
Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Order Management
User Guide
Version 6.1.0 | October 2024

TIBCO® Order Management User Guide

2 | Contents

Contents
Contents 2

Orchestrator 8
Architecture 10

Instance Registration 11

Process for Running Order-related Requests Using EMS 11

Submission of Order Assignment to Instance 12

Orchestrator Gateway Behavior 12

Message Routing On EMS 12

Instance Specific EMS Listeners 14

Internal Order Processor 15

Snapshot Saving Enhancement 16

Orchestrator and AOPD Communication 17

Database Updates 18

Division of State Machine 26

Order Content Caching 26

Cache Management via EMS 27

Southbound Replies On REST 28

XPath Evaluation Caching in AOPD 29

Processing Future-Dated Orders in the Orchestrator 29

Audit Trail and Recovery Notification Handling 30

Namespace Handling for Southbound Replies 31

Routing of REST Requests to EMS 33

Batch Notification 35

Synchronous Event Processing 36

Notification 37

Time Dependency 39

TIBCO® Order Management User Guide

3 | Contents

Non-Executing Plan Item 40

Process Component Destination 41

Order Types 42
Amend Order 42

Suspend and Activate Order 43

Order Submission 44

Execution Plan 44
Plan Tasks with Associated Process Components 45

Actions 45

Dependencies 45

Order Header 45

Order Line 47

Global Variables 48

Feasibility Providers 49
Feasibility Request 50

Feasibility Response 51

Feasibility Retry 54

OPD Error Handler 54

Process Components 57
Plan Item Execute Request Event 58

Plan Item Milestone Release Request Event 62

Plan Item Milestone Notify Request Event 65

Plan Item Execute Response Event 67

Plan Item Suspend Request Event 72

Plan Item Suspend Response Event 75

Plan Item Activate Request Event 77

Pre-qualification Failed Handlers 81
Pre-Qualification Failed Request Event 83

Pre-qualification Failed Response Event 85

Plan Item External Error Handlers 88
Plan Item Failed Request Event 91

TIBCO® Order Management User Guide

4 | Contents

Plan Item Failed Response Event 93

Broker Service 97
Feature Descriptions 97

Design and Implementation 98

Automated Order Plan Development 145
Overview 145

Model Deployment 145

Product Models Purging 146

Configuration 146
Main Configuration 147

Logs 149

Features 149
Autoprovision 149

Time Dependency 152

Product Specification Field Decomposition 153

Sequencing 155

Delta Provisioning 160

Product Affinity (Plan Item Level) 164

Configurable Handling of CrossLink + ProductComprisedOf Conflicts and Single
Use + ProductComprisedOf Conflicts 181

Sort Plan 182

Attribute-Based Decomposition 182

ProductDependsOn and ProductRequiredFor Relationships 188

Dependent and Sibling Products 193

Shared Attributes 195

Intermediate Milestones Dependencies 198

Order Amendment 205

Custom Action 230

Product Id and Product Id Ext. 230

Jeopardy Management System 231

TIBCO® Order Management User Guide

5 | Contents

Jeopardy Management 233
Jeopardy Events 235

Understanding Plan 237

Understanding Critical Path 238

Understanding Dependencies 239

Jeopardy Management for Execution Plans 240

Jeopardy Management for Plan Task 240

Must Start On Dependencies 241

Consequential Actions 242

Predictive Jeopardy 242

Jeopardy Services 244
Design and Implementation 247

Jeopardy Detection Cycle 266

Adding Jeopardy Rules On OMS UI 272

Internal Error Handler 279
Internal Error Handler Data Flow Diagram 279

Understanding Data Flow in Internal Error Handler 280

Internal Error Handler Sequence Diagram 282

Searching for Plans with planItem in ERROR State 282
Modifying the Plan Item State 283

Submit the Error Resolution 286

Order Management System User Interface 288
Navigation 289

Dashboard 291

Data Access Interfaces 319
Get Plan 319
Get Plan Request 319

Get Plan Response 322

Get Plan Messages and Message Codes 327

TIBCO® Order Management User Guide

6 | Contents

Get Plan Items 328
Get Plan Items Request 328

Get Plan Items Response 330

Get Plan Items Messages and Message Codes 332

Set Plan 333
Set Plan Request 333

Set Plan Response 336

Set Plan Messages and Message Codes 337

Set Plan Item 338
Set Plan Item Request 338

Set Plan Item Response 341

Set Plan Item Messages and Message Codes 341

Best Practices for TIBCO Order Management 343
Exception Handling Guidelines 343
General Approach 343

Example Approach 344

Pre-Qualification Failed Handler 347

Technical Exception Handling 348

Schema References 354
Plan Item 354

ResultStatus 357

Message 358

Order Request 360

Samples 362
Sample Order XML 362

Sample Plan Item XML 363

Sample XPATHs 365

TIBCO Documentation and Support Services 366

TIBCO® Order Management User Guide

7 | Contents

Legal and Third-Party Notices 368

TIBCO® Order Management User Guide

8 | Orchestrator

Orchestrator
This section describes the functions of the Orchestrator component of TIBCO Order
Management.

Orchestrator is a Java based micro-service and it can be easily scaled up and down behind
a load balancer. This approach simplifies the deployment and administration. The
Orchestrator's Java implementation is multi-threaded, which improves performance.

The Orchestrator communicates with the Automated Order Plan Development component
using RESTful APIs.

Orchestrator and southbound systems can communicate by using the following modes.
This mode can be set in Orchestrator's defaultAckMode property. The modes are as
follows:

l REST

l MESSAGING

REST: Orchestrator invokes a RESTful API exposed by the southbound system (for example:
Processcomponent). In the Orchestrator, when the default acknowledgment mode is set to
REST, the Orchestrator invokes the planitem/planItemExecuteRequest endpoint
implemented by the processcomponent. When you use the acknowledgment mode as
REST, the Orchestrator expects the processcomponent to implement RESTful APIs and
expose the following endpoints:

l * /pqf

l * /planitem/suspendrequest

l * /planitem/milestonerelease

l * /planitem/executionrequest

l * /planitem/errorhandlerrequest

l * /planitem/activaterequest

l * /plan/opdErrorHandlerRequest

l * /feasibility

TIBCO® Order Management User Guide

9 | Orchestrator

After the request is processed by the southbound system, it invokes an API exposed by
Orchestrator corresponding to the request that was received by it. The corresponding REST
endpoints are exposed by the Orchestrator and are used by the process-component. The
RESTful endpoints are as follows:

l * /v1/order/preQualificationFailedReply

l * /v1/planitem/suspendreply

l * /v1/planitem/milestonenotify

l * /v1/planitem/executionreply

l * /v1/planitem/errorHandlerreply

l * /v1/order/feasibilityReply

l * /v1/plan/error

MESSAGING: When the default acknowledgment mode is Messaging, the Orchestrator
sends the outbound notification for the processcomponent over Messaging. There are
various categories of notifications that Orchestrator sends over different queues.

Message Type Queue Name

FeasibilityRequest tibco.aff.orchestrator.provider.order.feasibility.request

PlanItemExecuteRequest tibco.aff.orchestrator.planItem.execute.request

PlanItemFailedRequest tibco.aff.orchestrator.provider.planItem.failed.request

PreQualificationFailedRequest tibco.aff.orchestrator.provider.order.prequal.failed.request

PlanItemActivateRequest tibco.aff.orchestrator.planItem.activate.request

PlanItemSuspendRequest tibco.aff.orchestrator.planItem.suspend.request

MilestoneReleaseRequest tibco.aff.orchestrator.planItem.milestone.release.request

OPDRequest tibco.aff.orchestrator.provider.order.opd.request

The processcomponent listens on the respective queues and processes the notifications
that are sent by the Orchestrator. Once processed, the processcomponent replies on the

TIBCO® Order Management User Guide

10 | Orchestrator

following queues.

Message Type Queue Name

FeasibilityReply tibco.aff.orchestrator.provider.order.feasibility.reply

MilestoneNotifyRequest tibco.aff.orchestrator.planItem.milestone.notify.reques
t

OPDReply tibco.aff.orchestrator.provider.order.opd.reply

PlanItemExecuteReply tibco.aff.orchestrator.planItem.execute.reply

PlanItemFailedReply tibco.aff.orchestrator.provider.planItem.failed.reply

PlanItemSuspendReply tibco.aff.orchestrator.planItem.suspend.reply

PreQualificationFailedReply tibco.aff.orchestrator.provider.order.prequal.failed.re
ply

All failed replies from the southbound system are sent to orchestratorInboundQueueDead
queue instead of individual queues.

In the request for all the modes, the Orchestrator includes specific headers in its requests,
which are expected to be included in the response headers.

l acknowledge: The communication mode used by the southbound system to
determine the processing semantics.

Architecture
Orchestrator is a Java-based component, which by default runs in standalone mode. This
simplifies the deployment and administration. The Java implementation of the
Orchestrator is multi-threaded, which improves the performance.

The orchestrator needs to communicate with Automated Order Plan Development. The
orchestrator can invoke the Automated Order Plan Development component interface
directly.

TIBCO® Order Management User Guide

11 | Orchestrator

Instance Registration
Start the Broker service before you start the Orchestrator service. For more information,
see Broker Service.

After you start the Orchestrator service, it registers by calling the /v1/instance/register
API of the Broker service. On successful registration, the Broker service returns the instance
ID to the registering instance. This instance ID is used by the Orchestrator service for
further communication with other Orchestrator instances or southbound systems.

In cases where an instance encounters a client-side issue (indicated by a 4xx error) during
the registration process with the Broker service, the Orchestrator implements a retry
mechanism to ensure successful registration.

Process for Running Order-related Requests
Using EMS
This section explains the process for routing and running order-related requests using
TIBCO Enterprise Messaging Service (EMS).

1. After receiving an order-related request, the system first identifies the instance ID
(also known as instance_id) associated with the order.

2. The request is then dispatched to EMS. It includes a JMS header named originator,
with the instance ID specified as its value.

3. The owner instance listens for this request by creating a listener with a selector
matching the originator value.

4. The owner instance proceeds with processing the request as required.

When making requests to southbound systems, the system includes a header named
originator, with the instance ID as its value, in one of the following ways:

l For requests sent through EMS, the system includes this information in the JMS
header.

l For requests made through REST, the system includes this information in the
HTTP Request header.

TIBCO® Order Management User Guide

12 | Orchestrator

Submission of Order Assignment to Instance
The Orchestrator processes submit order requests through multiple channels: REST API,
SOAP over HTTP, and SOAP over JMS. These request channels are positioned behind a load
balancer to ensure efficient distribution of requests.

Note: During the order submission request, the orderRef must be unique.

The instance receiving submit order request assumes ownership of the order, by assigning
its ID to the order.

Orchestrator Gateway Behavior
When AOPD submits a plan to an instance that is unregistered, the Orchestrator acts as a
gateway until the instance completes registration with the Broker service.

In this situation, the orchestrator stores the order content in the database. It then sends
the plan item execute request to the southbound system, omitting the originator header.
Consequently, the instance ID for the order is set to null.

For time-bound orders, where the plan has time-dependency, the time_scheduler table
does not have an instance ID.

The system expects the southbound system to respond without altering the original
headers. The plan item Execute Reply does not contain the originator header in this
scenario.

The Broker service monitors for southbound replies that are missing an originator header.
On detection, it assigns an instance to the order and updates the instance ID in both the
order and time_scheduler tables.

Message Routing On EMS
The following table describes about the EMS configuration properties.

TIBCO® Order Management User Guide

13 | Orchestrator

Property Description Default Value

orchestratorInboundQueue Queue for
the
Orchestrato
r to listen
to all
southbound
replies with
an
originator
header.

tibco.aff.orchestrator.inbound.queue

orchestratorInboundNoOriginator
Queue

Queue for
the Broker
Service to
listen to all
southbound
replies
without an
originator
header.

tibco.aff.orchestrator.inbound.no.originato
r.queue

Configurations

Bridges are introduced at the EMS level to enhance message handling between the
southbound service and the orchestrator. These bridges enable efficient routing of replies
based on the presence or absence of an originator header in the message.

Southbound Message Routing

Message Bridging

When the southbound service sends a reply to the reply queue, EMS bridges the message
from the source queue to a designated target queue using a selector.

l With Originator Header: Replies with an originator header are routed to
orchestratorInboundQueue.

l Without Originator Header: Replies lacking an originator header are routed to
orchestratorInboundNoOriginatorQueue.

TIBCO® Order Management User Guide

14 | Orchestrator

For example, if the southbound service sends a Plan Item Execute Reply to the
tibco.aff.orchestrator.planItem.execute.reply queue, depending on whether the
originator header is present the service is routed to either the orchestratorInboundQueue
queue or the orchestratorInboundNoOriginatorQueue queue.

This bridging mechanism allows the system to adapt seamlessly, requiring no
modifications from the customer. The orchestration and broker services are configured to
listen on their respective queues:

l Orchestrator Service: Listens on orchestratorInboundQueue.

l Broker Service: Listens on orchestratorInboundNoOriginatorQueue.

The introduction of message bridging offers several benefits over the previous model,
which relies on microservices having a fixed number of listeners on each queue:

l Thread Utilization: Having fixed listeners on multiple queues can lead to blocked
threads when there are no messages, which waste resources.

l Load Balancing: Employing a fixed number of threads on a single queue to process
all incoming messages ensures efficient load balancing and optimal resource
utilization.

By centralizing message processing to a single queue and employing intelligent routing
based on message headers, the system significantly improves efficiency and flexibility in
managing southbound messages. This approach minimizes thread blocking and enhances
the system's ability to handle varying message volumes effectively.

Instance Specific EMS Listeners
Each instance is configured to exclusively listen to southbound replies that include an
'originator' EMS header, facilitated by JMS selectors. The JMS selectors create these
listeners. Every instance creates listeners with the header name 'originator' and value as
the instance ID of the instance. An orchestrator, for instance, processes only the messages
for orders that it owns.

After the message is picked, it is queued for the InternalOrderProcessor worker thread.
Each order is processed exclusively by one InternalOrderProcessor thread, ensuring that
all related messages or events are handled by a single thread and eliminating the need for
order locking.

TIBCO® Order Management User Guide

15 | Orchestrator

If a southbound system's reply lacks the 'originator' header, the Broker service routes the
message to the correct owner instance. For more information, see 'Listener for Southbound
Reply Queues (With no Originator)' topic in the Broker Service.

Internal Order Processor
A worker thread pool processes all events of an order in a sequence as follows:

1. Picks tasks from a common queue: In a basic thread pool, threads pick tasks from a
common queue, where any thread can process any task. Conversely, in the
Orchestrator's worker thread pool, threads are created at startup, each with its own
dedicated queue. Each worker thread continuously monitors its queue for tasks to
process.

2. Summary of the process: When a message is picked by EMS listeners, it is submitted
to the BatchProcessor.

3. Determines the OrderID: The system determines the order ID from the message.
When the Orchestrator sends a request to the southbound system, it includes
Originator, OrderId, and TenantID in the JMS header, expecting the southbound
system to include this header in the replies. If the OrderId is not present in the JMS
header, the system determines it from the message content.

4. Finds the worker thread (InternalOrderProcessor) to process the order event:

l If an InternalOrderProcessor is already assigned, the order event is added to
its queue.

l If an InternalOrderProcessor is not assigned, a new
InternalOrderProcessor is assigned to the order. This is done on a round-
robin basis.

5. Saves the message or event in the order_event table: After the message is added to
the worker thread's queue, it is saved in the order_event table to track incoming
messages or events. This ensures that if an Orchestrator instance becomes inactive,
these messages can be reassigned to another active instance by the Broker Service.

6. Deletes the message or event from the order_event table after successful processing.

InternalOrderProcessorSize Calculation

l In development mode: The orchestrator sets the internalProcessorSize to 1 by

TIBCO® Order Management User Guide

16 | Orchestrator

default.

l In non-development mode: The internalProcessorSize is determined as follows:

internalProcessorSize = 2 × Runtime.getRuntime
().getAvailableProcessors()

This sets the internal processor size to twice the number of available processors.

Overriding InternalOrderProcessorSize

The InternalOrderProcessorSize value can be overridden by setting the
internalProcessorSize property through any of the following methods:

l Environment Variable: Override by setting the internalProcessorSize as an
environment variable.

l Configurator: Use the configurator to define the internalProcessorSize property.

l application.properties file: Specify the internalProcessorSize in the
application.properties file.

This approach allows for customization flexibility, enabling users to tailor the internal
processor size according to their specific needs and configurations.

Snapshot Saving Enhancement
The InternalOrderProcessor saves the latest snapshot under specific conditions, rather
than after each transaction by the orchestrator.

l No Pending Messages: The snapshot is saved when the InternalOrderProcessor
work queue has no pending messages.

l Batch Processing: The snapshot is saved after processing every 1000 events.

TIBCO® Order Management User Guide

17 | Orchestrator

Orchestrator and AOPD Communication

Property Description Default Value

planGenerationQueue Queue on
which
AOPD listen
s for all plan
generation
requests
from
Orchestrato
r.

tibco.aff.orchestrator.plan.generation.que
ue

orchestratorInboundQueue Queue on
which the
Orchestrato
r listens for
all
southbound
replies that
contain an
originator
header.

tibco.aff.orchestrator.inbound.queue

orchestratorInboundNoOriginator
Queue

Queue on
which the
Broker
Service
listens for
all
southbound
replies that
do not
contain an
originator
header.

tibco.aff.orchestrator.inbound.no.originat
or.queue

Configurations

The communication between the Orchestrator and AOPD takes place using EMS.

TIBCO® Order Management User Guide

18 | Orchestrator

Submitting plan generation request

The Orchestrator submits the plan generation request to the planGenerationQueue.

l Gateway Mode: The Orchestrator submits the plan generation request to the
planGenerationQueue without originator headers. In this scenario, AOPD sends the
generated plan to the Broker Service on the
orchestratorInboundNoOriginatorQueue queue. The Broker service then assigns a
new owner for the order and routes the message to the orchestratorInboundQueue.

l Registered Mode: The orchestrator submits the request with the originator header.
Consequently, AOPD sends the generated plan back to the Orchestrator on the
orchestratorInboundQueue queue.

This modification utilizes EMS to boost both the reliability and efficiency of the
communication flow between the Orchestrator and AOPD.

Database Updates
The order content is stored in the plan_item_data database.

Note: The database tables given here are for the PostgreSQL. Similarly, you can
refer to the <OM_HOME>/db/dbscripts/oracle path for the Oracle database
values.

The impacted tables are as follows:

l Order_Data

l Plan_Item_Data

l Order_Event

Order_Data

This table stores the information regarding orders.

Column Name in Database Data Type Description

partitiondate Date Stores the

TIBCO® Order Management User Guide

19 | Orchestrator

Column Name in Database Data Type Description

partition date
of the order.

orderid Varchar (128) Stores the
order Id.

orderref Varchar (128) Stores the
order ref of the
order.

order_ser Text Stores the
latest order
request. In case
of amendment,
this stores the
latest order
request
submitted
during the
amendment.

plan_ser Text Stores the plan
generated by
the AOPD. This
plan does not
reflect the
latest statuses
of plan and
plan items.

org_order_ser Text In case of
amendment,
this column
stores the
original order
request
submitted

TIBCO® Order Management User Guide

20 | Orchestrator

Column Name in Database Data Type Description

during the
submit order
request.

tenantid Varchar (128) Stores the
tenant id to
which this
order belongs.

planid Varchar (128) Stores the plan
id of the order.

status Varchar (128) Stores the
order status.

data Text Stores the state
machine of the
order in XML
format. This
does not
represent the
entire state
machine of the
order.
Individual Plan
Item state
machines are
saved in the
plan item data
table.

The data type
of this column
has been
changed to
CLOB
(Character

TIBCO® Order Management User Guide

21 | Orchestrator

Column Name in Database Data Type Description

Large
Object)/Text.

instance_id Varchar (250) Stores the
instance Id to
which these
orders belong.

pre_amendment_scxml Text Stores the
interim sc XML
required during
amendment
processing.

sequencing_enabled Boolean Whether the
order is
sequenced
based on the
order
sequencing
feature.

customer_key Varchar (250) Stores the
customer key
of the
sequenced
order.

feasibility_request_retry_count Integer Stores the
feasibility retry
count of the
order.

businesstransactionid Varchar (128) Transaction Id
generated by
Order
Management
Server.

TIBCO® Order Management User Guide

22 | Orchestrator

Plan_Item_Data

It comprehensively stores all the necessary information related to the plan item of an
order.

Column Name in Database Data Type Description

id Varchar (524) Serves as the
unique identifier
for the plan
item. It is
generated by
concatenating
the orderId,
tenantId, and
planItemId.

orderid Varchar (256) Stores the order
id to which this
plan item
belongs.

tenantid Varchar (256) Stores the
tenant id to
which this plan
item belongs.

planitemid Varchar (256) Stores the plan
item id of the
plan item.

data Text Stores the state
machine of the
plan item in XML
format.

dependentplanitemids Text Stores the plan
item Ids of other
plan items
whose

TIBCO® Order Management User Guide

23 | Orchestrator

Column Name in Database Data Type Description

milestones are
dependent on
this plan item.

partitiondate Date This field holds
the creation
date of the data
partition.

status Varchar (256) This column
represents
different stages
like pending,
completed,
execution, and
more.

execute_request_retry_count Integer Indicates how
many attempts
have been made
to retry an
execution
request.

suspend_request_retry_count Integer This field tracks
the retry
attempts for a
suspension
request.

Order_Event

This table stores the information regarding the messages or events received by the
orchestrator on EMS. It tracks incoming messages or events in case an Orchestrator
instance goes inactive. These messages are reassigned to another active instance by the
Broker Service.

The older order_event table is renamed as order_event_temp table. This table is no longer
required by the orchestrator. Previously, it contained the names of events that failed to

TIBCO® Order Management User Guide

24 | Orchestrator

acquire a lock. Until 5.1.0 and 6.0.0 releases, PendingOrderProcessor retrieves pending
events from this table. After it has been renamed, you can trigger a migration API to
transfer these events back to EMS. After migration, you can drop order_event_temp table.

Column Name in Database Data Type Description

partitiondate Date Date of
partition

tasktrackingid Varchar (250) Stores the
unique
identifier of this
message. This
is used to
purge the
message once
it is processed
by the
Orchestrator.

originator Varchar (10) Stores the
instance id to
which this
order belongs.

orderid Varchar (250) Stores the
order id of the
order.

tenantid Varchar (250) Stores the
tenant id of the
order.

message Text Stores the
entire message
or event
received by the
Orchestrator.

creationtime Numeric Marks the

TIBCO® Order Management User Guide

25 | Orchestrator

Column Name in Database Data Type Description

moment the
order event is
initiated.

nodeid Varchar (250) Identifies the
specific node
associated with
the order event
uniquely.

status Varchar (10) This column
represents
different stages
such as
pending,
completed, and
execution.

The following tables remain unchanged:

l order_in_sequence

l order_in_play

l notification

l order_amendment

l order_messages

l time_scheduler

l Time_scheduler_error

The following tables are dropped as they are no longer required by the orchestrator:

l order_lock

l dead_order_event

TIBCO® Order Management User Guide

26 | Orchestrator

Division of State Machine
The SCXML is divided into the following parts:

l Order SCXML: Manages events related to Order, OrderLine, Plan, and Order
Amendment.

l Plan Item SCXML: Manages events for individual plan items, with each plan item
having its own SCXML stored in the plan_item_data table.

The order events are processed in the following sequence:

1. Determines if the event is for the order, order line, plan, amendment, or for a specific
plan item.

2. Fetches the required SCXML from the database.

3. Unmarshals the XML to a StateMachine object.

4. Fires the order event.

5. Marshalls the latest snapshot of the StateMachine to XML.

6. Saves this XML back to the database.

By dividing the SCXML into smaller segments, the process of marshaling and unmarshalling
becomes more efficient, leading to reduced processing time.

Order Content Caching
All requests for a specific order are processed by a single instance, known as the owner
instance. You can use it to cache the order content within the Orchestrator instance.

When a request is received, the orchestrator fetches the order details from its cache. After
processing the request, it updates the cache with the most recent snapshot of the order
and then synchronizes these updates with the database.

The cache greatly decreases the time needed to load order content for processing requests
but is exclusively used for POST requests. For GET requests, any instance can handle them
because the database maintains the most current snapshot of the order content.

Orchestrator clears the caches in the following scenarios:

TIBCO® Order Management User Guide

27 | Orchestrator

l When an order reaches any of the final states (Complete, Canceled, or Withdrawn)

l Orchestrator cache clear scheduler:

o The orchestrator utilizes a scheduler that runs according to the cron expression
provided in the orchestratorCacheClearInterval property.

o You can utilize this job to clear the cache at regular intervals.

o This functionality is beneficial for handling long-running orders.

Note: Order content is only cached after the order reaches the Execution
state. Before this state, the order content is managed directly from the
database.

Cache Management via EMS
The Orchestrator uses Spring Cache for cache management, you can use it to manage
cache contents via EMS queues through a request-response mechanism.

l EMS request queue: tibco.aff.orchestrator.cache

l EMS response queue: tibco.aff.orchestrator.cache.reply

Message Structure

Requests sent to the tibco.aff.orchestrator.cache queue must contain the following
headers:

l Originator (Mandatory): Each microservice instance has a unique instance ID. This ID
ensures that each microservice instance listens to cache requests specifically meant
for it by utilizing the JMS selector feature. Example: instance-12345

l Operation (mandatory): Specifies the operation to be performed on the cache.

Supported operations:

o GET: Retrieves the content of the cache for a specified OrderID and TenantID.

o CLEAR: Clears the content of the cache for a specified OrderID and TenantID.

o CLEARALL: Clears the content of all orders in the cache for a specified TenantID.

l ORDER_ID (Conditional): Specifies the OrderID for operations that target specific

TIBCO® Order Management User Guide

28 | Orchestrator

orders. It is required for GET and CLEAR operations.

l TENANTID (Mandatory): Specifies the TenantID for operations. It is required for all
operations (GET, CLEAR, and CLEARALL).

Operations

l GET Operation

o Description: Retrieve the content of the cache for the specified OrderID and
TenantID.

o Required headers: originator, Operation=GET, ORDER_ID, TENANTID

o Response: The cached content for the specified OrderID and TenantID is sent to
the response queue tibco.aff.orchestrator.cache.reply.

l CLEAR Operation

o Description: Clear the content of the cache for the specified OrderID and
TenantID.

o Required headers: originator, Operation=CLEAR, ORDER_ID, TENANTID

o Response: A confirmation message indicating the cache has been cleared for
the specified OrderID and TenantID is sent to the response queue
tibco.aff.orchestrator.cache.reply.

l CLEARALL Operation

o Description: Clear the content of all orders in the cache for the specified
TenantID.

o Required headers: originator, Operation=CLEARALL, TENANTID

o Response: A confirmation message indicating the cache has been cleared for all
orders for the specified TenantID is sent to the response queue
tibco.aff.orchestrator.cache.reply.

Southbound Replies On REST
The order processing approach has been updated to ensure that all requests for a specific
order are exclusively managed by the owner instance. This is accomplished by utilizing the
JMS selector feature.

TIBCO® Order Management User Guide

29 | Orchestrator

Despite the modifications, REST APIs remain accessible. After receiving an order event
through REST, the Orchestrator initially fetches the instance ID of the order from the
database. Then, it routes the request to EMS by appending the originator, orderID, and
tenantID headers.

For every REST API, a corresponding EMS queue and set of listeners are established. When
the owner instance receives a request on EMS, this request is then queued for further
processing to the InternalOrderProcessor, also referred to as the worker thread.

This modification results in all communications via REST being asynchronous.

XPath Evaluation Caching in AOPD
During plan generation, AOPD evaluates XPath expressions for product decomposition,
which are specified in the DECOMPOSITION_REQUIRED_FOR field of the product model. These
XPath expressions might change alongside modifications to the product model, which is
also cached in AOPD.

During plan generation, AOPD evaluates XPath expressions specified in the DECOMPOSITION_
REQUIRED_FOR field of the product model for product decomposition. These XPath
expressions might change with modifications to the product model, which AOPD also
caches.

To optimize plan generation time, AOPD now caches the evaluation results of these XPath
expressions.

Whenever you modify the product model, AOPD does the followings:

l Removes the modified product model from the cache.

l Also, remove any associated XPath evaluation results to ensure data integrity and
accuracy.

Processing Future-Dated Orders in the
Orchestrator
The orchestrator enables the submission of future-dated orders by specifying the execution
time in the requiredByDate field. Plans generated by AOPD have a time dependency on the

TIBCO® Order Management User Guide

30 | Orchestrator

eligible plan items. These plan items remain in the pending state until all of their
dependencies, including time dependencies, are completed.

Every order, including those scheduled for the future, is processed only by its owner
instance. On receiving a future-dated order, Orchestrator:

l Logs it in the time_scheduler table with a timestamp and the owner instance's ID.

l The TimeDependencyScheduler then checks for time dependencies associated with
the owner instance, filtering by the instance ID.

l If relevant dependencies are found, they are marked as completed.

During gateway mode, the instance ID is null in both the order and time_scheduler tables.
The Broker's Time Dependency Monitor is responsible for assigning the owner to the order
and its time dependencies.

Audit Trail and Recovery Notification Handling
Configure the following properties for the processing of audit trail and recovery
notifications.

Property Description Default Value

auditTrailNotificationQueue Queue on
which the
Orchestrator
dispatches
the audit trail
notifications.

tibco.aff.orchestrator.audit.trail.notification.que
ue

orderEventNotificationQue
ue

Queue on
which the
Orchestrator
dispatches
the recovery
notifications.

tibco.aff.orchestrator.order.event.notification.q
ueue

Configurations

The orchestrator no longer directly saves audit trails and notifications. Instead, it
dispatches these notifications to EMS for archival and processing by the Broker Service.

TIBCO® Order Management User Guide

31 | Orchestrator

Audit Trail Updates

l Dispatching Audit Trail Notifications: The Orchestrator now dispatches audit trail
notifications to the Archival Service using the queue specified by the
auditTrailNotificationQueue property.

l Archival Service Responsibility: The Archival Service receives these notifications and
saves them in its database.

Impacts

l API changes: The following APIs are now managed by the Archival Service:

o Submit Audit Trail: POST /order/audit

Note: For Submit Audit Trail request from TIBCO EMS, the date
format must be as follows: 2023-10-09T15:20:28.773Z

o Get Audit Trail: GET /v1/orders/audit

l JMS Listeners: The JMS listeners for custom audit trails have been moved to the
Archival Service.

Recovery Notification Updates

l Dispatching Recovery Notifications: The Orchestrator now dispatches recovery
notifications to the Broker Service using the queue specified by the
orderEventNotificationQueue property.

l Broker Service Responsibility: The Broker service receives these notifications and
saves them in its database.

l No Functional Impact: There is no impact on the existing functionality of the
Orchestrator or Broker Service.

This new approach improves the separation of concerns and enhances the efficiency of
handling audit trails and notifications by leveraging EMS for better scalability and
performance.

Namespace Handling for Southbound Replies
The orchestrator listens on a single queue, specified by the orchestratorInboundQueue
property, for all replies.

TIBCO® Order Management User Guide

32 | Orchestrator

Namespaces are essential to correctly identify the type of message. Southbound systems
are expected to include namespaces in their replies as part of the JMS header, with the
header name _nm_ and the following values:

JMS Header Property Name Value

Pre-Qualification Failed Response PreQualificationFailedResponseEvent

Plan Item Execute Response PlanItemExecuteResponseEvent

Plan Item Execute Request PlanItemExecuteRequestEvent

Plan Item Activate Request PlanItemActivateRequestEvent

Plan Item Suspend Reply PlanItemSuspendResponseEvent

Milestone Notification Request PlanItemMilestoneNotifyRequestEvent

Plan Item Error Handler Response / Plan Item
Failed Response

PlanItemFailedResponseEvent

Feasibility Response FeasibilityResponseEvent

Additional Messages Handled by Orchestrator Inbound Queue

Apart from the southbound replies, the orchestratorInboundQueue also handles messages
routed by the orchestrator from REST to EMS. For these messages, the Orchestrator
attaches the appropriate namespace header (_ns_) in the JMS message. The namespaces
for these messages are as follows:

Header Property Name Value

Withdraw Order Request WithdrawOrderEvent

Suspend Order Request SuspendOrderEvent

Cancel Order Request CancelOrderEvent

Activate Order Request ActivateOrderEvent

TIBCO® Order Management User Guide

33 | Orchestrator

Header Property Name Value

Amend Order Request AmendOrderEvent

Purge Order Request PurgeOrderEvent

Plan Submission from AOPD AopdRequestEvent

Plan Generation Failure AopdPlanErrorNotificationEvent

This namespace handling ensures that the orchestrator can correctly identify and process
each type of message, improving efficiency and accuracy in message processing.

For more information, refer to the $OM_HOME/samples/JMS_Request_Response_Samples.zip
file.

Routing of REST Requests to EMS
All order requests are processed sequentially by the same instance using EMS channels.
The orchestrator uses EMS channels to achieve this.

For REST requests, there exists the possibility that a request is received by an instance that
is not the owner of the order. Therefore, all POST requests are routed to the EMS with an
originator header. These requests are no longer processed directly by the REST API.
Instead, the REST API routes the requests to the EMS, where they are processed by the
owner instance.

The following APIs are affected by this change:

Operatio
n

API Queue Name Remarks

Amend
Order

/v1/order/amend tibco.aff.orchestrator.order.amend

Withdraw
Order

/v1/order tibco.aff.orchestrator.order.withdraw

TIBCO® Order Management User Guide

34 | Orchestrator

Operatio
n

API Queue Name Remarks

Suspend
Order

/v1/order/suspend tibco.aff.orchestrator.order.suspend

Activate
Order

/v1/order/activate tibco.aff.orchestrator.order.activate

Cancel
Order

/v1/order/cancel tibco.aff.orchestrator.order.cancel

Purge
Order

/v1/order/purgeOrder tibco.aff.orchestrator.order.purge

Bulk
Action

/v1/order/bulkaction Based on
the action,
value the
request is
redirected
to the
correspon
ding
queue

Plan Item
Execute
Response

/v1/planitem/executionrep
ly

tibco.aff.orchestrator.planItem.execute
.reply

Milestone
Notify

/v1/planitem/milestoneno
tify

tibco.aff.orchestrator.planItem.milesto
ne.notify.request

Plan Item
Suspend
Response

/v1/planitem/suspendrepl
y

com.tibco.fom.orch.planitem.suspend.r
esponse.queue

Plan Item
Error

/v1/planitem/errorHandler
/reply

tibco.aff.orchestrator.provider.planIte
m.failed.reply

TIBCO® Order Management User Guide

35 | Orchestrator

Operatio
n

API Queue Name Remarks

Handler

Plan Item
Bulk
Error
Handler

/v1/planitem/bulkErrorHa
ndlerReply

Individual
Plan Item
Error
Handler
Reply
message is
dispatche
d to the
EMS with
originator
headers.

Feasibilit
y Reply

/v1/order/feasibilityReply tibco.aff.orchestrator.provider.order.fe
asibility.reply

Pre-
Qualificat
ion
Failed
Reply

/v1/order/preQualification
FailedReply

tibco.aff.orchestrator.provider.order.pr
equal.failed.reply

Batch Notification
Following are the notifications sent by the Orchestrator:

1. Orchestrator sends the JMS notification to the Process Component for running,
suspending, and activating the plan items. Orchestrator also needs to notify the
Milestone waiting in the Process components

2. Orchestrator also publishes notifications for the state changes of entities such as
Order, Order Line, Order Amendment, Plan, and Plan Item. Third-party applications
can listen to these notifications.

3. Orchestrator publishes Plan Development notification and Bulk Action Notification as

TIBCO® Order Management User Guide

36 | Orchestrator

well. But they are not state change notifications.

The Orchestrator needs to run the actions triggered by the state change. The actions are
configured internally to dispatch the JMS Messages, process Database notifications and
logging.

Synchronous Event Processing
Events are consumed by the state machine and processed sequentially. Following is the list
of the events that are processed by the Orchestrator:

1. Events that are primarily from process components and orchestrator Components.

Below is the sequence of activities involved:

a. State Machine receives the events from the etiher Process Component.

b. Events are consumed by the State machine.

c. State machine generates the actions to be run. The actions are configured
internally to dispatch the Messages for Process Components, Outbound
Notifications process, Database notifications and logging.

d. Actions are run.

e. Final state orders and checkpoints are cleaned up.

2. Time-Dependent Events that are triggered using Timer.

Below is the sequence of activities involved:

a. State Machine receives the events from the Timer Event.

b. State machine generates the actions to be run. The actions are configured
internally to dispatch the Messages for Process Components, Outbound
Notifications process, Database notifications and logging.

c. Actions are run.

d. Final state orders and checkpoints are cleaned up.

TIBCO® Order Management User Guide

37 | Orchestrator

Notification
External clients can listen to the notifications about the state changes that are sent by the
Orchestrator. The users can filter the following state change notifications:

l JMS notification

JMS notification

Type of
state change

Property name Default value

Order Status
Change

com.tibco.fom.orch.order.statusChange.fi
lter

*

OrderLine
Status
Change

com.tibco.fom.orch.orderLine.statusChan
ge.filter

*

Plan Status
Change

com.tibco.fom.orch.plan.statusChange.filt
er

*

PlanItem
Status
Change

com.tibco.fom.orch.planItem.statusChan
ge.filter

*

Order
Amendment
Status
Change

com.tibco.fom.orch.orderAmendment.filt
er

*

Order State
Change
Notification
topic

com.tibco.fom.orch.outbound.notificatio
n.destination

tibco.aff.orchestrator.outbound.n
otification

OrderLine
status change

com.tibco.fom.orch.orderLine.statusChan
ge.destination

tibco.aff.orchestrator.notification.
orderLine

TIBCO® Order Management User Guide

38 | Orchestrator

Type of
state change

Property name Default value

destination

Plan status
change
destination

com.tibco.fom.orch.plan.statusChange.de
stination

tibco.aff.orchestrator.notification.
plan

PlanItem
status change
destination

com.tibco.fom.orch.planItem.statusChan
ge.destination

tibco.aff.orchestrator.notification.
planItem

Order
Amendment
status change
destination

com.tibco.fom.orch.orderAmendment.sta
tusChange.destination

tibco.aff.orchestrator.notification.
orderAmendment

ORDER,
ORDERLINE,
PLAN,
PLANITEM,
PLANDEVELO
PMENT State
Change
Notification
Queue

archivalNotificationQueue tibco.aff.orchestrator.archival.not
ification

By default, all notifications are dispatched to the
tibco.aff.orchestrator.outbound.notification queue. To disable, set the
enableNotification property to false.

{
"propName": "com.tibco.fom.orch.plan.statusChange.destination",
"propDescription": "Plan status enableNotificationchange destination",
"propValue": "tibco.aff.orchestrator.notification.plan",
"valueType": "string",
"isTenantProperty": "false"
}

TIBCO® Order Management User Guide

39 | Orchestrator

com.tibco.fom.orch.noreciprocalaction.planfragmentID: This property is a tenant
specific property. The value provided in this property is set as the planfragmentID for the
plan items that directly got canceled from the pending state.

The default value for this property is NO_RECIPROCAL_ACTION.

Whenever the order status changes, the Orchestrator sends an EMS message. The Archival
system receives this message and saves the necessary information in a database. The
Archival database has several tables and does not need locks to process notifications,
allowing it to update the relevant tables directly.

Out-of-Sequence Notifications

Since Archival does not process notifications in a sequence, a notification can arrive before
an entry is created for that order. In that case, the notification is retried and sent back to
the source queue (tibco.aff.orchestrator.archival.notification). The retry settings
are:

l archivalNotificationRedeliveryCount (default: 5)

l archivalNotificationRedeliveryDelay (default: 5000 ms or 5 seconds)

Amendment Notifications

When the first status change notification for an amendment is received, the Archival service
updates the tables with the amendment changes. During this process, other notifications
are not processed. They get retried and sent back to the source queue
(tibco.aff.orchestrator.archival.notification) based on the retry configuration until
the Archival database updates.

Exception Handling

In other exception scenarios, retries follow the same configuration. If the issue continues,
the notification goes to the dead queue
(tibco.aff.orchestrator.archival.notification.dead).

Time Dependency
Time dependency in plan items is satisfied when a certain time period has elapsed, or a
certain absolute date and time has been reached. Time dependencies take the form of an
absolute date time and once the time has reached or passed, then the dependency is
considered satisfied.

TIBCO® Order Management User Guide

40 | Orchestrator

Time dependencies of a planItem are scheduled to be EXECUTED at the specified absolute
time and only executed once the time is reached. If execution fails then the Orchestrator
tries to execute it until maximum retries (timedep.numRetries) is reached. If it fails during
max retries then the Orchestrator puts the order into time_scheduler_error for future
reference and the time dependencies are not scheduled and not executed by the
Orchestrator.

The following properties play a crucial role in time dependency:

Property Description

timedep.bufferInterval This parameter specifies the buffer time
available for completing a planItem. It
represents the buffer period remaining
for a future-dated planItem before its
execution phase begins. The interval is
used to identify dependencies among
active plan items.

timedep.numRows This attribute counts the active time
dependencies that still have buffer time
remaining. Essentially, it returns the
row count of active time dependencies
with available buffer time left.

timedep.pollingInterval This setting establishes the periodic
execution frequency of a time
scheduler. It helps in scheduling the
execution timing of the scheduler.

Non-Executing Plan Item
A non-executing plan item does not have to be submitted to a process component service.

A comma-separated string of planFragment IDs is defined with the property name "Non-
Executing Plan-Fragment IDs", present under the "AOPD Functional Configuration" category
of the ConfigValues_AopdService.json application properties file, which indicates a
planItem having these PlanFragments is treated as non-executing planItem.

TIBCO® Order Management User Guide

41 | Orchestrator

{
"propName": "nonexecutingPlanfragmentID",
"propDescription": "Plan-Fragment IDs whose Plan Items are auto
completed",
"propValue": "NON_EXECUTING",
"valueType": "string",
"isTenantProperty": "true"
}

The orchestrator does not send any notification to the process component service and it
completes the planItem along with its milestone dependencies.

Process Component Destination
Currently, process component notifications are sent to a default destination if there is no
owner defined in the process component or to a destination with the owner name if the
owner is defined in the process component. This destination can be overridden and a new
destination can be used as the destination for process component notifications. This can
be configured by using a property overridePlanfragmentDestination. If this property is
set to true, then the destination is picked from the ProcessComponent.props file for the
respective process component ID. The content of this property file is loaded when a file is
modified and the updated value is used for sending notifications. This is applicable only
when the error handler type is internal. This properties file has a destination defined for
the process component as follows:

<Process Component ID>.destinationName=<Destination value>

Note: The destination value is a string.

If there is no destination defined for a process component in a file
ProcessComponent.props or property overridePlanfragmentDestination is configured as
false then the default behavior is used to, and all the process component-related
notifications are sent to a predefined queue. If the property is true and the value is not
configured, the default destination is used. The default value is false.

For an alternate process component, you have to configure <Process Component ID> and
<Alternate Process Component ID> in ProcessComponent.prop file.

TIBCO® Order Management User Guide

42 | Orchestrator

<Process Component ID>.alternateProcessComponent=<Alternate Process Component
ID> and overridePlanfragmentDestination property must be true.

You can track the change details in the Activity Log on Order Management Server UI.

Order Types
TIBCO Order Management supports the following order fulfillment modes:

l Amend Order

l Cancel Order

l Suspend Order

l Activate Order

l Withdraw Order

Amend Order
An order amendment is the process of making changes to a previously submitted order. An
order can be amended by sending through the new order with the same orderID and
orderRef as the previously submitted order.

Orders might only be amended in certain lifecycle states.

Amendable Not Amendable

l Plan Development

l Execution

l Suspended

l Complete

l Canceled

l Withdrawn

l Feasibility

l Pre-Qualification Failed

l OPDERROR

Amendments prior to creation of a plan take the form of updating the order in the
database and then restarting the order lifecycle back from submitted. At this point a plan

TIBCO® Order Management User Guide

43 | Orchestrator

has not been generated and does not have to be modified. When the fulfillment process
reaches the Plan Development step, the updated order as it exists from the amendment is
used to generate the plan.

For amendments that occur after a plan has been created, but when the plan is still
pending, then the order is updated in the database, the existing plan is discarded and the
order starts back from submitted. This applies to order status of execution, but with a plan
status of pending. However, this is a very rare scenario as the plan immediately goes into
EXECUTION state.

For amendments that occur after a plan has started executing only certain aspects of an
order might be amended. These are outlined below.

Any other aspects of an order not explicitly detailed here are not amendable. This applies
to order and plan status of Execution.

l There is no limitation on the number of amendments that are possible for any given
order, but only one amendment might be active at any one time.

Note: It is a best practice to keep the maximum number of amendments
under 30 for a particular order.

l Once the amendment has been completed, and the order resumes execution then it
is possible to amend the order again.

l If the order goes to Pre-Qualification Failed state from Order Management Server, it
cannot be amended.

For more information, see Order Amendment.

Suspend and Activate Order
The order can be suspended at any point during the fulfillment process.

1. If the order is in any of the pre-EXECUTION states, it is suspended immediately.

2. If the order is in EXECUTION state, the Orchestrator sends the suspend requests to all
the process components associated with the plan items that are in execution state.
At this time, order is moved to SUSPEDING state. These process components might
either respond with an execution suspends response, if they can suspend the
processing or execution complete response, if they cannot. Based on the response,

TIBCO® Order Management User Guide

44 | Orchestrator

the running plan items go into SUSPENDED or COMPLETE state. Finally, the order and
plan state is changed to SUSPENDED.

3. The orders that are in final states such as COMPLETE or CANCELLED or already in
SUSPENDED state cannot be suspended again.

The suspended orders can be activated back into the EXECUTION state to proceed ahead
with the fulfillment.

1. If the order was in any of the pre-EXECUTION states before suspension, it is activated
immediately, and processing carry on further.

2. If the order was in EXECUTION state before suspension, the Orchestrator activates it
by sending the activation requests for all the process components associated with
the plan items that were SUSPENDED. Finally, the order and plan state is changed to
EXECUTION.

Order Submission
A customer order is received from an external order capture or request injection system,
for example, a CRM system or a Business-to-Business (B2B) gateway, and Web services. The
order must be in the JSON format and is received through a RESTful service.

Execution Plan
Execution Plan is a process model, which is developed for a concrete order and can also be
termed as a collection of the activities that have to be completed to fulfill a customer
order. Execution plans usually specify how the process components must be arranged to
fulfill the order.

An execution plan consists of the following:

l Plan Tasks or Plan Items with an associated process component and action

l Actions

l Dependencies on the plan items

TIBCO® Order Management User Guide

45 | Orchestrator

Plan Tasks with Associated Process Components
One or more plan tasks or items comprise an execution plan. Each plan item is created to
fulfill a particular product against a particular action. The process component specified in
plan item is invoked for the fulfillment.

Actions
Each plan task has an action associated with it. These are the possible actions you can
select for each plan task:

l Provide

l Cease

l Update

l Cancel

A plan task manages a particular item. Each action defines what needs to be done for a
particular item. An action serves as an annotation to make the execution plan more
understandable.

Dependencies
Plans are automatically generated by the system based on the product model for a given
order.

A dependency can be defined as a relationship between milestones in the plan items.

Order Header
The table below lists the information contained in an order header:

Type Description

Order Ref ID A unique identifier supplied by the system that submits the order. The Order

TIBCO® Order Management User Guide

46 | Orchestrator

Type Description

Reference is used to determine whether the order is a new request. Order
Management Server does this by checking if an order with the same Order
Reference is already stored in the cache.

Note: The value of Order Ref ID must not contain ":"

Order ID Internal ID of the order generated and assigned by Orchestrator.

Note: The value of Order ID must not contain ":"

Status Current status of an order. For instance, COMPLETE.

Execution
Plan

Execution Plan ID.

Required By
Date

Indicates the date and time when the order must start fulfillment.

Notes Notes about the order. Basically, this is any additional text that might be
supplied by the summiteer or submitting system.

Subscriber ID Reference ID of the subscriber.

Customer ID Used to retrieve the current customer profile and to identify the customer to
other systems interested in the order.

Changed Date Date when the order is changed.

Execution
Status

Execution status of an order. For instance, COMPLETE.

Required On
Date

Currently not supported.

Invoice
Address

The address to invoice for the order, if different from the customer address.

TIBCO® Order Management User Guide

47 | Orchestrator

Type Description

Delivery
Address

The address to deliver the order, if different from the customer address.

Service Level
Agreements
(SLA)

This is a list of the identifiers of any service level agreement that applies to a
particular order.

Order Line
An Order contains order lines. Each order line has the following information:

Type Description

Line Line no. of an order.

Product ID The identifier of the specification of the product to be provided.

Inventory ID Inventory ID.

Action The action required for the specific product referred to in the order line.
You can enter one of the following actions:

l Provide: The customer has requested a new service.

l Cease: The customer has requested that an existing service must
cease.

l Update: The customer has requested that an existing service be
updated in some way.

l Cancel: The customer has requested that an existing service must
cancel.

Required By Date Indicates the date and time when the order line must start fulfillment.

Quantity The number of the product required.

TIBCO® Order Management User Guide

48 | Orchestrator

Type Description

Required On
Date

Currently not supported.

Subscriber ID Reference ID of the subscriber.

Product Version Version of a particular product.

Link ID Link reference ID.

Status The current status of the order. This is automatically filled in and you
cannot amend it. The status changes with the order item’s lifecycle.

Status Changed The date and time that the order line status last changed. This is
automatically filled in and you cannot amend it. It initially shows the date
and time the order line was created and is updated to reflect later status
changes.

UOM (Unit of
Measurement)

The unit of measure of the product required.

Delivery Address The address to deliver the order, if different from the customer address.

Characteristics A list of product characteristics that are supplied as input parameters to
the order to provide additional information to the product specification.
For instance, this might be the color of a mobile telephone.

Global Variables
The following table lists the important global variables for TIBCO Order Management
Orchestrator configuration related to feasibility enabling, retries, and error handling.

Global Variable Description

com.tibco.fom.orch.feasibilityRequired Flag that enables/disables an order
feasibility request to a feasibility

TIBCO® Order Management User Guide

49 | Orchestrator

Global Variable Description

provider from the Orchestrator.

com.tibco.fom.orch.enableFeasibilityErrorHandling Flag that determines whether or not
to refer the failed feasibility request to
a pre-qualification failed error
handler.

enableOpdErrorHandling Flag that determines whether or not
to refer the failed order and plan
development request to a opd error
handler.

com.tibco.fom.orch.pcErrorHandlerType.

"allowedValues": [
"ExternalErrorHandler",
"InternalErrorHandler"

]

Specifies the name of the default error
handler for the process component.

Feasibility Providers
Feasibility Provider is a customer-specific implementation that checks whether an order is
feasible for fulfillment. Feasibility might involve network inventory capacity analysis, stock
checks, order line validation, or any other number of checks.

Feasibility checking is an optional step in the fulfillment process within Orchestrator. By
disabling feasibility checking, no Feasibility Provider is required. However, if feasibility is
enabled, then a Feasibility Provider must be available for orders to proceed. Feasibility
Providers must conform to the following requirements to be a valid implementation.

Specification
l Receive event messages on a JMS queue or receive events on a REST call.

l Interpret the Feasibility Request event and determine if the order is feasible for
fulfillment.

TIBCO® Order Management User Guide

50 | Orchestrator

l Create and send a response event on a JMS queue or REST call.

l In the response event, specify whether the feasibility check has completed
successfully by setting the completed flag to TRUE if it can determine feasibility or
FALSE if it cannot conclude feasibility.

l In the response event specify whether the order has passed feasibility by setting the
passed flag to TRUE if the order is feasible, or FALSE if it is not feasible.

l In the response event, optionally specify a list of warning or error messages whether
the order has passed feasibility or not.

Since the feasibility checking process is a customer-implemented component, the
functional specification for this process is out of scope of this document.

Feasibility Request
Feasibility Request is an event sent by Orchestrator to the Feasibility Provider to request
order feasibility checking. It is a request/reply event to a JMS/REST that returns a reply to
the default reply for Feasibility Response.

If an exception occurs during feasibility checking, then it must be logged to the Feasibility
Provider log. The details of the exception are returned in the response.

Event Type Asynchronous request event

Queue or Topic Queue

Destination tibco.aff.orchestrator.provider.order.feasibility.request

Response for JMS

The event has the following payload:

Feasibility Request

TIBCO® Order Management User Guide

51 | Orchestrator

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

orderID String Required Order ID for the order to feasibility
check.

orderRequest Type Required Order Request type. See Schema
References for the specification of
this type.

Feasibility Response
Feasibility Response is an event sent by Feasibility Provider back to the Orchestrator in
response to a Feasibility Request event. It is a reply event to a JMS/REST.

The response for feasibility has completed and passed flags. Orchestrator routes the order
lifecycle based on the returned value of these flags. The two flags can be used to
distinguish between technical and business exceptions. For example, a failure to complete
generally indicates a technical exception, so complete is false. A validation failure
indicates a business exception, where complete is true, but passed is false.

Completed This flag indicates whether the feasibility call completed. If this is set to true,
the passed flag becomes relevant.

Passed This flag indicates whether the order has passed feasibility.

Based on different scenarios, these flags must be set as follows:

TIBCO® Order Management User Guide

52 | Orchestrator

Completed Passed Description

Technical
Error

False False
True

Orchestrator refers the order to the Pre-
Qualification Failed Handler if error handling is
enabled for feasibility, or the error is withdrawn if
error handling is not enabled.

Business
Error

True False Orchestrator refers the order to the Pre-
Qualification Failed Handler if error handling is
enabled for feasibility, or the error is withdrawn if
error handling is not enabled.

Success True True The processing continues as normal.

Event Type Reply event

Queue or Topic Queue

Destination tibco.aff.orchestrator.provider.order.feasibility.reply

The event has the following property:

Property Type Cardinality Description

originator String Optional The value of the originator property in the
FeasibilityRequest message, received from the
Orchestrator, which must be mapped and sent
back in the response message.

The event has the following payload:

TIBCO® Order Management User Guide

53 | Orchestrator

Feasibility Response

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

correlationID String Required Unique identifier to correlate the
request message with a response
message. Even though this field is
marked as optional in the response
schema, it is required for
Orchestrator can correlate the
response with the correct version of
the submitted order. Populate this
field the same as correlationID in
the request message.

resultStatus Type Required Result status type. See Schema
References for the specification of
this type.

orderID String Required Order ID for the order that was
feasibility checked.

TIBCO® Order Management User Guide

54 | Orchestrator

Element Type Cardinality Description

orderRef String Required Order ref for the order that was
feasibility checked.

completed Boolean Required Flag indicating whether the
feasibility call completed.

passed Boolean Required Flag indicating whether the order
has passed feasibility.

message Type 0-M Message type. See Schema
References for the specification of
this type. This list of messages is
passed to the Pre-Qualification
Failed Handler if invoked.

Feasibility Retry
In case of any technical error when the completed flag value is set as false, the feasibility
retry mechanism ensures that before the feasibility fails, the orders are resubmitted for
certain number of times in a certain interval.

You can configure the retry count and retry interval by setting the following property
values:

l com.tibco.fom.orch.feasibilityRetries for retry count

l com.tibco.fom.orch.feasibilityRetryInterval for retry interval (in milliseconds)

OPD Error Handler

Overview
An OPD Error handler is a customer-implemented component used to manage the plan
development failure in the orchestrator. During the fulfillment process, the orchestrator
always calls out to a plan development provider.

TIBCO® Order Management User Guide

55 | Orchestrator

The plan development provider designs a plan from the order. If a plan cannot be
designed, then the fulfillment process cannot proceed and, if the enableOpdErrorHandling
flag is true, the order might be referred to the OPD Error handler for manual intervention.

Specification
The OPD Error handler must conform to the following requirements to be a valid
implementation:

l Receive event messages on a JMS or REST queue.

l Interpret the PreQualificationFailedRequest event and determine the best way to
route the failed order for further processing.

l Create and send a response event on a JMS or REST queue.

l In the response event, specify RetryOPD or Withdraw as the possible actions that
the orchestrator can take in response to the error.

Note: For an amendment request, only withdraw action is supported.

The actions that can be specified are as follows:

l RetryOPD: The OPD Error handler confirms that the order can be processed further.
In this case, the orchestrator sends an order plan generation request to AOPD and
moves the order to the OPD state.

l Withdraw: The order is withdrawn from the orchestrator and not fulfilled. It is deleted
from the engine and Transient Data Store.

The details of the OPD Error handler are left as a customer-specific implementation. An
example of a handler can be the following:

1. Receive a PreQualificationFailedRequest event message on a JMS queue or REST by a
BusinessWorks process.

2. BusinessWorks starts a process instance in a customer build implementation.

3. The TIBCO iProcess® process model creates a manual task and displays a form in a
work queue for operations support. The form displays the order and the details of
the failure.

4. Operations support reviews the task and chooses one of the following options:

TIBCO® Order Management User Guide

56 | Orchestrator

a. Make changes to the order that ensure that the order passes plan development.
The plan development must be retried.

b. Update configurations in back-end systems or product catalog that ensure that
the order passes plan development. The plan development must be retried.

c. Determine whether the order is invalid and withdraw the order.

The task is completed.

5. TIBCO iProcess® then invokes a BusinessWorks service that creates the
PreQualificationFailedReply event, populates the event with the appropriate
information, and flags the response to retryopd or withdraw as appropriate. This
event is then sent on a JMS or REST queue to the orchestrator. The TIBCO iProcess®
procedure then ends.

6. Orchestrator receives the PreQualificationFailedReply and processes it accordingly.

PreQualificationFailedRequest Event
The PreQualificationFailedRequest event is sent by the orchestrator in case the plan fails to
generate. The event is received by the OPD Error handler for manual processing. It is an
asynchronous event sent to a JMS or REST queue.

Event Destinati
on Type

Destination Event
Type

PreQualificationFailed
Request

POST
(REST)

/v1/pqf Asynchron
ous

PreQualificationFailed
Request

JMS
Queue

tibco.aff.orchestrator.provider.order.prequ
al.failed.request

Asynchron
ous

PreQualificationFailedReply Event
PreQualificationFailedReply event is sent by the OPD Error handler as a response to the
failed plan generation. Orchestrator receives the result and interprets it accordingly.

TIBCO® Order Management User Guide

57 | Orchestrator

Event Destinati
on Type

Destination Event
Type

PreQualificationFaile
dReply

POST
(REST)

/v1/preQualificationFailedReply Synchrono
us

PreQualificationFaile
dReply

JMS
Queue

tibco.aff.orchestrator.provider.order.prequ
al.failed.reply

Asynchron
ous

You can set the following properties in the ConfigValues_OrchService.JSON file as per
your requirements:

l com.tibco.fom.orch.retryFailedOPD: Flag to enable retry of failed OPD request.

l com.tibco.fom.orch.OPDRetries: Retry count for failed OPD request.

l com.tibco.fom.orch.opdRetryInterval: Interval in millisecond to wait before
retrying failed OPD Request.

Process Components
A Process Component is the implementation of a series of steps that are required to fulfill a
plan item. Process components must be implemented by using any REST and JMS-enabled
technology provided they meet the requirements outlined here.

These are required components in the architecture.

Specification

Process Components must conform to the following requirements to be a valid
implementation.

1. Receive event messages on REST endpoint or on a JMS queue.

2. Receive the following event types:

a. Plan Item Execute Request

b. Plan Item Suspend Request

c. Plan Item Activate Request

TIBCO® Order Management User Guide

58 | Orchestrator

3. For plan item execute requests, perform a series of tasks that are required to fulfill
the product and action specified in the plan item. Once it has completed, send a plan
item execute response.

4. When instructed to do so, halt execution at certain milestones until notified by
Orchestrator it might continue.

5. For plan item suspend requests, halt execution of an in-progress process component.
This might or might not be possible so it is valid to send back a plan item execute
response if execution completed, or plan item suspend response if execution was
suspended.

6. For plan item activate requests, resume execution of a previously suspended process
component. This resume takes the form of one of the following cases:

a. Resume execution from the point where it was previously suspended.

b. Cancel execution and roll back previously completed tasks.

c. Cancel execution and do not roll back previously completed tasks.

7. Create and send response events on a JMS queue.

8. Respond with the following event types:

a. Plan Item Execute Response

b. Plan Item Suspend Response

Plan Item Execute Request Event
Plan Item Execute Request Event is sent by the Orchestrator to a Process Component to
request the fulfillment of a particular plan item. It is received by the Process Component
and a series of tasks are run. It can be an asynchronous or synchronous event by a REST
service or JMS. The response is another asynchronous or synchronous event on a different
orchestrator endpoint or JMS queue.

Event Destinat
ion Type

Destination Event Type

PlanItemExecute
Request

POST
(REST)

/v1/planitem/executionrequest Asynchronous/Sync
hronous event

TIBCO® Order Management User Guide

59 | Orchestrator

Event Destinat
ion Type

Destination Event Type

PlanItemExecute
Request

JMS
Queue

tibco.aff.orchestrator.planItem.e
xecute.request

Asynchronous event

Note: The destination name
tibco.aff.orchestrator.planItem.execute.request is valid only if the owner
value is "". Otherwise, the destination would be as follows: (If the owner value is
defined), the destination would be
tibco.aff.orchestrator.planItem.<ownertype>.execute.request.

For example, if the owner value in the plan fragment model is BPM, the
destination would be
tibco.aff.orchestrator.planItem.BPM.execute.request.

Note: In the case of the REST service, you can check the owner in the header
property processComponent name.

Orchestrator sends the below properties in the header according to their technology (HTTP
header, JMS header).

Property Type Cardinality Description

processComponentID String Required Unique identifier for the
Process Component to be run.

processComponentName String Required Name of the Process
Component to be run. This is
the name as configured in the
Process Component Model for
the specified
processComponentID. If a
model is not specified, then
this field is null.

processComponentVersion String Required Version of the Process

TIBCO® Order Management User Guide

60 | Orchestrator

Property Type Cardinality Description

Component to be executed.
This is the version as
configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified, then
this field is null.

processComponentType String Required Type of the Process Component
to be executed. This is the type
as configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified, then
this field is null.

processComponentRecordType String Required It is a class of
processComponentType. This is
the
processComponentRecordType
as configured in the Process
Component Model. If a model is
not specified, then this field is
null.

JMSPriority Integer Required It is the standard JMS message
priority to be sent in the
outbound message to support
order priority.

The payload specification is as follows:

TIBCO® Order Management User Guide

61 | Orchestrator

Plan Item Execute Request

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional A unique identifier for tracing
purposes across function calls.

correlationID String Optional A unique identifier to correlate the
request message with a response
message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the plan item to execute.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item to execute.

planID String Required Internal unique identifier for the plan
that contains the plan item to
execute.

planItem Type Required Plan item type for the plan item to
execute. See Schema References for

TIBCO® Order Management User Guide

62 | Orchestrator

Element Type Cardinality Description

the specification of this type.

sla Type Optional Service level agreement type.

sla/typicalDuration Long Required Typical duration in msec for this
execution when SLAs are
implemented in the Process
Component.

sla/maximumDuration Long Required Maximum duration in msec for this
execution when SLAs are
implemented in the Process
Component.

waitAtMilestoneID String 0-M Milestone ID for a milestone within
the Process Component where
execution must wait until notified by
the Orchestrator that it must proceed.

notifyAtMilestoneID String 0-M MilestoneID for a milestone within the
Process Component where the
Process Component must notify the
Orchestrator that the milestone has
been passed during execution.

Plan Item Milestone Release Request Event
Plan Item Milestone Release Event is sent by Orchestrator to a Process Component to
instruct it to continue execution when stopped at a particular milestone. It might be
possible that this notification occurs before the Process Component has reached the
milestone during execution. Therefore, it is necessary for the Process Component to
maintain a state of the milestone at any time during execution. There is no response to this
interface.

TIBCO® Order Management User Guide

63 | Orchestrator

Event Destina
tion
Type

Destination Event Type

MilestoneReleas
eRequest

POST
(REST)

/v1/planitem/milestonerelease Asynchronous/Sy
nchronous event

MilestoneReleas
eRequest

JMS
Queue

tibco.aff.orchestrator.planItem.mile
stone.release.request

Asynchronous
event

Orchestrator sends the below properties in the header according to their technology (HTTP
header, JMS header).

Property Type Cardinality Description

Originator String Optional The value of the NODE_ID that is assigned to the
instance. This property is sent by the Orchestrator
in all the outbound JMS messages and is
expected to be mapped back by the external
systems (process components, feasibility
providers, pre-qualification failure handlers, and
error handlers) in the corresponding response
messages.

The payload specification is as follows:

TIBCO® Order Management User Guide

64 | Orchestrator

Plan Item Milestone Release Request

Element Type Cardinality Description

businessTransactionID String Optional A unique identifier for tracing
purposes across function calls.

correlationID String Optional A unique identifier to correlate the
request message with a response
message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the plan item with the milestone to
be released.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item with the
milestone to be released.

planID String Required Internal unique identifier for the plan
that contains the plan item with the
milestone to be released.

planItem Type Required Plan item type for the plan item with

TIBCO® Order Management User Guide

65 | Orchestrator

Element Type Cardinality Description

the milestone to be released. See
Schema References for the
specification of this type.

milestoneID String Required A unique identifier for the milestone
within the plan item and plan to be
released.

Note: If com.tibco.fom.orch.enableMilestoneReleaseDuringActivation is set,
the milestone is released during the amendment, provided the related
dependencies do not change during the amendment. If
com.tibco.fom.orch.enableMilestoneReleaseDuringActivation is not set, the
milestone is not released during amendment in the activated plan item, if it was
already released before amendment.

Plan Item Milestone Notify Request Event
Plan Item Milestone Notify Event is sent by a Process Component to the Orchestrator to
notify the orchestration engine that a particular milestone has been passed during
execution. This event enables the Orchestrator to release the milestone, which was waiting
on the current milestone that was notified.

Event Destina
tion
Type

Destination Event Type

MilestoneNotif
yRequest

POST
(REST)

/v1/planitem/milestonenotify Asynchronous/Sy
nchronous event

MilestoneNotif
yRequest

JMS
Queue

tibco.aff.orchestrator.planItem.mile
stone.notify.request

Asynchronous
event

Orchestrator sends the below properties in header according to their technology (HTTP
header, JMS Header).

TIBCO® Order Management User Guide

66 | Orchestrator

Property Type Cardinality Description

originator String Optional The value of the originator property in the
PlanItemExecuteRequest message, received from
the Orchestrator, which must be mapped and sent
back in this response message.

The payload specification is as follows:

Plan Item Milestone Notify Request Event

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the plan item with the milestone to
notify.

TIBCO® Order Management User Guide

67 | Orchestrator

Element Type Cardinality Description

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item with the
milestone to notify.

planID String Required Internal unique identifier for the plan
that contains the plan item with the
milestone to notify.

planItemID String Required Unique identifier for the plan item
within the plan with the milestone to
notify.

milestoneID String Required Unique identifier for the milestone
within the plan item in the plan to
notify.

Note: com.tibco.fom.orch.milestone.allowMultipleSpaces allows milestone
to process with multiple spaces in the milestone id.

Plan Item Execute Response Event
Plan Item Execute Response Event is sent by a Process Component as a response to a Plan
Item Execute Request Event or a Plan Item Activate Event. The orchestrator receives the
result and interprets the result accordingly.

The response for Plan Item Execute has success, completed, and canceled flags. The
orchestrator does not act in response to the canceled flag. However, it does route plan
items to either Plan Item Internal Error Handler or External Error Handler Component if
either completed or success is set to false. Functionally, the orchestrator handles both of
these the same. Plan Item Failed Handlers might choose to handle the exception differently
depending on completed or failure status.

The two flags can be used to distinguish between technical and business exceptions. For
example, a failure to complete is generally indicated a technical exception, so the

TIBCO® Order Management User Guide

68 | Orchestrator

completed flag is false here. A validation failure indicates a business exception, where
complete is true, but success is false.

Completed This flag indicates that the Process Component completed. If this is set to
true, then the Success flag becomes relevant. If this is false, then the Process
Component did not complete and the Success flag is automatically
considered to be false as well.

Success This flag indicates whether the Process Component was successful. This is
only relevant if the complete flag is set to true.

The possible response scenarios are:

Complete Passed Description

Technical
Error

False False
True

Orchestrator retries the Process Component call for
the defined number of retries with the defined retry
interval. If the Process Component call continues to
fail, then it refers the plan item to the Plan Item
Failed Handler.

Business
Error

True False The orchestrator refers the plan item to the Plan
Item Failed Handler.

Success True True Processing continues as normal.

In addition to completed and success values, the Plan Item Execute Response Event also
allows returning a canceled flag. This is only valid if responding to a Plan Item Activate
Request Event and it indicates whether the cancellation was completed successfully or
whether a rollback was requested. completed and success values retain the same
definitions in the event of an activation request as in an execution request.

The possible response scenarios are:

Canceled Description

Execute Request False No cancellation occurred.

TIBCO® Order Management User Guide

69 | Orchestrator

Activate Request with Rollback True Cancellation requested with rollback.

Activate Request without Rollback True Cancellation requested with no rollback.

Event Destinat
ion Type

Destination Event Type

PlanItemExecuteR
esponse

POST
(REST)

/v1/planitem/executionreply Asynchronous/Sync
hronous event

PlanItemExecuteR
esponse

JMS
Queue

tibco.aff.orchestrator.planItem.
execute.reply

Asynchronous event

The event has the following property:

Property Type Cardinality Description

Originator String Optional The value of the originator property in the
PlanItemExecuteRequest message, received from
the Orchestrator, which must be mapped and
sent back in the response message.

The payload specification is as follows:

TIBCO® Order Management User Guide

70 | Orchestrator

Plan Item Execute Response

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

correlationID String Optional A unique identifier to correlate the
request message with a response
message.

resultStatus Type Required Result status type. See Schema
References for the specification of
this type.

orderID String Required Internal unique identifier for the
order associated with the plan
containing the plan item to

TIBCO® Order Management User Guide

71 | Orchestrator

Element Type Cardinality Description

execute.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item to
execute.

planID String Required Internal unique identifier for the
plan that contains the plan item to
execute.

planItemID String Required A unique identifier for the plan item
within the plan to be executed.

Completed Boolean Required The flag indicating if the Process
Component completed processing.

Success Boolean Required The flag indicating if the Process
Component completed successfully.

Canceled Boolean Required Flag indicating that the Process
Component successfully canceled
previously completed tasks.

Message Type 0-M Message type. See Schema
References for the specification for
this type.

typicalSLAViolated Type Optional Flag indicating that the execution
time of the Process Component
violated the typical SLA duration.

maximumSLAViolated Type Optional Flag indicating that the execution
time of the Process Component
violated the maximum SLA
duration.

TIBCO® Order Management User Guide

72 | Orchestrator

Plan Item Suspend Request Event
Plan Item Suspend Request Event is sent by the orchestrator to a process component to
request suspension of execution of a particular plan item. It is received by the process
component, which then either suspends execution or completes execution.

Event Destinat
ion Type

Destination Event Type

PlanItemSuspend
Request

POST
(REST)

/v1/planitem/suspendrequest Asynchronous/Sync
hronous event

PlanItemSuspend
Request

JMS
Queue

tibco.aff.orchestrator.planItem.s
uspend.request

Asynchronous event

Note: The destination name
tibco.aff.orchestrator.planItem.suspend.request is valid only if the owner
value is "". Otherwise, the destination is as follows: (If the owner value is
defined), the destination is
tibco.aff.orchestrator.planItem.<ownertype>.suspend.request .

For example, if the owner value in the plan fragment model is BPM, the
destination is tibco.aff.orchestrator.planItem.BPM.suspend.request.

In the case of REST service, you can check the owner in the header property
processComponent name.

Orchestrator sends the below properties in the header according to their technology (HTTP
header, JMS header).

Property Type Cardinality Description

processComponentID String Required A unique identifier for the
Process Component to be
executed.

processComponentName String Required Name of the Process
Component to be executed.

TIBCO® Order Management User Guide

73 | Orchestrator

Property Type Cardinality Description

This is the name as configured
in the Process Component
Model for the specified
processComponentID. If a
model is not
specified,specified, then this
field is null.

processComponentVersion String Required Version of the Process
Component to be executed.
This is the version as
configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified, then
this field is null.

processComponentType String Required Type of the Process Component
to be executed. This is the type
as configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified, then
this field is null.

processComponentRecordType String Required It is a class of
processComponentType. This is
the
processComponentRecordType
as configured in the Process
Component Model. If a model is
not specified, then this field is
null.

JMSPriority Integer Required It is the standard JMS message
priority to be sent in the
outbound message to support
order priority.

TIBCO® Order Management User Guide

74 | Orchestrator

The payload specification is as follows:

Plan Item Suspend Request

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional A unique identifier for tracing
purposes across function calls.

correlationID String Optional A unique identifier to correlate the
request message with a response
message.

orderID String Required The internal unique identifier for the
order associated with the plan
containing the plan item to be
suspended.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item to be
suspended.

planID String Required Internal unique identifier for the plan
that contains the plan item to be

TIBCO® Order Management User Guide

75 | Orchestrator

Element Type Cardinality Description

suspended.

planItem Type Required Plan item type for the plan item to be
suspended. See Schema References
for the specification of this type.

Plan Item Suspend Response Event
Plan Item Suspend Response Event is sent by a Process Component as a response to a Plan
Item Suspend Request Event. Orchestrator receives the result and interprets the result
accordingly.

Event Destinat
ion Type

Destination Event Type

PlanItemSuspendR
esponse

POST
(REST)

/v1/planitem/suspendreply Asynchronous/Sync
hronous event

PlanItemSuspendR
esponse

JMS
Queue

tibco.aff.orchestrator.planItem.
suspend.reply

Asynchronous event

The event has the following property:

Property Type Cardinality Description

originator String Optional The value of the originator property in the
PlanItemSuspendRequest message, received from
the Orchestrator, which must be mapped and sent
back in the response message.

The payload specification is as follows:

TIBCO® Order Management User Guide

76 | Orchestrator

Plan Item Suspend Response

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

resultStatus Type Required Result status type. See Schema
References for the specification of
this type.

orderID String Required Internal unique identifier for the
order associated with the plan
containing the plan item to
suspend.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item to

TIBCO® Order Management User Guide

77 | Orchestrator

Element Type Cardinality Description

suspend.

planID String Required Internal unique identifier for the
plan that contains the plan item to
suspend.

planItemID String Required Unique identifier for the plan item
within the plan to be suspended.

completed Boolean Required Flag indicating if the Process
Component suspend completed
processing.

success Boolean Required Flag indicating if the Process
Component suspend completed
successfully.

If any of the flag completed or success is false in PlanItemSuspendResponse, then the
process component suspension gets failed and you have to resubmit the
PlanItemSuspendResponse.

Plan Item Activate Request Event
Plan Item Activate Request Event is sent by Orchestrator to a Process Component to
request activation of a previously suspended plan item. It is received by the Process
Component, which then resumes, cancels with roll back, or cancels without roll back. It is
an asynchronous event to a JMS queue. There is no specific response to a Plan Item
Activate Request Event, however the Process Component is expected to complete
processing and return a Plan Item Execute Response Event as usual.

Event Destinat
ion Type

Destination Event Type

PlanItemActivate
Request

POST
(REST)

/v1/planitem/activaterequest Asynchronous/Sync
hronous event

TIBCO® Order Management User Guide

78 | Orchestrator

Event Destinat
ion Type

Destination Event Type

PlanItemActivate
Request

JMS
Queue

tibco.aff.orchestrator.planItem.a
ctivate.request

Asynchronous
event

Note: The destination name
tibco.aff.orchestrator.planItem.activate.request is valid only if owner
value is "". Otherwise, the destination is as follows: (If owner value is defined),
the destination is
tibco.aff.orchestrator.planItem.<ownertype>.activate.request .

For example, if the owner value in the plan fragment model is BPM, the
destination is tibco.aff.orchestrator.planItem.BPM.activate.request.

In the case of REST service, you can check the owner in the header property
processComponent name.

Orchestrator sends the below properties in header according to their technology (HTTP
header, JMS Header).

Property Type Cardinality Description

processComponentID String Required Unique identifier for the
Process Component to be
executed.

processComponentName String Required Name of the Process
Component to be executed.
This is the name as configured
in the Process Component
Model for the specified
processComponentID. If a
model is not specified then this
field is null.

processComponentVersion String Required Version of the Process
Component to be executed.

TIBCO® Order Management User Guide

79 | Orchestrator

Property Type Cardinality Description

This is the version as
configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified then
this field is null.

processComponentType String Required Type of the Process Component
to be executed. This is the type
as configured in the Process
Component Model for the
specified processComponentID.
If a model is not specified then
this field is null.

processComponentRecordType String Required It is a class of
processComponentType. This is
the
processComponentRecordType
as configured in the Process
Component Model. If a model is
not specified then this field is
null.

JMSPriority Integer Required It is the standard JMS message
priority to be sent in the
outbound message to support
order priority.

The payload specification is as follows:

TIBCO® Order Management User Guide

80 | Orchestrator

Plan Item Activate Request

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the plan item to activate.

orderRef String Required External unique identifier for the
order associated with the plan
containing the plan item to activate.

planID String Required Internal unique identifier for the plan

TIBCO® Order Management User Guide

81 | Orchestrator

Element Type Cardinality Description

that contains the plan item to
activate.

planItem Type Required Plan item type for the plan item to
activate. See Schema References for
the specification of this type.

resumeExecution Type Required,
Choice

Flag indicating that the Process
Component must resume execution
from the point where it was
previously suspended.

cancelAndRollback Type Required,
Choice

Flag indicating that the Process
Component must cancel execution
and roll back previously completed
tasks.

cancelWithNoRollback Type Required,
Choice

Flag indicating that the Process
Component must cancel execution
and not roll back previously
completed tasks.

Pre-qualification Failed Handlers

Overview

A Pre-Qualification Failed Handler is a customer-implemented component used to manage
failed feasibility and plan development steps in an orchestrator. During the fulfillment
process, the orchestrator optionally calls out to a Feasibility Provider and always call out to
a Plan Development Provider.

The Feasibility Provider analyzes the order to determine if it can be fulfilled. If it indicates
that the order cannot be fulfilled, then the fulfillment process cannot proceed. The order
might be referred to the Pre-Qualification Failed Handler for manual intervention if
feasibility error handling is enabled.

TIBCO® Order Management User Guide

82 | Orchestrator

Pre-Qualification Failed handler is an optional component in the architecture. Customers
might choose to implement full error handling within the Feasibility Provider. In that case it
is not valid to return anything back to the orchestrator other than passed in the case of
feasibility. If anything else is returned to the orchestrator, there is no handler to process
the result, and the plan remains either in a feasibility state.

Specification

Pre-Qualification Failed handlers must conform to the following requirements to be a valid
implementation.

1. Receive event messages on a JMS or REST queue.

2. Interpret the Pre-Qualification Failed Request event and determine how best to route
the failed order for further processing.

3. Create and send a response event on a JMS or REST queue.

4. In the response event, specify one of three possible actions that the orchestrator is to
take in response to the error: resubmit, retry, or withdraw.

The three actions that can be specified are as follows:

RetryOPD The Pre-Qualification Handler confirms that the order can be processed
further. In this case, the Orchestrator sends an order plan generation
request to Aopd and moves the order to OPD state.

RetryFeasibility The orchestrator resubmits the order to the Feasibility Provider as it was
originally submitted. If this new call fails, the order is sent back to the
Pre-Qualification Failed Handler again.

Withdraw The order is withdrawn from the Orchestrator and not fulfilled. It is
deleted from the engine and Transient Data Store.

The details of the Pre-Qualification Failed Handler are left as a customer-specific
implementation. An example of a handler can be the following:

1. Receive a Pre-Qualification Failed Handler Request event messages on a JMS or REST
queue by a BusinessWorks process.

2. BusinessWorks starts a process instance in iProcess.

3. The iProcess process model creates a manual task and displays a form in a work

TIBCO® Order Management User Guide

83 | Orchestrator

queue for operations support. The form displays the order and the details of the
failure.

4. Operations support reviews the task and chooses one of the following options:

a. Change the order that allows the order to pass feasibility and the order is
processed further.

b. Update configurations in back-end systems or product catalog that allows the
order to pass feasibility. The order feasibility would then retry.

c. Determine the order is invalid and withdraw the order.

5. The task is completed.

6. iProcess then invokes a BusinessWorks service that creates the Pre-Qualification
Failed Handler Response event, and populates the event with the appropriate
information and flags the response to resubmit, retry, or withdraw as appropriate.
This event is then sent on a JMS or REST queue to the orchestrator. The iProcess
procedure then terminates.

7. The orchestrator receives the Pre-Qualification Failed Handler Response and
processes it accordingly.

Pre-Qualification Failed Request Event
Pre-Qualification Failed Request Event is sent by Orchestrator in response to a failed
feasibility or plan development call. It is received by the Pre-Qualification Failed Handler
for manual processing. It can be a JMS or REST queue.

Event Destin
ation
Type

Destination Event Type

PreQualificationF
ailedRequest

POST
(REST)

/v1/pqf Asynchronous/S
ynchronous
event

PreQualificationF
ailedRequest

JMS
Queue

tibco.aff.orchestrator.provider.ord
er.prequal.failed.request

Asynchronous
event

The event has the following payload:

TIBCO® Order Management User Guide

84 | Orchestrator

Pre-Qualification Failed Request

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

orderID String Required Order ID for the order that failed
feasibility or plan development.

orderRequest Type Required Order Request type for the order that
failed feasibility or plan development.
See Schema References for the

TIBCO® Order Management User Guide

85 | Orchestrator

Element Type Cardinality Description

specification of this type.

feasibilityFailed Type Required,
Choice

Flag indicating that this failure was
due to a feasibility failure.

opdFailed Type Required,
Choice

Flag indicating that this failure was
due to a plan development failure.

message Type 0-M Message type. See Schema
References for the specification of
this type. This is any list of messages
passed back from the Feasibility
Provider or the Plan Development
Provider.

Pre-qualification Failed Response Event
Pre-Qualification Failed Response Event is sent by Pre-Qualification Failed Handler as a
response to the failed feasibility or plan development step. Orchestrator receives the result
and interprets the result accordingly.

Event Destin
ation
Type

Destination Event Type

PreQualificationFa
iledResponse

POST
(REST)

/v1/preQualificationFailedReply Asynchronous/S
ynchronous
event

PreQualificationFa
iledResponse

JMS
Queue

tibco.aff.orchestrator.provider.or
der.prequal.failed.reply

Asynchronous
event

The event has the following property:

TIBCO® Order Management User Guide

86 | Orchestrator

Property Type Cardinality Description

originator String Optional The value of the originator property in the Pre-
QualificationFailedRequest message, received
from the Orchestrator, which must be mapped
and sent back in the response message.

The event has the following payload:

Pre-qualification Failed Response

TIBCO® Order Management User Guide

87 | Orchestrator

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Required Unique identifier to correlate the
request message with a response
message. Even though this field is
marked as optional in the response
schema, it is required for Orchestrator
can correlate the response with the
correct version of the submitted
order. Populate this field the same as
correlationID in the request message.

orderID String Required Internal unique identifier for the order
that failed feasibility or plan
development.

orderRef String Required External unique identifier for the
order that failed feasibility or plan
development.

withdraw Type Required,
Choice

Flag indicating that the order must be
withdrawn.

retryFeasibility Type Required,
Choice

Flag indicating that the order must
retry feasibility without any changes.
This response might be made in cases
where the request was for either
feasibility or plan development
failure.

retryOPD Type Required,
Choice

Flag indicating that the order must
retry plan development without any
changes. This response might be
made in cases where the request was
for plan development failure.

TIBCO® Order Management User Guide

88 | Orchestrator

Element Type Cardinality Description

Technically there is no restriction on
doing so in the case of a feasibility
failure, but functionally it does not
make sense to do so.

orderRequest Type Required,
Choice

Order request type. See Schema
References for the specification of
this type. This is provided in the case
of an order resubmit.

message Type 0-M Message type. See Schema
References for the specification of
this type. If populated, this list of
messages are returned in any Submit
Order Response message occurring
after the call to the PreQualification
Failed Handler occurred.

Plan Item External Error Handlers
Plan Item External Error Handler is a customer-implemented component used to manage
failed plan items. During fulfillment, the Orchestrator requests plan item execution from a
process component. When execution completes, the Process Component might specify one
of three result conditions:

l Execution completed successfully

l Execution completed, but with error

l Execution did not complete

Successful execution results in the plan item being flagged as complete and execution
continuing with the next items in the plan.

Error or incomplete execution means that the plan item has not been successfully
completed and therefore the next items in the plan must not begin execution until the
conditions that caused the failure are rectified.

TIBCO® Order Management User Guide

89 | Orchestrator

The orchestrator does not distinguish between an incomplete execution and an error
response when determining how to handle the failed plan item. Both are handled in the
same way by invoking the Plan Item Error Handler and indicating which failure mode
returned. The semantics of how to determine whether a process component is incomplete
or in error is left to a customer-specific interpretation and implementation. The
implementation between process components and the Plan Item Error Handler must be
consistent.

Plan Item Error Handler is an optional component in the architecture. Customers might
choose to implement full error handling within the Process Component. In that case it is
not valid to return anything back to the orchestrator other than success. If anything else is
returned to the Orchestrator, there is no handler to process the result and the plan remains
in an execution state without progressing beyond the failed plan item.

Specification

Plan Item Error Handlers must conform to the following requirements to be a valid
implementation.

1. Receive event messages on a JMS or REST queue.

2. Interpret the Plan Item Failed Request event and determine how best to route the
failed plan item for further processing.

3. If necessary, distinguish between incomplete execution and error response execution
and interpret the Error Handler field in the Plan Item Failed Request and direct the
plan item to the correct handling component.

4. Create and send a response event on a JMS or REST queue.

5. In the response event, specify one of three possible actions that the orchestrator is to
take in response to the reply: retry, resume, or complete.

The three actions that can be specified are as follows:

Retry The plan item is resubmitted to the Process Component to start over from the
beginning. This occurs immediately on receipt of the Plan Item Failed Response
event as all dependencies have been previously satisfied. The Process
Component is notified to re-execute the plan item through a Plan Item Execute
Request event. If Orchestrator has been automatically set up to retry failed
process components, and this retry fails as well, the retry count is not reset to

TIBCO® Order Management User Guide

90 | Orchestrator

zero. In other words, if the retry from a Plan Item Failed Handler response fails,
then that failure is immediately redirected back to the Plan Item Failed Handler
for processing again as a new failed plan item, and not automatically retried
further.

Resume The plan item is resumed in the Process Component from the point of failure.
The implementation details of this are left for Process Component design.
However, it is conceivable that the Process Component might choose to handle
a resume the same as a full retry if it is not functionally possible to resume
execution from the point of failure. The Process Component is notified to
resume the plan item through a plan item Activate event.

Complete The plan item is considered to be completed and not resubmitted to the
Process Component. The orchestrator marks the plan item as Complete and
processing continues. Any dependencies on the newly Completed plan item are
evaluated and further plan items triggered as in the normal execution.

The details of the Plan Item Failed Handler are left as a customer-specific implementation.
An example of a handler can be the following:

1. Receive a Plan Item Failed Handler Request event message on a JMS or REST queue
by a BusinessWorks process.

2. BusinessWorks starts a process instance in iProcess.

3. The iProcess process model makes a service call out to the Transient Data Store to
retrieve the order.

4. The iProcess process model creates a manual task and displays a form in a work
queue for operations support. The form displays the order and the details of the
failure.

5. Operations support reviews the task and chooses one of the following options:

a. Change the order, which lets the order to process successfully in the Process
Component. The changed order is then saved in the Transient Data Store and
the plan item might be retried or resumed.

b. Change back-end systems that lets the order to process successfully in the
Process Component. The plan item might be retried or resumed.

c. Implement the required functionality for the plan item manually in the back-
end systems. The plan item might be completed.

TIBCO® Order Management User Guide

91 | Orchestrator

6. iProcess then invokes a BusinessWorks service that creates the Plan Item Failed
Handler Response event, populates the event with the appropriate information, and
flags the plan item to complete, retry, or resume. This event is then sent on a JMS or
REST queue to the orchestrator.

7. The orchestrator receives the Plan Item Failed Handler Response and processes it
accordingly.

ShouldFailedPlanItemSuspend Flag
The default value of the ShouldFailedPlanItemSuspend flag is false. This flag is considered
only in cases when the ExternalErrorHandler is configured.

Use-cases

When the Orchestrator sends execute request to the process-component and based on
certain logic, the process-component decides to reply with an error. In such cases, the
request is forwarded to the configured ExternalErrorHandler which is a custom
component.

Similarly, when a suspend request is sent by the Orchestrator to the process-component
and the process-component replies with an error,

l If the ShouldFailedPlanItemSuspend flag is set to false, on receiving an error in a
suspend reply from the process-component, the plan item is sent to
ExternalErrorHandler.

l If the ShouldFailedPlanItemSuspend flag is set to true, on receiving an error in a
suspend reply from the process-component, the plan item is suspended.

Plan Item Failed Request Event
Plan Item Failed Request Event is sent by Orchestrator in response to a failed plan item. It
is received by the Plan Item Failed Handler for manual processing. It is an asynchronous
event to a JMS or REST queue.

TIBCO® Order Management User Guide

92 | Orchestrator

Event Destina
tion
Type

Destination Event Type

PlanItemFailed
Request

POST
(REST)

/v1/planitem/errorhandlerrequest Asynchronous/Syn
chronous event

PlanItemFailed
Request

JMS
Queue

tibco.aff.orchestrator.provider.plan
Item.failed.request

Asynchronous
event

The event has the following payload:

Plan Item Failed Request

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

TIBCO® Order Management User Guide

93 | Orchestrator

Element Type Cardinality Description

correlationID String Optional Unique identifier to correlate the
request message with a response
message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the failed plan item.

orderRef String Required External unique identifier for the
order associated with the plan
containing the failed plan item.

planID String Required Internal unique identifier for the plan
that contains the failed plan item.

planItem Type Required Plan item type for the plan item that
failed. See Schema References for the
specification of this type.

errorHandler String Required Name of the error handler to invoke
for this failed plan item. This value is
either populated from the Process
Component Model for the Process
Component if it exists or with the
default error handler from the
Orchestrator configuration.

message Type 0-M Message type. See Schema
References for the specification of
this type. This is the list of messages
as returned in the Plan Item Execute
Response Event.

Plan Item Failed Response Event
Plan Item Failed Response Event is sent by Plan Item Failed Handler as a response to the
failed plan item. Orchestrator receives the result and interprets the result accordingly.

TIBCO® Order Management User Guide

94 | Orchestrator

Event Destina
tion
Type

Destination Event Type

PlanItemFailedR
esponse

POST
(REST)

/v1/planitem/errorHandlerreply Asynchronous/Syn
chronous event

PlanItemFailedR
esponse

JMS
Queue

tibco.aff.orchestrator.provider.pla
nItem.failed.reply

Asynchronous
event

The event has the following property:

Property Type Cardinality Description

originator String Optional The value of the originator property in the
PlanItemFailedRequest message, received from
the Orchestrator, which must be mapped and sent
back in the response message.

The event has the following payload:

TIBCO® Order Management User Guide

95 | Orchestrator

Plan Item Failed Response

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

correlationID String Required Unique identifier to correlate the
request message with a response
message. Even though this field is

TIBCO® Order Management User Guide

96 | Orchestrator

Element Type Cardinality Description

marked as optional in the response
schema, it is required for Orchestrator
can correlate the response with the
correct version of the submitted
order. Populate this field the same as
correlationID in the request message.

orderID String Required Internal unique identifier for the order
associated with the plan containing
the failed plan item.

orderRef String Required External unique identifier for the
order associated with the plan
containing the failed plan item.

planID String Required Internal unique identifier for the plan
that contains the failed plan item.

planItemID String Required Unique identifier for the plan item
within the plan that failed.

retry Type Required,
Choice

Flag indicating that the plan item
must be retried.

resume Type Required,
Choice

Flag indicating that the plan item
must be resumed from the point of
failure.

complete Type Required,
Choice

Flag indicating that the plan item
must be marked as Complete and the
execution continues.

message Type 0-M Message type. See Schema
References for the specification of
this type. If populated, this list of
messages are returned in any Submit
Order Response message occurring

TIBCO® Order Management User Guide

97 | Orchestrator

Element Type Cardinality Description

after the call to the Plan Item Failed
Handler occurred.

Broker Service
The Broker service enhances the reliability and availability of Orchestrator instances. In the
event of an instance failure, the Broker service redirects orders from the failed instance to
all other active instances, ensuring seamless operation and minimal disruption to users.

Each Orchestrator instance registers itself with the Broker service when it starts up.
Subsequently, instances regularly send status updates to the Broker service. The Broker
service monitors the health of every instance through this ping mechanism.

Feature Descriptions
l Dedicated REST Endpoint Management for Orchestrator Instances

l Instance Status Management

l Instance Failure Mechanism

l Listener for Southbound Reply Queues (Without Originator)

Dedicated REST Endpoint Management for Orchestrator Instances
l Registration of a new instance with the Broker Service

l Deregistration of an instance from the Broker Service

l Instance cleanup operation

l Retrieval of Instance details by Instance ID

l Retrieval of Instance details by Service Name

l Retrieval of all Instance details

l Retrieval of all available services

TIBCO® Order Management User Guide

98 | Orchestrator

l Instance Ping Operation

Instance Status Management

Job schedulers are implemented to periodically monitor the health of every instance.
Throughout the instance registration and deregistration processes, the status of instances
is passed between different states. The job schedulers ensure that the status of instances is
accurately tracked and managed throughout their life-cycle within the Broker service.

To effectively handle these status changes, the following job schedulers are implemented:

InactiveInstanceMonitor: Monitors the status of inactive instances.

ActiveInstanceMonitor: Monitors the status of active instances.

Instance Failure Mechanism

This mechanism handles instance failures, ensuring the distribution of orders from a failed
instance to other active instances.

Listener for Southbound Reply Queues (Without Originator)

A listener is designed to monitor all southbound reply queues without selectors. This is
intended to handle situations when southbound systems send replies without headers.

Design and Implementation
This section describes the design of the Broker service and its implementation.

l Instance Status Descriptions

l Database Details

l Configuration Value Details

l Exposed REST Endpoints

l Instance Status Management

l Instance Failure Mechanism

l Re-assigning Order to an Instance

TIBCO® Order Management User Guide

99 | Orchestrator

l Listener for Southbound Reply With no Originator

l Recovery Notification Processing

l Time Dependency Monitor

Instance Status Descriptions

During the instance registration and deregistration processes, instances undergo the
following statuses:

l Pending: Indicates that an instance is registered but verification is pending to
confirm whether the instance has started successfully without errors.

l Active: Signifies that an instance is registered and currently active.

l Inactive: Indicates that an instance is not currently active. An instance is marked as
inactive by the ActiveInstanceMonitor flag when it has not communicated or
pinged back for an extended period.

Database Details

The following table shows the database details for Broker service.

Name Description Data Type

Oracle DB PostgreSQL
DB

instance_id Unique identifier for the registered
instance

VARCHAR2
(255)

character
varying(255)

ip_address IP address associated with a specific
instance

VARCHAR2
(250)

character
varying(250)

port Port number associated with a
particular service or endpoint, specifies
the network port used for
communication.

VARCHAR2
(20)

character
varying(20)

Instance Ledger

TIBCO® Order Management User Guide

100 | Orchestrator

Name Description Data Type

Oracle DB PostgreSQL
DB

status Current operational status or state of a
system component or service, aiding in
monitoring and management by
indicating whether it is active, inactive

NUMBER(10,
0)

numeric(10, 0)

service_name The name or identifier of a specific
service, aiding in the categorization and
organization of services within the
system.

VARCHAR2
(50)

character
varying(50)

last_updated_
timestamp

Last timestamp for instance status
updated

NUMBER(20,
0)

numeric(20, 0)

The database scripts are present at the following locations:

PostgreSQL database: <OM_HOME>/db/dbscripts/postgreSQL/broker

Oracle database: <OM_HOME>/db/dbscripts/oracle/broker

Configuration Value Details

Properties File Update

Before the server startup, the Broker service uses the configurator component to retrieve
essential configuration properties from the application.properties file, which ensures a
seamless startup process.

Property Name Property Value Description

server.port 9105 Port at which
the broker
service starts.

TIBCO® Order Management User Guide

101 | Orchestrator

Property Name Property Value Description

configuratorServiceUrl http://localhost:9090 Configurator
base URL to
connect and
download
configuration
properties and
configuration
files.

configuratorServiceRetryCount 5 Number of
retries to
perform in
case of request
failure to
configurator.

configuratorServiceRetryDuration 5 Delay between
each retry, in
seconds.

configuratorTrustStoreAbsoluteFilePath C:/Users/cacert Trust store file
path if
configurator is
on HTTPS.

configuratorTrustStorePassword tibco123 Trust store
password if
configurator is
on HTTPS.

configuratorTrustStoreType jks Trust store
type if
configurator is
on HTTPS.

security.key ENC
(nSa0k6lmjPPN8ZA5SO6BpQ==)

Security key to
securely

TIBCO® Order Management User Guide

102 | Orchestrator

Property Name Property Value Description

connect to
Configurator.
The default
value is
encrypted of
1t1s@asy.

Update Broker Service configuration values

The configurator must have certain configuration properties available. Before the server
starts, you must upload these configuration properties to the configurator. These
properties are available in the $OM_HOME/seed-data/app-properties/ConfigValues_
BrokerService.json file.

Catalog Client Configuration

When the Broker service triggers pending southbound notifications, it populates the plan
item details in some of those notifications. To achieve this, the Broker service connects to
the Catalog Service and fetches the latest plan fragment details associated with the plan
item, then includes these details in the southbound notifications.

Conversely, the Orchestrator fetches these notifications by directly connecting to the
catalog database and caching the details in its memory. Unlike the Orchestrator, the
Broker service retrieves data through REST calls to the Catalog service and does not cache
the responses.

Property Name Property Value Description

catalogServiceBaseUrl http://localhost:9092 Catalog Service
base URL.

catalogTrustStorePassword tibco123 Trust store
password if
Catalog is on
HTTPS.

catalogTrustStoreType jks Trust Store

TIBCO® Order Management User Guide

103 | Orchestrator

Property Name Property Value Description

type if Catalog
is on HTTPS.

catalogTrustStoreFileName cacert Trust Store
certificate file
name. This is
required if the
catalog is
running on
HTTPS. The
Broker Service
downloads this
file from the
configurator.

Broker Database Configuration

The Broker Service manages instance life-cycles by storing instance information in a
database. For more information, see the Instance Management APIs.

Property Name Property Value Description

brokerDsUrl jdbc:postgresql://localhost:5432/broker
dbll?
currentSchema=brokerschemall

JDBC URL of
the broker
database.

brokerDsUsername brokeruserll User name
of the broker
database.

brokerDsPassword brokeruserll Password of
the broker
database.

brokerDsInitializeSize 2 Number of
connections

TIBCO® Order Management User Guide

104 | Orchestrator

Property Name Property Value Description

that are to
be
established
when the
connection
pool is
started.

brokerDsMaxIdle 11 Maximum
number of
connections
that must be
kept in the
idle pool.

brokerDsMaxActive 12 Maximum
number of
active
connections
that can be
allocated
from this
pool at the
same time.

brokerDsMaxWait 1000 Maximum
number of
milliseconds
that the pool
waits when
there are no
available
connections.

brokerDsTestOnBorrow false Enable
connection
validation

TIBCO® Order Management User Guide

105 | Orchestrator

Property Name Property Value Description

before being
borrowed
from the
pool.

brokerDsValidationInterval 5000 Data source
validation
interval in
milliseconds.

brokerDsTestWhileIdle true Enable
connection
validation
while idle in
connection
pool.

brokerDsTimeBetweenEvictionRuns
Millis

5000 Minimum
amount of
time in
milliseconds
an object
must sit idle
in the pool
before it is
eligible for
eviction.

brokerDsMinEvictableIdleTimeMillis 5000 Minimum
amount of
time in
milliseconds
an object
might sit idle
in the pool.

brokerDsNumTestsPerEvictionRun 5 Maximum

TIBCO® Order Management User Guide

106 | Orchestrator

Property Name Property Value Description

number of
connections
to examine
during each
evictor run.

brokerDsDefaultAutoCommit false Enable auto
commit after
each
transaction.

brokerDsRollbackOnReturn false Enable
transaction
rollback
when
connection
is returned
back to the
pool.

brokerDsCommitOnReturn false Enable
transaction
commit
when
connection
is returned
back to the
pool.

brokerDsCustomProperty Pooled
Database
Custom
Property.

Instance Management Configuration

The Broker service includes job schedulers that monitor instance life-cycles. The following
properties are required for these jobs. For more information, see Instance Status
Management and Instance Failure Mechanism.

TIBCO® Order Management User Guide

107 | Orchestrator

Property Name Property Value Description

activeInstanceMonitorInterval 20 Time interval, measured
in minutes, at which
ActiveInstanceMonitor
operates or runs.

activeInstanceMonitorThreshol
d

5 The duration parameter
used by
ActiveInstanceMonitor to
identify and declare
inactive instances based
on the timestamp
comparison
(LastUpdatedTimestam
p) against the defined
threshold.

inactiveInstanceMonitorCronEx
pression

0 */20 * * * ? A Cron expression that
determines the
execution schedule of
InactiveInstanceMonitor.

orderEventTransferTaskQueue com.tibco.broker.order.event.ta
sk.queue

Queue on
OrderEventTransfer task
would be published
internally by Broker
Service.

orderEventTransferTaskListene
rCount

10 Number of concurrent
listener on the
orderEventTransferTask
Queue.

orderEventTransferTaskRetryC
ount

5 Retry count for
orderEventTransferTask.

orderEventTransferTaskRetryIn 1 Retry interval between

TIBCO® Order Management User Guide

108 | Orchestrator

Property Name Property Value Description

terval orderEventTransferTask .

timeDependencyMonitorInterva
l

1 Fixed interval in minutes
to monitor time
dependency with null
instance id.

No Originator Listener Configuration

The Broker maintains a connection to the EMS server to listen for southbound replies. This
includes listening for replies from currently inactive instances and those lacking the
required originator header. Additionally, to ensure the Broker service can recover requests
sent to the southbound system, it must be configured with the appropriate queues.

For more information, see the following topics:

l Instance Status Management

l Instance Failure Mechanism

l Re-assigning Order to an Instance

l Listener for Southbound Reply With no Originator

Property Name Property Value Descriptio
n

orchestratorInboundNoOriginatorQ
ueue

tibco.aff.orchestrator.inbound.no.originat
or.queue

Queue on
which
Orchestrat
or listens
for
incoming
replies
from the
southboun
d system.

TIBCO® Order Management User Guide

109 | Orchestrator

Property Name Property Value Descriptio
n

orchestratorInboundNoOriginatorD
eadQueue

tibco.aff.orchestrator.inbound.no.originat
or.dead.queue

Dead
Queue on
which
Orchestrat
or sends
the
unprocessa
ble
messages.

orchestratorInboundNoOriginatorR
eceiverCount

5 Number of
concurrent
consumers
on each
southboun
d response
queue.

orchestratorInboundNoOriginatorR
etryCount

5 Number of
retries in
case of any
exception.

orchestratorInboundNoOriginatorR
etryInterval

5000 Delay in
Millisecond
s between
consecutive
retries.

Recovery Notification Configuration

Broker service requires the following properties to process recovery notifications. For more
information, see Recovery Notification Processing.

TIBCO® Order Management User Guide

110 | Orchestrator

Property Name Property Value Description

recoveryNotificationQueue tibco.aff.orchestrator.order.event.notification.q
ueue

The queue
to listen to
the recovery
notification
sent by
Orchestrator.

recoveryNotificationDeadQu
eue

tibco.aff.orchestrator.order.event.notification.q
ueue.dead

Dead Queue
to send the
unprocessab
le recovery
notification.

recoveryNotificationReceiver
Count

5 Number of
listeners to
listen to the
recovery
notification.

recoveryNotificationRetryCo
unt

5 Number of
retries in
case of
failure.

recoveryNotificationRetryInt
erval

5000 Interval in
milliseconds
between
each retry.

Update Orchestrator Service Configuration Values

You need to update the Orchestrator service configuration values. The properties are
available in the $OM_HOME/seed-data/app-properties/ConfigValues_OrchService.json
file.

Order Database Configuration

Broker service interacts with the order database to carry out the following functions:

TIBCO® Order Management User Guide

111 | Orchestrator

l Re-trigger pending notifications.

l Determine a new instance ID for an order in situations where,

o The owner instance becomes inactive.

o Southbound replies do not include the required originator header.

For more information, see the following topics:

o Recovery APIs

o Instance Status Management

o Instance Failure Mechanism

o Re-assigning Order to an Instance

o Design and Implementation

Property Name Property Value Description

orderDsUrl jdbc:postgresql://localhost:5432/

orderdbllhf7?currentSchema=ordersche
mallhf7

JDBC URL of
the broker
database.

orderDsUsername orderuserll User name
of the
broker
database.

orderDsPassword orderuserll Password of
the broker
database.

orderDsInitializeSize 2 Number of
connections
that are to
be
established
when the
connection
pool is
started.

TIBCO® Order Management User Guide

112 | Orchestrator

Property Name Property Value Description

orderDsMaxIdle 11 Maximum
number of
connections
that must be
kept in the
idle pool.

orderDsMaxActive 12 Maximum
number of
active
connections
that can be
allocated
from this
pool at the
same time.

orderDsMaxWait 1000 Maximum
number of
milliseconds
that the
pool waits
when there
are no
available
connections.

orderDsTestOnBorrow false Enable
connection
validation
before being
borrowed
from the
pool.

orderDsValidationInterval 5000 Data source

TIBCO® Order Management User Guide

113 | Orchestrator

Property Name Property Value Description

validation
interval in
millisecond
s.

orderDsTestWhileIdle true Enable
connection
validation
while idle in
connection
pool.

orderDsTimeBetweenEvictionRuns
Millis

5000 Minimum
amount of
time in
milliseconds
an object
must sit idle
in the pool
before it is
eligible for
eviction.

orderDsMinEvictableIdleTimeMillis 5000 Minimum
amount of
time in
milliseconds
an object
might sit
idle in the
pool.

orderDsNumTestsPerEvictionRun 5 Maximum
number of
connections
to examine
during each

TIBCO® Order Management User Guide

114 | Orchestrator

Property Name Property Value Description

evictor run.

orderDsDefaultAutoCommit false Enable auto
commit after
each
transaction.

Common Database Configuration

Property Name Property Value Description

datasourceDriverClassName org.postgresql.Driver Data Source
Driver Class
Name.

datasourceValidationQuery SELECT 1 SQL query that
is used to
validate
connections.

hibernateDialect org.hibernate.dialect.PostgreSQLDialect Hibernate
Dialect.

hibernateShowSql false Hibernate
Show SQL.

EMS Configuration

The Broker stays connected to the EMS Server to listen for southbound replies, especially
for instances that are inactive now and for replies lacking the required originator header.

Property Name Property Value Description

emsServerURL tcp://localhost:7222 EMS Server URL

TIBCO® Order Management User Guide

115 | Orchestrator

Property Name Property Value Description

emsServerUsername admin EMS Server User
Name

emsServerPassword admin EMS Server Password

jndiConnectionFactory GenericConnectionFactory JNDI Connection
Factory Name

tibjmsNamingSecurityProtocol SSL configuration
value, to be set to
'ssl'.

tibjmsNamingSslEnableVerifyHost Set to 'false' to
disable host
verification in SSL.

initialContextFactory com.tibco.tibjms.naming.
TibjmsInitialContextFactory

Name of the Initial
Context Factory.

jmsSessionTransacted true Determines if JMS
sessions are
transacted. Set to
'true'.

timeoutReceiveCalls 10000 Specifies the timeout
for acknowledging
EMS messages, in
milliseconds.

Messaging Queues

The Broker stays connected to the EMS Server to listen for Southbound replies, especially
for instances that are inactive now and for replies lacking the required originator header.
Additionally, to recover requests sent to the Southbound system, the Broker requires
proper queues configuration.

For more information, see the following topics:

l Instance Status Management

TIBCO® Order Management User Guide

116 | Orchestrator

l Instance Failure Mechanism

l Re-assigning Order to an Instance

l Listener for Southbound Reply With no Originator

Property Name Property Value Description

orchestratorInboundQueue tibco.aff.orchestrator.inbound.queue The Broker
service monitors
the Orchestrator
inbound queue
as part of the
Instance Failure
Mechanism to
manage
messages in the
event of an
instance failure.

Exposed REST Endpoints

Instance Management APIs

The instance management APIs are as follows:

l Registration of a new instance

l Unregistration of an existing instance

l Instance Ping Operation

l Instance clean up

l Get Instance Details By Instance Id

l Get Instance Details By Service Name

l Get Instance Details of all instances

Registration of a new instance

URI: v1/instance/register

Request Body:

TIBCO® Order Management User Guide

117 | Orchestrator

{
"instanceId": "string",
"serviceName": "string",
"ipAddress": "string",
"port": 0

}

Parameter Description

serviceName Service name of the instance. Currently only Orchestrator is
supported.

ipAddress IP address of the instance.

port Port of the instance.

instanceId Id of the instance.

 Request Schema

Description

This API handles instance registration requests. After receiving a registration request, the
Broker service uses a database sequence to create an instanceId. Subsequently, it
performs validations before inserting a new record in the instance_ledger table.

Importantly, during registration, the Broker service does not immediately verify the
instance's health status.

The initial status of the selected instance remains Pending. The instance status is updated
to Active or Inactive based on the health assessment during the ping operation.

On successful registration, an Instance Status Change Notification is dispatched.

If a registration request is received for an already registered IP address and port, the
Broker service returns the existing instance ID. This ensures that all pending messages on
the EMS can be processed by the same instance that was restarted.

Request Validations and corresponding error responses

l IP Address cannot be null or empty string.

TIBCO® Order Management User Guide

118 | Orchestrator

{
"status": "BAD_REQUEST",
"message": "Ip Address cannot be null or empty"

}

l Port cannot be less than or equal to zero

{
"status": "BAD_REQUEST",
"message": "Port cannot be less than or equals to Zero"

}

l Service Name cannot be null or empty string

{
"status": "BAD_REQUEST",
"message": "Service name cannot be null or empty"

}

l Service Name cannot be anything other than Orchestrator

{
"status": "BAD_REQUEST",
"message": "Invalid service name {serviceName}"

}

Response Body

{
"instanceId": "string",
"serviceName": "string",
"ipAddress": "string",
"port": int,
"status": "string"

}

Parameter Description

instanceId A unique identification of the instance about to be registered.

 Response Schema

TIBCO® Order Management User Guide

119 | Orchestrator

Parameter Description

serviceName Service name of the instance. Currently only Orchestrator is
supported.

ipAddress IP address of the instance.

port Port of the instance.

status l Pending

l Active

l Pending Purge

l Inactive

HTTP Status Description

201 New Instance is registered successfully.

200 Instance with ipAddress and port already existed with
inactive status. Updated the status to Pending.

202 Instance with ipAddress and port already existed with
active status. No operation is performed by Broker.

401 Invalid token

400 l IpAddress cannot be null or empty

l Port cannot be less than or equals to Zero

l Service name cannot be null or empty

l Invalid <<serviceName>>

In place of <<serviceName>>, the actual name of the
service is displayed.

 Responses

Unregistration of an existing instance

TIBCO® Order Management User Guide

120 | Orchestrator

URI: v1/instance/un-register/{instance_id}

Path Variable:

instance_id (Instance Id): A unique identification of the instance about to be
unregistered. Accepted values can be any non null or non blank string.

Description

This asynchronous operation accepts the instance_id as a path variable and deregisters
an instance from the Broker service. The deregistration process does not immediately
remove the instance. The status of the instance is updated to Inactive.

Request Validations and corresponding error responses

l Instance Id cannot be null or empty string

{
"status": "BAD_REQUEST",
"message": "Instance Id cannot null or empty"

}

l Instance with id {{instance_id}} is not present

{
"status": "BAD_REQUEST",
"message": "Instance with id {{instance_id}} is not present"

}

HTTP Status Description

202 Request accepted

401 Invalid token

400 Instance Id cannot null or empty

404 Instance with id {{instance_id}} is not present

 Responses

Instance Ping Operation

URI: v1/instance/ping

TIBCO® Order Management User Guide

121 | Orchestrator

Request Body

{
"instanceId": "string",
"status": "string",
"inactiveComponentList": [

"string"
]

}

Parameter Description

instanceId A unique identification of the instance

status Health status of the instance. The following values are
Allowed:

l UP

l DOWN

l UNKNOWN

l OUT_OF_SERVICE

inactiveComponentList List of components within the instance that do not currently
exhibit an active health status.

 Request Schema

Description

This API allows instances to regularly update their health status by communicating with the
Broker Service. Instances compute their health status periodically and send this data to the
Broker Service using the REST API.

After receiving these updates, the Broker Service processes and updates the instance's
status in the database. If an instance reports an Up status, it is labeled as Active;
otherwise, it is marked as Inactive.

In cases where an instance is Inactive, the system triggers an Order Event Transfer task
to EMS for further handling.

Request Validations and corresponding error responses

TIBCO® Order Management User Guide

122 | Orchestrator

l Instance Id cannot be null or empty string

{
"status": "BAD_REQUEST",
"message": "Instance Id cannot null or empty"

}

l Instance with id {{instance_id}} is not present

{
"status": "NOT_FOUND",
"message": "Instance with id {{instance_id}} is not present"

}

l Status cannot be null or empty

{
"status": "BAD_REQUEST",
"message": "Status cannot be null or empty"

}

l Invalid status

{
"status": "BAD_REQUEST",
"message": "Invalid status. Only Up, Down, OUT_OF_SERVICE and

UNKNOWN is allowed"
}

HTTP Status Description

200 Request processed

401 Invalid token

400 l Instance Id cannot null or empty.

l Status cannot be null or empty.

l Invalid status. Only Up, Down, OUT_OF_SERVICE and

 Responses

TIBCO® Order Management User Guide

123 | Orchestrator

HTTP Status Description

UNKNOWN is allowed.

404 Instance with id {{instance_id}} is not present.

Instance clean up

URI: v1/instance/cleanup

Request Body: ["string"]

Request Schema: List of instance ids to purge from the database.

Description

In some scenarios, an instance might become inactive without being removed from the
Broker database. You can use this API to manually specify a list of instance IDs that must
be purged from the database.

If any instance in the provided list is not in an Inactive status, it is not purged. However,
any other instances listed is removed from the database.

Request Validations and corresponding error responses

l Instance Id list cannot be empty

{
"status": "BAD_REQUEST",
"message": "Instance Id list cannot be empty"

}

l Are any of the given instances available with broker service?

{
"status": "NOT_FOUND",
"message": "None of requested instances are present"

}

l Are all the given instances still active?

{
"status": "BAD_REQUEST",

TIBCO® Order Management User Guide

124 | Orchestrator

"message": "All of the requested instances are still active.
Unregister them first."
}

HTTP Status Description

200 All requested instances are purged from the database.

206 Only some of the requested instances are purged from the
database. This would usually occur when some instances are
still active.

401 Invalid token

400 l Instance Id list cannot be empty

l All of the requested instances are still active.

l Unregister them first

404 None of request instances are present

 Responses

Get Instance Details By Instance Id

URI: v1/instance/{instanceId}

Path Variable:

instance_id (Instance Id): An exclusive identifier associated with the instance for which
details are being sought. The accepted values can be any non null or non blank string.

Description

This API accepts an instanceId as a path variable and returns the details of the instance
that is registered with the broker service.

Request Validations and corresponding error responses

l Instance Id cannot be null or empty string

TIBCO® Order Management User Guide

125 | Orchestrator

{
"status": "BAD_REQUEST",
"message": "Instance Id cannot be null or empty string"

}

l Instance with id <<instanceId>> is not present

{
"status": "NOT_FOUND",
"message": "Instance with id <<instanceId>> is not present"

}

Response Body

{
"instanceId": "abc",
"serviceName": "Orchestrator",
"ipAddress": "0.0.0.0",
"port": 9093,
"status": "UP"

}

Parameter Description

instanceId A unique identification of the instance about to be registered.

serviceName Service name of the instance. Currently only Orchestrator is
supported.

ipAddress IP address of the instance.

port Port of the instance.

status l Pending

l Active

l Pending Purge

l Inactive

 Response Schema

TIBCO® Order Management User Guide

126 | Orchestrator

HTTP Status Description

200 Returned the instance details of the requested instance.

401 Invalid token

400 Instance Id cannot be null or empty string.

404 Instance with id <<instanceId>> is not present.

 Responses

Get Instance Details By Service Name

URI: /v1/instance?serviceName={serviceName}&pageNo={pageNo}&instancesPerPage=
{instancesPerPage}

Parameters Description

serviceName (Service Name) The service
name for
which details
of every
available
instance are
being
requested.
The accepted
values can be
any non-null
or non-blank
string.

pageNo (Page Number) This
parameter
specifies the
page number
of the
paginated
data. The

TIBCO® Order Management User Guide

127 | Orchestrator

Parameters Description

accepted
values can be
positive
integers
starting from
1, where 1
represents the
first page.

instancesPerPage (Instances Per Page) This
parameter
determines
the number of
instances
displayed on a
single page of
paginated
data. The
accepted
values can be
positive
integers
indicating the
desired
number of
instances per
page.

Description

You can use this API endpoint to retrieve a paginated list of records from the system for a
given serviceName. You can specify the service name, page number, and the number of
records to display per page using query parameters.

Request Validations and corresponding error responses

l Service name cannot be null or empty string

TIBCO® Order Management User Guide

128 | Orchestrator

{
"status": "BAD_REQUEST",
"message": "Service name cannot be null or empty"

}

l No instance is available for the given service name

{
"status": "NOT_FOUND",
"message": "No instances found for service name {serviceName}"

}

l Invalid Page number. Page number cannot be less than 1.

{
"status": "BAD_REQUEST",
"message": "PageNo cannot be less than 1"

}

l Invalid instances per page. InstancesPerPage must be between 1 and 20.

{
"status": "BAD_REQUEST",
"message": "InstancesPerPage should be between 1 and 20."

}

Response Body

{
"instanceDetailsList": [

{
"instanceId": "abc",
"serviceName": "Orchestrator",
"ipAddress": "0.0.0.0",
"port": 9093,
"status": "UP"

}
],
"totalPages": 1,
"currentPage": 1,
"instancesPerPage": 10

}

TIBCO® Order Management User Guide

129 | Orchestrator

Parameter Description

instanceDetailsList List of the instance details

totalPages Total number of pages available as per instancesPerPage

currentPage Current Page number

instancesPerPage Instances per page requested by user

 Response Schema

Parameter Description

instanceId A unique identification of the instance about to be registered.

serviceName Service name of the instance. Currently only Orchestrator is
supported.

ipAddress IP address of the instance

port Port of the instance

status l Pending

l Active

l Pending Purge

l Inactive

 Instance Details

HTTP Status Description

200 Returns all instance details for all the instances registered
with requested service name.

401 Invalid token

 Responses

TIBCO® Order Management User Guide

130 | Orchestrator

HTTP Status Description

400 l Service name cannot be null or empty

l PageNo cannot be less than 1

l InstancesPerPage must be between 1 and 20

404 No instances found for service name {serviceName}

Get Instance Details of all instances

URI: v1/instance/all?pageNo={pageNo}&instancesPerPage={instancesPerPage}

Parameters Description

pageNo (Page Number) This
parameter
specifies the
page number
of the
paginated
data. The
accepted
values can be
positive
integers
starting from
1, where 1
represents the
first page.

instancesPerPage (Instances Per Page) This
parameter
determines
the number of
instances
displayed on a
single page of

TIBCO® Order Management User Guide

131 | Orchestrator

Parameters Description

paginated
data. The
accepted
values can be
positive
integers
indicating the
desired
number of
instances per
page.

Description

You can use this API endpoint to retrieve a paginated list of records from the system. Also,
you can specify the page number and the number of records to display per page using
query parameters.

Request Validations and corresponding error responses

l Invalid Page number. Page number cannot be less than 1

{
"status": "BAD_REQUEST",
"message": "PageNo cannot be less than 1"

}

l Invalid instances per page. InstancesPerPage must be between 1 and 20.

{
"status": "BAD_REQUEST",
"message": "InstancesPerPage should be between 1 and 20."

}

Response Body

{
"instanceDetailsList": [

{
"instanceId": "abc",

TIBCO® Order Management User Guide

132 | Orchestrator

"serviceName": "Orchestrator",
"ipAddress": "0.0.0.0",
"port": 9093,
"status": "UP"

}
],
"totalPages": 1,
"currentPage": 1,
"instancesPerPage": 10

}

Parameter Description

instanceDetailsList List of the instance details

totalPages Total number of pages available as per instancesPerPage.

currentPage Current Page number

instancesPerPage Instances per page requested by user

 Response Schema

Parameter Description

instanceId A unique identification of the instance about to be registered.

serviceName Service name of the instance. Currently only Orchestrator is
supported.

ipAddress IP address of the instance

port Port of the instance

status l Pending

l Active

l Pending Purge

l Inactive

 Instance Details

TIBCO® Order Management User Guide

133 | Orchestrator

HTTP Status Description

200 Returned all instance details for all the instances registered
with requested service name.

401 Invalid token

400 l PageNo cannot be less than 1

l InstancesPerPage must be between 1 and 20

404 No instances available

 Responses

Get all services

URI: /v1/instance/services

Description

This API provides a distinct list of service names for which instances are currently available
within the Broker service.

Request Validations and corresponding error responses

l No instance is available

{
"status": "NOT_FOUND",
"message": "No instance exist."

}

Response Body: ["Orchestrator"]

Response Schema: List of distinct service names.

HTTP Status Description

200 Returned all distinct service names.

 Responses

TIBCO® Order Management User Guide

134 | Orchestrator

HTTP Status Description

401 Invalid token

404 No instance is currently available with broker service.

Recovery APIs

The following recovery APIs are designed to re-trigger requests for pending tasks.

l /v1/notifications/pending

l /v1/notifications/re-send

l /v1/notifications/re-send/all

For more information about recovery APIs, see the TIBCO® Order Management Web Services
Guide.

Alternatively, re-trigger functions can be performed through the OMS UI. For more
information, see Pending Tasks.

Instance Status Management

ActiveInstanceMonitor

In scenarios where an active instance experiences an unexpected shutdown before
updating its health status with the Broker service, the database might retain the instance's
status as "Active."

The primary goal of the ActiveInstanceMonitor is to detect such instances that might be
inactive due to an unforeseen disruption. This monitor initiates the transfer of any pending
southbound replies from the affected instance to other operational instances, ensuring the
continuity of service and preventing interruptions in order processing.

Property Name Purpose

activeInstanceMonitorInterval Time interval, measured in minutes, at which
ActiveInstanceMonitor operates or runs.

 Configuration Used

TIBCO® Order Management User Guide

135 | Orchestrator

Property Name Purpose

activeInstanceMonitorThreshold The duration parameter used by ActiveInstanceMonitor
to identify and declare inactive instances based on the
timestamp comparison (LastUpdatedTimestamp) against
the defined threshold.

The values of activeInstanceMonitorInterval and activeInstanceMonitorThreshold
are set in consideration of the brokerPingInterval (available in ConfigValues_
Orchestrator, used by Orchestrator). These values play a role in determining how often
the ActiveInstanceMonitor evaluates the last updated timestamp and subsequently
marks instances as inactive.

activeInstanceMonitorInterval is chosen to ensure that the ActiveInstanceMonitor
runs frequently enough to promptly identify instances that might have missed their health
status updates. It must be set at a frequency that allows for timely checks without being
overly burdensome on the system.

activeInstanceMonitorThreshold must be configured in relation to the
brokerPingInterval. The threshold value defines the maximum time allowed before
considering an instance as inactive. It's essential to set it considering the expected
frequency of instance health status pings (brokerPingInterval). The threshold must
ideally be longer than the brokerPingInterval to allow for a margin of error due to
delays or missed pings.

For example, if brokerPingInterval is set at 5 minutes, it might be reasonable to
configure activeInstanceMonitorInterval slightly longer than that, such as 7-10
minutes, and then set the activeInstanceMonitorThreshold to a value greater than the
brokerPingInterval, for instance, at 15-20 minutes. This setup allows the
ActiveInstanceMonitor to run more frequently than the pings to ensure quick detection
of inactive instances without marking instances inactive due to minor communication
delays.

Behavior

l The ActiveInstanceMonitor operates as a time-based scheduler, executing at
intervals set by activeInstanceMonitorInterval.

l It calculates the `lastUpdatedTimestampThreshold` using the formula
System.currentTimeMillis() - (long) activeInstanceMonitorThreshold.

l With this threshold, the monitor identifies instances that haven't been updated

TIBCO® Order Management User Guide

136 | Orchestrator

within the specified duration—specifically, instances whose lastUpdatedTimestamp is
less than or equal to the lastUpdatedTimestampThreshold. Instances that meet this
criterion are marked as inactive, indicating potential disruptions or a failure to report
their health status.

l For each instance that meets this criterion, the monitor sets the instance status to
Inactive in the database and triggers the dispatch of an OrderEventTransferTask
to EMS.

InactiveInstanceMonitor

When an instance becomes inactive, there might be situations where southbound systems
send replies for orders previously processed by that instance. Since the inactive instance is
no longer operational, these messages accumulate on EMS queues, affecting order
processing.

The primary goal of the InactiveInstanceMonitor is to relocate all such pending
messages to an active instance. This action ensures that order processing continues
uninterrupted, despite the inactivity of some instances.

Property Name Purpose

inactiveInstanceMonitorCronExpression A Cron expression that determines the execution
schedule of InactiveInstanceMonitor.

 Configuration Used

Behavior

l This monitor fetches instances that are in inactive status.

l For all such instances, OrderEventTransferTask is dispatched to EMS.

Instance Failure Mechanism

OrderEventTransferMonitor

The OrderEventTransferMonitor is designed to transfer all pending events in the Event
Management System (EMS) queues associated with instances that are not in an active
status. This is achieved by creating a separate thread for each queue. Additionally, it
updates the originator (specified in the Java Message Service (JMS) header) for all
messages present at that specific time.

The following queues are affected:

TIBCO® Order Management User Guide

137 | Orchestrator

l tibco.aff.orchestrator.planItem.execute.reply

l tibco.aff.orchestrator.planItem.suspend.reply

l tibco.aff.orchestrator.provider.planItem.failed.reply

l tibco.aff.orchestrator.provider.order.opd.reply

l tibco.aff.orchestrator.planItem.milestone.notify.request

l tibco.aff.orchestrator.provider.order.prequal.failed.reply

l tibco.aff.orchestrator.provider.order.feasibility.reply

Input

{
"instanceId": "",
"ipAddress": "",
"port": ""

}

Parameter Description

instanceId An exclusive identifier associated with the instance

ipAddress IP address of the instance

port Port of the instance

 Input Schema

Property Name Purpose

emsServerUrl EMS Server URL

emsServerUsername EMS Server User Name

emsServerPassword EMS Server Password

timeoutReceiveCalls Ems message receive timeout in milliseconds

 Configuration Used

TIBCO® Order Management User Guide

138 | Orchestrator

Property Name Purpose

orderEventTransferTaskQueue Queue on OrderEventTransfer task would be
published internally by Broker Service

orderEventTransferTaskListenerCount Number of concurrent listener on
orderEventTransferTaskQueue

Behavior

l Order event initiation occurs under the following circumstances:

o An active node has not updated its status within a specified duration.

o An instance remains in an inactive status.

l Verification of instance availability is performed with the Broker for a given
instanceId. This task is skipped if the instance is not found.

l If the instance status is not Active, the order event transfer process is initiated for all
relevant queues.

l Individual threads are created for each relevant queue.

l These threads establish connections with the EMS Server and begin monitoring the
designated queue.

l After identifying a message, the thread reassigns the order to a new instance. The
Broker updates the existing JMS Header value named Originator with the new value
= new InstanceId. For more information, see the Re-assigning Order to an Instance
section.

l The Broker updates the instanceId associated with the order in the Order_data
table.

l The message, now carrying the updated Originator header, is dispatched back to
the same queue for further processing.

Re-assigning Order to an Instance

The primary objective of this task is to reallocate orders previously processed by an
inactive instance to an instance currently marked as Active.

TIBCO® Order Management User Guide

139 | Orchestrator

Parameter Description

orderId An exclusive identifier associated with the order.

currentInstanceId An exclusive identifier associated with the instance that was
processing this order and is currently not in Active state.

 Input

Behavior

l Fetch the instanceId assigned to a given orderId.

l If the instanceId matches the currentInstanceId, reassign the order to a new
instance.

l If the instanceId does not match the currentInstanceId, it implies that the order
might already be assigned to another new instance. Subsequently, the task checks
the status of this new instance. If the new instance is found to be Inactive, the broker
reassigns the order to an alternate new instance.

Logic to compute new InstanceId

l Retrieve all active instances available within the Broker Service.

l It assesses the workload managed by each instance using the following query.

select node_id, count(*)
from plan_item_data pid

inner join order_data od on pid.orderid = od.orderid
where od.node_id is not null

and od.node_id in :NODE_ID_LIST
and od.status NOT in ('COMPLETE', 'CANCELLED', 'WITHDRAWN')
and pid.status not in ('COMPLETE', 'CANCELLED')

group by node_id

l The order is assigned to the instance handling the least workload among the
available active instances.

TIBCO® Order Management User Guide

140 | Orchestrator

Message routing On EMS

Property Name Description Default Value

orchestratorInboundQueue Queue on
which the
Orchestrato
r listens for
all
southbound
replies that
contain an
originator
header.

tibco.aff.orchestrator.inbound.queue

orchestratorInboundNoOriginator
Queue

Queue on
which the
Broker
Service
listens for
all
southbound
replies that
do not
contain an
originator
header.

tibco.aff.orchestrator.inbound.no.originato
r.queue

 Configuration Used

Bridges at the EMS level are introduced to optimize message handling between the
southbound service and the Orchestrator. These bridges facilitate the routing of replies
based on the presence of an originator header in the message.

Southbound Message Routing

When the southbound service sends a reply to the reply queue, the message is bridged
from the source queue to a specific target queue based on a selector.

l With Originator Header: If the southbound reply contains the originator header, the
message is redirected to the orchestratorInboundQueue.

l Without Originator Header: If the southbound reply does not contain the originator

TIBCO® Order Management User Guide

141 | Orchestrator

header, the message is redirected to the orchestratorInboundNoOriginatorQueue.

When the southbound service sends a Plan Item Execute Reply to the
tibco.aff.orchestrator.planItem.execute.reply queue, the EMS routes this message to
either orchestratorInboundQueue or orchestratorInboundNoOriginatorQueue based on
the presence of the originator header in the message.

System Adaptation and Customer Impact

This bridging mechanism ensures that the system adapts to these changes without
requiring any modifications on the customer’s end. The orchestration and broker services
handle the messages as follows:

l Orchestrator Service: Listens for messages on orchestratorInboundQueue.

l Broker Service: Listens for messages on orchestratorInboundNoOriginatorQueue.

Advantages of the New Approach

This approach provides significant advantages over a model where microservices have a
fixed number of listeners on each queue:

l Thread Utilization: Fixed listeners on multiple queues can lead to blocked threads
when there are no messages, wasting resources.

l Load Balancing: With the new approach, a fixed number of threads on a single queue
process all incoming messages, ensuring efficient load balancing and optimal
resource utilization.

By consolidating the message processing to a single queue with intelligent routing based
on message headers, the service maintains high efficiency and flexibility in handling
southbound messages. This design minimizes thread blocking and enhances the system's
ability to manage varying message loads effectively.

Listener for Southbound Reply With no Originator

When Orchestrator dispatches requests to Southbound systems, it includes its InstanceId in
a header named 'Originator'.

This setup is designed for the Southbound systems to respond with a message containing
the same 'Originator' header. Each Orchestrator instance is configured to listen solely to
messages associated with its InstanceId, using a specific selector,
'Originator=<<InstanceId>>'.

However, there are scenarios where a Southbound system replies without this expected
header. In such cases, the Broker service intervenes by monitoring messages lacking the

TIBCO® Order Management User Guide

142 | Orchestrator

'Originator' header using a selector, 'Originator IS NULL'. The Broker service then directs
these messages to the instance processing the order.

If this instance is inactive in the Broker database, the Broker service assigns a new instance
for handling this order. For more information, see the Re-assigning Order to an Instance
section.

Property Name Purpose

orchestratorInboundNoOriginatorQueue Queue from which the broker service
listens for messages that do not contain
an originator header.

orchestratorInboundNoOriginatorReceiverCount Number of concurrent consumers on No
originator inbound queue

orchestratorInboundNoOriginatorRetryCount Number of retries in case of any
exception

orchestratorInboundNoOriginatorRetryInterval Delay in Milliseconds between
consecutive retries

orchestratorInboundNoOriginatorDeadQueue Dead queue to redirect the failure
messages

orchestratorInboundQueue Queue from which the Orchestrator
listens for Southbound messages. The
broker service redirects messages to this
queue for processing by the
Orchestrator.

 Configuration Used

Behavior

l The Broker service operates by monitoring individual southbound response queues.

l After receiving a message, it extracts specific order identifiers such as orderId,
orderRef, and planId (optionally), to search for the corresponding order in the order
database.

l When the order is located in the database, the Broker service computes the instance

TIBCO® Order Management User Guide

143 | Orchestrator

id for that particular order, following the process detailed in the "Re-assigning order
to an instance" section.

l The Broker service forwards the message back onto the same queue, adding a
header named 'Originator' with the value set as instanceId.

Error Handling

In the event of an exception during message processing, the system initiates a retry
mechanism. The process is retried for a specified count of attempts, defined as
noOrignatorRetryCount, with a delay between each attempt, set as
noOriginatorRetryInterval.

Recovery Notification Processing

Property Name Purpose

recoveryNotificationQueue The queue to listen to the recovery notification sent
by Orchestrator.

recoveryNotificationDeadQueue Dead Queue to send the unprocessable recovery
notification.

recoveryNotificationReceiverCount Number of listener to listen to the recovery
notification.

recoveryNotificationRetryCount Number of retries in case of failure.

recoveryNotificationRetryInterval Interval in milliseconds between each retry.

 Configuration Used

The recovery notifications are managed by the Broker service as follows:

l Notification Dispatch: The Orchestrator dispatches a notification to the queue
specified by the recoveryNotificationQueue property.

l Broker Service Responsibility: The Broker service listens to these notifications and
save them in the notification table, tracking the status and ensuring proper handling
of Southbound requests and replies.

TIBCO® Order Management User Guide

144 | Orchestrator

Time Dependency Monitor

The purpose of the TimeDependencyMonitor class is to ensure the consistency and
correctness of time dependencies associated with orders in the system. It performs
periodic checks to address orphan time dependencies, which are those with null instance
IDs, assigning them to active owners based on predefined rules.

Property Name Purpose

timeDependencyMonitorInterval Fixed interval in minutes to monitor time dependency
with null instance id.

 Configuration Used

Behavior

l This job fetches all the orphan time dependencies from the database and groups
them by order ID.

l For each order ID, it checks if the order has an owner assigned to it.

o If an order has a valid instance ID (for example, the instance is active), the
scheduler updates the time dependency with that instance ID.

o If an order's instance is inactive or does not exist, the scheduler computes a
new instance ID and assigns it to the time dependency and order.

TIBCO® Order Management User Guide

145 | Automated Order Plan Development

Automated Order Plan Development
This section describes the functions of the Automated Order Plan Development feature in
TIBCO Order Management.

Overview
Basic Automated Order Plan Development is the capability to create custom order plans
that fulfill an order, taking into account the specifications of the required products and the
products currently provided to a customer.

A Product Model contains bundles and products services. A product model also contains
concepts such as sequencing and dependencies.

When an order is received, the order lines are decomposed by using a product model. The
product specification for each order line is extracted from a product catalog by the
decomposition component.

The product specification is required to create execution plan fragments. These execution
plan fragments define the services, products, and resources required. For example, an
order line might contain a bundle, which might be composed of several products and
services. Taking into consideration factors such as sequencing and dependencies, these
execution plan fragments are then combined to create a single execution plan.

Model Deployment
A catalog service loads the product model and the product model is stored in the
database. During plan generation, Automated Order Plan Development receives models
from the catalog database. For more details about model loading, see the "Catalog
Services API samples" section in TIBCO® Order Management Web Services Guide.

TIBCO® Order Management User Guide

146 | Automated Order Plan Development

Product Models Purging
Method: HTTP DELETE method

Endpoint: http://<host_address>:<port_address>/v1/productmodel/bulk

Parameter content type: application/json

l When you select the purgeAllModels field value as true and click Execute, all the
product models are purged from the database. Here the request body is ignored
entirely.

l When you select the purgeAllModels field value as false and click Execute, the
request body is considered in this case. You can enter the values of productID and/or
productIDExt in the request body as required. For more details on Product Id and
Product Id Ext, see Product Id and Product Id Ext.

Configuration
Automated Order Plan Development configuration is stored in files in the directory $OM_
HOME/seed-data/app-properties. These files can be either manually edited or accessed
from Configurator.

TIBCO® Order Management User Guide

147 | Automated Order Plan Development

Main Configuration
The main Automated Order Plan Development configuration is stored at $OM_HOME/seed-
data/app-properties.

Parameter Name Description

disableParentItemsDependencyImpact DisableParentItemsDependencyImpact flag is used
to ignore modification rule application on child
plan item In case of parent plan item modification,
if the flag is set to true. (default: false)

affinityudfnamemerge Controls the flag to merge user-defined field name
in the affinity plan item.

characterisitcswithoutaffinitypostfix To not merge certain User Defined Fields during
Affinity Sequencing, those User Defined Fields
must be added as CSV in the variable (default: "")

skipitemsequence Within Automated Order Plan Development, if the
sequence is -1, it skips the product and all its
mandatory children in the Execution Plan (default:
-1)

mergeaffinityitemdescription Merges affinity item description (default: false)

hierarchysingleuse Uses unconditional removal of child product
(default: false)

enableaffinityudfparent Enables affinity user-defined field parent (default:
false)

udflist List of internal User Defined Fields to be skipped
for affinity merging (default: "EPMR_ACTION_
PROVIDE, EPMR_ACTION_UPDATE, EPMR_ACTION_
CEASE, EPMR_ACTION_WITHDRAW, COMPENSATE_
PROVIDE, COMPENSATE_UPDATE, COMPENSATE_
CEASE")

TIBCO® Order Management User Guide

148 | Automated Order Plan Development

Parameter Name Description

enablebidirectionallinkid Enables extended behavior for PDO/MDO and
LinkID mapping (default: false)

allowmultiplerequiredproducts Multiple Required Products for the same link ID
are available (default: false)

ignorepdofirstchilddependency Ignores First child dependency for source product
in ProductDependsOn relationship (default: false)

handleconflict Configurable handling for ProductComprisedOf
conflict (default: "Apply")

ABDProductOrderline Include only the order line for attribute-based
decomposition (default: false)

ABDIncludeCharacteristics Include plan item User Defined Fields for
evaluating attribute-based decomposition (default:
false)

compensateRestartForNoEPMRChar Enables COMPENSATE and RESTART behavior in
case of the required Execution Plan Modification
Rules characteristic that is not present in the
product model.

dateshiftcompredo Enables the backward compatibility for Date Shift
amendment to generate comp redo tasks (default:
false)

enablemodificationidentifyingattribute Enables the backward compatibility for user
defined field change amendment by using
MODIFICATION_IDENTIFYING_ATTR (default: false)

noDependencyInCOMPPlanItems Enables the backward compatibility of NO
dependency in the COMPENSATE plan item on the
existing plan item being canceled.

enableparentidudfcheck The Parent_ID user-defined field check, which was

TIBCO® Order Management User Guide

149 | Automated Order Plan Development

Parameter Name Description

not present in plans generated in earlier versions
of TIBCO Order Management, caused issues in
amendment for later versions (ones with a user-
defined field). A flag
com.tibco.af.aopd.flags.enableparentidudfcheck, is
introduced, which toggles checking this user-
defined field during amendments. By default, the
value is true, which enables checking of this user-
defined field. Set the flag to false to disable the
check.

handlepcocircularDependency Handles circular dependency during plan
generation. In case of Ignore value, it ignores
circular dependency during plan generation.
(default: error)

disableAffinityBrokeUDFImpact Disable UDF amendment when affinity breaks due
to an order line cancellation. This flag works with
disableParentItemsDependencyImpact flag.

Logs
The Automated Order Plan Development logs are at OM_HOME/seed-data/config-files.

Features

Autoprovision
Autoprovision is a condition that determines the relationship between a parent product
and a child product. The relationship can either be Static or Dynamic. Autoprovision flag
determines whether the product is mandatory or not. For instance, consider a product A
having a child product B, which has AutoProvision set as TRUE.

TIBCO® Order Management User Guide

150 | Automated Order Plan Development

Static: If Autoprovision is set to TRUE, then the product is considered to be a static bundle
and the child is automatically be assumed to be a part of the order. This indicates that the
child product is implicitly assumed to be on the order no matter there is an order line with
that product.

Example: Consider bundle B comprises of products P1 and P2.

l AUTOPROVISION flag is TRUE between B and P1.

l AUTOPROVISION flag is FALSE between B and P2.

When bundle B is ordered, P1 is provisioned automatically though it is not in the order line.

Note: This process of order fulfillment is known as Implicit Fulfillment.

Dynamic: Auto Provision is set to FALSE. This indicates that the child product must be
explicitly included in the order.

The product diagram shows the mandatory products with solid lines (Autoprovision TRUE,
Static bundle) and are included in the order automatically. Otherwise, the products have to
be ordered separately, which is a Dynamic bundle feature.

Note: The instanceOptional field is not used during plan generation in
Automated Order Plan Development.

Dynamic Bundles
Dynamic Bundles lets for a bundle to be modeled by using a product hierarchy in a product
catalog and items are selected by the user and then submitted for order plan development.
An example is where a bundle is modeled to have mandatory items and optional items and
the customer needs to select the options.

The optional products are specified as specific order lines within the order. The bundle is
also specified as an order line but the decomposition component recognizes the options
belonging to the parent bundle.

The mandatory products are automatically added for order planning.

Any required products are validated as part of the validation to ensure the basket or the
customer image has the required product before any decomposition occurs.

TIBCO® Order Management User Guide

151 | Automated Order Plan Development

It is possible to reuse the common products having Autoprovision=false using LinkParentID
and LinkedParentID User-Defined Fields in the order line. The LinkParentID-LinkedParentID
and LinkID User-Defined Fields are used to define PCO-tree, although the LinkParentID-
LinkedParentID user-defined field has the higher priority.

l Link child to parent based on LinkParentID-LinkedParentID if present. Else,

l Link child to parent based on LinkID if present. Else,

l Link child to parent randomly.

For example, consider the following product model:

T-COM Wireline --> (PCO) Additional Voice Service(autoproivision=false)
T-COM Wireline --> (PCO) Tariff1(autoproivision=false)
Additional Voice Service --> (PCO) Tariff1(autoproivision=false)

Therefore, the order can be:

Orderline
Number

Product LinkParentID LinkedParentID

1 T-COM Wireline T-COM Wireline

2 Additional Voice
Service

Additional Voice
Service

T-Com Wireline

3 Tariff1 Tariff1 Additional Voice
Service

4 Tariff1 Tariff1 T-Com Wireline

The LinkParentID-LinkedParentID User-Defined Fields are added for order line number 3 in
the following format to add dependency between OrderLine 2 and OrderLine 3:

"udf" : [{
"name" : "LinkParentID",
"value" : "Tariff1"

}, {
"name" : "LinkedParentID",
"value" : "Additional Voice Service"

}]

TIBCO® Order Management User Guide

152 | Automated Order Plan Development

Note: The value of LinkParentID, LinkedParentID, or LinkID can be anything. But
the values must be the same between the child and parent product, which you
need to link.

Note: This change is backward-compatible. To use the LinkID functionality, do
not add the LinkParentID-LinkedParentID User-Defined Fields in the order line.

Static Bundles
Through Static Bundles, a bundle to be modeled by using a product hierarchy in the
catalog, with the bundle only containing mandatory options. An example of this is a bundle
with mandatory products and when a customer orders this bundle all the dependent
products are provisioned without the customer needing to select any more products.

Time Dependency
The decomposition component has the ability to provision an execution plan for a given
order based on the time constraints, if any, placed on the products within that order
Example: it determines when a particular product execution must be started. This time
constraint can apply to an individual plan item within an execution plan or to the entire
execution plan. Time dependency is added in each plan item if the requiredByDate
specified in order is in the future.

Time dependency defines the absolute time when the particular plan fragment starts
execution. It is calculated on the basis of the requiredByDate present in either the Order
header or the OrderLine. The expected behavior for the required by date is as follows.

1. If requiredByDate is set on the order level, the start time dependency applies to all
plan items with no leading dependencies

2. If requiredByDate is set on the order line level only, the start time dependency
applies to plan items for that order line, which have no leading dependency

3. If requiredByDate is set on the order header level and on the order line level, the
following behavior applies:

a. If requiredByDate in Order Header is later than requiredByDate in the line item,

TIBCO® Order Management User Guide

153 | Automated Order Plan Development

then the start time used is the one at order level

b. If requiredByDate in Order Header is earlier than requiredByDate in line item,
then the start time used is the one at order line level.

Note: RequiredOnDate is no longer used or supported.

Product Specification Field Decomposition
Each product has a modeled set of characteristics within a product catalog. When a
product is decomposed to a plan item, the default and the instance characteristics are
copied over into the User-Defined Fields (UDFs) of every plan item. Through this, the
information is reused later when the plan item is run.

For example, consider a product "Line Access 5MB" has characteristics modeled such as
Speed=5, QOS=4, IPAccess=false. These are all modeled as instance variables. When an
order is submitted for Line Access or is part of a bundle, the plan item uses the same
instance characteristics copied as User-Defined Fields into the plan item. When the plan
item is run, the User-Defined Fields can be passed to the service call.

When an order is made the characteristics are visible as user-defined fields for each order
line. When you submit the order, the user-defined fields are converted into user-defined
fields for the new plan items and if the order line is a bundle then those items can have
user-defined fields as well, which are copied to the execution plan. All these user-defined
fields can be used later through the service call.

Custom Action Based Product Decomposition
The custom action provides flexible way to define products and product fulfillment by
allowing product decomposition and characteristic list inclusion. The ProductComprisedOf
(henceforth, referred to as PCO) relationship enables you to model complex product
hierarchies. This allows a product modeler to model specific product decomposition
according to the specified action.

Note: Irrespective of an action, all the PCO or Characteristic relationships are
valid.

TIBCO® Order Management User Guide

154 | Automated Order Plan Development

The following table describes the custom action for the PCO and Characteristic
relationships:

ProductComprisedOf (PCO) Characteristic (C)

If PCO.ActionID=null The child product is
always a part of the
decomposition during
decomposition

If C.ActionID=null The characteristic
is always included
as planItem User
Defined Fields

If PCO.ActionID=not
null

The child product is
only added if the
following order action
is specified during
decomposition:

order Action = the
ActionID

If C.ActionID=not
null

The characteristic
is included if the
following order
action is specified
during
decomposition:

order Action =
ActionID

Scenario for the Custom Action Based Product Decomposition

The following table describes how a custom action impacts the product decomposition:

Note: This scenario is applicable for characteristic list inclusion based on custom
action.

Data Model Configuration Order Plan

Action repository has record with ID as HomeMove and
recordtype as PROVIDE. Product B has PCO relationship with
P1, P2, P3 with autoprovision=true P1.PCO.ActionID=null
P2.PCO.ActionID=PROVIDE P3.PCO.ActionID=HomeMove

OL=B(PROVIDE) There are
three
planItems:

l B

l P1

l P2

B depends

TIBCO® Order Management User Guide

155 | Automated Order Plan Development

Data Model Configuration Order Plan

on P1 & P2

OL=B(UPDATE) There are
two
planItems:

l B

l P1

B depends
on P1

OL=B
(HomeMove)

There are
two
planItems:

l B

l P3

B depends
on P3

Sequencing
The product catalog defines the sequencing requirements between the fulfillment steps for
products in a product offering.

When the order plan is being developed, the information in the product catalog is used
such that the instance sequence defined for each subproduct and products, which contain
these subproducts translates to a dependency between Plan Fragments associated with
each product/sub-product and the fulfillment happens in the correct sequence.

Sequencing is governed by certain rules on the Plan Fragments.

Order Management supports the action-based sequencing. This use case-based sequence
of back-end systems is used in the decomposition to ensure back-end (process component)
are called in the correct order. Based on the order line action, the following types of
sequencing are used:

TIBCO® Order Management User Guide

156 | Automated Order Plan Development

l PROVIDE

l CEASE

l UPDATE

PROVIDE Sequencing: This scenario occurs when the order line action is PROVIDE and all
the subproducts use the provided instance sequence number.

CEASE Sequencing: This scenario occurs when the order line action is CEASE and all the
subproducts use the cease instance sequence number.

UPDATE Sequencing: This scenario occurs when the order line action is UPDATE and all
the subproducts use the update instance sequence number.

The following figure shows the sequencing for the products A, B, and C.

Sequencing for the products A, B, and C.

Note: Sequence number is the relationship attribute value based on the actions
PROVIDE, CEASE, and UPDATE.

For example, a bundle is composed of Product A, Product B, and Product C, with PROVIDE
sequencing set to 2, 1 and 3 respectively. When an order plan is developed, Product B is
run first, followed by Product A and then Product C.

TIBCO® Order Management User Guide

157 | Automated Order Plan Development

Order Plan Execution Sequence

Similarly, a CEASE sequencing order can also be defined for the same Product Bundle with
a sequencing of 3, 1, and 2 for products A, B, and C respectively. In this manner, the order
might be fulfilled in the correct sequence taking into account what action needs to be
performed.

The Order lines are converted into plan items during the plan development by using the
information in the product catalog. The diagram explains the sample product model and
its components (product offerings). This diagram is used to briefly explain the different
Plan Development Concepts (for details, see Automated Order Plan Development).

Sample Product Model

The table describes the diagram elements of the Product Model Hierarchy.

TIBCO® Order Management User Guide

158 | Automated Order Plan Development

Diagram Element Description

Product entity.

The arrows represent the ProductComprisedOf relationship in the
product catalog between BUNDLE and a group of products. Thus, the
diagrams state that:

l BUNDLE is composed of the product Broadband.

l BUNDLE is composed of the product VoIP.

The Broadband product offering contains the following mandatory
products:

l Telephone

l UserID

l Line Activation
The dotted line indicates that the Modem is an optional product.

The VoIP product offering contains the following mandatory products:

l VOIPTV

l COMBOX

l UserID

The "UserID" product has two parents.

Product Model Description:

The product BUNDLE is composed of the two product offerings:

l Broadband.

l VoIP.

The Broadband product offering contains the products as the Telephone, UserID, and Line
Activation as the mandatory product. Modem is an optional product.

VoIP has the COMBOX, UserID, and VOIPTV as part of its technical products.

The product UserID here has two parents - Broadband and VoIP. The product UserID has
the single use record attribute set to true with both its parents.

TIBCO® Order Management User Guide

159 | Automated Order Plan Development

Using (relationship) sequencing, all the child products of the BUNDLE are fulfilled or
processed in parallel, and all must complete before the entire BUNDLE can be fulfilled.
Often, additional sequencing is required within elements at the same hierarchy level in the
model. This can be accomplished by providing sequence numbers on the
ProductComprisedOf relationship.

Product Model Description with the Sequencing Feature:

The correct fulfillment sequencing of the product plan execution as per the diagram is:

1. The UserID is created.

2. The order on the Telephone and COMBOX is processed. The Telephone and COMBOX
are installed.

3. The Line Activation is completed.

4. Modem is installed.

5. VOIPTV is installed.

6. Broadband Product Order and VoIP Order are completed.

7. The entire BUNDLE order (Broadband and VoIP) is completed.

Taking the product as an example, the table shows the sequencing of the products:

Parent Product Product Offering

BUNDLE UserID

BUNDLE Telephone/COMBOX

BUNDLE Line Activation

BUNDLE Modem Installation (optional)

BUNDLE VoIP

BUNDLE BUNDLE Order complete

TIBCO® Order Management User Guide

160 | Automated Order Plan Development

Delta Provisioning
Delta Provisioning ensures that products, which have been defined for 'single use' are not
provisioned more than once for a given order. The combination of the order line action of
the products is used to determine how the products are provisioned.

Single Use
Single Use ensures that if the products have the same product ID and have been defined
for single use with the order line actions as PROVIDE then those products are not
provisioned more than once. It deletes one of the instances and ensures that the
dependencies point to the single instance, which remains in the plan. This is done for
products with the same parent only.

For example, only one shipment needs to be typically sent for a batch of phones.

Product Model description in relation to Single Use:

The Product Model diagram shows the Single Use feature. If the Order is a 'BUNDLE in a
single Order line', the UserID is generated only once, although it has been ordered twice by
the products Broadband and VoIP respectively.

If the product exists more than once on the order, then it is only included once in the final
plan. If the product exists on the order and in the inventory, it is not included in the plan.

Provide Single Use

The product catalog contains 2 bundles BundleA and BundleB. BundleA contains 2
subproducts A and B. Both the subproducts have sequence set to “1” and auto provision
set to “True”. A has the attribute single use set to “True” when B has the attribute set to
“False”. BundleB contains two subproducts A and C. Both the subproducts have sequence
set to “1” and auto provision set to “True”. A has the attribute single use set to “True”
when C has the attribute set to “False”.

The order sent into AFF contains 2 order lines. Order line 1 contains BundleA with order
line action Provide. Order line 2 contains BundleB with order line action Provide. Both the
order lines contain a user-defined field with the name SingleUseID and the value is the
same for both BundleA and BundleB.

The generated plan contains only one instance of subproduct A. BundleA, which contains a
dependency to subproduct A and B. BundleB contains a dependency to subproduct A and
C. The User-Defined Fields is not merged into the retained product.

TIBCO® Order Management User Guide

161 | Automated Order Plan Development

Single use (Provide-Provide)

Cease Single Use

This functionality ensures that if the products have the same product ID and have been
defined for single use with their order line actions as PROVIDE and CEASE then those
products are not provisioned more than once. It deletes the instance, which has its order
line action as CEASE, mark the action as UPDATE and also ensure that the dependencies
point to the PROVIDE instance, which remains in the plan. This is done for products with
the same parent only. Single Use is modeled in the product model by setting the record
attribute single use as true.

In this scenario, the Cease instance of the product is removed from the plan. Bundle A has
a dependency to both subproduct A and B. BundleB has a dependency to both subproduct
A and C. The instance of A still left in the plan has a new line action of UPDATE. The User-
Defined Fields is not merged into the retained product.

The plan fragment and the plan description are set to the Update fragments from the
product information.

In cases where the subproduct A has dependent products all those dependent products is
made dependent to the remaining instance of product A.

TIBCO® Order Management User Guide

162 | Automated Order Plan Development

Single use (Provide-Cease)

Update Single Use

This functionality ensures that if the products have the same product ID and have been
defined for single use with their order line actions as PROVIDE and UPDATE then those
products are not provisioned more than once. It deletes the instance, which has its order
line action as PROVIDE and also ensure that the dependencies point to the UPDATE
instance, which remains in the plan. This is done for products with the same parent only.

In the following scenario, the Update instance of subproduct A remains in the plan. Bundle
A has a dependency to both subproduct A and B. BundleB has a dependency to both
subproduct A and C. The instance of product A retains the line action of UPDATE. The User
Defined Fields is not merged into the retained product.

The plan fragment and the plan description is set to the Update fragments from the
product information

TIBCO® Order Management User Guide

163 | Automated Order Plan Development

Single use (Provide-Update)

Sequenced Single Use

In this scenario OfferingA contains both BundleA and BundleB, which have been sequenced
2 and 1 respectively. Since both bundles contain subproduct A, this product is merged into
a single instance. BundleB is the only product to contain a dependency to subproduct A
since it is the 1st product to be provisioned in the plan. BundleA has the dependency to
subproduct A deleted.

The User-Defined Fields are merged as mentioned in the above scenarios. The lineIDs and
EOL attributes are merged as well with a comma as a separator.

TIBCO® Order Management User Guide

164 | Automated Order Plan Development

Single use (Sequenced)

Product Affinity (Plan Item Level)
Through the Product Affinity between different products on the same order, the products
to be grouped and fulfilled together through the execution of a single plan item occur. It
can be termed as an order fulfillment optimization.

Generally, a plan item corresponding to an order line specifies a product to be fulfilled in
the order. If an affinity is specified between the products that are either being fulfilled
implicitly as mandatory children, or ordered explicitly as separate order lines, the
individual plan items are grouped together into a single affinity plan item during plan
optimization in Automated Order Plan Development. Thus, the corresponding products are
fulfilled through the execution of this single plan item.

The product affinity is specified in the product catalog in one of the following two different
ways:

l By specifying the affinity type and action-specific plan fragments attributes in the
AffinityGroup tab in PRODUCT repository

l By assigning the plan fragments by using ProductHasXXPlanFragment relationships
and specifying the affinity specific relationship attributes

The XX in relationship name refers to actions, such as PROVIDE, CEASE, UPDATE, and
CANCEL.

TIBCO® Order Management User Guide

165 | Automated Order Plan Development

Automated Order Plan Development recognizes the affinity and combines the plan items
corresponding to the order lines depending on the following two main conditions:

l If the plan fragments defined in the product catalog for the ordered products are the
same

l If the affinity type defined in the product catalog for the ordered products is the
same (InLink or CrossLink)

user-defined field Data Handling

Affinity groups together plan items for different order lines into a single plan item.
Automated Order Plan Development is also responsible for populating the User Defined
Field (UDF) that are associated with these plan items. The potential exists for the same
user-defined field to be present on different order lines, all values must be available in the
plan and the relevant order lines identified.

Affinity between the product catalogs can be added at design time in the TIBCO® Product
and Service Catalog.

At runtime, when generating the plan for a given order and the affinity is detected in
multiple products, plan items related to those products (where affinity is detected) are
merged into a single plan item. The UDF in both the plan items are merged.

The value of the GLOBAL_PRODUCT_NAME UDF name is not assigned randomly. The plan items
in the affinity are sorted based on the plan item id. The product id of the first plan item is
assigned to the value of GLOBAL_PRODUCT_NAME UDF.

The following data handling rules must be implemented:

Note: The following table lists the Sample Order Line Data representing the
order lines being affinity grouped. The Sample Plan Item Data represents the
output affinity grouped plan item for those order lines.

Sr
No

Rule Outcome Sample Order Line
Data

Sample Plan
Item Data

1 user-defined
field exists on
only one of the

user-defined field
name is the original
user-defined field

Order Line = 1 user-
defined field Name =
ServiceID user-defined

user-defined
field Name =
ServiceID:1 user-

TIBCO® Order Management User Guide

166 | Automated Order Plan Development

Sr
No

Rule Outcome Sample Order Line
Data

Sample Plan
Item Data

order lines
being affinity
grouped

name concatenated
with the order line
number. Value is the
original user-defined
field value.

field Value = 1234 Order
Line = 2 Does not
contain ServiceID user-
defined field

defined field
Value = 1234

2 user-defined
field exists on
more than one
of the order
lines being
affinity
grouped, but
not all order
lines. user-
defined field
value is the
same on all
order lines.

user-defined field
name is the original
user-defined field
name concatenated
with the order line
number as a comma-
separated list. Value
is the original user-
defined field value.

Order Line = 1 user-
defined field Name =
ServiceID user-defined
field Value = 1234 Order
Line = 2 user-defined
field Name = ServiceID
user-defined field Value
= 1234 Order Line = 3
Does not contain
ServiceID user-defined
field

user-defined
field Name =
ServiceID:1,2
user-defined
field Value =
1234

3 user-defined
field exists on
all order lines
being affinity
grouped. user-
defined field
value is the
same on all
order lines.

user-defined field
name is the original
user-defined field
name. Value is the
original user-defined
field value.

Order Line = 1 user-
defined field Name =
ServiceID user-defined
field Value = 1234 Order
Line = 2 user-defined
field Name = ServiceID
user-defined field Value
= 1234 Order Line = 3
user-defined field Name
= ServiceID user-defined
field Value = 1234

user-defined
field Name =
ServiceID:1,2,3
user-defined
field Value =
1234

4 user-defined
field exists on
more than one
order line

user-defined field is
created for each
unique user-defined
field value, with the

Order Line = 1 user-
defined field Name =
ServiceID user-defined
field Value = 1234 Order

user-defined
field Name =
ServiceID:1,2
user-defined

TIBCO® Order Management User Guide

167 | Automated Order Plan Development

Sr
No

Rule Outcome Sample Order Line
Data

Sample Plan
Item Data

being affinity
grouped. user-
defined field
value is
different on
different order
lines.

corresponding name
containing the
original user-defined
field name
concatenated with
the order line
numbers as a
comma-separated
list.

Line = 2 user-defined
field Name = ServiceID
user-defined field Value
= 1234 Order Line = 3
user-defined field Name
= ServiceID user-defined
field Value = 6789

field Value =
1234 user-
defined field
Name =
ServiceID:3 user-
defined field
Value = 6789

TIBCO Order Management supports the following types of product affinities:

Inlink
The Inlink Affinity can be defined between the products at the same level in a bundle.

Inlink Affinity

As shown in the figure, the InLink affinity can be defined between the Product B, and
Product C for the PROVIDE action by specifying the affinity type as InLink. The PROVIDE
plan fragment is defined as PC_PROVIDE_BC.

For the InLink affinity, the LinkID user-defined field having the same value must be passed
in the order lines.

In addition to the two conditions, Automated Order Plan Development also checks the
following conditions for the InLink affinity:

1. If a value of the LinkID user-defined field in the plan items, which is propagated from

TIBCO® Order Management User Guide

168 | Automated Order Plan Development

the order lines to be merged, is the same.

2. If the dependentOn (parent product) plan item for the plan items to be merged is the
same.

If these conditions are fulfilled, the plan items are combined into a single affinity plan item
containing the plan fragment from any of the merging plan items, since it is the same for
all of them.

Crosslink
The Crosslink Affinity is defined between the products at any levels across the bundles.

In the Product Model diagram, the products Telephone and COMBOX can have CrossLink
affinity between them. when the order fulfillment process, both these technical products
are installed and configured in one go through the affinity grouped single plan item.

Automated Order Plan Development does not check any additional conditions for
CrossLink affinity.

Affinity applies to the order plan development and this element is used to determine what
plan fragments are run for the product when the affinity grouping is active. Affinity Plan
Fragments XSD is illustrated as:

TIBCO® Order Management User Guide

169 | Automated Order Plan Development

Affinity Plan Fragments XSD

The following table explains the Affinity Plan Fragments Data Model.

Element Name Element
Type

Description Example

planFragmentUniqueId_
CANCEL

String
(Optional)

Plan fragment cancels
type.

planFragmentUniqueId_
CANCEL/ name

String
(Optional)

Name of the plan fragment
to run when canceling this
product.

EP_BUNDLE_
CANCEL NO_
RECIPROCAL_
ACTION

planFragmentUniqueId_
CANCEL/ description

String
(Optional)

Description of the plan
fragment to run when
canceling this product.

Product 1 Cancel

planFragmentUniqueId_
PROVIDE

String
(Optional)

Plan fragment provides
type.

planFragmentUniqueId_
PROVIDE / name

String
(Optional)

Name of the plan fragment
to run when providing this
product.

EP_BUNDLE_
PROVIDE

TIBCO® Order Management User Guide

170 | Automated Order Plan Development

Element Name Element
Type

Description Example

planFragmentUniqueId_
PROVIDE / description

String
(Optional)

Description of the plan
fragment to run when
providing this product.

Product 1 Provide

planFragmentUniqueId_
CEASE

String
(Optional)

Plan fragment ceases type.

planFragmentUniqueId_
CEASE/ name

String
(Optional)

Name of the plan fragment
to run when ceasing this
product.

EP_BUNDLE_
CEASE

planFragmentUniqueId_
CEASE / description

String
(Optional)

Description of the plan
fragment to run when
ceasing this product.

Product 1 Cease

planFragmentUniqueId_
UPDATE

String
(Optional)

Plan fragment update type.

planFragmentUniqueId_
UPDATE/ name

String
(Optional)

Name of the plan fragment
to run when updating this
product.

EP_BUNDLE_
UPDATE

planFragmentUniqueId_
UPDATE/ description

String
(Optional)

Description of the plan
fragment to run when
updating this product.

Product 1 Update

Affinity Sequencing
Affinity Sequencing is used to support the scenario for maintaining sequencing during
affinity grouping. Affinity Sequencing was introduced during affinity RulesEngine
(BusinessEvents) selects plan items at random, which are then merged into a single plan
item. Since items are selected at random during this process, sequencing is not maintained
for plan items that must be in a sequence.

To make products available for affinity sequencing:

l Affinity TYPE value for all products where sequence must be respected must be set to

TIBCO® Order Management User Guide

171 | Automated Order Plan Development

"SequencedAffinity" in the affinity type

l All order lines where affinity components are known to exist must have a user-
defined field defined as AffinitySequence and the value must be an integer

Depending on the AffinitySequence values being compared, the following actions are
possible:

1. itemA.AffinitySequence = itemB.AffinitySequence

l If both items have dependent children the children from itemB is copied to
itemA

l itemB parent is updated with the plan item ID from itemA, thus making itemA
dependent to its own parent and the itemB parent

l user-defined field values from itemB is merged into itemA

l Any item, which has a reference to itemB have that reference replaced with a
reference to itemA

l The instance of itemB is deleted from the plan

Parallel Scenario

The figure depicts the scenario where the items to be affinity grouped are running in
parallel. One of the items in this case itemB is deleted from the plan. The dependent
items to itemB, which are childB1 and childB2 are dependent on itemA. Then itemA
is made dependent to parentB, which is the parent to itemB.

2. itemA.AffinitySequence < itemB.AffinitySequence

l itemB is merged into itemA

l user-defined field values from itemB is merged into itemA

l Any item, which has a dependency to itemB have that reference removed

l all the children from itemB is made dependent to itemB parent(s)

TIBCO® Order Management User Guide

172 | Automated Order Plan Development

l itemB is deleted from the plan

Sequenced Scenario

The figure depicts an offering, which has items that are in parallel and in sequence
that have to be affinity grouped. For items that are in parallel they are handled
similar to the figure 1. For the item that is in sequence itemC. It is dependent item
offerB is made dependent to CommercialA, which is the parent to itemC.

3. itemA.AffinitySequence > itemB.AffinitySequence

l itemA is merged into itemB

l User Defined Field from itemA is merged into itemB

l if itemA has dependent children those children are copied into itemB and the
parent item of itemA

l Any item, which has a reference to itemA have that reference erased

l itemA is deleted from the plan

Items in Sequence

For all the above actions the following occurs in all of them:

TIBCO® Order Management User Guide

173 | Automated Order Plan Development

l EOL, Plan description and Line ID values are merged into comma-separated values
from itemA and itemB

l The planID is updated with the affinity plan ID

Note: When an order is submitted, the order lines for items, which have Affinity
must have the AffinitySequence defined and updated.

Note: To not merge certain User Defined Fields during Affinity Sequencing, those
User Defined Fields must be added as a comma-separated values in the global
variable CharacteristicsWithoutAffinityPostfix in the rules engine (Automated
Order Plan Development).

Conditional Affinity
Conditional Affinity combines InLink and CrossLink affinities in a single affinity type and
provides additional flexibility. Affinity grouping enables different plan items to be grouped
together based on the evaluation of the XPATH expression defined at the product catalog.
The two affinity grouping types are:

Inlik Affinity Crosslink Affinity

Affinity groups plan items having the same parent product
share a common LinkID user-defined field value and have the
same affinity plan fragment name

Affinity groups plan items
having the same affinity
plan fragment name

The additional configuration fields and rules in conditional affinity are:

Field Description

AffinityType Determines the type of affinity implemented.

l InLink

l CrossLink

l Sequenced Affinity

TIBCO® Order Management User Guide

174 | Automated Order Plan Development

Field Description

l ConditionalAffinity

AffinityCondition Valid for Conditional type only. A String field containing an XPATH
expression that evaluates to true or false based on data is in the
order:

l If the expression is true, the product plan item is affinity-
grouped

l If the expression is false, then the product plan item is not
affinity-grouped

l If the field is blank, assume that the value is true

l If the XPATH expression evaluates to anything other than the
true or false, Automated Order Plan Development fails and
returns an exception

The XPATH expression evaluates against the following data fields on
the order:

l Order Header user-defined field Name and Value

l Order Line ProductID

l Order Line Action and ActionMode

l Order Line user-defined field Name and Value

The XPATH expression can also be defined against the following plan
data fields:

l planItem productID

l planItem user-defined field name value

l planItem Action

AffinityCorrelation Valid for Conditional type only. The XPATH is evaluated on the Plan
data and the order data. A String field containing an xpath
expression based on a data is in the following order:

l All plan items that evaluate to the same AffinityCorrelation are
grouped together

TIBCO® Order Management User Guide

175 | Automated Order Plan Development

Field Description

l The field is functionally similar to the LinkID method of
correlating plan items in the InLink affinity. However, it lets
correlation based on complex conditions without a restriction
on the user-defined field names

l If the field is blank, a default LinkID value is shared by all other
blank configurations

l If the XPATH expression evaluates to an empty string, the
XPATH expression is blank, or assume a default LinkID

The XPATH expression evaluates against the following order data
fields:

l Order Header user-defined field Name and Value

l Order Line ProductID

l Order Line Action and ActionMode

l Order Line user-defined field Name and Value

The XPATH expression can also be defined against the following plan
data fields:

l planItem productID

l planItem user-defined field name value

l planItem Action

AffinityParentGroup Valid for Conditional type only. A Boolean field containing the value
true or false:

l If set to true, the plan items with products sharing the same
immediate parent product are grouped together

l If set to false, the parent product is not considered for
grouping

AffinityActionGroup Valid for Conditional type only. A Boolean field containing the value
true or false:

l If set to true, then only plan items with products that share the
same action are grouped together

TIBCO® Order Management User Guide

176 | Automated Order Plan Development

Field Description

l If set to false, then the action is not considered for grouping

AffinityActionValue AffinityActionValue is considered for grouping when
AffinityActionGroup is set to true. This is valid for Conditional type
only. String field containing an XPATH expression that evaluates to a
String based on data is in the following order: The XPATH expression
must evaluate to one of the following:

l PROVIDE

l UPDATE

l CEASE

l Empty String
If the XPATH expression evaluates to anything other than these
actions, then Automated Order Plan Development fails and returns
an exception.

l If the field is blank, or the return value from the XPATH
expression is an empty string, the remaining action rules must
be applied.

The XPATH expression can evaluate against the following data fields
on the order:

l Order Header user-defined field Name and Value

l Order Line Action and ActionMode

l Order Line user-defined field Name and Value

The XPATH expression can also be defined against the following plan
data fields:

l planItem productID

l planItem user-defined field name value

l planItem Action

AffinityProvide Provide plan fragment name for affinity grouped plan item. Only plan
items with the Provide action and the same value in this field are
grouped together

TIBCO® Order Management User Guide

177 | Automated Order Plan Development

Field Description

AffinityUpdate Update plan fragment name for affinity grouped plan item. Only plan
items with the Update action and the same value in this field are
grouped together

AffinityCease Cease plan fragment name for affinity grouped plan item. Only plan
items with the Cease action and the same value in this field are
grouped together

AffinityCancel Cancel plan fragment name for affinity grouped plan item. Only plan
items with the Cancel action and the same value in this field are
grouped together

In the case where plan items with different actions are grouped together due to affinity,
the following logic is used to determine what action to apply to the plan item. The
following rules apply:

1. If AffinityActionValue is specified, then the action of the plan item is the result of
evaluating this xpath.

2. If AffinityActionValue is blank, or evaluates to an Empty String, then the remaining
rules apply:

a. If all order lines have the same action, then the plan item action is the same as
the order lines.

b. If order lines have different actions, then:

i. If at least one order line has PROVIDE action, then the plan item has
PROVIDE action.

ii. Otherwise if at least one order line has CEASE action, then the plan item
has CEASE action.

iii. Otherwise, the plan item has UPDATE action.

For details, see TIBCO® Product and Service Catalog Product Catalog Guide.

TIBCO® Order Management User Guide

178 | Automated Order Plan Development

Important: 1) If XPath is defined against plan data, the format must be <Actual
XPath> containing string $var/PlanItem. For example, if you want to define
the XPath for user-defined field name-value pair MSISDN=123, the XPath can be
$var/PlanItem[productID='GSMLine']/udfs[name='MSISDN']/value/text().

XPath evaluates data from the planItem. Refer to the sample planItem xml.

2) If XPath is defined against the order data, the format must be <Actual XPath>
containing string $var/Order. Refer to Sample order XML.

3) Default order data is considered for evaluation if XPATH does not contain
$var/PlanItem.

Note: See Sample XPATHs for XPATH definitions.

When Automated Order Plan Development returns a plan it indicates the action of the plan
item. Under normal circumstances, this maps directly to the action of the associated order
line that caused the creation of the plan item. In the case where plan items with different
actions are grouped together, the following logic is applicable to determine what action to
apply to the plan item.

1. If AffinityActionValue is specified, then the action of the plan item is the result of
evaluating this xpath.

l If AffinityActionValue is blank, or evaluates to an Empty String, then the
remaining rules apply

2. If all order lines have the same action, then the plan item action is the same as the
order lines.

3. If order lines have different actions, then:

l If at least one order line has PROVIDE action, then the plan item has PROVIDE
action.

l Otherwise if at least one order line has CEASE action, then the plan item has
CEASE action.

l Otherwise, the plan item has UPDATE action.

Conditional Affinity Sample
A product model is having two parents:

TIBCO® Order Management User Guide

179 | Automated Order Plan Development

l Parent_A

l Parent _B

Consider a product model where conditional affinity is defined at all the child products:

l Child_A1

l Child_B1

l Child_B2

Conditional Affinity

The XPATH defined in the product model is evaluated against the submitted order schema.

The following table describes the attribute-based conditional affinity scenarios:

Attribute Sample XPATH
Expressions

Order Payload

AffinityCondition exists
($var/Order/OrderHeader
UDF[name=UDFNAME and
value="UDFVALUE"])

<ord1:udf>
<ord1:name>UDFNAME</ord1:name>

<ord1:value>UDFVALUE</ord1:valu

TIBCO® Order Management User Guide

180 | Automated Order Plan Development

Attribute Sample XPATH
Expressions

Order Payload

e>
</ord1:udf>

AffintyCorrelation $var/Order/orderlines
[productID= 'Child_
A1']/ OrderlinesUDF
[name= 'UDFNAME']/
value/text()

<ord1:line>

<ord1:lineNumber>1</ord1:lineNum
ber>

<ord1:productID>Child_
A1</ord1:productID>

<ord1:quantity>1</ord1:quantity>
<ord1:uom>1</ord1:uom>

<ord1:action>PROVIDE</ord1:actio
n>

<ord1:actionMode>New</ord1:actio
nMode>

<ord1:udf>

<ord1:name>UDFNAME</ord1:name>

<ord1:value>UDFVALUE</ord1:valu
e>

</ord1:udf>
</ord1:line>

AffintyParentGrou
p

Child_B1 and Child_B2
have immediate parent.
The two is affinity grouped
when:
AffintyParentGroup=true

AffinityActionValu
e

The affinityAction

$var/Order/orderlines
[productID= 'Child_
A1']/OrderlinesUDF
[name=

<ord1:line>

TIBCO® Order Management User Guide

181 | Automated Order Plan Development

Attribute Sample XPATH
Expressions

Order Payload

Group must be
true

'UDFNAME']/value/text()
<ord1:lineNumber>1</ord1:lineNum
ber>
<ord1:productID>Child_

A1</ord1:productID>

<ord1:quantity>1</ord1:quantity>
<ord1:uom>1</ord1:uom>

<ord1:action>PROVIDE</ord1:actio
n>

<ord1:actionMode>New</ord1:actio
nMode>
<ord1:udf>
<ord1:name>UDFNAME</ord1:name>

<ord1:value>UDFVALUE</ord1:valu
e>

</ord1:udf>
</ord1:line>

Configurable Handling of CrossLink +
ProductComprisedOf Conflicts and Single Use +
ProductComprisedOf Conflicts
Affinity can violate the product model ProductComprisedOf action-based sequencing when
the provisioning of two or more products must be grouped through a single affinity plan
item for execution but have different parents, which provisioning must be sequenced in a
specific order. The affinity plan item is run for all parents irrespectively of the
ProductComprisedOf action-based sequencing, which breaks the product model and can
lead to circular dependencies and missing dependencies.

System config parameters must be added to trigger the following behavior:

l Error: If the Affinity and ProductComprisedOf conflict, stop and report an error.

l Ignore: If the Affinity and ProductComprisedOf conflict, ignore the Affinity rule and

TIBCO® Order Management User Guide

182 | Automated Order Plan Development

apply only ProductComprisedOf.

l Apply: If the Affinity and ProductComprisedOf conflict, the process with both rules
applied but add dependencies.

Note: This applies to all other Affinity types.

SingleUseHandling: Error | Ignore | Apply

l Error: If single use and ProductComprisedOf conflict, stop and report an error.

l Ignore: If single use and ProductComprisedOf conflict, ignore the SingleUse rule and
apply only ProductComprisedOf.

l Apply: If single use and ProductComprisedOf conflict, process with both rules applied
but add dependencies.

The default is Apply.

Sort Plan
The sort plan functionality was implemented to sort the plan according to the subscriber
for batch orders with multiple subscribers contained within the plan.

The sort plan function is defined to sort the plan according to an attribute defined within
the order. This function makes sure that products that belong to similar grouping
attributes follow each other in the GUI.

In scenarios where bulk orders for multiple subscribers are submitted into TIBCO Order
Management, the subscriber ID is used as the grouping mechanism. All the order lines have
a user-defined field defined with the name SubscriberID. Once the entire plan has been
generated all the plan items are sorted according to the value for the subscriber ID user-
defined field. This ensures that all products for an individual subscriber follow one after the
other. This is followed by the next subscriber and so on.

Attribute-Based Decomposition
This functionality defines the decomposition rules along the relationship path for products.
With the decomposition rule that is defined as XPATH logic, you can apply the defined logic
along with the order.

TIBCO® Order Management User Guide

183 | Automated Order Plan Development

This feature applies to the products having PCO, PDO, and PRF relationships.

The attribute-based decomposition can be applied if the following conditions are satisfied:

l The DECOMPOSITION attribute must exist in the product where the XPATH logic can
be defined.

l The XPATH logic must exist (As the XPATH logic is evaluated to true or false).

Automated Order Plan Development supports two xpath evaluation patterns. If the xpath
expression contains $var//Product, attribute-based decomposition is evaluated based on
the old evaluation technique. If the xpath expression contains $var/Order, attribute-based
decomposition is evaluated based on the new evaluation technique.

Evaluation expression with "Product"

The purpose of the logic can be to check for the user-defined fields or a particular product
within the order.

Example:

exists($var//Product[udf[name='AccessType' and value='copper']])

exists($var//Product[name='PO_TV' and udf[name='AccessType' and
value='copper']])

xml representation for the same expression is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<product> <!-- names are productid from every orderline of order >

<name>PO_TV</name>
<name>CFS_TV</name>
<name>PRODUCT_TV</name><!-- udfs included based on flags and order

input>
<udf>

<name>Name1</name>
<value>Value1</value>

</udf>
<udf>

<name>AccessType</name>
<value>copper</value>

</udf>
<udf>

<name>Name3</name>

TIBCO® Order Management User Guide

184 | Automated Order Plan Development

<value>Value3</value>
</udf>

</product>

The XPath for attribute-based decomposition can be used against the user-defined fields.
The user-defined field considerations can also depend on flags such as
includeproductmodelcharacteristics and includeonlyproductorderline.

Description of these flags are listed as follows:

includeproductmodelcharacteristics: By default this flag is false. The user-defined fields
can come from orderline or the product model characteristics. Automated Order Plan
Development configuration flag includeproductmodelcharacteristics is used to include
product model characteristics for xpath execution. By default, product model
characteristics are not considered.

includeonlyproductorderline: By default, this flag is false and it considers those orderline's
user-defined fields from the order to check against whose Xpath must be executed that
satisfies the following conditions:

l Have the same linkid with orderline bundle which is responsible for including the
product instance in the plan.

l Product in orderline is a child of the evaluating product.

Alternatively it can also be made to execute only against the orderline from which the
product is being decomposed by setting this flag to true, by default, which is false.

Example: You can define that Copper Access or Fiber Access process component must only
be in the plan if the Access Type in the order is Copper or Fiber.

A simple scenario for attribute-based decomposition is described as follows:

TIBCO® Order Management User Guide

185 | Automated Order Plan Development

Attribute-based decomposition of the product generated. The DECOMPOSITION characteristic
for F and E contains a relationship value with AccessType set to either F or E. The
Decomposition characteristic can contain complex XPATH logic, which can be used to
determine which branch of the tree must be included in the final execution plan for the
offering. The design takes into account the new product catalog characteristic called
DECOMPOSITION. The decomposition engine processes the characteristics and determines
which branch in the product hierarchy is required for the final execution plan.

If the order access type E is specified, then branch F is not included in the execution plan
and E is included. If access type F is specified then E is not included in the execution plan
and F is included in the plan.

Evaluation expression with "Order"

The logic can check user-defined fields along with productID in orderline within the order.

Example:

exists($var/Order/orderlines[productID='PO_TV1']/OrderlinesUDF
[name='OLUDF_Name2' and value='OLUDF_Value2'] or $var/Order/orderlines
[productID='PO_TV1']/OrderlinesUDF[name='OLUDF_Name1' and value='OLUDF_
Value1'])

It can also be evaluated against OrderHeaderUDF.

TIBCO® Order Management User Guide

186 | Automated Order Plan Development

Example:

exists($var/Order/OrderHeaderUDF[name=UDFNAME and value="UDFVALUE"])

l As part of this extended behavior, now xpath evaluation is supported on the order
object for attribute-based decomposition.

l The com.tibco.af.aopd.flags.includeonlyproductorderline flag is not supported
​when you choose to evaluate xpath on the order xml,​ as this flag was introduced to
avoid line-udf linking conflict in xpath evaluation with "Product". With the new xpath
evaluation technique there is no such conflict.

l includeproductmodelcharacteristics flag is not supported ​​when you choose to
evaluate xpath on order xml, as product model characteristics, are not required when
evaluating xpath using the order object.

When you are not evaluating xpath on the exact OrderRequest.xml, which is submitted
​from ​a ​north​bound-system ​as ​parsing the entire OrderRequest.​xml, it is performed on the
following xml file. You can configure xpath from the following object xml representation:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<order>

<businessTransactionID>Order_1</businessTransactionID>
<currentTime>2022-01-14T16:40:57.071+05:30</currentTime>
<customerref>CustomerRef 1</customerref>

<jmsPriority>4</jmsPriority>
<orderHeaderUDF>

<name>HeaderUDFName1</name>
<value>HeaderUDFValue1</value>

</orderHeaderUDF>
<orderHeaderUDF>

<name>HeaderUDFName2</name>
<value>HeaderUDFValue2</value>

</orderHeaderUDF>
<orderID>Order_1</orderID>
<orderRef>Order_1</orderRef>
<orderlines>

<action>Provide</action>
<dynamic>true</dynamic>
<lineID>1</lineID>
<lineUsed>true</lineUsed>
<linkID>1</linkID>
<linkParentID>1</linkParentID>
<linkedParentID>1</linkedParentID>

TIBCO® Order Management User Guide

187 | Automated Order Plan Development

<offerId>offerID</offerId>
<orderlinesUDF>

<name>OLUDF_Name1</name>
<value>OLUDF_Value1</value>

</orderlinesUDF>
<orderlinesUDF>

<name>OLUDF_Name2</name>
<value>OLUDF_Value2</value>

</orderlinesUDF>
<parentID>parentID</parentID>
<productID>PO_TV1</productID>
<quantity>1</quantity>
<requiredByDate>2022-01-14T16:40:57.078+05:30</requiredByDate>
<status>Pending</status>
<subscriberID>Subscriber</subscriberID>
<timeDelay>2022-01-14T16:40:57.078+05:30</timeDelay>

</orderlines>
<orderlines>

<action>Provide</action>
<dynamic>true</dynamic>
<lineID>2</lineID>
<lineUsed>true</lineUsed>
<linkID>1</linkID>
<linkParentID>1</linkParentID>
<linkedParentID>1</linkedParentID>
<offerId>offerID</offerId>
<orderlinesUDF>

<name>OLUDF_Name1</name>
<value>OLUDF_Value1</value>

</orderlinesUDF>
<orderlinesUDF>

<name>OLUDF_Name2</name>
<value>OLUDF_Value2</value>

</orderlinesUDF>
<parentID>parentID</parentID>
<productID>PO_TV2</productID>
<quantity>2</quantity>
<requiredByDate>2022-01-14T16:40:57.078+05:30</requiredByDate>
<status>Pending</status>
<subscriberID>Subscriber</subscriberID>
<timeDelay>2022-01-14T16:40:57.078+05:30</timeDelay>

</orderlines>
<originator>Member1</originator>
<parentID>Orphan</parentID>
<requiredByDate>2022-01-14T16:40:57.078+05:30</requiredByDate>

<rollback>true</rollback>

TIBCO® Order Management User Guide

188 | Automated Order Plan Development

<sessionID>Order_1</sessionID>
<status>Execution</status>
<timeDelay>1000</timeDelay>

</order>

With this order xml, you can generate custom xpath on all other order fields.

ProductDependsOn and ProductRequiredFor
Relationships
ProductDependsOn relationship: ProductDependsOn (PDO) is a product dependency
relationship to sequence the associated target and source plan items. The flexible product
decomposition occurs through the ProductDependsOn relationship. This establishes a
relationship between two products and is evaluated during the decomposition process.

ProductRequiredFor relationship: The ProductRequiredFor (PRF) relationship is a
prerequisite relationship for a product to add a target plan item.

The ProductDependsOn and ProductRequiredFor relationships enable you to create
product offers without defining sequencing for the products. You can create
ProductDependsOn relationship to lower-level products instead of using
ProductComprisedOf links.

The ProductDependsOn functionality provides a base behavior that permits to sequence
plan items corresponding to products related by ProductDependsOn when:

1. ProductDependsOn source and ProductDependsOn target product instances have no
LINKID defined.

2. ProductDependsOn source and ProductDependsOn target product instances have
LINKID defined and have the same LINKID value.

The feature can extend the base behavior and sequence additionally plan items
corresponding to products related by ProductDependsOn when:

1. ProductDependsOn source product instance has LINKID defined and
ProductDependsOn target product instances have no LINKID defined.

2. ProductDependsOn source the product instance has no LINKID and target product
instances have a LINKID defined.

TIBCO® Order Management User Guide

189 | Automated Order Plan Development

A ProductDependsOn source product instance can relate to multiple ProductDependsOn
target product instances by using base and extended cases so that the following use cases
are possible:

l A ProductDependsOn source product that has a LINKID defined and is related to a
ProductDependsOn target instance that has the same LINKID defined can be also
related to ProductDependsOn target product instances that have no LINKID defined.

l A ProductDependsOn source product that has no LINKID defined and is related to a
ProductDependsOn target instance that has no LINKID defined can be also related to
ProductDependsOn target product instances that have a LINKID defined. By default,
for ProductDependsOn sequencing, the base behavior is enabled. To enable the
extended behavior set the "EnableBiDirectionalLinkID" to true, by default it is false.

By default, only one instance of the required product per LinkID is available in the plan. If
there is a requirement to override this behavior to include multiple instances of the
required product with the same LinkID, then the Automated Order Plan Development flag
"AllowMultipleRequiredProducts" must be set to true. By default, it is false.

Note: The ProductRequiredFor adds the required plan item without dependency,
if you create only the ProductRequiredFor.

The ProductDependsOn and ProductRequiredFor relationships have the following two
relationship attributes:

l Source Action

l Target Action

The ProductRequiredFor relationship also has the third relationship attribute named
ocvValidationReq. This is a Boolean flag for validation. Based on the validation flag,
Automated Order Plan Development adds the product configured with the
ProductRequiredFor relationship in the plan.

The ProductDependsOn relationship also has the third relationship attribute named
'sequenceDirection'. The valid values of this attribute are either 'AFTER' or 'BEFORE'. This
attribute is paired with the provided values of SourceAction and TargetAction. For each
SourceAction and TargetAction, there is a value defined for the sequenceDirection
attribute.

l A 'BEFORE' sequence direction creates a dependency of the target product on the
source product.

TIBCO® Order Management User Guide

190 | Automated Order Plan Development

l An 'AFTER' sequencing direction creates a dependency of the source product on the
target product. This is the default.

If no value is provided in the sequenceDirection attribute, the attribute defaults to "AFTER"
, and the functionality works as it did before the introduction of the sequenceDirection
relationship attribute. The backward compatibility occurs as a result.

The value defined in the sequenceDirection attribute creates a dependency of the target
product on the source product or it creates a dependency of the source product on the
target product.

If a ProductDependsOn Source Product has a dependency on child products, then those
child products have a dependency on the ProductDependsOn target product by default. If
there is a requirement to override this default behavior and set the dependency of the
source product directly on the target product, then the value of the flag
"IgnorePDOFirstChildDependency" needs to be set to true in the Automated Order Plan
Development configuration file. By default, this value is false.

Note: ProductDependsOn relationship can be made conditional by using the
XPATH statement stored in the optional product characteristic DECOMPOSITION_
DEPENDS_ON.

ProductRequiredFor relationship can be made conditional by using the XPATH
statement stored in the optional product characteristic DECOMPOSITION_
REQUIRED_FOR.

Source and Target Attribute Values

The following table describes the different possible combinations:

SourceAction TargetAction

PROVIDE PROVIDE

PROVIDE UPDATE

PROVIDE CEASE

PROVIDE CANCEL

TIBCO® Order Management User Guide

191 | Automated Order Plan Development

SourceAction TargetAction

UPDATE PROVIDE

UPDATE UPDATE

UPDATE CEASE

UPDATE CANCEL

CEASE PROVIDE

CEASE UPDATE

CEASE CEASE

CEASE CANCEL

CANCEL PROVIDE

CANCEL UPDATE

CANCEL CEASE

CANCEL CANCEL

You can also define source action and target action to match the following combination by
using uppercase, comma-separated values. For example:

SourceAction: PROVIDE,PROVIDE,UPDATE,CEASE,CANCEL,CEASE

TargetAction: UPDATE,CANCEL,PROVIDE,UPDATE,PROVIDE,UPDATE

You can also define sequenceDirection to match the following combination by using
uppercase, comma-separated values. For example:

SourceAction: PROVIDE,PROVIDE,UPDATE,CEASE,CANCEL,CEASE

TargetAction: UPDATE,CANCEL,PROVIDE,UPDATE,PROVIDE,UPDATE

SequnceDirection: AFTER,BEFORE,AFTER,BEFORE,BEFORE,AFTER

TIBCO® Order Management User Guide

192 | Automated Order Plan Development

Note: There cannot be any space between the commas and the values.

Dependency between planitems occurs when both the following occur:

l The sequenceDirection attribute has valid values, that is, either 'AFTER' or 'BEFORE.'

l The number of sequenceDirection attributes matches with the number of Source
Actions and the number of Target Actions.

Note: There is only one target action for any given source action.

The following table explains the ProductDependsOn and ProductRequiredFor relationships
and their impact on orders and plans.

Product Configuration Order Plan

Product A has a ProductRequiredFor relationship with
Product B having source action and target action
PROVIDE and PROVIDE

OL1=ProductA Two plan item
(A and B) do
not depend
on each other

Product A has ProductRequiredFor and
ProductDependsOn relationship with B and
ProductRequiredFor and ProductDependsOn has
source action and target action PROVIDE and PROVIDE

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)

planItemA
depends on
planItemB

Product A has ProductRequiredFor and
ProductDependsOn relationship with B and
ProductRequiredFor and ProductDependsOn has
source action and target action PROVIDE and PROVIDE

OL1=ProductA planItemA
depends on
planItemB

Product A has ProductDependsOn relationship with B
having source action and target action PROVIDE and
PROVIDE

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)

planItemA
depends on
planItemB

The following table explains ProductDependsOn with Sequence direction and their impact
on orders and plans.

TIBCO® Order Management User Guide

193 | Automated Order Plan Development

Product Configuration Order Plan

Product A has ProductDependsOn relationship with
B having SA & TA as PROVIDE & PROVIDE.
SequenceDirection is AFTER.

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)

Two planitem
having planItemA
depends on
planItemB

Product A has ProductDependsOn relationship with
B having SA & TA as PROVIDE & PROVIDE.
SequenceDirection is BEFORE.

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)

Two planitem
having planItemB
depends on
planItemA

Product A has ProductDependsOn relationship with
B having SA & TA as PROVIDE & PROVIDE.
SequenceDirection is AFTER. Product B has
ProductDependsOn relationship with C having SA &
TA as PROVIDE & PROVIDE and SequenceDirection
is BEFORE.

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)
OL3=ProductC
(Action=Provide)

Three planitems
having planItemA
depends on
planItemB and
planItemC
depends on
planItemB

Product A has ProductDependsOn relationship with
B having SA & TA as PROVIDE & PROVIDE.
SequenceDirection is BEFORE. Product B has
ProductDependsOn relationship with C having SA &
TA as PROVIDE & PROVIDE and SequenceDirection
is AFTER.

OL1=ProductA
(Action=Provide)
OL2=ProductB
(Action=Provide)
OL3=ProductC
(Action=Provide)

Three planitems
having planItemB
depends on
planItemA and
planItemB
depends on
planItemC

Dependent and Sibling Products
TIBCO Order Management provides the ability in the product catalog to indicate that a
product is dependent on its peer [DEPENDENT_PRODUCT] or peer's hierarchy [SIBLING_
PRODUCT].

The only difference between dependent products and sibling products is that the
dependent is not added the peer product's children to be included in the subsequent
southbound service calls when the sibling product adds the peer's children on the
southbound service calls.

The diagram shows the product model.

TIBCO® Order Management User Guide

194 | Automated Order Plan Development

Data Model

P8 has a dependent product link to P7 and P6. This means that the process component
corresponding to P8 can use the output User-Defined Fields of P7 and P6 during the
execution provided P7 and P6 have been ordered directly or indirectly in the order and
corresponding process components have been run.

P3 has a sibling product link to P2. This means that the process component corresponding
to P3 can use the output User-Defined Fields of P2, P4, P5, P6, P7, P8, and P9 during the
execution provided P2 has been ordered directly or indirectly in the order and the
corresponding process components have been run.

The 6 product characteristics as explained in the table below must be added in the product
model defined in the TIBCO® Fulfillment Catalog or offline model XML. The dependent or
sibling link can be defined for a product by creating the Characteristic relationship with
one of the above relevant products [as per the scenario] with the value of the
RelationshipValue attribute as the comma-separated IDs of the dependent or sibling
products.

Name Description

DEPENDENT_PRODUCT Dependent product characteristic for PROVIDE scenario

TIBCO® Order Management User Guide

195 | Automated Order Plan Development

Name Description

DEPENDENT_PRODUCT_CEASE Dependent product characteristic for CEASE scenario

DEPENDENT_PRODUCT_UPDATE Dependent product characteristic for UPDATE scenario

SIBLING_PRODUCT Sibling product characteristic for PROVIDE scenario

SIBLING_PRODUCT_CEASE Sibling product characteristic for CEASE scenario

SIBLING_PRODUCT_UPDATE Sibling product characteristic for UPDATE scenario

For example, the Dependent link for P8 in case of the PROVIDE scenario can be specified by
creating a Characteristic relationship between P8 and DEPENDENT_PRODUCT with the
value of RelationshipValue as "P6, P7".

Shared Attributes
This section describes the Shared Attributes and its sample test scenarios.

Shared Attributes are used when two Products (parent to child and sibling) share the
attribute and its corresponding value and an update in the value of one needs to be
reflected in the other. If an attribute is deemed as a shared attribute and when the value
was passed on the order, then during decomposition the value is copied to the other
products based on the EvaluationPriority set on the other products.

EvaluationPriority

Multiple products can have the same shared attribute. Hence, if the value for a shared
attribute needs to be merged with the same shared attribute in other products, the user
needs to define the EvaluationPriority, which indicates the priority of merging the specified
characteristic from the target Product.

During the plan development process, Automated Order Plan Development checks if the
characteristic (that is, the attribute) is of type 'Shared', if yes then it checks the
EvaluationPriority for the characteristic. If the products mentioned on the
EvaluationPriority have the same shared attribute, then the value for the characteristic is
taken from the product. If none of the products mentioned on the EvaluationPriority have
the same shared attribute OR EvaluationPriority is not defined, then the value is taken
from the order line (if passed in the order line) or product model.

TIBCO® Order Management User Guide

196 | Automated Order Plan Development

Second part of the Shared attribute definition mentions that the update in the value of the
shared attribute in one product needs to be reflected in other products having the same
shared attribute.

During execution, the process component might have to update the attribute (user-defined
field) values. To update the value of a user-defined field, the process component calls
setPlanItem on the Transient Data Store mentioning the User-Defined Fields to be updated.
Process component sends the following details for the user-defined field:

1. Name - name of the user-defined field to update

2. Value - updated value

3. Flavor - 'output' (this indicates that process component has updated the value from
set/get methods), Input (this indicates that process component has updated the
value from order line), Config (this indicates that process component has updated
the value from Product model)

4. Type - Shared (if user-defined field is of type Shared)

On the subsequent calls to getPlanItems on Transient Data Store (the process component
might make this call to get details such as User-Defined Fields for plan items from
Transient Data Store), Transient Data Store checks if the requested plan items have any
user-defined field (that is, attributes) with the type as 'Shared'. If Shared User Defined
Fields are present, then the Transient Data Store checks the EvaluationPriority for that
user-defined field.

For the products mentioned on the EvaluationPriority, for each product (in the order of
priority) the Transient Data Store checks if it contains the user-defined field with the same
name and flavor = output. If the Transient Data Store finds such user-defined field, then the
value from this user-defined field is returned. If EvaluationPriority is not defined OR
products mentioned on the EvaluationPriority do not contain the user-defined field with
the same name and "output" flavor, then the value from the order line/product model is
returned (that is, merging is not done).

Below are the sample of EvaluationPriority:

l For a single product, product ID is followed by priority with colon in between them.

<productId>:<priority>
Example:
<ns0:evaluationPriority>SIM_TECNICO_BP1:1</ns0:evaluationPriority>

l For multiple products, sets of product-priority are separated by comma.

TIBCO® Order Management User Guide

197 | Automated Order Plan Development

<productId>:<priority>,<productId>:<priority>
Example:
<ns0:evaluationPriority>SIM_TECNICO_BP1:1,SIM_TECNICO_BP2:
2</ns0:evaluationPriority>

Shared Attributes - Sample Test Scenarios
This section describes the simple cases to test shared attributes in different scenarios.

1. Publish Product Model. The processes must be running in Test harness.

Here is an example for shared attributes with values of one reflecting in the other.

Scenario 1:

For the above product model structure, submit orders for SharedAttribute_B and
SharedAttribute_B1. Refer to the Order Submission topic for more information on the order
submission process. Send new value for the shared attribute in the user-defined field
format and values for both the attributes.

The value of B must reflect in B1, which conforms to the explanation of the Shared
Attributes.

Scenario 2:

Submit order and send new value for the shared attribute (in the user-defined field format).
Through order submission, send values for both the attributes, SharedAttribute_B and
SharedAttribute_B1. Using SetPlanItemRequest service, set Shared Attributes value of B.

In this case also, the value of B must reflect in B1. Using the GetPlanItemrequest service for
B1 returns a new value, which is reflected in B, thus corresponding value and an update in
the value of one is reflected in the other.

TIBCO® Order Management User Guide

198 | Automated Order Plan Development

Intermediate Milestones Dependencies
For a plan item to reach its completion state, the status of all intermediate milestones
must be in COMPLETE state.

For example, if a plan item (PI-1) has a sequence of START-M1-END, both M1 and END
milestones must must be in COMPLETE state for PI-1's status to be marked as COMPLETE.
Otherwise, the plan item status remains in the EXECUTION state. This ensures that all
necessary steps are fully completed before a plan item is considered finished.

The actual fulfillment of a product is done by orchestrating the back-end process
components. By default, any process component has two milestones:

1. START

2. END

These milestones represent the starting and the end parts of it. There is a direct
dependency between the process components due to sequencing of the products in the
catalog. This dependency is of type END-to-START, or once a process component is
completely run, then only the dependent process component can start its execution as
shown in the following figure:

END-to-START dependency

The process component EP_DEVICE_PROV can start only when EP_SERVICE_PROV is
completed and EP_TARIFF_PROV can start only when EP_DEVICE_PROV is completed.

TIBCO Order Management also supports the following complex types of dependencies
between the running process components:

l Milestone to START Dependency

TIBCO® Order Management User Guide

199 | Automated Order Plan Development

l END to Milestone Dependency

l Milestone to Milestone Dependency

l Milestone without Dependency

l Conditional Milestones Dependency

These dependencies are supported with the implementation of Intermediate Milestones
within the process component in addition to the START and END.

The functionality provides a base behavior that permits plan items to be sequenced
corresponding to products related by MDO when:

1. MDO-related product instances have no LINKID defined.

2. MDO-related product instances have LINKID defined and have the same LINKID value.

This feature can extend the base behavior and sequence additionally plan items
corresponding to products related by MDO when:

1. MDO-related parent product instance has LINKID defined and child product instances
have no LINKID defined.

2. MDO-related parent product instance has no LINKID and child product instances have
a LINKID defined.

An MDO-related parent product instance can relate to multiple child product instances
using base and extended cases so that the following use cases are possible:

l An MDO-related parent product that has a LINKID defined and is related to a child
instance that has the same LINKID defined can be also related to MDO-related child
product instances that have no LINKID defined.

l An MDO-related parent product that has no LINKID defined and is related to a child
product instance that has no LINKID defined can be also related to MDO-related child
product instances that have a LINKID defined.

For a plan item to reach its completion state, the status of all intermediate milestones
must be in COMPLETE state.

For example, if a plan item (PI-1) has a sequence of START-M1-END, both M1 and END
milestones must must be in COMPLETE state for PI-1's status to be marked as COMPLETE.
Otherwise, the plan item status remains in the EXECUTION state. This ensures that all
necessary steps are fully completed before a plan item is considered finished.

TIBCO® Order Management User Guide

200 | Automated Order Plan Development

Milestone to START Dependency
START milestones of a process component have a dependency on the completion of an
intermediate milestone in another process components.

The following figure shows the Milestone to START dependency:

Milestone to START Dependency

END to Milestone Dependency
Intermediate milestones in a process component have a dependency on the completion of
the END milestones in another process components.

The following figure shows the END to Milestone dependency:

END to Milestone Dependency

Milestone to Milestone Dependency
Intermediate milestones in a process component has a dependency on the completion of
the intermediate milestones in another process components.

The following figure shows the milestone to milestone dependency:

TIBCO® Order Management User Guide

201 | Automated Order Plan Development

Milestone to Milestone Dependency

ProductComprisedOf Sequence and Intermediate Milestone Dependency

Sequencing is an indication of the order in which the plan items are executed. If there is
not an intermediate milestones dependency set, a default START-END dependency is
created. When using the ProductComprisedOf sequence and intermediate milestones at the
same time, the intermediate milestone dependencies takes a precedence over the
conventional End-->Start dependencies.

The following figure shows a START-->END dependency with an intermediate milestone
dependency:

Start Milestone Dependency

1. The plan for an order is generated in the usual manner. There are no intermediate
milestone dependencies yet. The following is the plan based on the sequences:

Start_Plan1_End --> Start_Plan2_End --> Start_NO_RECIPROCAL_ACTION _End.

TIBCO® Order Management User Guide

202 | Automated Order Plan Development

2. The generated plan is evaluated against the intermediate milestone dependencies
defined in the product model so as to rearrange the dependencies. In this step as per
the product model, the milestone 'Milestone_Dependency_2' of Plan2 depends on
the milestone_M1 of Plan1.

Start_Plan1End ---> Milestone DependencyPlan2_End

3. There is a check for whether to add the existing dependencies or not. If the
intermediate milestone dependency in a plan item is on the same plan fragment as
the one in existing dependency, it ignores the existing dependency on that plan
fragment, for example, the start of Plan2 does not depend on the end of Plan1
anymore.

The following is the final plan:

Start_Plan1_End ---> Start_Milestone DependencyPlan2_End ---> StartNO_
RECIPROCAL_ACTION_End

The intermediate milestone dependencies take a precedence over the conventional
End-->Start of dependencies.

Milestone without Dependency
There can be intermediate milestones defined in a process component, which does not
have any dependencies. However, milestones in another process component might depend
on any of these milestones.

The following figure shows the Milestone without any dependency:

TIBCO® Order Management User Guide

203 | Automated Order Plan Development

Milestone without Dependency

These types of dependencies help manage the complex order fulfillment process. For
instance, start activating the broadband service once the broadband device fulfillment
reaches a certain status, say, INSTALLED.

The product model schema has been updated to support the milestones and dependency
definitions. See TIBCO® Fulfillment Catalog Product Catalog Guide for newly added
repository and relationships to support the intermediate milestones dependencies.

Conditional Milestones Dependency
The dependency between intermediate milestones can be conditional. This is specified
using the relationship attribute called Condition in TIBCO® Fulfillment Catalog. It is
represented in the product model as illustrated below:

Conditional Milestones Dependency

In this sample, the START milestone of EP_PROVIDE_11 is dependent on MILE1 of EP_
PROVIDE_10, only if the specified condition is satisfied.

The condition syntax can be one of the following three types:

l Parent user-defined field Syntax

l Child user-defined field Syntax

TIBCO® Order Management User Guide

204 | Automated Order Plan Development

l Match Parent-Child user-defined field Syntax

Note: There is no provision to specify the XSLT statement in the condition as it
is there for Attribute-Based Decomposition. Also, the flavor must be configured
as input instead of config to make the conditional milestone dependency
function correctly.

Note the following definitions:

l Parent: The plan fragment whose milestone has a dependency on another plan
fragment. The parent user-defined field is referred to a user-defined field passed in
the order line in the order for that product, which is propagated into the plan item
for that order line.

l Child: The plan fragment on whose milestone a milestone in another plan fragment
depends. The child user-defined field is referred to a user-defined field passed in the
order line in the order for that product, which is propagated into the plan item for
that order line.

In the plan illustrated above, EP_TEST_PROVIDE_11 [START] is dependent on EP_TEST_
PROVIDE_10 [MILE1]. It is assigned to PROD11 as the PROVIDE plan fragment. PROD11 is
the parent and PROD10 is the child.

Parent user-defined field Syntax

Value:Parent(ParentUDFName=ExpectedValue)

The condition is satisfied only if there is a user-defined field in the parent plan item with
the same value as passed in the condition as "ExpectedValue".

Child user-defined field Syntax

Value:Child(ChildUDFName=ExpectedValue)

The condition is satisfied only if there is a user-defined field in the child plan item with the
same value as passed in the condition as "ExpectedValue".

Match Parent-Child user-defined field Syntax

Match:ParentUDFName=ChildUDFName

TIBCO® Order Management User Guide

205 | Automated Order Plan Development

The condition is satisfied only if the value of the user-defined field [ParentUDFName] in the
parent plan item is equal to the value of the user-defined field [ChildUDFName] in the child
plan item.

Order Amendment
Order Amendment allows the order, which is being fulfilled, to be modified for different
parameters such as action, requiredByDate, and User-Defined Fields in the existing order
lines. It also allows adding a new order line in the request. The parameters and their
reason for change are mentioned as follows:

l The parameter values passed in the original request were incorrect. The corrected
values can be passed by sending an amendment request.

l The parameter values require a modification as per the change request from the end
user. For example, the bandwidth of a product named Internet Bundle is passed as a
user-defined field named Bandwidth in the order line. The bandwidth in the original
order was 1 Mbps. When the order was being fulfilled, the customer requested the
bandwidth to be updated to 2 Mbps. This is done by sending an amendment request
by changing the value of the user-defined field named Bandwidth to 2 Mbps.

l An additional product requires fulfillment when the current one is being fulfilled.

An order can be amended when it is in one of the following states:

FEASIBILITY If the order is amended in these states, then it is called a pre-
plan development amendment, because the execution plan has
not yet been created. In this scenario, the execution plan
generated for the amendment request is considered and run.

OPD

PREQUALIFICATIONFAILED

EXECUTION If the order is amended in these states it is post-plan
development amendment, because the execution plan was
already created and had begun execution. In this scenario, the
existing plan requires modification and merging with the plan
that has been generated as per the amendment request. Post-
plan development amendment is the most frequently used
amendment.

SUSPENDED

ERROR_HANDLER

An order cannot be amended when it is in any of the following final states:

TIBCO® Order Management User Guide

206 | Automated Order Plan Development

l COMPLETE

l CANCELED

l WITHDRAWN

Note: If you want to generate a redo plan item without changing any thing in
the amendment request, you must set the enableAmendmentValidation flag to
false to bypass any validation. Also, the REDO for the plan item is generated
without any changes in amendment. For this, you must set the EPMR_ACTION_*
with the value as REDO.

Delta Amendment
You can request for the required changes only. You do not have to include the existing
orderlines or order details in the request for amendment.

Use Case: 1

You have an order, which contains A, B, and C items on line numbers 1, 2, and 3
respectively.

Here is a requirement to add item D on line number 4.

In this case, you do not have to send the entire order in the request. You can send item D
in the request with 'add' as the required action.

Use Case: 2

You have an order, which contains A, B, and C items on line numbers 1, 2, and 3
respectively.

Here is a requirement to modify item B on line number 2.

In this case, you do not have to send the entire order in the request. You can send item B
in the request with 'modify' as the required action.

Delta amendment is also available for requiredByDate and User-Defined Fields.

Amendment Workflow
Since an order amendment involves the modification of the current execution plan, a
predefined process is adopted. The predefined process is as follows:

TIBCO® Order Management User Guide

207 | Automated Order Plan Development

1. After accepting an order amendment request, the Orchestrator first tries to suspend
the current execution plan by sending the suspend requests
(PlanItemSuspendRequest message) to all the plan items that are in EXECUTION state.
Based on the implementation of the process components, and the point at which the
process component is executed, the process components might send a successful
suspend response (PlanItemSuspendResponse message) or a successful completion
response (PlanItemExecuteResponse). Any one of the responses is acceptable by the
Orchestrator.

2. Once the execution plan (and order) reaches the SUSPENDED state, the Orchestrator
sends a plan generation request to Automated Order Plan Development to generate
the execution plan as per the order lines in the amendment request.

3. The new execution plan generated by the core Automated Order Plan Development is
merged with the existing plan to add, or to modify the plan items as per the changes
in the amendment request.

4. Based on the modification rule characteristics defined in the product model, the
compensatory plan items are added in the new execution plan to let the undoing of
the tasks that were performed by the earlier corresponding plan items. If required,
the REDO plan items are also added in the new execution plan to redo the tasks that
need to be performed by a particular plan item.

5. After receiving the consolidated execution plan for the amendment request from
Automated Order Plan Development, the Orchestrator activates the SUSPENDED plan
and starts orchestrating it as per the latest dependencies.

6. All SUSPNDED plan items is activated, either for cancellation (cancelWithNoRollback
or cancelAndRollback) or resume execution (resumeExecution) by sending the
PlanItemActivateRequest messages.

7. Any compensatory and redo plan items, created during the amendment process, is
executed in the same way as the regular plan items by sending the
PlanItemExecuteRequest messages, so as to either complete or cancel the order.

Modeling of the Required Characteristics in the
Fulfillment Catalog
As per the requirement of the amendment use case, some or all of the following
characteristics are required to be available in the product model published to TIBCO Order
Management. The modeling of these characteristics and relating them with the required

TIBCO® Order Management User Guide

208 | Automated Order Plan Development

products, needs to be done in the TIBCO® Fulfillment Catalog at the design time. For more
information about modeling, see the following procedure:

Note:
This section covers just the high level modeling steps specific to the
characteristics required for amendments. Refer the TIBCO® Fulfillment Catalog
documentation for details.

1. Create the following records in the CHARACTERISTIC repository:

l EPMR_ACTION_PROVIDE

l EPMR_ACTION_CEASE

l EPMR_ACTION_UPDATE

l EPMR_ACTION_WITHDRAW

l COMPENSATE_PROVIDE

l COMPENSATE_CEASE

l COMPENSATE_UPDATE

2. For more granular EPMR actions based on the plan item statuses, the user can add
additional characteristics mentioned below in generic format. Note that these
characteristics are used only in case of the new and improved user-defined field
modification functionality. Refer the New Characteristics subsection in OrderLine
user-defined field change.

l EPMR_ACTION_<<action>>_UDF_CHANGE_<<Plan Item Status>>. For example,
EPMR_ACTION_PROVIDE_UDF_CHANGE_SUSPENDED.

3. Create the Characteristic relationship between the records in the PRODUCT repository
and one or more EPMR_ACTION_* records in the CHARACTERISTIC repository
mentioned in point 1 and 2 above. The logically valid value for the RelationshipValue
attributes in all these Characteristic relationships can be one of the four EPMR
actions - COMPENSATE, RESTART, COMPENSATE_RESTART, or IGNORE. Refer the Execution
Plan Modification Rules (EPMR) topic for the significance of these four actions. For
example, the technical product Router can have a Characteristic relationship with
EPMR_ACTION_PROVIDE characteristic, with the value of RelationshipValue attribute as
COMPENSATE_RESTART.

4. Create the Characteristic relationship between the records in the PRODUCT
repository and one or more COMPENSATE_* records in the CHARACTERISTIC repository

TIBCO® Order Management User Guide

209 | Automated Order Plan Development

mentioned in point 1 above. The logically valid value for the RelationshipValue
attributes in all these Characteristic relationships must be the ID of the plan fragment
record that is required to be run as the compensation task for the corresponding
action. For example, the technical product Router can have a Characteristic
relationship with COMPENSATE_PROVIDE characteristic, with the value of the
RelationshipValue attribute as the planFragmentID Router_Cancel.

Types of Amendment
At a high level, order amendments can be classified into the two heads and further into
each subtype as described below:

1. Changes at order line level

a. Action Change - Changing the action in one or more order lines.

b. RequiredByDate Change - Changing the requiredByDate in one or more order
lines.

c. User-defined field Change - Changing the user-defined field in one or more
order lines.

2. Changes at the order header level

a. RequiredByDate Change - Changing the requiredByDate at order header level.

b. OrderLine Addition - Adding a new order line in the order.

c. OrderPriority Change–Changing the orderPriority at the order header level.

The amendment types at the order line level are MUTUALLY EXCLUSIVE. Only one of the
amendment types is allowed for a particular order line in an amendment request. for
example, the action and User-Defined Fields cannot be simultaneously updated in an order
line. If multiple amendment types are tried simultaneously for an order line in a single
amendment request, an exception with the appropriate code and an appropriate message
is generated. For example, if action and requireByDate both are changed in an order line in
the amendment request, an exception with the error code "TIBCO-AFF-OMS-100064" and
an error message "Action and requiredByDate cannot be modified simultaneously in an
order line", is generated.

However, different amendment types can be applied in different order lines as part of the
same amendment request. That is, the action change in one order line and the user-
defined field or requiredByDate change in another one can be done simultaneously.

TIBCO® Order Management User Guide

210 | Automated Order Plan Development

OrderLine Action Change
In this amendment type, the fulfillment action in an order line can be changed as part of
the amendment request. For example, the action was PROVIDE in an order line in the
original order request and changed to UPDATE in the amendment request. Since CANCEL
can also be passed as the action in one or all the order lines in the amendment request,
order line cancellation and entire order cancellation are the subtypes of this amendment
type.

OrderLine Cancellation

To cancel a particular order line, CANCEL must be passed as the action in the amendment
request. The PENDING plan items associated with the order line are directly CANCELLED.
Execution Plan Modification Rules are applied on the plan items that were COMPLETE or
SUSPENDED before the amendment to compensate them, as per the Execution Plan
Modification Rules action defined in the product model. Once all the associated plan items
are either cancelled or compensated, the order line is marked as canceled by changing its
status to CANCELLED.

Entire Order Cancellation

To cancel the entire order, the CANCEL must be passed as the action in all the order lines
in the amendment request. All the PENDING plan items in the execution plan are directly
CANCELLED. Execution Plan Modification Rules are applied on the plan items that were
COMPLETE and SUSPENDED before the amendment to compensate them, as per the
Execution Plan Modification Rules action defined in the product model. Once all the plan
items are either canceled or compensated, all the order lines and also the order is marked
as canceled by changing the statuses to CANCELLED. The Execution Plan Modification Rules
are applied in case of order line or entire order cancellation, based on the Boolean value
(true/false) of the rollback user-defined field passed in the order header. The modification
rules are applied if the rollback UDF's value is true, otherwise it is not applied.

Note:
The default behavior is always to roll back, which is, if the rollback user-defined
field is not passed in the order header, it is considered to be true.

An order can also be canceled using the CancelOrderRequest SOAP service and
from the Order Management Server user interface.

TIBCO® Order Management User Guide

211 | Automated Order Plan Development

Preconditions for Action change

Following are the preconditions for the order line action change amendment type.

1. The number of order lines in the amendment request must match with those in the
original order request.

2. The lineID, productID, requiredByDate, and User-Defined Fields in all the order lines
in the amendment request must match with those in the original order request.

When the fulfillment action in an order line is changed, the plan items associated with that
order line in the existing plan are handled in different ways.

1. The action in the amendment request is set as the fulfillment action in all PENDING
plan items.

2. Execution Plan Modification Rules (EPMR) are applied to all SUSPENDED or
COMPLETE plan items to take the appropriate actions on these plan items such as
compensating the earlier tasks and/or redoing the tasks from the beginning.

For any action change in the amendment request other than CANCEL, the Execution Plan
Modification Rules characteristic corresponding to the action in the original plan item, from
the product being fulfilled by that plan item, is considered when applying the modification
rule.

OrderLine Action in
Original Request

OrderLine Action in
Amendment Request

Execution Plan Modification Rules
Characteristic Considered

PROVIDE Any, except for CANCEL
and PROVIDE

EPMR_ACTION_PROVIDE

UPDATE Any, except for CANCEL
and UPDATE

EPMR_ACTION_UPDATE

CEASE Any, except for CANCEL
and CEASE

EPMR_ACTION_CEASE

If CANCEL is passed as the order line action in the amendment request, the EPMR_ACTION_
WITHDRAW characteristic from the product being fulfilled by the corresponding plan item is
considered always, regardless of the action in the original request.

TIBCO® Order Management User Guide

212 | Automated Order Plan Development

In addition to the above condition, if the plan item action is CANCEL, the EPMR_ ACTION_
WITHDRAW characteristic would be considered. For example: In case of amendment due to
a certain condition if any plan item is not present in the newly generated plan, then the
action for that particular plan item is considered as CANCEL.

Based on the value of the Execution Plan Modification Rules characteristic that was
considered, the modification rules are applied on the required plan items. See topic
Execution Plan Modification Rules (EPMR) to understand the effect of each action.

Note: If the Execution Plan Modification Rules characteristic to be considered
(Example: EPMR_ACTION_PROVIDE) is not present in the corresponding product
model. COMPENSATE_RESTART is considered as the default EPMR action, only if
the flag CompensateRestartForNoEPMRChar is set in Automated Order Plan
Development configurations. See the topic Amendment Configuration Flags to
understand the significance of each flag.

Once the EPMR action is applied on all the required plan items and the compensatory
and/or redoes plan items are generated, the dependencies in the parent plan items are
updated appropriately. See topic Impact on Dependencies to understand how the
dependencies are modified. The amendment plan is sent out to the Orchestrator to fulfill
the order sent in the amendment request.

RequiredbyDate Change
RequiredByDate for an order defines the time at which the order plan must be executed. It
can be mentioned at both the order header level or/and the order line level. In terms of
dependency in the order plan, it generates a time dependency (with absolute time) for a
plan item along with dependency on other executing plan items (point dependency) if any.
Once the absolute time is reached, time dependency is considered as satisfied.

Following are the preconditions for the order line requiredByDate change amendment type:

1. The number of order lines in the amendment request must match with those in the
original order request.

2. The lineID, productID, action, and User Defined Fields in all the order lines in the
amendment request must match with those in the original order request.

Following is the process of calculating a time dependency about requiredByDate.

l If requiredByDate is set on the order level only, the start time dependency applies to

TIBCO® Order Management User Guide

213 | Automated Order Plan Development

all plan items with no leading dependencies

l If requiredByDate is set on the order line level only, the start time dependency
applies to plan items for that order line

l If requiredByDate is set on the order header level and on the order line level, the
following behavior applies:

o If requiredByDate in Order Header is later than requiredByDate in order line,
then the start time used is the one at order level

o If requiredByDate in Order Header is earlier than requiredByDate in line item,
then the start time used is the one at order line level

RequiredBydate Amendment type allows for changing the required date for an order when
it is not in its FINAL stages as mentioned earlier. The following matrix defines the
conditions to identify a RequiredByDate change amendment type:

Original
header
date

Original
line date

New header
date

New line date IsAmendment

Past Dated Past Dated past dated but
greater than
originalheader
date

past dated but
greater than
originalheader
date

No

Past Dated Past Dated Same as original Future Dated Yes, for that particular
Order Line

Past Dated Past Dated Future Dated Same as original Yes, for all order lines

Future
Dated

Past Dated Back Dated Same as original Yes, for all order lines

Future
Dated

Past Dated Future date than
original

Same as original Yes, for all order lines

Past Dated Future
Dated

Same as original Same as original No

Past Dated Past Dated Future Dated Future Dated Yes, for all order lines. The

TIBCO® Order Management User Guide

214 | Automated Order Plan Development

Original
header
date

Original
line date

New header
date

New line date IsAmendment

time dependency is
calculated as explained
earlier.

No Date Past Date Back dated Same as original No

No Date Future
Date

Back dated Same as original No

No Date No Date Future Dated Future Dated Yes, for all order lines. The
time dependency is
calculated as explained
earlier.

The default behavior in 2.1.1 for required by date change is not to create compensation or
restart any plan items. Below matrix defines the amendment behavior based on plan item
status

Plan Item
Status

Description

Pending Plan item dependency time is updated so the plan item triggers at the
amended required by date.

Suspended Not permitted. Any required by date changes are ignored. As the plan item is
already started, it is not possible to change the start date.

Complete Not permitted. Any required by date changes are ignored. As the plan item is
already completed, it is not possible to change the start date.

The value of roll back user-defined field in order is ignored in this case as no compensation
or restart plan items are created.

TIBCO® Order Management User Guide

215 | Automated Order Plan Development

OrderLine user-defined field Change
OrderLine user-defined field change is a type of an order amendment where the amended
order lines contain changed user-defined fields and/or newly added user-defined fields
along with the user-defined fields from the original order request. All other order request
attributes remain unchanged. This application can identify if the orders have changed only
about User-Defined Fields by inspecting the order lines to identify if the User-Defined Fields
have been modified or added.

Note: If you want to modify the user-defined fields and want to avoid your order
going through the complex amendment process, then you should consider using
the Data Service.

Sample Order Line in TIBCO Order Management

<ord1:line>
<ord1:lineNumber>1</ord1:lineNumber>

<ord1:productID>MODEM</ord1:productID>
<ord1:productVersion>1.0</ord1:productVersion>
<ord1:quantity>1</ord1:quantity>
<ord1:uom>UOM</ord1:uom>
<ord1:action>PROVIDE</ord1:action>
<ord1:requiredByDate>2011-04-30T13:20:00-

05:00</ord1:requiredByDate>
<ord1:udf>

<ord1:name>Region</ord1:name>
<ord1:value>Asia</ord1:value>

</ord1:udf>
</ord1:line>

Identifying user-defined field Amendment

TIBCO Order Management checks the following conditions to identify the user-defined field
change amendment scenario. All the following conditions, which are mentioned, hold true
for the user-defined field change amendment:

l The number of order lines in the initial order must match the number of order lines
in the amended order.

l The product Id in order line in the initial order must match with the product Id in the

TIBCO® Order Management User Guide

216 | Automated Order Plan Development

corresponding order line of the amended order.

l The action in order line in the initial order must match with the action in the
corresponding order line of the amended order.

l The RequiredByDate in order line in the initial order must match with the
RequiredByDate in the corresponding order line of the amended order.

Execution Plan Modification Rules (EPMR) Characteristics

The application provides more granular execution plan modification rules actions to be
configured for user-defined field modifications based on the status of the plan items, to
have more control when generating the COMPENSATE or REDO plan items.

The format of execution plan modification rule characteristics is as follows:

1. EPMR_ACTION_<<action>>_UDF_CHANGE: Using this format Execution Plan Modification
Rules action can be configured per amendment type. The supported values of
<<action>> are:

a. PROVIDE

b. CEASE

c. UPDATE

d. WITHDRAW

The following is an example of the characteristic configured in the product model
with Execution Plan Modification Rules:

<ns0:characteristics>
<ns0:name>EPMR_ACTION_PROVIDE_UDF_CHANGE</ns0:name>
<ns0:description>Characteristic</ns0:description>
<ns0:instanceOptional/>
<ns0:instanceCeaseSequence/>
<ns0:instanceUpdateSequence/>
<ns0:instanceSequence/>
<ns0:instanceMin>0</ns0:instanceMin>
<ns0:instanceMax>0</ns0:instanceMax>
<ns0:evaluationPriority/>
<ns0:value>
<ns0:type>PROVIDE</ns0:type>
<ns0:discreteValue>COMPENSATE_RESTART</ns0:discreteValue>
<ns0:mandatoryValue>true</ns0:mandatoryValue>

TIBCO® Order Management User Guide

217 | Automated Order Plan Development

</ns0:value>
<ns0:simpleRule>
<ns0:name>EPMR_ACTION_PROVIDE_UDF_CHANGE</ns0:name>
<ns0:ruleSetOutcome>Characteristic</ns0:ruleSetOutcome>

</ns0:simpleRule>
</ns0:characteristics>

2. EPMR_ACTION_<<action>>_UDF_CHANGE_<<Plan Item Status>>: Using this format, the
Execution Plan Modification Rules action can be configured per Amendment Type
and Plan Item Status. The supported values of Plan Item Status are:

a. COMPLETE

b. SUSPENDED

c. PENDING

d. EXECUTION

The following is an example of the characteristic configured in the product model
with Execution Plan Modification Rules:

<ns0:characteristics>
<ns0:name>EPMR_ACTION_PROVIDE_UDF_CHANGE_

SUSPENDED</ns0:name>
<ns0:description>Characteristic</ns0:description>
<ns0:instanceOptional/>
<ns0:instanceCeaseSequence/>
<ns0:instanceUpdateSequence/>
<ns0:instanceSequence/>
<ns0:instanceMin>0</ns0:instanceMin>
<ns0:instanceMax>0</ns0:instanceMax>
<ns0:evaluationPriority/>
<ns0:value>

<ns0:type>PROVIDE</ns0:type>
<ns0:discreteValue>COMPENSATE_RESTART</ns0:discreteValue>
<ns0:mandatoryValue>true</ns0:mandatoryValue>

</ns0:value>
<ns0:simpleRule>

<ns0:name>EPMR_ACTION_PROVIDE_UDF_CHANGE</ns0:name>
<ns0:ruleSetOutcome>Characteristic</ns0:ruleSetOutcome>

</ns0:simpleRule>
</ns0:characteristics>

TIBCO® Order Management User Guide

218 | Automated Order Plan Development

Backward Compatibility with TIBCO Order Management

TIBCO Order Management supports the use of MODIFICATION_IDNETIFYING_ATTR udf to
denote the user-defined field being changed through the use of a flag. This flag, called
EnableModificationIdentifyingAttribute, can be configured from the Configurator UI for the
AOPD service application.

The default value of this flag is FALSE.

Predefined User-Defined Fields

Changes in the following user-defined fields are ignored by the application:

l ORDERLINE

l GLOBAL_PRODUCT_NAME

l EOL

l ACTION

l M_EPS_UDFS

Note: The changes done only in the User-Defined Fields at the order header
level in an amendment request does not have any impact on the existing plan in
terms of the creation of compensatory and redo plan items. There are no
changes in the dependencies between the plan items either. However, the
amendment plan contains the updated value of the User-Defined Fields. The
plan items, which go into the EXECUTION post amendment can get the updated
value of the header level User-Defined Fields using the GetPlan JMS data
interface or the GetOrderExecutionPlan service.

OrderLine Addition
In this amendment type, one or more new order lines can be added as part of the
amendment request to fulfil the additional products. The plan items corresponding to the
newly added order lines are added into the execution plan and the dependencies are
updated accordingly. At a high level, there are two main cases.

1. If an optional child product from a ProductComprisedOf relationship was ordered in
the original request and the parent product is then ordered in a new order line in the

TIBCO® Order Management User Guide

219 | Automated Order Plan Development

amendment request, the newly created plan item for parent products have a
dependency on the existing plan item of the child product.

For example, if B is an optional child product of A, in case of the above mentioned
scenario; the newly added plan item for A have a dependency on the plan item of B,
which was there in the original plan. This is done regardless of the status of the plan
item for child product B.

This is logical and is the case even when both products were ordered in the original
request itself. Once the amendment plan is activated, the plan item for the parent
product goes into EXECUTION after the plan item for child product is successfully
completed. If the plan item for child product was already COMPLETE, the plan item for
parent product goes into EXECUTION immediately.

2. On the other hand, if a parent product from a ProductComprisedOf relationship was
ordered in the original request and the child product is then ordered in a new order
line in the amendment request, the dependency of the child plan item is added
based on the status of the parent plan item, as explained in the following points:

a. If the parent plan item was PENDING before the amendment, the dependency is
added into the existing parent plan item.

b. If the parent plan item was SUSPENDED or COMPLETE before the amendment, a
REDO plan item is generated against it. The original parent plan item is
cancelled if it was SUSPENDED. A REDO plan item is generated based on the
Execution Plan Modification Rules action configurations as mentioned in the
following points:

i. If the value configured in the Execution Plan Modification Rules
characteristic for the corresponding order line action is either RESTART or
COMPENSATE_RESTART. E.g. In case of PROVIDE action, the value of EPMR_
ACTION_PROVIDE characteristic is referred.

ii. Or the required Execution Plan Modification Rules characteristic is
missing in the product model and the CompensateRestartForNoEPMRChar
flag is enabled in Automated Order Plan Development configurations.

See Execution Plan Modification Rules (EPMR) for details about Execution Plan
Modification Rules actions. The dependency of the child plan item is added into
the newly created REDO plan item for the parent product. Once the
amendment plan is activated, the newly added plan item for the child product
goes into EXECUTION. After it is successfully completed, the REDO plan item for
parent goes into EXECUTION.

TIBCO® Order Management User Guide

220 | Automated Order Plan Development

Preconditions for OrderLine Addition

Following is the only precondition for the order line addition amendment type.

The lineID, productID, requiredByDate, and User Defined Fields in all the order lines in the
amendment request must match with those in the original order request.

Note: Unlike addition, the deletion or removal of an existing order line is not
allowed and supported in an amendment request. For cancelling the fulfillment
of the product in an order line, the order line action must be changed to CANCEL
instead.

Execution Plan Modification Rules (EPMR)
The execution plan, for the amendment types mentioned earlier, is modified based on the
predefined rules that are specified as values in the following characteristics in the product
model:

1. EPMR_ACTION_PROVIDE

2. EPMR_ACTION_CEASE

3. EPMR_ACTION_UPDATE

4. EPMR_ACTION_WITHDRAW

Only one of the appropriate characteristics, based on the action passed in the original
order, is referred to when applying the modifications on the execution plan. For user-
defined field change functionality, additional set of characteristics can be defined to have a
granular control based on the status of the plan item.

As mentioned in earlier, these rule actions are applied on the plan items that are either in
SUSPENDED or COMPLETE state. There are four standard Execution Plan Modification Rules
actions, which are explained in the following paragraphs. Only one of the four actions can
be specified as the value for a particular Execution Plan Modification Rules characteristic
for a particular product.

COMPENSATE_RESTART
This Execution Plan Modification Rules action is assigned as the value of an Execution Plan
Modification Rules characteristic if a compensatory and redo plan item is to be created

TIBCO® Order Management User Guide

221 | Automated Order Plan Development

against an existing plan item as a part of the amendment processing.

Compensatory Plan Item

The purpose of a compensatory plan item is to compensate, or reverse, the tasks that were
done by the existing plan item before the amendment request was initiated. The important
aspect of a compensatory plan item is as follows:

1. The planItemId of the compensatory plan item is derived using the planItemId of the
existing plan item and has the following format: COMP-<amendment number>_
<planItemId of the existing plan item>. For example, if the planItemId of the existing
plan item is 04ceddc8-60fc-4800-82b9-4f3382400000 and a compensatory plan item is
created against it during the first amendment request, the planItemId assigned to
that compensatory plan item is COMP-1_04ceddc8-60fc-4800-82b9-4f3382400000.

2. The action and planFragmentUniqueID (processComponentID) in the compensatory
plan item is assigned on the basis of the action in the existing plan item, which is
described in the following table:

Action in Existing
Plan Item

Action in Compensatory
Plan Item

processComponentID in
Compensatory Plan Item

PROVIDE CEASE Value of Characteristic COMPENSATE_
PROVIDE

UPDATE UPDATE Value of Characteristic COMPENSATE_
UPDATE

CEASE PROVIDE Value of Characteristic COMPENSATE_
CEASE

Note: If the required COMPENSATE_<ACTION> characteristic (for example
COMPENSATE_PROVIDE) is not present in the product model, the regular plan
fragment specified for CANCEL action is assigned.

3. The compensatory plan item, by default, have a simple END-START point dependency
on the existing plan item being canceled, as shown in the following figure. This is to
ensure that the compensatory task must be started only after the existing task, being
run, is activated and canceled.

TIBCO® Order Management User Guide

222 | Automated Order Plan Development

Dependency between the compensatory plan item COMP-1_P1 and the existing plan
item P1 that is canceled

To enable the backward compatibility of having no dependency in the compensatory
plan items in TIBCO Fulfillment Order Management 6.0, the flag
com.tibco.af.aopd.flags.amendment.noDependencyInCOMPPlanItems must be set in
Automated Order Plan Development configurations. Refer to the topic Amendment
Configuration Flags to understand the significance of each flag.

4. The action and the processComponentID in the existing plan item is set to CANCEL
and NO_RECIPROCAL_ACTION respectively to cancel the existing plan item. Note that
the Orchestrator changes the processComponentID to NO_RECIPROCAL_ACTION only
for the PENDING plan items that are canceled. The processComponentID for the
SUSPENDED plan items remains the same.

Note: A compensatory plan item, if requiring creation, is created always against
a regular plan item in the first amendment. However, in the subsequent
amendment requests, it can be created against a regular or a REDO plan item
from the earlier amendment based on the execution plan at that point, as shown
in the following figure. A compensatory plan item is never created against
another compensatory plan item that was created during the last amendment.

Dependency between the compensatory plan item COMP-2_REDO-1_P1 created
during the second amendment and the REDO plan item from the last
amendment REDO_P1, which is canceled.

TIBCO® Order Management User Guide

223 | Automated Order Plan Development

Redo Plan Item

The sole purpose of redo (restarting) plan item is to restart or redo the tasks that were
supposed to be done in the existing plan item before the amendment request was
initiated. The important aspects of redo plan item are as follows:

1. The planItemId of redo plan item is derived using the planItemId in the existing plan
item and has the following format: REDO-<amendment number>_<planItemId of the
existing plan item>. For example, if the planItemId of the existing plan item is
04ceddc8-60fc-4800-82b9-4f3382400000 and redo plan item is created against it
during the first amendment request, the planItemId assigned to that redo plan item
is REDO-1_04ceddc8-60fc-4800-82b9-4f3382400000.

2. The action in redo plan item is the one that is passed in the corresponding order line
in the amendment request.

3. The planFragmentUniqueID (processComponentID) in redo plan item is the same as
the one in the existing plan item, except in case of order line action change
amendments. In such cases, the plan fragment associated with the action in the
amendment request is assigned in redo plan item.

4. Redo plan item always have a simple END-START point dependency on the
compensatory plan item that is created, as shown in the following figure. This
ensures that the designated tasks are restarted only after the compensatory tasks are
finished.

Dependency between the REDO plan item REDO_P1 and the compensatory plan item
COMP-1_P1

TIBCO® Order Management User Guide

224 | Automated Order Plan Development

Note: redo plan item, requiring creation, is always created against a regular plan
item in the first amendment. However, in the subsequent amendment requests,
it can be created against a regular or a REDO plan item from the earlier
amendments based on the execution plan at that point, as shown in the
following figure. redo plan item is never created against a compensatory plan
item that was created during the last amendment.

Dependency between redo plan item REDO-2_REDO-1_P1 created during the
second amendment and the REDO plan item from the last amendment REDO_
P1, which is canceled

In case of OrderLine cancellation or Entire Order Cancellation, even if the Execution Plan
Modification Rules action is COMPENSATE_RESTART, only the compensatory plan item is
created. There is no need to create redo plan item on the order line, or the entire order is
canceled.

Note: RESTART is not a logical Execution Plan Modification Rules action in case of
an order line or an entire order cancellation. If RESTART action is encountered
when processing the order line or the order cancellation, no action is taken on
the corresponding plan item. A relevant message is logged, instead, to report the
same.

COMPENSATE
This Execution Plan Modification Rules action is assigned as the value of an Execution Plan
Modification Rules characteristic if only a compensatory plan item is to be created against
an existing plan item as a part of the amendment processing.

See Compensatory Plan Item for understanding all the aspects of a compensatory plan
item.

TIBCO® Order Management User Guide

225 | Automated Order Plan Development

RESTART
This Execution Plan Modification Rules action is assigned as the value of an Execution Plan
Modification Rules characteristic if only a redo plan item is created against an existing plan
item as a part of the amendment processing.

See Redo Plan Item for understanding all the aspects of a redo plan item.

The redo plan item always have a simple END-START point dependency directly on the
existing plan item that is going to be activated and canceled, due to the non-existence of a
compensatory plan item as shown in the following figure. This is to ensure that the
designated task must be restarted only after the cancellation of the existing task.

Dependency between the REDO plan item REDO_P1 and the existing plan item P1, which is
canceled.

.

IGNORE
This Execution Plan Modification Rules action is assigned as the value of an Execution Plan
Modification Rules characteristic, if no explicit action is required to be taken against an
existing plan item as part of the amendment processing. In case of OrderLine cancellation
or Order cancellation, the planFragmentUniqueID (processComponentID) of the plan item is
set to NO_RECIPROCAL_ACTION.

No Execution Plan Modification Rules Characteristic in
Product
In case a product model does not contain the required Execution Plan Modification Rules
characteristic, then behavior of amendment to generate redo or compensate plan item can
be controlled using the flag, CompensateRestartForNoEPMRChar, in Automated Order Plan
Development configurations. See the topic Amendment Configuration Flags for this flag.

TIBCO® Order Management User Guide

226 | Automated Order Plan Development

Amendment Configuration Flags
The following are the flags available in Automated Order Plan Development configurations
to tweak some of the functionalities around order amendments:

1. EnableModificationIdentifyingAttribute

This flag, if true, enables the OrderLine user-defined field modification functionality
using the MODIFICATION_IDENTIFYING_ATTR characteristic as it was in 2.0.x.

2. NoDependencyInCOMPPlanItems

This flag, if true, enables the backward compatibility to 2.0.x of having no
dependency of the existing plan item being cancelled, in the compensatory plan
item. The compensatory plan item immediately goes into execution along with the
activation request of the existing plan item.

3. EnableDateShiftCompRedo

This flag, if true, enables the backward compatibility to 2.0.x version of creating
compensatory and redo plan items in case of requiredByDate change (Date Shift)
type amendments. This value of roll back user defined field controls the behavior at
runtime. The default value of roll back is true and the behavior is:

l Compensation and Restart plan items is created as per the Execution Plan
Modification Rules characteristics for suspended and completed plan items.

l The original completed and suspended plan items do not have the new
requiredByDate. New requiredByDate (date shift) is set for the corresponding
“Redo” plan items.

l In case of pending items, the requiredByDate of that pending plan item is
changed to the new requiredByDate. No Compensate or Redo Plan items are
generated.

If mentioned as false, then

l Compensation and restart plan items are not created.

l Completed and suspended plan items do not contain the changed
requiredByDate. Only pending plan items have the new date.

The behavior of requiredByDate amendments for compensation and restart plan
items for Execution Plan Modification Rules characteristics is consistent with
implementation of other amendment types configured for 2.0.x in this release.

4. CompensateRestartForNoEPMRChar

TIBCO® Order Management User Guide

227 | Automated Order Plan Development

This flag, if true, considers COMPENSATE_RESTART as the Execution Plan Modification
Rules action in case of the required Execution Plan Modification Rules characteristic
not present in the product model. If this flag is false and the required Execution Plan
Modification Rules characteristic is also not present in the product model, no action
is taken on the plan items associated with that product, which are in COMPLETE or
SUSPENDED state.

Impact on Dependencies
If both compensatory plan items and redo plan items or either of them are created against
one or more existing plan items when processing an amendment request, the
dependencies in the overall execution plan are impacted. The dependency on the existing
plan item being cancelled is implicitly added in the compensatory and/or redo plan item
when they are created. There can be some additional dependencies in the redo plan items
in certain cases. Also, the dependencies in other regular plan items are modified, if
required. The following points explain these modifications:

1. If a parent plan item in PENDING state, which is not being cancelled, has a
dependency on such a child plan item against which a COMP and REDO plan items
have been created, the dependency on the existing plan item is removed and a new
dependency is added on the REDO plan item, as shown in the following figures. The
REDO plan item has higher priority over the COMP plan item when replacing the
dependency on the corresponding existing plan item. If the REDO plan item does not
exist, the dependency on the existing plan item is replaced with a dependency on the
COMP plan item. This keeps the dependency structure in the amendment plan in-
line with the earlier plan.

Dependency on plan item P1 in PENDING plan item P2 in the original plan

Dependency on the first level REDO plan item of P1 in PENDING plan item P2 in the
amendment plan

TIBCO® Order Management User Guide

228 | Automated Order Plan Development

2. If REDO plan items have been created against an existing parent and child plan item,
then the same dependency is maintained between the corresponding REDO plan
items. The parent REDO plan item have a dependency on the child REDO plan item,
in addition to the dependency on the existing original plan item being cancelled, as
shown in the following figures:

Dependency on plan item P1 in plan item P2 in the original plan

Dependency on REDO plan item P1 in REDO plan item P2 in the amendment plan

3. If COMP plan items have been created against an existing parent plan item and child
plan item, a reverse dependency is maintained between the corresponding COMP
plan items in the amendment plan. The child COMP plan item has a dependency on
the parent COMP plan item, as shown in the figure. It is done to ensure that the exact
compensation of the plan items, which is, the compensation of parent plan item
occurs first, followed by the compensation of child plan item.

TIBCO® Order Management User Guide

229 | Automated Order Plan Development

Dependency on plan item P1 in plan item P2 in the original plan

Dependency on COMP plan item P2 in COMP plan item P1 in the amendment plan

Multiple Amendments
TIBCO Order Management allows multiple amendments of an order however not
concurrently. This means that the order, which is being amended cannot be amended
again at the same time. Once the existing amendment request is successfully processed by
TIBCO Order Management and the new plan is activated, the order can be very well
amended again, provided the amendment conditions are satisfied. Each amendment
request for an order is processed in the same way as explained in the section Amendments
Workflow.

The planItemId assigned to a compensatory or redo plan item created during an
amendment contains the amendment number as one of the prefixes. See Compensatory
Plan Item and Redo Plan Item for more information about the planItemId format.

TIBCO® Order Management User Guide

230 | Automated Order Plan Development

Custom Action
You can define the set of actions to provide a way to define any number of unique
fulfillment actions.

Custom actions are loaded into Automated Order Plan Development as Action Models and
is referred to at the time of plan generation.

Custom action enables you to submit an order for custom actions, depending on which
Automated Order Plan Development assigns the planfragment.

Note: The planfragment is selected based on the PlanFragmenthasCustomAction
relationship from the product datamodel.

Product Id and Product Id Ext.
You can now use the same unique productID for two different products. Previously, a

unique productID was assigned to each product.

You can differentiate the two products by using the PRODUCTIDEXT characteristic.

Example:

Product 1: Value of productID is 'A' but has no PRODUCTIDEXT.

Product 2: Value of productID is 'A' and PRODUCTIDEXT is 1.

TIBCO® Order Management User Guide

231 | Jeopardy Management System

Jeopardy Management System
Service level agreements(SLAs) are commonly used to ensure the Quality of Service (QoS).
The conventional way to manage service is to measure the Quality of Service and then
determine whether the requirements have been met. This means that problems are
detected and then corrective action is taken. By contrast, the Jeopardy Management
module relies on predicting the result of Quality of Service compliance of process
components that are part of the order fulfillment ecosystem. Therefore, it is frequently
possible to take corrective action before a problem occurs, thus minimizing its impact.

Jeopardy is implemented as a tightly coupled component in TIBCO Order Management
along with existing features such as Order Management Server, Automated Order Plan
Development, and Orchestrator. Notifications to Jeopardy are sent as low-level API calls or
through in-process communication, which is similar to other component communication.
The advantages of the Jeopardy Management System are as follows:

l Jeopardy runs in cluster mode.

l Jeopardy notifications are processed in synchronous, or asynchronous (batch)
modes.

l Improved performance of Jeopardy performance due to in-process (low-level API
calls) communication between this application's components.

l Jeopardy is tightly coupled with Orchestrator and it follows all the finite state
automata states.

l Orchestrator has complete control over the jeopardy functionality improving its
performance.

l In case of any issues, the Orchestrator rolls back any updates to a plan or plan item,
and jeopardy automatically reads the latest changes.

l Instead of saving plan, plan item, and process component information as part of
Jeopardy, all the information is now saved as part of the state machine. Jeopardy
reads and updates the information as part of the state machine itself.

The following diagram is a representation of the architecture of Fulfillment Order
Management:

TIBCO® Order Management User Guide

232 | Jeopardy Management System

Architecture of TIBCO Order Management

The following diagram is a representation of the Plan and Order Execution by using
Jeopardy:

TIBCO® Order Management User Guide

233 | Jeopardy Management System

Plan and Order Execution

Jeopardy Management
The jeopardy management process involves three main activities:

1. Monitoring the Quality of Service

2. Reporting the Quality of Service

3. Predicting the Quality of Service

The objectives of Jeopardy Management are as follows:

1. Continuous collection of performance data and status information of all execution
plan

2. Detect SLA violation

3. Predict Jeopardy Conditions for execution plan

4. Perform consequential actions

a. Send notification

TIBCO® Order Management User Guide

234 | Jeopardy Management System

b. Invoke web service

The Jeopardy Management System enables you to manage the risk associated with plan
tasks falling behind schedule, and to prevent them from jeopardizing the timely fulfillment
of an order. The Jeopardy Management System is a key component of Order Management.
Jeopardy management is the process of monitoring the execution of a set of tasks in a plan
to fulfill a customer order. In this application, execution plans are generated by
decomposing orders based on the product model. Plans are orchestrated based on a
schedule, and when a plan goes or is predicted to go outside the expected design of the
schedule then the system notifies the stakeholders as early as possible to take the
corrective steps.

A plan is composed of a series of plan items. Each plan item has at least two milestones:

l START milestone

l END milestone

Plan items might also have intermediate milestones that represent points of interest during
the execution of that plan item. Service-level agreement of service provider that executes
plan items are specified through the process component model or Plan fragment model,
which stipulates among other things - the provided Services performance. SLAs have a
typical duration and a maximum allowed duration to fulfill a plan item.

To manage the risk associated with plan tasks falling behind schedule, the jeopardy
manager performs the following risk-management tasks:

1. Managing Critical Paths: Jeopardy management computes and keeps an account of
critical paths through an execution plan. Two of these critical paths correspond to
the typical and maximum durations of process components. The third type of critical
path is based on the actual duration to date, once the execution plan has started
processing. The critical paths are used to predict the completion date and time of the
execution plan.

2. Monitoring jeopardy conditions at each of the following levels:

a. Plan Task

b. Execution Plan

3. Perform consequential actions at each of the following levels:

a. Plan Task

b. Execution Plan

c. Milestone

TIBCO® Order Management User Guide

235 | Jeopardy Management System

The Order Management UI shows a dashboard for jeopardy management containing the
following elements along with Orders Summary, Amended Orders, Backlog Orders, Orders
in Execution:

1. Orders in Jeopardy.

2. Jeopardy Live Alerts.

3. Jeopardy Recorded Alerts.

Jeopardy Events
The following are the types of jeopardy events:

Plan Item Jeopardy
The following table lists the jeopardy conditions for the plan item:

Plan Item Jeopardy
Conditions

Description

AFF-JM-PLANITEM-0100 Plan item has exceeded the typical duration

AFF-JM-PLANITEM-0110 Plan item has exceeded the maximum duration

AFF-JM-PLANITEM-0120 Plan item has exceeded the required start

AFF-JM-PLANITEM-0200 Plan item start is predicted to exceed the required start and is
increasing

AFF-JM-PLANITEM-0210 Plan item start is predicted to exceed the required start and is
decreasing

AFF-JM-PLANITEM-0220 Plan item is no longer predicted to exceed the required start

Plan Jeopardy
The following table lists the jeopardy conditions for a plan:

TIBCO® Order Management User Guide

236 | Jeopardy Management System

Plan Jeopardy
Conditions

Description

AFF-JM-PLAN-0100 Plan has exceeded the typical duration

AFF-JM-PLAN-0110 Plan has exceeded the maximum duration

AFF-JM-PLAN-0120 Plan has exceeded the out-of-scope threshold

AFF-JM-PLAN-0200 Plan is predicted to exceed the typical duration and is increasing

AFF-JM-PLAN-0210 Plan is predicted to exceed the typical duration and is decreasing

AFF-JM-PLAN-0220 Plan is no longer predicted to exceed the typical duration

AFF-JM-PLAN-0230 Plan is predicted to exceed the maximum duration and is
increasing

AFF-JM-PLAN-0240 Plan is predicted to exceed the maximum duration and is
decreasing

AFF-JM-PLAN-0250 Plan is no longer predicted to exceed the maximum duration

Order Selection for Jeopardy Management
Since Jeopardy Management System is designed to send an alert on the plan tasks that are
falling behind schedule, and to prevent the plan tasks from jeopardizing the SLA for the
entire order fulfillment, JeOMS makes some dynamic decisions when processing long and
short-running orders.

There are chances of orders missing SLA requirements. If such a scenario occurs, then
getting alerts on the short-running orders (orders expected to finish in 5 minutes or less) is
not helpful as sending alerts to production support personnel, and the subsequent manual
action on the alerts, take more time than the lifespan of the order.

Jeopardy, therefore, has a stronger focus on the long-running orders (orders that are
expected to run for an hour or more). Jeopardy processes almost all the orders, but for
short-running orders, jeopardy might skip some alerts that are not expected to be handled
when the risk level for that alert changes to a severe one.

TIBCO® Order Management User Guide

237 | Jeopardy Management System

Understanding Plan
A plan is constituted of a series of plan items. Each plan item has at least two milestones -
START and END. Plan items might also have intermediate milestones that represent points
of interest during the execution of that plan item.

Note: If a plan item has intermediate milestones, all the intermediate milestones
must be completed before the plan item is completed. In case some of the
intermediate milestones are still pending and it gets a PlanItemExecuteReply
request, then the request would be rejected.

There are two types of milestone dependencies:

Point Dependency Time Dependency

dependency on the release of a given milestone in
another plan item in the plan

dependency on a given date and
time being exceeded

Note: Execution of a plan item stops at a milestone until that milestone has
been released. A milestone with no dependencies is released immediately.
However, a milestone with attached dependencies is only released once all the
point and time dependencies are satisfied.

Plan Dependency

For details on dependencies, see Understanding Dependencies.

TIBCO® Order Management User Guide

238 | Jeopardy Management System

Understanding Critical Path
. The critical path is the longest sequence of plan item sections that determine the end
time of a plan. The critical paths are used to project the completion date and time of the
execution plan.

Paths are computed using the dependencies between plan item sections.

Critical Path Calculation
Critical path is used for both SLA and predictive jeopardy for monitoring a plan. A simple
plan consists of a single execution path. For example:

Plan with Single Execution Path

Some plans have multiple execution paths as shown in the following figure:

Plan with Multiple Execution Paths

TIBCO® Order Management User Guide

239 | Jeopardy Management System

Understanding Dependencies
Dependency can be defined as a relationship between milestones in an execution plan. For
example, Milestone B cannot start until Milestone A completes.

Milestone Dependencies
When a dependency on a milestone is determined, you can either depend on the milestone
being started, or finished.

This means that Milestone 2 cannot be finished until Milestone 1 is started.

End Milestones
In case of an end milestone:

l another milestone cannot depend on the finish of an end milestone because there is
no Finish (Release) on a Task Complete message

l the end milestone cannot be dependent on any other milestones

The following table lists the types of dependencies that can be set up between plan task
milestones.

Dependency Effect

Must Start On The milestone must start on the date/time specified. If it cannot be started
for some reason (for example, because a previous plan task is late), a
jeopardy condition is triggered.

Finish to Finish One milestone can be released when the other milestone is released

Start to Finish
One

One milestone can be released only when the other begins

TIBCO® Order Management User Guide

240 | Jeopardy Management System

Jeopardy Management for Execution Plans
If a given plan task or milestone is in jeopardy, it might or might not indicate that the
overall execution plan is in jeopardy. The jeopardy manager also provides facilities for
monitoring whether the whole execution plan is running on time or taking longer to
complete than expected. This is done by monitoring the forecast end date and time of the
plan and comparing it against several threshold dates.

If you use start date scheduling or end date scheduling for your execution plans, you can
set a different set of jeopardy conditions at the plan level.

Jeopardy Management for Plan Task
A simple process component that has only start and end milestones consists only of one
section, but more complex components are made up of several sections. A section is the
interval between two milestones.

At the level of process component sections, you can configure jeopardy conditions that
enable you to detect both if the task has taken longer to complete than it must have, and
also to detect if a task that is underway or has not yet started is predicted to take longer to
complete than scheduled.

Jeopardy manager allows you to monitor the following durations:

l Typical Duration: you can specify this value when you create a process component,
or when you define the plan task that uses the component in an execution plan.

l Maximum Allowed Duration: the maximum amount of time the activity represented
by the task can take before it is considered to have overrun. You can specify this
value when you create a process component, or when you define the plan task that
uses the component in an execution plan.

There are critical paths identified in execution plans, constructed using the typical and
maximum duration of the plan tasks included in those plans. If one of the process
component sections being monitored has not completed before its defined typical
duration, a monitor event is triggered (consequential action is performed). If the section
has not been completed before the end of its maximum allowed duration, another monitor
event is triggered. For Example, a plan has taken longer than expected/predicted. The plan
task has exceeded its typical duration, its maximum duration, and two subsequent
monitoring intervals. A monitor event has been fired at each stage to notify you of the
following:

TIBCO® Order Management User Guide

241 | Jeopardy Management System

l After Typical Duration

l After Maximum Duration

Typical and Maximum Durations

Jeopardy Risk Region for Plan

Must Start On Dependencies
The must start on dependency indicates that an activity must start at a specific point in
time. You can apply these dependencies to milestones that denote the start of such
activities; in normal circumstances, when the execution plan is running on schedule, these
are used to schedule activities at the right time, by releasing the relevant milestones.
However, if it is predicted that it is not possible to release a milestone at the scheduled

TIBCO® Order Management User Guide

242 | Jeopardy Management System

time, or if that time is reached and the milestone still cannot be released, the Jeopardy
Management System recognizes the jeopardy condition.

Predictions are calculated during the jeopardy detection cycle. The frequency of Jeopardy
detection cycle is configurable.

Consequential Actions
Jeopardy Manager raises the jeopardy event. If a plan item is in jeopardy, the
PlanItemJeopardy event is raised. If a Plan is in jeopardy, the PlanJeopardy event is
raised.

To reduce the number of Jeopardy notifications sent out for a particular plan, jeopardy
sends either a predictive notification or the actual notification at the plan level. For
example, if the jeopardy sends out a predictive notification AFF-JM-PLAN-0200 for the Plan
to possibly exceed the typical duration, then the jeopardy does not send out the AFF-JM-
PLAN-0100 notification if the plan actually exceeds typical duration, as they are the
notifications for the same risk region.

Jeopardy event message contains payload with information about the jeopardy condition.
You can configure the consequential that you want to perform when these events are
raised by the system that configures the Jeopardy Rules.

Jeopardy Rules can be configured through Order Management Server UI rule configuration
option.

For each of the listed jeopardy conditions, you can take any of the following possible
consequential actions:

l Alert notification.

l Fulfillment Action.

Predictive Jeopardy
Predictive jeopardy is measured on several metrics:

TIBCO® Order Management User Guide

243 | Jeopardy Management System

Plan Item Start Date Plan Duration

For plan item milestones with both point and time
dependencies, it is possible that the specified time
dependency is not feasible based on the durations of the
previously executed plan items that form the point
dependencies on the same milestone

The overall duration of the
plan can be calculated by
performing a critical path
analysis on the plan items that
compose the plan

Plan item start date predictive jeopardy determines whether
the plan item is later than the specified start date due to the
other dependencies

Plan duration predictive
jeopardy determines whether
the execution duration of the
plan exceeds the design
duration of the plan

TIBCO® Order Management User Guide

244 | Jeopardy Services

Jeopardy Services
The Jeopardy services ensure that planned tasks stay on track, there are minimal risks, and
the orders are completed on time.

Calculating all possible paths from the plan and identifying the critical path is a time-
consuming task. Jeopardy must perform this task every time a state change notification is
sent from the orchestrator. Since these lengthy calculations are resource-intensive, users
can consider that Jeopardy effectively monitors long-running orders. However, Jeopardy is
not designed to monitor orders that complete very quickly.

Let us refer to orders that complete very quickly as short orders. You can update the
definition of short orders by modifying the "propName":
"shortLivedThresholdInMinutes" in the configuration of the Jeopardy service. By default,
it is set to one minute.

Let us understand how the Jeopardy service calculates short-lived orders.

Suppose you have defined the following PlanFragments in the PlanFragment catalog, and
the plan is generated such that there is only one plan item containing the following
planFragment:

<pf:PlanFragmentModels
xmlns:pf="http://www.tibco.com/AFF/V4.0.0/classes/planFragment">

<pf:planFragment>
<pf:planFragmentID>PF01</pf:planFragmentID>
<pf:planFragmentName>PF01</pf:planFragmentName>
<pf:planFragmentVersion>V01</pf:planFragmentVersion>
<pf:owner/>
<pf:record_Type>Process</pf:record_Type>
<pf:errorHandler/>
<pf:retry>

<pf:retryOverride>true</pf:retryOverride>
<pf:retryFailed>true</pf:retryFailed>
<pf:retryCount>3</pf:retryCount>
<pf:retryDelay>60000</pf:retryDelay>

</pf:retry>
<pf:section>

<pf:startMilestoneID>START</pf:startMilestoneID>
<pf:endMilestoneID>END</pf:endMilestoneID>
<pf:typicalDuration>1000</pf:typicalDuration>

TIBCO® Order Management User Guide

245 | Jeopardy Services

<pf:maximumDuration>6000</pf:maximumDuration>
</pf:section>

</pf:planFragment>
</pf:PlanFragmentModels>

Here, the configured maximumDuration is 6000 milliseconds, which is less than one minute
(default configuration for short-lived orders). The Jeopardy service does not monitor this
plan as this order is short-lived.

For short-lived orders, on the planTimeLine tab, the following message is displayed:

Timeline cannot be computed for a short-lived plan.

Note: If you do not want to deploy the Jeopardy service, delete all the bridges
and channels by using the DeleteJeopardyEMSChannel.txt script.

Following aspects play important roles in the Jeopardy service:

l Durations

l Sections

l Plan Path

l Critical Path

Durations

Jeopardy service handles the following types of durations:

l Typical Duration: The expected or standard amount of time required for the
completion of the activity represented by the task under normal or average
conditions, without any unforeseen delays or exceptional circumstances.

l Hazard Duration: The Hazard duration represents the projected upper limit of time
for the completion of an activity, accounting for the specified risk threshold. It is
derived by adjusting the Typical duration with the risk threshold percentage, allowing
for a margin that considers potential hazards or risks that might extend the task
duration beyond the standard expectation.

l Maximum Duration: The standard upper limit of time allocated for the completion

TIBCO® Order Management User Guide

246 | Jeopardy Services

of the activity is represented by the task under optimal conditions. This duration
represents the maximum permissible time frame within which the task is expected to
be completed without unforeseen delays or exceptional circumstances.

l OutOfScope Duration: The OutOfScope duration signifies the expected upper
boundary of time allocated for task completion, incorporating the out-of-scope
threshold. This is calculated by modifying the maximum duration based on the out-
of-scope threshold percentage. This duration accommodates potential extensions
arising from conditions or requirements beyond the originally defined scope of the
task.

Sections

Sections or milestone to milestone relationships, represent combinations of milestone
pairs that might appear in the execution plan generated by AOPD (Automated Order
Processing and Design).

For example, if START, M1, M2, and END are four milestones of a plan fragment, the
following milestone combinations can be possible:

l START, M1, END

l START, M2, END

l START, M1, M2, END

To support any of these milestone combinations, the plan fragment contains the following
section information:

l START to M1

l START to M2

l M1 to M2

l M1 to END

l M2 to END

l START to END

Plan Path

A Plan Path refers to a sequence of plan item sections in an execution plan. The plan paths
are computed based on the dependencies between plan item sections by following a
specific sequence.

TIBCO® Order Management User Guide

247 | Jeopardy Services

l Starting Point: Initiate the path at a START milestone without any point
dependencies.

l Path Traversal: Navigate through the plan item section for which this is the starting
milestone. During traversal, determine if the terminating milestone has any
dependencies. If a terminating milestone has multiple trailing dependencies, the path
is divided and created a path of execution.

l Terminating Point: At the terminating milestone, no plan item section has a
dependency on the trailing milestone of the current plan item.

Critical Path

The critical path in the plan is the longest path. It is determined by analyzing all available
paths and selecting the one with the longest design duration. This path plays a crucial role
in both SLA (Service Level Agreement) and predicting jeopardy, serving as a key aspect for
monitoring a plan.

Design and Implementation
This section describes the design of the Jeopardy service and its implementation.

l Plan Fragment Migration

l Start and End Time Computation of Section

l Communication Flow for Plan Monitoring

Plan Fragment Migration

Every plan fragment has details about the possible sections for its associated plan item,
including Typical and Maximum duration for each section. Jeopardy relies on this
information for its functioning. When a plan is created, Jeopardy uses these details to
define all potential plan paths based on the provided sections in the plan fragment. By
considering the Typical and Maximum duration for each section, Jeopardy figures out how
much time each plan path might take. This helps Jeopardy identify the critical path.

To ensure smooth performance, Jeopardy needs to move plan fragments from the catalog
service to its own database before handling order status changes. Jeopardy extracts the
necessary details from each plan fragment and stores them in its database for quicker and
more efficient processing.

TIBCO® Order Management User Guide

248 | Jeopardy Services

Configurations

Property Purpose

catalogServiceBaseUrl The base URL of the catalog service
to fetch the plan fragments.

catalogRetryCount Retry count in case a request failed
due to server-side exceptions from
the catalog service.

catalogRetryInterval Interval in seconds between each
retry.

catalogServiceTrustStorePassword In case the catalog service is
exposed on HTTPS, this property
holds the trust store password to
establish the SSL handshake.

catalogServiceTrustStoreType In case the catalog service is
exposed on HTTPS, this property
holds the trust store type to
establish the SSL handshake.

catalogServiceTrustStoreFileName In case the catalog service is
exposed on HTTPS, this property
holds the trust store file's name,
available in classpath, to establish
the SSL handshake.

enableSecureAPI This is the security enabled on the
catalog service.

apiKey This is the key to determine the
HashKey for inter-service
communication in case
enableSecureApi is true.

riskThreshold Percentage of Typical Duration used
to calculate the Hazard Duration.

TIBCO® Order Management User Guide

249 | Jeopardy Services

Property Purpose

outOfScopeThreshold Percentage of Maximum Duration
used to calculate the out-of-scope
Durations.

Process

The following information is extracted or calculated from the plan fragment:

l PlanFragmentID

l PlanFragmentName

l PlanFragmentVersion

l Sections (list of all the sections mentioned in the plan fragment)

l PerfValues (this is the map that contains the duration of all the sections available in
the plan fragment)

o Typical Duration: Extracted directly from the plan fragment.

o Hazard Duration: Calculated using the riskThreshold and Typical Duration.

o Maximum Duration: Extracted directly from the plan fragment.

o OutOfScope Duration: Calculated using the outOfScopeThreshold and
Maximum Duration.

l InferredPerfValues

o There could be a possibility that not all possible traversable section
information is provided in the Plan Fragment. In this case, Jeopardy can infer
the PerfValues of those traversable sections.

o Jeopardy prepares an undirected graph of milestones, acting as a map that
shows connections between milestones.

o Each milestone is a point on the map (Vertex), and the distance between them
indicates which milestones are connected (Edge).

o Using the Breadth-First Search (BFS) path-finding algorithm, Jeopardy identifies
paths and calculates distances between milestones based on performance
values.

Approaches

TIBCO® Order Management User Guide

250 | Jeopardy Services

Plan fragment migrations are performed using the following methods:

l Rest API: Jeopardy introduces a new REST API for plan fragment migration. When
triggered, this API initializes the migration process by making a REST call to the
v1/planfragmentmodel/all endpoint of the catalog service. It fetches 20 plan
fragments in a single call. For handling multiple calls efficiently, it employs Java's
CompletableFuture and maximizes parallelism.

/v1/plan-fragment/migrate

o Plan Fragment Refresh: Whenever a plan fragment is added to the catalog
service through REST or JMS, the catalog service dispatches a notification to
the tibco.fos.global.cache.clean.publish topic. Jeopardy subscribes to
this topic, and on receiving a notification, it initiates the migration process for
that specific plan fragment. This is done by making a REST call to the
/v1/planfragmentmodel/bulk endpoint of the catalog service.

Start and End Time Computation of Section

Jeopardy calculates two duration maps for each plan item section, each serving a distinct
purpose:

l EarlyStartMap: This map captures the earliest possible start time of a section among
all plan paths. It represents the initiation time of a section, considering dependencies
and the critical path.

For example,

If the section is in Execution state,

earlyStartTime = actualStartTime of Section

Otherwise,

If the node is the Virtual Start Node, earlyStartTime is set to the plan start time.

For other nodes, the early start time is determined by selecting the maximum value
between the parent's start time (if the dependency is based on the start milestone)
and the parent's end time (if the dependency is based on the end milestone) in the
parent-child relationship of the nodes.

l EarlyFinishMap: This map denotes the earliest finish time of a section among all the
plan paths. It signifies the earliest point at which a section could be completed,
considering dependencies and the critical path.

TIBCO® Order Management User Guide

251 | Jeopardy Services

For example,

If the section is in the Completed state,

EarlyFinishTime = ActualEndTime

Otherwise,

EarlyFinishTime is calculated as EarlyStartTime + Duration Value + Total Suspension
Time (of the section).

The values in these maps depend on all the dependent sections as a plan item section can
belong to multiple plan paths.

For each duration type, the calculations are as follows:

Communication Flow for Plan Monitoring
l Submit Order Execution Plan

l Status Change Notification Listener

l Plan Path Computation

l PlanPathRequestEventListener

Submit Order Execution Plan

Jeopardy maintains records of plan item, milestone, and plan completion timestamps. To
effectively process status change notifications dispatched by the Orchestrator, Jeopardy
requires prior knowledge of the plan details. AOPD ensures this by submitting the plan to
Jeopardy via a REST API before sending it to Jeopardy. This ensures that Jeopardy
processes the plan before receiving status change notifications from the orchestrator.

Configurations

Property Purpose

riskThreshold Percentage of Typical Duration used to calculate the
Hazard Duration.

outOfScopeThreshold Percentage of Maximum Duration used to calculate the
out-of-scope Durations

Process

TIBCO® Order Management User Guide

252 | Jeopardy Services

On receiving the plan, Jeopardy populates the Plan, Plan_Instance, and Milestone tables,
including Virtual Start and Virtual End plan items.

Database tables

It populates the following tables:

l Plan_instance

l Plan_item_instance

l Milestone

Status Change Notification Listener

To monitor the completion status of plans, plan items, and milestones, Jeopardy
subscribes to the outbound status change notifications dispatched by the Orchestrator. It
selectively processes the following types of notifications:

l Order Status Change Notification

l Plan Status Change Notification

l Plan Item Status Change Notification

l Milestone Status Change Notification

Order Status Change Notification

The purpose of monitoring the order status change notifications is to enable Jeopardy to
respond to specific statuses, particularly the Withdrawn status. When the Orchestrator
dispatches an order status change notification indicating that an order has been
withdrawn, Jeopardy listens to this notification and takes appropriate actions to reflect the
updated status.

Behavior

When Jeopardy receives an order status change notification with the newStatus set to
"Withdrawn":

l Jeopardy updates the status of the associated plan to "Withdrawn" without deleting
the plan instance from the database. This approach ensures graceful handling of any
other pending notifications.

l Additionally, Jeopardy deletes the corresponding entry from the Time Window table

TIBCO® Order Management User Guide

253 | Jeopardy Services

if it exists. This action ensures that JeopardyDetectionCycle stops monitoring the
plan for this order.

Plan Status Change Notification

This section describes about the notifications whenever there is a change in the status of
plans.

l

l Transition to Suspend

l Transition from Suspend to Execution

l Transition to Complete or Canceled

Transition from Pending to Execution

When a plan transitions from "Pending" to "Execution", Plan execution is started. Jeopardy
systematically processes the transition from "Pending" to "Execution", updates relevant
tables, and prepares the necessary data structures to start plan monitoring and
management. The detailed process includes:

1. Move Plan to Execution

Jeopardy updates specific columns in the plan_instance table to reflect the
transition:

l planStartTime: Set to eventTimeInMillis.

l actualStartTime: Set to eventTimeInMillis.

l lastStatusChangeTime: Updated to eventTimeInMillis.

l status: Changed to "Execution".

l startNotificationReceived: Marked as "true".

l currentRiskRegion: Set to "NORMAL".

2. Complete Virtual Start Plan Item

The Virtual Start Plan Item (identified by id = "__START_PLAN_ITEM") is marked as
completed by updating the relevant columns in the Plan_Item_Instance table:

l status: Set to "COMPLETE".

l actualEndTime: Updated to eventTimeInMillis.

TIBCO® Order Management User Guide

254 | Jeopardy Services

3. Complete All Milestones in Virtual Plan Item

All milestones within the virtual plan item are marked as completed by updating the
status and actualRelease columns in the Milestone table:

l status: Set to "COMPLETE".

l actualRelease: Updated to eventTimeInMillis.

4. Dispatch Initial Plan Path Request

Request to prepare the Initial Plan Path is dispatched to the
planPathRequestNotificationDeliveryQueue queue.

For more information, see the PlanPathRequestEventListener section.

Transition to Suspend

When a plan undergoes suspension, Jeopardy ensures it is cognizant of this change,
allowing for the incorporation of plan suspension time into the monitoring process. The
detailed process involves the following steps:

1. Move Plan to Suspension

Jeopardy updates the plan_instance table to represent accurately the latest change
in the plan

l status: Set to "Suspended".

2. Suspend the Started Adjacency

All sections currently in "Execution" status are marked as "Suspended" to
acknowledge the plan's suspension

l sectionStatus: Set to "Suspended".

l previousSectionStatus: Set to "Execution".

l lastStatusChangeTime: Updated to eventTimeInMillis.

3. Removing Entries from the Time Window table

As the plan enters a suspended state, Jeopardy ceases monitoring by eliminating all
corresponding entries for the plan from the time_window table.

Transition from Suspend to Execution

When a plan transitions back to the Execution state from Suspension, Jeopardy considers
the duration the plan spent in suspension. During the Jeopardy Detection Cycle, if the plan
experienced a period of suspension, Jeopardy adds this duration to the predictedEndTime
to assess if the plan is at risk. The detailed process is outlined as follows:

TIBCO® Order Management User Guide

255 | Jeopardy Services

1. Move plan to Execution

Jeopardy updates the plan_instance table to accurately reflect the latest change.

status = Execution

2. Restart all suspended adjacency

a. For all sections that are suspended, Jeopardy calculates the duration the
section spent in the suspended state.

suspensionTime = eventTimeInMillis - lastStatusChangedTime

b. It updates the earlyFinishMap with the additional suspensionTime.

c. Jeopardy then updates the plan_adjacency table with the following:

l sectionStatus = Start

l previousSectionStatus = SUSPENDED

l suspensionTime = Computed suspensionTime

l lastStatusChangeTime = eventTimeInMillis

3. Dispatch Rebuild Plan Path Request

The request to rebuild the plan path is dispatched to the
planPathRequestNotificationDeliveryQueue.

Refer to PlanPathRequestEventListener section for more information.

Transition to Complete or Canceled

When a plan reaches a final state, Jeopardy takes specific actions to account for this
transition and appropriately updates its records. The process involves the following steps:

1. Move plan to Complete or Canceled

Jeopardy updates the plan_instance table with the following:

l status = Complete or Canceled

l actualEndTime = eventTimeInMillis

l lastStatusChangeTime = eventTimeInMillis

2. Complete Virtual End Plan Item

Virtual End Plan item (id = "__END_PLAN_ITEM") is marked as completed, signifying
that the plan has reached its final state.

TIBCO® Order Management User Guide

256 | Jeopardy Services

l status = Complete

l actualEndTime = eventTimeInMillis

3. Complete all Milestones in Virtual End Plan Item

All milestones of the Virtual End Plan Item are marked as completed in the milestone
table:

l status = Complete

l actualRelease = eventTimeInMillis

4. Purging All data for Short Lived

Short-lived orders are not monitored by Jeopardy. Thus, once the plan reaches its
final state for a short-lived order, all corresponding data are removed from the
following tables:

l plan_instance

l plan_item_instance

l milestones

5. Compute Plan Expected Finish Times and Determine Risk Region

a. Plan Expected Finish Times are computed based on the last real nodes of the
Critical Paths.

b. Plan Expected Typical Finish Time (planExpectedTypicalFinishTime) is
calculated using the TypicalEarlyFinishTime state of the last real node of the
Typical Critical Path.

c. Plan Expected Maximum Finish Time (planExpectedMaximumFinishTime) is
calculated using the MaximumEarlyFinishTime state of the last real node of the
Maximum Critical Path.

d. Plan Expected Out of Scope Finish Time (planExpectedOosFinishTime) is
calculated using the OosEarlyFinishTime state of the last real node of the
Maximum Critical Path.

e. The Risk Region is determined based on the actualEndTime in comparison to
the expected finish times:

l If actualEndTime < planExpectedTypicalFinishTime, riskRegion =
Normal

TIBCO® Order Management User Guide

257 | Jeopardy Services

l If planExpectedTypicalFinishTime < actualEndTime <
planExpectedMaximumFinishTime, riskRegion = Hazard

l If planExpectedMaximumFinishTime < actualEndTime <
planExpectedOosFinishTime, riskRegion = Critical

l If actualEndTime > planExpectedOosFinishTime, riskRegion = Out
of Scope

f. The computed riskRegion is updated in plan_instance:

l currentRiskRegion = riskRegion

6. Complete all Sections of Virtual End Plan Item

All sections for the Virtual End Plan Item are marked as completed in the plan_
adjacency table.

7. Removing Entries from the Time Window table

As the plan enters a final state, Jeopardy stops monitoring by removing all
corresponding entries for the plan from the time_window table.

Plan Item Status Change Notification

Whenever a plan item undergoes state changes, the orchestrator dispatches plan item
status change notifications. These notifications fall into two categories based on the Action
header in the JMS message: REQUEST and RESPONSE.

The Action REQUEST indicates that a PlanItemExecuteRequest was dispatched during this
transition, typically occurring when a plan item shifts from Pending to Execution.
Notifications with Action RESPONSE signify that this transition occurred based on the
response from the Southbound System.

Processing Plan Item Status Change Notification with Action REQUEST

1. Complete the Start milestone

a. As the Plan Item Execute response is dispatched during this transition,
indicating the completion of the start milestone for this plan item.

b. Jeopardy updates the Start milestone of this plan item by modifying the
milestone table with the following information:

l status = COMPLETE

l actualRelease = eventTimeInMillis

2. Mark the plan item as under processing

TIBCO® Order Management User Guide

258 | Jeopardy Services

isUnderProcessing is updated to true in the plan_item_instance table for this plan
item.

3. Move the plan item to Execution

The plan_item_instance table is updated with the following information:

l status = "EXECUTION"

l riskRegion = "NORMAL"

l actualStartTime = eventTimeInMillis

l typicalEndTimestamp = eventTimeInMillis + planItemTypicalDuration
(Typical Duration of Start to End section available in PC)

l maximumEndTimestamp = eventTimeInMillis + planItemMaximumDuration
(Maximum Duration of Start to End section available in PC)

4. Start all sections with the start milestone as Plan Item Start Milestone

The plan_adjacency table, where start_milestone = "START", is updated with the
following information:

l sectionStatus = "Start"

l actualStartTime = eventTimeInMillis

5. Unmark the plan item from under processing

isUnderProcessing is updated to false in the plan_item_instance table for this plan
item.

Processing Plan Item Status Change Notification with Action RESPONSE

For non-executing plan items, the transition occurs directly from PENDING to COMPLETE. In
this case, the orchestrator dispatches the plan item status change notification with Action
as RESPONSE. Therefore, handling such plan items involves some steps similar to those
done when the action is REQUEST.

1. Steps specific For Non-Executing Plan Item

a. Update Actual Start Time

l Non-executing plan items transition directly from PENDING to COMPLETE.
Hence, startTime and endTime are the same for such plan items.

l Jeopardy updates the plan_item table with the following information:

TIBCO® Order Management User Guide

259 | Jeopardy Services

o actual_start_time = eventTimeInMillis

b. Complete the Start Milestone

Jeopardy updates the milestone table, where the milestone id is START, with
the following information:

l actualRelease = eventTimeInMillis

l status = Complete

c. Start all sections with the start milestone as Plan Item Start Milestone

The plan_adjacency table, where start_milestone = "START", is updated with
the following information:

l sectionStatus = "Start"

l actualStartTime = eventTimeInMillis

2. Mark the plan item as under processing

isUnderProcessing is updated to true in the plan_item_instance table for this plan
item.

3. Complete the plan item

Jeopardy updates the plan_item_instance table with the following information:

l status = COMPLETE

l actualEndTime = eventTimeInMillis

4. Complete the END Milestone

Jeopardy updates the milestone table, where milestoneid = 'END', with the
following information:

l status = Complete

l actualRelease = eventTimeInMillis

5. Update all sections for this plan item where endMilestone = 'END'

a. Compute the risk region

i. Compute the time taken for this section to complete:

timeTaken = eventTimeInMillis - sectionStartTime -
sectionSuspensionTime

TIBCO® Order Management User Guide

260 | Jeopardy Services

ii. If timeTaken > section's Maximum Duration, riskRegion = CRITICAL

iii. If timeTaken > section's Typical Duration, riskRegion = HAZARD

iv. Else riskRegion = NORMAL

b. Update the section in the plan_adjacency table with the following information:

l actualEndTime = eventTimeInMillis

l sectionStatus = COMPLETE

l riskRegion = Computed Risk Region

c. Remove the section from the Time window table as this section is completed
and no longer requires monitoring.

6. Unmark the plan item from under processing

isUnderProcessing is updated to false in the plan_item_instance table for this plan
item

7. Dispatch rebuild plan path request

Request to rebuild the plan path is dispatched to the
planPathRequestNotificationDeliveryQueue.

Refer to PlanPathRequestEventListener section for more information.

Milestone Status Change Notification

The orchestrator dispatches status notifications only for intermediate milestones. Jeopardy
takes note of this status change and performs the following steps:

1. Complete the Milestone

Jeopardy updates the milestone table with the following information:

l status = Complete

l actualRelease = eventTimeInMillis

2. Mark the Plan item as under processing

isUnderProcessing is updated to true in the plan_item_instance table for this plan
item.

3. Process Sections where startMilestoneId = given milestone

Jeopardy updates such sections in plan_adjacency with the following information:

TIBCO® Order Management User Guide

261 | Jeopardy Services

l sectionStatus = START

l actualStartTime = eventTimeInMillis

4. Process Sections where endMilestoneId = given milestone

For every such section,

a. Compute the risk region

l Compute the time taken for this section to complete

l timeTaken = eventTimeInMillis - sectionStartTime -
sectionSuspensionTime

l If timeTaken > section's Maximum Duration, riskRegion =
CRITICAL

l If timeTaken > section's Typical Duration, riskRegion = HAZARD

l Else riskRegion = NORMAL

b. Update the section in the plan_adjacency table with the following information:

l actualEndTime = eventTimeInMillis

l sectionStatus = COMPLETE

l riskRegion = Computed Risk Region

c. Remove the section from the Time window table as this section is completed
and no longer requires monitoring.

5. Unmark the plan item from under processing

isUnderProcessing is updated to false in the plan_item_instance table for this plan
item

6. Dispatch Rebuild Plan Path Request

The request to rebuild the plan path is dispatched to the
planPathRequestNotificationDeliveryQueue.

Refer to PlanPathRequestEventListener section for more information.

Plan Path Computation

Jeopardy employs a depth-first approach to generate all plan paths and updates earlyStart
and earlyFinish for each section. In this methodology, the Virtual Start Node is treated as
the root node.

Process

TIBCO® Order Management User Guide

262 | Jeopardy Services

l For the given node, compute the EarlyStartMap and EarlyFinishMap of the Virtual
Start Node.

l If the node is not a virtual node,

o Populate the time_window table for MUST_START detection with a typical
earlyStartTime as the expectedTime.

o Populate the time_window table for TYPICAL_DURATION detection with typical
earlyFinishTime and MAX_DURATION detection with max earlyFinishTime as
expectedTime.

l If the section has a dependency,

o Repeat the entire process

o If a section has multiple dependencies, the path branches, creating a path of
execution

l If the section does not have any dependency

o Consider the path as it ended.

o Add this path to the list of generated paths.

PlanPathRequestEventListener

This component serves as a dedicated listener for handling plan path requests throughout
various stages of the plan's lifecycle. These requests might be initiated as either an initial
plan path request or a rebuild plan path request.

Process

Initial Plan Path Request

l Populate Plan Adjacency

The plan adjacency, a representation of plan item sections within the plan, is
computed and stored in the plan_adjacency table.

l Prepare and Populate Plan Paths

o On obtaining section information, the system initiates the preparation of all
possible plan paths.

o Computed plan paths are subsequently saved in the plan_path table.

l Determine Critical Plan Path

TIBCO® Order Management User Guide

263 | Jeopardy Services

The critical plan path, denoting the longest sequence through the plan, is computed
and stored in the plan_critical_path table.

l Determine Plan Expected End Time

The predicted end time in the critical path is considered as the plan's expected end
time.

l Determine if the Plan is ShortLived

o Jeopardy identifies short-lived plans, where the difference between predicted
end time and plan start time is less than the specified threshold
(shortLivedThresholdInMinutes).

o Short-Lived plans are excluded from monitoring.

l Populate the Time Window table for All Plan Sections

Sections not yet completed are stored in the time_window table, enabling Jeopardy
to commence monitoring during the next Jeopardy Detection Cycle.

Amendment Plan Path Request

l Populate Plan Adjacency

o The plan adjacency, a representation of plan item sections within the plan, is
computed and stored in the plan_adjacency table.

o In the case of an amendment, the plan might contain sections that were
previously present and some newly introduced sections.

o Jeopardy would delete sections no longer present in the plan and add new
sections while keeping existing ones intact.

l Prepare and Populate Plan Paths

o On obtaining section information, the system initiates the preparation of all
possible plan paths.

o Computed plan paths are subsequently saved in the plan_path table.

l Determine Critical Plan Path

The critical plan path, denoting the longest sequence through the plan, is computed
and stored in the plan_critical_path table.

l Determine Plan Expected End Time

The predicted end time in the critical path is considered as the plan's expected end

TIBCO® Order Management User Guide

264 | Jeopardy Services

time.

l Determine if the Plan is ShortLived

o Jeopardy identifies short-lived plans, where the difference between predicted
end time and plan start time is less than the specified threshold
(shortLivedThresholdInMinutes).

o Short-Lived plans are excluded from monitoring.

l Populate the Time Window table for All Plan Sections

Sections not yet completed are stored in the time_window table, enabling Jeopardy
to commence monitoring during the next Jeopardy Detection Cycle.

Rebuild Plan Path Request

l Stop Plan Monitoring during Plan Path Rebuild

Delete all entries from the time_window table corresponding to the given planId and
tenantId.

l Check if any plan items are still being processed

o Given the possibility of multiple plan items being processed simultaneously by
Jeopardy, the system updates the isUnderProcessing flag to true before
processing each plan item. This flag is then set to false once Jeopardy
completes the processing of that specific plan item.

o If any plan item for the plan is still being processed, skip the plan path rebuild
request.

l Prepare and Populate Plan Paths

o By now some of the sections are updated with their actualStartTime and
actualEndTime.

o Jeopardy uses this information and prepares plan paths again.

o The system then saves the updated plan paths in the Plan_Path table.

l Determine Critical Plan Path

The critical plan path, denoting the longest sequence through the plan, is computed
and stored in the plan_critical_path table.

l Determine Plan Expected End Time

The predicted end time in the critical path is considered as the plan's expected end

TIBCO® Order Management User Guide

265 | Jeopardy Services

time.

l Populate the Time Window table for All Plan Sections

Sections not yet completed are stored in the time_window table, enabling Jeopardy
to commence monitoring during the next Jeopardy Detection Cycle.

Pending Jeopardy Events

The orchestrator dispatches status change notifications for all orders. In multi-instance
scenarios, there is a possibility that certain order status change notifications are picked by
one instance while another instance is still processing plan development notifications. To
handle this, Jeopardy introduces the concept of pending jeopardy events.

Plan Availability

Jeopardy processes incoming notifications only if the plan is available for processing. If the
plan is not available for processing, the incoming event is saved in the pending_jeopardy_
events table. These events are processed after a plan path is created for the respective
plan.

Conditions of Plan Availability

l Is the plan available in the plan_instance table? If not, the plan is not available.

l If the plan is available, is the plan under amendment? If yes, the plan is not available.

l If the plan is available and not under amendment, do plan paths exist for the given
plan? If not, the plan is not available.

l If the plan is available, not under amendment, and the plan path request is
processed, then the plan is available.

Processing of Pending Jeopardy events

After a plan path request is processed for a newly created plan or for a plan that was
amended, Jeopardy dispatches a notification to the jeopardy.pending.events.notification
queue. This queue is used by Jeopardy to process all pending jeopardy events for a given
plan asynchronously. After the jeopardy events are processed, an event is deleted from the
pending_jeopardy_events table.

TIBCO® Order Management User Guide

266 | Jeopardy Services

Jeopardy Detection Cycle
The primary function of Jeopardy is to continuously monitor the plan throughout its
lifecycle and generate notifications if the plan deviates from its anticipated timeline.

Types of Detections

Jeopardy identifies various types of detections:

l Must Start

l Duration

l Plan Item Timeline

l Plan Timeline

Must Start

Purpose

l Indicates that a specific milestone or plan item must have started by the current
time.

l If a section's typical earlyStart time is earlier than the current time, Jeopardy
considers the section in Jeopardy.

l Dispatches a Must Start message for a plan item if the section's start milestone ID is
'START' or for a milestone must start message for intermediate milestones.

Notification Message

Message Type Message

MUST_START (For Plan Item) Plan item has exceeded the required start

MUST_START (For Milestone) Milestone {ABC} must have been completed at
{Predicted Time}

Duration

TYPICAL_DURATION

TIBCO® Order Management User Guide

267 | Jeopardy Services

l When a section is not completed before it is typical earlyFinish time, Jeopardy
considers the section in Jeopardy

l Dispatches a TYPICAL_DURATION message for plan item if the section's start
milestone ID is 'START' or for a milestone must start message for intermediate
milestones.

MAXIMUM_DURATION

l When a section is not completed before it is maximum earlyFinish time, Jeopardy
considers the section in Jeopardy

l Dispatches a MAXIMUM_DURATION message for plan item if the section's start
milestone ID is 'START' or for a milestone must start message for intermediate
milestones.

Notification Message

Message Type Message

TYPICAL_DURATION (For Plan Item) Plan item has exceeded its typical
duration.

TYPICAL_DURATION (For Milestone) Milestone {ABC} has exceeded its typical
duration.

MAX_DURATION (For Plan Item) Plan item has exceeded maximum
duration.

MAX_DURATION (For Milestone) Milestone {ABC} has exceeded maximum
duration.

Plan Item Timeline

Purpose

For each plan item, Jeopardy monitors the following time lines:

Timeline Description

MUST_START The plan item must have started before its

TIBCO® Order Management User Guide

268 | Jeopardy Services

Timeline Description

predicted start time (as explained above).

TYPICAL_PLAN_ITEM_DURATION The plan item must have been completed
before its predicted typical end time.

HAZARD_PLAN_ITEM_DURATION The plan item must have been completed
before its predicted hazard end time.

MAXIMUM_PLAN_ITEM_DURATION The plan item must have been completed
before its predicted maximum end time.

OOS_PLAN_ITEM_DURATION The plan item must have been completed
before its predicted out-of-scope (OOS)
end time.

Notification Message

Message Type Message

HAZARD_PLAN_ITEM_DURATION Plan Item has exceeded hazard duration
and is in Hazard riskRegion

MAXIMUM_PLAN_ITEM_DURATION Plan Item has exceeded Maximum duration
and is in Critical riskRegion

OOS_PLAN_ITEM_DURATION Plan Item has exceeded out-of-scope
duration and is in out-of-scope riskRegion

Plan Timeline

Purpose

For each plan, Jeopardy monitors the following time lines:

TIBCO® Order Management User Guide

269 | Jeopardy Services

Timeline Description

TYPICAL_PLAN_DURATION The plan must have been completed
before its predicted typical end time (as
explained above).

HAZARD_PLAN_DURATION The plan must have been completed
before its predicted hazard end time.

MAXIMUM_PLAN_DURATION The plan must have been completed
before its predicted maximum end time.

OOS_PLAN_DURATION The plan must have been completed
before its predicted out-of-scope (OOS)
end time.

Notification Message

Message Type Message

PLAN_TYPICAL_MESSAGE Plan has exceeded typical duration and is
expected to be in Hazard riskRegion in {time
remaining to reach hazard}

PLAN_HAZARD_MESSAGE The plan has exceeded hazard duration and is in
Hazard riskRegion.

PLAN_MAX_MESSAGE Plan has exceeded Maximum duration and is in
Critical riskRegion

PLAN_OOS_MESSAGE Plan has exceeded OOS duration and is in OOS
riskRegion

Population Of Time_Window table

Whenever a plan path is computed or recomputed, the following time lines are predicted:

l EarlyStart and EarlyFinish for every section

l ExpectedEndTime for every duration type for every plan item

TIBCO® Order Management User Guide

270 | Jeopardy Services

l ExpectedEndTime for every duration type for the plan.

After these time lines are predicted, Jeopardy inserts an entry for every detection type in
the TIME_WINDOW table with the following data:

l OrderId

l PlanId

l PlanItemId -> Populated only if the detection is for a plan item or milestone

l StartMilestoneId -> Populated only for MUST_START and DURATION types

l EndMilestoneId -> Populated only for MUST_START and DURATION types

l TenantID

l detection_type

l expected_time -> Refers to the corresponding time for the detection type.

Jeopardy Detection Cycle (JDC)

The Jeopardy detection cycle is a cron job configurable through the
jeopardyDetectionCronExpression property.

Properties

Property Name Property Description

jeopardyDetectionCronExpression JDC Cron Schedule

databaseType Database type. Either PostgreSQL or
Oracle

numOfOrdersPerCycle Number of orders to process per
cycle

Process

l Check for Jeopardy in Time_Window

o JDC goes to the database and checks for any jeopardy using the following

TIBCO® Order Management User Guide

271 | Jeopardy Services

query, where TIME_OFFSET is the current time and NUMOFROWS refers to the
number of orders to be detected per cycle and is configurable via the
numOfOrdersPerCycle:

n PostgreSQL: SELECT * FROM time_window WHERE orderid IN (SELECT
DISTINCT orderid FROM time_window WHERE expected_time <= 'TIME_
OFFSET' AND status = 0 LIMIT 'NUMOFROWS')

n Oracle: SELECT * FROM time_window WHERE orderid IN (SELECT
DISTINCT orderid FROM time_window WHERE expected_time <= 'TIME_
OFFSET' AND status = 0 FETCH FIRST 'NUMOFROWS' ROWS ONLY)

o If any row is returned from this query, Jeopardy considers that a jeopardy has
been detected because the expected_time is before the current time.

o For every row returned, jeopardy would update the status column to 1, thus
marking them as being in process.

l Depending on the detection type, Jeopardy then dispatches the notification from the
database.

l After a message is dispatched, it would go on to delete the row from the TIME_
WINDOW table.

Reset Stuck Jeopardy Cron Job

This exceptional handling or fail-safe job is designed to address situations where a
particular Jeopardy Detection Cycle run fails and fails to update the status column back to
0.

Properties

Property Name Property Description

jeopardyEventResetCronExpression Reset Stuck Jeopardy Cron
Schedule

jeopardyResetOffsetInSeconds Offset that is used to find the
detection tasks that are stuck.

Process

l This job runs according to the schedule defined in

TIBCO® Order Management User Guide

272 | Jeopardy Services

jeopardyEventResetCronExpression.

l It updates any detection task that has been stuck for the last
jeopardyResetOffsetInSeconds seconds and sets the status to 0 by running the
following query:

UPDATE time_window SET status = 0 WHERE lastchangetimestamp <= ?1 AND
status = 1

Calculation to find stuck detection task

lastchangetimestamp <= Current_time - jeopardyResetOffsetInSeconds.

Adding Jeopardy Rules On OMS UI
Jeopardy services ensure that planned tasks stay on track, minimizing risks, and ensuring
timely order fulfillment. You can add jeopardy rules on the Order Management System UI
(OMS UI).

Procedure
1. From the side bar on the OMS UI, go to Jeopardy Rules and click the ADD RULE

button.

2. In the General Info window, enter the details and click the SAVE & CONTINUE
button.

TIBCO® Order Management User Guide

273 | Jeopardy Services

3. On the Conditions tab, expand Plan, select your desired option, and then click the
NEXT button.

TIBCO® Order Management User Guide

274 | Jeopardy Services

4. Select any of the following options as per your requirement and then click the NEXT
button.

l Equals

l Equals Ignore Case

l Not Equals

5. On the Right Operand tab, provide the value in the box.

TIBCO® Order Management User Guide

275 | Jeopardy Services

6. Click the CREATE CONDITION button and then click the SAVE & CONTINUE button.

On the Conditions tab, you can verify the Groovy syntax of the conditions by clicking
on the SHOW EXPRESSION option.

7. On the Actions tab, enter the details for Name and Description, and then click the
SAVE & CONTINUE button.

TIBCO® Order Management User Guide

276 | Jeopardy Services

8. On the Notification Parameters tab, select EMS or Email from the Channel
dropdown as per your requirement. Fill the details and click the TEST CONNECTION
button.

TIBCO® Order Management User Guide

277 | Jeopardy Services

9. Click the SAVE & CONTINUE button.

10. On the Notification Template tab, define the Message Template by using the
operand of Plan or Plan Item. This is a layout to pick the respective attribute when
sending the notification to the end user.

TIBCO® Order Management User Guide

278 | Jeopardy Services

11. Click the CREATE ACTION button and then click the SAVE button.

TIBCO® Order Management User Guide

279 | Internal Error Handler

Internal Error Handler
Internal Error Handler marks the failed plan items in ERROR state and gives you the control
to select appropriate action for the failed plan item.

Internal Error Handler is an optional component and you can choose to configure internal
error handler. By default, the external error handler is configured.

Internal Error Handler is designed to handle the failed plan-items. It handles the failed
plan-items in two step process:

1. Mark the plan item state as ERROR for the plan item that failed.

2. Choose an appropriate action for the plan item in ERROR state from Order
Management Server UI. You can choose appropriate action from the following
options:

a. Retry

b. Resume

c. Complete

Internal Error Handler Data Flow Diagram
The following is the data flow diagram for Internal Error Handler:

TIBCO® Order Management User Guide

280 | Internal Error Handler

Understanding Data Flow in Internal Error
Handler
The following steps help you understand the data flow in the Internal Error Handler:

1. The Orchestrator sends the PlanItemExecuteRequest or PlanItemSuspend event to
the process component for each plan item.

2. In response, the process component sends PlanItemExecuteResponse event.

3. In PlanItemExecuteResponse event we have two flags: Completed and Success, and
based on value of these flags the orchestrator takes appropriate action. The following
tables illustrates the same:

Complete Success Description

Technical False False/True Orchestrator retries the process

TIBCO® Order Management User Guide

281 | Internal Error Handler

Complete Success Description

Error component call for the defined number
of retries with the defined retry interval.
If the process component call continues
to fail, then it refers the plan item to the
Plan Item Failed Handler.

Business
Error

True False Orchestrator refers the plan item to the
Plan Item Failed Handler.

Success True True Processing continues as normal.

Steps 1 through 3 are part of existing implementation

4. The orchestrator invokes the plan item Error Handler according to your configuration.
Going forward the system considers that you have configured Internal Error Handler,
and refer the Internal Error Handler as Error Handler.

5. Plan item Error Handler changes the failed plan item state to ERROR.

6. Plan remains in EXECUTION with one or more plan items in ERROR state.

7. You can search for the plans with one or more plan items in ERROR state in Order
Management Server UI.

8. After searching for the plan with planItem in the ERROR state, you can view the plan
details.

9. You can access the plan item in ERROR state and take appropriate action on it by
adding that order in the worktray from UI. Action on the plan item in ERROR state
can be from one of the following options:

a. Retry

b. Resume

c. Complete

10. You have to submit the action taken for each failed plan item.

11. After your submission, the orchestrator initiates the action on the respective plan
items.

TIBCO® Order Management User Guide

282 | Internal Error Handler

Internal Error Handler Sequence Diagram
The following is the sequence diagram to show the actual sequence of the flow of data in
Internal Error Handler:

Searching for Plans with planItem in ERROR
State

Procedure
1. Log in to Order Management System UI with valid credentials.

2. Click the Filter orders icon on the Find orders table.

TIBCO® Order Management User Guide

283 | Internal Error Handler

3. Toggle to plan filter.

4. Click Filter By Status, select the Error checkbox under Plan item.

Modifying the Plan Item State
After you have searched the plans with plan item or plan items in ERROR state, you have to
add the desired plan in the Worktray.

You can choose the appropriate action on the plan item and submit the chosen action.

TIBCO® Order Management User Guide

284 | Internal Error Handler

Choosing the Error Resolution for the Plan Item in Error
State
After adding the plan to the Worktray, click CONTINUE. You get the details for the plan
item.

Click Show Error based. This plan item has the Status as ERROR and have the option so
that you can choose the appropriate Error Resolution.

TIBCO® Order Management User Guide

285 | Internal Error Handler

Error Resolution is a dropdown box that contains actions that you have to perform to fix
the plan item in ERROR state. You have the following choices for the plan item’s Error
Resolution:

l Retry

l Resume

l Complete

There can be more than one plan item in ERROR state and you have to choose the error
resolution for each plan item in ERROR state. In case you do not choose the error
resolution for some plan items and submit the choice to the server, then the error
resolution is run as per your choice for those few plan items and the rest of the plan items
remain in ERROR state.

Details of Each Resolution Choice
You can choose any appropriate action from the error resolution dropdown box and the
error resolution chosen is considered as a resolution choice for that particular plan item.

The following diagram shows the State Machine diagram for different states of the plan
item after the user chooses a resolution type for the plan item in the ERROR state:

TIBCO® Order Management User Guide

286 | Internal Error Handler

Error Resolution - RETRY

When you submit the error resolution with RETRY as the appropriate action, a new Plan
Item Execute Request is sent for the plan item, and the orchestrator moves the plan item
state from ERROR to EXECUTION.

Error Resolution - RESUME

When you submit the Error Resolution with RESUME as the appropriate action, a new Plan
Item Activate Request is sent for the plan item, and the orchestrator moves the plan item
state from ERROR to EXECUTION.

Error Resolution - COMPLETE

When you submit the error resolution with COMPLETE as the appropriate action, the plan
item is marked as COMPLETE by the orchestrator. The orchestrator moves the plan item
state from ERROR to COMPLETE.

Submit the Error Resolution
After taking the error resolution on the plan item in ERROR state, you can submit your
changes. With error resolution choice as Retry, Resume, or Complete, you can submit these
error resolutions for the plan items in ERROR state all in one go, or you can submit each
error resolutions for the plan item in ERROR state separately.

TIBCO® Order Management User Guide

287 | Internal Error Handler

TIBCO® Order Management User Guide

288 | Order Management System User Interface

Order Management System User Interface
This section describes the TIBCO® Order Management System User Interface.

The application UI provides the following features:

l a visual interface to view order details, order execution plans.

l facility to search orders fast

l a complete view of orders that were fulfilled or failed during the fulfillment process

l end-to-end tracking, storing and monitoring capability for orders in the order
fulfillment system

l capability to perform actions on the orders being executed in the system

Note:
The date is in the MM/DD/YYYY HH:MM:SS Z format, where Z is the time zone
where the request is processed. For instance, UTC-7. You can configure the date
from the Configurator.

You can perform the following actions on Order Management:

Order
Management
Actions

Description

Dashboard-
specific actions

Viewing Dashboard: View the Order Management Dashboard for
summarized information about:

Orders Panel

l Order Summary

l Different charts

For details, refer to Dashboard.

Order-specific Order Management allows you to:

TIBCO® Order Management User Guide

289 | Order Management System User Interface

Order
Management
Actions

Description

actions l View order Details

l Search orders

For details, see Orders.

Plan-specific
actions

Perform the following plan specific actions in the Order Management.

l View Plan Details

l Search plan

l Dependency View for the plan

Activity Log Shows the status and revision history of an object (order or a plan) logs
based on the following criteria:

l Order Ref

l Plan ID

l Plan Item ID

l Order Line

Note: All the Order Management related options are displayed only if
Order Management configuration is enabled.

For details, see Activity Log.

Navigation
Access to the Dashboard is controlled through basic username, password, and tenantid
authentication.

To access the TIBCO Order Management System from a browser window, perform the
following steps:

#Orders_bm

TIBCO® Order Management User Guide

290 | Order Management System User Interface

Note: All the latest versions of Google Chrome, Mozilla Firefox, and Internet
Explorer are supported by OMSUI.

Procedure
1. To access the Login page, visit the http://<host>:<port number> URL, where:

l Host is the computer where you installed the Order Management UI.

l Port is the port number of the machine where the Order Management
installation listens to the requests. The default port number is 9097.

Note: You can configure the port from the $OM_
HOME/roles/configurator-
ui/standalone/config/application.properties file.

Order Management Log In

2. Enter the credentials in the TenantID, Username, and Password fields and then click
LOGIN. The UI dashboard opens. (In case of OpenID Connect (OIDC), enter the
TenantID details and click LOGIN WITH MICROSOFT.)

Order Management Dashboard

TIBCO® Order Management User Guide

291 | Order Management System User Interface

Note: In the case of OpenID Connect (OIDC), only the users with
AdminROLE and UserROLE privileges can view the content. Users who are
not in the added roles in the organization cannot view the content.

Dashboard
An Order Management Dashboard is a graphical user interface that organizes and presents
rich and enhanced information in a format that is easy to read and interpret. The
Dashboard is the default view when the user accesses the Order Management.

Features of the dashboard include:

l An intuitive graphical display that is easy to navigate - A rich Graphical User
Interface (GUI) with user/role security to manage/view orders.

l A logical structure that makes information easily accessible - Ability to view all
orders through graphical Dashboard summary.

l Data displays that can be customized and categorized - Ability to drill down into
order details by setting display preferences.

l Regular and frequent updates of dashboard information for accuracy and
relevance - Ability to auto-refresh to display updated details for an order
cancellation, amendment, suspension, and resumption.

l Information from multiple sources can be viewed simultaneously - Ability to

TIBCO® Order Management User Guide

292 | Order Management System User Interface

manage, search, and filter lists of existing orders.

The Dashboard allows effective order management with a comprehensive operations view.
The information displayed is a combination of text and graphical views, as:

l Current number of orders being processed.

l Current number of orders completed in the last 24 hrs.

l Current number of orders in the Execution state.

l Current number of orders error out in the last 24 hrs.

l Current number of orders amended in the last 24 hrs.

l Current number of suspended orders.

l Current number of orders in Jeopardy.

OMS UI Auto-Refresh

The OMS UI includes an auto-refresh feature that keeps the bar charts and pie charts up-to-
date in real time by refreshing them every 20 seconds. This feature ensures that you always
view the most current data without requiring manual refreshes.

When you hover over the bar chart, the count or value appears, providing immediate
context and detailed information about the data point.

TIBCO® Order Management User Guide

293 | Order Management System User Interface

You can also customize the auto-refresh interval to suit your requirements. Navigate to
Order Management System UI > Authorization Server Configuration Properties and set
the dashboardAutoRefresh property as per your requirements.

Charts

You can select the order date range from the dropdown options (such as 24 hours, 7 days,
15 days, and 30 days) below the Dashboard. By default, only 24 hours of data is fetched on
the UI.

Click the vertical ellipsis icon , Charts, and then choose the desired charts from the box.

The orders are shown in the following charts:

l Current status of submitted orders
Shows different status (such as Complete, Withdrawn) of the submitted orders

l Proportion of orders with errors
Shows the orders whose plan item statuses are in error or error handler state

TIBCO® Order Management User Guide

294 | Order Management System User Interface

When you hover over on an order chart, a query info icon shows the start date and end
date of the order.

Pie chart calls to count only the number of orders with error and not the whole data. Thus
loading time is reduced and any possible error for large plan items is avoided.

For bar chart, only Order Status, Submitted Date, and Order Id data is pulled instead of
the whole data.

TIBCO® Order Management User Guide

295 | Order Management System User Interface

Find Orders

Here orders are displayed with their associated criteria such as Order ID, Plan ID, Status
and so on.

You can select all the orders in one go by selecting the checkbox on the header row.

In this window, you can sort the orders to view them in an ascending or descending
sequence of Order ID, Plan ID, Status and so on.

Note: The sorting is string-based and not the number-based.
Example of orders shown in an ascending manner:
1) 1
2) 125
3) 2
4) 7
The order Id 125 is placed on the second line, although its numeric value is
greater than 2 and 7.

On the Find orders window, the following icons are present on the top-right corner:

Refresh icon: To refresh the page.

Work Tray icon: To navigate to the work tray.

Filter icon: To apply the search criteria by order level or plan level.

TIBCO® Order Management User Guide

296 | Order Management System User Interface

Vertical ellipsis icon: For settings

Click the vertical ellipsis icon , Column Picker, and then choose the desired columns

from the box.

Note: The Order ID and Submitted date columns are mandatory columns and
they are shown on the window even if you hide the rest all the columns.

You can sort the orders to view them in an ascending or descending sequence of Order ID,
Plan ID, Status and so on.

You can select 10 or 20 from the Rows per page dropdown options.

Filters
Initially, the entire orders are displayed here. You can create filters by clicking the Filter
orders icon.

You can search an Order ID by typing some part of the ID instead of the entire order ID.
From the Operation dropdown list, select Like. Then type some part of the order ID in the
Provide IDs field and search for the order. All the orders with the order ID that match the
given text are shown in the result.

When you do not want to use this functionality, you can select In from the Operation
dropdown list. Here, only the exact order ID can be typed in the Provide IDs field.

TIBCO® Order Management User Guide

297 | Order Management System User Interface

Note: Whenever a user logs in to the OMS UI again, the last used search criteria
are displayed by default.

On the Filters window, you can toggle between Order and Plan level.

Order Level Search Criteria
The orders can be searched by using the following criteria:

l Search By IDs

l Search By Dates

l Search By Order Status

l Search By Custom Headers

Search By IDs

Procedure
1. From the Select Type dropdown list, choose Order ID, Order Ref, Customer ID, or

TIBCO® Order Management User Guide

298 | Order Management System User Interface

Subscriber ID as per your requirement.

2. Enter the details in the Provide IDs field.

Note: You can add multiple IDs by clicking add icon .

3. Click the APPLY FILTERS button.

Note: When you use Search By IDs criteria, all other criteria are disabled.

Result
Orders are displayed with the applied filters on the Find orders window.

Search By Dates

Procedure
1. On the Select Start and End date, choose Today, Yesterday, This Week, Last

Week, or any other available option there as per your requirement.

2. Click the APPLY FILTERS button.

Note: You can use Search By Dates and Filter By Order Status criteria in
a combination and all other criteria are disabled.

Result
Orders are displayed with the applied filters on the Find orders window.

Filter By Order Status

Procedure
1. On the Select order status, select the following checkboxes as per your requirement:

l OPD

TIBCO® Order Management User Guide

299 | Order Management System User Interface

l OPD Error

l Execution

l Completed

l Suspending

l Suspended

l Canceled

l Pre qualification failed

l Feasibility

l Blocked

2. Click the APPLY FILTERS button.

Note: You can use Search By Dates and Filter By Order Status criteria in
a combination and all other criteria are disabled. You can also add
multiple statuses in one filter criteria.

Result
Orders are displayed with the applied filters on the Find orders window.

Search By Custom Headers

Procedure
1. On the Order Headers or Order Lines, enter the details in the Name and Value

fields.

Note: You can use either Order Headers or Order Lines at a time. You can
add new rows of the headers by clicking the ADD icon.

2. Click the APPLY FILTERS button.

TIBCO® Order Management User Guide

300 | Order Management System User Interface

Note: You can use Search By Dates and Filter By Order Status criteria in
a combination and all other criteria are disabled.

Result
Orders are displayed with the applied filters on the Find orders window.

Plan Level Search Criteria
The plans can be searched by using the following criteria:

l Search By IDs

l Search By Dates

l Filter By Status

Search By IDs

Procedure
1. From the Select Type dropdown list, choose Plan ID, Order ID, Order Ref, Process

component ID, or Process component Name as per your requirement.

2. Enter the details in the Provide IDs field.

Note: You can add multiple IDs separated by comma in this field.

3. Click the APPLY FILTERS button.

Note: When you use Search By IDs criteria, all other criteria are disabled.

Result
Orders are displayed with the applied filters on the Find orders window.

TIBCO® Order Management User Guide

301 | Order Management System User Interface

Search By Dates

Procedure
1. On the Select Start and End date, choose Today, Yesterday, This Week, Last

Week, or any other available option there as per your requirement.

2. Click the APPLY FILTERS button.

Note: You can use Search By Dates and Filter By Status criteria in a
combination and all other criteria are disabled.

Result
Orders are displayed with the applied filters on the Find orders window.

Filter By Status

Procedure
1. Select the following Plan status or Plan item status checkboxes as per your

requirement:

Note: You can use either Plan status or Plan item status at a time.

Plan Status

l Execution

l Completed

l Suspending

l Suspended

l Canceled

l Withdraw

Plan Item Status

l Pending

TIBCO® Order Management User Guide

302 | Order Management System User Interface

l Execution

l Completed

l Suspended

l Canceled

l Error Handler

l Error

2. Click the APPLY FILTERS button.

Note: You can use Search By Dates and Filter By Status criteria in a
combination and all other criteria are disabled. You can also add multiple
statuses in the search criteria.

Result
Orders are displayed with the applied filters on the Find orders window.

Clearing and Saving a Search

To clear a search criteria, click the clear filters icon.

To save a search criteria, click the save search icon.

Note: While saving a search criteria, you can select the Private or Shared radio
button. If you select Private, the search criteria are not visible to other users. If
you select Shared, the search criteria are visible to other users.

TIBCO® Order Management User Guide

303 | Order Management System User Interface

Editing and Deleting Saved Search

Procedure
1. Click the Saved Searches tab on the left panel. A window opens showing all the

saved search criteria.

2. Click the edit icon to modify or the delete icon to remove a search criteria.

Note: Only the owner of the created criteria can edit or delete a search
criteria.

TIBCO® Order Management User Guide

304 | Order Management System User Interface

Work Tray
Whenever you select a non-final state order from the Find orders window, the order is
displayed on Worktray. This indicates that you are working on that particular order.
Similarly, you can clear an order from Worktray.

On the Worktray window, click CONTINUE. The orders are displayed in a new window.

The orders chosen in the Selected orders window are reflected in the comparison Donut
charts on the right.

TIBCO® Order Management User Guide

305 | Order Management System User Interface

The Take an action button has dropdown options as Cancel, Resume, Suspend,
Withdraw, and Retry. Expand the Take an Action dropdown menu from the top-right
corner and select the desired bulk action.

Note: In the $OM_ HOME/seed-data/app-properties/ConfigValues_
OMSUI.JSON file, you can set the operation.roles.amendOrder property, which
is used to allow the types of user to perform amendment on Order Management
System UI.

Click the refresh icon to synchronize the selected orders.

Once an action is applied, the action details can be viewed on the In progress jobs tab.
The Job ID, Action, Job Details, and Orders fields are shown here.

From the In progress jobs tab, you can view order details of a particular order by clicking
the Order IDs hyperlink.

Note: Select two or more orders to view the comparison Donut charts and to
take actions on order or plan items.

TIBCO® Order Management User Guide

306 | Order Management System User Interface

Orders
When you click the Order ID hyperlink, a new window opens with all the details about that
particular order.

Note: The hyperlinks are disabled for the orders which are in final state. The
hyperlinks work only for active orders. Withdrawn orders do not appear on the
OMSUI.

Order Homepage
The following information is available on the Order Homepage tab:

l Basic info (order and plan)

l Status (order and plan)

l Location (invoice address and delivery address)

l Dates (order and plan)

l Custom headers

l Plan

l Amendments (all amendments with clickable links to navigate to the amended order)

You can edit a suspended order to apply various amendments to the same.

TIBCO® Order Management User Guide

307 | Order Management System User Interface

Note: Only the user roles those are set for the operation.roles.amendOrder
property under the "Application Security" category in the $OM_HOME/seed-
data\app-properties/ConfigValues_OMSUI.json file, can amend orders on the
OMS UI.

When you open a suspended order, an edit button is shown on the top-right corner

for the Order Homepage and Order Lines tabs. By clicking the edit button, you can

perform various amendments to the orders.

On the Order Homepage tab, edit the Required by field on the Dates section and
information on the Custom headers section. You can edit any one out of these two
sections at a time and need to restore the same before doing any edit on the other section.

l Add a new order line:

On the Order Lines tab, click the edit button on the top-right corner. Click the

add button, and then click the create button to create an order

line or click the copy button to copy an existing order line.

TIBCO® Order Management User Guide

308 | Order Management System User Interface

When you create an order line, initially a random line number is given to the order
line. Fill all the required values in the Order line Details, Custom headers, and
Location sections.

When you copy an order line, the values in the Order line Details, Custom headers,
and Location sections are pre-populated from the parent one. You can edit the fields
with the required values.

In the Order line Details section, you must provide a valid Product ID. You can click
the VALIDATE button to check the validity of the product ID.

In the Location section, select the Same as delivery address checkbox if both the

TIBCO® Order Management User Guide

309 | Order Management System User Interface

delivery and invoice addresses are the same.

After filling out all the required details, click the button. If there are some

errors, those are shown as pop-up messages on the UI, and you can fix those.

If there are no errors, the Preview Amendment window shows the old and new
values. If there are no further changes, click the SAVE button and the new order line
is added.

If you do not want a particular order line, you can remove the same by clicking the
Delete icon.

l Edit an existing order line:

On the Order Lines tab, click the edit button on the top-right corner. Click an

existing order line that you want to edit.

You can edit any one section from Order line Details or Custom headers at a time
and need to restore the same before doing any edit on the other section.

On the Order line Details section, you can update the Action and Require by fields
only.

After filling out all the required details, click the button. If there are some

errors, those are shown as pop-up messages on the UI, and you can fix those.

TIBCO® Order Management User Guide

310 | Order Management System User Interface

If there are no errors, the Preview Amendment window shows the old and new
values. If there are no further changes, click the SAVE button and the changes are
updated.

Order Lines
The following information is available on the Order Lines tab:

l Order Line

l Order Line Details

l Custom headers

l Location (invoice address and delivery address)

TIBCO® Order Management User Guide

311 | Order Management System User Interface

Click the settings icon and select the Pin Order Lines Table checkbox to make the

order lines scrollable. By default, the order lines are shown across the pages. You can hide
or show the desired columns from the Column Picker option.

You can search an order line by Line, Product ID, or Status on the search box.

Plan Items
The following information is available on the Plan Items tab:

l Plan ID

l Plan items Details

l Process component information

l Custom headers

l Milestones (shows the dependencies if present)

Click the settings icon and select the Pin Plan Items table checkbox to make the plan

items scrollable. By default, the plan items are shown across the pages. Similarly, you can
select the Non executing plan items checkbox to show or hide the non-executing plan
items. You can hide or show the desired columns from the Column Picker option.

You can search a plan item by ID, Plan Item Name, or Status on the search box.

You can take the Retry, Resume, or Complete action on the plan item with an error state.

TIBCO® Order Management User Guide

312 | Order Management System User Interface

Plan Items Dependencies
The Plan Items Dependencies tab shows the dependencies between milestones in a
graphical representation.

You can choose the Grid view or Tree view by selecting the radio button on the top-right
side. The Grid view is very helpful to show the dependencies efficiently if there are a large
number of plan items.

You can click the link icon to see the dependent plan item. When you click a plan item

tile, it expands and shows the milestones. Right-click on a plan item tile to open the Plan
item details window, where it shows in-depth details.

TIBCO® Order Management User Guide

313 | Order Management System User Interface

Click the zoom-in or zoom-out button on the right side to view the page as per your
requirements.

Note: The zooming functionality works best with the Google Chrome browser
and there might be some issues with other browser.

Click the sort icon to sort the plan-items based on dependencies.

Click the help icon to view the legend for the milestones (for example, START,

PENDING, EXECUTION) with color coding.

Right-click on a node to view the complete details about the item.

Click the download icon to save the dependency view as an image.

Click the settings icon to show or hide various options as per your requirements.

You can choose the page you need from the top. This makes it easier to manage large
amounts of data.

Order Composition
The Order Composition tab shows how a particular order is decomposed into various
items in a flow chart.

TIBCO® Order Management User Guide

314 | Order Management System User Interface

When there are multiple levels of order lines in a catalog hierarchy, it delays significantly to
load all levels of order lines. To overcome this issue, only the first levels of order lines are
loaded initially on the UI. To see the next level of order lines, click the expand button

at the bottom of the first-level order lines. Similarly, you can continue expanding for all the
levels of order lines. You can collapse a level of order line by clicking the collapse

button at the top of that level order line.

The order planId is sent from the OMS UI to the AOPD server.

In AOPD services, from planId, the services fetch the plans and generate a hierarchical
response for the particular order. The response is then used to create the order
composition chart on the UI.

To Order Composition view uses the following endpoint of AOPD:

/v1/plan/product/hierarchy

HTTP POST method is used for this endpoint. In request body, it takes AOPD plan and
generates a JSON response that has parent-child relationship. The output of this endpoint
is used to draw the Order Composition tree.

You can click an item to view more details.

TIBCO® Order Management User Guide

315 | Order Management System User Interface

Plan Timeline
The Plan Timeline tab shows the timeline of a plan in a chart. You can choose the plan
item display names from the settings icon.

Activity Log
The Activity Log tab shows various transitions of the order.

TIBCO® Order Management User Guide

316 | Order Management System User Interface

You can select or clear the checkboxes for Order, Orderline, Plan, Planitem,
OrderAmendment, and Generic to view the related logs that you want. The log shows
details such as Date & Time, Ref. ID, Type, Origin, and Message.

Pending Tasks
You can re-trigger any pending task for a non-final state orders through the Pending Tasks
tab.

All the pending tasks are shown on this tab. Before re-triggering a pending task, you can
select the required state from the Reply dropdown options.

Depending on the Pending Task, the Retrigger function and Reply dropdown options
varies. The following table shows such pending tasks and their available options.

Pending Task Retrigger Reply Result

PLAN_ITEM_
EXECUTE_REQUEST

RE-TRIGGER Complete

Error / Error
Handler

In case of re-trigger option,
the application sends
planItemExecuteRequest
again to the southbound
system.

In case of reply option, plan
item goes to complete state
or error / error_handler
state based on the selected

TIBCO® Order Management User Guide

317 | Order Management System User Interface

Pending Task Retrigger Reply Result

option.

PLAN_ITEM_
SUSPEND_REQUEST

SUSPEND - Plan item goes to the
suspended state.

PLAN_ITEM_
ACTIVATE_REQUEST

RE-TRIGGER Complete

Error / Error
Handler

In case of re-trigger option,
application sends
planItemExecuteRequest
again to the southbound
system.

In case of reply option, plan
item goes to complete state
or error / error_handler
state based on the selected
option.

PLAN_ITEM_FAILED_
REQUEST

RE-TRIGGER - In case of re-trigger, the
application sends PLAN_
ITEM_FAILED_REQUEST
again.

ORDER_FEASIBILITY RE-TRIGGER - In case of re-trigger, the
application sends ORDER_
FEASIBILITY again.

AMEND_ORDER_
FEASIBILITY

RE-TRIGGER - In case of re-trigger, the
application sends AMEND_
ORDER_FEASIBILITY again.

MILESTONE_
RELEASE_REQUEST

RE-TRIGGER - In case of re-trigger, the
application sends
MILESTONE_RELEASE_
REQUEST again.

PRE_QUALIFICATION_
FAILED

RE-TRIGGER - In case of re-trigger, the
application sends PRE_
QUALIFICATION_FAILED
again.

TIBCO® Order Management User Guide

318 | Order Management System User Interface

You can hide or show the desired columns from the Column Picker option.

Plan items
Add non-final state orders in the Worktray from Find orders table and click CONTINUE.

On this window, all the plan items are displayed that are chosen on the Selected orders
window.

Also, plan items can be searched with their order ID or plan ID on the search box.

You can select the checkboxes against the Show error based only component to view the
plan items with error state. When plan items with error states are filtered out, the Take an
action button is enabled with the dropdown options as Retry, Resume, and Complete.
You can take an action as required.

TIBCO® Order Management User Guide

319 | Data Access Interfaces

Data Access Interfaces
TIBCO Order Management provides the options to access or update the user-defined field
data during order fulfillment.

The following are the interfaces:

1. GetPlan - to get the User Defined Fields data of the execution plan associated with an
order. This can also include the User Defined Fields data of all comprising plan items.

2. GetPlanItems - to get the User Defined Fields data of the specific plan items passed
in the request.

3. SetPlan - to update or replace the User Defined Fields data of the execution plan
associated with an order. This can also include the User Defined Fields data of one or
more comprising plan items.

4. SetPlanItem - to update/replace the User Defined Fields data of a specific plan item
passed in the request.

Get Plan
The GetPlan interface can be used by the process components to retrieve the plan
corresponding to an order from the TIBCO Order Management system.

If an exception occurs during the GetPlan operation, it is logged into the Data Service log.
The details of the exception are returned in the response.

Get Plan Request
The following properties must be passed in the request message header:

Request Endpoint: /v1/plan/get

TIBCO® Order Management User Guide

320 | Data Access Interfaces

Element Type Cardinality Description

businessTransactionID String Optional The unique identifier
for tracing purposes
across function calls.

planID String Required The internal unique
identifier for the plan
to retrieve.

correlationID String Optional The unique identifier
for tracing purposes
across a single
function call. This is
generally used by the
calling application to
correlate requests and
responses.

idsOnly Boolean Optional If true, only returns
the IDs of elements
rather than all plan
data. If false, returns
all plan data.

includeItems Boolean Optional If true returns all plan
items with the plan. If
false, only the plan
details are returned.

matchingUdfNameAllPi String Optional The value of this field
is in the format: UDF
name=UDF value.
When this value is set,
the output is a plan
with the plan items,
which have the
matching user-defined
field name and value

TIBCO® Order Management User Guide

321 | Data Access Interfaces

Element Type Cardinality Description

as specified in the
header value together
with all the User
Defined Fields for the
corresponding
matched plan items.

If the format for this
user-defined field is
not in the form UDF
name=UDF value, an
error is returned.

ALL_PI_SINGLE_UDF_NAME String Optional The value of this is a
user-defined field
name. The output is a
plan with all the plan
items and the plan
items have only the
user-defined field
specified in the
header if present.

If both MATCHING_PI_
UDF_NAME_VAL and
ALL_PI_SINGLE_UDF_
NAME are present in
the request, an error
is returned.

matchingUdfNameAllPiIgnoreEmpty Boolean Optional This is intended to be
used in conjunction
with ALL_PI_SINGLE_
UDF_NAME. The
default value of false
indicates that all plan
items are present in

TIBCO® Order Management User Guide

322 | Data Access Interfaces

Element Type Cardinality Description

the response even if
they do not have a
user-defined field
matching the user-
defined field specified
in ALL_PI_SINGLE_
UDF_NAME. A true
value indicates that
plan items with no
matching User
Defined Fields are
removed from the
response.

OrderID String Required The internal unique
identifier for the
order.

Note: The value of
orderId must not
contain ":"

Note: Any one of the orderID, orderRef, or planID is mandatory in the REST
request calls.

Get Plan Response
The response message contains the following header properties:

Element Type Cardinality Description

success Boolean Required The flag indicating if the call was successful.

TIBCO® Order Management User Guide

323 | Data Access Interfaces

Element Type Cardinality Description

messageCode String Required The result message code.

message String Required The result message.

planID String Required The internal unique identifier for the plan
specified in the request.

found Boolean Required The flag indicating if the plan was found.

The following table lists the details of the response elements.

Element Type Cardinality Description

resultStatus Type Required The result status type.
See Schema References
for the specification of
this type.

plan Type Optional The plan type. If the
plan is not found, this is
omitted.

plan/planID String Required The internal unique
identifier for the plan.

plan/orderID String Required The internal unique
identifier for the order
for the plan.

Note: The value of
orderId must not
contain ":"

plan/orderRef String Required External unique
identifier for the order
for the plan.

TIBCO® Order Management User Guide

324 | Data Access Interfaces

Element Type Cardinality Description

Note: The value of
orderRef must not
contain ":"

plan/udf Type 0-M user-defined field type.

plan/udf/type String Optional Type of the user defined
field.

plan/udf/flavor String Optional Flavor of the user-
defined field. The valid
values are one of the
following three:

l config - For user-
defined field
corresponding to
a characteristic in
the product model
or a system user-
defined field
generated by
Automated Order
Plan
Development.

l input - For user-
defined field
passed in the
order.

l output - For user-
defined field set
by the process
component.

plan/udf/name String Required Field name.

TIBCO® Order Management User Guide

325 | Data Access Interfaces

Element Type Cardinality Description

plan/udf/value String Optional Field value.

plan/udf/originalValue String Optional Original field value at
the time of plan
creation.

plan/udf/lastModified DateTime Optional Timestamp when the
user-defined field was
last modified.

plan/planItem Type 0-M Plan item type.

plan/planItem/planItemID String Required Internal unique identifier
for the plan item.

plan/planItem/planItemName String Optional Name of the process
component.

plan/planItem/udf Type 0-M user-defined field type.

plan/planItem/udf/type String Optional Type of the user defined
field.

plan/planItem/udf/flavor String Optional Flavor of the user-
defined field. The valid
values are one of the
following three:

l config - For user-
defined field
corresponding to
a characteristic in
the product model
or a system user-
defined field
generated by
Automated Order

TIBCO® Order Management User Guide

326 | Data Access Interfaces

Element Type Cardinality Description

Plan
Development.

l input - For user-
defined field
passed in the
order.

l output - For user-
defined field set
by the process
component.

plan/planItem/udf/name String Required Field name.

plan/planItem/udf/value String Optional Field value.

plan/planItem/udf/originalValue String Optional Original field value at
the time of plan
creation.

plan/planItem/udf/lastModified DateTime Optional Timestamp when the
user-defined field was
last modified.

plan/planItem/parentID String 0-M IDs of the plan items,
which depend on the
current plan item.

plan/planItem/childID String 0-M IDs of the plan items on,
which the current plan
item depends.

plan/planItem/siblingID String 0-M IDs of the plan items
corresponding to
SIBLING_PRODUCT_* of
the product fulfilled by
current plan item.

TIBCO® Order Management User Guide

327 | Data Access Interfaces

Element Type Cardinality Description

plan/planItem/dependentID String 0-M IDs of the plan items
corresponding to
DEPENDENT_PRODUCT_
* of the product fulfilled
by current plan item.

plan/status String Required Status of the plan from
a data perspective:
active or complete.

plan/planDescription String Optional Plan description.

Get Plan Messages and Message Codes
The error codes and their respective error messages for the Get Plan interface are as
follows:

Message Code in Response
Header and Result Status

Message in Response
Header and Result
Status

Scenario

FOM-DATA-ACCESS-SUCCESS-
0000

Successfully processed
GetPlanRequestEvent

Plan is found and data is mapped
in the response successfully.

FOM-DATA-ACCESS-PLAN-
NOT-FOUND-9999

Plan not found for
planID <planID value>

Plan is not found against the planID
specified in the request header.

FOM-DATA-ACCESS-ORDER-
NOT-FOUND-9999

Order not found for
orderID <orderID value>

Order is not found against the
orderID specified in the request
header.

Get Plan Messages and Message Codes

TIBCO® Order Management User Guide

328 | Data Access Interfaces

Get Plan Items
The GetPlanItems interface can be used by the process components to retrieve the data of
one or many plan items in the plan corresponding to an order from the TIBCO Order
Management system.

If an exception occurs during GetPlanItems operation, then it is logged into the Data
Service log. The details of the exception are returned in the response.

Get Plan Items Request
Request Endpoint: /v1/planitems/get

The following properties must be passed in the request message header:

Element Type Cardinality Description

businessTransactionID String Optional The unique identifier for tracing
purposes across function calls.

planID String Required The internal unique identifier for
the plan to retrieve.

correlationID String Optional The unique identifier for tracing
purposes across a single function
call. This is generally used by the
calling application to correlate
requests and responses.

idsOnly Boolean Optional If true, returns the IDs of
elements rather than all plan
data. If false, returns all plan
data.

includeRelatedPlanItems Boolean Optional The value of this header is true
or false, and the absence of this
header denotes a false value.
When this header is set in the

TIBCO® Order Management User Guide

329 | Data Access Interfaces

Element Type Cardinality Description

request, the output ID all the
plan items, which belong to the
same order line as the input plan
item.

When this header is set in the
request, only a single plan item
can be present in the
getPlanItem request. If multiple
plan items are present in the
request, an error is returned.

The following table lists the details of the getPlanItemsRequest elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing purposes
across function calls.

planID String Required Internal unique identifier for the plan
to retrieve.

idsOnly String Optional If true only returns the IDs of
elements rather than all plan data.
Otherwise, if false returns all plan
data.

planItem Type 0-M Plan item type.

planItem/planItemID String Required Internal unique identifier for the plan
item to retrieve.

Note: Any one of the orderID, orderRef, or planID is mandatory in the REST
request calls.

TIBCO® Order Management User Guide

330 | Data Access Interfaces

Get Plan Items Response
The response message contains the following header properties:

Element Type Cardinality Description

Success Boolean Required Flag indicating if the call was successful.

messageCode String Required Result message code.

Message String Required Result message.

planID String Required Internal unique identifier for the plan
specified in the request.

Found Boolean Required Flag indicating if the plan was found.

The following table lists the details of the response elements.

Element Type Cardinality Description

resultStatus Type See Image Result status type. See
Schema References for the
specification of this type.

planItem Type 0-M Plan item type.

planItem/planItemID String Required Internal unique identifier for
the plan item.

planItem/planItemName String Optional Name of the process
component.

planItem/udf Type 0-M user-defined field type.

planItem/udf/type String Optional Type of the user defined field.

planItem/udf/flavour String Optional Flavor of the user-defined
field. The valid values are one

TIBCO® Order Management User Guide

331 | Data Access Interfaces

Element Type Cardinality Description

of the following three:

l config - For user-
defined field
corresponding to a
characteristic in the
product model or a
system user-defined
field generated by
Automated Order Plan
Development.

l input - For user-defined
field passed in the
order.

l output - For user-
defined field set by the
process component.

planItem/udf/name String Required Field name.

planItem/udf/value String Optional Field value.

planItem/udf/originalValue String Optional Original field value at the
time of plan creation.

planItem/udf/lastModified DateTime Optional Timestamp when the user-
defined field was last
modified.

planItem/parentID String 0-M IDs of the plan items, which
depends on the current plan
item.

planItem/childID String 0-M IDs of the plan items on
which the current plan item
depends.

TIBCO® Order Management User Guide

332 | Data Access Interfaces

Element Type Cardinality Description

planItem/siblingID String 0-M IDs of the plan items
corresponding to SIBLING_
PRODUCT_* of the product
fulfilled by current plan item.

planItem/dependentID String 0-M IDs of the plan items
corresponding to
DEPENDENT_PRODUCT_* of
the product fulfilled by
current plan item.

Get Plan Items Messages and Message Codes
The error codes and their respective error messages for the Get Plan Items interface are as
follows:

Message Code in
Response Header
and Result Status

Message in Response Header
and Result Status

Scenario

FOM-DATA-ACCESS-
SUCCESS-0000

Successfully processed
GetPlanItemsRequestEvent

PlanItem or PlanItems are found and
data is mapped in the response
successfully.

FOM-DATA-ACCESS-
PLAN-NOT-FOUND-
9999

Plan not found for planID
<planID value>

The plan corresponding to the planID
specified in the request header is not
found.

FOM-DATA-ACCESS-
ORDER-NOT-FOUND-
9999

Order not found for orderID
<orderID value>

The order corresponding to the
orderID specified in the request
header is not found.

FOM-DATA-ACCESS-
PLANITEM-NOT-
FOUND-9999

PlanItem not found for planID
<planID value> and

The planItem corresponding to the
planID and planItemID specified in

Get Plan Items Messages and Message Codes

TIBCO® Order Management User Guide

333 | Data Access Interfaces

Message Code in
Response Header
and Result Status

Message in Response Header
and Result Status

Scenario

planItemID <planItemID
value>

the request header is not found.

Set Plan
The SetPlan interface can be used by the process components to add a new user-defined
field or update the value of an existing user-defined field of plan or any of the containing
plan items in the TIBCO Order Management system. However, it is suggested to use this
interface for plan level User Defined Fields only since there is a separate interface for plan
items as explained further in this guide.

If an exception occurs during SetPlan operation, then it is logged into the Data Service
log. The details of the exception are returned in the response.

Set Plan Request
Request Endpoint: /v1/plan

The following properties must be passed in the request message header:

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

planID String Required Internal unique identifier for the
plan to retrieve.

OrderID String Required Internal unique identifier for the
order related to the plan to update.

TIBCO® Order Management User Guide

334 | Data Access Interfaces

Element Type Cardinality Description

Note: The value of orderId must
not contain ":"

correlationID String Optional Unique identifier for tracing
purposes across a single function
call. This is generally used by the
calling application to correlate
requests and responses.

replace Boolean Required If set to true:

All the existing User Defined Fields
is replaced by the User Defined
Fields that are present in the
request.
If set to false:

The User Defined Fields passed in
the request is merged with the
existing User Defined Fields.

In any of the above case, the
uniqueness of a user-defined field
is maintained based on the 'name'
and 'flavor' combination in the
user-defined field. A user-defined
field having exactly same 'name'
and 'flavor' is not duplicated, if the
flag EnableUniqueUDFNames is set
to true in Order Management
Server configurations. In case of
multiple User Defined Fields with
exactly same name and flavor in
the request, the value from the last
encountered user-defined field is
considered.

TIBCO® Order Management User Guide

335 | Data Access Interfaces

SetPlanRequest

The following table lists the details of the elements.

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

Plan Type Required Plan type.

plan/planID String Required Internal unique identifier for
the plan to update.

plan/orderID String Required Internal unique identifier for
the order related to the plan
to update.

Note: The value of orderId
must not contain ":"

plan/orderRef String Required External unique identifier for
the order related to the plan
to update.

Note: The value of
orderRef must not contain
":"

TIBCO® Order Management User Guide

336 | Data Access Interfaces

plan/udf Type 0-M

plan/udf/type String Optional Type of the user defined field.

plan/udf/flavor String Optional Flavor of the user-defined
field. Must be set as output.

plan /udf/name String Required Field name.

plan/udf/value String Required Field value.

plan/planItem Type 0-M Plan item type.

plan/planItem/planItemID String Required Internal unique identifier for
the plan item to update.

plan/planItem/planItemName String Optional Process component name.

plan/planItem/udf Type 0-M user-defined field type.

plan/planItem/udf/type String Optional Type of the user defined field.

plan/planItem/udf/flavor String Optional Flavor of the user-defined
field. Must be set as output.

plan/planItem/udf/name String Required Field name.

plan/planItem/udf/value String Required Field value.

replace Any Optional If true it completely replaces
the plan item, otherwise
merges the user-defined field
data.

Set Plan Response
The response message contains the following header properties:

TIBCO® Order Management User Guide

337 | Data Access Interfaces

Element Type Cardinality Description

success Boolean Required Flag indicating if the call was successful.

messageCode String Required Result message code.

message String Required Result message.

planID String Required Internal unique identifier for the plan
specified in the request.

There is nobody (payload) associated with the response message.

Set Plan Messages and Message Codes
The error codes and their respective error messages for the Set Plan interface are as
follows:

Message Code in
Response Header
and Result Status

Message in Response
Header and Result Status

Scenario

FOM-DATA-ACCESS-
SUCCESS-0000

Successfully processed
SetPlanRequestEvent

Plan is found and user-defined field data
specified in the request in plan header
and plan items is updated successfully.

FOM-DATA-ACCESS-
PLANITEM-NOT-
FOUND-9999

PlanItem not found for
planID <planID value> and
planItemID <planItemID
value>

PlanItem is not found against the planID
and planItemID specified in the request
header.

FOM-DATA-ACCESS-
ORDER-NOT-FOUND-
9999

Order not found for orderID
<orderID value>

Order is not found against the orderID
specified in the request header.

FOM-DATA-ACCESS-
PLAN-NOT-FOUND-
9999

Plan not found for planID
<planID value>

Plan is not found against the planID
specified in the request.

Set Plan Messages and Message Codes

TIBCO® Order Management User Guide

338 | Data Access Interfaces

Set Plan Item

Overview

The SetPlanItem interface can be used by the process components to add a new user-
defined field or update the value of an existing user-defined field of the plan items in a
plan in the TIBCO Order Management System.

If an exception occurs during SetPlanItem operation, then it is logged into the Data Service
log. The details of the exception are returned in the response.

Set Plan Item Request
Request EndPoint: /v1/planitems

The following properties must be passed in the request message header:

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

planID String Required Internal unique identifier for the
plan to retrieve.

correlationID String Optional Unique identifier for tracing
purposes across a single function
call. This is generally used by the
calling application to correlate
requests and responses.

replace Boolean Required If set to true:

All the existing User Defined Fields
is replaced by the User Defined
Fields that are present in the
request.
If set to false:

TIBCO® Order Management User Guide

339 | Data Access Interfaces

The User Defined Fields passed in
the request is merged with the
existing User Defined Fields.

In any of the earlier mentioned
cases, the uniqueness of a user-
defined field is maintained based
on the 'name' and 'flavor'
combination in the user-defined
field. A user-defined field having
the same 'name' and 'flavor' do not
get duplicated, if the flag
EnableUniqueUDFNames is set to
true in Order Management Server
configurations. In case of multiple
User Defined Fields with the same
name and flavor in the request, the
value from the last encountered
user-defined field is considered.

orderID string Required Internal unique identifier for the
plan.

Note: The value of orderId must
not contain ":"

planItemID String Required Internal unique identifier for the
plan item to be updated.

SetPlanItemRequest

The following table lists the details of the elements.

TIBCO® Order Management User Guide

340 | Data Access Interfaces

Element Type Cardinality Description

businessTransactionID String Optional Unique identifier for tracing
purposes across function calls.

planID String Required Internal unique identifier for the
plan to update.

planItem Type Required Plan item type. Only user-defined
field Name and Value are updated.
If the Unique User Defined Fields
are enabled for the engine an
update occurs if disabled the entire
current user-defined field payload is
dropped and replaced with the new
payload.

planItem/planItemID String Required Internal unique identifier for the
plan item to update.

planItem/planItemName String Optional Process component name.

planItem/udf Type 0-M user-defined field type.

planItem/udf/type String Optional Type of the user defined field.

planItem/udf/flavor String Optional Flavor of the user-defined field.
Must be set as output.

planItem/udf/name String Required Field name.

planItem/udf/value String Required Field value.

replace Any Optional If true it completely replaces the
plan item, otherwise merges the
user-defined field data.

TIBCO® Order Management User Guide

341 | Data Access Interfaces

Set Plan Item Response
The response message contains the following header properties:

Element Type Cardinality Description

success Boolean Required Flag indicating if the call was successful.

messageCode String Required Result message code.

message String Required Result message.

planID String Required Internal unique identifier for the plan
specified in the request.

There is nobody (payload) associated with the response message.

Set Plan Item Messages and Message Codes
The error codes and their respective error messages for the Set Plan Items interface are as
follows:

Message Code in
Response Header
and Result Status

Message in Response Header
and Result Status

Scenario

FOM-DATA-ACCESS-
SUCCESS-0000

Successfully processed
SetPlanItemRequestEvent

PlanItem is found and user-defined
field data specified in the request is
updated successfully.

FOM-DATA-ACCESS-
PLAN-NOT-FOUND-
9999

Plan not found for planID
<planID value>

Plan is not found against the planID
specified in the request header.

FOM-DATA-ACCESS-
ORDER-NOT-FOUND-
9999

Order not found for orderID
<orderID value>

Order is not found against the
orderID specified in the request

Set Plan Items Messages and Message Codes

TIBCO® Order Management User Guide

342 | Data Access Interfaces

Message Code in
Response Header
and Result Status

Message in Response Header
and Result Status

Scenario

header.

FOM-DATA-ACCESS-
PLANITEM-NOT-
FOUND-9999

PlanItem not found for planID
<planID value> and planItemID
<planItemID value>

PlanItem is not found against the
planID and planItemID specified in
the request header.

TIBCO® Order Management User Guide

343 | Best Practices for TIBCO Order Management

Best Practices for TIBCO Order Management
This section covers the best practices that can serve as guidelines for building a fulfillment
solution by using TIBCO Order Management.

Exception Handling Guidelines
Exception Handling Guidelines provides information about guidelines that can be followed
for handling the exceptional conditions in process components.

General Approach
TIBCO Order Management does not include any out-of-the-box approach for error handling.
The product architecture does account for exception handlers, and provides the necessary
hooks, where it can be integrated with an existing exception or fallout management
system, or to which a custom solution can be connected.

The product capabilities for supporting error handling are fully described in the product
documentation, and it is assumed that the reader is familiar with that document. The
basics are not covered here.

Plan Item Failed Handler or no Plan Item Failed Handler

A key question is whether to handle exceptions within the process component itself, or
whether to manage exception handling through the orchestrator and the Plan Item Failed
(PIF) handler. In the first case, process components must only return a success result to the
orchestrator, and no Plan Item Failed handler is required.

In the second case, it is necessary to develop a Plan Item Failed handler that receives
PlanItemFailedRequest from the orchestrator for direction on how to proceed once an
error is encountered. The Plan Item Failed handler must respond to the orchestrator telling
it whether to retry the plan item, or Continue (that is, mark the plan item as completed
and continue with the plan).

TIBCO® Order Management User Guide

344 | Best Practices for TIBCO Order Management

A consideration here is the type of process component. If a process component makes use
of a workflow engine for its implementation, which already includes manual tasks and GUI
interaction, it makes sense for errors in the flow to be managed within the workflow
engine, rather than have them passed back to the orchestrator. If the process component
is BW or BE, the Plan Item Failed handler might be a better option.

Functional Exception against Technical Exception

Any consideration of exceptions handling must consider the different types of exception
that can occur, which typically fall into two broad categories, functional exceptions, and
technical exceptions. For the purposes of this discussion, we define these as follows:

l A Functional Exception occurs when a back-end system returns an error code to the
process component, indicating a problem with the request. Functional exceptions
always occur in the context of a process component. An example can be a request to
allocate a phone number that is already in use. Receiving a functional exception is
expected to occur under normal circumstances, and the system is built to handle
these events.

l A Technical Exception occurs when something goes wrong, so that the system is not
designed to handle under normal circumstances. They can occur in process
components and also TIBCO Order Management components such as orchestrator
and Order Management Server. They are typically caused by conditions in the
external environment, such as running out of memory, failure in Enterprise Message
Service, and hardware failure, but can also be caused by defects.

Different strategies might be considered for each of these types. For instance, as functional
exceptions occur within the context of a process component, and typically require an
operator to review and decide on remedial action, it makes sense for these to be handled
through the orchestrator and a Plan Item Failed handler, which might defer to an external
GUI for a resolution.

Technical exception handling is more difficult, as they can be caused by almost anything.
In this case, even if a Technical exception occurs in a plan item, it might make more sense
to simply log it and stop execution of the plan item.

Example Approach
This topic describes an approach for implementing exception handling, where order fallout
is managed externally to the TIBCO Order Management implementation. This is a good
approach where the customer site has an existing order fallout management system,

TIBCO® Order Management User Guide

345 | Best Practices for TIBCO Order Management

providing GUI Windows, and so on. whose functionality can be applied. In the rest of this
topic we refer to this external error handling system as Exception Management, or EM.
Please note this is an example only, and might not be applicable for your particular
circumstance.

In this case, Functional exceptions are managed via the Plan Item Failed handler, and
Technical exceptions via a separate mechanism.

For Functional exceptions the requirements are to forward all to Exception Management,
for an operator to analyze. The possible resolutions are:

l Retry the Plan Item step, with the possibility to edit input values for the downstream
call that failed. Note this is different to retrying the plan item from the beginning.
Some process components can internally be orchestrating multiple steps.

l Continue the Plan Item, with the possibility to edit output values from the
downstream call that failed (note this might not be quite the same as the Complete
Plan Item Failed handler response, which instructs the Orchestrator to complete the
plan item. There might be the activity that we require the process component to
complete after the downstream call but before it completes).

l Roll back the entire order, performing compensating actions if required.

The architectural approach here is to define a clear separation of concerns, between what
TIBCO Order Management does, and what Exception Management does. The following
diagram shows the approach in the case of Functional exceptions. Also, the data access
GetPlanItem and SetPlanItem calls are used to support the functionality of editing
input/output values.

TIBCO® Order Management User Guide

346 | Best Practices for TIBCO Order Management

Example Functional Exception Handling Overview Architecture

The following image shows an approach for how this can be implemented within the
application:

Example Functional Exception Handling TIBCO Order Management Components

TIBCO® Order Management User Guide

347 | Best Practices for TIBCO Order Management

Plan Item Failed Handler
In this example, the Plan Item Failed (PIF) Hander is built as a pass-through component. It
performs the following:

l On receipt of a PlanItemFailedRequest message from the Orchestrator, publishes a
message (to Exception Management).

l On receipt of a “Retry” or “Continue” resolution type from Exception Management,
creates a PlanItemFailedResponse message and sends to the Orchestrator with an
appropriate flag that is either retry, resume, or complete.

l On receipt of a “Rollback” resolution type from Exception Management, send a
message to Order Management Server to cancel the entire order. No
PlanItemFailedResponse message is sent to the Orchestrator in this case.

Process Component Considerations
When mapping the selected resolution type to a PlanItemFailedResponse to send to the
Orchestrator, there are some considerations regarding this and the nature of the process
component implementation, that is, whether it runs multiple steps, or is atomic.

For process components that implement multiple steps (example: a BE process
component):

l A retry action means that the entire process component is re-run. If what is required
is just the current step to be retried, a Resume action must be specified, not retry.

l A complete action means that the process component is not invoked again in any
way, and the plan item is marked as complete.

l A distinction needs to be made between a resume where the current step needs to
be retried, or skipped. There is no way to do this on the PlanItemFailedResponse
message, so this needs to be managed another way, example: by setting a user-
defined field on the plan item to indicate, which is required.

Pre-Qualification Failed Handler
Like the Plan Item Failed handler, there is no default implementation of the Pre-
Qualification Failed handler provided with the product.

TIBCO® Order Management User Guide

348 | Best Practices for TIBCO Order Management

Be aware that the pre-qualification failed handler deals with errors raised not only in
Feasibility, but also, in Automated Order Plan Development. Even if in your architecture
you don’t have a Feasibility step, you have Automated Order Plan Development, and if
Automated Order Plan Development raises exceptions, the orchestrator publishes an event
to the Pre-Qualification Failed handler and waits for a response. If there is no Pre-
Qualification Failed handler implemented, nothing further happens for that order and it is
“stuck”.

Even if Automated Order Plan Development exceptions are expected to be rare for your
application (i.e. you validate the order thoroughly prior to Automated Order Plan
Development), consider at the very least, implementing monitoring on the Pre-Qualification
Failed request queue, so that operations is aware that Automated Order Plan Development
has failed for an order, and some action needs to be taken to move the order on.

You might want to consider making the Pre-Qualification Failed handler “just another”
source of Technical Exceptions. In this way, a framework for dealing with automating
Technical Exception handling, can be used to also deal with Pre-Qualification Failed
requests. This is the approach that is described in the next section.

Technical Exception Handling
For technical exception handling, it is difficult to define a pattern that can always apply,
given the diverse range of possible exceptions that can be raised. Such exceptions can be
raised from anywhere – TIBCO Order Management components, process components, and
any other code that might be developed as part of a total fulfillment solution.

It is of course always good general software engineering practice to build components as
resilient as possible to errors. It might make sense, depending on the context, to build in
mechanisms such as retry, when events such as timeouts occur. Of course, this needs to be
weighed up against the additional complexity this introduces into the solution, and needs
to consider the idempotency of interactions. Complex, built-in “self-healing” type
mechanisms themselves increase the risk of coding defects, increase the complexity of
testing, and cannot catch all types of errors.

The underlying principle here is that, as with functional exceptions, technical exceptions
require manual inspection to determine what to do. The default approach is that all
technical exceptions are also dealt with manually. This can mean messages being manually
copied from one queue to another, database entries being manually edited, and so on.

Nevertheless, it is highly desirable, in some common circumstances, for a fulfillment
system that can resolve technical exceptions in an automated way. No system can be built

TIBCO® Order Management User Guide

349 | Best Practices for TIBCO Order Management

to automatically resolve all exceptions, however one approach is to build a mechanism
that can support the incremental addition of automated technical exception resolutions, as
the system evolves and experience is gained into the types of exceptions that can occur,
and how best to deal with them. This section outlines a possible approach to building such
a mechanism.

As with the handling of functional exceptions, it is important to define a clear architectural
separation between the fulfillment system and the system that determines what to do with
exceptions. Again, we term this body Exception Management, see Technical Exception
Handling Architecture Overview.

To simplify the interface, we define here a single “Resolve Exception” service, which is used
to resolve all technical exceptions. It expects an argument “Resolution Type”, which is a
string that defines what specific resolution behavior is required.

It is good practice when building custom components of a fulfillment solution, such as the
process components, and database adapters, and enrichment processes, to ensure that
technical exceptions are caught and logged in a consistent way. We define a single “Publish
Technical Exception” service for TIBCO Order Management to use when publishing a
technical exception. This same service is invoked regardless of the source of the technical
exception, which can be custom code, TIBCO Order Management internal components, or
even a Pre-Qualified Failed error.

When publishing an exception to Enterprise Message Service, TIBCO Order Management
needs to publish along with the exception, all the information that it has to handle the
resolution.

TIBCO® Order Management User Guide

350 | Best Practices for TIBCO Order Management

Technical Exception Handling Architecture Overview

Types of Technical Exception
We identify the following types of technical exceptions as candidates for automation via
this approach. These are of course not the only types of Technical exception that can
occur.

1. Pre order submit (i.e. an error that happens during any order pre-processing or
enrichment)

a. Resubmit order only action possible – but first state needs to be cleaned from
any database tables etc.

b. Relatively easy to automate.

2. Pre-qualification Failed Handler

a. If an error occurs in plan development (or Feasibility, if present).

3. Process Component

a. Most technical exceptions likely to be this type.

b. The Process Component can potentially be restarted (retried), continued or
completed, depending on how far it has progressed.

TIBCO® Order Management User Guide

351 | Best Practices for TIBCO Order Management

TIBCO Order Management Components for Technical
Exception Handling
The Components involved in Technical Exception Handling outlines the components within
TIBCO Order Management that is involved in handling technical exceptions. Note that the
other components not directly involved in the solution for technical exception handling are
not shown.

It must be noted however that any component within the TIBCO Order Management can
generate a technical exception. This includes those shown below, and the core
components, such as Orchestrator, data access interfaces, and Automated Order Plan
Development.

Components involved in Technical Exception Handling

The following outlines the required behavior of the components that have to be built, in
the context of Technical Exception Handling:

Process Component

Technical exceptions occurring during the execution of process components logs a
technical exception directly to Exception Management, via the Technical Exception Logger,

TIBCO® Order Management User Guide

352 | Best Practices for TIBCO Order Management

and stop execution. Orchestrator is not notified when a Technical exception occurs, and
considers the Process Component to be in “Execution” state. The process component can
be retried or continued by the Technical Exception handler, or the Technical Exception
handler can notify Orchestrator directly that the Process Component is complete.

Feasibility

The Feasibility step is invoked by Orchestrator after it has received and stored the order,
but before it invokes Automated Order Plan Development to get the plan. Like Automated
Order Plan Development, the feasibility component can return an error to the Orchestrator,
if Feasibility fails. Also like Automated Order Plan Development, in the context of the
example, a Feasibility error is regarded as a Technical exception, as Feasibility must always
pass under normal circumstances (this might not typically be true though, for instance if
order validation is performed at Feasibility).

Technical Exception Logger

This component publishes Technical exceptions to Exception Management. It must capture
all Technical exceptions generated from custom components, and publish them in a
standard way to Exception Management. A standard set of exception fields must be
published, which must include order ids (if available), the component and service that
generated the error, and an error code. The message being processed at that time might
also be logged. The key requirement is that there must be enough information logged to
enable Exception Management to choose a resolution type to be applied to resolve the
exception, and enough information to be passed back to the Technical Exception Handler
for it can resolve the exception.

Pre-Qualification Failed (PQF) Handler

Its role is to receive notifications that Orchestrator publishes when it receives an error from
Feasibility or Automated Order Plan Development, and publish them to Exception
Management.

Technical Exception Handler

Its role is to expose the service for resolving Technical Exceptions for Exception
Management to call, and to implement the logic for performing the resolution. This might
involve sending messages to a process component, or to perform some custom action
(such as clean up a database table and resubmit an order). It might also communicate

TIBCO® Order Management User Guide

353 | Best Practices for TIBCO Order Management

directly with Orchestrator, for instance to send a Pre-Qualification Failed Response
message.

The number of resolution types this component can expose, might grow over time as new
resolutions are added.

The Process Component Technical Exception Services Overview outlines at a high level,
how the Retry, Continue and Complete services can potentially be implemented.

Process Component Technical Exception Services Overview

TIBCO® Order Management User Guide

354 | Schema References

Schema References

Plan Item
Plan Item

Element Type Cardinality Description

TIBCO® Order Management User Guide

355 | Schema References

planItem/planItemID String Required A unique identifier for
the plan item within the
plan to be executed.

planItem/description String Optional Description for the plan
item to be executed.

planItem/processComponentID String Required A unique identifier for
the process component
to be executed.

planItem/processComponentName String Required Process component
name for the process
component to be
executed.

planItem/processComponentVersion String Optional Process component
version for the process
component to be
executed.

planItem/processComponentType String Optional Process component type
for the process
component to be
executed.

planItem/processComponentRecordTy
pe

String Optional Class of
processComponentType.

planItem/orderLine Type 1-M Order line type for the
plan item to be
executed.

planItem/orderLine/orderLineNumber String Required Order line number for
the order line of the
plan item to be
executed.

planItem/orderLine/productID String Required Product ID for the order

TIBCO® Order Management User Guide

356 | Schema References

line of the plan item to
be executed.

planItem/orderLine/productVersion String Optional Product version for the
order line of the plan
item to be executed.

planItem/orderLine/action String Required Order line action for the
order line of the plan
item to be executed.

planItem/orderLine/actionMode String Optional Order line action mode
for the order line of the
plan item to be
executed.

planItem/orderLine/quantity Long Required Quantity for the order
line of the plan item to
be executed.

planItem/orderLine/uom String Required Unit of measure for the
order line of the plan
item to be executed.

planItem/orderLine/subscriberID String Optional Subscriber ID for the
order line of the plan
item to be executed.

planItem/orderLine/linkID String Optional Link ID for the order line
of the plan item to be
executed.

planItem/orderLine/inventoryID String Optional Inventory ID for the
order line of the plan
item to be executed.

planItem/orderLine/eol Boolean Required End of line flag for the
order line of the plan
item to be executed.

TIBCO® Order Management User Guide

357 | Schema References

This indicates that this
plan item is the final
plan item for the order
line.

planItem/action String Required Plan item action for the
plan item to be
executed.

planItem/actionMode String Optional Plan item action mode
for the plan item to be
executed.

ResultStatus
Result Status

Element Type Cardinality Description

deployment String Required Engine deployment that returned this result.

service String Required Service name that returned this result

operation String Required Operation within the service that returned this
result.

component String Optional Component within the operation and service

TIBCO® Order Management User Guide

358 | Schema References

that returned this result.

severity String Required Severity result. Valid values are:

l S - Success

l W - Warning

l E - Error

code String Required Message code for this result.

message String Required Message details for this result.

Message
Message

Element Type Cardinality Description

lineNumber String Optional Order line number that this message refers to.

type String Required Message type. Valid values are:

1. Information

2. Warning

3. Error

code String Required Message code for this message.

TIBCO® Order Management User Guide

359 | Schema References

description String Required Message text for this message.

udf Type 0-M User defined field type.

udf/name String Required User defined field name.

udf/value String Required User defined field value.

TIBCO® Order Management User Guide

360 | Schema References

Order Request
Order Request

Element Type Cardinality Description

TIBCO® Order Management User Guide

361 | Schema References

orderRef String Required External unique identifier for an order.

Note: The value of orderRef must not
contain ":"

header Type Required Order request header type. Refer to the
Order Request Header definition for details.

line Type 1-M Order request line type. Refer to the Order
Request Line definition for details.

extension Type Optional Extension attributes for user-defined fields.

extension/#any Any Required Any data

TIBCO® Order Management User Guide

362 | Samples

Samples

Sample Order XML
The sample order XML is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Order Id="544">

<orderID>81</orderID>
<sessionID>CORRELATION-3baee8b0-b483-47aa-89b2-

bf7b03d0c41f</sessionID>
<orderlines Id="545">

<lineID>1</lineID>
<productID>CFS TV</productID>
<action>PROVIDE</action>
<quantity>1.0</quantity>
<requiredByDate>2011-04-30T23:50:00+05:30</requiredByDate>
<LineUsed>false</LineUsed>
<OrderlinesUDF Id="546">

<name>OrderRef</name>
<value>OrderRefID</value>
<flavor>input</flavor>

</OrderlinesUDF>
</orderlines>
<orderlines Id="547">

<lineID>2</lineID>
<productID>CFS Live Box</productID>
<action>PROVIDE</action>
<quantity>1.0</quantity>
<requiredByDate>2011-04-30T23:50:00+05:30</requiredByDate>
<LineUsed>false</LineUsed>
<OrderlinesUDF Id="548">

<name>OrderRef</name>
<value>OrderRefID</value>
<flavor>input</flavor>

</OrderlinesUDF>
</orderlines>
<orderlines Id="549">

<lineID>3</lineID>

TIBCO® Order Management User Guide

363 | Samples

<productID>CFS VOIP</productID>
<action>PROVIDE</action>
<quantity>1.0</quantity>
<requiredByDate>2011-04-30T23:50:00+05:30</requiredByDate>
<LineUsed>false</LineUsed>
<OrderlinesUDF Id="550">

<name>OrderRef</name>
<value>OrderRefID</value>
<flavor>input</flavor>

</OrderlinesUDF>
</orderlines>
<status>NewOrder</status>
<currentTime>2012-07-18T10:19:03+05:30</currentTime>
<TineDelay>0</TineDelay>
<customerref>Apple</customerref>
<OrderHeaderUDF Id="551">

<name>Company</name>
<value>Orange</value>
<flavor>input</flavor>

</OrderHeaderUDF>
<Originator>Orchestrator</Originator>
<OrderRef>OrderRefID</OrderRef>

<businessTransactionID>a7eb1e1de1fa45c993f65589dba70648</businessTransac
tionID>
</Order>

Sample Plan Item XML
The sample plan item is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<PlanItem Id="2169">

<planID>PF1</planID>
<parentID>CORRELATION-1b1260e6-9cdd-4903-a184-

d473aa11b622</parentID>
<lineID>2</lineID>
<dependentOn>PF10.7747556</dependentOn>
<planDesc> PROVIDE</planDesc>
<planItemID>PF10.8786092</planItemID>
<EOL>N</EOL>
<TimeDelay>0</TimeDelay>
<status>addDependency</status>

TIBCO® Order Management User Guide

364 | Samples

<singleUse>false</singleUse>
<sequence>0</sequence>
<sequenceName>leaf</sequenceName>
<action>PROVIDE</action>
<productID>GSMDataService</productID>
<itemMark4Del>false</itemMark4Del>
<mustComplete>true</mustComplete>
<affinityType>ConditionalAffinity</affinityType>
<affintyPlanID>PF1</affintyPlanID>
<affintyPlanDesc> AFFINITY PROVIDE</affintyPlanDesc>
<udfs Id="2170">

<name>TASKID</name>
<value>PF10.8786092</value>
<flavor>config</flavor>

</udfs>
<udfs Id="2172">

<name>PRODUCTID</name>
<value>GSMDataService</value>
<flavor>config</flavor>

</udfs>
<udfs Id="2173">

<name>RECORD_TYPE</name>
<value>SERVICE</value>
<flavor>config</flavor>

</udfs>
<udfs Id="2174">

<name>MSISDN</name>
<value>123</value>
<flavor>input</flavor>

</udfs>
<Ancestors>PF10.7747556</Ancestors>
<cancelUsed>false</cancelUsed>
<M_EP_UDFS Id="2171">

<name>M_EP_UDFS</name>
<value>PF10.8786092</value>

</M_EP_UDFS>
<pI_Used>false</pI_Used>
<isLeaf>false</isLeaf>
<counter>0</counter>
<LinkID>1</LinkID>
<affinityCorrelation>$var/PlanItem[productID='GSMLine']/

udfs[name='MSISDN']/value/text()</affinityCorrelation>
<affinityParentGroup>false</affinityParentGroup>
<affinityActionGroup>false</affinityActionGroup>
<isDynamic>false</isDynamic>

</PlanItem>

TIBCO® Order Management User Guide

365 | Samples

Sample XPATHs
<ns0:affinityCondition>exists($var/Order/OrderHeaderUDF
[name="SubscriberProduct"and value="Product BB Network Access"])
</ns0:affinityCondition>

<ns0:affinityCorrelation>exists($var/Order/OrderHeaderUDF[name=
"SubscriberProduct"and value="Product BB Network

Access"])</ns0:affinityCorrelation>

<ns0:affinityActionValue>$var/Order/orderlines[productID='CFS
STB']/action/text()</ns0:affinityActionValue>

<affinityCorrelation>$var/PlanItem[productID='GSMLine']/udfs
[name='MSISDN']/value/
text()</affinityCorrelation>

TIBCO® Order Management User Guide

366 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services
For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO® Order Management Product
Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

l To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

l To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-order-management
https://docs.tibco.com/products/tibco-order-management
https://support.tibco.com/
https://support.tibco.com/

TIBCO® Order Management User Guide

367 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

https://ideas.tibco.com/
https://community.tibco.com/

TIBCO® Order Management User Guide

368 | Legal and Third-Party Notices

Legal and Third-Party Notices
SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, TIBCO Runtime Agent, TIBCO
Administrator, and Enterprise Message Service are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

https://www.cloud.com/legal
https://scripts.sil.org/OFL

TIBCO® Order Management User Guide

369 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

https://www.cloud.com/legal

	Contents
	Orchestrator
	Architecture
	Instance Registration
	Process for Running Order-related Requests Using EMS
	Submission of Order Assignment to Instance
	Orchestrator Gateway Behavior
	Message Routing On EMS
	Instance Specific EMS Listeners
	Internal Order Processor
	Snapshot Saving Enhancement
	Orchestrator and AOPD Communication
	Database Updates
	Division of State Machine
	Order Content Caching
	Cache Management via EMS
	Southbound Replies On REST
	XPath Evaluation Caching in AOPD
	Processing Future-Dated Orders in the Orchestrator
	Audit Trail and Recovery Notification Handling
	Namespace Handling for Southbound Replies
	Routing of REST Requests to EMS
	Batch Notification
	Synchronous Event Processing
	Notification
	Time Dependency
	Non-Executing Plan Item
	Process Component Destination
	Order Types
	Amend Order
	Suspend and Activate Order

	Order Submission
	Execution Plan
	Plan Tasks with Associated Process Components
	Actions
	Dependencies

	Order Header
	Order Line
	Global Variables
	Feasibility Providers
	Feasibility Request
	Feasibility Response
	Feasibility Retry

	OPD Error Handler
	Overview
	Specification
	PreQualificationFailedRequest Event
	PreQualificationFailedReply Event

	Process Components
	Plan Item Execute Request Event
	Plan Item Milestone Release Request Event
	Plan Item Milestone Notify Request Event
	Plan Item Execute Response Event
	Plan Item Suspend Request Event
	Plan Item Suspend Response Event
	Plan Item Activate Request Event

	Pre-qualification Failed Handlers
	Pre-Qualification Failed Request Event
	Pre-qualification Failed Response Event

	Plan Item External Error Handlers
	ShouldFailedPlanItemSuspend Flag
	Plan Item Failed Request Event
	Plan Item Failed Response Event

	Broker Service
	Feature Descriptions
	Design and Implementation

	Automated Order Plan Development
	Overview
	Model Deployment
	Product Models Purging
	Configuration
	Main Configuration
	Logs

	Features
	Autoprovision
	Dynamic Bundles
	Static Bundles

	Time Dependency
	Product Specification Field Decomposition
	Custom Action Based Product Decomposition

	Sequencing
	Delta Provisioning
	Single Use

	Product Affinity (Plan Item Level)
	Inlink
	Crosslink
	Affinity Sequencing
	Conditional Affinity
	Conditional Affinity Sample

	Configurable Handling of CrossLink + ProductComprisedOf Conflicts and Single ...
	Sort Plan
	Attribute-Based Decomposition
	ProductDependsOn and ProductRequiredFor Relationships
	Dependent and Sibling Products
	Shared Attributes
	Shared Attributes - Sample Test Scenarios

	Intermediate Milestones Dependencies
	Milestone to START Dependency
	END to Milestone Dependency
	Milestone to Milestone Dependency
	Milestone without Dependency
	Conditional Milestones Dependency

	Order Amendment
	Delta Amendment
	Amendment Workflow
	Modeling of the Required Characteristics in the Fulfillment Catalog
	Types of Amendment
	OrderLine Action Change
	RequiredbyDate Change
	OrderLine user-defined field Change
	Sample Order Line in TIBCO Order Management

	OrderLine Addition

	Execution Plan Modification Rules (EPMR)
	COMPENSATE_RESTART
	COMPENSATE
	RESTART
	IGNORE
	No Execution Plan Modification Rules Characteristic in Product

	Amendment Configuration Flags
	Impact on Dependencies
	Multiple Amendments

	Custom Action
	Product Id and Product Id Ext.

	Jeopardy Management System
	Jeopardy Management
	Jeopardy Events
	Plan Item Jeopardy
	Plan Jeopardy
	Order Selection for Jeopardy Management

	Understanding Plan
	Understanding Critical Path
	Critical Path Calculation

	Understanding Dependencies
	Milestone Dependencies
	End Milestones

	Jeopardy Management for Execution Plans
	Jeopardy Management for Plan Task
	Must Start On Dependencies
	Consequential Actions
	Predictive Jeopardy

	Jeopardy Services
	Design and Implementation
	Jeopardy Detection Cycle
	Adding Jeopardy Rules On OMS UI

	Internal Error Handler
	Internal Error Handler Data Flow Diagram
	Understanding Data Flow in Internal Error Handler
	Internal Error Handler Sequence Diagram
	Searching for Plans with planItem in ERROR State
	Modifying the Plan Item State
	Choosing the Error Resolution for the Plan Item in Error State
	Details of Each Resolution Choice

	Submit the Error Resolution

	Order Management System User Interface
	Navigation
	Dashboard
	OMS UI Auto-Refresh
	Charts
	Find Orders
	Filters
	Order Level Search Criteria
	Search By IDs
	Search By Dates
	Filter By Order Status
	Search By Custom Headers

	Plan Level Search Criteria
	Search By IDs
	Search By Dates
	Filter By Status
	Clearing and Saving a Search
	Editing and Deleting Saved Search

	Work Tray
	Orders
	Order Homepage
	Order Lines
	Plan Items
	Plan Items Dependencies
	Order Composition
	Plan Timeline
	Activity Log
	Pending Tasks
	Plan items

	Data Access Interfaces
	Get Plan
	Get Plan Request
	Get Plan Response
	Get Plan Messages and Message Codes

	Get Plan Items
	Get Plan Items Request
	Get Plan Items Response
	Get Plan Items Messages and Message Codes

	Set Plan
	Set Plan Request
	Set Plan Response
	Set Plan Messages and Message Codes

	Set Plan Item
	Set Plan Item Request
	Set Plan Item Response
	Set Plan Item Messages and Message Codes

	Best Practices for TIBCO Order Management
	Exception Handling Guidelines
	General Approach
	Example Approach
	Plan Item Failed Handler
	Process Component Considerations

	Pre-Qualification Failed Handler
	Technical Exception Handling
	Types of Technical Exception
	TIBCO Order Management Components for Technical Exception Handling

	Schema References
	Plan Item
	ResultStatus
	Message
	Order Request

	Samples
	Sample Order XML
	Sample Plan Item XML
	Sample XPATHs

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

