
Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Order Management
Administration
Version 6.1.0 | October 2024

TIBCO® Order Management Administration

2 | Contents

Contents
Contents 2

Deployment 6
Recommended Setup for a TIBCO Order Management Development Environment 6

Microservices 8

Connecting TIBCO Order Management to TIBCO® EMS Server with SSL Enabled 9

Configuring SSL for TIBCO® Order Management 10
Configuring on the Cloud 10

Configuring on-premises 15

HTTP Connection Pool Configuration 20

Configuring Authorization Server 21

Inter-service Communication 22

Configuration 23
Queue Management 23

Data Models 28
Model Loading Process 33

WebClient Configuration 41

Order Management System Configuration 41
User Interface Configuration 41

URL to Access Order Management System UI Component 42

Override Planfragment Destination 44

Managing Application Security 45

Authorization Service 51

Audit Trail 66

Enabling Internal Error Handler Support 66

Logging 67
How Logging Works 67

TIBCO® Order Management Administration

3 | Contents

APIs for Changing log-level 69

Configuring Redis 71

Configuring Microsoft SQL Server 83

Configuring an External Identity Provider 85

Administration Tasks 94
Swagger API Reference 94

Docker 94
Building a Docker Image Without an Internet Connection 96

Copying Files to Docker Context 96

Building Docker Images 97

Setting Up the .env File 98

Configuring for Order Management Server Docker Containers 98

Running the Docker Containers 98

Extend Docker-Compose Files 100

Modifying a Container Time-Zone 101

Reading Container Logs 103

Troubleshooting Error from Building Docker Images 103

Order Sequencing 104
Enabling or Disabling Order Sequencing 105

Bulk Order Actions 105
Bulk Actions 106

WSDL Location 106

Error Codes 107

Invoke Bulk Order Operation 107

Tracking the Request Status 108

Logging 108

Schema 108

Sample Request 110

Sample Response 110

Performing Bulk Actions On error Plans Items 111

Multitenancy 113

TIBCO® Order Management Administration

4 | Contents

Creating and Configuring a Tenant 113

Authorizing a Tenant 114

Managing Health Check Endpoint 115

Implementation of LDAP 115
User Mapping from Directory Service to Order Management service 120

Types of retries 121

API Monitoring 123

JMX MBeans 123

Prometheus 124

Elasticsearch 125

Dynatrace 127

Debugging tools for production 129
Read BLOB data from Database 129

GET REST APIs in Catalog Service and AOPD 130

Scaling of Order Management microservices 131

orderPriority 132
Order Schema Changes 133

Lower Priority Orders 133

Tuning Data Source 134

Catalog Caching 142

Integrate Inventory Information in AOPD Plan Generation 144

Integrate TIBCO OPE with Order Submission Process 145

Schema References 146
Plan Item 147

Product Model 151

Result Status 156

Message 157

Order Request 159

Order Request Header 161

Order Request Line 164

TIBCO® Order Management Administration

5 | Contents

Process Component Model 170

TIBCO Documentation and Support Services 173

Legal and Third-Party Notices 175

TIBCO® Order Management Administration

6 | Deployment

Deployment
This section provides details about application deployment best practices and options.

Recommended Setup for a TIBCO Order
Management Development Environment
The following details are the recommended setup for a TIBCO Order Management
Development environment:

Component Instances

Orchestrator Multiple

Automated Order Plan Development Multiple

Configurator 1

Authorization service 1

Data service Multiple

Catalog service Multiple

Tmf-om-adapter 1

Jeopardy service 1

PostgreSQL 1

Archival service Multiple

Configurator UI 1

TIBCO® Order Management Administration

7 | Deployment

Component Instances

Order Management System UI 1

Order Management Migration 1

Broker service 1

Hardware

8 GB of heap size is set for each instance. For orchestrator – 4 GB, for Automated Order
Plan Development – 4 GB, for Data Service – 2 GB, and for Authentication–2GB memory is
allocated.

Disk Space

Redis in-memory is used for TIBCO Order Management Services. For collecting 10 instances,
10-GB memory on disk is used. For 100,000 orders on 10 nodes, it takes up to 218 MB for
each node.

Temporary Disk Space for UNIX Platform

The installer launcher first extracts a Java Virtual Machine (JVM) in a temporary directory
and uses this JVM to open itself. The size of the extracted JVM differs from platform to
platform.

On UNIX platforms, the following disk space is required in the temporary area:

256 MB of free disk space in /tmp location.

If your system does not have sufficient free disk space in the above temporary area, you
can still run the installer with a different temporary area by using the following option
when starting the installer:

install_package_name.bin -is:tempdir /new_tmp where /new_tmp has sufficient free
disk space.

TIBCO® Order Management Administration

8 | Deployment

Microservices
Each TIBCO Order Management component, or microservices with the new architecture, has
its embedded Tomcat container. The roles folder available in the $OM_HOME directory
houses all the microservices.

The following table lists the microservices for TIBCO Order Management:

Microservice Default Port

Configurator 9090

Orchestrator 9093

aopd 9094

Authorization service 9091

Data service 9095

Catalog service 9092

tmf-om-adapter 8181

Configurator UI 9104

Archival Service 9099

Order Management System UI 9097

Migration Service 9100

EncryptPWDUtility 9060

Jeopardy 9102

catalog-client 8082

Broker service 9105

TIBCO® Order Management Administration

9 | Deployment

Each microservice under the $OM_HOME/roles/<service name>/standalone directory has
the following directory structure:

l bin

This directory contains shell and power shell scripts to start and stop the service. It
also contains a copyLib script, which is a utility script that can be used to copy
hibernate, JDBC, JMS and other essential dependencies.

l config

This directory contains the service's set of configuration files. Initially, each service
has the following files:

o application.properties

When the service starts, it downloads its required logback files from the database.

l lib

This directory holds all external and internal dependency jar files.

l logs

This directory is created when the service starts and contains all the logs for that
service.

l services

This directory holds the service jar file, which is launched by the start script.

Connecting TIBCO Order Management to
TIBCO® EMS Server with SSL Enabled

Procedure
1. Change the following properties for each application:

l Archival

o jndiConnectionFactory

o sslEnableVerifyHost

o securityProtocol

TIBCO® Order Management Administration

10 | Deployment

o jmsSessionTransacted

l Data Service

o tibjmsNamingSecurityProtocol

o tibjmsNamingSslEnableVerifyHost

o initialContextFactory

l Jeopardy

o jndiConnectionFactory

o sslEnableVerifyHost

o securityProtocol

l OMSUI

o jndiConnectionFactory

o tibjmsNamingSecurityProtocol

o tibjmsNamingSslEnableVerifyHost

l Orchestrator

o jndiConnectionFactory

o tibjmsNamingSecurityProtocol

o tibjmsNamingSslEnableVerifyHost

Configuring SSL for TIBCO® Order Management
The Configuration of SSL for TIBCO® Order Management is available for both on cloud and
on-premise.

Configuring on the Cloud
The following section is added for testing purposes and is not recommended for the
production environment. Currently, ingress is configured with SSL only for authorization
service as a backend.

TIBCO® Order Management Administration

11 | Deployment

Procedure
1. To create a root certificate, run the following command:

openssl req -x509 -nodes -sha256 -days 365 -newkey rsa:2048 -subj
"/CN=test/O=TIBCO"
-keyout lab-caroot.key -out lab-caroot.crt

2. To create CSR for a service certificate, run the following command:

openssl req -out om-auth.csr -newkey rsa:2048 -nodes -keyout om-
auth.key -subj "/CN =
om-auth.test / O=auth-svc organization"

3. To sign the certificate with the root CA, run the following command:

openssl x509 -req -days 365 -CA lab-caroot.crt -CAkey lab-
caroot.key -set_serial 0 -
in om-auth.csr -out om-auth.crt

4. To create the Kubernetes secret, run the following command:

kubectl create secret tls tls-om-auth --key=om-auth.key --cert=om-
auth.crt

5. Add the secrets in the auth ingress YAML file:

```yaml
tls:
- hosts:
- om-auth.test # This should match a DNS name in the Certificate
secretName: tls-om-auth # This should match the Certificate

secretName

Enabling SSL for TIBCO® Order Management

Procedure
1. Go to the JAVA_17_HOME\bin directory and run the following commands:



TIBCO® Order Management Administration

12 | Deployment

keytool -genkeypair -alias om -keyalg RSA -keysize 2048 -sigalg
SHA256withRSA -validity 365 -keystore om.pkcs12 -storepass tibco123
-ext san=ip:10.xx.xx.xx,dns:10.x.x.x,ip:127.0.0.1
keytool -export -alias om -file om123.crt -keystore om.pkcs12
keytool -import -v -trustcacerts -alias om2 -file om123.crt -
keystore cacerts.pkcs12 -keypass changeit

When prompted, provide the password as 'changeit'.

2. Copy cacerts.pkcs12 and om.pkcs12 files from the JAVA_HOME\bin directory to the
base/1.0 directory and modify the base Dockerfile accordingly.

Example: copy om.pkcs12 and cacerts to location /home/tibuser/tibco/om/6.1

3. Copy the cacerts.pkcs12 file inside the $OM_HOME/roles/<Service_
name>/standalone/config/ directory of each service.

4. Run the copyLib.sh script from the roles directory.

5. Run the copy-required-files.sh script.

6. Modify the Order Management services (except authorization service)Dockerfile for
entrypoint as follows:

ENTRYPOINT ["sh","-c",
"/home/tibuser/tibco/om/6.1/configurator/standalone/bin/
start.sh
-

Djavax.net.ssl.trustStore=/home/tibuser/tibco/om/6.1/roles/<servic
e_name>/
standalone/config/cacerts.
pkcs12 -Djavax.net.ssl.trustStorePassword=changeit --run=FG"]

7. Create Docker images for all Order Management services.

8. Now, update the om_services/values.yaml file from the $OM_HOME/helm directory as
follows:

a. Add the following properties:

server_ssl_key_alias: om
server_ssl_key_store_password: tibco123
server_ssl_key_store: /home/tibuser/tibco/om/6.1/om.pkcs12



TIBCO® Order Management Administration

13 | Deployment

configuratorTrustStoreAbsoluteFilePath:
/home/tibuser/tibco/om/6.1/cacerts.pkcs12
configuratorTrustStorePassword: changeit
configuratorTrustStoreType: pkcs12
trustStoreFileName: cacerts.pkcs12
trustStorePassword: changeit
trustStoreType: pkcs12

aopdTrustStoreFileName: cacerts.pkcs12
aopdTrustStorePassword: changeit
aopdTrustStoreType: pkcs12
migrationTrustStoreFileName: cacerts.pkcs12
migrationTrustStorePassword: changeit
migrationTrustStoreType: pkcs12

authServiceTrustStoreAbsoluteFilePath=/home/tibuser/tibco/
om/6.1/cacerts.pkcs12
authServiceTrustStorePassword=changeit
authServiceTrustStoreType=pkcs12

allowedCorsOrigins: https://authorization-
svc.default.svc.cluster.local:9091,https://configurator-
svc.default.svc.cluster.local:9090,https://catalog-
svc.default.svc.cluster.local:9092,https://aopd-
svc.default.svc.cluster.local:9094,https://archival-
svc.default.svc.cluster.local:9099,https://dataservice-
svc.default.svc.cluster.local:9095,https://jeopardy-
svc.default.svc.cluster.local:9102,https://migration-
svc.default.svc.cluster.local:9100,https://orchestrator-
svc.default.svc.cluster.local:9093,https://pc-
svc.default.svc.cluster.local:9089,https://configuratorui-
svc.default.svc.cluster.local:9104,https://om-
catalog.test,https://om-archival.test,https://om-
orchestrator.test,https://om-jeopardy.test,https://om-
omsui.test,https://omsui-svc.default.svc.cluster.local:9097

com_tibco_af_omsui_httpChannelType: https
authorizationServiceTokenEndPoint: https://authorization-

svc.default.svc.cluster.local:9091
configuratorServiceUrl: https://configurator-

svc.default.svc.cluster.local:9090
pcResourceExecuteRequestURL: https://pc-

svc.default.svc.cluster.local:9089/planitem/
executionrequest



TIBCO® Order Management Administration

14 | Deployment

pcResourceSuspendRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/suspendrequest

pcResourceActivateRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/activaterequest

pcResourceExtErrorHanlderRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/
errorhandlerrequest
feasibleRequestPathRequestURL: https://pc-

svc.default.svc.cluster.local:9089/feasibility
pqfRequestPathRequestURL: https://pc-

svc.default.svc.cluster.local:9089/pqf
pcResourceMileReleaseRequestURL: https://pc-

svc.default.svc.cluster.local:9089/planitem/
milestonerelease
archivalGetOrderDetailsURL: https://archival-

svc.default.svc.cluster.local:9099/ordersByCriteria
omServerOrderUrl: https://orchestrator-

svc.default.svc.cluster.local:9093/order
omServerWithdrawOrderPath: https://orchestrator-

svc.default.svc.cluster.local:9093/order
omServerOrderDetailsPath: https://orchestrator-

svc.default.svc.cluster.local:9093/order
orchestratorBaseUrl: https://orchestrator-

svc.default.svc.cluster.local:9093
orchestratorServiceUrl: https://orchestrator-

svc.default.svc.cluster.local:9093
catalogServiceBaseUrl: https://catalog-

svc.default.svc.cluster.local:9092
catalogServiceUrl: https://catalog-

svc.default.svc.cluster.local:9092
archivalServiceUrl: https://archival-

svc.default.svc.cluster.local:9099
jeopardyServiceUrl: https://jeopardy-

svc.default.svc.cluster.local:9102
aopdBaseUrl: https://aopd-svc.default.svc.cluster.local:9094
migrationURL: https://migration-

svc.default.svc.cluster.local:9100/migration/order

b. Update the scheme for each application to HTTPS.
Example: In the configurator application-



TIBCO® Order Management Administration

15 | Deployment

readinessProbe:
failureThreshold: 3
httpGet:
path: /management/health/readiness
port: 9090
scheme: HTTPS

periodSeconds: 300
successThreshold: 1
timeoutSeconds: 3

livenessProbe:
failureThreshold: 3
httpGet:
path: /management/health/liveness
port: 9090
scheme: HTTPS

periodSeconds: 300
successThreshold: 1
timeoutSeconds: 3

9. Specify the backend protocol as HTTPS for the Ingress in the om_
services/templates/om_ingress.yaml file.
Example of using the Nginx Ingress:

annotations:
nginx.ingress.kubernetes.io/backend-protocol: https

10. Create the required users from the authorization service and upload the required
metadata, app_properties, and config files as per components from the configurator
service.
The values.yaml file contains the required properties for starting authorization
service, configurator service, and configurator UI services.

Configuring on-premises

Procedure
1. Go to the JAVA17_HOME\bin directory and run the following commands:

keytool -genkey -alias om -keyalg RSA -keysize 2048 -sigalg



TIBCO® Order Management Administration

16 | Deployment

SHA256withRSA -validity 365 -keystore om.pkcs12 -storepass tibco123
-ext san=ip:10.x.x.x,dns:10.x.x.x,ip:127.0.0.1
keytool -export -alias om -file om123.crt -keystore om.pkcs12
keytool -import -v -trustcacerts -alias om2 -file om123.crt -
keystore cacerts.pkcs12 -keypass changeit

When prompted, provide the password as 'changeit'.

2. Copy cacerts.pkcs12 and om.pkcs12 files from the <JAVA_HOME>/bin directory at a
location (such as /home/OM_610/tibco/om/6.1/ssl), where your Order Management
installation is present on the virtual machine.

3. For authorization service, modify the application.properties file present inside the
config directory for the following properties:

server.ssl.key-alias=om
server.ssl.key-store-password=tibco123
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcs12

#Allowed Cross Origin Resources
allowedCorsOrigins=https://10.x.x.x:9091,https://10.x.x.x:9090,
https://10.x.x.x:9092,

https://10.x.x.x:9094,https://10.x.x.x:9099,https://
10.x.x.x:9095,
https://10.x.x.x:9102,

https://10.x.x.x:9100,https://10.x.x.x:9093,https://
10.x.x.x:9089,
https://10.x.x.x:9104,

https://10.x.x.x:8090,https://10.x.x.x:8093,https://
10.x.x.x:8090

4. Run the following command to start the authorization service.

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcs12
/cacerts.pkcs12 -Djavax.net.ssl.trustStorePassword=changeit

5. Create the required users. For more information, see Create User

6. Add the following properties for the configurator service:



TIBCO® Order Management Administration

17 | Deployment

server.ssl.key-alias=om
server.ssl.key-store-password=tibco123
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcs12

7. Start the configurator service by running the following command:

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcs12
/cacerts.pkcs12 -Djavax.net.ssl.trustStorePassword=changeit

8. Modify the app_properties file from the $OM_HOME/seed-data/app-properties
directory for the following properties (also required minimum configurations by
users):

a. For AOPD service, under 'Orchestrator Configuration':

orchestratorBaseUrl = https://10.x.x.x:9093
trustStoreFileName = cacerts.pkcs12
trustStorePassword = changeit
trustStoreType = pkcs12

b. For Archival service,

l Under 'Archival Engine Configurations':

allowedCorsOrigins = https://10.x.x.x:9097

l Under 'Orchestrator Configuration':

orchestratorBaseUrl = https://10.x.x.x:9093
trustStoreFileName = cacerts.pkcs12
trustStorePassword = changeit
trustStoreType = pkcs12

c. For Catalog service,

l Under 'Catalog Engine Configuration':

allowedCorsOrigins=https://10.x.x.x:9097

d. For Common Configuration, under 'Authorization Server Configuration



TIBCO® Order Management Administration

18 | Deployment

Properties Used for Swagger UI':

authorizationServiceTokenEndPoint = https://10.x.x.x:9091

e. For the Data service, there are no changes.

f. For Jeopardy service,

l Under 'Catalog Service Configuration':

catalogServiceBaseUrl = https://10.x.x.x:9092
catalogServiceTrustStoreFileName = cacerts.pkcs12
catalogServiceTrustStorePassword = changeit
catalogServiceTrustStoreType = pkcs12

l Under 'Jeopardy General Configuration':

allowedCorsOrigins = https://10.x.x.x:9097

l Under 'Orchestrator Service Configuration':

orchestratorBaseUrl = https://10.x.x.x:9093
orchestratorTrustStoreFileName = cacerts.pkcs12
orchestratorTrustStorePassword = changeit
orchestratorTrustStoreType = pkcs12

g. For the Migration service, there are no changes.

h. For Order Management System UI Service, under 'OMS UI Engine
Configuration':

archivalServiceBaseUrl = https://10.x.x.x:9099
catalogServiceBaseUrl = https://10.x.x.x:9092
jeopardyBaseUrl = https://10.x.x.x:9102
orchestratorBaseUrl= https://10.x.x.x:9093

i. For Orchestrator service,

l Under 'Orchestrator Functional Configuration':



TIBCO® Order Management Administration

19 | Deployment

allowedCorsOrigins=https://10.x.x.x:9097

j. For tmfAdapter Service, under 'Orchestrator Service Configuration':

omServerOrderDetailsPath = https://10.x.x.x:9093/order
omServerOrderUrl = https://10.x.x.x:9093/order
omServerWithdrawOrderPath = https://10.x.x.x:9093/order

k. For Broker Service, under 'Catalog Client Configuration':

catalogTrustStoreFileName = cacerts.pkcs12
catalogTrustStorePassword = changeit
catalogTrustStoreType = pkcs12
catalogServiceBaseUrl = https://10.x.x.x:9092

9. Modify the application_metadata.json property file. For each "applicationId", add
"cacerts.pkcs12" and "om.pkcs12" (file names as per the ones created in step 1),
under the "configurationFiles".

10. Upload the metadata through the Configurator Swagger.

11. Upload the "om.pkcs12" and "cacerts.pkcs12" files for each service through the
Configurator API along with the other Configuration files. See 'Upload Configuration
File for Application ID' section in the TIBCO® Order Management Web Services Guide.

12. Copy "cacerts.pkcs12" to $OM_HOME/roles/<configurator/configurator-
ui/authorization-service>/standalone/config directory.

13. For configurator-ui and the rest of the Order Management services, update the
application.properties file as follows:

server.ssl.key-alias=om
server.ssl.key-store-password=tibco123
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcs12
configuratorTrustStoreAbsoluteFilePath=cacerts.pkcs12
configuratorTrustStorePassword=changeit
configuratorTrustStoreType=pkcs12
authServiceTrustStoreAbsoluteFilePath=cacerts.pkcs12
authServiceTrustStorePassword=changeit
authServiceTrustStoreType=pkcs12



TIBCO® Order Management Administration

20 | Deployment

14. Start all services by the following command from the <service-name>/bin directory:

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcs12
/cacerts.pkcs12 -Djavax.net.ssl.trustStorePassword=changeit

HTTP Connection Pool Configuration
Configuring an HTTP connection pool is essential for optimizing the performance of
applications that make frequent HTTP requests. You can configure the following key
parameters:

Parameter Description

http.client.cpool.maxTotal Maximum number of
open connections.

http.client.cpool.defaultMaxPerRoute Maximum number of
concurrent
connections per
route.

http.client.cpool.connectionRequestTimeout Maximum time, in
milliseconds, to wait
to get a connection
from the connection
manager or pool.
Zero is interpreted as
an infinite timeout.

http.client.cpool.connectTimeout Timeout, in
milliseconds, to
establish a
connection with a
remote host or
server. Zero is
interpreted as an



TIBCO® Order Management Administration

21 | Deployment

Parameter Description

infinite timeout.

http.client.cpool.socketTimeout Maximum time gap,
in milliseconds,
between two
consecutive data
packets when
transferring data
from the server to
the client.

Configuring Authorization Server
You can configure the authorization server by setting the following key parameters in the
ConfigValues_OMSUI file and ConfigValues_Common.JSON file:

Parameter Description

authServiceApiKey Auth service header ID
(auth) used to create a
token.

authServiceApiId Auth service header Key
(auth) used to create a
token.

authSuperUserAppId Used as the super user app
ID to create a token.

authSuperUserAppKey Used as the super user app
key to create a token.

authServiceRetryDuration Auth service retry duration
in seconds.



TIBCO® Order Management Administration

22 | Deployment

Parameter Description

authServiceRetryCount Auth service retry count.

authServiceTrustStorePassword Auth service SSL Trust
Store password.

authServiceTrustStoreType Auth service SSL TrustStore
type.

authServiceTrustStoreAbsoluteFileName Auth service SSL TrustStore
absolute filename.

enableSecureAPI Enable security for APIs
based on this flag.

Inter-service Communication
By using the inter-service communication, the services communicate with each other
within a system using REST services. You can configure the apiKey in the ConfigValues_
Common.JSON file. The apiKey is responsible for generating a token to facilitate interaction
between applications.



TIBCO® Order Management Administration

23 | Configuration

Configuration
This section covers all the configuration details for TIBCO Order Management.

Queue Management
REST services are used by TIBCO Order Management for publishing models. If you select
TIBCO Enterprise Message Service, then it communicates with the external systems through
the JMS messaging capability provided by TIBCO Enterprise Message Service. It has two
inbound queues to receive the messages from external systems and also for inter-
component communication in some cases. The number of listeners on these queues can be
configured using the changing concurrent.ems.consumer flag. By default, the listener count
on each queue is set to a minimal value. The queue configurations are available under
different categories distributed component wise.

You can update the ConfigValues_OrchService.json file to set the following properties
for the queue management:

Parameter Description

com.tibco.fom.orch.planItem.execute.response.queue Plan item
execution
response queue

com.tibco.fom.orch.planItem.execute.request.queue Plan item
execution
request queue

com.tibco.fom.orch.planItem.execute.response.dead.queue Plan item
execution
response dead
queue



TIBCO® Order Management Administration

24 | Configuration

Parameter Description

com.tibco.fom.orch.planitem.execute.response.receiver.count Plan item
execution
response
receiver count

com.tibco.fom.orch.planItem.suspend.request.queue Plan item
suspend
request queue

com.tibco.fom.orch.planItem.suspend.response.queue Plan item
suspend
response queue

com.tibco.fom.orch.planitem.suspend.response.receiver.count Plan item
suspend
response
receiver count

com.tibco.fom.orch.planItem.suspend.response.dead.queue Plan item
suspend
response dead
queue

com.tibco.fom.orch.planItem.activate.request.queue Plan item
activate
request queue

com.tibco.fom.orch.planItem.milestone.releaseRequest.queue Milestone
release request
from
Orchestrator to
process
components
queue

com.tibco.fom.orch.planItem.milestone.notifyRequest.queue Milestone
notify request



TIBCO® Order Management Administration

25 | Configuration

Parameter Description

queue

com.tibco.fom.orch.planItem.milestone.notifyRequest.dead.queue Milestone
notify request
dead queue

com.tibco.fom.orch.planItem.milestone.notifyRequest.receiver.count Milestone
notify request
receiver count

com.tibco.af.oms.ordersService.queue Queue for
receiving SOAP
Over JMS Order
Service
requests

com.tibco.af.oms.webservice.soap.jms.concurrentConsumers Number of
concurrent
consumers for
SOAP Over JMS
Order Service
requests
(default 1)

com.tibco.fom.orch.prequalificationfailed.request.queue External pre-
qualification
failed request
queue

com.tibco.fom.orch.prequalificationfailed.reply.queue External pre-
qualification
failed reply
queue

com.tibco.fom.orch.prequalificationfailed.reply.queue.receiver.count External pre-
qualification
failed reply



TIBCO® Order Management Administration

26 | Configuration

Parameter Description

queue receiver
count

com.tibco.fom.orch.prequalificationfailed.reply.dead.queue External pre-
qualification
failed reply
dead queue

com.tibco.fom.orch.feasibility.request.queue External
feasibility
request queue

com.tibco.fom.orch.feasibility.reply.queue External
feasibility reply
queue

com.tibco.fom.orch.feasibility.reply.queue.receiver.count External
feasibility reply
queue receiver
count

com.tibco.fom.orch.feasibility.reply.dead.queue External
feasibility reply
dead queue

com.tibco.fom.orch.planItem.errhandler.response.queue PlanItem error
handler
response queue

com.tibco.fom.orch.planItem.errhandler.response.count PlanItem error
handler
response
receiver count

com.tibco.fom.orch.planItem.errhandler.response.dead.queue PlanItem error
handler
response dead



TIBCO® Order Management Administration

27 | Configuration

Parameter Description

queue

com.tibco.fom.orch.order.sequencing.queue Order
sequencing
queue

com.tibco.fom.orch.order.sequencing.dead.queue Order
sequencing
dead queue

com.tibco.fom.orch.order.sequencing.retry.count Order
sequencing
retry count

com.tibco.fom.orch.order.sequencing.redelivery.delay Order
sequencing
notification
redelivery
delay, in
milliseconds,
between each
retry

com.tibco.fom.orch.order.sequencing.receiver.count Order
sequencing
receiver count

com.tibco.fom.orch.planItem.errhandler.request.queue PlanItem error
handler request
queue

southboundReplyMessageRetryCount Southbound
reply message
retry count

southboundReplyMessageRetryDuration Retry interval,
in milliseconds,



TIBCO® Order Management Administration

28 | Configuration

Parameter Description

between each
retry

com.tibco.fom.orch.plan.failed.request.queue Plan generation
failed request
queue

com.tibco.fom.orch.plan.failed.response.queue Plan generation
failed response
queue

com.tibco.fom.orch.plan.failed.response.dead.queue Plan generation
failed response
dead queue

com.tibco.fom.orch.plan.failed.response.receiver.count Plan generation
failed receiver
count

Data Models
TIBCO Order Management requires a variety of data models (catalogs) for its different
functionalities.

TIBCO Order Management uses the following data models:

Data
Models

Description

Product
Model

It is used by the Automated Order Plan Development component for generating
the execution plan for the newly submitted orders.

Action
Model

It is optionally used by the Automated Order Plan Development component
when generating the execution plans specifically for the ProductDependsOn
feature.



TIBCO® Order Management Administration

29 | Configuration

Data
Models

Description

Plan
Fragment
Model

It is used by the Orchestrator component for running the plan for a particular
order.

The following table summarizes the models required by the components in TIBCO Order
Management:

Components Product model Plan Fragment
model

Action
model

Automated Order Plan
Development

Required Not Required Optional

Orchestrator Not Required Required Not
Required

You can configure the following catalog properties:

Property Description

isOfferSearchIndexEnabled Enables outbound
notifications to EMS upon
successful product catalog
loading.

modelPurgeWorkerThreadCount Specifies the number of
parallel processing threads
for purging the catalog.

productCatalogLoadingQueue Queue name for bulk
product catalog loading.

bulkProductConcurrentEmsConsumers Number of concurrent EMS
consumers for bulk product
loading.



TIBCO® Order Management Administration

30 | Configuration

Property Description

planfragmentCatalogLoadingQueue Queue name for bulk plan-
fragment catalog loading.

bulkPlanFragmentConcurrentEmsConsumers Number of concurrent EMS
consumers for bulk plan-
fragment loading.

actionCatalogLoadingQueue Queue name for bulk action
catalog loading.

bulkActionConcurrentEmsConsumers Number of concurrent EMS
consumers for bulk action
loading.

priceCatalogLoadingQueue Queue name for bulk price
catalog loading.

bulkPriceConcurrentEmsConsumers Number of concurrent EMS
consumers for bulk price
loading.

discountCatalogLoadingQueue Queue name for discount
catalog loading.

bulkDiscountConcurrentEmsConsumers Number of concurrent EMS
consumers for bulk
discount loading.

ruleCatalogLoadingQueue Queue name for rule
catalog loading.

Queue ruleConcurrentEmsConsumers Number of concurrent EMS
consumers for rule loading.

categoryCatalogLoadingQueue Queue name for category
catalog loading.



TIBCO® Order Management Administration

31 | Configuration

Property Description

categoryConcurrentEmsConsumers Number of concurrent EMS
consumers for category
loading.

offerSearchProductIndexQueue Queue name for offer
search product index.

singleProductCatalogLoadingQueue Queue name for single
product catalog loading.

singleProductConcurrentEmsConsumers Number of concurrent EMS
consumers for single
product loading.

singlePlanfragmentCatalogLoadingQueue Queue name for single plan
fragment catalog loading.

singlePlanFragmentConcurrentEmsConsumers Number of concurrent EMS
consumers for single plan
fragment loading.

singleActionCatalogLoadingQueue Queue name for single
action catalog loading.

singleActionConcurrentEmsConsumers Number of concurrent EMS
consumers for single action
loading.

singlePriceCatalogLoadingQueue Queue name for single
price catalog loading.

singlePriceConcurrentEmsConsumers Number of concurrent EMS
consumers for single price
loading.

singleDiscountCatalogLoadingQueue Queue name for single
discount catalog loading.



TIBCO® Order Management Administration

32 | Configuration

Property Description

singleDiscountConcurrentEmsConsumers Number of concurrent EMS
consumers for single
discount loading.

productCatalogLoadingDeadQueue Queue name for product
catalog loading dead
queue.

singleProductCatalogLoadingDeadQueue Queue name for single
product catalog loading
dead queue.

planfragmentCatalogLoadingDeadQueue Queue name for plan
fragment catalog loading
dead queue.

singlePlanfragmentCatalogLoadingDeadQueue Queue name for single plan
fragment catalog loading
dead queue.

actionCatalogLoadingDeadQueue Queue name for action
catalog loading dead
queue.

singleActionCatalogLoadingDeadQueue Queue name for single
action catalog loading dead
queue.

priceCatalogLoadingDeadQueue Queue name for price
catalog loading dead
queue.

discountCatalogLoadingDeadQueue Queue name for discount
catalog loading dead
queue.

categoryCatalogLoadingDeadQueue Queue name for category



TIBCO® Order Management Administration

33 | Configuration

Property Description

catalog loading dead
queue.

ruleCatalogLoadingDeadQueue Queue name for rule
catalog loading dead
queue.

singlePriceCatalogLoadingDeadQueue Queue name for single
price catalog loading dead
queue.

singleDiscountCatalogLoadingDeadQueue Queue name for single
discount catalog loading
dead queue.

singlePlanFragmentLoadingQueue Queue name for single plan
fragment loading queue.

singleActionModelLoadingQueue Queue name for single
action model loading
queue.

Model Loading Process
The models mentioned in Data Models must be loaded up TIBCO Order Management so
that they can be used by different components. These data models are modeled as
catalogs using repositories and relationships readily available in TIBCO Product and
Service Catalog. After modeling the catalogs in TIBCO Product and Service Catalog, they
can be made available to TIBCO Order Management and these models loaded through a
catalog service.

Use the following ways to load the models into TIBCO Order Management:

l Catalog Web Service Model Loading

l Online Model Loading

l Offline Model Loading



TIBCO® Order Management Administration

34 | Configuration

Online Model Loading
Online model loading requires the invoking of the catalog publish workflow in TIBCO
Product and Service Catalog using the exposed SOAP service.

You can invoke the catalog publish workflow in TIBCO Product and Service Catalog
directly by using the sample SOAP web service requests. The request can be sent using any
standard SOAP client tools such as SOAPUI. Specify the correct enterprise name, user
name, and password in the request. Also, specify the correct MASTERCATALOGNAME key
and a PRODUCTID to publish the specific catalog.

Invoke the request against the running instance of TIBCO Product and Service Catalog on
the URL, which typically looks like
http://<HOST>:<PORT>/eml/services/router/MasterCatalogRecordAction where HOST
and PORT are the machine name and port number where TIBCO Product and Service
Catalog is deployed and running.

Refer to the TIBCO Product and Service Catalog documentation for more details.

TIBCO Product and Service Catalog publishes the models on respective topics as
mentioned in the following table:

Model (Catalog) TIBCO Product and Service Catalog JMS Topic

Product tibco.ac.productmodel.topic

Action tibco.ac.actionmodel.topic

Plan Fragment tibco.ac.planfragmentmodel.topic

To make these models available to TIBCO Order Management, the following JMS bridges
must be created between the TIBCO Product and Service Catalog topics and the
corresponding TIBCO Order Management queues as mentioned in the following table:

TIBCO Product and Service Catalog Source
Topic

TIBCO Order Management Target
Queue

tibco.ac.productmodel.topic tibco.aff.catalog.product.request



TIBCO® Order Management Administration

35 | Configuration

TIBCO Product and Service Catalog Source
Topic

TIBCO Order Management Target
Queue

tibco.ac.actionmodel.topic tibco.aff.catalog.action.request

tibco.ac.planfragmentmodel. topic tibco.aff.catalog.planfragment.request

Catalog Web Service Model Loading
Catalog Web Service is used to load the models into TIBCO Order Management.

The URL for catalog service is PROTOCOL://<HOST>:<PORT>/swagger-ui.html#/

Following are the types of Catalog web services:

l Post request for /v1/planfragmentmodel

Operation to load single planfragment model

l Post request /v1/planfragmentmodel/bulk

Operation to load multiple planfragment models

l Post request for /v1/productmodel

Operation to load single product model

l Post request for /v1/productmodel/bulk

Operation to load multiple product models

l Post request for /v1/actionmodel

Operation to load single action model

l Post request for /v1/actionmodel/bulk

Operation to load multiple action models

l Delete request for /v1/actionmodel/bulk

Operation to purge action model

l Delete request for /v1/planfragmentmodel/bulk

Operation to purge planfragment model

l Delete request for /v1/productmodel/bulk



TIBCO® Order Management Administration

36 | Configuration

Operation to purge product model

l Get request for /v1/planfragmentmodel/bulk

Operation to get Bulk Plan Fragment Model

l Get request for /v1/planfragmentmodel/all

Operation to get All Plan Fragment Models

l Get request for /v1/productmodel/bulk

Operation to get Bulk product Model

l Get request for /v1/productmodel/all

Operation to get All product Models

l Get request for /v1/actionmodel/bulk

Operation to get Bulk action Model

l Get request for /v1/actionmodel/all

Operation to get All action Models

Offline Model Loading
A client can upload offline catalogs to the Catalog Service. Based on catalogPublishMode, it
uploads the model via either EMS or REST API. It can publish catalogs in parallel. As per
your environment, provide an appropriate value of workerThreadCount. If a file has
multiple catalogs, for example <ProductModels> has multiple <ProductModel>, each
catalog would be published to the Catalog Service separately.

Setting up Catalog Client
For offline model loading, the user can use the catalog-client, do the following steps:

In the $OM_HOME/samples/catalog-client/config/application.propertis file, set the
properties mentioned in the following table.

Note: Make sure that the catalog service is up.



TIBCO® Order Management Administration

37 | Configuration

General Configuration Properties

Property Description Default value Notes

server.port The default port
on which this
service is running

8082

workerThreadCount Number of
worker threads
available to
publish catalogs
in parallel

2

default.tenant.id Default Tenant ID TIBCO

enableSecureAPI Whether
enableSecureAPI
is true for
Catalog Service

True

catalogPublishMode Channel on
which offline
models would be
published

JMS Allowed values are
JMS and REST

catalogServiceEndpoint Base URL of
Catalog Service

http://<host_
name>:9092

Used to make REST
call when
catalogPublishMode
is selected as REST

catalogServiceTrustStoreFileNam
e

File name of the
catalog service
trust store

catalogServiceTrustStorePasswor
d

Password of the
catalog service
trust store



TIBCO® Order Management Administration

38 | Configuration

Property Description Default value Notes

catalogServiceTrustStoreType Type of the
catalog service
trust store

Authorization Properties

Property Description Default value Notes

authorization.service.username Username to
generate
OAuth Token

admin

authorization.service.password User
password to
generate
OAuth Token

ENC
(T9aNk07NMsU=)

Encrypted value of
admin. Use
EncryptorDecryptorUt
il to encrypt the key

authorizationServiceTokenEndPo
int

Authorization
Server OAuth
URL

http://<host_
name>:9091

authServiceTrustStoreFileName File name of
the
authorization
service trust
store

authServiceTrustStorePassword Password of
the
authorization
service trust
store

authServiceTrustStoreType Type of the



TIBCO® Order Management Administration

39 | Configuration

Property Description Default value Notes

authorization
service trust
store

authorization.access.token.validit
y

43200

JMS Configurations

Property Descriptio
n

Default Value Notes

emsServerURL EMS
Server URL

tcp://localhost:7222

emsServerUsername EMS
Server
username

Admin

emsServerPassword EMS
Server
Password

ENC(T9aNk07NMsU=) Encrypted value
of admin. Use
EncryptorDecrypt
orUtil to encrypt
the key

timeoutMillis EMS
message
acknowled
ge timeout

10000

securityProtocol Security
protocol
to use in
Tibjms
JNDI



TIBCO® Order Management Administration

40 | Configuration

Property Descriptio
n

Default Value Notes

lookups

sslEnableVerifyHost Enable
TrustStore
verificatio
n using
SSL

productModelPublishQ
ueue

Product
Model
publishes
Queue

tibco.aff.catalog.product.request.s
ingle

planFragmentPublishQ
ueue

Plan
fragment
Model
publishes
Queue

tibco.aff.catalog.planfragment.req
uest.single

actionModelPublishQu
eue

Action
Model
publishes
Queue

tibco.aff.catalog.action.request.si
ngle

priceModelPublishQue
ue

Price
Model
Publish
Queue

tibco.aff.catalog.price.request.sin
gle

discountModelPublish
Queue

Discount
Model
Publish
Queue

tibco.aff.catalog.discount.request.
single

categoryModelsPublish
Queue

Category
Models

tibco.aff.catalog.category.request



TIBCO® Order Management Administration

41 | Configuration

Property Descriptio
n

Default Value Notes

Publish
Queue

ruleModelsPublishQue
ue

Rule
Models
Publish
Queue

tibco.aff.catalog.operulemodel.re
quest

WebClient Configuration
When you start a container such as Kubernetes or Helm chart, all the services start
together. As the configurator service too starts along with the other services, the catalog
service fails as it is dependent on the configurator.

As a workaround, a retry mechanism is added.

In the $OM_HOME/roles//catalog-service/standalone/config/application.properties
file, configuratorServiceRetryCount and configuratorServiceRetryDuration flags are
added. Before failing, the catalog service tries to reload the number of times that you
specified in this flag. Also, you can set the retry duration in seconds.

Order Management System Configuration

User Interface Configuration
Order Management System provides a web user interface to browse and perform actions
on the orders and execution plans. Order Management System UI is deployed as a separate
application, and it requires parameters to connect to the Archival, Orchestrator, Jeopardy,
and Catalog service.



TIBCO® Order Management Administration

42 | Configuration

Note: Order Management System UI also provides configurable parameters to
control the access to the application.

User Interface Configuration

URL to Access Order Management System UI
Component
Users can directly access the Order Management System UI by providing
http://localhost:9097/ in the browser tab.

Initially, the user navigated to the login page and once the authentication is completed.
The user is redirected to the dashboard's Home component where upcoming orders can be
viewed.

Observe the following two scenarios:

Find specific order
using the 'Order
Details' component

The URL is redirected to a specific component, based on the target
orderID in the search parameters of
http://localhost:9097/#/dashboard/order-details?id=orderID



TIBCO® Order Management Administration

43 | Configuration

Accessing worktray
orders directly to
take action

Users can view orders and take an action that were previously added
to the worktray by navigating to
http://localhost:9097/#/dashboard/orders?id=bulk

To add an order to the worktray the user needs to navigate to
Dashboard Home and select the orders from the 'Find Orders' table.

Side Navigation for Order Management System UI
The side drawer navigation of Order Management System UI are as follows:

l Dashboard

l Bulk Action Job

l Saved Searches

l Jeopardy Rules

Filtration of orders in Order Management System UI
User can filter orders by giving certain search criteria in Dashboard > Search Orders >

The search categories of the filter widget are as follows:

Order l Search By IDs (Order ID, Order Ref, Customer ID, Subscriber ID)

l Search by Dates

l Filter By Order Status

l Search by Custom Headers

Plan l Search By IDs (Plan ID, Order ID, Order Ref, Process Component ID, Process
Component Name)

l Search by Dates

l Filter By Status



TIBCO® Order Management Administration

44 | Configuration

Override Planfragment Destination
You can use the following property under the category 'Orchestrator Functional
Configuration' to determine messages sent to the process component is sent to a new JMS
destination or not:

{
"propName": "tenantSpecificDestination",
"propDescription": "Flag to enable or disable using the tenant

specific destination for process component",
"propValue": "false",
"valueType": "string",
"isTenantProperty": "true"

}

If this property is set to true, the messages are sent to a JMS destination prefixed with the
tenant ID to the existing destination as follows:

<TENANTID>.tibco.aff.orchestrator.planItem.execute.request

Along with the existing property overridePlanfragmentDestination, the new flag
tenantSpecificDestination works in the following manner:

l If overridePlanfragmentDestination is set to true and
tenantSpecificDestination is set to false, the messages are sent to the configured
destination for the respective process component.

l If overridePlanfragmentDestination is set to false and if
tenantSpecificDestination is true, then

o if the owner is defined for this process component, the JMS destination is
tibco.aff.orchestrator.planItem.<planFragment-owner>.execute.request.

o if the owner is not defined for this process component, the JMS destination is
<TENANTID>.tibco.aff.orchestrator.planItem.execute.request.

l If overridePlanfragmentDestination is set to false and if
tenantSpecificDestination is false, then

o if the owner is defined for this process component, the JMS destination is
tibco.aff.orchestrator.planItem.<planFragment-owner>.execute.request.

o if the owner is not defined for this process component, the JMS destination is



TIBCO® Order Management Administration

45 | Configuration

tibco.aff.orchestrator.planItem.execute.request.

Note: By default, both properties are set to false.

Managing Application Security
Order Management Server provides the below security option.

l Authorization Service

Managing Users and Roles
Order Management Server supports role-based authorization. The user must belong to
either ROLE_USER or ROLE_ADMIN.

The following table shows business functions and a list of roles that are authorized to
perform the business functions.

Note: You can change the roles to perform business functions. This can be
achieved by changing 'Application Security Configurations' category for all
services application from the configurator UI.



TIBCO® Order Management Administration

46 | Configuration

Order Management Server
Interface

Function Roles

Orchestrator Submit Order ROLE_ADMIN



TIBCO® Order Management Administration

47 | Configuration

Order Management Server
Interface

Function Roles

Get Order Detail ROLE_USER, ROLE_
ADMIN

Order withdraw ROLE_ADMIN

PlanItem Execute Reply ROLE_ADMIN

AmendOrder ROLE_ADMIN

FeasibilityReply ROLE_ADMIN

ActivateOrderRequest ROLE_ADMIN

CancelOrder ROLE_ADMIN

GetOrderExecutionPlan ROLE_USER, ROLE_
ADMIN

SuspendOrderRequest ROLE_ADMIN

BulkAction ROLE_ADMIN

PlanItemBulkErrorHandler ROLE_ADMIN

PlanItemErrorHandler ROLE_ADMIN

MilestoneNotifyRequest ROLE_ADMIN

PlanItemSuspendResponse ROLE_ADMIN

PreQualificationFailedReply ROLE_ADMIN

submitOrderExecutionPlan ROLE_ADMIN

planItemSuspendReply ROLE_ADMIN



TIBCO® Order Management Administration

48 | Configuration

Order Management Server
Interface

Function Roles

Purge Order ROLE_ADMIN

orderScXml ROLE_USER, ROLE_
ADMIN

getplanfragment ROLE_USER, ROLE_
ADMIN

GetOrderMessages ROLE_USER,ROLE_
ADMIN

GetOrderStatus ROLE_USER,ROLE_
ADMIN

submitPlanErrorNotification ROLE_ADMIN



TIBCO® Order Management Administration

49 | Configuration

Order Management Server
Interface

Function Roles

Catalog Service submitPlanFragmentModel ROLE_ADMIN

purgePlanFragmentModel ROLE_ADMIN

submitProductModel ROLE_ADMIN

purgeProductModel ROLE_ADMIN

submitActionModel ROLE_ADMIN

purgeActionModel ROLE_ADMIN

getProductModelRoles ROLE_ADMIN

getPlanFragmentModelRoles ROLE_ADMIN

getActionModelRoles ROLE_ADMIN

getAllActionModelRoles ROLE_ADMIN

getAllProductModelRoles ROLE_ADMIN

getAllPlanFragmentModelRoles ROLE_ADMIN

Data Service setPlanRequest ROLE_ADMIN

setPlanItemRequest ROLE_ADMIN

getPlanItemsRequest ROLE_USER, ROLE_
ADMIN

getPlanRequest ROLE_USER, ROLE_
ADMIN

Archival Service getOrderSummary ROLE_USER, ROLE_
ADMIN



TIBCO® Order Management Administration

50 | Configuration

Order Management Server
Interface

Function Roles

getOrdersByCriteria ROLE_USER, ROLE_
ADMIN

getPlansByCriteria ROLE_USER,ROLE_
ADMIN

getAuditTrailsData ROLE_USER,ROLE_
ADMIN

purgeOrder ROLE_ADMIN

SubmitAuditTrail ROLE_ADMIN

GetSavedSearches ROLE_USER,ROLE_
ADMIN

UpdateSavedSearches ROLE_ADMIN

SavedSearches ROLE_ADMIN

DeleteSavedSearches ROLE_ADMIN

Changing the Default Roles of a User

Procedure
1. Open the $OM_HOME/roles/authorization-

service/standalone/config/application.properties file in a text editor and
update allowedUserRoles property with the required role values.

Note: In the case of OIDC, add UserRoles specific to your organization in
this property.

2. Register the required tenant. See Registering a Tenant. For more information on the
Tenant Registration APIs, see the "Authorization Service API Samples" topic in the



TIBCO® Order Management Administration

51 | Configuration

TIBCO® Order Management Web Services Guide.

3. Create a user with the roles that are set in the previous step. See Create User.

4. Open the $OM_
HOME/roles/configurator/standalone/config/application.properties file in a
text editor and update the configuratorAccessRoles property with the required
roles.

5. Update the operation role values under 'Application Security Configurations' category
for all the services from the configurator UI.

Authorization Service
To ensure secure access to TIBCO Order Management system REST APIs and support
multitenancy, token-based authentication is implemented in TIBCO Order Management.

The authentication service in TIBCO Order Management uses the JSON Web Token (JWT) to
validate user credentials (user name, password, and tenantID).

The following functions are covered under the Authorization Service:

l Registering a Tenant

l Update tenant information

l Get tenant information

l Delete tenant

l Create User

l Update User

l Get User

l Delete User

After a user is created, authenticate it by following the procedures in Generating an
authorization token topic.

Registering a Tenant
You can register a tenant by setting the identity provider type to Oracle, PostgreSQL, LDAP,
or EXTERNAL. Separate databases are created for each registered tenant’s user.

registering-a-tenant.htm
../../../../../../Content/webservices-guide/Update-tenant-information.htm


TIBCO® Order Management Administration

52 | Configuration

Tenant registration API is shown as follows:

This operation registers tenant information. This API can handle only single tenant
registration at a time.

Method: HTTP POST

Endpoint:http://<host_address>:<port_address>/v1/tenant

Parameter Cardinality Description

X-API-AppId Mandatory The application ID is used for getting the user details.

X-API-Key Mandatory This key is used for getting the user details.

If you set the identity provider as Oracle or PostgreSQL, then you have to create separate
databases for each tenant.



TIBCO® Order Management Administration

53 | Configuration

The following sample is shown for RelationalSchema (Postgres/Oracle)
identityProviderType:

{
"tenantId": "TIBCO",
"clientId": "order",
"clientSecret": "order",
"identityProviderType": "POSTGRES",
"supportAlgorithm": "HS256",
"signingKey": "100f4c1f-f333-4c25-bd8c-e4809722b6a7",
"relationalSchema": {

"dataSourceURL":
"jdbc:postgresql://localhost:5432/userdbll?currentSchema=userschemall",

"dataSourceUserName": "userll",
"dataSourcePassword": "userll"

}
}



TIBCO® Order Management Administration

54 | Configuration

When you have set the identity provider as LDAP, all the users and their roles are
maintained in some Directory service.

The following sample is shown for LDAP identityProviderType:

{
"tenantId": "TIBCOLDAP",
"clientId": "tibco-ldap-client",
"clientSecret": "tibco-ldap-secret",
"identityProviderType": "LDAP",
"supportAlgorithm": "HS256",
"signingKey": "100f4c1f-f333-4c25-bd8c-e4809722b6a7",
"ldapSchema": {

"ldapURLForDirectoryService": "string",
"directoryServiceDomainName": "string",

"directoryServiceRootDistinguishedName": "string"
}

}



TIBCO® Order Management Administration

55 | Configuration

When you have set identity provider as EXTERNAL, you do not have to use the Order
Management's Authentication service for user authentication and token generation. As of
now, we support Microsoft Azure Active-Directory as the external authentication service.
Even when you have set the identity provider as EXTERNAL, the tenant information is still
stored in the Order Management's Authentication service's relational database.

The following sample is shown for EXTERNAL identityProviderType:

{
"tenantId": "string",
"clientId": "string",
"clientSecret": "string",
"identityProviderType": "EXTERNAL",
"signingKey": "100f4c1f-f333-4c25-bd8c-e4809722b6a7",
"supportAlgorithm": "RS256",
"jwkSetUrl": "string",
"issuer": "string",
"oidcSchema": {

"authUrl": "string",
"accessTokenUrl": "string",
"scope": "string"



TIBCO® Order Management Administration

56 | Configuration

}
}

Authorization service can generate a token for all tenants. Each tenant can have a different
token algorithm. The following algorithms are supported:

l HMAC (HS256, HS384, HS512)

l RSA (RS256, RS384, RS512)

Order Management Authorization service generates token with HS256. All services can
decode or handle any of the above algorithms.

Note:
l Supported algorithms must match with one, which is used at the time of

registration, This is used for validating tokens (Only in the case of RSA).

l Issuer is validated during registration while validating the token.

Update tenant information
This operation updates tenant information if the tenant details are already present in
database.

Method: HTTP PUT

Endpoint: http://<host_address>:<port_address>/v1/tenant

Parameter Cardinality Description

X-API-AppId Mandatory The application ID is used for getting the user details.

X-API-Key Mandatory This key is used for getting the user details.

Get User Parameters

For more information on various identityProviderType scenarios, see the sample from the
'Register tenant' topic in TIBCO® Order Management Web Services Guide.



TIBCO® Order Management Administration

57 | Configuration

Get tenant information
This operation is used to get the tenant information if it is already present in database.

Method: HTTP GET

Endpoint: http://<host_address>:<port_address>/v1/tenant

Parameter Cardinality Description

tenantId Mandatory This is the TENANT value as stored in the users table in the
database.

X-API-AppId Mandatory The application ID is used for getting the user details.

X-API-Key Mandatory This key is used for getting the user details.

Get User Parameters

Delete tenant
This operation deletes tenant information if the tenant is already present in database.

Method: HTTP DELETE

Endpoint: http://<host_address>:<port_address>/v1/tenant

Parameter Cardinality Description

tenantId Mandatory This is the TENANT value as stored in the users table in the
database.

X-API-AppId Mandatory The application ID is used for getting the user details.

X-API-Key Mandatory This key is used for getting the user details.

Get User Parameters

Create User
This request is used to create users.



TIBCO® Order Management Administration

58 | Configuration

Method: HTTP POST method

Endpoint: http://<host_address>:<port_address>/v1/user

Parameter Cardinality Description

tenantId Mandatory This is the TENANT value as stored in the users
table in the database. If the tenantId is not
present in the database, then a new TENANT is
created.

X-API-AppId Mandatory The application ID is used for getting user
details. The default ID is auth.

X-API-Key Mandatory This key is used for getting user details. The
default ID is auth.

userInfo
(Body)

enabled Mandatory The value can be true or false. true makes
the user accessible through the configurator
and Order Management System UI and false
makes the user disable.

password Mandatory The password to be used for the user.

Username Mandatory It specifies the user name to be created or
modified.

userRoles Mandatory It assigns the role to the user.

The default valid role values are ROLE_ADMIN
and ROLE_USER. You can override the default
roles if required.

Create User Parameters

Note: If the userName and tenantId provided in the request exist, then the user
is modified with the provided values.



TIBCO® Order Management Administration

59 | Configuration

Example for the Create User request:

{
"user": [

{
"password": "string",
"userName": "string",
"enabled": true,
"userRoles": [
"string"

]
}

]
}

Update User
This request is used to update an existing user.

Method: HTTP PUT method

Endpoint: http://<host_address>:<port_address>/v1/user

Parameter Cardinality Description

tenantId Mandatory This is the TENANT value as stored in the users
table in the database. If the tenantId is not
present in the database, then a new TENANT is
created.

X-API-AppId Mandatory The application ID is used for getting user
details. The default ID is auth.

X-API-Key Mandatory This key is used for getting user details. The
default ID is auth.

userInfo
(Body)

enabled Mandatory The value can be true or false. true makes
the user accessible through the configurator
and Order Management System UI and false
makes the user disable.

Update User Parameters



TIBCO® Order Management Administration

60 | Configuration

Parameter Cardinality Description

password Mandatory The password to be used for the user.

userName Mandatory It specifies the user name to be created or
modified.

userRoles Mandatory It assigns the role to the user. The valid role
values are ROLE_ADMIN and ROLE_USER.

Note: If the userName and tenantId provided in the request exist, then the user
is modified with the provided values.

Example for the Update User request:

{
"user": [

{
"password": "string",
"userName": "string",
"enabled": true,
"userRoles": [
"string"

]
}

]
}

Get User
This request is used to get the details of the existing user.

Method: HTTP GET method

Endpoint: http://<host_address>:<port_address>/v1/user



TIBCO® Order Management Administration

61 | Configuration

Parameter Cardinality Description

X-API-AppId Mandatory The application ID is used for getting the user details. The
default ID is auth.

X-API-Key Mandatory This key is used for getting the user details. The default ID is
auth.

tenantId Mandatory This is the TENANT value as stored in the users table in the
database.

userId Mandatory This is the username value as stored in the users table in the
database.

Get User Parameters

Delete User
This request is used to delete the existing user.

Method: HTTP DELETE method

Endpoint:http://<host_address>:<port_address>/v1/user

Parameter Cardinality Description

tenantId Mandatory This is the tenant value as stored in the users
table in the database.

X-API-AppId Mandatory The application ID is used for getting user
details. The default ID is auth.

X-API-Key Mandatory This key is used for getting user details. The
default ID is auth.

userInfo
(Body)

userName Mandatory It specifies the user name to be deleted.

Delete User Parameters



TIBCO® Order Management Administration

62 | Configuration

Example for Delete User request:

[
{

"userName": "testuser",
}

]

Generating an authorization token
This token can be used to access the operations of all the services like data service, catalog
service, orchestrator, and archival service.

Procedure
1. To authorize a particular service, open the REST API home page of that service in a

browser.

Note: If the enableSecureAPI value is set as false, the authentication is
bypassed, and you do not have to authorize the service. For the REST
services, the authorization token is not required. However, you must
provide the tenantID.

2. Click the Authorize button.

The Available authorizations window opens.



TIBCO® Order Management Administration

63 | Configuration

3. Pass the following mandatory parameters:

Element Name Element
Type

Description

user name String username@tenantId

password String Existing password

Client credentials
location

Select Authorization header or Request body from
the dropdown options.

client_id String as provided in Tenant Registration

client_secret String as provided in Tenant Registration

Authorization parameters and description



TIBCO® Order Management Administration

64 | Configuration

4. Select the read and write checkboxes as per the requirements and then click the
Authorize button.

Result
An authorization token is generated for the particular service. This token is unique and
valid only for the dedicated user with tenant ID. The access token comes with an expiry.



TIBCO® Order Management Administration

65 | Configuration

Authorization Token APIs
l Generate OAuth token

Note:
l If you use an External Auth service, then User Management and Token

Generation do not work. For this, use POSTMAN as Swagger authentication
does not work.

l If you use Azure, the token is generated by Azure and not by Order
Management Authorization service.

l OIDC works only with SSL.

l When you have chosen OIDC, Swagger cannot handle the OIDC flow.

l In the case of OIDC, if the token is expired, it generates an error.

l Client credentials cannot be handled via the Swagger.

Generate OAuth Token
This request is used to generate authorization OAuth token.

Method: HTTP POST method

Endpoint: http://<host_address>:<port_address>/oauth/token

Parameter Cardinality Description

grant_type Mandatory You can select password or refresh token.

scope Mandatory You can select read, write, or 'read write'.

refresh_token Refresh token from previously generated token. Required
only when grant_type=refresh_token

user name Required only when grant_type=password

password Required only when grant_type=password

Generate Authorization Header Parameters

#Generate2


TIBCO® Order Management Administration

66 | Configuration

Parameter Cardinality Description

tenantId Required only when grant_type=password

Authorization Mandatory

Content-Type Mandatory

Audit Trail
Audit trail can be enabled or disabled by using the configuration parameter in
ConfigValues_OrchService.JSON and ConfigValues_ArchivalService.JSON files:

{
"propName": "enableAuditTrail",
"propDescription": "Enable Audit Trail Persistence",
"propValue": "true",
"valueType": "boolean",
"isTenantProperty": "false"

}

Enabling Internal Error Handler Support
You can enable Internal Error Handler by configuring the values in ConfigValues_
OrchService.JSON file.

{
"propName": "com.tibco.fom.orch.pcErrorHandlerType",
"propDescription": "The Error Handler component to

be used in case of failed plan item",
"allowedValues": [

"ExternalErrorHandler",
"InternalErrorHandler"

],
"propValue": "ExternalErrorHandler",
"valueType": "string",
"isTenantProperty": "false"

}



TIBCO® Order Management Administration

67 | Configuration

This is a new property introduced for configuring Internal Error Handlers. We can have two
values:

l ExternalErrorHandler (default)

l InternalErrorHandler

When it is configured as ExternalErrorHandler the user’s implementation of error handler is
considered, which means the on plan-item failure is handled by the error handler defined
by the user.

When the property is configured as InternalErrorHandler, it invokes the plan-item failure
response and newly created error handler in Order Management Server.

Logging
Logging is used to record information about a program's execution. This information is
typically used for debugging purposes, and additionally, depending on the type and detail
of information contained in a trace log, to diagnose common problems with the software.

How Logging Works
The types of logging for each component are as follows:

l Local Logging: This refers to writing the log output to a local log file for every
component.

The logging can be effective by standardizing the contents of a log message for logging
data across all the components.

The logging services for TIBCO Order Management are as follows:

l aopd (aopd.log)

l archival-service (archival-service.log)

l authorization-service (authorization-service.log)

l catalog-services (catalog-services.log)

l configurator (configurator.log)

l data-service (dataservice.log)



TIBCO® Order Management Administration

68 | Configuration

l encryptPWDUtility.log

l om-migration (migration.log, migration-starter.log)

l orchestrator (orchestrator.log)

l processcomponent (processcomponent.log)

l tmf-om-adapter (tmf-om-adapter.log)

l broker-service (broker-service.log)

l jeopardy (jeoms.log)

Contents of the Log Message
The log message is composed of several log components that are required to explain the
log message in its entirety. These log message components help you analyze the log.

Log Message
Component

Description

Log level The levels are as follows: DEBUG, INFO, WARN, ERROR, OFF.

BusinessTransactionId Unique identifier for tracing purposes across function calls.

OrderRef An identifier to identify the order for which this log message is
written.

Component Context information about the origin of the log (typically the
engine name).

Service Context information about the origin of the log (typically the class
name).

Operation Context information about the origin of the log (typically the
method name).

StackTrace Entire stack trace of the activity.

TimeStamp Indicates when the message was logged.



TIBCO® Order Management Administration

69 | Configuration

APIs for Changing log-level
Previously, when you wanted to change a log level for a class, you had to change it in the
logback file and restart the server to get the updates. This was taking a lot of time and
effort in this process.

To overcome this issue, the following log-level APIs are introduced in this release:

l Get all logger details

curl -X 'GET' \
'http://<host>:<port>/management/loggers' \
-H 'accept: */*'

l Get logger for a specific class

curl -X 'GET' \
'http://<host>:<port>/management/loggers/com.tib.fom' \
-H 'accept: */*'

l Change log level for a specific class

curl --location --request POST \
'http://<host>:<port>/management/loggers/com.tib.fom' \
--header 'Content-Type: application/json' \
--data-raw ' {"configuredLevel": "DEBUG"}'

Configuring Logging for Java Components
Logging configuration for the following services applies to Automated Order Plan
Development, authorization-service, catalog-services, data-service, orchestrator,
configurator, process component, and tmf-om-adapter.

Logging is done using the log back framework. Each component has a separate file for log
back configurations as explained as follows.

Orchestrator: $OM_HOME/roles/orchestrator/standalone/config/logback_orch.xml is
used to configure logging.

Authorization-service: $OM_HOME/roles/authorization-
service/standalone/config/logback_auth.xml is used to configure logging.



TIBCO® Order Management Administration

70 | Configuration

catalog-services: $OM_HOME/roles/catalog-services/standalone/config/logback_
catalog.xml is used to configure logging.

Data-service: $OM_HOME/roles/dataservice/standalone/config/logback_
dataservice.xml is used to configure logging.

Tmf-om-adapter: $OM_HOME/roles/tmf-om-adapter/standalone/config/logback_tmf.xml
is used to configure logging.

Configurator: $OM_HOME/roles/configurator/standalone/config/logback.xml is used to
configure logging.

Om-migration service: $OM_HOME/roles/om-migration/standalone/config/logback_
migration.xml is used to configure logging.

Broker service: $OM_HOME/roles/broker-service/standalone/config/logback_
broker.xml is used to configure logging.

Archival service: $OM_HOME/roles/configurator/standalone/config/logback_arch.xml
is used to configure logging.

Jeopardy service: $OM_HOME/roles/configurator/standalone/config/logback_
jeopardy.xml is used to configure logging.

l The default logLevel is:

o INFO for com.tib.fom package and its sub package

o ERROR for all other packages

l The local log file used by the orchestrator is orchestrator.log. Published logs go into
the logs folder for each service, the same as for the other components.

l The default maximum file size is 5 mb. After 5 mb, a new file is created.

l The default logging is orchestrator.log file. The next day those logs are moved to
orchestrator-<date>.log file and current logging starts in orchestrator.log file.

Automated Order Plan Development: $OM_
HOME/roles/aopd/standalone/config/Logback_aopd.xml is used to configure logging.

l The default logLevel is:

o INFO for com.tibco.aff, com.tibco.fom, and com.tibco.aff.models packages and
its sub packages

o ERROR for all other packages



TIBCO® Order Management Administration

71 | Configuration

l Local log file used by Automated Order Plan Development.

Note: You can set the catalogHibernateShowSql property to control whether
hibernate logs SQL statements. You can enable or disable SQL logging without
changing the codes.

Configuring Redis
Redis is supported only for the Order and Catalog services. A relational database is used for
the Admin, Archival, and Jeopardy services.

To start the services in Redis, perform the following steps:

Procedure
1. In the $OM_HOME/externalLib/seed-data/app-properties/ConfigValues_

common.JSON file, update the cmPluggableCache and omPluggableCache properties to
redis.

2. In the $OM_HOME/externalLib/seeddata/app-properties/ConfigValues_
CatalogService.JSON file under the Redis Data Source Configuration category,
update the following catalog Redis-related properties:

Property Name Description

catalogRedisClientName Redis server ClientName for Catalog
datasource

catalogRedisClusterEnabled Whether Redis is running in cluster
mode

catalogRedisDatabase Redis server database name for Catalog
datasource

catalogRedisHost Redis server host for storing Catalog
models



TIBCO® Order Management Administration

72 | Configuration

Property Name Description

catalogRedisPassword Password to connect to Redis
cluster/node

catalogRedisPort Redis server port for storing Catalog
models

catalogRedisSslEnabled Connect to Redis cluster or node via SSL

catalogRedisUsername User name to connect to Redis
cluster/node

redisBlockedWhenExhausted Enable connection blocking when the
connection pool is exhausted

redisJmxEnabled Enable JMX for connections

redisKeyStoreAbsoluteFileName Redis SSL KeyStore absolute file name

redisKeyStorePassword Redis SSL KeyStore password

redisKeyStoreType Redis SSL KeyStore type

redisLifo Enable LIFO behavior for idle objects,
always returning the most recently used
object from the pool

redisMaxIdle Maximum number of idle connections in
the pool

redisMaxTotal Maximum number of connections that
can be allocated by the pool at a given
time

redisMinEvictableIdleTimeMillis Minimum amount of time an object
might sit idle in the pool, in milliseconds



TIBCO® Order Management Administration

73 | Configuration

Property Name Description

redisMinIdle Minimum number of idle connections to
maintain in the pool

redisNumTestsPerEvictionRun Maximum number of connections to
examine during each eviction run

redisSoftMinEvictableIdleTimeMillis Minimum amount of time an object
might sit idle in the pool if minIdle
instances are available, in milliseconds

redisTestOnBorrow Enable connection validation before
being borrowed from the pool

redisTestOnReturn Enable connection validation before
being returned to the pool

redisTestWhileIdle Enable connection validation when idle
in the connection pool

redisTimeBetweenEvictionRunsMillis Number of milliseconds to sleep
between runs of the idle object evictor
thread

redisTrustStoreAbsoluteFileName Redis SSL TrustStore absolute file name

redisTrustStorePassword Redis SSL TrustStore password

redisTrustStoreType Redis SSL TrustStore type

3. In the $OM_HOME/externalLib/seed-data/app-properties/ConfigValues_
AopdService.JSON file under the Redis Data Source Configuration category,
update the catalog Redis-related properties.



TIBCO® Order Management Administration

74 | Configuration

Property Name Description

catalogRedisClientName Redis server ClientName for
Catalog datasource

catalogRedisClusterEnabled Checks whether Redis is
running in cluster mode

catalogRedisDatabase Redis server database name
for Catalog datasource

catalogRedisHost Redis server host for storing
Catalog models

catalogRedisPassword Password to connect to Redis
cluster/node

catalogRedisPort Redis server port for storing
Catalog models

catalogRedisSslEnabled Connect to Redis cluster/node
via SSL

catalogRedisUsername User name to connect to Redis
cluster/node

redisBlockedWhenExhausted Enable connection blocking
when the connection pool is
exhausted

redisJmxEnabled Enable JMX for connections

redisKeyStoreAbsoluteFileName Redis SSL KeyStore absolute
file name

redisKeyStorePassword Redis SSL KeyStore password



TIBCO® Order Management Administration

75 | Configuration

Property Name Description

redisKeyStoreType Redis SSL KeyStore type

redisLifo Enable LIFO behavior for idle
objects, always returning the
most recently used object from
the pool

redisMaxIdle Maximum number of idle
connections in the pool

redisMaxTotal Maximum number of
connections that can be
allocated by the pool at a
given time

redisMinEvictableIdleTimeMillis Minimum amount of time an
object might sit idle in the
pool, in milliseconds

redisMinIdle Minimum number of idle
connections to maintain in the
pool

redisNumTestsPerEvictionRun Maximum number of
connections to examine during
each eviction run

redisSoftMinEvictableIdleTimeMillis Minimum amount of time an
object might sit idle in the
pool if minIdle instances are
available, in milliseconds

redisTestOnBorrow Enable connection validation
before being borrowed from
the pool



TIBCO® Order Management Administration

76 | Configuration

Property Name Description

redisTestOnReturn Enable connection validation
before being returned to the
pool

redisTestWhileIdle Enable connection validation
when idle in the connection
pool

redisTimeBetweenEvictionRunsMillis Number of milliseconds to
sleep between runs of the idle
object evictor thread

redisTrustStoreAbsoluteFileName Redis SSL TrustStore absolute
file name

redisTrustStorePassword Redis SSL TrustStore password

redisTrustStoreType Redis SSL TrustStore type

4. In the $OM_HOME/externalLib/seed-data/app-properties/ConfigValues_
OrchService.JSON file under the Redis Data Source Configuration category,
update the catalog and order Redis-related properties .

Property Name Description

orderRedisHost Redis server host for storing order data

orderRedisPort Port number of the Redis server for
storing order models

orderRedisUsername User name required to connect to the
Redis cluster/node

orderRedisPassword Password for connecting to the Redis
cluster/node



TIBCO® Order Management Administration

77 | Configuration

Property Name Description

orderRedisDatabase Name of the Redis database for the order
data source

orderRedisClientName Name of the Redis client for the order
data source

orderRedisSslEnabled Enables SSL connection to the Redis
cluster/node

orderRedisKeyStoreType Type of the SSL KeyStore for Redis
connections

orderRedisKeyStorePassword Password for the SSL KeyStore

orderRedisTrustStoreType Type of the SSL TrustStore for Redis
connections

orderRedisTrustStorePassword Password for the SSL TrustStore

orderRedisKeyStoreAbsoluteFileName Absolute file name of the SSL KeyStore

orderRedisTrustStoreAbsoluteFileName Absolute file name of the SSL TrustStore

redisStatsHost Host address of the Redis server for
storing order statistics

redisStatsPort Port number of the Redis server for
storing order statistics

redisStatsUsername User name required to connect to the
Redis cluster/node for statistics

redisStatsPassword Password for connecting to the Redis
cluster/node for statistics



TIBCO® Order Management Administration

78 | Configuration

Property Name Description

redisStatsDatabase Name of the Redis database for storing
order statistics

redisStatsClientName Name of the Redis client for storing order
statistics

redisStatsSslEnabled Enables SSL connection to the Redis
cluster/node for statistics

redisStatsKeyStoreType Type of the SSL KeyStore for Redis
connections for statistics

redisStatsKeyStorePassword Password for the SSL KeyStore for
statistics

redisStatsTrustStoreType Type of the SSL TrustStore for Redis
connections for statistics.

redisStatsTrustStorePassword Password for the SSL TrustStore for
statistics

redisStatsKeyStoreAbsoluteFileName Absolute file name of the SSL KeyStore
for statistics

redisStatsTrustStoreAbsoluteFileName Absolute file name of the SSL TrustStore
for statistics

catalogRedisClientName Redis server ClientName for Catalog
datasource

catalogRedisClusterEnabled Whether Redis is running in cluster mode

catalogRedisDatabase Redis server database name for Catalog
datasource



TIBCO® Order Management Administration

79 | Configuration

Property Name Description

catalogRedisHost Redis server host for storing Catalog
models

catalogRedisPassword Password to connect to Redis
cluster/node

catalogRedisPort Redis server port for storing Catalog
models

catalogRedisSslEnabled Connect to Redis cluster/node via SSL

catalogRedisUsername User name to connect to Redis
cluster/node

redisBlockedWhenExhausted Enable connection blocking when the
connection pool is exhausted

redisJmxEnabled Enable JMX for connections

catalogRedisKeyStoreAbsoluteFileName Redis SSL KeyStore absolute file name

catalogRedisTrustStorePassword Redis SSL KeyStore password

catalogRedisKeyStoreType Redis SSL KeyStore type

redisLifo Enable LIFO behavior for idle objects,
always returning the most recently used
object from the pool

redisMaxIdle Maximum number of idle connections in
the pool

redisMaxTotal Maximum number of connections that
can be allocated by the pool at a given
time



TIBCO® Order Management Administration

80 | Configuration

Property Name Description

redisMinEvictableIdleTimeMillis Minimum amount of time an object might
sit idle in the pool, in milliseconds

redisMinIdle Minimum number of idle connections to
maintain in the pool

redisNumTestsPerEvictionRun Maximum number of connections to
examine during each eviction run

redisSoftMinEvictableIdleTimeMillis Minimum amount of time an object might
sit idle in the pool if minIdle instances
are available, in milliseconds

redisTestOnBorrow Enable connection validation before
being borrowed from the pool

redisTestOnReturn Enable connection validation before
being returned to the pool

redisTestWhileIdle Enable connection validation when idle in
the connection pool

redisTimeBetweenEvictionRunsMillis Number of milliseconds to sleep between
runs of the idle object evictor thread

catalogRedisTrustStoreAbsoluteFileName Redis SSL TrustStore absolute file name

catalogRedisTrustStorePassword Redis SSL TrustStore password

catalogRedisTrustStoreType Redis SSL TrustStore type

5. In the $OM_HOME/externalLib/seed-data/app-properties/ConfigValues_
DataService.JSON file under the Redis Data Source Configuration category,
update the order Redis-related properties.



TIBCO® Order Management Administration

81 | Configuration

Property Name Description

orderRedisHost Host address of the Redis
server for storing order data

orderRedisClusterEnabled Indicates whether Redis is
running in cluster mode

orderRedisPort Port number of the Redis
server for storing order models

orderRedisUsername User name required to connect
to the Redis cluster/node

orderRedisPassword Password for connecting to the
Redis cluster/node

orderRedisDatabase Name of the Redis database
for storing order-related
information

orderRedisClientName Name of the Redis client for
storing order-related
information

redisTestOnBorrow Enables connection validation
before being borrowed from
the pool

redisTestOnReturn Enables connection validation
before being returned to the
pool

redisTestWhileIdle Enables connection validation
when idle in the connection
pool



TIBCO® Order Management Administration

82 | Configuration

Property Name Description

redisBlockedWhenExhausted Enables blocking of new
connection requests when the
connection pool is exhausted

redisJmxEnabled Enables Java Management
Extensions (JMX) for
monitoring connections

redisLifo Enables Last In, First Out
(LIFO) behavior for managing
idle objects in the pool

redisMaxIdle Sets the maximum number of
idle connections in the pool

redisMinIdle Sets the minimum number of
idle connections to maintain in
the pool

redisMaxTotal Sets the maximum number of
connections that can be
allocated by the pool at any
time

redisNumTestsPerEvictionRun Sets the maximum number of
connections to examine during
each eviction run

redisSoftMinEvictableIdleTimeMillis Sets the minimum amount of
time, in milliseconds, an object
might sit idle in the pool if
`minIdle` instances are
available

redisMinEvictableIdleTimeMillis Sets the minimum evictable



TIBCO® Order Management Administration

83 | Configuration

Property Name Description

idle time, in milliseconds, for
objects in the pool

redisTimeBetweenEvictionRunsMillis Sets the time, in milliseconds,
between eviction runs for idle
objects in the pool

orderRedisSslEnabled Enables SSL connection to the
Redis cluster/node

redisKeyStoreType Specifies the type of the SSL
KeyStore for Redis connections

redisKeyStorePassword Password for the SSL KeyStore

redisTrustStoreType Specifies the type of the SSL
TrustStore for Redis
connections

redisTrustStorePassword Password for the SSL
TrustStore

redisKeyStoreAbsoluteFileName Absolute file name of the SSL
KeyStore

redisTrustStoreAbsoluteFileName Absolute file name of the SSL
TrustStore

Configuring Microsoft SQL Server
Perform the following steps to configure Microsoft SQL Server.

Admin Database

Procedure



TIBCO® Order Management Administration

84 | Configuration

1. Open the $OM_HOME/db/dbscripts/sqlServer/admin/bin/sqlserver_admin_
db.properties file in a suitable editor and update the values.

2. Run the following scripts from the $OM_HOME/db/dbscripts/sqlServer/admin/bin
directory:

db-setup.sh

seed_common_authConfig_db_setup.sh

Archival Database

Procedure
1. Open the $OM_HOME/db/dbscripts/sqlServer/archival/bin/sqlserver_archival_

db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/archival/bin
directory:

db-setup.sh

Catalog Database

Procedure
1. Open the $OM_HOME/db/dbscripts/sqlServer/catalog/bin/sqlserver_catalog_

db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/catalog/bin
directory:

db-setup.sh

Jeopardy Database

Procedure
1. Open the $OM_HOME/db/dbscripts/sqlServer/jeopardy/bin/sqlserver_jeopardy_

db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/jeopardy/bin
directory:

db-setup.sh



TIBCO® Order Management Administration

85 | Configuration

Order Database

Procedure
1. Open the $OM_HOME/db/dbscripts/sqlServer/order/bin/sqlserver_order_

db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/order/bin
directory:

db-setup.sh

User Database

Procedure
1. Open the $OM_HOME/db/dbscripts/sqlServer/user/bin/sqlserver_user_

db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/user/bin
directory:

db-setup.sh

Provide the SQL Server details in each of the configuration files. For more details, see the
$OM_HOME/samples/sqlServer-sample-property/sample_sqlServer_
properties.properties file.

Configuring an External Identity Provider

Before you begin
You must have registered an application in the external authentication provider such as
Azure Active-Directory(ADD) or Google Identity with all the required details for the
application role assignment to the user.

Registering a Tenant

You can configure an external authentication provider with TIBCO® Order Management. See
the "Multitenancy" topic in the TIBCO® Order Management Administration guide.



TIBCO® Order Management Administration

86 | Configuration

Register a tenant in the Authorization service using the POST method of the /v1/tenant
API with the following sample payload, which shows all the mandatory fields.

{
"tenantId": "cde6fa59-abb3-471-be01-2443c417cbda",
"clientId": "ddaf41fb-3aef-4e30-879f-a188ba131abf",
"clientSecret": "DI68Q~tljTkT4ABi7lZVztaz5AUN6A6r.CGJHbwd",
"identityProviderType": "EXTERNAL",
"supportAlgorithm": "RS256",
"jwkSetUrl": "https://login.microsoftonline.com/cd-abb3-4971-be01-

244bda/discovery/v2.0/keys",
"issuer": "https://sts.windows.net/cde6fa59-abb3-4971-be01-

2443c417cbda/",
"oidcSchema": {

"authUrl": "https://login.microsoftonline.com/cd-abb3-4971-be01-
244bda/oauth2/v2.0/authorize",

"accessTokenUrl": "https://login.microsoftonline.com/cd-abb3-4971-
be01-244bda/oauth2/v2.0/token",

"scope": "ddaf41fb-3aef-4e30-879f-a188ba131abf-
serviceB/fosApplicationConsent"

}
}

Mapping of Keys from External OAuth2 Token

In the $OM_HOME/seed-data\app-properties/ConfigValues_Common.json file, update the
following properties. These are the properties that need to be mapped to the KEY of
CLAIMS in an externally generated OAuth2 token.

{
"propName": "tenantIdMapping",
"propDescription": "key in the token claims that refers to

tenantId",
"propValue": "TENANTID",
"valueType": "string",
"isTenantProperty": "false"

},
{

"propName": "userNameMapping",
"propDescription": "key in the token claims that refers to

userName",
"propValue": "user_name",
"valueType": "string",
"isTenantProperty": "false"

},



TIBCO® Order Management Administration

87 | Configuration

{
"propName": "userRoleMapping",
"propDescription": "key in the token claims that refers to

userRole",
"propValue": "authorities",
"valueType": "string",
"isTenantProperty": "false"

}

Role-Based Access Configurations

Irrespective of whether you want to use an external or Order Management's authentication
provider, you have to modify the authorization for each API in Order Management.

Each API in Order Management has role-based access. API-related role mapping is available
in the respective microservice’s configuration. To configure API-specific roles, you must
modify the following configurations for each of the mentioned microservices:

l Authorization service:

File name: $OM_HOME/roles/authorization-
service/standalone/config/application.properties

Property name: allowedUserRoles

Description: All the user roles (comma separated) have access to the APIs exposed in
the authorization service. This is not considered when you have used
identityProviderType as EXTERNAL while registering the tenant. When
identityProviderType is set as EXTERNAL, the authorization service is not used to
generate the token.

l Configurator:

File name: $OM_
HOME/roles/configurator/standalone/config/application.properties

Property name: configuratorAccessRoles

Description: All the user roles (comma separated) have access to the APIs exposed as
part of the configurator microservice.

l OMS UI:

File name: $OM_HOME/seed-data/config-files/ConfigValues_OMSUI.json

Property name: com.tibco.fom.orch.roles.piExecutionToComplete



TIBCO® Order Management Administration

88 | Configuration

Description: To force completing plan items in execution status on the basis of role.

l Archival service:

File name: $OM_HOME/seed-data/config-files/ConfigValues_
ArchivalService.json

Under the Application Security Configurations category name, update the
following properties:

Property Name Description

operation.roles.orderSummary User Role for
orderSummary API

operation.roles.ordersByCriteria User Role for
ordersByCriteria API

operation.roles.auditTrail User Role for
auditTrailForPlan
API

operation.roles.planByCriteria User Role for
planByCriteria API

operation.roles.purgeOrders User Role for
purgeOrders API

Once you configure these mentioned properties, replies from all the above APIs
would only be received if the user accessing the resource belongs to one of the user
groups that have access to the specified resource.

l Orchestrator:

File name: $OM_HOME/seed-data/config-files/ConfigValues_OrchService.json

Under the Application Security Configurations category name, update the
following properties:



TIBCO® Order Management Administration

89 | Configuration

Property Name Description

operation.roles.submitOrder User Role for submitOrder
Service

operation.roles.orderExecutionPlan User Role for
getOrderExecutionPlan
Service

operation.roles.getOrderDetails User Role for getOrderDetails
Service

operation.roles.executePlanItemReply User Role for
planItemExecuteResponse
Service

operation.roles.orderWithdraw User Role for orderWithdraw
Service

operation.roles.submitOrderExecutionPlan User Role for
submitOrderExecutionPlan
Service

operation.roles.milestoneNotifyRequest User Role for
milestoneNotifyRequest
Service

operation.roles.planItemSuspendResponse User Role for
planItemSuspendResponse
Service

operation.roles.amendOrder User Role for amendOrder
Service

operation.roles.purgeOrder User Role for purgeOrder
Service

operation.roles.orderSuspend User Role for orderSuspend



TIBCO® Order Management Administration

90 | Configuration

Property Name Description

Service

operation.roles.orderActivate User Role for orderActivate
Service

operation.roles.planItemErrorHandler User Role for
planItemErrorHandler Service

operation.roles.planItemBulkErrorHandler User Role for
planItemBulkErrorHandler
Service

operation.roles.preQualificationFailedReply User Role for
preQualificationFailedReply
Service

operation.roles.feasibilityReply User Role for feasibilityReply
Service

operation.roles.orderCancel User Role for orderCancel
Service

operation.roles.performBulkOrderAction User Role for
performBulkOrderAction
Service

operation.roles.orderScXml User Role for orderScXml
Service

operation.roles.planFragments Roles of the user used by
getPlanFragments

operation.roles.submitPlanErrorNotification Roles of the user used by
planErrorNotification

operation.roles.opdErrorHandlerReply Roles of the user used by
opdErrorHandlerReply



TIBCO® Order Management Administration

91 | Configuration

l Catalog service:

File name: $OM_HOME/seed-data/config-files/ConfigValues_
CatalogService.json

Under the Application Security Configurations category name, update the
following properties:

Property Name Description

operation.roles.submitPlanFragmentModel User Role to access
submitPlanFragmentModel
Service

operation.roles.submitProductModel User Role to access
submitProductModel Service

operation.roles.submitActionModel User Role to access
submitActionModel Service

operation.roles.purgePlanFragmentModel User Role to access
purgePlanFragmentModel Service

operation.roles.purgeProductModel User Role to access
purgeProductModel Service

operation.roles.purgeActionModel User Role to access purgeActionModel
Service

operation.roles.getProductModelRoles User Role to access
getProductModelRoles Service

operation.roles.getPlanFragmentModelRoles User Role to access
getPlanFragmentModelRoles
Service

operation.roles.getActionModelRoles User Role to access
getActionModelRoles Service



TIBCO® Order Management Administration

92 | Configuration

Property Name Description

operation.roles.getAllActionModelRoles User Role to access
getAllActionModelRoles Service

operation.roles.getAllPriceModelRoles User Role to access
getAllPriceModelRoles Service

operation.roles.getAllOfferIdsModelRoles User Role to access
getAllOfferIdsModelRoles Service

operation.roles.getAllDiscountModelRoles User Role to access
getAllDiscountModelRoles Service

operation.roles.getAllProductModelRoles User Role to access
getAllProductModelRoles Service

operation.roles.getAllPlanFragmentModelRoles User Role to access
getAllPlanFragmentModelRoles
Service

operation.roles.getAllCategoryModelRoles User Role to access
getAllCategoryModelRoles Service

operation.roles.submitPriceModel User Role to access
submitPriceModel Service

operation.roles.submitDiscountModel User Role to access
submitDiscountModel Service

operation.roles.submitOfferIdsModel User Role to access
submitOfferIdsModel Service

operation.roles.submitCategoryModel User Role to access
submitCategoryModel Service

operation.roles.submitRuleModel User Role to access



TIBCO® Order Management Administration

93 | Configuration

Property Name Description

submitRuleModel Service

operation.roles.purgePriceModel User Role to access
purgePriceModel Service

operation.roles.purgeDiscountModel User Role to access
purgeDiscountModel Service

operation.roles.purgeCategoryModel User Role to access
purgeCategoryModel Service

operation.roles.purgeOfferId User Role to access purgeOfferId
Service

operation.roles.purgeRuleModel User Role to access
purgeRuleModel Service

l Broker service:

File name: $OM_HOME/seed-data/config-files/ConfigValues_BrokerService.json

Under the Application Security Configurations category name, update the
following properties:

Property Name Description

operation.roles.getPendingNotifications User Role to access the
getPendingNotifications Service

operation.roles.resumePendingNotifications User Role to access the
resumePendingNotifications
Service

operation.roles.resumeAllPendingNotifications User Role to access the
resumeAllPendingNotifications
Service



TIBCO® Order Management Administration

94 | Administration Tasks

Administration Tasks
This section covers all the administration tasks for TIBCO Order Management.

Swagger API Reference
Swagger version: Open API - 3.0.1

URL to access the Swagger UI: scheme://host[:port]/swagger-ui/index.html

Note: To disable the Swagger UI, expose the following property either via an
environment variable or configurator: springdoc.api-docs.enabled=false

Docker
You can containerize TIBCO Order Management components and run them on hosts that
support the Docker environment. The Docker files are delivered as part of the TIBCO Order
Management installer. You can build images using those Docker files and then run them as
containers.

This feature of TIBCO Order Management requires Docker version 25.0.x and Docker-
Compose version 1.29.0 (or later).

It is required to have an internet connection on the machine where you install and run
Docker.

Note: The term Docker Context refers to the directory where the Dockerfile is
available. For example, the Docker context for the Order Management Server is
$OM_HOME/docker/orchestrator/6.1.0.

Depending on your system configuration, you might need the following Docker containers:



TIBCO® Order Management Administration

95 | Administration Tasks

l Configurator Service - through the Configurator-UI to make the configuration-related
changes

l Authorization Service - to generate the token and this token is used across all Order
Management Services to authorize and authenticate the users

l Catalog Service - API to load Product and Plan Fragment models

l Orchestrator Service - order-related APIs

l Automated Order Plan Development Service - API to generate plans for each order

l Data Service - API to modify User-Defined Fields at Plan or Plan Item level

l TM Forum Adapter Service - API to map TM Forum API to Order Management API

l Order Migration Service - to migrate the orders to the 6.1.0 version of Order
Management

l Order Management System UI - provides operators a GUI to manage and track orders.
Order Management System persists order data and allows operators to search, view,
track, and trace orders.

l Archival Service - acts as the data backup for the Orchestrator and it uses messages
to achieve this. For every status change in the order, the Orchestrator sends a JMS
message.

l Broker Service: to resend pending notifications of an order.

After installation, all Docker-related files are located in the $OM_HOME/docker directory
when the user's PWD is $OM_HOME/docker.

Before you start using the Docker feature in TIBCO Order Management, you must be
familiar with the following Docker concepts:

l Docker architecture

l Using Docker in production

l Using Docker Volumes

l Docker commands

l Docker-Compose

l Using Docker-Compose in production



TIBCO® Order Management Administration

96 | Administration Tasks

Building a Docker Image Without an Internet
Connection
Download and install wget and unzip utilities to build a Docker image without an internet
connection.
In $OM_HOME/docker/base/1.0/Dockerfile, the "FROM
registry.access.redhat.com/ubi8/ubi-minimal" instruction initializes a new build stage and
sets the base image for subsequent instructions. You can accept the default base image or
you can change the instruction and provide a valid source for a different base image. You
can pull a valid base image from the Docker's public repository or you can create your base
image, push it to a public or private Docker registry, and then use the newly created image
as a base image. For more information about creating your base Docker image, see the
Docker documentation related to Creating a Base Image.

In $OM_HOME/docker/base/1.0/Dockerfile, you can find instructions for downloading wget
and unzip utilities. These instructions can be modified to pick up the installers of the
utilities from the Docker context and install them in the image.

Note: In this case, the Docker context for $OM_
HOME/docker/base/1.0/Dockerfile is $OM_HOME/docker/base/1.0.

Copying Files to Docker Context
It is required to copy files to the Docker context before building the required Docker
images.

Procedure
1. Install Docker 25.x (or later), Docker-Compose 1.29 (or later), and TIBCO Order

Management on the host machine.

2. Run the $OM_HOME/roles/copyLib.sh script. For more information, refer to the "Post-
Installation Task: Copying Dependencies" topic in the TIBCO Order Management and
Configuration guide.

3. Go to the $OM_HOME/docker directory and run copy-required-files.sh script.

This shell script copies all the required directories from OM_HOME to a specific Docker
context. These files are required to build Docker images. This script works on OM_

https://docs.docker.com/


TIBCO® Order Management Administration

97 | Administration Tasks

HOME set in the environment or takes the value of OM_HOME as user input.

Building Docker Images
After the required files are copied at the Docker context, you can build the Docker images.
Use Docker-Compose for building the Docker images.

Procedure
1. Go to the $OM_HOME/docker/base/1.0 directory and execute the following command:

docker build -t tibco/base:1.0 --rm=true .

2. Go to the $OM_HOME/docker directory and execute the following command:

docker-compose --file docker-compose-build-complete.yml build

3. Run the following command to check the images that are created:

$] docker images

You might get the following output:



TIBCO® Order Management Administration

98 | Administration Tasks

Setting Up the .env File
Set the required variables, which varies according to the user's environment. All of these
variables are required to be changed according to the user's environment.

All of these variables are in the .env file located in the $OM_HOME/docker directory.

Configuring for Order Management Server Docker
Containers
When you run the Order Management Server or the Order Management Server UI as Docker
containers, you have to make configuration changes using the Configurator UI.

Procedure
1. Start TIBCO Order Management configurator UI as a Docker container by running the

following command:

$] docker-compose --file docker-compose-run-configurator-ui.yml up
-d

You can access the Configurator UI on the port, which you had set for the HOST_
CONFIGURATOR_UI_PORT variable in the .env file.

2. On the TIBCO Order Management Configurator UI, make the configuration changes
according to your environment. For example, make related configuration for Order
Management Server, Automated Order Plan Development, and other related
configurations.

All the changes that you do in the Configurator UI are uploaded to the database so
other containers can read from it.

Running the Docker Containers
After building the Docker images, you can run the images as containers to start
containerized TIBCO Order Management.



TIBCO® Order Management Administration

99 | Administration Tasks

Running Different Containers for TIBCO Order Management Components

Start the Docker container by using the specific docker-compose file.

Procedure
1. Start the Configurator Docker container.

$> docker-compose --file docker-compose-run-configurator.yml up -d

2. Start the Configurator UI Docker container.

$> docker-compose --file docker-compose-run-configurator-ui.yml up
-d

3. Access the configurator UI and configure according to your environment and
requirement.

4. Start the authorization service to fetch the token, which is then used across all order
management services to authorize and authenticate the user.

$> docker-compose --file docker-compose-run-authorization-
service.yml up -d

You can start any of the Docker services by using the following compose commands.

a. Start Catalog Service container.

$> docker-compose --file docker-compose-run-catalog-
service.yml up -d

b. Start Automated Order Plan Development Service container.

$> docker-compose --file docker-compose-run-aopd.yml up -d

c. Start Orchestrator Service container.

$> docker-compose --file docker-compose-run-orchestrator-
service.yml up -d

d. Start Data Service container.



TIBCO® Order Management Administration

100 | Administration Tasks

$> docker-compose --file docker-compose-run-dataservice.yml up
-d

e. Start Archival Service container.

$> docker-compose --file docker-compose-run-archival-
service.yml up -d

f. Start Migration Service container.

$> docker-compose --file docker-compose-run-migration-
service.yml up -d

g. Start jeopardy Service container.

$> docker-compose --file docker-compose-run-jeopardy.yml up -d

h. Start the omsui Service container.

$> docker-compose --file docker-compose-run-omsui.yml up -d

i. Start the Broker Service.

$> docker-compose --file docker-compose-run-broker-service.yml
up -d

j. Start tmf-om adapter container. $> docker-compose --file docker-compose-
run-tmf-adapter-service.yml up.

k. Run $] docker ps -a to check the containers that are started.

Extend Docker-Compose Files
You can extend the Docker-Compose files provided as part of the TIBCO Order Management
installation.

This is mainly done to handle different environments. For example, this is done in case you
required a separate parameters for the containers based on your environment, such as a
testing or production environment.



TIBCO® Order Management Administration

101 | Administration Tasks

The suggested way to do this is to have multiple Docker compose files for each
environment. For more information, see the Docker documentation on Multiple Compose
Files.

Modifying a Container Time-Zone
The default time-zone for any Docker container is UTC. In the case where you want the
Docker container's time-zone to be in sync with the host machine's time-zone, you can
apply these changes either in the Docker file or in the Docker-Compose YAML file.

Docker containers always use the system clock of the host machine but it sets its time-zone
as UTC.

The following steps are an example of changing the time zone for an Order Management
Server container.

Procedure
1. You can modify a container's time zone with either of the following two ways:

l This approach can be applied when you have not created any images. Open the
$OM_HOME/docker/orchestrator-service-context/6.1.0/Dockerfile in a
suitable editor and modify the file as shown:

FROM tibco/base:1.0
COPY orchestrator $OM_HOME/orchestrator
ENV TZ-Asia/Kolkata
RUN ln -snf /user/share/zoneinfo/$TZ etc/localtime "echo $TZ >
/etc/timezone
RUN chmod 777 $OM_HOME/orchestrator/standalone/bin/* \

&& chmod -R a+w $OM_HOME/orchestrator/standalone/logs \
&& chmod -R a+w $OM_HOME/orchestrator/standalone/config

USER root
ENTRYPOINT ["sh","-c", "$OM_
HOME/orchestrator/standalone/bin/start.sh -
XX:MinRAMPercentage=$min_ram_percentage -
XX:MaxRAMPercentage=$max_ram_percentage --run=FG"]

EXPOSE 9093

In this example, the following has been modified:

https://docs.docker.com/


TIBCO® Order Management Administration

102 | Administration Tasks

ENV TZ=Asia/Kolkata

RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ
/etc/timezone

Here you have to change the value of the TZ variable as per your time zone (in
the example, the time zone is Asia/Kolkata).

l This approach can be applied if your images are already created and now you
want to change the container time zone at runtime. Open $OM_
HOME/docker/docker-compose-run-orchestrator-service.yml in a suitable
editor and modify the file as shown:

version: "3"

services:
tibco-orchestrator:

image: "tibco/orchestrator:${OM_VERSION_TAG}"
environment:

min_ram_percentage: ${min_ram_percentage}
max_ram_percentage: ${max_ram_percentage}

ports:
- "${HOST_ORCHESTRATOR_SERVICE_PORT}:9093"

volumes:
- "${HOST_LOG_ROOT_LOCATION_DIR_

PATH}:/home/tibuser/tibco/
om/6.1/orchestrator/standalone/logs"

deploy:
resources:
limits:
cpus: '4'
memory: 4G

reservations:
cpus: '0.2'
memory: 512M

environment:
- "TZ=Asia/Kolkata"
command: sh -c "ln -snf /user/share/zoneinfor/$TZ
/etc/localtime && echo $TZ > /etc/timezone"

In this example, the following has been modified:



TIBCO® Order Management Administration

103 | Administration Tasks

environment:
- "TZ=Asia/Kolkata"

command: >
sh -c "ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo

$TZ > /etc/timezone"

Here you have to change the value of the TZ variable as per your time zone (in
the example, the time zone is Asia/Kolkata).

Reading Container Logs
When all the desired containers are up and running, it is best practice to check the logs for
all the running services.

Logs for all the started and exited containers are available at the path you have mentioned
for the LOG_ROOT_LOCATION_DIR_PATH variable in the .env file. So all the logs are preserved
on your host machine.

Troubleshooting Error from Building Docker Images
Troubleshoot an error when building Docker images with the following steps.

Complete the following step if the following error occurs when building Docker images:
rm: cannot remove '/home/tibuser/tibco/om/6.1/configurator/standalone/config/backup':
Directory not empty

Procedure
1. Run the following command on the host machine:

$] docker info | grep 'Storage Driver' | awk -F':' '{print $2}'
overlay
$]

2. If the output is overlay, then apply the following workaround:

a. Stop the Docker engine.



TIBCO® Order Management Administration

104 | Administration Tasks

b. Changed DOCKER_OPTS to set storage-driver value to device mapper, edit
/etc/docker/daemon.json, and add "storage-driver" : "devicemapper" at
the end of existing keys.

c. Start the Docker engine.

Note: You can lose the existing Docker images due to the above
change.

d. Verify the fix by running the following command:

$] docker info | grep 'Storage Driver' | awk -F':' '{print
$2}'
devicemapper
$]

Order Sequencing
By default Order Sequencing feature is disabled. When Order Sequencing is disabled, all
the incoming orders are processed in parallel. After the Order Sequencing is enabled, only
a single order is processed at a time and any other incoming order by the same customer
is stored in the ORDER_IN_SEQUENCE database table till the previous one is processed.

The order of a customer is processed in the sequence of order submission. Each order
request has an element or a tag (called as custom property) in the request body, which is
common into all the requests for a customer. Orders from one customer are processed in
the sequence of order submission.

The following configuration properties are related to Order Sequencing:

Configuration
Variable Name

Configuration Property Value Description

Custom property
JsonPath
expression for
order sequencing

com.tibco.fom.orch.sequencing.customerJsonPath Custom
property
JsonPath for
order
sequencing



TIBCO® Order Management Administration

105 | Administration Tasks

Configuration
Variable Name

Configuration Property Value Description

that points to
a unique
customer
identifier

Flag to enable or
disable the Order
Sequencing

com.tibco.fom.orch.enableOrderSequencing Options to
enable (for all
or with a udf)
or disable
order
sequencing

Enabling or Disabling Order Sequencing

Procedure
1. Define an JsonPath in com.tibco.fom.orch.sequencing.customerJsonPath, which

points to a unique customer identifier in the order request.

2. Set the below are the enum values for
com.tibco.fom.orch.enableOrderSequencing:

l Disable: To disable order sequencing for all the orders.

l EnableForAll: To enable order sequencing for all the orders.

l EnableWithUdf: For the selected user-defined fields for which you want to
enable order sequencing.

Bulk Order Actions
Operations on an order are performed depending on the requirement. Performing the same
action on individual orders are difficult and time-consuming. You can apply actions to the
group of orders simultaneously using Bulk Order action.

The following operations can be performed on the group of orders:



TIBCO® Order Management Administration

106 | Administration Tasks

l SUSPEND

l RESUME

l WITHDRAW

l CANCEL

These operations are exposed by the Order Management Service.

Bulk Actions
The bulk order actions let administrators to cancel, suspend, sesume, or withdraw a group
of orders in a single invocation of a web service. This is useful:

l To perform a specific action on all orders in a particular region.

l To prevent repetitive intervention to perform similar actions.

The bulk order actions are based on the existing Order Management Server order service.
This operation is called BulkAction.

The existing Order Management Server order service is modified to include a new
operation. You can use this operation to specify the type of action to be performed along
with the group of orders on which the action must be performed.

You can monitor the request status through:

l Event log - contains information about the status of the request.

l Order lists - show the change in the order status when refreshed.

l REST call - bulk order action can be made through BulkAction request.

l In progress jobs - contains bulk action performed tasks where each job contains job
id, created date, action requested, total orders and processed orders along with the
order IDs

All the errors that occur during this process are logged and handled individually.

WSDL Location
This is the default location where all the WSDL files are copied after the installation.



TIBCO® Order Management Administration

107 | Administration Tasks

l $OM_HOME/schemas/wsdl/orchestrator/OrderService.wsdl

l $OM_HOME/schemas/wsdl/orchestrator/OrderServiceJms.wsdl

l $OM_HOME/schemas/wsdl/aopd/AOPDService.wsdl

Error Codes
The following table lists the error codes:

Error Code Description

TIBCO-AFF-OMS-100046:
INVALID_ACTION

Web service fault code for invalid values of action.

TIBCO-AFF-OMS-100047: NO
ORDERS FOUND

Web service fault code when neither order id nor order
reference is present in the request.

TIBCO-AFF-OMS-100048: BOTH
ORDERID AND ORDERREF
FOUND

Web service fault code when both order id and order
reference are present in the request.

TIBCO-AFF-OMS-100020:

ORDER {ORDERREF} NOT
FOUND / ORDER {ORDERID}
NOT FOUND

This exception is logged if an order to be canceled or
withdrawn is not present in the Order Management Server
component.

Invoke Bulk Order Operation
The BulkAction bulk order operation requires the following input parameters to perform
the selected action on all the orders contained in the request:

l Action type

l List of order IDs or order refs

The BulkAction order operation is an asynchronous operation and the consumer of the
operation receives an acknowledgement immediately after the submission of the request.
This acknowledgement is not an indication that the process is complete. This indicates that



TIBCO® Order Management Administration

108 | Administration Tasks

the request is under process by the Order Management Server component. The operation
can be invoked by a user with ADMIN role only.

Tracking the Request Status
The request status for the invoked bulk order action can be tracked using:

l TIBCO Order Management UI (Dashboard, Order Screen and Activity logs)

l Logs in the Order Management Server and Orchestrator components

Logging
TIBCO Order Management provides detailed logging and auditing capabilities to identify
the system errors and key errors that can be gracefully handled by the calling system.

For bulk order actions, the logging is done using the AFFLogger APIs and the log file
(orchestrator.log) is created in the corresponding location based on the configured
Appender. The log location is $OM_HOME/roles/orchestrator/standalone/logs. The
incoming bulk order request is validated and an INFO level log is generated. The log
contains the action to be performed along with the number of orders in the request.

For all bulk order actions, if a particular order is not found in the Order Management Server
component, an 'ERROR' level log is generated indicating that the order was not found.

Schema
A schema is an organization or structure for the PerformBulkOrderAction bulk order
actions web service.

Bulk Order Schema
The following figure depicts the action for a bulk order added to the Order Management
Server order service.



TIBCO® Order Management Administration

109 | Administration Tasks

Action for a bulk order added to the service of the Order Management Server.

Bulk Orders Operation Request Schema
The following figure depicts the bulk operation request schema.

Request schema for bulk operation

Bulk Orders Operation Response Schema
The following figure depicts the bulk operation response schema.

Response schema for bulk operation



TIBCO® Order Management Administration

110 | Administration Tasks

Sample Request
The sample request applicable to the bulk operation is as follows:

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-
envelope" xmlns:ord="http://www.tibco.com/aff/orderservice">

<soapenv:Header/>
<soapenv:Body>

<ord:PerformBulkOrderActionRequest
businessTransactionID="bTranID">

<ord:action>SUSPEND</ord:action>
<ord:orderID>74</ord:orderID>
<ord:orderID>56</ord:orderID>
<ord:orderID>26</ord:orderID>
<ord:orderID>30</ord:orderID>
<ord:orderID>37</ord:orderID>
<ord:orderID>88</ord:orderID>
<ord:orderID>57</ord:orderID>
<ord:orderID>27</ord:orderID>
<ord:orderID>67</ord:orderID>
<ord:orderID>35</ord:orderID>

</ord:PerformBulkOrderActionRequest>
</soapenv:Body>

</soapenv:Envelope>

Sample Response
The sample response that is applicable to the bulk operation is as follows:

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Body>

<ns3:PerformBulkOrderActionResponse
xmlns="http://www.tibco.com/aff/order"
xmlns:ns2="http://www.tibco.com/aff/commontypes"
xmlns:ns3="http://www.tibco.com/aff/orderservice"
xmlns:ns4="http://www.tibco.com/aff/orderservice/result"
xmlns:ns5="http://www.tibco.com/aff/plan"
xmlns:ns6="http://www.tibco.com/aff/planfragments">

<ns3:timestamp>2012-08-01T15:36:54.166+05:30</ns3:timestamp>
<ns3:message>Request Submitted Successfully</ns3:message>
<ns3:noOfOrders>10</ns3:noOfOrders>

</ns3:PerformBulkOrderActionResponse>



TIBCO® Order Management Administration

111 | Administration Tasks

</soap:Body>
</soap:Envelope>

Performing Bulk Actions On error Plans Items
You can select a group of plan items on the error state and apply a bulk action on them
simultaneously. The operations that can be performed are as follows:

l Retry

l Resume

l Complete

Note: This functionality is applicable only for handler type internal error
handlers.

Procedure
1. On Order Management System UI, filter error-based plans in Dashboard > Search

Orders > on the top-right corner of the Find orders table.

Find the orders table's filter drawer



TIBCO® Order Management Administration

112 | Administration Tasks

2. To filter out the plans in the Find order table, switch the top-right available toggle
button to 'Plan' and from the left section of the Filter drawer, select the Filter by
status option.

3. Once the Filter by status section is visible, select the Error status checkbox under
the Plan items section, and click the 'Apply Filters' button to get orders whose plan
items are in the error state.

4. Select more than one order in the Find orders table, which comes after filtering.
Selected orders are now added in the worktray. In the worktray, click the Continue
button to move towards the bulk action screen with the selected orders. At the
bottom of the page, the Plan items section must be visible.

5. Select the checkbox named Show error based to get the plan items, which are in
error. Once the checkbox is selected, a Take an action dropdown populates next to
it. From the Take an action dropdown, select the action that needs to be taken.



TIBCO® Order Management Administration

113 | Administration Tasks

After the request is submitted, the list is cleared and closed.

Multitenancy
The term multitenancy indicates an architecture in which a single running instance of an
application simultaneously serves multiple clients or "tenants".

Isolating information, such as data and customizations, about the tenants is a particular
challenge in these systems. This includes the data owned by each tenant. A single instance
of the application can now support multiple tenants. Order Management Server REST API
like catalog services, Automated Order Plan Development, data services, process
component, and TM Forum adapter service can talk to the same TIBCO Order Management
instance for processing and viewing the orders based on the tenant context. A default
tenant "TIBCO" is supported by TIBCO Order Management without any configuration
changes.

Multitenancy for TIBCO Order Management can be configured through the following steps.

1. Creating and Configuring a Tenant

2. Authorizing a Tenant

Creating and Configuring a Tenant

Procedure



TIBCO® Order Management Administration

114 | Administration Tasks

1. Register a tenant by using the POST method </v1/tenant> and create a user with
that tenant by using the </v1/user> API from the Authorization service. For more
information, see Create User.

2. Log in to the Configurator UI with the newly created tenant.

3. In the Tenant Replication window, enter the Source TenantID and click REPLICATE.

Here Source TenantID is a tenant ID that exists and you want to copy its properties
to the current tenant.

Note: When you log in with the default tenant or any other tenant with no
data on the database, the data seeding option is enabled. When you log in
with a non-default tenant and the database is not empty, the tenant
replicate option is visible.

Alternatively, you can use the http://<host_address>:<port_
address>/v1/configuration/replicateTenantProperties endpoint from the
configuration service to replicate tenant properties by using the REST service.

4. Create an entry for the new tenant in the order_lock table in the Orders database by
running the following query from the database client: SELECT oms_seed_orderlock
(10,'new_tenant_id')

This function accepts integers and tenantId. The integer value can be 7 to 12. The
tenantId is the one that you want to create in Order Management.

Authorizing a Tenant
Token-based authentication is used to authorize a tenant.

Procedure
1. To authorize a tenant, generate token-based authentication. See Generating an

authorization token.

2. Pass the token-based authentication in the request header.



TIBCO® Order Management Administration

115 | Administration Tasks

Managing Health Check Endpoint
The TIBCO Order Management supports the health check endpoint to check the overall
health status of the application resources like the EMS, Database, and Diskspace. You can
check the health status of any service by putting the respective host and port number of
that service in the following format.

You can find the number of database connection objects being used from the pool. You can
set the getTotalDsConnection flag as true to enable the enhanced health check where you
can see the number of database connections in the output.

For Authorization service, the getTotalDsConnection flag can be set in the $OM_
HOME/roles/authorization-service/standalone/config/application.properties file.

For all other services, the getTotalDsConnection flag can be set in the $OM_HOME/seed-
data\app-properties/ConfigValues_Common.json file.

The following list shows the health check endpoints:

l http://<host>:<port>/management/health/readiness

l http://<host>:<port>/management/health/liveness

Example of health check response:

{"status":"UP","details":{"db":{"status":"UP","details":
{"name":"Configurator",
"status":"RUNNING","database":"PostgreSQL"}},"diskSpace":{"status":"UP",
"details":
{"total":254720077824,"free":93111214080,"threshold":10485760}}}}

Implementation of LDAP
LDAP is a protocol through which Directory Service is connected. In Directory Service, the
user’s information is stored in a hierarchical structure.

The following properties are added in the $OM_HOME/roles/authorization-
service/standalone/config/application.properties file to configure Directory Service:

l directoryServiceDomainName=test

l directoryServiceRootDistinguishedName=DC=testad,DC=com



TIBCO® Order Management Administration

116 | Administration Tasks

l ldapURLForDirectoryService=ldap://localhost:389

Authentication and Authorization

In TIBCO Order Management, support for authentication and authorization of all the
available microservices is added. Authentication is used to authenticate someone's
identity, whereas authorization is a way to permit someone to access a particular resource.

Authentication Factors

Based on the security levels and the type of security that the application requires, there are
different types of authentication factors. TIBCO Order Management supports Single-Factor
authentication. This authentication mechanism requires users to provide a user name and
password to access the system.

Authorization Technique

The role-based access control technique is used to give users access to the TIBCO Order
Management resources.

Authorization Service

Authorization Service is a microservice available as part of TIBCO Order Management 6.1.0
This microservice has the following key features:

l This service generates JWT tokens based on OAuth2 specifications.

l Grant_Type used is password

l User credentials are entered in the request body when generating the OAuth2 token.

This service accepts encrypted passwords.

Once a user generates the token, it has to be entered as part of the header in each request
(SOAP or REST). This token is used to verify the user's identity and authority.

Resource Server

As per OAuth2 specification, a resource server is a server that hosts the protected resources
and can accept and respond to protected resource requests by using access tokens.

Each TIBCO Order Management microservice is embedded with a resource-server library
with the following capabilities:

l Verify token validity by using the same signing that was used to sign the token when
it was generated by Authorization Service.



TIBCO® Order Management Administration

117 | Administration Tasks

l Check token expiry.

l Extract claims from the token and set TenantId and authorities for the user.

l As part of the microservices configuration in TIBCO Order Management, each API
exposed for the user has been protected with configurable role restrictions.

Example: The Orchestrator microservice uses the operation.roles.submitOrder
property and ROLE_ADMIN property as the default values. It means that the users with
a role as ROLE_ADMIN can access the submit-order API.

Note: The role-based access is a fully configurable feature and can be modified.

Generating User Token

The following methods describe the steps to generate a token if the user's information is
stored with Authorization Service, in an external directory, or using a third-party external
service:

l Information stored with Authorization Service

l Information stored in External Directory

l Using a third-party external service

Information stored with Authorization Service

Customers can choose to store Order Management user information in the Admin data
store created and managed by Order Management.

The user credentials are encrypted and stored in the backing datastore.



TIBCO® Order Management Administration

118 | Administration Tasks

The following sequence diagram illustrates token generation when the user’s information is
available in the Admin datastore:

Information stored in External Directory

Customers can choose to use the preexisting Directory Service(DS) which stores all the user
information rather than replicating it in the Admin datastore.

Authorization Service can communicate with any external DS over LDAP or secured LDAP.
Here, Directory Service acts as an IdP. The following sequence diagram illustrates token



TIBCO® Order Management Administration

119 | Administration Tasks

generation when the user’s information is available in an external Directory Service:

Using a third-party external service

Customers might have an existing token generation mechanism (or service) and they might
prefer using it for TIBCO Order Management 6.1.0

The Resource-Server library embedded in every microservice of Order Management expects
OAuth2 JWT token must have a payload containing the following information:

l user_name

l TENANTID

l an array of authorities containing roles of the user for whom this token was
generated and these roles must have been configured for the API.

l The token must be signed with the secret string configured as a value of property
authentication.token.signing.key



TIBCO® Order Management Administration

120 | Administration Tasks

If the token follows all the above rules, then all the microservices in Order Management
accept the token even if it is generated from a third-party service.

Sample Token

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX25hbWUiOiJhZG1pbiIsIlRFTkF
OV
ElEIjoiVElCQ08iLCJzY29wZSI6WyJyZWFkIiwid3JpdGUiXSwiZXhwIjoxNjQ2MDc0MjY3L
CJhdXRob3JpdGllcyI6WyJST0xFX0FETUlOIl0sImp0aSI6IjViZDlhZmExLTJjZGEtNDZjO
S05NGJjLTU0NmVkNjlhNjc4ZiIsImNsaWVudF9pZCI6Im9yZGVyLW1hbmFnZW1lbnQtY
2xpZW50In0.tkbrHuFBvBo8N7Tshp4uXLxhjaYjBfWCoPccpCJtlxU

When you read the token, it displays the following payload.

{
"header": {
"alg": "HS256",
"typ": "JWT"
},
"payload": {
"user_name": "admin",
"TENANTID": "TIBCO",
"scope": [
"read",
"write"
],
"exp": 1646074267,
"authorities": [
"ROLE_ADMIN"
],
"jti": "5bd9afa1-2cda-46c9-94bc-
546ed69a678f",
"client_id": "order-management-client"
}
}

User Mapping from Directory Service to Order
Management service
In $OPE_HOME_ roles/authorization-
service/standalone/config/application.properties file, amPluggableCache has the
following flags:



TIBCO® Order Management Administration

121 | Administration Tasks

l Ds_ActiveDirectory_Relational

l Ds_OpenLdap_Relational

l Ds_ActiveDirectory

l Ds_OpenLdap

You need to map the Directory Service user with the Order Management user. You need to
create the user in Order Management with at least tenant Id, valid roles, and userName
as the mandatory fields. Leave the password field blank. The user name must match with
the name provided in the ActiveDirectory.

You can use the Create User API (http://<host_address>:<port_address>/v1/user) to
create users who need to be mapped with the Directory Service users. This user roles must
be same as the group roles present in Directory Service.

While creating an authorization token, the user name and password are validated by
Directory Service. After successful validation, it checks the users table in the Order
Management database, and an authorization token is generated as per the tenant Id that
the user belongs.

Here, Directory Service is used for authentication and Order Management service is used
for authorization.

Types of retries
The following types of retries are supported in TIBCO Order Management:

l Messaging level

l Feasibility retry

l Plan fragment based retry

l Plan Item failure retry configurations

l Web client retry

Messaging level
Messaging level retries are applicable wherever JMS is used. In the Archival, Data service,
Orchestrator, Catalog, Jeopardy, and Migration services JMS is used. In case of any error,
the retry mechanism is triggered as per the configuration.



TIBCO® Order Management Administration

122 | Administration Tasks

Feasibility retry
Feasibility retry takes place when com.tibco.fom.orch.feasibilityRequired and
retryFailedFeasibility flags from the orchestrator application are set to true.

When an error occurred, it retries for a specified number of times (feasibilityRetries) in a
specified interval (feasibilityRetryInterval) before the order goes in to the
preQualificationFailedReply.

Plan fragment based retry
Plan fragment based retry takes place when the retryOverride flag from the process
component model is set to true.

When an error occurred, it retries for a specified number of times (retryCount) in a
specified interval (retryDelay) before the plan item goes in to the ERRORHANDLER/ERROR
state.

Plan Item failure retry configurations
This is a backup of Plan fragment based retry. Plan Item failure retry configurations take
place when the retryOverride flag from the plan fragment model is set to false.

When an error occurred, it retries for a specified number of times (maxRetryCount) in a
specified interval (retryInterval) before the plan item goes in to the ERRORHANDLER/ERROR
state. The system uses the default properties configured in the Orchestrator under the
"Plan Item Failure Retry Configurations" category.

Web client retry
TIBCO Order Management uses Spring's WebClient for inter-service communication on
HTTP.

When an error occurred, it retries for a specified number of times (*RetryCount) in a
specified interval (*RedeliveryDelay) before the HTTP communication failed.



TIBCO® Order Management Administration

123 | Administration Tasks

API Monitoring
Only some limited information is available through the existing monitoring systems.
However with API monitoring, you can access more information.

Through the API monitoring system, you can access service level metrics, such as
throughput, error and success rate, and response time for each API. You can also view the
resource level metrics such as memory usage and CPU consumption. API monitoring is
implemented for Catalog service, AOPD, Orchestrator, Data service, and Jeopardy.

You can use any of the following types of API monitoring tools:

l JMX MBeans

l Prometheus

l Elasticsearch

l Dynatrace

Note: For more information about these monitoring tools, you can visit the
documentation pages of the respective tool.

JMX MBeans

Before you begin
Install visualVM tool and MBeans plug-in on your machine.

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description

monitoringSystem JMX The monitoring system to view the application
metrics.



TIBCO® Order Management Administration

124 | Administration Tasks

Property Name Value Description

(Default: Null)

Set the value (such as JMX, prometheus, elastic,
dynatrace) as per the required tool. You can also set
multiple values here by comma separating them.

2. Open the MBeans tab in the VisualVM tool to view the metrics.

3. For the remote connection, you can add the following values in the start.sh script
of OM services:

l Dcom.sun.management.jmxremote=true

l Dcom.sun.management.jmxremote.port=port_no

l Dcom.sun.management.jmxremote.authenticate=false

l Dcom.sun.management.jmxremote.ssl=false

l Djava.rmi.server.hostname=<hostname> or <host_ip>

l Dcom.sun.management.jmxremote.rmi.port=port_no

Prometheus

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description

monitoringSystem prometheus The monitoring system to view the application
metrics.

(Default: Null)

Set the value (such as JMX, prometheus,
elastic, dynatrace) as per the required tool.



TIBCO® Order Management Administration

125 | Administration Tasks

Property Name Value Description

You can also set multiple values here by
comma separating them.

2. Add prometheus in the management.endpoints.web.exposure.include property
value in the ConfigValues_Common.json file.

3. Open the OM management prometheus
http://<host>:<port>/management/prometheus endpoint to view the metrics. You
can also install the Prometheus application to view the prometheus metrics in a
graphical representation.

Elasticsearch

Before you begin
Install the Kibana tool on your machine.

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description

monitoringSystem elastic The
monitoring
system to view
the application
metrics.

(Default: Null)

Set the value
(such as JMX,
prometheus,
elastic,



TIBCO® Order Management Administration

126 | Administration Tasks

Property Name Value Description

dynatrace) as
per the
required tool.
You can also
set multiple
values here by
comma
separating
them.

management.metrics.export.elastic.enabled true Determines
whether to
enable the
Elastic metrics
or not

management.metrics.export.elastic.host http://localhost:9200 Elastic search
Url

management.metrics.export.elastic.index micrometer-metrics Management
Metrics Elastic
Index

management.metrics.export.elastic.step 1m Time interval
for sending
metrics

management.metrics.export.elastic.userName client's ElasticSearch
User name (Default =
"NULL")

ElasticSearch
User name

management.metrics.export.elastic.password client's ElasticSearch
Password (Default =
"NULL")

Encrypted
ElasticSearch
Password



TIBCO® Order Management Administration

127 | Administration Tasks

Property Name Value Description

management.endpoints.jmx.exposure.include * Specifies the
resource
metric
endpoints to
expose, such
as health and
loggers.

management.endpoint.loggers.enabled true Specifies
whether to
enable the
loggers
endpoint. This
is a Boolean
property; it
can be either
true or false.

management.endpoints.jolokia.enabled true Specifies
whether to
enable the
Jolokia
endpoint. This
is a Boolean
property; it
can be either
true or false.

2. Open the Kibana tool to view the metrics.

Dynatrace

Before you begin
Install the Dynatrace tool on your machine.



TIBCO® Order Management Administration

128 | Administration Tasks

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description

monitoringSystem dynatrace The monitoring
system to view the
application metrics.

(Default: Null)

Set the value (such
as JMX,
prometheus, elastic,
dynatrace) as per
the required tool.
You can also set
multiple values
here by comma
separating them.

management.metrics.export.dynatrace.uri The host on
which the
Dynatrace
tool is
installed

The host on which
the Dynatrace tool
is installed

management.metrics.export.dynatrace.api-token Access token
generated
from the
Dynatrace
tool

Access token
generated from the
Dynatrace tool

management.metrics.export.dynatrace.device-id The Id of the
device on
which the
Dynatrace
tool is

The Id of the device
on which the
Dynatrace tool is
installed



TIBCO® Order Management Administration

129 | Administration Tasks

Property Name Value Description

installed

management.metrics.export.dynatrace.step 1m Time interval for
sending metrics

management.metrics.export.dynatrace.enabled true Determines whether
to enable the
dynatrace metrics
or not.

(Default: false)

2. Add "dynatrace" as value for Dynatrace in the
management.endpoints.web.exposure.include property value in the ConfigValues_
Common.json file.

3. Open the Dynatrace tool to view the metrics.

Debugging tools for production

Read BLOB data from Database
To read the binary large object (BLOB) data from the database, perform the following
procedures:

Procedure
1. For PostgreSQL, run the following command:

select encode(<column name>, 'escape') from <table name>;

2. For Oracle, perform the following steps:

a) Run the upgrade script which creates a function used to read BLOB data.

b) Run the following command to read the BLOB data:

select blob_to_clob(<column name>) from<table name> where



TIBCO® Order Management Administration

130 | Administration Tasks

filename='<file name>'

GET REST APIs in Catalog Service and AOPD
Through these APIs, you can verify the models that you have published.

GET APIs in Catalog: Fetch data from the database (Relational)

Endpoint: http://<host_address>:<port_address>/v1/<actionModel>/bulk or
<planFragmentModel>/bulk or <productModel>/bulk

Method: GET

Fill the actionModelIdList, planFragmentModelIdList, or productModelIdList fields and
click Execute.

All the models are retrieved from the database (Redis or Relational) that are published.

GET APIs in AOPD: Fetch data from the in-memory cache.

Endpoint: http://<host_address>:<port_address>/<actionModels> or
<productModels>

Method: GET

Fill the actionModelIdList or productModelIdList fields and click Execute.

All the models are retrieved from the in-memory cache and displayed.

GET API in Orchestrator: Fetch data from the in-memory cache.

Endpoint: http://<host_address>:<port_address>/<planFragments>

Method: GET

Fill the planFragmentIdList field and click Execute. All the models are retrieved from the
in-memory cache and displayed.

Note: If the enableProductModelGlobalCache, enableActionModelGlobalCache,
and enablePlanFragmentGlobalCache flag values are true, then only this GET
API works.



TIBCO® Order Management Administration

131 | Administration Tasks

Scaling of Order Management microservices
Previously, till the TIBCO® Order Management - Long Running 5.0.0 release, for each order
management microservice node, member IDs were required to be registered in the domain
member tables. The major drawback of this approach is that, whenever a new node is
added to the existing cluster, you must restart the existing microservice nodes.

Now, you can scale any of the microservices as per the incoming load without restarting or
configuring a separate new member. Any deployment topology can be used to and order
management microservices can be started behind an external load balancer (when you
choose to use SOAP over HTTP or RESTful interfaces). You can replicate microservice nodes
at run time without the need to restart any of the existing microservices.

The following examples show the scaling of microservices:



TIBCO® Order Management Administration

132 | Administration Tasks

orderPriority
This section describes the orderPriority process.

orderPriority enables the user to set priority on submitted orders. This information is then
used by the JMS broker to deliver the high priority orders to downstream components.
orderPriority is also propagated to downstream process components. The priority value
ranges from 0 to 9. The priority information or priority value to process any given order is
set in the JMSHeader field of the JMS message that is sent to the Orchestrator Engine in
Fulfillment Order Management.

The JMS broker then delivers the order based on a priority. The process of order
prioritization works at a queue level and can be controlled by the JMS broker.



TIBCO® Order Management Administration

133 | Administration Tasks

Note: The orderPriority process or order prioritization cannot be controlled once
the message is delivered to the orchestrator engine. The priority value can be
changed before the JMS broker sends the order request to the engines.

Order Schema Changes
You can use the order schema to submit the orderPriority information with the order. The
orderPriority is at the orderHeader level and the same priority is applied to all the
orderLines.

The schema snippet is as follows:

<xs:element name="orderPriority" minOccurs="0" default="4">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0" />
<xs:maxInclusive value="9" />
</xs:restriction>
</xs:simpleType>
</xs:element>

The orderPriority can take values ranging from 0 to 9 to make them consistent and map
with JMSPriority message header values.

Note: The default value of the orderPriority field is 4.

Lower Priority Orders
When any order is processed based on the given priority, it results in a situation where a
lower priority order may never be processed because of high priority orders.

The orders with a lower priority can be processed by a mechanism known as Flow Control.

You can use Enterprise messaging Service (EMS) to control the flow of messages to a
destination. Each destination can specify a maximum target size for storing all the pending
messages. When the target is reached, EMS blocks message producers when new messages



TIBCO® Order Management Administration

134 | Administration Tasks

are sent. This effectively slows down message producers until the message consumers can
receive the pending messages.

Tuning Data Source
You can use data source tuning to boost the performance of the relational data source in
the server application. Allocating and deallocating resources for data sources is not so easy
in terms of time and system resources. During the application startup, you can create a
pool of database connections in advance and make these connections available to the
application.

For TIBCO Order Management, you can configure the following properties for data source
tuning as per your requirements. For description and more information about the
properties, see the Tomcat JDBC Connection Pool documentation.

Microservice Property Description

AOPD catalogDsTestOnBorrow Enables
connection
validation
before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation
interval in
milliseconds

catalogDsTestWhileIdle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction

https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html


TIBCO® Order Management Administration

135 | Administration Tasks

Microservice Property Description

interval in
milliseconds

catalogDsMinEvictableIdleTimeMillis Minimum time
in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per
eviction run

catalogDsDefaultAutoCommit Default auto-
commit state
of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the



TIBCO® Order Management Administration

136 | Administration Tasks

Microservice Property Description

pool

catalogDsCustomProperty Database
custom
property

Orchestrator catalogDsInitializeSize Number of
connections
established
when the
connection
pool starts

catalogDsMaxIdle Maximum
number of
connections to
keep in the
idle pool

catalogDsMaxActive Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

catalogDsMaxWait Maximum time
in milliseconds
the pool will
wait when
there are no
available
connections

catalogDsTestOnBorrow Enables



TIBCO® Order Management Administration

137 | Administration Tasks

Microservice Property Description

connection
validation
before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation
interval in
milliseconds

catalogDsTestWhileIdle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction
interval in
milliseconds

catalogDsMinEvictableIdleTimeMillis Minimum time
in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per
eviction run

catalogDsDefaultAutoCommit Default auto-
commit state



TIBCO® Order Management Administration

138 | Administration Tasks

Microservice Property Description

of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCustomProperty Database
custom
property

Archival archivalHibernateShowSql Enables
Hibernate to
show queries

archivalDsInitialSize Number of
connections
established
when the
connection
pool starts



TIBCO® Order Management Administration

139 | Administration Tasks

Microservice Property Description

archivalDsMaxWait Maximum time
in milliseconds
the pool waits
for a
connection to
be returned
before
throwing an
exception

archivalDsMaxActive Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

archivalDsMaxIdle Maximum
number of
connections to
keep in the
idle pool

archivalDsMinIdle Minimum
number of
established
connections to
keep in the
pool at all
times

archivalDsTestOnBorrow Pooled data
source test on
borrow



TIBCO® Order Management Administration

140 | Administration Tasks

Microservice Property Description

archivalDsValidationInterval Pooled data
source
validation
interval

Catalog catalogDsMaxIdle Maximum
number of
connections to
keep in the
idle pool

catalogDsMaxActive Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

catalogDsMaxWait Maximum time
in milliseconds
the pool will
wait when
there are no
available
connections

catalogDsTestOnBorrow Enables
connection
validation
before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation



TIBCO® Order Management Administration

141 | Administration Tasks

Microservice Property Description

interval in
milliseconds

catalogDsTestWhileIdle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction
interval in
milliseconds

catalogDsMinEvictableIdleTimeMillis Minimum time
in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per
eviction run

catalogDsDefaultAutoCommit Default auto-
commit state
of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction



TIBCO® Order Management Administration

142 | Administration Tasks

Microservice Property Description

when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCustomProperty Database
custom
property

Catalog Caching
Catalog caching improves the performance and scalability of applications by reducing the
need to repeatedly fetch the same data from the database. You can configure the following
properties for catalog caching according to your requirements:

Microservice Property Description

AOPD maxNoProductcached Maximum number of product
catalogs stored in cache

enableProductModelGlobalCache Enables global caching for the
product catalog

productCacheExpiryPeriod Product catalog cache expiry period
in seconds



TIBCO® Order Management Administration

143 | Administration Tasks

Microservice Property Description

maxNoActioncached Maximum number of action catalogs
stored in cache

enableActionModelGlobalCache Enables global caching for the
action catalog

actionCacheExpiryPeriod Action catalog cache expiry period
in seconds

Orchestrator enablePlanFragmentGlobalCache Enables global caching for the plan-
fragment catalog

maxNoPlanFragmentcached Maximum number of plan-fragment
catalogs stored in cache

planFragmentCacheExpiryPeriod Plan-fragment catalog cache expiry
period in seconds

globalCacheCleanupTopicName Global cache cleanup topic name

Common enableProductScoringAndLedger Enables product scoring To enable
model scoring and ledger, set the
enableProductScoringAndLedger
value to true for the product model
in the ConfigValues_Common.xml file

cmPluggableCache Decides whether to use Redis or
Relational in the application

enablePriceScoringAndLedger Enables price scoring. To enable
model scoring and ledger, set the
enablePriceScoringAndLedger
value to true for the price model in
the ConfigValues_Common.xml file.

enableDiscountScoringAndLedger Enables discount scoring. To enable
model scoring and ledger, set the



TIBCO® Order Management Administration

144 | Administration Tasks

Microservice Property Description

enableDiscountScoringAndLedger
value to true for the discount model
in the ConfigValues_Common.xml
file.

Catalog globalCacheCleanNotificationTopic The name of the global cache
cleaning topic, used for sending
notifications about the model that
has been modified or purged.

Integrate Inventory Information in AOPD Plan
Generation
In the Automated Order Plan Development (AOPD), integrating inventory information into
plan generation is a critical process. The following properties determine how inventory
information is integrated into the plans.

Property Description

mergeInventory Determines whether the functionality for
merging inventory is activated during plan
generation.

Possible values: true or false

Default: false

inventoryUsername Username used for authentication with the
services of TIBCO Product Service and
Inventory.

inventoryPassword Password used for authentication with the
services of TIBCO Product Service and
Inventory.



TIBCO® Order Management Administration

145 | Administration Tasks

Property Description

inventoryBaseUrl Base URL containing the host and port for
accessing TIBCO Product Service and
Inventory.

When submitting an order request, including PartyId is mandatory. This identifier can be
provided as either CustomerId or SubscriberId. TIBCO Order Management evaluates the
mergeInventory property to decide on the integration of inventory information into plan
generation.

l When mergeInventory is true

Order management retrieves inventory information from Product Service and
Inventory using the credentials and base URL specified by inventoryUsername,
inventoryPassword, and inventoryBaseUrl. The system integrates the retrieved
inventory data into the plan, customizing it according to the specifics of the order
request.

l When mergeInventory is false

The inventory merging process is skipped. Plan generation continues without
incorporating live inventory data, relying on the information available at the request
time.

Integrate TIBCO OPE with Order Submission
Process
Activating the isEnableOfferValidation property integrates TIBCO Offer and Price Engine
with the order submission process. This ensures integration so that the order adheres to
specified criteria before completion.

With isEnableOfferValidation set to true, Offer and Price Engine initiates the validation
process. The process examines the order ID to verify the validity of the offer associated
with the order.

l Valid orders: Orders that meet the validation criteria are submitted.

l Invalid orders: For orders that do not meet the criteria, the system takes actions as
defined by the validation failure handling protocol.



TIBCO® Order Management Administration

146 | Schema References

Schema References
You can find JSON schema definitions on the following URL for all the respective services.

http://<host>:<port>/v3/api-docs (Example: If the Orchestrator is running on localhost
and port 9093(default), then the API doc is available on http://localhost:9093/v3/api-
docs).

The following list represents the common schema definition present in Order Management
services:

l Plan Item

l Product Model

l Result Status

l Message

l Order Request

l Order Request Header

l Order Request Line

l Process Component Model



TIBCO® Order Management Administration

147 | Schema References

Plan Item
Plan Item

Element Type Cardinality Description

planItem/planItemID String Required A unique identifier for
the plan item within the
plan to be executed.

planItem/description String Optional Description for the plan
item to be executed.

planItem/processComponentID String Required A unique identifier for



TIBCO® Order Management Administration

148 | Schema References

Element Type Cardinality Description

the Process Component
to be executed.

planItem/processComponentName String Required Process component
name for the Process
Component to be
executed.

planItem/processComponentVersion String Optional Process component
version for the Process
Component to be
executed.

planItem/processComponentType String Optional Process component type
for the Process
Component to be
executed.

planItem/processComponentRecordTy
pe

String Optional Class of
processComponentType.

planItem/orderLine Type 1-M Order line type for the
plan item to be
executed.

planItem/orderLine/orderLineNumber String Required Order line number for
the order line of the
plan item to be
executed.

planItem/orderLine/productID String Required Product ID for the order
line of the plan item to
be executed.

planItem/orderLine/productVersion String Optional Product version for the
order line of the plan
item to be executed.



TIBCO® Order Management Administration

149 | Schema References

Element Type Cardinality Description

planItem/orderLine/action String Required Order line action for the
order line of the plan
item to be executed.

planItem/orderLine/actionMode String Optional Order line action mode
for the order line of the
plan item to be
executed.

planItem/orderLine/quantity Long Required Quantity for the order
line of the plan item to
be executed.

planItem/orderLine/uom String Required Unit of measure for the
order line of the plan
item to be executed.

planItem/orderLine/subscriberID String Optional Subscriber ID for the
order line of the plan
item to be executed.

planItem/orderLine/linkID String Optional Link ID for the order line
of the plan item to be
executed.

planItem/orderLine/inventoryID String Optional Inventory ID for the
order line of the plan
item to be executed.

planItem/orderLine/eol Boolean Required End of line flag for the
order line of the plan
item to be executed.
This indicates that this
plan item is the final
plan item for the order
line.



TIBCO® Order Management Administration

150 | Schema References

Element Type Cardinality Description

planItem/action String Required Plan item action for the
plan item to be
executed.

planItem/actionMode String Optional Plan item action mode
for the plan item to be
executed.



TIBCO® Order Management Administration

151 | Schema References

Product Model



TIBCO® Order Management Administration

152 | Schema References

Element Type Cardinality Description

ItemSpecs Item Specification Optional Relationship
information tag.

Product Product Mandatory product
information tag.

affinityActionGroup Boolean Optional Valid for
Conditional type
only. A Boolean
field containing
the value true or
false.

affinityActionValue String Optional AffinityActionValue
is considered for
grouping when
AffinityActionGrou
p is set to true.
This is valid for
Conditional type
only.

affinityCondition String Optional Valid for
Conditional type
only. A String field
containing an
XPATH expression
that evaluates to
true or false based
on data is in the
order.

affinityCorrelation String Optional Valid for
Conditional type
only. The XPATH is
evaluated on the
Plan data and the



TIBCO® Order Management Administration

153 | Schema References

Element Type Cardinality Description

order data.

affinityParentGroup Boolean Optional Valid for
Conditional type
only. A Boolean
field containing
the value true or
false.

affinityPlanFragments Plan Fragment Optional Affinity plan
fragment.

affinityType String Optional For a plan this is
the type of affinity
grouping required.

characteristics Characteristic Mandatory Characteristic type.

endDate Date Time Optional End Date for the
record to be
effective.

incompatibleWithProdu
ct

Product Optional Incompatible
relationship

plan Plan Optional Planfragment
relationship tag.

planFragments Plan Fragment Optional It provides
configuration
information for a
Process
Component/Plan
Fragment.

startDate Date Time Optional start Date



TIBCO® Order Management Administration

154 | Schema References

Element Type Cardinality Description

affinityGroup Affinity Group Optional Affinity Group

dependentOnProduct Dependent On Product Optional Reverse
relationship

mustComplete Boolean Optional Must complete flag
for provisioning

singleUse Boolean Optional Single use flag for
provisioning

description String Optional Description of the
product model

lastModifiedOn String Optional Last modified date
of the record

owner String Optional owner

productId String Optional Identifier of
product record

planFragmentID String Optional Identifier of
planFragment
record

planFragmentUniqueId_
CANCEL

planFragmentUniqueIdCANCE
L

Optional Planfragment
identifier for
CANCEL action

planFragmentUniqueId_
CEASE

planFragmentUniqueIdCEASE Optional Planfragment
identifier for
CEASE action

planFragmentUniqueId_
PROVIDE

planFragmentUniqueIdPROVI
DE

Optional Planfragment
identifier for
PROVIDE action



TIBCO® Order Management Administration

155 | Schema References

Element Type Cardinality Description

planFragmentUniqueId_
UPDATE

planFragmentUniqueIdUPDAT
E

Optional Planfragment
identifier for
UPDATE action

planFragmentName String Optional Name of process
component

planFragmentVersion String Optional Version of process
component

record_Type String Optional Record type

errorHandler String Optional Error handler to
use in case of
failure

retry PlanFragmentModelRetry Optional Retry type.

section String Optional Product model
section type.

actionID String Optional Unique identifier of
Action record

conditional String Optional conditional

evaluationPriority String Optional Evaluation Priority

name String Optional Name of the
product model.

action String Mandatory Action for the plan
Item. Valid values
are:

l PROVIDE

l UPDATE



TIBCO® Order Management Administration

156 | Schema References

Element Type Cardinality Description

l CEASE

l CANCEL

actionMode String Optional Action mode. This
is optional
supplemental
information to go
with
OrderLineAction.
Valid value is:
MOVE

affinity Boolean Optional Affinity value true
or false

milestone Milestone Optional Milestone of the
plan

Result Status
Result Status



TIBCO® Order Management Administration

157 | Schema References

Element Type Cardinality Description

deployment String Required Engine deployment that returned this result.

service String Required Service name that returned this result

operation String Required Operation within the service that returned this
result.

component String Optional Component within the operation and service
that returned this result.

severity String Required Severity result. Valid values are:

1. S - Success

2. W - Warning

3. E - Error

code String Required Message code for this result.

message String Required Message details for this result.

Message
Message



TIBCO® Order Management Administration

158 | Schema References

Element Type Cardinality Description

lineNumber String Optional Order line number that this message refers to.

type String Required Message type. Valid values are:

1. Information

2. Warning

3. Error

Code String Required Message code for this message.

Description String Required Message text for this message.

udf Type 0-M User defined field type.

udf/name String Required User defined field name.

udf/value String Required User defined field value.



TIBCO® Order Management Administration

159 | Schema References

Order Request
Order Request



TIBCO® Order Management Administration

160 | Schema References

Element Type Cardinality Description

orderRef String Required External unique identifier for an order.

header Type Required Order request header type. Refer to the
Order Request Header definition for details.

line Type 1-M Order request line type. Refer to the Order
Request Line definition for details.

extension Type Optional Extension attributes for user-defined fields.

extension/#any Any Required Any data



TIBCO® Order Management Administration

161 | Schema References

Order Request Header
Order Request Header

Element Type Cardinality Description

description String Optional Description for the order.

customerID String Required Unique identifier for the
customer for this order.

subscriberID String Required Unique identifier for the
subscriber for this order.

requiredByDate DateTime Optional,
Choice

Date and time when this order
is required to start.



TIBCO® Order Management Administration

162 | Schema References

Element Type Cardinality Description

requiredOnDate DateTime Optional,
Choice

Date and time by which this
order is required to complete.

invoiceAddress Type Required Invoice address type.

invoiceAddress/line1 String Required Invoice address line 1.

invoiceAddress/line2 String Optional Invoice address line 2.

invoiceAddress/line3 String Optional Invoice address line 3.

invoiceAddress/locality String Required Invoice address locality.

invoiceAddress/region String Optional Invoice address region.

invoiceAddress/country String Required Invoice address country.

invoiceAddress/postcode String Required Invoice address post code.

invoiceAddress/
supplementaryLocation

String Optional Invoice address supplementary
location.

deliveryAddress Type Required Delivery address type.

deliveryAddress/line1 String Required Delivery address line 1.

deliveryAddress/line2 String Optional Delivery address line 2.

deliveryAddress/line3 String Optional Delivery address line 3.

deliveryAddress/locality String Required Delivery address locality.

deliveryAddress/region String Optional Delivery address region.

deliveryAddress/country String Required Delivery address country.

deliveryAddress/postcode String Required Delivery address post code.



TIBCO® Order Management Administration

163 | Schema References

Element Type Cardinality Description

delivery address/
supplementaryLocation

String Optional Delivery address
supplementary location.

notes String Optional Order notes.

slaID String 0-M Unique identifier for an SLA
that is applied to this order.

udf Type 0-M User defined field type.

udf/name String Required User defined field name.

udf/value String Required User defined field value.

udf/extension Type Optional Extension attributes for user-
defined fields.

udf/extension/#any Any Required Any data

extension Type Optional Extension attributes for user-
defined fields.

extension/#any Any Required Any data



TIBCO® Order Management Administration

164 | Schema References

Order Request Line
Order Request Line



TIBCO® Order Management Administration

165 | Schema References

Order Line Characteristics

Element Type Cardinality Description

lineNumber String Required Unique identifier
for this order line
within this order.

subscriberID String Optional Unique identifier
for the subscriber
for this order
line.

productID String Required Product identifier
for this order
line.

productVersion String Optional Product version
for the product
for this order
line.

quantity Integer Required Quantity of the
product being
ordered.



TIBCO® Order Management Administration

166 | Schema References

Element Type Cardinality Description

uom String Required Unit of measure
of the product
being ordered.

deliveryAddress Type Required Delivery address
type.

deliveryAddress/line1 String Required Delivery address
line 1.

deliveryAddress/line2 String Optional Delivery address
line 2.

deliveryAddress/line3 String Optional Delivery address
line 3.

deliveryAddress/locality String Required Delivery address
locality.

deliveryAddress/region String Optional Delivery address
region.

deliveryAddress/country String Required Delivery address
country.

deliveryAddress/postcode String Required Delivery address
post code.

deliveryAddress/supplementaryLocation String Optional Delivery address
supplementary
location.

action String Required Action for this
order line. Valid
values are:

1. Provide



TIBCO® Order Management Administration

167 | Schema References

Element Type Cardinality Description

2. Update

3. Cease

actionMode String Optional Supplementary
action mode for
the action.

requiredByDate DateTime Optional,
Choice

Date and time by
which this order
line is required to
start.

requiredOnDate DateTime Optional,
Choice

Date and time by
which this order
line is required to
complete.

linkID String Optional Unique identifier
used to link
across order lines
on this order.

inventoryID String Optional Unique identifier
that identifies
this order line
product with an
entry in an
external
inventory
management
system.

notes String Optional Order line notes.

slaID String 0-M Unique identifier
for an SLA that is
applied to this



TIBCO® Order Management Administration

168 | Schema References

Element Type Cardinality Description

order line.

udf Type 0-M User defined field
type.

udf/name String Required User defined field
name.

udf/value String Required User defined field
value.

udf/extension Type Optional Extension
attributes for
user-defined
fields.

udf/extension/#any Any Required Any data

characteristic Type Required Characteristic
type.

characteristic/name String Required Characteristic
name.

characteristic/description String Required Characteristic
description.

characteristic/value Type 0-M Characteristic
value type.

characteristic/value/name String Required Characteristic
value name.

characteristic/value/type String Required Characteristic
value type.

characteristic/value/value String Optional Characteristic



TIBCO® Order Management Administration

169 | Schema References

Element Type Cardinality Description

value.

characteristic/value/valueFrom String Optional Characteristic
value from.

characteristic/value/valueTo String Optional Characteristic
value to.

characteristic/value/extension Type Optional Extension
attributes for
user-defined
fields.

characteristic/value/extension/#any Any Required Any data

characteristic/extension Type Optional Extension
attributes for
user-defined
fields.

characteristic/extension/#any Any Required Any data

customerItemID String Optional Customer item
unique identifier.

extension Type Optional Extension
attributes for
user-defined
fields.

extension/#any Any Required Any data



TIBCO® Order Management Administration

170 | Schema References

Process Component Model
Process Component Model

Element Type Cardinality Description

processComponentID String Required A unique identifier for the
Process Component to be
executed.

processComponentName String Optional Process component name
for the Process Component
to be executed.

processComponentVersion String Optional Process component
version for the Process
Component to be
executed.

processComponentType String Optional Process component type
for the Process Component
to be executed.

processComponentRecordType String Optional Class of
processComponentType.



TIBCO® Order Management Administration

171 | Schema References

Element Type Cardinality Description

errorHandler String Optional Error handler to use in the
event of the Process
Component returning an
incomplete or unsuccessful
execution response
message.

retry Type Optional Retry type.

retry/retryFailed Boolean Required The flag indicating that the
orchestrator might retry
failed plan items.

retry/retryCount Integer Required Number of times the
Orchestrator might retry
the failed plan item before
referring it to the Plan Item
Failed Handler for manual
intervention.

retry/retryDelay Long Required Delay in msec between
calls to the Process
Component if the plan
item is retired.

section Type 1-M Process component model
section type.

section/startMilestoneID String Required Unique identifier for the
start milestone that
describes this section.

section/endMilestoneID String Required Unique identifier for the
end milestone that
describes this section.

section/typicalDuration Long Required Typical duration for this



TIBCO® Order Management Administration

172 | Schema References

Element Type Cardinality Description

section is in msec.

section/maximumDuration Long Required Maximum duration for this
section is in msec.



TIBCO® Order Management Administration

173 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO® Order Management Product
Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-order-management
https://docs.tibco.com/products/tibco-order-management
https://support.tibco.com/
https://support.tibco.com/


TIBCO® Order Management Administration

174 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/


TIBCO® Order Management Administration

175 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, TIBCO Runtime Agent, TIBCO
Administrator, and Enterprise Message Service are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL


TIBCO® Order Management Administration

176 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Deployment
	Recommended Setup for a TIBCO Order Management Development Environment
	Microservices
	Connecting TIBCO Order Management to TIBCO® EMS Server with SSL Enabled
	Configuring SSL for TIBCO® Order Management
	Configuring on the Cloud
	Enabling SSL for TIBCO® Order Management

	Configuring on-premises

	HTTP Connection Pool Configuration
	Configuring Authorization Server
	Inter-service Communication

	Configuration
	Queue Management
	Data Models
	Model Loading Process
	Online Model Loading
	Catalog Web Service Model Loading
	Offline Model Loading
	Setting up Catalog Client
	General Configuration Properties
	Authorization Properties
	JMS Configurations



	WebClient Configuration
	Order Management System Configuration
	User Interface Configuration
	URL to Access Order Management System UI Component
	Side Navigation for Order Management System UI
	Filtration of orders in Order Management System UI

	Override Planfragment Destination
	Managing Application Security
	Managing Users and Roles
	Changing the Default Roles of a User


	Authorization Service
	Registering a Tenant
	Update tenant information
	Get tenant information
	Delete tenant
	Create User
	Update User
	Get User
	Delete User
	Generating an authorization token
	Authorization Token APIs
	Generate OAuth Token



	Audit Trail
	Enabling Internal Error Handler Support

	Logging
	How Logging Works
	Contents of the Log Message

	APIs for Changing log-level
	Configuring Logging for Java Components


	Configuring Redis
	Configuring Microsoft SQL Server
	Configuring an External Identity Provider

	Administration Tasks
	Swagger API Reference
	Docker
	Building a Docker Image Without an Internet Connection
	Copying Files to Docker Context
	Building Docker Images
	Setting Up the .env File
	Configuring for Order Management Server Docker Containers
	Running the Docker Containers
	Extend Docker-Compose Files
	Modifying a Container Time-Zone
	Reading Container Logs
	Troubleshooting Error from Building Docker Images

	Order Sequencing
	Enabling or Disabling Order Sequencing

	Bulk Order Actions
	Bulk Actions
	WSDL Location
	Error Codes
	Invoke Bulk Order Operation
	Tracking the Request Status
	Logging
	Schema
	Bulk Order Schema
	Bulk Orders Operation Request Schema
	Bulk Orders Operation Response Schema

	Sample Request
	Sample Response

	Performing Bulk Actions On error Plans Items
	Multitenancy
	Creating and Configuring a Tenant
	Authorizing a Tenant

	Managing Health Check Endpoint
	Implementation of LDAP
	User Mapping from Directory Service to Order Management service

	Types of retries
	Messaging level
	Feasibility retry
	Plan fragment based retry
	Plan Item failure retry configurations
	Web client retry

	API Monitoring
	JMX MBeans
	Prometheus
	Elasticsearch
	Dynatrace
	Debugging tools for production
	Read BLOB data from Database
	GET REST APIs in Catalog Service and AOPD

	Scaling of Order Management microservices
	orderPriority
	Order Schema Changes
	Lower Priority Orders

	Tuning Data Source
	Catalog Caching
	Integrate Inventory Information in AOPD Plan Generation
	Integrate TIBCO OPE with Order Submission Process

	Schema References
	Plan Item
	Product Model
	Result Status
	Message
	Order Request
	Order Request Header
	Order Request Line
	Process Component Model

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

