
TIBCO® Object Service Broker

Programming in Rules
Software Release 6.0
July 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIBCO, The Power of Now, TIBCO Object Service Broker, and and TIBCO Service Gateway are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
The TIBCO Object Service Broker technologies described herein are protected under the following patent
numbers:
Australia: - - 671137 671138 673682 646408
Canada: 2284250 - - 2284245 2284248 2066724
Europe: - - 0588446 0588445 0588447 0489861
Japan: - - - - - 2-513420
USA: 5584026 5586329 5586330 5594899 5596752 5682535

Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . xiii

Related Documentation .xiv
TIBCO Object Service Broker Documentation .xiv

Typographical Conventions .xix

Connecting with TIBCO Resources . xxii
How to Join TIBCOmmunity . xxii
How to Access All TIBCO Documentation . xxii
How to Contact TIBCO Support . xxii

Chapter 1 Introduction to TIBCO Object Service Broker Rules. .1

Use of TIBCO Object Service Broker Rules . 2
What is the Rules Language? . 2
What is a Rule? . 2
How are Rules Defined?. 2
How Do You Execute a Rule?. 3
What Tools are Available for Use with Rules? . 3

Sample Set of Rules . 5
Description . 5
EMPLOYEES_RAISE Rule. 5
REPLACE_SALARY Rule. 6

Chapter 2 Composition of a Rule .7

Components of a Rule . 8
What are the Components? . 8
Illustration of the Component Parts of a Rule . 8

Identifying a Rule . 9
Declaring a Rule Name and Its Arguments . 9
Behavior of Rules Arguments . 9

Handling Dynamic Data Values . 10
Declaring Local Variables . 10
Valid Values . 10
Scope of Local Variables . 10
Data Representation of Local Variables . 11

Providing Conditional Processing . 12
Conditional Processing. 12
What Comprises a Condition? . 12
 TIBCO Object Service Broker Programming in Rules

iv | Contents
Sample Condition Segment and Associated Actions. 12

Coding Actions . 13
Action Statements . 13
Action Sequence Numbers . 13
Editing Action Sequence Numbers . 13
Sample of the Rules Actions . 14

Handling Exceptions . 15
Exception Handlers . 15
Behavior of Exception Handlers. 15
Sample Exception Handling Statement . 15

Chapter 3 Supported Characters . 17

Lexical Elements . 18
Delimiters. 18
Tokens . 18
Reserved Words . 19
Character Set. 19

National Character Set Support . 21
Allowable Usage . 21
Behavior of National Character Sets . 21
Specifying a National Character Set . 21

Double-byte Character String Support . 23
Allowable Usage . 23
Behavior of Double-byte Characters . 23

Use of Quotation Marks . 24
String Literals . 24
TIBCO Object Service Broker Names . 24
Numeric Literals . 25

Chapter 4 Types of Action Statements. 27

Overview . 28
What Types of Actions Can a Rule Perform?. 28
Additional Information . 28

Categories of Action Statements . 29
Assignment Statements. 29
Database Synchronization Statements . 29
Looping Statements . 29
Output Statements. 30
Rules Invocation Statements . 30
Table Access Statements. 31
TIBCO Object Service Broker Programming in Rules

Contents | v
Chapter 5 The Action Statements. .33

CALL Statement . 34

COMMIT Statement . 36

DELETE Statement . 38

DISPLAY Statement. 39

DISPLAY & TRANSFERCALL Statement . 40

EXECUTE Statement. 41

FORALL Statement . 42

GET Statement . 45

INSERT Statement . 47

ORDERED Clause. 48

PRINT Statement. 49

REPLACE Statement. 50

RETURN Statement. 51

ROLLBACK Statement . 52

SCHEDULE Statement . 53

TRANSFERCALL Statement . 55

WHERE Clause . 56

Chapter 6 Exception Handling .59

Functionality of Exception Handling. 60
What is an Exception and How is It Handled? . 60
Hierarchy of System Exceptions. 60
Exceptions Raised by Exception Handler Statements . 61
Examples of Untrappable Exceptions. 61

System Exceptions and Their Conditions . 62
System Exceptions . 62

Coding of Exception Handlers . 65
Signaling Exceptions . 65
Handling Exceptions. 65
Sample Rule With Exception Handling . 66

Scope of Exception Handlers. 67
Scope of An Exception Handler . 67
Scope of Multiple Exception Handlers . 67
Limiting the Scope of Data Access Exceptions . 67

VALIDATEFAIL Exception for Screens . 69
When is VALIDATEFAIL Issued? . 69
Example Rule . 70
 TIBCO Object Service Broker Programming in Rules

vi | Contents
Chapter 7 The Exception Statements . 71

ON Statement . 72

SIGNAL Statement . 73

UNTIL Statement . 74

UNTIL … DISPLAY Statement . 76

Chapter 8 Using Expressions and Operators . 77

Overview . 78
TIBCO Object Service Broker UI . 78
What Comprises an Expression? . 78
Valid Values for Expressions . 78
Examples of Expressions. 78
Operations That Can be Performed With Expressions . 79
The Reserved Word NULL. 79

Syntax of Data Elements. 80
Valid Syntaxes . 80
Maximum Occurrence Length . 82

Semantic Data Types . 84
Valid Semantic Data Types . 84

Operators to Combine Expressions . 86
Arithmetic Operators . 86
Concatenation Operator. 86
Operators Within Expressions . 87
Examples . 87

Relational Operators . 88
Comparison Operators . 88
Semantic Data Type and Syntax Validations . 88
Equality Relational Operators . 89
Ordering Relational Operators. 90

Logical Operators . 91
Valid Operators . 91

Assignment Operator . 92
Valid Assignments . 92
Types of Assignment Statements. 92
Syntax of Assignment Statements . 92
Simple Assignment of a Value . 93
Assigning Values by Name . 93

Indirect Referencing . 95
Uses of Indirect Referencing . 95
Restrictions . 95
Providing Values . 95
TIBCO Object Service Broker Programming in Rules

Contents | vii
Using a Rule Argument for Indirect Referencing . 96
Example of an Argument to a Rule. 96
Use of Parentheses . 97

Using Table.Field for Indirect Referencing . 98
Examples of Table.Field . 98
Calling a Rule that Uses Indirect Reference. 99
Table.Field Form of Indirect Reference. 100
Example of a Table Instance Used for Indirect Referencing . 101
Reference to a Parameterized Table . 102

Chapter 9 Transaction Processing .103

Overview . 104
TIBCO Object Service Broker UI . 104
The Objective of a Transaction . 104
Example of a Transaction . 104

What Starts a Transaction? . 105
Transaction Statements . 105

Course of a Transaction . 106
Establishing Synchronization Points . 106
Actions within Synchronization Points . 106

Nesting Transactions . 108
How are Transactions Nested?. 108
Behavior of Nested Transactions . 108
What Determines the Transaction Level? . 108
Finding the Name of a Rule in a Transaction . 108

Changing the Flow of a Transaction. 109
Starting a New Transaction. 109
Starting a New Nested Transaction . 109
Starting a New Transaction Within a Nested Transaction . 110
Starting a Batch Transaction. 110

Setting the Mode of the Transaction . 111
How Do You Set The Mode? . 111
Mode Determines Locks on Data . 111
Exception Raised . 111

Locks Taken on the Data . 112
What Determines the Type of Locking? . 112
Types of Locks . 112
Exception Handling. 112
Data Accesses and Types of Locking . 113

Chapter 10 Conditional Processing .115

TIBCO Object Service Broker Conditional Processing . 116
 TIBCO Object Service Broker Programming in Rules

viii | Contents
What is Conditional Processing? . 116
What are Conditions? . 116
Adding Conditions . 117

Examples of Conditions . 118
Types of Examples. 118
Expression as a Condition . 118
Argument as a Condition . 119
table.field as a Condition . 119
Functional Rule as a Condition . 121

Chapter 11 Null Processing. 123

TIBCO Object Service Broker Nulls . 124
What is a Null Value?. 124
Syntax and Behavior of Nulls. 124
How Can A Field Contain Null Values? . 124

Manipulation of Nulls. 125
Allowable Manipulation . 125
Logical Manipulation . 125
Restrictions . 125

Behavior of Nulls . 126
Conversion. 126
Assignment . 126
Table Parameters . 127
Rules Arguments . 128
Routine Arguments . 128
Expressions . 128
Relational Expressions . 129
Ordering. 130
Primary and Secondary Keys . 130
Required Fields . 130
Default Values . 131
Unassigned Fields . 131
Indirect Names. 131
Initialization of Local Variables. 131

Chapter 12 Arithmetic Processing . 133

Overview . 134
What are the Arithmetic Operators? . 134
Permitted Syntaxes for Arithmetic Operations . 134
Conversion of Strings. 134

Strings as Operands . 136
Converting Strings to Numeric Syntax. 136
Conversion of Numbers to Strings . 136
TIBCO Object Service Broker Programming in Rules

Contents | ix
Permissible Operations . 137

Resultant Syntax from Arithmetic Operations . 138
Resultant Syntax . 138

Chapter 13 Using Rules Libraries .141

Organization of Rules Libraries . 142
TIBCO Object Service Broker UI . 142
Overview. 142
Types of Rules Libraries . 142
Viewing the Listing of Libraries . 143
Changing the Search Path for Rules Execution . 144

Changing Local Libraries . 145
Login Library. 145
Accessing a Different Local Library . 145
Copying a Rule to a Different Library . 145

 Defining a Library . 147
Steps to Define a Library: . 147
Example Definition . 147
Providing the Description for a Rules Library . 148

Chapter 14 Using the Rule Editor .149

Invoking the Rule Editor . 150
TIBCO Object Service Broker UI . 150
Steps to Invoke the Rule Editor . 150
Example Rule Editor Screen. 151
Rule Displayed . 151
Valid Values for Rule Names . 151

Screen Layout of the Rule Editor . 153
General Format of the Rule Editor Screen . 153
Modifiable Sections. 153
Scrolling within a Rule Editor Screen . 154

Accessing a Listing of Rules to Edit. 155
Using the Object Manager Screen . 155
Available Commands . 155

Chapter 15 Editing Rules .157

Functional Overview . 158
TIBCO Object Service Broker UI . 158
Types of Editing Allowed. 158
Syntax Checking Performed on a Rule. 158
Available Line Commands and Associated PF Keys . 159
Available Primary Commands . 159
 TIBCO Object Service Broker Programming in Rules

x | Contents
Using Available Line Commands . 161
Copying Lines . 161
Deleting Lines . 161
Inserting Lines . 162
Moving Lines . 162
Replicating Lines . 163
Splitting Lines . 163
Combining Line Commands. 164

Using Available Primary Commands. 165
APPEND Command. 165
CANCEL Command (PF12). 166
CHANGE Command . 166
CHANGE … ALL Command . 166
COPY Command . 167
DELETE Command (PF22) . 168
DOCUMENT Command (PF2). 168
EDIT Command . 168
END Command (PF3) . 169
FIND Command. 169
HELP Command (PF1) . 169
LOWER Command . 169
PRINT Command (PF13). 170
SAVE Command . 170
UPPER Command. 170
XEDIT Command. 170
Redisplay the Most Recent Primary Command–(PF9) . 170

Expanding Token Information . 172
Types of Token Information Available. 172
Expanding a Token at the Cursor Position . 173
Expanding With the Primary Command EXPAND . 174
Nesting Expanded Displays . 174
Closing the Expanded Display . 174

Chapter 16 Processing in Standard Execution Mode . 175

Using Execute Rule. 176
TIBCO Object Service Broker UI . 176
Available Methods . 176
Supplying Argument Names . 176
Library Search Order . 177
Results After Execution . 178

Accessing a Listing of Rules to Execute . 179
Using the Object Manager Screen. 179
Available Commands . 179
TIBCO Object Service Broker Programming in Rules

Contents | xi
Logging of Output . 181
Message Logs Available . 181
Message Log Primary Commands . 181
PF Keys for the Message Logs. 182

User Log . 183
Sample User Log . 183
What Output is Available?. 183

System Log . 185
Sample System Log . 186
What Output is Available?. 186
Event Logging. 187

Examples of System Log Information . 188
Location of the Error . 188
Reason the Rule Stopped Executing . 188
Traceback of the Rules . 188
List of Active Local Variables . 188
List of the Buffers for Active Tables. 189
Up to the Last Sixteen Rules Invoked. 189

Chapter 17 Processing Asynchronously in Batch Mode .191

Functional Overview . 192
Batch Processing Options Available . 192
JCL, Batch Programs, and Scripts Provided . 192
Dynamic Creation of an Execution Environment . 192

Scheduling for Direct Batch Processing. 194
How to Schedule a Rule for Direct Batch Processing. 194
Example of Scheduling for Direct Processing. 194

Scheduling a Batch Queue in TIBCO Object Service Broker for z/OS . 195
How to Schedule to a Batch Queue . 195
Example of Scheduling to a Queue . 195
Features Available with the BATCH Tool. 195

Editing @SCHEDULEMODEL. 196
Provided Default Instances. 196
About the Default JCL. 196
About the Default Windows Batch Program and Solaris Script . 197
Editing Instances of @SCHEDULEMODEL . 198

Chapter 18 Processing in Debug Mode .199

Using the Rule Debugger. 200
Processing Rules in Debug Mode . 200
How to Invoke and Navigate the Rule Debugger . 200
Main Screen of the Rule Debugger . 201
 TIBCO Object Service Broker Programming in Rules

xii | Contents
Layout of the Rule Debugger Screen. 201
PF Keys and Commands for the Rule Debugger Screen. 202

How to Specify Break Events . 204
Methods Available to Specify Break Events. 204
Valid Break Event Values. 204

How to Examine and Modify the Execution State . 207
Suspension of the Execution State . 207
Commands Available to Examine the Execution State . 207

Associating a Series of Commands With a Break Event . 208
How to Create a Series of Commands . 208
Debugger Command Editor Screen. 209

Appendix A Syntax of the Rules Language . 211

BNF Notation. 212
Conventions Used . 212
Identifiers . 212
Numeric Literals . 212
String Literals . 213

Syntax of Rules. 215
Supported Syntax . 215

Index . 221
TIBCO Object Service Broker Programming in Rules

| xiii
Preface

TIBCO® Object Service Broker is an application development environment and
integration broker that bridges legacy and non-legacy applications and data.

This manual explains how to use the rules language to create and modify
application code. It also explains how to edit, execute, and debug rules.

Topics

• Related Documentation, page xiv

• Typographical Conventions, page xix

• Connecting with TIBCO Resources, page xxii
 TIBCO Object Service Broker Programming in Rules

xiv | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO Object Service Broker Documentation
The following documents form the TIBCO Object Service Broker documentation
set:

Fundamental Information

The following manuals provide fundamental information about TIBCO Object
Service Broker:

• TIBCO Object Service Broker Getting Started Provides the basic concepts and
principles of TIBCO Object Service Broker and introduces its components and
capabilities. It also describes how to use the default developer’s workbench
and includes a basic tutorial of how to build an application using the product.
A product glossary is also included in the manual.

• TIBCO Object Service Broker Messages with Identifiers Provides a listing of the
TIBCO Object Service Broker messages that are issued with alphanumeric
identifiers. The description of each message includes the source and
explanation of the message and recommended action to take.

• TIBCO Object Service Broker Messages without Identifiers Provides a listing of
the TIBCO Object Service Broker messages that are issued without a message
identifier. These messages use the percent symbol (%) or the number symbol
(#) to represent such variable information as a rules name or the number of
occurrences in a table. The description of each message includes the source
and explanation of the message and recommended action to take.

• TIBCO Object Service Broker Quick Reference Presents summary information for
use in the TIBCO Object Service Broker application development
environment.

• TIBCO Object Service Broker Shareable Tools Lists and describes the TIBCO
Object Service Broker shareable tools. Shareable tools are programs supplied
with TIBCO Object Service Broker that facilitate rules language programming
and application development.

• TIBCO Object Service Broker Release Notes Read the release notes for a list of
new and changed features. This document also contains lists of known issues
and closed issues for this release.
TIBCO Object Service Broker Programming in Rules

Preface | xv
Application Development and Management

The following manuals provide information about application development and
management:

• TIBCO Object Service Broker Application Administration Provides information
required to administer the TIBCO Object Service Broker application
development environment. It describes how to use the administrator’s
workbench, set up the development environment, and optimize access to the
database. It also describes how to manage the Pagestore, which is the native
TIBCO Object Service Broker data store.

• TIBCO Object Service Broker Managing Data Describes how to define,
manipulate, and manage data required for a TIBCO Object Service Broker
application.

• TIBCO Object Service Broker Managing External Data Describes the TIBCO
Object Service Broker interface to external files (not data in external databases)
and describes how to define TIBCO Object Service Broker tables based on
these files and how to access their data.

• TIBCO Object Service Broker National Language Support Provides information
about implementing the National Language Support in a TIBCO Object
Service Broker environment.

• TIBCO Object Service Broker Object Integration Gateway Provides information
about installing and using the Object Integration Gateway which is the
interface for TIBCO Object Service Broker to XML, J2EE, .NET and COM.

• TIBCO Object Service Broker for Open Systems External Environments
Provides information on interfacing TIBCO Object Service Broker with the
Windows and Solaris environments. It includes how to use SDK (C/C++) and
SDK (Java) to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, how to use the Adapter for JDBC-ODBC, and how to
access programs written in external programming languages from within
TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS External Environments Provides
information on interfacing TIBCO Object Service Broker to various external
environments within a TIBCO Object Service Broker z/OS environment. It
also includes information on how to access TIBCO Object Service Broker from
different terminal managers, how to write programs in external programming
languages to access TIBCO Object Service Broker data, how to interface to
TIBCO Enterprise Messaging Service (EMS), how to use the TIBCO Service
Gateway for WMQ, and how to access programs written in external
programming languages from within TIBCO Object Service Broker.
 TIBCO Object Service Broker Programming in Rules

xvi | Related Documentation
• TIBCO Object Service Broker Parameters Lists the TIBCO Object Service Broker
Execution Environment and Data Object Broker parameters and describes
their usage.

• TIBCO Object Service Broker Programming in Rules Explains how to use the
TIBCO Object Service Broker rules language to create and modify application
code. The rules language is the programming language used to access the
TIBCO Object Service Broker database and create applications. The manual
also explains how to edit, execute, and debug rules.

• TIBCO Object Service Broker Managing Deployment Describes how to submit,
maintain, and manage promotion requests in the TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Reports Explains how to create both
simple and complex reports using the reporting tools provided with TIBCO
Object Service Broker. It explains how to create reports with simple features
using the Report Generator and how to create reports with more complex
features using the Report Definer.

• TIBCO Object Service Broker Managing Security Describes how to set up, use,
and administer the security required for an TIBCO Object Service Broker
application development environment.

• TIBCO Object Service Broker Defining Screens and Menus Provides the basic
information to define screens, screen tables, and menus using TIBCO Object
Service Broker facilities.

• TIBCO Service Gateway for Files SDK Describes how to use the SDK provided
with the TIBCO Service Gateway for Files to create applications to access
Adabas, CA Datacom, and VSAM LDS data.

System Administration on the z/OS Platform

The following manuals describe system administration on the z/OS platform:

• TIBCO Object Service Broker for z/OS Installing and Operating Describes how to
install, migrate, update, maintain, and operate TIBCO Object Service Broker in
a z/OS environment. It also describes the Execution Environment and Data
Object Broker parameters used by TIBCO Object Service Broker.

• TIBCO Object Service Broker for z/OS Managing Backup and Recovery Explains
the backup and recovery features of OSB for z/OS. It describes the key
components of TIBCO Object Service Broker systems and describes how you
can back up your data and recover from errors. You can use this information,
along with assistance from TIBCO Support, to develop the best customized
solution for your unique backup and recovery requirements.
TIBCO Object Service Broker Programming in Rules

Preface | xvii
• TIBCO Object Service Broker for z/OS Monitoring Performance Explains how to
obtain and analyze performance statistics using TIBCO Object Service Broker
tools and SMF records

• TIBCO Object Service Broker for z/OS Utilities Contains an alphabetically
ordered listing of TIBCO Object Service Broker utilities for z/OS systems.
These are TIBCO Object Service Broker administrator utilities that are
typically run with JCL.

System Administration on Open Systems

The following manuals describe system administration on open systems such as
Windows or UNIX:

• TIBCO Object Service Broker for Open Systems Installing and Operating
Describes how to install, migrate, update, maintain, and operate TIBCO
Object Service Broker in Windows and Solaris environments.

• TIBCO Object Service Broker for Open Systems Managing Backup and Recovery
Explains the backup and recovery features of TIBCO Object Service Broker for
Open Systems. It describes the key components of a TIBCO Object Service
Broker system and describes how to back up your data and recover from
errors. Use this information to develop a customized solution for your unique
backup and recovery requirements.

• TIBCO Object Service Broker for Open Systems Utilities Contains an
alphabetically ordered listing of TIBCO Object Service Broker utilities for
Windows and Solaris systems. These TIBCO Object Service Broker
administrator utilities are typically executed from the command line.

External Database Gateways

The following manuals describe external database gateways:

• TIBCO Service Gateway for DB2 Installing and Operating Describes the TIBCO
Object Service Broker interface to DB2 data. Using this interface, you can
access external DB2 data and define TIBCO Object Service Broker tables based
on this data.

• TIBCO Service Gateway for IDMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to CA-IDMS data. Using this interface,
you can access external CA-IDMS data and define TIBCO Object Service
Broker tables based on this data.

• TIBCO Service Gateway for IMS/DB Installing and Operating Describes the
TIBCO Object Service Broker interface to IMS/DB and DB2 data. Using this
interface, you can access external IMS data and define TIBCO Object Service
Broker tables based on it.
 TIBCO Object Service Broker Programming in Rules

xviii | Related Documentation
• TIBCO Service Gateway for ODBC and for Oracle Installing and Operating
Describes the TIBCO Object Service Broker ODBC Gateway and the TIBCO
Object Service Broker Oracle Gateway interfaces to external DBMS data.
Using this interface, you can access external DBMS data and define TIBCO
Object Service Broker tables based on this data.
TIBCO Object Service Broker Programming in Rules

Preface | xix
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

TIBCO_HOME

OSB_HOME

By default, all TIBCO products are installed into a folder referenced in the
documentation as TIBCO_HOME.

On open systems, TIBCO Object Service Broker installs by default into a
directory within TIBCO_HOME. This directory is referenced in documentation as
OSB_HOME. The default value of OSB_HOME depends on the operating system.
For example on Windows systems, the default value is C:\tibco\OSB. Similarly,
all TIBCO Service Gateways on open systems install by default into a directory
in TIBCO_HOME. For example on Windows systems, the default value is
C:\tibco\OSBgateways\6.0.

On z/OS, no default installation directories exist.

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO ActiveMatrix
BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand PathName
 TIBCO Object Service Broker Programming in Rules

xx | Typographical Conventions
Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.

Table 1 General Typographical Conventions (Cont’d)

Convention Use

Table 2 Syntax Typographical Conventions

Convention Use

[] An optional item in a command or code syntax.

For example:

MyCommand [optional_parameter] required_parameter

| A logical OR that separates multiple items of which only one may be chosen.

For example, you can select only one of the following parameters:

MyCommand para1 | param2 | param3
TIBCO Object Service Broker Programming in Rules

Preface | xxi
{ } A logical group of items in a command. Other syntax notations may appear
within each logical group.

For example, the following command requires two parameters, which can be
either the pair param1 and param2, or the pair param3 and param4.

MyCommand {param1 param2} | {param3 param4}

In the next example, the command requires two parameters. The first parameter
can be either param1 or param2 and the second can be either param3 or param4:

MyCommand {param1 | param2} {param3 | param4}

In the next example, the command can accept either two or three parameters.
The first parameter must be param1. You can optionally include param2 as the
second parameter. And the last parameter is either param3 or param4.

MyCommand param1 [param2] {param3 | param4}

Table 2 Syntax Typographical Conventions

Convention Use
 TIBCO Object Service Broker Programming in Rules

xxii | Connecting with TIBCO Resources
Connecting with TIBCO Resources

How to Join TIBCOmmunity
TIBCOmmunity is an online destination for TIBCO customers, partners, and
resident experts, a place to share and access the collective experience of the
TIBCO community. TIBCOmmunity offers forums, blogs, and access to a variety
of resources. To register, go to http://www.tibcommunity.com.

How to Access All TIBCO Documentation
You can access TIBCO documentation here:

http://docs.tibco.com

How to Contact TIBCO Support
For comments or problems with this manual or the software it addresses, please
contact TIBCO Support as follows.

• For an overview of TIBCO Support, and information about getting started
with TIBCO Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.
TIBCO Object Service Broker Programming in Rules

http://www.tibco.com/services/support
https://support.tibco.com
http://docs.tibco.com
http://www.tibcommunity.com

| 1
Chapter 1 Introduction to TIBCO Object Service
Broker Rules

This chapter introduces the TIBCO Object Service Broker rules.

Topics

• Use of TIBCO Object Service Broker Rules, page 2

• Sample Set of Rules, page 5
 TIBCO Object Service Broker Programming in Rules

2 | Chapter 1 Introduction to TIBCO Object Service Broker Rules
Use of TIBCO Object Service Broker Rules

What is the Rules Language?
The rules language is the programming language that you use within TIBCO
Object Service Broker to create and modify your applications. It consists of:

• Database access commands, for example, GET or DELETE statements

• High-level constructs such as loops, for example, FORALL and UNTIL
statements

• High-level constructs such as exception signaling and handling, for example,
SIGNAL and ON statements

• Pseudo-conversational constructs, for example, the DISPLAY &
TRANSFERCALL statement

• Language statements that are characteristic of procedural programming, for
example, CALL and EXECUTE statements

What is a Rule?
A rule is a series of one or more rules language statements that contains a
procedure or returns a value. A rule must have at least:

• A unique name within a rules library

• One or more action statements

It can also contain:

• Variables

• Conditional processing

• Calls to other rules

• Transference to another transaction

• Error handling

How are Rules Defined?
You define rules using the Rule Editor. This tool, which is described in this
manual, is available to you from the developer workbench shipped with TIBCO
Object Service Broker. The Rule Editor displays either an empty rule template for
creating a new rule or the source code for an existing rule.
TIBCO Object Service Broker Programming in Rules

Use of TIBCO Object Service Broker Rules | 3
How Do You Execute a Rule?
As soon as your rules pass syntax checking, you can execute them in any of the
following ways:

• In standard execution mode, using the Rule Executor from the workbench.
This is described in Chapter 16, Processing in Standard Execution Mode, on
page 175.

• In batch mode, using asynchronous processing. This is described in
Chapter 17, Processing Asynchronously in Batch Mode, on page 191.

• In debug mode, using the Rule Debugger. This facility is described in
Chapter 18, Processing in Debug Mode, on page 199.

What Tools are Available for Use with Rules?
The following table lists the tools available to you to write, debug, and execute
your rules and indicates where you can get information about each one:

Tool or Function Refer to …

Rule Editor, the primary tool when
writing rules.

Chapter 13, Using Rules Libraries,
on page 141 to Chapter 15, Editing
Rules, on page 157.

Rule Executor. Chapter 16, Processing in Standard
Execution Mode, on page 175.

Rule scheduling. SCHEDULE Statement on page 53
and Chapter 17, Processing
Asynchronously in Batch Mode, on
page 191.

Rule Debugger. Chapter 18, Processing in Debug
Mode, on page 199.

Library Definer. Chapter 13, Using Rules Libraries,
on page 141.

Rule Printer—this produces a tree of
rules and associated objects based on an
entry rule.

RULEPRINTER in TIBCO Object
Service Broker Shareable Tools.
 TIBCO Object Service Broker Programming in Rules

4 | Chapter 1 Introduction to TIBCO Object Service Broker Rules
Search Utility—in addition to other
functionality, this utility searches the
installation library for specified rules,
exceptions, and exception handlers.

CROSSREFSEARCH in TIBCO
Object Service Broker Shareable Tools.

Copy definition—this copies the
definition of a rule from one library to
another. The source and destination
libraries can be located on the same
node or on a node remote to each other.

COPYDEFN and COPY_DEFN in
TIBCO Object Service Broker Shareable
Tools.

Compare definition—this compares the
definition of one rule to another. The
source and destination rules can be
located on the same node or on nodes
remote to each other.

DIFFDEFN and DIFF_DEFN in
TIBCO Object Service Broker Shareable
Tools.

Tool or Function Refer to …
TIBCO Object Service Broker Programming in Rules

Sample Set of Rules | 5
Sample Set of Rules

Description
The EMPLOYEES_RAISE rule assigns raises to employees based on their job title.
To avoid commit limits, it calls in the REPLACE_SALARY rule shown in
REPLACE_SALARY Rule on page 6 to actually replace the occurrences in the
EMPLOYEES table. After the REPLACE_SALARY rule is processed, control is
passed back to the EMPLOYEES_RAISE rule, which then completes processing.

EMPLOYEES_RAISE Rule

RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ --
 ON GETFAIL:
 CALL ENDMSG('POSITION IS INVALID');
 TIBCO Object Service Broker Programming in Rules

6 | Chapter 1 Introduction to TIBCO Object Service Broker Rules
REPLACE_SALARY Rule

 RULE EDITOR ===> SCROLL: P
 REPLACE_SALARY(REGION);
 _
 _ ---
 _ ---+-------------
 _ REPLACE EMPLOYEES(REGION); | 1
 _ ---
 _ ON COMMITLIMIT:
 _ COMMIT;

TIBCO Object Service Broker Programming in Rules

| 7
Chapter 2 Composition of a Rule

This chapter describes the composition of a rule.

Topics

• Components of a Rule, page 8

• Identifying a Rule, page 9

• Handling Dynamic Data Values, page 10

• Providing Conditional Processing, page 12

• Coding Actions, page 13

• Handling Exceptions, page 15
 TIBCO Object Service Broker Programming in Rules

8 | Chapter 2 Composition of a Rule
Components of a Rule

What are the Components?
A rule is divided into four components:

• The rules declaration, including optional arguments and local variables

• Conditions, including a quadrant of Y/N (yes/no) values

• Actions, including columns of action sequence numbers

• Exception handlers

Illustration of the Component Parts of a Rule
Using the following sample rule, this chapter explains the components of a
TIBCO Object Service Broker rule.

RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITLE, REGION); Declaration
 _ LOCAL RAISE, RATE;
 _ --
 _ JOBTITLE = 'SENIOR ANALYST'; Conditions | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+-----------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; Actions | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES.SALARY * RATE; | 2 2 3
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ‘ NOW EARNS ‘ || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ ---
 ON GETFAIL: Exception Handlers
 CALL ENDMSG('POSITION IS INVALID');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Information about Syntax

For an explanation of the syntax of these components, refer to Chapter 8, Using
Expressions and Operators, on page 77 and Syntax of Rules on page 215.
TIBCO Object Service Broker Programming in Rules

Identifying a Rule | 9
Identifying a Rule

Declaring a Rule Name and Its Arguments
Use the rules header to name the rule and declare any arguments. For example, in
the sample rule, the rule name is EMPLOYEES_RAISE, and two arguments,
JOBTITLE and REGION, are declared. The declaration ends with a semicolon (;)
and arguments are enclosed in parentheses () and separated by commas (,).

Sample Rules Declaration

The following example shows the rules declaration containing the rule name and
argument list:

 RULE EDITOR ===>
 EMPLOYEES_RAISE(JOBTITLE, REGION);
;
 _ ---

Behavior of Rules Arguments
The scope of an argument is the rule where the argument is declared. The data
representation of an argument is dynamic; it conforms to the semantic data type
and syntax of the value passed to it. Argument values are passed to the rule when
the rule is invoked. Passing arguments between rules is done by value; no rule
can alter the value of an argument.
 TIBCO Object Service Broker Programming in Rules

10 | Chapter 2 Composition of a Rule
Handling Dynamic Data Values

Declaring Local Variables
You use local variables to hold dynamic data values. If your rule makes use of
dynamic data values, declare the local variables that you require below the rules
header.

Sample Local Variable

The following example shows the rules declaration containing the rule name and
argument list, the local variables RAISE and RATE, and the assignment of a value
to the local variable RATE:

 RULE EDITOR ===>
 EMPLOYEES_RAISE(JOBTITLE, REGION);
 LOCAL RAISE, RATE;
 _ ---
 - |
 - --+----------
 - RATE = 0.1; |

Valid Values
The declaration begins with the reserved word LOCAL and ends with a
semicolon (;). If you have more than one local variable, they are separated with
commas.

A local variable can be assigned an arithmetic value or a string. The maximum
value or string length that can be assigned to local variables during a session is
determined by the session attributes.

Scope of Local Variables
The scope of a local variable is the rule where it is declared and any descendant
rules (rules that are below the rule in the calling hierarchy). They can be used
anywhere in an action, except to supply a value for an indirect reference. For more
information about indirect references, refer to Indirect Referencing on page 95.
TIBCO Object Service Broker Programming in Rules

Handling Dynamic Data Values | 11
Data Representation of Local Variables
The following rules apply to the data representation of a local variable:

• If the variable is assigned a value from a table, it conforms to the semantic
data type and syntax of the value assigned to it.

• If the variable is assigned a literal value in a rule (for example, variable=12;), no
semantic type is assigned, only a syntax.

• If the variable is assigned a literal value in a rule and the concatenation
operator is used (for example, variable = ‘a’ || ‘b’;), a string (S) semantic data
type is assigned.

For more information about syntax and semantic data types, refer to Syntax of
Data Elements on page 80 and Semantic Data Types on page 84.

Initial Behavior of a Local Variable

Before a value is assigned to a local variable, it behaves as:

• An empty string in a character context

• A zero in a numeric context

• An N in a logical context
 TIBCO Object Service Broker Programming in Rules

12 | Chapter 2 Composition of a Rule
Providing Conditional Processing

Conditional Processing
If you require conditional processing based on truth value, use:

1. The conditions section to specify what conditions is to be evaluated

2. The action section of the rule to specify how the conditions is to be processed

The values in the condition section are evaluated sequentially for their truth
value. An Y/N quadrant is then used to regulate the processing of the specified
actions. For more information about conditional processing, refer to Chapter 10,
Conditional Processing, on page 115.

What Comprises a Condition?
A condition is comprised of one of the following that evaluates to a Y/N value. It
ends in a semicolon(;).

• An expression with a comparison operator

• An argument name or local name

• A functional rule and its argument values

• A table.field reference

Sample Condition Segment and Associated Actions
The following example shows a condition segment containing an expression and
the action segment showing the initial actions to take place based on the values
determined by the Y/N quadrant:

 _ --+--------------
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 - JOBTITLE = 'ANALYST'; | Y N
 _ --+--------------
 _ RATE = 0.1; | 1
 - RATE = 0.05; | 1
TIBCO Object Service Broker Programming in Rules

Coding Actions | 13
Coding Actions

Action Statements
An action is an executable statement and a rule must contain at least one action.
You code the actions in the main body of the rule using action statements. Each
action ends with a semicolon (;), except for an action starting with a FORALL or
UNTIL statement that ends with a colon (:). For more information about action
statements refer to Chapter 4, Types of Action Statements, on page 27.

Action Sequence Numbers
Action sequence numbers determine which actions are executed for each
particular condition; the same action can be executed for different conditions. An
action must have an action sequence number to be executable. If an action
occupies more than one line, the action sequence number is associated with the
first line of the action only.

Restrictions

Action sequence numbers are not permitted within a FORALL or UNTIL loop.
Since a FORALL or UNTIL loop constitutes a single compound statement, all the
actions within it are executed whenever the FORALL or UNTIL is executed. Refer
to Looping Statements on page 29 for more information.

Editing Action Sequence Numbers
If the rule contains no conditions, the Rule Editor supplies consecutive numbers.
The statements are executed in order from top to bottom. You can edit the
numbers, and when you save the rule the Rule Editor renumbers them
sequentially. If you delete an action sequence number, the corresponding action is
not executed. If the rule contains conditions, you must supply values for the
action sequence numbers.

Behavior of Action Sequence Numbers

You can type in an alphanumeric character for each executable action and all the
characters are converted into sequenced numbers when you save the rule or press
Enter. For example, if you enter 1, 2, A, B, they are changed to 1, 2, 3, 4.
 TIBCO Object Service Broker Programming in Rules

14 | Chapter 2 Composition of a Rule
Sample of the Rules Actions

 _ --+--------------
 _; | Y N N
 -; | Y N
 _ --+--------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ‘ NOW EARNS ‘ || |
 _ EMPLOYEES.SALARY; |
 _ END; |
 _ ---
TIBCO Object Service Broker Programming in Rules

Handling Exceptions | 15
Handling Exceptions

Exception Handlers
If you require exception handling, use the exceptions segment of a rule to
intercept user-defined or system-defined exceptions. An exception handler is
comprised of:

• The ON statement

• The name of the exception that is trapped

• A colon (:), which ends the statement

• Optionally, statements executed when the exception is trapped

For more information on exception handling refer to Chapter 6, Exception
Handling, on page 59.

Behavior of Exception Handlers
There are no action sequence numbers associated with exception handlers. Every
statement of an exception handler is executed when the exception is trapped.

Sample Exception Handling Statement
The following shows the exception handler ON GETFAIL. In this example, the
shareable tool ENDMSG is issued if the value provided for the JOBNAME
argument is not a valid name.

 _ --+--------------
 _ ON GETFAIL:
 _ CALL ENDMSG('POSITION IS INVALID');

See Also TIBCO Object Service Broker Shareable Tools about tools.
 TIBCO Object Service Broker Programming in Rules

16 | Chapter 2 Composition of a Rule
TIBCO Object Service Broker Programming in Rules

| 17
Chapter 3 Supported Characters

This chapter describes the supported characters within a rule.

Topics

• Lexical Elements, page 18

• National Character Set Support, page 21

• Double-byte Character String Support, page 23

• Use of Quotation Marks, page 24
 TIBCO Object Service Broker Programming in Rules

18 | Chapter 3 Supported Characters
Lexical Elements

A rule is a sequence of lexical elements. Lexical elements are:

• Delimiters

• Hexadecimal literals (zero or more characters enclosed between an “X'” and a
single quotation mark)

• Identifiers (including reserved words)

• Numeric literals

• Raw-data literals (zero or more characters enclosed between an “R'” and a
single quotation mark)

• String literals (zero or more characters enclosed in single quotation marks)

• Unicode literals (zero or more characters enclosed between a “U'” and a single
quotation mark)

Delimiters
A delimiter is one of the following special characters:

| & ¬ * () - + = : ; ' , / < >

or one of the following compound symbols:

** <= >= ¬= || R' r' U' u' X' x'

Tokens
Each item that belongs to the group of lexical elements is called a token. For
example, **, LOCAL, and '123 abc' are all tokens. Adjacent tokens can be
separated by spaces, the delimiters previously listed, or a new line. An identifier
or numeric literal must be separated in this way from an adjacent identifier or
numeric literal. The only lexical elements that can contain a space are the string
literal and the Unicode literal. String literals, hexadecimal literals, raw data
literals, and Unicode literals can span more than one line; all other lexical
elements must fit on a single line.

Hexadecimal literals are shown as X'xx...', raw data literals as R'xx...', and Unicode
literals as U'xx...'.

In these examples, items 123 and abc are separate tokens when not enclosed in
single quotation marks.
TIBCO Object Service Broker Programming in Rules

Lexical Elements | 19
Reserved Words
The following names are reserved by the system as keywords in the rules
language:

Character Set
All rules language constructs are represented with a character set that is
subdivided as follows:

• Uppercase and lowercase letters
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

• Digits
0 1 2 3 4 5 6 7 8 9

• Special characters
@ # $ | ¬ & * () - _ = + ; : ' , . / < >

• The space character

AND ASCENDING BROWSE

CALL COMMIT CONTINUE a

a. CONTINUE, while a reserved word, is not currently used in the rules language.

DELETE DESCENDING DISPLAY

END EXECUTE FORALL

GET IN INSERT

LIKE LOCAL NOT

NULL ON OR

ORDERED PRINT REPLACE

RETURN ROLLBACK SCHEDULE

SIGNAL TO TRANSFERCALL

UNTIL UPDATE WHERE
 TIBCO Object Service Broker Programming in Rules

20 | Chapter 3 Supported Characters
If your system is NLS-enabled these characters are mapped to the appropriate
code page for your operating environment. Refer to National Character Set
Support on page 21 for more information.
TIBCO Object Service Broker Programming in Rules

National Character Set Support | 21
National Character Set Support

Allowable Usage
If your hardware is designed and configured to handle other national character
sets, you can use them in TIBCO Object Service Broker as follows:

• In tables where a field’s syntax is fixed length character (C), variable length
character (V), or single-byte or double-byte character (W)

• On screens and reports as literals

• In quoted strings

The alphabetic characters in TIBCO Object Service Broker names must consist of
only the letters described in Character Set on page 19.

Behavior of National Character Sets
The following behavior applies to the use of national character sets:

• The characters are sorted in EBCDIC order.

• When printing, control characters are filtered out.

• Uppercase and lowercase characters are mapped to each other.

Specifying a National Character Set
If your TIBCO Object Service Broker system is not NLS-enabled, to use a specific
character set specify one of the values shown in the following table in your user
profile.

The use of a specific national character set does not affect the decimal separator
character. This is set by the DECIMALSEPARATOR session parameter.

TIBCO Object
Service Broker
Name

Character Set English Name a

CDNB Canadian Bilingual Canadian Bilingual

DANS Dansk Danish/Norwegian

DEUT Deutsch Austrian/German
 TIBCO Object Service Broker Programming in Rules

22 | Chapter 3 Supported Characters
See Also TIBCO Object Service Broker National Language Support about NLS-enabled
operating environments.

TIBCO Object Service Broker Parameters about session parameters.

TIBCO Object Service Broker Managing Security about user profiles.

ENGB English English (Great Britain)

ENGL English English (US)

ESPA Español Spanish

FRAN Français French

ITAL Italiano Italian

NORS Norsk Danish/Norwegian

PORT Portugues Portuguese

SCHW Schweiz Swiss/French and

Swiss/German

SUOM Suomi Finnish/Swedish

SVEN Svenska Finnish/Swedish

a. You can use the names listed in this column to find more information about the
character set in the appropriate IBM manual.

TIBCO Object
Service Broker
Name

Character Set English Name a
TIBCO Object Service Broker Programming in Rules

Double-byte Character String Support | 23
Double-byte Character String Support

Allowable Usage
If your hardware is designed and configured to handle double-byte characters
and you are using the z/OS version of TIBCO Object Service Broker, you can use
double-byte characters in TIBCO Object Service Broker as follows:

• In tables where a field has double-byte and single-byte character (W) syntax
defined

• As arguments to a rule, as long as the arguments do not require a specific
syntax other than syntax W

You cannot use double-byte characters as literals on report tables or screen tables.
You can create syntax W protected fields and assign a value to the fields through
your rules.

Behavior of Double-byte Characters
The following behavior applies to the use of double-byte character sets:

• When used in an assignment statement, the double-byte character is
converted to its single-byte equivalent. Usual assignment rules apply.

• The characters are sorted in EBCDIC order and comparison is based on the
EBCDIC collating sequence.

• When printing to a double-byte character string device, the control characters
SI, SO (shift in, shift out) are not printed. When printing to a device that does
not support a double-byte character string, the control characters are printed
using a printable character.
 TIBCO Object Service Broker Programming in Rules

24 | Chapter 3 Supported Characters
Use of Quotation Marks

The type of data that you are processing determines whether you must use single
quotation marks (' ') to delimit the data. In general, string literals require
quotation marks and numeric literals do not. The following sections describe the
usage of quotation marks and compound delimiters containing the quotation
mark.

String Literals
If your processing operation uses a string literal, you must delimit the value with
opening and closing single quotation marks, for example, when specifying a
parameter value for a table, as in:

GET EMPLOYEES WHERE REGION='MIDWEST';

Placing Quotation Marks Within String Literals and Unicode Literals

To place a single quotation mark within a string literal or a Unicode literal, use
two quotation marks. For example: 'I''M' represents the value I'M.

Placing Slashes Within Unicode Literals

Because in Unicode literals the slash (/) is treated as an escape character to enable
exact specification of a Unicode character (for example, U'/20AC' is the euro
sign), you need a way to place a displaying slash within a Unicode literal. To do
this, use two slashes. For example: U'I//O' represents the value I/O.

TIBCO Object Service Broker Names
TIBCO Object Service Broker objects, rules arguments, and local variables are not
considered to be string literals and therefore are not enclosed in quotation marks.
The only exception to this is when an object is being passed as an absolute value.
For example:

INSERT EMPLOYEE_INFO WHERE SCREEN='NEW_EMPLOYEE';
TIBCO Object Service Broker Programming in Rules

Use of Quotation Marks | 25
Numeric Literals
Except for some special cases with primary keys described in Exceptions when
Accessing Primary Key Fields on page 25, numeric literals do not require
quotation marks. Since TIBCO Object Service Broker does not permit identifier
names to begin with a digit, these literals can be recognized by their totally
numeric composition.

Exceptions when Accessing Primary Key Fields

Because primary key values are not stored in a compressed state, when referring
to a primary key with syntax C or V and with a value that has leading zeros, you
must specify the value within quotation marks. For example, if a primary key
field of MONTH is defined with syntax C or V and has a value of 01, a GET
statement with MONTH='01' is correct but MONTH=1 or MONTH=01 is incorrect.
 TIBCO Object Service Broker Programming in Rules

26 | Chapter 3 Supported Characters
TIBCO Object Service Broker Programming in Rules

| 27
Chapter 4 Types of Action Statements

This chapter list the different categories of action statements.

Topics

• Overview, page 28

• Categories of Action Statements, page 29
 TIBCO Object Service Broker Programming in Rules

28 | Chapter 4 Types of Action Statements
Overview

What Types of Actions Can a Rule Perform?
When you write your rules, you can include statements that perform the
following types of actions:

• Assignment

• Database synchronization

• Exceptions

• Looping

• Output

• Rules invocation

• Table access

These action statements are then executed in a defined order, as described in
Coding Actions on page 13.

Additional Information

Topic Refer to…

Syntax of action
statements in
Backus-Naur format.

Syntax of Rules on page 215.

Exception handling. Chapter 6, Exception Handling, on page 59 and
Chapter 7, The Exception Statements, on page 71.

Expressions and
operators, many of which
are used in the examples
of this chapter.

Chapter 8, Using Expressions and Operators, on
page 77 and Chapter 12, Arithmetic Processing,
on page 133.
TIBCO Object Service Broker Programming in Rules

Categories of Action Statements | 29
Categories of Action Statements

Assignment Statements
Use assignment statements to assign values to fields or to local variables. There
are two kinds of assignment statements:

• Simple assignment

• Assignment-by-name

The rules language uses the equal sign (=) as the assignment operator. Refer to
Assignment Operator on page 92, for additional information about assignment
statements.

Database Synchronization Statements
Database synchronization statements can be used to synchronize the data in the
database after changes are made to it. For more information about
synchronization, refer to Establishing Synchronization Points on page 106. Refer
to the following topics for a full description of each database synchronization
statement and an example of its usage:

Looping Statements
Looping statements allow repetitive processes to take place. Refer to the following
topics for a full description of each looping statement and an example of its usage:

Statement Go to…

COMMIT COMMIT Statement on page 36.

ROLLBACK ROLLBACK Statement on page 52.

Statement Go to…

UNTIL

This is also an exception handler.

UNTIL Statement on page 74.

UNTIL…DISPLAY

This is also an output statement and an
exception handler.

UNTIL … DISPLAY Statement on
page 76.
 TIBCO Object Service Broker Programming in Rules

30 | Chapter 4 Types of Action Statements
Output Statements
Output statements present data to a screen or print reports. Refer to the following
topics for a full description of each output statement and an example of its usage:

Rules Invocation Statements
A rule can invoke another rule as a function through a logical or arithmetic
expression, or as a procedure with a CALL statement. A functional rule returns a
value that can be used as an operand in a rules statement. You can use a
functional rule anywhere you can use an expression. A procedural rule is called
from within another rule to perform actions that do not return a value. Refer to
the following topics for a full description of each rules invocation statement and
an example of its usage:

FORALL

This is also a table access statement.

FORALL Statement on page 42.

Statement Go to…

Statement Go to…

DISPLAY DISPLAY Statement on page 39.

DISPLAY & TRANSFERCALL

This is also a rules invocation statement.

DISPLAY & TRANSFERCALL
Statement on page 40.

UNTIL…DISPLAY

This is also a looping statement and an
exception handler.

UNTIL … DISPLAY Statement on
page 76.

PRINT PRINT Statement on page 49.

Statement Go to…

CALL CALL Statement on page 34.

EXECUTE EXECUTE Statement on page 41.

RETURN RETURN Statement on page 51.

SCHEDULE SCHEDULE Statement on page 53.
TIBCO Object Service Broker Programming in Rules

Categories of Action Statements | 31
Table Access Statements
Rules use table access statements to retrieve and manipulate data in the tables.
When a rule refers to a table, a table buffer is created, which serves as a workspace
for the table. Refer to the following topics for a full description of each output
statement and an example of its usage:

Behavior of Rules when Using Table Access Statements

Using table access statements, rules do the following:

• Enter new information into the table by first placing the new data in the
appropriate fields of a table buffer and then executing either a REPLACE or an
INSERT statement.

• Retrieve information from the table and place the information in a table buffer
with a GET or FORALL statement.

• Use the information in the table buffer to determine the occurrence to delete
from the table using the DELETE statement.

TRANSFERCALL TRANSFERCALL Statement on
page 55.

DISPLAY & TRANSFERCALL

This is also an output statement.

DISPLAY & TRANSFERCALL
Statement on page 40.

Statement Go to…

Statement Go to…

DELETE DELETE Statement on page 38.

FORALL FORALL Statement on page 42.

GET GET Statement on page 45.

INSERT INSERT Statement on page 47.

ORDERED ORDERED Clause on page 48.

REPLACE REPLACE Statement on page 50.

WHERE clause WHERE Clause on page 56.
 TIBCO Object Service Broker Programming in Rules

32 | Chapter 4 Types of Action Statements
Selecting Data

To qualify the selection of occurrences, use the WHERE clause. You can also use
the WHERE clause to select the table instances of a parameterized table, or you
can specify the table instance in parentheses () after the table name. For example:

FORALL EMPLOYEES WHERE REGION = 'MIDWEST':

is the same as

FORALL EMPLOYEES('MIDWEST'):
TIBCO Object Service Broker Programming in Rules

| 33
Chapter 5 The Action Statements

This chapter lists and describes the action statements.

Topics

• CALL Statement, page 34

• COMMIT Statement, page 36

• DELETE Statement, page 38

• DISPLAY Statement, page 39

• DISPLAY & TRANSFERCALL Statement, page 40

• EXECUTE Statement, page 41

• FORALL Statement, page 42

• GET Statement, page 45

• INSERT Statement, page 47

• ORDERED Clause, page 48

• PRINT Statement, page 49

• REPLACE Statement, page 50

• RETURN Statement, page 51

• ROLLBACK Statement, page 52

• SCHEDULE Statement, page 53

• TRANSFERCALL Statement, page 55

• WHERE Clause, page 56
 TIBCO Object Service Broker Programming in Rules

34 | Chapter 5 The Action Statements
CALL Statement

The CALL statement invokes a rule within the scope of the current transaction.
Upon completion, control passes to the next action in the calling rule. Arguments
in CALL statements are passed by an argument list. All arguments must be
specified when a rule is called.

Usage Notes • The called rule can be a rule in the installation library, the system library, or
the local library that you use for your session when you execute the rule, or it
can be a shareable tool. Refer to Chapter 13, Using Rules Libraries, on
page 141 for more information about rules libraries. Refer to Chapter 16,
Processing in Standard Execution Mode, on page 175 for more information
about rules execution.

• You can invoke the rule directly or indirectly. Refer to Indirect Referencing on
page 95 for additional information about indirect referencing.

• You cannot trap for the following: a non-existent rule, whether the rule name
is not semantic data type I (for identifier) or typeless, or an incorrect number
of arguments.

Exceptions

Examples
1. CALL EMPLOYEE_COUNT(10);

2. CALL ENDMSG(COUNT || ' EMPLOYEES IN DEPARTMENT#' || DEPT);

3. CALL FCNKEYS.ROUTINE;

About the Examples

• Example 1 invokes a rule that contains one argument; the argument value is
within the parentheses.

• Example 2 invokes the shareable tool ENDMSG, which contains one
argument, message. The value for message is a concatenation of the value for the
local variable COUNT, the text string ‘EMPLOYEES IN DEPARTMENT#’, and
the value for the argument DEPT passed in from a higher-level calling rule.

ROUTINEFAIL Signaled if the called routine fails and the cause of the
error cannot be signaled by other system exceptions

RULEFAIL Signaled if a table access resulting from the call is incorrect
TIBCO Object Service Broker Programming in Rules

CALL Statement | 35
• Example 3 indirectly invokes a rule. In this example the value of the field
ROUTINE, in the table FCNKEYS, is the name of the rule to be called. For
more information, refer to Indirect Referencing on page 95.

See Also TIBCO Object Service Broker Shareable Tools about the use of shareable tools.
 TIBCO Object Service Broker Programming in Rules

36 | Chapter 5 The Action Statements
COMMIT Statement

The COMMIT statement applies all changes made to TDS and external data since
the last synchronization point. You do not need to explicitly issue a COMMIT at
the end of a transaction. Data is implicitly committed for you at the end of the
transaction.

Usage Notes • The FORALL statement operates only on data committed to the database.

• A GET statement that does not specify a primary key value operates only on
committed data.

• You can use the COMMIT statement before the commit limit is reached or
when the exception ON COMMITLIMIT is signaled.

• The COMMIT statement does not release locks. The locks are released on the
affected table at transaction end.

• When issuing a COMMIT, you can get an unusual and untrappable SYNC
error resulting from the COMMIT updating too many page buffers in the Data
Object Broker. The number of page buffers is determined by the
WORKINGSET Data Object Broker parameter.

Exceptions

Examples
1. INSERT EMPLOYEES WHERE REGION = 'MIDWEST';

COMMIT;
FORALL EMPLOYEES WHERE REGION = 'MIDWEST':

2. FORALL $EMPLOYEES:
FORALL EMPLOYEES($EMPLOYEES.REGION):
EMPLOYEES.SALARY = EMPLOYEES.SALARY + 100;
REPLACE EMPLOYEES($EMPLOYEES.REGION);
END;
COMMIT;

END;

3. INSERT EMPLOYEES('MIDWEST');

ON COMMITLIMIT:
COMMIT;

To avoid SYNC errors against updates to a parameterized table, issue a COMMIT
at the end of the updates to each instance of the table.

COMMITLIMIT Signaled if the maximum number of updates (INSERTs,
REPLACEs, or DELETEs) between synchronization points
is reached
TIBCO Object Service Broker Programming in Rules

COMMIT Statement | 37
About the Examples

• In example 1, the COMMIT statement commits the insertion to the
EMPLOYEES table so that the inserted occurrence can be retrieved in the
FORALL.

• In example 2, a commit is made at the end of the updates to each instance of
the EMPLOYEES table.

• In example 3, a COMMIT is issued when the exception COMMITLIMIT is
signaled.

See Also TIBCO Object Service Broker Parameters about the Data Object Broker parameters.
 TIBCO Object Service Broker Programming in Rules

38 | Chapter 5 The Action Statements
DELETE Statement

The DELETE statement removes an occurrence from a table in the database. This
statement requires the primary key to be available in one of the following ways:

• Via a previous GET or FORALL on the table

• By explicit selection of the primary key

• By assigning a value to the primary key

Field Selection You can specify which occurrence to remove by basing your selection criteria on
the primary key field and using the equality relational operator (=). No other field
selection is allowed.

Retrieving
Uncommitted

Data

If you delete an occurrence using a DELETE statement, you must commit the
update to the table before you can retrieve the updated data. Otherwise,
previously committed data that does not reflect your update is retrieved from the
database. Refer to COMMIT Statement on page 36 for more information about
committing data.

Exceptions

Exceptions lower in the hierarchy of the INTEGRITYFAIL group can also be
signaled.

Examples
1. DELETE STUDENT WHERE ID = '810883';

2. GET STUDENT;
DELETE STUDENT;

About the Examples

• If a specific primary key value is selected using a WHERE clause, as shown in
example 1, the selected occurrence is deleted.

• If a GET or FORALL is performed without selection before the DELETE, as
shown in example 2, the first occurrence in the table is deleted.

DATAREFERENCE Signaled if an error is detected in the specification of the
selection criteria

DELETEFAIL Signaled if the occurrence does not exist in the table

INTEGRITYFAIL Signaled if an attempt is made to violate data integrity
TIBCO Object Service Broker Programming in Rules

DISPLAY Statement | 39
DISPLAY Statement

The DISPLAY statement shows a specified screen. You can access data that is
entered on a screen using GET and FORALL statements on the screen tables of the
screen. The DISPLAY statement can also be combined with the TRANSFERCALL
statement and the UNTIL statement. Refer to the DISPLAY & TRANSFERCALL
Statement on page 40 and UNTIL … DISPLAY Statement on page 76 for more
information.

Usage Notes To insert data from an application into a screen table, use the INSERT statement
before the DISPLAY statement.

Exceptions

Example FORALL MANAGERS:
MANAGER_DATA.* = MANAGERS.*;
INSERT MANAGER_DATA('MANAGER_SCR');
END;

DISPLAY MANAGER_SCR;

About the Example

In this example, data is retrieved from the MANAGERS table, assigned and then
inserted into the screen fields of a screen table, and then the screen appears.

See Also TIBCO Object Service Broker Defining Screens and Menus about defining and
presenting TIBCO Object Service Broker screens.

DISPLAYFAIL Signaled if an error is detected during an attempt to
display a screen

DEFINITIONFAIL Signaled if the screen does not exist
 TIBCO Object Service Broker Programming in Rules

40 | Chapter 5 The Action Statements
DISPLAY & TRANSFERCALL Statement

In a text application environment, you can use the DISPLAY & TRANSFERCALL
statement to improve concurrent access to the resources required by an
application.

You could use this statement if:

• You are creating an update application to be used by more than one user at a
time.

• You are accessing occurrences that could be required by other users.

Usage Notes • The DISPLAY & TRANSFERCALL statement allows pseudo-conversational
processing. This processing controls resource utilization only within TIBCO
Object Service Broker. You can display a screen after ending the transaction,
which frees the tables that the application uses but still gives you access to the
information that is input to the screen.

• Your screen environment is preserved across the transaction boundary.
Anything associated with the screen, such as data occurrences, attributes set
by screen tools, or cursor positioning, persists between displays unless you
change the data or attributes.

• You can specify whether the rule runs in browse or update mode. For more
information, refer to Setting the Mode of the Transaction on page 111.

Exceptions

Example DISPLAY QUERY_SCREEN & TRANSFERCALL PROCESS_QUERY;

About the Example

In the example, QUERY_SCREEN is the screen that appears and
PROCESS_QUERY is the rule that can access input from QUERY_SCREEN. When
you press a function key or the Enter key, PROCESS_QUERY begins as a new
transaction.

See Also TIBCO Object Service Broker Defining Screens and Menus about defining and
presenting TIBCO Object Service Broker screens.

DISPLAYFAIL Signaled if an error is detected during an attempt to
display a screen

DEFINITIONFAIL Signaled if the screen does not exist
TIBCO Object Service Broker Programming in Rules

EXECUTE Statement | 41
EXECUTE Statement

The EXECUTE statement starts a new transaction to invoke a rule. Upon
completion, control passes to the next action in the original transaction. Like the
CALL statement, the EXECUTE statement can invoke a rule directly or indirectly.

Usage Notes • The executed rule can be a rule in the installation library, system library, or the
local library you are using for your session when you execute it, or it can be a
shareable tool. Refer to Chapter 13, Using Rules Libraries, on page 141 for
more information about rules libraries. Refer to Chapter 16, Processing in
Standard Execution Mode, on page 175 for more information about rules
execution.

• You can invoke the rule directly or indirectly. Refer to Indirect Referencing on
page 95 for additional information.

• You can nest transactions using the EXECUTE statement.

• You can specify whether the transaction runs in browse or update mode.

• For additional information about this statement and transactions in particular,
refer to Chapter 9, Transaction Processing, on page 103.

Exceptions

Examples
1. EXECUTE EMPLOYEE_COUNT(10);

2. EXECUTE FCNKEYS.ROUTINE;

About the Examples

• Example 1 directly invokes the EXECUTE EMPLOYEE_COUNT rule and
passes in the argument value 10.

• Example 2 indirectly invokes the rule whose name is the value of the field
ROUTINE of the table FCNKEYS.

EXECUTEFAIL Signaled if an error is detected in the child transaction
 TIBCO Object Service Broker Programming in Rules

42 | Chapter 5 The Action Statements
FORALL Statement

The FORALL statement is a looping construct that processes a set of occurrences
retrieved from the database. The body of the loop consists of the statements to be
executed for each occurrence that satisfies the selection criteria. FORALL
statements can be nested.

Usage of
FORALL

A FORALL statement contains:

1. A table name, an optional WHERE clause, optional ORDERED clauses, an
optional UNTIL clause, and actions.

2. A colon (:), which follows the optional clauses (or the table name, if there are
no clauses).

3. Actions, which comprise the body of the loop and follow the colon. Each
action starts on a separate line.

Action sequence numbers are not permitted within a FORALL loop; since a
FORALL loop constitutes a single statement, all actions within it are executed
whenever a FORALL is executed.

4. An END statement on a separate line that marks the end of the FORALL.

Usage Notes • If you make updates to a table, you must commit the updates to the database
before you can retrieve them with a FORALL statement. Refer to the
COMMIT Statement on page 36 for details about committing data.

• You cannot issue a FORALL within a FORALL on the same table.

Selection within
a FORALL

As with all table access statements, parameters and selection on fields are
specified in a WHERE clause, as shown in the second example in Examples on
page 43.

Ordering in Selection

When a FORALL statement is executed, table occurrences are selected in the order
in which they are stored, unless a different order is specified by one of the
following:

• One or more ORDERED clauses

• The ORD field in the table definition

The following shows an example of the ORDERED clause. In this example, the
occurrences are ordered by descending values of the field PRICE, then by
ascending values of the field MODEL, and then by ascending values of the
primary key LICENSE# (the default for ordering is ascending).
TIBCO Object Service Broker Programming in Rules

FORALL Statement | 43
FORALL CARS WHERE CITY = INVOICE.CITY ORDERED DESCENDING
PRICE & ORDERED ASCENDING MODEL :
CALL $PRINTLINE('CAR ID ' || CARS.LICENSE# ||
' MODEL ' || CARS.MODEL || ' RETAIL PRICE:$' ||
CARS.PRICE);

END;

Exception
Handling

• No exceptions are raised if occurrences are not selected by the FORALL
statement. The actions in the body of the FORALL statement are not executed
and processing continues for statements following the END statement.

• A FORALL loop cannot contain a SIGNAL statement. For information about
SIGNAL statements, refer to SIGNAL Statement on page 73.

• Any exception in the INTEGRITYFAIL group, except for COMMITLIMIT, can
be signaled.

• The DATAREFERENCE exception is signaled if an error is detected in the
specification of the selection criteria.

Refer to Chapter 6, Exception Handling, on page 59 for a description of how rules
handle exceptions.

Termination of a
FORALL

Statement

FORALL statement execution terminates under either of these circumstances:

• All occurrences satisfying the FORALL selection criteria were processed.

• An exception is detected (and not handled by rules inside the FORALL loop)
during the execution of the statements comprising the loop.

The table buffer is undefined after all occurrences satisfying the FORALL
selection criteria are processed. Accessing CARS.MODEL after the FORALL
statement in Selection within a FORALL on page 42 would not provide the model
of the last car but would raise the UNASSIGNED exception.

Examples
1. FORALL MANAGER:

CALL PRINT_MANAGER;
END;

2. FORALL EMPLOYEES WHERE REGION = 'MIDWEST'
& HIREDATE > *.BIRTHDATE + 40 :
....

END;

3. FORALL MANAGER WHERE MANAGER_NAME LIKE '*SON' :
....

END;

4. FORALL MANAGER UNTIL GETFAIL:
....

END;
 TIBCO Object Service Broker Programming in Rules

44 | Chapter 5 The Action Statements
About the Examples

• Example 1 retrieves all occurrences in the MANAGER table and calls
PRINT_MANAGER to print the occurrences.

• Example 2 retrieves all occurrences in the MIDWEST table instance of the
EMPLOYEES table where the value of the HIREDATE field is greater than the
value of the BIRTHDATE field plus 40. The asterisk (*) represents the current
table.

• Example 3 retrieves all occurrences in the MANAGER table where the
MANAGER_NAME field ends in ‘SON’. To get all the manager names that do
not end in ‘SON’, write the FORALL statement like this:
FORALL MANAGER WHERE ¬ (MANAGER_NAME LIKE '*SON') :

• Example 4 retrieves all occurrences in the MANAGER table until the
GETFAIL exception is signaled. Refer to UNTIL Statement on page 74 for a
description of how an UNTIL clause can be handled.

See Also TIBCO Object Service Broker Managing Data about TIBCO Object Service Broker
tables.
TIBCO Object Service Broker Programming in Rules

GET Statement | 45
GET Statement

The GET statement retrieves the first occurrence in a table satisfying the specified
selection criteria. You can specify the retrieval order of the occurrences by using
the ORDERED clause.

Retrieving
Uncommitted or
Committed Data

If you retrieve an occurrence that you updated in the same transaction by
specifying a unique primary key value in a GET statement, the uncommitted data
is retrieved. Otherwise, previously committed data that does not reflect your
update is retrieved from the database. Refer to Database Synchronization
Statements on page 29 for information about committing data.

Locking
Considerations

If a GET statement specifies a row that is unique by primary key, then a share lock
is taken upon that row.

If a GET is not unique by primary key, then a share lock is taken on the table (or
table instance in the case of a parameterized table).

If the keywords WITH MINLOCK appear at the end of a GET statement, and
either the GET is ordered by anything but the primary key, or the GET includes
selection that is not unique by primary key, then a share lock will be taken on the
table (or table instance in the case of a parameterized table) only during GET
processing. Once the row to be returned has been determined, the lock will be
reduced to a share lock on only that table row.

Exceptions

Any exception lower in the hierarchy of the INTEGRITYFAIL group can also be
signaled.

Examples
1. GET STUDENTS;

2. GET STUDENTS WHERE STUDENT# = '810883';

3. GET MONTHS WHERE MONTH = MM & DAYS >= DD;

DATAREFERENCE Signaled if an error is detected in the specification of
selection criteria

GETFAIL Signaled if there are no occurrences that meet the selection
criteria

INTEGRITYFAIL Signaled if an attempt is made to violate data integrity
 TIBCO Object Service Broker Programming in Rules

46 | Chapter 5 The Action Statements
4. GET EMPLOYEES WHERE REGION='MIDWEST' & DEPTNO =
INPUT.DEPT ORDERED

DESCENDING LNAME;

About the Examples

• Example 1 retrieves the first occurrence in the STUDENTS table.

• Example 2 retrieves the first occurrence in the STUDENTS table, where the
value of the STUDENT# field is equal to 810883.

• Example 3 retrieves the first occurrence in the MONTHS table where the value
of the MONTH field is equal to MM and the DAYS field has a value greater
than or equal to DD. MM and DD are local variables that are assigned a value
in the parent rule.

• Example 4 orders the occurrences in the MIDWEST instance of the
EMPLOYEES table in descending order according to the values in the
LNAME field, and then retrieves the first occurrence whose DEPTNO equals
the value of the field DEPT of the INPUT table.

See Also TIBCO Object Service Broker Managing Data about TIBCO Object Service Broker
tables.
TIBCO Object Service Broker Programming in Rules

INSERT Statement | 47
INSERT Statement

The INSERT statement adds a new occurrence to a table. Occurrences within a
table must have unique primary keys. No field selection is possible; the WHERE
clause can specify only parameter values.

Exceptions

Any exception lower in the hierarchy of the INTEGRITYFAIL group can also be
signaled.

Examples
1. INSERT STUDENT;

2. INSERT CARS WHERE CITY = INPUT.CITY;

3. INSERT EXPENSE_DATA WHERE SCREEN ='EMPLOYEE_EXPENSE';

About the Examples

• Example 1 inserts data into the STUDENT table.

• Example 2 inserts data into the parameterized CARS table. The values for the
parameter CITY are provided by INPUT.CITY.

• Example 3 inserts data into the EXPENSE_DATA screen table in the
EMPLOYEE_EXPENSE screen.

DATAREFERENCE Signaled if an error is detected in the specification of
selection criteria

INSERTFAIL Signaled if an attempt is made to insert an occurrence with
a primary key that already exists

INTEGRITYFAIL Signaled if an attempt is made to violate data integrity
 TIBCO Object Service Broker Programming in Rules

48 | Chapter 5 The Action Statements
ORDERED Clause

An ORDERED clause can be used in conjunction with a WHERE clause to retrieve
occurrences in a specific order using the operators ASCENDING or
DESCENDING.

Default Order for Tables

By default a table is ordered in ascending order by primary key, although this can
be changed in the table definition.

Usage Notes • If an ASCENDING or DESCENDING operator is not specific, the order
returned is ascending.

• Multiple ORDERED clauses can be used in one access statement. Use the
AND (&) operator to join the clauses.

• If seven or more ORDERED clauses are used in a table access statement, the
external sort program setup for your TIBCO Object Service Broker installation
is used to sort the values. In this case, the total number of bytes occupied by
all control fields must not exceed 4088 bytes.

Examples
1. GET EMPLOYEES('MIDWEST') & DEPTNO = INPUT.DEPT ORDERED

DESCENDING LNAME;

2. FORALL CARS WHERE CITY = INVOICE.CITY ORDERED DESCENDING
PRICE & ORDERED ASCENDING MODEL :

About the Examples

• Example 1 orders the occurrences of the MIDWEST instance of the
EMPLOYEES table in descending order of LNAME field, and then retrieves
the first occurrence whose DEPTNO equals the value of the DEPT field of the
INPUT table.

• Example 2 retrieves the occurrences in descending values of the field PRICE,
then by ascending values of the field MODEL, and then by ascending values
of the primary key (the default for ordering is ascending).

See Also TIBCO Object Service Broker Managing Data about TIBCO Object Service Broker
tables.
TIBCO Object Service Broker Programming in Rules

PRINT Statement | 49
PRINT Statement

The PRINT statement is used to send a report to a predetermined destination: the
message log, printer or file. Your session options determine the destination; you
can override the print destination options by a call to the $SETRPTMEDIUM tool.
The PRINT statement can print a report directly by referring to the report name,
indirectly by referring to a field of a table, or to an argument name that represents
the report name.

Exceptions

Examples
1. PRINT DEPT_SALARY;

2. PRINT(REPORTNAME);

About the Examples

• Example 1 prints the report DEPT_SALARY directly.

• Example 2 prints the report whose name is the value of the argument for a
rule.

See Also TIBCO Object Service Broker Defining Reports about defining and producing
reports.

TIBCO Object Service Broker Shareable Tools about shareable tools.

DEFINITIONFAIL Signaled if the report does not exist
 TIBCO Object Service Broker Programming in Rules

50 | Chapter 5 The Action Statements
REPLACE Statement

The REPLACE statement updates an occurrence in the database. You should first
retrieve the data that you want to modify using a GET or FORALL statement.

Usage Notes • To alter the primary key value of an occurrence, you must DELETE the old
occurrence and INSERT the new one.

• No field selection is possible; the WHERE clause can specify only parameter
values.

Exceptions

Examples
1. REPLACE STUDENTS;

2. REPLACE CARS(INPUT.CITY);

About the Examples

• Example 1 replaces data in the STUDENTS table.

• Example 2 replaces data in the parameterized table CARS; it is parameterized
by CITY. The values for the CITY parameter are provided by INPUT.CITY.

DATAREFERENCE Signaled if an error is detected in the specification of
selection criteria

INTEGRITYFAIL Signaled if an attempt is made to violate data integrity

Any exception lower in the hierarchy of the
INTEGRITYFAIL group can also be signaled.

REPLACEFAIL Signaled if the primary key does not exist or if an attempt
is being made to update a table from a rule running in
browse mode
TIBCO Object Service Broker Programming in Rules

RETURN Statement | 51
RETURN Statement

The RETURN statement returns a specified result. The result can be an identifier
or a constant. A rule that contains a RETURN statement is a function.

Exceptions None

Examples
1. RETURN('Y');

2. RETURN(EMPLOYEE_SALARY.SALARY + INCREASE);

About the Examples

• Example 1 sets the return value to Y.

• Example 2 returns the salary of the employee plus an increase.
 TIBCO Object Service Broker Programming in Rules

52 | Chapter 5 The Action Statements
ROLLBACK Statement

The ROLLBACK statement discards all changes made to TDS and external data
since the last synchronization point. Locks are not released on the affected tables
until the transaction ends.

Exceptions None

Example FORALL HIREDATE:
GET EMPLOYEES('MIDWEST') WHERE EMPNO=HIREDATE.EMPNO;
EMPLOYEES.HIREDATE = HIREDATE.DATE;
REPLACE EMPLOYEES('MIDWEST');
END;

ON GETFAIL:
ROLLBACK;

About the Example

In this example, a ROLLBACK statement is issued so that none of the changes
made to the database since the last synchronization point are applied.
TIBCO Object Service Broker Programming in Rules

SCHEDULE Statement | 53
SCHEDULE Statement

The SCHEDULE statement enables asynchronous processing to take place. The
SCHEDULE statement uses an instance of the @SCHEDULEMODEL table to run
a named rule using z/OS JCL, Windows batch programs, or Solaris or scripts.

Usage Notes • You can specify whether the transaction runs in browse or update mode. For
more information, refer to Setting the Mode of the Transaction on page 111.

• If you are using TIBCO Object Service Broker for z/OS, you can use the TO
clause to schedule a rule to be sent to a queue for later processing.

• By not including the TO clause, you can submit an instance of the
@SCHEDULEMODEL table for immediate processing by the operating
system.

• Refer to Chapter 17, Processing Asynchronously in Batch Mode, on page 191
for information about the @SCHEDULEMODEL table and batch processing.

• For the Open Systems platforms, the SCHEDULE statement automatically
wraps, within single quotation marks, values that contain spaces or that have
a length of zero. The substitution value for a zero-length string continues to be
two single quotation marks.

Exceptions

Examples
1. SCHEDULE PRINT_INVOICE(INPUT.INVOICE#);

2. SCHEDULE TO 'WEEKEND' CLEANUP WHERE LOCATION = INPUT.CITY;

About the Examples

• Example 1 submits the PRINT_INVOICE rule immediately for batch
processing. The value for its one argument is provided by the INVOICE# field
of the INPUT table.

• Example 2 send the CLEANUP rule to a queue called WEEKEND. This rule
has one argument called LOCATION, and its value is provided by the CITY
field of the INPUT table.

LOCKFAIL Signaled if a lock is held on the @SCHEDULEMODEL
table (z/OS only)

SECURITYFAIL Signaled if there is a security violation on the
@SCHEDULEMODEL table (z/OS only)
 TIBCO Object Service Broker Programming in Rules

54 | Chapter 5 The Action Statements
See Also TIBCO Object Service Broker for z/OS Installing and Operating about the use of
queues.

TIBCO Object Service Broker for Open Systems Installing and Operating about post
installation steps on Solaris for the SCHEDULE statement.
TIBCO Object Service Broker Programming in Rules

TRANSFERCALL Statement | 55
TRANSFERCALL Statement

The TRANSFERCALL statement terminates the current transaction and starts a
new one. When the called rule is finished executing, the transaction is complete. If
the transaction is called from a nested transaction, control passes to the next
action in the parent transaction.

Usage Notes • You can specify whether the rule runs in browse or update mode. For more
information refer to Setting the Mode of the Transaction on page 111.

• The TRANSFERCALL statement can invoke a rule directly by referring to the
rule name, or indirectly by referring to a field of a table, or to an argument
name that represents the rule name.

• Refer to Chapter 9, Transaction Processing, on page 103 for additional
information about TRANSFERCALL and transactions.

Exceptions None

Examples
1. TRANSFERCALL SELECT_RENTAL(NEAREST_CAR(LOCATION));

2. TRANSFERCALL IN BROWSE SELECT_RENTAL WHERE
RENTAL_LOC = NEAREST_CAR(LOCATION);

3. TRANSFERCALL FCNKEYS.ROUTINE;

About the Examples

• Example 1 invokes the SELECT_RENTAL rule directly.

• Example 2 invokes the SELECT_RENTAL rule in browse mode.

• Example 3 invokes the rule whose name is the value of the field ROUTINE of
the table FCNKEYS.
 TIBCO Object Service Broker Programming in Rules

56 | Chapter 5 The Action Statements
WHERE Clause

The WHERE clause is used to select:

• The occurrences of a field

• The table instance of a parameterized table (optional method)

• The arguments of a rule (optional method)

You can use it in conjunction with the ORDERED clause.

Usage Notes • You can select the occurrences of a field that match a pattern using the pattern
match operator LIKE. The pattern can contain question marks (?) representing
one character of any kind, asterisks (*) representing zero or more unspecified
characters, and any other character that must be present in the field.

• You can refer to the current occurrence of the current table with an asterisk (*).

• You can use comparisons with relational and logical operators joined together
by the AND (&) or OR (|) operators. The operators are listed in Chapter 3,
Supported Characters, on page 17. The number of conditions that you can
code in a WHERE clause is dependent on a number of factors. For example:

— The size of the data in the right hand side of any conditions

— The lengths of the fields on any condition

— Whether the fields being used in the conditions are key fields or not

Examples
1. GET EMPLOYEES WHERE REGION ='MIDWEST' & ¬

(STATE_PROV='ONT'| STATE_PROV='MINN');

2. DELETE MANAGER WHERE MANAGER_NUM = 80002;

3. DELETE EMPLOYEES WHERE REGION = 'MIDWEST';

4. GET MANAGER WHERE MANAGER_NUM = *.USERID;

About the Examples

• Example 1 gets the first occurrence from the EMPLOYEES table where the
parameter equals MIDWEST and the STATE_PROV field does not equal ONT
or MINN.

• Example 2 shows how you can also specify selection criteria for a DELETE
statement. The selection criteria must consist of an equality between a value
and the primary key. In the example, MANAGER_NUM is the primary key
for the MANAGER table.
TIBCO Object Service Broker Programming in Rules

WHERE Clause | 57
• Example 3 shows how you can use the WHERE clause with any of the table
access statements to select table instances. In the example, REGION is the
parameter name and MIDWEST is the parameter value.

• Example 4 shows how you can use the asterisk (*) symbol to retrieve an
occurrence that has the same value in two fields of the same table.

See Also TIBCO Object Service Broker Managing Data about TIBCO Object Service Broker
tables.
 TIBCO Object Service Broker Programming in Rules

58 | Chapter 5 The Action Statements
TIBCO Object Service Broker Programming in Rules

| 59
Chapter 6 Exception Handling

This chapter describes exception handling.

Topics

• Functionality of Exception Handling, page 60

• System Exceptions and Their Conditions, page 62

• Coding of Exception Handlers, page 65

• Scope of Exception Handlers, page 67

• VALIDATEFAIL Exception for Screens, page 69
 TIBCO Object Service Broker Programming in Rules

60 | Chapter 6 Exception Handling
Functionality of Exception Handling

What is an Exception and How is It Handled?
An exception is an indication that an exceptional or unusual circumstance has
arisen during rules processing, for example if you have inadequate security on a
table when attempting to access it. When an exception is encountered during
rules processing, a signal can be raised by TIBCO Object Service Broker or by a
user-written rule to change the flow of a program. If TIBCO Object Service Broker
handles the exception, a system exception is issued. If the user-written rule
handles the exception, either a system exception or a user-defined exception can
be issued.

Hierarchy of System Exceptions
As previously stated, the TIBCO Object Service Broker runtime environment
signals system exceptions to permit an application to recover from an error.
System exceptions form a hierarchy of names as shown in the following
illustration.
TIBCO Object Service Broker Programming in Rules

Functionality of Exception Handling | 61
Three levels of system exceptions are defined, and an exception traps any of the
exception names that are below it in the hierarchy. The ERROR exception is at the
highest level and traps all detectable errors that can be handled by an exception
handler, whereas an exception such as GETFAIL traps only an error that occurs
when a table occurrence is not found on the execution of a GET statement.

Exceptions Raised by Exception Handler Statements
In some cases, statements comprising an exception handler could raise the same
exception. In these cases, if the second exception is not handled somewhere lower
in the calling hierarchy, the currently executing handler does not handle the
second exception. The rules executor detects a possible infinite loop condition and
aborts the transaction.

Examples of Untrappable Exceptions
The following are examples of untrappable exceptions:

• A rule called from a library that is not specified in the user’s search path

• A rule called that does not exist

• A rule called with the wrong number of arguments

• Memory or storage limits exceeded
 TIBCO Object Service Broker Programming in Rules

62 | Chapter 6 Exception Handling
System Exceptions and Their Conditions

System Exceptions

ACCESSFAIL A table access error is detected or a rule running in browse
mode is attempting to update a table.

COMMITLIMIT The limit on the number of updates between
synchronization points has been reached.

CONVERSION A value has invalid syntax or cannot be converted to the
target syntax.

DATAREFERENCE An error is detected in selection criteria.

DEFINITIONFAIL An error is detected in the definition of a table.

DELETEFAIL The primary key for a DELETE statement does not exist or
a rule running in browse mode is attempting to update a
table.

DISPLAYFAIL An error is detected when trying to display a screen.

ERROR An error is detected.

EXECUTEFAIL An error is detected in the child transaction.

GETFAIL No occurrence satisfies the selection criteria.

INSERTFAIL The primary key provided for an INSERT statement
already exists or a rule running in browse mode is
attempting to update a table.

INTEGRITYFAIL Attempt to violate data integrity detected.

JAVAFAIL A Java exception is raised by a called Java external routine.

LOCKFAIL Another transaction is accessing this data in a way that
prevents you from accessing the data.

NULLVALUE An arithmetic operator is being applied to a numeric null
or a numeric null is being passed as an argument value
when a numeric value is required.
TIBCO Object Service Broker Programming in Rules

System Exceptions and Their Conditions | 63
OVERFLOW A value is too large to be assigned to the target syntax. The
maximum value for the syntax is inserted into the
receiving field. All tables are limited to the defined
dictionary length. As well, screen and report tables are
also limited to the display length.

RANGERROR An argument to a given TIBCO Object Service Broker
routine is out of the allowable range.

REPLACEFAIL A primary key provided for a REPLACE statement does
not exist or a rule running in browse mode is attempting to
update a table.

ROUTINEFAIL A call to a TIBCO Object Service Broker routine cannot
complete successfully and a more specific system
exception cannot be signaled.

RULEFAIL An error results from incorrect rules coding, given that the
dictionary definition of the database is correct.

SECURITYFAIL Permission for the requested action is denied.

SELECTIONFAIL This exception traps failures during the conversion
process of data in a character field to a numeric syntax or
date so as to enable comparison with that in a WHERE
clause.

SERVERBUSY The requested external database server is not available to
process the transaction.

SERVERERROR External database server error detected.

SERVERFAIL The connection to an external database server broke
during a transaction or the external database server failed.

STRINGSIZE The receiving string field is too short to contain the full
length of the string value being assigned to it. The value is
truncated to the length of the receiving field and inserted
into that field.

UNASSIGNED Reference is being made to a field of a table not assigned a
value.

UNDERFLOW A value is too small to be represented in the target syntax
(usually exponent errors). The minimum value for the
syntax is inserted into the receiving field.
 TIBCO Object Service Broker Programming in Rules

64 | Chapter 6 Exception Handling
See Also TIBCO Object Service Broker Defining Screens and Menus about TIBCO Object
Service Broker screens.

TIBCO Object Service Broker Defining Reports about TIBCO Object Service Broker
reports

TIBCO Service Gateway manuals about accessing external databases.

VALIDATEFAIL An attempt is being made to update a screen or table with
invalid data. For example:

• An attempt is being made to insert data into a table
that failed a reference check or a non-Y value is being
returned from a validation rule.

• Invalid data is being inserted into a screen table from a
rule (that is, the data failed the screen table reference
check).

• Invalid data existed on the screen when the user left
the screen by using the Validation Exit key.

ZERODIVIDE Attempt to divide by zero detected.
TIBCO Object Service Broker Programming in Rules

Coding of Exception Handlers | 65
Coding of Exception Handlers

Signaling Exceptions
You use the SIGNAL statement from within the body of your rule or within the
exception handler segment to issue a user-defined exception. This statement is
described in SIGNAL Statement on page 73.

You must explicitly handle user-defined exceptions. System exceptions are
signaled for you. You can handle system exceptions explicitly or TIBCO Object
Service Broker can handle them on your behalf.

Handling Exceptions
When coding your rules, you can use:

• UNTIL, UNTIL … DISPLAY, or FORALL statements from within the body of
your rule to handle one or more exceptions

• ON statements in the exception handler segment of your rule to handle
individual exceptions

These statements are known as exception handlers. Except for
FORALL … UNTIL, which is described as part of the FORALL Statement on
page 42, they are described in Chapter 7, The Exception Statements, on page 71.

Maximum Number of Exceptions

You can handle up to 32 exceptions in a rule, using the ON statements, and
UNTIL statements, including UNTIL … DISPLAY and FORALL … UNTIL.
 TIBCO Object Service Broker Programming in Rules

66 | Chapter 6 Exception Handling
Sample Rule With Exception Handling
The following sample rule signals and handles the user-defined exception
DATE_INVALID and explicitly handles the system exception GETFAIL.

 RULE EDITOR ===> SCROLL: P
 MGRINFO(DATE,ID);
 _
 _ ---
 _ VALID_DATE(DATE); | Y N
 _ --+--------------
 _ GET MANAGER WHERE MANAGER_NUM = ID; | 1
 _ SIGNAL DATE_INVALID; | 1
 _ ---
 ON GETFAIL MANAGER :
 CALL ENTER_MANAGER;
 ON DATE_INVALID :
 CALL ENDMSG('Invalid date entered.');

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

Scope of Exception Handlers | 67
Scope of Exception Handlers

Scope of An Exception Handler
An exception handler is in effect only during the execution of the actions of the
rule in which it occurs. It traps exceptions generated both in the rule and in any of
its descendant rules—rules that are below it in the calling hierarchy. If an
exception is not trapped within the calling hierarchy, the transaction terminates
with an error condition and the message log shows that the exception was
signaled.

Scope of Multiple Exception Handlers
If an exception handler in two or more rules at different levels in the calling
hierarchy can handle the same exception, the handler in the lowest rule at or
above the point where the exception is raised handles the exception.

If more than one handler within a rule can handle an exception, the most specific
handler is executed. For example:

• If a rule has both a GETFAIL handler and an ACCESSFAIL handler and a
GETFAIL exception occurs, the GETFAIL handler is invoked.

• If the rule has no GETFAIL handler but does have an ACCESSFAIL handler,
the ACCESSFAIL handler is invoked.

Limiting the Scope of Data Access Exceptions
You can limit the scope of data access exception handlers by specifying a table
name. Data access exception handlers are:

• ACCESSFAIL

• DEFINITIONFAIL

• DELETEFAIL

• GETFAIL

• INSERTFAIL

• LOCKFAIL

• REPLACEFAIL

• SECURITYFAIL

• SERVERBUSY
 TIBCO Object Service Broker Programming in Rules

68 | Chapter 6 Exception Handling
• SERVERERROR

• SERVERFAIL

• VALIDATEFAIL

If a table name is specified, the handler traps the corresponding exception only if
it is detected while accessing that table. If no table is specified, the handler traps
the exception regardless of which table is being accessed.
TIBCO Object Service Broker Programming in Rules

VALIDATEFAIL Exception for Screens | 69
VALIDATEFAIL Exception for Screens

When is VALIDATEFAIL Issued?
VALIDATEFAIL is issued on a DISPLAY statement when a screen contains invalid
data and a user uses the Validation Exit key. VALIDATEFAIL is also issued when
data inserted into a screen table fails reference checking validation.

Handling of Invalid Data

A VALIDATEFAIL exception can manage an exception issued for invalid data,
but the data occurrences containing invalid values are still present in the set of
occurrences available to the rule. The invalid values can be read within the
exception handler or a subsequent rule in the same transaction. If the data entered
is completely incompatible with the field definitions (for example, alphabetic
characters in numeric fields) the invalid values are changed to null.
 TIBCO Object Service Broker Programming in Rules

70 | Chapter 6 Exception Handling
Example Rule
An example of a VALIDATEFAIL exception accessing screen data follows. The
rule displays a screen called NEW_EMPLOYEE for the user to add information
about a new employee. If the user exits from the screen while a field has invalid
data, the VALIDATEFAIL exception sends the data on the screen to an audit trail.

 RULE EDITOR ===> SCROLL: P
 EMPADD(EMPNO);
 _
 _ ---
 _ --+--------------
 _ EMPLOYEE_INFO.EMPNO = EMPNO; | 1
 _ INSERT EMPLOYEE_INFO('NEW_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY NEW_EMPLOYEE : | 3
 _ CALL PROCESS_PFKEY('NEW_EMPLOYEE'); |
 _ END; |
 _ ---
 _ ON VALIDATEFAIL :
 _ GET EMPLOYEE_INFO('NEW_EMPLOYEE') WHERE EMPNO = EMPNO;
 _ CALL ENDMSG('SEE AUDIT TRAIL FOR INVALID DATA.');
 _ CALL @OPENDSN('AUDIT.TRAIL');
 _ CALL @WRITEDSN(EMPLOYEE_INFO.EMPNO);
 _ CALL @WRITEDSN(EMPLOYEE_INFO.LNAME);
 _ CALL @WRITEDSN(EMPLOYEE_INFO.POSITION);
 _ CALL @WRITEDSN(EMPLOYEE_INFO.HIREDATE);
 _ CALL @WRITEDSN(EMPLOYEE_INFO.DEPTNO);
 _ CALL @WRITEDSN(EMPLOYEE_INFO.SALARY);
 _ CALL @CLOSEDSN;

PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

See Also TIBCO Object Service Broker Defining Screens and Menus about TIBCO Object
Service Broker screens.
TIBCO Object Service Broker Programming in Rules

| 71
Chapter 7 The Exception Statements

This chapter describes the exception statements.

Topics

• ON Statement, page 72

• SIGNAL Statement, page 73

• UNTIL Statement, page 74

• UNTIL … DISPLAY Statement, page 76
 TIBCO Object Service Broker Programming in Rules

72 | Chapter 7 The Exception Statements
ON Statement

The ON statement begins an exception handler. It includes the exception name
and is coded in the exception handler portion of the rule. It can be followed by a
sequence of actions that are executed if the exception is detected.

Usage of ON The ON statement consists of:

1. The keyword ON

2. The name of either a user-defined or system exception

3. A colon (:)

4. Actions, if coded. Each action starts on a separate line.

Usage Notes Action sequence numbers are not permitted within an ON statement or its
following action statements.

Examples
1. ON GETFAIL MANAGER:

CALL ENTER_MANAGER;

2. ON DEFINITIONFAIL:
CALL ENDMSG ('The report does not exist.');

About the Examples

• Example 1 traps the exception GETFAIL on the MANAGER table. If a
GETFAIL occurs on the MANAGER table, the ENTER_MANAGER rule is
called. If a GETFAIL occurs on another table, an error message is issued.

• Example 2 traps the exception DEFINITIONFAIL. If a DEFINITIONFAIL
occurs, the shareable tool ENDMSG is called and a message is returned to the
screen.
TIBCO Object Service Broker Programming in Rules

SIGNAL Statement | 73
SIGNAL Statement

The SIGNAL statement raises the exception specified within the statement. You
use the SIGNAL statement to raise user-defined exceptions within your rules.

Usage of
SIGNAL

A SIGNAL statement contains:

1. The keyword SIGNAL

2. The name of a user-defined exception

3. A semicolon (;)

Usage Notes • An ON or UNTIL statement can detect an exception raised by the SIGNAL
statement, and subsequently issue actions.

• When using the ON or UNTIL statements, you must provide the exception
name given in the SIGNAL statement; you cannot use an indirect reference in
the SIGNAL statement. To use an indirect reference, use the $SIGNAL tool.

• If you issue a SIGNAL statement from within a trigger or validation rule, the
trigger or validation rule must explicitly handle the exception within its
calling hierarchy. If it is not explicitly handled, the transaction that caused the
trigger or validation terminates.

• You cannot issue a SIGNAL statement within a FORALL statement.

Examples
1. SIGNAL MISSING_INVOICE;

2. ON GETFAIL MANAGER :
SIGNAL UNKNOWN_NAME;

About the Examples

• Example 1 signals the user-defined exception MISSING_INVOICE.

• In example 2, the GETFAIL exception signals the user-defined exception
UNKNOWN_NAME if the GET fails on the MANAGER table.
 TIBCO Object Service Broker Programming in Rules

74 | Chapter 7 The Exception Statements
UNTIL Statement

The UNTIL statement specifies an exception or a list of exceptions, each separated
by the keyword OR. It allows looping to take place in rules execution. Looping
terminates if an exception is detected. An END statement, on a separate line,
marks the end of the UNTIL statement.

You can use the UNTIL statement on its own, or in conjunction with a FORALL
statement and as part of the UNTIL … DISPLAY statement. For more information
about the FORALL statement refer to FORALL Statement on page 42 and for the
UNTIL … DISPLAY statement, refer to UNTIL … DISPLAY Statement on page 76.

Usage of UNTIL An UNTIL statement contains:

1. The keyword UNTIL

2. An exception name, or a list of exceptions separated by the keyword OR

3. A colon (:)

4. The actions, which comprise the body of the loop. Each action starts on a
separate line.

Action sequence numbers are not permitted within an UNTIL loop; since an
UNTIL loop constitutes a single statement, all the actions within it are
executed whenever the UNTIL is executed.

5. An END statement, on a separate line

Usage Notes If a loop terminates because of an exception, control passes to new actions as
follows:

• If the exception is specified in an UNTIL statement for the loop, the actions
executed next are those following the END statement of the loop (control
passes to those actions even if there is an ON statement for that exception in
the exception handler part of the rule). Upon completion of those actions, the
rule is finished executing and control passes to the caller.

• If the exception is not handled by the UNTIL statement for the loop but is
handled by an ON statement in the exception handler part of the rule, the
actions executed next are those listed in the ON statement. Refer to ON
Statement on page 72 for more information.

• If the exception is not specified in an UNTIL statement for the loop or in an
ON statement in the exception handler part of the rule, either the exception is
trapped by an exception handler in a rule higher in the calling hierarchy, or
the transaction terminates with an error condition.
TIBCO Object Service Broker Programming in Rules

UNTIL Statement | 75
Examples
1. UNTIL NO_MORE_NUMBERS :

MULTIPLIER = MULTIPLIER + 1;
CALL CHECKDIGIT(LENGTH($NUMBER));

END;

2. FORALL SOURCETAB1 UNTIL GETFAIL:
GET SOURCETAB2 WHERE LINE_NUM = SOURCETAB1.LINE_NUM;
CALL COMPARELINES(SOURCETAB1.TEXT, SOURCETAB2.TEXT);

END;

About the Examples

• Example 1 performs the operations within the UNTIL up to the point the
user-defined exception NO_MORE_NUMBERS is issued.

• Example 2 performs the FORALL loop operations up to the point the system
defined exception GETFAIL is issued.
 TIBCO Object Service Broker Programming in Rules

76 | Chapter 7 The Exception Statements
UNTIL … DISPLAY Statement

The UNTIL … DISPLAY statement, which is a looping construct with a display,
displays a screen repetitively until an exception is encountered.

Usage of UNTIL
… DISPLAY

An UNTIL … DISPLAY statement contains:

1. The keyword UNTIL

2. An exception name or a list of exceptions separated by the keyword OR

3. A DISPLAY statement followed by a screen name

4. A colon (:)

5. The actions, which comprise the body of the loop, follow the colon. Each
action starts on a separate line.

Action sequence numbers are not permitted within an UNTIL loop; since an
UNTIL loop constitutes a single statement, all the actions within it are
executed whenever the UNTIL is executed.

6. An END statement, on a separate line

Usage Notes Execution of an UNTIL … DISPLAY statement terminates when an exception on
the list is detected (and not handled by rules inside the UNTIL loop) during the
execution of the statements comprising the loop. Control passes to the actions that
follow the END statement of the loop.

Example UNTIL DONE DISPLAY QUERY_SCREEN:
CALL PROCESS_FCNKEYS('QUERY_SCREEN');
END;

About the Example

In this example, the QUERY_SCREEN screen appears up to the point the DONE
exception is signaled during the display.

See Also TIBCO Object Service Broker Defining Screens and Menus about defining and
displaying TIBCO Object Service Broker screens.
TIBCO Object Service Broker Programming in Rules

| 77
Chapter 8 Using Expressions and Operators

This chapter describes how to use expressions and operators.

Topics

• Overview, page 78

• Syntax of Data Elements, page 80

• Semantic Data Types, page 84

• Operators to Combine Expressions, page 86

• Relational Operators, page 88

• Logical Operators, page 91

• Assignment Operator, page 92

• Indirect Referencing, page 95

• Using a Rule Argument for Indirect Referencing, page 96

• Using Table.Field for Indirect Referencing, page 98
 TIBCO Object Service Broker Programming in Rules

78 | Chapter 8 Using Expressions and Operators
Overview

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

What Comprises an Expression?
An expression is any combination of values and operators (such as + or -), which
results in a single value when evaluated. Conditions, actions, and exception
handlers can contain expressions.

Valid Values for Expressions
The values of an expression can consist of a:

• Local variable

• Field of a table

• Rules argument name

• Function call

• Literal

• Indirect reference

Examples of Expressions

Expression Evaluated Result or Assignment

3+2*3 9

10*(1+4)**2 250
TIBCO Object Service Broker Programming in Rules

Overview | 79
Operations That Can be Performed With Expressions
Expressions can be compared to each other using relational operators—these are
called compound expressions. Compound expressions can be combined using
logical operators.

The Reserved Word NULL
The reserved word NULL is used to represent a null value. It can be used in many
of the same places that an expression can be used. For more information about
nulls, refer to Chapter 11, Null Processing, on page 123.

SUM + (TABLEREF).(FIELDREF)

where

SUM=123

TABLEDEF=EmpTable

FIELDREF=Commission

EmpTable.Commission=1700

1823

Expression Evaluated Result or Assignment

The logical operators AND (&) OR (|) are allowed only within selection criteria
(WHERE clause). The NOT (¬) operator is allowed within rules conditions and
within selection criteria. Expressions can also be assigned to local variables or
fields of tables with the assignment operator.
 TIBCO Object Service Broker Programming in Rules

80 | Chapter 8 Using Expressions and Operators
Syntax of Data Elements

Each data element of an expression has a syntax. The syntax of a value, local
variable, or field describes how the data is stored. The syntax and length of a field
are specified in the table definition. The syntax for a local variable is determined
when a value is assigned to it. The syntax of a literal is determined by its content.

Valid Syntaxes
The following table describes the valid syntaxes, their permitted lengths, and
additional information to help you in their use:

Syntax Name Valid Lengths (bytes) Notes

B Binary 2 – 12 a Signed integer values.

Supports display masks.

A length of 2 supports values -32,768 to
32,767.

A length of 4 supports values of
-2,147,483,648 to 2,147,483,647.

A length of 12 supports values of
-39,614,081,257,132,168,796,771,975,168
to
39,614,081,257,132,168,796,771,975,167

C Fixed-length
character string

1 to the maximum length for an
occurrence - 2. b

1 – 127 (key field or parameter). b

Maximum total length for up to 16
fields in a composite primary key:
127.

Maximum total length for all data
parameters: 240.

1 – 254 (display fields). b

Uppercase alphanumerics.

Trailing blanks not significant.

F Floating point 4, 8, and 16.

24, 56, and 112 binary digits of
precision for the mantissa.

Approximate range: 5.4 x 10 -79 to
7.2 x 1075. c

Not valid for key fields or parameters.

Should not be used when exact
comparisons or exact values are
required.

Does not support ordering.

P Packed
decimal

1 – 16 (holds 1 – 31 decimal digits). a, d Supports display masks.
TIBCO Object Service Broker Programming in Rules

Syntax of Data Elements | 81
RD Raw data 5 to the maximum length for an
occurrence- 2. b

Consists of a 4-byte length followed by
data.

Not valid for key fields. Not valid for
parameters except for SUB tables with a
source table of DB2 or SLK type.

Does not support ordering.

Does not support default values in the
Table Definer.

Not valid for screens or reports.

Not valid for Service Gateway for
Datacom, Service Gateway for
IDMS/DB, and Service Gateway for
IMS/DB.

UN Unicode 2 to the maximum length for an
occurrence - 2. b

Must be even.

Consists of UTF16 characters.

Not valid for key fields. Not valid for
parameters except for SUB tables with a
source table of DB2 or SLK type.

Does not support ordering.

Does not support default values in the
Table Definer.

Not valid for screens or reports.

Not valid for Service Gateway for
Datacom, Service Gateway for
IDMS/DB, and Service Gateway for
IMS/DB.

V Variable-length
character string

1 to the maximum length for an
occurrence - 2.b

1 – 127 (key field). b

Maximum total length for up to 16
fields in a composite primary key:
127.

1 – 254 (display fields). b

Uppercase and lowercase
alphanumerics.

Trailing blanks significant.

Not valid for parameters except for
SUB tables with a source table of DB2
or SLK type.

W Double-byte or
single-byte
character string

4 to the maximum length for an
occurrence - 2. b, e

Uppercase and lowercase
alphanumerics.

Trailing blanks significant.

Not valid for parameters.

Valid for z/OS only.

a. Table parameters are limited to binaries of length 2 and 4 and packed decimals of length 1 to 8.

Syntax Name Valid Lengths (bytes) Notes
 TIBCO Object Service Broker Programming in Rules

82 | Chapter 8 Using Expressions and Operators
Maximum Occurrence Length

b. The maximum length of a field is limited by the maximum length of an occurrence for a table type.
Refer to Maximum Occurrence Length on page 82. The length calculation for a table occurrence
includes all of the table fields and parameters and is 17 + sum(short field length + 1) + sum(long field
length + 2) + sum(data parameter +1). A short field length is <= 127 and a long field length is > 127.

c. In Open Systems, if you need to get results from arithmetic on floating-point data that are identical
to what you would obtain with pre-Release 4.0 TIBCO Object Service Broker, use the NOIBMFLOAT
Execution Environment parameter. For more detail, refer to TIBCO Object Service Broker Parameters.

d. Byte length=half-byte for each decimal digit plus half-byte for sign. Round up to the nearest whole
byte. Specify the number of digits after the decimal separator in the Table Definer.

e. A single display position can display a single-byte character; however, you need two display
positions to display a double-byte character.

Table Type Description Maximum Occurrence
Length in Bytes

ADA TIBCO Object Service
Broker ADABAS table.

31744

CLC Calculation table. 3915

DAT TIBCO Object Service
Broker CA-Datacom
table.

3915

DB2 TIBCO Object Service
Broker DB2 table.

31744

EXP Export table. 31744

IDM TIBCO Object Service
Broker CA-IDMS table.

31744

IMP Import table. 31744

IMS TIBCO Object Service
Broker IMS table.

31744

MAP MAP table. 31744

PRM Parameter table. 3915
TIBCO Object Service Broker Programming in Rules

Syntax of Data Elements | 83
See Also TIBCO Object Service Broker Managing Data about defining TIBCO Object Service
Broker tables.

RPT Report table. 3915

SCR Screen table. 3915

SES Session table. 31744

SLK TIBCO Object Service
Broker SLK table.

31744

SUB Subview table. 31744

TDS Table data store table. 3915

TEM Temporary table. 31744

VSM TIBCO Object Service
Broker VSAM table.

31744

Table Type Description Maximum Occurrence
Length in Bytes
 TIBCO Object Service Broker Programming in Rules

84 | Chapter 8 Using Expressions and Operators
Semantic Data Types

Each data element of an expression has a semantic data type. The semantic data
type describes how the expression element can be used. The semantic data type of
a field is defined in the table definition and determines what operations and
conversions can be performed on values of the field. Operators in the rules
language are defined only for meaningful semantic data types. For example,
negating a string or adding a number to an identifier are invalid operations (for
example, adding 3 to a license plate number).

Valid Semantic Data Types
The following table describes the semantic data types, the valid syntax for each
data type, and the operations that can be performed on each data type:

Semantic
Data
Type

Name Description Possible
Operators

Valid
Syntax

Typeless Literals defined in TIBCO Object Service Broker rules
and fields defined without a semantic data type.

Example: name = ‘Analyst’.

Relational

Concatenation

Assignment

Arithmetic

Logical

B, C, F,
P, RD,
UN, V,
W

C Count Only integer numbers (no fractions) used for integral
count.

Example: An inventory count (zero items or more
items; there is never half an item).

Relational

Concatenation

Assignment

Arithmetic

B, C, P,
UN, V

D Date Used for dates; you must include at least a year. Valid
dates range from 0000/01/01 to 9999/12/31
inclusive.

Example: The hire date of an employee: Jan 05, 1998.

Relational

Concatenation

Assignment

Arithmetic
(addition and
subtraction)

B

I Identifier Unique identifier

Example: The employee identifier: A1082.

Relational

Concatenation

Assignment

B, C, P,
UN, V
TIBCO Object Service Broker Programming in Rules

Semantic Data Types | 85
See Also TIBCO Object Service Broker Managing Data about defining TIBCO Object Service
Broker tables.

L Logical Information meeting Yes or No conditions.

Example: Used as a flag: Is this employee current?

Relational

Concatenation

Assignment

Logical

C

Q Quantity Real numbers used for measurement.

Example: The salary of an employee: $950.57.

Relational

Concatenation

Assignment

Arithmetic

B, C, F,
P, UN, V

S String Character string data.

Example: The position of an employee: Analyst.

Relational

Concatenation

Assignment

C, RD,
UN, V,
W

Semantic
Data
Type

Name Description Possible
Operators

Valid
Syntax
 TIBCO Object Service Broker Programming in Rules

86 | Chapter 8 Using Expressions and Operators
Operators to Combine Expressions

An expression can be combined with one or more other expressions. The rules
language supports the use of arithmetic operators and the concatenation operator
(||) to combine expressions.

Arithmetic Operators
The rules language contains the following operators for doing arithmetic:

The arithmetic operators allow four types of operands: count, quantity, date, and
typeless. The only operands allowed for unary - and unary + are count, quantity,
and typeless. For a complete description of arithmetic operators and their
behavior, refer to What are the Arithmetic Operators? on page 134.

Concatenation Operator
The rules language uses a double vertical bar (||) as the concatenation operator.
Concatenation is valid between any two semantic data types and always has a
result with semantic type string. For its syntax, the result follows these rules in
order:

1. Concatenation is forbidden between a field of syntax UN and one of syntax W.

2. If one of the operands has syntax RD, the result has syntax RD.

3. If one of the operands has syntax UN, the result has syntax UN.

4. If one of the operands has syntax W, the result has syntax W.

Operator Usage

** Exponentiation.

* Multiplication.

/ Division.

+ Addition.

- Subtraction.

- Unary minus.

+ Unary plus.
TIBCO Object Service Broker Programming in Rules

Operators to Combine Expressions | 87
5. The result has syntax V.

Operators Within Expressions
Operators within an expression conform to conventional notation and obey the
precedence that follows. Exponentiation has highest precedence and addition,
subtraction, and string-concatenation have the same lowest precedence. In cases
where more than one operator has the same precedence, such as addition and
string-concatenation, the operators are evaluated strictly from left to right, unless
explicitly overridden using parentheses.

Examples
Some examples of operators within expressions are:

CARS.PRICES = (PRICES.BASE + PRICES.SHIPPING) * TAXES.RETAIL

AMOUNT = PRINCIPAL * (1 + INTEREST) ** YEARS

You must use parentheses if you intend to do two or more exponentiation
operations consecutively. Two correct examples are:

(A ** B) ** C

A ** (B ** C)

Operator Usage

** Exponentiation.

*, / Multiplication, division.

+, - Unary plus, unary minus.

+, -, || Addition, subtraction, string-concatenation.
 TIBCO Object Service Broker Programming in Rules

88 | Chapter 8 Using Expressions and Operators
Relational Operators

Comparison Operators
This table shows the operators that the rules language uses for making
comparisons:

Semantic Data Type and Syntax Validations
Note the following points about semantic data types and syntax in expressions
containing these operators:

• The relational operators for equality and inequality (=, ¬=) can be used with
any two operands of the same semantic data type. They can also be used for
two operands of different semantic data types if one of the operands is
typeless or if the types are identifier and string, or identifier and count.

• The relational operators for ordering (<, <=, >, >=) cannot be used with an
operand of type logical. Otherwise, they can be used with two operands with
the same semantic data type or if one operand is typeless.

Operator Description Notes

= Equality

¬= Not equal On Open Systems, this can display as
^=.

You cannot substitute the keyword
NOT for the not sign (¬) symbol.

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

LIKE Pattern matching Use only in selection criteria
statements, not in condition statements.

The only permissible syntax for use
with NOT (¬) is: WHERE
NOT(fieldname LIKE 'value').
TIBCO Object Service Broker Programming in Rules

Relational Operators | 89
• The relational operator for pattern matching (LIKE) can be used with any
semantic data types and always returns a logical value.

• Trailing blanks are significant for variable-length strings, but not for
fixed-length strings. For example, comparing two fixed-length strings with
lengths 12 and 16 gives the same result as if the shorter string were extended
to length 16 and padded with four blanks on the right.

• If syntax differs, operands are converted to a common syntax. Refer to
Chapter 12, Arithmetic Processing, on page 133 for a table of syntax
conversions.

• The result of a comparison is always a logical value (Y or N).

• The LIKE relational operator is not case sensitive if you are matching syntax C
data. In all other cases, the other relational operators distinguish between
upper and lowercase.

Equality Relational Operators
The relational operators for equality and inequality are = and ¬=. The following
chart shows the semantic types on which you can use these operators. In each
case, the result of the relational operation is a logical value. Y indicates a valid
operation.

C
O

U
N

T

D
A

T
E

ID
E

N
T

IF
IE

R

L
O

G
IC

A
L

Q
U

A
N

T
IT

Y

S
T

R
IN

G

Ty
p

el
es

s

COUNT Y Y Y

DATE Y Y

IDENTIFIER Y Y Y Y

LOGICAL Y Y

QUANTITY Y Y

STRING Y Y Y

Typeless Y Y Y Y Y Y Y
 TIBCO Object Service Broker Programming in Rules

90 | Chapter 8 Using Expressions and Operators
Ordering Relational Operators
The relational operators for ordering are <, >, <=, and >=. The following chart
shows the semantic data types on which you can use these operators. In each case
the result of the relational operation is a logical value. Y indicates a valid
operation.

C
O

U
N

T

D
A

T
E

ID
E

N
T

IF
IE

R

L
O

G
IC

A
L

Q
U

A
N

T
IT

Y

ST
R

IN
G

Ty
pe

le
ss

COUNT Y Y

DATE Y Y

IDENTIFIER Y Y

LOGICAL

QUANTITY Y Y

STRING Y Y

Typeless Y Y Y Y Y Y
TIBCO Object Service Broker Programming in Rules

Logical Operators | 91
Logical Operators

Logical operators join or negate expressions in rules language statements.

Valid Operators
The following table lists the logical operators that you can use with the rules
language (both the word and the symbol are valid). The logical operator OR (|)
takes precedence over the logical operator AND (&).

Notes on the NOT
Symbol

• On Open Systems, the NOT symbol could display as a caret symbol (^).

• In ostty, you can enter the NOT operator by typing the word “not”, or by
typing a caret symbol (^) (Shift+6 on some keyboards).

Word Symbol Meaning

AND & The expression evaluates to true (Y) if and only if both
logical operands are true.

This operator can be used only in selection criteria.

OR | The expression evaluates to true (Y) if either logical
operand is true, or if both are true.

This operator can be used only in selection criteria.

NOT ¬ The expression evaluates to true (Y) if and only if the logical
operand is false (N).

This operator can be used in the conditions part of a rule as
well as in selection criteria.

The only permissible syntax for use with LIKE is:
WHERE NOT(fieldname LIKE 'value').
 TIBCO Object Service Broker Programming in Rules

92 | Chapter 8 Using Expressions and Operators
Assignment Operator

The rules language uses the equal sign (=) as the assignment operator.

Valid Assignments
The following chart shows which fields and values with the following semantic
data types can be assigned to each other. In each case, the semantic data type of
the result is the semantic data type of the left operand, unless the left operand is a
local variable. If the left operand is a local variable, the semantic data type of the
result is the semantic type of the right operand. Y indicates a valid operation.

Types of Assignment Statements
Use assignment statements to assign values to fields or to local variables. There
are two kinds of assignment statements:

• Simple assignment

• Assignment-by-name

Syntax of Assignment Statements
<assignment target> = <expression>

C
O

U
N

T

D
A

T
E

ID
E

N
T

IF
IE

R

L
O

G
IC

A
L

Q
U

A
N

T
IT

Y

S
T

R
IN

G

Ty
p

el
es

s

COUNT Y Y Y Y

DATE Y Y Y

IDENTIFIER Y Y Y Y

LOGICAL Y Y

QUANTITY Y Y Y

STRING Y Y Y Y Y Y

Typeless Y Y Y Y Y Y Y

An assignment of a string field to a date field can cause unexpected results if the
default date format of your installation contains a two-digit year, for example,
YYDDD or YYWW.
TIBCO Object Service Broker Programming in Rules

Assignment Operator | 93
<assign by name>

Simple Assignment of a Value
In simple assignment, a single value is assigned to a field of a table or to a local
variable.

Syntax

<assignment target> ::=
<field of a table>
<local name>

Examples

Two examples of simple assignment statements are:

CARS.PRICE = (PRICES.BASE + PRICES.SHIPPING)* TAXES.RETAIL;

AMOUNT = PRINCIPAL * (1 + INTEREST) ** YEARS;

Assigning Values by Name
In assignment-by-name, the field values of the table on the right are assigned to
identically named fields of the table on the left. The field names are replaced with
the asterisk symbol (*) for both the source and target tables.

Syntax

<table reference>.* =<table reference>.*

<table reference>.* = NULL

Example

INPUTORDERS.* = ORDERS.* ;
 TIBCO Object Service Broker Programming in Rules

94 | Chapter 8 Using Expressions and Operators
Assignment Relationship

One use of assignment-by-name assigns the values of fields of a screen table to
fields of a data table, or vice versa. The following illustrates the assignment
relationship between the screen fields in the screen table INPUTORDERS and the
fields in the ORDERS table, as viewed in a user’s application:

Initializing All the Fields of a Table

Assignment-by-name is a convenient way to initialize all the fields of a table. For
example:

ORDERS.* = NULL;

This statement initializes all the fields in the ORDERS table to null values.

TDS TableScreen Table

INPUTORDERS

partno
quantity

customer

store

STOCKROOM
on hand
on order
required to build
refurbish

COMMENTS
customer satisfaction rating for current week ______
previous week's rating _____
this month’s goal _____

ORDERS

partno
quantity
price

store
TIBCO Object Service Broker Programming in Rules

Indirect Referencing | 95
Indirect Referencing

Uses of Indirect Referencing
To facilitate the coding of generic rules and functions, the rules language permits
indirect referencing. You can refer indirectly to:

• Tables

• Fields

• Screens

• Reports

• Rules

You can use indirect references in the conditions or actions part of a rule.

Restrictions
You cannot use:

• Indirect references in the ON statement itself but you can use them in the
statements that form the body of the exception handler

• A local variable or return a value from a function to supply a value for an
indirect reference

Providing Values
Values for an indirect reference (that is, names of tables, fields, screens, reports, or
rules) are provided by:

• An argument to the rule that does the indirect referencing

• A reference to a table.field

The value you provide, either through an argument or in a table.field reference,
must have a semantic type of identifier or be typeless.
 TIBCO Object Service Broker Programming in Rules

96 | Chapter 8 Using Expressions and Operators
Using a Rule Argument for Indirect Referencing

Example of an Argument to a Rule
The COUNT rule in the following figure is a generic rule that determines the sum
of a field over all occurrences. The rule is general enough to sum any field of any
table (without parameters). The rule receives the name of the table in the
argument TABLEREF and it receives the name of the field in the argument
FIELDREF.

 RULE EDITOR ===> SCROLL: P
 COUNT(TABLEREF, FIELDREF);
 _ LOCAL SUM;
 _ ---
 _ --+--------------
 _ SUM = 0; | 1
 _ FORALL TABLEREF : | 2
 _ SUM = SUM +(TABLEREF).(FIELDREF); |
 _ END; |
 _ CALL MSGLOG('THE SUM OF ' || TABLEREF ||'.' || FIELDREF || | 3
 _ ' IS ' || SUM); |
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

About the Example

• The parentheses around the names TABLEREF and FIELDREF in the
assignment statement signify indirection.

• The FORALL statement loops over the table specified by the indirect table
reference (TABLEREF), and the action in the body of the loop involves the
field specified by the indirect field reference (FIELDREF).

• If the COUNT rule is called as:
CALL COUNT('EMPLOYEE_VIEW','SALARY');
TIBCO Object Service Broker Programming in Rules

Using a Rule Argument for Indirect Referencing | 97
The value of TABLEREF is EMPLOYEE_VIEW, and the value of FIELDREF is
SALARY. The called rule finds the sum of the salaries of all employees.

Use of Parentheses
Parentheses must enclose the indirect reference when one of the following occurs:

• A data element is referenced in an expression.

• The indirect reference is used on the left side of an assignment statement.

• The indirect reference represents the name of a field in a WHERE or
ORDERED clause.
 TIBCO Object Service Broker Programming in Rules

98 | Chapter 8 Using Expressions and Operators
Using Table.Field for Indirect Referencing

Examples of Table.Field
The following series of figures show:

1. An example of a rule that uses indirect referencing

2. The table.field form of indirect reference

The example in Reference to a Parameterized Table on page 102 generalizes
this rule for use with parameterized tables.

3. An example of a table instance used for indirect referencing

About the Examples

In the following examples:

1. When a PF key is used while viewing the DELETE_EMPLOYEE screen, the
screen name DELETE_EMPLOYEE is passed to the PROCESS_FCNKEY tool.

2. The occurrence for that PF key in the table instance
FCNKEYS(DELETE_EMPLOYEE) is then retrieved.

3. The CALL statement invokes the rule that corresponds to the PF key used.

Looking at the FCNKEYS(DELETE_EMPLOYEE) table instance, if you press
PF22 the DEL_EMP rule is invoked.
TIBCO Object Service Broker Programming in Rules

Using Table.Field for Indirect Referencing | 99
Calling a Rule that Uses Indirect Reference
The rule shown in the following figure initializes the function keys for the screen
DELETE_EMPLOYEE, displays the screen, and calls the PROCESS_FCNKEY rule,
which has screen as its argument.

 RULE EDITOR ===> SCROLL: P
 DELETE_EMPLOYEE;
 _
 _ ---
 _ --+--------------
 _ FCNKEY_SPECS.FCNKEYS = FCNKEY_MSG('DELETE_EMPLOYEE'); | 1
 _ INSERT FCNKEY_SPECS('DELETE_EMPLOYEE'); | 2
 _ UNTIL EXIT_DISPLAY DISPLAY DELETE_EMPLOYEE : | 3
 _ CALL PROCESS_FCNKEY('DELETE_EMPLOYEE'); |
 _ END; |
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
 TIBCO Object Service Broker Programming in Rules

100 | Chapter 8 Using Expressions and Operators
Table.Field Form of Indirect Reference
The PROCESS_FCNKEY tool is called to get the FCNKEYS table, which is
parameterized by screen, and then uses the table.field indirect reference in the
statement:CALL FCNKEYS.ROUTINE.

 RULE EDITOR ===> SCROLL: P
 PROCESS_FCNKEY(SCREEN);
 _
 _ ---
 _ --+--------------
 _ GET FCNKEYS(SCREEN) WHERE PF_KEY = ENTERKEY(SCREEN); | 1
 _ CALL FCNKEYS.ROUTINE; | 2
 _ ---
 _ ON GETFAIL FCNKEYS :
 _ CALL SCREENMSG(SCREEN, MESSAGE('GENERAL', 3, ENTERKEY(SCREEN)));

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

Using Table.Field for Indirect Referencing | 101
Example of a Table Instance Used for Indirect Referencing
The ROUTINE field in this table, FCNKEYS, contains the name of the rule to be
invoked when a PF key is used.

BROWSING TABLE : FCNKEYS(DELETE_EMPLOYEE)
COMMAND ==>
 SCROLL: P
 PF_KEY NAME COMMAND ROUTINE
 _ ----- ---------------- ---------------- ----------------
 _ PF1 HELP DISPLAY_HELP
 _ PF22 DELETE DEL_EMP
 _ PF3 EXIT EXIT_DISPLAY

 PFKEYS: 1=HELP 5=FIND NEXT 9=RECALL 18=EXCLUDE 13=PRINT 3=END 14=EXPAND
 TIBCO Object Service Broker Programming in Rules

102 | Chapter 8 Using Expressions and Operators
Reference to a Parameterized Table
To generalize the sample rule shown in Example of an Argument to a Rule on
page 96 to handle tables that have up to two parameters, or none at all, you can
expand the rule as shown in the following figure:

 RULE EDITOR ===> SCROLL: P
 COUNT1(TABLEREF, FIELDREF, PARM1, PARM2);
 _ LOCAL SUM;
 _ ---
 _ PARM1 = NULL; | Y N N
 _ PARM2 = NULL; | Y N
 _ --+--------------
 _ FORALL TABLEREF : | 1
 _ SUM = SUM +(TABLEREF).(FIELDREF); |
 _ END; |
 _ FORALL TABLEREF(PARM1) : | 1
 _ SUM = SUM +(TABLEREF).(FIELDREF); |
 _ END; |
 _ FORALL TABLEREF(PARM1, PARM2) : | 1
 _ SUM = SUM +(TABLEREF).(FIELDREF); |
 _ END; |
 _ CALL MSGLOG('THE SUM OF ' || TABLEREF ||'.' || FIELDREF || | 2 2 2
 _ ' IS ' || SUM); |
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

| 103
Chapter 9 Transaction Processing

This chapter describes how to use transactions.

Topics

• Overview, page 104

• What Starts a Transaction?, page 105

• Course of a Transaction, page 106

• Nesting Transactions, page 108

• Changing the Flow of a Transaction, page 109

• Setting the Mode of the Transaction, page 111

• Locks Taken on the Data, page 112
 TIBCO Object Service Broker Programming in Rules

104 | Chapter 9 Transaction Processing
Overview

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

The Objective of a Transaction
The objective of a transaction is to move the database from one consistent state to
another consistent state. This includes transactions that:

• Do not attempt to update the database

• Attempt to update the database, and during the course of the process,
determine that the updates are invalid

• Successfully update data

Example of a Transaction
An example of a transaction is adding an employee to the database. The business
rules for this type of transaction state that an employee must be assigned a valid
department number. Before committing the addition of the employee to the
database, the transaction must satisfy one of the following conditions:

1. Reference the department table to guarantee that the department number
assigned to the employee is valid

2. Not process the addition of the employee if the department number is invalid

3. Process the addition of the employee, if the department number is valid

Based upon the business rules under which it is operating, this transaction
guarantees that the database is in a consistent state upon completion of the
transaction.
TIBCO Object Service Broker Programming in Rules

What Starts a Transaction? | 105
What Starts a Transaction?

Transaction Statements
The following statements can be used within a rule to start a transaction. The
statement that you use determines what happens to an existing transaction when
the statement is issued.

For more information about these statements, refer to the SCHEDULE Statement
on page 53; also refer to Chapter 17, Processing Asynchronously in Batch Mode,
on page 191.

EXECUTE Starts a new transaction but does not end the current
transaction—the current transaction is suspended.

It is used to nest transactions.

TRANSFERCALL Ends the current transaction and begins a new one

DISPLAY &
TRANSFERCALL

Maintains all the data displayed for the screen and the
screen context, such as the displayed data, the cursor
position, the display attributes, but ends the current
transaction and begins a new one

SCHEDULE Maintains the current transaction and submits a batch
job or file that could start up a new Execution
Environment and session, and initiates a separate
batch transaction for processing in the new session.
 TIBCO Object Service Broker Programming in Rules

106 | Chapter 9 Transaction Processing
Course of a Transaction

The rules language statements encountered when the transaction is run
determine the specifics of what takes place during the course of a transaction. In
general, however, basic similarities exist in all transactions:

1. A synchronization point is established.

2. The transaction ends and a final synchronization point is established.

3. Locks are released.

Establishing Synchronization Points
TIBCO Object Service Broker creates implicit synchronization points at the
beginning and end of every transaction. You can also establish explicit
synchronization points within your transaction using COMMIT and ROLLBACK
statements.

• The COMMIT statement commits the changes to the database that were made
since the last synchronization point.

• The ROLLBACK statement discards pending changes and keeps the database
in the same state it was at as of the last synchronization point.

TIBCO Object Service Broker automatically commits all changes made since the
last synchronization point when the transaction terminates normally and discards
all pending changes made after the last synchronization point when the
transaction terminates abnormally.

Actions within Synchronization Points
When a synchronizing point is established, the following actions could take place,
depending on the coding of the transaction:

• Data is retrieved.

• Locks are taken on the definitions and depending on the mode, on the data.

• Updates are made to the data.

• Explicit synchronization points are processed.

Fail Safe processing ensures that the updates made to multiple databases in a
single transaction are synchronized at all times.
TIBCO Object Service Broker Programming in Rules

Course of a Transaction | 107
See Also Managing Backup and Recovery for your operating environment about Fail Safe
processing.
 TIBCO Object Service Broker Programming in Rules

108 | Chapter 9 Transaction Processing
Nesting Transactions

How are Transactions Nested?
When you EXECUTE a rule from within a current transaction, it suspends the
current transaction—known as the parent transaction—and starts a child
transaction. The transactions are now nested.

Behavior of Nested Transactions
When a transaction is nested, the following occurs:

• A child transaction starts a new transaction level.

• At the completion of the child transaction, control passes back to the parent
transaction.

A parent transaction can handle failures of a child transaction with the
EXECUTEFAIL exception.

What Determines the Transaction Level?
The first transaction started in a user session starts at transaction level one. The
session parameter TRANMAXNUM determines the maximum number of
transactions that can be nested for a user session.

Finding the Name of a Rule in a Transaction
You can use the $RULENAME shareable tool to find out the name of a rule in the
current transaction or in a parent transaction.

See Also TIBCO Object Service Broker Parameters about session parameters.

TIBCO Object Service Broker Shareable Tools about the $RULENAME tool.
TIBCO Object Service Broker Programming in Rules

Changing the Flow of a Transaction | 109
Changing the Flow of a Transaction

From within a transaction you can change the flow of a transaction. The following
series of diagrams illustrate how the flow changes from transaction to transaction
depending upon the statements that you use.

Starting a New Transaction
The following diagram shows Transaction 1 issuing a TRANSFERCALL
statement to start Transaction 2 as a new transaction.

Starting a New Nested Transaction
The following diagram shows the flow of nested transactions. In this diagram,
Transaction 1 is the parent of Transaction 2 (child), and Transaction 2 is the parent
of Transaction 3 (child). The numbered arrows indicate the sequence of actions
from one transaction to another.

CALL RULE1; CALL RULE3;

TRANSFERCALL RULE2; CALL RULE4;

Transaction 1 Transaction 2

STARTRULE; RULE2;

parent parent & child child

CALL RULE4;

CALL RULE5;

CALL RULE1; EXECUTE RULE3;

EXECUTE RULE2; CALL RULE6;

CALL RULE7;

Transaction 1 Transaction 2 Transaction 3

STARTRULE; RULE2; RULE3;

1

2

34
 TIBCO Object Service Broker Programming in Rules

110 | Chapter 9 Transaction Processing
Starting a New Transaction Within a Nested Transaction
The following diagram shows the flow of a nested transaction that also starts a
new transaction using a TRANSFERCALL statement. In this diagram Transaction
1 is the parent of Transaction 2 (child), and Transaction 2 is the parent of both
Transaction 3 (child) and Transaction 4 (child). The numbered arrows indicate the
sequence of actions from one transaction to another.

Starting a Batch Transaction
The following diagram shows a scheduled batch transaction. Transaction 2 can
run at any time and Transaction 1 continues to run with control passing to RULE3
after the SCHEDULE statement is issued. RULE3 does not wait for RULE2 to start
and complete.

parent parent & child child child

TRANSFERCALL RULE4;CALL RULE1; EXECUTE RULE3;

EXECUTE RULE2; CALL RULE7; CALL RULE6;

CALL RULE8;

CALL RULE5;

Transaction 1 Transaction 2 Transaction 3 Transaction 4

STARTRULE; RULE2; RULE3; RULE4;

1

2 3

4
5

CALL RULE1; CALL RULEA;

SCHEDULE RULE2; CALL RULEB;

CALL RULE3;

Transaction 1 Transaction 2

STARTRULE; RULE2;
TIBCO Object Service Broker Programming in Rules

Setting the Mode of the Transaction | 111
Setting the Mode of the Transaction

How Do You Set The Mode?
Use the IN clause to specify whether the transaction should be operating in
browse or update mode. You can freely intermingle browse and update mode
transactions. Unless it is explicitly set, a transaction inherits its mode from the
transaction that initiated it1.

Example

The following statement starts a transaction in browse mode:
TRANSFERCALL IN BROWSE FIND_DEPT;

In this example, no updates can be made to the persistent data used by the
transaction FIND_DEPT.

Mode Determines Locks on Data
The mode determines the locks taken on TDS data only. Locks taken on external
data are governed by the external database. Locks on table definitions are always
taken regardless of the mode. For more information about locking, refer to Locks
Taken on the Data on page 112.

Exception Raised
If an attempt is made to update data that is persistent while executing in browse
mode, the ACCESSFAIL exception is raised. For more information about
exceptions, refer to Chapter 6, Exception Handling, on page 59. However, within
a transaction executing in browse mode, you can update tables with temporary
data (TEM, SCR, RPT, and SES tables) and EXP files.

See Also TIBCO Object Service Broker Managing Data and TIBCO Object Service Broker
Managing External Data about TIBCO Object Service Broker and external data
tables.

TIBCO Object Service Broker Parameters about session parameters.

1. The session parameters BROWSE and NOBROWSE determine the mode of the
first transaction started in TIBCO Object Service Broker.
 TIBCO Object Service Broker Programming in Rules

112 | Chapter 9 Transaction Processing
Locks Taken on the Data

What Determines the Type of Locking?
The types of accesses that your transaction makes to your data and the mode in
which your transaction operates determine the types and levels of locks that are
taken on the tables you are accessing. Locks on data are taken only if the
transaction is operating in update mode. Locks on table definitions are always
taken, regardless of mode.

Types of Locks
A lock is either a shared lock or an exclusive lock, as follows:

Exception Handling
You can use the LOCKFAIL exception to handle situations where you are unable
to obtain a lock. For example, the transaction can require an exclusive lock but
another transaction is holding a shared lock. Refer to Chapter 6, Exception
Handling, on page 59 for more information about exceptions.

Locking behavior can also be modified using the WITH MINLOCK modifier for
the GET statement in the rules language. For details, see GET Statement on
page 45.

Shared The definition of the table cannot be modified but other
transactions operating in update mode can read the data.

Exclusive The definition of the table cannot be modified and other
transactions cannot read or modify the data.
TIBCO Object Service Broker Programming in Rules

Locks Taken on the Data | 113
Data Accesses and Types of Locking
The following table describes the locks taken depending on your data access:

Type of Access Mode of
Transaction

Type of
Lock Level of Lock

GET or FORALL Browse Shared Table definition only.

GET or FORALL using unique (that
is, equality) selection on the primary
key fields, for example:
GET EMPLOYEES where
EMPNO=79912;

GET TESTDATA where PKF1=A &
PKF2=B;

Update Shared Table definition.

Occurrence.

GET or FORALL using non-unique
selection, for example:
FORALL EMPLOYEES ordered
EMPNO:

GET EMPLOYEES where
EMPNO>79912;

FORALL EMPLOYEES:

Update Shared Table definition.

Table instance (if
parameterized).

Table (if not parameterized).

GET using non-unique Selection and
WITH MINLOCK, for example:
FORALL EMPLOYEES WHERE
SALARY<100000 WITH MINLOCK:

Update Shared Table definition.

If parameterized: Table
instance during GET
processing, Occurrence
thereafter.

If non-parameterized: Table
during GET processing,
Occurrence thereafter.

DELETE, INSERT, REPLACE Update Shared Table definition.

Upgrade
shared to
exclusive

Occurrence.

Viewing the table definition Browse
and/or
update

Shared Table definition.
 TIBCO Object Service Broker Programming in Rules

114 | Chapter 9 Transaction Processing
See Also TIBCO Service Gateway manuals about table locking as it relates to external
databases.

TIBCO Object Service Broker Managing Data about TIBCO Object Service Broker
tables and table types.

Updating the table definition Update Exclusive Table definition.

Building a secondary index Update Shared Table definition.

Table instance (if
parameterized).

Table (if not parameterized).

Browsing a CLC (calculation) table
(read access on the underlying table)

Browse Shared Source table definition.

Accessing a CLC (calculation) table Update Shared Source table data.

Source table instance (if
parameterized).

Accessing a SUB (subview) table
defined with MODE=D

 Update Shared Source table definition.

Table definition.

Table instance (if
parameterized).

Table (if not parameterized).

Occurrence.

Accessing a SUB (subview) table
defined with MODE=B

 Browse Shared Source table definition.

Table definition.

Type of Access Mode of
Transaction

Type of
Lock Level of Lock
TIBCO Object Service Broker Programming in Rules

| 115
Chapter 10 Conditional Processing

This chapter describes how to use conditional processing.

Topics

• TIBCO Object Service Broker Conditional Processing, page 116

• Examples of Conditions, page 118
 TIBCO Object Service Broker Programming in Rules

116 | Chapter 10 Conditional Processing
TIBCO Object Service Broker Conditional Processing

What is Conditional Processing?
In TIBCO Object Service Broker, you use conditional processing to determine
whether a given expression is true or false. Based on the result, you control which
action statements in the rule are subsequently executed.

Uses of Conditional Processing

Using conditional processing you can, for example:

• Use a relational operator to determine the actions to be performed by a rule.

In conditions with relational comparisons, only one comparison is permitted
per condition. For a complete list of comparisons that you can make in
conditions, refer to Comparison Operators on page 88.

• Use a Y or N value passed in from a calling rule to determine the actions to be
performed by a rule.

The value can be passed in as an argument value in the calling rule; or a local
variable value passed in from a rule higher up in the calling hierarchy.

• Use the value of a field of type logical using a table.field reference to determine
the actions to be performed.

The value must be passed in from a rule higher up in the calling hierarchy.

• Code a functional rule to return a logical value.

If you want to provide conditional processing, you can specify conditions to your
rule in the conditions section of the rule.

What are Conditions?
Conditions are logical expressions evaluated sequentially for their truth value.
The sequencing of actions following this evaluation is regulated by the Y/N
quadrant and the action numbers that are specified for the rules statements. If one
of the conditions is satisfied, the actions corresponding to it are executed and no
further conditions are evaluated. If no conditions are given, all the numbered
action statements in the body of the rule are executed.
TIBCO Object Service Broker Programming in Rules

TIBCO Object Service Broker Conditional Processing | 117
Example of a Condition Segment and Associated Actions

The following example shows the condition segment containing an expression
and the action segment showing the first action to take place based on the values
determined by the Y/N quadrant:

 _ --+--------------
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE='ANALYST'; | Y N
 _ --+--------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 - RATE = 0.002; | 1

Adding Conditions
To add conditions, type an I into the line command field of the condition section
and press Enter to insert a line. Add each condition, ending each one with a
semicolon(;).

This part of the rule also contains the Y/N quadrant, which contains values that
associate conditions with actions. The Rule Editor manages the Y/N quadrant;
you cannot edit it.

Maximum Number of Conditions

You can have up to six conditions in a rule.
 TIBCO Object Service Broker Programming in Rules

118 | Chapter 10 Conditional Processing
Examples of Conditions

Types of Examples
The following are examples of conditions as:

• An expression

• An argument to a rule

• A table.field reference

• A functional rule

Expression as a Condition
In the following example:

• Actions under the Y column are performed only when the argument DEPT
has a value greater than 0.

• Actions under the N column are performed only when the DEPT is less than
or equal to 0.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEE_COUNT(DEPT);
 _ LOCAL COUNT;
 _ ---
 _ DEPT > 0; | Y N
 _ --+--------------
 _ COUNT = 0; | 1 1
 _ FORALL EMPLOYEES WHERE REGION = 'MIDWEST' & DEPTNO = DEPT | 2
 _ ORDERED DESCENDING LNAME : |
 _ CALL MSGLOG(EMPLOYEES.LNAME); |
 _ COUNT = COUNT + 1; |
 _ END; |
 _ CALL ENDMSG(COUNT || ' EMPLOYEES IN DEPARTMENT# ' || DEPT) | 3 2
 _ ; |
 _ ---
 _ ON CONVERSION:
 _ CALL ENDMSG('Value for DEPT must be numeric');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

Examples of Conditions | 119
Argument as a Condition
In the following example, actions under the Y column are performed only when
the argument NEW has a value of Y. If the value is N, actions under the N column
are performed.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEE_UPDATE(NEW);
 _
 _ ---
 _ NEW ; | Y N
 _ --+--------------
 _ CALL ENDMSG('NEW EMPLOYEE'); | 1
 _ CALL ENDMSG('EXISTING EMPLOYEE'); | 1
 _---+--------------

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

table.field as a Condition
In the following example:

1. GET_EXEMPT1 retrieves an occurrence from the MANAGER table.

2. GET_EXEMPT calls GET_EXEMPT2.

3. GET_EXEMPT2 evaluates the MANAGER.EXEMPT field for its Y/N value.

When using an argument as a condition, any character value passed into the
argument other than Y is evaluated as if it is N. An error occurs if a numeric value
is passed in.
 TIBCO Object Service Broker Programming in Rules

120 | Chapter 10 Conditional Processing
4. GET_EXEMPT2 is processed based on the value in the EXEMPT field.

 RULE EDITOR ===> SCROLL: P
 GET_EXEMPT1(NAME);
 _
 _ ---
 _ ---+--------------
 _ GET MANAGER WHERE MANAGER_NAME = NAME; | 1
 _ CALL GET_EXEMPT2(NAME); | 2
 _ --
 _ ON GETFAIL :
 _ CALL ENDMSG(NAME || ' IS AN INVALID NAME');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

 RULE EDITOR ===> SCROLL: P
 GET_EXEMPT2(NAME);
 _
 _ ---
 _ MANAGER.EXEMPT; | Y N
 _ ---+---------------
 _ CALL ENDMSG(NAME || ' IS EXEMPT'); | 1
 _ CALL ENDMSG(NAME || ' IS NOT EXEMPT'); | 1
 _--

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

Examples of Conditions | 121
Functional Rule as a Condition
To handle more complicated situations, you can invoke a functional rule as a
condition. The following rule illustrates the use of a function, in this case the
PATTERN_MATCH tool. In the example:

• The rule checks to see if the commands SELECT or DELETE, or an abbreviation
of these commands, such as SEL or DEL, are valid.

• If the command is a valid SELECT or DELETE command, the appropriate rule
is called.

• If the command is not valid, the user gets a message on the screen explaining
that the command is not acceptable. The following illustrates a rule using
PATTERN_MATCH:

 RULE EDITOR ===> SCROLL: P
 PROCESS_CMD(USER_COMMAND);
 _
 _ ---
 _ PATTERN_MATCH(COMMAND, 's*'); | Y N N
 _ PATTERN_MATCH(COMMAND, 'd*'); | Y N
 _ --+--------------
 _ CALL SELECT_COMMAND; | 1
 _ CALL DELETE_COMMAND; | 1
 _ CALL SCREENMSG(USERCOMMAND ||' IS AN INVALID COMMAND'); | 1
 _---+--------------

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Normally, if you have several commands, you would store them in a table and
use LIKE as your selection operator.

When using a functional rule as a condition, any character value returned other
than Y is evaluated as if it is N. An error occurs if the functional rule returns a
numeric value.
 TIBCO Object Service Broker Programming in Rules

122 | Chapter 10 Conditional Processing
TIBCO Object Service Broker Programming in Rules

| 123
Chapter 11 Null Processing

This chapter describes how to use null processing.

Topics

• TIBCO Object Service Broker Nulls, page 124

• Manipulation of Nulls, page 125

• Behavior of Nulls, page 126
 TIBCO Object Service Broker Programming in Rules

124 | Chapter 11 Null Processing
TIBCO Object Service Broker Nulls

What is a Null Value?
A null represents data of no value. A null value occurs because no data exists in a
field, or data of no value is explicitly assigned to a field. In TIBCO Object Service
Broker, null has a value less than any other value.

Syntax and Behavior of Nulls
As with all other types of data, a null can assume either a character or numeric
syntax. A field that is defined with a syntax of C, UN, V, or W holds a character
null. A field that is defined with a syntax of B, P, or F holds a numeric null. The
behavior of nulls is determined by their syntax and whether the data is character
or numeric. A null field of syntax RD can act as either one.

The syntax within which a null is being used determines how the null value is
processed:

• When a null is represented by character syntaxes (C, UN, V, or W), its
behavior is identical to an empty string ('').

• When a null is represented by numeric syntaxes (B, P, or F), its behavior is
different from any other numeric value.

• When an RD null is used as a character syntax, it acts as a character null; when
it is used as a number syntax, it acts as a numeric null.

In TIBCO Object Service Broker, the keyword NULL represents a null value of
syntax B.

How Can A Field Contain Null Values?
There are three ways that a field can contain a null value:

• An occurrence is inserted into a table, no assignment is made to the field, and
no default value is specified.

• An occurrence is inserted or replaced into a table and the field is assigned the
keyword NULL or an empty string ('') and no default value is specified.

• A new field is added to a table that already contains data. All occurrences for
this new field contain null values.
TIBCO Object Service Broker Programming in Rules

Manipulation of Nulls | 125
Manipulation of Nulls

Allowable Manipulation
Nulls can only be manipulated logically. They cannot be manipulated
arithmetically. Attempts to add, subtract, multiply, divide, and so on, result in the
NULLVALUE exception.

Logical Manipulation
Nulls can be manipulated through the use of the reserved word NULL, which
represents a null value. The following table describes where the keyword NULL
can be used and the syntax that each context requires:

Restrictions
The reserved word NULL cannot be used:

• As an operand in an expression. For example: NULL+1, or NULL ||'text'

• To replace the empty string for an argument when a rule is executed from the
workbench

Allowable Usage Syntax

Rule condition. <expression> < relational operator> < expression>

Assignment. <assignment target> = <NULL>

Passing rules arguments by
name.

<argument> = <NULL>

Function return. return (<NULL>)

Selection. <field or parameter name> <relational operator>
<expression>

Passing rules arguments by
position.

(<NULL> {, expression})

Initialize all fields of an
occurrence.

<table reference>.*=NULL
 TIBCO Object Service Broker Programming in Rules

126 | Chapter 11 Null Processing
Behavior of Nulls

The context in which a null is used determines its behavior. The following
sections describe the behavior of a null depending on its context.

Conversion
TIBCO Object Service Broker provides automatic conversion from one syntax to
another when required:

Assignment
When an assignment is made to a field, the value being assigned is converted to
the syntax of the field. When an assignment of a null is made to a local variable,
the type and syntax of the local variable becomes the same as the value being
assigned to it:

 Value Converted To Result

Numeric null Character syntax (C,
UN, V, or W)

Empty string ('')

Character null or empty string ('') Numeric syntax (B, P,
or F)

Zero (0)

RD null Character syntax (C,
UN, V, or W)

Empty string ('')

RD null Numeric syntax (B, P,
or F)

Numeric null

Character null or empty string
(''), and numeric null

RD syntax RD null

Assigned Value Assigned To Result

Character null or empty string ('') Character field Empty string ('')

Character null or empty string ('') Date field Numeric null

Character null or empty string ('') Local variable Empty string ('')

Character null or empty string ('') Numeric field Zero (0)
TIBCO Object Service Broker Programming in Rules

Behavior of Nulls | 127
Table Parameters
When a parameter of a table is specified, the value provided is converted to the
syntax of the parameter:

Numeric null Character field Empty string ('')

Numeric null Date field Numeric null

Numeric null Local variable Numeric null

Numeric null Numeric field Numeric null

RD null Character field Empty String ('')

RD null Date field Numeric null

RD null Local variable RD null

RD null Numeric field Numeric null

Assigned Value Assigned To Result

Specified Value Parameter Syntax Result

Character null Character syntax Empty string ('')

This is an invalid value and the
DATAREFERENCE exception is raised.

Numeric null Numeric syntax Numeric null

This is an invalid value and the
DATAREFERENCE exception is raised.

Empty string ('') Numeric syntax Zero (0)

RD null Character syntax Empty string ('')

This is an invalid value and the
DATAREFERENCE exception is raised.

RD null Numeric syntax Numeric null

This is an invalid value and the
DATAREFERENCE exception is raised.
 TIBCO Object Service Broker Programming in Rules

128 | Chapter 11 Null Processing
Rules Arguments
When a null value is passed to the argument of a rule, the type and syntax of the
argument becomes the same as the null value being passed:

Routine Arguments
When a value is passed to the argument of a TIBCO Object Service Broker routine
(a tool written in non-rules code), it is converted to the syntax of the formal
argument:

Expressions
Expressions in TIBCO Object Service Broker are evaluated at two different points:
when a selection is encountered (for example, field1 = *.field2 + 40), and
when the rule is being executed.

Passed Value Result

Character null Character syntax

Numeric null Numeric syntax

RD null RD syntax

Passed Value Syntax of the Formal
Argument Result

Numeric null Character syntax Empty string ('')

Numeric null Numeric syntax NULLVALUE exception raised

Empty string ('') Numeric syntax Zero (0)

RD null Character syntax Empty string ('')

RD null Numeric syntax NULLVALUE exception raised

Evaluation Point Operation Result

Selection Arithmetic on a
numeric null or RD
null.

The current occurrence is
discarded and evaluation of
other occurrences continues.
TIBCO Object Service Broker Programming in Rules

Behavior of Nulls | 129
Relational Expressions
The following relational expressions involving null are true:

The relational expressions that use the form:

<expression> <relational operator> <expression>

can appear in a rules condition, or as part of selection within a WHERE clause.
Within selection, an empty string can be passed into selection statements that use
the LIKE operator.

Execution Arithmetic on a
numeric null or RD
null.

NULLVALUE exception raised.

Selection or
execution

Arithmetic on a
character null.

Zero (0).

Selection or
execution

Concatenation on a
numeric null or RD
null.

Empty string ('').

Evaluation Point Operation Result

Left Operand Value Operator Right Operand Value

Numeric null. = Numeric null.

Numeric null. = Empty string ('').

Numeric null. < Any non-null value.

Character null. = Empty string ('').

Character null. = Zero (0).

RD null. = RD null.

RD null. = Character null.

RD null. = Numeric null.

RD null. < Any non-null value.
 TIBCO Object Service Broker Programming in Rules

130 | Chapter 11 Null Processing
Ordering
For the purpose of ordering, null is considered to be less than any value.
Occurrences with a null field appear first when they are ORDERED ASCENDING
on that field.

Primary and Secondary Keys
A primary key field cannot contain a null value. Nulls are permitted for
secondary key fields that have a character semantic type.

Required Fields
In general, fields that are defined as required cannot contain null values. An
INSERT results in an INSERTFAIL exception and a REPLACE results in a
REPLACEFAIL exception.

When a populated table has its definition modified, exceptions can arise as a
result of:

• Adding a new field that is defined as required

• Making a previously non-required field required

Subsequent updates to the table cause the appropriate exceptions to be raised.

Key Type Null Key Result

Primary key INSERT results in the INSERTFAIL exception.

REPLACE results in the REPLACEFAIL exception.

Insertion of a null primary key value to an IDgen table is
allowed.

Secondary key Numeric null is not allowed.
TIBCO Object Service Broker Programming in Rules

Behavior of Nulls | 131
Default Values
Default values replace assigned null values. Fields that have a default value
specified and no assignment made to them, or that are assigned a null value, have
the default value assigned to them immediately before an occurrence insertion or
replacement.

Unassigned Fields
An unassigned field can be referenced by giving it a reference value of null.

Indirect Names
Nulls are not allowed as values for an indirect reference. If, during processing, an
indirect reference evaluates to a null value, the transaction terminates and an
ERROR exception is raised. The exception is trapped with ON ERROR.

Initialization of Local Variables
When a local variable is allocated, its initial value is an empty string ('').

Field Assignment Before an INSERT or
REPLACE

Default value
specified.

No assignment made. Default value assigned.

Default value
specified.

Assigned to a null
value.

Null value replaced by
the default value.

Example Resulting Action

LOCAL1=table.field; UNASSIGNED exception is raised.

table.field=NULL;

LOCAL1=table.field;

The value is passed and no exception is raised.
 TIBCO Object Service Broker Programming in Rules

132 | Chapter 11 Null Processing
TIBCO Object Service Broker Programming in Rules

| 133
Chapter 12 Arithmetic Processing

This chapter describes how to use arithmetic processing.

Topics

• Overview, page 134

• Strings as Operands, page 136

• Permissible Operations, page 137

• Resultant Syntax from Arithmetic Operations, page 138
 TIBCO Object Service Broker Programming in Rules

134 | Chapter 12 Arithmetic Processing
Overview

What are the Arithmetic Operators?
The arithmetic operators and their symbols are:

• Addition (+)

• Subtraction (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Permitted Syntaxes for Arithmetic Operations
You can perform arithmetic operations with any of the syntax types, provided the
semantic data type permits it. Refer to Permissible Operations on page 137 for
further information. Arithmetic operations are performed on the following syntax
types:

• Binary (B)

• Floating point (F)

• Packed decimal (P)

Formatting Numeric Results

You can format the numeric result with a display mask using the $PIC tool.

Conversion of Strings
Data is converted to a numeric data type before the arithmetic operation when the
syntax is one of the following:

• Fixed-length character string (C)

• Raw data (RD)

• Unicode (UN)

• Variable-length character string (V)
TIBCO Object Service Broker Programming in Rules

Overview | 135
• Double-byte and single-byte character string (W)

See Also TIBCO Object Service Broker Shareable Tools about the $PIC tool.

• Arithmetic involving an RD field is allowed only if the fields semantic data
type is typeless and if the other field in the operation is not also an RD field.

• Arithmetic involving an RD field that contains non-numeric data uses the
numeric value of that data; for example, an operation with an RD field that is
equal to “A” (R'C1') in combination with a field of syntax B would use the
decimal value -63.
 TIBCO Object Service Broker Programming in Rules

136 | Chapter 12 Arithmetic Processing
Strings as Operands

Converting Strings to Numeric Syntax
If an operand is of syntax C, UN, V, or W, the string is converted to a numeric
syntax based on the value of the string. TIBCO Object Service Broker applies the
following conversion rules to string data used in arithmetic operations:

• Binary is assigned for a string that is all digits.

• Packed decimal is assigned if the string contains a period (.).

• Floating point is assigned if the string has a numeric to the right and left of an
exponent sign (E). An optional period (.) is also allowed before the exponent
sign.

If a binary or packed field cannot hold the value, float is used.

If one operand of an arithmetic operation is of syntax RD, it is converted to the
syntax of the other operand prior to the operation. Arithmetic operations are not
permitted between two RD operands.

Conversion of Numbers to Strings
When a number is converted to a variable length string, non-significant zeros are
removed. For example:

The number Becomes…

00010 10

040.0170 40.017

00500.0200E-013 a

a. This can also be expressed as 00500.0200e-013.

500.02E-13
TIBCO Object Service Broker Programming in Rules

Permissible Operations | 137
Permissible Operations

The following charts show the arithmetic operations that can be performed and
the result returned. The empty square symbol (❐) indicates that the operation is
invalid.

Addition (+) Operator

Subtraction (-) Operator

Multiplication, Division, and Exponentiation (*, /, **) Operators

COUNT DATE QUANTITY Typeless

COUNT Count Date
(if COUNT is
binary)

❐ Count

DATE Date
(if COUNT is
binary)

❐ ❐ Date

QUANTITY ❐ ❐ Quantity Quantity

Typeless Count Date Quantity Typeless

COUNT DATE QUANTITY Typeless

COUNT Count ❐ ❐ Count

DATE Date Count ❐ Date

QUANTITY ❐ ❐ Quantity Quantity

Typeless Count ❐ Quantity Typeless

COUNT QUANTITY Typeless

COUNT Count Quantity Count

QUANTITY Quantity Quantity Quantity

Typeless Count Quantity Typeless

These operations are subject to the syntax restrictions of the operation result. For
example, the following is invalid: the addition of a DATE and a packed COUNT
gives a packed result, while the intended result is a date, which must be binary.
Refer to the table in Resultant Syntax from Arithmetic Operations on page 138.
 TIBCO Object Service Broker Programming in Rules

138 | Chapter 12 Arithmetic Processing
Resultant Syntax from Arithmetic Operations

The following table describes the syntax that results when operations are
performed on numeric fields with a variety of syntax types. Where the number of
decimal places or the length of the result can vary, more information is given for
each arithmetic operation.

Resultant Syntax

Table Key

The values for the table are as follows:

If an arithmetic operation causes an overflow, the computation is attempted in
floating point syntax.

1st
Operator
Syntax

2nd
Operator
Syntax

Result
Syntax

 Decimal Places or Length of Result for:

 + and or - * / **

B(L1) B(L2) B(4)

B(L1) P(L2,D2) P(16,D) D=D2 D=D2 D=DMAX D=DMAX

B(L1) F(L2) F(L2)

P(L1,D1) B(L2) P(16,D) D=D1 D=D1 D=DMAX D=DMAX

P(L1,D1) P(L2,D2) P(16,D) D=MIN(MAX(D1,
D2), DMAX))

D=MIN(D1+
D2, DMAX)

D=DMAX

P(L1,D1) F(L2) F(L2)

F(L1) B(L2) F(L1)

F(L1) P(L2,D2) F(L1) L=L1 L=L1 L=L1 L=L1

F(L1) F(L2) F(L) L=MIN(L1,L2) L=MIN(L1, L2) L=MIN(L1,L2) L=MIN(L1,L2)

D Number of decimal places in the result.

DMAX Maximum number of decimal places that the result can hold without
overflowing the integer portion.
TIBCO Object Service Broker Programming in Rules

Resultant Syntax from Arithmetic Operations | 139
D1 Number of decimal places in the first operand.

D2 Number of decimal places in the second operand.

L Length of the result.

L1 Length of the first operand.

L2 Length of the second operand.

OP2 Value of the second operand.
 TIBCO Object Service Broker Programming in Rules

140 | Chapter 12 Arithmetic Processing
TIBCO Object Service Broker Programming in Rules

| 141
Chapter 13 Using Rules Libraries

This chapter describes how to use rules libraries.

Topics

• Organization of Rules Libraries, page 142

• Changing Local Libraries, page 145

• Defining a Library, page 147
 TIBCO Object Service Broker Programming in Rules

142 | Chapter 13 Using Rules Libraries
Organization of Rules Libraries

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

Overview
Before using the Rule Editor, you must understand the organization and usage of
TIBCO Object Service Broker rules libraries. Rules that you create and edit are
placed in the local library that you are currently accessing. Rules that you are
executing can be obtained from a number of different libraries.

Types of Rules Libraries
TIBCO Object Service Broker stores rules in a three-tiered library system. The
three tiers are:

• Local libraries

• Installation library

• System library

Local Libraries

Your local library contains rules you created, copied, or modified for your own
use. Your default local library for use during your session is defined as part of
your session options. You can also define additional local libraries using the
DEFINE_LIBRARY tool. Refer to Defining a Library on page 147 for more
information.

Provided you have the proper access, you can access local libraries other than
your default. Refer to Changing Local Libraries on page 145 for more information.
TIBCO Object Service Broker Programming in Rules

Organization of Rules Libraries | 143
Installation Library

The installation library contains rules available to all users of a particular TIBCO
Object Service Broker installation. The content of this library is controlled by the
TIBCO Object Service Broker system administrator. It is usually called SITE.

System Library

The system library contains rules shipped as part of the TIBCO Object Service
Broker system. It is usually called COMMON.

Viewing the Listing of Libraries
To view the listing of libraries, position your cursor on the option:

DL define library ==>

and press Enter. A screen similar to the following appears:

 List of Defined Libraries
 Command ==> Scroll P

 NAME AUTHOR SUMMARY*
 -------- -------- --
 _ AABB00 AAA000 HOME library of AAA000
 _ AATEST AAA000 Test library of AAA000
 _ BBAA00 BBB000 HOME library of BBB000
 _ BBTEST BBB000 Test library of BBB000
 _ DOCSAMP USR40 Library of sample rules for doc
 _ DOCTOOLS USR40 Library of sample rules for tools

 D-Delete S-Select
 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL
 TIBCO Object Service Broker Programming in Rules

144 | Chapter 13 Using Rules Libraries
Available Commands

Changing the Search Path for Rules Execution
The search path used for your rules execution is determined by the Search
specification in your user profile, your session options, or the menu definition
used to list the rule. TIBCO Object Service Broker provides the following default
search order: your local library is searched first, followed by the installation
library, followed by the system library. You can change the search order used for
your session as required. The first rule encountered with the appropriate rule
name is executed.

See Also TIBCO Object Service Broker Managing Security, TIBCO Object Service Broker
Parameters, and TIBCO Object Service Broker Defining Screens and Menus about
changing the search order for rules execution.

TIBCO Object Service Broker Managing Security about defining user profiles.

 D Deletes a library from the system.

You are prompted to confirm the deletion.

 S Displays a listing of all the rules contained in the selected library.
TIBCO Object Service Broker Programming in Rules

Changing Local Libraries | 145
Changing Local Libraries

Login Library
The default or login library that you access when you log in to TIBCO Object
Service Broker is normally the local library assigned to your user ID. The name of
your login library is shown in the Library field at the top of the workbench.

Modifying Your Login Library

You can modify the login library that you use via:

• Your user profile

• Command line arguments to the osBatch and S6BBATCH utilities

• Your session options

Accessing a Different Local Library
If you require rules from a different local library after starting a session, type the
name of the library where the rules are stored in the Library field of the
workbench. For example, you can change from the local library USR40 to the local
library EXAMP by overtyping USR40 with EXAMP. Changing the library name
changes the local library you are accessing. The change stays in effect until you
enter a different name in the Library field, or until you exit from TIBCO Object
Service Broker.

Copying a Rule to a Different Library
Using the workbench or rules, you can copy a rule from one library to another. To
copy a rule using the workbench, do one of the following:

• Position your cursor on the menu option CD copy defn and press Enter

This invokes the COPYDEFN tool. You can use this tool to copy one or more
rules to a library on your local node or to a remote node.

You must have security access to the local library to access rules stored within it.
To determine who owns a library, use the Define Library option from the
workbench.
 TIBCO Object Service Broker Programming in Rules

146 | Chapter 13 Using Rules Libraries
• Use the C line command from within the Object Manager screen of the Rule
Editor.

From the displayed screen, type the name of the library you want the rule to
be copied to in the DEST_LIB field and the name you want the rule to be
called in the DEST_RULE field.

You can also call or execute the COPY_DEFN tool. As with the COPYDEFN tool,
you can copy one or more rules to a library on your local node or to a remote
node.

See Also TIBCO Object Service Broker Managing Security about your user profile and about
security accesses.

TIBCO Object Service Broker Parameters about specifying session options.

TIBCO Object Service Broker for z/OS External Environments about using
S6BBATCH.

TIBCO Object Service Broker for Open Systems Utilities about using osBatch.

TIBCO Object Service Broker Shareable Tools about the copy definition tools,
COPY_DEFN and COPYDEFN.
TIBCO Object Service Broker Programming in Rules

Defining a Library | 147
 Defining a Library

Steps to Define a Library:
To define a rules library, complete the following steps from the workbench:

1. Position your cursor on the option DL define library or type
DEFINE_LIBRARY in the EX execute rule option, and press Enter.

2. Type in the name of a new library, and press Enter.

3. Enter relevant information into the Description screen.

4. Press PF3 to save the definition.

Example Definition
The example:

DL define library ==> EXAMP

displays the following screen:

 DESCRIPTION OF LIBRARY EXAMP UNIT=DOCSAMP

 MODIFIED ON BY CREATED ON 23 MAR 1998 BY USR40

 KEYWORDS:
 SUMMARY :

 DESCRIPTION
 _ --
 _
 _

 PFKEYS: 3=END 5=VIEW DOCUMENT 13=PRINT 12=EXIT
 TIBCO Object Service Broker Programming in Rules

148 | Chapter 13 Using Rules Libraries
Available PF Keys

Providing the Description for a Rules Library
The Library Definer updates some of the fields on the Library Definer screen, but
you maintain the KEYWORDS, SUMMARY, and DESCRIPTION fields. You can
specify the following information in the KEYWORDS, SUMMARY, and
DESCRIPTION fields:

See Also TIBCO Object Service Broker Shareable Tools about SCRIPT and its commands.

PF3 Save changes and return to the workbench.

PF5 Script the description.

Press PF5 again to return to edit mode.

PF12 Cancel changes and return to the workbench.

PF13 Print the description.

KEYWORDS Type individual words that briefly describe the library. These
words are used by the Keyword Search facility of TIBCO
Object Service Broker. The field is one line long and can
contain multiple entries, separated by commas or blanks, for
example, EXAMPLE RULES, LIBRARY.

SUMMARY Type a one line summary of the DESCRIPTION, for example,
Library of example rules.

DESCRIPTION Type information about the library, for example, what its role
is, or why it is used. The information is entered in text format
using TIBCO Object Service Broker SCRIPT commands, and
there is no limit on the amount of information you can enter.
TIBCO Object Service Broker Programming in Rules

| 149
Chapter 14 Using the Rule Editor

This chapter describes how to use the rule editor.

Topics

• Invoking the Rule Editor, page 150

• Screen Layout of the Rule Editor, page 153

• Accessing a Listing of Rules to Edit, page 155
 TIBCO Object Service Broker Programming in Rules

150 | Chapter 14 Using the Rule Editor
Invoking the Rule Editor

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

Steps to Invoke the Rule Editor
To invoke the Rule Editor for a new rule or an existing rule, do one of the
following from the workbench:

• Type the name of your rule beside the Rule Editor option and press Enter:
ER edit rule ==> rulename

• Enter the tool name EDITRULE, and the name of the rule in parentheses, next
to the Execute Rule option and press Enter:
EX execute rule ==> EDITRULE(rulename)

• Enter the value ER and the name of the rule next to the COMMAND option
and press Enter:
COMMAND==> ER rulename

Using any of these methods causes the Rule Editor screen to appear. If you do not
enter a rule name and you are invoking the Rule Editor, the Object Manager
screen for the Rule Editor appears instead. Refer toScreen Layout of the Rule
Editor on page 153 for information about this screen. Refer toValid Values for
Rule Names on page 151 for information about rule names.
TIBCO Object Service Broker Programming in Rules

Invoking the Rule Editor | 151
Example Rule Editor Screen

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ --
 ON GETFAIL:
 CALL ENDMSG('POSITION IS INVALID');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Rule Displayed
The Rule Editor displays the source code of the rule for you to edit after searching
the rules libraries in the following order:

1. Local library

2. Installation library

3. System library

This is the default order, but the search order can be modified by you or your
system administrator as part of your user profile or session options.

If the rule does not exist in one of the three libraries, the Rule Editor displays a
template for creating a new rule.

Valid Values for Rule Names
The following conditions apply to naming a rule. The name:
 TIBCO Object Service Broker Programming in Rules

152 | Chapter 14 Using the Rule Editor
• Can be a character string of up to sixteen characters, beginning with a letter
(A-Z) or a special character ($ or #), continuing with more letters, special
characters, or digits (0-9), or underscore characters

• Must not contain spaces

• Must be unique to the rules library

See Also TIBCO Object Service Broker Managing Security and TIBCO Object Service Broker
Parameters about modifying the search order for rules libraries.

TIBCO Object Service Broker Shareable Tools about using user exits with the Rule
Editor.

The special character @ (at sign) is used by TIBCO Object Service Broker supplied
objects.
TIBCO Object Service Broker Programming in Rules

Screen Layout of the Rule Editor | 153
Screen Layout of the Rule Editor

When a rule appears for editing it is divided into four parts. The parts, which are
separated by horizontal lines, contain:

• The rules definition, including the optionally defined arguments and local
variables

• Conditions, including a quadrant of yes/no (Y/N) values

• Actions, including columns of action sequence numbers

• Exception handlers

A PF key line appears at the bottom of the screen.

General Format of the Rule Editor Screen

RULE EDITOR ===>

 Rules Definition
 _
 _ --
 _ |
 _ Conditions | Y/N Quadrant
 _ |
 _ ------------------------------------+-----------------
 _ |
 _ Actions | Action Sequence
 _ | Numbers
 _ --
 _
 _ Exception Handlers
 _
 _

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Modifiable Sections
All the displayed areas can be modified except the Y/N Quadrant, which is
managed entirely by the Rule Editor. You make direct modifications to a rule by
overtyping or filling in the blanks in the displayed area. You make indirect
modifications by issuing editing commands.
 TIBCO Object Service Broker Programming in Rules

154 | Chapter 14 Using the Rule Editor
Scrolling within a Rule Editor Screen
Since a rule is restricted to the width of the screen, you need to scroll only
vertically within a rule. Use the following keys to scroll:

The default scroll amount is one page.

Modifying the Scroll Value

To modify the scroll value, type one of the following characters into the Scroll
field before using the scroll function keys:

To change the scroll amount temporarily, type one of the valid values in the
primary command field and use a scroll key.

PF7 Up

PF8 Down

H Scroll half a page.

P Scroll a page.

M Scroll the maximum amount.

C Scroll from the line where the cursor is positioned.

nnn Scroll nnn lines.
TIBCO Object Service Broker Programming in Rules

Accessing a Listing of Rules to Edit | 155
Accessing a Listing of Rules to Edit

Using the Object Manager Screen
If you invoke the Rule Editor without specifying a rule name, an Object Manager
screen similar to the following one appears. This screen contains a listing of all the
rules in your local library. You can select the rule from this listing.

 List of rules to edit LIBRARY: DOCEXMPL
 Command ==> Scroll P
 Enter a primary command or one or more line commands
 NAME DATE TIME UNIT DESCRIPTION*
 ---------------- ---------- ---- -------- ---------------------------------
 _ ABC 2000-03-20 1154 USR Sample rule
 _ ABEND_CODES 1999-11-02 1146 USR40 GENERATED TO PRINT REPORT ABEND_C
 _ ABS_1 2000-02-13 1626 DOCUMENT Sample rule for Shareable Tools C
 _ ADDOBJSEL 1997-06-09 1130 OBJ Add a selected object to the list
 _ CHANGE_LOCATION 1997-07-09 0838 USR40 sample rule to change @session ta
 _ CHECK_DONE 1998-03-25 0850 ACC Sample rule for Report Writer
 _ CHECK_PARMVALU 1997-06-20 1134 TEST
 _ CHK_OVRWRITE 1999-06-16 1615 TEST ensure no overwrite when SAVE
 _ COMMIT50 1997-12-14 1106 USR COMMITs are applied periodically
 _ COPYCODES 1998-03-26 0830 DOCMSG copy abend_codes to CODES table
 _ COPYCOMPONENTS 1997-11-11 1203 DOCMSG copy COMPONENTS to UTIL table
 _ COPYUTILITIES 1997-12-06 0955 DOCMSG
 _ COUNT 1997-09-01 1453 DOCSAMP Sample for Processing manual
 _ DEPARTMENTS 1997-06-23 0958 USR Lists the employees in a departme
 _ EMPLOYEE_EXPENSE 1998-01-16 1405 USR Display the employee_expense scre
 _ EMPLOYEES_RAISE 1998-02-16 0945 USR Provides raises for selected empl
 C-Copy D-Delete G-Debug P-Print S-Select X-eXecute

 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL

Available Commands
You can use the primary commands SELECT, APPLY, ORDERED, and FIND in the
primary command field to narrow down your selection. You can also use the
following line commands:

C Copy a rule from one library to another.

D Delete a rule from your local library. You are prompted for confirmation.

G Invoke the debugging tool. Refer to Chapter 18, Processing in Debug
Mode, on page 199 for more information.
 TIBCO Object Service Broker Programming in Rules

156 | Chapter 14 Using the Rule Editor
P Print a hardcopy of the rule.

S Select a rule from your local library.

X Execute the rule.
TIBCO Object Service Broker Programming in Rules

| 157
Chapter 15 Editing Rules

This chapter describes how to edit rules.

Topics

• Functional Overview, page 158

• Using Available Line Commands, page 161

• Using Available Primary Commands, page 165

• Expanding Token Information, page 172
 TIBCO Object Service Broker Programming in Rules

158 | Chapter 15 Editing Rules
Functional Overview

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

Types of Editing Allowed
When editing rules you can do any of the following:

• Overtype text.

• Use line commands to make selective changes to one or more lines within a
rule.

• Use primary commands to make changes that potentially affect the whole
rule.

• Use the EXPAND command to display browsable information about rules,
tables, fields, screens, reports, and routines.

After you edit your changes, syntax checking is performed when you attempt to
save your rule using PF3 or the END or SAVE commands.

Syntax Checking Performed on a Rule
The syntax checker checks each rule for accuracy and displays appropriate error
messages when corrections are necessary. A rule cannot be saved until it is
syntactically correct. For detailed information on the syntax of rules, refer to
Appendix A, Syntax of the Rules Language, on page 211.

A rule that is syntactically correct could contain other kinds of errors, such as
misspelled names or incorrect logic, which is detected only on execution. Refer to
Chapter 16, Processing in Standard Execution Mode, on page 175 for more
information.
TIBCO Object Service Broker Programming in Rules

Functional Overview | 159
Available Line Commands and Associated PF Keys

Available Primary Commands
The following commands are described in Using Available Primary Commands
on page 165.

I PF4 Insert a line.

R n/a Replicate a line.

D PF16 Delete a line.

S n/a Split a line.

M n/a Move a line

A n/a Move or copy a line to after the line with the A.

B n/a Move or copy a line to before the line with the B.

C n/a Copy a line.

When using line commands:

• The initial screen contains the rules definition, the conditions, the actions and
the exception handlers. If you issue a line command in the first line command
field of the action section, it applies to the action section.

• If the rule is longer than the screen that first appears, when you press PF8 the
rules definition and a horizontal separator line between the definition and
conditions of the rule appear, followed by the actions. After the screen is
scrolled, the line command issued in the first line command field below the
horizontal line is applied to the conditions section of the rule.

APPEND n/a Append a rule to another rule.

CANCEL PF12 Leave the editor without saving changes.

CHANGE n/a Change a token.

CHANGE...ALL n/a Change all instances of a specified token.

CLOSE Close all open windows. Refer to Expanding Token
Information on page 172 for more information.
 TIBCO Object Service Broker Programming in Rules

160 | Chapter 15 Editing Rules
CONFIRM Confirm a deletion.

COPY n/a Copy a rule.

DELETE PF22 Delete a rule. You must confirm the deletion using
the CONFIRM command or PF22.

DOCUMENT PF2 Document a rule.

EDIT n/a Save the current rule and edit a different rule or
create a new one.

END PF3 Save the rule and exit the editor.

EXPAND PF14 Provide expanded information for the token
specified. Refer to Expanding Token Information on
page 172 for more information.

FIND n/a Find a token.

HELP PF1 Display online help.

LOWER n/a Allow the use of lowercase in a string.

PRINT PF13 Print a hardcopy of a rule.

SAVE n/a Save the rule and remain in the editor.

UPPER n/a Allow the use of uppercase in a string.

XEDIT n/a Cancel the current editing session and initiate a new
one.

n/a PF5 When used in conjunction with the CHANGE or FIND
commands, find the next occurrence of the token.

n/a PF6 When used in conjunction with the CHANGE
command, change the next occurrence of the token.
When used in conjunction with a FIND command,
change the current token to a null value.

n/a PF9 Re-display the most recent primary command.
TIBCO Object Service Broker Programming in Rules

Using Available Line Commands | 161
Using Available Line Commands

Copying Lines
The C line command copies a line. Type C in the line command field of the line to
be copied and use <Enter>. The line is copied after the line where the cursor is
located. You can also copy several lines at once by typing C in the line command
fields of several lines. All the lines are copied to the destination, in the order in
which they already appear. The action sequence numbers are supplied for you.

You can specify a destination with one of the destination indicators A (after) or B
(before). Type A or B in the line command field of the line to be used as the
reference point. Press Enter to copy the line to the specified destination. In the
following screen, the two JOBTITLE lines are explicitly copied after the line
JOBTITLE = 'ANALYST'.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 c JOBTITLE = 'SENIOR ANALYST'; | Y N N
 c JOBTITLE = 'ANALYST'; | Y N
 b --+---------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 - RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ --
 ON GETFAIL:
 CALL ENDMSG('POSITION IS INVALID');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Deleting Lines
The D line command deletes lines. Type D in the line command field of the line and
press Enter to delete the line. If the line is an action containing an action sequence
number, the Rule Editor re-sequences the remaining actions.
 TIBCO Object Service Broker Programming in Rules

162 | Chapter 15 Editing Rules
Using PF16 has the same effect as the D line command; pressing PF16 while the
cursor is positioned anywhere on the line deletes the line.

Inserting Lines
The I line command inserts an empty line. Type I in the line command field of a
line and press Enter. This creates a new, empty line below the selected line and
places the cursor in column one of the new line. You must type something in the
empty line or it disappears when you press Enter.

Using PF4 has the same effect as the I line command. Pressing PF4 while the
cursor is positioned anywhere on the line creates a blank line below the selected
one.

If you are inserting lines in the action part of a rule and your rule has conditions,
you must type in the action sequence numbers for the new lines or type in any
character except a blank. If the rule does not have conditions, the action sequence
numbers are supplied for you.

Moving Lines
The M line command moves a line. Type an M in the line command field of the line
to be moved and move the cursor to the destination, then press Enter. The line is
moved after the line where the cursor is located. You can also move several lines
at once by typing M in the command fields of several lines. All the lines are moved
to the destination, in the order in which they already appear. The Rule Editor
re-sequences the action sequence numbers of all the lines.
TIBCO Object Service Broker Programming in Rules

Using Available Line Commands | 163
You can also specify a destination with one of the destination indicators, A (after)
or B (before). Type A or B in the line command field of the line to be used as the
reference point. Press Enter to move the line to the destination indicated. In the
following screen, the lines RATE = 0.05 and RATE = 0.02 are placed before
RATE = 0.1.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 b RATE = 0.1; | 1
 m RATE = 0.05; | 1
 m RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ --
 ON GETFAIL:
 CALL ENDMSG('POSITION IS INVALID');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

Replicating Lines
The R line command replicates a line. You can use this replica as a template for a
similar line. Typing R in the line command field and pressing Enter replicates the
selected line below itself. The cursor is placed in column one of the new line so
that you can modify it. If you are replicating lines in the action part of a rule, the
action sequence numbers are supplied for you.

Splitting Lines
The S line command splits a line into two parts. Use this, for example, if a line of
code is too long to fit on one line. To split a line, first type S in the line command
field and then move the cursor to the place where you want the line to be split.
When you press Enter, the Rule Editor creates a new line immediately below the
current line and places everything to the right of the cursor position on the new
line.
 TIBCO Object Service Broker Programming in Rules

164 | Chapter 15 Editing Rules
The split command is token-sensitive. When a line is split, the Rule Editor places
the token where the cursor is at the start of the new line. Refer to Tokens on
page 18 for the description of a token. If the cursor is between tokens, the split
occurs there. If the cursor is not on the same line as the S command, the S is
treated as an I (insert) command.

Combining Line Commands
You can enter several different kinds of line commands at once. These commands
are processed in order from top to bottom. In the following screen, the line
beginning with:

• JOBTITLE ='ANALYST' is replicated

• RATE = 0.1 is moved after RATE = 0.02

• CALL MSGLOG is copied before CALL REPLACE_SALARY

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 r JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 m RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 a RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 b CALL REPLACE_SALARY(REGION); |
 c CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ --
 ON GETFAIL:
 CALL ENDMSG('POSITION IS INVALID');

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
TIBCO Object Service Broker Programming in Rules

Using Available Primary Commands | 165
Using Available Primary Commands

APPEND Command
The primary command APPEND appends a rule onto the rule currently being
edited. The APPEND command appends the actions at the end of the action part
and the exception handlers at the end of the exception handler part of the rule
being edited. The rule is checked for syntax before it can be saved.

APPEND does not append local variables and conditions, and it does not add action
sequence numbers for the appended action part. You must supply these as
required.

Issue the APPEND command as shown:

RULE EDITOR ===> APPEND DEPARTMENTS<Enter>

The following screen shows the DEPARTMENTS rule appended to the
EMPLOYEES_RAISE rule, after the line END;.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 _ FORALL EMPLOYEES(REGION) WHERE POSITION = JOBTITLE: | 2 2 3
 _ RAISE = EMPLOYEES.SALARY * RATE; |
 _ EMPLOYEES.SALARY = EMPLOYEES.SALARY + RAISE; |
 _ CALL REPLACE_SALARY(REGION); |
 _ CALL MSGLOG(EMPLOYEES.LNAME || ' NOW EARNS ' || |
 _ EMPLOYEES.SALARY); |
 _ END; |
 _ FORALL DEPARTMENTS: |
 _ FORALL EMPLOYEES('EDUC') WHERE DEPTNO = |
 _ DEPARTMENTS.DEPTNO: |
 _ CALL MSGLOG(' LAST NAME = '|| EMPLOYEE.LNAME || |
 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
 TIBCO Object Service Broker Programming in Rules

166 | Chapter 15 Editing Rules
CANCEL Command (PF12)
If you decide not to save changes to a rule, you can cancel the changes by typing
the primary command CANCEL in the primary command field and pressing Enter,
or by pressing PF12. When you issue the command, the Rule Editor cancels
editing changes and returns you to your previous screen.

CHANGE Command
To change an instance of a particular token use the primary command CHANGE.
Type in the CHANGE command as follows:

RULE EDITOR ===> CHANGE search_token replacement_token<Enter>

To change the first instance of the token REGION to the token LOCATION in the
EMPLOYEES_RAISE rule, issue the CHANGE command as shown:

RULE EDITOR ===> CHANGE REGION LOCATION<Enter>

Usage Notes

• Concatenation of tokens is not supported.

• The search for the token begins immediately to the right of the cursor position
(not at the beginning of the rule) and, if successful, replaces the first instance
of the token and positions the cursor at the start of the replaced token. Use PF6
to find the next instance of the token and replace it.

• If you are unsure whether you want to change the next instance, you can first
find the instance by pressing PF5. To replace it press PF6. To skip it and search
for the next instance press PF5.

• If the search for the token is unsuccessful, a message appears on the message
line informing you that the token is not found. The message means that the
search failed to find an instance of the token between the current cursor
position and the end of the rule. Pressing PF5 or PF6 resumes the search from
the beginning of the rule.

CHANGE … ALL Command
The CHANGE command has an optional argument, ALL. This argument changes the
scope of the CHANGE command from the next occurrence of the search token to all
the occurrences of the search token in the rule. Specify the ALL argument as
follows:

RULE EDITOR ===> CHANGE search_token replacement_token ALL<Enter>
TIBCO Object Service Broker Programming in Rules

Using Available Primary Commands | 167
If a CHANGE … ALL command makes changes, the message line tells how many
occurrences of the search token are replaced. If the search token does not occur in
the rule, the message line informs you of this.

COPY Command
The COPY primary command causes the current rule to be replaced, except its
name, with a copy of the rule specified. The COPY command provides a
convenient way to replace one rule with another or to fill in an empty template.

Issue the COPY command as shown:

RULE EDITOR ===> COPY DEPARTMENTS<Enter>

The contents of the current EMPLOYEES_RAISE rule are replaced with a copy of
the DEPARTMENTS rule, as shown in the following screen:

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE;
 _
 _ ---
 _ --+--------------
 _ FORALL DEPARTMENTS : | 1
 _ FORALL EMPLOYEES WHERE REGION = 'EDUC' & DEPTNO = |
 _ DEPARTMENTS.DEPTNO : |
 _ CALL MSGLOG('LAST NAME = ' || EMPLOYEES.LNAME || |
 _ ' DEPARTMENT = ' || DEPARTMENTS.DEPTNO); |
 _ END; |
 _ END; |
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

If you change the name of the rule that you are editing (without making other
changes) and if there is no rule with the new name in your local library, the Rule
Editor creates a copy of the original rule under the new name. If a rule with the
new name already exists, you are prompted to overwrite it.
 TIBCO Object Service Broker Programming in Rules

168 | Chapter 15 Editing Rules
DELETE Command (PF22)
The primary command DELETE deletes a rule from your local library. To issue the
command, type DELETE in the primary command field, or display the rule and
press PF22.

The Rule Editor does not delete a rule without first prompting you to type the
command CONFIRM or press PF22 to confirm the deletion. To cancel the deletion,
press Enter or any other function key.

DOCUMENT Command (PF2)
The primary command DOCUMENT causes a screen to appear where you document
the description and usage of your rule. To issue the command, type DOCUMENT in
the primary command field, or display the rule and then press PF2.

See Also TIBCO Object Service Broker Getting Started about documenting rules and other
TIBCO Object Service Broker objects.

EDIT Command
You can use the primary command EDIT to edit a different rule or to create a new
rule from within an editing session. The rule being edited is checked for syntax
errors, and when it can be saved the new editing session begins.

Editing a Different Rule

To edit a different rule from within an editing session, type the EDIT command
and the name of the required rule in the primary command field, and press Enter.
For example, if you are editing the EMPLOYEES_RAISE rule and you want to edit
the DEPARTMENTS rule, type the EDIT command as shown:

RULE EDITOR ===> EDIT DEPARTMENTS<Enter>

If there are no syntax errors, the Rule Editor saves the EMPLOYEES_RAISE rule
before it displays the DEPARTMENTS rule. If there are syntax errors, you must
correct them before the Rule Editor can begin the editing session for the
DEPARTMENTS rule.

Creating a New Rule

To create a new rule from within an editing session, type the EDIT command and
the name of the new rule in the primary command field and press Enter.
TIBCO Object Service Broker Programming in Rules

Using Available Primary Commands | 169
END Command (PF3)
You can end the editing session and save the changes by typing END in the
primary command field and pressing Enter, or by pressing PF3. If there are no
syntax errors, when you issue the END command the Rule Editor saves the rule in
the local library you are using, not in the library of origin, and returns you to the
workbench. You must correct your syntax errors before the rule can be saved.
Refer to Syntax Checking Performed on a Rule on page 158 for more information.

FIND Command
To find a particular token, use the primary command FIND. Type in the FIND
command as follows:

RULE EDITOR ===> FIND search_token<Enter>

Usage Notes

• The search for the token begins immediately to the right of the cursor position
(not at the beginning of the rule) and, if successful, positions the cursor at the
start of the first occurrence of the token. Use PF5 to continue the search from
the current cursor position. Use PF6 to change the current occurrence to a null
value.

• If the search is unsuccessful, a message appears on the message line informing
you that the search is unsuccessful. This means that the search failed to find an
occurrence of the token between the current cursor position and the end of the
rule. Use PF5 to resume the search from the beginning of the rule.

HELP Command (PF1)
You can display online help by typing HELP in the primary command field or by
pressing PF1. The online help contains a description of the Rule Editor and a list
of the Rule Editor commands and their syntax. To return to the rule, press PF3 or
PF12.

LOWER Command
You can use the primary command LOWER to type string literals in mixed case
(that is, text within single quotation marks). If you are editing an existing rule,
you must issue the primary command LOWER and press Enter before the lowercase
text is typed in. Existing lowercase text remains in lowercase when it is edited.
 TIBCO Object Service Broker Programming in Rules

170 | Chapter 15 Editing Rules
PRINT Command (PF13)
To print the current rule, press PF13 or type PRINT in the primary command field
and press Enter. The hardcopy output includes some of the documentation for the
rule. The documentation that is included appears between the rule definition and
the conditions.

SAVE Command
Rules are not actually updated in your local library until you save your changes.
You can save changes by typing SAVE in the primary command field and pressing
Enter. The Rule Editor saves the rule in the local library you are using, not in the
library of origin, and continues the editing session.

If the Rule Editor cannot save a rule, it gives a reason for the failure on the
message line and positions the cursor where the first correction is required. You
must correct the rule before you can save the changes. Refer to Syntax Checking
Performed on a Rule on page 158 for more information.

UPPER Command
If you issue the primary command LOWER and you want to revert back to using
uppercase for your string literals, type UPPER in the primary command field and
press Enter.

XEDIT Command
You use the XEDIT command to edit an existing or new rule within an editing
session. The difference between EDIT and XEDIT is that XEDIT cancels changes
made to the rule currently being edited.

To cancel editing changes made to EMPLOYEES_RAISE and start editing the
DEPARTMENTS rule, type the XEDIT command as shown:

RULE EDITOR ===> XEDIT DEPARTMENTS<Enter>

Redisplay the Most Recent Primary Command–(PF9)
The Rule Editor stores a command until it is replaced with another command. PF9
redisplays the most recent command, which you can edit if necessary. For
example, suppose that the previous command was the following:

RULE EDITOR ===> CHANGE REGION LOCATION ALL<Enter>
TIBCO Object Service Broker Programming in Rules

Using Available Primary Commands | 171
You now want to change the token DEPT to the token DEPARTMENT#.
Re-display the previous command by pressing PF9. Place the cursor where
editing is required (on the token REGION) and alter the command by overtyping,
as follows:

RULE EDITOR ===> CHANGE DEPT DEPARTMENT# ALL<Enter>
 TIBCO Object Service Broker Programming in Rules

172 | Chapter 15 Editing Rules
Expanding Token Information

While editing a rule, you can display information in browse format for the
following types of tokens: rules, tables, fields, screens, reports, and routines.
Selected information appears for each token type. You can expand a token named
in the rule using a function key or primary command, or expand on any allowable
token type not named within the rule using a primary command.

Types of Token Information Available
The following list outlines what kind of information appears, based on the type of
token:

A routine is an TIBCO Object Service Broker shareable tool that is not written in
the rules language.

Rule The name of the rule and its complete contents

Table The name of the table, and the names and attributes of its
parameters and fields

Field The name of the field and its attributes

If the field is a global field (a field defined in the
centralized field dictionary table in your TIBCO Object
Service Broker database), a summary of global usage
appears.

If the field is a referenced field, a listing of reference values
appears.

Screen The name of the screen, and the names of its screen tables
and some of their attributes. Within the display, the screen
tables can be expanded to the level of screen fields.

Report The name of the report, and the names of its report tables
and some of their attributes. Within the display, the report
tables can be expanded to the level of report fields.

Routine The name of the routine, the arguments of the routine, its
keywords, and a summary
TIBCO Object Service Broker Programming in Rules

Expanding Token Information | 173
Expanding a Token at the Cursor Position
Positioning your cursor on a token name and pressing PF14 causes the screen to
split horizontally into two portions. As shown in the following screen, the upper
portion displays the rule being edited and the lower portion displays information
about the selected token in a browsable format. To scroll in either portion,
position your cursor in the desired portion and press PF7 to scroll up or PF8press
to scroll down.

 RULE EDITOR ===> SCROLL: P
 EMPLOYEES_RAISE(JOBTITTLE, REGION);
 _ LOCAL RAISE, RATE;
 _ ---
 _ JOBTITLE = 'SENIOR ANALYST'; | Y N N
 _ JOBTITLE = 'ANALYST'; | Y N
 _ --+---------------
 _ RATE = 0.1; | 1
 _ RATE = 0.05; | 1
 _ RATE = 0.02; | 1
 _ GET EMPLOYEES(REGION) WHERE POSITION = JOBTITLE; | 2
 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE

 +---------------------------- TDS Table : EMPLOYEES -------------------------+
 | PARAMETER TYPE SYNTAX LENGTH DECIMAL |
 | ---------------- - - ------ ------- |
 | REGION I C 16 0 |
 | |
 | FIELD TYPE SYNTAX LENGTH DECIMAL KEY |
 | ---------------- - - ------ ------- - |
 | EMPNO I P 3 0 P |
 | LNAME S C 22 0 S |
 | PFKEYS: 7=UP 8=DOWN 15=CLOSE |
 +--+

Displaying Rule, Routine, or Table Information

To display a rule, routine, or table, position your cursor on the desired token
name and press PF14. Because the information appears in browse mode, you can
also display the rule you are currently editing.

Displaying Screen Information

To display screen information, the cursor must be positioned on the screen name
within a DISPLAY statement. After positioning the cursor, press PF14.
 TIBCO Object Service Broker Programming in Rules

174 | Chapter 15 Editing Rules
Displaying Report Information

To display report information, the cursor must be positioned on the report name
within a call to the $SETRPTMEDIUM or $RPTPRINT tools or within a PRINT
statement. After positioning the cursor, press PF14.

Expanding With the Primary Command EXPAND
The primary command EXPAND also invokes the expand facility. You specify
EXPAND using the format:

EXPAND token_name token_type

token_ type is optional and can be one of the following: RULE, REPORT or RPT,
SCREEN or SCR, TABLE or TBL. If no type is specified the search hierarchy is:
reports, screens, tables, rules, and routines. The first match found is expanded
within a display area.

The following shows an example of the command EXPAND:

RULE EDITOR ===> EXPAND EMP_EXPENSE RPT<Enter>

Nesting Expanded Displays
You can expand more than one token at a time. This is known as nesting. To nest
an expanded display, position the cursor on the desired object within the display
and press PF14.

Nesting expanded displays is permitted for rules, screens, and reports. Within
screens you can also nest screen tables, and within reports you can also nest
report tables. Nesting is not permitted from within a routine, table, or field.

Closing the Expanded Display
To close an expanded display and exit to the previous display, press PF15. If you
press PF15 in the top-most display, it closes the expand facility. If you are in a
lower nested level, press PF15 outside of the expanded display to exit the expand
facility, or type in the command CLOSE in the primary command field and press
Enter. Either method closes all open displays.

See Also TIBCO Object Service Broker Managing Data about tables.

TIBCO Object Service Broker Defining Reports about reports.

TIBCO Object Service Broker Defining Screens and Menus about screens.

TIBCO Object Service Broker Shareable Tools about the use of tools, including
routines.
TIBCO Object Service Broker Programming in Rules

| 175
Chapter 16 Processing in Standard Execution Mode

This chapter describes how to do processing in standard execution mode.

Topics

• Using Execute Rule, page 176

• Accessing a Listing of Rules to Execute, page 179

• Logging of Output, page 181

• User Log, page 183

• System Log, page 185

• Examples of System Log Information, page 188
 TIBCO Object Service Broker Programming in Rules

176 | Chapter 16 Processing in Standard Execution Mode
Using Execute Rule

TIBCO Object Service Broker UI
This chapter describes how to perform various tasks in TIBCO Object Service
Broker using the text-based workbench. You can also perform these tasks using
the TIBCO Object Service Broker UI, which provides a graphical environment for
TIBCO Object Service Broker development. For information about using the
TIBCO Object Service Broker UI, refer to the TIBCO Object Service Broker UI
online help.

Available Methods
You can invoke the Rule Executor, by using the Execute Rule option from one of
the following places:

• The workbench. For example:
EX execute rule ==> EMPLOYEES_RAISE<Enter>

• The primary command field. For example:
COMMAND ==> EX EMPLOYEES_RAISE<Enter>

• The line command X within the Object Manager screen of the Rule Editor

You can also execute a rule asynchronously or in debug mode. For more
information about these methods, refer to Chapter 17, Processing
Asynchronously in Batch Mode, on page 191 and Chapter 18, Processing in
Debug Mode, on page 199.

Supplying Argument Names
You can provide the arguments within parentheses after the rule name in the
command itself. For example:

COMMAND ===> EX EMPLOYEES_RAISE('ANALYST','MIDWEST')<Enter>

or through the arguments screen presented if you do not supply argument values.

The mode of your 3270 terminal session determines the maximum number of
arguments that you can enter through the arguments screen. For example, you
can enter a maximum of twelve arguments in a Model 5 3270 terminal session.
TIBCO Object Service Broker Programming in Rules

Using Execute Rule | 177
Using the Arguments Screen

If the rule has arguments defined and you do not specify values when you invoke
the Rule Executor, you are prompted to supply them. For example, because the
EMPLOYEES_RAISE rule has two argument, JOBTITLE and REGION, the
following screen prompts for two argument values.

 ---------------------------- RULE EXECUTION --------------------------

 ENTER ARGUMENTS FOR RULE EMPLOYEES_RAISE

 JOBTITLE ===>

 REGION ===>

Library Search Order
If the specified rule exists in your local library, installation library, or system
library, the rule is executed. The rules libraries are searched in the order: local
library, installation library, system library. This is the default order; you or your
system administrator can modify this search order through your user profile or
session options.

If the rule is executed from a menu or object list, the search order for the rule can
also be set by the tool used to create the menu, such as DEFINE_MENU and
DEFINE_OBJLIST.
 TIBCO Object Service Broker Programming in Rules

178 | Chapter 16 Processing in Standard Execution Mode
Results After Execution
After the rule has executed, one of the following types of messages appears across
the bottom of the workbench:

• The ENDMSG, if there is one, for example:
POSITION IS INVALID

• The message OK, if the rule executes successfully, for example:
11:02:18 OK

If a message is sent to the Message Log, press PF2 to access the message.

• A reason for execution failure, if the rule does not execute successfully, for
example:
ACCESS ERROR ON TABLE "EMPLOYEES"

Press PF2 for more information about the error. Information about the failure
is sent to one of the logs maintained by TIBCO Object Service Broker. Refer to
Logging of Output on page 181.

See Also TIBCO Object Service Broker Defining Screens and Menus about defining menus.

TIBCO Object Service Broker Managing Security and External Environments manuals
about modifying the search order for rules.

TIBCO Object Service Broker Shareable Tools about tools.
TIBCO Object Service Broker Programming in Rules

Accessing a Listing of Rules to Execute | 179
Accessing a Listing of Rules to Execute

Using the Object Manager Screen
If you invoke Execute Rule without specifying a rule name, the Object Manager
screen appears. This screen contains a listing of all the rules in the local library
you are using and you can select your rules from this library listing.

 List of rules to execute LIBRARY: DOCEXMPL
 Command ==> Scroll P
 Select one or more rule or enter a primary command
 NAME DATE TIME UNIT DESCRIPTION*
 ---------------- ---------- ---- -------- ---------------------------------
 _ ABC 2000-03-20 1154 USR Sample rule
 _ ABEND_CODES 1999-11-02 1146 USR40 GENERATED TO PRINT REPORT ABEND_C
 _ ABS_1 2000-08-13 1626 DOCUMENT Sample rule for Shareable Tools C
 _ ADDOBJSEL 1997-06-09 1130 OBJ Add a selected object to the list
 _ CHANGE_LOCATION 1997-07-09 0838 USR40 sample rule to change @session ta
 _ CHECK_DONE 1998-03-25 0850 ACC Sample rule for Report Writer
 _ CHECK_PARMVALU 1997-06-20 113 TEST
 _ CHK_OVRWRITE 1999-06-16 1615 TEST ensure no overwrite when SAVE
 _ COMMIT50 1997-12-14 1106 USR COMMITs are applied periodically
 _ COPYCODES 1998-03-26 0830 DOCMSG copy abend_codes to CODES table
 _ COPYCOMPONENTS 1997-11-11 1203 DOCMSG copy COMPONENTS to UTIL table
 _ COPYUTILITIES 1997-12-06 0955 DOCMSG
 _ COUNT 1997-09-01 1453 DOCSAMP Sample for Processing manual
 _ DEPARTMENTS 1997-06-23 0958 USR Lists the employees in a departme
 _ EMPLOYEE_EXPENSE 1998-01-16 1405 USR Display the employee_expense scre
 _ EMPLOYEES_RAISE 1998-02-16 0945 USR Provides raises for selected empl
 E-EDIT G-Debug S-Select

 PFKEYS: 12=EXIT 13=PRINT 3=END 5=FIND NEXT 9=RECALL

Available Commands

E Invoke the Rule Editor for the rule.

G Invoke the Rule Debugger for the rule.

S Execute the rule.
 TIBCO Object Service Broker Programming in Rules

180 | Chapter 16 Processing in Standard Execution Mode
You can use the primary command SELECT to create a shorter list of rules, using
selection criteria based on any of the fields in the display. To select a rule, type S in
the line command field of the required rule. If the rule has arguments, you are
prompted for them when you press Enter.
TIBCO Object Service Broker Programming in Rules

Logging of Output | 181
Logging of Output

Message Logs Available
TIBCO Object Service Broker maintains two message logs to log user and system
output: a user log and a system log. Refer to User Log on page 183 and System
Log on page 185 for information about these logs. To access the message logs,
press PF2 from the workbench. Messages from the system log appear first;
pressing PF2 again displays the user log. If there is no message in the system log,
the user log appears after the first PF2 command.

Message Log Primary Commands
From the command line at the top of the message log screen, you can issue
commands to:

• Print the log.

• Find a string.

PRINT Command

To print either the user or system log, type the following in the primary command
field:

COMMAND ===> PRINT

while you view the log you want to print.

FIND Command

To find a string, use the FIND command, which you can abbreviate as F. Follow the
FIND command with the string that you want to find. If the string contains blanks,
enclose the string in single quotation marks. For example, if you want to find the
word “message”, type in this command:

f message

If you want to find the phrase “error message log”, type in the command:

f 'error message log'
 TIBCO Object Service Broker Programming in Rules

182 | Chapter 16 Processing in Standard Execution Mode
In these two examples, the first occurrence of the string is found regardless of
what case it is in. “Message”, “MESSAGE”, and “message” all satisfy the search.
If you want to limit the search, you can specify case sensitivity with the keyword
CASE, which you can shorten to C. If you issue the command:

f Message c

the first occurrence of the word “Message” with a capital M is found.

PF Keys for the Message Logs

PF1 Display the Help screen.

PF2 Display the user log (if you are looking at the system log).

PF3 Exit the message log.

PF5 Repeat the search after a FIND command is issued.

PF7 Scroll up.

PF8 Scroll down.

PF10 Scroll left.

PF11 Scroll right.

Pf12 Exit the message log.

PF13 Print the log that you are viewing.
TIBCO Object Service Broker Programming in Rules

User Log | 183
User Log

The user log contains any messages generated by a rule, using tools such as
MSGLOG or $PRINTLINE. The messages can be generated by a parent
transaction and its descendant (child) transactions. Refer to Nesting Transactions
on page 108 for more information about parent and child relationships.

Sample User Log
The following screen shows an example message sent to the user log by the
MSGLOG tool.

 -------------------------- INFORMATIONAL MESSAGE LOG --------------------------
 COMMAND ===> SCROLL ===> P
 HRODEK NOW EARNS 745.50
 CANNON NOW EARNS 735.00
 BOIVIN NOW EARNS 745.00

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT 12=EXIT 13=PRINT

What Output is Available?
Output from previous descendant transactions (at the same descendant level) is
cleared when a new transaction is started. Only output from the most recent
transaction, at a given descendant level, is available to display.

Output from the EXECUTE and TRANSFERCALL Statements

The statement that you use determines whether output is maintained:
 TIBCO Object Service Broker Programming in Rules

184 | Chapter 16 Processing in Standard Execution Mode
• If you use the EXECUTE statement more than once in a rule (parent
transaction) to invoke other rules (child transactions), the output from each of
the parent transactions is maintained.

This output appears sequentially in the first part of the message log. The
messages of the last child transaction to be executed, at each descendant level,
appear next.

• If you use the TRANSFERCALL statement, the messages from the sibling
transactions are maintained.

See Also TIBCO Object Service Broker Shareable Tools about using the tools.
TIBCO Object Service Broker Programming in Rules

System Log | 185
System Log

When a rule fails in its execution and the exception is not handled, error messages
and debugging information for that transaction (and parent transactions) are
supplied in the system log. Using the information from the system log, you can
make corrections to your rule so that it can execute successfully. If you require
more debugging capabilities, you can use the Rule Debugger. Refer to Chapter 18,
Processing in Debug Mode, on page 199 for more information.

Sample Rule

The following is an example of a rule that could produce the system log
information shown in Sample System Log on page 186.

 RULE EDITOR ===> SCROLL: P
 NEWMANAGER(YEAR, DEPT#);
 _
 _ ---
 _ YEAR < 96; | Y N N
 _ YEAR > 97; | Y N
 _ --+--------------
 _ CALL ENDMSG('95 IS THE EARLIEST VALID YEAR'); | 1
 _ CALL ENDMSG('THIS AN INVALID YEAR'); | 1
 _ FORALL EMPLOYEES WHERE REGION = 'MIDWEST' & DEPTNO = DEPT# | 1
 _ : |
 _ EMPLOYEES.MGR# = EMPLOYEES.EMPNO; |
 _ REPLACE EMPLOYEES; |
 _ END; |
 _ ---

 PFKEYS: 1=HELP 3=END 12=CANCEL 13=PRINT 14=EXPAND 2=DOCUMENT 22=DELETE
 TIBCO Object Service Broker Programming in Rules

186 | Chapter 16 Processing in Standard Execution Mode
Sample System Log

-------------------------- INFORMATIONAL MESSAGE LOG --------------------------
 COMMAND ===> SCROLL ===> P
 Error detected in rule ”NEWMANAGER” at action 3 FORALL statement 2
 Access error on TABLE ”EMPLOYEES”
 REPLACE EMPLOYEES
 Invalid number of parameters supplied for table ”EMPLOYEES”
 Traceback of rules called at time of error
 NEWMANAGER(96,10)
 End of traceback

 No local variables
 Dump of active tables
 Table EMPLOYEES
 EMPNO = 44385
 LNAME = 'SOUZA'
 POSITION = 'SALES'
 MGR# = 44385
 DEPTNO = 10
 SALARY = 719.00
 ADDRESS = ''
 CITY = ''
 STATE_PROV = ''
 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT 12=EXIT 13=PRINT 4=PRS

What Output is Available?
The system log is cleared if the transaction ends and a new transaction begins (for
example, as with the TRANSFERCALL statement). Only output from the most
recent transaction is available to display. The following types of output appear:

• Location of the error

• The reason the rule stopped executing

• A traceback of the rules called in the transaction

• List of active local variables

• List of the buffers for active tables

• List of last sixteen rules called
TIBCO Object Service Broker Programming in Rules

System Log | 187
Event Logging
The system log can also contain an event log for event rules. This information
identifies the location, cause, and dump of active tables and local variables at the
time of an error in a derivation, trigger, or validation rule for a table. The
following is an example of an event log.

 =========== Trigger for table "DEPARTMENTS" ==== level 1 ==========
 Trigger rule "INSERTDEPTNO" for table "DEPARTMENTS" failed at action 3
 Traceback of rules called at time of error
 INSERTDEPTNO
 End of traceback
 --
 No local variables
 Dump of active tables
 Table DEPARTMENTS
 DEPTNO = 30
 DEPTNAME = 'CUST SUPPORT'
 End of table dump

 PFKEYS: 2=NEXT LOG 3=EXIT 5=REPEAT 12=EXIT 13=PRINT 4=PRS
 TIBCO Object Service Broker Programming in Rules

188 | Chapter 16 Processing in Standard Execution Mode
Examples of System Log Information

The following sections contain samples of the different types of output available.
They use examples from the sample rule shown in System Log on page 185.

Location of the Error
Error detected in rule “NEWMANAGER” at action 3 FORALL
statement 2

In the rule called NEWMANAGER, the error occurred at the second line in the
FORALL loop, and the FORALL statement is the third statement (or action) in the
rule. The action sequence numbers are not referenced.

If the error occurs in the exception handler part of the rule, this is explained. The
statement numbers begin counting from 1 for each exception handler.

Reason the Rule Stopped Executing
Access error on TABLE "EMPLOYEES"
REPLACE EMPLOYEES
Invalid number of parms supplied for table "EMPLOYEES"

Traceback of the Rules
Traceback of rules called at time of error
NEWMANAGER(96,10)
End of traceback

If the rule had been called by another rule, both rule names would appear in this
section, starting with the most recently called rule. The traceback lists only the
rules called that lead to the point of error.

List of Active Local Variables
No local variables

If local variables had been assigned values, messages similar to the following
could appear:

Dump of local variables
X = 10

If the same local variable is declared in several rules, the value of the variable in
the rule closest to the failure is the value displayed in the dump.
TIBCO Object Service Broker Programming in Rules

Examples of System Log Information | 189
List of the Buffers for Active Tables
Dump of active tables
Table EMPLOYEES
EMPNO = 44385
LNAME = 'SOUZA'
POSITION = 'SALES'
MGR# = '44385'
DEPTNO = 10
SALARY = 719.00
ADDRESS = ''
CITY = ''
STATE_PROV = ''
ZP_CODE = ''
HIREDATE = *NULL*
End of table dump

Up to the Last Sixteen Rules Invoked
Last 16 rules called
NEWMANAGER
End of call list

The rules invoked in this transaction are listed starting with the rule that failed
and proceeding in order from the most recently invoked rule to the least recently
invoked rule.

If the failed transaction has parent transactions, this information is repeated for
each transaction level, starting with the first-level transaction. Information for the
next transaction level is indicated by a message similar to:

Transaction at depth 2
 TIBCO Object Service Broker Programming in Rules

190 | Chapter 16 Processing in Standard Execution Mode
TIBCO Object Service Broker Programming in Rules

| 191
Chapter 17 Processing Asynchronously in Batch Mode

This chapter describes how to do processing asynchronously in batch mode.

Topics

• Functional Overview, page 192

• Scheduling for Direct Batch Processing, page 194

• Scheduling a Batch Queue in TIBCO Object Service Broker for z/OS, page 195

• Editing @SCHEDULEMODEL, page 196
 TIBCO Object Service Broker Programming in Rules

192 | Chapter 17 Processing Asynchronously in Batch Mode
Functional Overview

Batch Processing Options Available
Using the SCHEDULE statement from within a rule, you can do one of the
following to process rules asynchronously in batch:

• Submit JCL, a Windows batch program, or a Solaris script to process your rule
immediately.

• Send a rule to a batch queue by using the TO clause, if you are using TIBCO
Object Service Broker for z/OS.

The SCHEDULE statement causes an instance of the @SCHEDULEMODEL table
to be scheduled for processing in batch. The instance that is scheduled is
determined by your rule specifications.

JCL, Batch Programs, and Scripts Provided
Operating system specific default instances of @SCHEDULEMODEL are
provided with TIBCO Object Service Broker and are customized for your site
when TIBCO Object Service Broker is installed. For more information, refer to
Editing @SCHEDULEMODEL on page 196.

Dynamic Creation of an Execution Environment
Through the use of variable substitution in the @SCHEDULEMODEL instances,
you can dynamically create the environment where to run the scheduled rule. The
session parameter variables are enclosed in delimiters such as braces ({ }), for
example {LIBRARY} and {RULE}. You can specify values for the variables directly
or as a reference to a TIBCO Object Service Broker table.

Precedence of Processing Values

Values that you provide in your @SCHEDULEMODEL instance scheduled for
processing take precedence over current interactive session attributes and any
attributes you specify in the SCHEDULE statement.

See Also TIBCO Object Service Broker Application Administion for the setup required to allow
users to reference values in a table for @SCHEDULEMODEL.

The Execution Environment parameters VARLDELIMITER and
VARRDELIMITER determine the delimiters that are to be used.
TIBCO Object Service Broker Programming in Rules

Functional Overview | 193
Installing and Operating manual for your operating environment about
customizing instances of @SCHEDULEMODEL.

TIBCO Object Service Broker Parameters about session and Execution Environment
parameters.
 TIBCO Object Service Broker Programming in Rules

194 | Chapter 17 Processing Asynchronously in Batch Mode
Scheduling for Direct Batch Processing

How to Schedule a Rule for Direct Batch Processing
To schedule a rule for direct batch processing, use the SCHEDULE statement in
your rule without the TO clause. This causes an instance from the table
@SCHEDULEMODEL to be submitted for processing when the rule is run. The
instance submitted can contain any z/OS JCL, Windows batch program, or Solaris
script. If the JCL, batch program, or script invokes TIBCO Object Service Broker,
the Data Object Broker must be operational.

Instance Sent for Processing

The @SCHEDULEMODEL table is parameterized by the data parameters
OPERATING_SYSTEM and MODELNAME. By default the system searches for
the @SCHEDULEMODEL instance that matches your operating system
environment and has the name of the scheduled rule as the value for the model
name. If this instance does not exist, the *DEFAULT* model for your operating
environment, which is one of the models shipped with TIBCO Object Service
Broker, is sent for processing.

Example of Scheduling for Direct Processing
The following is an example of the SCHEDULE statement scheduling an instance
of the @SCHEDULEMODEL table:

 RULE EDITOR ===> SCROLL: P
SCHED_RPT25;
 _
 _ ---
 _ --+--------------
 _ SCHEDULE INCOME_TAX; | 1
 _ ---

About the Example

When you execute the SCHED_RPT25 rule, a search is made for the table instance
@SCHEDULEMODEL(operating system, INCOME_TAX). If it is found, TIBCO
Object Service Broker submits it; otherwise, TIBCO Object Service Broker submits
the instance @SCHEDULEMODEL(operating system, *DEFAULT*) for processing.
TIBCO Object Service Broker Programming in Rules

Scheduling a Batch Queue in TIBCO Object Service Broker for z/OS | 195
Scheduling a Batch Queue in TIBCO Object Service Broker for z/OS

How to Schedule to a Batch Queue
In the TIBCO Object Service Broker for z/OS, you can use the TO clause in the
SCHEDULE statement to schedule and send a rule to a queue that you specify.
The definition of the queue determines when the batch job is submitted. You can
specify rules settings and output settings for a queued rule by using the TIBCO
Object Service Broker tools $BATCHOPT or BATCH before the SCHEDULE
statement.

Example of Scheduling to a Queue
The following is an example of using the TO clause in the SCHEDULE statement:

 RULE EDITOR ===> SCROLL: P
SCHED_RPT01(MONTH);
 _
 _ ---
 _ --+------------
 _ SCHEDULE TO 'MONTH_END' MONTHLY_REPORT(MONTH); | 1
_ ---

In this example, when you execute the SCHED_RPT01 rule, TIBCO Object Service
Broker sends the MONTHLY_REPORT rule with the argument MONTH to the
MONTH_END queue.

Features Available with the BATCH Tool
If you schedule a rule to a queue, these features are available to you through the
BATCH tool:

• You can view a list of available queues and their definitions.

• When your rule is scheduled to a queue, you can check the status of your
batch job.

• You can remove a job from the queue.

• You can create JCL for your batch job (and specify the JCL before the
SCHEDULE statement with the BATCH tool).

See Also TIBCO Object Service Broker for z/OS Installing and Operating about defining
queues, and TIBCO Object Service Broker Shareable Tools about the tools.
 TIBCO Object Service Broker Programming in Rules

196 | Chapter 17 Processing Asynchronously in Batch Mode
Editing @SCHEDULEMODEL

Provided Default Instances
You can copy and modify the default instances of the @SCHEDULEMODEL table
that are provided with TIBCO Object Service Broker. The following generic
default instances are provided for general usage:

• @SCHEDULEMODEL(MVS,*DEFAULT*)

• @SCHEDULEMODEL(NT,*DEFAULT*)

• @SCHEDULEMODEL(UNIX,*DEFAULT*)

Other instances are provided for specific tasks such as printing and for
promotions.

About the Default JCL
The default JCL, @SCHEDULEMODEL(MVS,*DEFAULT*), executes the program
S6BBATCH. This program runs a new TIBCO Object Service Broker Execution
Environment where the rule can be processed asynchronously.

Example of Customized JCL

The following is an extract of customized batch JCL:

 _ 60 //HURON EXEC PGM=S6BBATCH,REGION=4096K,
 _ 80 //PARM=('TDS={TDS},RULE=INCOME_TAX')
 _ 91 //HRNIN DD *
 _ 92 {TEST},
 _ 93 SEA={SEARCH},
 _ 94 C={CHARSET},
 _ 95 L=REPORT
 _ 96 /*

About the Example

The customized JCL specifies the REPORT local library and the INCOME_TAX
rule. This ensures that when the INCOME_TAX rule is scheduled for batch
processing the local library is always REPORT and the rule that is executed is
always INCOME_TAX.
TIBCO Object Service Broker Programming in Rules

Editing @SCHEDULEMODEL | 197
About the Default Windows Batch Program and Solaris Script
The default batch program, @SCHEDULEMODEL(NT,*DEFAULT*) and the
default script, @SCHEDULEMODEL(UNIX,*DEFAULT*), execute the utility
osBatch. This utility starts a new Execution Environment where the rule can be
processed asynchronously.

As well, the following @SCHEDULEMODEL table instances for “NT” and for
“UNIX” should not be modified: *DEFAULT*, APPLY_CHANGE, APPLY_PROM,
TREE, XRF. These instances should contain the following occurrences:

Windows

Solaris

Number Card

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

OSBATCH DOB={DOB} "R={RULE}({PARM})" \
U={USERID} P={PASSWORD} \
EENAME={EENAME} \
L={LIBRARY} I={INSTLIB} \
SEA={SEARCH} AC=T \
TEST={TEST} BROWSE={BROWSE} \
SESSIONLOGCLEAR={SESSIONLOGCLEAR} \
MSGLOGMAX={MSGLOGMAX} \
TRANMAXNUM={TRANMAXNUM} \
CHARSET={CHARSET} \
"PRINTDEST={DEST}" \
DSBIFTYPE={DSBIFTYPE} \
DSIXFTYPE={DSIXFTYPE} \
DSFIELDSEP={DSFIELDSEP} \
"DSDIR={DSDIR}"

Number Card

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

osBatch DOB={DOB} "R={RULE}({PARM})" \
U={USERID} P={PASSWORD} \
EENAME={EENAME} \
L={LIBRARY} I={INSTLIB} \
SEA={SEARCH} AC=T \
TEST={TEST} BROWSE={BROWSE} \
SESSIONLOGCLEAR={SESSIONLOGCLEAR} \
MSGLOGMAX={MSGLOGMAX} \
TRANMAXNUM={TRANMAXNUM} \
CHARSET={CHARSET} \
"PRINTDEST={DEST}" \
DSBIFTYPE={DSBIFTYPE} \
DSIXFTYPE={DSIXFTYPE} \
DSFIELDSEP={DSFIELDSEP} \
"DSDIR={DSDIR}" &
 TIBCO Object Service Broker Programming in Rules

198 | Chapter 17 Processing Asynchronously in Batch Mode
Editing Instances of @SCHEDULEMODEL
You use the Table Editor to create new instances or modify existing instances of
the @SCHEDULEMODEL table.

See Also TIBCO Object Service Broker for z/OS Installing and Operating for details about the
instances of @SCHEDULEMODEL supplied with TIBCO Object Service Broker.

TIBCO Object Service Broker for z/OS External Environments about the parameters
for S6BBATCH. Also refer to this manual about the PARM statement and the
HRNIN DD statement, both of which are used in this sample JCL.

TIBCO Object Service Broker for Open Systems Utilities about the parameters for
osBatch.

TIBCO Object Service Broker Managing Data about using the Table Editor.

When editing an instance of the @SCHEDULEMODEL table:

• If possible, use a Model 5 3270 terminal (or its equivalent, if you are emulating
a 3270 terminal) to edit the table. If you do not use a Mod 5 terminal, you must
edit the table with the Single Occurrence Editor.

• Data entered into the table is case sensitive.

• Data in the Card field of the @SCHEDULEMODEL table is limited to 72
characters. A command in the table can be continued over several lines by
including a continuation character (\) at the end of the line. TIBCO Object
Service Broker removes this character to pass a single line to the operating
system.

• Windows commands are limited to 2046 characters.

• Solaris systems work more efficiently if you put an ampersand (&) at the end
of the last line.
TIBCO Object Service Broker Programming in Rules

| 199
Chapter 18 Processing in Debug Mode

This chapter describes how to do processing in debug mode.

Topics

• Using the Rule Debugger, page 200

• How to Specify Break Events, page 204

• How to Examine and Modify the Execution State, page 207

• Associating a Series of Commands With a Break Event, page 208
 TIBCO Object Service Broker Programming in Rules

200 | Chapter 18 Processing in Debug Mode
Using the Rule Debugger

Processing Rules in Debug Mode
Using the Rule Debugger, you can process your rules in debug mode. In debug
mode, you can view and modify the execution state of a rules program. You can
choose particular events, called break events, that are of interest to you and have
the Debugger suspend the execution of the rules program when these events
occur. When execution is suspended, you can issue commands to examine the
state of execution or change the values of:

• Fields

• Parameters

• Local variables

and then instruct the Debugger to resume the execution of the rule.

How to Invoke and Navigate the Rule Debugger
Invoke the Debugger from one of the following places:

• The workbench:
DB debug rule ==> rulename<Enter>

If you do not specify a rule, the Object Manager screen for the Debugger
appears. Refer to Chapter 16, Processing in Standard Execution Mode, on
page 175 for more information about using the Object Manager.

• The EX execute rule workbench option:

EX execute rule ==> Debug(rulename)<Enter>

• The primary command field:

COMMAND ==> DB rulename<Enter>

• Using the line command G within the Object Manager screen of the Rule
Editor or the Rule Executor.
TIBCO Object Service Broker Programming in Rules

Using the Rule Debugger | 201
Main Screen of the Rule Debugger
Any of those methods display the following screen:

COMMAND ===>

 -------------------------------Debug Information------------------------------
 Starting TRANSFERCALL to rule EMPLOYEES_RAISE

 --------------------------- Breakevent Control-------------------------------
 Break Event Object name

 PFKEYS: 1=HELP 3=SAVE BREAKS 6=DBGCOM 12=EXIT 14=EXPAND 15=GO 22=REMOVE BREAK

Layout of the Rule Debugger Screen
The Rule Debugger screen is divided into three sections:

• The primary command line

• The Debug Information section, which displays the execution state of the rule
in browse mode as the rule is being debugged

• The Breakevent Control section, which displays where the Debugger is to
suspend the execution of your rules program
 TIBCO Object Service Broker Programming in Rules

202 | Chapter 18 Processing in Debug Mode
PF Keys and Commands for the Rule Debugger Screen
The following PF keys and primary commands are available from within the
Debugger screen:

PF Key Command Description

n/a AT Stop the execution of the rule at the event
specified. Refer to How to Specify Break Events
on page 204 for more information.

n/a RUN Ignore the break event for the current
transaction.

n/a STOPAPPLICATION Exit the application and return to the starting
point for the debugging session (for example,
workbench, Object Manager for the Rule
Editor).

n/a STOPDEBUGGER Stop the debugging process and let the
application finish processing.

PF2 n/a Display the message logs for additional
information.

PF3 n/a Save the current break events that are defined
and exit one transaction level of the application
that is being debugged.

PF4 n/a Save the current break events and remain in the
Debugger.

PF5 GO Continue executing.

PF6 DBGCOM Go to the Debugger Command Editor screen.
The cursor must be positioned on a break
event. Refer to How to Examine and Modify
the Execution State on page 207 for more
information.

PF9 n/a Re-display the last command typed in the
primary command field.

PF12 EXIT Exit the Debugger. Changes made since you
last pressed PF4 persist until you exit your
TIBCO Object Service Broker session.
TIBCO Object Service Broker Programming in Rules

Using the Rule Debugger | 203
PF13 n/a Print the Debugger screen.

PF14 EXPAND Expand the rule that is currently being
executed by the Debugger. The action
statement that is about to be performed is
highlighted.

PF15 GO Continue executing.

PF17 DUMP CALLSTACK Display the execution stack.

PF18 DUMP LASTCALLED Display a list of the last 16 rules called.

PF19 DUMP LOCALS Display a list of all active local variables and
their values.

PF20 DUMP TABLES Display a list of all active tables and the field
values being currently accessed.

PF22 OFF Delete the break event where the cursor is
positioned.

PF Key Command Description
 TIBCO Object Service Broker Programming in Rules

204 | Chapter 18 Processing in Debug Mode
How to Specify Break Events

Methods Available to Specify Break Events
There are two ways that you can specify break events to suspend the execution of
your rule:

• In the primary command field, issue the command AT in combination with the
event of your choice. If you use the AT command, specify a break event using
the format:

AT event qualifier

• In the Breakevent Control section, type in one or more events. On each line
specify a break event and a qualifier (that is, the name of the object where you
want the event to stop processing).

In either method, the break events that you specify are maintained and appear in
the Breakevent Control section, in the order in which you entered them. After
specifying the break events, use the GO command or press PF5 or PF15 to execute
the rule.

Valid Break Event Values
The following describes the valid events and any further qualifiers that you can
use with the AT command or specify in the Breakevent Control section of the
screen.

Break events are not processed for event rules. This includes trigger rules,
validation rules, and rules used to derive values from within tables.

Event Description Type of Qualifier

ACCESS Any table access. *

table name

CALL CALL statement or
reference to a function.

*

rule name
TIBCO Object Service Broker Programming in Rules

How to Specify Break Events | 205
COMMIT COMMIT statement.

Do not use this break event
if an external database is
open for update.

DELETE DELETE statement. *

table name

DISPLAY DISPLAY statement. *

screen name

DISPXCALL DISPLAY &
TRANSFERCALL
statement.

*

screen name

EXECUTE EXECUTE statement. *

rule name

FORALL FORALL statement. *

table name

GET GET statement. *

table name

INSERT INSERT statement. *

table name

ON Handling of an exception. *

exception name

exception name table name

REFFIELD Reference to a field in a
table.

*

table name.*

table name.field name

REFLOCAL Reference to a local
variable.

*

variable name

Event Description Type of Qualifier
 TIBCO Object Service Broker Programming in Rules

206 | Chapter 18 Processing in Debug Mode
REPLACE REPLACE on a table
occurrence.

*

table name

RETURN Return from a rule. *

rule name

ROLLBACK ROLLBACK statement.

Do not use this break event
if an external database is
open for update.

SCHEDULE SCHEDULE statement. *

instance name of the
@SCHEDULEMODEL
table

SETFIELD Assign a value to a field of
a table.

*

table name.*

table name.field name

SETLOCAL Assign a value to a local
variable.

*

variable name

SIGNAL Raise an exception. *

exception name

exception name table name

TRANSACTIONEN
D

End of transaction.

TRANSFERCALL TRANSFERCALL to a rule. *

rule name

UNRECERR Unrecoverable error.

* At all events.

Event Description Type of Qualifier
TIBCO Object Service Broker Programming in Rules

How to Examine and Modify the Execution State | 207
How to Examine and Modify the Execution State

Suspension of the Execution State
The Rule Debugger suspends the execution of the rule just prior to the event
taking place and displays the name of the event in the Debug Information section.
When the Debugger has suspended the execution of your rule, you can examine
the execution state of the present break event or modify the execution state of the
next break event to be encountered. To continue processing the rule, use the GO
command or press PF5 or PF15.

Commands Available to Examine the Execution State
To examine or modify the execution state use the primary commands listed in the
following table. Press Enter to execute the command.

Command Description Syntax

LIST Display a variable and its current
value.

LIST local variable name

LIST table.field

LIST table.*

SET Assign a new value to a variable. SET local=value

SET table.field=value

SET table.*=value

DUMP CALLSTACK Display the execution stack.

DUMP LASTCALLED Display a list of the last 16 rules
called.

DUMP LOCALS Display a list of all active local
variables and their values.

DUMP TABLES Display a list of all active tables
and the field values being
currently accessed.
 TIBCO Object Service Broker Programming in Rules

208 | Chapter 18 Processing in Debug Mode
Associating a Series of Commands With a Break Event

Using the commands described in Commands Available to Examine the
Execution State on page 207, you can also create a series of commands to be
associated with a specific break event. When created, this series of commands is
saved. It is then executed when the specific break event with which it is associated
is encountered during execution, in the same manner as if you had entered each
of the commands interactively.

How to Create a Series of Commands
To create a series of commands for a specific break event, complete the following
steps:

1. Position your cursor on the required break event in the Breakevent Control
section of the Debugger screen and press PF6.

2. Use the text editor TED to type in the required commands, one line at a time,
on the displayed screen.

Editing Commands

You can add to or delete any of the existing commands, using the following line
commands:

I Insert a line after the line your cursor is on.

D Delete the line the command is on.

M Move the line either before (B) or after (A) the line indicated.

C Copy a line after the line the command is on. Or copy the line either before
(B) or after (A) the line indicated.

B Move or copy the line before the line the command is on.

A Move or copy the line after the line the command is on.
TIBCO Object Service Broker Programming in Rules

Associating a Series of Commands With a Break Event | 209
Debugger Command Editor Screen
The Debugger Command Editor screen, similar to the following one, appears
when you press PF6 from the main Debugger screen:

 Debugger Command Editor
 TEXTTEMP
 Command:
 _ --
 _ DUMP callstack 1
 _ DUMP lastcalled 2

 PFKEYS: 1=HELP 3=SAVE 4=VERIFY 12=CANCEL 13=PRINT 22=DELETE COMMANDS

Available PF Keys

See Also TIBCO Object Service Broker Shareable Tools about using TED.

PF1 Display the Help screen.

PF3 Save the list of commands and exit to the Debug screen.

PF4 Validate the commands listed.

PF12 Cancel changes and exit to the Debug screen.

PF13 Print the list of commands.

PF22 Delete the list of commands. You are prompted to confirm the deletion.
 TIBCO Object Service Broker Programming in Rules

210 | Chapter 18 Processing in Debug Mode
TIBCO Object Service Broker Programming in Rules

| 211
Appendix A Syntax of the Rules Language

This appendix describes the syntax of the rule language.

Topics

• BNF Notation, page 212

• Syntax of Rules, page 215
 TIBCO Object Service Broker Programming in Rules

212 | Appendix A Syntax of the Rules Language
BNF Notation

Conventions Used
The following sections describe the syntax of the rules language using BNF
notation. This notation makes use of the following conventions:

• Lowercase words enclosed in angle brackets (< >) denote syntactic categories.
For example:

<start character>

• In a list of alternatives, each alternative starts on a new line except in the case
of the start characters, digits, and hexadecimal characters.

• A repeated item is enclosed in braces ({ }). The item can appear zero or more
times. For example:

{<digit>}

• Optional categories are enclosed in square brackets ([]). For example:
[<exponent>]

• ::= means “is defined to be”.

Identifiers
Rules language identifiers cannot exceed sixteen characters in length and are
comprised of the following characters:

<identifier> ::=
<start character> {<follow character>}

<start character> ::=
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z @ # $

<follow character> ::=
<start character>
<digit>
_

<digit> ::=
0 1 2 3 4 5 6 7 8 9

Numeric Literals
The rules language supports the following forms of numeric literals:

 <numeric literal> ::=
<digits> [. <digits>] [<exponent>]
[<digits>] . <digits> [<exponent>]

<digits> ::=
digit { <digit> }
TIBCO Object Service Broker Programming in Rules

BNF Notation | 213
<digit> ::=
0 1 2 3 4 5 6 7 8 9

<exponent> ::=
E [<sign>] <digits>
e [<sign>] <digits>

<sign> ::=
+
-

String Literals
A string literal is zero or more characters enclosed in single quotes:

<string literal> ::=
<plain character string>
<hexadecimal character string>
<Unicode character string>

 <hexadecimal byte string>

<plain character string> ::=
'{<character>}'

<hexadecimal character string> ::=
x'{<hexadecimal digit><hexadecimal digit>}'
X'{<hexadecimal digit><hexadecimal digit>}'

<Unicode character string> ::=
u'{<Unicode character>}'
U'{<Unicode character>}'

<hexadecimal byte string> ::=
r'{<hexadecimal digit><hexadecimal digit>}'
R'{<hexadecimal digit><hexadecimal digit>}'

<hexadecimal character> ::=
0 1 2 3 4 5 6 7 8 9 a A b B c C d D e E f F

<Unicode character> ::=
<character other than />
/<hexadecimal digit><hexadecimal digit><hexadecimal digit><hexadecimal digit>

//

where:

• <character> can be <letters>, <digits>, <special characters>, and the space
character (described in Character Set on page 19), as well as any other
characters that you can input from your terminal.

• <character other than /> denotes the same characters as <character>, except
for the exclusion of the forward slash (escape) character.

• The double forward slash (//) denotes the forward slash character (/).

• A forward slash followed by four hexadecimal digits denotes the Unicode
character with the corresponding UTF-16 representation.
 TIBCO Object Service Broker Programming in Rules

214 | Appendix A Syntax of the Rules Language
• <plain character string> denotes a typeless string literal of syntax V
containing the designated characters.

• <hexadecimal character string> denotes a typeless string literal of syntax V
containing characters designated by their two-digit hexadecimal values in the
relevant EBCDIC code page. When a rule containing <hexadecimal character
string> is stored and subsequently retrieved for editing, the literal in question
appears as <plain character string> if all the characters designated by the
original literal are printable.

• <Unicode character string> denotes a typeless string literal of syntax UN
containing the characters designated by their printable EBCDIC value, an
escaped UTF-16 hexadecimal value, or the escaped escape character.

• <hexadecimal byte string> denotes a typeless literal of syntax RD, containing
the byte values designated by the pairs of hexadecimal digits.
TIBCO Object Service Broker Programming in Rules

Syntax of Rules | 215
Syntax of Rules

Supported Syntax
The rules language supports the following syntax within rules:

<rule> ::=
 <rule declaration> <condition list> <action list> <exception list>

<rule declaration> ::=
<rule header> [<local name declaration>]

<rule header> ::=
<rule name> [<rule header argument list>] ;

<rule header argument list> ::=
(<rule argument name> {,<rule argument name>})

<local name declaration> ::=
LOCAL <local name> {,<local name>} ;

<condition list> ::=
{<condition>;}

<condition> ::=
[<not>] <logical value>
<expression> <relational operator in condition> <expression>

<logical value> ::=
<field of a table>
<rule argument name>
<function call>

<action list> ::=
<action> {<action>}

<exception list> ::=
{<on exception>}

<on exception> ::= ON <exception designation> : {<action>}
<action> ::=

<statement> ;
<statement> ::=

<assignment>
<rule invocation>
<function return>
<table access statement>
<synchronous processing>
<output processing>
<signal exception>
<asynchronous call>
<iterative processing>

<assignment> ::=
<assignment target> = <expression>
<assignment-by-name>

<assignment target> ::=
<field of a table>
<local name>

<assignment-by-name> ::=
<table reference> .* = <table reference> .*
<table reference> .* = NULL

<rule invocation> ::=
<invocation> <invocation specification> [<invocation arguments>]
 TIBCO Object Service Broker Programming in Rules

216 | Appendix A Syntax of the Rules Language
<invocation> ::=
CALL
EXECUTE [IN <browse specification>]
TRANSFERCALL [IN <browse specification>]

<invocation specification> ::=
<rule name>
<rule argument name>
<table name> . <field name>

<invocation arguments> ::=
<argument list>
WHERE <where argument list>

<where argument list> ::=
<where argument item> {<and> <where argument item>}

<where argument item> ::=
<identifier> = <expression>

<function return> ::=
RETURN (<expression>

<table access statement> ::=
<get statement>
<insert statement>
<replace statement>
<delete statement>
<forall statement>

<get statement> ::=
GET <occurrence specification> [<table order>] [WITH MINLOCK]

<occurrence specification> ::=
<table specification> [WHERE <where predicate>]

<table specification> ::=
<table name> [<argument list>]
<rule argument name> [<argument list>]
<table name> . <field name> [<argument list>]

<where predicate> ::=
<where not expression> {<logical operator> <where not expression>}

<where not expression> ::=
[<not>] <where expression>

<where expression> ::=
<where relation>
(<where predicate>)

<where relation> ::=
<field reference> <relational operator> <where expression>

<where expression> ::=
[<unary operator>] <where expression term> {<add operator>

<where expression term>}
<where expression term> ::=

<where expression factor> {<multiplication operator>
<where expression factor>}

<where expression factor> ::=
<where expression primary> [<exponent operator> <where
expression primary>]

<where expression primary> ::=
(<where expression>)
<where field of a table>
<rule argument name>
<local name>
<function call>
<literal>

<where field of a table> ::=
TIBCO Object Service Broker Programming in Rules

Syntax of Rules | 217
<where table reference> . <field reference>
<where parameter list> ::=

<where parameter item> {<and> <where parameter item>}
<where parameter item> ::=

<table parameter name> = <expression>
<where table reference> ::=

*
<table name>
(<rule argument name>)
(<table name> . <field name>)

<insert statement> ::=
INSERT <table specification> [WHERE <where parameter list>]

<replace statement> ::=
REPLACE <table specification> [WHERE <where parameter list>]

<delete statement> ::=
DELETE <table specification> [WHERE <where primary key>]

<where primary key> ::=
<primary key> = <expression>

<primary key> ::=
<field name>

<forall statement> ::=
FORALL <occurrence specification> [<table order>] [<until
specification>]: <for action list> END

<until specification> ::=
UNTIL <exceptions>

<exceptions> ::=
<exception designation> {<or> <exception designation>}

<exception designation> ::=
<exception name> [<table name>]

<exception name> ::=
<identifier>

<for action list> ::=
<for action> ; }

<for action> ::=
<assignment>
<rule invocation>
<table access statement>
<output processing>
<asynchronous call>
<iterative processing> COMMIT

<table order> ::=
<table order item> {AND <table order item>}

<table order item> ::=
ORDERED [<ordering>] <field reference>

<ordering> ::=
ASCENDING
DESCENDING

<synchronous processing> ::=
COMMIT
ROLLBACK

<output processing> ::=

The <where table reference> construction allows an asterisk (*) to be specified as
the table name.
 TIBCO Object Service Broker Programming in Rules

218 | Appendix A Syntax of the Rules Language
<PRINT> <report reference>
DISPLAY <screen reference> [<and option>]

<report reference> ::=
<report name>
<table name> . <field name>
<rule argument name>

<report name> ::=
<identifier>

<screen reference> ::=
<screen name>
<table name> . <field name>
<rule argument name>

<screen name> ::=
<identifier>

<and option> ::=
<and> TRANSFERCALL [IN <browse specification>] <invocation
specification> [<invocation arguments>]

<signal exception> ::=
SIGNAL <exception name>

<asynchronous call> ::=
SCHEDULE [IN <browse specification>] [<queue
specification>] <rule name> [<call arguments>]

<browse specification> ::=
BROWSE
UPDATE

<queue specification> ::=
TO <expression>

<iterative processing> ::=
<until statement> ::=

UNTIL <exceptions> [DISPLAY<screen reference>]:{<action>} END
<field reference> ::=

<field name>
(<rule argument name>)
(<table name> . <field name>)

<table parameter name> ::=
<identifier>

<function call> ::=
<function name> [<argument list>]

<argument list> ::=
(<expression> {,<expression>})

<expression> ::=
[<unary op>] <expression term> {<add operator>
<expression term>}

<expression term> ::=
<expression factor> {<multiplication operator> <expression
factor>}

<expression factor> ::=
<expression primary> [<exponent operator> <expression
primary>]

<expression primary> ::=
<expression>
<field of a table>
<rule argument name>
<local name>
<function call>
<literal>

<field of a table> ::=
TIBCO Object Service Broker Programming in Rules

Syntax of Rules | 219
<table reference> . <field reference>
<table reference> ::=

<table name>
(<rule argument name>)
(<table name> . <field name>)

<rule name> ::=
<identifier>

<function name> ::=
<identifier><rule argument name> ::=
<identifier>

<table name> ::=
<identifier>

<field name> ::=
<identifier>

<local name> ::=
<identifier><unary operator> ::=
-
+

<add operator> ::=
+
-
||

<multiplication operator> ::=
*
/

<exponent operator> ::=
**

<logical operator> ::=
<and>
<or>

<and> ::=
AND
&

<or> ::=
OR
|

<not> ::=
NOT ¬

<relational operator in section> ::=
<relational operator in condition>
LIKE

<relational operator in condition> ::=
=
¬=
>
>=
<
<=

<literal> ::=
<string literal>
<numeric literal>
NULL

The keyword NULL can appear only by itself and not as an operand in an
expression. For example, it is syntactically incorrect to write NULL + 1.
 TIBCO Object Service Broker Programming in Rules

220 | Appendix A Syntax of the Rules Language
TIBCO Object Service Broker Programming in Rules

| 221
Index

Symbols

- (subtraction) arithmetic operator 134
, (comma), as list separator 9, 10
- (subtraction) arithmetic operator 86
- (unary minus) arithmetic operator 86
; (semicolon), use of 9, 10, 13, 117
: (colon), use of 13, 42, 72, 74, 76
::= (is defined to be) 212
? (question mark), as used for pattern matching 56
' ' (quotation marks)

use of 24
use with primary key fields 25

() (parentheses)
as used for indirect reference 97
as used in argument list 9

[] (square brackets) 212
{ } (braces) 192, 212
@SCHEDULEMODEL table

and asynchronous processing 194
as used by the SCHEDULE statement 53
default instances of JCL, batch or Solaris script 196
editing instances of 196

* (asterisk)
as used for debugging 206
as used for pattern matching 56
representing current table 44

* (multiplication) arithmetic operator 86, 134
** (exponentiation) arithmetic operator 86, 134
/ (division) arithmetic operator 86, 134
& (AND) logical operator

and WHERE clause 56
description 91

+ (addition) arithmetic operator 86, 134
+ (unary plus) arithmetic operator 86
< (less than) relational operator 88
< > (angle brackets) 212
<= (less than or equal to) relational operator 88
= (assignment operator) 92, 92

= (equality) relational operator
description 88

> (greater than) relational operator 88
>= (greater than or equal to) relational operator 88
¬ (NOT) logical operator 91
¬= (not equal) relational operator 88
| (OR) logical operator

and WHERE clause 56
description 91

|| (concatenation operator) 86
$BATCHOPT tool 195
$SETRPTMEDIUM tool 49

A

ACCESS break event 204
ACCESSFAIL exception

and execution mode 111
condition signaling 62
limiting scope 67

action sequence numbers 13–14
and APPEND command 165
and copied lines 161
and deleted lines 161
and moved lines 162
and replicated lines 163
in a FORALL loop 42
in an UNTIL … DISPLAY loop 76
in ON statement 72
in UNTIL statement 74

action statements 33–57
See also exception handling statements
types of 28–32
using semicolon (;) to end 13
where to specify 13

action. See action statements
adding occurrence 47
 TIBCO Object Service Broker Programming in Rules

222 | Index
adding. See creating
addition (+) arithmetic operator 86, 134
ALL argument for CHANGE command 166
altering. See modifying
AND (&) logical operator

and WHERE clause 56
description 91

and FORALL statement 43
angle brackets (< >) 212
APPEND primary command 165
appending rules 165
APPLY primary command 155
applying. See saving
arguments

as used in conditions 119
behavior of null values for 128
declaring 9
entering when executing rule 176
in CALL statement 34
usage of 9
used for indirect reference 96

arithmetic expression, invoking rule with 30
arithmetic operations

permitted syntaxes 134
resultant syntax 138
supported operators 134

arithmetic operators
description 86
string operand for 136

ASCENDING operator 48
assigning values 93
assignment

initializing fields 94
of nulls 126
valid types 92

assignment operator 92–94
assignment operator (=) 92
assignment statements, types of 92
assignment-by-name 93
asterisk (*)

as used for debugging 206
as used for pattern matching 56
representing current table 44

asynchronous processing 53, 191–198
AT primary command 202, 204, 204

Austrian/German character set 21

B

B (binary) syntax
arithmetic operations on 134
description 80

Backus-Naur Form notation 212
batch processing 53, 191–198
batch program, scheduling 53
batch queue, sending rule to 53, 195
batch script, default for @SCHEDULEMODEL 197
BATCH tool 195
batchclt utility 197
binary (B) syntax

arithmetic operations on 134
description 80

blanks, trailing 89
BNF notation 212
braces ({ }) 192, 212
break event

command series for 208
deleting 203
specifying 202, 204
valid commands 207

Breakevent Control section 204
browse mode

and DISPLAY & TRANSFERCALL statement 40
and EXECUTE statement 41
and TRANSFERCALL statement 55
setting 111

C

C (copy line) line command 161
C (count) semantic data type 84
C (fixed-length character string) syntax

arithmetic operations on 134
description 80

calculation of length of all fields 82
CALL break event 204
TIBCO Object Service Broker Programming in Rules

Index | 223
CALL statement
description 34
invoking rule with 30

Canadian Bilingual character set 21
CANCEL primary command 166
canceling

data changes 52
rule changes

rule 166
case sensitivity in relational operator 89
CD copy defn menu option 145
CDNB (Canadian Bilingual) character set 21
CHANGE primary command 166
change to data, saving 36
CHANGE...ALL primary command 166
changing. See modifying
character set, for rules language 19
character sets. See national character set support
checking rule syntax 158
child transaction 108
clearing system log 186
CLOSE primary command 174
colon (:), use of 13, 42, 72, 74, 76
combining line commands 164
comma (,), as list separator 9, 10
command series for break event 208
commands listed

for Rule Debugger 202
for Rule Editor 159

COMMIT break event 205
COMMIT statement

and transaction processing 106
description 36

COMMITLIMIT exception
and COMMIT statement 36
and FORALL statement 43
condition signaling 62

committing. See saving
COMMON library 143
comparing, rule definition 4, 4
comparison operators, description 88
components of a rule 8–15
concatenation operator (||) 86
concurrent access 40

conditional processing 116–121
adding conditions 117
description 116
providing 12

conditions
adding 117
and APPEND command 165
and functions 121
composition of 12
description 116
example using arguments 119
example using expressions 118
example using functional rules 121
examples of 117, 118
maximum number of 117
order of evaluation 116

CONFIRM primary command 168
CONVERSION exception, condition signaling 62
conversion of

nulls 126
number to string 136
string to numeric syntax 136

COPY primary command 167
COPY_DEFN tool 4, 146
COPYDEFN tool 4, 146
copying

See also replicating
line 161
rule 167
rule definition 4, 4
rule to another library 145

count (C) semantic data type 84
count operand for arithmetic operator 86
creating rule 168
CROSSREFSEARCH tool 4, 4
current table

representing with * (asterisk) 44
specifying 56

current transaction, terminating 55, 105
cursor location and S (split) command 164
customer support xxii
 TIBCO Object Service Broker Programming in Rules

224 | Index
D

D (date) semantic data type 84
D (delete line) line command 161
Danish/Norwegian character set 21, 22
DANS (Dansk) character set 21
data

handling dynamic values 10
locks taken on 112
representation of local variables, rules 11
retrieval order 48
rolling back changes to 52
saving changes to 36

data access exception handlers 67
Data Object Broker parameters, WORKINGSET 36
data representation, of rule arguments 9
data storage types 80
data types 84
database

establishing synchronization points 106
synchronizing 29

database synchronization statements, listed 29
DATAREFERENCE exception 43

and GET statement 45, 47
and REPLACE statement 50
condition signaling 62

date (D) semantic data type 84
date operand for arithmetic operator 86
DB debug rule menu option 200
DBGCOM primary command 202
debugging rules. See Rule Debugger
declaring

arguments 9
local variables 10
rule name 9

default
batch script 197
JCL 196
Solaris script 197
value, behavior of null 131
vertical scroll amount, modifying 154

DEFINE_LIBRARY tool 142, 147
defining rule library 147
defining rules 2
definition, locks taken on 112

DEFINITIONFAIL exception
and DISPLAY statement 39, 40
and PRINT statement 49
condition signaling 62
limiting scope 67

DELETE break event 205
DELETE primary command 168
DELETE statement

and WHERE clause 56
description 38

DELETEFAIL exception
and DELETE statement 38
condition signaling 62
limiting scope 67

deleting
break event 203
line 161
occurrence 38
rule 168
rule library 144

delimiters
supported in the rules language 18
used by @SCHEDULEMODEL table 192

descendant rule, exception handling in 67
descendant transaction

parent child relationship 108
starting 41, 108

DESCENDING operator 48
DESCRIPTION field 148
DEUT (Deutsch) character set 21
DIFFDEFN tool 4, 4
DISPLAY & TRANSFERCALL statement

and transaction processing 105
description 40

DISPLAY break event 205
DISPLAY statement, description 39
DISPLAYFAIL exception

and DISPLAY statement 39, 40
condition signaling 62
TIBCO Object Service Broker Programming in Rules

Index | 225
displaying
listing of rule libraries 143
online help 169
report information 174
routine information 173
Rule Debugger Command Editor screen 202
rule information 173
rules in library 144
screen 39
screen for multiple users 40
screen information 173
table information 173

DISPXCALL break event 205
division (/) arithmetic operator 86, 134
DL define library menu option 143, 147
DOCUMENT primary command 168
documentation, printing 170
documenting rules 168
double-byte character string (W) syntax

arithmetic operations on 135
description 81

double-byte character string support 23
DUMP CALLSTACK primary command 203, 207
DUMP LASTCALLED primary command 203, 207
DUMP LOCAL primary command 203, 207
DUMP TABLES primary command 203, 207
duplicating. See copying
dynamic values. See local variables

E

ED edit rule menu option 150
EDIT primary command 168
editing rules 149–156

command for 168
See also Rule Editor 150

editing. See modifying
EDITRULE tool 150
END primary command 169
END statement 74

and FORALL statement 42
and UNTIL statement 74
and UNTIL...Display statement 76

ENGB (Great Britain) character set 22
ENGL (US English) character set 22
English (Great Britain) character set 22
English (US) character set 22
entering

arguments when executing rule 176
text in uppercase 170

equality (=) relational operator
description 88

equality relational operators, description 89
ERROR exception

condition signaling 62
description 61

errors
finding in rule 199
logging 181

ESPA (Espanol) character set 22
establishing transaction synchronization points 36, 52
evaluation of conditions, sequence 116
EX execute rule menu option 176
exception handlers

description 72
exceptions raised by 61

exceptions
and FORALL processing 43
handling 59
hierarchy 60
maximum number of 65
raised by exception handler statement 61
raising 73
specifying 74

exclusive lock 112
executable statement. See action statements
EXECUTE break event 205
Execute Rule

description 175
invoking 176

EXECUTE statement
and transaction processing 105
description 41
nesting transactions with 108

EXECUTEFAIL exception 108
and EXECUTE statement 41
condition signaling 62
 TIBCO Object Service Broker Programming in Rules

226 | Index
executing rule
asynchronously 192
debug mode 199
standard execution mode 175

executing rules
batch mode 191
methods available 3

Execution Environment, dynamic creation of 192
execution failure, logging 185
execution mode, setting 111
EXIT primary command 202
exiting Rule Debugger 202
EXPAND primary command 174, 203
expanded displays

closing 174
nesting 174

expanding
objects 172–174
primary command 174
report 174
routine 173
rule 173
screen 173
table 173

exponentiation (**) arithmetic operator 86, 134
expressions

as used in a condition 118
relational, use of nulls 130
use of 78–102
use of nulls 128

external sort program, when used 48

F

F (floating point) syntax
arithmetic operations on 134
description 80

field length formulas 82
field syntax 80

fields
assigning single value to 93
assigning value to identically-named 93
global, information expanded 172
information displayed with expand facility 172
initializing 94
unassigned, behavior of nulls 131

FIND primary command 155, 169
finding

string in message log 181
tokens 169

Finnish/Swedish character set 22, 22
fixed-length character string (C) syntax

arithmetic operations on 134
description 80

floating point (F) syntax
arithmetic operations on 134
description 80

floating-point results 82
FORALL break event 205
FORALL statement

and action sequence numbers 13, 42
and REPLACE statement 50
and uncommitted changes 36
description 42
termination of 43
using colon (:) to end 13

Formulas for field lengths 82
FRAN (Francais) character set 22
French character set 22
functional rules

as conditions 121
invoking 30
invoking as condition 121

G

G (debug rule) line command 200
German character set 21
GET break event 205
TIBCO Object Service Broker Programming in Rules

Index | 227
GET statement
and REPLACE statement 50
and uncommitted changes 36
description 45

GETFAIL exception
and GET statement 45
condition signaling 62
limiting scope 67

global field, information displayed with expand
facility 172

GO primary command 202, 203, 204, 207
greater than (>) relational operator 88
greater than or equal to (>=) relational operator 88

H

HELP primary command 169
hexadecimal literals 18
hierarchy, of exceptions 60

I

I (identifier) semantic data type 84
I (insert line) line command 162
IBMFLOAT 82
identically-named field, assigning value to 93
identifier (I) semantic data type 84
identifier, valid value for 212
identifying

errors in rule 199
numeric literals 25
string literals 24

IN clause 111

indirect reference 95–102
example of argument to rule 96
example of table instance reference 101
example of table.field reference 98
example with parameterized table 102
permitted references 95
providing values 95
restrictions 95
semantic data type for 95
use of nulls 131
use of parentheses 97

initializing fields 94
INSERT break event 205
INSERT statement

and displaying data 39
description 47

INSERTFAIL exception
and INSERT statement 47
and null processing 130
condition signaling 62
limiting scope 67

inserting
See also adding
data in table 31
line in a rule 162

installation library
description 143
search order 144
tool to search 4

INTEGRITYFAIL exception
and DELETE statement 38
and FORALL statement 43
and INSERT statement 38, 45, 47
and REPLACE statement 50
condition signaling 62

invoking
Execute Rule 176
functional rule as condition 121
rule 30
Rule Debugger 200
Rule Editor 150
transaction 55

is defined to be (::=) 212
ITAL (Italiano) character set 22
Italian character set 22
 TIBCO Object Service Broker Programming in Rules

228 | Index
J

JAVAFAIL exception, condition signaling 62
JCL

examples for @SCHEDULEMODEL 196
scheduling 53

K

KEYWORDS field 148
keywords. See reserved words

L

L (logical) semantic data type 85
length permitted for syntaxes 80
lengths, valid, for syntax 80
less than (<) relational operator 88
less than or equal to (<=) relational operator 88
level of a transaction 108
lexical elements 18–20
libraries. See rule libraries 142
LIKE relational operator

as a comparison operator 88
using with FORALL statement 56

limiting scope of data access exception handlers 67
line

copying 161
deleting 161
inserting in a rule 162
moving 162
replicating 163
splitting 163

line commands
C (copy line) 161
C (copy rule) 155
combining 164
D (delete line) 161
D (delete rule) 155
E (edit rule) 179
G (debug rule) 155, 179, 200
I (insert line) 162
M (move line) 162
P (print rule) 156
R (replicate line) 163
S (execute rule) 179
S (select rule) 156, 180
S (split line) 163
X (execute rule) 156, 176

line commands, for Rule Editor 159
list of exceptions, specifying 74
LIST primary command 207
literal

numeric 212
string 213

local library, description 142
local variables 10–11

and APPEND command 165
assigning single value to 93
handling dynamic data values 10
initialization of 131

LOCAL, reserved word 10
localization. See national character set support
LOCKFAIL exception 112

and SCHEDULE statement 53
condition signaling 62
limiting scope 67

locking 106
data 112
definitions 112
types of locks taken depending on access 113

log. See message logs
logical (L) semantic data type 85
logical expression, invoking rule with 30
logical operators 91

& (AND) 91
¬ (NOT) 91
| (OR) 91
TIBCO Object Service Broker Programming in Rules

Index | 229
looping statements, listed 29
LOWER primary command 169
lowercase, typing text in 169

M

M (move line) line command 162
maximum exceptions 65
menu options

CD copy defn 145
DB debug rule 200
DL define library 143, 147
ED edit rule 150
EX execute rule 176

message logs
See also system log; user log
description 181
finding string in 181
PF keys for 182
primary commands for 181
printing 181

messages generated by rule 183
mixed case, typing text in 169
mode of transaction

inheriting 111
locks taken 111
setting 111

modifying
See also replacing
action sequence numbers 13
default vertical scroll amount 154
different rule 168
previous command 170
primary key 50

moving line 162
multiple lines

copying 161, 161
moving 163

multiple users, displaying interactive screen for 40
multiplication (*) arithmetic operator 86, 134

N

name. See identifier
national character set support 21–22

sorting 21
specifying character set 21

nesting expanded displays 174
nesting transactions 108
NORS (Norsk) character set 22
Norwegian character set 21, 22
NOT (¬) logical operator 91
null processing 123–131
NULL reserved word

invalid usage 125
usage in expressions 79
valid usage 125

nulls
assignment of 126
behavior 126
behavior for arguments 128
behavior for default value 131
behavior for expressions 128
behavior for indirect reference 131
behavior for parameters 127
behavior for relational expressions 129, 130
behavior for unassigned field 131
behavior in ordering 130
conversion 126
initial value for local variables 131
manipulation 125
overview of 124
syntax and semantics 124
usage for keys 130
value in a field 124
value, representing 79

NULLVALUE exception
and manipulation of nulls 125
condition signaling 62

number, conversion to string 136
numeric literals

description 212
identifying 25

numeric syntax, conversion of string to 136
 TIBCO Object Service Broker Programming in Rules

230 | Index
O

Object Manager screen
available commands 155, 179
using from Execute Rule 179
using from Rule Editor 155

object. See field, report, rule, routine, screen, or table
occurrence

adding 47
deleting 38
processing set of 42, 74
replacing 50
retrieving specified 45

OFF primary command 203
ON break event 205
ON statement

and action sequence numbers 72
description 72

online help, displaying 169
operand

of arithmetic operator 86
of relational operator, semantic data type in 88, 88

operator precedence 87, 91
operators 86–94

See also arithmetic operators; assignment operator;
logical operators; relational operators

OR (|) logical operator
and WHERE clause 56
description 91

ORD field, using with FORALL statement 42
order

of condition evaluation 116
of operations 87, 91
with nulls 130

ORDERED clause
and FORALL statement 42, 42
and the GET statement 45
and the WHERE clause 56
description 48

ORDERED primary command 155
ordering

and GET statement 45
and the ORDERED clause 48
default for a table 48
in a FORALL statement 42

ordering relational operators, description 90
output statements, listed 30
OVERFLOW exception, condition signaling 63

P

P (packed decimal) syntax
arithmetic operations on 134
description 80

packed decimal (P) syntax
arithmetic operations on 134
description 80

parameter values
specifying in FORALL statement 42
use of nulls 127

parameterized table, example for indirect
reference 102

parentheses (())
as used for indirect reference 97
as used in argument list 9

passing arguments, between rules 9
pattern match relational operator

description 88
using with FORALL statement 56

permitted lengths for syntax field 80
PF keys

for message logs 182
for Rule Debugger 202
for the Rule Editor 159

PORT (Portuguese) character set 22
Portuguese character set 22
precedence

of logical operators 91
of operators in expressions 87

primary commands
creating series for break event 208
used to examine execution state 207
valid after break event 207

primary commands listed
Object Manager screen 155, 180
Rule Debugger screen 202
Rule Editor screen 159

primary commands, modifying previous 170
TIBCO Object Service Broker Programming in Rules

Index | 231
primary key
modifying 50
specifying in GET statement 38, 45
use of nulls 130
value, altering 50

primary key fields, use of quotation marks 25
PRINT primary command 170
PRINT statement, description 49
printing

documentation 170
message log 181
report 49
rules 3
tool for 3

procedure, invoking rule as 30
PROCESS_FCNKEY tool 98
processing

asynchronously 191–198
conditional 12, 116–121
nulls 123–131
pseudo-conversational 40
sequence for line commands 164
set of occurrences 42

pseudo-conversational processing 40

Q

Q (quantity) semantic data type 85
quantity (Q) semantic data type 85
quantity operand for arithmetic operator 86
question mark (?), as used for pattern matching 56
queue, sending rule to 53, 195
quotation marks (' ')

use of 24
use with primary key fields 25

R

R (replicate line) line command 163
raising exceptions 73
RANGERROR exception, condition signaling 63

raw data (RD) syntax
arithmetic operations on 134
description 81

raw-data literals 18
RD (raw data) syntax

arithmetic operations on 134
description 81

recalling previous command 170
record. See occurrence 45
REFFIELD break event 205
REFLOCAL break event 205
relational expressions, use of nulls 129, 130
relational operators 88–90
removing. See deleting
REPLACE break event 206
REPLACE statement, description 50
REPLACEFAIL exception

and null processing 130
and REPLACE statement 50
condition signaling 63
limiting scope 67

replacing
See also copying
occurrence 50
token 166

replicating line 163
report

expanding 174
information displayed with expand facility 172
printing 49

REPORT token type 174
representing null value 79
reserved words, listing of 19
restrictions, for indirect referencing 95
result of comparison with relational operator 89
retrieval order

and the ORDERED clause 48
FORALL statement 42
GET statement 45, 45

retrieving specified occurrence 45
RETURN break event 206
RETURN statement, description 51
revising. See modifying
ROLLBACK break event 206
 TIBCO Object Service Broker Programming in Rules

232 | Index
ROLLBACK statement
and transaction processing 106
description 52

routine
expanding 173
information displayed with expand facility 172

ROUTINEFAIL exception
and CALL statement 34
condition signaling 63

row. See occurrence 45
RPT token type 174
rule arguments. See arguments
rule arithmetic 134–138
Rule Debugger

adding commands 202
commands and PF keys 202
description 199
exiting 202
invoking 200

rule definition
comparing 4, 4
copying 4, 4

Rule Editor 149–156
commands and PF keys 159
displaying source code 151
invoking 150
scrolling 154
using Object Manager screen 155

rule header, description 9
rule invocation statements, listed 30
rule libraries

See also system library; installation library; local

library 141
COMMON 143
DEFINE_LIBRARY tool 142
defining 147
deleting 144
description 141
displaying list of 143
displaying rules in 144
installation 143
local 142
organization of 142
search sequence 151
selecting a different 145
SITE 143
system 143

rule name
declaring 9
valid values for 151

RULE token type 174
RULEFAIL exception

and CALL statement 34
condition signaling 63

RULEPRINTER tool 3, 3, 3, 3
TIBCO Object Service Broker Programming in Rules

Index | 233
rules
appending 165
arguments, behavior of 9
canceling changes to 166
checking syntax 158
component parts, described 8–15
conditional processing of 12
copying 167
copying to another library 145
creating 168
declaring arguments 9
declaring name 9
defining 2
deleting 168
description 2
displaying list of 155
documenting 168
editing command 168
executing 175
execution methods 3
expanding 173
functional 30
information displayed with expand facility 172
invoking 30
invoking function type as condition 121
listing a library of 144
messages generated by 183
modifiable parts 153
modifying different 168
printing 3
procedural 30
samples of 5–6
scheduling 191
scrolling 154
search utility for 4
selecting with S (select) line commands 180
sending to queue 53, 195
stopping execution of 202, 204
syntax of 215–219

rules language, description 2
RUN primary command 202

S

S (select rule) line commands 180
S (split line) line command 163
S (string) semantic data type 85
S6BBATCH program 196
sample rules 5
SAVE primary command 170
saving change to data 36
SCHEDULE break event 206
SCHEDULE statement

description 53
options 191
transaction, starting 105

scheduling rule 53, 191
SCHW (Schweiz) character set 22
scope

of CHANGE command, modifying 166
of data access exception handlers, limiting 67
of local variables 10

SCR token type 174
screen

displaying 39
expanding 173
information displayed with expand facility 172

SCREEN token type 174
SCRIPT tool 148
script, scheduling 53
scroll amount, modifying default vertical 154
scrolling rule 154
search sequence for rule libraries 151
Search Utility 4
searching rules 4
secondary key, and nulls 130
SECURITYFAIL exception

and SCHEDULE statement 53
condition signaling 63
limiting scope 67

SELECT primary command 155, 180
selecting

different rule library 145
in a FORALL statement 42
rule 180

selection criteria 48, 56
 TIBCO Object Service Broker Programming in Rules

234 | Index
SELECTIONFAIL exception
condition signaling 63

semantic data type
in operand of relational operator 88
indirect reference 95
valid syntaxes 84
valid types 84

semantics of nulls 124
semicolon (;), use of 9, 10, 13, 117
sending rule to queue 53, 195
sequence for processing line commands 164
sequence of condition evaluation 116
SERVERBUSY exception

condition signaling 63
limiting scope 67

SERVERERROR exception
condition signaling 63
limiting scope 68

SERVERFAIL exception, condition signaling 63
SERVERFAIL exception, limiting scope 68
SET primary command 207
SETFIELD break event 206
SETLOCAL break event 206
shared lock 112
SIGNAL break event 206
SIGNAL statement 73
simple assignment statement 93
single quotation marks 24
single value

assigning to field 93
assigning to local variable 93

SITE library 143
Solaris script, default for @SCHEDULEMODEL

table 197
sorting

external sort program, when used 48
of national character sets 21

source code 151
Spanish character set 22
specifying

exception 74
primary key in GET statement 38, 45
table parameters in FORALL statement 42

splitting line 163
square brackets ([]) 212

starting descendant transaction 41, 108
statement types

assignment statements 29
database synchronization 29
looping 29
output 30
rule invocation 30
table access 31

STOPAPPLICATION primary command 202
STOPDEBUGGER primary command 202
stopping rule execution 202, 204
string

conversion of number to 136
entering in uppercase 170
finding in message log 181
typing in lowercase 169

string (S) semantic data type 85
string literal

description 213
identifying 24

string operand for arithmetic operator 136
STRINGSIZE exception, condition signaling 63
submitting rule

batch processing 53, 195
debug processing 200
immediate processing 53

subtraction (-) arithmetic operator 86, 134
SUMMARY field 148
SUOM (Suomi) character set 22
support, contacting xxii
SVEN (Svenska) character set 22
Swedish character set 22
Swiss/French and Swiss/German character set 22
SYNC errors, avoiding 36
synchronization point 106
synchronizing

database 29
transactions 36, 52, 106, 106
TIBCO Object Service Broker Programming in Rules

Index | 235
syntax
of nulls 124
of Rule Editor commands, displaying 169
of rule, checking 158
of rules 215–219
permitted lengths 80
table fields 80
valid data storage types 80
valid lengths 80

system exceptions
listed 62

system library, description 143
system log 185

T

table
current, using asterisk (*) to specify 56
expanding 173
information displayed with expand facility 172
locks taken 113
updating 29

table access statements, listed 31
table buffer

and FORALL statement 43
description 31

table field syntax 80
table instance, example used for indirect reference 101
table parameter values, specifying in FORALL

statement 42
TABLE token type 174
table.field, as used for indirect reference 98
TBL token type 174
technical support xxii
terminating current transaction 55, 105
termination of FORALL execution 43
terminations, abnormal 106
testing change to rule. See Rule Debugger
TIBCO_HOME xix
TO clause 53, 195

tokens
description 18
expanding 172
finding in a rule 169
replacing 166
type to expand 174

token-sensitivity of S (split) command 164
tools

$SETRPTMEDIUM 49
COPY_DEFN 4, 146
COPYDEFN 4, 146
CROSSREFSEARCH 4, 4
DEFINE_LIBRARY 142, 147
DIFFDEFN 4, 4
EDITRULE 150
for use with rules 3
PROCESS_FCNKEY 98
RULEPRINTER 3, 3, 3
SCRIPT 148

trailing blanks in operands for relational operators 89
transaction boundary, preserving screen display

across 40
transaction synchronization points, establishing 36, 52
TRANSACTIONEND break event 206
transactions 103–114

committing changes 36
flow of 109
levels of 108
mode of 111
nesting 41, 108
objective of 104
parent or child 108
rolling back changes 52
setting mode 111
starting 41, 55, 105

TRANSFERCALL break event 206
TRANSFERCALL statement

and transaction processing 105
description 55

Typeless semantic data type 84
typing text in mixed case 169
 TIBCO Object Service Broker Programming in Rules

236 | Index
U

UN (Unicode) syntax
arithmetic operations on 134
description 81

unary, minus (-) and plus (+) arithmetic operators 86
UNASSIGNED exception, condition signaling 63
unassigned field, behavior of nulls 131
uncommitted data, retrieving 38, 45
UNDERFLOW exception, condition signaling 63
Unicode (UN) syntax

arithmetic operations on 134
description 81

Unicode literals 18
UNRECERR break event 206
UNTIL … DISPLAY statement

and action sequence numbers 76
description 76

UNTIL clause and FORALL statement 42
UNTIL statement

and action sequence numbers 13, 74
description 74
using colon (:) to end 13

update mode
and DISPLAY & TRANSFERCALL statement 40
and EXECUTE statement 41
and TRANSFERCALL statement 55
setting 111

updating
locks taken 113
See also modifying
table 29

UPPER primary command 170
uppercase, entering text 170
user log 183

V

V (variable length character string) syntax
arithmetic operations on 134
description 81

valid lengths for syntax 80
valid syntax/data type combinations 84

valid syntaxes for semantic data types 84
VALIDATEFAIL exception

and screen validation 69
condition signaling 64
limiting scope 68

Validation Exit key 69
variable length character string (V) syntax

arithmetic operations on 134, 134
description 81

variable substitution 192
viewing. See displaying

W

W (double-byte character string) syntax
arithmetic operations on 135
description 81

WHERE clause
and INSERT statement 47
and ORDERED clause 48
description 56

wildcard characters. See pattern match relational oper-
ator

word, reserved 19
WORKINGSET Data Object Broker parameter, and

SYNC errors 36
workspace. See table buffer

X

X (execute rule) line commands 176
XEDIT primary command 170

Y

Y/N quadrant, description 117
TIBCO Object Service Broker Programming in Rules

Index | 237
Z

ZERODIVIDE exception, condition signaling 64
 TIBCO Object Service Broker Programming in Rules

	TIBCO® Object Service Broker
	Contents
	Preface
	Related Documentation
	TIBCO Object Service Broker Documentation

	Typographical Conventions
	Connecting with TIBCO Resources
	How to Join TIBCOmmunity
	How to Access All TIBCO Documentation
	How to Contact TIBCO Support

	Chapter 1 Introduction to TIBCO Object Service Broker Rules
	Use of TIBCO Object Service Broker Rules
	What is the Rules Language?
	What is a Rule?
	How are Rules Defined?
	How Do You Execute a Rule?
	What Tools are Available for Use with Rules?

	Sample Set of Rules
	Description
	EMPLOYEES_RAISE Rule
	REPLACE_SALARY Rule

	Chapter 2 Composition of a Rule
	Components of a Rule
	What are the Components?
	Illustration of the Component Parts of a Rule

	Identifying a Rule
	Declaring a Rule Name and Its Arguments
	Behavior of Rules Arguments

	Handling Dynamic Data Values
	Declaring Local Variables
	Valid Values
	Scope of Local Variables
	Data Representation of Local Variables

	Providing Conditional Processing
	Conditional Processing
	What Comprises a Condition?
	Sample Condition Segment and Associated Actions

	Coding Actions
	Action Statements
	Action Sequence Numbers
	Editing Action Sequence Numbers
	Sample of the Rules Actions

	Handling Exceptions
	Exception Handlers
	Behavior of Exception Handlers
	Sample Exception Handling Statement

	Chapter 3 Supported Characters
	Lexical Elements
	Delimiters
	Tokens
	Reserved Words
	Character Set

	National Character Set Support
	Allowable Usage
	Behavior of National Character Sets
	Specifying a National Character Set

	Double-byte Character String Support
	Allowable Usage
	Behavior of Double-byte Characters

	Use of Quotation Marks
	String Literals
	TIBCO Object Service Broker Names
	Numeric Literals

	Chapter 4 Types of Action Statements
	Overview
	What Types of Actions Can a Rule Perform?
	Additional Information

	Categories of Action Statements
	Assignment Statements
	Database Synchronization Statements
	Looping Statements
	Output Statements
	Rules Invocation Statements
	Table Access Statements

	Chapter 5 The Action Statements
	CALL Statement
	COMMIT Statement
	DELETE Statement
	DISPLAY Statement
	DISPLAY & TRANSFERCALL Statement
	EXECUTE Statement
	FORALL Statement
	GET Statement
	INSERT Statement
	ORDERED Clause
	PRINT Statement
	REPLACE Statement
	RETURN Statement
	ROLLBACK Statement
	SCHEDULE Statement
	TRANSFERCALL Statement
	WHERE Clause

	Chapter 6 Exception Handling
	Functionality of Exception Handling
	What is an Exception and How is It Handled?
	Hierarchy of System Exceptions
	Exceptions Raised by Exception Handler Statements
	Examples of Untrappable Exceptions

	System Exceptions and Their Conditions
	System Exceptions

	Coding of Exception Handlers
	Signaling Exceptions
	Handling Exceptions
	Sample Rule With Exception Handling

	Scope of Exception Handlers
	Scope of An Exception Handler
	Scope of Multiple Exception Handlers
	Limiting the Scope of Data Access Exceptions

	VALIDATEFAIL Exception for Screens
	When is VALIDATEFAIL Issued?
	Example Rule

	Chapter 7 The Exception Statements
	ON Statement
	SIGNAL Statement
	UNTIL Statement
	UNTIL … DISPLAY Statement

	Chapter 8 Using Expressions and Operators
	Overview
	TIBCO Object Service Broker UI
	What Comprises an Expression?
	Valid Values for Expressions
	Examples of Expressions
	Operations That Can be Performed With Expressions
	The Reserved Word NULL

	Syntax of Data Elements
	Valid Syntaxes
	Maximum Occurrence Length

	Semantic Data Types
	Valid Semantic Data Types

	Operators to Combine Expressions
	Arithmetic Operators
	Concatenation Operator
	Operators Within Expressions
	Examples

	Relational Operators
	Comparison Operators
	Semantic Data Type and Syntax Validations
	Equality Relational Operators
	Ordering Relational Operators

	Logical Operators
	Valid Operators

	Assignment Operator
	Valid Assignments
	Types of Assignment Statements
	Syntax of Assignment Statements
	Simple Assignment of a Value
	Assigning Values by Name

	Indirect Referencing
	Uses of Indirect Referencing
	Restrictions
	Providing Values

	Using a Rule Argument for Indirect Referencing
	Example of an Argument to a Rule
	Use of Parentheses

	Using Table.Field for Indirect Referencing
	Examples of Table.Field
	Calling a Rule that Uses Indirect Reference
	Table.Field Form of Indirect Reference
	Example of a Table Instance Used for Indirect Referencing
	Reference to a Parameterized Table

	Chapter 9 Transaction Processing
	Overview
	TIBCO Object Service Broker UI
	The Objective of a Transaction
	Example of a Transaction

	What Starts a Transaction?
	Transaction Statements

	Course of a Transaction
	Establishing Synchronization Points
	Actions within Synchronization Points

	Nesting Transactions
	How are Transactions Nested?
	Behavior of Nested Transactions
	What Determines the Transaction Level?
	Finding the Name of a Rule in a Transaction

	Changing the Flow of a Transaction
	Starting a New Transaction
	Starting a New Nested Transaction
	Starting a New Transaction Within a Nested Transaction
	Starting a Batch Transaction

	Setting the Mode of the Transaction
	How Do You Set The Mode?
	Mode Determines Locks on Data
	Exception Raised

	Locks Taken on the Data
	What Determines the Type of Locking?
	Types of Locks
	Exception Handling
	Data Accesses and Types of Locking

	Chapter 10 Conditional Processing
	TIBCO Object Service Broker Conditional Processing
	What is Conditional Processing?
	What are Conditions?
	Adding Conditions

	Examples of Conditions
	Types of Examples
	Expression as a Condition
	Argument as a Condition
	table.field as a Condition
	Functional Rule as a Condition

	Chapter 11 Null Processing
	TIBCO Object Service Broker Nulls
	What is a Null Value?
	Syntax and Behavior of Nulls
	How Can A Field Contain Null Values?

	Manipulation of Nulls
	Allowable Manipulation
	Logical Manipulation
	Restrictions

	Behavior of Nulls
	Conversion
	Assignment
	Table Parameters
	Rules Arguments
	Routine Arguments
	Expressions
	Relational Expressions
	Ordering
	Primary and Secondary Keys
	Required Fields
	Default Values
	Unassigned Fields
	Indirect Names
	Initialization of Local Variables

	Chapter 12 Arithmetic Processing
	Overview
	What are the Arithmetic Operators?
	Permitted Syntaxes for Arithmetic Operations
	Conversion of Strings

	Strings as Operands
	Converting Strings to Numeric Syntax
	Conversion of Numbers to Strings

	Permissible Operations
	Resultant Syntax from Arithmetic Operations
	Resultant Syntax

	Chapter 13 Using Rules Libraries
	Organization of Rules Libraries
	TIBCO Object Service Broker UI
	Overview
	Types of Rules Libraries
	Viewing the Listing of Libraries
	Changing the Search Path for Rules Execution

	Changing Local Libraries
	Login Library
	Accessing a Different Local Library
	Copying a Rule to a Different Library

	Defining a Library
	Steps to Define a Library:
	Example Definition
	Providing the Description for a Rules Library

	Chapter 14 Using the Rule Editor
	Invoking the Rule Editor
	TIBCO Object Service Broker UI
	Steps to Invoke the Rule Editor
	Example Rule Editor Screen
	Rule Displayed
	Valid Values for Rule Names

	Screen Layout of the Rule Editor
	General Format of the Rule Editor Screen
	Modifiable Sections
	Scrolling within a Rule Editor Screen

	Accessing a Listing of Rules to Edit
	Using the Object Manager Screen
	Available Commands

	Chapter 15 Editing Rules
	Functional Overview
	TIBCO Object Service Broker UI
	Types of Editing Allowed
	Syntax Checking Performed on a Rule
	Available Line Commands and Associated PF Keys
	Available Primary Commands

	Using Available Line Commands
	Copying Lines
	Deleting Lines
	Inserting Lines
	Moving Lines
	Replicating Lines
	Splitting Lines
	Combining Line Commands

	Using Available Primary Commands
	APPEND Command
	CANCEL Command (PF12)
	CHANGE Command
	CHANGE … ALL Command
	COPY Command
	DELETE Command (PF22)
	DOCUMENT Command (PF2)
	EDIT Command
	END Command (PF3)
	FIND Command
	HELP Command (PF1)
	LOWER Command
	PRINT Command (PF13)
	SAVE Command
	UPPER Command
	XEDIT Command
	Redisplay the Most Recent Primary Command–(PF9)

	Expanding Token Information
	Types of Token Information Available
	Expanding a Token at the Cursor Position
	Expanding With the Primary Command EXPAND
	Nesting Expanded Displays
	Closing the Expanded Display

	Chapter 16 Processing in Standard Execution Mode
	Using Execute Rule
	TIBCO Object Service Broker UI
	Available Methods
	Supplying Argument Names
	Library Search Order
	Results After Execution

	Accessing a Listing of Rules to Execute
	Using the Object Manager Screen
	Available Commands

	Logging of Output
	Message Logs Available
	Message Log Primary Commands
	PF Keys for the Message Logs

	User Log
	Sample User Log
	What Output is Available?

	System Log
	Sample System Log
	What Output is Available?
	Event Logging

	Examples of System Log Information
	Location of the Error
	Reason the Rule Stopped Executing
	Traceback of the Rules
	List of Active Local Variables
	List of the Buffers for Active Tables
	Up to the Last Sixteen Rules Invoked

	Chapter 17 Processing Asynchronously in Batch Mode
	Functional Overview
	Batch Processing Options Available
	JCL, Batch Programs, and Scripts Provided
	Dynamic Creation of an Execution Environment

	Scheduling for Direct Batch Processing
	How to Schedule a Rule for Direct Batch Processing
	Example of Scheduling for Direct Processing

	Scheduling a Batch Queue in TIBCO Object Service Broker for z/OS
	How to Schedule to a Batch Queue
	Example of Scheduling to a Queue
	Features Available with the BATCH Tool

	Editing @SCHEDULEMODEL
	Provided Default Instances
	About the Default JCL
	About the Default Windows Batch Program and Solaris Script
	Editing Instances of @SCHEDULEMODEL

	Chapter 18 Processing in Debug Mode
	Using the Rule Debugger
	Processing Rules in Debug Mode
	How to Invoke and Navigate the Rule Debugger
	Main Screen of the Rule Debugger
	Layout of the Rule Debugger Screen
	PF Keys and Commands for the Rule Debugger Screen

	How to Specify Break Events
	Methods Available to Specify Break Events
	Valid Break Event Values

	How to Examine and Modify the Execution State
	Suspension of the Execution State
	Commands Available to Examine the Execution State

	Associating a Series of Commands With a Break Event
	How to Create a Series of Commands
	Debugger Command Editor Screen

	Appendix A Syntax of the Rules Language
	BNF Notation
	Conventions Used
	Identifiers
	Numeric Literals
	String Literals

	Syntax of Rules
	Supported Syntax

	Index

