools

| 241
FORALLE

Releases internally the resources used by FORALLA on a table. (C)

Invocation CALL FORALLE(table)

Usage Notes • There are a maximum of 16 tables that can be actively accessed with
FORALLA and FORALLB per transaction. An index is maintained for each
table being accessed by FORALLA and FORALLB, and there is a maximum of
16 simultaneous indexes per transaction. FORALLE clears the index for the
specified table, and frees up resources for another table to be accessed. When
you are finished accessing a table with FORALLA or FORALLB, you should
call FORALLE to indicate that you are finished and free up resources for
another table to be accessed.

• All exit points for FORALLA and FORALLB should have a FORALLE
statement.

Example The following rule uses FORALLA and FORALLB to retrieve all the occurrences
in the MIDWEST parameter instance of the EMPLOYEE table and put them in the
message log. FORALLE is used to clean up the table index when the loop exits
normally or when an exception is raised. All the exception handlers call
FORALLE, so that all ending points for the FORALLA, FORALLB sequence are
covered by a FORALLE.

 FORALLE_1;
 _
 _ ---
 _ --+------
 _ CALL FORALLA('EMPLOYEE', '07MIDWEST', '', ''); | 1
 _ UNTIL TABLEEND: | 2
 _ CALL MSGLOG('EMPLOYEE ' || EMPLOYEE.LNAME || |
 _ ' IS NUMBER ' || EMPLOYEE.EMPNO); |
 _ CALL FORALLB('EMPLOYEE'); |
 _ END; |
 _ CALL FORALLE('EMPLOYEE'); | 3
 _ --
 _ ON TABLEEND :
 _ CALL FORALLE('EMPLOYEE');
 _ CALL MSGLOG('NO OCCURRENCES WERE FOUND.');
 _ ON SECURITYFAIL:
 _ CALL FORALLE('EMPLOYEE');
 _ CALL MSGLOG('A SECURITYFAIL WAS RAISED');
 _ ON LOCKFAIL:

table Name of a table involved in a previous FORALLA or FORALLB
call. Its syntax is C (fixed-length character string) with length of 16.
 TIBCO Object Service Broker Shareable Tools

242 |
 _ CALL FORALLE('EMPLOYEE');
 _ CALL MSGLOG('A LOCKFAIL WAS RAISED');
 _ ON DEFINITIONFAIL:
 _ CALL FORALLE('EMPLOYEE');
 _ CALL MSGLOG('A DEFINITIONFAIL WAS RAISED');
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 243

FROM_UNICODE

Converts a Unicode string to Raw Data encoded in an external Code page.(F)

Invocation rd_string = FROM_UNICODE(unistring,externalcodepage)

Example This rule converts a string encoded in Unicode to external syntax XC02.

TESTFROMUNI;
_ LOCAL IDATA, RESULT;
_ --
_ --+---
_ IDATA = U'ABC DEF'; ¦ 1
_ RESULT = FROM_UNICODE(IDATA, 'XC02'); ¦ 2
_ CALL ENDMSG(RESULT); ¦ 3

Line 1 sets local variable IDATA as a Unicode string. Line 2 converts it to a Raw
Data string encoded in external code page XC02. Line 3 displays the result:
ABC DEF.

rd_string On return, contains a string of RD (raw data) syntax. The
data encoding corresponds to one of the 16 possible
user-defined external syntaxes XC01 to XC16.

unistring Contains a string of UN (unicode) syntax.

externalcodepage One of the values 'XC01' to 'XC16' representing the
user-defined external syntax.

| 244
$FUNCTION

Invokes a functional rule. (F)

Invocation result = $FUNCTION(rulecall)

Usage Notes • You can pass a NULL value to the rule by omitting an actual value from the
list of parameters in the position of the parameter to be passed the NULL. For
example, in the sample rule below, to use ADD without a value for B, you
would use:

C = $FUNCTION('ADD(' || A || ',)');

• If the rule to be invoked does not exist in a library in the current search order
of the transaction, an untrappable error occurs. You can use the
$RULE_EXISTS shareable tool to test for the existence of a rule before trying to
invoke it.

Exceptions

Example This rule receives a request to process two numbers by adding them together or
subtracting them from each other. It then calls the appropriate user-written rule to
do that processing. If one of the rules does not exist, the terminal displays an end
message.

 RULE EDITOR ===> SCROLL: P
ARITHF(A, OPERATION, B);
 _ LOCAL C;
 _ ---
 _ $RULE_EXISTS('ADD') = 'N'; ¦ Y N N N N
 _ $RULE_EXISTS('SUBTRACT') = 'N'; ¦ Y N N N
 _ OPERATION = '+'; ¦ Y N N
 _ OPERATION = '-'; ¦ Y N
 _ --+--------------
 _ SIGNAL NORULE; ¦ 1 1

result The value returned by the rule.

rulecall A character string of syntax V (variable-length character string) or
UN (Unicode) containing the name of the rule to be invoked, and,
if the rule takes one or more arguments, a left parenthesis, a list of
the comma-separated arguments, and a right parenthesis.

EXECUTEFAIL Raised if rulecall is not a string conforming to the format
described above.
 TIBCO Object Service Broker Shareable Tools

$FUNCTION | 245
 _ C = $FUNCTION('ADD(' || A || ' , ' || B ||')'); ¦ 1
 _ C = $FUNCTION('SUBTRACT(' || A || ' , ' || B ||')'); ¦ 1
 _ CALL ENDMSG('THE RESULT OF ' || A || OPERATION || B || ¦ 2 2
 _ ' IS ' || C); ¦
 _ ---
 _ ON NORULE :
 _ CALL ENDMSG('RULE NOT FOUND');
 _ ON EXECUTEFAIL :
 _ CALL ENDMSG('CHECK SYNTAX IN RULE');

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

This is one of the rules ARITHC calls:

 RULE EDITOR ===> SCROLL: P
ADD(A, B);
_
_ ---
_ --+--------------
_ RETURN(A + B); ¦ 1
_ ---

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

The output message from ARITHC is similar to:

THE RESULT OF 7+2 IS 9
 TIBCO Object Service Broker Shareable Tools

| 246
GEN_TED

Presents a screen where text can be entered and edited under the control of the
text editor. (C)

Invocation CALL GEN_TED(tablespec, screenname, screentablename)

Usage Notes Requirements for Screen Table

The fields listed here must be in the screen table, in the titles area:

tablespec The name of the table (including its parameters, if any) that
contains the text to appear and edited. This could be a
predefined text table or another table that contains the same
field names and syntaxes as @TEXT.

screenname The name of the screen to appear. This screen must be defined
with the following features:

• Horizontal scroll keys are 0.

• One screen table must be defined to meet the requirements
of the screentablename argument given below.

• The screen table PFKEY_SPECS must be included.

• There must be a table instance of PFKEYS(screen). It can be
copied from PFKEYS(@GEN_TED) and occurrences can be
added and deleted as required.

screentablename The name of the screen table that is manipulated by the text
editor. It must contain the fields listed below. If an application
does not specifically require some of the fields, they can be
defined as SHOW = N, PROT = Y or be given a value of ROW
= 0, COL = 0. This removes them from the physical screen.
Even though the fields do not appear, other fields cannot be
defined to the same position.

TABLENAME This field must be long enough to contain tablespec. It must be
TYP = S, SYN = C.

COMMAND This field can be used for primary commands, if required. It
must be TYP = S, SYN = V.
 TIBCO Object Service Broker Shareable Tools

GEN_TED | 247
Requirements for Text Table

A text table can be parameterized and it must contain these two fields:

Other Requirements

• The local variable MSG must be declared by the calling rule.

• The exception handler TED_ERROR must be provided. In the case of error,
GEN_TED raises the TED_ERROR exception and stores the message in the
MSG variable.

CMND This field is used to accept the line command I, if required.
You use this line command to insert data at the top of the text.
It should be positioned directly above the field CMD. It must
be TYP = S, SYN = C, LEN = 1. If you use the FILL = _
(underscore), this field looks like the other line command
field, CMD.

The scrollable part of the screen table must also contain a line
with these fields:

CMD This is used for line commands. It must be TYP = S, SYN = V,
LEN = 1. Set PROT = Y to prevent users from typing in this
field before the line is available for text input. GEN_TED
unprotects this field as needed.

LINE This field holds the line of text. It must be TYP = S, SYN = V.
Set PROT = Y to prevent users from typing in this field before
the line is available for text input. GEN_TED unprotects this
field as needed.

NUMBER This holds the number for each line. It can be defined as
SHOW = N, PROT = Y. This removes it from the physical
screen. Even though the field does not appear, another field
cannot be defined to the same position. It must be TYP = C,
SYN = B, LEN = 4.

NUMBER A primary key field with a length of 4, a syntax of B, and a
semantic type of I.

LINE A field with a syntax of V and a semantic type of S.
 TIBCO Object Service Broker Shareable Tools

248 |
• The occurrence SAVE in the table PFKEYS(screen) must call a rule that ends by
calling GEN_EDSAVER. GEN_EDSAVER saves the information entered to the
text screen table.

Example The following example presents a screen that accepts text editing. The example is
composed of:

• The field definition of the screen table PROJ_WEEK_STAT_1, from the screen
WEEKLY_STATUS_G

• The GEN_TED_1 rule

Definition of PROJ_WEEK_STAT_1 Screen Table

The fields of the screen table PROJ_WEEK_STAT_1 are defined as follows:

 Table: PROJ_WEEK_STAT_1 Unit: USR40
 ROW COL Field Name Type Syn Len Dec Just Fill Prot Show Rqd Hi Skip Null
 ------- ---------- - - --- --- - - - - - - - -
 1 24 TABLENAME S C 40 0 L Y N N N Y Y
 1 67 COMMAND S C 1 0 L Y N N N Y Y
 2 3 CMND S C 1 0 L N Y N N Y Y
 3 3 CMD S C 1 0 L Y Y N N Y Y
 3 5 LINE S V 68 0 L Y Y N N Y Y
 3 74 NUMBER C B 5 0 L Y N N N Y Y

Rule Using GEN_TED

The example rule uses the screen WEEKLY_STATUS_G and is as follows:

 GEN_TED_1(PROJECT);
 _ LOCAL SCREEN, MSG;
 _

 --+------------
 _ |
 _ SCREEN = 'WEEKLY_STATUS_G'; | 1
 _ PFKEY_SPECS.PCKEYS = PFKEY_MSG(SCREEN); | 1
 _ INSERT PFKEY_SPECS(SCREEN); | 1
 _ CALL GEN_TED('@TEXT(STATUS, ' || PROJECT ||')', | 2
 _ SCREEN, 'PROJ_WEEK_STAT_1'); |

 _ ON TED_ERROR :
 _ CALL ENDMSG(MSG);

Output for the GEN_TED_1(PROJECT) Rule

After the rule executes, the following screen appears:
TIBCO Object Service Broker Shareable Tools

GEN_TED | 249
 Weekly Status Report Date:
 Project: Title:
 Status:
 For the week of:
 Project Description
 *
 _
 _

 PFKEYS: 12=QUIT 22=DELETE 3=SAVE 5=SCRIPT 9=REPEAT CMND
 TIBCO Object Service Broker Shareable Tools

| 250
GENBIN

Returns a syntax V string containing the same internal binary value as the input
numeric value, right-justified.(F)

Invocation string = GENBIN(value, length)

Usage • Can be used to generate an internal buffer of arbitrary bytes.

• Each byte of the returned string is initialized to 0 and the input value is moved
into the string right-justified.

• If the numeric value cannot fit into the specified length, it is truncated on the
left.

• Length must not be greater than the maximum number of digits for a BINARY
value.

• The returned string could display unprintable characters as either blanks or
symbols.

Examples The following rule uses GENBIN to create strings of unprintable bytes:

 RULE EDITOR ===> SCROLL: P
A(V,L);
 _ LOCAL STR;
 _ ---
 _ --+--------------
 _ STR = GENBIN(V,L); | 1
 _ CALL ENDMSG(STR || '; LENGTH OF STRING=' || LENGTH(STR)); | 2
 _ ---

A(210,5) results in a 5-byte STR buffer, the first 4 bytes are 0, the fifth byte is 210.
When STR appears in the message log, unprintable text displays either as blanks,
or assorted symbols. In this instance, STR displays in the message log as “ K”
(210 is EBCDIC code for the printable character K).

A(0,8) results in an 8-byte STR buffer, the eight bytes are 0 and display in the
message log as blanks.

string Syntax V string returned by the function.

value Input syntax B numeric value.

length Desired length of string returned.
 TIBCO Object Service Broker Shareable Tools

GENBIN | 251
The following rule uses GENBIN(0,1) to create 1-byte of null to be used in PEEL
for peeling:

 RULE EDITOR ===> SCROLL: P
 PEELBLANKANDNULL(MYSTRING);
 _
 _ ---
 _ --+--------------
 _ PEEL(' ' || GENBIN(0, 1), MYSTRING); | 1
 _ ---
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 252

GENERATE_REPORT

Defines a new report or modifies an existing report using the Report Generator.
(E)

Invocation Do one of the following:

Where:

See Also TIBCO Object Service Broker Defining Reports for information on generating reports.

From the… Move the cursor to the… And…

Developer’s
workbench

GR generate report option Type reportname <Enter>

EX execute rule option Type GENERATE_REPORT
(reportname) <Enter>

COMMAND prompt Type GR reportname <Enter>

reportname The name of the report.

 TIBCO Object Service Broker Shareable Tools

| 253

GENFLOAT

Returns a syntax V string containing the same internal float representation as the
input float value, left-justified. (F)

Invocation string = GENFLOAT(value, length)

Usage • Can be used to generate an internal buffer containing internal IBM float
values.

• Each byte of the returned string is initialized to 0 and the input floating point
value is moved into the string buffer left-justified.

• If the floating point value cannot fit into the specified length, it is truncated on
the right.

• The returned string could display unprintable characters as blanks or
symbols.

Example The following rule uses GENFLOAT to create a buffer containing float values.

 RULE EDITOR ===> SCROLL: P
A1(V,L);
 _ LOCAL STR;
 _ ---
 _ --+--------------
 _ STR = GENFLOAT(V,L); | 1
 _ CALL ENDMSG(STR || '; LENGTH OF STRING=' || LENGTH(STR)); | 2
 _ ---

A1(1.23456789e2,8) results in an 8-byte STR buffer containing internal floating
point representation for 123.456789.

A1(0,16) results in a 16-byte STR buffer of 0 (that displays as blanks).

string Syntax V string returned by the function.

value Input syntax F (float) value.

length Desired length of string returned (must be 4, 8, or 16).

| 254
GENPACK

Returns a syntax V string containing the same internal packed decimal value as
the input syntax P value, right-justified. (F)

Invoking string = GENPACK(value, length, decimal)

Usage • Can be used to generate an internal buffer of IBM packed decimal value.

• Each byte of the returned string is initialized to 0 and the input packed
decimal representation is moved into the string right-justified.

• If the packed value cannot fit into the specified length, it is truncated on the
left, resulting in loss of significance.

• Length must not be greater than the maximum number of digits for a packed
value.

• The returned string could display unprintable characters as blanks or
symbols.

Example The following rule uses GENPACK to create a buffer containing packed values.

 RULE EDITOR ===> SCROLL: P
 A2(V,L);
 _ LOCAL STR;
 _ ---
 _ --+--------------
 _ STR = GENPACK(V,L,0); | 1
 _ CALL ENDMSG(STR || '; LENGTH OF STRING=' || LENGTH(STR)); | 2
 _ ---

A2(-0.003,5) results in a 5-byte STR buffer. The first 4 bytes are 0 (and display as
blanks), and the fifth byte is x'3D' (a hexadecimal number that displays as “.”),
which is the internal packed representation for -3.

string Syntax V string returned by the function.

value Input syntax P (packed) value.

length Desired length of string returned.

decimal Desired decimal places (currently must be 0) are ignored and
treated as 0.
 TIBCO Object Service Broker Shareable Tools

GENPACK | 255
A2(0,7) results in a 7-byte STR buffer. The first 6 bytes are 0 (and display as
blanks), and the seventh byte is x'0C' (a hexadecimal number that displays as “.”).
 TIBCO Object Service Broker Shareable Tools

| 256
$GETCONTAINER

Retrieves data from the specified channel container. (C)

Invocation CALL $GETCONTAINER(channel, container, area, length, intoccsid)

Example Following is a sample rule:

RULE EDITOR ===> SCROLL: P
C_$GETCONTAINER(CHANNEL, CONTAINER);
_ LOCAL CONTENT, LEN, TOCCSID;
_ --
_ --+-----
_ @MAP.ADDRESS = 0; ¦ 1
_ @MAP.SIZE = 128; ¦ 2
_ INSERT @MAP('ENVIRONMENT'); ¦ 3
_ CONTENT = @MAP.ADDRESS; ¦ 4
_ LEN = @MAP.SIZE; ¦ 5
_ CCSID = ''; ¦ 6
_ CALL MSGLOG(¦ 7
_ '$GETCONTAINER(CHANNEL, CONTAINER, CONTENT, LEN, TOCCSID)'); ¦
_ CALL MSGLOG('Channel name is: ===> ' || CHANNEL); ¦ 8
_ CALL MSGLOG('Container name is: ===> ' || CONTAINER); ¦ 9
_ CALL $GETCONTAINER(CHANNEL, CONTAINER, CONTENT, LEN, TOCCSID); ¦ A
_ GET CCN_CICSRESP(CONTENT); ¦ B

channel The name (1-16 characters) of the channel that owns the container.

container The name (1-16 characters) of the container that holds the data to be retrieved.

area The pointer to an area large enough in which to place the retrieved data.

length A fullword binary value. This is both an input and an output field:

• On input, length specifies the maximum length of the data that the rule
accepts. If the actual data length exceeds the value specified, the data is
truncated to that value and the LENGERR condition occurs.

• On output (that is, on completion of the retrieval operation), length specifies
the actual data length in the container. If the container holds character data
that has been converted from one Coded Character Set Identifier (CCSID)
to another, length is the data length after conversion.

intoccsid A fullword binary number that represents the Coded Character Set Identifier
(CCSID) into which the character data in the container is to be converted. For
an explanation of CCSIDs, see the section “Data Conversion With Channels” in
the CICS Transaction Server for z/OS CICS Application Programming Guide.
 TIBCO Object Service Broker Shareable Tools

$GETCONTAINER | 257
_ CALL MSGLOG('Container ' || CONTAINER || ' content:'); ¦ C
_ CALL MSGLOG(' ' || CCN_CICSRESP.CODES); ¦ D

Following is the MAP table CCN_CICSRESP:

COMMAND==> TABLE DEFINITION

 Table: CCN_CICSRESP Type: MAP Unit: HZS80 IDgen: Y

 Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
 ---------------- - -- --- -- - ---------------- ' ---------------- - -
_ ADDRESS B 4 0 A ' _
_ LOCATION I C 16 0 L ' _
_ ' _
 ------ EXTERNAL ------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
 ---------------- ---- ----- -- ------ - - -- ----- -- - -------------
_ KEY B 4 0 0 P I B 4 0
_ CODES C 36 0 0 C 36 0
_

 TIBCO Object Service Broker Shareable Tools

258 |
$GET_DECIMALS

Retrieves the number of decimal places for an expression. (F)

Invocation result = $GET_DECIMALS(value)

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_SPEC(TABLE, FIELD);
 _ LOCAL A, B, C, D, E;
 _ ---
 _ --+--------------
 _ GET TABLE; ¦ 1
 _ A = $GET_SIZE((TABLE).(FIELD)); ¦ 2
 _ B = $GET_TYPE((TABLE).(FIELD)); ¦ 3
 _ C = $GET_SYNTAX((TABLE).(FIELD)); ¦ 4
 _ D = $GET_DECIMALS((TABLE).(FIELD)); ¦ 5
 _ E = $GET_MAXSIZE((TABLE).(FIELD)); ¦ 6
 _ CALL ENDMSG(TABLE || ' ' || FIELD || ' ' ||(TABLE).(FIELD) ¦ 7
 _ || ' ' || A || ' ' || B || ' ' || C || ' ' || D || ' ' ¦
 _ || E); ¦
 _ ---

Output

Running GET_SPEC(TABLES,NAME) could produce:

TABLES NAME $$ACCESSLOG 11 I C 0 16

Explanation

GET_SPEC uses the $GET_DECIMALS tool, as well as $GET_MAXSIZE,
$GET_SIZE, $GET_SYNTAX, and $GET_SYNTAX, to get information about the
field of a table.

You can also use these shareable tools to dump out the metadata information on
the values involved in an error that you trapped while debugging a rule.

result The number of decimal places for an expression. This argument is
typeless, two bytes long, and of binary syntax with 0 decimal
places.

value The expression to be evaluated. This argument can be any
semantic type, syntax, and size.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 259

$GET_MAXSIZE

Retrieves the dictionary size of an expression. (F)

Invocation result = $GET_MAXSIZE(value)

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_SPEC(TABLE, FIELD);
 _ LOCAL A, B, C, D, E;
 _ ---
 _ --+--------------
 _ GET TABLE; ¦ 1
 _ A = $GET_SIZE((TABLE).(FIELD)); ¦ 2
 _ B = $GET_TYPE((TABLE).(FIELD)); ¦ 3
 _ C = $GET_SYNTAX((TABLE).(FIELD)); ¦ 4
 _ D = $GET_DECIMALS((TABLE).(FIELD)); ¦ 5
 _ E = $GET_MAXSIZE((TABLE).(FIELD)); ¦ 6
 _ CALL ENDMSG(TABLE || ' ' || FIELD || ' ' ||(TABLE).(FIELD) ¦ 7
 _ || ' ' || A || ' ' || B || ' ' || C || ' ' || D || ' ' ¦
 _ || E); ¦
 _ ---

Output

Running GET_SPEC(TABLES,NAME) could produce:

TABLES NAME $$ACCESSLOG 11 I C 0 16

Explanation

GET_SPEC uses the $GET_MAXSIZE tool, as well as $GET_DECIMALS,
$GET_SIZE, $GET_SYNTAX, and $GET_TYPE, to get information about the field
of a table.

You can also use these shareable tools to dump out the metadata information on
the values involved in an error that you trapped while debugging a rule.

result The dictionary size of an expression. This argument is typeless,
two bytes long, and of binary syntax with 0 decimal places.

value The expression to be evaluated. This argument can be any
semantic type, syntax, and size.

 TIBCO Object Service Broker Shareable Tools

| 260

$GET_SIZE

Retrieves the size of an expression. (F)

Invocation result = $GET_SIZE(value)

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_SPEC(TABLE, FIELD);
 _ LOCAL A, B, C, D, E;
 _ ---
 _ --+--------------
 _ GET TABLE; ¦ 1
 _ A = $GET_SIZE((TABLE).(FIELD)); ¦ 2
 _ B = $GET_TYPE((TABLE).(FIELD)); ¦ 3
 _ C = $GET_SYNTAX((TABLE).(FIELD)); ¦ 4
 _ D = $GET_DECIMALS((TABLE).(FIELD)); ¦ 5
 _ E = $GET_MAXSIZE((TABLE).(FIELD)); ¦ 6
 _ CALL ENDMSG(TABLE || ' ' || FIELD || ' ' ||(TABLE).(FIELD) ¦ 7
 _ || ' ' || A || ' ' || B || ' ' || C || ' ' || D || ' ' ¦
 _ || E); ¦
 _ ---

Output

Running GET_SPEC(TABLES,NAME) could produce:

TABLES NAME $$ACCESSLOG 11 I C 0 16

Explanation

GET_SPEC uses the $GET_SIZE tool, as well as $GET_DECIMALS,
$GET_MAXSIZE, $GET_SYNTAX, and $GET_TYPE, to get information about the
field of a table.

You can also use these shareable tools to dump out the metadata information on
the values involved in an error that you trapped while debugging a rule.

result The size of an expression. This argument is typeless, two bytes
long, and of binary syntax with 0 decimal places.

value The expression to be evaluated. This argument can be any
semantic type, syntax, and size.

 TIBCO Object Service Broker Shareable Tools

| 261

$GET_SYNTAX

Retrieves the syntax of an expression. (F)

Invocation result = $GET_SYNTAX(value)

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_SPEC(TABLE, FIELD);
 _ LOCAL A, B, C, D, E;
 _ ---
 _ --+--------------
 _ GET TABLE; ¦ 1
 _ A = $GET_SIZE((TABLE).(FIELD)); ¦ 2
 _ B = $GET_TYPE((TABLE).(FIELD)); ¦ 3
 _ C = $GET_SYNTAX((TABLE).(FIELD)); ¦ 4
 _ D = $GET_DECIMALS((TABLE).(FIELD)); ¦ 5
 _ E = $GET_MAXSIZE((TABLE).(FIELD)); ¦ 6
 _ CALL ENDMSG(TABLE || ' ' || FIELD || ' ' ||(TABLE).(FIELD) ¦ 7
 _ || ' ' || A || ' ' || B || ' ' || C || ' ' || D || ' ' ¦
 _ || E); ¦
 _ ---

Output

Running GET_SPEC(TABLES,NAME) could produce:

TABLES NAME $$ACCESSLOG 11 I C 0 16

Explanation

GET_SPEC uses the $GET_SYNTAX tool, as well as $GET_DECIMALS,
$GET_MAXSIZE, $GET_SIZE, and $GET_TYPE, to get information about the
field of a table.

You can also use these shareable tools to dump out the metadata information on
the values involved in an error that you trapped while debugging a rule.

result The syntax of an expression. This argument is typeless, three bytes
long, and of character syntax.

value The expression to be evaluated. This argument can be any
semantic type, syntax, and size.

 TIBCO Object Service Broker Shareable Tools

| 262

$GET_TYPE

Retrieves the semantic type of an expression. (F)

Invocation result = $GET_TYPE(value)

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_SPEC(TABLE, FIELD);
 _ LOCAL A, B, C, D, E;
 _ ---
 _ --+--------------
 _ GET TABLE; ¦ 1
 _ A = $GET_SIZE((TABLE).(FIELD)); ¦ 2
 _ B = $GET_TYPE((TABLE).(FIELD)); ¦ 3
 _ C = $GET_SYNTAX((TABLE).(FIELD)); ¦ 4
 _ D = $GET_DECIMALS((TABLE).(FIELD)); ¦ 5
 _ E = $GET_MAXSIZE((TABLE).(FIELD)); ¦ 6
 _ CALL ENDMSG(TABLE || ' ' || FIELD || ' ' ||(TABLE).(FIELD) ¦ 7
 _ || ' ' || A || ' ' || B || ' ' || C || ' ' || D || ' ' ¦
 _ || E); ¦
 _ ---

Output

Running GET_SPEC(TABLES,NAME) could produce:

TABLES NAME $$ACCESSLOG 11 I C 0 16

Explanation

GET_SPEC uses the $GET_TYPE tool, as well as $GET_DECIMALS,
$GET_MAXSIZE, $GET_SIZE, and $GET_SYNTAX, to get information about the
field of a table.

You can also use these shareable tools to dump out the metadata information on
the values involved in an error that you trapped while debugging a rule.

result The semantic type of an expression. This argument is typeless, one
byte long, and of character syntax.

value The expression to be evaluated. This argument can be any
semantic type, syntax, and size.

| 263
$GETATTRIBUTE

Queries the current attributes for the field of the screen table, in the specified
screen. (F)

Invocation flag = $GETATTRIBUTE(screen, table, field, attribute)

Usage Notes • Not all display devices can support the extended attributes. The extended
attributes are supported only on some 3270 terminals on a z/OS system.

• Valid values must be supplied for all the arguments or an error occurs.

flag One of the following:

Y – The attribute is on.

N or anything except Y – The attribute is off.

screen A character string specifying the screen. Its syntax is
C (fixed-length character string) with length 16.

table A character string specifying the screen table. Its syntax is C with
length 16.

field A character string specifying the screen field. Its syntax is C with
length 16.

attribute The following attributes are available to query:

P – The field is protected.

H – The field is highlighted.

V – The field is visible.

D – The field is light-pen-detectable. The data-mapped graphical
object is detectable by cursor (allow focus).

N – The field accepts only numeric characters.

U – The field is underlined (extended attribute).

R – The foreground and background colors of the field are
reversed (extended attribute).

B – The field blinks (extended attribute).
 TIBCO Object Service Broker Shareable Tools

264 |
• $GETATTRIBUTE operates only on a screen table that has real occurrences,
and has the current position set by a table access. If the current position is not
set in the screen table, $GETATTRIBUTE returns an empty string.

• For a particular screen field, specify only one of the extended attributes U, R,
or B.

Example The following rule queries the highlighting attribute of the FCNKEYS field of the
example screen, displays the screen, and reports the value of the highlighting
attribute:

 GETATTRIBUTE_1;
 _ LOCAL HIGH;
 _ --
 _ --+-----------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ HIGH = $GETATTRIBUTE('NEW_EMPLOYEE', 'FCNKEY_SPECS', | 3
 _ 'FCNKEYS', 'H'); |
 _ DISPLAY NEW_EMPLOYEE: | 4
 _ CALL ENDMSG('HIGHLIGHTING': || HIGH); | 5
 _ --
TIBCO Object Service Broker Shareable Tools

| 265
$GETBINARY

Stores character data in binary format. (F)

Invocation result = $GETBINARY(string, offset, length)

Usage • Used to extract binary numbers from a string that contains these numbers in
binary format.

• The sum of the length and the offset must be less than or equal to the length of
the string.

Examples Table SOURCE is an import table (IMP) mapped to an external file with a record
length of 56. Each record of this external file contains numeric data in binary,
packed, and floating point formats:

COMMAND ==> TABLE DEFINITION
 Table: SOURCE Type: IMP Unit: USERID IDgen: N

 File: userid.dataset
 DDname: External Routine Name:
 Server ID:
 Parameter Name Typ Syn Len Dec Class Src ' Event Rule Typ Acc
 ---------------- - -- --- -- - - ' ------------- - -
_ ' _
_ ' _
 ---------IMP----------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
 ---------------- ---- ---- -- ----- - - -- ----- -- - - --------
_ RECORD V 56 0 0 P S V 56 0
_
_
_

result Binary number returned by the rule. Its syntax is B (binary).

string The character string containing the number to be stored in binary
format. Its syntax can be C (fixed-length character string),
V (variable-length character string), or W (double-byte character).

offset The offset from which to start converting the string. It must be
greater than or equal to zero (0), and smaller than the length of the
string.

length The number of characters to convert. It must be less than or equal
to 4.
 TIBCO Object Service Broker Shareable Tools

266 |
Table TARGET is a TDS table to which this external data is to be copied:

COMMAND ==> TABLE DEFINITION
 Table: TARGET Type: TDS Unit: USERID IDgen: Y
 Parameter Name Type Syn Len Dec Class ' Event Rule Typ Acc
 --------------- - - --- -- - ' ---------- - -
_ ' _
_ ' _
 Field Name Type Syn Len Dec Key Ord Rqd Default Reference
 ------------- - - --- -- - - - ------------------ ---------------
KEY 1 B 4 0 P
BIN1 C B 4 0
BIN2 C B 4 0
PACK1 Q P 5 0
PACK2 Q P 8 0
PACK3 Q P 3 0
FLOAT1 Q F 8 0
FLOAT2 Q F 8 0
FLOAT3 Q F 16 0

The following rule uses $GETBINARY to copy binary values from an external file
to an TIBCO Object Service Broker table:

COPYNUMDATA;
 _
 _ --
 _ --+-----------
 _ FORALL SOURCE : | 1
 _ TARGET.BIN1=$GETBINARY(SOURCE.RECORD,0,4); |
 _ TARGET.BIN2=$GETBINARY(SOURCE.RECORD,4,4); |
 _ TARGET.PACK1=$GETPACKED(SOURCE.RECORD,8,5); |
 _ TARGET.PACK2=$GETPACKED(SOURCE.RECORD,13,8); |
 _ TARGET.PACK3=$GETPACKED(SOURCE.RECORD,21,3); |
 _ TARGET.FLOAT1=$GETFLOAT(SOURCE.RECORD,24,8); |
 _ TARGET.FLOAT2=$GETFLOAT(SOURCE.RECORD,32,8); |
 _ TARGET.FLOAT3=$GETFLOAT(SOURCE.RECORD,40,16); |
 _ INSERT TARGET; |
 _ END; |
 _ --
TIBCO Object Service Broker Shareable Tools

| 267
GETCHAR

Returns the first character from the specified string, removing it from the string.
(F)

Invocation character = GETCHAR(string)

Syntax and Length of Arguments

Usage Notes • If string is null, a null string is returned.

• string must be a field of a table or a local variable. It cannot be a constant value
because string is changed by GETCHAR.

Example The following rule gets the first character from a string, gets the next remaining
character, and prints the appropriate characters and strings to the message log:

GETCHAR_1;
 _ LOCAL SOURCE_STRING, STRIP_CHAR;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'THIS IS THE SOURCE STRING'; | 1
 _ STRIP_CHAR = GETCHAR(SOURCE_STRING); | 2
 _ CALL MSGLOG('THE FIRST STRIPPED CHARACTER IS: ' || | 3
 _ STRIP_CHAR); |
 _ CALL MSGLOG('THE SOURCE STRING IS NOW: ' || SOURCE_STRING | 4
 _); |
 _ STRIP_CHAR = GETCHAR(SOURCE_STRING); | 5
 _ CALL MSGLOG('THE SECOND STRIPPED CHARACTER IS: ' || | 6
 _ STRIP_CHAR); |

character On return contains the character.

string The string from which to return the character.

String Character

Syntax Syntax Length

C (fixed-length character string) V 1

RD (raw data) RD 5

UN (Unicode) UN 2 or 4

V (variable-length character string) V 1
 TIBCO Object Service Broker Shareable Tools

268 |
 _ CALL MSGLOG('THE SOURCE STRING IS NOW: ' || SOURCE_STRING | 7
 _); |
 _ --

Output for the GETCHAR_1 Rule

Pressing PF2 after executing this rule displays the following on the screen:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE FIRST STRIPPED CHARACTER IS: T
 THE SOURCE STRING IS NOW: HIS IS THE SOURCE STRING
 THE SECOND STRIPPED CHARACTER IS: H
 THE SOURCE STRING IS NOW: IS IS THE SOURCE STRING
TIBCO Object Service Broker Shareable Tools

| 269
$GETCOLOUR

Queries the current color of a screen field. (F)

Invocation color = $GETCOLOUR(screen, table, field, color_type)

Usage Notes • Not all display devices can support background color. If your display device
does not support background color, the specification is ignored.

• You must supply valid values for all the arguments or an error occurs.

• $GETCOLOUR operates only on a screen table that has real occurrences and
has the current position set by a table access. If the current position is not set
in the screen table, $GETCOLOUR returns an empty string.

Example The following rule queries the color of the FCNKEYS field of the example screen,
displays the screen, and reports the color of the field:

 GETCOLOUR_1;
 _ LOCAL COLOUR;
 _ --
 _ --+-----------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ COLOUR= $GETCOLOUR('NEW_EMPLOYEE', 'FCNKEY_SPECS', | 3
 _ 'FCNKEYS', 'F',); |
 _ DISPLAY NEW_EMPLOYEE: | 4
 _ CALL ENDMSG('COLOUR IS '|| COLOUR); | 5

color A character string specifying the color to be used. Valid values are
any color in the @COLOURS table. Its syntax is C with length 25.

screen A character string specifying the screen. Its syntax is
C (fixed-length character string) with length 16.

table A character string specifying the screen table. Its syntax is C with
length 16.

field A character string specifying the screen field. Its syntax is C with
length 16.

color_type A character string specifying whether the color is to be foreground
or background. Valid values:

F – Foreground.

B – Background.
 TIBCO Object Service Broker Shareable Tools

270 |
 _ --
TIBCO Object Service Broker Shareable Tools

| 271
GETENDMSG

Returns the current value of the end-of-transaction message. (F)

Invocation message = GETENDMSG

Usage Notes Each transaction starts with an empty end-of-transaction message.

Example The set of rules in this example:

1. Validates a value

2. Uses the end-of-transaction message to pass a value for validation

3. Takes a subsequent action that is dependent on the value returned to the
end-of-transaction message

Sample Rule 1

 RULE EDITOR ===> SCROLL: P
 DELETE_EMPNO(REGION, EMPNO);
 _
 _ ---
 _ --+--------------
 _ EXECUTE VALIDATE_EMP(REGION, EMPNO); | 1
 _ CALL VALID_EMPNO(REGION, EMPNO); | 2
 _ ---

Sample Rule 2

 RULE EDITOR ===> SCROLL: P
 VALIDATE_EMP(REGION, EMPNO);
 _
 _ ---
 _ --+--------------
 _ GET EMPLOYEE(REGION) WHERE EMPNO = EMPNO; | 1
 _ CALL ENDMSG('YES'); | 2
 _ ---
 _ ON GETFAIL :
 _ CALL ENDMSG('INVALID EMPLOYEE NUMBER');

message On return, contains the message. Its syntax is V (character) with
length 148.
 TIBCO Object Service Broker Shareable Tools

272 |
Rule Using GETENDMSG

 RULE EDITOR ===> SCROLL: P
 VALID_EMPNO(REGION, EMPNO);
 _
 _ ---
 _ GETENDMSG = 'YES'; | Y N
 _ --+--------------
 _ DELETE EMPLOYEE(REGION) WHERE EMPNO = EMPNO; | 1
 _ CALL ENDMSG('THE EMPLOYEE IS DELETED'); | 2
 _ ---

Executing this rule displays the following screen:

USR40 TEST: N BROWSE: N 12:48 AM THURSDAY MAR 26 2000

 ER edit rule ==> SU MO TU WE TH FR SA
 EX execute rule ==> DELETE_EMPNO 1 2 3 4 5 6 7
 DB debug rule ==> 8 9 10 11 12 13 14
 BR browse table ==> 15 16 17 18 19 20 21
 ED edit table ==> 22 23 24 25 26 27 28
 29 30 31
 OS object set ==>
 DS define screen ==>
 DR define report ==>
 DT define table ==>
 DL define library ==>
 GR generate rpt ==>

 COMMAND ==> __
 execute rule: EX DELETE_EMPNO 1

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT
12:48:55 THE EMPLOYEE IS DELETED

The new end of transaction message is printed on the bottom row and the
employee is deleted from the employee table.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 273

$GETENVCOMMAREA

Retrieves data passed into TIBCO Object Service Broker from a calling
environment that is not TIBCO Object Service Broker. (F)

Invocation value = $GETENVCOMMAREA(segment#)

Usage Notes • For IMS TM, use the following values to indicate the segment number:

0 – Scratch Pad Area (SPA).

1 – The user data or the session parameter string if using a non-seamless
interface.

2 – The user data.

• For CICS, the value for segment# is ignored.

• For the SDK (C/C++), the maximum length for value applies even though
much larger COMMAREAs are supported through the MAP table interface.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for information about using TIBCO
Object Service Broker with external environments

TIBCO Object Service Broker Managing Data for information about MAP tables

Example The following rule retrieves the data from segment 0.

 RULE EDITOR ===> SCROLL: P
 GETENV_1;
 _ LOCAL COMMAREA;
 _ ---
 _ --+--------------
 _ COMMAREA = $GETENVCOMMAREA(0); | 1
 _ ---

value On return, contains the retrieval data. Its syntax is
V (variable-length character string) with length of either 8,192 or
31,744 depending on retrieval data length.

segment# The number of the segment from where to retrieve the data. Its
syntax is B (binary) with length 2.

| 274
$GETFLOAT

Stores character data in floating format. (F)

Invocation result = $GETFLOAT(string, offset, length)

Usage • Used to extract floating point numbers from a string that contains these
numbers in internal floating point format.

• The sum of the length and the offset must be less than or equal to the length of
the string.

Example Table SOURCE is an import table (IMP) mapped to an external file with a record
length of 56. Each record of this external file contains numeric data in binary,
packed, and floating point formats:

COMMAND ==> TABLE DEFINITION
 Table: SOURCE Type: IMP Unit: USERID IDgen: N
 File: userid.dataset
 DDname: External Routine Name:

 Parameter Name Type Syn Len Dec Class Src ' Event Rule Typ Acc
 --------------- - - --- -- - ' ---------- - -
_ ' _
_ ' _
 -----------IMP-----------|-------------MetaStor Definition-----
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
 ------------- - --- -- ----- - - - --- - - - ------------
RECORD V 56 0 0 P S V 56 0
_
_
_

Table TARGET is a TDS table to which this external data is to be copied:

result Floating point number returned by the rule. Its syntax is F (float).

string The character string containing the number to be stored in floating
point format. Its syntax can be C (fixed-length character string),
V (variable-length character string), or W (double-byte character).

offset The offset from which to start converting the string. It must be
greater than or equal to zero (0) and smaller than the length of the
string.

length The number of characters to convert. It must be 4, 8, or 16.
 TIBCO Object Service Broker Shareable Tools

$GETFLOAT | 275
COMMAND ==> TABLE DEFINITION
 Table: TARGET Type: TDS Unit: USERID IDgen: Y
 Parameter Name Type Syn Len Dec Class ' Event Rule Typ Acc
 --------------- - - --- -- - ' ---------- - -
_ ' _
_ ' _
 Field Name Type Syn Len Dec Key Ord Rqd Default Reference
 ------------- - - --- -- - - - ------------------ ---------------
KEY 1 B 4 0 P
BIN1 C B 4 0
BIN2 C B 4 0
PACK1 Q P 5 0
PACK2 Q P 8 0
PACK3 Q P 3 0
FLOAT1 Q F 8 0
FLOAT2 Q F 8 0
FLOAT3 Q F 16 0

The following rule uses $GETFLOAT to copy floating point values from an
external file to an TIBCO Object Service Broker table:

COPYNUMDATA;
 _
 _ --
 _ --+-----------
 _ FORALL SOURCE: | 1
 _ TARGET.BIN1=$GETBINARY(SOURCE.RECORD,0,4); |
 _ TARGET.BIN2=$GETBINARY(SOURCE.RECORD,4,4); |
 _ TARGET.PACK1=$GETPACKED(SOURCE.RECORD,8,5); |
 _ TARGET.PACK2=$GETPACKED(SOURCE.RECORD,13,8); |
 _ TARGET.PACK3=$GETPACKED(SOURCE.RECORD,21,3); |
 _ TARGET.FLOAT1=$GETFLOAT(SOURCE.RECORD,24,8); |
 _ TARGET.FLOAT2=$GETFLOAT(SOURCE.RECORD,32,8); |
 _ TARGET.FLOAT3=$GETFLOAT(SOURCE.RECORD,40,16); |
 _ INSERT TARGET; |
 _ END; |
 _ --
 TIBCO Object Service Broker Shareable Tools

| 276
$GETOPT

Returns the value of a session parameter or option. (F)

Invocation value = $GETOPT(option_name)

Available Parameters and Options

Only the parameters and options identified are accepted by this tool.

value On return, contains the value. Its syntax is C (fixed-length
character string) with length 16.

option_name The parameter or option from which to return the value. Its
syntax is C with length 16. Valid values for option_name are
shown below.

Parameter or
Option Name Abbreviation Description Open

Systems z/OS

All parameters that can be set with $SETOPT, except LANGUAGE, can
be retrieved with $GETOPT. The following can also be retrieved:

COMMITSIZE The maximum size of the
intent list.

Y Y

COMMITUSED The current size of the
intent list.

Y Y

KERNEL K The Execution
Environment type:
BATCH, CICS, CLI, IMS
TM, NATIVE, NT, TSO,
or UNIX.

Y Y

LTERM LT The name of the logical
terminal defined to IMS
TM.

Y Y

REGION REGION The IDPREFIX, that is,
the IMS TM Control
Region used by the
present TIBCO Object
Service Broker session.

 Y
 TIBCO Object Service Broker Shareable Tools

$GETOPT | 277
Usage Notes • If the parameter name is not supported, the following message is written to
the system log, and the exception RANGERROR is signaled: Invalid
argument OPTION-NAME ===> (xyz) <=== for $GETOPT

• On Open Systems, the parameters TRANCODE, TRANDATE, and
TRANTIME always return an empty string.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for information about using TIBCO
Object Service Broker with external environments.

Example The following rule returns the Execution Environment type for the present
session:

 RULE EDITOR ===> SCROLL: P
 GETOPT_1;
 _ LOCAL KERNEL;
 _ ---
 _ --+--------------
 _ KERNEL = $GETOPT('KERNEL'); | 1
 _ CALL ENDMSG('THE EXECUTION ENVIRONMENT TYPE IS ' || KERNEL | 2
 _); |
 _ ---

After it is executed, ENDMSG returns the following message if the session is run
under TSO: THE EXECUTION ENVIRONMENT TYPE IS TSO

TRANCODE TC The transaction code in
IMS TM.

Y Y

TRANCURNUM The current transaction
level.

Y Y

TRANDATE TDT The transaction date in
IMS TM.

Y Y

TRANMAXNUM The maximum
transaction stream level.

Y Y

TRANTIME TT The transaction time in
IMS TM.

Y Y

Parameter or
Option Name Abbreviation Description Open

Systems z/OS
 TIBCO Object Service Broker Shareable Tools

| 278
$GETPACKED

Stores character data in packed decimal format. (F)

Invocation result = $GETPACKED(string, offset, length)

Usage • Used to extract packed decimal numbers from a string that contains these
numbers in packed decimal format.

• The sum of the length and the offset must be less than or equal to the length of
the string.

Examples Table SOURCE is an import table (IMP) mapped to an external file with a record
length of 56. Each record of this external file contains numeric data in binary,
packed, and floating point formats:

COMMAND ==> TABLE DEFINITION
 Table: SOURCE Type: IMP Unit: USERID IDgen: N
 File: userid.dataset
 DDname: External Routine Name:

 Parameter Name Type Syn Len Dec Class Src ' Event Rule Typ Acc
 --------------- - - --- -- - ' ---------- - -
_ ' _
_ ' _
 -----------IMP-----------|-------------MetaStor Definition-------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Ord Rqd Default
 ------------- - --- -- ----- - - - --- - - - ------------
RECORD V 56 0 0 P S V 56 0
_
_
_

result Packed decimal number returned by the rule. Its syntax is P
(packed).

string The character string containing the number to be stored in packed
decimal format. Its syntax can be C (fixed-length character string),
V (variable-length character string), or W (double-byte character).

offset The offset from which to start converting the string. It must be
greater than or equal to zero (0), and smaller than the length of the
string.

length The number of characters to convert. It must be less than or equal
to 16.
 TIBCO Object Service Broker Shareable Tools

$GETPACKED | 279
Table TARGET is a TDS table to which this external data is to be copied:

COMMAND ==> TABLE DEFINITION
 Table: TARGET Type: TDS Unit: USERID IDgen: Y
 Parameter Name Type Syn Len Dec Class ' Event Rule Typ Acc
 --------------- - - --- -- - ' ---------- - -
_ ' _
_ ' _
 Field Name Type Syn Len Dec Key Ord Rqd Default Reference
 ------------- - - --- -- - - - ------------------ ---------------
KEY 1 B 4 0 P
BIN1 C B 4 0
BIN2 C B 4 0
PACK1 Q P 5 0
PACK2 Q P 8 0
PACK3 Q P 3 0
FLOAT1 Q F 8 0
FLOAT2 Q F 8 0
FLOAT3 Q F 16 0

The following rule uses $GETPACKED to copy packed decimal values from an
external file to an TIBCO Object Service Broker table:

COPYNUMDATA;
 _
 _ --
 _ --+-----------
 _ FORALL SOURCE: | 1
 _ TARGET.BIN1=$GETBINARY(SOURCE.RECORD,0,4); |
 _ TARGET.BIN2=$GETBINARY(SOURCE.RECORD,4,4); |
 _ TARGET.PACK1=$GETPACKED(SOURCE.RECORD,8,5); |
 _ TARGET.PACK2=$GETPACKED(SOURCE.RECORD,13,8); |
 _ TARGET.PACK3=$GETPACKED(SOURCE.RECORD,21,3); |
 _ TARGET.FLOAT1=$GETFLOAT(SOURCE.RECORD,24,8); |
 _ TARGET.FLOAT2=$GETFLOAT(SOURCE.RECORD,32,8); |
 _ TARGET.FLOAT3=$GETFLOAT(SOURCE.RECORD,40,16); |
 _ INSERT TARGET; |
 _ END; |
 _ --
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 280

$GETTRANSACTION

Gets a transaction name set by $SETTRANSACTION. (F)

Invocation current_value = $GETTRANSACTION(name)

Usage On z/OS, the transaction name is used when SMF records are produced.

Example The following rule uses $SETTRANSACTION to set a new transaction name, then
gets the transaction name and displays it in the end message:

 RULE EDITOR ===> SCROLL: P
 RET_TRANS(TRANSNAME);
 _ LOCAL NEWNAME;
 _ ---
 _ --+--------------
 _ NEWNAME = $SETTRANSACTION('NAME', TRANSNAME); | 1
 _ NEWNAME = $GETTRANSACTION('NAME'); | 2
 _ CALL ENDMSG(NEWNAME); | 3
 _ ---

current_value The string that contains the transaction name.

name The field containing the name, which is set by
$SETTRANSACTION.

NAME is the only valid field. Its syntax is C (fixed-length
character string) with length 16.

| 281
$GTFSET

Enables or disables the rules tracing facility in the Execution Environment and the
Data Object Broker.

This facility runs on the z/OS version of TIBCO Object Service Broker and writes
a trace record to a Generalized Trace Facility (GTF) data set that can be used as
input to the third-party product Trace Analyzer for Mainframe-built TIBCO
Object Service Broker Rules (TAMBOR). (C)

Invocation CALL $GTFSET(function, keyname[, userid, termid, all, dob])

function The action to be taken. Must be one of the following:

SET – Enable the tracing facility.

RESET – Disable the tracing facility.

keyname A licence key is not required but, for compatibility with previous
releases of TIBCO Object Service Broker, the value of this
parameter must be 'TAMBOR'.

userid [OPTIONAL] The user ID of the session to be traced. If there are
duplicate user IDs, the tracing facility is enabled for the first one
encountered. To ensure that the facility is enabled for one specific
user, use the termid argument.

termid [OPTIONAL] The terminal ID of the session to be traced.

all [OPTIONAL] Enables or disables tracing for all users running
under the current Execution Environment. If it is required, use
'ALL' for this parameter.

dob [OPTIONAL] Enables or disables tracing in the Data Object Broker
to which the Execution Environment is connected. If present, must
be one of the following:

ALSO – Enables or disables tracing in the Data Object Broker as
well as the Execution Environment.

ONLY – Enables or disables tracing in the Data Object Broker only.
 TIBCO Object Service Broker Shareable Tools

282 |
Usage Notes • The trace facility produces four types of GTF records. Each GTF record has its
own User Specified Event ID code (USR) contained in the GTF trace record
header. The USR codes are:

— Rule start record (USR=FE)

— Rule end record (USR=FF)

— BUILTIN start record (USR=FC)

— BUILTIN end record (USR=FD)

• The layout of every type of GTF record is as follow:

• For the userid, termid, and all parameters, $GTFSET acts on only the first
non-null argument it encounters. If no parameter is specified, the trace facility
for the session running the $GTFSET tool (the current session) is enabled or
disabled.

• The IBM Generalized Trace Facility (GTF) must be activated with
USR=(0AA,0FC,0FD,0FE,0FF) if Data Object Broker tracing is turned on, or
with USR=(0FC,0FD,0FE,0FF) otherwise.

Example The following rule sets the tracing facility on in the Execution Environment for
the current session:

 SET_GTF_TRACE;
 _
 _ --
 _ --+-----------
 _ CALL $GTFSET('SET', 'TAMBOR', '', '', '', ''); | 1
 _ --

RULE/BUILTIN Name CL16

TOD value when the record is created XL8

Connection ID CL8

User name CL8

Accumulated CPU time in TOD format XL8

Transaction stream number XL1

Filler XL3

Transaction ID XL4
TIBCO Object Service Broker Shareable Tools

$GTFSET | 283
To set the trace on in the Execution Environment for the USERXYZ user, use the
following call:

CALL $GTFSET('SET', 'TAMBOR', 'USERXYZ', '', '', '');

or

CALL $GTFSET('SET', 'TAMBOR', 'USERXYZ', 'TERM9999', 'ALL', '');

To set the trace on in the Execution Environment for the user whose terminal ID is
TERM9999, use the following call:

CALL $GTFSET('SET', 'TAMBOR', '', 'TERM9999', '', '');

To set the trace on in the Execution Environment and in the Data Object Broker for
all users, use the following call:

CALL $GTFSET('SET', 'TAMBOR', '', '', 'ALL', 'ALSO');
 TIBCO Object Service Broker Shareable Tools

| 284
HEADSTRING

Returns the head portion of the specified string. (F)

Invocation head = HEADSTRING(string, length)

Usage Notes • string is not modified.

• If length is less than or equal to 0, an empty string is returned.

• If length is greater than the length of string, the entire string is returned.

Example The following rule determines the first character of a string and prints both the
character and the string to the message log:

 HEADSTRING_1;
 _ LOCAL SOURCE_STRING, HEAD_STRING;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'THIS IS THE SOURCE STRING.'; | 1
 _ HEAD_STRING = HEADSTRING(SOURCE_STRING, 1); | 2
 _ CALL MSGLOG('THE HEAD STRING IS: ' || HEAD_STRING); | 3
 _ CALL MSGLOG('THE SOURCE STRING IS STILL: ' || | 4
 _ SOURCE_STRING); |
 _ --

Output for the HEADSTRING_1 Rule

Pressing PF2 after executing this rule displays the following screen:

 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE HEAD STRING IS: T
 THE SOURCE STRING IS STILL: THIS IS THE SOURCE STRING.

head On return, contains the head of the string. Its syntax is the same as
string.

string The string from which to return the head portion. Its syntax can be
C (fixed-length character string), UN (Unicode), V (variable-length
character string), or W (double-byte character).

length An integer specifying the number of leading characters to return.
Its data type is B (binary) with length 4.
 TIBCO Object Service Broker Shareable Tools

HEADSTRING | 285
 TIBCO Object Service Broker Shareable Tools

| 286
HLIPREPROCESSOR

Invokes a language pre-processor to run against COBOL source programs that
contain embedded TIBCO Object Service Broker access statements or SQL
statements. (C)

Invocation CALL HLIPREPROCESSOR(hostlang, imbedlang, infile, outfile, listfile, options)

One of the LIST and NOLIST options, and one of the ERRORSTOP and
NOERRORSTOP options, must be specified. The argument options must be null if
imbedlang is SQL.

See Also TIBCO Object Service Broker for z/OS External Environments for information about
using HLIPREPROCESSOR.

hostlang The name of the programming language. Type COBOL.

imbedlang The type of statement embedded in the COBOL program. Use
HURON or SQL.

infile Type the name of the data set to be processed.

outfile The name of the allocated, partitioned data set that is to contain the
processed COBOL program. It can be passed to the COBOL
compiler.

listfile The name of a file to contain the listing of the output, if a listing is
to be produced. It is not compiled. The argument listfile must be
null if imbedlang is SQL.

options A string specifying the options:

LIST – A list is to be produced.

NO LIST – No list is to be produced.

ERRORSTOP – If an error is detected, this causes the preprocessor
to fail and raise an exception.

NO ERRORSTOP – This prevents the exception from being raised.
 TIBCO Object Service Broker Shareable Tools

HLIPREPROCESSOR | 287
Exceptions

STOP_AT_ERROR Raised if an error in processing is detected. In a batch job,
it raises a completion code that prevents the next job step
from executing.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 288

HOUR

Returns the hour of the day when the current transaction started based on the
local machine’s time zone in which the Execution Environment is running. (F)

Invocation time = HOUR

Usage Notes The returned value is a string containing the number of the hour (00-23).

Example The following rule determines the hour and prints it to the message log:

 RULE EDITOR ===>
 HOUR_1;
 _ LOCAL TIME;
 _ --
 _ --+-----------
 _ TIME = HOUR; | 1
 _ CALL MSGLOG('THIS TRANSACTION WAS STARTED AFTER ' || TIME | 2
 _ || ':00.'); |
 _ --

Output for the HOUR_1 Rule:

Pressing PF2 after executing this rule displays the following on the screen:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THIS TRANSACTION WAS STARTED AFTER 13:00.

time On return, contains the hour. Its syntax is C (fixed-length character
string) with length 2.

| 289
HURON_STATS

Displays statistics for performance analysis and problem determination. (E)

Invocation Do one of the following:

Using any of these methods invokes the main menu shown here:

Statistics Main Menu

 DOB Statistics Menu

 _ Segment Statistics

 _ General Statistics

 _ Buffer Pool Statistics

 _ Users logged on

See TIBCO Object Service Broker for z/OS Monitoring Performance for descriptions of
the statistics displayed from each of these menu selections.

From the… Move the cursor to the… And…

Administrator’s
workbench

ST Statistics option Press Enter

EX Execute Rule option Type HURON_STATS <Enter>

Developer’s
workbench

EX Execute Rule option Type HURON_STATS <Enter>

COMMAND prompt Type EX HURON_STATS
<Enter>
 TIBCO Object Service Broker Shareable Tools

290 |
TIBCO Object Service Broker Shareable Tools

| 291
$HTTPREQUEST

Issues an HTTP request and returns the response code and result. (F)

Invocation value = $HTTPREQUEST(requesttype, url, header, data, result, message)

Usage Notes • A response code of 1000 indicates a non-HTTP error.

• If the header parameter value contains single or double quotation marks, each
quotation mark must be repeated.

• The data parameter can be used to pass FORMAT input fields to an HTML
form page. Form parameters look like query string parameters on a URL
request. They are passed as a series of name=value pairs, each separated by an
ampersand character.
For example, if a form has two parameters, USERID and PASSWORD, and
your rule passes the constant string ‘USERID=ME,PASSWORD=PWD’ as the
value of the data parameter, the HTML form receives ‘ME’ as the value for the
‘USERID’ parameter and ‘PWD’ as the value for the ‘PASSWORD’ parameter.

Example The following example shows how $HTTPREQUEST can be called in a rule:

value On return, contains the HTTP response code as an integer
value. The return value has type C, syntax B, and length 4.

requesttype The HTTP request type. Valid values are GET or POST.

url The URL being requested. It has a length of 1024.

header The HTTP header parameters for the HTTP request, in the
form name=value. It has a length of 2048.

data The data being sent to the HTTP server with the request.
It has a length of 16384.

result A variable used to contain the result of the HTTP request. It
has a length of 16384.

message A variable used to contain any error message resulting from
the HTTP request. It has a length of 512.

Take care when passing data using the data parameter of this rule. By default, the
data is passed as plain text for GET requests, and as
application/x-www-form-urlencoded data for POST requests.
 TIBCO Object Service Broker Shareable Tools

292 |
 GETTEST();
 - LOCAL HTTPCODE, URL, HEADER, DATA, RESULT, MESSAGE;
 _ --
 _ --+-----
 _ URL = 'HTTP://WWW.TIBCO.COM/POSTTEST.ASP?P1=1&P2=AAA'; | 1
 _ HTTPCODE = $HTTPREQUEST('GET', URL, HEADER, DATA, RESULT, MESSAGE); | 2
 _ CALL ENDMSG('RC=' || HTTPCODE || ', M=' || MESSAGE || ', R=' || RESULT); | 3
 _ |

TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 293

IDMS

Displays the main menu used to define a CA-IDMS database to TIBCO Object
Service Broker. (E)

Invocation Do one of the following:

Executing IDMS displays the screen illustrated here:

 MANAGER UTILITIES FOR IDMS DATA

 Enter an 'S' to select a function

 _ List IDMS Tables

 _ List IDMS Subschemas

 _ Load an IDMS Subschema

 _ Delete IDMS Subschemas

 PFKEYS: 1=HELP 3=EXIT 12=EXIT

See Also TIBCO Service Gateway for IDMS/DB Installing and Operating for information on
defining IDMS data to TIBCO Object Service Broker.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type IDMS <Enter>

COMMAND prompt Type EX IDMS <Enter>

 TIBCO Object Service Broker Shareable Tools

| 294

IMS

Displays the main menu used to define an IMS/DB database to TIBCO Object
Service Broker. (E)

Invocation Do one of the following:

Executing IMS displays the screen illustrated here:

 MANAGER UTILITIES FOR IMS DATA

 Enter an 'S' to select a function

 _ Import IMS Database Definitions

 _ List IMS Databases

 _ IMS DBD Extract Utility

 PFKEYS: 1=HELP 3=EXIT 12=EXIT

See Also TIBCO Service Gateway for IMS/DB Installing and Operating for information on
defining IMS/DB data to TIBCO Object Service Broker.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type IMS <Enter>

COMMAND prompt Type EX IMS <Enter>

| 295
INDEXCHK

Estimates the maximum number of data rows a table can contain before reaching
the maximum index levels. (E)

Invocation Do one of the following:

On the Index Level Checking screen:

• Specify the name of the table you want to analyze. This table must already be
defined and be of type TDS.

• Specify either “Average Data Row length” or “Sample existing data”.

Usage Notes If you want to sample existing data to estimate the average row length, you must
have Level-7 security clearance.

For sequential inserts into a table or table instance with no secondary keys,
INDEXCHK calculates the estimate assuming that all the tables pages (both data
and indexes) are filled to their maximal value.

For random inserts, INDEXCHK calculates the estimate assuming that the top
level of any index is filled to its maximal value and that all lower pages are sixty
seven percent full. The result is only an estimate and may not correspond to the
practical reality. Where a table is subject to random inserts and deletes, the
estimate may be reduced further.

When secondary keys are defined, the estimate assumed that, even if the data is
inserted in sequential order in regard to the primary key, the inserts are random in
regard to any secondary keys. The secondary key providing the lowest number of
rows is displayed.

Example The following screen shows the result of invoking INDEXCHK:

Index Level Checking:
 =====================
 Application to estimate the Maximum # of Data Rows a table can

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type INDEXCHK <Enter>

COMMAND prompt Type EX INDEXCHK <Enter>

If you select “Sample existing data”, the table must have a significant number of
rows for the result to be meaningful.
 TIBCO Object Service Broker Shareable Tools

296 |
 contain before Maximum Index levels are reached (PF1 for more details)

 Table Name (must already be defined): INDEXCHK_DEMO
 Average Data Row length : or Sample existing Data (Y/N): Y
 #-Rows Sampled: 50000 Average Row Length: 41 #-Parms Sampled: 50
 RESULTS:

 Based on Sequential Inserts (giving maximal page utilisation)
 Max Data Rows Limited by I-Index: 5,297,307,999,872
 Max Data Rows Limited by S-Index: 3,001,948,715 (FIELD3)

 Max Parameter Instances allowed : 66,999,227,038,614

 Based on True Random Inserts
 Max Data Rows Limited by I-Index: 741,305,536,999
 Max Data Rows Limited by S-Index: 3,001,948,715 (FIELD3)

 Max Parameter Instances allowed : 13,514,414,924,151
 MSG:
 ENTER=CALCULATE PF1=HELP PF3=EXIT
TIBCO Object Service Broker Shareable Tools

| 297
@INSTALL

Requests the installation of the specified component. (CE)

Invocation Do one of the following:

Where:

Usage Notes • The argument component is the name of an instance of the @TOINSTALL table.
This instance contains the names of objects, table instances, and occurrences to
be included in the component.

• The user ID you use to run @INSTALL must have level-7 security clearance.
This user ID becomes the owner of all objects listed in the component instance of
the @TOINSTALL table, with the provision that they can grant access rights to
other users.

Exceptions

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type @INSTALL(component[,
path]) <Enter>

COMMAND prompt Type EX
@INSTALL(component[, path])
<Enter>

From a rule Type @INSTALL(component[,
path])

component The component you want to install.

path [Optional] The path where the source files are. This path can
be absolute, or relative to the directory specified in the DSDIR
Execution Environment parameter.

ROUTINEFAIL Raised if @INSTALL cannot find the component.
 TIBCO Object Service Broker Shareable Tools

298 |
Example The following example uses @INSTALL to install a new component.

 @INSTALL(TIMELAPSE ../bin/new)
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 299

INSTALLIB

Returns the name of the currently designated installation library. (F)

Invocation result = INSTALLIB

Usage Note The default installation library is SITE.

Example

 RULE EDITOR ===> SCROLL: P
 WHAT_LIBRARY;
 _ LOCAL LIB;
 _ ---
 _ --+--------------
 _ LIB = INSTALLIB; | 1
 _ CALL MSGLOG('THE CURRENT INSTALLATION LIBRARY IS ' || LIB); | 2
 _ |
 _ |
 _ |
 _ |
 _ |
 _ |
 _ ---

Pressing PF2 after executing the rule displays the following screen:

 --------------------------INFORMATION LOG -------------------------
 COMMAND ===> SCROLL: P

 THE CURRENT INSTALLATION LIBRARY IS SITE
 .

result On return, contains the name of the currently designated
installation library. This value is a typeless string of syntax C with
a maximum length of 8.

| 300
KEYWORDMGR

Ensures that the TIBCO Object Service Broker keyword system conforms to the
established formatting standards and that the keyword index table is up-to-date.
(E)

Invocation Do one of the following:

QUERY SYSTEM MANAGER Screen

Executing KEYWORDMGR displays the following screen:

 QUERY SYSTEM MANAGER April. 04, 2000

 Build Keyword Index and Cross Reference Index on Library: COMMON

 CHECK KEYWORDS AGAINST MASTER LIST FOR: @RULESDOCUMENTS: _
 ALL OTHER DOCUMENTS: _

 BUILD KEYWORD INDEX: _

 BUILD CROSS REFERENCE INDEX: _
 (Building this index may lock your terminal for some time!)

Place the cursor on the task of your choice and press enter.
 PFKEYS: ENTER=EXECUTE TASK 12=END 3=END

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type KEYWORDMGR
<Enter>

COMMAND prompt Type EX KEYWORDMGR
<Enter>
 TIBCO Object Service Broker Shareable Tools

KEYWORDMGR | 301
Fields

Usage Notes • The keywords are single tokens separated by commas and blanks. This choice
puts the keyword list in the @RULESDOCUMENT into this form if they are
not already.

• When one of the two CHECK KEYWORDS AGAINST MASTER LIST
options is selected and one is found that is not in the master list, a screen
appears with the names of the rules, its summary, and its list of keywords. The
list of keywords can be edited and is replaced when you press PF3 again. The
process can be stopped by pressing PF12.

• The master list of keywords is rebuilt when the BUILD KEYWORD INDEX
option is chosen.

• KEYWORDSEARCH and SEARCH depend on the Keyword Index table for
the current keyword information.

Required Permissions

The user of this rule must have the authority to insert new occurrences into the
KEYWORDINDEX table and to replace the following dictionary tables:

• @REPORTSDOCUMENT

• @RULESDOCUMENT(COMMON)

Build Keyword Index
and Cross Reference
Index on Library:

The name of the default library appears.

This is usually the library COMMON. The entry
can be changed to the SITE library.

CHECK KEYWORDS
AGAINST MASTER
LIST FOR:
@RULESDOCUMENTS

Option to check the syntax of keyword lists
associated with rules documents for tables, screens,
@Reports, and routines.

These documents can be either SITE or COMMON.
Only ENTRY rules are checked.

ALL OTHER
DOCUMENTS

Option to check the syntax of keyword lists not
associated with rules documents.

BUILD KEYWORD
INDEX

Option to build a new keyword index by replacing
the old index if it already exists.

BUILD CROSS
REFERENCE INDEX

Option to build a new cross reference index by
replacing the old index if it already exists.
 TIBCO Object Service Broker Shareable Tools

302 |
• @RULESDOCUMENT(SITE)

• @SCREENSDOCUMENT

• @TABLESDOCUMENT

• SYSRULES
TIBCO Object Service Broker Shareable Tools

| 303
KEYWORDSEARCH

Searches the keyword index of a default library to answer a query. (C)

Invocation CALL KEYWORDSEARCH(querystring, object_type)

Usage Notes • SEARCH is the interactive version of this tool. It also searches the cross
reference index.

• The local variable MSG must be declared by the calling rule.

• The results of the search are sent to the temporary table @RESULTLIST.

Exceptions

Example The following rule searches for the keyword PROCESS_PFKEY and sends the
results to the message log:

 KEYWORDSEARCH_1;
 LOCAL MSG;
 _ --
 _ --+-----------
 _ CALL KEYWORDSEARCH('PROCESS_PFKEY', 'ALL'); | 1
 _ CALL $RESETPRINT(60, 80, 1 'SCR'); | 2
 _ FORALL @RESULTLIST : | 3
 _ CALL $PRINTLINE(PAD(@RESULTLIST.INDEX, 4, ' ', 'R') || |
 _ PAD(@RESULTLIST.NAME, 18, ' ', 'R') || ' ' || |
 _ @RESULTLIST.TYPE); |
 _ END;
 _ --

querystring A query string, which can consist of one or more of the
following: names or keywords (the wild card characters
asterisk (*) and question mark (?) can be used if they are
enclosed in single quotations), the AND (&) and OR (|) logical
operators, the NOT operator (¬), and parentheses symbols “(”
and “)”.

object_type Indicates the type of object sought in keyword searches.

The entry must be one of: GLOBALFIELD, LIBRARY,
OBJECTSET, REPORT, RULE, SCREEN, TABLE, or ALL.

SYNTAX_ERROR Raised if there is a syntax error in the querystring, if the
value for querystring is invalid or if the value for object_type is
invalid. A message is placed in MSG for any of these cases.
 TIBCO Object Service Broker Shareable Tools

304 |
Output for Rule KEYWORDSEARCH_1

Pressing PF2 displays the following screen:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL: P

 ---------------------------------NEW PAGE------------------------------

 1 GEN_TED RULE
 1 SCRIPT RULE
 1 TED RULE
TIBCO Object Service Broker Shareable Tools

| 305
LEAPYEAR

Returns a logical value indicating whether a given year is a leap year. (F)

Invocation value = LEAPYEAR(year)

Example The rules in this example:

1. Use LEAPYEAR as a condition to a rule

2. Call in a rule to be a function of another rule

Rule Using LEAPYEAR:

LEAPYEAR is called in as a condition to the DAYS_OF_YEAR rule:

 DAYS_OF_YEAR(YEAR);
 _ ---
 _ LEAPYEAR(YEAR); | Y N
 _ --+--------
 _ RETURN(366); | 1
 _ RETURN(365); | 1
 _ ---

Definition of the YEAR_HOURS Rule:

DAYS_OF_YEAR is called in as a function to the YEAR_HOURS rule:

 YEAR_HOURS(YEAR);
 _ LOCAL NUM_HOURS;
 _ --+--------
 _ NUM_HOURS = DAYS_OF_YEAR(YEAR) * 24; | 1
 _ RETURN(NUM_HOURS); | 2
 _ ---

value The value returned is either:

Y - Year given is a leap year.

N - Year given is not a leap year.

year A given year.
 TIBCO Object Service Broker Shareable Tools

306 |
When YEAR_HOURS is executed with the year 1998 used as the argument it
returns the following:

RESULT OF RULE YEAR_HOURS IS 8760.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 307

LENGTH

Returns the length of the specified string. (F)

Invocation number = LENGTH(string)

Usage Notes The current length of string is returned, not the definition length.

Example The following rule determines the length of a string and prints it to the message
log:

 RULE EDITOR ===>
 LENGTH_1;
 _ LOCAL NUMBER;
 _ --
 _ --+-----------
 _ NUMBER = LENGTH('THIS IS THE SOURCE STRING'); | 1
 _ CALL MSGLOG('THE SOURCE STRING HAS A LENGTH OF: ' || | 2
 _ NUMBER); |
 _ --

Output for the LENGTH_1 Rule

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATION LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE SOURCE STRING HAS A LENGTH OF: 25

number On return, contains the length of the string, in characters. Its
syntax is B (binary) with length 4.

string The string whose length is to be returned. Its syntax can be
C (fixed-length character string), UN (Unicode), V (variable-length
character string), or W (double-byte character).

 TIBCO Object Service Broker Shareable Tools

| 308

LIBID

Returns the name of the currently designated local library. (F)

Invocation result = LIBID

Usage Note The name of the default local library is usually the same as the current user’s
user ID.

Example

 RULE EDITOR ===> SCROLL: P
 WHAT_LIBRARY;
 _ LOCAL LIB;
 _ ---
 _ --+--------------
 _ LIB = LIBID; | 1
 _ CALL MSGLOG('THE CURRENT LOCAL LIBRARY IS ' || LIB); | 2
 _ |
 _ |
 _ |
 _ |
 _ |
 _ |
 _ ---

Pressing PF2 after executing the rule displays the following screen:

 ----------------------- INFORMATION LOG --------------------
 COMMAND ===> SCROLL: P

 THE CURRENT LOCAL LIBRARY IS USER40
 .

result On return, contains the name of the currently designated local
library. This value is a typeless string of syntax C with a maximum
length of 8.

| 309
$LISTDSN

Lists the non-VSAM data sets and Generation Data Group (GDG) data sets of a
certain level, using the z/OS Catalog Search Interface services. (C)

Invocation CALL $LISTDSN(dsname_level, buffer_address)

The content of each buffer has the following format for the data set name list:

Usage Notes • Asterisks and percent signs can be used as wildcards in the qualifiers for
filtering.

• Only non-VSAM data sets and Generation Data Group (GDG) data sets are
retrieved from the z/OS Catalog.

dsname_level The filter defining the levels of data sets to be returned.
Contains valid TSO data set name qualifier patterns, separated
by periods (‘.’). The length is 1 to 44 characters. Refer to Usage
Notes below for more information.

buffer_address The pointer to the first or only buffer that contains the data set
names of the dsname_level. Each data set name is 1 to 44
characters long and padded with blanks. The size of each
buffer is 4096 bytes and can contain up to 92 data set names.
The buffers are provided by $LISTDSN.

Offset Content

0 Pointer to the next buffer in a chain or null (hex zeroes).

4 Number of entries in this buffer.

8 Data set name1.

52 Data set name2.

... ...

4012 Data set name92.
 TIBCO Object Service Broker Shareable Tools

310 |
Generic Filter Key

You can use a generic filter key in dsname_level. It can contain the following
symbols:

Examples

For non-VSAM data sets:

Symbol Meaning

* A single asterisk by itself indicates that either a qualifier or one or
more characters within a qualifier can occupy that position. An
asterisk can precede or follow a set of characters.

** A double asterisk indicates that zero or more qualifiers can occupy
that position. A double asterisk cannot precede or follow any
characters; it must be preceded or followed by either a period or a
blank.

% A single percent sign by itself indicates that exactly one
alphanumeric or national character can occupy that position.

%%... One to eight percent signs can be specified in each qualifier.

Specification Returns Does not Return

NONVSAM.DATA.SET% NONVSAM.DATA.SET1

NONVSAM.DATA.SET2

NONVSAM.DATA.SET30

NONVSAM.DATA.SET%% NONVSAM.DATA.SET30

NONVSAM.DATA.SET31

NONVSAM.DATA.SET1

NONVSAM.DATA.SET2

NONVSAM.*.SET NONVSAM.DATA1.SET

NONVSAM.DATA2.SET

NONVSAM.DATA.SET.BACKUP

NONVSAM.*A NONVSAM.A

NONVSAM.BA

NONVSAM.BBA

NONVSAM.B

NONVSAM.AB

NONVSAM.DATA.* NONVSAM.DATA.SET1

NONVSAM.DATA.SET2

NONVSAM.DATA.SET.BACKUP

NONVSAM.DATA* NONVSAM.DATA1

NONVSAM.DATA23

NONVSAM.DATA.SET
TIBCO Object Service Broker Shareable Tools

$LISTDSN | 311
For a GDG base named DATASET.GDG containing the following entries:

• DATASET.GDG.G0001V00

• DATASET.GDG.G0002V00

• DATASET.GDG.G0003V00

and for the non-VSAM data set named DATASET.GDG.G0001V00.XYZ, the
following keys return the following results:

NONVSAM.** NONVSAM.DATA.SET1

NONVSAM.DATA.SET2

NONVSAM.DATA.SET.BACKUP

NONVSAM1.DATA.SET

NONVSAM.DATA.SET NONVSAM.DATA.SET only.

**.DATA Entry names whose low-level qualifier is
DATA, such as:

• NONVSAM.DATA

• DATASET.WORK.DATA

** Every entry name in a catalog.

Specification Returns Does not Return

Specification Returns

DATASET.GDG.** DATASET.GDG.G0001V00

DATASET.GDG.G0002V00

DATASET.GDG.G0003V00

DATASET.GDG.G0001V00.XYZ

DATASET.GDG.G0001V00 DATASET.GDG.G0001V00

DATASET.GDG.G0001V00.** DATASET.GDG.G0001V00.XYZ

DATASET.GDG.G000%V00 DATASET.GDG.G0001V00

DATASET.GDG.G0002V00

DATASET.GDG.G0003V00
 TIBCO Object Service Broker Shareable Tools

312 |
Exceptions

Examples These sets of rules lists the data set names at a certain level on the message log:

 RULE EDITOR ===> SCROLL: P
LIST_DSN(LVL);
_ LOCAL DSNBUFF, BNEXT, DCOUNT;
_ ---
_ --+------------
_ CALL MSGLOG('DSN_LEVEL entered: ' || LVL); ¦ 1
_ CALL $LISTDSN(LVL, DSNBUFF); ¦ 2
_ UNTIL DONE : ¦ 3
_ @MAP.ADDRESS = DSNBUFF; ¦
_ @MAP.SIZE = 4096; ¦
_ INSERT @MAP('EXTERNALRO'); ¦
_ GET HZS81_MAP_WORD(DSNBUFF); ¦
_ BNEXT = HZS81_MAP_WORD.WORD; ¦
_ GET HZS81_MAP_WORD(DSNBUFF + 4); ¦
_ DCOUNT = HZS81_MAP_WORD.WORD; ¦
_ CALL LIST_DSN1(DSNBUFF, BNEXT, DCOUNT); ¦
_ DSNBUFF = BNEXT; ¦
_ END; ¦
_ CALL ENDMSG('Press PF2 to see the data set list'); ¦ 4

DATASET.GDG.G000%V00.** DATASET.GDG.G0001V00

DATASET.GDG.G0002V00

DATASET.GDG.G0003V00

DATASET.GDG.G0001V00.XYZ

Specification Returns

The entries returned are not necessarily in ascending order.

ROUTINEFAIL $LISTDSN can fail for the following reasons:

• A Catalog Management error

• An invalid filter key

• Internal $LISTDSN error: IGGCSI00 parmlist error

• Internal $LISTDSN error: IGGCSI00 parmlist pointer is
zero

• The buffer provided to the Catalog Search Interface is too
small

You can retrieve error messages using RETURN_SYSMSG.
TIBCO Object Service Broker Shareable Tools

$LISTDSN | 313
_ ---
_ ON ROUTINEFAIL :
_ CALL ENDMSG(RETURN_SYSMSG);

 RULE EDITOR ===> SCROLL: P
LIST_DSN1(LIST, BNEXT, DCOUNT);
_
_ ---
_ DCOUNT = 0; ¦ Y N N
_ BNEXT = 0; ¦ Y N
_ --+------------
_ CALL MSGLOG('No data set names found'); ¦ 1
_ FORALL HZS81_MAP_DSN(LIST + 8) WHERE KEY <= DCOUNT : ¦ 1 1
_ CALL MSGLOG(HZS81_MAP_DSN.DSNAME); ¦
_ END; ¦
_ SIGNAL DONE; ¦ 2 2
_ ---

Executing the rules produces the following message log:

---------------------- INFORMATIONAL MESSAGE LOG ----------------------------
COMMAND ===> SCROLL ===> P
DSN_LEVEL entered: USR40.**
USR40.CLIST
USR40.CNTL
USR40.OBJSTAR.PARMS
USR40.ISPF.ISPPROF

See Also The @MAP shareable tool.
 TIBCO Object Service Broker Shareable Tools

| 314
$LISTPDS

Lists the member names of a partitioned data set (PDS), or retrieves the statistics
for a PDS member. (C)

Invocation CALL $LISTPDS(pds_name, buffer_address, member_name)

pds_name The name of a PDS. The length is 1 to 44 characters.

buffer_address The pointer to the first or only buffer that contains the member
names of the PDS. Each member name is 1 to 8 characters long
and padded with blanks. The size of each buffer is 4096 bytes
and can contain up to 511 member names. The buffers are
provided by $LISTPDS.

The content of each buffer has the following format:

Offset Content

0 Pointer to the next buffer in a chain, or null (hex
zeroes).

4 Number of entries in this buffer.

8 Member name1.

16 Member name2.

... ...

4080 Member name510.

4088 Member name511.

member_name To get a list of the PDS members: 8 blank characters.

To get the statistics for one PDS member: the 1- to 8-character
member name padded with blanks.
 TIBCO Object Service Broker Shareable Tools

$LISTPDS | 315
Exceptions

Examples Listing Member Names

These sets of rules lists the names of the members of a PDS on the message log.

 RULE EDITOR ===> SCROLL: P
LIST_PDS(PDS);
_ LOCAL PDSBUFF, BNEXT, MCOUNT, MEMBER;
_ ---
_ --+------------
_ CALL MSGLOG('PDS_NAME entered: ' || PDS); ¦ 1
_ MEMBER = ' '; ¦ 2
_ CALL $LISTPDS(PDS, PDSBUFF, MEMBER); ¦ 3
_ UNTIL DONE : ¦ 4
_ @MAP.ADDRESS = PDSBUFF; ¦
_ @MAP.SIZE = 4096; ¦
_ INSERT @MAP('EXTERNALRO'); ¦
_ GET HZS81_MAP_WORD(PDSBUFF); ¦
_ BNEXT = HZS81_MAP_WORD.WORD; ¦
_ GET HZS81_MAP_WORD(PDSBUFF + 4); ¦
_ MCOUNT = HZS81_MAP_WORD.WORD; ¦
_ CALL LIST_PDS1(PDSBUFF, BNEXT, MCOUNT); ¦
_ PDSBUFF = BNEXT; ¦
_ END; ¦
_ CALL ENDMSG('Press PF2 to see the member list'); ¦ 5
_ ---
_ ON ROUTINEFAIL :
_ CALL ENDMSG(RETURN_SYSMSG);

 RULE EDITOR ===> SCROLL: P
LIST_PDS1(LIST, BNEXT, MCOUNT);
_

ROUTINEFAIL $LISTPDS can fail for the following reasons:

• Allocation of the PDS file failed

• Cannot get virtual storage for the buffer

• File not found

• Open for the PDS file failed

• PDS member not found

• The file specified is not a partitioned data set

• Too many open files

You can retrieve error messages using RETURN_SYSMSG.
 TIBCO Object Service Broker Shareable Tools

316 |
_ ---
_ MCOUNT = 0; ¦ Y N N
_ BNEXT = 0; ¦ Y N
_ --+------------
_ CALL MSGLOG('No members in data set'); ¦ 1
_ FORALL HZS81_MAP_PDS(LIST + 8) WHERE KEY <= MCOUNT : ¦ 1 1
_ CALL MSGLOG(HZS81_MAP_PDS.MEMBER); ¦
_ END; ¦
_ SIGNAL DONE; ¦ 2 2
_ ---

Executing the rules produces the following message log:

---------------------- INFORMATIONAL MESSAGE LOG -----------------------------
COMMAND ===> SCROLL ===> P
PDS_NAME entered: USR40.CNTL
EMAIL
FTP

Listing Information for a Member

The following set of rules receives the name of a member of a PDS and lists the
statistics for that member.

 RULE EDITOR ===> SCROLL: P
LIST_MEMSTATSS(PDS, MEMBER);
_ LOCAL PDSBUFF, LEN;
_ ---
_ --+------------
_ CALL MSGLOG('PDS_NAME entered: ' || PDS ||'(' || MEMBER || ¦ 1
_ ')'); ¦
_ CALL $LISTPDS(PDS, PDSBUFF, MEMBER); ¦ 2
_ @MAP.ADDRESS = PDSBUFF; ¦ 3
_ @MAP.SIZE = 130; ¦ 4
_ INSERT @MAP('EXTERNALRO'); ¦ 5
_ GET HZS81_MAP_HALF(PDSBUFF); ¦ 6
_ LEN = HZS81_MAP_HALF.HALF; ¦ 7
_ CALL LIST_MEMSTATSS1(PDS, MEMBER, PDSBUFF, LEN); ¦ 8
_ ---
_ ON ROUTINEFAIL :
_ CALL ENDMSG(RETURN_SYSMSG);

 RULE EDITOR ===> SCROLL: P
LIST_MEMSTATSS1(PDS, MEMBER, PDSBUFF, LEN);
_ LOCAL VV, MM, SS, CREATED, CHANGED, HH, MN, SIZE, INITIAL, MODIFIED, USERID
_ ;
_ ---
_ LEN = 0; ¦ Y N N
_ LEN = 30; ¦ Y N
TIBCO Object Service Broker Shareable Tools

$LISTPDS | 317
_ --+--------------
_ GET HZS81_MAP_STATS(PDSBUFF); ¦ 1
_ HZS81_MEMSTATS_H.* = HZS81_MAP_STATS.*; ¦ 2
_ HZS81_MEMSTATS_H.PDS_NAME = PDS; ¦ 3
_ HZS81_MEMSTATS_H.MEMBER = MEMBER; ¦ 4
_ INSERT HZS81_MEMSTATS_H('HZS81_MEMSTATS'); ¦ 5
_ DISPLAY HZS81_MEMSTATS; ¦ 6
_ CALL ENDMSG('No ISPF statistics exist for member: ' || ¦ 1
_ MEMBER); ¦
_ CALL ENDMSG(¦ 1
_ 'User data is not ISPF statistics for member: ' || ¦
_ MEMBER); ¦
_ ---

Executing the rules produces the following information:

PDS NAME entered: USR40.CNTL

 NAME VV MM CREATED CHANGED HH:MM:SS SIZE INITIAL MODIFIED USERID Len
EMAIL 1 2 103317 103317 21 22 12 18 22 1 USR40

See Also The @MAP shareable tool.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 318

LIT_TO_VAL

Converts a string to a typeless value as described in the string. (F)

Invocation new_value = LIT_TO_VAL(string)

The syntax of new_value depends on the format of string as follows:

Example The following rule creates three new values from the information contained in a
string:

 CREATE_RD;
 _ LOCAL SOURCE_STRING, NEW_RD_VALUE, NEW_UN_VALUE, NEW_X_VALUE;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'R''1234'''; |
 _ NEW_RD_VALUE = LIT_TO_VAL(SOURCE_STRING); |
 _ SOURCE_STRING = 'U''/20AC//1234'''''''; |
 _ NEW_UN_VALUE = LIT_TO_VAL(SOURCE_STRING); |
 _ SOURCE_STRING = 'X''5BF1F2F3F4'''; |
 _ NEW_X_VALUE = LIT_TO_VAL(SOURCE_STRING); |
 _ --

NEW_RD_VALUE is now a raw data value that contains “1234”.

NEW_UN_VALUE is a Unicode value containing “?/1234' ” (? = the euro
symbol).

NEW_X_VALUE is a variable-length character value that contains “$1234”.

new_value On return, this value is the value described in string. Its
semantic data type is typeless.

string The string to convert. Its syntax can be C (fixed-length
character string) or V (variable-length character string).

string Format new_value Syntax

R'xx...' RD (raw data)

U'xx...' UN (Unicode)

X'xx...' V (variable-length character string)

| 319
LLOAD

Loads definitions and data of TIBCO Object Service Broker objects that were
previously unloaded from files with names in mixed case or lowercase. (CE)

Invocation Do one of the following:

Pressing Enter displays the screen shown here:

 LLOAD Utility

 File name:

 Log msgs to: SCR

 PFKEYS: ENTER=LOAD 3=EXIT 12=EXIT

In the File Name field, type the name of the file to be unloaded. Valid values for
the Log msgs to field are SCR or PRT; SCR is the default.

Prerequisites • Items being loaded must have been unloaded using UNLOAD,
UNLOAD_DATA, UNLOAD_DEFN, or UNLOADLIBRARY. Refer to the
appropriate entries in this manual for more information about these tools.

• If the data is being loaded into a table that uses required, reference, or default
fields, you must have MODIFY_DEFN rights to that table to load the data.

Usage Notes

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type LLOAD <Enter>

COMMAND prompt Type EX LLOAD <Enter>

If… Then…

You execute LLOAD Pressing Enter displays a screen prompting for
values.

You are loading a file from
z/OS

The value for importfile must be a fully qualified
data set name.
 TIBCO Object Service Broker Shareable Tools

320 |
• LLOAD functions in exactly the same way as LOAD, except that with LLOAD
you can load files with names that are in mixed case or in lowercase in
operating environments (such as Solaris) that are case sensitive in their
handling of filenames.

• Certain options are disabled when loading TDS data. These include reference
checking, defaults, event rules, and the IDgen flag.

• When loading the definition and data of a table that has a secondary index,
the secondary index is lost and the indicator is removed from the definition.
You must run SIXBUILD to recreate the index.

• On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter
to LENGTH_PREFIXED_EBCDIC.

• To LLOAD a DB2 table definition that was unloaded from Release 5.0.0 into
the current release, set library to S6B50DB2 and execute the LLOAD tool. That
task loads the definition and converts it to the format of the current release.

If you are loading a file
from Windows or Solaris

Specify either the full path or only the filename. If
you specify only the filename, the DSDIR
Execution Environment parameter must be set to
point to the directory to use. Refer to the TIBCO
Object Service Broker Parameters manual for more
information about this parameter.

A rule already exists It is replaced with the rule being loaded. Rules
being loaded are saved in the current local
library.

You want to load large
volumes of data quickly

Consider using the batch load utilities.

You are loading a table,
screen, or report definition

No definition (and associated occurrences) is
loaded if the item already exists.

Only table occurrences are
being loaded

The table must already exist. At minimum, it
must contain the same fields (extra fields take on
the default value). Changes in type, syntax and
field order are allowed. If conversion errors
result, that occurrence only is skipped.

If… Then…

This setting can affect the behavior of other tools.
TIBCO Object Service Broker Shareable Tools

LLOAD | 321
See Also TIBCO Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for
Open Systems Utilities for information about the batch load utilities.

TIBCO Object Service Broker Parameters for information on the DSBIFTYPE
Execution Environment parameter.

Example On z/OS, specifying the following value loads the items in the data set
USR40.EXAMPLE.DATA(RULES). By default, any messages are sent to the
screen:

File Name:USR40.EXAMPLE.DATA(RULES)

Log msgs to: SCR

On Open Systems, specifying the following value loads the items in the file rules;
your DSDIR session option determines the directory. Any messages are sent to the
printer:

File Name: rules

Log msgs to: PRT
 TIBCO Object Service Broker Shareable Tools

| 322
LOAD

Loads definitions and data of TIBCO Object Service Broker objects that were
previously unloaded. (CE)

Invocation Do one of the following:

Where:

Prerequisites • Items being loaded must have been unloaded using UNLOAD,
UNLOAD_DATA, UNLOAD_DEFN or UNLOADLIBRARY. Refer to the
appropriate entries in this manual for more information about these tools.

• To load the data into a table that uses required, reference, or default fields, you
must have MODIFY_DEFN rights to that table.

Usage Notes Search Paths

• If LOAD is executed using the EX option from the workbench, the search path
used for event rules is local, SITE, and then COMMON.

From the… Move the cursor to the… And…

Administrators
workbench

LO Load from a File
option

Press Enter

Developer’s
workbench

EX Execute Rule option Type LOAD (importfile,
media)<Enter>

COMMAND prompt Type EX LOAD (importfile,
media) <Enter>

From a rule Type CALL LOAD(importfile,
media).

importfile The name of the file containing the previously unloaded
information.

media One of:

SCR – Send messages to the message log.

PRT – Send messages to the printer.
 TIBCO Object Service Broker Shareable Tools

LOAD | 323
• If LOAD is executed using the LO or UL options from the @ADMIN menu,
the search path is COMMON since the search path is indicated in
MENU_ITEMS(@ADMIN) as S.

• To LOAD a DB2 table definition that was unloaded from Release 5.0.0 into the
current release, set library to S6B50DB2 and execute the LOAD tool. That task
loads the definition and converts it to the format of the current release.

Loading Different Types of Objects

LOAD and Existing Objects

• If a rule already exists, it is replaced with the rule being loaded. Rules being
loaded are saved in the current local library.

If… Then…

You are loading data from an
operating system that is
case-sensitive in its handling
of filenames (such as Solaris)
and you are loading a file with
a name that is not entirely in
upper case

Use the LLOAD shareable tool to load the
file. In case-sensitive operating systems, if
the file is in mixed or lower case, LOAD fails.

Alternately, rename the file so it is all
uppercase.

You want to load large
volumes of data quickly

Consider using the BATCHLOAD utilities.

You are loading a z/OS data
set

The value for importfile must be a fully
qualified data set name.

If you are loading a Windows
or Solaris file

Specify either the full path or only the
filename. If you specify only the filename,
the DSDIR Execution Environment
parameter must be set to point to the
directory to use. Refer to the TIBCO Object
Service Broker Parameters manual for more
information about this parameter.

Only table occurrences are
being loaded

The table must already exist. At minimum, it
must contain the same fields (extra fields
take on the default value). Changes in type,
syntax and field order are allowed. If
conversion errors result, that occurrence only
is skipped.
 TIBCO Object Service Broker Shareable Tools

324 |
• If a table, screen, or report definition already exists, no definition or associated
occurrences are loaded.

Other Notes

• If you execute LOAD without supplying values for importfile and media,
pressing Enter displays a screen prompting for values.

• When loading TDS data, if the definition of the table into which the data is
being loaded is not bound, certain options are disabled. These options include
reference checking, defaults, event rules, and the IDgen flag. These options are
not disabled if the table definition is bound.

• Definitions of all table types can be loaded using the LOAD tool. However,
data for only TDS and session (SES) tables can be loaded using the LOAD tool.

• When loading the definition and data of a table that has a secondary index,
the secondary index is lost and the indicator is removed from the definition.
You must run SIXBUILD to recreate the index.

• On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter
to LENGTH_PREFIXED_EBCDIC.

• To load on z/OS a file unloaded on Windows or Solaris, simply FTP the file, in
binary format, from the platform of origin to z/OS.

• To load on Windows or Solaris a file unloaded on z/OS, you must either issue
FTP’s QUOTE SITE RDW command before sending the file from z/OS, or run
the S6BBRFRU (Reformat TIBCO Object Service Broker Files Transferred with
FTP) utility against the file on z/OS before using FTP.

See Also TIBCO Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for
Open Systems Utilities for information on batch load utilities.

TIBCO Object Service Broker Parameters for information on the DSBIFTYPE
Execution Environment parameter.

Example The following statement loads the items in the data set
USR40.EXAMPLE.DATA(RULES); any messages are sent to the screen:

EX LOAD('USR40.EXAMPLE.DATA(RULES)', 'SCR')

The following statement loads the items in the file /usr/usr40/RULES; any
messages are sent to the printer:

EX LOAD('RULES', 'PRT')

This setting can affect the behavior of other tools.
TIBCO Object Service Broker Shareable Tools

| 325
LOADER

Loads definitions and data of TIBCO Object Service Broker objects that were
previously unloaded, with selection control. (CE)

Invocation Do one of the following:

Where:

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type LOADER <Enter>

COMMAND prompt Type EX LOADER <Enter>

From a rule, to
use one action
for all files

Type CALL
LOAD_BY_ACTION(file[,
defaultlib}, defn_action,
data_action, media)

From a rule, to
use different
actions for
different files

Type CALL
FILL_LOADPROMPT(file[,
defaultlib]), and then type
CALL LOADER_TABLE(file[,
defaultlib], media)

file The name of the file containing the previously unloaded
information.

defaultlib [Optional] The name of the library where you want the
information loaded. If entered, this argument must be the
name of an existing library.

defn_action The action to be applied to all definitions in the file. Must be
one of:

IS – Insert or Skip. When an object in the file has the same
name as one already in the database, this action skips the
object in the file, and the database is to remain unchanged.

IR – Insert or Replace. When an object in the file collides with
one already in the database, the object in the file replaces the
one in the database.
 TIBCO Object Service Broker Shareable Tools

326 |
Prerequisites • Items being loaded must have been unloaded using UNLOAD,
UNLOAD_DATA, UNLOAD_DEFN or UNLOADLIBRARY. Refer to the
appropriate entries in this manual for more information about these tools.

• To load the data into a table that uses required, reference, or default fields, you
must have MODIFY_DEFN rights to that table.

Usage Notes • Running LOADER from the workbench displays the following screen:

 File Loader Utility

 File: __

 Send Report to: SCR SCR/PRT

 Destination Library: ________ (Optional)

 To LOAD on PF3 you must specify the two Actions

 Action for definitions: __
 Choose IS - Insert or Skip, IR - Insert or Replace

 Action for data: __
 Choose IS - Insert or Skip

data_action The action to be applied to all data in the file. Must be one of:

IS – Insert or Skip. If there is already data in the table, or in one
instance of a parameterized table, for example, this actions
skips the data in the file.

IR – Insert or Replace. If there is already data in the table, or in
one instance of a parameterized table, for example, this action
clears the table and loads the data in the file.

MI – Merge with Insert only. When there is data in the file and
data in the table, this action tests every occurrence from the file
against the table. If the occurrences collide, in the sense of
having identical primary keys, the occurrence from the file is
skipped; otherwise, it is inserted.

MR – Merge with Replace. This action tests individual
occurrences from the file against the table. If the occurrences
have identical primary keys, the one from the file replaces the
one in the table; otherwise the one from the file is inserted.

media One of:
SCR – Send messages to the message log.
PRT – Send messages to the printer.
TIBCO Object Service Broker Shareable Tools

LOADER | 327
 IR - Insert or Replace
 MI - Merge with Insert only
 MR - Merge with Insert or Replace

 PFKEYS: 5=SELECT 3=LOAD 2=LOGS 12=CANCEL

From this screen, you can load information by filling in the different fields
according the specifications under Invocation on page 325.

• To use PF3, you must specify the actions to be used with all files in the Action
for definitions field and in the Action for data field.

• When you press PF5, you can specify, on the screen that follows, the actions to
be taken for each individual objects. If the action is left blank for a definition,
that item is not loaded.

Search Paths

If LOADER is executed using the EX option from the workbench, the search path
used for event rules is the local, the installation (the default is SITE), and the
system (the default is COMMON) libraries.

Other Notes

• When loading TDS data, if the definition of the table into which the data is
being loaded is not bound, certain options are disabled. These options include
reference checking, defaults, event rules, and the IDgen flag. These options are
not disabled if the table definition is bound.

• Definitions of all table types can be loaded using the LOADER tool. However,
only TDS and session (SES) table data can be loaded using the LOADER tool.

• When loading the definition and data of a table that has a secondary index,
the secondary index is lost and the indicator is removed from the definition.
You must run SIXBUILD to recreate the index.

• On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter
to LENGTH_PREFIXED_EBCDIC.

• Do not load DB2 table definitions unloaded from Release 5.0.0 into a system at
the current release with LOADER. Use the LOAD shareable tool instead.

This setting can affect the behavior of other tools.
 TIBCO Object Service Broker Shareable Tools

328 |
• Problems may be experienced if Borrower Rights are held on an existing
object being replaced, even if the Borrower is the user invoking LOADER:

Cannot delete TDS_TABLE “%”, unable to verify promotion rights

• Replace of a definition will fail if the user running LOADER is not either the
Owner of the existing object or a level-7 user:

Security Failure : Denied "OWNER" access to table “%”

• Using LOADER to replace (IR) an existing table definition with a modified
one containing, for example, a new field - and then attempting to load data to
that modified table at the same time will fail as the 'old' definition is still being
reference at the time the data is loaded.

Unable to INSERT because of INTEGRITYFAIL: “%” is not a field of table “%”

This can be worked around by using the PF5 SELECT capability, selecting just
the definition first, and then repeating the process for the data.

See Also TIBCO Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for
Open Systems Utilities for information on batch load utilities

TIBCO Object Service Broker Parameters for information on the DSBIFTYPE
Execution Environment parameter

Example The following screen shows LOADER loading the items in the data set
USR40.EXAMPLE.DATA(SCREENS) into the SCREENS library, with messages
sent to the printer:

 File Loader Utility

 File: USR40.EXAMPLE.DATA(SCREENS)___

 Send Report to: PRT SCR/PRT

 Destination Library: SCREENS_ (Optional)

 To LOAD on PF3 you must specify the two Actions

 Action for definitions: __
 Choose IS - Insert or Skip, IR - Insert or Replace

 Action for data: __
 Choose IS - Insert or Skip
 IR - Insert or Replace
 MI - Merge with Insert only
 MR - Merge with Insert or Replace

 PFKEYS: 5=SELECT 3=LOAD 2=LOGS 12=CANCEL
TIBCO Object Service Broker Shareable Tools

LOADER | 329
With no actions specified, after pressing PF5, the following screen appears, where
you specify an action for each definition in the file:

 Select Objects to Load Scroll: P
 File: USR40.EXAMPLE.DATA(SCREENS)
 Command:
 Name Object Exists Parameters/Library
 ---------------- ---------------- - ---------------------------------
 __ SCR31 SCREEN N
 __ SCRTAB31 SCR_TABLE N

 Defn: IS Insert/skip IR Insert/replace
 Data: IS Insert/skip IR Insert/replace MI Merge&insert MR Merge&replace
 PFKEYS: 3=LOAD 12=CANCEL 5=REFIND 9=RECALL
 TIBCO Object Service Broker Shareable Tools

| 330
LOCALTIME

Returns the local time when the transaction started. (F)

Invocation now = LOCALTIME

Usage notes LOCALTIME is typically used to notify the user of the local time a transaction is
started.

Example The set of rules in this example:

1. Schedules a transaction and uses LOCALTIME to notify the user of the local
start time of a transaction

2. Starts a transaction

3. Updates an audit table

The user sees the transaction start time in the local time and the system time is
entered to the audit table.

Rule Using LOCALTIME:

USER_TIME schedules the TRANSACT rule and notifies the user with an
ENDMSG:

 USER_TIME;
 _ ---
 _ --+--------
 _ SCHEDULE TRANSACT; | 1
 _ CALL ENDMSG(('TRANSACT SCHEDULED ') || LOCALTIME); | 2
 _ ---

The following ENDMSG is returned:

11:54:12 TRANSACT SCHEDULED 11:54:11

 now On return, contains the current local time. Its syntax is
C (fixed-length character string) with length 8.
 TIBCO Object Service Broker Shareable Tools

LOCALTIME | 331
Definition of the TRANSACT Rule

TRANSACT calls in another rule and inserts the start and end time into the table
AUDIT, using system time:

 TRANSACT;
 _ --+--------
 _ CALL EMPLOYEE_DEPTNO; | 1
 _ AUDIT.START = TIME; | 2
 _ AUDIT.END = REALTIME; | 3
 _ INSERT AUDIT; | 4
 _ ---

The following values are added to the sample table AUDIT:

TRANS_NUMBER START END
------------ -------- ---------
 1 08:54:11 08:54:17
 TIBCO Object Service Broker Shareable Tools

| 332
LOG_BROWSE

Displays the contents of the message log. (C)

Invocation CALL LOG_BROWSE

The message log appears as if you pressed PF2 from the workbench.

Usage Notes • The transaction must end before the contents of its message log can appear.

• The message log is cleared at the beginning of a new transaction.

See Also TIBCO Object Service Broker Programming in Rules for information about the
message log.

Example The following set of rules lists the staff for a manager in the message log.

Rule Using LOG_BROWSE

The HIERARCHY rule executes STAFF and then saves the information in the
message log by calling LOG_BROWSE.

 HIERARCHY(NUMBER);
 _
 _ EXECUTE STAFF(NUMBER); | 1
 _ CALL LOG_BROWSE; | 2
 _ ---

Rule Using MSGLOG

The STAFF example rule uses the message log to list all the people that work for
the manager.

 STAFF(NUM);
 _
 _ CALL MSGLOG('THE FOLLOWING EMPLOYEES WORK FOR MANAGER ' || | 1
 _ NUM || ':'); |
 _ GET EMPLOYEE WHERE MGR# = NUM; | 2
 _ FORALL EMPLOYEE WHERE MGR# = NUM: | 3
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ END; |
 _ ---
 _ ON GETFAIL:
 _ CALL MSGLOG(NUM || ' IS NOT A MANAGER.');
 TIBCO Object Service Broker Shareable Tools

LOG_BROWSE | 333
Results of the STAFF Rule

If the manager number is valid, results such as the following appear in the
message log:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE FOLLOWING EMPLOYEES WORK FOR MANAGER 79912:
 SMITH
 HRODEK
 CANNON
 KIMURA
 WONG
 SCHULTZ
 BOIVIN
 TIBCO Object Service Broker Shareable Tools

334 |
TIBCO Object Service Broker Shareable Tools

| 335
LOWER_EBCDIC

Converts a string to lowercase EBCDIC characters. (F)

Invocation lower_string = LOWER_EBCDIC(string)

Usage Note LOWER_EBCDIC lowercases strings using the TIBCO Object Service Broker
EBCDIC casing rules.

Example This rule lowercases a string and prints the result to the message log:

LOWERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+--------------
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('LOWER_EBCDIC GIVES ' || LOWER_EBCDIC(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWER_EBCDIC(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('LOWER_EBCDIC GIVES ' || LOWER_EBCDIC(A)); ¦ A
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWER_EBCDIC(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

lower_string On return, contains the string in lowercase letters.

If string is not Unicode, or if it is Unicode and entirely
convertible to EBCDIC, lower_string’s syntax is V
(variable-length character string).

If string is Unicode and not entirely convertible to EBCDIC,
lower_string’s syntax is UN (Unicode). In string, characters
that can be converted are cased and then reverted to
Unicode before being added to lower_string. Characters that
cannot be converted are added to lower_string unchanged.

string The string to convert to lowercase letters. Its syntax is C
(fixed-length character), RD (raw data), UN (Unicode), V,
or W (double-byte character).
 TIBCO Object Service Broker Shareable Tools

336 |
Displayed Output for the Rule

Pressing PF2 after executing this rule displays the following:

 COMMAND ===> SCROLL ===> P
CASING OF UNICODE STRING AÇaç

LOWER_EBCDIC GIVES aÇaç
SYNTAX IS V

CASING OF EBCDIC STRING AÇaç

LOWER_EBCDIC GIVES aÇaç
SYNTAX IS V

See Also Related tools: LOWER_UNICODE, LOWERCASE, UPPER_EBCDIC,
UPPER_UNICODE, and UPPERCASE.
TIBCO Object Service Broker Shareable Tools

| 337
LOWER_UNICODE

Converts a string to lowercase Unicode characters. (F)

Invocation lower_string = LOWER_UNICODE(string)

Usage Note LOWER_UNICODE lowercases strings using the TIBCO Object Service Broker
Unicode casing rules.

Exceptions

Example This rule lowercases a string and prints the result to the message log:

LOWERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+--------------
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('LOWER_UNICODE GIVES ' || LOWER_UNICODE(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWER_UNICODE(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('LOWER_UNICODE GIVES ' || LOWER_UNICODE(A)); ¦ A
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWER_UNICODE(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

Displayed Output for the Rule

Pressing PF2 after executing this rule displays the following:

lower_string On return, contains the string in lowercase letters. Its
syntax is UN (Unicode).

string The string to convert to lowercase letters. Its syntax is C
(fixed-length character string), UN, or V (variable-length
character string).

ROUTINEFAIL Signaled if string is syntax W (double-byte character).
 TIBCO Object Service Broker Shareable Tools

338 |
 COMMAND ===> SCROLL ===> P
CASING OF UNICODE STRING AÇaç

LOWER_UNICODE GIVES açaç
SYNTAX IS UN

CASING OF EBCDIC STRING AÇaç

LOWER_UNICODE GIVES açaç
SYNTAX IS UN

See Also Related tools: LOWER_EBCDIC, LOWERCASE, UPPER_EBCDIC,
UPPER_UNICODE, and UPPERCASE.
TIBCO Object Service Broker Shareable Tools

| 339
LOWERCASE

Converts all uppercase characters in a string to lowercase characters. (F)

Invocation lower_string = LOWERCASE(string)

Usage Note LOWERCASE lowercases EBCDIC strings using the TIBCO Object Service Broker
EBCDIC casing rules and Unicode strings using the TIBCO Object Service Broker
Unicode casing rules.

Example This rule lowercases a string and prints the result to the message log:

LOWERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+--------------
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('LOWERCASE GIVES ' || LOWERCASE(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWERCASE(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('LOWERCASE GIVES ' || LOWERCASE(A)); ¦ A
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(LOWERCASE(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

Displayed Output for the LOWERCASE_1 Rule

Pressing PF2 after executing this rule displays the following:

 COMMAND ===> SCROLL ===> P
CASING OF UNICODE STRING AÇaç

lower_string On return, contains the string in lowercase letters. Its
syntax is V (variable-length character string) except that, if
string is UN (Unicode), lower_string becomes UN.

string The string to convert to lowercase letters. Its syntax can be
C (fixed-length character string), UN, V, or W (double-byte
character).
 TIBCO Object Service Broker Shareable Tools

340 |

LOWERCASE GIVES açaç
SYNTAX IS UN

CASING OF EBCDIC STRING AÇaç

LOWERCASE GIVES aÇaç
SYNTAX IS V

See Also Related tools: LOWER_EBCDIC, LOWER_UNICODE, UPPER_EBCDIC,
UPPER_UNICODE, and UPPERCASE.
TIBCO Object Service Broker Shareable Tools

| 341
@MAKEMEMBERS

Creates the member list for an object set to be enabled through the
BATCH_ENABLE utility. (CE)

Invocation Do one of the following:

Where:

Prerequisites To be able to use the @MAKEMEMBERS tool, an associated object set also named
@MAKEMEMBERS must be enabled by a system administrator for those users
who are allowed to use the tool.

Usage Notes Running the @MAKEMEMBERS rule displays a screen from which you can add
users and groups in any of the following ways:

• Type in the name of the user IDs or groups that you want to have access to
your object set.

• Press PF6 to select from a list of all available user IDs.

• Press PF9 to select a group name from the list of all security groups.

You must have at least one member listed to save any object set that is enabled
later via the BATCH_ENABLE tool.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type @MAKEMEMBERS
<Enter>

COMMAND prompt Type EX @MAKEMEMBERS
<Enter>

From a rule Type CALL
@MAKEMEMBERS(objectset)

objectset An object set whose member list is to be prepared. The (security)
permissions of the object set be specified and it is enabled for its
members by BATCH_ENABLE utility.

Make sure that your promotions administrator suspends all users from the
system before running BATCH_ENABLE (not @MAKEMEMBERS).
 TIBCO Object Service Broker Shareable Tools

342 |
See Also TIBCO Object Service Broker Managing Deployment for information on suspending
users.

TIBCO Object Service Broker Managing Security for additional discussion of
@MAKEMEMBERS.

Example An installation has a large number of object sets, each with a large number of
objects and a large user population for which the object sets must be enabled.
When an object set is being enabled for a large number of users, it can be difficult
to update the member lists via the object set due to locking problems. It can also
take a long time, since a simple enable can involve hundreds of permissions list
updates.

Consider updating the member lists in batch mode. This means that you must
somehow specify the desired effect of the batch processing prior to running the
batch job. Authorized users of @MAKEMEMBERS can set the member lists for a
given object set. Then the batch job updates the member list, updating all affected
permissions lists according to the information supplied by @MAKEMEMBERS.
To ensure only authorized users make such changes, there is an object set also
called @MAKEMEMBERS that must be enabled for such users.

When you are authorized to use @MAKEMEMBERS, you execute the rule and see
a member list much like that for an object set’s ENABLE list. From here, you can
update member list accordingly and save the list for the subsequent
BATCH_ENABLE job.

 --
 Updating members of ObjectSet EMPLOYEE_INFO for batch enable processing...
 --
 _ Name User or Group
 (USERID | GROUP) Description
 ---------------- --
 N ADVCLASS Special for testing
 N DISTGRP Distribution Group
 N HRCLASS4 Head Office - Salary Administrators
 N REGRESSION Group used for regression test.
 N RHTM Transaction Manager Testers
 N MSGDOC Message Documentation Facility

 PFKEYS: 6=LIST USERS 9=LIST GROUPS 3=SAVE 12=CANCEL
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 343

MANAGE_APPLY

Invokes the Promotion facility on the target system. (E)

Invocation Do one of the following:

Usage notes • When you execute MANAGE_APPLY, the target promotions menu appears.

• MANAGE_APPLY must be executed with the option BROWSE = Y.

• From the target system, you can apply change requests that are extracted from
your source system, or back out change requests that were applied previously.
You must have the appropriate security permissions to perform these
functions.

See Also TIBCO Object Service Broker Managing Deployment for complete information about
administering the Promotion system.

From the… Move the cursor to the… And…

Administrator’s
workbench

PT Target Promotion
Admin option

Press Enter

Developer’s
workbench

EX Execute Rule option Type MANAGE_APPLY
<Enter>

COMMAND prompt Type EX MANAGE_APPLY
<Enter>

 TIBCO Object Service Broker Shareable Tools

| 344

MANAGE_REQUESTS

Invokes the Promotion facility on the source system. (E)

Invocation Do one of the following:

Usage Notes • When you execute MANAGE_REQUESTS, the first panel for
MANAGE_REQUESTS appears.

• MANAGE_REQUESTS must be executed with the option BROWSE = Y.

• From the source system, you can accept or reject change requests, promote
them within your source system, extract them to apply them to another
system, or back them out.

See Also TIBCO Object Service Broker Managing Deployment for complete information about
administering the Promotion system.

From… Move the cursor to
the… And…

Administrator
workbench

PS Source Promotion
Admin option

Press Enter.

Any workbench EX Execute Rule option Type
MANAGE_REQUESTS<Enter>

COMMAND prompt Type EX
MANAGE_REQUESTS<Enter>

 TIBCO Object Service Broker Shareable Tools

| 345

MANAGE_RIGHTS

Releases or transfers a user’s promotion rights on rules, screens, reports, menus,
object sets, and tables. (E)

Invocation Do one of the following:

Usage Notes When you execute MANAGE_RIGHTS, the first panel for MANAGE_RIGHTS
appears.

See Also TIBCO Object Service Broker Managing Deployment for information about using
MANAGE_RIGHTS.

From the… Move the cursor to the… And…

Developer’s
workbench

MR manage rights option Press Enter.

EX execute rule option Type MANAGE_RIGHTS
<Enter>

COMMAND prompt Type EX MANAGE_RIGHTS
<Enter>

| 346
@MAP

Registers and allocates storage for use with MAP tables. (TBL)

Prerequisites Before you use @MAP, you must define a MAP table using the Table Definer.

See Also TIBCO Object Service Broker Managing Data for details on defining and using MAP
tables.

Parameters @MAP has the following parameter:

Values for the SCOPE Parameter

@MAP is parameterized by storage scope and location, and different security
controls apply to each of the storage scope parameter values.

Parameter Typ Syn Len Description

SCOPE C 16 The scope of storage.

The individual values for this parameter are
discussed in the table below.

TRANSACTION An insert with a NULL or zero ADDRESS and a positive
SIZE allocates and registers memory as requested, and
returns its address in @MAP.ADDRESS.

The storage is valid only for the life of the current
transaction. Both the storage and the corresponding row
in @MAP disappear at transaction end.

The storage can be both read and written by the user.

SESSION An insert with a NULL or zero ADDRESS, and a positive
SIZE allocates and registers memory as requested, and
returns its address in @MAP.ADDRESS.

The storage is valid for the life of the TIBCO Object Service
Broker session, and can be both read and written by the
user.
 TIBCO Object Service Broker Shareable Tools

@MAP | 347
ENVIRONMENT An insert with a NULL or zero ADDRESS, and a positive
SIZE allocates and registers memory as requested and
returns its address in ADDRESS.

The storage is SESSION storage that is also made known
to any external environment (for example, CICS) and is
suitable for use as a COMMAREA.

The ADDRESS returned is valid for use as a COMMAREA
and can be placed in field COMMHANDLE in the table
@SESSION to make this storage into the active
COMMAREA.

Any number of COMMAREAs can exist at one time but
only the one pointed to by @SESSION is recognized by the
external environment.

You can also allocate ENVIRONMENT space in an
environment that does not support COMMAREAs.

The storage can be both written and read by users.

EXTERNALRO An insert with a non-zero ADDRESS registers existing
storage at that address.

The storage is not known to, or provided by, TIBCO Object
Service Broker storage management. Typically this is
storage obtained by an external routine that is
communicating with TIBCO Object Service Broker rules.
TIBCO Object Service Broker does not validity-check the
address of EXTERNAL storage at registration time.
Addresses that are invalid can cause rejection or failure
when actually used as the argument to a MAP table. What
addresses are valid depends on the Execution
Environment platform and the current operating
environment.

The storage is read-only memory.
 TIBCO Object Service Broker Shareable Tools

348 |
Fields The following are the fields of the @MAP table:

Usage Notes • Inserting a row in @MAP registers a block of storage for use by MAP tables
and can also obtain the storage from the TIBCO Object Service Broker storage
manager. No explicit function is provided to delete storage (or corresponding
rows in @MAP).

• Parameter value (PRM) tables and subviews on @MAP are not supported.

• Selection is supported on @MAP, as well as the INSERT, GET, and FORALL
operations. GET and FORALL retrieve the appropriate rows in ascending
KEY order. For more information on these operations as used by MAP tables,
refer to TIBCO Object Service Broker Managing Data.

EXTERNALRW An insert with a non-zero address registers existing
storage at that address.

The storage is not known to, or provided by, TIBCO Object
Service Broker storage management. Typically this is
storage obtained by an external routine that is
communicating with TIBCO Object Service Broker rules.
TIBCO Object Service Broker does not validity-check the
address of EXTERNAL storage at registration time.
Addresses that are invalid can cause rejection or failure
when actually used as the argument to a MAP table. What
addresses are valid depends on the Execution
Environment platform and the current operating
environment.

The storage can be both written and read by users.

Field Typ Syn Len Dec Key Ord Rq

KEY (ID-gen style key) I B 4 0 P

ADDRESS (of the block of
storage)

B 4 0

SIZE (storage amount in
bytes)

B 4 0
TIBCO Object Service Broker Shareable Tools

@MAP | 349
• When inserting to @MAP, the value used in the SIZE field does not have to
allow for the 4 bytes that appear to be used for the KEY field of the MAP table.
For Example, suppose the MAP table has fields as shown in this table:

Each row of the table occupies 5 bytes (not 9 bytes, because the KEY field
occupies no physical storage space). Storage should be allocated in multiples
of 5 bytes.

• @MAP behaves like a session table in that its content and effects are local to
one TIBCO Object Service Broker session and are not seen by other users, even
if they are sharing a single Execution Environment.

• You need to manage the storage you acquire with @MAP. This is especially
true for environment and session storage used for programmatically invoked
sessions; for example, sessions invoked via the SDKs.

You can reuse storage by having a storage acquisition rule such as the
following:

GETSESSION(LENGTH);
_
_ ---
_ --+--
_ GET @MAP('SESSION') WHERE SIZE >= LENGTH; ¦ 1
_ RETURN(@MAP.ADDRESS); ¦ 2
_ ---
_ ON GETFAIL @MAP :
_ @MAP.ADDRESS = 0;
_ @MAP.SIZE = LENGTH;
_ INSERT @MAP('SESSION');
_ RETURN(@MAP.ADDRESS);

If your application is more complex and requires multiple storage areas, you
can use a more complex rule that validates the contents of the storage before
returning it for use.

The following is an example from the WMQ interface code that checks to see if
a) the length is correct, b) the existing area contains a valid eyecatcher, and c)
initializes a new area and eyecatcher if required.

Xsyn Xlen Xdec Offset Key

KEY B 4 0 0 P

F1 C 3 0 0

F2 C 2 0 3
 TIBCO Object Service Broker Shareable Tools

350 |
@MOMGETMOMMAPA;
_
_ --
_ --+---
_ GET @SESSION(0); ¦ 1
_ GET @MOM_PLATFORM WHERE PLATFORM = @SESSION.PLATFORM; ¦ 2
_ FORALL @MAP('SESSION') WHERE SIZE = @MOM_PLATFORM.MAP_SIZE ¦ 3
_ : ¦
_ GET @MOMMAP(@MAP.ADDRESS); ¦
_ CALL @EQ(@MOMMAP.MANAGER_TYPE, '@MOMMAP'); ¦
_ CALL @EQ(@MOMMAP.MANAGER_TYPE, @MOM_PLATFORM.QUEUEMGR); ¦
_ END; ¦
_ @MAP.SIZE = @MOM_PLATFORM.MAP_SIZE; ¦ 4
_ @MAP.ADDRESS = 0; ¦ 5
_ INSERT @MAP('SESSION'); ¦ 6
_ @MOMMAP.KEY = 1; ¦ 7
_ @MOMMAP.MANAGER_TYPE = '@MOMMAP'; ¦ 8
_ REPLACE @MOMMAP(@MAP.ADDRESS); ¦ 9
_ RETURN(@MAP.ADDRESS); ¦ A
_ --
_ ON EQ :
_ RETURN(@MAP.ADDRESS);

Exception

DATAREFERENCE Raised under the following conditions:

• The address value is invalid for the specified
scope.

• The size value is invalid for the specified scope.

• The scope parameter is invalid.
TIBCO Object Service Broker Shareable Tools

@MAP | 351
Example The following rule uses @MAP to allocate and register 100 bytes of
TRANSACTION storage for use with MAP tables. After the INSERT, the system
sets the ADDRESS field of the @MAP table to the address of the allocated storage.
At transaction end, the storage and the matching row in @MAP are deleted by the
system.

 @MAP_SAMPLE1;
 LOCAL P;

 --+--------------
 _ @MAP.ADDRESS=0; | 1
 _ @MAP.SIZE=100; | 2
 _ INSERT @MAP('TRANSACTION'); | 3
 _ P = @MAP.ADDRESS; | 4
 _ ---

The @MAP_Sample2 Rule

The following rule uses @MAP to register external storage for read-only access by
MAP tables. The address (A) and size (S) of the storage block to be registered are
passed as arguments to the rule. No storage is allocated by the system; it is the
programmer’s responsibility to ensure that the address to be registered is valid
and points to the desired data in storage. The registration information is not
deleted by the system until the TIBCO Object Service Broker session ends.

@MAP_SAMPLE2(A,S);
_
_ ---
_ --+--------------
_ @MAP.ADDRESS = A; | 1
_ @MAP.SIZE = S; | 2
_ INSERT @MAP('EXTERNALRO'); | 3
_ ---
 TIBCO Object Service Broker Shareable Tools

| 352
MATCH

Returns the starting position, in characters, of the specified pattern in the
specified string, relative to the start of the string. (F)

Invocation position = MATCH(string, pattern)

Usage Notes • Zero (0) is returned if pattern is not found or if string is a null string.

• One (1) is returned if a null string is specified for pattern. The null string is
assumed to match the left-most character of string.

Example The following rule determines the starting position of a pattern in a string and
prints it to the message log:

 RULE EDITOR ===>
 MATCH_1;
 _ LOCAL SOURCE_STRING, PATTERN, POSITION;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'THIS IS THE SOURCE STRING'; | 1
 _ PATTERN = 'SOURCE'; | 2
 _ POSITION = MATCH(SOURCE_STRING, PATTERN); | 3
 _ CALL MSGLOG('THE PATTERN STARTS AT POSITION: ' || POSITION | 4
 _); |
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE PATTERN STARTS AT POSITION: 13

position On return, contains the position of the string. Its syntax is B
(binary) with length 2.

string The string to search for the pattern. Its syntax can be
C (fixed-length character string), UN (Unicode),
V (variable-length character string), or W (double-byte
character).

pattern The string to be searched for. Its syntax can be C, UN, V, or W.
 TIBCO Object Service Broker Shareable Tools

MATCH | 353
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 354

MAX

Returns the larger of two given values. (F)

Invocation bigger = MAX(x, y)

Usage Notes The values that you pass to MAX must represent numbers, and can be any syntax.

Example The following rule finds the highest paid employee by comparing each salary in
the EMPLOYEE table.

 HIGH_SALARY;
 _ LOCAL HIGHEST;
 _ ---
 _ --+--------
 _ FORALL EMPLOYEE: | 1
 _ HIGHEST = MAX(HIGHEST,EMPLOYEE.SALARY); |
 _ END; |
 _ RETURN(HIGHEST); | 2
 _ ---

bigger The value returned, either x or y.

x A value to be compared to y.

y A value to be compared to x.

| 355
MESSAGE

Returns a customized message by taking a root message in the MESSAGES table
and inserting customizing tokens. (F)

Invocation m = MESSAGE (utility, msg_num, tokenlist)

Usage Notes • Message text is contained in the MESSAGES table, which is parameterized by
utility. You can use this table to contain the messages for your applications. The
utility parameter value cannot start with an at sign (@).

• MESSAGE customizes the message by replacing each percent sign (%) in the
root message with the next token in the list of tokens. If no such message
exists in the MESSAGES table, MESSAGE returns a message indicating this.

• Separate multiple tokens in tokenlist with spaces.

• No check is made to ensure that the number of customizing tokens is equal to
the number of percent signs in the message.

Example The example rule is used by a function key. SCREENMSG uses MESSAGE to
return a value and MESSAGE modifies the root message for the EMPLOYEE
utility:

 RULE EDITOR ===> SCROLL: P
 DEL_EMP_2;
 _
 _ ---
 _ --+--------------
 _ GET EMPLOYEE_INFO('DELETE_EMPLOYEE'); | 1
 _ GET EMPLOYEES(EMPLOYEE_INFO.REGION) WHERE EMPNO = | 2
 _ EMPLOYEE_INFO.EMPNO; |
 _ CALL CONFIRMACTION('DELETE_EMPLOYEE', | 3
 _ 'ABOUT TO DELETE EMPLOYEE ' || EMPLOYEE_INFO.EMPNO, |
 _ 'PF22', '', '', ''); |
 _ DELETE EMPLOYEES(EMPLOYEE_INFO.REGION); | 4
 _ CALL SCREENMSG('DELETE_EMPLOYEE', MESSAGE('EMPLOYEE', 2, | 5

m On return, contains the message.

utility The name of the utility where the root message can be found in the
MESSAGES table.

msg_num An integer specifying the root message to use.

tokenlist A string specifying zero or more tokens to use to customize the
root message.
 TIBCO Object Service Broker Shareable Tools

356 |
 _ EMPLOYEE_INFO.EMPNO)); |
 _ --

In this example, the root message in the MESSAGES(EMPLOYEE) table is:

Deleted employee with no.: %

After deleting the employee, the following screen message appears:

Deleted employee with no.: 99999
TIBCO Object Service Broker Shareable Tools

| 357
MESSAGE_LOG

Preserves the contents of the message log across transactions. (C)

Invocation CALL MESSAGE_LOG(msglog, destin)

msglog Specifies the message log to access. Valid values are:

USER – Processes the user log.

SYSTEM – Processes the system log.

destin Specifies the destination for the contents of the log. Valid values
are:

VIEW – The logs appear as if you pressed PF2 from the
workbench. Because you can see both the user and system logs, the
msglog argument value is ignored.

PRINT – The log is printed.

PRT – The log is printed.

LOG – The log is saved back to the message log and then the
parent transaction can access it. Note Whether or not the system
log or user log is saved, it is written to the user log for the parent
transaction.

filename – A string containing a dot (.) is interpreted as a filename.
The log is written to the file. A new file is not created unless the file
is a partitioned data set; then a new member could be created. The
previous contents of the file or member are overwritten.

@LOGTEXT(parm) – The log is saved in the @LOGTEXT table in a
table instance specified by:

— The user ID of the person who invoked the rule that called
MESSAGE_LOG

— A parameter value of your choice (parm)

Previous contents of the table instance are overwritten.
 TIBCO Object Service Broker Shareable Tools

358 |
Usage Notes • To send the MESSAGE_LOG to a file in Windows or Solaris, the DSBIFTYPE
Execution Environment parameter must be set to LINE_SEPARATED_ASCII.
The default setting is LENGTH_PREFIXED_EBCDIC.

• Output to a file and output to a printer are interconnected. If the program is
expected to send output to a printer after this output is directed to a file, the
print destination must be reset.

• You can view the @LOGTEXT table using the Single Occurrence Editor, but
the Table Editor cannot display strings as long as the field in this table. You
can copy the contents to any other suitable table.

• The log records are truncated to 76 characters because this is the longest string
that the text editor can display on its screen.

• You can give the standard argument values in their lowest unique truncated
form. For example, VIEW, VIE, and V all have the same effect.

See Also TIBCO Object Service Broker Programming in Rules for more information about the
message log.

Exceptions

Example The set of rules in this example does the following:

Setting the parameter to LINE_SEPARATED_ASCII affects the behavior of
other tools (for example, LOAD, UNLOAD).

EMPTY_LOG Raised if the specified log is empty.

If destin is VIEW, both logs are empty.

INVALID_LOG Raised if the value for msglog does not specify USER or
SYSTEM, and the value for destin is not VIEW.

INVALID_LOGDEST Raised if the value for destin does not specify one of the
valid destinations (refer to the previous exception).

If you specified the @LOGTEXT(parm) value, the
parameter name is not a valid TIBCO Object Service
Broker identifier.

If you specified a data set name, an error occurred when
writing to the data set.

LOGLIMIT Raised if the value for destin is LOG and the user log
overflowed.
TIBCO Object Service Broker Shareable Tools

MESSAGE_LOG | 359
1. Lists the staff for a manager in the message log

2. Reports the manager’s manager in the message log

Rule Using MESSAGE_LOG

The HIERARCHY rule executes the STAFF sample rule, saves the information in
the message log by calling MESSAGE_LOG, and then executes MANAGER.

 HIERARCHY(NUMBER);
 _ ---
 _ --+--------
 _ EXECUTE STAFF(NUMBER); | 1
 _ CALL MESSAGE_LOG('USER', 'LOG'); | 2
 _ EXECUTE MANAGER(NUMBER); | 3
 _ ---

Sample Rule 1

The STAFF rule uses the message log to list the people that work for the manager.

 STAFF(NUM);
 _
 _ ---
 _ --+--------
 _ CALL MSGLOG('THE FOLLOWING EMPLOYEES WORK FOR MANAGER ' || | 1
 _ NUM || ':'); |
 _ GET EMPLOYEE WHERE MGR# = NUM; | 2
 _ FORALL EMPLOYEE WHERE MGR# = NUM: | 3
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ END; |
 _ ---
 _ ON GETFAIL:
 _ CALL MSGLOG(NUM || ' IS NOT A MANAGER.');

Sample Rule 2

The MANAGER rule uses the message log to display the manager of the manager.

 MANAGER(NUM);
 _
 _ ---
 _ --+--------
 _ CALL MSGLOG(' '); | 1
 _ GET EMPLOYEE WHERE EMPNO = NUM; | 2
 _ CALL MSGLOG('THE MANAGER OF ' || NUM || ' IS ' || | 3
 _ EMPLOYEE.MGR#); |
 TIBCO Object Service Broker Shareable Tools

360 |
 _ ---
 _ ON GETFAIL:
 _ CALL MSGLOG(NUM || ' IS NOT AN EMPLOYEE IN THIS DIVISION.');

Results of the HIERARCHY Rule

If the manager number is valid, and the manager is also entered as an employee
in the EMPLOYEE table, results such as the following appear in the message log:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE FOLLOWING EMPLOYEES WORK FOR MANAGER 79912:
 SMITH
 HRODEK
 WONG
 SCHULTZ
 BOIVIN
 THE MANAGER OF 79912 IS 98895
TIBCO Object Service Broker Shareable Tools

| 361
@MESSAGEDUMP

Writes traced messages to this table in HEX form, when
@TRACEMESSAGES.DUMP is set to Y. (TBL)

Table Definition

Parameters There is one parameter for this table—LOCATION.

Fields The following are the fields in the @MESSAGEDUMP table:

Usage Notes Trace information is written to this file when the value of
@TRACEMESSAGES.DUMP is set to Y and then applications to be traced are run.
Message tracing can be further refined by modifying other fields of the
@TRACEMESSAGES(0) table.

One row is inserted for every 16 bytes of both outbound and reply messages.

Constraints • Messages greater than X'A0' characters could appear in the wrong sequence:
X'A0' displays prior to line X'F0', X'F1', and so on.

• This facility is available only on a z/OS system.

Example The following example illustrates a sample message trace as recorded to
@MESSAGEDUMP. The trace contains each message that is sent or received
between the current session and the Data Object Broker. The ID field can be used
to index to the TAM Table Trace @MESSAGETRACE.

ID This field can be used to index into the TAM Table Trace.

TYPE This field indicates whether the message is outbound (O) or
inbound (R) from the Data Object Broker.

OFFSET This is the hexadecimal offset from start of message of this row.

DUMP This data contains the hexadecimal interpretation of the data
stream as well as the actual character interpretation to the right.

• This table should be used only on the advice of an TIBCO Support
representative.

• HEX information can include unprintable characters; therefore, if you want to
print the contents of @MESSAGEDUMP, you must first edit out these
unprintable characters. Use the Table Editor to do this.
 TIBCO Object Service Broker Shareable Tools

362 |
Use the DSECTs MAILOUT, MAILIN and MAILSYNC to interpret the meaning of
each message.

TABLE: @MESSAGEDUMP

 ID TYPE OFFSET DUMP
 ----------- - ------ --
 1 O 0 00050000 8160D9 a-R
 1 O 10
 1 R 0 00020000
 1 R 10
 2 O 0 00708070 C7120000 806B7CE4 E2C5D9E2 G ,@USERS
 2 O 10 D6D7E3C9 D6D5E240 4040E3C4 E2400000 OPTIONS TDS
 2 O 20 00000057 00010048 00487E7E C1000000 ==A
 2 O 30 00000000 00400000 00000000 00000000
 2 O 40 000004A0 00000000 02000001 00010008
 2 O 50 C3007E05 C5E9D3F3 F0001744 C9C30008 C = USR30 IC
 2 O 60 00000001 48C9C300 08000005 C5E9D3F3 IC USR3
 2 O 70 F020 0
TIBCO Object Service Broker Shareable Tools

| 363
@MESSAGETRACE

Stores table access message requests between the Execution Environment and the
Data Object Broker collected when using trace facility. (TBL)

Prerequisites @TRACEMESSAGES.TRACE must be set to Y prior to running applications for
which trace information is required.

Table Definition

Parameters This table has no parameters.

Fields

ID Integer identifier incremented by one for each message pair
(outbound and reply). Can be reset only by clearing the table
via a FORALL loop. Also used as high-order primary
composite for table @MESSAGEDUMP.

CODE Outbound message request type. Refer to CODENAME
below.

TABLENAME The table name as specified in the outbound message. Not
included in certain administrative or transaction messages,
such as commits (CODE = 'R').

FIRSTPARM Contains up to 16 bytes of the value (if any) of the table's first
parameter. Not present for certain supervisory messages, nor
for messages that are generated internally. Normally can be
depended on if the message is explicitly generated by a rule.

UNIQUE Indicates, when the entry is Y, that a unique selection based
on a primary key is supplied. For example, 'GET TABLE
WHERE KEY = VALUE … & … (… |…)' and other queries
of the same form represent unique primary selections. This
indicates that a server does not have to sweep the table and is
normally the preferred optimization. Although it reduces
server work, it does not necessarily reduce message traffic.
 TIBCO Object Service Broker Shareable Tools

364 |
RANGE Y indicates that a query is of the form:

GET table WHERE key operator somevalue

where operator is one of >, >=, <, <=.

The query can also be of a logically equivalent form. This is
normally the second choice for server optimization, as it
restricts the range of sweeps by enabling servers to use any
index that supports ordering.

SECONDARY Y indicates that a message contains either unique secondary
key values or secondary value ranges. They are provided to
the server in a normalized form so that non-unique
secondary indexes can take part in data access. Normally the
third preferred optimization.

FILTER Y indicates that fields that are not indexed could possibly
need to be examined by the server. This does not preclude
the use of indexes. It can require that the server examine each
row that is accessed via indexes before returning it.

LOCK Contains the internal lock code. For example, single a
quotation mark (') represents table share; S, row share; and X,
row exclusive. Blank does not necessarily indicate that no
lock exists; a previous message could have taken an
equivalent or larger lock.

LOCKNAME This field is reserved for future use.

RETURNCODE This is the internal return code as provided by the reply
message.

SIGNAL This field is reserved for future use.

CODENAME This is the descriptive name of CODE (from the table
@TFMIRS).

LENGTH This is the outbound message length (the total length as
provided to TIBCO Object Service Broker communication
services).

RETURNLENGTH This is the total length of reply message as returned by
TIBCO Object Service Broker communication services.
TIBCO Object Service Broker Shareable Tools

@MESSAGETRACE | 365
REMOTE Y indicates that an outbound message is directed to a
different Data Object Broker than the local Data Object
Broker's NODENAME.

LOCATION This field contains the Data Object Broker NODENAME that
the outbound message attempted to send to, for example,
GET TABLE WHERE LOCATION = 'NODENAME'.

TABLETYPE This is the type of logical table, that is, of TABLENAME
above.

VIEWCODE This field contains the request type of view table, if
applicable, for example, G means GET, A means FORALL
HEAD, B means FORALL TAIL. This could be different from
CODE. For example, a non-optimizable query could
generate a server sweep via CODE = 'N' (next rows).

VIEWCODENAME This field contains the table name as specified by the calling
rule, after any indirection has been performed.

VIEWTYPE This is the table type of VIEWCODENAME.

DATE This indicates the Julian date of the transaction.

TIME This indicates the clock time as of time of outbound message
send.

PROBABLERULE This field contains the name of the rule that explicitly caused
the message or on whose behalf the message is sent, or the
most recently run rule (or possibly a program name). The
purpose is to enable the correlation of messages to specific
rules.

HEADRULE This field contains the name of the starting rule or program
name for the transaction.

TRANSACTION This is the hexadecimal transaction identifier as sent by the
outbound message.

RETURNTRAN This is the hexadecimal transaction identifier as returned by
the reply message. NOTE: It could be inapplicable if
RETURNCODE is non-zero.

STREAM This field contains the number of the transaction stream that
generated the outbound message.
 TIBCO Object Service Broker Shareable Tools

366 |
Usage Notes Trace information is written to this file automatically when the value of
@TRACEMESSAGES.TRACE is set to Y and the applications to be traced are run.
Message tracing can be further refined by modifying other fields of the
@TRACEMESSAGES table.

Since these trace results are in table format, they can be processed by rules. Apart
from debugging uses, this table is intended for application profiling; no particular
profile is assumed. Applications must define their own tables to hold whatever
trace attributes are deemed important for later processing.

This table is subject to the same security clearance checking as all session tables,
but the definition must not be changed without corresponding engine changes.

Constraints • Using @MESSAGETRACE to store message information necessarily causes
extra data accesses (INSERTs to the @MESSAGETRACE table), and therefore,
extra messages during message collection. To avoid this overhead,
@TRACEMESSAGES.MESSAGELOG can be set to Y prior to running
applications being traced.

• This facility is available only on a z/OS system.

Example If you request a generalized trace using an appropriate rule, the contents of
@MESSAGETRACE are similar to the following trace. Due to space limitations,
not all fields are shown. The output contains timestamps, rule names, and other
information.

 BROWSING TABLE : @MESSAGETRACE
 COMMAND ==>
 SCROLL: P
 ID CODE TABLENAME FIRSTPARM UNIQUE RANGE SECONDARY
 _ ----------- - ---------------- ---------------- - - -
 _ 1 R
 _ 2 G @USERSOPTIONS Y
 _ 3 G @USERSOPTIONS Y
 _ 4 G @MONTH_CODES Y
 _ 5 G @MONTHLIST Y
 _ 6 G @WEEKDAYS Y
 _ 7 G @MONTHLIST Y
 _ 8 G @RULESLIBRARY COMMON Y
 _ 9 G APPOINTMENTS AZDA0 Y
 _ 10 G APPOINTMENTS AZDA0 Y
 _ 11 G @MONTH_CODES Y

TRIGGERLEVEL This field contains a number representing the executor's
trigger level. It enables distinction of messages from trigger
rules.

MODULE The name of internal module that generated the message.
For TIBCO Support use only.
TIBCO Object Service Broker Shareable Tools

@MESSAGETRACE | 367
 _ 12 G @LIBRARIES Y
 _ 13 G @RULESLIBRARY TZHA0 Y

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 368

MIN

Returns the smaller of two given values. (F)

invocation smaller = MIN(x, y)

Usage Notes The values passed to MIN must represent numbers, and can be any syntax.

Example The following rule finds the lowest and highest paid employees by comparing
each salary in the EMPLOYEE table.

 SALARY_RANGE
 _ LOCAL HIGHEST,LOWEST;
 _ ---
 _ --+--------
 _ LOWEST = 99999; | 1
 _ FORALL EMPLOYEE: | 2
 _ HIGHEST= MAX(HIGHEST,EMPLOYEE.SALARY); |
 _ LOWEST = MIN(LOWEST,EMPLOYEE.SALARY); |
 _ END; |
 _ CALL MSGLOG('THE HIGHEST SALARY IS ' || HIGHEST); | 3
 _ CALL MSGLOG('THE LOWEST SALARY IS ' || LOWEST); | 4
 _ ---

smaller The value returned, either x or y.

x A value to be compared to y.

y A value to be compared to x.

 TIBCO Object Service Broker Shareable Tools

| 369

MINUTE

Returns the minute in the hour the transaction started based on the local
machine’s time zone in which the Execution Environment is running. (F)

Invocation time = MINUTE

Usage Notes The returned value is a character string containing the number of minutes (00, 01,
02, …, 59).

Example The following rule determines the minute when the current transaction started
and prints it to the message log:

 RULE EDITOR ===>
 MINUTE_1;
 _ LOCAL TIME;
 _ --
 _ --+-----------
 _ TIME = HOUR || ':' || MINUTE; | 1
 _ CALL MSGLOG('THIS TRANSACTION WAS STARTED AT ' || TIME); | 2
 _ --

Output for the MINUTE_1 Rule:

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THIS TRANSACTION WAS STARTED AT 13:17

time On return, contains the minute. Its syntax is C (fixed-length
character string) with length 2.

 TIBCO Object Service Broker Shareable Tools

| 370

@MNG_USERS

Modifies your user security profile. (E)

Invocation Do one of the following:

Where:

Usage Notes Pressing Enter displays the MANAGE USERID screen of the Security Manager.
The screen displays the current values for your user ID.

See Also TIBCO Object Service Broker Managing Security for information on the MANAGE
USERID screen and the Security Manager.

From the… Move the cursor to the… And…

Administrator’s
workbench

Option UP user profile Press Enter

Developer’s
workbench

EX Execute Rule option Type @MNG_USERS(userid)
<Enter>

COMMAND prompt Type UP <Enter>

userid Your user ID.

| 371
MOD

Returns the modulus from dividing the dividend by the divisor. The function
MOD handles negative dividends and divisors. (F)

Invocation number = MOD(dividend, divisor)

Usage Notes • One or both of the values for dividend and divisor can be negative.

• When both the dividend and the divisor are positive, use the REMAINDER
function.

• The returned value is the modulus of the dividend by the divisor.

• MOD does not alter the values of either dividend or divisor.

Exceptions

Example The following rule determines the modulus of the division operation and prints it
to the message log:

 RULE EDITOR ===> SCROLL: P
MOD1(DIVIDEND,DIVISOR);
- lOCAL RESULT;
_ ---
_ ---+-------------
_ RESULT = MOD(DIVIDEND, DIVISOR); | 1
_ CALL MSGLOG(DIVIDEND || ' MOD ' || DIVISOR || ' IS ' || | 2
_ RESULT); |
_ ---

number On return, contains the remainder. Its syntax depends on the
syntax of the dividend and divisor.

dividend The number to be divided. Its syntax can be any of the numeric
syntaxes.

divisor The number to divide by. Its syntax can be any of the numeric
syntaxes.

ZERODIVIDE Raised if the second operand is zero.
 TIBCO Object Service Broker Shareable Tools

372 |
Resulting Output

Executing this rule with a dividend of -12 and a divisor of 10 displays the
following to the message log.

-------------------INFORMATIONAL MESSAGE LOG ------------------------------
COMMAND ==> SCROLL===> P
 -12 MOD 10 IS -2
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 373

@MOMCLOSE

Closes a Message Oriented Middleware (MOM) message queue. (F)

Invocation queue = @MOMCLOSE(connection, queue)

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

queue A token describing the queue. Set by @MOMOPEN. Reset by
@MOMCLOSE.

connection A token describing the queue manager. Returned by
@MOMCONNECT.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

 TIBCO Object Service Broker Shareable Tools

| 374

@MOMCOMMIT

Commits all changes to queues from a single Message Oriented Middleware
(MOM) message manager. (C)

Invocation CALL @MOMCOMMIT(connection)

Usage Notes • When running under the CICS MQSeries Adapter, the MQSeries COMMIT
verb is not allowed. CICS handles the committing of changes at the end of the
CICS transaction or when the “EXEC CICS SYNCPOINT” command is issued.

• @MOMCOMMIT, when run under the CICS MQSeries Adapter, generates an
“EXEC CICS SYNCPOINT” to commit MQSeries changes. Any other pending
CICS changes are also committed at this time.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

connection A token describing the queue manager. Set by @MOMCONNECT.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

| 375
@MOMCONNECT

Connects to a Message Oriented Middleware (MOM) message queue (MQ)
manager. (F)

Invocation connection = @MOMCONNECT(name)

Usage Notes • For TIBCO Object Service Broker WebSphere MQ Integrator, it is possible to
get an error if an earlier session was using the z/OS Task Control Block (TCB)
that the current session is using and ended or failed without issuing a
disconnect. @MOMCONNECT rolls back the existing MQS session and
establishes a new one.

• Each session accessing an MQ manager takes exclusive control of the TCB
where it is running. This has no impact for a single-user Execution
Environment, that is, one running in batch or under TSO. For a multi-user
Execution Environment, that is, one running under CICS or a Native
Execution Environment, you must ensure that you have enough TCBs for
these sessions and your other work. You specify this number in the
TASKEXECNUM Execution Environment parameter.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

connection A token describing the queue manager. Used in subsequent
@MOM calls.

name The name of the queue manager, or blank when running on a
CICS system with the CICS MQSeries Adapter active.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.
 TIBCO Object Service Broker Shareable Tools

376 |
See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMOPEN, @MOMPUT, @MOMGET,
@MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 377

@MOMDISCONN

Disconnects from a Message Oriented Middleware (MOM) message manager. (F)

Invocation connection = @MOMDISCONN(connection)

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC,
@MOMCLOSE, @MQSMAP and @MQSMAP_PORT.

connection A token describing the queue manager. Set by
@MOMCONNECT. Reset by @MOMDISCONN.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

 TIBCO Object Service Broker Shareable Tools

| 378

@MOMGET

Reads a message from a Message Oriented Middleware (MOM) message queue.
(C)

Invocation CALL @MOMGET(connection, queue, table)

Usage Notes If table is null, the address and length of the returned record are in
@MQSMAP.BUFFER_ADDRESS and @MQSMAP.DATA_LENGTH.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

connection A token describing the queue manager. Returned by
@MOMCONNECT.

queue A token describing the queue. Returned by @MOMOPEN.

table The name of a MAP table to be read from the @MOM queue.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SHUTDOWN A SHUTDOWN control message was received.

MOM_SMALL_MAPSTG The control block passed is too small.

| 379
@MOMINIT

Identifies the type of Message Oriented Middleware (MOM) message manager,
and initializes its environment (map and control structures) to enable subsequent
@MOM calls. (C)

Invocation CALL @MOMINIT(buflen, mom_type)

Usage Notes • If you prefer to allocate your own record storage map table, set buflen to 0 and
update @MQSMAP.BUFFER_ADDRESS and @MQSMAP.BUFFER_LENGTH
with the corresponding information after the @MOMINIT call.

• WebSphere MQ on z/OS is TCB-specific. Therefore, @MOMINIT sets TCB
affinity for the transaction and an interpreter TCB is held for the duration of
the transaction. In a multi-user Execution Environment, consider increasing
the value of your TASKEXECNUM Execution Environment parameter.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

buflen The size of the largest message to be processed.

mon_type The type of queue manager you want to use in the current session.
If mom_type is null, an appropriate queue manager is selected. The
only queue manager currently available is MQSERIES.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_NO_MQSSTUB The stub program for WebSphere MQ has not been
link-edited into the HRNDRSES load module.

MOM_SMALL_MAPSTG The control block passed is too small.
 TIBCO Object Service Broker Shareable Tools

380 |
See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

The TIBCO Object Service Broker Parameters manual for information on the
TASKEXECNUM Execution Environment parameter

Related tools: @MOMCONNECT, @MOMOPEN, @MOMPUT, @MOMGET,
@MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 381

@MOMMAPLENGTH

Returns the length of a MAP table. (F)

Invocation var = @MOMMAPLENGTH(table_name)

Usage Notes This is a time-consuming rule to run (multiple Data Object Broker accesses are
required). If you need to calculate a table length, it is better to do it once prior to
any processing loop.

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMSETOPT, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

var A variable to hold the length of the table_name table.

table_name The name of the MAP table.

 TIBCO Object Service Broker Shareable Tools

| 382

@MOMOPEN

Opens a Message Oriented Middleware (MOM) message queue. (F)

Invocation queue = @MOMOPEN(connection, name)

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMPUT, @MOMGET,
@MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

queue A token describing the queue.

connection A token describing the queue manager. Returned by
@MOMCONNECT.

name The name of the queue.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

 TIBCO Object Service Broker Shareable Tools

| 383

@MOMOPTION

Queries the numeric equivalent of a Message Oriented Middleware (MOM)
option. (F)

Invocation value = @MOMOPTION(description)

Usage Notes • MOM applications generally use symbolic descriptions heavily for many
numeric values. @MOMOPTION makes the same descriptions available for
your use.

• This table is complete at the time of publication. As new levels of MOM
manager software are released, you can add your own values to the
@MOMOPTIONS table until upgrades are available.

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

value The numeric equivalent of the option description.

description The symbolic name used for an option setting in the MOM
manager documentation.

| 384
@MOMPUT

Writes a message to a Message Oriented Middleware (MOM) message queue. (C)

Invocation CALL @MOMPUT(connection, queue, table, len)

Usage Notes • If table is null, @MQSMAP.BUFFER_ADDRESS and
@MQSMAP.DATA_LENGTH must be set prior to the call.

• If table is supplied and len is null, the length of the table is used. Calculation of
the length of the table is time-consuming, because you need to access the Data
Object Broker. If you are doing multiple @MOMPUT calls, it is better to use
@MOMMAPLENGTH(table) to store the length in a local variable and use the
local variable in the @MOMPUT call.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

connection A token describing the queue manager. Returned by
@MOMCONNECT.

queue A token describing the queue. Returned by @MOMOPEN.

table The name of a map table to be written to the @MOM queue.

len The length of the table.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.
 TIBCO Object Service Broker Shareable Tools

@MOMPUT | 385
Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMGET,
@MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 386

@MOMROLLBACK

Backs out all database changes from a single Message Oriented Middleware
(MOM) message manager since the start of the transaction or since the previous
@MOMCOMMIT. (C)

Invocation CALL @MOMROLLBACK(connection)

Usage Notes • Under the CICS MQSeries Adapter, the MQSeries ROLLBACK verb is
disallowed. CICS handles the roll back of changes by CICS transaction abend
or when the “EXEC CICS SYNCPOINT ROLLBACK” command is issued.

• @MOMROLLBACK, when run under the CICS MQSeries Adapter, generates
an “EXEC CICS SYNCPOINT ROLLBACK” to roll back MQSeries changes.
Any other pending CICS resource changes are also rolled back at this time.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMSPECIALCMD, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

connection A token describing the queue manager. Set by @MOMCONNECT.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

 TIBCO Object Service Broker Shareable Tools

| 387

@MOMSETOPT

Sets a MOM option to a specified value. (C)

Invocation CALL @MOMSETOPT(description)

Usage Notes • This is a short way of setting a single value into the @MQSMAP.OPTIONS
field, that is, a short form of @MQSMAP.OPTIONS =
@MOMOPTION('description').

• To set multiple values, use the @MOMOPTION tool; for example,
@MQSMAP.OPTIONS = @MOMOPTION('desc1') + @MOMOPTION('desc2').

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

description The symbolic name used for an option setting in the MOM
manager documentation.

 TIBCO Object Service Broker Shareable Tools

| 388

@MOMSPECIALCMD

Sends a Message Oriented Middleware (MOM) command to a queue listener task.
(C)

Invocation CALL @MOMSPECIALCMD(manager_name, queue_name, command)

Usage Notes At present, the only valid command is SHUTDOWN. This tells a queue listener
task to come out of its wait state and causes the MOM_SHUTDOWN exception to
be raised. This exception can then be trapped by the listening rule.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMOPTION,
@MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

manager_name The name of the queue manager.

queue_name The name of the queue.

command The command to be issued.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

 TIBCO Object Service Broker Shareable Tools

| 389

@MOMVALIDRC

Checks the return code of a previous command. (C)

Invocation CALL @MOMVALIDRC

Usage Notes • For successful return codes, no action is taken.

• For warning return codes, the reason code is translated to the corresponding
message string and appears on the message log.

• For error return codes, the MOM_command_FAIL exception is raised.

• @MOMVALIDRC is a sample error checking routine. For errors that you
expect and need to handle, you should code your own routine.

Exceptions

Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for additional information on using
the MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMSETOPT, @MOMMAPLENGTH, @MOMCLOSE,
@MOMDISCONN, @MQSMAP and @MQSMAP_PORT.

INVALID_MOMMGR The mom_type received is invalid.

MOM_command_FAIL The indicated command failed.

MOM_INV_@MOMMAP The address received does not point to a valid control
block.

MOM_INV_COMMAND The command received is invalid.

MOM_INV_MOMMSG The control message received is invalid.

MOM_SMALL_MAPSTG The control block passed is too small.

| 390
$MOVECONTAINER

Moves a container and its contents from one channel to another. Afterwards, the
source container no longer exists. (C)

Invocation CALL $MOVECONTAINER(frchannel, frcontainer, tochannel, tocontainer)

Usage Notes You can move a container in either of these ways:

• From one channel to another.

• Within the same channel, for example, from within the current channel. Doing
so renames the container.

Instead of $GETCONTAINER and $PUTCONTAINER, you can use $MOVECONTAINER as
a more efficient way of transferring data between channels.

frchannel The name (1-16 characters) of the channel that owns the source
container.

frcontainer The name (1-16 characters) of the source container to be moved.

tochannel The name (1-16 characters) of the channel that owns the target
container.

tocontainer The name (1-16 characters) of the target container. If the latter
already exists, $MOVECONTAINER overwrites its contents.
 TIBCO Object Service Broker Shareable Tools

MOVTAB | 391
MOVTAB

Changes the segment number of a table. (CE)

Invocation Do one of the following:

Where:

 To complete this command:

 NAME TYPE CREATOR CREATD UNIT MODIFIER MODIFD BI*
 --------------- ---- ------- ---------- ------- ----------- -------- ----
M EMPLOYEE_EXPENSE TDS USR50 1999-12-13 JZH USR50 2000-03-16
 Enter parameter(s): Destination segment number

 SEGMENT# ===>

 PFKEYS: ENTER=PROCESS 3=PROCESS 12=CANCEL

From the… Move the cursor to the… And…

Administrator’s
workbench

DT Define Table option Press Enter. A listing of tables
for your TIBCO Object Service
Broker database appears.

Type the line command M
beside the table whose
segment number is being
changed and press Enter. A
screen similar to the one below
appears.

From a rule Type CALL MOVTAB
(tablename, segmentid)

tablename The name of the table for which you want to change the segment
number.

segmentid The segment number of the Pagestore segment to which you want
the number changed.
 TIBCO Object Service Broker Shareable Tools

392 |
In the field SEGMENT #, type the new segment number and press Enter or PF3 to
process the change. Press PF12 to cancel the change.

Usage Notes • MOVTAB is used to change the segment number of a table. This number is
stored in the Resident Table Index (RTIX). The change occurs at the physical
level and does not affect the logical view of that table.

• The input table must be a defined TDS table and it must be empty.

• MOVTAB ignores the location parameter of the input table. Minimal table
definitions are not allowed.

• The input table cannot be a TIBCO Object Service Broker system table (for
example, Table of Tables or Table of Fields).

• The target segment must be online.

• MOVTAB runs and updates are made even if it is called in a transaction that is
running in browse mode.

Tables Containing Data

If the table contains data, complete the following steps:

1. Use UNLOAD to export a copy of only the data to a temporary file.

If the table is large, consider using one of the batch unload utilities to unload
the data to a file. For more information on the batch unload, refer to TIBCO
Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for Open
Systems Utilities.

2. Use $CLRTAB to clear all data from the table.

3. Use MOVTAB to change the segment number of the table.

4. Use LOAD to reload the data.

To load large volumes of data quickly, consider using the batch load utilities.
For more information on the batch load, refer to TIBCO Object Service Broker for
z/OS Utilities or TIBCO Object Service Broker for Open Systems Utilities.

MOVTAB does not take part in the TIBCO Object Service Broker two-phase
commit/intent list protocol. We strongly recommend that you do not use this tool
in a transaction that accesses or updates data within the same table. It should also
normally be the only logical unit of work within a transaction.

Do not UNLOAD the table definition as well. This would cause the LOAD in
step #4. to fail, because the table already exists.
TIBCO Object Service Broker Shareable Tools

MOVTAB | 393
Exceptions

DEFINITIONFAIL Raised if the definition of the table does not exist or is
inconsistent.

SECURITYFAIL Raised if the user is not authorized to change the
definition of the table.

ROUTINEFAIL Raised if the definition of the table is minimal or the table
type is not TDS.
 TIBCO Object Service Broker Shareable Tools

| 394
@MQSMAP and @MQSMAP_PORT

Registers and allocates storage for use with the MQSMAP table. @MQSMAP is for
use on z/OS and @MQSMAP_PORT on Open Systems. (TBL)

Usage Notes When you want to make WebSphere MQ API calls to set WebSphere MQ options,
you modify the values in this table as required.

Table Fields The fields of this table are mapped to the fields for the WebSphere MQ API. The
API fields are listed in the IBM WebSphere MQ documentation, as well as in the
cmqc.h WebSphere MQ file for Open Systems, written to your computer when
you installed WebSphere MQ.

Here are some of the fields you must check or modify (to use one of the last three
fields listed in this table, replace the ellipsis with the name of the option you want
to check or change):

Initialization This map table is initialized by @MOMINIT and contains reasonable defaults for
most WebSphere MQ commands. You modify these defaults to set WebSphere
MQ options.

Field Name Description

RETURN_CODE The return code from WebSphere MQ.

REASON_CODE The reason code from WebSphere MQ.

BUFFER_ADDRESS The address of the message buffer used to contain
WebSphere MQ messages.

BUFFER_LENGTH The length of the message buffer.

DATA_LENGTH The length of the message in the message buffer.

OPTIONS The options to be used on an WebSphere MQ call.

QO_… Queue options. Mapped by the CMQODA macro.

MO_… Message options. Mapped by the CMQMDA macro.

GO_… Get options. Mapped by the CMQGMOA macro.

PO_… Put options. Mapped by the CMQPMOA macro.
 TIBCO Object Service Broker Shareable Tools

@MQSMAP and @MQSMAP_PORT | 395
Example Refer to the example in the section on the Service Gateway for WMQ in TIBCO
Object Service Broker for z/OS External Environments or TIBCO Object Service Broker
for Open Systems External Environments.

See Also TIBCO Object Service Broker Managing Data for details on defining and using MAP
tables.

TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for information on using the various
MOM tools and the Service Gateway for WMQ.

Related tools: @MOMINIT, @MOMCONNECT, @MOMOPEN, @MOMPUT,
@MOMGET, @MOMCOMMIT, @MOMROLLBACK, @MOMSPECIALCMD,
@MOMOPTION, @MOMSETOPT, @MOMMAPLENGTH, @MOMVALIDRC,
@MOMCLOSE, and @MOMDISCONN.
 TIBCO Object Service Broker Shareable Tools

| 396
MSGLOG

Inserts the specified string as a line in the TIBCO Object Service Broker message
log. (C)

Invocation CALL MSGLOG(string)

Usage Notes • Although longer lengths could be passed in, only the first 256 characters
appear.

• If the value of string is of syntax UN and it cannot be coerced to syntax V,
MSGLOG inserts a Unicode literal.

Exceptions

Example The STAFF Rule

The following rule finds all the employees of a particular manager and uses
MSGLOG to list them in the message log.

 RULE EDITOR ===> SCROLL: P
 STAFF(NUM);
 _
 _ ---
 _ --+--------------
 _ CALL MSGLOG('THE FOLLOWING EMPLOYEES WORK FOR MANAGER ' || | 1
 _ NUM || ':'); |
 _ FORALL EMPLOYEE('MIDWEST') WHERE MGR# = NUM : | 2
 _ CALL MSGLOG(EMPLOYEE.LNAME); |
 _ END; |
 _ ---

Results of the STAFF Rule

Executing the rule for manager 79912 produces the following message log:

string A character string to insert in the user log. Its syntax can be
C (fixed-length character string), UN (Unicode), V (variable-length
character string), or W (double-byte character).

LOGLIMIT The user log is full. LOGLIMIT is controlled by the
MSGLOGMAX Execution Environment parameter.
 TIBCO Object Service Broker Shareable Tools

MSGLOG | 397
----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE FOLLOWING EMPLOYEES WORK FOR MANAGER 79912:
 SMITH
 HRODEK
 SCHULTZ
 BOIVIN
 TIBCO Object Service Broker Shareable Tools

| 398
$NEWPAGE

Positions subsequent output to the top of a new page. (C)

Invocation CALL $NEWPAGE

Usage Notes • The print arguments must have been previously set with a call to $SETPRINT
or $RESETPRINT before a call to $NEWPAGE.

• $NEWPAGE has no effect if subsequent output begins on a new page anyway.

Exceptions

Example Displayed Output for NEWPAGE_1

The following rule prints two pages to the message log:

 NEWPAGE_1;
 _
 _ ---
 _ ---+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE(| 2
 _ 'THIS IS THE FIRST LINE OF THE FIRST PAGE.'); |
 _ CALL $NEWPAGE; | 3
 _ CALL $PRINTLINE(| 4
 _ 'THIS IS THE FIRST LINE OF THE SECOND PAGE.');
 _ ---

Rule Using $NEWPAGE

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P

LOGLIMIT Too much output is sent to the message log.

ROUTINEFAIL $NEWPAGE is not preceded by a call to $SETPRINT or
$RESETPRINT.

STRINGSIZE This exception is raised if the left, center, or right titles overlap,
or if the combined length of character strings exceeds width
(where width is the page width set by $SETPRINT or
$RESETPRINT) or 132, whichever is less.
 TIBCO Object Service Broker Shareable Tools

$NEWPAGE | 399

 ----------------------------- NEW PAGE ------------------------------

 Page 1
 THIS IS THE FIRST LINE OF THE FIRST PAGE.

 ----------------------------- NEW PAGE ------------------------------

 Page 2
 THIS IS THE FIRST LINE OF THE SECOND PAGE.
 TIBCO Object Service Broker Shareable Tools

| 400
NLS

Enables the database administrator to set code page values in translation tables.
(E)

Invocation Do one of the following:

Usage Notes You must execute NLS from a level-7 user ID.

Code Page Lookup

When determining if translation is to be performed for external DBMS data,
TIBCO Object Service Broker looks at code pages in the following order:

1. Table name

2. Server ID (for a peer server or Service Gateway for Files)

3. Table type

4. If no code page is found, no conversion is performed

NLS Screen

On entering the NLS tool, the following screen appears:

 National Language Support Manager

 TDS and peer to peer Code Page Settings
 Locale.Codepage
 SELF ENGL.IBM-037
 REMOTE ENGL.IBM-037
 Service Gateway for Files Code Page Settings (By Server ID)
 Server ID Locale.Codepage
 * NO CODEPAGE *

 External DBMS Code Page Settings (By Table Type)
 Type Locale.Codepage
 * NO CODEPAGE *

 External DBMS Code Page Settings (By Server ID)
 Server ID Locale.Codepage
 * NO CODEPAGE *

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type NLS <Enter>

COMMAND prompt Type EX NLS<Enter>
 TIBCO Object Service Broker Shareable Tools

NLS | 401

 External DBMS Code Page Settings (By Table Name)
 Table Name Type Locale.Codepage
 #ACT1 DAT DVDFFGF
 @IDMS_ELEMENTS * SECURITYFAIL *
 PFKEYS: 3=EXIT 5=EDIT 6=ADD 12=EXIT
 Place cursor on appropriate entry then PF5 to edit or PF6 to add

There are five areas to set code pages, as shown in the following sections.

TDS and peer to peer Code Page Settings

In this area, you set the SELF and REMOTE code pages. SELF is the code page for
user character data stored in user TDS tables in the local Data Object Broker and
REMOTE is the code page for character data in peer-to-peer communication.

Service Gateway for Files Code Page Settings (By Server ID)

All accesses for a specific Server ID are translated. For example, you could have
two different remote instances of the Service Gateway for Files with different code
page settings.

External DBMS Code Page Settings

In the next three areas, you specify the code pages of your external DBMSs. You
can do this at three levels of detail.

Pressing PF5 on the appropriate section brings up a Table Editor window where
you can edit the table. Here are some examples:

Service Gateway for Files

EDITING TABLE : @SERVERCONFIG(_FG)
COMMAND ==>
 SCROLL: P

By Table Type All accesses for the specified table type are translated (for
example, DB2).

By Server ID All accesses for a specific Server ID are translated. For
example, you could have two different DB2 gateways
with different code page settings.

By Table Name All accesses to a specific table are translated.
 TIBCO Object Service Broker Shareable Tools

402 |
 NAME TYPE SYNTAX LENGTH DECIMAL VALUE
MODIFY
_ ---------------- - - ------ ------ --------------------------------- -
_ SERVERLS S V 32 SVEN.IBM-278 N

By Table Type

EDITING TABLE : @SERVERCONFIG(_NT)
COMMAND ==>

 NAME TYPE SYNTAX LENGTH DECIMAL VALUE
MODIFY
_ ---------------- - - ------ ------ --------------------------------- -
_ DB2 S V 32 0 ENGL.IBM-500 N
_ IMS S V 32 0 ENGL.IBM-500 N

By Server ID

EDITING TABLE : @SERVERCONFIG(_NS)
COMMAND ==>

 NAME TYPE SYNTAX LENGTH DECIMAL VALUE
MODIFY
_ ---------------- - - ------ ------ --------------------------------- -
_ DB2ITAL S V 32 ENGL.IBM-280 N
_ DB2ESPA S V 32 ENGL.IBM-284 N

By Table Name

EDITING TABLE : @SERVERPARMS(DB2CUST)
COMMAND ==>

 NUMBER NAME TYPE SYNTAX LENGTH DECIMAL DEFAULT USAGE SCOPE
MUSTINCLDEFN
_ ---------- --------- - - ------ ------ ------------- - - -
_ 1 SERVERID S C 8 0 DEFAULT C Y Y
_ 2 SERVERTYPE S C 3 0 T Y Y
_ 3 CODEPAGE S V 32 0 NORS.IBM-277 Y Y N
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 403

NOOP

Does nothing. (C)

Invocation CALL NOOP

Usage Notes NOOP can be used when you need to invoke a tool due to syntax or coding
conventions.

 TIBCO Object Service Broker Shareable Tools

| 404

NUM_CHK

Determines if a given string satisfies the TIBCO Object Service Broker definition
of a numeric literal. (F)

Invocation verify = NUM_CHK(val)

See Also TIBCO Object Service Broker Programming in Rules for a description of valid TIBCO
Object Service Broker numeric literals.

Example Rule Using NUM_CHK

The following rule verifies that you provide a number for a rule:

 VERIFY_INPUT(INPUT);
 _ LOCAL NUMBER;
 _ ---
 _ NUM_CHK(INPUT) = 'Y'; | Y N
 _ --+--------
 _ NUMBER = INPUT; | 1
 _ CALL CALCULATE; | 2
 _ CALL ENDMSG(INPUT || ' IS NOT A VALID NUMBER.'); | 1
 _ ---

• If you provide valid input, for example, VERIFY_INPUT(56), the
CALCULATE rule is called to perform arithmetic operations on the number.

• If the input is not valid, for example, VERIFY_INPUT(AB), you receive the
message:

AB IS NOT A VALID NUMBER

verify On return, contains the value Y if val is a numeric literal or N if val
is not a numeric literal.

val A value.

| 405
OBJECT_MGMT

Displays the contents of a table and enables a predefined set of commands that
are unique to the table to operate on the display. (E)

Invocation Do one of the following:

Where:

Usage notes • OBJECTMGR is the version of this tool called from within a rule, a version
that does not trap exceptions. To trap exceptions, use OBJECT_MGMT.

• If you do not supply a value for tablespec, executing OBJECT_MGMT displays a
screen prompting for a value.

• After executing OBJECT_MGMT, the specified table appears. This table is
usually a subview of a master object table.

• Further selecting and ordering can be specified through primary commands,
selecting and ordering that is done only on the subset specified in tablespec.

• OBJECT_MGMT (and its interactive version OBJECTMGR) uses
DEFINE_OBJLIST when it is invoked. DEFINE_OBJLIST defines the
appearance of the display and the commands to be used, and arranges up to
two lines of titling. This is applied against the table given as an argument to
OBJECT_MGMT.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type OBJECT_MGMT
(tablespec) <Enter>

COMMAND prompt Type EX OBJECT_MGMT
(tablespec) <Enter>

tablespec A string specifying the table name (and parameters, if any).
Selection and ordering can also be specified. If used:

• Selection must begin with the keyword WHERE.

• Ordering must begin with the keyword ORDERED.

• No abbreviations can be used.
 TIBCO Object Service Broker Shareable Tools

406 |
• OBJECT_MGMT should run in BROWSE mode so that the commands can
update the objects selected.

• The object commands operate on the primary key. The primary key field
cannot be a composite primary key field.

• The valid object commands appear across the bottom of the screen.

• The following primary commands and function keys are predefined to
OBJECT_MGMT:

Example This example uses both the table and the information presented during the
description of the fields of the DEFINE_OBJLIST tool. Executing OBJECT_MGMT
against the table EMPLOYEES_0DPARM displays the following screen. Refer to
DEFINE_OBJLIST to see how this table is formatted:

 Command ==> Scroll P

 EMPNO LNAME POSITION MGR# DEPTNO SALARY ADDR*
 ------ ---------------------- -------------- ------ ------ --------- -----
 _ 80000 SMYTHE DIRECTOR 80002 20 986.73
 _ 80002 ROTERDAM VP 99999 50 234.84
 _ 80003 CHANG ASSOC.ANALYST 83020 10 589.91
 _ 80004 GARZA ANALYST 80009 30 574.16
 _ 80005 HANSON MGR 83020 20 890.00
 _ 80006 MILMAN ANALYST 84021 10 699.49
 _ 80008 HONCHRSKY STAFF 84021 50 711.19
 _ 80009 CHESTERTON PROGRAMMER 80000 70 978.76

Primary Commands Keys Purpose

Enter Executes command.

PF3 Cancels and exits.

PF12 Cancels and exits.

PF7 Scrolls up.

PF8 Scrolls down.

PF9 Recalls last command.

SEL/SELECT Selects specified object.

F/FIND Finds specified object.

PF5 Finds the next occurrence.

ORDERED Orders occurrences by field.
TIBCO Object Service Broker Shareable Tools

OBJECT_MGMT | 407
 _ 80014 TOWNSEND PRESIDENT & GM 84021 70 230.23
 _ 80019 PASTARINA MGR 80033 50 100.00
 _ 80020 CHESSELL SECRETARY 83020 30 301.00
 _ 80021 TOWNESEND RECEPTIONIST 84021 50 600.01
 _ 80024 NAPIER SALES PERSON 80020 20 340.40
 _ 80033 CANNON PROGRAMMER 80020 40 0.00

 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL
 TIBCO Object Service Broker Shareable Tools

| 408
OBJECTMGR

Displays the contents of a table and enables a predefined set of commands that
are unique to the table to operate on the display. (C)

Invocation CALL OBJECTMGR(tablespec)

Usage Notes • OBJECT_MGMT is the interactive version of this tool.

• Further selecting and ordering can be specified through primary commands,
selecting and ordering that is done only on the subset specified in tablespec.

• After calling OBJECTMGR the specified table appears. This table is usually a
subview of a source object table.

• OBJECTMGR and its related version OBJECT_MGMT use DEFINE_OBJLIST
when they are invoked. DEFINE_OBJLIST defines the appearance of the
display and the commands to be used, and arranges up to two lines of titling.
This is applied against the table given as an argument to OBJECTMGR.

• Run OBJECTMGR in browse mode so that the commands can update the
objects selected.

• The object commands operate only on the primary key. The primary key
cannot be a composite primary key.

• The valid object commands appear across the bottom of the screen.

• The following primary commands and function keys are predefined to
OBJECTMGR:

tablespec The table name (and parameters, if any). Selection and ordering
can also be specified. If used:

• Selection must begin with the keyword WHERE.

• Ordering must begin with the keyword ORDERED.

• No abbreviations can be used.

Primary Commands Keys Purpose

Enter Executes command.

PF3 Cancels and exit.s

PF12 Cancels and exits.
 TIBCO Object Service Broker Shareable Tools

OBJECTMGR | 409
See Also For a complete description of the primary commands, refer to the TIBCO Object
Service Broker Getting Started manual.

Exceptions

Example This example uses both the table and the information presented during the
description of the fields of the DEFINE_OBJLIST tool. Executing OBJECTMGR
against the table EMPLOYEES_0DPARM displays the following screen. Refer to
DEFINE_OBJLIST to see how this table is formatted.

 Weekly Report
 Command ==> Scroll P
 Employee Salaries
 EMPNO LNAME POSITION MGR# DEPTNO SALARY ADDR*
 ------ ---------------------- -------------- ------ ------ --------- -----
 _ 80000 SMYTHE DIRECTOR 80002 20 986.73
 _ 80002 ROTERDAM VP 99999 50 234.84

PF7 Scrolls up.

PF8 Scrolls down.

PF9 Recalls last command.

SEL/SELECT Selects specified object.

F/FIND Finds specified object.

PF5 Finds the next occurrence.

ORDERED Orders occurrences by field.

Primary Commands Keys Purpose

PARSER_ERROR Raised if there is a syntax error in the tablespec.

NO_OBJECTS Raised if the list is empty.

SECURITYFAIL Raised if the caller does not have security clearance to
read either the list or some other table used by the
Object Manager.

ERROR_IN_SYNTAX Raised if there is an error in the definition of the table
containing the list that prevents the Object Manager
from building its display.

TABLE_NOT_FOUND Raised if the table to contain the list does not exist.
 TIBCO Object Service Broker Shareable Tools

410 |
 _ 80003 CHANG ASSOC.ANALYST 83020 10 589.91
 _ 80004 GARZA ANALYST 80009 30 574.16
 _ 80005 HANSON MGR 83020 20 890.00
 _ 80006 MILMAN ANALYST 84021 10 699.49
 _ 80008 HONCHRSKY STAFF 84021 50 711.19
 _ 80009 CHESTERTON PROGRAMMER 80000 70 978.76
 _ 80014 TOWNSEND PRESIDENT & GM 84021 70 230.23
 _ 80019 PASTARINA MGR 80033 50 100.00
 _ 80020 CHESSELL SECRETARY 83020 30 301.00
 _ 80021 TOWNESEND RECEPTIONIST 84021 50 600.01
 _ 80024 NAPIER SALES PERSON 80020 20 340.40
 _ 80033 CANNON PROGRAMMER 80020 40 0.00

 D-Delete S-Select
 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL
TIBCO Object Service Broker Shareable Tools

| 411
@OPENDSN

Specifies the name of the file that is subsequently used by @READDSN or
@WRITEDSN. (C)

Invocation CALL @OPENDSN(dsname)

Usage Notes

• @WRITEDSN and @READDSN are used to write to and read from the file.

• @OPENDSN identifies the file. An attempt to open the file is made with the
first read or write operation.

• @OPENDSN works only within the scope of the transaction, rather than of the
session; it does not cross transaction boundaries.

• @OPENDSN accesses a z/OS file using the data set name. There is no
provision for using a DDNAME with this tool instead of a data set name.

Example The following rule:

1. Specifies the name of an existing file

2. Writes data from the example table to it

3. Closes the file

4. Re-specifies it

dsname A character string specifying the file to open. Its syntax is
V (variable-length character string). It has a length of 54 for z/OS,
512 for Windows, and 1023 for Solaris.

If dsname is… Do this

 A z/OS data
set

Specify a fully qualified data set name. It can include a
member name. For example, a valid dsname is:

AAAAAA.DATA(SOURCE)

 A Windows or
Solaris file

Specify either the full path or only the filename. If you
specify only the filename, the DSDIR Execution Environment
parameter must be set to point to the directory to use. Refer
to TIBCO Object Service Broker Parameters for more
information about this parameter.
 TIBCO Object Service Broker Shareable Tools

412 |
5. Reads back the first record from it

6. Prints that record to the message log:

OPENDSN_1;
 _ LOCAL RECORD;
 _ --
 _ --+-----------
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 1
 _ FORALL EMPLOYEE : | 2
 _ CALL @WRITEDSN(EMPLOYEE.LNAME); |
 _ END; |
 _ CALL @CLOSEDSN; | 3
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 4
 _ RECORD = @READDSN; | 5
 _ CALL MSGLOG(RECORD); | 6
 _ CALL @CLOSEDSN; | 7
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following output:

 -------------------------- INFORMATIONAL MESSAGE LOG

 COMMAND ===> SCROLL ===> P
 SMYTHE
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 413

OPSTATS

Returns statistical data collected by the Data Object Broker. (F)

Invocation string = OPSTATS(request-value)

Usage Notes Only those request-numbers documented below are supported for end-user rule
execution. The request-numbers are platform specific. A set of sample rules are
supplied in library @SAMPLES. These rules retrieve the data from the Data Object
Broker and use MAP and TEM table functionality to display the values using the
Table Browser.

string On return contains the statistical data.

request-value Defines the statistical data to be returned.

Request
Value z/OS

Win
&
UNIX

Function
Sample
Rule
Name

Associated
Tables

8 Y Y Supplies cumulative statistics
that form the basis of the SMF
type 10 Data Object Broker
record.

S6BSTAT08 S6BSTAT08_MAP
S6BSTAT08_TEM

12 Y Y Provides segment status. S6BSTAT12 S6BSTAT12_MAP
S6BSTAT12_TEM
S6BSTAT12NUM_MAP

24 Y Y Provides a list of active users. S6BSTAT24 S6BSTAT24_MAP
S6BSTAT24_TEM
S6BSTAT24NUM_MAP

32 Y N Provides internal Data Object
Broker buffer usage statistics.

S6BSTAT32 S6BSTAT32_MAP
S6BSTAT32_TEM

36 Y N Provides Data Object Broker
lock statistics.

S6BSTAT36 S6BSTAT36_MAP
S6BSTAT36_TEM

64 Y N Provides Data Object Broker
statistics for the current user.

S6BSTAT64 S6BSTAT64_MAP
S6BSTAT64_TEM

| 414
OPTIONLISTER

Displays options in columns and returns the ones selected (C).

Invocation CALL OPTIONLISTER(optionlistname)

Usage Notes • After calling OPTIONLISTER a screen appears that can be used to select
specified options.

• The selected options are stored in the temporary table @SELECTED_OPTION
and they must be retrieved from the table for any additional action. The table
@SELECTED_OPTION has the following fields: NAME, DESC1, DESC2.

• The options must be specified in the table @OPTIONS as described in the
section below.

Fields of the @OPTIONS Table

optionlistname The name of the option as defined in the table @OPTIONS.

NAME The name of the option.

OPTION_COLS The number of option columns to appear.

It can display a maximum of 4 columns, depending on the
length of the source field and the number of description
columns included. If description columns are included, only
one option column can be defined. See FIELD and
DESCRIPTION_COLS below for more information.

TABLE The name of the source table.

It contains the field that holds the values for the option listed
and the fields used to describe the option values. The table
cannot be parameterized. If the primary source table is
parameterized, you can create a subview table based on the
required table instance.
 TIBCO Object Service Broker Shareable Tools

OPTIONLISTER | 415
FIELD The name of the field that holds the values for the option
listed.

The values displayed for the field are truncated if the length
of field is greater than space allocated due to the number of
OPTION_COLS and DESCRIPTION_COLS.

The option values for the field are truncated as follows:

Number of
DESCRIPTION_COLS

Number of
OPTION_COLS

Length of
Option field
value

0 1 76 characters

0 2 35 characters

0 3 22 characters

0 4 16 characters

1 or 2 1 16 characters

MAX_SELECT The maximum number of selections the user can make from
the option list when it appears.

Valid entries are a positive integer or asterisk (*). If asterisk
(*) is entered, the users are not limited in their number of
selections.

TITLE The title to appear on the option lister screen.

Up to 36 characters can be entered.

DESCRIPTION_COLS The number of columns used to provide additional
information about the option listed.

There can be 0, 1 or 2 columns. If there is 1 column, a
maximum of 58 characters of information can be entered. If
there are 2 columns, the first column can hold up to 16
characters of information and the second column can hold
up to 40 characters of information.

DESCRIBE_FIELD1 The field from the source table that appears for the first
description column.

DESCRIBE_FIELD2 The field from the source table that appears for the second
description column.

@OPTIONS is a shared table, and therefore the data in it cannot be promoted.
 TIBCO Object Service Broker Shareable Tools

416 |
Example The option SEL_DEPARTMENT is defined as follows:

 --- SINGLE OCCURRENCE EDITOR ---

 EDITING TABLE : @OPTIONS
 TABLE TYPE : TDS
 COMMAND ==>
 --

 NAME : SEL_DEPARTMENT
 OPTION_COLS : 1
 TABLE : DEPARTMENT_SUB
 FIELD : DEPTNO
 MAX_SELECT : 1
 TITLE : LIST OF VALID DEPARTMENT NUMBERS
 DESCRIPTION_COLS : 1
 DESCRIBE_FIELD1 : DNAME
 DESCRIBE_FIELD2 :

SELECT_OPTION Rule

The example SELECT_OPTION rule:

1. Clears the screen using DELETE_DATA

2. Calls OPTIONLISTER(SEL_DEPARTMENT) to display a listing of
department numbers for selection

3. Retrieves the selected option from the @SELECTED_OPTION table and
inserts it into the screen field DEPTNO of the screen table EMPLOYEE_INFO

 SELECT_OPTION;
 _ LOCAL MSG;
 _ --
 _ --+-----------
 _ CALL DELETE_DATA('EMPLOYEE_INFO(NEW_EMPLOYEE)', '', ''); |1
 _ CALL OPTIONLISTER('SEL_DEPARTMENT'); |2
 _ FORALL @SELECTED_OPTION: |3
 _ EMPLOYEE_INFO.DEPTNO = @SELECTED_OPTION.NAME; |
 _ INSERT EMPLOYEE_INFO('NEW_EMPLOYEE'); |
 _ END; |
 _ --

Selection Screen

The following screen appears for selection:

 LIST OF VALID DEPARTMENT NUMBERS
 COMMAND ==> SCROLL: P
TIBCO Object Service Broker Shareable Tools

OPTIONLISTER | 417
 DEPTNO DNAME
 ---------------- ---
 _ 10 ACCOUNTING
 _ 20 SALES
 _ 30 PRE-SALES
 _ 40 PRODUCT SUPPORT
 _ 50 RESEARCH
 _ 60 OPERATIONS
 _ 70 PUBLICATIONS

 < Place "S" beside the option(s) you wish to have Selected on PF3 >
 PFKEYS: 1=HELP 3=SELECT 13=PRINT 12=EXIT
 TIBCO Object Service Broker Shareable Tools

418 |
TIBCO Object Service Broker Shareable Tools

| 419
$OTMA

Invoke IMS OTMA Callable Interface calls. (C)

Invocation CALL $OTMA(map_table)

Exceptions

Samples Sample rules and tables are available that you can use as a template:

The rule names start with @OTMA and are in the COMMON library.

The table names start with @OTMA, under UNIT=OTMA.

map_tabl
e

A pointer to the system map table @OTMA_MAP, which contains
parameters for the different OTMA Callable Interface calls. This
routine sets up the required input and output parameters for the
respective OTMA interface calls.

VALIDATEFAIL One of the following:

- Invalid function request

- OTMA not properly installed

ROUTINEFAIL One of the following:

- OTMA open failed

- OTMA send failed
 TIBCO Object Service Broker Shareable Tools

420 |
TIBCO Object Service Broker Shareable Tools

| 421
@OTMA_MAP

Register and allocate storage for use with the @OTMA_MAP table. (TBL)

Table Definition @OTMA_MAP has the following fields:

Table: @OTMA_MAP Type: MAP Unit: OTMA IDgen: Y
 Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
 ---------------- - -- --- -- - ---------------- ' ---------------- - -
_ ADDRESS B 4 0 A ' _
_ ' _
 | ----- EXTERNAL ----|----------- Metadata Definition -------------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
 ---------------- ---- ---- -- ------ - - -- ---- -- - ---------------
_ KEY B 4 0 0 P I B 4 0
_ FUNCTION C 4 0 0 C 4 0
_ ANCHOR B 8 0 4 B 8 0
_ RETURNCODE B 4 0 12 B 4 0
_ REASON1 B 4 0 16 B 4 0
_ REASON2 B 4 0 20 B 4 0
_ REASON3 B 4 0 24 B 4 0
_ REASON4 B 4 0 28 B 4 0
_ GROUP_NAME C 8 0 32 C 8 0
_ MEMBER_NAME C 16 0 40 C 16 0
_ PARTNER_NAME C 16 0 56 C 16 0
_ SESSIONS B 4 0 72 B 4 0
_ TPIPE_PREFIX C 4 0 76 C 4 0
_ SESSION_HANDLE B 8 0 80 B 8 0
_ PROC_OPT B 1 0 88 B 2 0
_ DUMMY_FILLER B 3 0 89 B 2 0
_ TRANSACTION C 8 0 92 C 8 0
_ PRF_NAME C 8 0 100 C 8 0
_ LTERM C 8 0 108 C 8 0
_ MODNAME C 8 0 116 C 8 0
_ SEND_BUFFER@ B 4 0 124 B 4 0
_ SEND_BUFFER_LEN B 4 0 128 B 4 0
_ SEND_SEG_LIST B 4 0 132 B 4 0
_ RECEIVE_BUFFER@ B 4 0 136 B 4 0
_ RECV_BUFFER_LEN B 4 0 140 B 4 0
_ RECEIVED_LEN B 4 0 144 B 4 0
_ RECV_SEG_LIST B 4 0 148 B 4 0
_ CONTEXTID_PART1 B 8 0 152 B 8 0
_ CONTEXTID_PART2 B 8 0 160 B 8 0
_ ERROR_MESSAGE V 120 0 168 V 120 0

Fields

FUNCTION The function code: OPEN, ALLO, SEND, FREE, or CLOS.
 TIBCO Object Service Broker Shareable Tools

422 |
ANCHOR A field initialized to zero before the OPEN call and filled
in by the otma_open function call.

RETURNCODE,
REASON1,
REASON2,
REASON3,
REASON4

Status information for the transaction.

GROUP_NAME The XCF group name.

MEMBER_NAME The member name for this client.

PARTNER_NAME The member name for the OTMA server (IMS).

SESSIONS The number of parallel sessions to be supported with
IMS. The only valid value is 1.

TPIPE_PREFIX The TPIPE name prefix.

SESSION_HANDLE The session identifier for the subsequent
otma_send_receive. It is filled in by the otma_allocate
function call.

PROC_OPT The processing options for the subsequent
otma_send_receive call. The supported options are (can
be NULL, to use the defaults):

Bit 0 (SyncOnReturn): This option tells IMS to process the
message without the RRS context token; in this case, the
user ID is obtained when RRS CTXRDTA is invoked.

Bit 1 (SyncLevel1): With this option, the OTMA
send-then-commit (Commit Mode 1) SYNCLEVEL 1 is
used instead of the default SYNCLEVEL 0.

TRANSACTION The name of the IMS transaction or command to be sent
to IMS.

PRF_NAME The name of the RACF group name for transactions and
commands.

LTERM The lterm name. On input it is passed to IMS. It is
updated on output to the lterm field returned by IMS.
Can be blank in both cases.
TIBCO Object Service Broker Shareable Tools

@OTMA_MAP | 423
MODNAME The modname. On input, it is passed to IMS. It is updated
on output to the modname field returned by IMS. Can be
blank in both cases. If the input modname is DFSM01,
DFSM02, or DFSM05, it is treated as blanks.

SEND_BUFFER@ The pointer to the data to be sent to IMS. When a NULL is
specified for TRANSACTION, the transaction name or
command must appear, followed by a blank, followed by
the data, in this buffer when it is being sent to IMS.

SEND_BUFFER_LEN The length of the send data.

SEND_SEG_LIST The pointer to an array of lengths of message segments to
be sent to IMS. The first element is the count of the
following segment lengths. If a single segment is to be
sent, either the first element or the address of the array
can be zero.

RECEIVE_BUFFER@ The pointer to the buffer to receive the reply message
from IMS.

RECV_BUFFER_LEN The length of the buffer available to receive the message.

RECEIVED_LEN The length of data received in the receive buffer. It should
equal the sum of the segment lengths.

RECV_SEG_LIST The pointer to an array to hold the number of segments
sent by IMS.

On send, the first element must be set to the number of
elements in the array. If a single segment is to be received,
either the first element or the address of the array can be
zero, in which case all segments are received
contiguously without indication of segmentation
boundaries.

On receive, the first element is the count of the following
segment lengths and must be set by the client to indicate
the maximum length of the array. It is modified by the
receive.
 TIBCO Object Service Broker Shareable Tools

424 |
Security Access to @OTMA_MAP is controlled using normal TIBCO Object Service Broker
security manager tools. Refer to the Security manual.

Usage Notes The appropriate fields of the @OTMA_MAP map table must be set up before
requesting an OTMA function. The following lists the required fields for each of
the functions. After setting up the fields, you invoke the $OTMA tool:

OTMA_OPEN

OTMA_OPEN invokes the otma_open interface call to connect with IMS. The
required fields in the @OTMA MAP table are:

Return values are in the RETURNCODE and REASONx fields:

CONTEXTID The Distributed Sync Point Context ID from RRS or
NULL.

For an unauthorized caller (as is the case with the TIBCO
Object Service Broker implementation), OTMA invokes
the CTXSWCH call to disassociate the token and to
validate if the token is current for a task. When OTMA
receives a response from IMS, it switches the context back
onto the task before returning control to the caller.

ERROR_MESSAGE An error or information message from IMS.

FUNCTION OPEN

GROUP_NAME The XCF group name.

MEMBER_NAME The member name for this client.

PARTNER_NAME The member name for the IMS OTMA server.

SESSIONS The number of parallel sessions to be supported with
IMS. The only valid value is 1.

TPIPE_PREFIX The prefix for the TPIPE name.

0 XCF JOIN was successful, client-bid was sent, and
acknowledgment received.

4 IMS is not ready. Try again later.
TIBCO Object Service Broker Shareable Tools

@OTMA_MAP | 425
OTMA_ALLOC

OTMA_ALLOC invokes the otma_allocate interface call to create an independent
session to exchange messages. The required fields in the @OTMA_MAP table are:

Return values are in the RETURNCODE and REASONx fields:

OTMA_SEND_RECEIVE

OTMA_SEND_RECEIVE invokes the otma_send_receive interface call to initiate
a message exchange with IMS. The required fields in the @OTMA_MAP table are:

8 Your XCF group and member are already active.

12 A system error occurred.

For the complete description of each error, see the IBM IMS Open Transaction
Manager Access Guide and Reference manual.

FUNCTION ALLO

TRANSACTION A name for the IMS transaction or command to be sent to
IMS.

PROC_OPT The SyncOnReturn and SyncLevel1 processing options
you want for the subsequent otma_send_receive call, in
bits 0 and 1. You select the option by turning on the bit.

PRF_NAME The name of the RACF group name for OTMA
transactions and commands.

0 Success.

4 Session limit reached.

8 Null anchor.

FUNCTION SEND

LTERM The lterm name.

MODNAME The modname.
 TIBCO Object Service Broker Shareable Tools

426 |
Return values are in the RETURNCODE and REASON fields:

OTMA_FREE

OTMA_FREE invokes the interface call otma_free to free an independent session
created by otma_allocate. The required fields are already set in the @OTMA_MAP
table.

Return values are in the RETURNCODE and REASON fields:

SEND_BUFFER@ A pointer to the buffer containing the IMS
transaction or command data to be sent to IMS.

SEND_BUFFER_LEN The size of the send buffer desired.

SEND_SEG_LIST A pointer to an array of lengths of message segments
to be sent to IMS.

RECEIVE_BUFFER@ A pointer to the buffer to receive the reply message
from IMS.

RECV_BUFFER_LEN The size of the receive buffer desired.

RECV_SEG_LIST The pointer to an array to hold the number of
segments sent by IMS.

CONTEXT_ID A field containing NULL or the Distributed Sync
Point Context ID from RRS.

0 Normal completion.

8 No anchor, bad session handle, or segment too
large.

12 Send failed.

16 Receive was cancelled.

20 Error from IMS.

0 Success.

4 No allocated session.

8 Incorrect anchor.
TIBCO Object Service Broker Shareable Tools

@OTMA_MAP | 427
OTMA_CLOSE

OTMA_CLOSE invokes the interface call otma_close to free storage for
communication and leave the XCF group. The required fields are already set in
the @OTMA_MAP table.

Return values are in the RETURNCODE and REASON fields:

0 Success.

4 Null anchor.

8 Cannot leave XCF group.
 TIBCO Object Service Broker Shareable Tools

| 428
PAD

Returns a string padded to a specified length using a pad character, positioning
the string to the left, right or center of the padding. (F)

Invocation pad_string = PAD(string, length, padcharacter, just)

Usage Notes string is not altered.

Example Rule Using PAD

The following rule pads a string and prints both the original string and the
padded string to the message log:

pad_string On return, contains the padded string. Its syntax can be UN
(Unicode), V (for a string of C or V), or W (double-byte
character).

string The string to pad. Its syntax can be C (fixed-length character
string), UN, V (variable-length character string), or W.

length An integer specifying the length, in characters, to which
pad_string should be padded. Its syntax is B (binary) with
length 2.

The specified length cannot exceed the greater of 4096 or the
value of the EXECSTACKSIZE session parameter minus 32768,
to a maximum of 32,767.

padcharacter The character with which to pad.

Its syntax is C or UN. If it’s of syntax C and alphabetic, it is
treated as uppercase. If it’s of syntax C and null, and string is of
syntax C, V, or W, it is treated as a blank. If string is of syntax
UN, a null pad character is not allowed.

just One of:

LEFT or L – Left justify the string.

CENTER, CENTRE, or C – Center the string.

RIGHT or R – Right justify the string.

Its syntax is C with a length of 8.
 TIBCO Object Service Broker Shareable Tools

PAD | 429
 PAD_1;
 _ LOCAL SOURCE_STRING, PADDED_STRING;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'THIS IS THE SOURCE STRING'; | 1
 _ PADDED_STRING = PAD(SOURCE_STRING, 40, '*', 'C'); | 2
 _ CALL MSGLOG('THE PADDED STRING IS:'); | 3
 _ CALL MSGLOG(PADDED_STRING); | 4
 _ CALL MSGLOG('THE SOURCE STRING IS STILL:'); | 5
 _ CALL MSGLOG(SOURCE_STRING); | 6
 _ --

Output for the PAD_1 Rule

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THE PADDED STRING IS:
 *******THIS IS THE SOURCE STRING********
 THE SOURCE STRING IS STILL:
 THIS IS THE SOURCE STRING
 TIBCO Object Service Broker Shareable Tools

| 430
PARMVALUE

Returns the value of the parameter from the table that was accessed when the
trigger or validation rule was activated. (F)

Invocation value = PARMVALUE(parmname)

Usage Notes • PARMVALUE is required because parameters are not stored as field
occurrences.

• PARMVALUE can be used only within an event rule.

See Also TIBCO Object Service Broker Managing Data for information about event rules.

Exceptions

Example The following validation rule checks the updated values for the field EMPNO in
the EMPLOYEE_DEPT parameterized table and returns the parameter value if
the update fails:

 PARMVALUE_1;
 _ LOCAL VALUE;

 _ PARMVALUE ('DEPTNO') ¬= 40; | Y N N
 _ EMPLOYEE_DEPT.EMPNO <= 90000; | Y N
 ---+-------------
 _ VALUE = PARMVALUE ('DEPTNO'); | 1 1 1
 _ RETURN ('FOR DEPTNO '|| VALUE || ' EMPNO MUST | 2
 _ BE LESS THAN 90000'); |
 _ RETURN ('Y'); | 2 2

value On return, contains the value of the parameter. Its syntax can be
either C (fixed-length character string) or V (variable-length
character string).

parmname A string specifying the name of the parameter. Its syntax is C with
length 16.

ERROR Raised if an event-driven rule is not being run or the parameter
named is not defined as a parameter for the triggering table.
 TIBCO Object Service Broker Shareable Tools

PARMVALUE | 431
Output for the PARMVALUE_1 Rule

Pressing Enter after updating the table with an invalid value returns the following
message to the screen:

 EDITING TABLE : EMPLOYEE_DEPT(40)
 COMMAND ==>

 EMPNO LNAME POSITION MGR# DEPTNO SALARY
 _ ------- ---------------------- -------------- ------- ------ -------
 _ 80033 CANON Programmer 90020 40 567.09
 _ 81001 CAREY Secretary 81092 40 565.89
 _ 81003 CHIU VP 81033 40 865.70
 _ 91014 LYNGBAEK Mgr 84021 40 780.67

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT
 UPDATE FAILED: FOR DEPTNO 40 EMPNO MUST BE LESS THAN 90000
 TIBCO Object Service Broker Shareable Tools

| 432
PARSE

Breaks up an input string into tokens and applies grammar rules to the tokens. (C)

Invocation CALL PARSE(grammar_usage, string)

Overview

PARSE is a finite-state machine written in rules. It breaks up the input string into
tokens (distinct elements) and applies grammar rules to each of the tokens. If the
grammar rules for each token are met, the string’s syntax is correct and each token
can be passed to a specified rule or rules for further processing. If any of the
tokens do not satisfy the grammar rules, the exception SYNTAX_ERROR is raised
and PARSE fails.

This section provides an overview of the tasks you must complete to use PARSE:

• Task A, Use the GRAMMARS table to specify tokens and states, page 433

Use the GRAMMARS table to do the following:

a. Specify the type and number of tokens into which you want the input
string to be broken.

For example, if the input string is a customer’s name, you could specify
three tokens of type ID to accommodate the first, middle, and last names.
When PARSE analyses the input string, the string must satisfy these

grammar_usage The grammar and usage parameters, for the SEMANTIC table, to
be used for this invocation of PARSE. Type one of the
following:

• If the usage parameter for SEMANTIC is STANDARD, type
the value of the grammar parameter.

• If you are using an instance of the SEMANTIC table where
the usage parameter is other than STANDARD, type the
value of the grammar parameter, followed by a space,
followed by the value of the usage parameter.

For more information on the usage parameter, refer to Task B,
Use the SEMANTIC table to associate actions with changes of
state, on page 435.

string The string of characters to be analyzed by the parser.
 TIBCO Object Service Broker Shareable Tools

PARSE | 433
grammar rules (that is, it must consist of three elements that PARSE
recognizes as type ID) or PARSE fails.

b. Specify the successive states into which PARSE changes as it processes
each token.

PARSE checks that the tokens in the input string are of the correct type and
in the correct order. It also keeps track of the tokens so it can apply the
appropriate rule to each token that it parses successfully. To enable PARSE
to do this, you specify a series of successive states through which PARSE
passes as it successfully parses each token.

For example, you could specify that when PARSE processes the first name
of the customer, its state changes from START to MNAME; when it
processes the middle name, from MNAME to LNAME; and when it
processes the last name, from LNAME to FINISH. When PARSE changes
from one state to another, it can execute a rule associated with the specific
change of state. In this way, rules can be applied to each token based on its
position in the input string.

• Task B, Use the SEMANTIC table to associate actions with changes of state,
page 435

Actions (rules) can be associated with each change of state. These rules are
used to further process each token.

Refer to the following sections to learn how to complete these steps.

Task A Use the GRAMMARS table to specify tokens and states

Use of the GRAMMARS Table

Use the GRAMMARS table to specify the following:

• The number and types of tokens

• Transition states for each token

GRAMMARS is parameterized by GRAMMAR, a unique name you assign to the
set of grammar rules you construct for PARSE.
 TIBCO Object Service Broker Shareable Tools

434 |
Fields of the GRAMMARS Table

For each token, in order from first to last in the input string, enter values for the
following fields:

Field Description Rules

INDEX A number that uniquely
identifies each token and its
associated states.

Enter a unique number for each token.

STATE The current (initial) state,
from which the parser
changes if it finds the
specified token.

The first state for a series of tokens must
be START, which PARSE begins from.

The STATE can be up to 16 characters
long.

TOKEN The token or type of token
for which PARSE checks
while it is in the specified
STATE:

If the parser finds the
specified token or type of
token while it is in STATE,
it changes to NEW_STATE
and can execute an
assigned action on the
token.

If the parser does not find
the specified token or type
of token when it is in
STATE, a
SYNTAX_ERROR
exception is raised and
PARSE fails.

Specify a string up to 17 characters in
length, or enter one of the following
values to make PARSE try to match a
particular type of token:

%grammar - A nested grammar

A token that begins with a percent (%)
sign represents a nested grammar. The
parser tries to match the input with the
tokens in the nested grammar before
continuing in the current grammar.

ANY - Matches any token

ID - Matches a character or series of
characters, excluding numbers, symbols
or special characters

NUM - Matches a number or series of
numbers

RLIT - Matches any raw-data literal

STR - Matches any quoted string

ULIT - Matches any Unicode literal

XLIT - Matches any hexadecimal literal

No token (empty field) - Matches null
input

PARSE always changes from STATE to
NEW_STATE when this token type is
specified.
TIBCO Object Service Broker Shareable Tools

PARSE | 435
Example of the GRAMMARS(CUST_NAME) Table

The following example illustrates how the GRAMMARS table could be set up to
parse a string consisting of a first, middle, and last name.

BROWSING TABLE : GRAMMARS(CUST_NAME)
 COMMAND ==>
 SCROLL: P
 INDEX STATE TOKEN NEW_STATE
 _ ------ ---------------- ----------------- ----------------
 _ 1 START ID MNAME
 _ 2 MNAME ID LNAME
 _ 3 LNAME ID FINISH
 _ 4 LNAME ACCEPT
 _ 5 FINISH ACCEPT

Task B Use the SEMANTIC table to associate actions with changes of state

Use the SEMANTIC table to associate actions (rules) with changes of state
identified in the GRAMMARS table. The action is invoked before PARSE makes
the transition from STATE to NEW_STATE. You do not have to associate every
change of state with an action.

SEMANTIC is parameterized by grammar and usage, which are described here:

grammar Parameter

The grammar parameter for the SEMANTIC table should match the grammar
parameter you specified for the GRAMMARS table.

usage Parameter

Using the usage parameter, you can associate more than one set of rules with a
given grammar. You could want a particular change of state identified in the
GRAMMARS table to result in PARSE executing one rule in some instances and
another in other instances. You accomplish this by specifying different usage
values for the grammar_usage argument when you call PARSE.

NEW_STATE The new (subsequent) state
to which the parser changes
if it finds the TOKEN while
in the specified STATE.

The final NEW_STATE for a series of
tokens must be ACCEPT.

NEW_STATE can be up to 16 characters
long.

Field Description Rules
 TIBCO Object Service Broker Shareable Tools

436 |
Default Value for
the usage

Parameter

The default value for usage is STANDARD. If PARSE is called with only one value
for grammar_usage, it assumes that the value is the name of the grammar and that
the usage is STANDARD. If you have only one set of rules for a particular
grammar, it is simplest to use STANDARD as a value for the usage parameter.

Specifying
Multiple Usages

If you want to specify different sets of rules for the grammar, you can use other
values for the usage parameter and then include them in the grammar_usage
argument when you call PARSE. The following is an example of calling PARSE
with a particular usage parameter:

CALL PARSE('GRAMMAR1 USAGE1', 'INPUT_STRING')

In this example, the input string is parsed with the grammar described in
GRAMMARS(GRAMMAR1) and the rules in SEMANTIC(GRAMMAR1,
USAGE1) are applied to the tokens.

Fields of the
SEMANTIC Table

Supply values for the following fields:

Field Description Rules

INDEX A unique number that
identifies the action and
associates it with a
particular change of state
in the GRAMMARS table.

Associate an action with a change of
state by having them share the same
INDEX number.

You only have to create entries for
those changes of state that require
actions.

ACTION The name of a rule that is
executed before the
transition from STATE to
NEW_STATE.

Actions must be procedural rules
with no arguments.

Actions have access to two variables:
INPUT_TOKEN, which contains the
text of the current token, and MSG,
which is used to pass a description of
a semantic failure, if one arises.

Actions can raise any exceptions that
are necessary; PARSE’s caller is
responsible for handling any
exceptions.

This field can be null.
TIBCO Object Service Broker Shareable Tools

PARSE | 437
 Example of
SEMANTIC

(CUST_NAME,
STANDARD)

Table

The following example shows how the changes of state in the
GRAMMARS(CUST_NAME) table can be associated with particular actions.

 BROWSING TABLE : SEMANTIC(CUST_NAME,STANDARD)
 COMMAND ==>
 SCROLL: P
 INDEX ACTION
 _ ------ ----------------
 _ 1 SAVE_FIRSTNAME
 _ 2 SET_LASTNAME
 _ 3 RESET_LASTNAME

Usage Notes You must declare the local variable MSG. It is used to pass a description of a
semantic failure, should one arise.

Exceptions

Examples Parsing a Customer Name

The following example parses a customer name, breaking it into three tokens
(first, middle, and last name), and printing the tokens to the message log. The
example is composed of the following elements:

• The table GRAMMARS(CUST_NAME), shown in Task A, Use the
GRAMMARS table to specify tokens and states, on page 433

• The table SEMANTIC(CUST_NAME, STANDARD), shown in Task B, Use the
SEMANTIC table to associate actions with changes of state, on page 435

• The rules SAVE_FIRSTNAME, SET_LASTNAME, and RESET_LASTNAME,
which are listed in the field ACTION in the table SEMANTIC(CUST_ NAME,
STANDARD)

• The TEST_CUSTNAME parent rule

Actions

The following are the rules that constitute the ACTIONS in the
SEMANTIC(CUST_NAME,STANDARD) table:

 RULE EDITOR ===> SCROLL: P

SYNTAX_ERROR Signaled if string does not follow the rules described by
grammar_usage.
 TIBCO Object Service Broker Shareable Tools

438 |
 SAVE_FIRSTNAME;
 _
_ --+--------------
 _ --+--------------
 _ FNAME = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_LASTNAME;
 _
_ --+--------------
 _ --+--------------
 _ LNAME = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 RESET_LASTNAME;
 _
_ --+--------------
 _ --+--------------
 _ MNAME = LNAME; | 1
 _ LNAME = INPUT_TOKEN; | 2
 _ ---

The TEST_CUSTNAME Parent Rule

The TEST_CUSTNAME rule parses customer names using the grammar
CUST_NAME:

 RULE EDITOR ===> SCROLL: P
 TEST_CUSTNAME(NAME);
 _ LOCAL MSG, FNAME, MNAME, LNAME;
 _ ---
 _ --+--------------
 _ CALL PARSE('CUST_NAME', NAME); | 1
 _ CALL MSGLOG('THE FIRST NAME IS ' || FNAME); | 2
 _ CALL MSGLOG('THE MIDDLE NAME IS ' || MNAME); | 3
 _ CALL MSGLOG('THE LAST NAME IS ' || LNAME); | 4
_ --+--------------

Result

When the TEST_CUSTNAME rule executes with the argument 'Margaret Alison
Smith', the following message log is produced:
TIBCO Object Service Broker Shareable Tools

PARSE | 439
 ------------------------ INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 THE FIRST NAME IS MARGARET
 THE MIDDLE NAME IS ALISON
 THE LAST NAME IS SMITH

Example 2: Parsing an Address

The following example parses an address of the form:

ROBERT JONES, 31 HIGH ROAD, BUFFALO, NY

It breaks the address into tokens, removes the commas, and recombines the
tokens and prints them to the message log with titles. The tokens could also be
passed to other rules for further processing or storage in tables. The example
consists of the following parts:

• Table GRAMMARS(ADDRESS)

• Table SEMANTIC(ADDRESS, STANDARD)

• Action rules ADDRESS1 to ADDRESS7, which are listed as actions in the table
SEMANTIC(ADDRESS, STANDARD)

• The PARSE_ADDRESS parent rule

Table GRAMMARS(ADDRESS)

 EDITING TABLE : GRAMMARS(ADDRESS)
 COMMAND ==>
 SCROLL: P
 INDEX STATE TOKEN NEW_STATE
 _ ------ ---------------- ----------------- ----------------
 _ 1 START ID FNAME
 _ 2 FNAME ID LNAME
 _ 3 LNAME , COMMA1
 _ 4 COMMA1 NUM NUMBER
 _ 5 NUMBER ID STREET
 _ 6 STREET ID STR_OR_RD
 _ 7 STR_OR_RD , COMMA2
 _ 8 COMMA2 ID CITY
 _ 9 CITY , COMMA3
 _ 10 COMMA3 ID STATE
 _ 11 STATE FINISH
 _ 12 FINISH ACCEPT

Table SEMANTIC(ADDRESS, STANDARD)

 EDITING TABLE : SEMANTIC(ADDRESS,STANDARD)
 TIBCO Object Service Broker Shareable Tools

440 |
 COMMAND ==>
 SCROLL: P
 INDEX ACTION
 _ ------ ----------------
 _ 1 SET_FNAME
 _ 2 SET_LNAME
 _ 4 SET_NUMBER
 _ 5 SET_STREET
 _ 6 SET_STR_OR_RD
 _ 8 SET_CITY
 _ 10 SET_STATE

Actions ADDRESS1 to ADDRESS 7

 RULE EDITOR ===> SCROLL: P
 SET_FNAME;
 _
 _ ---
 _ --+--------------
 _ FNAME = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_LNAME;
 _
 _ ---
 _ --+--------------
 _ LNAME = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_NUMBER;
 _
 _ ---
 _ --+--------------
 _ NUMBER = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_STREET;
 _
 _ ---
 _ --+--------------
 _ STREET = INPUT_TOKEN; | 1
 _ ---
TIBCO Object Service Broker Shareable Tools

PARSE | 441
 RULE EDITOR ===> SCROLL: P
 SET_STR_OR_RD;
 _
 _ ---
 _ --+--------------
 _ STR_OR_RD = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_CITY;
 _
 _ ---
 _ --+--------------
 _ CITY = INPUT_TOKEN; | 1
 _ ---

 RULE EDITOR ===> SCROLL: P
 SET_STATE;
 _
 _ ---
 _ --+--------------
 _ STATE = INPUT_TOKEN; | 1
 _ ---

The PARSE_ADDRESS Parent Rule

 RULE EDITOR ===> SCROLL: P
 PARSE_ADDRESS(STRING);
 _ LOCAL MSG, FNAME, LNAME, NUMBER, STREET, STR_OR_RD, CITY, STATE;
 _ ---
 _ --+--------------
 _ CALL PARSE('ADDRESS', STRING); | 1
 _ CALL MSGLOG('FIRST NAME: ' || FNAME); | 2
 _ CALL MSGLOG('LAST NAME: ' || LNAME); | 3
 _ CALL MSGLOG('ADDRESS: ' || NUMBER || ' ' || STREET || ' ' | 4
 _ || STR_OR_RD); |
 _ CALL MSGLOG('CITY: ' || CITY); | 5
 _ CALL MSGLOG('STATE: ' || STATE); | 6
 _ ---
 _ ON SYNTAX_ERROR :
 _ CALL MSGLOG('SYNTAX INCORRECT:' || STRING);

Result

If PARSE_ADDRESS is executed with the argument
 TIBCO Object Service Broker Shareable Tools

442 |
ROBERT JONES, 31 HIGH ROAD, BUFFALO, NY

the message log produced is:

 --------------------------- INFORMATION LOG ----------------------------
 COMMAND ===> SCROLL ===> P
 FIRST NAME: ROBERT
 LAST NAME: JONES
 ADDRESS: 31 HIGH ROAD
 CITY: BUFFALO
 STATE: NY
TIBCO Object Service Broker Shareable Tools

| 443
PARSE_TAM

Breaks up an input string into a table specification, and optionally, the WHERE
clause and the ORDERED clause of the corresponding table access statement. (C)

Invocation CALL PARSE_TAM(string)

Usage Notes On successful return, the fields of the table buffer of the TEM table TAM are
initialized.

Fields of the TEM Table Called TAM

string The string of characters to be analyzed by the parser. Contains the
table specification, optionally the WHERE clause, and optionally
the ORDERED clause of the corresponding table access statement.

Field Description

TAM.TNAME The table name of the table specification.

TAM.#PARMS The number of parameters in the table specification.

TAM.PSTR An encoding of the parameters suitable for passing to the
FORALLA tool, or empty.

TAM.WSTR An encoding of the WHERE clause suitable for passing to the
FORALLA tool, or empty.

TAM.OSTR An encoding of the ORDERED clause suitable for passing to
the FORALLA tool, or empty.

TAM.MSG An error message if PARSER_ERROR is signalled, or empty.

TAM.UNIQUE Not used; always N.

TAM.TSPECS The table specification.

TAM.P1 The first parameter of the table specification, or empty.

TAM.P2 The second parameter of the table specification, or empty.

TAM.P3 The third parameter of the table specification, or empty.
 TIBCO Object Service Broker Shareable Tools

444 |
Successive invocations of PARSE_TAM overwrite the values in the TAM table
buffer left by previous invocations.

Exceptions

Example Rule

 RULE EDITOR ===> SCROLL: P
QUERY(STRING);
_ LOCAL ROW;
_ ---
_ --+--------------
_ CALL PARSE_TAM(STRING); | 1
_ CALL FORALLA(TAM.TNAME, TAM.PSTR, TAM.WSTR, TAM.OSTR); | 2
_ UNTIL TABLEEND : | 3
_ ROW = ROW + 1; |
_ CALL MSGLOG(TAM.TNAME || ' ROW# ' || ROW); |
_ CALL MSGLOG(''); |
_ FORALL FIELDS(TAM.TNAME) : |
_ CALL MSGLOG(PAD(FIELDS.NAME, 16, ' ', 'R') || ': ' |
_ ||(TAM.TNAME).(FIELDS.NAME)); |
_ END; |
_ CALL MSGLOG(''); |
_ CALL FORALLB(TAM.TNAME); |
_ END; |
_ CALL FORALLE(TAM.TNAME); | 4
_ CALL ENDMSG(ROW || ' ROWS FOUND IN ' || TAM.TNAME); | 5
_ ---
_ ON PARSER_ERROR :
_ CALL ENDMSG(TAM.MSG);
_ ON TABLEEND :
_ CALL FORALLE(TAM.TNAME);
_ CALL ENDMSG('NO ROWS FOUND IN ' || TAM.TNAME);

TAM.P4 The fourth parameter of the table specification, or empty.

TAM.P5 The fifth parameter of the table specification, or empty.

TAM.P6 The sixth parameter of the table specification, or empty.

Field Description

PARSER_ERROR There is a syntax error in the table specification,
WHERE clause and ORDERED clause passed in the
argument string. The field TAM.MSG contains a message
specifying the syntax error. The other fields of TAM are
NULL.
TIBCO Object Service Broker Shareable Tools

PARSE_TAM | 445
Explanation

The QUERY rule does the following:

1. Takes a string containing the table specification, plus optionally the WHERE
clause and optionally the ORDERED clause of a table access statement

2. Dynamically accesses all rows of the specified table instance that match the
WHERE clause (if there is a WHERE clause, otherwise all the rows)

3. Writes them to the message log in the specified order (if any, otherwise the
default table order)

For example:

CALL QUERY('TABLES WHERE NAME >= ''Q'' ORDERED DESCENDING NAME');

lists the rows of the TABLES table where the field value of NAME is greater than
or equal to the letter Q in reverse alphabetical order of the values of the field
NAME.

CALL QUERY('FIELDS(TAM)');

lists the rows of the table instance with a parameter value of TAM of the FIELDS
table.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 446

PATTERN_MATCH

Determines whether a string matches a given pattern. (F)

Invocation PATTERN_MATCH(string, pattern)

Usage Notes • An asterisk (*) is used to match any sequence of zero or more characters.

• A question mark (?) is used to match any single character.

• PATTERN_MATCH returns either Y (in which case the string is a partial
match of the pattern) or N.

Example The following rule illustrates the use of PATTERN_MATCH:

• The rule checks to see if the commands SELECT or DELETE, or any abbreviation
of these commands, such as SEL or DEL, are valid.

• If the command is a valid SELECT or DELETE command, the appropriate rule is
called.

• If the command is not valid, the user gets a message on the screen
(EMPSCREEN) explaining that the command is not acceptable. The following
illustrates a rule using PATTERN_MATCH:

 PROCESS_CMD(USER_COMMAND);
 _ ---
 _ PATTERN_MATCH(USER_COMMAND, 'SEL*'); | Y N N
 _ PATTERN_MATCH(USER_COMMAND, 'DEL*'); | Y N
 _ --+--------
 _ CALL SELECT_COMMAND; | 1
 _ CALL DELETE_COMMAND; | 1
 _ CALL SCREENMSG('EMPSCREEN', USER_COMMAND || | 1
 - ’IS AN INVALID COMMAND');
 _ --

string The sequence of characters that is matched against the pattern.

pattern The sequence of characters, which could contain the special
characters asterisk (*) and question mark (?)

Normally if you have several commands, you would store them in a table and
use LIKE as your selection operator.

| 447
PEEL

Returns the result of removing the specified leading and trailing characters from
the specified string. (F)

Invocation peeled_string = PEEL(peelchars, string)

Usage Notes • PEEL examines both the front and the back of string, and peels each character
that matches one of the characters in peelchars. The peeling continues until a
non-peel character is encountered.

• PEEL does not alter the value of string.

Example The following rule peels characters from a string and prints both the original
string and the peeled string to the message log:

 PEEL_1;
 _ LOCAL SOURCE_STRING, PEELED_STRING;
 _ --
 _ --+-----------
 _ SOURCE_STRING = '1231234561323213'; | 1
 _ PEELED_STRING = PEEL('321', SOURCE_STRING); | 2
 _ CALL MSGLOG('THE PEELED STRING IS: ' || PEELED_STRING); | 3
 _ CALL MSGLOG('THE SOURCE STRING IS STILL: ' || | 4
 _ SOURCE_STRING); |

_ --+-----------

Output for the PEEL_1 Rule

Pressing PF2 after executing this rule displays the following on the screen:

 ---------------------------- INFORMATION LOG ----------------------
 COMMAND ===> SCROLL ===> P
 THE PEELED STRING IS: 456

peeled_string On return, contains the peeled string. Its syntax can be
C (fixed-length character string), V (variable-length
character string), or W (double-byte character).

peelchars The string of characters to be peeled. Its syntax can be C, V,
or W.

string The string from which to peel the characters. Its syntax can
be either C, V, or W.
 TIBCO Object Service Broker Shareable Tools

448 |
 THE SOURCE STRING IS STILL: 1231234561323213
TIBCO Object Service Broker Shareable Tools

| 449
PEEL_HEAD

Removes the specified leading characters from a given string. (F)

Invocation endstring = PEEL_HEAD(char, string)

Usage Notes char cannot contain the cent character.

Example This rule removes leading blanks from last names in the EMPLOYEE table:

 RULE EDITOR ===> SCROLL: P
 TRIM_NAME;
 _
 _ ---
 _ --+--------------
 _ FORALL EMPLOYEE : | 1
 _ CALL MSGLOG(PEEL_HEAD('', EMPLOYEE.LNAME)); |
 _ END; |
 _ ---

Source Data

The last names in the table look like the following:

LNAME

DRABEK
 ROEDER
 HOEGSON
GLADWELL
 URBANEK
 TERAMURA
 LEES

endstring The string returned after all occurrences of char are removed
from the beginning of string.

char A list of characters to be removed from the beginning of string.

string The character string from which leading characters are
removed.
 TIBCO Object Service Broker Shareable Tools

450 |
Resulting Data

After using the rule they appear in the message log like this:

DRABEK
ROEDER
HOEGSON
GLADWELL
URBANEK
TERAMURA
LEES
TIBCO Object Service Broker Shareable Tools

| 451
PEEL_TAIL

Removes the specified trailing characters from a given string. (F)

Invocation startstring = PEEL_TAIL(char, string)

Usage Notes char cannot contain the cent character.

Example The following rule removes periods and trailing blanks from the end of addresses
in the EMPLOYEE table:

 RULE EDITOR ===> SCROLL: P
 TRIM_ADDRESS;
 _
 _ ---
_ ---
 _ FORALL EMPLOYEE : | 1
 _ CALL MSGLOG(PEEL_TAIL(' .', EMPLOYEE.ADDRESS)); |
 _ END; |
 _ ---

Source Data

The addresses in the table look like the following:

ADDRESS

23 Irvine Rd.
2076 Chappel Dr.
335 Princess St.
215 Rogers Ave.

startstring The string returned after all occurrences of char are removed
from the end of string.

char A list of characters to be removed from the end of string.

string The character string from which trailing characters are
removed.
 TIBCO Object Service Broker Shareable Tools

452 |
Resultant Data

They appear in the message log like the following:

23 Irvine Rd
2076 Chappel Dr
335 Princess St
215 Rogers Ave
TIBCO Object Service Broker Shareable Tools

| 453
@PEERSERVERID

Directs remote TIBCO Object Service Broker table accesses to a particular peer
server on a remote TIBCO Object Service Broker system. (TBL)

Table Definition These are the fields within the @PEERSERVERID table:

Usage Notes • On every TIBCO Object Service Broker access to a remote table (that is, when
the LOCATION parameter on the table does not match the name of the local
TIBCO Object Service Broker system), TIBCO Object Service Broker examines
the table @PEERSERVERID on the local system. If the SERVERLOCATION
field in a row in @PEERSERVERID matches the name of the remote TIBCO
Object Service Broker system, the server name in the SERVERID field in that
occurrence is appended to the request before it is sent to the remote system. If
no match is found for the name of the remote TIBCO Object Service Broker
system, the request is sent with the server name DEFAULT0 appended.

• The @PEERSERVERID table is limited to an implementation-defined number
of occurrences (currently 6). Attempting to insert more occurrences than
supported raises the COMMITLIMIT exception; however, issuing a COMMIT
statement does not permit more occurrences to be inserted into the table.

• Supported operations are INSERT, GET, FORALL, REPLACE, and DELETE.

• Selection and ordering are supported.

• Parameter value (PRM) tables on @PEERSERVERID are not supported.

• Subview (SUB) tables on @PEERSERVERID are not supported.

• Triggers on @PEERSERVERID are not supported.

• @PEERSERVERID behaves like a session table in that its content and effects
are local to one TIBCO Object Service Broker session and are not seen by other
users, even if they are sharing a single Execution Environment.

Field Name Ty
p

Sy
n

Le
n

De
c

Ke
y

Or
d

R
q

Descriptio
n

SERVER-LOCATION I C 16 P Location of
remote
server.

SERVERID I C 8 0 Y Name of
remote
server.
 TIBCO Object Service Broker Shareable Tools

454 |
• It is not an error to have invalid or nonexistent system or server names in
@PEERSERVERID.

• If a nonexistent or inactive server name is used, the error is discovered at the
remote system, and a suitable message is returned from that system.

• Only one server name can be used at a given remote system within a single
transaction.

Exceptions

Example The following example illustrates the use of @PEERSERVERID:

 PSIRULE_1;
 _
 _ --
 _ --+-----------
 _ @PEERSERVERID.SERVERLOCATION = 'TORONTO'; | 1
 _ @PEERSERVERID.SERVERID = 'SERVER1'; | 2
 _ INSERT @PEERSERVERID; | 3
 _ @PEERSERVERID.SERVERLOCATION = 'DALLAS'; | 4
 _ @PEERSERVERID.SERVERID = 'DALCICS1'; | 5
 _ INSERT @PEERSERVERID; | 6
 _ GET EMPLOYEES('DALLAS') WHERE EMPNO = 12345; | 7
 _ GET MANAGERS('TORONTO') WHERE EMNO = EMPLOYEES.MANNO; | 8
 _ --

The PSIRULE_1 rule inserts two occurrences into @PEERSERVERID, with remote
system names TORONTO and DALLAS. When the GET on table EMPLOYEES is
executed (action 7), TIBCO Object Service Broker searches the @PEERSERVERID
table and finds the occurrence matching remote system name DALLAS. Server
name DALCICS1 is then appended to the request and the DALLAS system
attempts to use this server to access the EMPLOYEES table.

When the GET on the MANAGERS table is executed (action 8), TIBCO Object
Service Broker searches the @PEERSERVERID table and finds the occurrence
matching the remote system name TORONTO. Server name SERVER1 is then
appended to the request and the TORONTO system attempts to use this server to
access the MANAGERS table.

COMMITLIMIT Maximum number of commits reached.
TIBCO Object Service Broker Shareable Tools

| 455
$PIC

Returns a number in a format specified by a mask. (F)

Invocation string = $PIC(value, mask)

Elements of a Display Mask

A display mask can have the following elements, all of which are optional:

In the following mask: US$-NNN,NNNV.99CR%paid

string On return, contains the masked string. Its syntax is V (variable
length character) with a maximum length of 80.

value Contains the number to be formatted. It cannot be F (float) syntax.

mask Contains a string of digit placeholder characters, special
characters, and message characters. It can be up to 78 characters
long, but cannot contain more than 31 digit placeholders.

Element Description

Basic string A string containing placeholders that determine how
the digits in value appear.

Unconditional left
string

A string prepended to the basic string.

Conditional right
string

A string that is appended to the basic string and
appears only if value is negative.

Unconditional right
string

A string appended to the basic or conditional right
string.

US$- Is the unconditional left string.

NNN,NNNV.99 Is the basic string.

CR Is the conditional right string.

%paid Is the unconditional right string.
 TIBCO Object Service Broker Shareable Tools

456 |
Using this mask, $PIC returns values such as the following:

• $PIC(1234, 'US$-NNN,NNNV.99CR%paid') returns US$ 1,234.00%paid

• $PIC(-12345.6, 'US$-NNN,NNNV.99CR%paid') returns
US$-12,345.60CR%paid

Within a particular mask, any of the four elements can be omitted. The following
sections explain how to use each element.

Basic String

In the basic string, you use digit placeholders, message characters, and the
decimal point placeholder to control how a given value appears. The basic string
begins with the first placeholder and ends with the last placeholder.

Digit Placeholders

Digit placeholders determine how digits in the value are positioned in the
masked string. $PIC uses the following digit placeholders:

Message Characters

A display mask can optionally contain message characters that do not serve as
placeholders and are output as ordinary characters. Characters other than the
digit placeholders are always treated as message characters, with the following
exceptions:

• The characters E and e are reserved characters and cannot be used as message
characters between placeholders.

Placeholder Behavior Examples

9 Displays
leading zeros.

$PIC(12, '999') returns 012

$PIC(1234, '$999,999') returns $001,234

* Displays
leading zeros
as asterisks (*).

$PIC(12, '***') returns *12

$PIC(1234, '$***,***') returns $**1,234

Z Displays
leading zeros
as blanks.

$PIC(12, 'ZZZ') returns 12

$PIC(1234, '$ZZZ,ZZZ') returns $ 1,234

N Displays
leading zeros
as nulls

$PIC(12, 'NNN') returns 12

$PIC(1234, '$NNN,NNN') returns $1,234
TIBCO Object Service Broker Shareable Tools

$PIC | 457
• The characters V and percent sign (%) have specific functions and cannot be
used as message characters between placeholders (refer to the sections below
for more information on their function).

The digit placeholder characters asterisk (*), Z, N, and 9 can, in the following
instances, function as message characters:

For more information on how the dollar sign ($) and the percent sign (%)
characters are used in other elements in the mask, refer to the sections on the
unconditional left and right strings below.

Decimal Point Placeholder

• Use the character V to align decimal digits:

$PIC(23.45, '$NNNV.99') returns $23.45

$PIC(12, '$NNNV,99') returns $12,00

Instance Examples

They precede the first
dollar sign ($) in a mask.

In the mask ‘NZ$AZZ9’, the initial ‘NZ’ is an
ordinary character string, and the ‘ZZ9’ after the
$ are digit placeholders.

$PIC(123, 'NZ$AZZ9') returns NZ$A123

An asterisk (*), Z, or N
follows a different digit
placeholder.

Note 9 is always a digit
placeholder even if it
appears after another
digit placeholder, so an
asterisk (*), Z, or N
following it is treated as a
message character.

In the mask ‘ABCZZNZ’, all three Zs are
placeholders, and the N is treated as an ordinary
character.

$PIC(123, 'ABCZZNZ') returns ABC12N3

Note Any characters after the last digit
placeholder up to either the end of the string or a
percent sign are conditional, and their appearance
depends on the value of the sign holder in the
unconditional left string. Therefore:

$PIC(123, 'ABCZZ9Z') returns ABC123, not
ABC123Z.

Refer to Conditional Right String on page 459.

They follow a percent
sign (%).

In the mask ‘Z99%9’, the second 9 is the last digit
placeholder, and the last 9 is an ordinary character.

$PIC(123, 'Z99%9') returns 123%9
 TIBCO Object Service Broker Shareable Tools

458 |
• If V is placed immediately after the last digit placeholder and value is positive,
no decimal digits from value appear. If value is negative, only a decimal point
appears:

$PIC(12.34, '9999V.') returns 0012

$PIC(-12.34, '9999V.') returns 0012.

• If value contains more digits before the decimal point than the display mask
can accommodate, $PIC fails, as in:

$PIC(123.4, 'NNV.NN')

$PIC(1234, 'ZZZV.99')

• If there are more decimal digits than the mask can accommodate, the decimal
value is truncated:

$PIC(1.68, 'NV.N') returns 1.6

$PIC(1.234, 'NNV.NN') returns 1.23

• Conversely, if there are more placeholders for the decimal digits than there are
decimal digits in value, the remaining placeholders are replaced with zeros, no
matter what the regular replacement character for that placeholder are:

$PIC(3.4, '**V.***') returns *3.400

$PIC(1.23, 'NV.NNNN') returns 1.2300

Basic String Omitted

If the basic string is omitted from a mask, a value of 0 or blank outputs the mask;
any other value causes $PIC to fail.

$PIC(0, 'US$-') returns US$

Unconditional Left String

Use the unconditional left string to prepend message characters to the basic
string. The unconditional left string consists of all characters that precede the first
placeholder, and has two parts, both of which are optional: a character string and
a sign holder.

l Omitting the V can result in incorrect numerical values because the decimal digits
are not aligned.
TIBCO Object Service Broker Shareable Tools

$PIC | 459
Character String

To include in the unconditional left string any characters that ordinarily serve as
placeholders or have special functions, place them before the first placeholders in
the mask. As well, any characters preceding the first dollar sign in a mask are
treated as message characters, except for the percent sign (%) character, which
cannot be used in the unconditional left string. Subsequent dollar signs ($) in a
mask are treated as message characters. For example:

• $PIC(1234, '9V9$9,999V.99') returns 9V9$1,234.00

• $PIC(1234, 'ZZ$Z$ZZZ') returns ZZ$1$234

Sign Holder

Using the sign holder, you can display whether value is positive or negative. The
first positive (+) or negative (-) sign before the first placeholder is the sign holder.
Subsequent positive or negative signs are treated as message characters. The sign
holder follows these rules:

• If the sign holder is positive (+) and the number is negative, the sign holder is
changed to the negative (-).

$PIC(6789, '+*****') returns +*6789

$PIC(-6789, '+*****') returns -*6789

• If the sign holder is negative (-) and the number is positive, the sign holder is
changed to a blank.

$PIC(3456, 'NZ$-*****') returns NZ$ *3456

$PIC(-3456, 'NZ$-*****') returns NZ$-*3456

Conditional Right String

Use a conditional right string to append a set of message characters to the basic
string that appear only when value is negative. For example, this element can be
used to append the characters CR when a credit is due. The conditional right
string consists of all characters after the last digit placeholder, unless a percent
sign (%) marks the start of an unconditional right string. If a percent (%) sign is
present, the conditional right string consists of all characters between the last digit
placeholder and the percent sign, which signals the beginning of the
unconditional right string (refer to Unconditional Right String below). The
conditional right string follows these rules:

• If value is negative, the characters in the conditional right string are appended
to the basic string. The characters CR and AUS are conditional right strings in
the examples below.
 TIBCO Object Service Broker Shareable Tools

460 |
$PIC(-1234, 'CDN$-ZZZZV.ZZCR') returns CDN$-1234.00CR

$PIC (-2345, '-*****AUS') returns -*2345AUS

• If value is positive, the characters in the conditional right string are replaced
with characters that depend on the first placeholder in the basic string:

$PIC(1234, 'CDN$-ZZZZV.ZZCR') returns CDN$ 1234.00

$PIC(2345, '-*****AUS') returns *2345***

$PIC(2345, '-NNNNNAUS') returns 2345

Unconditional Right String

Use the unconditional right string to append characters to the basic string or
conditional right string that always appear regardless of whether value is positive
or negative. The unconditional right string begins with a percent sign (%)
character. Characters that follow a percent sign (%) character appear as message
characters, including all placeholders and characters with special functions.

• $PIC(567.89, 'NNNNV.NNN%VALUE') returns 567.890%VALUE

• $PIC(-7890.3, 'AUS$-ZZZ,ZZZV.ZZCR%PAID') returns
AUS$-7,890.30CR%PAID

See Also The $UNPIC tool, which, given a masked value produced by $PIC and the
display mask that produced it, determines the original value submitted.

Example The following rule formats an input amount so that it appears with commas, a
decimal marker, and a negative sign if necessary, and then displays the formatted
amount in the end message.

 RULE EDITOR ===> SCROLL: P
 DISP_DOLLAR(AMOUNT);
 _ LOCAL AMOUNT2;
 _ ---
 _ --+--------------
 _ AMOUNT2 = $PIC(AMOUNT, '-$NNN,NNN,NNNV.99'); | 1
 _ CALL ENDMSG(AMOUNT2); | 2
 _ ---

If the first placeholder
is… The conditional right string is replaced by…

9 or Z Blanks

N Nulls

An asterisk (*) Asterisks (*)
TIBCO Object Service Broker Shareable Tools

$PIC | 461
• The input value 47569808 is returned as $47,569,808.00.

• The input value -78987.20 is returned as -$78,987.20.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 462

@PRESENTATIONENV

Returns the name of the presentation environment for the current session. (F)

Invocation environment = @PRESENTATIONENV

Example The following rule returns the value of the presentation environment for the
session and returns the value to the end message:

 RULE EDITOR ===> SCROLL: P
 PRESENT_1;
 _ LOCAL ENVIRONMENT;
_ --+--------------
 _ --+--------------
 _ ENVIRONMENT = @PRESENTATIONENV; | 1
 _ CALL ENDMSG('THE PRESENTATION ENVIRONMENT IS ' || | 2
 _ ENVIRONMENT); |
 _ ---

The following message is returned, if the presentation environment is the
workbench:

THE PRESENTATION ENVIRONMENT IS TEXT

environment Returned value of the presentation environment. Its syntax is
C with length 16.

Possible values are TEXT (if the rule is executing from the
workbench) and NONE (if the rule is executing in batch).

| 463
PRINT_DATA

Prints the data of a TIBCO Object Service Broker table. (C)

Invocation CALL PRINT_DATA(tablespec, select, sourceloc)

Usage Notes • If the table specified in tablespec is parameterized, you specify only the data
parameters, not the location parameters.

• If you specify an empty string for select, all the occurrences of the table are
printed.

• The syntax for select is <field name> <relational operator> <value>.

• Specify a value for sourceloc only if the data is located on a different node.

• The output is sent to the printer specified in your user profile.

See Also TIBCO Object Service Broker Managing Security for information about your user
profile.

Exceptions

Example The following rule prints selected data from the table instance
EMPLOYEES(MIDWEST).

 RULE EDITOR ===> SCROLL: P
 PRINT_DATA_1;
_ Library: DOCEXMPL |
_ --+-----
_ --
_ CALL PRINT_DATA('EMPLOYEES(MIDWEST)', 'MGR#=79912', ''); |
_ ---
_ ON NO_PRINT :

tablespec The name of the table or table instance.

select The selection criteria to be used.

sourceloc The name of the node where the data is located.

NO_PRINT The call to PRINT_DATA did not complete. The exception
should be handled by the calling rule.

Further information describing the circumstances of the failure
is in the @OBJECTMSG.MSG field.
 TIBCO Object Service Broker Shareable Tools

464 |
 CALL ENDMSG('TABLE NOT PRINTED BECAUSE ' ||@OBJECTMSG.MSG);
TIBCO Object Service Broker Shareable Tools

| 465
PRINT_DEFN

Prints the definition of a TIBCO Object Service Broker object. (C)

Invocation CALL PRINT_DEFN(object, instance, library, environment, srcloc, parentonly)

Usage Notes • Specify a value for srcloc only if the object is located on a different node.

• Specify a value for parentonly only if the object is composed of one or more
other objects (for example, a report is composed of report tables).

object The TIBCO Object Service Broker object type of the object that
is to be printed. Valid object types are:

• GLOBALFIELD

• LIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

instance The name of the object that is to be printed.

library If the object is a rule, the name of the rules library where the
rule is stored.

environment This argument, although not currently used, must be supplied.
You can enter a null ('') value.

srcloc The name of the node where the object is located.

parentonly Specifies if all the objects or only the parent object should be
printed. Valid values are:
Y – Print only the parent.
N – Print the parent and child objects.
 TIBCO Object Service Broker Shareable Tools

466 |
• The results are printed in the message log and the output is sent to the printer
specified in your User Profile.

Exceptions

Example The following rule prints the definition of a menu that is used in a 3270
environment:

 RULE EDITOR ===> SCROLL: P
 PRINT_DEFN_1;
 _
 _ ---
 _ --+--------------
 _ CALL PRINT_DEFN('MENU', 'SCR_EMPLOYEE', '', '3270', '', | 1
 _ 'N'); |
 _ ---

Results Sent to the Message Log

------------------------ INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 **** Begin to print all definitions for object “SCR_EMPLOYEE” ****
 Begin to print definition for object “SCR_EMPLOYEE” type “MENU”
 Table “SESSION_MENUS” printed
 Table “MENU_ITEMS” printed
 Print definitions for object “SCR_EMPLOYEE” type “MENU” completed

 **** Print all definitions completed ****

PRINT_ERROR Due to an error (for example, lack of security permissions),
the definition cannot be printed.

More information describing the circumstances of the
failure is in the @OBJECTMSG.MSG field.
TIBCO Object Service Broker Shareable Tools

| 467
$PRINTFIELD

Writes the specified string into the current printline. (C)

Invocation CALL $PRINTFIELD(string, pos, length, fill, just)

Usage Notes • The print arguments must be previously set with a call to $SETPRINT or
$RESETPRINT before a call to $PRINTFIELD.

• Use $PUTLINE to output the printline.

Exceptions

string The string to be inserted. Its syntax can be C (fixed-length
character string), V (variable-length character string), or W
(double-byte character).

pos An integer specifying the position at which to insert the string. Its
syntax is B (binary) with length 2.

length An integer specifying the length to which to pad the string. Its
syntax is B with length 2.

fill A printable string specifying the character with which to pad the
string. Its syntax is C with length 1.

just One of:

LEFT or L – Specifies that the string should be left justified.

RIGHT or R – Specifies that the string should be right justified.

CENTER, CENTRE, or C – Specifies that the string should be
centered.

Its syntax is C with length 8.

RANGERROR This exception is raised for one of the following reasons:

pos – is less than or equal to zero.

length – is less than zero.

fill – is not a printable character.

just – is not one of C, CENTER, CENTRE, L, LEFT, R, or
RIGHT.
 TIBCO Object Service Broker Shareable Tools

468 |
Example The following rule prints a string to the message log:

 PRINTFIELD_1;
 _ LOCAL SOURCE_STRING;

_ --+-----------
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ SOURCE_STRING = 'THIS IS THE SOURCE STRING'; | 2
 _ CALL $PRINTFIELD(SOURCE_STRING, 1, 70, '*', 'L'); | 3
 _ CALL $PRINTFIELD('OUTPUT', 13, 6, '', 'C'); | 3
 _ CALL $PUTLINE; | 4
 _ --

Displayed Output for the PRINTFIELD_1 Rule

Using PF2 after executing this rule displays the following screen. The second call
to $PRINTFIELD replaced the word SOURCE from SOURCE_STRING with the
word OUTPUT.

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

Page 1
 THIS IS THE OUTPUT STRING***

ROUTINEFAIL $PRINTFIELD is not preceded by a call to $RESETPRINT or
$SETPRINT.

STRINGSIZE The length of text is greater than the print width (where width is
the page width set by $RESETPRINT or $SETPRINT).
TIBCO Object Service Broker Shareable Tools

| 469
$PRINTLINE

Prints a string. (C)

Invocation CALL $PRINTLINE(text)

Usage Notes • The print arguments must be previously set with a call to $SETPRINT or
$RESETPRINT before a call to $PRINTLINE.

• The length of text must be less than or equal to the width specified by the
$SETPRINT or $RESETPRINT.

• Subsequent output is printed on the next line.

Exceptions

Example The following rule prints a line to the message log:

 PRINTLINE_1;
 _
 _ ---
 _ --+--------------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS LINE IS PRINTED TO THE MESSAGE LOG'); | 2
 _ ---

Displayed Output from $PRINTLINE_1

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P
 ------------------------------ NEW PAGE ------------------------------

text The character string to print. Its syntax can be C (fixed-length
character string), V (variable-length character string), or W
(double-byte character).

ROUTINEFAIL $PRINTLINE is not preceded by a call to $RESETPRINT or
$SETPRINT.

STRINGSIZE The text length exceeds the width specified by $RESETPRINT
or $SETPRINT.
 TIBCO Object Service Broker Shareable Tools

470 |
 Page 1
 THIS LINE IS PRINTED TO THE MESSAGE LOG
TIBCO Object Service Broker Shareable Tools

| 471
PRINTTABLE

Prints a table. (C)

Invocation CALL PRINTTABLE(tablespec, pagelength, pagewidth, media)

Usage Notes • You must declare the local variable MSG. It contains a message indicating if
the table printed successfully or why it did not print successfully.

• Fields that contain raw data (syntax RD) or Unicode data (syntax UN) are
printed as strings of hexadecimal characters.

Exceptions

tablespec A string specifying the name of the table to be printed, including
parameters (if any).

pagelength An integer specifying the number of lines on a page, usually 25 for
a screen or 60 for a page.

pagewidth An integer specifying the number of columns to use on the page.
This value is usually 80 for a screen; it can be greater, as some
printers can handle 132. NOTE: Fields that do not fit within a page
are not printed.

media A string specifying the medium (screen or printer) to which output
is directed. It must be one of:

SCR – Sends output to the screen.

PRT – Sends output to the printer.

NO_PRINT Raised if the table cannot be printed successfully.
 TIBCO Object Service Broker Shareable Tools

472 |
Example The following rule prints the table instance 01 of the EMPLOYEE_EXPENSE table
and displays the result in the message log:

 PRINTTABLE_1;
 LOCAL MSG;

_ --+-------
 _ --+-------
 _ CALL PRINTTABLE('EMPLOYEE_EXPENSE(01)', 60, 132, 'SCR'); | 1
 _ CALL ENDMSG(MSG); | 2
 _ --
 _ ON NO_PRINT :
 _ CALL ENDMSG(MSG);

The end message contains the following:

12:43:23 printed EMPLOYEE_EXPENSE(01)

Output from the PRINTTABLE_1 Rule

Pressing PF2 after executing the rule displays the following screen:

 Printing Table: EMPLOYEE_EXPENSE(01) Page 1.1

 EMPNO LNAME POSITION MGR# DEPTNO MON_EXP
 ------- ---------------------- -------------- ------- ------ -------
 80000 SMYTHE Director 80002 20 2204.95
 80002 ROTERDAM VP 99999 50 1411.90
 80003 CHANG Assoc. Analyst 83020 10 0.00
 80004 GARZA Analyst 80009 30 0.00
 80014 TOWNSEND President & GM 84021 70 2859.02
 80019 PASTARINA Mgr 80033 50 0.00
 80020 CHESSEL Secretary 83020 30 0.00
 80021 TOWENSEND Receptionist 84021 50 0.00
 80024 NAPIER Sales Person 80020 20 377.73
 80033 CANON Programmer 80020 40 0.00
 81000 NELSON Daycare Mgr 80002 60 0.00
 81001 CAREY Secretary 81092 40 0.00
 81003 CHIU VP 81033 40 960.26
 81014 LYNGBAEK Mgr 84021 40 93.45
 81019 KINGSON CEO 81092 50 1381.19
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 473

PROCESS_FCNKEY

Processes the function keys while a screen is being displayed. (C)

Invocation CALL PROCESS_FCNKEY(screen)

Usage Notes The PF keys must be predefined to the table FCNKEYS.

Example The following rule displays a screen called NEW_EMPLOYEE and, using
PROCESS_FCNKEY, processes the function keys while the screen is being
displayed.

• Before you run this rule, you must define the NEW_EMPLOYEE screen and it
must contain a screen table called FCNKEY_SPECS, which has a field called
FCNKEYS. This is where the function keys appear.

• FCNKEY_MSG is a tool that uses the FCNKEYS table to create a string listing
the function keys defined for the screen.

• One of the function keys must invoke the EXIT_DISPLAY rule, which stops
displaying the screen NEW_EMPLOYEE.

 NEW_EMPLOYEE;
 _
 _ ---

_ ---
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE : | 3
 _ CALL PROCESS_FCNKEY('NEW_EMPLOYEE'); |
 _ END; |
 _ ---

screen The name of the screen being displayed.

| 474
PROCESS_TABLE

Provides specific processing for every occurrence in a table that is selected,
ordered, or both selected and ordered. (C)

Invocation CALL PROCESS_TABLE(tablespec, selection, ordering, processrule)

Usage Notes • PROCESS_TABLE sets up a FORALL on the table.

• Calls to PROCESS_TABLE can be nested (that is, processrule can call
PROCESS_TABLE on a different table).

• The syntax for selection is <field name><relational operator><expression>.
For valid expressions, refer to the TIBCO Object Service Broker Programming in
Rules manual.

• The syntax for ordering is direction (that is, ascending or descending) and field
name.

• processrule must not be a function and it must not have arguments.

• processrule and its descendant rules must not reference the following local
variables: TABLE, SELECTION, ORDERING, PROCESSRULE, and
GIVENTABLENAME.

Exceptions

Example In the following examples, the process rule changes the salary of selected
employees.

The first example shows the rule to be processed:

tablespec A string specifying the table name and parameters, if any.

selection A string specifying selection criteria.

ordering A string specifying ordering criteria.

processrule The name of the rule to be called for each occurrence in the table
that satisfies the selection/ordering criteria.

NO_ENTRIES Raised if no occurrences are selected.

PARSER_ERROR Raised if invalid tablespec, selection, or ordering is specified.
 TIBCO Object Service Broker Shareable Tools

PROCESS_TABLE | 475
 RULE EDITOR ===> SCROLL: P
 PROC_EMPLOYEE_R;
 _
 _ ---
_ ---
 _ EMPLOYEE_DEPT.SALARY = EMPLOYEE_DEPT.SALARY * 1.05; | 1
 _ REPLACE EMPLOYEE_DEPT(10); | 2
 _ ---

The second example calls in PROCESS_TABLE:

 RULE EDITOR ===> SCROLL: P
 PROC_EMPLOYEE(SELECTION);
 _
 _ ---
 _ --+--------------
 _ CALL PROCESS_TABLE('EMPLOYEE_DEPT(10)', SELECTION, '', | 1
 _ 'PROC_EMPLOYEE_R'); |
 _ ---

• Typing PROC_EMPLOYEE('SALARY < 500.00') at the EX Execute Rule option
on the workbench increases the salaries of all the employees whose salary is
less than $500.00 in the table EMPLOYEE_DEPT(10).

• Typing PROC_EMPLOYEE('MGR#=79912') at the EX Execute Rule option on the
workbench increases the salaries of all the employees managed by MGR#
79912 in the table EMPLOYEE_DEPT(10).

• Typing PROC_EMPLOYEE('EMP_LNAME LIKE "F*" & MGR# = 80354') at the
EX Execute Rule option on the workbench, increases the salaries of all
employees whose last name starts with F and who are managed by MGR#
80354 in the table EMPLOYEE_DEPT(10).
 TIBCO Object Service Broker Shareable Tools

476 |
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 477

@PROMBINDOBJS

Restores the bind flag settings for the objects updated by @PROMUNBINDOBJS.
(E)

Invocation Do one of the following:

Usage Notes

• @PROMBINDOBJS must be run using a Level-7 userid.

• Any objects which could not be updated are reported in the information log
and the session return code is set to 4.

• You must recycle the Execution Environment after successfully running
@PROMBINDOBJS to pick up the new settings.

See Also TIBCO Object Service Broker Managing Deployment for information about using the
Promotions System.

From the… Move the cursor to the… And…

Administrator’s
workbench

EX execute rule option Type @PROMBINDOBJS
<Enter>

COMMAND prompt Type EX
@PROMBINDOBJS<Enter>

In a multi-user environment, all users are impacted after the tool is executed.
They could experience performance degradation since all bound data must be
rebuilt.

 TIBCO Object Service Broker Shareable Tools

| 478

PROM_MAIN

Invokes directly the Promotion system. (E)

Invocation Do one of the following:

When you execute PROM_MAIN, the main menu of the Promotion system
appears.

Usage Notes The Browse flag at the top of the screen should be set to Y to ensure the data is not
locked.

See Also TIBCO Object Service Broker Managing Deployment for complete information about
using the Promotion system.

From the… Move the cursor to the… And…

Developer’s
workbench

PM promotion option Press Enter

EX Execute Rule option Type PROM_MAIN <Enter>

COMMAND prompt Type EX PROM_MAIN
<Enter>

| 479
@PROMUNBINDOBJS

Stores the current setting of the bind flag for a set of objects and resets the values
to N in the metadata tables. (E)

Invocation Do one of the following:

where scope is the set of objects you want to unbind. Value values are ALL, INSTALLATION, and SYSTEM.

Usage Notes

• Run @PROMUNBINDOBJS prior to applying a change or series of changes to
unbind a set of bound objects. Unbinding objects prior to applying a change
prevents Promotions Systems warning messages associated with bound
objects from being issued. Consequently you will not need to resubmit
changes associated with these types of messages.

• @PROMUNBINDOBJS must be run using a Level-7 userid

• If @PROMUNBINDOBJS fails after only some objects have been updated, you
must run @PROMBINDOBJS to restore the original bind information before
re-running @PROMUNBINDOBJS.

From the… Move the cursor to the… And…

Administrator’s
workbench

EX Execute Rule option Type
@PROMUNBINDOBJS(scope)
<Enter>

COMMAND prompt Type EX
@PROMUNBINDOBJS(scope)
<Enter>

If for scope you specify… The following occurs

ALL Resets the bind flag for all objects which have a
current value of Y or B.

INSTALLATION Reset the bind flag for installation objects only.
These are objects with an AUTHOR not equal to
HURON or HURON2.

SYSTEM Resets the bind flag for system objects only.
These are objects with an AUTHOR equal to
HURON or HURON2.
 TIBCO Object Service Broker Shareable Tools

480 |
• Any objects that could not be updated are reported in the information log and
the session return code is set to 4.

• You must recycle the Execution Environment after successfully running
@PROMUNBINDOBJS to pick up the new settings.

See Also TIBCO Object Service Broker Managing Deployment for information about using the
Promotions System.
TIBCO Object Service Broker Shareable Tools

| 481
PRT_VSCR

Prints the screen fields of a defined screen in a page format, with or without a
mask. (C)

Invocation CALL PRT_VSCR(vscr, page_length, page_width, page_start, media, mask)

Usage Notes The full screen is printed.

Example In this example, PRT_VSCR is called into the PRINT_EMP rule.

 PRINT_EMP;
 _

_ --+--------
 _ --+--------
 _ CALL PRT_VSCR('NEW_EMPLOYEE', 60, 80, '', 'PRT', 'Y'); | 1
 _ CALL SCREENMSG('NEW_EMPLOYEE', 'EMPLOYEE SCREEN PRINTED'); | 2
 _ ---

vscr The name of a defined screen.

page_length The length of the printed page.

page_width The width of the printed page.

page_start The page number that is on the first printed page. It is also the
start number. If a value of '' or N is entered, NEW PAGE prints
across the top, rather than a page number.

media One of:

PRT – Send the print of the screen to the printer.

SCR – Send the print of the screen to the message log.

mask One of:

Y – Print the default mask values, that is, AAAAs for
alphabetic fields and 9999s for numeric fields.

N – Print the screen table fields only.
 TIBCO Object Service Broker Shareable Tools

482 |
FCNKEYS Table

The PRINT_SCREEN rule is defined to PF13 in the FCNKEYS(EMPLOYEE_EXP)
table:

 EDITING TABLE : FCNKEYS(NEW_EMPLOYEE)
 COMMAND ==>
 PF_KEY NAME COMMAND ROUTINE
 ----- ---------------- ---------------- ----------------
 _ PF3 SAVE SAVE_EMP
 _ PF12 EXIT EXIT_DISPLAY
 _ PF13 PRINT PRINT_EMP
TIBCO Object Service Broker Shareable Tools

| 483
PURGELOG_BATCH

Purges the audit log data from the TIBCO Object Service Broker audit log table
and archives it to an external file. (CE)

Invocation Do one of the following:

Where:

Prerequisites Two external resource rules must be set up so that the user can specify the archive
filename and purge the audit log.

See Also TIBCO Object Service Broker Managing Security for more information on this tool.

Constraints • The Execution Environment must be in single user mode if used on z/OS.

• The Data Object Broker must be authorized and be run using Cross Memory
Services (XMS) if used on z/OS.

• External security must be established.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type PURGELOG_BATCH
<Enter>

COMMAND prompt Type EX PURGELOG_BATCH
<Enter>

From a rule Type CALL
PURGELOG_BATCH
(fromdate, todate, file)

From a batch
file

Submit a batch file job that
invokes the
PURGELOG_BATCH tool.

fromdate The start date of the range of audit log data to be purged (Specify
in YYYYMMDD format, for example, 20000101.)

todate The end date of the range of audit log data to be purged (Specify in
YYYYMMDD format, for example, 20000131.)

file The archive filename.
 TIBCO Object Service Broker Shareable Tools

484 |
• Current (that is, today’s) audit logs cannot be purged.

Example Assume an installation is externally secured using ACF2. An authorized user
would define two resource rules, for example, ABCS6B.SPECFILE and
ABC2S6B.PURGELOG. For each of these resource files, a list of user IDs who can
perform the file specification and the purging of the audit log is created.

According to whatever schedule is appropriate to that site, a JCL job that does a
SCHEDULE PURGELOG_BATCH is submitted by users authorized through the
resource rules.
TIBCO Object Service Broker Shareable Tools

| 485
PURGELOG_SCREEN

Specifies the archive file for the audit log data and purges the audit log data after
writing it to the specified archive file. (CE)

Invocation Do one of the following:

Prerequisites @SEC_PURGELOG object set must be enabled in order for the user to be able to
access the PURGELOG_SCREEN utility. Two external security resource rules
must be set up to specify the archive file and purge the audit log successfully.

See Also TIBCO Object Service Broker Managing Security for information on the Audit Log
facility.

Usage Notes • Authorized users of the PURGELOG_SCREEN tool can archive and purge
data from the audit log. Its screen takes a date range and an archive filename,
both of which are required fields. The default date range is given by the date
of last archive up to yesterday’s date. The default filename is the name of the
file used for the last archive.

• To review the portion of the audit log that reflects the date parameters
established on the screen, press PF4, although in general the Audit Log facility
should be used for this purpose.

• Archiving the audit log on a regular basis keeps it from growing to
unmanageable sizes.

Constraints • The Execution Environment must be in single user mode if used on z/OS.

• The Data Object Broker must be authorized and be run using Cross Memory
Services (XMS) if used on z/OS.

• External security must be established.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type PURGELOG_SCREEN
<Enter>

COMMAND prompt Type EX
PURGELOG_SCREEN
<Enter>

From a rule Type CALL
PURGELOG_SCREEN
 TIBCO Object Service Broker Shareable Tools

486 |
• Current (that is, today’s) audit logs cannot be purged.

Example The following screen archives audit log data entered within the specified date
range to the file LOG_ARCHIVE:

 --
 Archive and Purge Audit Log
 --

 Purge dates ranging from: 19991215 to: 20000115

 Archive File: LOG_ARCHIVE___

 PFKEYS: 1=HELP 3=PURGE & EXIT 12=EXIT 4=VIEW ACCESSLOG
TIBCO Object Service Broker Shareable Tools

| 487
$PUTCONTAINER

Places data in a container associated with the specified channel. (C)

Invocation CALL $PUTCONTAINER(channel, container, area, length, fromccsid, datatype)

Example Following is a sample rule:

RULE EDITOR ===> SCROLL: P
C_$PUTCONTAINER(CHANNEL, CONTAINER, TNAME);
_ LOCAL AREA, LENGTH, FROMCCSID, DATATYPE;
_ --
_ ---+----
_ @MAP.ADDRESS = 0; ¦ 1
_ @MAP.SIZE = 80; ¦ 2
_ INSERT @MAP('ENVIRONMENT'); ¦ 3
_ AREA = @MAP.ADDRESS; ¦ 4
_ LENGTH = @MAP.SIZE; ¦ 5
_ GET MAP_CONTAINER(AREA); ¦ 6
_ MAP_CONTAINER.F10 = TNAME; ¦ 7
_ REPLACE MAP_CONTAINER(AREA); ¦ 8
_ CCSID = ''; ¦ 9
_ DATATYPE = ''; ¦ A
_ CALL MSGLOG(¦ B
_ '$PUTCONTAINER(CHANNEL, CONTAINER, AREA, LENGTH, FROMCCSID, '|| ¦

channel The name (1-16 characters) of the channel that owns the container.

container The name (1-16 characters) of the container in which to place data.

area The pointer to an area from which the data is written to the
container.

length A fullword binary value that represents the length of the area from
which to read data.

fromccsid A fullword binary number that represents the Coded Character Set
Identifier (CCSID). The character data to be put into the container
will be converted into this format. For an explanation of CCSIDs,
see the section “Data Conversion With Channels” in the CICS
Application Programming Guide.

datatype The type of data to put into the container. This option applies only
to new containers. The data type of an existing container was
established at creation and cannot be changed. For more
information on data conversion with channels, see the CICS
Application Programming Guide.
 TIBCO Object Service Broker Shareable Tools

488 |
_ 'DATATYPE)'); ¦
_ CALL MSGLOG('Channel name is: ===> ' || CHANNEL); ¦ C
_ CALL MSGLOG('Container name is: ===> ' || CONTAINER); ¦ D
_ CALL MSGLOG('Container content: '); ¦ E
_ CALL MSGLOG(MAP_CONTAINER.F10); ¦ F
_ CALL $PUTCONTAINER(CHANNEL, CONTAINER, AREA, LENGTH, FROMCCSID, ¦ G
_ DATATYPE); ¦
_ --

Following is the MAP table MAP_CONTAINER:

COMMAND==> TABLE DEFINITION

 Table: MAP_CONTAINER Type: MAP Unit: HZS80 IDgen: Y

 Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
 ---------------- - -- --- -- - ---------------- ' ---------------- - -
_ ADDRESS B 4 0 A ' _
_ LOCATION I C 16 0 L ' _
_ ' _
 ------ EXTERNAL ------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
 ---------------- ---- ----- -- ------ - - -- ----- -- - -------------
_ KEY B 4 0 0 P I B 4 0
_ F10 C 80 0 0 C 80 0
_

TIBCO Object Service Broker Shareable Tools

$PUTLINE | 489
$PUTLINE

Prints the current line constructed by $PRINTFIELD. (C)

Invocation CALL $PUTLINE

Usage Notes • Format the printline using $PRINTFIELD.

• When the line is printed, subsequent calls to $PRINTFIELD construct a new
line.

Exceptions

Example The following rule constructs a string using $PRINTFIELD and then prints it to
the message log:

 PUTLINE_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTFIELD(| 2
 _ 'THIS LINE IS PRINTED TO THE MESSAGE LOG', 1, 70, '*', |
 _ 'C'); |
 _ CALL $PUTLINE; | 3
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 Page 1
 ***************THIS LINE IS PRINTED TO THE MESSAGE LOG****************

LOGLIMIT Too much output is sent to the message log.

ROUTINEFAIL $PUTLINE is not preceded by a call to $RESETPRINT or
$SETPRINT.
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 490

QUOTE

Returns a string with single quotation marks around it and doubles any single
quotation marks in the string. (F)

Invocation quoted = QUOTE(string)

Example The following rule adds quotation marks to a string that is passed to MESSAGE.
The quotation marks are needed for the third argument because MESSAGE uses
TOKEN to separate the tokens in this argument. Each token is used to substitute
for a percent sign (%) in the message in the MESSAGES table. Message number 2
in the TABLE table instance is: At %.

By putting quotation marks around the string, it becomes a quoted string.
TOKEN treats a quoted string as one token, and so the entire string substitutes for
the percent sign.

 DISPLAY_MSG2(TABLENAME);
 _ LOCAL TEXTSTRING;
 _ ---
 _ --+--------
 _ TEXTSTRING = 'the TOP of table "' || TABLENAME || '"'; | 1
 _ RETURN(MESSAGE('TABLE', 2, QUOTE(TEXTSTRING))); | 2
 _ ---

If the table name passed to DISPLAY_MSG2 is EMPLOYEE, the message that is
returned is:

At the TOP of table "EMPLOYEE".

quoted String with single quotation marks at the beginning and end.

Single quotation marks in string are changed to two single
quotation marks.

string The character string to which the single quotation marks are
added.

| 491
RANDOM

Returns a random integer greater than or equal to 1 and less than or equal to the
specified limit. (F)

Invocation number = RANDOM(rangelimit)

Usage Notes • The random integer returned is always positive (that is, the absolute value of
the random number is returned).

• If RANDOMSEED is not called, an initial seed is randomly selected.

• If 0 is the rangelimit for RANDOM, it substitutes 1.

Exceptions

Example The following rule generates random salaries for a table of test data:

 GENERATE_DATA;
 _
 _ --
 _ --+-----------
 _ FORALL TEST_EMP_DATA : | 1
 _ TEST_EMP_DATA.SALARY = RANDOM(1000); |
 _ REPLACE TEST_EMP_DATA; |
 _ END; |
 _ --

Sample Data

If you view the table through the Table Browser after executing this rule, you see a
random number in the SALARY field. A sample of the table is shown as follows:

number On return, contains the random number. Its syntax is B (binary)
with length 4.

rangelimit An integer specifying the largest allowable random number. The
rangelimit can be positive or negative if its absolute value is less
than or equal to (2**31)-1. Its syntax is B (binary) with length 4.

OVERFLOW Raised if the absolute value of rangelimit is greater than
(2**31)-1
 TIBCO Object Service Broker Shareable Tools

492 |
BROWSING TABLE : TEST_EMP_DATA
 COMMAND ==>

 EMPNO LNAME SALARY
 _ ------- ---------------------- -------
 _ 80000 SMYTHE 964.00
 _ 80002 ROTERDAM 109.00
 _ 80003 CHANG 34.00
 _ 80004 GARZA 909.00
 _ 80005 HANSON 779.00
 _ 80006 MILMAN 426.00

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 12=END
TIBCO Object Service Broker Shareable Tools

| 493
RANDOMSEED

Sets the starting seed for the random number generator. (C)

Invocation CALL RANDOMSEED(seed)

Usage Notes seed can be 0.

Exceptions

Example The following rule sets the seed for the random number generator and generates
test data for the TEST_EMP_DATA table:

 RULE EDITOR ===> SCROLL: P
 GENERATE_DATA(SEED_NUMBER);
 _
 _ ---
 _ --+--------------
 _ CALL RANDOMSEED(SEED_NUMBER); | 1
 _ FORALL TEST_EMP_DATA : | 2
 _ TEST_EMP_DATA.SALARY = RANDOM(1000); |
 _ REPLACE TEST_EMP_DATA; |
 _ END; |
 _ ---

Sample Data

If you execute this rule and give it a number as an argument, you see random
numbers in the SALARY field when you browse the table with the Table Browser.
You see the same random salaries if you execute the rule again with the same
number as an argument. A sample of the table is shown as follows:

 BROWSING TABLE : TEST_EMP_DATA
 COMMAND ==>

 EMPNO LNAME SALARY
 _ ------- ---------------------- -------

seed An integer specifying the seed value. It can take on positive or
negative values if the absolute value is less than or equal to
(2**31)-1. Its syntax is B (binary) with length 4.

OVERFLOW Raised if the absolute value of seed is greater than (2**31)-1.
 TIBCO Object Service Broker Shareable Tools

494 |
 _ 80000 SMYTHE 156.00
 _ 80002 ROTERDAM 750.00
 _ 80003 CHANG 47.00
 _ 80004 GARZA 60.00
 _ 80005 HANSON 648.00
 _ 80006 MILMAN 773.00

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 12=END
TIBCO Object Service Broker Shareable Tools

| 495
@READDSN

Returns the next record from the current file. (F)

Invocation record = @READDSN

Usage Notes • The file must be previously specified using @OPENDSN.

• You must have read access to the file.

• An attempt to open the file is made with the first read operation.

• If the file specified in the @OPENDSN statement does not exist, @READDSN
fails.

• On the z/OS platform, @READDSN always reads in EBCDIC format.

• On a TIBCO Object Service Broker for Windows system, when the data is
written to the external file, it is subject to the type specification for the file as
given in filespec.dsn or by the DSBIFTYPE Execution Environment parameter.
If the file type is LENGTH_PREFIXED_EBCDIC, the data is left alone and
read as EBCDIC. If the file type is LINE_SEPARATED_ASCII, the data is
converted from ASCII to EBCDIC when read, and back from EBCDIC to
ASCII when written (using @WRITEDSN).

• @READDSN accesses a z/OS file using the data set name. There is no
provision for using a DDNAME with this tool instead of a data set name.

Exceptions

Example The following rule (READDSN_1) specifies an existing file, writes data from the
example table to it, closes the file, re-specifies it, and calls another rule.

 READDSN_1;
 _ LOCAL RECORD;
 _ --

record On return, contains the record that was read. Its syntax can be
either C (fixed-length character string) or V (variable-length
character string).

ENDFILE Raised if the rule attempts to read past the last record.

ROUTINEFAIL Raised if the file is not specified through @OPENDSN or if the
file does not exist.
 TIBCO Object Service Broker Shareable Tools

496 |
 _ --+-----------
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 1
 _ FORALL EMPLOYEE : | 2
 _ CALL @WRITEDSN(EMPLOYEE.LNAME); |
 _ END; |
 _ CALL @CLOSEDSN; | 3
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 4
 _ CALL READFILE; | 5
 _ CALL @CLOSEDSN; | 6
 _ CALL MSGLOG('END OF FILE'); | 7
 _ --

 READFILE;
 _
 _ --
 _ --+-----------
 _ UNTIL ENDFILE: | 1
 _ RECORD = @READDSN; |
 _ CALL MSGLOG(RECORD); |
 _ END; |
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following output:

 ------------------------- INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
 DRABEK
 ROEDER
 HOEGSON
 TERAMURA
 LEES
 MORANG
 CROFTON
SMITH
 SOUZA
 SAUNDERS
 HRODEK
 CANNON...
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 497

REALTIME

Returns a string containing the current time of day. (F)

Invocation string = REALTIME

Usage Notes • The time of day is returned in the format HH:MM:SS; for example, 23:59:59.

• The current time is returned, not the time the transaction started.

Example The following rule determines the current time of day and prints it to the message
log:

 REALTIME_1;
 _ LOCAL TIME;
 _ --
 _ --+-----------
 _ TIME = REALTIME; | 1
 _ CALL MSGLOG('THE CURRENT TIME OF DAY IS: ' || TIME); | 2
 _ --

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE CURRENT TIME OF DAY IS: 07:42:20

string The string containing the current time of day. Its syntax is
C (fixed-length character string) with length 8.

 TIBCO Object Service Broker Shareable Tools

| 498

$REALTIMER

Returns the number of micro-seconds since 1 January 1980. (F)

Invocation microseconds = $REALTIMER

Usage Notes • The value returned is based on the clock set for the CPU (which is generally
set to GMT/UTC) and represents the time elapsed from 1 January 1980
without modification due to time zones. $REALTIMER should therefore be
used only for deltas.

• The current number of microseconds is returned (not the microseconds when
the transaction started).

Example The following rule returns the number of microseconds since 1980 and returns it
to the message log:

 REALTIMER_1;
 _ LOCAL TIME;
 _ --
 _ --+-----------
 _ TIME = $REALTIMER; | 1
 _ CALL MSGLOG('THE NUMBER OF MICROSECONDS IS: ' || TIME); | 2
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following on the screen:

------------------------- INFORMATIONAL MESSAGE LOG -------------------------
 COMMAND ===> SCROLL ===> P
THE NUMBER OF MICROSECONDS IS: 422291030198808

microseconds A number containing the number of micro-seconds. Its
syntax is P (packed decimal) with length 16 and 0 decimals.

| 499
REFMAKER

Rebuilds the global cross reference index. (E)

Invocation Do one of the following:

Where:

Usage Notes • REFMAKER rebuilds the global cross reference index that is used by SEARCH
and CROSSREFSEARCH to answer queries.

• To keep the cross reference index current, REFMAKER should be run after
every promotion. You should plan to run REFMAKER in batch mode with all
users suspended.

• For more information about REFMAKER, refer to TIBCO Object Service Broker
Managing Deployment.

Detranslation of Rules

REFMAKER makes one pass over the specified library, detranslates the rules in
the library, and makes entries into the global cross reference index based on the
following order of evaluation:

• A direct call

• Event rules associated with the specific access type (W, I, R, D, or F)

• Indirection through the field of a table

From the… Move the cursor to the… And…

Administrator’s
workbench

XR Global CrossRef Build
option

Type library <Enter>

Developer’s
workbench

EX Execute Rule option Type REFMAKER(library)
<Enter>

COMMAND prompt Type EX EFMAKER(library)
<Enter>

library The name of the library to be indexed.
 TIBCO Object Service Broker Shareable Tools

500 |
If the table has no data parameters, all the rules in the field are included. If the
table has one data parameter, you must first specify the instance or instances
required in the table @IND_CALLS.

• Functions used within the rule

A global variable on the right-hand side of a statement is included in the index
as a function, unless the variable is also used further on in the same rule, on
the left-hand side, in which case it is not included.

• Screen validation rules associated with a DISPLAY statement

• TIBCO Object Service Broker routines used within the rule
TIBCO Object Service Broker Shareable Tools

| 501
REMAINDER

Returns the remainder from dividing the dividend by the divisor. (F)

Invocation number = REMAINDER(dividend, divisor)

Usage Notes • The values for both dividend and divisor must be positive.

• The returned value is the smallest, non-negative value R such that the term
(dividend - R)/divisor is an integer.

• REMAINDER does not alter the values of either dividend or divisor.

• The function MOD calls REMAINDER and handles negative dividends and
divisors.

Exceptions

Example The following rule determines the remainder of a division operation and prints it
to the message log:

 REMAINDER_1;
 _ LOCAL DIVIDEND, DIVISOR, NUMBER;
 _ --
 _ --+-----------
 _ DIVIDEND = 131313; | 1
 _ DIVISOR = 67; | 2
 _ NUMBER = REMAINDER(DIVIDEND, DIVISOR); | 3
 _ CALL MSGLOG('THE REMAINDER IS: ' || NUMBER); | 4
 _ --

number On return, contains the remainder. Its syntax depends on the
syntax of the dividend and divisor.

dividend The number to be divided. Its syntax can be any of the numeric
syntaxes.

divisor The number to divide by. Its syntax can be any of the numeric
syntaxes.

ZERODIVIDE Raised if the second operand is zero.
 TIBCO Object Service Broker Shareable Tools

502 |
Resulting Output

Pressing PF2 after executing this rule displays the following:

 -------------------- INFORMATIONAL MESSAGE LOG ------------------
 COMMAND ===> SCROLL ===> P
 THE REMAINDER IS: 60
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 503

REMOTELOCATION

Returns the current value of the default remote location. (F)

Invocation loc = REMOTELOCATION

Usage Notes Use the SETREMOTELOC shareable tool to reset the default remote location, if
necessary.

See Also TIBCO Object Service Broker Application Adminstration for information on
distributed data processing.

Example The following rule changes the default remote location, if it is not already the
value required:

 RULE EDITOR ===> SCROLL: P
 CHANGE_LOCATION(VALUE);
 _
 _ ---
 _ VALUE = REMOTELOCATION; | Y N
 _ --+--------------
 _ CALL SETREMOTELOC(VALUE); | 1
 _ CALL ENDMSG('THE LOCATION IS ' || VALUE); | 1 2
 _ ---

loc The current default remote location for distributed data
processing.

| 504
$RESETPRINT

Resets the output arguments. (C)

Invocation CALL $RESETPRINT(length, width, page_number, media)

Usage Notes • Use $SETPRINT to initialize the print arguments.

• If a data set name is specified for media, the data set must be pre-allocated.

• Control characters are emitted only if media is set to PRT. Control characters
can be included in the output to a data set if PRT is redirected to a data set (for
example, by specifying a file under the Print Parameters section of the User
Profile option on the workbench).

length An integer specifying the number of lines per page or screen.
Valid values are greater than or equal to 1 and less than or
equal to 32767. Its syntax is B (binary) with length 2.

width An integer specifying the number of columns per page or
screen. Valid values are greater than or equal to 1 and less than
or equal to 256. Its syntax is B (binary) with length 2.

When media is set to SCR, the width must be less than or equal
to 255.

page_number An integer specifying the page number that appears on the
subsequent page. Valid values are greater than or equal to 1
and less than or equal to 32767. If page_number is zero, no page
number is printed. Its syntax is B (binary) with length 2.

media One of:

PRT – Specifies that output should be directed to the printer.

SCR – Specifies that output should be directed to the screen.

filename – Specifies that output is to be directed to the named
file.

'' – Indicates that the media is to remain as previously set.

Its syntax is C (fixed-length character string), with length 54.
 TIBCO Object Service Broker Shareable Tools

$RESETPRINT | 505
Exceptions

Example The following rule sets the print arguments using $RESETPRINT and prints a line
to the message log:

 RESETPRINT_1;
 _
 _ --
 _ --+-----------
 _ CALL $RESETPRINT(5, 40, 10, 'SCR'); | 1
 _ CALL $PRINTLINE('THIS LINE IS PRINTED AT THE NEW SETTINGS' | 2
 _);
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P

 --------------- NEW PAGE ---------------

 Page 10
 THIS LINE IS PRINTED AT THE NEW SETTINGS

ROUTINEFAIL This exception is raised for one of the following reasons:

length – Is less than or equal to zero.

width – Is less than or equal to zero, or is greater than 256.

page_number – Is less than zero.

media – Is a number or is a partitioned data set with no
member specified.
 TIBCO Object Service Broker Shareable Tools

| 506
RESETXPARM

Resets overrides on server parameters or on default field values set in the Table
Definer. (C)

Invocation CALL RESETXPARM(component, entity, parm name, location)

Usage Notes This function is valid only for external DBMS table types.

Server Parameters and Fields

The following are the server parameters or field values that can be reset:

component The scope of the reset, either TABLETYPE or TABLENAME.

TABLETYPE – indicates that the values are reset for all tables of
this type.

TABLENAME – indicates that the values are reset only for this
table name.

entity The table type or table name, depending on component.

parm name A valid parameter name as defined in @@SERVERPARMS(tabletype)
and listed in Server Parameters and Fields below, or a valid field
name defined in the Table Definer and listed in Server Parameters
and Fields below.

location The physical location of the table; the Data Object Broker where
the external DBMS resides.

Table
Type Name Parameter

or Field
Default
Value

Maximum
Value Length

IDM SERVERID Parameter DEFAULT 8

DBNAME Field 8

READY_MODE Field SR 2

OPTIMIZEUPDATE Field N 1

USERSUBSCHEMA Field 8
 TIBCO Object Service Broker Shareable Tools

RESETXPARM | 507
Example The following statement resets the server ID for all tables of type IDM
(IDMS/DB) to the Table Definer default value:

CALL RESETXPARM('TABLETYPE', 'IDM', 'SERVERID', '');

IMS SERVERID Parameter DEFAULT 8

SERVERTYPE Parameter IMS 8

PSBNAME Parameter 8

DBNAME Field 8

OPTIMIZEUPDATE Field N 1

ADA SERVERID Parameter DEFAULT 8

DAT SERVERID Parameter DEFAULT 8

DB2 SERVERID Parameter DEFAULT 8

SERVERTYPE Parameter DB2 8

204 SERVERID Parameter DEFAULT 8

SLK SERVERID Parameter DEFAULT 8

Table
Type Name Parameter

or Field
Default
Value

Maximum
Value Length
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 508

RETURN_CODE

Returns the return code from the last call of a TIBCO Object Service Broker
external routine. (F)

Invocation code = RETURN_CODE

Usage Notes • RETURN_CODE should be called immediately after the routine under
consideration.

• A returned value of 0 always indicates a successful operation.

See Also TIBCO Object Service Broker for z/OS External Environments for information about
using external routines.

code On return, contains the return code. Its syntax is B (binary) with
length 4.

 TIBCO Object Service Broker Shareable Tools

| 509

RETURN_MESSAGE

Returns the system error message whenever an exception is raised.
RETURN_MESSAGE is a low-level tool that must be called immediately after an
exception is trapped. (F)

Invocation string = RETURN_MESSAGE

Usage Notes • RETURN_MESSAGE returns the system error message that is set whenever
an exception is raised. It is used to obtain the system error message whenever
a table access or a routine raises an exception. A routine is a low-level
shareable tool that is not written in the rules language.

• RETURN_MESSAGE should not be used to obtain a message when a tool
written in rules raises an exception.

• The system message is set to the empty string ('') if the operation is successful.

Example The following rule returns the system message from the system exception
GETFAIL. Notice the use of the local variable string. This code ensures that
RETURN_MESSAGE is called immediately after the exception is trapped.

 RETURN_MESSAGE_1;
 _ LOCAL STRING;
 _ --
 _ --+-----------
 _ GET EMPLOYEE WHERE EMPNO > 90000; | 1
 _ --
 _ ON ACCESSFAIL:
 _ STRING=RETURN_MESSAGE;
 CALL ENDMSG(STRING);

string On return, contains the return message. Its syntax is
V (variable-length character string) with length 258.

 TIBCO Object Service Broker Shareable Tools

| 510

RETURN_SYSMSG

Returns the last $SYSCALL system error message when an exception is raised.
RETURN_SYSMSG is a low-level tool that must be called immediately after an
exception is trapped. (F)

Invocation string = RETURN_SYSMSG

Usage Notes • RETURN_SYSMSG returns the last $SYSCALL system error message that is
set when an exception is raised. It is used to obtain the system error message
when a routine raises an exception. A routine is a low-level shareable tool that
is not written in the rules language.

• RETURN_SYSMSG should not be used to obtain a message when a tool
written in rules raises an exception.

• If the operation is successful, the system message is set to an empty string ('').

Example The following rule returns the system message from the system exception
ROUTINEFAIL. Notice the use of the local variable string. This code ensures that
RETURN_SYSMSG is called immediately after the exception is trapped.

 RETURN_MESSAGE_1;
 _ LOCAL STRING;
 _ --
 _ --+-----------
 _ CALL $LISTPDS(PDS, PDSBUFF, MEMBER); | 1
 _ --
 _ ON ROUTINEFAIL:
 _ STRING=RETURN_SYSMSG;
 CALL ENDMSG(STRING);

string On return, contains the return message. Its syntax is
V (variable-length character string) with length 128.

 TIBCO Object Service Broker Shareable Tools

| 511

RMANAGE_REQUESTS

Manages change requests for systems where the source system is remote to the
target system. (E)

Invocation Do one of the following:

When you execute the RMANAGE_REQUESTS rule, the first panel for
RMANAGE_REQUESTS appears.

Usage Notes • If RMANAGE_REQUESTS is executed, it must be executed with the BROWSE
option set to Y.

• From the target system you can apply change requests that are extracted from
your source system. You can also back out change requests that were applied
previously.

See Also TIBCO Object Service Broker Managing Deployment for complete information about
administering the Promotion system.

From the… Move the cursor to the… And…

Administrator’s
workbench

PR Remote Promotion
Admin option

Press Enter

EX Execute Rule option Type RMANAGE_REQUEST
<Enter>

COMMAND prompt Type EX
RMANAGE_REQUEST
<Enter>

 TIBCO Object Service Broker Shareable Tools

| 512

ROUND

Returns the specified value rounded to the nearest integer. (F)

Invocation number = ROUND(value)

Exceptions

Example The following rule rounds a number and prints the original number and the
rounded number to the message log:

 ROUND_1;
 _ LOCAL SOURCE_NUM, ROUNDED_NUM;
 _ --
 _ --+-----------
 _ SOURCE_NUM = 1234.5678; | 1
 _ ROUNDED_NUM = ROUND(SOURCE_NUM); | 2
 _ CALL MSGLOG('THE ROUNDED NUMBER IS: ' || ROUNDED_NUM); | 3
 _ CALL MSGLOG('THE SOURCE NUMBER IS STILL: ' || SOURCE_NUM); | 4
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE ROUNDED NUMBER IS: 1235
 THE SOURCE NUMBER IS STILL: 1234.5678

number On return, contains the number rounded to the nearest integer. Its
syntax is B (binary) with length either 4 or 12.

value The number to be rounded. Its syntax can be any of the numeric
syntaxes.

RANGERROR Raised if the result is not between -(2**95) and (2**95)-1.

| 513
$RPTIMMEDIATE

Sends the records to the output as they are read, without sorting. (C)

Invocation CALL $RPTIMMEDIATE(reportname, media)

Usage Notes • The call must be placed before the first insert to the body report table.

• Only one immediate report can be sent to an output medium at a time.

• $RPTIMMEDIATE is ignored if the report definition requires more than one
pass over the report tables, that is, if sorting is required or if there are derived
fields.

• The call to $RPTIMMEDIATE prepares the report for printing. It must be
issued before each call to $RPTPRINT for which it is to apply.

• $RPTPRINT must be called to send the prepared output to be printed. It turns
off $RPTIMMEDIATE processing after it completes.

Example The following rule sends a report to the message log:

RPTIMMEDIATE_1;
 _
 _ --
 _ --+-----------
 _ CALL $RPTIMMEDIATE('EMPLOYEE_RPT','SCR'); | 1
 _ FORALL EMPLOYEE: | 2
 _ EMPL_RPT.* = EMPLOYEE.*; |
 _ INSERT EMPL_RPT('EMPLOYEE_RPT'); |
 _ END; |
 _ CALL $RPTPRINT('EMPLOYEE_RPT','SCR'); | 3
 _ --

reportname The name of the report to be printed. Its syntax is
C (fixed-length character string) with length 16.

media One of:

PRT – Direct output to the printer.

SCR – Direct output to the screen.

filename – Direct output to the named file.

Its syntax is V (variable-length character string) with length 56.
 TIBCO Object Service Broker Shareable Tools

514 |
Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG

 COMMAND ===> SCROLL ===> P

 Employees by Department Page 1

 LNAME EMPNO DEPTNO
 ---------------------- ------- ------
 SMYTHE 80000 20
 ROTERDAM 80002 50
 CHANG 80003 10
 GARZA 80004 30
 TOWNSEND 80014 70
 PASTARINA 80019 50
 CHESSEL 80020 30
 TOWENSEND 80021 50
 NAPIER 80024 20
 CANON 80033 40
 NELSON 81000 60
 CAREY 81001 40
 CHIU 81003 40
 LYNGBAEK 81014 40
TIBCO Object Service Broker Shareable Tools

| 515
$RPTOCCLIMIT

Limits the number of occurrences used to generate the report. (C)

Invocation CALL $RPTOCCLIMIT(reportname, occlimit)

Usage Notes • Only the specified number of occurrences are used and the output for the
report is based on this limited number of occurrences.

• You can specify selection. The report then contains only the specified number
of occurrences that meet the selection criteria.

Example The following rule uses a limited number of occurrences and sends the results to
the message log:

 RULE EDITOR ===> SCROLL: P
 RPTOCCLIMIT_1;
 _
 _ ---
 _ --+--------------
 _ CALL $RPTOCCLIMIT('EMPLOYEE_RPT', 4); | 1
 _ FORALL EMPLOYEE WHERE DEPTNO >= 30 : | 2
 _ EMPL_RPT.* = EMPLOYEE.*; |
 _ INSERT EMPL_RPT('EMPLOYEE_RPT'); |
 _ END; |
 _ CALL $RPTPRINT('EMPLOYEE_RPT', 'SCR'); | 3
 _ ---

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P
 ====NEW PAGE FOR REPORT "EMPLOYEE_RPT"================================
 Employees by Department Page 1

 LNAME EMPNO DEPTNO
 ---------------------- ------- ------

reportname The name of the report to be printed. Its syntax is
C (fixed-length character string) with length 16.

occlimit The number of occurrences to be used by the report. Its syntax
is B (binary) with length 4.
 TIBCO Object Service Broker Shareable Tools

516 |
 GARZA 80004 30

 PASTARINA 80019 50
 ROTERDAM 80002

 TOWNSEND 80014 70
TIBCO Object Service Broker Shareable Tools

| 517
$RPTOVERLAP

Designates the report tables or report fields that are not to be printed on the
overlapping page of a merged report. (C)

Invocation CALL $RPTOVERLAP(report, reporttable, reportfield, blankoverlap)

Usage Notes • If a report table is specified, and not a report field, the blankoverlap argument
applies to the title rows of the entire report table.

• Multiple calls to $RPTOVERLAP can be made in each transaction.

Example The following example rule merges two reports, defines $RPTPARMS to provide
an overlapping page, and deletes the report fields $RPTDATE and $PAGE from
the resulting overlapping page:

RPTOVERLAP_1;
 _
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE_USER('USR40'): | 1
 _ SAL_SUM2_RT.* = EMPLOYEE_USER.*; |
 _ INSERT SAL_SUM2_RT('SALARY_SUM2'); |
 _ CALL COMMIT_TEST; |
 _ END; |
 _ FORALL EMPLOY_DEPT_USER(10, 'USR40'): | 2

report The name of the report to be printed. Its syntax is
C (fixed-length character string) with length 16.

reporttable The name of the report table to which the attribute defined in
the blankoverlap argument applies. Its syntax is C with length 16.

reportfield The name of the report field on a title row to which the
attribute defined in the blankoverlap argument applies. Its syntax
is C with length 16.

blankoverlap This argument is used to override a blankoverlap attribute
defined in a report table definition. It is also used to override a
previous call to $RPTOVERLAP within the existing
transaction. Valid values are:

Y – Blanks out the titles of the report table or blank out the
report field on the overlap page.

N – Keeps the report table or report field on the overlap page.
 TIBCO Object Service Broker Shareable Tools

518 |
 _ DEPTNO_SALARY_RT.* = EMPLOY_DEPT_USER.*; |
 _ INSERT DEPTNO_SALARY_RT('DEPTNO_SALARY'); |
 _ CALL COMMIT_TEST; |
 _ END; |
 _ CALL $RPTOVERLAP('DEPT_SALARY','DEPT_SALARY_RT', | 3
 _ '$RPTDATE', 'Y'); |
 _ CALL $RPTOVERLAP('DEPT_SALARY','DEPT_SALARY_RT', | 4
 _ '$PAGE', 'Y'); |
 _ CALL $RPTPRINT('SALARY_SUM2', 'SCR'); | 5
 _ CALL $RPTPARMS('DEPT_SALARY', '', '', 'N', ''); | 6
 _ CALL $RPTPRINT('DEPT_SALARY','SCR'); | 7
 _ ---
 _ ON ERROR :
 CALL ENDMSG(GET_ERRMSG(RETURN_MESSAGE));

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 Employee/Salary Report by Department 1
 As of MAY 24/00

 Department # Department Name Total Salary
 50 EDUCATION 1385.00
 70 PUBLICATIONS 1370.00

 MANAGER:JOHN DUBINSKY
 DEPTNAME:EDUCATION

 NAME SALARY
 ------------------ ----------------
 STEVENSON 700.00
 DHILLON 685.00

 DEPTNAME:PUBLICATIONS

 CROFTON 675.00
 POIRIER 695.00

 GRAND TOTAL 2765.00

 Personnel Department
 Internal Confidential
TIBCO Object Service Broker Shareable Tools

| 519
$RPTPARMS

Controls explicitly the physical output of a report. (C)

Invocation CALL $RPTPARMS(reportname, length, width, eject, pagenumber)

Usage Notes • The output contains only the fields that fall within the parameters given. The
rest of the data is truncated.

• A number specified in pagenumber overrides the default page numbering.

Example The following rule prints the report as specified:

 RPTPARMS_1;
 _
 _ --
 _ --+-----------
 _ CALL $RPTPARMS('EMPLOYEE_RPT',10, 25, 'Y', ''); | 1
 _ FORALL EMPLOYEE: | 2
 _ EMPL_RPT.* = EMPLOYEE.*; |

reportname The name of the report to be printed.

Its syntax is C (fixed-length character string), with length 16.

length An integer specifying the physical page length, in number of
lines.

width An integer specifying the physical page width, in number of
characters.

eject Enter one of the following values:

Y – Specifies that a new page should be started for this report.
This applies when more than one report is printed in the same
transaction.

N – Specifies that a new page should not be started for this
report. This applies when more than one report is printed in
the same transaction.

pagenumber Enter one of the following values:
Positive integer – Specifies the start page number to be used if
more than one report is printed in a transaction.
'' – Two single quotes indicate that the page numbers are to
run consecutively through all the reports.
 TIBCO Object Service Broker Shareable Tools

520 |
 _ INSERT EMPL_RPT('EMPLOYEE_RPT'); |
 _ END; |
 _ CALL $RPTPRINT('EMPLOYEE_RPT','SCR'); | 3
 _ --

Resulting Output

Pressing PF2 after executing the rule displays the following screen:

LNAME

 CHANG

 NAPIER
 SMYTHE

 CHESSEL
 GARZA

 CANON
 CAREY
 CHIU
 LYNGBAEK

 KINGSTON
 PASTARINA
 ROTERDAM
 TOWENSEND

 NELSON

 TOWNSEND
TIBCO Object Service Broker Shareable Tools

| 521
$RPTPRINT

Prints a report to the medium specified. (C)

Invocation CALL $RPTPRINT(reportname, media)

Usage Notes • Output is printed after the transaction is completed.

• $RPTPRINT clears the data from the report tables used in a report after the
report is printed. You must insert data into the report tables before every call
to $RPTPRINT.

Example The following rule sends a report to the message log:

 RPTPRINT_1;
 _
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE: | 1
 _ EMPL_RPT.* = EMPLOYEE.*; |
 _ INSERT EMPL_RPT('EMPLOYEE_RPT'); |
 _ END; |
 _ CALL $RPTPRINT('EMPLOYEE_RPT','SCR'); | 2
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 ====NEW PAGE FOR REPORT "EMPLOYEE_RPT"================================
 Employees by Department Page 1

reportname The name of the report to be printed. Its syntax is
C (fixed-length character string) with length 16.

media One of:

PRT – Direct output to the printer.

SCR – Direct output to the screen.

filename – Direct output to the named file.

Its syntax is V (variable-length character string) with length 56.
 TIBCO Object Service Broker Shareable Tools

522 |

 LNAME EMPNO DEPTNO
 ---------------------- ------- ------
 CHANG 80003 10

 NAPIER 80024 20
 SMYTHE 80000

 CHESSEL 80020 30
 GARZA 80004

 CANON 80033 40
 CAREY 81001
 CHIU 81003
 LYNGBAEK 81014
TIBCO Object Service Broker Shareable Tools

| 523
$RPTSKIPLINES

Controls explicitly the spacing of a report. (C)

Invocation CALL $RPTSKIPLINES(reportname, reporttable, element, linesbefore, linesafter)

Usage Notes • If reporttable is specified as an empty string (''), the spacing applies to the value
specified for element.

• If element is specified as an empty string (''), the spacing applies to either before
or after the entire reporttable. If the element that is specified does not exist in the
report, the specification is ignored.

• If reporttable and element are both specified as an empty string (''), the spacing
applies either before or after the entire report.

Example The following rule adds spaces before and after the title and heading elements of
the report table DEPT_EXPENSE_BD. A call to $RPTSKIPLINES is made for each
explicit modification to the report table.

reportname The name of the report that is to be printed. Its syntax is
C (fixed-length character string) with length 16.

reporttable The name of the report table or break table to which the
spacing applies. An asterisk (*) means all report tables. Its
syntax is C with length 16.

element The type of element to which the spacing applies. Valid values
are:

T – All title rows.

H – All heading rows.

R – Each occurrence.

* – All elements in the report or report table.

Its syntax is C with length 1.

linesbefore The number of lines to insert before the element. Its syntax is B
(binary) with length 2.

linesafter The number of lines to insert after the element. Its syntax is B
with length 2.
 TIBCO Object Service Broker Shareable Tools

524 |
 RULE EDITOR ===> SCROLL: P
 DEPT_EXPENSE_SKP;
 _
 _ ---
 _ --+--------------
 _ FORALL EMPLOYEE_EXPENSE WHERE MONTH = '2000-05-01' : | 1
 _ DEPT_EXPENSE_BD.* = EMPLOYEE_EXPENSE.*; |
 _ DEPT_EXPENSE_BD.MONTH = '2000-05-01'; |
 _ INSERT DEPT_EXPENSE_BD('DEPT_EXPENSE_RP'); |
 _ END; |
 _ CALL $RPTSKIPLINES('DEPT_EXPENSE_RP', 'DEPT_EXPENSE_BD', | 2
 _ 'T', 3, ''); |
 _ CALL $RPTSKIPLINES('DEPT_EXPENSE_RP', 'DEPT_EXPENSE_BD', | 3
 _ 'T', '', 3); |
 _ CALL $RPTSKIPLINES('DEPT_EXPENSE_RP', 'DEPT_EXPENSE_BD', | 4
 _ 'H', '', 2); |
 _ CALL $RPTPRINT('DEPT_EXPENSE_RP', 'SCR'); | 5
 _ ---
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 525

$RULE_EXISTS

Checks whether a rule with the given name would be a candidate for execution.
The rule can be a rule in the current search path, a TIBCO Object Service Broker
routine, or an external routine with an available and executable load module. (F)

Invocation result = $RULE_EXISTS(rulename)

Exceptions None.

Example The following example uses $RULE_EXISTS to check whether a rule or routine
exists and put out an appropriate message.

 EXISTS(NAME);
 - LOCAL T;

 - $RULE_EXISTS(NAME) = 'Y'; | Y N
 --+-------------------
 - T = ''; | 1
 - T = 'not '; | 1
 - T = 'Rule or routine "' || NAME || '" is currently '|| T | 2 2
 - || 'available for execution.'; |
 - CALL ENDMSG(T); | 3 3

result The value returned is either:

Y – The rule exists.

N – The rule does not exist.

rulename The name of the rule or routine that you want to check.

| 526
$RULENAME

Retrieves the name of a rule from the current execution stack. (F)

Invocation result = $RULENAME(level, transactioncount)

Usage Note $RULENAME first locates the transaction level specified by transactioncount and
then locates the rule specified by level.

result The name of a rule. This is a 16-byte identifier of type
character.

level The rule nesting level in relation to the current rule. For
example, the rule that calls $RULENAME is at level 0. In
other words, if RuleA calls RuleB and RuleB calls
$RULENAME, then, in RuleB, to learn the name of the rule
that called $RULENAME (RuleB), use a level value of 0;
and to learn the name of the rule that called RuleB
(RuleA), use a level value of 1 because it is 1 level higher
than RuleB. A value of -1 indicates the maximum value.

This argument is binary, two bytes long, with no decimal
places.

transactioncount The transaction nesting level in relation to the current
transaction. For example, the transaction that contains the
rule that calls $RULENAME is at transaction level 0, for
the purposes of this tool. In other words, if RuleA of
TransactionA starts TransactionB and RuleB of
TransactionB calls $RULENAME, then, in RuleB, to learn
the name of the rule that called $RULENAME (RuleB), use
a transaction value of 0; and to learn the name of the rule
that started TransactionB (RuleA), use a transaction value of
1 because it is 1 level higher than TransactionB. A value of
-1 indicates the maximum value.

This argument is binary, two bytes long, with no decimal
places.
 TIBCO Object Service Broker Shareable Tools

$RULENAME | 527
Exceptions

Examples Rules

A new transaction starts and this is the first rule:

 RULE EDITOR ===> SCROLL: P
TOP_TOP_RULE;
_
_ ---
_ --+--------------
_ ... |
_ EXECUTE PREV_TOP_RULE; | 1
_ ... |

That first rule starts a new transaction and this is its first rule:

 RULE EDITOR ===> SCROLL: P
PREV_TOP_RULE;
_
_ ---
_ --+--------------
_ ... |
_ CALL PREV_RULE1; | 1
_ ... |

These are the second and third rules in this transaction:

 RULE EDITOR ===> SCROLL: P
PREV_RULE1;
_
_ ---
_ --+--------------
_ ... |
_ CALL PREV_RULE2; | 1
_ ... |

 RULE EDITOR ===> SCROLL: P
PREV_RULE2;

RANGERROR Signaled if the rule stack is exhausted before the desired level or
transactioncount is reached.

In our example below, a transactioncount of 2 with a level of 2
would signal a RANGERROR exception because there are not
two rules in the transaction two up from the one where
$RULENAME is called.
 TIBCO Object Service Broker Shareable Tools

528 |
_
_ ---
_ --+--------------
_ ... |
_ EXECUTE TOP_RULE; | 1
_ ... |

That third rule starts a third transaction and this is its first rule:

 RULE EDITOR ===> SCROLL: P
TOP_RULE;
_
_ ---
_ --+--------------
_ ... |
_ CALL RNAME_CALLER; | 1
_ ... |

These are the second and third rules of this last transaction:

 RULE EDITOR ===> SCROLL: P
RNAME_CALLER;
_
LOCAL LEVEL, TRAN, DESC;
_ ---
_ --+--------------
_ DESC = ' IS THE NAME OF THIS RULE'; ¦ 1
_ CALL RNAME(0, 0, DESC); ¦ 2
_ DESC = ' IS WHO CALLED THIS RULE'; ¦ 3
_ CALL RNAME(1, 0, DESC); ¦ 4
_ DESC = ' IS THE TOP RULE FOR THIS TRANSACTION'; ¦ 5
_ CALL RNAME(-1, 0, DESC); ¦ 6
_ DESC = ' IS THE TOP RULE FOR THE PREVIOUS TRANSACTION'; ¦ 7
_ CALL RNAME(-1, 1, DESC); ¦ 8
_ DESC = ' IS THE SECOND LAST RULE FOR THE PREV. TRANS.'; ¦ 9
_ CALL RNAME(1, 1, DESC); ¦ A
_ DESC = ' IS THE TOP RULE FOR THE TOP TRANSACTION'; ¦ B
_ CALL RNAME(-1, -1, DESC); ¦ C
_ ---

 RULE EDITOR ===> SCROLL: P
RNAME(LEVEL, TRAN, DESC);
_
_ ---
_ --+--------------
_ CALL MSGLOG($RULENAME(LEVEL, TRAN) || DESC); | 1
_ ---
_ ON RANGERROR :
_ CALL MSGLOG('RANGERROR LEVEL ' || LEVEL || ' ' || TRAN
_ || ' IS INVALID');
TIBCO Object Service Broker Shareable Tools

$RULENAME | 529
Output

 --------------------------- INFORMATION LOG ----------------------------
 COMMAND ===> SCROLL ===> P
 RNAME IS THE NAME OF THIS RULE
 RNAME_CALLER IS WHO CALLED THIS RULE
 TOP_RULE IS THE TOP RULE FOR THIS TRANSACTION
 PREV_TOP_RULE IS THE TOP RULE FOR THE PREVIOUS TRANSACTION
 PREV_RULE1 IS THE SECOND LAST RULE FOR THE PREV. TRANS.
 SESSMGR IS THE TOP RULE FOR THE TOP TRANSACTION

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT FIND 12=EXIT 13=PRINT 9=RECALL

Explanation

$RULENAME(0,0) returns the name of the rule invoking $RULENAME.

$RULENAME(1,0) returns the name of the rule calling the rule invoking
$RULENAME. If this is issued in the first rule in a trigger, it returns the name of
the rule causing the trigger to be entered.

$RULENAME(-1,0) returns the name of the top rule at the current transaction
level.

$RULENAME(-1,1) returns the top rule at the previous transaction level.

$RULENAME(1,1) returns the first rule up the call stack for the previous
transaction.

$RULENAME(-1,-1) returns the name of the top rule at the top transaction level.

The result of calls to $RULENAME(-1,1) and $RULENAME(-1,-1) is affected by:

• Whether the application is being run from the workbench or from a batch job

• The value of the ACTION parameter (C, E, or T)
 TIBCO Object Service Broker Shareable Tools

530 |
See Also TIBCO Object Service Broker Programming in Rules for information about
transaction processing. (Levels as used in TIBCO Object Service Broker
Programming in Rules are different from the use of the levels argument for this tool.)
TIBCO Object Service Broker Shareable Tools

| 531
RULEPRINTER

Prints a rule or prints an application structure using the root rule as the base. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you supply a value for the rule, the rule is sent to the printer. If you do not
supply a value, the Rules Printer screen appears.

• A print tree does not extend to the descendants of entry-level or validation
rules; you must produce a separate print tree for every rule that is listed as
entry-level or validation.

The Rules Printer Screen

The following sections describe the Rules Printer screen.

Rules Printer Screen Illustrated

 Print Rule Utility
 Library: DOCMSGS2 Wednesday, Mar 15, 2000
 Print Destination: Hardcopy Y else Message Log
 or File:
 Print Rule List
 Sel:
 Name Unit Modified Print Application Structure
 - ---------------- -------- ----------
 _ BROWSE_TBL USR40 2000-06-11 Root rule:

 Full Doc with tree (Y/N): N
 Detailed prt options (Y/N): N

 Specify parameterized tables

From the… Move the cursor to the… And…

Developer’s
workbench

PR print rules option Type rule <Enter>

EX Execute Rule option Type RULEPRINTER <Enter>

COMMAND prompt Type PR <Enter>

rule The name of the rule to be printed.
 TIBCO Object Service Broker Shareable Tools

532 |
 used in indirect references
 in the area at the bottom.
 Use the form t(a,b)
 Scroll to use as many lines
 as needed.
 --------------------- Tables for Indirect References ---------------------

 PFKEYS: 2=LOGS ENTER=SEL LST 12=EXIT 3=END 4=PRT RULES 5=PRT TREE 6=PRT XREF

Header Fields

The following attributes are defined to the fields in the top portion of the screen:

LIBRARY The library you are presently using appears here by default. To
view or access another library, enter a new value to this field.
To view the rules in the specified library, press Enter.

PRINT

DESTINATION

The destination is one of:

Hardcopy – Y (yes) is entered by default. It can be changed to
N (no) or blank if the information is to be sent to the message
log or a file.

Message Log – If hardcopy is set to N or blank and no file is
provided, the output is sent to the message log.

File – Enter a filename where the rules are to be printed. If the
name in the filename field is a z/OS data set, it must be
pre-allocated with the Record Format VB and LRECL of 80 or
greater. The existing contents of a sequential data set are
overwritten. A new member can be created for a partitioned
data set.

For Open Systems, in the filename field specify either the full
path or only the filename. If you specify only the filename, the
DSDIR Execution Environment parameter must be set to
point to the directory to use. Refer to TIBCO Object Service
Broker Parameters for more information about this parameter.
TIBCO Object Service Broker Shareable Tools

RULEPRINTER | 533
Print Rule List Section

The following attributes are defined to the fields used to print a selected listing of
rules:

Print Application Structure Section

The following attributes are defined to the fields used to print an application
structure:

SEL You can type a selection string using the field names NAME,
UNIT, AUTHOR, MODIFIED, MODIFIER, UNIT and ENTRY.
Pressing Enter displays the selected rules.

Rule

List

You can also use the line commands D and S to delete or select the
required rules.

ROOT RULE The name of the base rule for the application.

FULL DOC WITH

TREE

One of:

Y – Print the full documentation of the component parts of the application.

N – Print only the summary documentation of the component parts.

DETAILED PRT

OPTIONS

Choose N for a more concise printout or Y for a complete printout. If you
choose N, the following print options are selected for you:

Print Base and Descendent Rules – prints the base rule and all its descendent
rules (other than entry rules).

Rule Cross Reference – prints a list of the rules and the rules that call them.

Local Declaration – prints a list of the variables declared and the rules that
declare them.

Local Cross Reference – prints a list of the variables declared and all the rules
that use them.

Signal Cross Reference – prints a list of the signals raised and the rules that
raise them.

Exception Handler – prints a list of the rules that have handlers for exceptions.
 TIBCO Object Service Broker Shareable Tools

534 |
Tables for Indirect References Section

If tables are used as indirect references (that is, rules are called by placing their
names in a table), type the name of the tables and their parameters in the bottom
portion of the screen in the form Table(parm1, parm2, and so on). The percent sign (%)
can be substituted for a table name if more than one table instance is being
referenced, as shown here:

FCNKEYS(NEW_EMPLOYEE) %(DELETE_EMPLOYEE).

PF Keys

To process your selections, use the following PF keys:

Additional

Options

If you choose Y, the following options are also selected for you in addition to
the above options:

Screen Definition – prints screen definitions.

Screen Cross Reference – prints a list of the rules that display each screen.

Table Definition – prints table definitions.

Table Cross Reference – prints a list of the rules that access each table.

Print Entry & Validation Rules – prints definitions of entry and validation rules
(but not their descendents).

Validation Rule Cross Reference – prints a list of rules that call the validation
rules.

List of Unresolved Names – prints a list of elements within the rules that
RULEPRINTER is unable to identify as a particular object type (for example,
rule, screen, or table).

List Entry & Validation Rules – prints a list of entry and validation rules.

Rule Calling Structure – prints a list of rules in alphabetical order with all the
rules that call them.

PF4 Send the selected rules to the specified output medium.

PF5 Produce a print tree of the rule named in ROOT RULE and send it to the
specified output medium.

A print tree is a listing of a rule and its descendant rules, along with
cross-reference information on local variables, screens and tables used,
exception handlers, and so on.
TIBCO Object Service Broker Shareable Tools

RULEPRINTER | 535
PF6 Produce a cross-reference of the rule named in ROOT RULE and send it
to the specified output medium.

A cross-reference, like a print tree, is a listing of a rule and its descendant
rules, along with cross-reference information on local variables, screens
and tables used, exception handlers, and so on.

Note: The cross reference lists only the rule names and does not print the
rules.
 TIBCO Object Service Broker Shareable Tools

536 |
TIBCO Object Service Broker Shareable Tools

| 537
S6BCALL

Invokes a TIBCO-supplied callable routine that requires a specialized
environment. (C)

Invocation CALL S6BCALL(routine,argument1, argument2, ..., argumentN)

Usage Notes The TIBCO Object Service Broker interface with TIBCO Enterprise Management
Service (EMS) makes use of this tool. Refer to TIBCO Object Service Broker for z/OS
External Environments or TIBCO Object Service Broker for Open Systems External
Environments for more details.

Exceptions

Example This rule invokes the TIBCO-supplied EMS routine tibems_Sleep.

CALL S6BCALL(’tibems_Sleep’,10);

routine The name of the TIBCO-supplied routine to be invoked. Its
syntax is V (variable-length character string).

argument1,
argument2, ...,
argumentN

A variable number of arguments to be supplied to the
routine. The number of arguments and their format is
determined by the invoking routine.

ROUTINEFAIL Raised if the S6BCALL fails. Refer to the associated
message log to determine the cause.

CONVERSION Raised if any argument conversion fails.

NULLVALUE Raised if a numeric null is passed as an argument value
when a numeric value is required.

STRINGSIZE Raised if a string argument is not large enough to hold the
returned data.

OVERFLOW Raised if a numeric argument is not large enough to hold
the returned data.
 TIBCO Object Service Broker Shareable Tools

538 |
TIBCO Object Service Broker Shareable Tools

| 539
S6BFUNCTION

Invokes a TIBCO supplied function that requires a specialized environment. (F)

Invocation result = S6BFUNCTION(function,argument1, argument2, ..., argumentN)

Usage Notes The TIBCO Object Service Broker interface with TIBCO Enterprise Management
Service (EMS) makes use of this tool. Refer to TIBCO Object Service Broker for z/OS
External Environments or TIBCO Object Service Broker for Open Systems External
Environments for more details.

Exceptions

result The value returned by the function.

function A character string of syntax V containing the name of
TIBCO-supplied function to be invoked.

argument1,
argument2, ...,
argumentN

A variable number of arguments to be supplied to the
routine. The number of arguments and their format is
determined by the invoking routine.

ROUTINEFAIL Raised if the S6BFUNCTION fails. Refer to the associated
message log to determine the cause.

CONVERSION Raised if any argument conversion fails.

NULLVALUE Raised if a numeric null is passed as an argument value
when a numeric value is required.

STRINGSIZE Raised if a string argument is not large enough to hold the
returned data.

OVERFLOW Raised if a numeric argument is not large enough to hold
the returned data.
 TIBCO Object Service Broker Shareable Tools

540 |
Example This rule invokes a TIBCO-supplied EMS function to an EMS server located on
the specified URL. The rule creates a connection to the EMS server on
server1.yourcompany.com.

RESULT = S6BFUNCTION('tibemsConnection_create', ’server1.yourcompany.com’,
CLIENTID, USER, PASSWORD);
TIBCO Object Service Broker Shareable Tools

| 541
S6BNOTIFY

Sends a Notification message to TIBCO Hawk. (C)

Invocation CALL S6BNOTIFY(msgnum, severity, action, source, subsource, correlation, msgtext)

Usage Notes • Use of this tool within TIBCO Object Service Broker for z/OS results in data
being passed to a TIBCO Mainframe Service Tracker™ subsystem, which in
turn makes the data available to TIBCO Hawk® through the Notification
method.

• Use of this tool within TIBCO Object Service Broker for Open Systems results
in the data being made available to TIBCO Hawk through the Notification
method of the Hawk microagent embedded in the TIBCO Object Service
Broker monitor process (osMon) or TIBCO Object Service Broker batch client
(osBatch).

• NULL or a zero-length string may be specified for any parameter, which in
most cases will result in the corresponding Notification method parameter
being empty.

• If the source parameter is NULL or a zero-length string, then the Issuer Source
parameter of the Notification message will default to the name of the Data
Object Broker or Execution Environment on Open Systems, or the jobname on
z/OS.

• This tool does not provide the ability to specify a value for the Host Name
parameter of the Notification message. On Open Systems, it will always be set

msgnum A message identifier. Its syntax is C with length 10.

severity A character indicating the message severity. Its syntax is C
with length 1.

action A support action. Its syntax is V with length 8.

source The source of the message. Its syntax is V with length 16.

subsource The sub-source for the message. Its syntax is V with length 64.

correlation Additional information about the message origin. Its syntax is
V with length 32.

msgtext Message text. Its syntax is V with length 256.
 TIBCO Object Service Broker Shareable Tools

542 |
to the hostname for the machine on which the Execution Environment is
running; on z/OS, it will always be set to the name of the LPAR.

• This tool does not provide the ability to specify a value for the Host Platform
parameter of the Notification message. On all platforms it will be set to
“OSB”.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for additional
information on interfacing with TIBCO Mainframe Service Tracker.

TIBCO Object Service Broker for Open Systems Installing and Operating for additional
information on interfacing with TIBCO Hawk.

Exceptions

Example This rule sends a Notification message to TIBCO Hawk that a rules-based
application has been successfully started.

CALL S6BNOTIFY('TSYSHK001', 'I', NULL, 'TSYSAPP', 'FRAMEWORK',
$RULENAME(0,0), 'STARTED');

ROUTINEFAIL Raised if there is an error creating the message to be sent.
Refer to the associated message log to determine the cause.
TIBCO Object Service Broker Shareable Tools

| 543
S6BTROFF

Terminates tracing initiated by the complementary shareable tool S6BTRON. (C)

Invocation CALL S6BTROFF

Usage Notes Calling S6BTROFF without a preceding call to S6BTRON has no effect and causes
no exception to be raised.

Exceptions None

Example This rule will execute the rule specified by the parameter RULE in a nested
transaction, while outputting trace records to the data set or file specified by
TRACEFILE.

TRACE(TRACEFILE, RULE);
_--
_ CALL S6BTRON(TRACEFILE); | 1
_ CALL $EXECUTE(RULE, 'N', 'N', 'L'); | 2
_ CALL S6BTROFF; | 3
_ ---
 TIBCO Object Service Broker Shareable Tools

544 |
TIBCO Object Service Broker Shareable Tools

| 545
S6BTRON

Initiates tracing of rules execution in the current session. (C)

Invocation CALL S6BTRON(data_set_or_file_name)

Usage Notes • The tracing will capture the entry into, and exit from, each rule or shareable
tool into a data set or file, until the invocation of the complementary shareable
tool S6BTROFF.

• Each entry or exit will be captured in a trace record with a record identifier, an
identification of the rule or shareable tool, the library the rule was invoked
from, a time-of-day, and an accumulated CPU time value of the entry or exit,
and the stream level at which the entry or exit occurred.

• The value of data_set_or_file_name is specified as follows:

— z/OS data set – Specify a fully qualified sequential data set name, for
example, AAAAAA.DATA. Note: PDS members are not supported.

— Open Systems file – Specify either the full path or only the filename. If you
specify only the filename, the DSDIR Execution Environment parameter
must be set to point to the directory to use. Refer to TIBCO Object Service
Broker Parameters for more information about this parameter.

• On z/OS, the data set must be pre-allocated with record format FB
(fixed-block) and logical record length of 44 bytes. The data set must be
allocated with one extent and sufficient size to accommodate the expected
trace output.

• On z/OS, tracing will be suspended, but not fail, if the data set fills up.

• On Open Systems, the file will be created if it does not exist. Tracing will fail if
the file cannot be written to or expanded.

• The unit of time on all platforms is that of bit 0 through bit 63 of the z/OS
Time-Of-Day (TOD) clock; specifically, a 64 bit integer value where
conceptually a 1 is added to bit position 51 every microsecond.

data_set_or_file_name A character string of syntax V (variable-length character
string) containing the name of the data set or file to
which trace data is to be output.
 TIBCO Object Service Broker Shareable Tools

546 |
• On all platforms, the trace data is output in records of 44 bytes, laid out as
follows:

Exceptions

Offset Size Type Value

0 16 Blank-padded
EBCDIC character
string

The name of a rule or shareable tool.

16 8 8 byte unsigned
big-endian integer

The time of the rule/shareable tool
entry or exit, measured from an
arbitrary point in the past.

24 8 8 byte unsigned
big-endian integer

On z/OS, the accumulated CPU time in
the session at the time of the
rule/shareable tool entry or exit. On
Open Systems, the same as the
preceding value.

32 2 2 byte big-endian
integer

Record identifier:

• 254: Rule entry.

• 255: Rule exit.

• 252: Shareable tool entry.

• 253: Shareable tool exit.

• 251: TRANSFERCALL.

34 1 1 byte integer Stream level.

35 1 Not used.

36 8 Blank-padded
EBCDIC character
string

The name of the library from which the
rule was invoked, or blank if the record
refers to a shareable tool.

ROUTINEFAIL Raised if the trace data set does not exist, if tracing is
already in progress, or if the trace file cannot be written to
or expanded.
TIBCO Object Service Broker Shareable Tools

S6BTRON | 547
Example This rule will execute the rule specified by the parameter RULE in a nested
transaction, while outputting trace records to the data set or file specified by
TRACEFILE.

TRACE(TRACEFILE, RULE);
_--
_ CALL S6BTRON(TRACEFILE); | 1
_ CALL $EXECUTE(RULE, 'N', 'N', 'L'); | 2
_ CALL S6BTROFF; | 3
_ ---
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 548

SCREENCOL

Returns the number of columns on the user’s physical screen. (F)

Invocation number = SCREENCOL

Example The following rule determines the number of columns on the screen and prints it
to the message log:

 RULE EDITOR ===>
 SCREENCOL_1;
 _ LOCAL NUM_COLS;
 _ --
 _ --+-----------
 _ NUM_COLS = SCREENCOL; | 1
 _ CALL MSGLOG('THE NUMBER OF COLUMNS ON THE SCREEN IS: ' || | 2
 _ NUM_COLS); |
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following result:

----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE NUMBER OF COLUMNS ON THE SCREEN IS: 80

number On return, contains the number of columns. Its syntax is binary
with length 2. For SDK sessions, the number returned is for
internal use only.

| 549
SCREENMSG

Displays the given message in the message area of the specified screen. (C)

Invocation CALL SCREENMSG(name, msg)

Usage Notes • The message is visible the next time the screen appears.

• The message field is located on the last row of the physical screen.

• The message is truncated to fit the width of a screen.

• There is no effect if the screen does not exist.

• To set attributes for the message area of a screen, use the $SETATTRIBUTE
tool, leaving the table argument blank and setting the field argument to
@MESSAGE.

• To set the color for the message area of a screen, use the $SETCOLOUR tool,
leaving the table argument blank and setting the field argument to @MESSAGE.

Example The following rule sets a new screen message for the example screen and displays
the screen with the new screen message:

 SCREENMSG_1;
 _
 _ --
 _ --+-----------
 _ CALL SCREENMSG('EMPLOYEE_SCR', | 1
 _ 'THIS IS THE NEW SCREEN MESSAGE'); |
 _ DISPLAY EMPLOYEE_SCR; | 2
 _ --

Resulting Output

Executing this rule displays the following message at the bottom of the screen:

 Employee Name Employee#
 ------------- ---------

 name The name of the screen or window. Its syntax is C (fixed-length
character string) with length 16.

msg A character string specifying the message. Its syntax can be C,
V (variable-length character string), or W (double-byte character).
 TIBCO Object Service Broker Shareable Tools

550 |

 THIS IS THE NEW SCREEN MESSAGE
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 551

SCREENROW

Returns the number of rows on the user’s physical screen. (F)

Invocation number = SCREENROW

Example The following rule determines the number of rows on the screen and prints it to
the message log:

 SCREENROW_1;
 _ LOCAL NUM_ROWS;
 _ --
 _ --+-----------
 _ NUM_ROWS = SCREENROW; | 1
 _ CALL MSGLOG('THE NUMBER OF ROWS ON THE SCREEN IS: ' || | 2
 _ NUM_ROWS); |
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following message log:

 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE NUMBER OF ROWS ON THE SCREEN IS: 24

number On return, contains the number of rows. Its syntax is B (binary)
with length 2. For SDK sessions, the number returned is for
internal use only.

| 552
SCRIPT

Uses commands to format text from a table and store the formatted text in another
table. (C)

Invocation CALL SCRIPT(source, dest)

Usage Notes Both the source and the dest tables must be defined as text tables (that is, a table that
you can edit with the Text Editor, TED). The text table can be parameterized, and
it must contain the following two fields:

SCRIPT
Commands

This section lists and describes the commands you can use to control the
presentation of your text. The commands are divided into three categories:

source The name of the table that contains the text and Script commands.

dest The name of the table in which to write the formatted text.

NUMBER A primary key field with a length of 4, a syntax of B (binary), and a
semantic type of I (identifier).

LINE A field with a syntax of V (variable-length character string) and a
semantic type of S (string).

Formatting
commands

Controls the format of the text.

Page layout
commands

Specifies the layout of the material on the page.

Convenience
commands

Provides services that would require several commands to
accomplish or adds extra features to the formatter.

In TIBCO Object Service Broker, Script commands can be preceded either with a
period or a colon.
 TIBCO Object Service Broker Shareable Tools

SCRIPT | 553
Formatting
Commands

The following commands provide basic formatting functions:

Command Description

.br or .break Forces a break in the formatting. A break forces whatever is
currently in the line to be emitted and a new line to start
immediately. Several other commands (for example, .skip)
cause breaks to occur.

.bc chars Characters specified with the .bc command become the
bullet characters. You can specify up to two characters.

.bu text Places a bullet before the text. The default bullet is ->.
Specify a space (or a period) after the command and then the
text that you want to appear after the bullet.

.co {on|off} Uses the option on to turn concatenation on; use the option
off to specify no concatenation. Normally, concatenation is
on, which specifies whether to join input lines to fit the
specified line length. When concatenation is off, the input
lines are placed unchanged, starting at the left margin. Input
lines too long to fit are truncated. This command is useful for
creating diagrams, for example, where you want the text to
appear as you enter it.

.format

{on|off}
or .fo
{on|off}

Uses the option on to format the input text; uses the option
off to specify a pass-through mode that copies the source
exactly.

.in #
or .indent #

Indents the text # spaces from the left margin. An indent of 0
causes the text to begin at the left margin.

.p text or .pp
text

Starts a new paragraph. The command .p is the Waterloo
GML tag, and .pp is the Waterloo script primitive. To use
with GML, a period '.', not a blank, must delimit the text.

.pa or .page Places the input on a new page if the current page is not
empty.

.pn

{on|off|#}

Uses the on option to number the current page, the off
option to turn page numbering off, or a number for the #
variable to specify a page number.
 TIBCO Object Service Broker Shareable Tools

554 |
Page Layout
Commands

The following commands specify the layout of material on the page. You can use
them repeatedly in a document, although it is unlikely you would use the .setup
command more than once.

.para text Begins a new paragraph. At least one line is left blank and
the text is indented five spaces on the first line of the new
paragraph. Specify a space (or a period (.)) after the
command and then the text that you want in the paragraph.

.skip # or .sk
or .sp

A break occurs and # lines are skipped. If you are using
double spacing, twice # lines are skipped.

Command Description

Command Description

.ad # Adjusts the left margin # spaces from the edge of the page.

.tm # Sets the top margin to have # lines.

.bm # Sets the bottom margin to have # lines.

.date 'str' Displays the specified date format. String str is any date
format valid for $DATE_PIC.

.double Uses double spacing for the output lines.

.imbed

tablename

Causes the specified table to be used as the source of text.
When all the text is formatted, SCRIPT continues formatting
with the line immediately after this command. Embedded
tables can also contain imbed commands. The tablename can
contain parameters or can be the second parameter of the
@TEXT table.

.justify

{on|off}
or .ju
{on|off}

Right justifies to the right margin if the option on is set; turns
right justification off if the option off is specified.

.ll # Sets the line length to # characters.

To use this command after an initial line length is set up, it is
first necessary to give the command .br and then the
new .ll command. The right margin is the adjust plus the line
length characters from the edge of the page.
TIBCO Object Service Broker Shareable Tools

SCRIPT | 555
.ls # Sets the line spacing to #. The command .ls 1 is equivalent
to .single and .ls 2 is equivalent to .double; however, you
can use any positive integer.

.pl # Sets the page length to # lines. The page length must include
the lines used for the top and bottom margins.

.pn

{on|off|#}
Sets the page number.

on – Turns page numbering on

off – Turns page numbering off. The special character percent
sign (%) in title strings, which the setup determines, positions
page numbers in the margins. Title strings that contain this
character do not print if page numbering is off. This differs
from Waterloo Script, which suppresses only the particular
string “page %”.

– Sets the number of the current page to whatever you
specify for #. When the number is at the top of the page, it
must be reset before the start of the new page

.setup

setupname

Invokes a setup that specifies page details and other options.
Refer to TEXTSETUP for more information on creating
custom setups. TIBCO Object Service Broker provides the
following setups:

Default is in effect whenever formatting begins and if no
setup is specified. It turns formatting off and sets the page
setup to suit the document handler. Therefore, SCRIPT passes
through the old documentation and new documentation
containing the .format command with the option on is
formatted to fit the document handler screen.

Screen sets a larger page size, intended to fill a screen.

Help sets a page without a page number and is used by the
Screen Definer to display both field and screen-level help.

Print sets a page that can print in portrait form through the
use of a print function that you provide later.

.single Uses single spacing.

Command Description
 TIBCO Object Service Broker Shareable Tools

556 |
Convenience
Commands

The following commands provide services that would require several commands
to accomplish or add extra features to the formatter. There are five types of
convenience commands:

• Heading commands

• List commands

• The table command

• Box commands

• Text shifting commands

Heading
Commands

Heading commands produce consistent headings. Type a space (or a period) after
any of these commands and then any text that you want in the heading. The
heading commands are:

List Commands These commands generate ordered, unordered, and definition lists. These lists
can be nested.

Command Description

.heading1 text

.h1 text

Makes the following text into the highest-level heading.

.heading2 text

.h2 text

Makes the following text into a second-level heading.

.heading3 text

.h3 text

Makes the following text into a third-level heading.

Command Description

.list char Begins a list and sets the type of the list. Depending on
which variable you specify for char, the following lists
occur:

- Ordered list

t - Definition list. The terms of the definition list are
specified by .term commands and the definitions of the
terms are specified by the items following each term.

Any other characters – An unordered list using the
specified characters as the bullet that marks each item
TIBCO Object Service Broker Shareable Tools

SCRIPT | 557
The following commands also produce ordered, unordered, and definition lists,
which can be nested, and are compatible with GML if they are preceded by a
colon (which is interchangeable with a period in SCRIPT), or if a period precedes
the text.

.item text Identifies an item placed in a list. The text of the item is
always indented and separated from other items by at
least one blank line. Type a space (or a period) after
the .item command and then the text of the item.

After scripting, items appear as follows:

In an ordered list, a number precedes each item.

In an unordered list, the specified bullet character
precedes each item.

In a definition list, an item provides the definition for a
preceding term, which is identified by a .term
command. The item appears below and to the right of the
term it defines.

.term text Identifies a term In a definition list. The term cannot
extend more than one line. Type a space or a period after
the .term command and then the text of the term. The
term is defined by the text associated with the .item
command that follows it.

.listend Signifies the end of the list.

Command Description

.ol

.li text

.eol

Beginning of an ordered list.

An item for an ordered list.

End of an ordered list.

.ul

.li text

.eul

Beginning of an unordered list

An item for an unordered list

End of an unordered list

Command Description
 TIBCO Object Service Broker Shareable Tools

558 |
Table Command This command causes a table to print in the output.

Box Commands You use these commands to place text within a box. The box commands are often
used with the concatenate commands, .co{on|off}, to give the user more
control over the layout of text within the box.

.dl

.dt text

.dd text

.edl

Beginning of a definition list

A term for a definition list

A definition of a term

End of a definition list

Command Description

Command Description

.table tablename

field1,

field2,...fieldn

The named table is printed into the output. The
tablename can include parameters and it must be a
table, not only a parameter of the @TEXT table. A list of
fields of the table can follow the tablename. If this list is
present, only the fields in the list are printed and appear
in the order they are named. Otherwise, all the fields, up
to one line, are printed. Fields that cannot fit into the line
are left out.

Note Printing a table is not the same as embedding it.
This command invokes rules from the Table Printer tools
(PRINTTABLE and TABLEPRINT). The table prints into
the output; SCRIPT does not format it.

Command Description

.box This command begins a box to enclose the text that follows. This
box differs from either the Waterloo Script or the GML box
commands. The box is drawn as wide as the existing margins and
then the margins inside the box are moved closer together so that
all the text fits within it. After the completion of the box, the
margins are restored. Either the colon or the period is acceptable
as the first character of the command.

Note A box can continue from one page to the next. If necessary,
you can use commands, such as .sk (skip) and .p (page), to
make the box fit on one page. The text within the box can contain
almost any other command.
TIBCO Object Service Broker Shareable Tools

SCRIPT | 559
Text Shifting
Commands

These commands specify where the text should appear on the page.

Example The following rule formats text and Script commands in the
@TEXT(USERNAME,SCRIPTINPUT) table and puts the formatted text in the
SCRIPTOUTPUT table:

 FORMAT_TEXT;
 _
 _ ---
 _ --+--------------
 _ CALL SCRIPT('@TEXT(USR10,SCRIPTINPUT)', 'SCRIPTOUTPUT'); | 1
 _ ---

Unformatted Text

The unformatted text in the @TEXT table is shown here:

 _ :h1.Introduction to Script
 _ :p.
 _ You can use Script to format documents in OSB. You can access
 _ Script through the SCRIPT tool or through the
 _ text editor, TED.

Formatted Text

The formatted text in the SCRIPTOUTPUT table is shown here:

.ebox End the box. The end of the box is drawn and the margins
restored to their values before the box was started. Either the
colon or the period is acceptable as the first character of the
command.

Command Description

Command Description

.ce text Centers the text on the line. The text must not extend more than
the line length. Type a period instead of a space before the text to
use this command with Waterloo Script.

.cc text Prints text centered and in uppercase. The text must not extend
more than the line length. Type a period instead of a space before
the text to use this command with Waterloo Script.
 TIBCO Object Service Broker Shareable Tools

560 |
 Introduction to Script

 You can use Script to format documents in OSB. You
 can access Script through the SCRIPT tool or through
 the text editor, TED.
TIBCO Object Service Broker Shareable Tools

| 561
SEARCH

Searches the keyword or cross reference indexes to answer a query. (E)

Invocation Do one of the following:

Usage Notes • CROSSREFSEARCH is the callable version of this tool to be used from within
a rule for a cross reference search.

• KEYWORDSEARCH is the callable version of this tool to be used from within
a rule for a keyword search.

• Before using SEARCH, you must first build the global cross reference index.
To build the index for a local library from within the SEARCH tool screen,
type the name of the local library in the library field and press PF5. Your
system administrator must run the REFMAKER tool in batch to build an index
on the installation system libraries.

• In addition, before using SEARCH you must also use the KEYWORDMGR
tool to build a keyword index. This tool indexes only keywords in the
installation library.

Specifying Your Query String

You can enter more than one object when specifying your query string. Construct
your strings using the following:

• Names or keywords

The wild card characters asterisk (*) and question mark (?) can be used if they
are enclosed in single quotation marks.

• The AND (&) or OR (|) logical operators

• The NOT operator or the not sign

• The parentheses symbols “(” and “)”

From the… Move the cursor to the… And…

Developer’s
workbench

SR search utility option Press Enter

EX execute rule option Type SEARCH <Enter>

COMMAND prompt Type SR <Enter>
 TIBCO Object Service Broker Shareable Tools

562 |
Search Global Cross Reference Screen

Executing SEARCH displays the following screen:

 Search Global Cross Reference Feb 10, 2000
 Index updated: Feb 10, 2000. Library:
 Find objects which refer to:
 Rules ->
 Tables(t,t.f,*.f)->
 Screens ->
 Reports ->
 Global fields ->
 Object sets ->
 Libraries -> COMMON
 Menus ->

 Find rules which:
 Raise exceptions ->
 Trap exceptions(e,e t,* t)->
 Declare locals ->

 Search Keywords
 Object type:
 Keywords:
 Names: Unit:
 Operators for any query are: and, &, or, x, not, ¬.

 PFKEYS: ENTER=SEARCH 12=CANCEL 3=END 4=LIST KEYWORDS 9=REPEAT

This section lists the parts of the Search Global Cross Reference screen and
describes the fields in each part.

Global Cross Reference

Find objects that refer to

Index updated The date when the index of the library was last updated.

Library The library from which the global cross reference is built.

Rules Enter the name of one or more rules. The global cross reference
searches for objects that call this rule.
TIBCO Object Service Broker Shareable Tools

SEARCH | 563
Find rules which

Tables Enter the name of one or more tables. The global cross
reference searches for objects that refer to these tables. A
special naming convention is used for tables. Tables can be
named using a table name (for example, EMPLOYEE), a table
name and a field name (for example, EMPLOYEE.DEPTNO),
or a wild card and a field name (for example, *.DEPTNO).

For screen tables, the search finds the screens that contain the
table, as well as the objects that refer to it. For report tables, the
search finds the reports that contain the table, as well as the
objects that refer to it.

If only a field name is specified, the search cross references
objects that refer to the field from any table.

Screens Enter the name of one or more screens. The global cross
reference searches for objects that refer to the named screens.

Reports Enter the name of one or more reports. The global cross
reference searches for objects that refer to the named reports.

Global

fields

Enter the name of one or more global fields. The global cross
reference searches for objects that refer to the named global
fields.

Object sets Enter the name of one or more object sets. The global cross
reference searches for objects that refer to the named object
sets.

Libraries Enter the name of one or more libraries. The global cross
reference searches for objects that refer to the named library.

Menus Enter the name of one or more menus. The global cross
reference searches for objects that refer to the named menus.

Raise

exceptions

Enter the name of one or more valid exceptions. The global
cross reference searches for rules that raise this exceptions.
 TIBCO Object Service Broker Shareable Tools

564 |
Search Keywords

Trap

exceptions

Enter the name of one or more valid exceptions. The global
cross reference searches for rules that trap it. Exceptions can be
named as an exception name (for example, SYNC_ERROR), an
exception name and a table (for example, GETFAIL EMPLOYEE),
or a table name (for example, *EMPLOYEE). If only a table name
is given, the search cross references trapped exceptions in the
table.

Declare

locals

Enter the name of one or more local variables. The global cross
reference searches for rules that declare the variables named in
the query.

If more than one of the above fields is filled in, the search is
done on the first query encountered.

Object type Identify the type of object being sought in a keywords, names,
or unit search. You can search for one object type at a time, or
for ALL. Enter one of:

• Global_field

• Library

• ObjectSet

• Report

• Rule

• Screen

• Table

• All

Keywords Enter the name of one or more keywords that you want to
search for in the keyword index. The resulting display
contains objects that use the specified keywords.

Names Enter the name of the objects for which you want to search.

Unit Enter the units of the objects for which you want to search.
Menus and windows do not have a unit attribute. Therefore
they do not appear on the results of an ALL search display.
TIBCO Object Service Broker Shareable Tools

SEARCH | 565
The following PF keys and function keys are recognized while the Search screen
appears:

• The wild card characters asterisk (*) and question mark (?) can be used with
the names or keywords being searched if they are enclosed in single quotation
marks.

• After running the SEARCH command, you can edit or define a displayed object
by entering E (edit) or D (define) on the line command and pressing Enter.

• You can create a new query by placing Q on the line command. This query is
for all objects that reference the object on the line. After 1 or more Q
commands, you can use PF16 to go back down the tree to the results of the
previous query. After using PF16 one or more times, you can use PF14 to
move up the tree again. If you use the Q command again, it changes the tree
and all the results above are removed and replaced by the results of the most
recent Q command.

Enter Executes the SEARCH commands.

PF3 Exits the Search tool.

PF4 Lists the keywords for the library being searched. You can select from
the displayed listing.

PF5 Builds an index on the specified library.

PF12 Cancels the search and exits.

PF22 Deletes an index on the specified library.

PF3 Returns to the search panel.

PF5 Finds next occurrence.

PF9 Recalls the last primary command.

PF12 Returns to the search panel.

PF13 Prints the list.

PF14 Moves up the tree.

PF15 Returns to the workbench.

PF16 Moves back down the tree.
 TIBCO Object Service Broker Shareable Tools

566 |
Example This example queries for all the objects that refer to the REFMAKER rule. The
following is the result of the query:

 RESULT OF QUERY SCROLL: P
 COMMAND==>
 QUERY: RULE: REFMAKER
 TYPE NAME UNIT DESCRIPTION
 ---------------- ---------------- -------- --------------------------------
 _ MENU @ADMIN
 _ MENU @CRAMENU
 _ RULE KEYWORDMGR3 FIND EXECUTE EACH OF THE KEYWORD UTIL

 E-Edit D-Define
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 567

SEARCH_REPLACE

Replaces all occurrences of a pattern with specified characters. (F)

Invocation new_string = SEARCH_REPLACE(input_string, replace_this, with_these,
else_with_this)

Usage Notes • If you do not specify a value for replace_this, the original string (input_string) is
returned.

• If you do not specify a value for with_these, supplying only a value for
else_with_this, all occurrences of the pattern are replaced with the else_with_this
value.

Example The following rule removes the underscores and truncates a TIBCO Object Service
Broker name to eight characters so that it is a valid name for an object outside
TIBCO Object Service Broker.

CONVERT_NAME(NAME);
 _
 _ ---
 _ --+--------
 _ RETURN(HEADSTRING(SEARCH_REPLACE(NAME,'_','',''),8)); | 1
 _ ---

If you execute:

CONVERT_NAME(EMP_INT_TABLE)

the returned string is:

EMPINTTA

new_string The character string that is returned after all the occurrences of
a pattern are replaced.

input_string The character string containing characters that you want to
change.

replace_this The pattern of characters that you want to replace.

with_these A list of tokens that you want to use as replacements.

else_with_this A character string that you can use to replace any other
occurrences of the pattern, after the list in with_these is
exhausted.

| 568
SEARCHLIB

Searches all rules or specified rules in a library for a given string. (CE)

Invocation Do one of the following:

Usage Notes SEARCHLIB searches all the rules or a set of specified rules in a library for a
search string and then returns the names of rules containing the string. To use
SEARCHLIB, complete the following steps:

1. Enter the name of the library you are searching in.

2. Enter the token or string you are searching for.

The type of search determines what kind of search string you can enter. Refer
to step 5 below for more information on search types.

You can search for an exact token or string or use the wildcard characters “?”
(single character) or “*” (multiple characters) in your search string.

3. To restrict the search to a specific rule or set of rules, enter the rule name with
the appropriate wildcard characters.

You can search for a specific rule or use the wildcard characters “?” (single
character) or “*” (multiple characters) in your rule name.

4. To restrict the search to a specific unit or set of units, enter the unit name with
the appropriate wildcard characters.

You can search for a specific unit or use the wildcard characters “?” (single
character) or “*” (multiple characters) in your unit name.

5. Use the PF keys to run the appropriate search.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type SEARCHLIB <Enter>

COMMAND prompt Type EX SEARCHLIB <Enter>

From a rule Type CALL SEARCHLIB
 TIBCO Object Service Broker Shareable Tools

SEARCHLIB | 569
There are two types of searches available:

6. If necessary, edit or view the displayed rules.

From the screen containing the list of returned rules, you can invoke the Rule
Editor to display or edit the rules by placing your cursor on the row
containing the rule name and pressing Enter or by typing any character in the
command line to the left of the rule name and pressing Enter.

Example The following screen shows a slow search performed for the search string
“messages” on rules named “TEST*” in library STANDARD:

 Rule Analyser and Search Utility

 Search Library: STANDARD________ For Token/String Like: messages________ (*/?)
 In Rules Like: TEST*___________ And With A Unit Like: *_______________
 Case Sensitive Search N (Y/N)

Type PF Key Details

Fast PF6 or
Enter

Searches for a given string anywhere within a rule. A fast
search works as though you entered *searchstring*, and
therefore can return false positives (for example, entering
MESSAGE as the search string could return a rule containing
the token MESSAGES).

Because a fast search searches for a string rather than a
token, it can find any string, including quoted strings that
include spaces. However, it cannot find any of the following:

• TABLENAME.FIELDNAME constructions (though it can
find either TABLENAME or FIELDNAME individually)

• Reserved words such as CALL or EXECUTE

• Numeric values

Slow PF5 Searches for the exact, complete token specified, unless
wildcard characters are used.

Because a slow search searches for a token rather than a
string, you cannot use it to find extended strings containing
spaces or TABLENAME.FIELDNAME constructions. A slow
search does find reserved words such as CALL or
EXECUTE, and numeric values. For large libraries, a slow
search can take significantly longer than a fast search.

Note The numeric value must be entered exactly as it
appears in the Rule Editor.
 TIBCO Object Service Broker Shareable Tools

570 |
 NAME DATE TIME UNIT MODIFIER CREATEDATE CREATOR
 ---------------- ---------- ---- -------- -------- ---------- --------
 _ TEST2 2000-03-26 0859 BAD00 USR40 2000-03-26 BAD00

 _ TEST3 2000-03-26 0859 BAD00 USR40 2000-03-26 BAD00

 PFKEYS: 5=SLOW-SEARCH 6=FAST-SEARCH ENTER=EDIT 3=END 12=EXIT
 Found 2 rules in a SLOW search
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 571

SEC_REBIND

Rebinds all security data previously bound in the Execution Environment storage.
(C)

Invocation CALL SEC_REBIND(object, parmcat, name)

The three arguments are not currently used and are reserved for future
enhancements. Use an empty string ('') for the values.

Usage Notes This tool is invoked by a level 7 user to make the latest security changes effective.

Example The following example illustrates a situation where SEC_REBIND is used.

A user is initially prevented from accessing a particular table. When the user
performs a GET on the table, a security fail exception results. A security
administrator is required to grant the permissions to the table to the user. Since
the old security data (the user being prevented from accessing the table) was
bound, the user must execute a rule that calls SEC_REBIND('', '', '') to
remove the old bound security data.

If you access the Execution Environment in question through an OSB UI session,
in order to pick up the rebound security data, be sure to also close and restart that
OSB project after SEC_REBIND has been run.

In a multi-user environment, all users are impacted after the tool is executed.
They could experience performance degradation since all bound data must be
rebuilt.

 TIBCO Object Service Broker Shareable Tools

| 572

SECOND

Returns the second within the minute that the transaction started based on the
local machine’s time zone in which the Execution Environment is running. (F)

Invocation string = SECOND

Usage Notes The returned value is a string representing the second (“00”, “01”, “02”, ..., “59”).

Example The following rule determines the second when the transaction started and prints
it to the message log:

 SECOND_1;
 _ LOCAL TIME;
 _ --
 _ --+-----------
 _ TIME = SECOND; | 1
 _ CALL MSGLOG('THIS TRANSACTION WAS STARTED ' || TIME | 2
 _ || 'SECONDS AFTER THE MINUTE.'); |
 _ --

Pressing PF2 after executing this rule displays the following on the screen:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P
 THIS TRANSACTION WAS STARTED 25 SECONDS AFTER THE MINUTE.

string On return, contains the number of seconds. Its
syntax is C (fixed-length character string) with
length 2.

 TIBCO Object Service Broker Shareable Tools

| 573

SECURITY

Invokes the TIBCO Object Service Broker Security Manager main menu. (E)

Invocation

Executing SECURITY displays the Security Manager main menu. You use this
menu to manage objects, applications, security groups, and user IDs.

Usage Notes You must be in browse mode to use the SECURITY tool.

See Also TIBCO Object Service Broker Managing Security for information about the TIBCO
Object Service Broker Security Manager.

From the… Move the cursor to the… And…

Administrator’s
workbench

SE Security
Administration option

Press Enter

EX Execute Rule option Type SECURITY <Enter>

COMMAND prompt Type SE <Enter>

Developer’s
workbench

SE security mgr option Press Enter

EX execute rule option Type SECURITY <Enter>

COMMAND prompt Type SE <Enter>

| 574
SELECT_OBJ

Provides a screen that can be used to list and select objects that meet specified
criteria. (C)

Invocation EXECUTE IN BROWSE SELECT_OBJ(name, type, unit, author, library, location,
children, subtype)

name Name of the desired object.

type The object type. Valid values are:

• GLOBALFIELD

• LIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

unit The unit to which the object belongs.

author The object author.

library If the object is a rule, the name of the rules library where the rule is
stored.

location The name of the node where the object is located.

children Specifies if all objects or only the parent object should be listed.

Valid values are Y (include children of objects) or N (include only
parent objects).

subtype Specifies if all subtype objects such as report tables should be listed
and returned as subtype table (such as RPT_TABLE) or as TABLE

Valid values are Y (include the subtype of the object) or N (do not
include the subtype of the object).
 TIBCO Object Service Broker Shareable Tools

SELECT_OBJ | 575
Usage Notes • Executing SELECT_OBJ with null arguments displays the following screen. If
values are provided for any of the arguments, they appear in the appropriate
fields in the Object Selection screen and the selected objects are entered into
the bottom portion of the screen. If required, you can edit the provided values
in the Object Selection screen.

 O b j e c t S e l e c t i o n
 COMMAND ==>
 Location: Select All: N
 Library (for RULES): List Children:
 Presentation Environment:
 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME ____ ________________ AND unspecified |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll:
 Name Type Library Environment Unit
 ---------------- ---------------- ---------------- ---------------- --------

 PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL

• Prompt values are predefined for the Op field and the Type field. Press PF1 to
display the values for selection.

• After you specify the selection criteria and press Enter, the selected objects
appear in the bottom portion of the screen. You can do a further selection on
the items that you require from this screen, using the line command S.

• UNLOAD shows an example of using SELECT_OBJ from within another tool.

Example The following example provides values for the arguments library, location, children,
and subtype:

 RULE EDITOR ===> SCROLL: P
 SELECT_OBJ_1;
 _
 _ ---
 _ --+--------------
 _ EXECUTE IN BROWSE SELECT_OBJ('', '', '', '', 'USR40', | 1
 _ 'NODE3', 'Y', 'N'); |
 _ ---
 TIBCO Object Service Broker Shareable Tools

576 |
Object Selection Screen

After executing the rule, the following screen appears:

 O b j e c t S e l e c t i o n
 COMMAND ==>
 Location: NODE3 Select All: N
 Library (for RULES): USR40 List Children: Y
 Presentation Environment:
 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME ____ ________________ AND unspecified |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll:
 Name Type Library Environment Unit
 ---------------- ---------------- ---------------- ---------------- --------

 PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL
TIBCO Object Service Broker Shareable Tools

| 577
@SERVERERROR

Invokes special parsing and handling of the last message, which resulted from a
request to the TIBCO Object Service Broker external DBMS server. (C)

Invocation CALL @SERVERERROR(return_message)

Prerequisites @SERVERERROR can be invoked only in handling the SERVERERROR exception.

Usage Notes All TIBCO Service Gateway error messages have the following format:

S6Bss###E serverid serveruid source: msg text

If a message from a server has some information that is required to process the
error, the table-driven approach to the execution of @SERVERERROR causes a
rule (specified for that error by the developer using @SERVERERROR) to execute.
The error message is interpreted in the @SERVERERROR processing and put into
a temporary table until required. For information on server startup parameters,
refer to the Service Gateway manuals.

return_message The last message from the message stack.

ss The server component (for example, IM for IMS/DB, D2 for DB2,
ID for IDMS/DB).

The external message number.

serverid The server ID of the TIBCO Service Gateway that returned the
error.

serveruid The server user ID (IDPREFIX + ###) of the TIBCO Service
Gateway that returned the error.

source The code portion of the server trapped the error and returned the
message (for example, CSECT, rule, or function).

msg text The actual error message.
 TIBCO Object Service Broker Shareable Tools

578 |
Updating Control Tables

To customize error handling, data in specific control tables must be updated:

The definition of these tables is owned by TIBCO Object Service Broker and must
not be modified. The data is owned by the users. The tables are used in the
following manner:

1. The message identifier handlers from @SERVERMSGCNTL do a lookup in the
server control tables for the external error codes.

2. If any codes are found, they call the associated user-written handler.

3. The user-written handler can use other functions and data stored in other
tables to handle any external error/status code.

@SERVERERROR can be called at any time, although it is useful only for parsing
external server messages generated due to external DBMS errors.

The original message can always be retrieved using @SE_MSG after
@SERVERERROR is called.

The information parsed by @SERVERERROR has transaction scope.

CA-Datacom @DATERRORCODES

CA-IDMS @IDMSTATUSCODES

DB2 @DB2SQLMSGCNTL, @DB2CAFMSGCNTL

IMS/DB @IMSMSGSTCNTL, @IMSMSGRCCNTL
TIBCO Object Service Broker Shareable Tools

@SERVERERROR | 579
Functions for Parsing Messages

Along with @SERVERERROR, you can use the following functions to parse the
message:

Exceptions None are raised unless so arranged in the processing associated with that error for
particular error situations. This error-specific processing is activated at
pre-specified exit points.

@SE_MSG Returns the entire message without modifications.

@SE_MSGEXT Returns the external portion of the message (msg text).

@SE_MSGID Returns the message identifier or UNKNOWN if message
identifier or its prefix is not in @SERVERMSGCNTL.

@SE_MSGSOURCE Returns the source of the message (DB2, DAT, IDM, IMS
and so on) or indicates if the source is unknown.

@SE_MSGTABLE Returns the table name where the message text was
parsed (for example, @SERVERERRORDB2).

Refer to the appropriate TIBCO Service Gateway manual
for more information.

@SE_MSGHEADER

(MSGID)

Returns the message identifier from the header (same as
@SE_MSGID).

@SE_MSGHEADER

('MSGIDPREFIX')

Returns the message identifier prefix (first 5 characters
S6Bss).

@SE_MSGHEADER

(SERVERID)

Returns the server ID of the TIBCO Service Gateway that
returned the message.

@SE_MSGHEADER

(SERVERUSERID)

Returns the server user ID of the TIBCO Service Gateway
that returned the message.

@SE_MSGHEADER

(SOURCE)

Returns the code source that issued the message (CSECT,
RULE, PROCEDURE, and so on).

Do not parse the non-standard part of the message format because it can change.
 TIBCO Object Service Broker Shareable Tools

580 |
Examples Handling an Error Message

The following example shows the GET_EMPLOYEE rule:

 RULE EDITOR ===> SCROLL: P
 GET_EMPLOYEE;
 _
 _ ---
 _ --+--------------
 _ GET IDMS_EMPLOYEE WHERE EMP_ID = 467; ¦ 1
 _ ---
 _ ON SERVERERROR :
 _ CALL @SERVERERROR(RETURN_MESSAGE);
 _ ON IDMS0966 :
 _ CALL SCREENMSG(SCREEN, IDMSUSERMSG);
 _ ON IDMSGLOBALERROR :
 _ CALL SCREENMSG(SCREEN, @SE_MSG);

Suppose a GET on the table IDMS_EMPLOYEE returns the following message:

S6BID034E serverid IDMS01: IDMS ERROR STATUS 0966 RECORD
ORG-DEMO-AREA

The SERVERERROR exception is raised and the @SERVERERROR rule is called.
@SERVERERROR reads the following @SERVERMSGCNTL table looking for a
matching entry. It scans any user-defined tables by using the
$@SERVERMSGCNTL parameter value(PRM) table first, and if no match is found
it scans the @HURON parameter value table.

===
 @SERVERMSGCNTL(@HURON)

 MSG_ID HANDLER MSG_TABLE MSG_SOURCE
 _ --------- ---------------- ---------------- ---
 _ AD @SERVERERRORADA @SERVERERRORADA ADA
 _ AD010E @SERVERERRORADAS @SERVERERRORADA ADA
 _ AD011E @SERVERERRORADAS @SERVERERRORADA ADA
 _ DM016E @SERVERERRORDAT @SERVERERRORDAT DAT
 _ D2 DB2
 _ D2002E @SERVERERRDB2CAF @SERVERERRORDB2 DB2
 _ D2033E @SERVERERRDB2SQO @SERVERERRORDB2 DB2
 _ D2034E @SERVERERRDB2SQO @SERVERERRORDB2 DB2
 _ D2036E @SERVERERRDB2SQN @SERVERERRORDB2 DB2
 _ IM211I @SERVERERRORIMS2 @SERVERERRORIMS IMS
===
TIBCO Object Service Broker Shareable Tools

@SERVERERROR | 581
Saving the Original Message

When the @SERVERERROR rule is called, it saves the original message in its own
storage. This message can be retrieved at any time using function @SE_MSG
when @SERVERERROR is done or within any handlers that @SERVERERROR
calls through the control tables. Refer to Functions for Parsing Messages on
page 579.

Example 2: Parsing a Message

If an entry is found, the HANDLER associated with it is executed to parse the
external message. Information from the parsed message is stored in the
temporary (TEM) table specified in MSG_TABLE. The developer can use the
information placed in this table to determine further action.

===
BROWSING TABLE : @IDMSTATUSCODES
COMMAND ==> SCROLL: P

 ERROR_STATUS SIGNALRULE MEANINGFUL_MSG
_ ---- ---------------- ---
_ 0308 SIGNAL_IDMSERR1 Invalid record name or set name.
_ 0966 SIGNAL_IDMSERR1 Area not available for update.
_ 1410 SIGNAL_IDMSERR1 Attempted privacy breach. User not authorized.
_ 1469 SIGNAL_IDMSERR1 Run unit not connected or connection broken.
_ 1474 SIGNAL_IDMSERR1 Invalid DMCL, subschema or procedure name.

In this example, the message ID034E is found and the IDMS_STATUS_CODE rule
is executed to parse the message looking for the CA-IDMS status code. Upon
finding the status code, the @IDMSTATUSCODES table is searched using the
status code. If an entry is found the SIGNALRULE is executed. The
SIGNALRULE, SIGNAL_IDMSERR1, sets the appropriate signal depending on
the status code:

The data for owner @HURON is owned by TIBCO Object Service Broker and
must not be updated. Customers can add their own instances in
@SERVERMSGCNTL provided that the OWNER specified begins with letters A
to Z. The key values in their instance are message identifiers in the form ss###E
mentioned above.

The ability to add user-specific entries in @SERVERMSGCNTL is provided, with
the understanding that TIBCO Object Service Broker can modify the text of any
message and that it is the responsibility of users to update their own handlers. It
is recommended that you customize using only the specific server control tables.
 TIBCO Object Service Broker Shareable Tools

582 |
===
 RULE EDITOR ===> SCROLL: P
 SIGNAL_IDMSERR1;
 _
 _ ---
 _ IDMSSTATUSCODE = 966; | Y N N N N
 _ IDMSSTATUSCODE = 1469; | Y N N N
 _ IDMSSTATUSCODE = 1474; | Y N N
 _ IDMSSTATUSCODE = 1410; | Y N
 _ --+--------------
 _ SIGNAL IDMS0966; | 1
 _ SIGNAL IDMS1469; | 1
 _ SIGNAL IDMS1474; | 1
 _ SIGNAL IDMS1410; | 1
 _ SIGNAL IDMSGLOBALERROR; | 1
 _ ---

Overview of Process Flow

_ ON SERVERERROR:
_ CALL @SERVERERROR(RETURN_MESSAGE);
 |
 +-> GET @SERVERMSGCNTL(@HURON) WHERE MSG_ID = @SE_MSGID;
 |
 V
 +-----------+------------------+
 | MSG_ID | HANDLER |
 +-----------+------------------+
 | xx999E | xxx_PARSE_MSG |
 +-----------+------------------+
 | ID034E | IDMS_STATS_CODE |
 +-----------+--------|---------+
 V
 parse message for ERROR STATUS
 GET @IDMSTATUSCODES WHERE ERROR_STATUS = status
 |
 V
TIBCO Object Service Broker Shareable Tools

| 583
@SESSION

Alters session-related items maintained by this table. (TBL)

Table Definition

Parameters This table has two parameters: INSTANCE and LOCATION.

Fields @SESSION has only a single row. Fields marked with an asterisk (*) can be
changed subject to validity checking. All other fields, including those marked
RESERVED, must not be changed.

Parameters Typ Syn Len Description

INSTANCE B 4 Must be 0.

LOCATION I C 16 Location of @SESSION table (remote
system).

The INSTANCE parameter must be set to 0.

Field Name Typ Syn Len Dec Key Ord Rq Description

ADDRESS I B 4 0 P Reserved.

USERID I C 8 0 The current user ID.

SEARCH S C 1 0 The library search path for
the current transaction.

GROUP * I C 16 0 The current security group.

REMOTELOCATION * I C 16 0 The default remote location.

HOMELOCATION I C 16 0 The name of this TIBCO
Object Service Broker
system.

TERMINAL I C 16 0 The user’s terminal name.

STORE I C 16 0 Reserved.

TESTLOCATION I C 16 0 Reserved.
 TIBCO Object Service Broker Shareable Tools

584 |
COMMHANDLE * I B 4 0 Address of a
communications area.

COMMLENGTH * C B 2 0 Length of the
communications area.

COMMFREEHANDLE I B 4 0 Address of free space in the
communications area.

COMMFREELENGTH C B 2 0 Length of free space in the
communications area.

SEG0INHANDLE I B 4 0 Address of IMS input
segment 0.

SEG01INLENGTH C B 2 0 Length of IMS input
segment 0.

SEG1INHANDLE I B 4 0 Address of IMS input
segment 1.

SEG1INLENGTH C B 2 0 Length of IMS input
segment 1.

SEG2INHANDLE I B 4 0 Address of IMS input
segment 2.

SEG2INLENGTH C B 2 0 Length of IMS output
segment 2.

SEG0OUTHANDLE * I B 4 0 Address of IMS output
segment 0.

SEG01OUTLENGTH * C B 2 0 Length of IMS output
segment 0.

SEG1OUTHANDLE * I B 4 0 Address of IMS output
segment 1.

SEG1OUTLENGTH * C B 2 0 Length of IMS output
segment 1.

SEG2OUTHANDLE * I B 4 0 Address of IMS output
segment 2.

SEG2OUTLENGTH * C B 2 0 Length of IMS output
segment 2.

Field Name Typ Syn Len Dec Key Ord Rq Description
TIBCO Object Service Broker Shareable Tools

@SESSION | 585
See Also TIBCO Object Service Broker for z/OS External Environments or TIBCO Object Service
Broker for Open Systems External Environments for information about the Call Level
Interface, the SDK (C/C++), and the SDK (Java).

Usage Notes • Supported operations are: GET and FORALL (which both retrieve the single
row), and REPLACE (which replaces the single row, subject to a number of
validity tests).

• Not supported: the selection operation, and parameter value (PRM) tables and
subview (SUB) tables.

• @SESSION behaves like a session table in that its content and effects are local
to one TIBCO Object Service Broker session and are not seen by other users,
even if they are sharing a single Execution Environment.

• Fields COMMHANDLE and COMMLENGTH are primarily for use in the
z/OS CICS environment; however, they could be provided in other
environments as well. These fields can be replaced by the user (subject to the
restriction that the COMMHANDLE value must be the value of field
ADDRESS of a row in System Interpreted Table @MAP) with SCOPE of
ENVIRONMENT, and COMMLENGTH must not exceed the value of SIZE
in the same row of @MAP.

APIINHANDLE I B 4 0 Address of dataIn
commarea (Call Level
Interface, SDK (C/C++),
and SDK (Java) only).

APIOUTHANDLE I B 4 0 Address of dataOut
commarea (Call Level
Interface, SDK (C/C++),
and SDK (Java) only).

PLATFORM S C 1 0 The platform where your
TIBCO Object Service
Broker system is running:

• N–Windows

• S–Solaris

• V–z/OS

RELEASE S C 16 0 The release number of the
TIBCO Object Service
Broker system you are
running.

Field Name Typ Syn Len Dec Key Ord Rq Description
 TIBCO Object Service Broker Shareable Tools

586 |
• The IMS-specific fields contain meaningful information in a z/OS IMS
environment only.

Example @SESSION_SAMPLE1 Rule

The @SESSION_SAMPLE1 rule changes the TIBCO Object Service Broker security
group for the current session to NEWGROUP. The user must have security
authorization to make this change; otherwise, the SECURITYFAIL exception is
raised.

@SESSION_SAMPLE1;
_
_ ---
_ --+--------------
_ GET @SESSION(0); | 1
_ @SESSION.GROUP='NEWGROUP'; | 2
_ REPLACE @SESSION(0); | 3
_ ---

@SESSION_SAMPLE2 Rule

The @SESSION_SAMPLE2 rule uses @MAP to allocate and register environment
storage for a new commarea of 1000 bytes. The address of the new commarea is
then placed in the COMMHANDLE field of @SESSION and the length of the
storage area is placed in field COMMLENGTH.

If an external program is subsequently called, the address and length of the
COMMAREA are passed to it. The COMMAREA can be manipulated using MAP
tables. If the address placed in @SESSION.COMMHANDLE is not that of a valid
block of environment storage, the DATAREFERENCE exception is raised.

@SESSION_SAMPLE2;
_
_ ---
_ --+--------------
_ @MAP.ADDRESS = 0; | 1
_ @MAP.SIZE = 1000; | 2
_ INSERT @MAP('ENVIRONMENT'); | 3
_ GET @SESSION(0); | 4
_ @SESSION.COMMHANDLE = @MAP.ADDRESS; | 5
_ @SESSION.COMMLENGTH = @MAP.SIZE; | 6
_ REPLACE @SESSION(0); | 7
_ ---
TIBCO Object Service Broker Shareable Tools

| 587
@SESSIONCOUNTS

Obtains information on events occurring within the Execution Environment
during a session. (TBL)

Table Definition

Parameters This table requires a numeric value to be specified as a parameter. The value can
be any valid number between 0 and 999999999.

Fields Fields in the @SESSIONCOUNTS table include:

ADDRESS Reserved field.

USERID The session user ID.

LOCALMESSAGES Number of messages sent to the local node.

LOCALDELTA Increment in local message traffic since the last
access to @SESSIONCOUNTS.

REMOTEMESSAGES Number of messages sent to a remote node.

REMOTEDELTA Increment in remote message traffic since the last
access to @SESSIONCOUNTS.

TABLECALLDELTA Increment in the number of table calls since the
last access to @SESSIONCOUNTS.

CPUSECONDS Address space (TCB) time.

This value is obtained from the z/OS ASCB
structure, and is generally reliable within a range
of plus/minus 3 percent.

CPUDELTA Increment in address space time since the last
access to @SESSIONCOUNTS.

SYSTEMSECONDS SRB time.

This value is obtained from the z/OS ASCB
structure and is generally reliable within a range
of plus/minus 3 percent.
 TIBCO Object Service Broker Shareable Tools

588 |
Usage Notes • This facility is available only on a z/OS system.

• All the values are SESSION related, not transaction related.

• To view data in @SESSIONCOUNTS use the Table Browser, or to process data
in @SESSIONCOUNTS, do a GET from a rule and use the fields accordingly.

• @SESSIONCOUNTS can be used to view CPU usage and message traffic.

• It can be used to examine the effects of rule changes when optimizing
applications.

• It is usually browsed with the Table Browser.

• It can also be useful for performance tests in a rule.

SYSTEMDELTA Increment in SYSTEMSECONDS time since the
last access to @SESSIONCOUNTS.

RESERVEDON Reserved field.

RESERVEDONDELTA Reserved field.

RESERVEDOFF Reserved field.

RESERVEDOFFDELTA Reserved field.

STORAGENOW Reserved field.

STORAGENOWDELTA Reserved field.

STORAGEHWM Reserved field.

STORAGEHWMDELTA Reserved field.

STORAGEOCCUPANCY Reserved field.

STORAGEOCCDELTA Reserved field.

CPUSECONDS & CPUDELTA represent address space time information and
should not be referenced in a shared space environment such as z/OS CICS.
TIBCO Object Service Broker Shareable Tools

@SESSIONCOUNTS | 589
Example Fields whose names end in DELTA are the difference between the value of the
correspondingly named field now, and its value the last time the table was read.

Suppose a user is interested in how many table accesses are done in the course of
creating a new employee record. The transaction they would normally run would
start by calling CREATE_EMPLOYEE from a menu. To determine our count, the
user could write the following rule:

CHECK_#ACCESSES;
--
--+---
 GET @SESSIONCOUNTS(0); | 1
 CALL CREATE_EMPLOYEE('111'); | 2
 GET @SESSIONCOUNTS(0); | 3
 TABLECALLS = @SESSIONCOUNTS.TABLECALLDELTA;| 4

This obtains the count of table calls done between the GETs on
@SESSIONCOUNTS. Since CREATE_EMPLOYEE is the only process called in
between, this gives the count.
 TIBCO Object Service Broker Shareable Tools

| 590
SESSMGR

Displays the login interface to the Session Manager (workbench).

Invocation If a customized workbench is not provided, the STANDARD screen appears
when you first log in. Refer to the TIBCO Object Service Broker Defining Screens and
Menus manual for information on customizing a session manager (workbench)
screen.

The Session Manager

The following two illustrations show this screen:

 DOCMSG TEST: N BROWSE: N 1:33 AM THURSDAY MAR 15 2007

 ER edit rule ==> SU MO TU WE TH FR SA
 EX execute rule ==> 1 2 3
 DB debug rule ==> 4 5 6 7 8 9 10
 BR browse table ==> 11 12 13 14 15 16 17
 ED edit table ==> 18 19 20 21 22 23 24
 25 26 27 28 29 30 31
 OS object set ==>
 DS define screen ==>
 DR define report ==>
 DT define table ==>
 DL define library ==>
 GR generate rpt ==>

 COMMAND ==> __

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

 Top of Window

Press PF8 to scroll down the screen:

 DOCMSG TEST: N BROWSE: N 1:33 AM THURSDAY MAR 15 2007

 SU MO TU WE TH FR SA
 CD copy defn ==> 1 2 3
 CT copy table ==> 4 5 6 7 8 9 10
 CL clear table ==> 11 12 13 14 15 16 17
 DD diff defn ==> 18 19 20 21 22 23 24
 PR print rules ==> 25 26 27 28 29 30 31
 PT print table ==>

 TIBCO Object Service Broker Shareable Tools

SESSMGR | 591
 SR search utility ==>
 SE security mgr ==>
 PB problem rpt ==>
 PM promotion ==>
 MR manage rights ==>
 UP user profile ==>

 COMMAND ==> __

 PFKEYS: 2=LOGS 3=EXIT 12=EXIT

 1:33:51 Engine promotion 3217 (V500E040) 2007-03-14 at 20:44:18

Fields The screen contain the following fields:

Library The Library field is on the title line for the workbench,
and is not labeled. It displays the name of your local
library. You can change this to another local library
name. In the example above, it displays USR40.

TEST Displays Y or N. If you change this to Y, a rule executed
from the EX execute rule option of the workbench is run
in test mode, unless the mode is changed within the rule.
When the transaction ends or a COMMIT is issued, the
updates to tables are discarded.

Only the execute rule workbench tool uses the test mode
set on the workbench. When the TEST field is set to Y,
you can insert occurrences in a table using the Table
Editor. If you insert occurrences using a rule, the rule
could run successfully, occurrences no longer existing in
the table after the rule ends.
 TIBCO Object Service Broker Shareable Tools

592 |
BROWSE Displays Y or N. If this is changed to Y, a rule executed
from the EX execute rule field of the workbench is run in
browse mode and you cannot make updates to tables
through the execution of rules, unless the mode is
changed within the rule. You can change the mode
within the rule by starting a new transaction and
specifying a different mode.

Only the execute rule workbench tool uses the browse
mode set on the workbench. When the BROWSE field is
set to Y, you can insert occurrences in a table using the
Table Editor. If you insert occurrences through a rule, the
rule fails.

Other tools, such as the Menu Definer, give you the
option of specifying the mode in which your rule
executes. This specification overrides the workbench
specification.

DATE This field displays the current date.

COMMAND Enter any command abbreviation and optionally, the
parameters.

Command History The command history area is scrollable and appears
below the COMMAND field. The list can display the
last 50 commands issued. To scroll the command history
area, move the cursor into the field and press PF7 and
PF8.

AppointmentBook
/Tickler

The Appointment Book/Tickler is invoked by placing
the cursor on any day in the calendar and pressing Enter.
It provides an hourly appointment schedule, a to-do list,
and reminders. The appointment book can also be
entered for the current day by placing the cursor on any
field in the reminder area and pressing Enter.

Broadcast
Message

The Broadcast Message appears when you log in to
TIBCO Object Service Broker. It appears at the bottom of
the workbench next to the time. The message is the first
occurrence of the BROADCAST table. You can view the
rest of the BROADCAST table by pressing PF2 before
you start any other transactions in this TIBCO Object
Service Broker session. If the table is empty, the message
“No broadcast available” appears.
TIBCO Object Service Broker Shareable Tools

SESSMGR | 593
Accessing the Workbench Tools

The TIBCO Object Service Broker tools listed in the menu can be accessed in three
ways:

• From the menu

• From the command line in the middle of the screen

• From the command history in the lower portion of the screen

To issue a command, place the cursor on the corresponding line for the command.
The menu can be scrolled to display all the commands. Most commands have a
required or optional argument that should be typed in the corresponding field. If
the name of an object (for example, rule, table, or screen) is not typed, a list of the
available objects appears.

Rule arguments or table parameters can be supplied with the rule or table names.
If the necessary arguments or parameters are not supplied, a prompt screen
appears.

The pair of letters to the left of each command line is an abbreviation for that
command. They are used with the COMMAND and Command History fields.

A previously issued command can be executed again by placing the cursor on it
in the command history area and pressing Enter. The abbreviation or the
argument can be changed by typing over it before execution.

See Also For information about:

This option… Refer to this manual…

ER edit rule TIBCO Object Service Broker Programming in Rules.

EX execute rule TIBCO Object Service Broker Programming in Rules.

DB debug rule TIBCO Object Service Broker Programming in Rules.

BR browse table TIBCO Object Service Broker Managing Data.

ED edit table TIBCO Object Service Broker Managing Data.

DS define screen TIBCO Object Service Broker Defining Screens and
Menus.

DR define report TIBCO Object Service Broker Defining Reports.

DT define table TIBCO Object Service Broker Managing Data.

DL define library TIBCO Object Service Broker Programming in Rules.
 TIBCO Object Service Broker Shareable Tools

594 |
The rest of the TIBCO Object Service Broker tools are documented in this manual.

PF Keys

The following function keys are recognized while the screen appears:

Appointment Book

Pressing Enter while the cursor is positioned on a day number in the calendar
displays a screen similar to the following screen:

 APRIL MAY JUNE
 SU MO TU WE TH FR SA SU MO TU WE TH FR SA SU MO TU WE TH FR SA

1 1 2 3 4 5 6 1 2 3
2 3 4 5 6 7 8 7 8 9 10 11 12 13 4 5 6 7 8 9 10

 9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17
 16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24
 23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30
 30 31
 APPOINTMENTS: FRIDAY MAY 19 2000 TO DO:
 8:00 |
 9:00 |
 10:00 |
 11:00 |
 12:00 |
 1:00 |

GR generate report TIBCO Object Service Broker Defining Reports.

PM promotion TIBCO Object Service Broker Managing Deployment.

UP user profile TIBCO Object Service Broker Managing Security.

PF1 Provides online help related to the session menu.

PF2 Displays a history of broadcast messages when you first log in to TIBCO
Object Service Broker.

After you use any of the workbench tools, this PF key displays the
message log if any information is there.

PF3 Terminates the current TIBCO Object Service Broker session.

PF7 Scrolls the command history or command menu up.

PF8 Scrolls the command history or command menu down.

This option… Refer to this manual…
TIBCO Object Service Broker Shareable Tools

SESSMGR | 595
 2:00 |
 3:00 |
 4:00 |
 5:00 |
 EVE: |
 EVE: |

 COMMAND ==> Go to month: ___ day#: __ year: ____

Fields The appointment calendar contains the following fields:

Primary
Commands

The following primary commands are recognized while the screen appears:

APPOINTMENTS Type appointments in the appropriate time slot.

TO DO Type things to do.

N or Next Saves the present page and displays the next page.

P or Previous Saves the present page and displays the previous page.

N # or Next # Saves the current page and moves ahead # pages.

P # or Previous # Saves the current page and moves back # pages.

N ? or Next ? Saves the current page and moves ahead to the next
non-blank page.

P ? or
Previous ?

Saves the current page and moves back to the previous
non blank page.

N s string or
Next s string

Saves the current page and moves ahead to the next
page that contains the string string.

For example:

COMMAND==> n s meeting

The search is sensitive to case and detects the string
when it is a substring.
 TIBCO Object Service Broker Shareable Tools

596 |
P s string or
Previous s

string

Saves the current page and moves back to the previous
page that contains the string string.

For example:

COMMAND==> p s meeting

The search is sensitive to case and detects the string
when it is a substring.
TIBCO Object Service Broker Shareable Tools

| 597
$SETATTRIBUTE

Sets attributes for the field of the screen table, in the specified screen. (C)

Invocation CALL $SETATTRIBUTE(screen, table, field, attribute, flag)

Usage Notes • Not all display devices can support the extended attributes. The extended
attributes are supported only on some 3270 terminals on a z/OS system.

• Valid values must be supplied for all the arguments or an error occurs.

• $SETATTRIBUTE must be called before the screen appears or it is ignored.

• $SETATTRIBUTE operates only for the duration of the transaction.

screen A character string specifying the screen. Its syntax is
C (fixed-length character string) with length 16.

table A character string specifying the screen table. Its syntax is C with
length 16. To set attributes for the message area of the specified
screen (where the SCREENMSG tool writes), leave table blank.

field A character string specifying the screen field. Its syntax is C with
length 16. To set attributes for the message area of the specified
screen (where the SCREENMSG tool writes), set field to
@MESSAGE.

attribute The following attributes are available:
P – Protects the field.
H – Highlights the field.
V – Makes the field visible.
D – Makes the field light pen detectable. Makes the data mapped
graphical object detectable by cursor (allow focus).
N – Accepts only numeric characters in the field.
U – Underlines the field (extended attribute).
R – Reverses the foreground and background colors for the field
(extended attribute).
B – Makes the field blink (extended attribute).

flag One of the following:

Y – Turns the attribute on.

N or anything except Y – Turns the attribute off.
 TIBCO Object Service Broker Shareable Tools

598 |
• $SETATTRIBUTE operates only on a screen table that has real occurrences,
and has the current position set by a table access. If the current position is not
set in the screen table, a call to $SETATTRIBUTE is ignored.

• For a particular screen field, specify only one of the extended attributes U, R,
or B.

Example The following rule sets the reverse video attribute on the FCNKEYS field of the
example screen and displays the screen:

 SETATTRIBUTE_1;
 _
 _ --
 _ --+-----------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ CALL $SETATTRIBUTE('NEW_EMPLOYEE', 'FCNKEY_SPECS', | 3
 _ 'FCNKEYS', 'R', 'Y'); |
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE: | 4
 _ CALL PROCESS_FCNKEY('NEW_EMPLOYEE'); |
 _ END; |
 _ --
TIBCO Object Service Broker Shareable Tools

| 599
$SETCHANNEL

Nominates a channel for passing to a a program or transaction. (C)

Invocation CALL $SETCHANNEL(channel), where channel is the name (1-16 characters) of the
channel to pass to the program that is being executed by LINK as an external CICS
routine; or by XCTL or START TRANSID as a result of the SESSIONEND action.

Usage Notes A blank channel name denotes that no channel is to be passed.
 TIBCO Object Service Broker Shareable Tools

600 |
$SETCOLOUR

Sets the color of a screen field. (C)

Invocation CALL $SETCOLOUR(screen, table, field, color_type, color)

Usage Notes • Not all display devices can support background color. If your display device does not
support background color, the specification is ignored.

• If your display device does not support the color specified, a default color is
substituted.

• Unexpected results can occur when an extended color is sent to a terminal that
does not support extended colors. Generally, if a field is specified with an
extended color and sent to a terminal that does not support extended colors,
the terminal software returns the entire screen in two-color mode.

• You must supply valid values for all the arguments or an error occurs.

• $SETCOLOUR takes effect on the next DISPLAY.

• $SETCOLOUR operates only for the duration of the transaction.

screen A character string specifying the screen. Its syntax is
C (fixed-length character string) with length 16.

table A character string specifying the screen table. Its syntax is C with
length 16. To set the color for the message area of the specified
screen (where the SCREENMSG tool writes), leave table blank.

field A character string specifying the screen field. Its syntax is C with
length 16. To set the color for the message area of the specified
screen (where the SCREENMSG tool writes), set field to
@MESSAGE.

color_type A character string specifying whether the color is to be foreground
or background. Valid values:

F – Foreground.

B – Background.

color A character string specifying the color to be used. Valid values are
any color in the @COLOURS table. Its syntax is C with length 25.
TIBCO Object Service Broker Shareable Tools

$SETCOLOUR | 601
• $SETCOLOUR operates only on a screen table that has real occurrences and
has the current position set by a table access. If the current position is not set
in the screen table, a call to $SETCOLOUR is ignored.

Example The following rule sets the color on the FCNKEYS field of the example screen and
displays the screen:

 SETCOLOUR_1;
 _
 _ --
 _ --+-----------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('NEW_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('NEW_EMPLOYEE'); | 2
 _ CALL $SETCOLOUR('NEW_EMPLOYEE', 'FCNKEY_SPECS', 'FCNKEYS', | 3
 _ 'F', 'RED'); |
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE: | 4
 _ CALL PROCESS_FCNKEY('NEW_EMPLOYEE'); |
 _ END; |
 _ --
 TIBCO Object Service Broker Shareable Tools

| 602
SETCURSOR

Positions the cursor in the field of the screen table, in the specified screen. (C)

Invocation CALL SETCURSOR(screen, table, field)

Usage Notes • If you supply valid values for screen, table, and field, the cursor is positioned on
the current occurrence of the field when the screen appears. If no current
position is established, the call is ignored.

• If the value for screen, table, or field is invalid, an error occurs.

• If table or field are not specified, the call to SETCURSOR is ignored.

• The screen server determines the type of terminal you are using (for example,
Mod 5) and if any screen table is placed beyond the screen boundary, it treats
it as an invisible table that cannot be viewed. Since the screen table is not
displayable, calls to SETCURSOR are ignored.

Example The following rule positions the cursor on the EMPLOYEE# field of the example
screen and displays the screen below:

 SETCURSOR_1;
 _ --
 _ --+-----------
 _ EMPLOYEE_DATA.EMPNO=80000; | 1
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); | 2
 _ CALL SETCURSOR('EMPLOYEE_SCR', 'EMPLOYEE_DATA', 'EMPNO'); | 3
 _ DISPLAY EMPLOYEE_SCR; | 4
 _ --

Resulting Output

Executing this rule displays the following screen:

screen The name of the screen. Its syntax is C (fixed-length character
string) with length 16.

table The name of the screen table within the screen. Its syntax is C with
length 16.

field The name of the screen field within the screen table. Its syntax is C
with length 16.
 TIBCO Object Service Broker Shareable Tools

SETCURSOR | 603
 Employee Name Employee#
 ------------- ---------
 80000
 TIBCO Object Service Broker Shareable Tools

| 604
SETCURSOR_POS

Positions the cursor in the column of the field of the occurrence, in the screen table
of the screen. (C)

Invocation CALL SETCURSOR_POS(screen, table, field, occurrence_number, column_offset)

Usage Notes • When you supply values for screen, table, and field, the cursor is positioned on
the field in the table at the specified occurrence and column offset. If the values
do not exist, an error occurs.

• The set of occurrences used by SETCURSOR_POS is the set of real and empty
occurrences. For example, if occurrence_number is set to 5 and there are three real
occurrences and two empty occurrences displayed, the cursor is positioned on
the second empty occurrence.

As occurrences are inserted into the screen table, the number of empty
occurrences is decreased by the number of occurrences inserted. The number
of empty occurrences is reset to the value on the screen definition each time
the screen appears. For example, if a screen definition has EMPTY OCCS set to
5 and three occurrences are inserted into the screen table, the number of
empty occurrences equals 2.

If the screen appears again, the number of empty occurrences is reset to 5.
Therefore, if SETCURSOR_POS is called prior to the display, the maximum
valid value for occurrence_number is 5 (three real occurrences plus two empty
occurrences). After the display, the maximum valid value for occurrence_number
is 8 (three real occurrences plus five empty occurrences).

screen The name of the screen. Its syntax is C (fixed-length
character string) with length 16.

table The name of the screen table within the screen. Its syntax
is C with length 16.

field The name of the screen field within the screen table. Its
syntax is C with length 16.

occurrence_number An integer specifying the occurrence within the screen
table. Its syntax is B (binary) with length 2.

column_offset An integer specifying the relative column number. Its
syntax is B (binary) with length 2. The first column is
column 1.
 TIBCO Object Service Broker Shareable Tools

SETCURSOR_POS | 605
• If you do not specify table or field, the call to SETCURSOR_POS is ignored.

• SETCURSOR_POS takes effect on the next DISPLAY.

• If occurrence_number or column_offset are invalid, the call to SETCURSOR_POS is
ignored.

Example The following rule fills the example screen with data from the example table,
positions the cursor in column 1 in the first occurrence of the LNAME field, and
displays the screen. The cursor is positioned on the first S in Smythe.

 SETCURSOR_POS_1;
 _
 _ --
 _ --+-----------
 _ FORALL EMPLOYEE : | 1
 _ EMPLOYEE_DATA.* = EMPLOYEE.*; |
 _ INSERT EMPLOYEE_DATA('EMPLOYEE_SCR'); |
 _ END; |
 _ CALL SETCURSOR_POS('EMPLOYEE_SCR', 'EMPLOYEE_DATA', | 2
 _ 'LNAME', 1, 1); |
 _ DISPLAY EMPLOYEE_SCR; | 3
 _ --

Resulting Output

Executing this rule displays the following screen:

 Employee Name Employee#
 ------------- ---------
 SMYTHE 80000
 ROTERDAM 80002
 CHANG 80003
 GARZA 80004
 TOWNSEND 80014
 PASTARINA 80019
 TIBCO Object Service Broker Shareable Tools

| 606
$SETENVCOMMAREA

Passes data from TIBCO Object Service Broker into a calling environment that is
not TIBCO Object Service Broker. (F)

Invocation length = $SETENVCOMMAREA(value, segment#)

Usage Notes • For IMS TM, use the following values to indicate the appropriate segment
number:

• For CICS, the value for segment# is ignored.

• For some CICS transactions the string of data that is passed in the
COMMAREA consists of the session parameter string followed by user data.

• For the SDK (C/C++), the maximum length for value applies even though
much larger COMMAREAs are supported through the MAP table interface.

See Also • TIBCO Object Service Broker for z/OS External Environments or TIBCO Object
Service Broker for Open Systems External Environments for information about
using TIBCO Object Service Broker with external environments

• TIBCO Object Service Broker Managing Data for information about MAP tables

length On return, contains the length remaining in the segment or
COMMAREA after the function is performed. Its syntax is B
(binary) with length 2.

value The data to be passed. Its syntax can be C (fixed-length character
string), V (variable-length character string), or W (double-byte
character), with a length of either 8192 or 31744, depending on the
data length.

segment# The number of the segment where to store the data. Its syntax is B
(binary) with length 2.

0 Scratch Pad Area (SPA).

The first 14 bytes here should never be modified.

1 The user data or, if using a non-seamless interface, the session
parameter string.

2 The user data, if the first segment contains the session parameter string.
 TIBCO Object Service Broker Shareable Tools

$SETENVCOMMAREA | 607
Example The following rule retrieves data from the EMPLOYEES table and returns the data
to the COMMAREA:

 RULE EDITOR ===> SCROLL: P
 SETENV_1;
 _ LOCAL MESSAGE, LENGTH;
 _ ---
 _ --+--------------
 _ FORALL EMPLOYEES WHERE REGION = 'MIDWEST' : | 1
 _ MESSAGE = MESSAGE || EMPLOYEES.LNAME ||';'; |
 _ END; |
 _ LENGTH = $SETENVCOMMAREA(MESSAGE, 1); | 2
 _ ---
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 608

SETNLSBIT

Sets the NLS bit for the specified table, in the RESERVED field of the TABLES
table. (C)

Invocation CALL SETNLSBIT(table, flag)

Usage Notes • Setting the NLS bit on for a specified table indicates that the table uses the
system code page, rather than the TDS code page. For example, you must turn
the NLS bit on when storing binary data in a table. In this case, you must use
type S and syntax V, and setting the NLS bit on insulates your table from NLS
translation, because the translation could render your binary data
unintelligible.

• You cannot use SETNLSBIT to modify the NLS bit of a TIBCO Object Service
Broker system table.

Example This rule sets the NLS bit on for the table whose name is passed to the rule:

 SET_NLS_BIT(TABLENAME);
 _ LOCAL TABLENAME;
 _ --
 _ --+-----------
 _ CALL SETNLSBIT(TABLENAME, 'Y'); | 1
 _ --

See Also TIBCO Object Service Broker National Language Support for information about using
the NLS bit.

table A character string specifying the name of the table. Its syntax is
C (fixed-length character string) with length 16.

flag One of the following:

Y – Turns the NLS bit on.

N or anything except Y – Turns the NLS bit off.

| 609
$SETOPT

Sets the value of a session parameter or option. (C)

Invocation CALL $SETOPT(parameter, value)

Available Parameters and Options

Only the parameters and options identified are accepted by this tool. The
checkmark indicates that the parameter or option is effective for the indicated
platform. For compatibility purposes, some parameters or options are accepted
on all platforms, but are effective only on the ones indicated.

parameter The name of the parameter or option whose value you want to
change.

value The value to which you want to set the parameter or option.

Parameter or Option
Name Abbreviation Description

Parameter
or Option
Type

Win
/
UNI
X

z/OS

CHARSET C The default national
character set.

Execution
Environment

Y Y

CICSVSAMSYNC CICSVSAM Specifies whether the VSAM
server should issue
SYNCPOINTs under CICS.

Execution
Environment

Y

DECIMALSEPARATOR DECSEP The character to be used as
the decimal separator.

Execution
Environment

Y Y

DISPLAYCODEPAGE The code page used to
display the TIBCO Object
Service Broker data.

NLS Y

DSBIFTYPE DSBT The file type used to process
calls to the @READDSN and
@WRITEDSN tools and the
load/unload to external files
tools.

Execution
Environment

Y

 TIBCO Object Service Broker Shareable Tools

610 |
DSFIELDSEP DSFS The field separator for
LINE_SEPARATED_ASCII
type import and export
tables.

Execution
Environment

Y

DSIXFTYPE DSXT The file type used to process
import and export tables.

Execution
Environment

Y

DSQUOTE DSQ The quote character used for
LINE_SEPARATED_ASCII
import tables.

Execution
Environment

Y

ERRMESSAGESCREEN ERRMSGSCR The response to the CICS end
message that is issued when
a TIBCO Object Service
Broker session ends.

Execution
Environment

Y

EXECLOCALSIZE LOCALSIZE The size of the area for rules
local variables.

Execution
Environment

Y

EXECSTACKSIZE STACKSIZE The size of the rules executor
runtime stack in bytes.

Execution
Environment

Y

IMSSCREENATTRIBU IMSEDS Specifies whether terminals
with sessions established
under this IMS TM client or
Native Execution
Environment have the
extended data stream or
extended attribute support.

Execution
Environment

Y

LANGUAGE The language used to display
the TIBCO Object Service
Broker user interface.

NLS Y

PRINTCLASS CLASS The default JES SYSOUT
class for output generated
using TIBCO Object Service
Broker print facilities.

Execution
Environment

Y

PRINTCOPY COPY The number of copies to print
of a report generated by
TIBCO Object Service Broker.

Execution
Environment

Y

Parameter or Option
Name Abbreviation Description

Parameter
or Option
Type

Win
/
UNI
X

z/OS
TIBCO Object Service Broker Shareable Tools

$SETOPT | 611
PRINTDATASET DATASET The name of a file or existing
data set to which a TIBCO
Object Service Broker
generated report is written.

Execution
Environment

Y

PRINTDEST DEST The default printer
destination for output
generated by TIBCO Object
Service Broker.

Execution
Environment

Y

PRINTERRORLOG PERL The default option for
printing or not printing the
TIBCO Object Service Broker
workbench information logs
in a multi-user Execution
Environment, that is, CICS or
Native Execution
Environment.

Execution
Environment

Y

PRINTFCB FCB The name of a Forms Control
Buffer (FCB) to be used when
printing output generated by
TIBCO Object Service Broker.

Execution
Environment

Y

PRINTFORM FORM The name of a form on which
JES SYSOUT output
generated by TIBCO Object
Service Broker is to be
printed.

Execution
Environment

Y

PRINTUCS UCS The name of a universal
character set (UCS) to be
used to print the JES SYSOUT
output generated by TIBCO
Object Service Broker.

Execution
Environment

Y

PRINTXWTR XWTR The name of an external
writer (XWTR) to be used to
print output generated by
TIBCO Object Service Broker.

Execution
Environment

Y

Parameter or Option
Name Abbreviation Description

Parameter
or Option
Type

Win
/
UNI
X

z/OS
 TIBCO Object Service Broker Shareable Tools

612 |
Usage Notes • Changes made with $SETOPT last for the duration of the session, or until
$SETOPT is called again.

• Any parameter that can be set with $SETOPT, except LANGUAGE, can be
retrieved with $GETOPT.

SESSDSPXFRSCRMAX SDXMAX The maximum amount of
display and transfer
(DISPLAY &
TRANSFERCALL rules
language statement) screen
rows storage allowed for a
user session.

Execution
Environment

Y

TIMEOFFSET The difference in minutes
between the time shown on
the workbench and the base
system installation time.

User profile Y

TRANDSPXFRSCRMAX TDXMAX The maximum amount of
display and transfer
(DISPLAY &
TRANSFERCALL rules
language statement) screen
rows storage allowed for a
transaction.

Execution
Environment

Y

VARLDELIMITER VLD The character to be used as
the left delimiter for
enclosing substituted
variables in
@SCHEDULEMODEL.

Execution
Environment

Y

VARRDELIMITER VRD The character to be used as
the right delimiter for
enclosing substituted
variables in
@SCHEDULEMODEL.

Execution
Environment

Y

Parameter or Option
Name Abbreviation Description

Parameter
or Option
Type

Win
/
UNI
X

z/OS
TIBCO Object Service Broker Shareable Tools

$SETOPT | 613
Exceptions

See Also TIBCO Object Service Broker Parameters for information about these parameters.

TIBCO Object Service Broker Programming in Rules for information about
exceptions.

Example The following example uses $SETOPT to reset the DECIMALSEPARATOR
parameter, then retrieves the new setting with $GETOPT and displays it on the
end message:

 RULE EDITOR ===> SCROLL: P
 DECIMAL(SEPARATOR);
 _ LOCAL DEC;
 _ ---
 _ --+--------------
 _ CALL $SETOPT('DECIMALSEPARATOR', SEPARATOR); | 1
 _ DEC = $GETOPT('DECIMALSEPARATOR'); | 2
 _ CALL ENDMSG('DECIMALSEPARATOR IS: ' || DEC); | 3
 _ ---

When the DECIMAL rule is run using the argument ',' the end message reads:
DECIMALSEPARATOR IS: ,

Invalid argument

OPTION-NAME ===>

(xyz) <=== for

$SETOPT

RANGERROR raised if the parameter name, for
example, invalid argument, is not supported

Invalid value for

OPTION-NAME ===>

(xyz) <=== of $SETOPT

RANGERROR raised if the value, for example,
invalid value, is out of range for the given
parameter
 TIBCO Object Service Broker Shareable Tools

| 614
$SETP#POS

Defines the position and content of page number lines. (C)

Invocation CALL $SETP#POS(line_number, left_string, center_string, right_string)

Prerequisites • Before a call to $SETP#POS, the print arguments must be set with a call to
$SETPRINT or $RESETPRINT.

• $SETP#POS deletes all defined titles and footers; therefore, call $SETP#POS
before calling $SETTITLE.

Usage notes • The new settings take effect after the next page break.

• The percent sign (%) indicates the position of the page number within a string.
Only the leftmost percent sign is considered.

• The page number strings default to the format specified by:

$SETP#POS(0,'','','Page %')

Use of line _number

• line _number can take on values greater than or equal to 0 and less than or equal
to length - 1 (where length is the value specified in $SETPRINT or
$RESETPRINT).

• If line _number is 0 and no other argument has a percent sign (%), the page
number line is not printed.

• line _number is relative to the top of the page if it is 0 or positive; it is relative to
the bottom of the page if it is negative.

line_number An integer specifying the line on which to place the page
number string. Its syntax is B (binary) with length 2.

left_string The character string to be printed flush left. Its syntax can be
C (fixed-length character string), V (variable-length character
string), or W (double-byte character).

center_string The character string to be printed centered on the page. Its
syntax can be C, V, or W.

right_string The character string to be printed flush right. Its syntax can be
C, V, or W.
 TIBCO Object Service Broker Shareable Tools

$SETP#POS | 615
• If line _number is 0, the page number line does not interfere with title line; the
page number line is printed on the first physical line and the title line is
printed on the second physical line. If line _number is a value other than 0, the
page number line takes precedence over conflicting title lines and the page
number line is printed while the title line is not.

• The page number line cannot be directly reset to anything other than 0. To
reset the page number line to a value other than 0, first reset it to 0, and then
reset it to the desired value.

Exceptions

Example The following rule:

1. Prints a page at the default settings

2. Calls $SETP#POS to set new settings

3. Forces a new page so that the new settings are in effect

4. Prints a page at the new settings:

SETP#POS_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS PAGE HAS THE DEFAULT PAGE NUMBERS'); | 2
 _ CALL $SETP#POS(0, 'LEFT TITLE', '- % -', 'RIGHT TITLE'); | 3
 _ CALL $NEWPAGE; | 4
 _ CALL $PRINTLINE('THIS PAGE HAS THE NEW PAGE NUMBERS'); | 5
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

ROUTINEFAIL This exception is raised if $SETP#POS is not preceded by a call
to $SETPRINT or $RESETPRINT, or if the absolute value of
line_number is greater than or equal to length - 1 (where length is
the page length set by $SETPRINT or $RESETPRINT) or 29,
whichever is less.

STRINGSIZE The combined length of character strings exceeds width (where
width is the page width set by $SETPRINT or $RESETPRINT)
or 132, whichever is less.
 TIBCO Object Service Broker Shareable Tools

616 |
 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 Page 1
 THIS PAGE HAS THE DEFAULT PAGE NUMBERS

 ------------------------------ NEW PAGE ------------------------------

 LEFT TITLE - 2 - RIGHT TITLE
 THIS PAGE HAS THE NEW PAGE NUMBERS
TIBCO Object Service Broker Shareable Tools

| 617
$SETPRINT

Initializes the print attributes or, if they are already set, uses it to clear the titles for
the output on the following pages. (C)

Invocation CALL $SETPRINT(length, width, page_number, media, clear_title_yn)

length An integer specifying the number of lines per page or screen. It
can take on values greater than or equal to 1 and less than or
equal to 32767. Its syntax is B (binary) with length 2.

width An integer specifying the number of columns per page or per
screen. It can take on values greater than or equal to 1 and less
than or equal to 256. Its syntax is B, with length 2.

page_number An integer specifying the page number that appears on the
subsequent page. It can take on values greater than or equal to
1 and less than or equal to 32767. Its syntax is B, with length 2.

media One of:

PRT – Direct output to the printer.

SCR – Direct output to the screen.

filename – If the filename in the media field is a z/OS data set,
there are no restrictions to the data set format. An entry, for
example, could be of FORMAT = VB, LRECL = 132.

For Open Systems operating systems, the filename can include
the full path, for example, E:\temp\myfile.txt. If only the
filename is provided, the output file is the current working
directory where the TIBCO Object Service Broker session is
launched.

Its syntax is V (variable-length character string) with length 54.

clear_title_yn Indicates whether titles should be printed. Valid values are:

Y – Clears all previously defined titles (through $SETTITLE).

N or '' – Titles should be printed. Do not clear all previously
defined titles.

Its syntax is C (fixed-length character string), with length 1. To
start a new set of pages without using the titles in previous
pages, set clear_title_yn to Y.
 TIBCO Object Service Broker Shareable Tools

618 |
Usage Notes

Exceptions

Example The following rule sets the print arguments with a call to $SETPRINT and prints
four lines to the message buffer using the new print arguments:

 SETPRINT_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(4, 12, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS IS'); | 2
 _ CALL $PRINTLINE('A VERY'); | 3
 _ CALL $PRINTLINE('NARROW'); | 4
 _ CALL $PRINTLINE('SHORT PAGE'); | 5

If… Then…

 page_number is
zero

No page number is printed. $SETPRINT or
$RESETPRINT must be called before a call to another
print tool.

The print
arguments are
already set

The first four arguments are ignored and do not override
the current arguments. To override the current arguments
use $RESETPRINT.

A data set name is
specified for media

The z/OS data set must be pre-allocated.

Control characters are emitted only if media is set to PRT. Control characters can be
included in the output if PRT is redirected to a data set or file (for example, by
specifying a file under the Print Parameters section of the User Profile option on
the workbench).

RANGERROR This exception is raised for one of the following reasons:

length – Is less than or equal to zero.

width – Is less than or equal to zero, or is greater than 256.

page_number – Is less than zero.

media – Is a number, an empty string, or a string without dot (.).

clear_title_yn – Is neither Y or N. An empty string ('') is valid and
is treated as N.

ROUTINEFAIL The media specified is not a valid type.
TIBCO Object Service Broker Shareable Tools

$SETPRINT | 619
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

 - NEW PAGE -

 Page 1
 THIS IS
 A VERY
 NARROW

 - NEW PAGE -

 Page 2
 SHORT PAGE
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 620

SETREMOTELOC

Sets the default remote location for distributed data processing. (C)

Invocation CALL SETREMOTELOC(remoteloc)

Usage Notes • Use the REMOTELOCATION shareable tool to determine the current value of
the default remote location.

• SETREMOTELOC does not check to see if the value you supply for remoteloc is
valid. Use the TIBCO Object Service Broker Administration menu’s Resource
Management facility to access a list of names available to your local node.

See Also TIBCO Object Service Broker Application Administration for information on
distributed data processing.

TIBCO Object Service Broker for z/OS Installing and Operating for information on the
Administration menu.

Example The following rule changes the default remote location, if it is not already the
value required.

 RULE EDITOR ===> SCROLL: P
 CHANGE_LOCATION(VALUE);
 _
 _ ---
 _ VALUE = REMOTELOCATION; | Y N
 _ --+--------------
 _ CALL SETREMOTELOC(VALUE); | 1
 _ CALL ENDMSG('THE LOCATION IS ' || VALUE); | 1 2
 _ ---

remoteloc The value for the default remote location.

| 621
$SETRPTATTRIBUTE

Sets the attributes of the report that is to be printed. (C)

Invocation CALL $SETRPTATTRIBUTE(report, attribute, value)

Usage Notes • Page formatting options (PAGELENGTH, PAGEWIDTH) must precede the
call to $SETRPTMEDIUM, since they copy the current settings for the named
report and do not refresh them until the report is printed.

report The name of the report to which the attributes are to be applied. Its
syntax is C (fixed-length character string) with length 16.

attribute The type of attribute that can be set. Valid values are:

IMMEDIATE – Does not sort the records of the report; just sends
the records to the output as they are read. The corresponding entry
in value must be Y.

OCCLIMIT – Limits the number of occurrences used by the Report
Server to generate the report. The corresponding entry in value
must be the maximum number of occurrences that can be inserted
into the report.

PAGELENGTH – The physical page length. The entry in value
specifies the size in number of lines.

PAGEWIDTH – The physical page width. The entry in value
specifies the size in number of characters.

EJECT – Indicates whether a new page should be inserted between
reports when more than one report is printed in a transaction. The
entry for value should be either Y (new page should be inserted) or
N (a new page should not be inserted).

PAGENUMBER – Specifies the start page number to be used if
more than one report is printed in a transaction. If value is an empty
string, it indicates that the page numbers are to run consecutively
through all the reports. The entry in value overrides the default
page numbering.

value The setting to be applied for the attribute specified. Each value is
discussed together with its corresponding attribute.
 TIBCO Object Service Broker Shareable Tools

622 |
• If $SETRPTATTRIBUTE is being used with overlapping report output, the
page length information can be ignored if value is lower than the previous
report’s page length.

• The attribute IMMEDIATE must precede the INSERT statement in the report
generation.

• Only one report can be sent directly to the output medium at a time.

• The attribute IMMEDIATE is ignored if sorting or derived fields are detected
in the report definition.

• Use of $SETRPTMEDIUM is encouraged because it enables centralization of
all current and future attributes in a single call syntax instead of their being
distributed among several shareable tools.

• Each of the attributes is set one at a time. To set multiple attributes you must
re-enter the line with a new setting.

Example The following rule runs three occurrences of the test report RPTEST_1 starting at
page 999 and sends it to the screen.

 RPTEST_1;
 _
 _ --
 _ --+-----------
 _ FORALL $EMPLOYEES : | 1
 _ FORALL EMPLOYEES (EMPLOYEES.REGION) : |
 _ RPTEST_1$$$$$$$$4.* = EMPLOYEES.*; |
 _ RPTEST_1$$$$$$$$4.* = $EMPLOYEES.*; |
 _ INSERT RPTEST_1$$$$$$$$4('SETRPTATT'); |
 _ END; |
 _ END; |
 _ CALL $SETRPTATTRIBUTE('RPTEST_1', 'PAGENUMBER', '999'); | 2
 _ CALL $SETRPTATTRIBUTE('RPTEST_1', 'OCCLIMIT', '3'); | 3
 _ CALL $SETRPTMEDIUM('RPTEST_1', 'VISUAL' 'SCR'); | 4
 _ PRINT RPTEST_1; | 5
 _ CALL ENDMSG(MESSAGE('@RPTGEN', 602, 'RPTEST_1', 'SCR' ''; | 6
 _ --
 _ ON LOGLIMIT :
 _ CALL END MSG(MESSAGE('@RPTGEN', 698, ''));
TIBCO Object Service Broker Shareable Tools

| 623
$SETRPTMEDIUM

Sets the medium to which a report is to be printed. (C)

Invocation CALL $SETRPTMEDIUM(report, mediumtype, medium)

Usage Notes • The default settings for outputting a report are VISUAL for mediumtype and
SCR for medium. These are used if NULL or an empty string is supplied, or if a
report is printed without explicitly setting the medium for its output.

• Use of $SETRPTMEDIUM is encouraged because it adds the extra capability
of indirect output ($RPTPRINT does not support this feature).

report The name of the report whose output medium you are setting.
Its syntax is C (fixed-length character string) with length 16.

mediumtype The type of medium to be used when printing a report. Valid
values are:

VISUAL – The report is to appear on the screen. The
corresponding medium setting must be SCR.

PRINTER – The report is to be directed to a printer. The
corresponding medium setting must be PRT.

DIRECTFILE – The report is to be output to the file whose
name is contained in the variable medium.

INDIRECTFILE – The report is output to a file identified in
medium. Medium contains either the DDNAME associated with
the file (on z/OS systems) or the name of an environment
variable containing the name of the file (on Open Systems).

medium The qualification of the mediumtype. These can be:

SCR – The report medium is the screen.

PRT – The report medium is a printer.

filename – The output is sent directly to the named file.

ddname – Specifies the DDNAME associated with the file (on
z/OS).

environmental variable – Specifies the name of the environment
variable containing the name of the file to which you are
directing output.
 TIBCO Object Service Broker Shareable Tools

624 |
Example The following rule sends the output of the test report RPTEST_2 to the screen:

 RPTEST_2;
 _
 _ --
 _ --+-----------
 _ FORALL $EMPLOYEES : | 1
 _ FORALL EMPLOYEES (EMPLOYEES.REGION) : |
 _ RPTEST_2$$$$$$$$4.* = EMPLOYEES.*; |
 _ RPTEST_2$$$$$$$$4.* = $EMPLOYEES.*; |
 _ INSERT RPTEST_2$$$$$$$$4('SETRPTATT'); |
 _ END; |
 _ END; |
 _ CALL $SETRPTMEDIUM('RPTEST_2', 'VISUAL' 'SCR'); | 2
 _ PRINT RPTEST_2; | 3
 _ CALL ENDMSG(MESSAGE('@RPTGEN', 602, 'RPTEST_2', 'SCR' ''; | 4
 _ --
 _ ON LOGLIMIT :
 _ CALL END MSG(MESSAGE('@RPTGEN', 698, ''));
 _
TIBCO Object Service Broker Shareable Tools

| 625
$SETSESSIONEND

Sets what execution is to take place when a TIBCO Object Service Broker session
ends by returning data from the session to an external environment. (C)

Invocation CALL $SETSESSIONEND(action, value)

See Also TIBCO Object Service Broker for z/OS External Environments for information about
using TIBCO Object Service Broker with external environments.

Example In the following examples:

• SETSESSIONEND_1 sets the execution for a IMS TM application. According
to the rule, when the current session ends, IMS TM initiates TRAN01.

• SETSESSIONEND_2 sets the return code to 4. The return code can be used by
the calling environment (for example, by JCL in z/OS batch) to determine the
appropriate action to take.

SETSESSIONEND_1 Rule

 RULE EDITOR ===> SCROLL: P
 SETSESSIONEND_1;
 _
 _ ---
 _ --+--------------
 _ CALL $SETSESSIONEND('FORMAT', 'TRAN01'); | 1
 _ ---

action The type of execution that is to take place. Valid values are:

IMS TM – FORMAT or SWITCH

CICS – XCTL or START

TSO or BATCH – ABEND, RC, or RETCODE

value The transaction code or program name for the next execution.
Valid values depend on the type of action and are:

FORMAT or SWITCH – Syntax C, Length 8

XCTL – Syntax C, Length 8

START – Syntax C, Length 4

ABEND, RC, or RETCODE – Syntax B, Range 0-3999 for z/OS,
0-127 for Open Systems.
 TIBCO Object Service Broker Shareable Tools

626 |
SETSESSIONEND_2 Rule

 RULE EDITOR ===> SCROLL: P
 SETSESSIONEND_2;
 _
 _ ---
 _ --+--------------
 _ CALL $SETSESSIONEND('RETCODE', 4); | 1
 _ ---
TIBCO Object Service Broker Shareable Tools

| 627
$SETTITLE

Sets a title or footer to be printed on subsequent pages of output. (C)

Invocation CALL $SETTITLE(line_number, left_string, center_string, right_string)

Prerequisites The print arguments must be previously set with a call to $SETPRINT or
$RESETPRINT before a call to $SETTITLE.

Usage Notes • $PRINTLINE must be called after $SETTITLE is called, to print the
title/header of the page.

• If line_number is positive, a title is printed. If it is negative, a footer is printed. If
it is 0, an exception is raised.

• The magnitude of line_number can be greater than or equal to 1 and less than or
equal to length -1 (where length is the page length specified using the
$SETPRINT or $RESETPRINT).

• All three arguments must be given. If a particular title is not to be printed,
replace either left_string, center_string, or right_string with a null string (‘ ’).

Exceptions

line_number An integer specifying the line on which to print the title. Its
syntax is B (binary) with length 2.

left_string A character string specifying the string to be printed flush left.
Its syntax can be C (fixed-length character string),
V (variable-length character string), or W (double-byte
character).

center_string A character string specifying the string to be centered (based
on the center of the page). Its syntax can be C, V, or W.

right_string A character string specifying the string to be printed flush
right. Its syntax can be C, V, or W.

RANGERROR Raised when the value provided for line_number is zero (0).
 TIBCO Object Service Broker Shareable Tools

628 |
Example The following rule prints a page to the message log using the default title, sets
new titles with a call to $SETTITLE, forces a page break so that the new titles are
in effect, and prints a page using the new titles:

SETTITLE_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS PAGE HAS THE DEFAULT TITLES'); | 2
 _ CALL $SETTITLE(1, 'LEFT TITLE', 'CENTER TITLE', | 3
 _ 'RIGHT TITLE'); |
 _ CALL $NEWPAGE; | 4
 _ CALL $PRINTLINE('THIS PAGE HAS THE NEW TITLES'); | 5
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 Page 1
 THIS PAGE HAS THE DEFAULT TITLES

 ------------------------------ NEW PAGE ------------------------------

 Page 2
 LEFT TITLE CENTER TITLE RIGHT TITLE
 THIS PAGE HAS THE NEW TITLES

ROUTINEFAIL Raised if the call is not preceded by a call to $RESETPRINT or
$SETPRINT, or if the number of title lines and the number of
footing lines add up to be greater than or equal to either length -
1 (where length is the page length specified by $SETPRINT or
$RESETPRINT) or 29, whichever is less.

STRINGSIZE Raised if the combined length of the character strings exceeds
width (where width is the page width specified by $SETPRINT
or $RESETPRINT) or 132, whichever is less; or if the length of
the left or right character strings (left_string or right_string) is
such that the center string (center_string) cannot be centered.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 629

$SETTRANSACTION

Returns the current name of a TIBCO Object Service Broker transaction and sets a
new name. (F)

Invocation currentname = $SETTRANSACTION(attribute, value)

Usage Notes • The transaction name persists for the life of the transaction (until it is
changed). It is inherited by other initiated transactions, whether by a
TRANSFERCALL or EXECUTE statement.

• On the z/OS platform, the transaction name appears in applicable SMF
records for the transaction.

Example The following rule sets the transaction name to TRAN01:

 RULE EDITOR ===> SCROLL: P
 SETTRAN_1;
 _ LOCAL PRESENTNAME;
 _ ---
 _ --+--------------
 _ PRESENTNAME = $SETTRANSACTION('NAME', 'TRAN01'); | 1
 _ ---

currentname The present name of the transaction is returned in this
variable.

attribute The transaction attribute to set or change. NAME is the only
attribute acceptable to this tool.

value The new transaction value; use syntax C (fixed-length
character string) with maximum length of 8.

| 630
SETXPARM

Overrides a server parameter or the Table Definer default value for a field at table
access time. (C)

Invocation CALL SETXPARM(component, entity, parm name, value, location)

Usage Notes • The override value remains for the life of the user’s session or until a
RESETXPARM is issued.

• This function is valid only for external DBMS table types.

component The scope of the override, either TABLETYPE or
TABLENAME:

TABLETYPE – Indicates that the override value specified is
used for all tables of this type.

TABLENAME – Indicates that the override value applies only
to this table name.

entity The table type or table name, depending on component.

parm name A valid parameter name as defined in
@@SERVERPARMS(tabletype) and listed in Server Parameters
and Fields below, or a valid field name defined in the Table
Definer and listed in Server Parameters and Fields below.

value The desired override value.

location The physical location of the table; the Data Object Broker
where the external DBMS resides.
 TIBCO Object Service Broker Shareable Tools

SETXPARM | 631
Server Parameters and Fields

These are the server parameters or field values that you can override at runtime:

Example • This example sets SERVERID for all IDM (IDMS/DB) tables to TORONTO for
the user’s session, until the next SETXPARM or the resetting of the overrides:

CALL SETXPARM('TABLETYPE', 'IDM', 'SERVERID', 'TORONTO', '');

• The following example sets the Optimize flag for table EMPLOYEE to Y:

CALL SETXPARM('TABLENAME', 'EMPLOYEE', 'OPTIMIZEUPDATE', 'Y',

'');

Table
Type Name Parameter

or Field
Default
Value

Maximum
Value Length

IDM SERVERID Parameter DEFAULT 8

DBNAME Field 8

READY_MODE Field SR 2

OPTIMIZEUPDATE Field N 1

USERSUBSCHEMA Field 8

IMS SERVERID Parameter DEFAULT 8

SERVERTYPE Parameter IMS 8

PSBNAME Parameter 8

DBNAME Field 8

OPTIMIZEUPDATE Field N 1

ADA SERVERID Parameter DEFAULT 8

DAT SERVERID Parameter DEFAULT 8

DB2 SERVERID Parameter DEFAULT 8

SERVERTYPE Parameter DB2 8

204 SERVERID Parameter DEFAULT 8

SLK SERVERID Parameter DEFAULT 8
 TIBCO Object Service Broker Shareable Tools

| 632
$SHOWCHANNEL

Returns the 16-character name of the current channel, if one exists; otherwise,
returns blanks. (F)

Invocation channel = $SHOWCHANNEL, where channel, on return, contains the 16-character
name of the program’s current channel, if one exists. Otherwise, channel contains
blanks.
 TIBCO Object Service Broker Shareable Tools

$SIGNAL | 633
$SIGNAL

Raises the specified exception. (C)

Invocation CALL $SIGNAL(exception,tablename)

Usage Notes • The exception to be signalled can be a user-defined exception or a system
exception.

• The exception can be specified as an indirect reference. This cannot be done
using the SIGNAL statement.

• A table name can be used to limit the scope of data access exception handlers.

See Also TIBCO Object Service Broker Programming in Rules for more information about
exception handling and about the Signal statement.

Example The following rule demonstrates the use of $SIGNAL to signal a user-defined
exception read from a table. It also shows how to simulate a GETFAIL condition
on a table without actually issuing the GET. It is assumed that exception handlers
for the user-defined exceptions are specified in higher-level rules.

 PROCESS(VALUE);

 VALUE > 1000; | Y N
 ---+----
 _ CALL $SIGNAL('GETFAIL','KEYVALUES'); | 1
 _ GET KEYVALUES WHERE KEY = VALUE; | 1
 _ CALL $SIGNAL(KEYVALUES.EXCEPTION, ''); | 2
 ---+----
 _ ON GETFAIL KEYVALUES:
 _ CALL ENDMSG('Key value ' || VALUE || ' not found.');

exception The name of the exception to be signalled. Its syntax is
C (fixed-length character string) with length 16.

tablename The name of a table associated with the exception. If no table is to
be associated with the exception, specify an empty string(‘‘). Its
syntax is C with length 16.
 TIBCO Object Service Broker Shareable Tools

| 634
SIXBUILD

Creates a secondary index online for a TDS table. (C)

Invocation Do one of the following:

• From the administrator’s workbench, move the cursor to the DT Define Table
option and press Enter.

• Within a rule, type:

CALL SIXBUILD(table, secondary_key)

Usage Notes • You need change definition rights to build an index on a table.

• SIXBUILD ignores the location parameter of the input table. Minimal table
definitions are not allowed.

• SIXBUILD runs and updates are made even if it is called in a transaction that
is running in browse mode.

• If you want to build multiple secondary indexes on a large existing table, use
S6BBRSIX, the batch secondary build utility.

Using SIXBUILD from the Administrator’s Workbench

If you use SIXBUILD from the administrator’s workbench, when you press Enter
a list of tables appears on the screen. From this screen:

1. Type the line command X beside the table you want to build a secondary index
for and press Enter.

2. From the displayed screen, select the field or fields on which you want to
build the secondary index.

Unloading Tables with Secondary Indexes

Because secondary indexes are not carried over when tables are unloaded,
promotion problems can result. To use SIXBUILD as a work around, complete the
following steps:

table The name of the table on which to build the index.

secondary_key The name of the field for which a secondary index must be
created. A secondary index cannot be created on a field with
syntax RD (raw data) or UN (Unicode).
 TIBCO Object Service Broker Shareable Tools

SIXBUILD | 635
1. Unload the table definition to data set A.

2. Unload table data only to data set B.

3. Load the table definition to the target system.

4. Call SIXBUILD or, on the Administrator workbench, (@ADMIN) use the Table
Definer to designate SIX fields.

5. Load table data. SIX should be built as the table is loaded.

See Also TIBCO Object Service Broker Application Administration for information about
building secondary indexes.

TIBCO Object Service Broker for z/OS Utilities for more information on S6BBRSIX.

Exceptions

Example The following statement builds a secondary index for the table EMPLOYEE using
the field MGR#:

 RULE EDITOR ===> SCROLL: P

Be cautious when using SIXBUILD because it does not take part in the TIBCO
Object Service Broker two-phase commit/intent list protocol. It is strongly
recommended that this tool not be used in a transaction that accesses or updates
data within the same table and that it should normally be the only logical unit of
work within a transaction. If a user uses this tool on the data of a bound table, the
data is updated (the updates take place on the bound copy of the data).

If SIXBUILD fails, you must run it again before running another TIBCO Object
Service Broker function, to prevent damage to the database. If SIXBUILD fails
again, contact your database administrator or TIBCO Support immediately.

DATAREFERENCE The field does not belong to the table.

DEFINITIONFAIL The secondary index field length is greater than 127, the
table definition does not exist or is inconsistent, or the
table is not a TDS table.

LOCKFAIL The table that you want to build the index on is being used
by someone else.

ROUTINEFAIL The table definition is minimal.

SECURITYFAIL You did not pass the security check.
 TIBCO Object Service Broker Shareable Tools

636 |
 SIXBUILD_1;
 _
 _ ---
 _ --+--------------
 _ CALL SIXBUILD('EMPLOYEE', 'MGR#'); | 1
 _ ---

Change to Table Definition

Executing the rule causes the following change to the table definition:

COMMAND==> TABLE DEFINITION

 Table: EMPLOYEE Type: TDS Unit:USR40 IDgen: N

 Parameter Name Typ Syn Len Dec Reference ' Event Rule Typ Acc
 ---------------- - - --- -- ---------------- ' ---------------- - -
 _ ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - -- ---- -- - - - ---------------- ----------------
 _ EMPNO I P 3 0 P
 _ LNAME S C 22 0
 _ POSITION S C 14 0
 _ MGR# I P 3 0 S
 _ DEPTNO I B 2 0
 _ SALARY Q P 3 2
 _ HIREDATE D B 4 0
 _ ADDRESS S V 38 0
 _ CITY S C 20 0
 _ PROV S C 3 0
 _ P_CODE S C 7 0
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC
TIBCO Object Service Broker Shareable Tools

| 637
SIMPLESELECT

Processes a selection string into a format that can be used by the FORALLA tool.
(C)

Invocation CALL SIMPLESELECT(selection)

Usage Notes • The syntax for selection is <field name><relational operator><expression>.
For valid expressions, refer to the TIBCO Object Service Broker Programming in
Rules manual.

• The local variable SEL_STR must be declared by the calling rule. It contains
the processed selection string in a format suitable for use in FORALLA.
SEL_STR must be reinitialized to the empty string between calls of
SIMPLESELECT.

• The local variable IN_TBL must be declared by the calling rule. It contains the
name of the table the selection is on.

• The local variable MSG must be declared by the calling rule. It contains the
error message if SIMPLESELECT fails.

Exceptions

Example The following example:

1. Takes an Author supplied by the user and calls SIMPLESELECT to build a
selection string for TABLES WHERE AUTHOR = value.

2. Accesses all rows of TABLES which match the WHERE clause and counts the
occurrences.

3. Writes the names of the tables to the message log.

 QUERY_AUTHOR(AUTH);
 _LOCAL SEL_STR, IN_TBL, MSG, COUNT;
 _ ---
 _ ---+-------------
 _ IN_TBL = ’TABLES’; | 1
 _ CALL SIMPLESELECT(’AUTHOR = ’ || QUOTE(AUTH)); | 2
 _ CALL FORALLA(IN_TBL, ’’, SEL_STR, ’’); | 3

selection A string specifying selection criteria.

SYNTAX_ERROR Raised if there is a syntax error in the selection. Returns an
error message in MSG.
 TIBCO Object Service Broker Shareable Tools

638 |
 _ UNTIL TABLEEND: | 4
 _ COUNT = COUNT + 1; |
 _ CALL MSGLOG(TABLES.NAME); |
 _ CALL FORALLB(IN_TBL); |
 _ END; |
 _ CALL FORALLE(IN_TBL); | 5
 _ CALL ENDMSG(COUNT || ’ TABLES FOUND WITH AUTHOR ’ || AUTH) | 6
 _ ; |
 _ ---
 _ ON SYNTAX_ERROR:
 _ CALL ENDMSG(MSG);
 _ ON TABLEEND:
 _ CALL FORALLE(IN_TBL);
 _ CALL ENDMSG(’NO TABLES FOUND WITH AUTHOR ’ || AUTH);
TIBCO Object Service Broker Shareable Tools

| 639
SIXBUILD_CARDS

Defines the control cards required by the Batch Secondary Index Build utilities.
(E)

Invocation Do one of the following:

Usage Notes • SIXBUILD_CARDS helps you define the control cards required by the
S6BBRSIX and hrnbrsix (Batch Secondary Index Build for TDS tables) utilities.

• SIXBUILD_CARDS displays a series of screens where you identify the table
and secondary index fields, and then writes the necessary controls in a file.

• On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter
to TEXT.

See Also TIBCO Object Service Broker for z/OS Utilities or TIBCO Object Service Broker for
Open Systems Utilities for complete information about the Batch Secondary Index
Build utilities.

TIBCO Object Service Broker Parameters for information on the DSBIFTYPE
Execution Environment parameter.

Procedure Overview

The following table summarizes the tasks to prepare cards:

• Prepare the file for the control cards, page 640

• Invoke SIXBUILD_CARDS, page 640

• Specify secondary indexes, page 641

• Review the output file, page 641

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type SIXBUILD_CARDS
<Enter>

COMMAND prompt Type EX SIXBUILD_CARDS
<Enter>

This setting could affect the behavior of other tools.
 TIBCO Object Service Broker Shareable Tools

640 |
Task A Prepare the file for the control cards

On z/OS systems, before you can use SIXBUILD_CARDS you must allocate a file
to hold the control cards. This file must have a record length of 80 bytes and be
fixed block.

Task B Invoke SIXBUILD_CARDS

Invoke the control card preparation facility, by following these steps:

1. Execute SIXBUILD_CARDS from the workbench.

The initial screen is illustrated with sample input here:

 Control Card Definition for SIXBUILD
 v
 Control Card File : USR01.BATCH.CNTLCARD(FEB2000)

 Table : EMP_MSTR_TDS Character Set : ENGL

 PAGE FILL LEVELS : (Default = 75 % if blank)
 Group Index : Primary Index :
 Secondary Index : Data Pages :

 # of Input Records : (Default = 100000 if blank)

 Total # of Fields : (Default = 50 if blank)

 Dynamic Unit Name : (Default = SYSDA if blank)

 Dynamic Block Size : (Default = 4096 if blank)

 PFKEYS: 1=HELP 3=EXIT 4=CONTINUE 12=CANCEL

2. Supply values for the following fields:

3. To continue defining the control cards, press PF4.

Control Card
File

The filename. You can change the name by typing over it.

Table The lower half of the screen specifies override values for
the batch secondary index build process. Default values
are available and appear on the screen. To override any of
these defaults, type in a new value in the space provided.
TIBCO Object Service Broker Shareable Tools

SIXBUILD_CARDS | 641
Task C Specify secondary indexes

The screen to specify the secondary indexes is shown here:

 Control Card Definition SIXBUILD

 These are the fields and their key types for the selected table.

 Table: EMP_MSTR_TDS

 Primary Secondary Field Name
 Y _ PK
 Y F1
 F2
 F3
 F4
 F5
 F6

 PFKEYS: 1=HELP 3=EXIT 4=CREATE CTL CARDS 12=CANCEL

This screen displays a list of TIBCO Object Service Broker fields with the currently
assigned primary keys. Type a Y in the Secondary column beside the field or
fields for which you want to define a secondary index. You can define a secondary
index on any field except the first primary key field or fields with syntax RD (raw
data) or UN (Unicode).

After specifying the secondary index fields, press PF4. The control cards are
written out to your file and the control cards definition is complete.

Task D Review the output file

An example of an output file containing the control cards is shown here:

S 75 75 000000000100000 050 SYSDA
 H 001 R EMP_MSTR_TDS
 H 002 P PRM1 S C 0015
 H 003 P PRM2 S C 0004
 H 004 F PK I C 0009 P
 H 005 F F1 S C 0015 S
 H 006 F F2 S C 0015
 H 007 F F3 S C 0025
 H 008 F F4 S C 0025
 H 009 F F5 Q P 0006 02
 H 010 F F6 S C 0008
 TIBCO Object Service Broker Shareable Tools

642 |
 H 011 F F7 C B 0002

Notice the P and S designations next to the PK and F1 fields. These letters mean
that PK is a primary key, and F1 is a secondary index. If a field is both a primary
key and a secondary index, the designation is Q.

Record Layout The following tables relate control fields on the screens with their equivalent
fields in the control records:

Input File Definition Screen Record ID/Type Columns

Table Name 1 H/R 64 – 79

Character Set: 1 H/R 9 – 12

Page Fill Levels: 1

 Group Index S 3 – 4

 Secondary Index S 9 – 10

of Input Records 1 S 15 – 29

Total # of Fields 1 S 31 – 33

Dynamic Unit Name 1 S 35 – 42

Dynamic Block Size 1 S 44 – 48

Volumes for work file n/a S 50 – 51

Field Definitions Screen Record ID/Type Columns

Secondary Key Fields 2

TIBCO Object Service
Broker Field Definitions:

n/a

 Name H/F or P 9 – 44

Semantic Type or Syntax 1 H/F or P 45 – 48

Syntax for fields that are
neither RD nor UN

H/F or P 48
TIBCO Object Service Broker Shareable Tools

SIXBUILD_CARDS | 643
 Length H/F or P 49 – 52

 Decimal H/F or P 54 – 55

 Key Type H/F 57

1. Columns 45 to 48 contain the syntax if the field is raw data or Unicode;
otherwise, the semantic type goes in column 46.

Field Definitions Screen Record ID/Type Columns

• H type records contain a sequence number in columns 3 – 5 that must be
consecutive and must commence with 001. The types within these records
must be in the order: R, if any, followed by P, if any, followed by F.

• The Dynamic Block Size, on z/OS only, is used for any temporary work files
required to process secondary indexes and for table instances. The small
default block size can be detrimental to good performance. If secondary
indexes are to be built for large tables, that is, tables with large numbers of
occurrences, consider optimizing the Dynamic Block Size.
 TIBCO Object Service Broker Shareable Tools

| 644
SIXDELETE

Deletes an existing secondary index. (CE)

Invocation Do one of the following:

Where:

Usage Notes • You need change definition rights to delete an index from a table.

• SIXDELETE runs and updates are made even if it is called in a transaction that
is running in browse mode.

• SIXBUILD ignores the location parameter of the input table. Minimal table
definitions are not allowed.

• The table occurrences are not modified in any way by SIXDELETE.

• The field whose secondary index is deleted has the S, or lowercase s for an
incomplete secondary index, deleted from the KEY field of the table
definition. If the field is part of a composite primary key, the Q is changed to P.

Using SIXDELETE from the Administrator’s Workbench

If you use SIXDELETE from the administrator’s workbench, when you press
Enter a list of tables appears on the screen. From this screen:

1. Type the line command X beside the table you want to delete the secondary
index from and press Enter.

From the… Move the cursor to the… And…

Administrator’s
workbench

DT Define Table option Press Enter

From a rule Type CALL SIXDELETE(table,
secondary_key)

table The name of the table whose index is deleted.

secondary_key The name of the field whose secondary index must be deleted.
 TIBCO Object Service Broker Shareable Tools

SIXDELETE | 645
2. From the displayed screen, select the field or fields from which to delete the
secondary index.

See Also TIBCO Object Service Broker Application Administion for information about
secondary indexes.

Exceptions

Example The following statement deletes the secondary index on the table EMPLOYEE:

 RULE EDITOR ===> SCROLL: P
 SIXDELETE_1;
 _
 _ ---
 _ --+--------------
 _ CALL SIXDELETE('EMPLOYEE', 'MGR#'); | 1
 _ ---

Table Definition Changes

Executing the rule causes the following change to be made to the table definition:

Caution is advised when using SIXDELETE because it does not take part in the
TIBCO Object Service Broker two-phase commit/intent list protocol. It is strongly
recommended that this tool not be used in a transaction that accesses or updates
data within the same table and that it should normally be the only logical unit of
work within a transaction. If a user uses this tool on the data of a bound table, the
data is updated (the updates take place on the bound copy of the data).

If SIXDELETE fails, you must run it again before running another TIBCO Object
Service Broker function, to prevent damage to the database. If SIXDELETE fails
again, contact your database administrator or TIBCO Support immediately.

DATAREFERENCE The field does not belong to the table.

DEFINITIONFAIL The table definition does not exist or is inconsistent, or is
not a TDS table.

LOCKFAIL The table that you want to delete the index from is being
used by someone else.

ROUTINEFAIL The table definition is minimal.

SECURITYFAIL You did not pass the security check.
 TIBCO Object Service Broker Shareable Tools

646 |
COMMAND==> TABLE DEFINITION

 Table: EMPLOYEE Type: TDS Unit:USR40 IDgen: N

 Parameter Name Typ Syn Len Dec Reference ' Event Rule Typ Acc
 ---------------- - - --- -- ---------------- ' ---------------- - -
 _ ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - - ---- -- - - - ---------------- ----------------
 _ EMPNO I P 3 0 P
 _ LNAME S C 22 0
 _ POSITION S C 14 0
 _ MGR# I P 3 0
 _ DEPTNO I B 2 0
 _ SALARY Q P 3 2
 _ HIREDATE D B 4 0
 _ ADDRESS S V 38 0
 _ CITY S C 20 0
 _ PROV S C 3 0
 _ P_CODE S C 7 0
 _
 PFKEYS: 3=END 12=CANCEL 22=DELETE 13=PRINT 14=FIELDS 21=DATA 2=DOC

It returns the following to the ENDMSG:

THE RETURN CODE IS 0.
TIBCO Object Service Broker Shareable Tools

| 647
$SKIPLINE

Outputs zero or more blank lines. (C)

Invocation CALL $SKIPLINE(count)

Prerequisites The print arguments must be previously set with a call to $SETPRINT or
$RESETPRINT before a call to $SKIPLINE.

Exceptions

Example The following rule prints a line to the message log, skips five lines, and prints a
second line to the message log:

SKIPLINE_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $PRINTLINE('THIS IS LINE ONE'); | 2
 _ CALL $SKIPLINE(5); | 3
 _ CALL $PRINTLINE('THIS IS LINE SEVEN'); | 4
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ------------------------- INFORMATION LOG -----------------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 Page 1
 THIS IS LINE ONE

count An integer specifying the number of lines to skip. It can take on
values greater than or equal to 0 and less than or equal to 32767. Its
syntax is B (binary) with length 2.

LOGLIMIT Raised if too much output is sent to the message log.

RANGERROR Raised if count is less than zero.
 TIBCO Object Service Broker Shareable Tools

648 |

 THIS IS LINE SEVEN
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 649

$SLEEP

Causes the Execution Environment to go dormant. (C)

Invocation CALL $SLEEP(milliseconds)

Exceptions None.

Example The following example uses $SLEEP to control the length of time between
successive sweeps of a table.

MONTABLE(TABLENAME, SECONDS);
- LOCAL INTERVAL;

--+--------------------
- INTERVAL = SECONDS * 1000; | 1
- UNTIL DONE : | 2
- FORALL TABLENAME : |
- CALL ROWCHECK(TABLENAME); |
- END; |
- CALL $SLEEP(INTERVAL); |
- END; |
- |
- |
- |
- |
- |

milliseconds The number of milliseconds you want the Execution
Environment to stay dormant.

| 650
SOE

Edits a single occurrence in a table. (CE)

Invocation Do one of the following:

Where:

Usage Notes If you do not supply a value for tablespec, pressing Enter displays a screen
prompting for a value.

See Also • Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Single Occurrence Editor

• TIBCO Object Service Broker Managing Data for information about the Single
Occurrence Editor.

Example To edit the record for employee number 61219 in the EMPLOYEES(MIDWEST)
table, type the following at the COMMAND line:

EX SOE(EMPLOYEES)

The following prompt screen appears:

 --- SINGLE OCCURRENCE EDITOR ---
 EDITING TABLE : EMPLOYEES
 TABLE TYPE : TDS

 --
 ENTER PARM VALUE REGION :

 ENTER KEY VALUE EMPNO :

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type SOE(tablespec) <Enter>

COMMAND prompt Type EX SOE(tablespec)
<Enter>

From a rule Type CALL SOE(tablespec)

tablespec The name of the table (and parameters, if any) containing the
single occurrence that is to be edited.
 TIBCO Object Service Broker Shareable Tools

SOE | 651
 PFKEYS: 1=HELP 3=EXIT 12=EXIT

Editing Screen

After supplying the value MIDWEST for REGION and 61219 for EMPNO, the
following editing screen appears:

 --- SINGLE OCCURRENCE EDITOR ---
 EDITING TABLE : EMPLOYEES(MIDWEST)
 TABLE TYPE : TDS
 COMMAND ==>
 --

 EMPNO : 61219
 LNAME : WONG
 POSITION : SENIOR ANALYST
 MGR# : 79912
 DEPTNO : 50
 SALARY : 820.00
 ADDRESS : 567 Pine St.
 CITY : MISSISSAUGA
 STATE_PROV :
 ZP_CODE :
 HIREDATE : 1997-12-03

 PFKEYS: 1=HELP 2=DOCUMENTATION 3=SAVE 12=CANCEL 13=PRINT 22=DELETE
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 652

@STATICSQL

Defines and generates static SQL to be used to access DB2 data. (E)

Invocation Do one of the following:

Usage Notes Pressing Enter displays the screen illustrated here:

 Defining Static SQL for use by DB2 Server
 Assemble modules generated Link Static SQL Handlers Re-Bind DB2 Server

 Member DB2
 MetaStor Table DB2 Table Status Pre/Suffix Vers
 ---------------- -- ------ -- ----> ----
 _ @DB2FSTRXDB HURON.HRNTRXDB
 _ @EXTNDB2TRXDB EZSA0.TRXDB
 _ @SYSCOLUMNS SYSIBM.SYSCOLUMNS
 _ @SYSTABLES SYSIBM.SYSTABLES
 _ DAT2 ABC20.PREDICATE_TABLE
 _ DB2 FGH30.CLAIMS82
 _ DB2_BRANCH OST00.BRANCH G PFC V2.3
 _ DB212 USR20.PREDICATE_TABLE
 _ DB251 USR20.PREDICATE_TABLE
 _ DB5 USR20.STRUCTURE_TABLE
 _ HAIG_DB2 OST68.HRNPREMIUM
 _ NJSDB2 MNO30.T00 I T00 V2.3
 _ NJSDB2COL SYSIBM.SYSCOLUMNS
 _ NJSDB2COL6000 DB26000.SYSIBM.SYSCOLUMNS
 _ NJSDB2TBL SYSIBM.SYSTABLES
 G=GENERATE R=REMOVE
 PFKEYS: 1=HELP 3=GENERATE(ONLINE) 15=GENERATE(BATCH) 12=CANCEL

See Also TIBCO Service Gateway for DB2 Installing and Operating for information on
@STATICSQL.

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type @STATICSQL <Enter>

COMMAND prompt Type EX @STATICSQL
<Enter>

| 653
STE

Invokes the Table Editor. (CE)

Invocation Do one of the following:

Where:

Usage Notes • If the table is parameterized and you do not supply any parameter values,
executing STE displays a prompt for the parameter values.

• If you supply a value for tablename, executing STE displays a screen that you
use to edit the table.

• If you do not supply a value for tablename when you use the ED edit table
option or the command line, executing STE displays the list of tables defined
in your TIBCO Object Service Broker database. Select the table that you
require from this list.

• If you do not supply a value for tablename when you use the EX execute rule
option, pressing Enter displays a screen prompting for a table name.

• The default search path for event rules varies depending on how you invoke
STE. When executed from within a rule or from the EX execute rule option,
STE searches your local library for any event rules that can be specified. When
invoked through the ED edit table option or at the command prompt through
the ED command, the default TIBCO Object Service Broker installation
specifies that STE searches your system library for the event rule. You can
therefore use STE to verify if a new or newly modified event rule is
functioning.

See Also • Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Table Editor

From the… Move the cursor to the… And…

Developer’s
workbench

ED edit table option Type tablename <Enter>

EX Execute Rule option Type STE(tablename) <Enter>

COMMAND prompt Type ED tablename) <Enter>

From a rule Type CALL STE(tablename)

tablename The name of the source table and any parameters.
 TIBCO Object Service Broker Shareable Tools

654 |
• TIBCO Object Service Broker Managing Data for information about the Table
Editor.

Example From the following screen, the user can browse or edit a table containing data on
the employees of a selected region:

 Date: 2000-04-11 Employees by Region

 _ East
 _ Mideast
 _ Central
 _ Midwest
 _ West

 FCNKEYS: 2=GET EMPLOYEES 4=EDIT INFORMATION 12=EXIT

EMPLOYEES Table

The fields of the screen table containing the regions are named to match the
parameters of the EMPLOYEES table, which is also parameterized by region:

 SCREEN PAINTER COMMAND ==> Scroll: P
+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....
 ¬A East
 ¬A Mideast
 ¬A Central
 ¬A Midwest
 ¬A West

 Table: REGIONS Unit: USR40
 ROW COL FIELD NAME Type Syn Len Dec Just Fill Prot Show Rqd Hi Skip Null
 --- --- --------------- - - ---- --- - - - - - - - -
 1 2 EAST C 1 0 L _ N Y N N Y Y
 2 2 MIDEAST C 1 0 L _ N Y N N Y Y
 3 2 CENTRAL C 1 0 L _ N Y N N Y Y
 4 2 MIDWEST C 1 0 L _ N Y N N Y Y
 5 2 WEST C 1 0 L _ N Y N N Y Y
TIBCO Object Service Broker Shareable Tools

STE | 655

 PFKEYS: 6=+FLD 18=-FLD 4=+LINE 5=CUT 19=FLD_HELP 17=PASTE 16=-LINE 13=PRINT

EDITREGION Rule

When you press PF4, the following rule returns the name of the field where the
cursor is placed and calls STE to display the contents of the table for editing:

 RULE EDITOR ===> SCROLL: P
 EDITREGION;
 _ LOCAL REG;
 _ ---
 _ --+--------------
 _ REG = CURSORFIELD('EMPLOYEE_SCR_C'); | 1
 _ CALL STE('EMPLOYEES(' || REG ||')'); | 2
 _ ---

Data for Editing

When you place the cursor beside Midwest and press PF4, the following data
appears for editing:

 BROWSING TABLE : EMPLOYEES(MIDWEST)
 COMMAND ==>
 SCROLL: P
 EMPNO LNAME POSITION MGR# DEPTNO SALARY
 _ ------ ---------------------- -------------- ------ ------ ---------
 _ 22001 DRABEK CUST SUPPORT 56112 30 900.00
 _ 22007 ROEDER CUST SUPPORT 56112 30 900.00
 _ 30058 HOEGSON PRE-SALES 37219 20 675.00
 _ 34111 TERAMURA PRE-SALES 37219 20 710.00
 _ 34121 LEES CUST SUPPORT 56112 30 700.00
 _ 36162 MORANG JR OPERATOR 44798 80 575.00
 _ 41001 CROFTON TECH WRITER 80002 70 675.00
 _ 41007 STEVENSON EDUCATOR 80002 60 700.00
 _ 41009 SMITH TESTER 79912 50 600.00
 _ 44385 SOUZA SALES 37219 10 719.00
 _ 44622 SAUNDERS ACCOUNTANT 98895 40 800.00
 _ 51111 HRODEK ANALYST 79912 50 710.00
 _ 51121 CANNON ANALYST 79912 50 700.00
 _ 51162 KIMURA JR PROGRAMMER 79912 50 575.00
 _ 61219 WONG SENIOR ANALYST 79912 50 820.00
 _ 61385 DHILLON EDUCATOR 80002 60 685.00
 _ 61622 SCHULTZ SENIOR ANALYST 79912 50 800.00
 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND
 TIBCO Object Service Broker Shareable Tools

656 |
 At TOP
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 657

STEBROWSE

Views the contents of a TIBCO Object Service Broker table. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you do not supply a value for input, executing STEBROWSE displays a list of
tables that can be browsed.

• STEBROWSE must be executed with the workbench option BROWSE set to Y.

• BROWSER is the version of this tool called from within a rule.

See Also Chapter 2, Using User Exits in Workbench Tools, on page 25 about using user
exits with the Table Browser.

TIBCO Object Service Broker Managing Data for information on STEBROWSE.

From the… Move the cursor to the… And…

Developer’s
workbench

BR browse table option Type input <Enter>

EX Execute Rule option Type STEBROWSE(input)
<Enter>

COMMAND prompt Type EX STEBROWSE(input)
<Enter>

input A string containing the table name (and parameters, if any).

| 658
SUBSTRING

Returns a selected portion of a string. (F)

Invocation subsequence = SUBSTRING(string, start, length)

Usage Notes • If start plus length is greater than the length of string, SUBSTRING raises an
error condition.

• Errors detected by SUBSTRING are not recoverable.

Example This rule extracts a subsequence from a string and prints to the message log:

 RULE EDITOR ===> SCROLL: P
SUBSTRING_1;
_ LOCAL SOURCE_STRING, SUBSEQ_STRING;
_ ---
_ --+--------------
_ SOURCE_STRING = 'THIS IS A STRING'; | 1
_ SUBSEQ_STRING = SUBSTRING(SOURCE_STRING, 2, 3); | 2
_ CALL MSGLOG('THE SUBSTRING IS: ' || SUBSEQ_STRING); | 3
_ CALL MSGLOG('THE SOURCE STRING IS STILL: ' || SOURCE_STRING); | 4
_ ---

Resulting Output

Pressing PF2 after executing this rule displays the following:

subsequence On return, contains the selected portion of the string. Its syntax
is the same as string except that, if string is C (fixed-length
character string), subsequence becomes V (variable-length
character string).

string The string to select characters from. Its syntax can be C, UN
(Unicode), V, or W (double-byte character).

start An integer specifying the position of the first character of the
subsequence. Its syntax is B (binary) with length 4. Its value
must be greater than zero. A value of 1 indicates the first
character of the string.

length An integer specifying the number of characters to select. Its
syntax is B (binary) with length 4. Its value must be equal to or
greater than zero.
 TIBCO Object Service Broker Shareable Tools

SUBSTRING | 659
 --------------------- INFORMATIONAL MESSAGE LOG ----------------------
 COMMAND ===> SCROLL ===> P
 THE SUBSTRING IS: HIS
 THE SOURCE STRING IS STILL: THIS IS A STRING
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 660

$SYSTEMDATE

Returns the date when $SYSTEMDATE is called based on the local machine’s time
zone in which the Execution Environment is running. (F)

Invocation date = $SYSTEMDATE

Usage Notes • The date is returned as a semantic type date.

• The result appears in the default date format for the installation.

Example The following rule, which uses PAYMENT as an argument, records the amount
received and the current date in the table RECEIPTS:

 RULE EDITOR ===> SCROLL: P
 RECEIVED(PAYMENT);
 _
 _ ---
 _ --+--------------
 _ RECEIPTS.AMOUNT = PAYMENT; | 1
 _ RECEIPTS.DATE = $SYSTEMDATE; | 2
 _ INSERT RECEIPTS; | 3
 _ ---

Resulting Output

When the rule is executed with the argument 67.89, the bottom occurrence is
inserted in the table:

 EDITING TABLE : RECEIPTS
 COMMAND ==>
 SCROLL: P
 NUM DATE AMOUNT
 _ ----------- ---------- ----------
 _ 1 2000-02-23 34.56
 _ 2 2000-03-10 78.56
 _ 3 2000-03-18 23.00
 _ 4 2000-03-18 67.89

date On return, contains the date when $SYSTEMDATE is invoked.

 TIBCO Object Service Broker Shareable Tools

| 661

SYSTEMLIB

Returns the name of the currently designated system library. (F)

Invocation result = SYSTEMLIB

Usage Note The default system library is COMMON.

Example

 RULE EDITOR ===> SCROLL: P
 WHAT_LIBRARY;
 _ LOCAL LIB;
 _ ---
 _ --+--------------
 _ LIB = SYSTEMLIB; | 1
 _ CALL MSGLOG('THE CURRENT SYSTEM LIBRARY IS ' || LIB); | 2
 _ |
 _ |
 _ |
 _ |
 _ |
 _ |
 _ ---

Pressing PF2 after executing the rule displays the following screen:

 ------------------------- INFORMATION LOG ---------------------
 COMMAND ===> SCROLL: P

 THE CURRENT SYSTEM LIBRARY IS COMMON
 .

result On return, contains the name of the currently designated system
library. This value is a typeless string of syntax C with a maximum
length of 8.

| 662
TABLEPRINT

Prints the contents of a table or of a set of joined tables. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you supply a value for tablespec, the table is sent to the printer.

• If you do not supply a value for tablespec, the Table Print screen appears when
TABLEPRINT is executed. An example of this screen is illustrated here:

 ------- TABLE PRINT UTILITY -------

 PAGE LENGTH: 60 PAGE WIDTH: 132 PRT OR SCR: PRT

 TABLE:

 PFKYS:3=PRINT EXIT 12=CANCEL 13=PRINT REPEAT 6=ADD TABLE 22=DELETE TABLE

• The following function keys are recognized while the screen appears:

From the… Move the cursor to the… And…

Developer’s
workbench

PT print table option Type tablespec <Enter>

EX Execute Rule option Type TABLEPRINT(tablespec)
<Enter>

COMMAND prompt Type PT tablespec <Enter>

tablespec The name of the table and any parameters to print.

Enter Checks that tables exist.

PF3 Prints and exits.
 TIBCO Object Service Broker Shareable Tools

TABLEPRINT | 663
• The print arguments are set at the top of the screen. The defaults are Page
Length 60, Page Width 132 (which is the only supported width for a printed
page), and PRT. The normal values for SCR are Page Length 25 and Page
Width 80.

• To print a table, enter its name in the TABLE field and press PF3.

• To print two or more tables successively, enter the name of one table and press
PF13. The table is printed and the screen appears again. Another table name
can be entered, the print arguments can be changed, and the process can be
repeated.

• To cancel without printing, press PF12.

Joining Tables for Printing

Tables can be joined for printing. The following conditions apply:

• The join is based on equality of values in one field of each table.

• Fields that are to be compared must be specified.

• At least one of the two fields that are being compared must be a primary key.

• A parameter value must be supplied for a parameterized table. For example:
TABLE: EMPLOYEE_DEPT(10).

• Such a table can be included in a join where the selection is based on its
parameter values. In this case, the parameter is specified in the form t.f on the
JOIN TABLE field.

• Each value of the field f is used, so that several instances of the table can be
printed immediately.

• The table t must already be named in the TABLE or JOIN TABLE fields.

• When several tables are joined for printing, both matching of fields and
matching of parameters can be used in the same join.

PF6 Adds a table to the join.

PF12 Exits without printing.

PF13 Prints and repeats.

PF22 Removes a table from a join.

Fields that do not fit within a page are not printed.
 TIBCO Object Service Broker Shareable Tools

664 |
Examples Statements

• The statement: EX TABLEPRINT('EMPLOYEE') prints the contents of the table
EMPLOYEE.

• The statement: EX TABLEPRINT() displays the TABLEPRINT screen.

 Use of Joins

The following example demonstrates the use of joins when printing tables. The
table DEPARTMENT contains the department number in a field called DEPTNO.
The table EMPLOYEE contains the department number for each employee in a
field also called DEPTNO.

To join these tables for printing, type the name of one table, and then press PF6 to
be able to enter the name of the second table and the fields to compare, in a screen
like this:

 ------- TABLE PRINT UTILITY -------

 PAGE LENGTH: 60 PAGE WIDTH: 132 PRT OR SCR: PRT

 TABLE: DEPARTMENT

 JOIN TABLE
 MATCH FIELD: WITH (T.F): DEPARTMENT.

TABLEPRINT automatically fills in the first table in the WITH (T.F) field.

Fill in the information about the table you want to join (for example, the
EMPLOYEE table), as shown in this screen:

 ------- TABLE PRINT UTILITY -------

 PAGE LENGTH: 60 PAGE WIDTH: 132 PRT OR SCR: PRT

 TABLE: DEPARTMENT

 JOIN TABLE EMPLOYEE
 MATCH FIELD: DEPTNO WITH(T.F): DEPARTMENTS.DEPTNO

Conditions for a Join

The following conditions apply to a join:

• At least one of the two fields that are being compared must be a primary key.
In this example, DEPTNO is the primary key of departments.

• More than two tables can be included in a join.
TIBCO Object Service Broker Shareable Tools

TABLEPRINT | 665
• The table named in the field WITH(T.F) must already be named in the TABLE
field or it must be named in a JOIN TABLE field above the one that names the
table currently being added to the join.

• All the fields of all the tables are printed.

• The primary key of the first table named appears on the left of each page.

Printing Parameterized Tables

The following example demonstrates the printing of a parameterized table.

• The table EMPLOYEE_DEPT, parameterized by DEPTNO, contains a listing
of all the employees.

• A list of all the department numbers is contained in the DEPARTMENT table
in the field DEPTNO.

The joined tables are printed as follows:

 ------- TABLE PRINT UTILITY -------

 PAGE LENGTH: 60 PAGE WIDTH: 132 PRT OR SCR: PRT

 TABLE: DEPARTMENT

 JOIN TABLE EMPLOYEE_DEPT(DEPARTMENT.DEPTNO)
 MATCH FIELD: WITH (T.F): DEPARTMENT.

In this case, the MATCH FIELD and WITH (T.F) fields are ignored.

Resulting Output

 PRINTING TABLE(S): DEPARTMENT EMPLOYEE_DEPT(DEPARTMENT.DEPTNO)

 DEPTNO DNAME EMPNO LNAME
 ------ ------------------- ------ ------------
 10 ACCOUNTING 1011 CROFTON
 10 ACCOUNTING 1007 STEVENSON
 10 ACCOUNTING 1009 SMITH
 ..
 20 SALES 1121 KIMURA
 20 SALES 1622 SCHULTZ
 . .
 . .
 . .
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 666

TAILSTRING

Returns the tail portion of the string. (F)

Invocation tail = TAILSTRING(string, length)

Usage Notes • If length is larger than the length of string, an empty string is returned.

• If length is negative, an empty string is returned.

Example This rule extracts a tail string from a string and prints both strings to the message
log:

 TAILSTRING_1;
 _ LOCAL SOURCE_STRING, TAIL_STRING;
 _ --
 _ --+-----------
 _ SOURCE_STRING = 'THIS IS A STRING'; | 1
 _ TAIL_STRING = TAILSTRING(SOURCE_STRING, 12); | 2
 _ CALL MSGLOG('THE TAIL STRING IS: ' || TAIL_STRING); | 3
 _ CALL MSGLOG('THE SOURCE STRING IS STILL: ' || | 4
 _ SOURCE_STRING); |
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following:

 --------------------- INFORMATIONAL MESSAGE LOG ----------------------
 COMMAND ===> SCROLL ===> P
 THE TAIL STRING IS: RING
 THE SOURCE STRING IS STILL: THIS IS A STRING

tail On return, contains the source string with the specified number of
leading characters removed. Its syntax is the same as string except
that, if string is C (fixed-length character string), tail becomes
V (variable-length character string).

string The string to remove characters from. Its syntax can be C, UN
(Unicode), V, or W (double-byte character).

length An integer specifying the number of characters to remove from the
front of the string. Its syntax is B (binary) with length 4.

| 667
TED

Displays a table for text editing. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you do not supply a value for text_input, executing TED displays a screen
prompting for a value.

• After TED is invoked, a table appears for text editing. If a string is supplied,
TED displays the table @TEXT(userid,name). If a table name is typed, TED
displays the table.

• The table named in text_input must be a text table. A text table can be
parameterized and it must contain the following two fields:

Line Commands The following line commands are available:

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type TED(text_input) <Enter>

COMMAND prompt Type EX TED(text_input)
<Enter>

text_input A string or the name of a table.

NUMBER A primary key field with a length of 4, a syntax of B (binary),
and a semantic type of I (identifier).

LINE A field with a syntax of V (variable-length character string)
and a semantic type of S (string).

D Deletes this line.

I Inserts after this line. This inserts a new blank line on the screen. Another
line is inserted each time you press Enter, as long as the cursor is on the
previous line. Using TED you can insert blank lines.

R Replicates this line after itself.
 TIBCO Object Service Broker Shareable Tools

668 |
Primary
Commands

A command line exists at the top of both the formatted and unformatted screens.
The primary command line accepts the following primary commands (except
where noted otherwise):

S Splits this line. The line splits where the cursor is positioned. This
command is not sensitive to tokens. Words can be split.

C Copies this line. The line copies to a destination as explained below.

M Moves this line. The line moves to a destination as explained below.

A Destination for move or copy occurs after this line.

B Destination for move or copy occurs before this line.

If A or B marks the destination for a move or copy command, the marked
destination is used. Otherwise, the destination is assumed to be after the line
where the cursor is placed.

CANCEL Exits TED without saving changes to the text.

CH or CHANGE old
new [ALL]

The first occurrence of string old after the cursor position is
replaced with the string new. If the option ALL is included,
every string after the cursor changes. Tokens, indicated by
spaces (' '), must separate strings in the command. This
separator token must appear three times on the command
line. This command is sensitive to case.

This command is valid only on the unformatted text
screen.
TIBCO Object Service Broker Shareable Tools

TED | 669
PF Keys

The following PF keys are recognized by TED:

COPY (source) Copies text from an existing text table into the document
already on the screen. The source can be one of:
1 – A table name, if un-parameterized.
2 – A table name, including parameter values, if
parameterized.
3 – The second parameter of the table @TEXT.

The text is positioned:

1 – At the top of the document, if the cursor is on the
primary command line.

2 – Before or after a line containing B (before) or A (after) in
the line command field.

Only valid on the unformatted text screen.

DELETE The entire text is deleted from the database. You are
prompted to confirm the deletion. This command is valid
only on the unformatted text screen.

F or FIND string The first occurrence of string after the cursor is located and
highlighted. This command is sensitive to case.

SAVE (tablename) Saves the text without leaving TED. If no tablename is given,
the source table is overwritten. tablename follows the
conventions of TED’s argument and can be a name or a
table. Using this command, you can make a copy of your
text by saving it under a new name.

PF3 Saves the text and leave the editor. A script check is performed.

PF5 Toggles between formatted and unformatted text.

PF9 Repeats the last primary command.

PF12 Leaves the editor without saving changes to the text.

PF13 Prints the version of the text that you are viewing.

PF22 Deletes the text. Refer to the remarks for the DELETE primary command
above.
 TIBCO Object Service Broker Shareable Tools

670 |
PF22 is available only from the unformatted version of the text.

Example The following application uses TED to write notes about employees. The initial
application screen is EMPLOYEE_SCR_B, which contains the scrollable screen
table EMPLOYEE_NAME:

 Date: 2000-03-17 Employees by Region
 Employee Name Employee#
 _________________________ _________

 _ DRABEK 22001
 _ ROEDER 22007
 _ HOEGSON 30058
 _ TERAMURA 34111
 _ LEES 34121
 _ MORANG 36162
 _ CROFTON 41001
 _ STEVENSON 41007
 _ SMITH 41009
 _ SOUZA 44385
 _ SAUNDERS 44622
 _ HRODEK 51111
 _ CANNON 51121
 _ KIMURA 51162
 _ WONG 61219

 FCNKEYS: 2=GET INFO 12=EXIT 4=NOTES

MAKE_NOTE Rule

When you type an S in the selection field beside the employee name and press
PF4, the following rule is executed:

 RULE EDITOR ===> SCROLL: P
 MAKE_NOTE;
 _ LOCAL EMP;
 _ ---
 _ --+--------------
 _ GET EMPLOYEE_NAME('EMPLOYEE_SCR_B') WHERE SELECT = 'S'; | 1
 _ EMP = EMPLOYEE_NAME.EMPNAME; | 2
 _ CALL TED('EMP_NOTES(' || EMP ||')'); | 3
 _ ---
TIBCO Object Service Broker Shareable Tools

TED | 671
Table for Editing

This rule displays the following table (in this case the table is for employee
ROEDER and contains previously entered text, including SCRIPT commands):

 Text Editor ====>
 Scroll: P
 Editing: EMP_NOTES(ROEDER)
 _ --
 _ Responsible for:
 _ .ul.
 _ .li.Performing site assessment
 _ .li.Writing proposal
 _ .li.Presenting proposal to board of directors
 _ .eul.
 _ Due Date for activities: Sept. 13

 PFKEYS: 12=CANCEL 22=DELETE 3=SAVE 5=SCRIPT 9=REPEAT CMND

Scripted Text

Pressing PF5 from this screen displays the scripted text:

 Formatted Output
 Command ====> Scroll: P

 page 1

 Responsible for:

 -> Performing site assessment

 -> Writing proposal

 -> Presenting proposal to board of directors

 Due Date for activities: Sept. 13

 PFKEYS: 12=CANCEL 13=PRINT 3=SAVE 5=EDIT 9=FIND NEXT
 TIBCO Object Service Broker Shareable Tools

| 672
TEXTSETUP

Defines a setup for formatting a text document. (E)

Invocation Do one of the following:

Where:

Usage Notes • If you do not supply a value for setupname, invoking TEXTSETUP displays a
screen prompting for a value.

• After TEXTSETUP is invoked, a screen appears for defining a new setup or
modifying an existing setup.

• Use the .setup setupname SCRIPT command at the beginning of a text file to
have SCRIPT use a particular setup to format a file.

TEXTSETUP Screens

TEXTSETUP contains three screens:

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type TEXTSETUP(setupname)
<Enter>

COMMAND prompt Type EX TEXTSETUP
(setupname) <Enter>

setupname The name of the setup to use.

Page Setup screen Defines the page layout.

Top Title screen Defines the title lines for the setup.

Bottom Title screen Defines the bottom lines for the setup.
 TIBCO Object Service Broker Shareable Tools

TEXTSETUP | 673
Setups Supplied with TIBCO Object Service Broker

TIBCO Object Service Broker supplies four predefined setups:

These predefined setups cannot be overwritten (saved) or deleted.

Page Setup Screen

After entering a new or existing text setup name, a screen similar to the following
appears:

 TEXT SETUP: DEFAULT COMMAND ==>
 This is the page definition; change any field as desired.
 +-------------------------------------+
 | : | |
 |< ADjust = 5 >|< LineLength = 60 >|
 | : | 1L 1C 1R | Top Margin has 2 line(s).
 | P | 2L 2C 2R | The first three lines can have titles
 | a | 3L 3C 3R | in the positions shown. PF5 to set.
 |---g-----------|---------------------|
 | e | |
 | L | This area is | Page Length is the number of lines
 | e = 23 | used for the | used for the text and top and
 | n | formatted text. | bottom margins.
 | g | |
 |---t-----------|---------------------|
 | h | | Bottom Margin has 2 line(s).
 | : | 3L 3C 3R | Last three lines can have titles
 | : | 2L 2C 2R | in the positions shown. PF6 to set.
 | : | 1L 1C 1R |
 +-------------------------------------+
 Format Parameters -- FOrmat on: Y JUstify on: Y Line Spacing = 1
 PageNumbering: Y Bullet Characters = ->
 PFKEYS: 3=SAVE 5=TOP TITLES 6=BOTTOM TITLES 12=CANCEL 22=DELETE

Default In effect whenever formatting begins and if no setup is specified.

It turns formatting on and sets the page setup to suit the 24 line
screen.

Screen Sets a larger page size intended to fill a screen.

Help Sets a page without a page number and is used by the Screen
Definer to display both field- and screen-level help.

Print Sets a page that can print in portrait form through the use of a
print function that you provide later.
 TIBCO Object Service Broker Shareable Tools

674 |
Use the Page Setup screen to define the page layout; it contains formatting
parameters for a page. You can change these parameters as required. The name of
the setup is shown at the top of the screen in the TEXT SETUP field. You can
change the name and save the setup under a new name.

Formatting Parameters

Each parameter name contains two capitalized letters. These letters indicate the
SCRIPT command that sets the formatting. Refer to SCRIPT page layout
commands for more information.

The formatting parameters are as follows:

Primary Commands and PF Keys for the Page Setup screen

These primary commands and PF keys are available from the Page Setup screen:

Top Titles Screen

You use the TOP Titles screen to define the title lines for the setup. You can change
the default values for a user-defined setup. Press PF5 to display this screen. The
following shows the screen that appears for DEFAULT setup:

 TEXT SETUP: DEFAULT
 COMMAND ==>

 TOP Titles

 Enter titles. If you want the same title on all
 pages, enter it for both odd and even numbered pages.

 Even Numbered Pages Odd Numbered Pages
 1L = 1L =
 1R = page % 1R = page %
 2L = 2L =

Command PF Key Function

SAVE PF3 Saves the definition and exit.

TOP PF5 Displays the TOP Titles screen.

BOTTOM PF6 Displays the BOTTOM Titles screen.

CANCEL PF12 Cancels the definition and exit.

DELETE PF22 Deletes the definition. You are prompted to confirm
the deletion.
TIBCO Object Service Broker Shareable Tools

TEXTSETUP | 675
 2R = 2R =
 3L = 3L =
 3R = 3R =

 Centre Titles
 1C =
 2C =
 3C =

 PFKEYS: 3=SAVE 12=CANCEL

Title lines contain the following characteristics:

• Lines are numbered from the top down.

• Lines can be entered for even, odd, or all pages. To enter values for all pages,
title lines must be entered for both even and odd pages.

• Odd and even pages are treated as separate entities.

• Center titles apply to both even and odd numbered pages.

• Each title line can be left justified, right justified, or centered within each page
type.

• You can enter up to three title lines, if there is enough room in the margin.

• A title line can start with .date str. The variable str is any date format
acceptable to $TRXDATE. This is replaced with the current date in the format
you specify.

• The percent sign (%) is entered as a default value (for the first line, right side
(1R) even and odd pages). This symbol is converted to a page number if page
numbering is ON. The symbol does not print if page numbering is OFF. Refer
to SCRIPT page layout commands for more information on page numbering.

Bottom Titles Screen

Use the BOTTOM Titles screen to define bottom lines for the setup. You can
change the default values for a user-defined setup. Press PF6 to display this
screen. The following figure shows the screen that appears for DEFAULT setup:

 TEXT SETUP: DEFAULT
 COMMAND ==>

 BOTTOM Titles

 Enter titles. If you want the same title on all
 pages, enter it for both odd and even numbered pages.

 Even Numbered Pages Odd Numbered Pages
 TIBCO Object Service Broker Shareable Tools

676 |
 3L = 3L =
 3R = 3R =
 2L = 2L =
 2R = 2R =
 1L = 1L =
 1R = 1R =

 Centre Titles
 3C =
 2C =
 1C =

 PFKEYS: 3=SAVE 12=CANCEL

The BOTTOM Titles screen is similar to the TOP Titles screen except that the lines
are numbered from the bottom up.

Primary Commands and PF Keys for the Titles Screens

The following primary commands and PF keys are available from both Titles
screens:

Example The following is an example setup:

 TEXT SETUP: EXAMPLE COMMAND ==>
 This is the page definition; change any field as desired.
 +-------------------------------------+
 | : | |
 |< ADjust = 2 >|< LineLength = 60 >|
 | : | 1L 1C 1R | Top Margin has 2 line(s).
 | P | 2L 2C 2R | The first three lines can have titles
 | a | 3L 3C 3R | in the positions shown. PF5 to set.
 |---g-----------|---------------------|
 | e | |
 | L | This area is | Page Length is the number of lines
 | e = 21 | used for the | used for the text and top and
 | n | formatted text. | bottom margins.
 | g | |
 |---t-----------|---------------------|
 | h | | Bottom Margin has 2 line(s).
 | : | 3L 3C 3R | Last three lines can have titles

Command PF Key Function

SAVE PF3 Saves the changes and exit. Changes saved from this
screen do not actually take effect until you save the text
setup.

CANCEL PF12 Cancels the changes and exit.
TIBCO Object Service Broker Shareable Tools

TEXTSETUP | 677
 | : | 2L 2C 2R | in the positions shown. PF6 to set.
 | : | 1L 1C 1R |
 +-------------------------------------+
 Format Parameters -- FOrmat on: Y JUstify on: N Line Spacing = 2
 PageNumbering: Y Bullet Characters = *
 PFKEYS: 3=SAVE 5=TOP TITLES 6=BOTTOM TITLES 12=CANCEL 22=DELETE

Unscripted Text

The following is an example of unscripted text created using the TED tool. The
first line instructs SCRIPT to use the setup EXAMPLE:

 Text Editor ====>
 Scroll: P
 Editing: @TEXT(BZDD1, EXAMPLE)
 _ --
 _ .setup example
 _ .cc.textsetup example
 _ .p.This example illustrates how the setup determines the format of
 _ scripted text. Some of the qualities that the setup controls are:
 _ .ul.
 _ .li.Line length
 _ .li.Justification
 _ .li.Page length
 _ .li.Bullet characters
 _ .p.These are easily set using the TEXTSETUP tool.

PFKEYS: 12=CANCEL 22=DELETE 3=SAVE 5=SCRIPT 9=REPEAT CMND

Scripted Text

The scripted text appears as follows:

 Formatted Output
 Command ====> Scroll: P

 page 1

 TEXTSETUP EXAMPLE

 This example illustrates how the setup determines the

 TIBCO Object Service Broker Shareable Tools

678 |
 format of scripted text. Some of the qualities that the

 setup controls are:

 * Line length

 * Justification

 * Page length

 * Bullet characters

 page 2

 These are easily set using the TEXTSETUP tool.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 679

TIME

Returns a string containing the time of the day when the transaction started. (F)

Invocation string = TIME

Usage Notes The returned string is in the form HH:MM:SS, for example, 23:59:59.

Example The following rule determines the time of day when the transaction started and
prints it to the message log:

 TIME_1;
 _ LOCAL TIME_OF_DAY;
 _ --
 _ --+-----------
 _ TIME_OF_DAY = TIME; | 1
 _ CALL MSGLOG('THIS TRANSACTION WAS STARTED AT: ' || | 2
 _ TIME_OF_DAY); |
 _ --

Pressing PF2 after executing this rule displays the following:

 ------------------------- INFORMATIONAL MESSAGE LOG -----------------
 COMMAND ===> SCROLL ===> P
 THIS TRANSACTION WAS STARTED AT: 08:28:21

string On return, contains the time. Its syntax is C (fixed-length character
string) with length 8.

| 680
$TOCPRINT

Prints the table of contents. (C)

Invocation CALL $TOCPRINT(fill_char)

Usage Notes • The print arguments must be previously set with a call to $SETPRINT or
$RESETPRINT before a call to $TOCPRINT.

• Construct the table of contents using $TOCPUT.

• fill_char is repeated as many times as fits.

Exceptions

Example The following rule builds a table of contents and prints it to the message log:

 TOCPRINT_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $TOCPUT('SECTION ONE', 1, 'Y'); | 2
 _ CALL $BLANKPAGE('N'); | 3
 _ CALL $TOCPUT('SECTION TWO', 1, 'Y'); | 4
 _ CALL $BLANKPAGE('N'); | 5
 _ CALL $TOCPRINT(' .'); | 6
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

fill_char The character to be printed to fill the space between the end of the
section name and the beginning of the page number. Its syntax is
V (variable-length character string).

LOGLIMIT Raised if too much output is sent to the message log.

ROUTINEFAIL Raised if $TOCPRPINT is not preceded by a call to
$RESETPRINT or $SETPRINT.
 TIBCO Object Service Broker Shareable Tools

$TOCPRINT | 681

 ------------------------------ NEW PAGE ------------------------------

 ------------------------------ NEW PAGE ------------------------------

 ------------------------------ NEW PAGE ------------------------------

 CONTENTS
 ========

 SECTION ONE . 1
 SECTION TWO . 2
 TIBCO Object Service Broker Shareable Tools

| 682
$TOCPUT

Puts a line in the table of contents. (C)

Invocation CALL $TOCPUT(section_name, spacing, numbering_yn)

Prerequisites The print arguments must be set with a call to $SETPRINT or $RESETPRINT
before a call to $TOCPUT.

Usage Notes • Use $TOCPRINT to print the table of contents.

• section_name cannot exceed the page width.

• Four character spaces are reserved in section_name for the page number, even if
it is not printed.

• spacing can take on values greater than or equal to 0 and less than or equal to
the page length set by $SETPRINT or $RESETPRINT.

• If n is the number specified for spacing, n-1 spaces are printed. For example, if
n=2, one blank line is printed between each content line.

section_name The string that appears in the table of contents as the section
name. Its syntax can be C (fixed-length character string),
V (variable-length character string), or W (double-byte
character).

spacing An integer specifying the number of lines between the current
table of contents entry and the next. Its syntax is B (binary)
with length 2.

numbering_yn Specifies whether the page number should be printed:

Y – Prints page numbers.

N or '' (NULL) – Do not print page numbers.

Its syntax is C with length 1.
 TIBCO Object Service Broker Shareable Tools

$TOCPUT | 683
Exceptions

Example The following rule builds a table of contents and prints it to the message log:

TOCPUT_1;
 _
 _ --
 _ --+-----------
 _ CALL $SETPRINT(10, 70, 1, 'SCR', 'N'); | 1
 _ CALL $TOCPUT('SECTION ONE', 1, 'Y'); | 2
 _ CALL $TOCPUT('SECTION TWO', 2, 'N'); | 3
 _ CALL $TOCPUT('SECTION THREE', 1, 'Y'); | 4
 _ CALL $TOCPRINT(' .'); | 5
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

 ---------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

 ------------------------------ NEW PAGE ------------------------------

 CONTENTS
 ========

 SECTION ONE . 1
 SECTION TWO

 SECTION THREE . 1

RANGERROR Raised for one of the following reasons:

spacing – Is zero or a negative number.

spacing – Is greater than or equal to length (where length is the
page length set by $RESETPRINT or $SETPRINT).

numbering_yn – Is neither Y nor N. An empty string ('') is valid
and treated as N.

ROUTINEFAIL Raised if $TOCPUT is not preceded by a call to $SETPRINT or
$RESETPRINT.

STRINGSIZE Raised if the length of section_name exceeds width -4 (where width
is the page width set by $SETPRINT or $RESETPRINT).
 TIBCO Object Service Broker Shareable Tools

684 |
TIBCO Object Service Broker Shareable Tools

| 685
TOKEN

Parses an input string and returns the first token and the string with the token
removed. (F)

Invocation token_string = TOKEN(string)

Usage Notes • The input string for TOKEN must be a local variable or a field of a table.

• TOKEN parses string until it encounters a space (' '), a special character, a
literal notation (r', R', u', U', x', or X'), or one of the following operators: ¬, &, |,
*, /, **, +, -, =, ||, <, >, <=, >=, or ¬=. It then returns the first token and the
string with the token removed. If string begins with an operator, the operator is
the token returned.

• Valid tokens are: identifiers, positive numbers, quoted strings, Unicode
literals, raw data literals, hexadecimal literals, operators, and special
characters. For additional information about these valid tokens, refer to
TIBCO Object Service Broker Parameters.

• In quoted strings, two single quotation marks are converted to a single
quotation mark.

• If string is of syntax UN and the token to be returned contains any character
that cannot be coerced to syntax V, token_string is a Unicode literal representing
the value of the token.

• For more complex manipulation of tokens, refer to the PARSE tool.

Exceptions

token_string The token returned. Its syntax is V (variable length
character).

string The character string to parse. On return, it contains string
with the token removed. Its syntax must be C (fixed-length
character), UN (Unicode), or V (variable-length character)
and its semantic type must be S (string).

MISMATCHEDQUOTES Raised if there are unmatched quotation marks in the
argument string.
 TIBCO Object Service Broker Shareable Tools

686 |
Examples The following rule prints the returned token and truncated string to the message
log.

 RULE EDITOR ===> SCROLL: P
 TOKEN_EXAMPLE(INPUT);
 _ LOCAL TOK, STRING;
 _ ---
 _ --+--------------
 _ STRING = INPUT; | 1
 _ TOK = TOKEN(STRING); | 2
 _ CALL MSGLOG('FIRST TOKEN IS ' || TOK); | 3
 _ CALL MSGLOG('RETURNED STRING IS ' || STRING); | 4

Resulting Output

If it is executed with the argument '10-12-2000', the following message log is
produced:

 ------------------------- INFORMATIONAL MESSAGE LOG --------------------------
 COMMAND ===> SCROLL ===> P
 FIRST TOKEN IS 10
 RETURNED STRING IS -12-2000

Example that Completely Parses a String

The following rules completely parse a string into tokens:

 RULE EDITOR ===> SCROLL: P
 TOKEN_EXAMPLE2(INPUT);
 _ LOCAL TOK, STRING;
 _ ---
 _ --+--------------
 _ STRING = INPUT; | 1
 _ TOK = TOKEN(STRING); | 2
 _ CALL MSGLOG('TOKEN IS ' || TOK); | 3
 _ CALL TOKEN_EXAMPLE3(STRING); | 4
 _ ---

 RULE EDITOR ===> SCROLL: P
 TOKEN_EXAMPLE3(STRING);
 _
 _ ---
 _ STRING = ''; | Y N
 _ --+--------------
 _ CALL TOKEN_EXAMPLE2(STRING); | 1
TIBCO Object Service Broker Shareable Tools

TOKEN | 687
 _ ---

Resulting Output

If TOKEN_EXAMPLE2 is run with the argument 10-12-2000, the following
message log is produced:

------------------------- INFORMATIONAL MESSAGE LOG --------------------------
 COMMAND ===> SCROLL ===> P
 TOKEN IS 10
 TOKEN IS -
 TOKEN IS 12
 TOKEN IS -
 TOKEN IS 2000

Example With Processing of Tokens

The following rules retrieve the keywords for a table, separate the keywords, and
insert the name of the table associated with the keyword in a table instance for the
keyword.

TABLE_KEYWORD Table

The first table, which contains the keywords for table descriptions, is
TABLE_KEYWORD:

 BROWSING TABLE: TABLE_KEYWORD
 COMMAND ==>

 TABLE KEYWORDS

_ ---------------- ---
_ EMPLOYEE PERSONNEL,NAME,NUMBER,DEPARTMENT,MANAGER,SALARY
_ DEPARTMENT DEPARTMENT,NAME,NUMBER
_ MANAGER MANAGER,NAME,NUMBER

TKEYWORDINDEX Table

The second table, TKEYWORDINDEX, is parameterized by KEYWORD. Each
table instance lists the table names that have the parameter value as a keyword.
An example is shown here.

 BROWSING TABLE: TKEYWORDINDEX(NAME)
 COMMAND ==>

 TIBCO Object Service Broker Shareable Tools

688 |
 TABLE
 _ ----------------
 _ EMPLOYEE
 _ DEPARTMENT
 _ MANAGER

KEYWORD_PARSE Rule

The parent rule is KEYWORD_PARSE. It retrieves each occurrence of the
TABLE_KEYWORD table, and calls the KEYWORD_INDEX rule. The arguments
for KEYWORD_INDEX are:

• The name of the table that is stored in the TABLE field of the
TABLE_KEYWORD table.

• The first token (that is, the first keyword) for the table, which is extracted with
TOKEN:

 KEYWORD_PARSE;
 _ LOCAL STR;
 _ --
 _ --+-----------
 _ FORALL TABLE_KEYWORD: | 1
 _ STR = TABLE_KEYWORD.KEYWORDS; |
 _ CALL KEYWORD_INDEX(TABLE_KEYWORD.TABLE,TOKEN(STR)); |
 _ END; |
 _ --

KEYWORD_INDEX Rule

KEYWORD_INDEX checks for valid keywords, and then inserts the table name
into the TKEYWORDINDEX table. It also uses TOKEN to extract the next
keyword.

 KEYWORD_INDEX(NAME, TOK);
_
_ --
_ TOK = ','; | Y N N N

 _ TOK = ''; | Y N N
 _ STR = ''; | Y N
 _ --+-------------
 _ TKEYWORDINDEX.TABLE = NAME; | 1 1
 _ INSERT TKEYWORDINDEX(TOK); | 2 2
 _ CALL KEYWORD_INDEX(NAME, TOKEN(STR)); | 1 3
 _ --
TIBCO Object Service Broker Shareable Tools

TOKEN | 689
Resulting Output

The result of running KEYWORD_PARSE against the table TABLE_KEYWORD is
a TKEYWORDINDEX table with table instances such as DEPARTMENT,
MANAGER, and NAME. If you browse the NAME table instance of the
TKEYWORDINDEX table, you see the following:

 BROWSING TABLE: TKEYWORDINDEX(NAME)
 COMMAND ==>

 TABLE
 _ ----------------
 _ EMPLOYEE
 _ DEPARTMENT
 _ MANAGER
 TIBCO Object Service Broker Shareable Tools

690 |
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 691

TO_UNICODE

Converts a raw data string encoded in an external code page to Unicode.(F)

Invocation unistring = TO_UNICODE(rdstring,externalcodepage)

Example This rule converts a string encoded in external syntax XC02 to Unicode.

TESTTOUNI;
_ LOCAL RESULT;
_ --
_ --+---
_ TESTUNI.RD = 'ABC DEF'; ¦ 1
_ RESULT = TO_UNICODE(TESTUNI.RD, 'XC02'); ¦ 2
_ CALL ENDMSG(RESULT); ¦ 3

Line 1 sets Raw Data field RD of table TESTUNI to a string "ABC DEF". Line 2
converts this string (encoded in external code page XC02) to Unicode. Line 3
displays the result: ABC DEF.

unistring On return, contains the string in UN (unicode) syntax.

rdstring Contains a string of RD (raw data) syntax. The data
encoding corresponds to one of the 16 possible
user-defined external syntaxes XC01 to XC16.

externalcodepage One of the values 'XC01' to 'XC16' representing the
user-defined external syntax.

| 692
@TRACEMESSAGES

Records message traffic between the Execution Environment and the Data Object
Broker. (TBL)

Table Definition

Parameters This table has two parameters: ADDRESS and LOCATION.

Fields The fields of the @TRACEMESSAGES table are as follows:

ID This is a reserved field.

TRACE Y means trace all messages in the @MESSAGETRACE
table. This entry is ignored if MESSAGELOG=Y.

TABLE Traces accesses only to the table named.

REQUEST Traces accesses only of the named request type (for
example, N=FORALLS), independent of TABLE field.

SHOWSYNC Y means show SYNC messages.

COUNT The maximum number of rows that the system creates
in the @MESSAGETRACE and @MESSAGEDUMP SES
tables. When the number of rows in the table reaches
the number given in COUNT, the table is cleared and
restarted.

DUMP Use this field with caution: Y means create HEX dump
of messages in table @MESSAGEDUMP. Ignored if
MESSAGELOG=Y.

LOGOUT This is a reserved field.

OUTDUMPLIMIT When dumping, indicates the maximum number of
bytes to show from the outbound message.

RETURNDUMPLIMIT When dumping, indicates the maximum number of
bytes to show from the inbound message.

MESSAGELOG Y means create a HEX dump of all messages in the
message log.
 TIBCO Object Service Broker Shareable Tools

@TRACEMESSAGES | 693
Constraints This facility is available only on a z/OS system.

Usage Notes Use a rule or the Table Editor to set the value of @TRACEMESSAGES.TRACE to Y
and then run the applications to be traced. Message tracing can be further refined
by modifying other fields of the @TRACEMESSAGES table.

Unless you specifically route messages to the message log or to the
@MESSAGEDUMP session table, all messages are logged in the
@MESSAGETRACE session table. By analyzing the occurrences in the
@MESSAGETRACE table, you can determine the access paths requested by the
Execution Environment for each table access. This information can be used to
optimize your application by using different variations of application table access
statements.

Example The TRACEON sample rule illustrates how a typical TAM table call and message
flow trace is activated. To capture TAM table calls and Execution Environment or
Data Object Broker messages for a given session, execute the TRACEON rule. If
you are interested in the calls for a particular table, modify the rule and specify a
table name for the statement @TRACEMESSAGES.TABLE='tablename' (where
tablename is the name of the table you are interested in). For results to this example,
refer to @MESSAGETRACE.

TRACEON;
_ --
_ ---+----------------
_ GET @TRACEMESSAGES(0); | 1
_ @TRACEMESSAGES.TRACE='Y'; | 2
_ @TRACEMESSAGES.TABLE=NULL; | 3

KEEPMESSAGELOG Y means show all messages on the message log,
including those normally erased by TIBCO Object
Service Broker.

LOGTABLECALLS This is a reserved field.

• Use DUMP=Y with caution, and only on the advice of your TIBCO Support
representative.

• Setting MESSAGELOG to Y can be used to suppress inserts to the
@MESSAGETRACE and @MESSAGEDUMP tables. This would show that
these accesses are not interfering with other processing. Use this option only
on the advice of an TIBCO Support representative.

• Using KEEPMESSAGELOG=Y causes the message log to increase in size
dramatically. Use this option only on the advice of your TIBCO Support
representative.
 TIBCO Object Service Broker Shareable Tools

694 |
_ @TRACEMESSAGES.REQUEST=NULL; | 4
_ @TRACEMESSAGES.SHOWSYNC='Y'; | 5
_ @TRACEMESSAGES.COUNT=0; | 6
_ @TRACEMESSAGES.DUMP='Y'; | 7
_ @TRACEMESSAGES.OUTDUMPLIMIT=0; | 8
_ @TRACEMESSAGES.RETURNDUMPLIMIT=0; | 9
_ @TRACEMESSAGES.MESSAGELOG=NULL; | A
_ @TRACEMESSAGES.KEEPMESSAGELOG=NULL; | B
_ REPLACE @TRACEMESSAGES(0); | C
_ ---+----------------

Examining the Results

To deactivate the trace and examine the results, run the TRACEOFF rule as shown
below. Deactivate the TAM trace and then examine the contents of the
@MESSAGETRACE and @MESSAGEDUMP tables using the Table Browser. If
you want to print the contents of the @MESSAGEDUMP, edit out unprintable
characters in the character portion of the trace prior to printing (use the Table
Editor).

TRACEOFF;
--
--+---
 GET @TRACEMESSAGES(0); | 1
 @TRACEMESSAGES.TRACE='N'; | 2
 @TRACEMESSAGES.TABLE=NULL; | 3
 @TRACEMESSAGES.REQUEST=NULL; | 4
 @TRACEMESSAGES.SHOWSYNC='N'; | 5
 @TRACEMESSAGES.COUNT=0; | 6
 @TRACEMESSAGES.DUMP='N'; | 7
 @TRACEMESSAGES.OUTDUMPLIMIT=0; | 8
 @TRACEMESSAGES.RETURNDUMPLIMIT=0; | 9
 @TRACEMESSAGES.MESSAGELOG=NULL; | A
 @TRACEMESSAGES.KEEPMESSAGELOG=NULL; | B
 REPLACE @TRACEMESSAGES(0); | C
--+---

The TRACEON sample rule causes the collection of a generalized trace. Refer also
to the information for @MESSAGEDUMP and @MESSAGETRACE.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 695

$TRXDATE

Returns the start date of the transaction that called this tool based on the local
machine’s time zone in which the Execution Environment is running. (F)

Invocation date = $TRXDATE

Usage Notes • The date is returned as a semantic type date.

• The result is displayed using the default date format of the installation.

Example As part of a larger transaction that could run overnight, the following rule writes
the starting date of the transaction to the message log:

 RULE EDITOR ===> SCROLL: P
 START_DATE;
 _ LOCAL DATE;
 _ ---
 _ --+--------------
 _ DATE = $TRXDATE; | 1
 _ CALL MSGLOG('TRANSACTION STARTED:' || DATE); | 2
 _ ---

date On return, contains the start date of the transaction.

 TIBCO Object Service Broker Shareable Tools

| 696

$TRXMODE

Retrieves the transaction mode of the current rule. (F)

Invocation result = $TRXMODE

Example Rule

 RULE EDITOR ===> SCROLL: P
 GET_MODE;
 _ LOCAL A;
 _ ---
 _ --+--------------
 _ A = $TRXMODE; ¦ 1
 _ CALL ENDMSG('The current rule is running in ' ¦ 2
 _ || A || ' mode.'; ¦
 _ ---

Output

Running GET_MODE could produce:

The current rule is running in BROWSE mode.

result The transaction mode of the current rule, either BROWSE or
UPDATE.

| 697
$TYPECAST

Converts a variable according to the arguments supplied. (F)

Invocation result = $TYPECAST(type, syntax, size, decimals, value)

Exceptions

Example Rule

 RULE EDITOR ===> SCROLL: P
COERCE_ASSIGN(TO_TABLE, TO_FIELD, FROM_TABLE, FROM_FIELD);
_
_ ---
_ --+--------------
_ GET FIELDS(TO_TABLE) WHERE NAME = TO_FIELD; | 1
_ (TO_TABLE).(TO_FIELD) = $TYPECAST(FIELDS.TYPE, | 2
_ FIELDS.SYNTAX, FIELDS.LENGTH, FIELDS.DECIMAL, |
_ (FROM_TABLE).(FROM_FIELD)); |
_ |
_ |
_ ---

result The variable cast according to the input arguments.

type The semantic type to be used. This is a typeless 1-byte identifier of
character syntax.

syntax The syntax to be used. This is a typeless 3-byte identifier of
character syntax.

size The size to be used. This is a typeless 2-byte identifier of binary
syntax with 0 decimal places. The size value must be greater than
zero.

decimals The decimals value to be used. This is a typeless 2-byte identifier of
binary syntax with 0 decimal places. The decimals value must be
greater than or equal to zero and must be consistent with the
syntax requested.

value The expression to be cast. This argument can be any semantic type,
syntax, and size.

CONVERSION Signaled if any of the input arguments type, syntax, size, or
decimals is invalid.
 TIBCO Object Service Broker Shareable Tools

698 |
_

Explanation

This rule assigns a field of a table to another field of another table, if there exists
an allowed conversion between the source value and the destination value,
irrespective of their semantic types. For example, binary quantity values can be
assigned to binary identifier fields and binary date values to quantity binary
fields. Assignments such as assigning a string containing letters to a numerical
fields are not allowed.

CALL COERCE_ASSIGN('T1', 'CB4', 'T2', 'DB4');

performs this assignment:

T1.CB4 = T2.DB4;

ignoring the semantic type prohibition against it and leaving T1.CB4 with the
internal representation of the date in field T2.DB4 (assuming that CB4 is a binary
count field of length 4 and DB4 is a binary date field of length 4).

Refer to TIBCO Object Service Broker Programming in Rules for allowed arithmetic
conversions.
TIBCO Object Service Broker Shareable Tools

| 699
@UNINSTALL

Requests that the specified component be uninstalled. (CE)

Invocation Do one of the following:

Where:

Usage Notes • The argument component is the name of an instance of the @TOINSTALL table.
This instance contains the names of objects, table instances, and occurrences
included in the component.

• The user ID you use to run @UNINSTALL must have level-7 security
clearance.

Exceptions

From the… Move the cursor to the… And…

Developer’s
workbench

EX Execute Rule option Type
@UNINSTALL(component)
<Enter>

COMMAND prompt Type EX
@UNINSTALL(component)
<Enter>

From a rule Type
@UNINSTALL(component)

component The component you want to uninstall.

ROUTINEFAIL Raised if @UNINSTALL cannot find the component.

When you delete a component, its tables are also deleted, and any data they
contain is lost.
 TIBCO Object Service Broker Shareable Tools

700 |
Example The following example uses @UNINSTALL to uninstall a component.

 @UNINSTALL(TIMELAPSE)
TIBCO Object Service Broker Shareable Tools

| 701
UNLOAD

Unloads definitions of valid TIBCO Object Service Broker object types from a
source system to a z/OS data set or a Windows or Solaris file. Data from table
object types could also be unloaded. (E)

Invocation Do one of the following:

UNLOAD of Definitions and Data Screen

Pressing Enter displays the screen shown here:

 UNLOAD of Definitions and Data
 File Name: Log msgs to: SCR
 Location (for all objects): Object Count: 0
 Default Library : USR40
 Default Environment: 3270

 Scroll Amount: P

 |-------- For Tables -------|
 Object Object Library or All
 Name Type Environment Type #Prms Defn? Data? Inst
 ---------------- ---------------- ---------------- --- - - - -

 PFKEYS: 5=SELECT OBJECTS 6=INSTANCE SELECT 3=UNLOAD 12=CANCEL

From the… Move the cursor to the… And…

Administrator’s
workbench

UL Unload file option Press Enter

Developer’s
workbench

EX Execute Rule option Type UNLOAD <Enter>

COMMAND prompt Type EX UNLOAD <Enter>
 TIBCO Object Service Broker Shareable Tools

702 |
After selecting all the definitions required, or in the case of tables, all the data or
definitions, press PF3 to unload. This returns you to the workbench and a
message appears indicating where the log of your activities is.

After unloading the items, use LOAD from within your target system to load the
items. If you want to cancel the unload, press PF12 from within the Unload
screen.

Top Section

The following describes the fields of the UNLOAD of Definitions and Data
Screen:

You can do one or both of the following to specify objects to be unloaded:

• Type values directly into the fields in the bottom portion of the screen.

• Press PF5 to display a selection screen. Refer to Object Selection Screen on
page 705 for more information.

File Name Specifies the name of the file where the unloaded items are
to be placed. It can be re-used at a later time with the
contents being overwritten.

Location (for

all objects)

If the objects to be unloaded are located on a remote node,
type the name of the node where they are located.

Default

Library

Enter the name of the default library from which rules are
to be unloaded.

Default

Environment

This field is currently not in use.

Log msgs to Specifies the destination where the messages are logged.
Press PF1 for a list of valid values.

Object Count A protected field that displays the number of objects that
are selected to be unloaded.
TIBCO Object Service Broker Shareable Tools

UNLOAD | 703
Bottom Section

Use the bottom portion of the Unload screen to specify the objects to unload. This
section contains the following fields:

Instance Selection Screen

To select the instances, position your cursor on the table name that you are
selecting and press PF6. A screen similar to the one here appears.

 Place an "S" beside the parameter values for instances to be unloaded;
 if NO values are selected, occurrences for ALL instances are unloaded.

 TABLE: (#parameters:) ...more ->

 -> FIND/SELECT ________________ ____ ______________________________

Scroll Amount Specifies the amount to scroll when you use the scroll keys
PF7 and PF8. Valid entries are: P (page), H (half a page), M
(maximum), nn (number of lines).

Object Name The name of the object or objects to unload. Using the EOF
key, you can also delete the name of objects you no longer
require. You can also delete the name by pressing Delete,
Backspace, space bar.

Object Type The name of the object type for the object specified in the
Object Name field. Press PF1 for a list of valid values.

Library or

Environment

Enter the name of the rules library from which to unload
individual rules.

Because you can unload both the definition and the data
for objects of type Table, use an additional section entitled
“For Tables” for Table object types. Values are entered by
default into the fields Type, #Prms, Defn?, and Data?. You
can modify the fields Defn?, Data?, and All Inst as
follows:

Defn? – The default is N (no), do not unload the
definition of the table. You can change this to Y (yes),
unload the definition.

Data? – The default is N (no), do not unload the data of
the table. You can change this to Y (yes), unload the data. If
you change it to Y, you can select the instances that you
require or leave it as the default for all instances.
 TIBCO Object Service Broker Shareable Tools

704 |
 (parm name) (op) (unquoted value or pattern)

 ------------------------------ ------------------------------ Scroll:
 _

 PFKEYS: 10=LEFT 11=RIGHT 5=FIND 23=SELECT 6=DETAIL 16=UNSELECT 3=SAVE 12=CANCE

Fields

TABLE The name of the table is entered by default.

#parameters The number of parameters for the table is entered by default.

…more A more indicator (-> or <-) shows if there is additional
information to view to the left (PF10) or right (PF11) of the
displayed screen.

FIND/SELECT Use this field to narrow your search for parameter values to
select. Specify one parameter, an operator, and a parameter
value in the blank spaces to the right of this field and press
PF23. Your cursor is positioned on the first instance that meets
this minimal criteria. Press PF5 to find the next instance that
meets this criteria.

You can specify only up to 30 characters for the parameter
value. You can use the LIKE operator with the wild card
character asterisk (*) to assist you for values that are longer.

Scroll You can specify the amount that you want to scroll when you
use the scroll keys. Valid entries are: P (page), H (half a page),
M (maximum), nn (number of lines).
TIBCO Object Service Broker Shareable Tools

UNLOAD | 705
The lower portion of the screen displays the parameter names and parameter
values for the table. You use this portion to select the instances that you require.
To select table instances, type an S in the line command field of the instances that
you require and press Enter.

PF Keys

You can use the following PF keys in this screen:

Object Selection Screen

Pressing PF5 from the Unload screen displays the screen shown below. You can
use this screen to select the objects to be unloaded.

 O b j e c t S e l e c t i o n
 COMMAND ==>
 Location: Select All: N
 Library (for RULES): List Children: N
 Presentation Environment:
 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME ____ ________________ AND unspecified |

PF3 Saves the selection and return to the Unload screen.

PF5 Finds the next instance that meets the selection criteria.

PF6 Displays a list of the full parameter values for the table instance that
your cursor is positioned on. Use this if the parameter values are
greater than 30 display characters each, which is the limit for this
screen.

PF7 Scrolls up.

PF8 Scrolls down.

PF10 Scrolls left.

PF11 Scrolls right.

PF12 Cancels the selection and return to the Unload screen.

PF16 Clears all the instances that you previously selected.

PF23 Selects the instances that meet the selection criteria specified in the
FIND/SELECT field.
 TIBCO Object Service Broker Shareable Tools

706 |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll:
 Name Type Library Environment Unit
 ---------------- ---------------- ---------------- ---------------- --------

 PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL

Specify the following information in the fields:

Top Section

Location The name of the node where the selection criteria are
applied. If you do not specify a value, your home location
is used.

Library (for

RULES)

If the selection list is to contain rules, type the name of the
rules library to be searched. Press PF1 for a list of valid
values.

Presentation

Environment

This field is currently not in use.

Select All Specifies whether all the items displayed based on the
selection criteria should be copied into the Unload screen.

Scroll You can specify the amount that you want to scroll when
you use the scroll keys. Valid entries are: P (page), H (half
a page), M (maximum), nn (number of lines).

Y – Unloads all the items displayed.

N – Do not unload all the items displayed.

List Children Specify if you want to list all the child objects that an object
is composed of. Valid values are:

Y – Lists all the child objects.

N – Do not list the child objects.
TIBCO Object Service Broker Shareable Tools

UNLOAD | 707
Middle Section

The middle section of the screen can be used to select the items to be unloaded, or
to narrow down the selection list. You can use more than one type of selection
criteria for each object type and you can specify multiple object types within one
session. For a list of valid values for each of these fields, press PF1. For more
information, refer to “Selection Criteria” below.

Bottom Section

When you press Enter after specifying the selection criteria, the selected items
appear in the bottom portion of the screen. You can select the objects displayed in
this section by typing an S in the line command field beside the objects. For more
information, refer to the following “Selection Criteria”.

Selection Criteria

PF Keys

You can use the following PF keys in this screen:

NAME If you know the name of the item, enter the logical operator to
be used in the Op field. Type the name of the object in the
Value field.

TYPE The name of the object type. Press PF1 for a list of valid values.
If you do not supply an object type, you must specify a value
in at least one of the other selection fields. If you specify only
an object type and no further selection values, a listing of the
items for the object type defined in your TIBCO Object Service
Broker database appears for further selection.

UNIT In the Op field, type the logical operator to be used. In the
Value field, type the name of the unit associated with the
object.

AUTHOR In the Op field, type the logical operator to be used. In the
Value field, type the name of the author of the object.

Enter Updates the screen.

PF3 Saves the selection and returns to the Unload screen.
 TIBCO Object Service Broker Shareable Tools

708 |
You can specify the amount that you want to scroll when you use the scroll keys,
using the Scroll field. Valid entries are: P (page), H (half a page), M (maximum), nn
(number of lines).

Usage Notes • UNLOAD captures all the children of an object—these do not have to be
explicitly specified.

• Definitions of all table types can be unloaded using the UNLOAD tool.
However, data from only TDS and SES tables can be unloaded using the
UNLOAD tool.

• On non-z/OS systems, set the DSBIFTYPE Execution Environment parameter
according to the following:

This setting can affect the behavior of other tools. For more information on the
DSBIFTYPE Execution Environment parameter, refer to TIBCO Object Service
Broker Parameters.

• To unload large volumes of data quickly, consider using one of the batch
Unload utilities (S6BBRULH /hrnbrulh or S6BBRULB/hrnbrulb). For more
information on these utilities refer to TIBCO Object Service Broker for z/OS
Utilities or TIBCO Object Service Broker for Open Systems Utilities.

• This tool should be run in Browse mode (that is, set the BROWSE field at the
top of the workbench to Y).

PF7 Scrolls up.

PF8 Scrolls down.

PF10 Scrolls right.

PF11 Scrolls left.

PF12 Exits without selecting objects and returns to the Unload screen.

When unloading... Use this DSBIFTYPE Setting

From Windows to Windows,
or from Solaris to Solaris.

LENGTH_PREFIXED_EBCDIC or
LENGTH_PREFIXED_EBCDIC_NA
TIVE_ENDIAN.
Use the same at load time.

Windows to Solaris,
or from Solaris to Windows.

LENGTH_PREFIXED_EBCDIC.

To z/OS LENGTH_PREFIXED_EBCDIC.
TIBCO Object Service Broker Shareable Tools

UNLOAD | 709
• For unloading to a z/OS data set, it is recommended that you pre-allocate the
data set as follows: RECORD FORMAT - VB, LRECL >=2250 (2250 is the
minimum for unloading rules and that 250 is the minimum for table
definitions). It can be a partitioned data set. To optimize LRECL when
unloading data, use EXPOCC_SIZE. Depending on your environment, the
data set could have to be authorized for you to use it.

• For unloading to a Solaris file only, specify a name that uses all uppercase
letters. For Windows or Solaris, specify either the full path or only the
filename. If you specify only the filename, the DSDIR Execution Environment
parameter must be set to point to the directory to use. Refer to TIBCO Object
Service Broker Parameters for more information about this parameter.

• To unload the table instances of a parameterized table, you must have a
parameter value (PRM) table defined.

• If UNLOAD is executed using the EX option from the workbench, the search
path used for event rules is local, installation, and then system. If UNLOAD is
executed using the LO or UL options from the Administrator’s menu, the
search path is the system library since the search path is indicated in
@MENU_ITEMS(@ADMIN) as S.

• If you are using FTP to transfer unloaded data from z/OS to Open Systems,
you must either issue FTP’s QUOTE SITE RDW command before sending the
file from z/OS, or run the S6BBRFRU (Reformat TIBCO Object Service Broker
Files Transferred with FTP) utility against the file on z/OS before using FTP.
Refer to TIBCO Object Service Broker Parameters for more information about
S6BBRFRU.

• To load on z/OS a file unloaded on Windows or Solaris, simply FTP the file, in
binary format, from the platform of origin to z/OS.

• To UNLOAD a DB2 table definition from the current release in Release 5.0.0
format, set Library to S6B50DB2 and execute the UNLOAD tool. To verify that
your definition is compatible with Release 5.0.0, set Library to S6B50DB2 and
execute the rule CHK_COMPATDB2TBL(tablename).

Example Sample UNLOAD of Definitions and Data Screen

The figure below shows a sample screen for unloading the definitions of several
tables:

 UNLOAD of Definitions and Data
 File Name: DOC01.UNLOAD.EXAMPLE(EMPTABLE) Log msgs to: SCR
 Location (for all objects): Object Count: 4
 Default Library : DOCTOOLS
 Default Environment: 3270
 Scroll Amount:
 |-------- For Tables --------|
 Object Object All
 TIBCO Object Service Broker Shareable Tools

710 |
 Name Type Library Type #Prms Defn? Data? Inst
 ---------------- --------------- -------- --- - - -
 EMPLOYEES_0DPARM TABLE TDS 0 Y N
 EMPLOYEES_1DPARM TABLE TDS 1 Y N
 EMPLOYEES_2DPARM TABLE TDS 2 Y N
 EMPLOYEES_3DPARM TABLE TDS 3 Y N

PFKEYS: 5=SELECT OBJECTS 6=INSTANCE SELECT 3=UNLOAD 12=CANCEL

Sample Object Selection Screen

The figure below shows a sample screen used to select objects:

 O b j e c t S e l e c t i o n
 COMMAND ==>

 Location: Select All: N
 Library (for RULES): DOCTOOLS List Children: N
 Presentation Environment: 3270

 +-------------------- Selection Specification -----------------+
 | Attr Op Value |
 | ------ ---- ---------------- |
 | NAME LIKE EMPLO*__________ AND unspecified |
 | TYPE = ________________ AND attributes will |
 | UNIT ____ ________ AND be ignored |
 | AUTHOR ____ ________ |
 +--+
 Scroll: P
 Name Type Library Environment Unit
 ----------------- ---------------- ---------------- ---------------- --------
 _ EMPLOYEEIDM TABLE USR40
 _ EMPLOYEES TABLE ACC
 s EMPLOYEES_0DPARM TABLE ACC
 s EMPLOYEES_1DPARM TABLE ACC
 s EMPLOYEES_2DPARM TABLE ACC
 s EMPLOYEES_3DPARM TABLE ACC

PFKEYS: ENTER=UPDATE 3=SAVE SELECTION 12=CANCEL

Sample Message Log

The figure below shows the message log summarizing the results of the unload.
TIBCO Object Service Broker Shareable Tools

UNLOAD | 711
 -------------------------- INFORMATIONAL MESSAGE LOG --------------------------
 COMMAND ===> SCROLL ===> P
 H U R O N MESSAGES
 Date: March 14, 2000
 Report on UNLOAD Status of Obje

 Tally of objects UNLOADED

 OBJECT COUNT

 TABLE DEFN 4

 Unloading definitions of TABLEs

 NAME NAME NAME NAME

 EMPLOYEES_0DPARM EMPLOYEES_1DPARM EMPLOYEES_2DPARM EMPLOYEES_

 Above message occurred 4 times

PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT 12=EXIT 13=PRINT
 TIBCO Object Service Broker Shareable Tools

| 712
UNLOAD_DATA

Unloads the data of a table to a z/OS data set or a Windows or Solaris file. (C)

Invocation CALL UNLOAD_DATA(tablespec, selection, location)

Prerequisites You must call @OPENDSN before you call UNLOAD_DATA. After calling
@OPENDSN, you can make multiple calls to UNLOAD_DATA.

Usage Notes • UNLOAD is the interactive version of this tool.

• On non-Z/OS systems, the Execution Environment parameter DSBIFTYPE
must be set to LENGTH_PREFIXED_EBCDIC.

• Only TDS and session (SES) table data can be loaded using the
UNLOAD_DATA tool.

• You must declare the local variable UNLOAD_MSG.

• Parameter values must be specified in the tablespec argument rather than the
selection argument. The tablespec must specify a value for each parameter of a
parameterized table.

• You can call UNLOAD_DEFN within the same rule.

• If you specify an empty string for select, all occurrences are unloaded from the
table, provided the table is non-parameterized or only a single instance is
specified.

• The syntax for select is <field name> <relational operator> <value>.

• Specify a value for location only if the data is located on a different node.

• If UNLOAD_DATA is executed using the EX option from the workbench, the
search path used for event rules is local, the installation library, and then
COMMON. If UNLOAD_DATA is executed using the LO or UL options from
the @ADMIN menu, the search path is COMMON since the search path is
indicated in @MENU_ITEMS(@ADMIN) as S.

• If you are using FTP to transfer unloaded data between z/OS and Windows,
Solaris, or UNIX, it is no longer mandatory to use the S6BBRFRU z/OS utility

tablespec The name of an existing table or table instance.

selection The selection criteria to be used, if required.

location The name of the node where the data is located.
 TIBCO Object Service Broker Shareable Tools

UNLOAD_DATA | 713
before the data can be used by TIBCO Object Service Broker. Refer to TIBCO
Object Service Broker for z/OS Utilities for more information about S6BBRFRU.

Exceptions

Examples The following rule unloads data from two tables. Data is unloaded from an
instance of the EMPLOYEES table and from a different node than your default
node location for the MANAGERS table.

 RULE EDITOR ===> SCROLL: P
 UNLOAD_DATA_1;
 _ LOCAL UNLOAD_MSG;
_ --+--------------
 _ --+--------------
 _ CALL @OPENDSN('USR40.UNLOAD.HURON(DATA)'); | 1
 _ CALL UNLOAD_DATA('EMPLOYEES(CANADA)', '', ''); | 2
 _ CALL UNLOAD_DATA('MANAGERS', '', 'NODE3'); | 3
 _ ---

The following rule unloads the data from all instances of the table EMPLOYEES
by using a FORALL loop on the $EMPLOYEES parameter value table:

 RULE EDITOR ===> SCROLL: P
 UNLOAD_EMPS;
 _
 _ ---
 _ --+--------------
 _ CALL @OPENDSN('EMPS.DATA.OUT'); ¦ 1
 _ FORALL $EMPLOYEES : ¦ 2
 _ CALL UNLOAD_DATA('EMPLOYEES(' || $EMPLOYEES.REGION || ¦
 _ ')', '', ''); ¦
 _ END; ¦
 _ CALL @CLOSEDSN; ¦ 3
 _ ---

UNLOAD_FAILED Raised if invalid values are specified for tablespec, selection,
or location. It is also raised if you do not have security
access to the data or definition of the table or table
instance.
 TIBCO Object Service Broker Shareable Tools

| 714
UNLOAD_DEFN

Unloads the definition of a TIBCO Object Service Broker object to a z/OS data set
or a Windows or Solaris file. (C)

Invocation CALL UNLOAD_DEFN(objecttype, objectname, library, presentationenv, location,
parentonly)

objecttype The TIBCO Object Service Broker object type of the object
definition to be unloaded. Valid object types are:

• GLOBALFIELD

• LIBRARY

• MENU

• OBJECTSET

• REPORT

• RULE

• SCREEN

• TABLE

• WEBSERVICEPROD

objectname The name of the object definition to be unloaded.

library If the object is a rule, the name of the rules library where the
rule is stored.

presentationenv This argument, although not currently used, must be supplied.
You can enter a null ('') value.

location The name of the node where the object is located.

parentonly Specifies if all the objects or only the parent object should be
unloaded. Valid values are:

Y – Unloads only the parent.

N – Unloads the parent and child objects.
 TIBCO Object Service Broker Shareable Tools

UNLOAD_DEFN | 715
Prerequisites You must call @OPENDSN before you call UNLOAD_DEFN. After calling
@OPENDSN, you can make multiple calls to UNLOAD_DEFN provided you are
writing to the same data set or file to the same member of a partitioned data set.
Unloads to different data sets or to different members of a partitioned data set
must be done in separate transactions.

Usage Notes • UNLOAD is the interactive version of this tool.

• On non-Z/OS systems, the Execution Environment parameter DSBIFTYPE
must be set to LENGTH_PREFIXED_EBCDIC.

• You can call UNLOAD_DATA within the same rule.

• Specify a value for location only if the definition is located on a different node.

• If you are using FTP to transfer unloaded data between z/OS and Windows or
Solaris, it is no longer mandatory to use the S6BBRFRU z/OS utility before the
data can be used by TIBCO Object Service Broker. Refer to TIBCO Object
Service Broker for z/OS Utilities for more information about S6BBRFRU.

Example The following rule unloads a report definition from NODE3 and a table definition
from your default node location:

 RULE EDITOR ===> SCROLL: P
 UNLOAD_DEFN_1;
 _
_ --+--------------
 _ --+--------------
 _ CALL @OPENDSN('USR40.UNLOAD.HURON(TEST2)'); | 1
 _ CALL UNLOAD_DEFN('REPORT', 'EMP_EXPENSE', '', | 2
 _ '', 'NODE3', 'N'); |
 _ CALL UNLOAD_DEFN('TABLE', 'EMPLOYEES', '', '', '', ''); | 3
 _ ---
 TIBCO Object Service Broker Shareable Tools

| 716
UNLOADLIBRARY

Unloads all rules in the specified library at the specified location to a z/OS data
set or a Windows or Solaris file. (C)

Invocation CALL UNLOADLIBRARY(library, location)

Usage Notes • You must perform the following steps to use UNLOADLIBRARY:

• Use $SETPRINT/$RESETPRINT to set up a destination for status messages.

• On non-Z/OS systems, the Execution Environment parameter DSBIFTYPE
must be set to LENGTH_PREFIXED_EBCDIC.

• This tool is recommended as the preferred tool for unloading libraries.

• If you are using FTP to transfer unloaded data between z/OS and Windows or
Solaris, it is no longer mandatory to use the S6BBRFRU z/OS utility before the

library The name of the library from which to unload the rules.

location The name of the node where the library resides.

If the output
is going to… Do this

A z/OS data
set

Allocate a data set with these characteristics: RECORD
FORMAT - VB, LRECL - 2250 or larger. It can be a
partitioned data set. You must call @OPENDSN to set up
the destination data set.

Windows Use @OPENDSN to set up the destination file. Specify
either the full path or only the filename. If you specify only
the filename, the DSDIR Execution Environment
parameter must be set to point to the directory to use.
Refer to TIBCO Object Service Broker Parameters for more
information about this parameter.

A Solaris file Specify a filename in uppercase. Use @OPENDSN to set
up the destination file. Specify either the full path or only
the filename. If you specify only the filename, the DSDIR
Execution Environment parameter must be set to point to
the directory to use. Refer to TIBCO Object Service Broker
Parameters for more information about this parameter.
 TIBCO Object Service Broker Shareable Tools

UNLOADLIBRARY | 717
data can be used by TIBCO Object Service Broker. Refer to TIBCO Object
Service Broker for z/OS Utilities for more information about S6BBRFRU.

Example The following rule unloads all the files from the specified library and writes an
end message at completion:

 UNLOADLIBRARY_1(FILE);
 _
 _ ---
 _ --+--------------
 _ CALL @OPENDSN(FILE); | 1
 _ CALL $SETPRINT(10, 45, 1, 'SCR', 'N'); | 2
 _ CALL UNLOADLIBRARY('USR40', ''); | 3
 _ CALL ENDMSG('THE OUTPUT HAS BEEN DIRECTED TO ' xx 'SCR'); | 4
 _ ---

Resulting Output

After running this rule, the following message appears in the message log:

 -------------------------- INFORMATIONAL MESSAGE LOG -----------------------------
 COMMAND ===> SCROLL ===> P

 ----------------- NEW PAGE ------------------

 Page 1
 Unloaded 14 rules from library USR40
 TIBCO Object Service Broker Shareable Tools

| 718
$UNPIC

Determines the original value submitted given a masked value produced by $PIC
and the display mask that produced it. (F)

Invocation value = $UNPIC(picval, mask)

Usage Notes $UNPIC reverses the function of $PIC:

picval=$PIC(value, mask)

value=$UNPIC(picval, mask)

For information on mask elements and terminology, refer to $PIC.

picval

You can omit the following in picval:

• Mask elements

• Leading zeros or fill characters (asterisks or blanks)

• Trailing decimal zeros

• Message characters in the basic string, provided they are all omitted

picval can have leading zeros with message characters between them; it cannot
have other fill characters (asterisks or blanks) with message characters between
them.

Sign of a Value

The sign of a value is determined by all or one of the following:

• The sign holder in the unconditional left string of picval

• A user input positive (+) or negative (-) sign preceding the basic string in picval
(allowed only if there is a sign holder in the mask)

• The presence of a conditional right string in picval

value The original value submitted to $PIC. Its syntax is
V (variable-length character string).

picval The value produced by $PIC. Its syntax is V.

mask The display mask used by $PIC. Its syntax is V.
 TIBCO Object Service Broker Shareable Tools

$UNPIC | 719
Any number of fill characters can be entered in the conditional right string of
picval, provided they are not ambiguous (for example, when a user-supplied
negative (-) sign conflicts with the positive value implied by the presence of
fill characters). $UNPIC fails if it cannot with certainty determine the sign
associated with a value. A similar failure occurs if the presence of a
conditional right string conflicts with a user-supplied positive (+) sign.

Effect of Display Masks

If there is no basic string in the mask or if the basic string is in the mask and not in
picval, $UNPIC returns a null value.

If the picval is inconsistent with the mask because of an overflow either before or
after the decimal point, $UNPIC fails. $UNPIC truncates only if the mask has a
decimal separator and the digits being truncated are all decimal zeros.

• $UNPIC('12345', '999V.99') fails

• $UNPIC('12.345', '999V.99') fails

• $UNPIC('123.45000', '999V.99') returns '123.45'

$PIC/$UNPIC Inconsistencies

In some cases, the display mask causes values to be truncated or information to be
lost when $PIC is used. In cases such as the following, inconsistencies occur:

• $PIC(-123, '999') returns '123' (information is lost)

• $UNPIC('123', '999') returns '123' instead of '-123'

• $PIC(0.345, '9V.99') returns '0.34' (truncation occurs)

• $UNPIC('.34', '9V.99') returns '0.34' instead of '0.345'

• $PIC(0, 'CDN$ZZ') or $PIC('', 'CDN$ZZ') returns CDN$ (0 and null
produce the same mask)

• $UNPIC('CDN$', 'CDN$ZZ') returns a null

Examples Below are some examples of $PIC values and the $UNPIC values that result:

• $PIC (0.01, 'NV999') = '010'

• $UNPIC('010', 'NV999') = '0.01'

• $PIC(23, ',***,999') = ',****023'

• $UNPIC(‘,****023', ',***,999') = '23'
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 720

UNQUOTE

Returns a string with the single quotation marks removed. (F)

Invocation unquoted = UNQUOTE(string)

Usage Notes • Only the first and last single quotation mark are removed. If you have a pair
of single quotation marks at the beginning and a pair at the end, the returned
string has one quotation at the beginning and one at the end.

• If you have a single quotation mark in the string and it is not at the beginning
or end, it is not removed.

• If you have only a single quotation mark at the end of the string, it is not
removed.

• If you have only a single quotation mark at the beginning of the string, it and
the last character are removed.

Example The following rule removes quotation marks from an entry that a user made on a
screen and passes the unquoted string to be processed. The screen is called
EMPINFO_SCR and the screen table into which the information is entered is
called EMPINFO_SCRTAB.

 CLEAN_INPUT;
 _
 _ ---
 _ --+--------
 _ GET EMPINFO_SCRTAB(EMPINFO_SCR); | 1
 _ CALL INPUT_EMPINFO(UNQUOTE(EMPINFO_SCRTAB.EMPNAME)); | 2
 _ ---

If you enter:

'AB''CD EF'

the string that is passed to the INPUT_EMPINFO rule is:

AB'CD EF

unquoted string without single quotation marks at the beginning and
end. Pairs of single quotation marks within string are changed
to single quotation marks.

string The character string from which to remove the single
quotation marks.

| 721
UPPER_EBCDIC

Converts a string to uppercase EBCDIC characters. (F)

Invocation upper_string = UPPER_EBCDIC(string)

Usage Note UPPER_EBCDIC uppercases strings using the TIBCO Object Service Broker
EBCDIC casing rules.

The casing for EBCDIC depends on the locale and is explained in TIBCO Object
Service Broker National Language Support.

For example, “ç” remains unchanged when the EBCDIC rules for Swedish are in
use.

Example The following rule uppercases a string and prints the result to the message log:

UPPERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+----
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('UPPER_EBCDIC GIVES ' || UPPER_EBCDIC(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPER_EBCDIC(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('UPPER_EBCDIC GIVES ' || UPPER_EBCDIC(A)); ¦ A

upper_string On return, contains the string in uppercase letters.

If string is not Unicode, or if it is Unicode and entirely
convertible to EBCDIC, upper_string’s syntax is V
(variable-length character string).

If string is Unicode and not entirely convertible to EBCDIC,
upper_string’s syntax is UN (Unicode). In string, characters
that can be converted are cased and then reverted to
Unicode before being added to upper_string. Characters that
cannot be converted are added to upper_string unchanged.

string The string to convert to uppercase letters. Its syntax is
C (fixed-length character), RD (raw data), UN, V, or W
(double-byte character).
 TIBCO Object Service Broker Shareable Tools

722 |
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPER_EBCDIC(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

CASING OF UNICODE STRING AÇaç

UPPER_EBCDIC GIVES AÇAç
SYNTAX IS V

CASING OF EBCDIC STRING AÇaç

UPPER_EBCDIC GIVES AÇAç
SYNTAX IS V

See Also Related tools: LOWER_EBCDIC, LOWER_UNICODE, LOWERCASE,
UPPER_UNICODE, and UPPERCASE.
TIBCO Object Service Broker Shareable Tools

| 723
UPPER_UNICODE

Converts a string to uppercase Unicode characters. (F)

Invocation upper_string = UPPER_UNICODE(string)

Usage Note UPPER_UNICODE uppercases strings using the TIBCO Object Service Broker
Unicode casing rules.

The default Unicode casing rules supplied with the product are the recommended
default from the Unicode consortium. You can tailor it for your environment.

For example, “ç” cases to “Ç” in the default Unicode rules.

Example The following rule uppercases a string and prints the result to the message log:

UPPERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+----
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('UPPER_UNICODE GIVES ' || UPPER_UNICODE(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPER_UNICODE(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('UPPER_UNICODE GIVES ' || UPPER_UNICODE(A)); ¦ A
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPER_UNICODE(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

Resulting Output

Pressing PF2 after executing this rule displays the following screen:

upper_string On return, contains the string in uppercase letters. Its
syntax is UN (Unicode).

string The string to convert to uppercase letters. Its syntax is
C (fixed-length character string), RD (raw data), UN, or V
(variable-length character string).
 TIBCO Object Service Broker Shareable Tools

724 |
----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

CASING OF UNICODE STRING AÇaç

UPPER_UNICODE GIVES AÇAÇ
SYNTAX IS UN

CASING OF EBCDIC STRING AÇaç

UPPER_UNICODE GIVES AÇAÇ
SYNTAX IS UN

See Also Related tools: LOWER_EBCDIC, LOWER_UNICODE, LOWERCASE,
UPPER_EBCDIC, and UPPERCASE.
TIBCO Object Service Broker Shareable Tools

| 725
UPPERCASE

Converts all lowercase characters in a string to uppercase characters. (F)

Invocation upper_string = UPPERCASE(string)

Usage Note UPPERCASE uppercases EBCDIC strings using the TIBCO Object Service Broker
EBCDIC casing rules and Unicode strings using the TIBCO Object Service Broker
Unicode casing rules.

The casing for EBCDIC depends on the locale and is explained in TIBCO Object
Service Broker National Language Support. The default Unicode casing supplied
with the product is the recommended default from the Unicode consortium. You
can tailor it for your environment.

For example, “ç” cases to “Ç” in the default Unicode rules and remains
unchanged using the EBCDIC rules for Swedish.

Example The following rule uppercases a string and prints the result to the message log:

UPPERCASE_SAMPLE;
 _ LOCAL A;
 _ ---
 _ --+----
 _ A = U'AÇaç'; ¦ 1
 _ CALL MSGLOG('CASING OF UNICODE STRING ' || A); ¦ 2
 _ CALL MSGLOG(' '); ¦ 3
 _ CALL MSGLOG('UPPERCASE GIVES ' || UPPERCASE(A)); ¦ 4
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPERCASE(A)); ¦ 5
 _ A = $TYPECAST('S', 'V', 4, 0, A); ¦ 6
 _ CALL MSGLOG(' '); ¦ 7
 _ CALL MSGLOG('CASING OF EBCDIC STRING ' || A); ¦ 8
 _ CALL MSGLOG(' '); ¦ 9
 _ CALL MSGLOG('UPPERCASE GIVES ' || UPPERCASE(A)); ¦ A
 _ CALL MSGLOG('SYNTAX IS ' || $GET_SYNTAX(UPPERCASE(A)); ¦ B

Line 1 sets local variable A as a Unicode string. Line 6 changes it to an EBCDIC V
string.

upper_string On return, contains the string in uppercase letters. Its
syntax is the same as string except that, if string is C
(fixed-length character string), upper_string becomes V
(variable-length character string).

string The string to convert to uppercase letters. Its syntax can be
C, UN (Unicode), V, or W (double-byte character).
 TIBCO Object Service Broker Shareable Tools

726 |
Resulting Output

Pressing PF2 after executing this rule displays the following screen:

----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

CASING OF UNICODE STRING AÇaç

UPPERCASE GIVES AÇAÇ
SYNTAX IS UN

CASING OF EBCDIC STRING AÇaç

UPPERCASE GIVES AÇAç
SYNTAX IS V

See Also Related tools: LOWER_EBCDIC, LOWER_UNICODE, LOWERCASE,
UPPER_EBCDIC, and UPPER_UNICODE.
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 727

USERID

Returns a string containing the user ID. (F)

Invocation string = USERID

Example The following rule determines the user ID and prints it to the message log:

 USERID_1;
 _ LOCAL ID_STRING;
 _ --
 _ --+-----------
 _ ID_STRING = USERID; | 1
 _ CALL MSGLOG('THE USER ID IS: ' || ID_STRING); | 2
 _ --

Resulting Output

Pressing PF2 after executing this rule displays the following:

 -------------------- INFORMATIONAL MESSAGE LOG ------------------
 COMMAND ===> SCROLL ===> P
 THE USER ID IS: USR40

string On return, contains the user ID. Its syntax is V (variable-length
character string) with length 16.

 TIBCO Object Service Broker Shareable Tools

| 728

UTCDATE

Returns the Coordinated Universal Time (UTC) date when UTCDATE is called.
(F)

Invocation date = UTCDATE

Usage Notes • The date is returned as a semantic type date.

• The result is displayed in the default date format for the installation.

Example The following rule, which uses PAYMENT as an argument, records the amount
received and the current UTC date in the table RECEIPTS:

 RULE EDITOR ===> SCROLL: P
 RECEIVED(PAYMENT);
 _
 _ ---
 _ --+--------------
 _ RECEIPTS.AMOUNT = PAYMENT; | 1
 _ RECEIPTS.DATE = UTCDATE; | 2
 _ INSERT RECEIPTS; | 3
 _ ---

Resulting Output

When the rule is executed with the argument 67.89, the bottom occurrence is
inserted in the table:

 EDITING TABLE : RECEIPTS
 COMMAND ==>
 SCROLL: P
 NUM DATE AMOUNT
 _ ----------- ---------- ----------
 _ 1 2005-02-23 34.56
 _ 2 2005-03-10 78.56
 _ 3 2005-03-18 23.00
 _ 4 2005-03-18 67.89

date On return, contains the UTC date.

 TIBCO Object Service Broker Shareable Tools

| 729

UTCTIME

Returns a string containing the current Coordinated Universal Time (UTC) time.
(F)

Invocation string = UTCTIME

Usage Notes • The time is returned in the format HH:MM:SS; for example, 23:59:59.

• The current UTC time is returned, not the UTC time the transaction started.

Example The following rule determines the current time and prints it to the message log:

 UTCTIME_1;
 _ LOCAL TIME;
 _ ---
 _ ---+-----------
 _ TIME = UTCTIME; | 1
 _ CALL MSGLOG('THE CURRENT UTC TIME IS: ' || TIME); | 2
 _ --

Pressing PF2 after executing this rule displays the following:

 ----------------------- INFORMATIONAL MESSAGE LOG ---------------------
 COMMAND ===> SCROLL ===> P
 THE CURRENT UTC TIME IS: 07:42:20

string The string containing the current UTC time. Its syntax is
C (fixed-length character string) with length 8.

| 730
VAL_TO_LIT

Converts a value to a string containing a token describing its value. (F)

Invocation string = VAL_TO_LIT(value)

Example This rule creates three new values from the information contained in input
strings:

 CREATE_RD (VALUE1, VALUE2, VALUE3);
 _
 _ --
 _ --+-----------
 _ CALL MSGLOG('VALUE1 CONTAINS ' || VAL_TO_LIT(VALUE1)); |
 _ CALL MSGLOG('VALUE2 CONTAINS ' || VAL_TO_LIT(VALUE2)); |
 _ CALL MSGLOG('VALUE3 CONTAINS ' || VAL_TO_LIT(VALUE3)); |
 _ --

VALUE1 is a raw data field that contains 1234.

VALUE2 is a Unicode field that contains E12/34.

VALUE3 is a string field that contains $1234.

Pressing PF2 after executing this rule displays the following screen:

 ----------------------- INFORMATIONAL MESSAGE LOG --------------------
 COMMAND ===> SCROLL ===> P

VALUE1 CONTAINS R'1234'
VALUE2 CONTAINS U'/20AC12//34'

string On return, this string contains a token describing the input value.
Its syntax is V (variable-length character string).

value The value to convert. It can have any syntax. The token in string
depends on the syntax of value as follows:

Value Syntax String Token

RD (raw data) R'xx...'

UN (Unicode) U'xx...'

Other X'xx...'
 TIBCO Object Service Broker Shareable Tools

VAL_TO_LIT | 731
VALUE3 CONTAINS X'5BF1F2F3F4'
 TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 732

VALID_NAME

Determines if a given string satisfies the TIBCO Object Service Broker definition
of an identifier. (F)

Invocation verify = VALID_NAME(name)

Usage Notes • A valid TIBCO Object Service Broker name is a character string of up to 16
characters beginning with a letter (A - Z) or a special character ($ or #), and
continuing with more letters, special characters, digits (0 - 9), or underscore
characters (_).

A table name starting with an @ symbol denotes a table supplied with TIBCO
Object Service Broker.

• If the string passed to VALID_NAME contains unmatched quotation marks,
the value of N is returned.

Example The following rule verifies that the name you provide for a table instance is a
valid TIBCO Object Service Broker name:

 RULE EDITOR ===> SCROLL: P
 VERIFY_PARM(PARMNAME);
 _
_---
 _ VALID_NAME(PARMNAME) = 'Y'; | Y N
 _ --+--------------
 _ CALL INPUT_DATA(PARMNAME); | 1
 _ CALL ENDMSG(PARMNAME || ' IS NOT A VALID PARAMETER NAME'); | 1
 _ ---

If the parameter name is valid, INPUT_DATA is called to insert data into the
table. If the parameter name is not valid, such as 4-5ITEMS, the user sees the
message:

4-5ITEMS IS NOT A VALID PARAMETER NAME.

verify On return, contains the value Y if name is a valid TIBCO Object
Service Broker identifier or N if name is not valid.

name A string specifying the identifier.

| 733
@WRITEDSN

Writes a record to the current file. (C)

Invocation CALL @WRITEDSN(string)

Usage Notes • The file must be previously identified using @OPENDSN.

• An attempt to open the file is made with the first write operation.

• You must have write access to the file.

• @WRITEDSN accesses a z/OS file using the data set name. There is no
provision for using a DDNAME with this tool instead of a data set name.

• If the file specified in the @OPENDSN statement is a z/OS data set and it does
not exist, @WRITEDSN fails. If the file is a Windows or Solaris file, it is created
for you.

• If a partitioned data set is specified in the @OPENDSN statement a member
name must be supplied.

• Within the same transaction, to write to a file that you have read, close it and
then re-open it.

• On the z/OS platform, @WRITEDSN always writes in EBCDIC format.

• On non-z/OS platforms, when the data is written to the external file, it is
subject to the type specification for the file as given in filespec.dsn or by the
DSBIFTYPE Execution Environment parameter. If the file type is
LENGTH_PREFIXED_EBCDIC, the data is left alone and written as EBCDIC.
If the file type is LINE_SEPARATED_ASCII, the data is converted from
EBCDIC to ASCII when written and back from ASCII to EBCDIC when read
(using @READDSN).

Exception

string The character string that is written as the next record. Its syntax
can be C (fixed-length character string), V (variable-length
character string), or W (double-byte character).

ROUTINEFAIL Raised if you are attempting to output to a file that has not yet
been specified by @OPENDSN, if the file cannot be opened, or
if the length of the source record is bigger than the record
length of the output file.
 TIBCO Object Service Broker Shareable Tools

734 |
Example The following rule opens an existing file, writes data from the example table to it,
closes the file, reopens it, reads back the first record from it, and prints that record
to the message log:

 RULE EDITOR ===> SCROLL: P
 WRITEDSN_1;
 _ LOCAL RECORD;
_ ---
 _ --+--------------
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 1
 _ FORALL EMPLOYEE: | 2
 _ CALL @WRITEDSN(EMPLOYEE.LNAME); |
 _ END; |
 _ CALL @CLOSEDSN; | 3
 _ CALL @OPENDSN(TSOID || '.EXAMPLES.DATA'); | 4
 _ RECORD = @READDSN; | 5
 _ CALL MSGLOG(RECORD); | 6
 _ CALL @CLOSEDSN; | 7
 _ ---

Resulting Output

Pressing PF2 after executing this rule displays the following output:

 ------------------------ INFORMATIONAL MESSAGE LOG ------------------------
 COMMAND ===> SCROLL ===> P
 SMYTHE
TIBCO Object Service Broker Shareable Tools

| 735
XMLPARSE

Initiates the parsing of an XML document. (C)

Invocation CALL XMLPARSE(docname, validate, docsource, docdata).

Usage Notes • Depending on the first characters of the file, the XML parser assumes that an
XML document is stored in ASCII or UNICODE.

• The encoding of an XML document is defined by the XML document header.
The encoding parameter in the header is always honored. If one is not
provided, then the parser probes the header of the document to detect
whether the document is ASCII or UNICODE. The parse supports standard
ISO encoding names. On z/OS we also support IBM extensions to the

docname The name of the event map document that processes the XML
document.

validate Specifies whether to validate the document. The valid values are as
follows:

• Y – Validate the document against a DTD.

• N – Do not validate; check for wellformedness only.

docsource Specifies the source of the document. The valid values are as
follows:

• STORAGE – The document resides in memory.

• URL – The document is retrieved by means of a URL.

• FILE – The document is retrieved from a local file.

• STRING – The document resides in a string.

docdata Specifies the location of the document. The valid values are as
follows:

• STORAGE – The pointer to the memory address holding the
document.

• URL – The URL from which to retrieve the document.

• FILE – The name of the file containing the document.

• STRING – The string holding the document.
 TIBCO Object Service Broker Shareable Tools

736 |
encoding name pool, such as ibm037-s390, which represents the US EBCDIC
code page. For example:
<?xml version=’1.0’ encoding=’ibm037-s390’?>

When passing XML documents as string from a rule, the string is
automatically converted to UTF-16. As a result, specifying an encoding is
optional. However, should you chose to specify an encoding in the XML
document header then you must specify UTF-16.

• The parser on z/OS can access XML documents from normal z/OS data sets
and from UNIX System Services (USS) files. You must use a USS-like file name
when referring to the file. For example, if the data-set name is
MYUSERID.TEST.XML, name the file MYUSERID/TEST/XML.

• XML in mapped data areas must be terminated with a null character.

• If the document is stored in a single byte encoding or UTF-8, the document
must end with the characters 0x00.

• If the document is stored as UTF-16, the document must end with the
characters 0x0000.

• XML documents held in strings must be smaller than 65,536 bytes in size
when converted to syntax UN.

Exceptions

Example The following example shows XML in a mapped data area being parsed with the
STORAGE operand.

CALL XMLPARSE(’MYDOC’, ’N’, ’STORAGE’, MAPAREAPOINTER);

ECTSERROR An error occurred during the parsing of the XML
document. For more information, inspect the return value
of GETENDMSG.
TIBCO Object Service Broker Shareable Tools

| 737
XMLSTART

Generates an XML document based on the passed data access arguments. (C)

Invocation CALL XMLSTART(xmldocname, predicate, parm)

Usage Notes • In addition to its parameters, XMLSTART requires that you declare and
initialize several variables within the scope of the rule to be invoked.

• XMLSTART can output the generated XML document to one of the following:

— Multiple rows of a particular table, inserting portions of the XML
document into a particular field of the table

— A data set or file

— A region in memory

• The values to assign the required variables depend on the destination of the
generated XML document. See the examples for details.

Exceptions

Examples Example 1: Populate rows of a table with portions of an XML document.

Here is the table definition in this example:

COMMAND==> TABLE DEFINITION

 Table: XMLDATA Type: TEM Unit: USER40 IDgen: Y

 Parameter Name Typ Syn Len Dec Class ' Event Rule Typ Acc
 ---------------- - -- --- -- - ' ---------------- - -
 _ LOCATION I C 16 0 L ' _
 _ ' _
 Field Name Typ Syn Len Dec Key Ord Rqd Default Reference
 ---------------- - -- ----- -- - - - ---------------- ----------------

xmldocname The name of the XML document to be generated.

predicate The selection criteria for the table.

parm The names of the table parameters, if any, for the data to be
returned.

ECTSERROR An error occurred during the generation of the XML
document.
 TIBCO Object Service Broker Shareable Tools

738 |
 _ KEY I B 4 0 P
 _ TEXT S V 60 0
 _

The following generic rule populates the table:

RULE EDITOR ===> SCROLL: P
 XML2TABLE(TABLESPEC, FIELDSPEC, XMLDOCNAME, PREDICATE, PARM);
 _ LOCAL DOCOFFSET, ECTSMODE, WRITETOMEM, WRITETOEXP;
 _ ---
 _ --+--------------
 _ CALL XMLSTARTSETDEST(TABLESPEC, FIELDSPEC); | 1
 _ WRITETOMEM = 'N'; | 2
 _ WRITETOEXP = 'N'; | 3
 _ CALL ECTSNLSINIT; | 4
 _ CALL XMLSTART(XMLDOCNAME, PREDICATE, PARM); | 5
 _ ---

The following invokes the generic rule:

RULE EDITOR ===> SCROLL: P
 T_XML2TABLE;
 _
 _ ---
 _ --+--------------
 _ CALL XML2TABLE('XMLDATA', 'TEXT', 'BOOKS', | 1
 _ 'GENRE=''Science Fiction''', ''); |
 _ FORALL XMLDATA : | 2
 _ CALL MSGLOG(XMLDATA.TEXT); |
 _ END; |
 _ ---

The result from the session log is as follows:

<?xml version="1.0" ?>
<!-- XMLDocName=BOOKS -->
<!-- Generated By ObjectStar Integration Gateway V2.5 - Code
 Level 1.00 -->
<bookstore>
<book KEY="3">
<genre>Science Fiction</genre>
<bktitle>Stranger In A Strange Land</bktitle>
<author_ln>Heinlein</author_ln>
<author_fn>Robert A</author_fn>
<price>7.99</price>
</book>
<book KEY="4">
<genre>Science Fiction</genre>
<bktitle>I, Robot</bktitle>
<author_ln>Asimov</author_ln>
<author_fn>Isaac</author_fn>
TIBCO Object Service Broker Shareable Tools

XMLSTART | 739
<price>5.99</price>
</book>
</bookstore>

Example 2: Output an XML document to a file.

Here is a generic rule for outputting an XML document to a data set or file:

RULE EDITOR ===> SCROLL: P
 XML2DATASET(DSN, XMLDOCNAME, PREDICATE, PARM);
 _ LOCAL DOCOFFSET, ECTSMODE, WRITETOMEM, WRITETOEXP;
 _ ---
 _ --+--------------
 _ WRITETOMEM = 'N'; | 1
 _ WRITETOEXP = 'Y'; | 2
 _ CALL ECTSNLSINIT; | 3
 _ CALL @OPENDSN(DSN); | 4
 _ CALL XMLSTART(XMLDOCNAME, PREDICATE, PARM); | 5
 _ CALL @CLOSEDSN; | 6
 _ ---

The following invokes the generic rule for generating the XML document in
ASCII on an Open Systems platform:

RULE EDITOR ===> SCROLL: P
 T_XML2DATASET;
 _ LOCAL OLD_DSBIFTYPE;
 _ ---
 _ --+--------------
 _ OLD_DSBIFTYPE = $GETOPT('DSBIFTYPE'); | 1
 _ CALL $SETOPT('DSBIFTYPE', 'LINE_SEPARATED_ASCII'); | 2
 _ CALL XML2DATASET('XML.BOOKS.OUTPUT', 'BOOKS', | 3
 _ 'GENRE=''Science Fiction''', ''); |
 _ CALL $SETOPT('DSBIFTYPE', OLD_DSBIFTYPE); | 4
 _ ---

The contents of the resulting file XML.BOOKS.OUTPUT is the same as the
contents of the session log in Example 1.

Example 3: Output an XML document to a region of memory.

Here is a generic rule for generating an XML document into memory:

RULE EDITOR ===> SCROLL: P
 XML2MEMORY(ADDRESS, LENGTH, XMLDOCNAME, PREDICATE, PARM);
 _ LOCAL DOCOFFSET, ECTSMODE, WRITETOMEM, WRITETOEXP, CURRENTPOINTER,
 _ STORAGEEND, ENCODING, ITEMCOUNT;
 _ ---
 _ --+--------------
 _ WRITETOMEM = 'Y'; | 1
 _ WRITETOEXP = 'N'; | 2
 TIBCO Object Service Broker Shareable Tools

740 |
 _ CALL ECTSNLSINIT; | 3
 _ CURRENTPOINTER = ADDRESS; | 4
 _ STORAGEEND = ADDRESS + LENGTH; | 5
 _ ENCODING = 'ASCII'; | 6
 _ ITEMCOUNT = 0; | 7
 _ ECTS_TOC.ITEMCOUNT = 0; | 8
 _ CALL XMLSTART(XMLDOCNAME, PREDICATE, PARM); | 9
 _ RETURN(ITEMCOUNT); | A
 _ ---

The following shows the generic rule and retrieves and displays the generated
XML document through a MAP table:

RULE EDITOR ===> SCROLL: P
 T_XML2MEMORY;
 _ LOCAL ITEMS, ADDRESS;
 _ ---
 _ --+--------------
 _ @MAP.SIZE = 4096; | 1
 _ INSERT @MAP('TRANSACTION'); | 2
 _ ADDRESS = @MAP.ADDRESS; | 3
 _ ITEMS = XML2MEMORY(ADDRESS, @MAP.SIZE, 'BOOKS', | 4
 _ 'GENRE=''Science Fiction''', ''); |
 _ UNTIL EQ : | 5
 _ CALL @EQ(ITEMS, 0); |
 _ GET XMLMEM(ADDRESS) WHERE KEY = 1; |
 _ CALL MSGLOG(HEADSTRING(XMLMEM.TEXT, XMLMEM.LENGTH)); |
 _ ADDRESS = ADDRESS + XMLMEM.LENGTH + 2; |
 _ ITEMS = ITEMS - 1; |
 _ END; |
 _ ---

Here is the definition of the MAP table:

COMMAND==> TABLE DEFINITION

 Table: XMLMEM Type: MAP Unit: USER40 IDgen: Y

 Parameter Name Typ Syn Len Dc Cls Reference ' Event Rule Typ Acc
 ---------------- - -- --- -- - ---------------- ' ---------------- - -
 _ ADDRESS B 4 0 A ' _
 _ LOCATION I C 16 0 L ' _
 _ ' _
 ------ EXTERNAL ------|---------- Metadata Definition ------
 Field Name Xsyn Xlen Xdec Offset Key Typ Syn Len Dec Rqd Default
 ---------------- ---- ----- -- ------ - - -- ----- -- - -------------
 _ KEY B 4 0 0 P I B 4 0
 _ LENGTH B 2 0 0 B 2 0
 _ TEXT J 80 0 2 V 80 0
 _
TIBCO Object Service Broker Shareable Tools

XMLSTART | 741
The contents of the session log are the same as in Example 1.
 TIBCO Object Service Broker Shareable Tools

742 |
TIBCO Object Service Broker Shareable Tools

| 743
XMLSTARTDSN

Generates an XML document based on the passed data access arguments and
places it in the specified file. (C)

Invocation CALL XMLSTARTDSN(xmldocname, predicate, parm)

Usage Notes If the destination for the XML document is a z/OS data set, it must already exist.

Example The following rule sends the output to the data set XML.BOOK.OUTPUT:

RULE EDITOR ===> SCROLL: P
T_XMLSTARTDSN;
 _ LOCAL FILENAME, XMLDOCNAME, PREDICATE, PARM;
_ ---
 _ ---+--------------
 _ FILENAME = 'XML.BOOK.OUTPUT'; | 1
 _ XMLDOCNAME = 'BOOKS'; | 2
 _ PREDICATE = 'GENRE=''Science Fiction'''; | 3
 _ PARM = ''; | 4
 _ CALL XMLSTARTDSN(FILENAME, XMLDOCNAME, PREDICATE, PARM); | 5
 _ ---

outdsn The name of the data set or file for the output.

xmldocname The name of the XML document to be generated.

predicate The selection criteria for the table.

parm The names of the table parameters, if any, for the data to be
returned.
 TIBCO Object Service Broker Shareable Tools

744 |
TIBCO Object Service Broker Shareable Tools

| 745
XMLSTARTSETDEST

Sets up the output table and field for XMLSTART. (C)

Invocation CALL XMLSTARTSETDEST(tablespec, fieldspec)

Usage Notes • Call XMLSTARTSETDEST to prepare for outputting an XML document to a
particular field with XMLSTART.

• XMLSTARTSETDEST identifies the table and its field for XMLSTART.

Example See XMLSTART.

tablespec The name of the table that holds the output.

fieldspec The name of the field that holds the output.
 TIBCO Object Service Broker Shareable Tools

746 |
TIBCO Object Service Broker Shareable Tools

 TIBCO Object Service Broker Shareable Tools

| 747

XMLSTARTTAB

Returns the data of a table instance to the OIG client. (C)

Invocation CALL XMLSTARTTAB(tablename, format, predicate, parm)

Usage Notes • Call XMLSTARTTAB from a rule invoked while executing an OIG transaction.

• XMLSTARTTAB returns to the OIG client the data of the specified table
instance and that of any output tables defined for the transaction.

• XMLSTARTTAB sends tables to the OIG client as XML documents but
accesses them by client code through tabular interfaces.

Example

RULE EDITOR ===> SCROLL: P
 XMLEXAMPLE;
 _
 _ ---
 _ --+--------------
 _ CALL XMLSTARTTAB('ECTSGETARG('TABLESPEC'), ECTSRETURNARG(¦ 1
 _ 'SCHEMATYPE'), ECTSRETURNARG('SELECTSTRING'), ¦
 _ ECTSRETURNARG('PARMSTRING')); ¦
 _ ---

tablename The table to be returned to the client.

format The XML schema for the document for the table. The valid values
are ROWSET, ADO.NET, and MSSCHEMA.

predicate The selection criteria for the table.

parm The names of the table parameters, if any, for the data to be
returned.

 TIBCO Object Service Broker Shareable Tools

| 748

YEAR

Returns the two-digit year when the transaction started based on the local
machine ’s time zone in which the Execution Environment is running. (F)

Invocation time = YEAR

Usage Notes The returned value is a character string containing the year modulo 100 (98, 99,
00…).

Example The following rule determines the year when the current transaction started and
prints it to the message log:

 RULE EDITOR ===>
 YEAR_1;
 _ LOCAL TIME;
 _ --

_ --+-----------
 _ TIME = YEAR; | 1
 _ CALL MSGLOG('THIS TRANSACTION WAS STARTED IN 20'|| TIME); | 2
 _ --

Output for the YEAR_1 Rule

Pressing PF2 after executing this rule displays the following in the message log:

 ------------------------- INFORMATIONAL MESSAGE LOG ------------------
 COMMAND ===> SCROLL ===> P
 THIS TRANSACTION WAS STARTED IN 2000.

time On return, contains the year. Its syntax is C (fixed-length character
string) with length 2.

| 749
Index

Symbols

@ARCH_ACCESSLOGI tool 39
@CLOSEDSN tool 94
@CONFIGURESERVER tool 98
@ENTRY_VALIDATE user exit 27
@FORALLA tool 231
@INSTALL tool 297
@MAKEMEMBERS tool 341
@MAP tool 346
@MESSAGEDUMP tool 361
@MESSAGETRACE tool 363
@MNG_USERS tool 370
@MOM tools 379

@MOMCLOSE 373
@MOMCOMMIT 374
@MOMCONNECT 375
@MOMDISCONN 377
@MOMGET 378
@MOMMAPLENGTH 381
@MOMOPEN 382
@MOMOPTION 383
@MOMPUT 384
@MOMROLLBACK 386
@MOMSETOPT 387
@MOMSPECIALCMD 388
@MOMVALIDRC 389

@MOMCLOSE tool 373
@MOMCOMMIT tool 374
@MOMCONNECT tool 375
@MOMDISCONN tool 377
@MOMGET tool 378
@MOMINIT 379
@MOMINIT tool 379
@MOMMAPLENGTH tool 381
@MOMOPEN tool 382
@MOMOPT tool 387
@MOMOPTION tool 383
@MOMPUT tool 384

@MOMROLLBACK tool 386
@MOMSPECIALCMD tool 388
@MOMVALIDRC tool 389
@MQSMAP tool 394
@MQSMAP_PORT tool 394
@OPENDSN tool 411
@PEERSERVERID tool 453
@PRE_SAVE_OBJECT user exit 27
@PRESENTATIONENV tool 462
@READDSN tool 495
@SAVED_OBJECT user exit 27
@SERVERERROR tool 577
@SESSION tool 583
@SESSIONCOUNTS tool 587
@STATICSQL tool 652
@TRACEMESSAGES tool 692
@UNINSTALL tool 699
@WRITEDSN tool 733
$ADD_DATE tool 35
$BATCHOPT tool 69
$BEEP tool 76
$BLANKPAGE tool 77
$BRCONTAINER tool 79
$CALLRULE tool 84
$CLRTAB tool 95, 637
$CREATE_DATE tool 120
$DATE_DEFAULT tool 141
$DATE_LENGTH tool 143
$DATE_PIC tool 146
$DATE_REF tool 149
$DELCONTAINER tool 175
$EXCEPTION tool 212
$EXCEPTIONOBJECT tool 213
$FLUSHPRINT tool 223
$FUNCTION tool 244
$GET_DECIMALS tool 258
$GETATTRIBUTE tool 263
$GETCOLOUR tool 269
$GETCONTAINER tool 256
 TIBCO Object Service Broker Shareable Tools

750 | Index
$GETENVCOMMAREA tool 273
$GETFLOAT tool 274
$GETOPT tool 276, 276
$GETTRANSACTION tool 280
$GTFSET tool 281
$HTTPREQUEST tool 291, 291
$LISTDSN tool 309
$LISTPDS tool 314
$MOVECONTAINER tool 390
$NEWPAGE tool 398
$PIC tool 455
$PRINTFIELD tool 467
$PRINTLINE tool 469
$PUTCONTAINER tool 487
$PUTLINE tool 489
$REALTIMER tool 498
$RESETPRINT tool 504
$RPTIMMEDIATE tool 513
$RPTOCCLIMIT tool 515
$RPTOVERLAP tool 517
$RPTPARMS tool 519
$RPTPRINT tool 521
$RPTSKIPLINES tool 523
$SETATTRIBUTE tool 597
$SETCHANNEL tool 599
$SETCOLOUR tool 600
$SETENVCOMMAREA tool 606
$SETOPT tool 609
$SETP#POS tool 614
$SETPRINT tool 617
$SETRPTATTRIBUTE tool 621
$SETRPTMEDIUM tool 623
$SETSESSIONEND tool 625
$SETTITLE tool 627
$SETTRANSACTION tool 629
$SHOWCHANNEL tool 632
$SKIPLINE tool 647
$SLEEP tool 649
$SYSTEMDATE tool 660, 728
$TOCPRINT tool 680
$TOCPUT tool 682
$TRXDATE tool 695
$TRXMODE tool 696
$TYPECAST tool 697
$UNPIC tool 718

A

ABS tool 34
absolute values, returning 34
adding

fields to global field dictionary 219
new user IDs 123

ADMIN_RIGHTS tool 37
allocating storage 346, 394
ALLOCDSN tool 38
applications, printing 531
applying rules to tokens 432
archiving audit log 483, 485
attribute setting

for reports 621
for screen table fields 597

audit log
archiving 483
purging 483, 485
querying 40
specifying archive file 485

AUDITLOG tool 40

B

batch jobs
queues, viewing status of 41
submitting 41
tools for 4

batch load
defining input for 56
defining output for 56

batch options, setting 69
BATCH tool 41
batch unload

defining input for 71
defining output for 71

BATCH_ENABLE tool 55
BATCHLOAD_CARDS tool 56
BATCHUNLD_CARDS tool 71
beeps, issuing 76
binary data, returning a syntax V string 250
blank lines, outputting 647
TIBCO Object Service Broker Shareable Tools

Index | 751
blank page, outputting 77
BROWSER tool 81

C

CA-IDMS
defining databases 293
displaying menu 293

calling
a functional rule 244
a procedural rule 84

calling, menus 194
change requests, managing 511
CHANGE_SERVERID tool 86
CHANGERULE tool 88
character format, storing packed decimal data in 254
characters

removing leading 449
removing leading or trailing 447
removing trailing 451
replacing 567

checking
if string is identifier 732
if string is numeric literal 404

clearing data from tables 95, 637
CLEARTABLE_APPL tool 91
closing, files 94
COBOL, invoking language pre-processor for 286
color, setting for screen fields 600
column number, of cursor location 129
column, positioning cursor in 604
columns, number on physical screen 548
commands, defining for table display 405, 408
comparing

definitions 185, 188
table data 182

components
installing 297
uninstalling 699

CONFIRMACTION tool 100
confirmation messages, issuing 100
container, deleting from channel 175
control cards, defining for secondary index builds 639

converting
any field to a string 730
strings to date type 120
strings to lowercase 339
strings to lowercase EBCDIC 335
strings to lowercase Unicode 337
strings to typeless fields 318
strings to uppercase 725
strings to uppercase EBCDIC 721
strings to uppercase Unicode 723
variables 697

COPY_DATA tool 102
COPY_DEFN tool 104
COPYDEFN tool 108
copying

data 102
definitions 104, 108
rules 116
selected table occurrences 117

COPYLIB tool 116
COPYTABLE_APPL tool 117
COUNTOCCURRENCES tool 119
CREATEUSERS tool 123
creating

member lists for object sets 341
menus 156
secondary indexes online 634

creating a buffer containing float values 253, 253
CROSSREFSEARCH tool 126
CTABLESIZE, returning maximum 202
current time, returning 497
current UTC time, returning 729
cursor

positioning in a field 602
positioning in column 604
returning

column number of location 129
field name 130
occurrence number in screen table 132
screen table names 137
value of fields selected by 134

CURSOR_FLDCOL tool 129
CURSORFIELD tool 130
CURSOROCC_VALUE tool 134
CURSOROCC# tool 132
 TIBCO Object Service Broker Shareable Tools

752 | Index
CURSORTABLE tool 137
customer support xxiii

D

DASTATS tool 139
data

comparing between tables 182
copying 102
deleting from tables 176
loading 322, 325
passing to non-OSB calling environments 606
printing 463
retrieving from non-OSB calling environments 273
unloading 701
unloading from tables 712

Data Object Broker
recording message traffic 692
tools for monitoring 5

data sets, listing of 309
database level, displaying 152
DATACOM tool 140
Datacom, menu for managing 140
date format, returning

maximum length 143
dates

converting from type string 120
returning transaction start date 695
tools for manipulating 5

DB2, defining static SQL for 652
DBMAINTLVL tool 152
DD names, allocating files to 38
DEBUG tool 154
debugging, invoking Rule Debugger for 154
debugging, tools for 6
defaults

server, resetting 506
server, setting 630

DEFINE_LIBRARY tool 155
DEFINE_MENU tool 156
DEFINE_OBJECTSET tool 157
DEFINE_OBJLIST tool 168
DEFINE_REPORT tool 173

DEFINE_TABLE tool 174
defining

CA-IDMS databases 293
control cards for secondary index builds 639
formats for text documents 672
IMS/DB databases 294
input for batch load 56
input for batch unload 71
libraries, new 155
object list 168
object sets 157
output for batch load 56
output for batch unload 71
page number lines 614
reports 173, 252
rules 198
screens 197
tables 174

definitions
comparing 185, 188
copying 104, 108
deleting 178
loading 322, 325
printing 465
unloading 701, 714

DELETE_DATA tool 176
DELETE_DEFN tool 178
DELETESCREENDATA tool 180
deleting

container from channel 175
data from tables 176
definitions 178
occurrences from table 91, 295
screen table occurrences 180
secondary indexes 644

deleting data rows from tables 95, 637
determining leap years 305
DIFF_DATA tool 182
DIFF_DEFN tool 185
DIFFDEFN tool 188
DISPLAY_MENU tool 194
DISPLAY_USERS tool 195
TIBCO Object Service Broker Shareable Tools

Index | 753
displaying
list of libraries 155
list of rules 155
message log 332
messages on screens or windows 549
names and count of containers associated with a

channel 79
options 414
PF keys available 216
statistics 289
table contents 81, 405, 408
tables for text editing 667

displaying database level 152
DRAW tool 197
DSBIFTYPE Execution Environment parameter 56, 72,

320, 324, 327, 358, 495, 639, 708, 733

E

editing
table occurrences 650
text 246
text in tables 667

EDITRULE tool 198
enabling object sets 55
ENDMSG tool 199
entering text 246
ENTERKEY tool 200
error messages from external DBMS, handling 577
ESTIMATETBLDFN tool 202
EVENTFIELD tool 205
EVENTSCREEN tool 206
EVENTSUBVIEW tool 209
EVENTTABLE tool 210
exceptions

returning error messages from 509
returning system error messages from 510

Execution Environment
getting information on events 587
recording message traffic 692

EXIT_DISPLAY tool 214
EXIT_DISPLAY, signalling 214
EXPOCC_SIZE tool 215

external
databases, tools for manipulating 7
DBMS, handling error messages from 577
files, opening for reading or writing 411
memory, tools for 8
routines

returning return codes 508
tools for 8

F

FCNKEY_MSG tool 216
fields

converting to strings 730
in which cursor is located, returning 130
positioning cursor in 602
returning value when selected by cursor 134
screen table, setting attributes 597
screen, printing 481
screen, setting color 600

files
allocating to DD names 38
closing 94
loading from files with mixed-case names 319
writing records to 733

FLDMGR tool 219
float representation, returning a syntax V string 253,

253
footers, setting for output 627
FORALLA tool 224
FORALLB tool 238
FORALLE tool 241
formats of text documents, setting up 672
formatting

numbers with masks 455
output 504
text 552

FROM_UNICODE tool 243
 TIBCO Object Service Broker Shareable Tools

754 | Index
functional categories of tools
batch jobs 4
CICS channels and containers 4
Data Object Broker information and operations 5
dates and times 5
debugging 6
external databases and servers 7
external memory and routines 8
load/unload to external files 9
menus 10
messages and message logs 10
printing and output 11
promotions 12
read from/write to external files 13
reports 13
rules and rules libraries 14
screens 15
searches for objects 16
secondary indexes 17
security 17
session options and parameters 18
strings and text 18
table definitions and data 21
trigger or validation rules 23

functional rule, calling 244

G

GEN_TED tool 246
GENBIN tool 250
GENERATE_REPORT tool 252
generating an internal buffer 250
GENFLOAT tool 253
GENPACK tool 254
GETCHAR tool 267
GETENDMSG tool 271
global cross-reference index

rebuilding 499
searching 126, 561

global field dictionary, adding fields 219

H

HEADSTRING tool 284
HLIPREPROCESSOR tool 286
HOUR tool 288
hour, returning 288
HURON_STATS tool 289

I

identifier, checking if string is 732
IDMS tool 293
IMS

displaying menu 294
tool 294

IMS OTMA Callable Interface 419
IMS/DB database, defining 294
INDEXCHK tool 295
inserting

lines in table of contents 682
strings in message log 396

INSTALLIB tool 299
installing components 297
integers

random, returning 491
rounding 512

invoking
language pre-processor for COBOL 286
Promotion facility on source system 344
Promotion facility on target system 343
Promotion system 478
Query Audit Log tool 40
rule that does nothing 403
Security Manager menu 573
Table Editor 653

issuing
beeps 76
confirmation messages for PF keys 100
TIBCO Object Service Broker Shareable Tools

Index | 755
J

joined tables, printing 662

K

key, returning last used 200
keyword index

searching 303, 561
updating 300

KEYWORDMGR tool 300
keywords, searching with 126
KEYWORDSEARCH tool 303

L

leading characters, removing 449
leap years 305
LEAPYEAR tool 305
LENGTH tool 307
length, of strings, returning 307
LIBID tool 308
libraries

defining new 155
displaying rules 155
unloading rules from 716

limiting occurrences in reports 515
lines, printing current 489
listing data sets at a certain level 309
listing members of a partitioned data set 314
LIT_TO_VAL tool 318
LLOAD tool 319
LOAD tool 322
LOADER tool 325
loading

data 322, 325
definitions 322, 325
from files with mixed-case names 319
tools for 9

LOCALTIME tool 330

location, remote
returning 503
setting default 620

LOG_BROWSE tool 332
logging in

to Session Manager 590
to workbench 590

LOWER_EBCDIC tool 335
LOWER_UNICODE tool 337
lowercase EBCDIC, converting strings to 335
LOWERCASE tool 339
lowercase Unicode, converting strings to 337
lowercase, converting strings to 339

M

MANAGE_APPLY tool 343
MANAGE_REQUESTS tool 344
MANAGE_RIGHTS tool 345
managing change requests 511
MAP tables 346
masks

determining original value 718
formatting numbers 455

MATCH tool 352
matching patterns 446
MAX tool 354
member lists, creating 341
members of a partitioned data set

listing 314
retrieving statistics 314

menus
CA-IDMS 293
calling 194
creating 156
IMS 294
modifying 156
tools for 10

merged reports, not printing selected tables or
fields 517
 TIBCO Object Service Broker Shareable Tools

756 | Index
message log
displaying 332
inserting lines into 396
preserving contents 357

MESSAGE tool 355
MESSAGE_LOG tool 357
messages

displaying in screens or windows 549
indicating transaction completion 199
returning

end-of-transaction messages 271
error messages for exceptions 509
from MESSAGES table 355

tools for 10
MESSAGES table 355
MIN tool 368
MINUTE tool 369
minute, returning 369
MOD tool 371
modifying

menus 156
object sets 157
reports 173, 252
rules 198
screens 197
security profiles 370
session-related items 583
tables 174

moving a container and its contents 390
MOVTAB tool 391
MQSMAP table 394
MQSMAP_PORT table 394
MSGLOG tool 396

N

new
pages, positioning output on 398
user IDs, adding 123

NLS bit setting for tables 608
NLS tool 400
nodes, copying definitions to and from 104
nominating a channel for passing to a program or

transaction 599
NOOP tool 403
NUM_CHK tool 404
numbers

formatting with masks 455
returning absolute values 34

numeric literals, checking 404

O

object list, defining 168
Object Manager 168
object sets

creating member lists 341
defining 157
enabling 55
modifying 157

OBJECT_MGMT tool 405
OBJECTMGR tool 408
objects, selecting 574
occurrences, deleting from screen tables 180
occurrences, returning selected 119
opening external files for reading or writing 411
OPSTATS tool 413
OPTIONLISTER tool 414
options

displaying 414
returning selected 414

OTMA Callable Interface 419
output

blank lines 647
controlling for reports 519
positioning on new pages 398
releasing to print spool 223
sending unsorted records 513
setting

arguments 617
formatting and medium 504
titles or footers 627

tools for 11
outputting blank page 77
overlapping pages, not printing report tables or fields

on 517
TIBCO Object Service Broker Shareable Tools

Index | 757
P

packed decimal, storing in character format 254
PAD tool 428
padding strings 428
page buffer, clearing table index from 241
page number lines, defining 614
parameter values, returning 430
parameters

server
configuration parameters, setting or

modifying 98
resetting 506
setting 630

session, setting 609
tools for changing 18

PARMVALUE tool 430
PARSE tool 432
PARSE_TAM tool 443
partitioned data set, listing members 314
passing data to non-OSB calling environments 606
PATTERN_MATCH tool 446
patterns

matching 446
replacing 567
returning starting position of 352

PEEL tool 447
PEEL_HEAD tool 449
PEEL_TAIL tool 451
performance analysis 281, 289
PF keys

displaying available 216
issuing confirmation messages 100
processing 473

positioning cursor in column 602, 604
presentation environments, returning 462
PRINT_DATA tool 463
PRINT_DEFN tool 465

printing
applications 531
blank lines 647
definitions 465
joined tables 662
lines constructed by $PRINTFIELD 489
releasing output to spool 223
reports to specified medium 521
rules 531
screen fields 481
setting

medium for reports 623
output arguments 617
report attributes 621
titles or footers 627

strings 469
table data 463
table of contents 680
tables 471, 662
tools for 11

PRINTTABLE tool 471
problem determination 289
procedural rule, calling 84
PROCESS_FCNKEY tool 473
PROCESS_TABLE tool 474
processing

PF keys 473
selected table occurrences 474

PROM_MAIN tool 478
Promotion facility

invoking on source system 344
invoking on target system 343

promotion rights, obtaining, releasing, or
transferring 37, 345

Promotion system, invoking 478
promotions, tools for 12
PRT_VSCR tool 481
PURGELOG_BATCH tool 483
PURGELOG_SCREEN tool 485
purging audit log 483
 TIBCO Object Service Broker Shareable Tools

758 | Index
Q

Query Audit Log tool, invoking 40
quotation marks

adding to strings 490
removing from strings 720

QUOTE tool 490

R

random integers
returning 491
setting starting seed 493

RANDOM tool 491
RANDOMSEED tool 493
raw data

converting 691
returning 243

RD fields, converting to strings 730
reading to external files, tools for 13
REALTIME tool 497
rebinding security data 477, 571
rebuilding global cross-reference index 499
record size, minimum needed for unload 215
recording message traffic 692
records

returning next from file 495
sending to output without sorting 513
writing to files 733

REFMAKER tool 499
releasing

print output 223
promotion rights 345

REMAINDER tool 501
remainders, returning 501
remote location

returning 503
setting default 620

REMOTELOCATION tool 503
removing

leading characters 449
trailing characters 451

replacing characters 567

Report Generator, invoking 252
reports

controlling physical output 519
controlling spacing 523
defining 173, 252
limiting number of occurrences in 515
modifying 173, 252
not printing selected tables or fields 517
print to specified medium 521
setting attributes 621
setting print medium 623
tools for 13

resetting
default field values for servers 506
server parameters 506

retrieving
data associated with specified channel

container 256
number of decimal places for an expression 258

retrieving data from non-OSB calling
environments 273

retrieving statistics for a member of a partitioned data
set 314

retrieving the current rule’s transaction mode 696
return codes, returning 508
return the name of the designated installation

library 299
return the name of the designated local library 308
return the name of the designated system library 661
RETURN_CODE tool 508
RETURN_MESSAGE tool 509
RETURN_SYSMSG tool 510
TIBCO Object Service Broker Shareable Tools

Index | 759
returning
absolute value of a number 34
column number of cursor location 129
current time 497
current UTC time 729
end-of-transaction messages 271
error messages for exceptions 509
field in which cursor is located 130
field values when selected by cursor 134
first character from strings 267
first selected occurrence 224, 231
head of string 284
hour 288
larger of two values 354
last key used 200
local time 330
maximum

CTABLESIZE 202
length of date format 143
number of rows on physical screen 551
XTABLESIZE 202

messages from MESSAGES table 355
minimum record size for unload 215
minute 369
next record from file 495
next selected table occurrence 238
number of columns on physical screen 548
occurrence number, within screen table 132
padded strings 428
parameter values 430
presentation environments 462
random integers 491
remainders 501
remote location 503
return codes 508
rounded integers 512
screen table with cursor 137
screens activating validation rules 205, 206, 209
second 572
selected occurrences 119
selected options 414
session option values 276
smaller of two values 368
starting position of patterns 352
strings

length 307
with quotation marks 490
without leading or trailing characters 447
without quotation marks 720

subsequence of strings 658
system error messages for exceptions 510
tables activating derived field, trigger, or validation

rules 210
tail portion of strings 666
time 679
tokens 685
transaction names 280, 629
transaction start date 695
user IDs 727
year 748

returning the name of the current channel 632
rights, promotion, obtaining, releasing, or

transferring 37
RMANAGE_REQUESTS tool 511
ROUND tool 512
rounding integers 512
rows, maximum number on physical screen 551
Rule Debugger, invoking 154
RULEPRINTER tool 531
rules

$HTTPREQUEST 291
applying to tokens 432
copying 116
defining 198
modifying 198
printing 531
tools for 14
trigger, tools for 23
unloading 716
validation, tools for 23

S

S6BCALL tool 537
S6BFUNCTION tool 539
S6BNOTIFY tool 541
S6BTROFF tool 543
S6BTRON tool 545
 TIBCO Object Service Broker Shareable Tools

760 | Index
screen tables
deleting all occurrences 180
positioning cursor in 602
returning

name with cursor 137
occurrence number of cursor 132

setting field attributes 597
SCREENCOL tool 548
SCREENMSG tool 549
SCREENROW tool 551
screens

activating validation rules 205, 206, 209
color of fields 600
defining 197
displaying messages 549
fields, printing 481
for selecting objects 574
modifying 197
physical

maximum number of rows on 551
returning number of columns on 548

processing PF keys 473
tools for 15

SCRIPT tool 552
search path for user exits 29
SEARCH tool 561
SEARCH_REPLACE tool 567
searching

global cross-reference index 126, 561
keyword index 303, 561
tools for 16

SEARCHLIB tool 568
SEC_REBIND tool 477, 479, 571
SECOND tool 572
second, returning 572
secondary indexes

creating online 634
defining control cards 639
deleting 644
tools for 17

security
data, rebinding 477, 571
profiles, modifying 370
tools for 17

Security Manager menu, invoking 573

SECURITY tool 573
segment numbers, changing 391
SELECT_OBJ tool 574
selecting objects 574
server IDs, updating 86
servers

directing table accesses to 453
resetting

default field values 506
parameters 506

setting
configuration parameters 98
default field values 630
parameters 630

tools for 7
Session Manager, logging in to 590
session options

returning value 276
tools for changing 18

session parameters, setting 609
sessions

altering related items 583
getting information on events 587

SESSMGR tool 590
SETCURSOR tool 602
SETCURSOR_POS tool 604
SETNLSBIT tool 608
SETREMOTELOC tool 620
setting

batch options 69
default

field values for servers 630
remote location 620

execution on return to non-OSB calling
environments 625

formats of text documents 672
print medium for reports 623
server configuration parameters 98
server parameters 630
session parameters 609
staring seed for random numbers 493
transaction completion messages 199
transaction names 629

SETXPARM tool 630
signalling EXIT_DISPLAY 214
TIBCO Object Service Broker Shareable Tools

Index | 761
SIXBUILD tool 634
SIXBUILD_CARDS tool 639
SIXDELETE tool 644
SOE tool 650
sound, issuing 76
source system, invoking Promotion facility 344
spacing of reports, controlling 523
specifying archive file for audit log 485
starting seed for random numbers 493
static SQL, defining to access DB2 data 652
statistics 289
STE tool 653
STEBROWSE tool 657
storage, allocating 346, 394
storing trace information 363
strings

adding quotation marks 490
breaking into table specification tokens 443
breaking into tokens 432, 685
checking if identifier 732
converting to lowercase 339
converting to lowercase EBCDIC 335
converting to lowercase Unicode 337
converting to typeless fields 318
converting to uppercase 725
converting to uppercase EBCDIC 721
converting to uppercase Unicode 723
inserting in message log 396
numeric literals, checking 404
padding 428
parsing 685
pattern matching 446
printing 469
removing

leading characters 449
leading or trailing characters 447
trailing characters 451

removing first character 267
replacing characters 567
returning

head 284
length 307
starting position of patterns 352
subsequence 658
tail 666

without quotation marks 720
tools for manipulating 18
writing to printline 467

submitting batch jobs 41
subsequence of string, returning 658
SUBSTRING tool 658
support, contacting xxiii
SYSTEMLIB tool 661

T

table
defining object list 168
deleting occurrences 91, 295
returning selected occurrences 119

table accesses, directing to servers 453
Table Editor, invoking 653
table index, clearing 241
table of contents

inserting lines 682
printing 680

TABLEPRINT tool 662
tables

activating derived field, trigger, or validation
rules 210

changing segment number 391
clearing data 95, 637
comparing data between 182
copying

data to and from 102
occurrences 117

creating secondary indexes online 634
data, tools for changing 21
defining 174
definitions, tools for changing 21
deleting data 176
displaying contents 81, 405, 408
displaying names and count of containers associ-
 TIBCO Object Service Broker Shareable Tools

762 | Index
ated with a channel 79
editing occurrences 650
editing text 667
formatting text in 552
joined, printing 662
modifying 174
printing 463, 471, 662
processing selected occurrences 474
returning

first selected occurrence 224, 231
next selected occurrence 238
parameter values 430

setting NLS bit 608
unloading data 712
viewing contents 657

tail of string, returning 666
TAILSTRING tool 666
target system, invoking Promotion facility 343
technical support xxiii
TED tool 667
text

defining formats 672
displaying tables for editing 667
editing 246
entering 246
formatting commands 552
removing first character in strings 267
returning

head of string 284
starting position of patterns 352

tools for manipulating 18
text editor 246
TEXTSETUP tool 672
TIBCO_HOME xx
time

current UTC, returning 729
current, returning 497
local, returning 330
returning

hour 288
minute 369
second 572
transaction start time 679
year 748

TIME tool 679

times, tools for manipulating 5
titles, setting for output 627
TO_UNICODE tool 691
TOKEN tool 685
tokens

applying grammar rules to 432
parsing a string of table specification 443
returning 685

tools
functional categories 2
general function of 2

trace information
table access messages 363
writing to files 361

tracing messages 692
tracing, turning on and off 281
trailing characters, removing 451
transaction mode, retrieving 696
transaction names

returning 280, 629
setting 629

transferring promotion rights 345
trigger rules

returning parameter values 430
tools for 23

typeless fields, converting strings to 318

U

UN fields, converting to strings 730
unicode string

converting from 243
converting to 691

uninstalling components 699
UNLOAD tool 701
UNLOAD_DATA tool 712
UNLOAD_DEFN tool 714
TIBCO Object Service Broker Shareable Tools

Index | 763
unloading
batch, defining input and output for 71
data 701
definitions 701, 714
returning minimum record size 215
rules 716
table data 712
tools for 9

UNLOADLIBRARY tool 716
UNQUOTE tool 720
updating

keyword index 300
server IDs 86

UPPER_UNICODE tool 721, 723
uppercase EBCDIC, converting strings to 721
UPPERCASE tool 725
uppercase Unicode, converting strings to 723
uppercase, converting strings to 725
user exits 25
user IDs

adding new 123
returning 727

USERID tool 727
users who are logged in, listing of 195
UTCTIME tool 729

V

VAL_TO_LIT tool 730
VALID_NAME tool 732
validation rules

returning parameter values 430
returning screens activating 205, 206, 209
tools for 23

values
returning larger of two 354
returning smaller of two 368

variable string fields, converting other fields to 730
variables, converting 697
viewing

list of users logged in 195
table contents 657

W

windows, displaying messages in 549
workbench, logging in to 590
writing

records to files 733
strings to printline 467
to external files, tools for 13
trace information to files 361

X

XML
parsing 735
return table data to OIG 747
start processing 737
start processing to an output table 745
start processing to specified file 743

XMLPARSE tool 735
XMLSTART tool 737
XMLSTARTDSN tool 743
XMLSTARTSETDEST tool 745
XMLSTARTTAB tool 747
XTABLESIZE, returning maximum 202

Y

YEAR tool 748
year, returning 748
 TIBCO Object Service Broker Shareable Tools

	TIBCO® Object Service Broker
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction to the Shareable Tools
	Overview
	Main Types of Tools
	Categories of Tools

	Functional List of Shareable Tools
	Batch Jobs (z/OS)
	CICS Channels and Containers
	Data Object Broker Information and Operations
	Dates and Times
	Debugging
	Definitions of Objects
	External Databases and Servers
	External Memory and Routines
	Installation of Components
	Load from/Unload to External Files
	Mathematical Calculation
	Menus
	Messages and Message Logs
	Message Oriented Middleware
	Printing and Output
	Promotions
	Read from/Write to External Files
	Reports
	Rules and Rules Libraries
	Screens
	Searches for Objects
	Secondary Indexes
	Security
	Selection Lists
	Session Options and Parameters
	Strings and Text
	Table Definitions and Data
	Trigger or Validation Rules

	Chapter 2 Using User Exits in Workbench Tools
	Overview
	Purpose of the User Exits
	Tools Supporting the User Exits

	Description of the User Exits
	@ENTRY_VALIDATE(caller, type, name, library, new)
	@PRE_SAVE_OBJECT(caller, type, name, library, new)
	@SAVED_OBJECT(caller, type, name, library, new)
	Arguments

	How to Use the Exits

	Chapter 3 Tools
	ABS
	$ADD_DATE
	ADMIN_RIGHTS
	ALLOCDSN
	@ARCH_ACCESSLOGI
	AUDITLOG
	BATCH
	BATCH_ENABLE
	BATCHLOAD_CARDS
	$BATCHOPT
	BATCHUNLD_CARDS
	$BEEP
	$BLANKPAGE
	$BRCONTAINER
	BROWSER
	$CALLRULE
	CHANGE_SERVERID
	CHANGERULE
	CLEARTABLE_APPL
	@CLOSEDSN
	$CLRTAB
	@CONFIGURESERVER
	CONFIRMACTION
	COPY_DATA
	COPY_DEFN
	COPYDEFN
	COPYLIB
	COPYTABLE_APPL
	COUNTOCCURRENCES
	$CREATE_DATE
	CREATEUSERS
	CROSSREFSEARCH
	CURSOR_FLDCOL
	CURSORFIELD
	CURSOROCC#
	CURSOROCC_VALUE
	CURSORTABLE
	DASTATS
	DATACOM
	$DATE_DEFAULT
	$DATE_LENGTH
	$DATE_PIC
	$DATE_REF
	DBMAINTLVL
	DEBUG
	DEFINE_LIBRARY
	DEFINE_MENU
	DEFINE_OBJECTSET
	DEFINE_OBJLIST
	DEFINE_REPORT
	DEFINE_TABLE
	$DELCONTAINER
	DELETE_DATA
	DELETE_DEFN
	DELETESCREENDATA
	DIFF_DATA
	DIFF_DEFN
	DIFFDEFN
	DISPLAY_MENU
	DISPLAY_USERS
	DRAW
	EDITRULE
	ENDMSG
	ENTERKEY
	ESTIMATETBLDFN
	EVENTFIELD
	EVENTSCREEN
	EVENTSUBVIEW
	EVENTTABLE
	$EXCEPTION
	$EXCEPTIONOBJECT
	EXIT_DISPLAY
	EXPOCC_SIZE
	FCNKEY_MSG
	FLDMGR
	$FLUSHPRINT
	FORALLA
	@FORALLA
	FORALLB
	FORALLE
	FROM_UNICODE
	$FUNCTION
	GEN_TED
	GENBIN
	GENERATE_REPORT
	GENFLOAT
	GENPACK
	$GETCONTAINER
	$GET_DECIMALS
	$GET_MAXSIZE
	$GET_SIZE
	$GET_SYNTAX
	$GET_TYPE
	$GETATTRIBUTE
	$GETBINARY
	GETCHAR
	$GETCOLOUR
	GETENDMSG
	$GETENVCOMMAREA
	$GETFLOAT
	$GETOPT
	$GETPACKED
	$GETTRANSACTION
	$GTFSET
	HEADSTRING
	HLIPREPROCESSOR
	HOUR
	HURON_STATS
	$HTTPREQUEST
	IDMS
	IMS
	INDEXCHK
	@INSTALL
	INSTALLIB
	KEYWORDMGR
	KEYWORDSEARCH
	LEAPYEAR
	LENGTH
	LIBID
	$LISTDSN
	$LISTPDS
	LIT_TO_VAL
	LLOAD
	LOAD
	LOADER
	LOCALTIME
	LOG_BROWSE
	LOWER_EBCDIC
	LOWER_UNICODE
	LOWERCASE
	@MAKEMEMBERS
	MANAGE_APPLY
	MANAGE_REQUESTS
	MANAGE_RIGHTS
	@MAP
	MATCH
	MAX
	MESSAGE
	MESSAGE_LOG
	@MESSAGEDUMP
	@MESSAGETRACE
	MIN
	MINUTE
	@MNG_USERS
	MOD
	@MOMCLOSE
	@MOMCOMMIT
	@MOMCONNECT
	@MOMDISCONN
	@MOMGET
	@MOMINIT
	@MOMMAPLENGTH
	@MOMOPEN
	@MOMOPTION
	@MOMPUT
	@MOMROLLBACK
	@MOMSETOPT
	@MOMSPECIALCMD
	@MOMVALIDRC
	$MOVECONTAINER
	MOVTAB
	@MQSMAP and @MQSMAP_PORT
	MSGLOG
	$NEWPAGE
	NLS
	NOOP
	NUM_CHK
	OBJECT_MGMT
	OBJECTMGR
	@OPENDSN
	OPSTATS
	OPTIONLISTER
	$OTMA
	@OTMA_MAP
	PAD
	PARMVALUE
	PARSE
	PARSE_TAM
	PATTERN_MATCH
	PEEL
	PEEL_HEAD
	PEEL_TAIL
	@PEERSERVERID
	$PIC
	@PRESENTATIONENV
	PRINT_DATA
	PRINT_DEFN
	$PRINTFIELD
	$PRINTLINE
	PRINTTABLE
	PROCESS_FCNKEY
	PROCESS_TABLE
	@PROMBINDOBJS
	PROM_MAIN
	@PROMUNBINDOBJS
	PRT_VSCR
	PURGELOG_BATCH
	PURGELOG_SCREEN
	$PUTCONTAINER
	$PUTLINE
	QUOTE
	RANDOM
	RANDOMSEED
	@READDSN
	REALTIME
	$REALTIMER
	REFMAKER
	REMAINDER
	REMOTELOCATION
	$RESETPRINT
	RESETXPARM
	RETURN_CODE
	RETURN_MESSAGE
	RETURN_SYSMSG
	RMANAGE_REQUESTS
	ROUND
	$RPTIMMEDIATE
	$RPTOCCLIMIT
	$RPTOVERLAP
	$RPTPARMS
	$RPTPRINT
	$RPTSKIPLINES
	$RULE_EXISTS
	$RULENAME
	RULEPRINTER
	S6BCALL
	S6BFUNCTION
	S6BNOTIFY
	S6BTROFF
	S6BTRON
	SCREENCOL
	SCREENMSG
	SCREENROW
	SCRIPT
	SEARCH
	SEARCH_REPLACE
	SEARCHLIB
	SEC_REBIND
	SECOND
	SECURITY
	SELECT_OBJ
	@SERVERERROR
	@SESSION
	@SESSIONCOUNTS
	SESSMGR
	$SETATTRIBUTE
	$SETCHANNEL
	$SETCOLOUR
	SETCURSOR
	SETCURSOR_POS
	$SETENVCOMMAREA
	SETNLSBIT
	$SETOPT
	$SETP#POS
	$SETPRINT
	SETREMOTELOC
	$SETRPTATTRIBUTE
	$SETRPTMEDIUM
	$SETSESSIONEND
	$SETTITLE
	$SETTRANSACTION
	SETXPARM
	$SHOWCHANNEL
	$SIGNAL
	SIXBUILD
	SIMPLESELECT
	SIXBUILD_CARDS
	SIXDELETE
	$SKIPLINE
	$SLEEP
	SOE
	@STATICSQL
	STE
	STEBROWSE
	SUBSTRING
	$SYSTEMDATE
	SYSTEMLIB
	TABLEPRINT
	TAILSTRING
	TED
	TEXTSETUP
	TIME
	$TOCPRINT
	$TOCPUT
	TOKEN
	TO_UNICODE
	@TRACEMESSAGES
	$TRXDATE
	$TRXMODE
	$TYPECAST
	@UNINSTALL
	UNLOAD
	UNLOAD_DATA
	UNLOAD_DEFN
	UNLOADLIBRARY
	$UNPIC
	UNQUOTE
	UPPER_EBCDIC
	UPPER_UNICODE
	UPPERCASE
	USERID
	UTCDATE
	UTCTIME
	VAL_TO_LIT
	VALID_NAME
	@WRITEDSN
	XMLPARSE
	XMLSTART
	XMLSTARTDSN
	XMLSTARTSETDEST
	XMLSTARTTAB
	YEAR

	Index

