TIBCS

TIBCO® Order Management
Administration

Version 6.1.0 | October 2024

@ CLOUd | Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.



2 | Contents

Contents

CONteNtS 2
Deployment . 6
Recommended Setup for a TIBCO Order Management Development Environment 6
MICrOSEIVICES . 8
Connecting TIBCO Order Management to TIBCO® EMS Server with SSL Enabled ... 9
Configuring SSL for TIBCO® Order Management ... 10
Configuring on the Cloud ... . . . 10
Configuring ON-premises .. .. 15
HTTP Connection Pool Configuration ... ... 20
Configuring Authorization Server ... ... 21
Inter-service Communication ... 22
Configuration ... .. 23
Queue Management ... 23
Data Models ... 28
Model Loading ProCess ... 33
WebClient Configuration ...l 41
Order Management System Configuration ... 41
User Interface Configuration ... 41
URL to Access Order Management System Ul Component ... 42
Override Planfragment Destination ... . ... 44
Managing Application Security ... 45
Authorization Service ... . 51
Audit Trail . 66
Enabling Internal Error Handler Support ... 66
Lo IN G 67
How Logging WOrKS ... 67

TIBCO® Order Management Administration



3| Contents

APIs for Changing log-level ... 69
Configuring Redis ... 71
Configuring Microsoft SQL Server ... . 83
Configuring an External Identity Provider ... .. . ... 85
Administration Tasks ... 94
Swagger APl Reference ... . 94
DO 94

Building a Docker Image Without an Internet Connection ... 96

Copying Files to Docker Context ... . 96

Building Docker Images ... 97

Setting Up the .env File ... 98

Configuring for Order Management Server Docker Containers ... 98

Running the Docker Containers ... ... 98

Extend Docker-Compose Files ... 100

Modifying a Container TIMe-ZONEe ... ... 101

Reading Container LOZS ... ... ..l 103

Troubleshooting Error from Building Docker Images ... 103
Order SEQUENCING ... e 104

Enabling or Disabling Order Sequencing ... 105
Bulk Order ACtiONS ... 105

BULK ACLIONS .. 106

WSDL Location . 106

Error COAeS .. 107

Invoke Bulk Order Operation ... 107

Tracking the Request Status ... .. .. 108

L0 N 108

SCheMa L 108

Sample ReqQUEST . .. 110

SaMPle RESPONSE ... 110
Performing Bulk Actions On error Plans Items ... 111
MU ENANCY 113

TIBCO® Order Management Administration



4| Contents

Creating and Configuring a Tenant ... 113

Authorizing a Tenant ... . 114
Managing Health Check Endpoint ... . ... 115
Implementation of LDAP ... 115

User Mapping from Directory Service to Order Management service ... 120
TYPES Of TOUIIES e 121
API MONITONING . 123
JMX MBeANS 123
Prometheus . . 124
Elasticsearch .. 125
DYt raCe 127
Debugging tools for production ... . 129

Read BLOB data from Database ... 129

GET REST APIs in Catalog Service and AOPD ... 130
Scaling of Order Management microservices ... 131
O P IO I Y 132

Order Schema Changes ... . . 133

Lower Priority Orders ... 133
Tuning Data SOUICe .. . 134
Catalog Caching ... 142
Integrate Inventory Information in AOPD Plan Generation ... 144
Integrate TIBCO OPE with Order Submission Process ................................ 145
Schema References ... . . 146
Plan tem 147
Product Model ... 151
Result Status . . 156
M S S 157
Order ReQUEST ... 159
Order Request Header ... 161
Order RequUESt LiNe .. 164

TIBCO® Order Management Administration



5 | Contents

Process Component Model ... 170
TIBCO Documentation and Support Services ... 173
Legal and Third-Party Notices ... ... ... 175

TIBCO® Order Management Administration



6 | Deployment

Deployment

This section provides details about application deployment best practices and options.

Recommended Setup for a TIBCO Order
Management Development Environment

The following details are the recommended setup for a TIBCO Order Management
Development environment:

Component Instances
Orchestrator Multiple
Automated Order Plan Development Multiple
Configurator 1
Authorization service 1

Data service Multiple
Catalog service Multiple
Tmf-om-adapter 1
Jeopardy service 1
PostgreSQL 1
Archival service Multiple
Configurator Ul 1

TIBCO® Order Management Administration



7 | Deployment

Component Instances

Order Management System Ul 1

Order Management Migration 1

Broker service 1
Hardware

8 GB of heap size is set for each instance. For orchestrator - 4 GB, for Automated Order
Plan Development - 4 GB, for Data Service - 2 GB, and for Authentication-2GB memory is
allocated.

Disk Space

Redis in-memory is used for TIBCO Order Management Services. For collecting 10 instances,
10-GB memory on disk is used. For 100,000 orders on 10 nodes, it takes up to 218 MB for
each node.

Temporary Disk Space for UNIX Platform

The installer launcher first extracts a Java Virtual Machine (JVM) in a temporary directory
and uses this JVM to open itself. The size of the extracted JVM differs from platform to
platform.

On UNIX platforms, the following disk space is required in the temporary area:
256 MB of free disk space in /tmp location.

If your system does not have sufficient free disk space in the above temporary area, you
can still run the installer with a different temporary area by using the following option
when starting the installer:

install_package_name.bin -is:tempdir /new_tmp where /new_tmp has sufficient free
disk space.

TIBCO® Order Management Administration



8 | Deployment

Microservices

Each TIBCO Order Management component, or microservices with the new architecture, has
its embedded Tomcat container. The roles folder available in the SOM_HOME directory
houses all the microservices.

The following table lists the microservices for TIBCO Order Management:

Microservice Default Port
Configurator 9090
Orchestrator 9093
aopd 9094
Authorization service 9091
Data service 9095
Catalog service 9092
tmf-om-adapter 8181
Configurator Ul 9104
Archival Service 9099
Order Management System Ul 9097
Migration Service 9100
EncryptPWDUTtility 9060
Jeopardy 9102
catalog-client 8082
Broker service 9105

TIBCO® Order Management Administration



9 | Deployment

Each microservice under the $OM_HOME /roles/<service name>/standalone directory has
the following directory structure:

bin
This directory contains shell and power shell scripts to start and stop the service. It

also contains a copyLib script, which is a utility script that can be used to copy
hibernate, JDBC, JMS and other essential dependencies.

config

This directory contains the service's set of configuration files. Initially, each service
has the following files:

© application.properties
When the service starts, it downloads its required logback files from the database.
lib
This directory holds all external and internal dependency jar files.
logs

This directory is created when the service starts and contains all the logs for that
service.

services

This directory holds the service jar file, which is launched by the start script.

Connecting TIBCO Order Management to
TIBCO® EMS Server with SSL Enabled

Procedure

1.

Change the following properties for each application:
 Archival
° jndiConnectionFactory
° sslEnableVerifyHost

° securityProtocol

TIBCO® Order Management Administration



10 | Deployment

° jmsSessionTransacted

Data Service

° tibjmsNamingSecurityProtocol
° tibjmsNamingSslEnableVerifyHost

° initialContextFactory

Jeopardy
° jndiConnectionFactory
° sslEnableVerifyHost

° securityProtocol

OMSUI
° jndiConnectionFactory
° tibjmsNamingSecurityProtocol
° tibjmsNamingSslEnableVerifyHost

Orchestrator

° jndiConnectionFactory
° tibjmsNamingSecurityProtocol

° tibjmsNamingSslEnableVerifyHost

Configuring SSL for TIBCO® Order Management

The Configuration of SSL for TIBCO® Order Management is available for both on cloud and
on-premise.

Configuring on the Cloud

The following section is added for testing purposes and is not recommended for the
production environment. Currently, ingress is configured with SSL only for authorization
service as a backend.

TIBCO® Order Management Administration



11 | Deployment

Procedure
1. To create a root certificate, run the following command:

openssl req —-x509 -nodes -sha256 -days 365 -newkey rsa:2048 -subj
"/CN=test/0=TIBCO"
-keyout lab-caroot.key -out lab-caroot.crt

2. To create CSR for a service certificate, run the following command:

openssl req -out om-auth.csr -newkey rsa:2048 -nodes -keyout om-
auth.key -subj "/CN =
om-auth.test / O=auth-svc organization"

3. To sign the certificate with the root CA, run the following command:

openssl x509 -req -days 365 -CA lab-caroot.crt -CAkey Tlab-
caroot.key -set_serial 0 -
in om-auth.csr -out om-auth.crt

4. To create the Kubernetes secret, run the following command:

kubectl create secret tls tls-om-auth --key=om-auth.key --cert=om-
auth.crt

5. Add the secrets in the auth ingress YAML file:

*yaml
tls:
- hosts:
- om-auth.test # This should match a DNS name in the Certificate
secretName: tls-om-auth # This should match the Certificate
secretName

Enabling SSL for TIBCO® Order Management

Procedure
1. Go to the JAVA_17_HOME\bin directory and run the following commands:

TIBCO® Order Management Administration



12 | Deployment

keytool -genkeypair -alias om -keyalg RSA -keysize 2048 -sigalg
SHA256withRSA -validity 365 -keystore om.pkcsl2 -storepass tibcol23
—ext san=ip:10.xX.xX.xx,dns:10.x.x.x,ip:127.0.0.1

keytool -export -alias om -file oml23.crt -keystore om.pkcsl2
keytool -import -v -trustcacerts -alias om2 -file oml23.crt -
keystore cacerts.pkcsl2 -keypass changeit

When prompted, provide the password as 'changeit'.

2. Copy cacerts.pkcs12 and om.pkcs12 files from the JAVA_HOME\bin directory to the
base/1.0 directory and modify the base Dockerfile accordingly.

Example: copy om.pkcs12 and cacerts to location /home/tibuser/tibco/om/6.1

3. Copy the cacerts.pkcsi2 file inside the $OM_HOME/roles/<Service_
name>/standalone/config/ directory of each service.

4. Run the copyLib.sh script from the roles directory.
5. Run the copy-required-files.sh script.

6. Modify the Order Management services (except authorization service)Dockerfile for
entrypoint as follows:

ENTRYPOINT ["sh","-c",
"/home/tibuser/tibco/om/6.1/configurator/standalone/bin/
start.sh

Djavax.net.ssl.trustStore=/home/tibuser/tibco/om/6.1/roles/<servic
e_name>/

standalone/config/cacerts.

pkcsl1l2 -Djavax.net.ssl.trustStorePassword=changeit --run=FG"]

7. Create Docker images for all Order Management services.

8. Now, update the om_services/values.yaml file from the $OM_HOME/helm directory as
follows:

a. Add the following properties:

server_ssl_key_alias: om
server_ssl_key_store_password: tibcol23
server_ssl_key_store: /home/tibuser/tibco/om/6.1/om.pkcsl2

TIBCO® Order Management Administration



13 | Deployment

configuratorTrustStoreAbsoluteFilePath:

/home/tibuser/tibco/om/6.1/cacerts.pkcsl2
configuratorTrustStorePassword: changeit

configuratorTrustStoreType: pkcsl2
trustStoreFileName: cacerts.pkcsl2
trustStorePassword: changeit
trustStoreType: pkcsl2
aopdTrustStoreFileName: cacerts.pkcsl2
aopdTrustStorePassword: changeit
aopdTrustStoreType: pkcsl2

migrationTrustStoreFileName: cacerts.pkcsl2
migrationTrustStorePassword: changeit

migrationTrustStoreType: pkcsl2
authServiceTrustStoreAbsoluteFilePath=/home/tibuser/tibco/
om/6.1/cacerts.pkcsl2
authServiceTrustStorePassword=changeit
authServiceTrustStoreType=pkcsl2

allowedCorsOrigins: https://authorization-

SvcC

SvcC.

SvcC

SvcC.

SvcC

SvC.

SvcC

SvcC.

SvcC

SvcC.
SvcC.

.default.
default.
.default.
default.
.default.
default.
.default.
default.
.default.
default.
default.

SvcC

SvcC.

SvcC

SvC.

SvcC

SvcC.

SvcC

SvcC.

SvcC

SvcC.
SvcC.

.cluster.
cluster.
.cluster.
cluster.
.cluster.
cluster.
.cluster.
cluster.
.cluster.
cluster.
cluster.

local:
local:
local:
local:
local:

local

local:
local:
local:

local

local:

9091, https:
9090, https:
9092, https:
9094, https:
9099, https:
:9095,https:
9102,https:
9100, https:
9093, https:
19089, https:
9104,https:

//configurator-
//catalog-
//aopd-
//archival-
//dataservice-
//jeopardy-
//migration-
//orchestrator-
//pc=
//configuratorui-

//om-

catalog.test,https://om-archival.test,https://om-
orchestrator.test,https://om-jeopardy.test,https://om-
omsui.test,https://omsui-svc.default.svc.cluster.local:9097

com_tibco_af_omsui_httpChannelType: https
authorizationServiceTokenEndPoint: https://authorization-
svc.default.svc.cluster.local:9091
configuratorServiceUrl: https://configurator-
svc.default.svc.cluster.local:9090
pcResourceExecuteRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/
executionrequest

TIBCO® Order Management Administration



14 | Deployment

pcResourceSuspendRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/suspendrequest
pcResourceActivateRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/activaterequest
pcResourceExtErrorHanlderRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/
errorhandlerrequest
feasibleRequestPathRequestURL: https://pc-
svc.default.svc.cluster.local:9089/feasibility
pgfRequestPathRequestURL: https://pc-
svc.default.svc.cluster.local:9089/pqf
pcResourceMileReleaseRequestURL: https://pc-
svc.default.svc.cluster.local:9089/planitem/
milestonerelease
archivalGetOrderDetailsURL: https://archival-
svc.default.svc.cluster.local:9099/ordersByCriteria
omServerOrderUrl: https://orchestrator-
svc.default.svc.cluster.local:9093/order
omServerWithdrawOrderPath: https://orchestrator-
svc.default.svc.cluster.local:9093/order
omServerOrderDetailsPath: https://orchestrator-
svc.default.svc.cluster.local:9093/order
orchestratorBaseUrl: https://orchestrator-
svc.default.svc.cluster.local:9093
orchestratorServiceUrl: https://orchestrator-
svc.default.svc.cluster.local:9093
catalogServiceBaseUrl: https://catalog-
svc.default.svc.cluster.local:9092
catalogServiceUrl: https://catalog-
svc.default.svc.cluster.local:9092
archivalServiceUrl: https://archival-
svc.default.svc.cluster.local:9099
jeopardyServiceUrl: https://jeopardy-
svc.default.svc.cluster.local:9102
aopdBaseUr1l: https://aopd-svc.default.svc.cluster.local:9094
migrationURL: https://migration-
svc.default.svc.cluster.local:9100/migration/order

b. Update the scheme for each application to HTTPS.
Example: In the configurator application-

TIBCO® Order Management Administration



15 | Deployment

readinessProbe:
failureThreshold: 3

httpGet:
path: /management/health/readiness
port: 9090

scheme: HTTPS
periodSeconds: 300
successThreshold: 1
timeoutSeconds: 3

livenessProbe:
failureThreshold: 3
httpGet:
path: /management/health/liveness
port: 9090

scheme: HTTPS
periodSeconds: 300
successThreshold: 1
timeoutSeconds: 3

9. Specify the backend protocol as HTTPS for the Ingress in the om_
services/templates/om_ingress.yaml file.
Example of using the Nginx Ingress:

annotations:
nginx.ingress.kubernetes.io/backend-protocol: https

10. Create the required users from the authorization service and upload the required
metadata, app_properties, and config files as per components from the configurator
service.

The values.yaml file contains the required properties for starting authorization
service, configurator service, and configurator Ul services.

Configuring on-premises

Procedure
1. Go to the JAVA17_HOME\bin directory and run the following commands:

keytool -genkey -alias om —-keyalg RSA -keysize 2048 -sigalg

TIBCO® Order Management Administration



16 | Deployment

SHA256withRSA -validity 365 -keystore om.pkcsl2 -storepass tibcol23
-ext san=ip:10.Xx.x.x,dns:10.x.x.X,ip:127.0.0.1

keytool -export -alias om -file oml23.crt -keystore om.pkcsl2
keytool -import -v -trustcacerts -alias om2 -file oml23.crt -
keystore cacerts.pkcsl2 -keypass changeit

When prompted, provide the password as 'changeit'.

2. Copy cacerts.pkcsl12 and om.pkcs12 files from the <JAVA_HOME>/bin directory at a

location (such as /home/OM_610/tibco/om/6.1/ss1), where your Order Management
installation is present on the virtual machine.

3. For authorization service, modify the application.properties file present inside the
config directory for the following properties:

server.ssl.key-alias=om
server.ssl.key-store-password=tibcol23
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcsl2

#Allowed Cross Origin Resources
allowedCorsOrigins=https://10.x.x.x:9091,https://10.x.x.x:9090,
https://10.x.x.x:9092,

https://10.x.x.x:9094 ,https://10.x.x.x:9099,https://
10.Xx.x.x:9095,

https://10.x.x.x:9102,
https://10.x.x.x:9100,https://10.x.x.x:9093,https://
10.x.x.x:9089,

https://10.x.x.x:9104,

https://10.x.x.x:8090,https://10.x.x.x:8093,https://
10.x.X.x:8090

4. Run the following command to start the authorization service.

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcsl2
/cacerts.pkcsl2 -Djavax.net.ssl.trustStorePassword=changeit

5. Create the required users. For more information, see Create User

6. Add the following properties for the configurator service:

TIBCO® Order Management Administration



17 | Deployment

server.ssl.key-alias=om
server.ssl.key-store-password=tibcol23
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcsl2

7. Start the configurator service by running the following command:

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcsl2
/cacerts.pkcsl2 -Djavax.net.ssl.trustStorePassword=changeit

8. Modify the app_properties file from the $OM_HOME/seed-data/app-properties
directory for the following properties (also required minimum configurations by
users):

a. For AOPD service, under 'Orchestrator Configuration':

orchestratorBaseUrl = https://10.x.x.x:9093
trustStoreFileName = cacerts.pkcsl2
trustStorePassword = changeit
trustStoreType = pkcsl2

b. For Archival service,

e Under 'Archival Engine Configurations":

allowedCorsOrigins = https://10.x.x.x:9097

e Under 'Orchestrator Configuration':

orchestratorBaseUr1l = https://10.x.x.x:9093
trustStoreFileName = cacerts.pkcsl2
trustStorePassword = changeit
trustStoreType = pkcsl2

c. For Catalog service,

» Under 'Catalog Engine Configuration':

allowedCorsOrigins=https://10.x.x.x:9097

d. For Common Configuration, under 'Authorization Server Configuration

TIBCO® Order Management Administration



18 | Deployment

Properties Used for Swagger Ul":

authorizationServiceTokenEndPoint = https://10.x.x.x:9091

e. For the Data service, there are no changes.
f. For Jeopardy service,

» Under 'Catalog Service Configuration':

catalogServiceBaseUrl = https://10.x.x.x:9092
catalogServiceTrustStoreFileName = cacerts.pkcsl2
catalogServiceTrustStorePassword = changeit
catalogServiceTrustStoreType = pkcsl2

e Under 'Jeopardy General Configuration':

allowedCorsOrigins = https://10.x.x.x:9097

e Under 'Orchestrator Service Configuration':

orchestratorBaseUrl = https://10.x.x.x:9093
orchestratorTrustStoreFileName = cacerts.pkcsl2
orchestratorTrustStorePassword = changeit
orchestratorTrustStoreType = pkcsl2

g. For the Migration service, there are no changes.
h. For Order Management System Ul Service, under 'OMS Ul Engine

Configuration":

archivalServiceBaseUrl = https://10.x.x.x:9099
catalogServiceBaseUrl = https://10.x.x.x:9092
jeopardyBaseUrl = https://10.x.x.x:9102
orchestratorBaseUr1l= https://10.x.x.x:9093

i. For Orchestrator service,

e Under 'Orchestrator Functional Configuration':

TIBCO® Order Management Administration



19 | Deployment

10.
11.

12.

13.

allowedCorsOrigins=https://10.x.x.x:9097

j. For tmfAdapter Service, under 'Orchestrator Service Configuration':

omServerOrderDetailsPath = https://10.x.x.Xx:9093/order
omServerOrderUrl = https://10.x.x.x:9093/order
omServerWithdrawOrderPath = https://10.x.x.x:9093/order

k. For Broker Service, under 'Catalog Client Configuration':

catalogTrustStoreFileName = cacerts.pkcsl2
catalogTrustStorePassword = changeit
catalogTrustStoreType = pkcsl2
catalogServiceBaseUrl = https://10.x.x.x:9092

Modify the application_metadata.json property file. For each "applicationld", add
"cacerts.pkcs12" and "om.pkcs12" (file names as per the ones created in step 1),
under the "configurationFiles".

Upload the metadata through the Configurator Swagger.

Upload the "om.pkcs12" and "cacerts.pkcs12" files for each service through the
Configurator API along with the other Configuration files. See 'Upload Configuration
File for Application ID' section in the TIBCO® Order Management Web Services Guide.

Copy "cacerts.pkcs12" to $OM_HOME/roles/<configurator/configurator-
ui/authorization-service>/standalone/config directory.

For configurator-ui and the rest of the Order Management services, update the
application.properties file as follows:

server.ssl.key-alias=om
server.ssl.key-store-password=tibcol23
server.ssl.key-store=/home/OM_610/tibco/om/6.1/ssl/om.pkcsl2
configuratorTrustStoreAbsoluteFilePath=cacerts.pkcsl2
configuratorTrustStorePassword=changeit
configuratorTrustStoreType=pkcsl2
authServiceTrustStoreAbsoluteFilePath=cacerts.pkcsl2
authServiceTrustStorePassword=changeit
authServiceTrustStoreType=pkcsl2

TIBCO® Order Management Administration



20 | Deployment

14. Start all services by the following command from the <service-name>/bin directory:

./start.sh -Djavax.net.ssl.trustStore= /home/OM_
610/tibco/om/6.1/ssl/cacerts.pkcsl2

/cacerts.pkcsl2 -Djavax.net.ssl.trustStorePassword=changeit

HTTP Connection Pool Configuration

Configuring an HTTP connection pool is essential for optimizing the performance of
applications that make frequent HTTP requests. You can configure the following key

parameters:

Parameter

http.client.cpool.maxTotal

http.client.cpool.defaultMaxPerRoute

http.client.cpool.connectionRequestTimeout

http.client.cpool.connectTimeout

Description

Maximum number of
open connections.

Maximum number of
concurrent
connections per
route.

Maximum time, in
milliseconds, to wait
to get a connection
from the connection
manager or pool.
Zero is interpreted as
an infinite timeout.

Timeout, in
milliseconds, to
establish a
connection with a
remote host or
server. Zero is
interpreted as an

TIBCO® Order Management Administration



21 | Deployment

Parameter

http.client.cpool.socketTimeout

Configuring Authorization Server

Description
infinite timeout.

Maximum time gap,
in milliseconds,
between two
consecutive data
packets when
transferring data
from the server to
the client.

You can configure the authorization server by setting the following key parameters in the

ConfigValues_OMSUI file and ConfigValues_Common.JSON file:

Parameter

authServiceApiKey

authServiceApild

authSuperUserAppld

authSuperUserAppKey

authServiceRetryDuration

Description

Auth service header ID
(auth) used to create a
token.

Auth service header Key
(auth) used to create a
token.

Used as the super user app
ID to create a token.

Used as the super user app
key to create a token.

Auth service retry duration
in seconds.

TIBCO® Order Management Administration



22 | Deployment

Parameter
authServiceRetryCount

authServiceTrustStorePassword

authServiceTrustStoreType

authServiceTrustStoreAbsoluteFileName

enableSecureAPI

Inter-service Communication

Description
Auth service retry count.

Auth service SSL Trust
Store password.

Auth service SSL TrustStore
type.

Auth service SSL TrustStore
absolute filename.

Enable security for APIs
based on this flag.

By using the inter-service communication, the services communicate with each other
within a system using REST services. You can configure the apiKey in the Configvalues_
Common. JSON file. The apiKey is responsible for generating a token to facilitate interaction

between applications.

TIBCO® Order Management Administration



23 | Configuration

Configuration

This section covers all the configuration details for TIBCO Order Management.

Queue Management

REST services are used by TIBCO Order Management for publishing models. If you select
TIBCO Enterprise Message Service, then it communicates with the external systems through
the JMS messaging capability provided by TIBCO Enterprise Message Service. It has two
inbound queues to receive the messages from external systems and also for inter-
component communication in some cases. The number of listeners on these queues can be
configured using the changing concurrent.ems.consumer flag. By default, the listener count
on each queue is set to a minimal value. The queue configurations are available under
different categories distributed component wise.

You can update the ConfigValues_OrchService.json file to set the following properties
for the queue management:

Parameter Description
com.tibco.fom.orch.planitem.execute.response.queue Plan item
execution

response queue

com.tibco.fom.orch.planitem.execute.request.queue Plan item
execution
request queue

com.tibco.fom.orch.planitem.execute.response.dead.queue Plan item
execution
response dead
queue

TIBCO® Order Management Administration



24 | Configuration

Parameter Description

com.tibco.fom.orch.planitem.execute.response.receiver.count Plan item
execution
response

receiver count

com.tibco.fom.orch.planltem.suspend.request.queue Plan item
suspend
request queue

com.tibco.fom.orch.planltem.suspend.response.queue Plan item
suspend
response queue

com.tibco.fom.orch.planitem.suspend.response.receiver.count Plan item
suspend
response
receiver count

com.tibco.fom.orch.planltem.suspend.response.dead.queue Plan item
suspend
response dead
queue

com.tibco.fom.orch.planitem.activate.request.queue Plan item
activate
request queue

com.tibco.fom.orch.planlitem.milestone.releaseRequest.queue Milestone
release request
from
Orchestrator to
process
components
queue

com.tibco.fom.orch.planitem.milestone.notifyRequest.queue Milestone
notify request

TIBCO® Order Management Administration



25 | Configuration

Parameter Description
queue

com.tibco.fom.orch.planltem.milestone.notifyRequest.dead.queue Milestone
notify request
dead queue

com.tibco.fom.orch.planltem.milestone.notifyRequest.receiver.count Milestone

notify request
receiver count

com.tibco.af.oms.ordersService.queue Queue for
receiving SOAP
Over JMS Order
Service
requests

com.tibco.af.oms.webservice.soap.jms.concurrentConsumers Number of
concurrent
consumers for
SOAP Over JMS
Order Service
requests
(default 1)

com.tibco.fom.orch.prequalificationfailed.request.queue External pre-
qualification
failed request
queue

com.tibco.fom.orch.prequalificationfailed.reply.queue External pre-
qualification
failed reply
queue

com.tibco.fom.orch.prequalificationfailed.reply.queue.receiver.count External pre-

qualification
failed reply

TIBCO® Order Management Administration



26 | Configuration

Parameter

com.tibco.fom.orch.prequalificationfailed.reply.dead.queue

com.tibco.fom.orch.feasibility.request.queue

com.tibco.fom.orch.feasibility.reply.queue

com.tibco.fom.orch.feasibility.reply.queue.receiver.count

com.tibco.fom.orch.feasibility.reply.dead.queue

com.tibco.fom.orch.planitem.errhandler.response.queue

com.tibco.fom.orch.planitem.errhandler.response.count

com.tibco.fom.orch.planltem.errhandler.response.dead.queue

Description

queue receiver
count

External pre-
qualification
failed reply
dead queue

External
feasibility
request queue

External
feasibility reply
queue

External
feasibility reply
queue receiver
count

External
feasibility reply
dead queue

Planltem error
handler
response queue

Planltem error
handler
response
receiver count

Planltem error
handler
response dead

TIBCO® Order Management Administration



27 | Configuration

Parameter Description
queue

com.tibco.fom.orch.order.sequencing.queue Order
sequencing
queue

com.tibco.fom.orch.order.sequencing.dead.queue Order
sequencing
dead queue

com.tibco.fom.orch.order.sequencing.retry.count Order
sequencing
retry count

com.tibco.fom.orch.order.sequencing.redelivery.delay Order
sequencing
notification
redelivery
delay, in
milliseconds,
between each
retry

com.tibco.fom.orch.order.sequencing.receiver.count Order
sequencing
receiver count

com.tibco.fom.orch.planitem.errhandler.request.queue Planltem error
handler request
queue

southboundReplyMessageRetryCount Southbound

reply message
retry count

southboundReplyMessageRetryDuration Retry interval,
in milliseconds,

TIBCO® Order Management Administration



28 | Configuration

Parameter

com.tibco.fom.orch.plan.failed.request.queue

com.tibco.fom.orch.plan.failed.response.queue

com.tibco.fom.orch.plan.failed.response.dead.queue

com.tibco.fom.orch.plan.failed.response.receiver.count

Data Models

Description

between each
retry

Plan generation
failed request
queue

Plan generation
failed response
queue

Plan generation
failed response
dead queue

Plan generation
failed receiver
count

TIBCO Order Management requires a variety of data models (catalogs) for its different

functionalities.

TIBCO Order Management uses the following data models:

Data
Models

Product
Model

Action
Model

Description

It is used by the Automated Order Plan Development component for generating
the execution plan for the newly submitted orders.

It is optionally used by the Automated Order Plan Development component
when generating the execution plans specifically for the ProductDependsOn

TIBCO® Order Management Administration



29 | Configuration

Data Description

Models

Plan It is used by the Orchestrator component for running the plan for a particular
Fragment order.

Model

The following table summarizes the models required by the components in TIBCO Order
Management:

Components Product model Plan Fragment Action
model model
Automated Order Plan Required Not Required Optional

Development

Orchestrator Not Required Required Not
Required

You can configure the following catalog properties:

Property Description

isOfferSearchindexEnabled Enables outbound
notifications to EMS upon
successful product catalog
loading.

modelPurgeWorkerThreadCount Specifies the number of
parallel processing threads
for purging the catalog.

productCatalogloadingQueue Queue name for bulk
product catalog loading.

bulkProductConcurrentEmsConsumers Number of concurrent EMS

consumers for bulk product
loading.

TIBCO® Order Management Administration



30 | Configuration

Property

planfragmentCataloglLoadingQueue

bulkPlanFragmentConcurrentEmsConsumers

actionCataloglLoadingQueue

bulkActionConcurrentEmsConsumers

priceCataloglLoadingQueue

bulkPriceConcurrentEmsConsumers

discountCataloglLoadingQueue

bulkDiscountConcurrentEmsConsumers

ruleCataloglLoadingQueue

Queue ruleConcurrentEmsConsumers

categoryCataloglLoadingQueue

Description

Queue name for bulk plan-
fragment catalog loading.

Number of concurrent EMS
consumers for bulk plan-
fragment loading.

Queue name for bulk action
catalog loading.

Number of concurrent EMS
consumers for bulk action
loading.

Queue name for bulk price
catalog loading.

Number of concurrent EMS
consumers for bulk price
loading.

Queue name for discount
catalog loading.

Number of concurrent EMS
consumers for bulk
discount loading.

Queue name for rule
catalog loading.

Number of concurrent EMS
consumers for rule loading.

Queue name for category
catalog loading.

TIBCO® Order Management Administration



31 | Configuration

Property

categoryConcurrentEmsConsumers

offerSearchProductindexQueue

singleProductCataloglLoadingQueue

singleProductConcurrentEmsConsumers

singlePlanfragmentCataloglLoadingQueue

singlePlanFragmentConcurrentEmsConsumers

singleActionCataloglLoadingQueue

singleActionConcurrentEmsConsumers

singlePriceCatalogLoadingQueue

singlePriceConcurrentEmsConsumers

singleDiscountCataloglLoadingQueue

Description

Number of concurrent EMS
consumers for category
loading.

Queue name for offer
search product index.

Queue name for single
product catalog loading.

Number of concurrent EMS
consumers for single
product loading.

Queue name for single plan
fragment catalog loading.

Number of concurrent EMS
consumers for single plan
fragment loading.

Queue name for single
action catalog loading.

Number of concurrent EMS
consumers for single action
loading.

Queue name for single
price catalog loading.

Number of concurrent EMS
consumers for single price
loading.

Queue name for single
discount catalog loading.

TIBCO® Order Management Administration



32 | Configuration

Property

singleDiscountConcurrentEmsConsumers

productCatalogloadingDeadQueue

singleProductCatalogloadingDeadQueue

planfragmentCatalogLoadingDeadQueue

singlePlanfragmentCataloglLoadingDeadQueue

actionCataloglLoadingDeadQueue

singleActionCatalogLoadingDeadQueue

priceCataloglLoadingDeadQueue

discountCataloglLoadingDeadQueue

categoryCataloglLoadingDeadQueue

Description

Number of concurrent EMS
consumers for single
discount loading.

Queue name for product
catalog loading dead
queue.

Queue name for single
product catalog loading
dead queue.

Queue name for plan
fragment catalog loading
dead queue.

Queue name for single plan
fragment catalog loading
dead queue.

Queue name for action
catalog loading dead
queue.

Queue name for single
action catalog loading dead
queue.

Queue name for price
catalog loading dead
queue.

Queue name for discount
catalog loading dead

queue.

Queue name for category

TIBCO® Order Management Administration



33 | Configuration

Property

ruleCataloglLoadingDeadQueue

singlePriceCatalogLoadingDeadQueue

singleDiscountCataloglLoadingDeadQueue

singlePlanFragmentLoadingQueue

singleActionModelLoadingQueue

Model Loading Process

Description

catalog loading dead
queue.

Queue name for rule
catalog loading dead
queue.

Queue name for single
price catalog loading dead
queue.

Queue name for single
discount catalog loading
dead queue.

Queue name for single plan
fragment loading queue.

Queue name for single
action model loading
queue.

The models mentioned in Data Models must be loaded up TIBCO Order Management so
that they can be used by different components. These data models are modeled as
catalogs using repositories and relationships readily available in TIBCO Product and
Service Catalog. After modeling the catalogs in TIBCO Product and Service Catalog, they
can be made available to TIBCO Order Management and these models loaded through a

catalog service.

Use the following ways to load the models into TIBCO Order Management:

e Catalog Web Service Model Loading

¢ Online Model Loading
o Offline Model Loading

TIBCO® Order Management Administration



34 | Configuration

Online Model Loading

Online model loading requires the invoking of the catalog publish workflow in TIBCO
Product and Service Catalog using the exposed SOAP service.

You can invoke the catalog publish workflow in TIBCO Product and Service Catalog
directly by using the sample SOAP web service requests. The request can be sent using any
standard SOAP client tools such as SOAPUI. Specify the correct enterprise name, user
name, and password in the request. Also, specify the correct MASTERCATALOGNAME key
and a PRODUCTID to publish the specific catalog.

Invoke the request against the running instance of TIBCO Product and Service Catalog on
the URL, which typically looks like
http://<HOST>:<PORT>/eml/services/router/MasterCatalogRecordAction where HOST
and PORT are the machine name and port number where TIBCO Product and Service
Catalog is deployed and running.

Refer to the TIBCO Product and Service Catalog documentation for more details.

TIBCO Product and Service Catalog publishes the models on respective topics as
mentioned in the following table:

Model (Catalog) TIBCO Product and Service Catalog JMS Topic
Product tibco.ac.productmodel.topic

Action tibco.ac.actionmodel.topic

Plan Fragment tibco.ac.planfragmentmodel.topic

To make these models available to TIBCO Order Management, the following JMS bridges
must be created between the TIBCO Product and Service Catalog topics and the
corresponding TIBCO Order Management queues as mentioned in the following table:

TIBCO Product and Service Catalog Source TIBCO Order Management Target
Topic Queue
tibco.ac.productmodel.topic tibco.aff.catalog.product.request

TIBCO® Order Management Administration



35 | Configuration

TIBCO Product and Service Catalog Source
Topic

tibco.ac.actionmodel.topic

tibco.ac.planfragmentmodel. topic

TIBCO Order Management Target
Queue

tibco.aff.catalog.action.request

tibco.aff.catalog.planfragment.request

Catalog Web Service Model Loading

Catalog Web Service is used to load the models into TIBCO Order Management.

The URL for catalog service is PROTOCOL : //<HOST>: <PORT>/swagger-ui.html#/

Following are the types of Catalog web services:

Post request for /v1/planfragmentmodel

Operation to load single planfragment model

Post request /v1i/planfragmentmodel/bulk

Operation to load multiple planfragment models

Post request for /v1/productmodel

Operation to load single product model

Post request for /v1/productmodel/bulk

Operation to load multiple product models

Post request for /v1/actionmodel

Operation to load single action model

Post request for /v1/actionmodel/bulk

Operation to load multiple action models

Delete request for /v1/actionmodel/bulk
Operation to purge action model

Delete request for /v1/planfragmentmodel/bulk
Operation to purge planfragment model

Delete request for /v1/productmodel/bulk

TIBCO® Order Management Administration



36 | Configuration

Operation to purge product model

e Get request for /vi/planfragmentmodel/bulk

Operation to get Bulk Plan Fragment Model

e Get request for /vl/planfragmentmodel/all

Operation to get All Plan Fragment Models

e Get request for /v1/productmodel/bulk

Operation to get Bulk product Model

» Get request for /v1/productmodel/all

Operation to get All product Models

e Get request for /vi/actionmodel/bulk

Operation to get Bulk action Model

* Get request for /vi/actionmodel/all

Operation to get All action Models

Offline Model Loading

A client can upload offline catalogs to the Catalog Service. Based on catalogPublishMode, it
uploads the model via either EMS or REST API. It can publish catalogs in parallel. As per
your environment, provide an appropriate value of workerThreadCount. If a file has
multiple catalogs, for example <ProductModels> has multiple <ProductModel>, each
catalog would be published to the Catalog Service separately.

Setting up Catalog Client

For offline model loading, the user can use the catalog-client, do the following steps:

In the $OM_HOME /samples/catalog-client/config/application.propertis file, set the
properties mentioned in the following table.

o Note: Make sure that the catalog service is up.

TIBCO® Order Management Administration



37 | Configuration

General Configuration Properties

Property

server.port

workerThreadCount

default.tenant.id

enableSecureAPI

catalogPublishMode

catalogServiceEndpoint

catalogServiceTrustStoreFileNam
e

catalogServiceTrustStorePasswor
d

Description Default value

The default port 8082
on which this
service is running

Number of 2
worker threads
available to

publish catalogs

in parallel

Default Tenant ID TIBCO

Whether True
enableSecureAPI

is true for

Catalog Service

Channel on JMS
which offline
models would be

published
Base URL of http://<host_
Catalog Service name>:9092

File name of the
catalog service
trust store

Password of the
catalog service
trust store

Notes

Allowed values are
JMS and REST

Used to make REST

call when
catalogPublishMode

is selected as REST

TIBCO® Order Management Administration



38 | Configuration

Property

catalogServiceTrustStoreType

Description Default value Notes

Type of the
catalog service
trust store

Authorization Properties

Property

authorization.service.username

authorization.service.password

authorizationServiceTokenEndPo
int

authServiceTrustStoreFileName

authServiceTrustStorePassword

authServiceTrustStoreType

Description Default value Notes

Username to admin
generate
OAuth Token

User ENC Encrypted value of
password to (T9aNk0O7NMsU=) admin. Use

generate EncryptorDecryptorUt
OAuth Token il to encrypt the key

Authorization  http://<host_
Server OAuth name>:9091
URL

File name of
the
authorization
service trust
store

Password of
the
authorization
service trust
store

Type of the

TIBCO® Order Management Administration



39 | Configuration

Property

Description

authorization
service trust
store

authorization.access.token.validit

y

JMS Configurations

Property

emsServerURL

emsServerUsername

emsServerPassword

timeoutMillis

securityProtocol

Descriptio
n

EMS
Server URL

EMS
Server
username

EMS
Server
Password

EMS
message
acknowled
ge timeout

Security
protocol
to use in
Tibjms
JNDI

43200

Default Value

tcp://localhost: 7222

Admin

ENC(T9aNKk07NMsU=)

10000

Default value

Notes

Notes

Encrypted value
of admin. Use
EncryptorDecrypt
orUtil to encrypt
the key

TIBCO® Order Management Administration



40 | Configuration

Property

sslEnableVerifyHost

productModelPublishQ
ueue

planFragmentPublishQ
ueue

actionModelPublishQu
eue

priceModelPublishQue
ue

discountModelPublish
Queue

categoryModelsPublish
Queue

Descriptio Default Value Notes
n

lookups

Enable
TrustStore
verificatio
n using
SSL

Product tibco.aff.catalog.product.request.s
Model ingle

publishes

Queue

Plan tibco.aff.catalog.planfragment.req
fragment uest.single

Model

publishes

Queue

Action tibco.aff.catalog.action.request.si
Model ngle

publishes

Queue

Price tibco.aff.catalog.price.request.sin
Model gle
Publish

Queue

Discount tibco.aff.catalog.discount.request.
Model single

Publish

Queue

Category tibco.aff.catalog.category.request
Models

TIBCO® Order Management Administration



41 | Configuration

Property Descriptio Default Value Notes
n

Publish
Queue

ruleModelsPublishQue  Rule tibco.aff.catalog.operulemodel.re
ue Models quest

Publish

Queue

WebClient Configuration

When you start a container such as Kubernetes or Helm chart, all the services start
together. As the configurator service too starts along with the other services, the catalog
service fails as it is dependent on the configurator.

As a workaround, a retry mechanism is added.

In the $OM_HOME/roles//catalog-service/standalone/config/application.properties
file, configuratorServiceRetryCount and configuratorServiceRetryDuration flags are
added. Before failing, the catalog service tries to reload the number of times that you
specified in this flag. Also, you can set the retry duration in seconds.

Order Management System Configuration

User Interface Configuration

Order Management System provides a web user interface to browse and perform actions
on the orders and execution plans. Order Management System Ul is deployed as a separate
application, and it requires parameters to connect to the Archival, Orchestrator, Jeopardy,
and Catalog service.

TIBCO® Order Management Administration



42 | Configuration

Note: Order Management System Ul also provides configurable parameters to
control the access to the application.

User Interface Configuration

TIBC® . = Configurator .

App properties  Configuration files

Available applications
Q_ search in Order Management System Ul

AOPD
Archival Service Choose category I
Order Management System Ul > 0Ms Ul Engine Configuration

Catalog Service
Search in 5 categories

Common Configuration Property name Value Description
Application Security
Data Service archivalServiceUrl http://localhost:9099 Archival service URL
) & Servi Messaging Configuration
copardy service catalogServiceUrl http://localhost:9092 Catalog service URL

Migration Service OMS UI Engine Configuration
com.tibco.af.concurrencyControlmaxSess

ionPerUser

1

Order Management System Ul Orchestrator Configuration

Order Management System Persistence comitibco.af.oms.default tenantld TIBCO Default tenant information
TMFAdapter Service comtibco.af.oms yp g tyeryptoberyp L odEncoder
Encoder tBCryptPasswordEncoder P

Enable the Record count fetch for
com.tibco.af.omsui.enableRecordCountFet pagination. This will make the data
ch fetch slower and enable Last Page

option in pagination

comitibco.af.omsuihttp.port 9097
com.tibco.af.omsuihttpChannelType http
com.tibco.af.omsui https.port 8443

M, SEEDING

URL to Access Order Management System Ul
Component

Users can directly access the Order Management System Ul by providing
http://localhost:9097/ in the browser tab.

Initially, the user navigated to the login page and once the authentication is completed.
The user is redirected to the dashboard's Home component where upcoming orders can be
viewed.

Observe the following two scenarios:

Find specific order The URL is redirected to a specific component, based on the target
using the 'Order orderlD in the search parameters of
Details' component http://localhost:9097/#/dashboard/order-details?id=orderID

TIBCO® Order Management Administration



43 | Configuration

Accessing worktray Users can view orders and take an action that were previously added
orders directly to to the worktray by navigating to
take action http://localhost:9097/#/dashboard/orders?id=bulk

To add an order to the worktray the user needs to navigate to
Dashboard Home and select the orders from the 'Find Orders' table.

Side Navigation for Order Management System Ul

The side drawer navigation of Order Management System Ul are as follows:
e Dashboard
* Bulk Action Job
» Saved Searches

e Jeopardy Rules

Filtration of orders in Order Management System Ul

User can filter orders by giving certain search criteria in Dashboard > Search Orders > ¥

The search categories of the filter widget are as follows:

Order e Search By IDs (Order ID, Order Ref, Customer ID, Subscriber ID)
e Search by Dates
e Filter By Order Status

e Search by Custom Headers

Plan e Search By IDs (Plan ID, Order ID, Order Ref, Process Component ID, Process
Component Name)

e Search by Dates

e Filter By Status

TIBCO® Order Management Administration



44 | Configuration

Override Planfragment Destination

You can use the following property under the category 'Orchestrator Functional
Configuration' to determine messages sent to the process component is sent to a new JMS
destination or not:

"propName": "tenantSpecificDestination",

"propDescription": "Flag to enable or disable using the tenant
specific destination for process component",

"propValue": "false",

"valueType": "string",

"isTenantProperty": "true"

}

If this property is set to true, the messages are sent to a JMS destination prefixed with the
tenant ID to the existing destination as follows:

<TENANTID>.tibco.aff.orchestrator.planltem.execute.request

Along with the existing property overridePlanfragmentDestination, the new flag
tenantSpecificDestination works in the following manner:

e If overridePlanfragmentDestination is set to true and
tenantSpecificDestination is set to false, the messages are sent to the configured
destination for the respective process component.

e If overridePlanfragmentDestination is set to false and if
tenantSpecificDestination is true, then

o if the owner is defined for this process component, the JMS destination is
tibco.aff.orchestrator.planItem.<planFragment-owner>.execute.request.

o if the owner is not defined for this process component, the JMS destination is
<TENANTID>.tibco.aff.orchestrator.planItem.execute.request.

e |f overridePlanfragmentDestination is set to false and if
tenantSpecificDestination is false, then

o if the owner is defined for this process component, the JMS destination is
tibco.aff.orchestrator.planItem.<planFragment-owner>.execute.request.

° if the owner is not defined for this process component, the JMS destination is

TIBCO® Order Management Administration



45 | Configuration

tibco.aff.orchestrator.planItem.execute.request.

o Note: By default, both properties are set to false.

Managing Application Security

Order Management Server provides the below security option.

e Authorization Service

Managing Users and Roles

Order Management Server supports role-based authorization. The user must belong to
either ROLE_USER or ROLE_ADMIN.

The following table shows business functions and a list of roles that are authorized to
perform the business functions.

Note: You can change the roles to perform business functions. This can be
achieved by changing 'Application Security Configurations' category for all
services application from the configurator Ul.

TIBCO® Order Management Administration



46 | Configuration

Order Management Server Function Roles
Interface
Orchestrator Submit Order ROLE_ADMIN

TIBCO® Order Management Administration



47 | Configuration

Order Management Server
Interface

Function

Get Order Detail

Order withdraw
Planltem Execute Reply
AmendOrder
FeasibilityReply
ActivateOrderRequest
CancelOrder

GetOrderExecutionPlan

SuspendOrderRequest
BulkAction
PlanltemBulkErrorHandler
PlanltemErrorHandler
MilestoneNotifyRequest
PlanltemSuspendResponse
PreQualificationFailedReply
submitOrderExecutionPlan

planltemSuspendReply

TIBCO® Order Management Administration

Roles

ROLE_USER, ROLE_

ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_USER, ROLE_

ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN



48 | Configuration

Order Management Server Function Roles
Interface
Purge Order ROLE_ADMIN
orderScXml ROLE_USER, ROLE_
ADMIN
getplanfragment ROLE_USER, ROLE_
ADMIN
GetOrderMessages ROLE_USER,ROLE_
ADMIN
GetOrderStatus ROLE_USER,ROLE_
ADMIN
submitPlanErrorNotification ROLE_ADMIN

TIBCO® Order Management Administration



49 | Configuration

Order Management Server

Interface

Catalog Service

Data Service

Archival Service

Function

submitPlanFragmentModel
purgePlanFragmentModel
submitProductModel
purgeProductModel
submitActionModel
purgeActionModel
getProductModelRoles
getPlanFragmentModelRoles
getActionModelRoles
getAllActionModelRoles
getAllProductModelRoles
getAllPlanFragmentModelRoles
setPlanRequest
setPlanltemRequest

getPlanltemsRequest

getPlanRequest

getOrderSummary

TIBCO® Order Management Administration

Roles

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_ADMIN

ROLE_USER, ROLE_

ADMIN

ROLE_USER, ROLE_

ADMIN

ROLE_USER, ROLE_

ADMIN



50 | Configuration

Order Management Server Function Roles
Interface
getOrdersByCriteria ROLE_USER, ROLE_
ADMIN
getPlansByCriteria ROLE_USER,ROLE_
ADMIN
getAuditTrailsData ROLE_USER,ROLE_
ADMIN
purgeOrder ROLE_ADMIN
SubmitAuditTrail ROLE_ADMIN
GetSavedSearches ROLE_USER,ROLE_
ADMIN
UpdateSavedSearches ROLE_ADMIN
SavedSearches ROLE_ADMIN
DeleteSavedSearches ROLE_ADMIN

Changing the Default Roles of a User

Procedure

1. Open the $0M_HOME/roles/authorization-
service/standalone/config/application.properties file in a text editor and
update allowedUserRoles property with the required role values.

Note: In the case of OIDC, add UserRoles specific to your organization in
this property.

2. Register the required tenant. See Registering a Tenant. For more information on the
Tenant Registration APIs, see the "Authorization Service APl Samples" topic in the

TIBCO® Order Management Administration



51 | Configuration

TIBCO® Order Management Web Services Guide.
3. Create a user with the roles that are set in the previous step. See Create User.

4. Open the $oM_
HOME/roles/configurator/standalone/config/application.properties file in a
text editor and update the configuratorAccessRoles property with the required
roles.

5. Update the operation role values under 'Application Security Configurations' category
for all the services from the configurator Ul.

Authorization Service

To ensure secure access to TIBCO Order Management system REST APIs and support
multitenancy, token-based authentication is implemented in TIBCO Order Management.

The authentication service in TIBCO Order Management uses the JSON Web Token (JWT) to
validate user credentials (user name, password, and tenantID).

The following functions are covered under the Authorization Service:
e Registering a Tenant
e Update tenant information
e Get tenant information
e Delete tenant
e Create User
e Update User
e Get User
e Delete User

After a user is created, authenticate it by following the procedures in Generating an
authorization token topic.

Registering a Tenant

You can register a tenant by setting the identity provider type to Oracle, PostgreSQL, LDAP,
or EXTERNAL. Separate databases are created for each registered tenant’s user.

TIBCO® Order Management Administration


registering-a-tenant.htm
../../../../../../Content/webservices-guide/Update-tenant-information.htm

52 | Configuration

Tenant registration API is shown as follows:

This operation registers tenant information. This APl can handle only single tenant
registration at a time.

Method: HTTP POST

Endpoint:http://<host_address>:<port_address>/vl/tenant

Parameter Cardinality Description
X-API-AppId Mandatory The application ID is used for getting the user details.
X-API-Key Mandatory This key is used for getting the user details.

If you set the identity provider as Oracle or PostgresSQL, then you have to create separate
databases for each tenant.

TIBCO® Order Management Administration



53 | Configuration

Authentication & Authorization using OM/OPES/PSI as IdP

OAUTH2.0 Grant Type

Customer

Auth-Service

Admin

Backingstore

Tenant's Users

Backingstore
(users for tenant T1)

b
Tenant Registration
register a tenant

POSTGRES or ORACLE

'
I
|
|
1
I
|

et identityProviderType as — .
tenant created successfully

separate diy
should be
created for
each registered

User Authentication

OAuth2 token request
with user credentials

failed validation
error message

e

I
I
L
I
I
I
L
I
I
I

retrieve tenant's

I
1
I
|
|
1
I
1
1
|
|
|

user db details

'
|
|
1
I
|
I
|
|
1
|
1
1
I
1

tenant's users |
1
I
|
|
1
I
]
1
|
1
I
I
1
|

user validation
failed

user validated

fetch user's details
along with role » -

OM/OPE/FSI

Microservices

. generate JWT token
. set Tenant id and user role

return valid cauth2

as of now. in claims
-———— JW;I turl:?nkaﬂd — R
1 Teleeshyoken algerithm is
1 supported for
i token
I generation

I
I
L
I
I
L
1 I
I
I
I
I
|
|

User Authorization

validate token with
a. supported algorithm
b. same signing key

s
i
I
I
I
I
i
|
|
|
1
I

4.sign the token J‘
I
i
|
|
I
I
I
|
|
i
t

invoke AP with bearer token.

1
|
I
I
|
|
|
|
|
I
|
I
|
I
|
I
I
1
1
1
|
t
I 1
|

|

fetch supported algo and token signing-key for particular tenant:
|

I |

|
77777777777777777777777777777777 +—token validation failure error message 4 —— —— —— ————————_______
I |

validate user
authority/role
for accessing
the resource

I 1
I |

]

|

|

d

|

i

i
———————————————————————————————— = -role validation failure error message--‘[——————————-—-————-—-—-}—————-———————————

|

|

T

|

|

T

|

|

|

|

uccess with respon:

I 1
| |
T t
I 1
| |
T T
I 1
I |
1 I
I I

The following sample is shown for RelationalSchema (Postgres/Oracle)
identityProviderType:

"tenantId": "TIBCO",

"clientId": "order",

"clientSecret": "order",

"identityProviderType'": "POSTGRES",

"supportAlgorithm": "HS256",

"signingKey": "100f4clf-f333-4c25-bd8c-e4809722b6a7",

"relationalSchema": {
"dataSourceURL":

"jdbc:postgresql://localhost:5432/userdbll?currentSchema=userschemall",

"dataSourceUserName": "userll",
"dataSourcePassword": "userll"

TIBCO® Order Management Administration



54 | Configuration

When you have set the identity provider as LDAP, all the users and their roles are

maintained in some Directory service.

Authentication & Authorization using Directory Service as IdP

OAUTH2.0 Grant Type : password

Auth-S Admin Dir rvi M/OPE/FSI
Backingstore (users for tenant T1) Microservices
Cusfomer (Resource Server)

1 1 I
] 1 |
! 1 |
PR +
Tenant Registration | I
1 I
1 I

register a tenant

et identityProviderType as———p ave tenant inf registered tenant's
LDAP information will
tenant created successfully

contain

Directory-Service
URL where user's
information is

stored

User Authentication

retrieve tenant's
e user db details

H
fetch user's details along with role
1.user's validated information ~ {communicate over LDAP)
%, generate JWT token }
.set Tenant id and user role in |
claims L
4.sign the token  tenantld and sign-in key is
part of the tenant information
stored in Admin DB.
LDAP Group is assigned as
user's roles.

OAuth2 token request
with user credentials
failed validation
-
error message
return valid oauth2
JWT token and
refresh token

User Authorization

invoke AP| with bearer token.

|
|
fetch
I
|
1

1
77777777777777777777777777777777 L —token validation failure error message 4 —— — — — —— —— —

algo and token signing-key for particular tenant-

—-fole validation failure error message- q—— === === = === ———————-

s with respon:

validate token with
a. supported algorithm
b. same signing key

validate user
authorityfrole
for accessing
the resource

PESSPEREERE TNIR IS S

|
I
I
4
1
I
I
S T S S
B
1
I
T
I
I
T
I
|
|
i
i

The following sample is shown for LDAP identityProviderType:

"tenantId": "TIBCOLDAP",

"clientId": "tibco-ldap-client",
"clientSecret": "tibco-ldap-secret",
"jdentityProviderType": "LDAP",
"supportAlgorithm": "HS256",

"signingKey": "100f4clf-f333-4c25-bd8c-e4809722b6a7",

"ldapSchema": {
"ldapURLForDirectoryService": "string",
"directoryServiceDomainName": "string",
"directoryServiceRootDistinguishedName": "string"
}
}

TIBCO® Order Management Administration




55 | Configuration

When you have set identity provider as EXTERNAL, you do not have to use the Order
Management's Authentication service for user authentication and token generation. As of
now, we support Microsoft Azure Active-Directory as the external authentication service.
Even when you have set the identity provider as EXTERNAL, the tenant information is still
stored in the Order Management's Authentication service's relational database.

Authentication & Authorization using Azure AD as IdP with OIDC
¥ " Azure
SﬁMS'J&S Apih-Senice Admin ActiveDirectory OM/OPE/FS|
Gapis: Sanfoumierill Backingstore (users for tenant T1) iernice
i | ¥ (BasaKEa Shriarl
i ] ! :
Tenant Registration i ¥ | resource server is a
1 ! | library which is part of
i ! all the OMIOPESIFSI

|
i
I
i
register a tenant e ! e ! microservices
5 } ave tenant info—m
EXTERNAL | l information will ¥
|
contain !
tenant |
created - accessTokenURL, i
| authTokenURL and ]
i
| i
T
i i
| ]
| i
t i
| i
|

5c0pe for OIDC

flow
| i
et tenant inf a_.- whitelist the i

I e figured auth redirect-uri in
i i o Azure
h cod
|
uth code, redirect-uri, client-id, code-verifier and _cod
L JWT tok

|
1
1
1
I
1
1
1
1
1
1
I
I
1
1

User Authentication |

Jick on Microsoft L

must have in
the generated
' token : tid,

kid, upn, roles

ke API with bearer tok
! |

| |
etch jkSetURL and supported algorithm for particular tenant.
|

j
{ 1 Request public key from

| i wSetUn

| i eceives the wt Key Set——m!
| |

| 1

|

|

|

|

|
s error
|
[ le validation failure error message™ ™
! 1
| »
i i

|
|
with
i
|
I
|
|

a. validate token for supported algorithm
b. Using k_id get the public key and validate
the token signature

validate user
—— authority/role
e

the resource

The following sample is shown for EXTERNAL identityProviderType:

"tenantId": "string",
"clientId": "string",
"clientSecret": "string",
"jdentityProviderType'": "EXTERNAL",
"signingKey": "100f4clf-f333-4c25-bd8c-e4809722b6a7",
"supportAlgorithm": "RS256",
"jwkSetUrl": "string",
"jssuer": "string",
"oidcSchema": {
"authUrl": "string",
"accessTokenUrl": "string",
"scope": "string"

TIBCO® Order Management Administration



56 | Configuration

Authorization service can generate a token for all tenants. Each tenant can have a different
token algorithm. The following algorithms are supported:

« HMAC (HS256, HS384, HS512)
« RSA (RS256, RS384, RS512)

Order Management Authorization service generates token with HS256. All services can
decode or handle any of the above algorithms.

Note:
e Supported algorithms must match with one, which is used at the time of
registration, This is used for validating tokens (Only in the case of RSA).

 Issuer is validated during registration while validating the token.

Update tenant information

This operation updates tenant information if the tenant details are already present in
database.

Method: HTTP PUT

Endpoint: http://<host_address>:<port_address>/vl/tenant

Get User Parameters

Parameter Cardinality Description
X-API-AppId Mandatory The application ID is used for getting the user details.
X-API-Key Mandatory This key is used for getting the user details.

For more information on various identityProviderType scenarios, see the sample from the
'Register tenant' topic in TIBCO® Order Management Web Services Guide.

TIBCO® Order Management Administration



57 | Configuration

Get tenant information

This operation is used to get the tenant information if it is already present in database.

Method: HTTP GET

Endpoint: http://<host_address>:<port_address>/vl/tenant

Get User Parameters

Parameter Cardinality Description
tenantId Mandatory This is the TENANT value as stored in the users table in the
database.
X-API-AppId  Mandatory The application ID is used for getting the user details.
X-API-Key Mandatory This key is used for getting the user details.
Delete tenant

This operation deletes tenant information if the tenant is already present in database.

Method: HTTP DELETE

Endpoint: http://<host_address>:<port_address>/vl/tenant

Get User Parameters

Parameter Cardinality Description

tenantId Mandatory This is the TENANT value as stored in the users table in the
database.

X-API-AppId  Mandatory The application ID is used for getting the user details.

X-API-Key Mandatory This key is used for getting the user details.

Create User

This request is used to create users.

TIBCO® Order Management Administration



58 | Configuration

Method: HTTP POST method

Endpoint: http://<host_address>:<port_address>/vl/user

Create User Parameters

Parameter

tenantld

X-API-AppId

X-API-Key

userInfo enabled

(Body)

password

Username

userRoles

Cardinality

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

Description

This is the TENANT value as stored in the users
table in the database. If the tenantId is not
present in the database, then a new TENANT is
created.

The application ID is used for getting user
details. The default ID is auth.

This key is used for getting user details. The
default ID is auth.

The value can be true or false. true makes

the user accessible through the configurator

and Order Management System Ul and false
makes the user disable.

The password to be used for the user.

It specifies the user name to be created or
modified.

It assigns the role to the user.

The default valid role values are ROLE_ADMIN
and ROLE_USER. You can override the default
roles if required.

Note: If the userName and tenantId provided in the request exist, then the user

is modified with the provided values.

TIBCO® Order Management Administration



59 | Configuration

Example for the Create User request:

{
"user": [
{
"password": "string",
"userName": "string",
"enabled": true,
"userRoles": [
"string"
]
}
]
}

Update User

This request is used to update an existing user.

Method: HTTP PUT method

Endpoint: http://<host_address>:<port_address>/vl/user

Update User Parameters

Parameter Cardinality
tenantld Mandatory
X-API-AppId Mandatory
X-API-Key Mandatory
userInfo enabled Mandatory
(Body)

Description

This is the TENANT value as stored in the users
table in the database. If the tenantId is not
present in the database, then a new TENANT is
created.

The application ID is used for getting user
details. The default ID is auth.

This key is used for getting user details. The
default ID is auth.

The value can be true or false. true makes

the user accessible through the configurator

and Order Management System Ul and false
makes the user disable.

TIBCO® Order Management Administration



60 | Configuration

Parameter Cardinality
password Mandatory
userName Mandatory
userRoles Mandatory

Description
The password to be used for the user.

It specifies the user name to be created or
modified.

It assigns the role to the user. The valid role
values are ROLE_ADMIN and ROLE_USER.

Note: If the userName and tenantId provided in the request exist, then the user

is modified with the provided values.

Example for the Update User request:

{
"user": [
{
"password": "string",
"userName": "string",
"enabled": true,
"userRoles": [
"string"
]
}
]
}

Get User

This request is used to get the details of the existing user.

Method: HTTP GET method

Endpoint: http://<host_address>:<port_address>/vl/user

TIBCO® Order Management Administration



61 | Configuration

Get User Parameters

Parameter Cardinality

X-API-AppId  Mandatory

X-API-Key Mandatory
tenantId Mandatory
userId Mandatory

Delete User

Description

The application ID is used for getting the user details. The
default ID is auth.

This key is used for getting the user details. The default ID is

auth.

This is the TENANT value as stored in the users table in the

database.

This is the username value as stored in the users table in the

database.

This request is used to delete the existing user.

Method: HTTP DELETE method

Endpoint:http://<host_address>:<port_address>/vl/user

Delete User Parameters

Parameter

tenantId

X-API-AppId

X-API-Key

userInfo userName

(Body)

Cardinality

Mandatory

Mandatory

Mandatory

Mandatory

Description

This is the tenant value as stored in the users
table in the database.

The application ID is used for getting user
details. The default ID is auth.

This key is used for getting user details. The
default ID is auth.

It specifies the user name to be deleted.

TIBCO® Order Management Administration



62 | Configuration

Example for Delete User request:

"userName": "testuser",

Generating an authorization token

This token can be used to access the operations of all the services like data service, catalog
service, orchestrator, and archival service.

Procedure
1. To authorize a particular service, open the REST API home page of that service in a
browser.

o Note: If the enableSecureAPI value is set as false, the authentication is
bypassed, and you do not have to authorize the service. For the REST
services, the authorization token is not required. However, you must
provide the tenantID.

2. Click the Authorize button.

@ Swagger Iv3/api-docs Explore
oty SWARTOEAR

Configuration API

Configuration-Service

TIBCO SUPPORT - Website
Send email to TIBCO SUPPORT
TIBCO-URL

Servers
l http:// ’:9090 - Generated serverurl v g

Actuator Monitor and interact Spring Boot Actuator Web API D ’ pring.io/spring-bo —apihtmi/
Application Metadata Apis Apis to manage the applications metadata v
Application Properties Apis Apis to manage appiication properties )

The Available authorizations window opens.

TIBCO® Order Management Administration



63 | Configuration

3. Pass the following mandatory parameters:

Authorization parameters and description

Element Name Element Description
Type
user name String username@tenantld
password String Existing password
Client credentials Select Authorization header or Request body from
location the dropdown options.
client_id String as provided in Tenant Registration
client_secret String as provided in Tenant Registration

TIBCO® Order Management Administration



64 | Configuration

Available authorizations

Scopes are used to grant an application different levels of access to data on behalf of the end user.
Each APl may declare one or more Scopes.

API requires the following scopes. Select which ones you want to grant to Swagger UL

OAuth Password (OAuth2, password)

Token URL: http:// 9a91/oauth/token
Flow: password

username:

password|

Client credentials location:

Authorization header -+

client_id:

client_secret:

Scopes: selectall selectnone

read
read scope

write
write scope

Authorize

4. Select the read and write checkboxes as per the requirements and then click the
Authorize button.

Result
An authorization token is generated for the particular service. This token is unique and
valid only for the dedicated user with tenant ID. The access token comes with an expiry.

TIBCO® Order Management Administration



65 | Configuration

Authorization Token APIs

¢ Generate OAuth token

o Note:

If you use an External Auth service, then User Management and Token
Generation do not work. For this, use POSTMAN as Swagger authentication
does not work.

 If you use Azure, the token is generated by Azure and not by Order
Management Authorization service.

e OIDC works only with SSL.
e When you have chosen OIDC, Swagger cannot handle the OIDC flow.
 In the case of OIDC, if the token is expired, it generates an error.

 Client credentials cannot be handled via the Swagger.

Generate OAuth Token

This request is used to generate authorization OAuth token.
Method: HTTP POST method

Endpoint: http://<host_address>:<port_address>/oauth/token

Generate Authorization Header Parameters

Parameter Cardinality Description

grant_type Mandatory You can select password or refresh token.

scope Mandatory You can select read, write, or 'read write'.

refresh_token Refresh token from previously generated token. Required

only when grant_type=refresh_token
user name Required only when grant_type=password

password Required only when grant_type=password

TIBCO® Order Management Administration


#Generate2

66 | Configuration

Parameter Cardinality Description
tenantld Required only when grant_type=password
Authorization Mandatory

Content-Type Mandatory

Audit Trail

Audit trail can be enabled or disabled by using the configuration parameter in
ConfigValues_OrchService.JSON and ConfigValues_ArchivalService.JSON files:

{
"propName": "enableAuditTrail",
"propDescription": "Enable Audit Trail Persistence",
"propValue": "true",
"valueType": "boolean",
"isTenantProperty": "false"
}

Enabling Internal Error Handler Support

You can enable Internal Error Handler by configuring the values in Configvalues_
OrchService.JSON file.

"propName": '"com.tibco.fom.orch.pcErrorHandlerType",
"propDescription": "The Error Handler component to
be used in case of failed plan item",
"allowedValues": [
"ExternalErrorHandler",
"InternalErrorHandler"

1,

"propValue": "ExternalErrorHandler",
"valueType": "string",
"isTenantProperty": "false"

TIBCO® Order Management Administration



67 | Configuration

This is a new property introduced for configuring Internal Error Handlers. We can have two
values:

o ExternalErrorHandler (default)
e InternalErrorHandler

When it is configured as ExternalErrorHandler the user’s implementation of error handler is
considered, which means the on plan-item failure is handled by the error handler defined
by the user.

When the property is configured as InternalErrorHandler, it invokes the plan-item failure
response and newly created error handler in Order Management Server.

Logging

Logging is used to record information about a program's execution. This information is
typically used for debugging purposes, and additionally, depending on the type and detail
of information contained in a trace log, to diagnose common problems with the software.

How Logging Works

The types of logging for each component are as follows:

» Local Logging: This refers to writing the log output to a local log file for every
component.

The logging can be effective by standardizing the contents of a log message for logging
data across all the components.

The logging services for TIBCO Order Management are as follows:
» aopd (aopd.log)
 archival-service (archival-service.log)
 authorization-service (authorization-service.log)
 catalog-services (catalog-services.log)
 configurator (configurator.log)

» data-service (dataservice.log)

TIBCO® Order Management Administration



68 | Configuration

encryptPWDUtility.log

e om-migration (migration.log, migration-starter.log)
 orchestrator (orchestrator.log)

* processcomponent (processcomponent.log)

e tmf-om-adapter (tmf-om-adapter.log)

» broker-service (broker-service.log)

* jeopardy (jeoms.log)

Contents of the Log Message

The log message is composed of several log components that are required to explain the
log message in its entirety. These log message components help you analyze the log.

Log Message Description

Component

Log level The levels are as follows: DEBUG, INFO, WARN, ERROR, OFF.

BusinessTransactionld Unique identifier for tracing purposes across function calls.

OrderRef An identifier to identify the order for which this log message is
written.

Component Context information about the origin of the log (typically the

engine name).

Service Context information about the origin of the log (typically the class
name).
Operation Context information about the origin of the log (typically the

method name).
StackTrace Entire stack trace of the activity.

TimeStamp Indicates when the message was logged.

TIBCO® Order Management Administration



69 | Configuration

APIs for Changing log-level

Previously, when you wanted to change a log level for a class, you had to change it in the
logback file and restart the server to get the updates. This was taking a lot of time and
effort in this process.

To overcome this issue, the following log-level APIs are introduced in this release:

» Get all logger details

curl -X 'GET' \
'http://<host>:<port>/management/loggers' \
-H 'accept: */*'

» Get logger for a specific class

curl -X 'GET' \
'http://<host>:<port>/management/loggers/com.tib.fom' \
-H 'accept: */*'

e Change log level for a specific class

curl --location --request POST \
'http://<host>:<port>/management/loggers/com.tib.fom' \
--header 'Content-Type: application/json' \

--data-raw ' {"configuredLevel": "DEBUG"}'

Configuring Logging for Java Components

Logging configuration for the following services applies to Automated Order Plan
Development, authorization-service, catalog-services, data-service, orchestrator,
configurator, process component, and tmf-om-adapter.

Logging is done using the log back framework. Each component has a separate file for log
back configurations as explained as follows.

Orchestrator: $OM_HOME/roles/orchestrator/standalone/config/logback_orch.xml is
used to configure logging.

Authorization-service: $OM_HOME/roles/authorization-
service/standalone/config/logback_auth.xml is used to configure logging.

TIBCO® Order Management Administration



70 | Configuration

catalog-services: $OM_HOME/roles/catalog-services/standalone/config/logback_
catalog.xml is used to configure logging.

Data-service: $OM_HOME/roles/dataservice/standalone/config/logback_
dataservice.xml is used to configure logging.

Tmf-om-adapter: $SOM_HOME/roles/tmf-om-adapter/standalone/config/logback_tmf.xml
is used to configure logging.

Configurator: $OM_HOME/roles/configurator/standalone/config/logback.xml is used to
configure logging.

Om-migration service: $OM_HOME/roles/om-migration/standalone/config/logback_
migration.xml is used to configure logging.

Broker service: $OM_HOME/roles/broker-service/standalone/config/logback_
broker.xml is used to configure logging.

Archival service: $OM_HOME/roles/configurator/standalone/config/logback_arch.xml
is used to configure logging.

Jeopardy service: $OM_HOME/roles/configurator/standalone/config/logback_
jeopardy.xml is used to configure logging.

The default logLevel is:
° INFO for com.tib.fom package and its sub package
° ERROR for all other packages

» The local log file used by the orchestrator is orchestrator.log. Published logs go into
the logs folder for each service, the same as for the other components.

¢ The default maximum file size is 5 mb. After 5 mb, a new file is created.

e The default logging is orchestrator.log file. The next day those logs are moved to
orchestrator-<date>.log file and current logging starts in orchestrator. log file.

Automated Order Plan Development: s0M_
HOME/roles/aopd/standalone/config/Logback_aopd.xml is used to configure logging.

e The default logLevel is:

° INFO for com.tibco.aff, com.tibco.fom, and com.tibco.aff.models packages and
its sub packages

° ERROR for all other packages

TIBCO® Order Management Administration



71 | Configuration

* Local log file used by Automated Order Plan Development.

Note: You can set the catalogHibernateShowSql property to control whether
hibernate logs SQL statements. You can enable or disable SQL logging without
changing the codes.

Configuring Redis

Redis is supported only for the Order and Catalog services. A relational database is used for
the Admin, Archival, and Jeopardy services.

To start the services in Redis, perform the following steps:

Procedure
1. In the $OM_HOME/externallLib/seed-data/app-properties/ConfigValues_
common. JSON file, update the cmPluggableCache and omPluggableCache properties to

redis.

2. In the $OM_HOME/externallLib/seeddata/app-properties/ConfigValues_
CatalogService.JSON file under the Redis Data Source Configuration category,
update the following catalog Redis-related properties:

Property Name Description

catalogRedisClientName Redis server ClientName for Catalog
datasource

catalogRedisClusterEnabled Whether Redis is running in cluster
mode

catalogRedisDatabase Redis server database name for Catalog
datasource

catalogRedisHost Redis server host for storing Catalog
models

TIBCO® Order Management Administration



72 | Configuration

Property Name

catalogRedisPassword

catalogRedisPort

catalogRedisSslEnabled

catalogRedisUsername

redisBlockedWhenExhausted

redisJmxEnabled
redisKeyStoreAbsoluteFileName
redisKeyStorePassword
redisKeyStoreType

redisLifo

redisMaxldle

redisMaxTotal

redisMinEvictableldleTimeMillis

Description

Password to connect to Redis
cluster/node

Redis server port for storing Catalog
models

Connect to Redis cluster or node via SSL

User name to connect to Redis
cluster/node

Enable connection blocking when the
connection pool is exhausted

Enable JMX for connections

Redis SSL KeyStore absolute file name
Redis SSL KeyStore password

Redis SSL KeyStore type

Enable LIFO behavior for idle objects,
always returning the most recently used

object from the pool

Maximum number of idle connections in
the pool

Maximum number of connections that
can be allocated by the pool at a given

time

Minimum amount of time an object
might sit idle in the pool, in milliseconds

TIBCO® Order Management Administration



73 | Configuration

Property Name

redisMinldle

redisNumTestsPerEvictionRun

redisSoftMinEvictableldleTimeMillis

redisTestOnBorrow

redisTestOnReturn

redisTestWhileldle

redisTimeBetweenEvictionRunsMillis

redisTrustStoreAbsoluteFileName
redisTrustStorePassword

redisTrustStoreType

Description

Minimum number of idle connections to
maintain in the pool

Maximum number of connections to
examine during each eviction run

Minimum amount of time an object
might sit idle in the pool if minIdle

instances are available, in milliseconds

Enable connection validation before
being borrowed from the pool

Enable connection validation before
being returned to the pool

Enable connection validation when idle
in the connection pool

Number of milliseconds to sleep
between runs of the idle object evictor
thread

Redis SSL TrustStore absolute file name

Redis SSL TrustStore password

Redis SSL TrustStore type

3. In the $OM_HOME/externallLib/seed-data/app-properties/ConfigValues_
AopdService.JSON file under the Redis Data Source Configuration category,

update the catalog Redis-related properties.

TIBCO® Order Management Administration



74 | Configuration

Property Name

catalogRedisClientName

catalogRedisClusterEnabled

catalogRedisDatabase

catalogRedisHost

catalogRedisPassword

catalogRedisPort

catalogRedisSslEnabled

catalogRedisUsername

redisBlockedWhenExhausted

redisJmxEnabled

redisKeyStoreAbsoluteFileName

redisKeyStorePassword

Description

Redis server ClientName for
Catalog datasource

Checks whether Redis is
running in cluster mode

Redis server database name
for Catalog datasource

Redis server host for storing
Catalog models

Password to connect to Redis
cluster/node

Redis server port for storing
Catalog models

Connect to Redis cluster/node
via SSL

User name to connect to Redis
cluster/node

Enable connection blocking
when the connection pool is
exhausted

Enable JMX for connections

Redis SSL KeyStore absolute
file name

Redis SSL KeyStore password

TIBCO® Order Management Administration



75 | Configuration

Property Name
redisKeyStoreType

redisLifo

redisMaxldle

redisMaxTotal

redisMinEvictableldleTimeMillis

redisMinldle

redisNumTestsPerEvictionRun

redisSoftMinEvictableldleTimeMillis

redisTestOnBorrow

Description
Redis SSL KeyStore type

Enable LIFO behavior for idle
objects, always returning the
most recently used object from
the pool

Maximum number of idle
connections in the pool

Maximum number of
connections that can be
allocated by the pool at a
given time

Minimum amount of time an
object might sit idle in the
pool, in milliseconds

Minimum number of idle
connections to maintain in the
pool

Maximum number of
connections to examine during
each eviction run

Minimum amount of time an
object might sit idle in the
pool if minIdle instances are
available, in milliseconds

Enable connection validation
before being borrowed from
the pool

TIBCO® Order Management Administration



76 | Configuration

Property Name

redisTestOnReturn

redisTestWhileldle

redisTimeBetweenEvictionRunsMillis

redisTrustStoreAbsoluteFileName

redisTrustStorePassword

redisTrustStoreType

Description

Enable connection validation
before being returned to the
pool

Enable connection validation
when idle in the connection
pool

Number of milliseconds to
sleep between runs of the idle

object evictor thread

Redis SSL TrustStore absolute
file name

Redis SSL TrustStore password

Redis SSL TrustStore type

4. In the $OM_HOME/externallLib/seed-data/app-properties/ConfigValues_
OrchService.JSON file under the Redis Data Source Configuration category,
update the catalog and order Redis-related properties .

Property Name

orderRedisHost

orderRedisPort

orderRedisUsername

orderRedisPassword

Description
Redis server host for storing order data

Port number of the Redis server for
storing order models

User name required to connect to the
Redis cluster/node

Password for connecting to the Redis
cluster/node

TIBCO® Order Management Administration



77 | Configuration

Property Name

orderRedisDatabase

orderRedisClientName

orderRedisSslEnabled

orderRedisKeyStoreType

orderRedisKeyStorePassword

orderRedisTrustStoreType

orderRedisTrustStorePassword
orderRedisKeyStoreAbsoluteFileName
orderRedisTrustStoreAbsoluteFileName

redisStatsHost

redisStatsPort

redisStatsUsername

redisStatsPassword

Description

Name of the Redis database for the order
data source

Name of the Redis client for the order
data source

Enables SSL connection to the Redis
cluster/node

Type of the SSL KeyStore for Redis
connections

Password for the SSL KeyStore

Type of the SSL TrustStore for Redis
connections

Password for the SSL TrustStore
Absolute file name of the SSL KeyStore
Absolute file name of the SSL TrustStore

Host address of the Redis server for
storing order statistics

Port number of the Redis server for
storing order statistics

User name required to connect to the
Redis cluster/node for statistics

Password for connecting to the Redis
cluster/node for statistics

TIBCO® Order Management Administration



78 | Configuration

Property Name

redisStatsDatabase

redisStatsClientName

redisStatsSslEnabled

redisStatsKeyStoreType

redisStatsKeyStorePassword

redisStatsTrustStoreType

redisStatsTrustStorePassword

redisStatsKeyStoreAbsoluteFileName

redisStatsTrustStoreAbsoluteFileName

catalogRedisClientName

catalogRedisClusterEnabled

catalogRedisDatabase

Description

Name of the Redis database for storing
order statistics

Name of the Redis client for storing order
statistics

Enables SSL connection to the Redis
cluster/node for statistics

Type of the SSL KeyStore for Redis
connections for statistics

Password for the SSL KeyStore for
statistics

Type of the SSL TrustStore for Redis
connections for statistics.

Password for the SSL TrustStore for
statistics

Absolute file name of the SSL KeyStore
for statistics

Absolute file name of the SSL TrustStore
for statistics

Redis server ClientName for Catalog
datasource

Whether Redis is running in cluster mode

Redis server database name for Catalog
datasource

TIBCO® Order Management Administration



79 | Configuration

Property Name

catalogRedisHost

catalogRedisPassword

catalogRedisPort

catalogRedisSslEnabled

catalogRedisUsername

redisBlockedWhenExhausted

redisJmxEnabled
catalogRedisKeyStoreAbsoluteFileName
catalogRedisTrustStorePassword
catalogRedisKeyStoreType

redisLifo

redisMaxldle

redisMaxTotal

Description

Redis server host for storing Catalog
models

Password to connect to Redis
cluster/node

Redis server port for storing Catalog
models

Connect to Redis cluster/node via SSL

User name to connect to Redis
cluster/node

Enable connection blocking when the
connection pool is exhausted

Enable JMX for connections

Redis SSL KeyStore absolute file name
Redis SSL KeyStore password

Redis SSL KeyStore type

Enable LIFO behavior for idle objects,
always returning the most recently used

object from the pool

Maximum number of idle connections in
the pool

Maximum number of connections that
can be allocated by the pool at a given
time

TIBCO® Order Management Administration



80 | Configuration

Property Name

redisMinEvictableldleTimeMillis

redisMinldle

redisNumTestsPerEvictionRun

redisSoftMinEvictableldleTimeMillis

redisTestOnBorrow

redisTestOnReturn

redisTestWhileldle

redisTimeBetweenEvictionRunsMillis

catalogRedisTrustStoreAbsoluteFileName

catalogRedisTrustStorePassword

catalogRedisTrustStoreType

Description

Minimum amount of time an object might
sit idle in the pool, in milliseconds

Minimum number of idle connections to
maintain in the pool

Maximum number of connections to
examine during each eviction run

Minimum amount of time an object might
sit idle in the pool if minIdle instances

are available, in milliseconds

Enable connection validation before
being borrowed from the pool

Enable connection validation before
being returned to the pool

Enable connection validation when idle in
the connection pool

Number of milliseconds to sleep between
runs of the idle object evictor thread

Redis SSL TrustStore absolute file name
Redis SSL TrustStore password

Redis SSL TrustStore type

5. In the $OM_HOME/externallLib/seed-data/app-properties/ConfigValues_
DataService.JSON file under the Redis Data Source Configuration category,

update the order Redis-related properties.

TIBCO® Order Management Administration



81 | Configuration

Property Name

orderRedisHost

orderRedisClusterEnabled

orderRedisPort

orderRedisUsername

orderRedisPassword

orderRedisDatabase

orderRedisClientName

redisTestOnBorrow

redisTestOnReturn

redisTestWhileldle

Description

Host address of the Redis
server for storing order data

Indicates whether Redis is
running in cluster mode

Port number of the Redis
server for storing order models

User name required to connect
to the Redis cluster/node

Password for connecting to the
Redis cluster/node

Name of the Redis database
for storing order-related
information

Name of the Redis client for
storing order-related
information

Enables connection validation
before being borrowed from
the pool

Enables connection validation
before being returned to the
pool

Enables connection validation
when idle in the connection
pool

TIBCO® Order Management Administration



82 | Configuration

Property Name

redisBlockedWhenExhausted

redisJmxEnabled

redisLifo

redisMaxldle

redisMinldle

redisMaxTotal

redisNumTestsPerEvictionRun

redisSoftMinEvictableldleTimeMillis

redisMinEvictableldleTimeMillis

Description

Enables blocking of new
connection requests when the
connection pool is exhausted

Enables Java Management
Extensions (JMX) for
monitoring connections

Enables Last In, First Out
(LIFO) behavior for managing
idle objects in the pool

Sets the maximum number of
idle connections in the pool

Sets the minimum number of
idle connections to maintain in
the pool

Sets the maximum number of
connections that can be
allocated by the pool at any
time

Sets the maximum number of
connections to examine during
each eviction run

Sets the minimum amount of
time, in milliseconds, an object
might sit idle in the pool if
“minldle” instances are
available

Sets the minimum evictable

TIBCO® Order Management Administration



83 | Configuration

Property Name Description

idle time, in milliseconds, for
objects in the pool

redisTimeBetweenEvictionRunsMillis Sets the time, in milliseconds,
between eviction runs for idle
objects in the pool

orderRedisSslEnabled Enables SSL connection to the
Redis cluster/node

redisKeyStoreType Specifies the type of the SSL
KeyStore for Redis connections

redisKeyStorePassword Password for the SSL KeyStore
redisTrustStoreType Specifies the type of the SSL

TrustStore for Redis
connections

redisTrustStorePassword Password for the SSL
TrustStore

redisKeyStoreAbsoluteFileName Absolute file name of the SSL
KeyStore

redisTrustStoreAbsoluteFileName Absolute file name of the SSL
TrustStore

Configuring Microsoft SQL Server

Perform the following steps to configure Microsoft SQL Server.
Admin Database

Procedure

TIBCO® Order Management Administration



84 | Configuration

1. Open the $0M_HOME/db/dbscripts/sqlServer/admin/bin/sqlserver_admin_
db.properties file in a suitable editor and update the values.

2. Run the following scripts from the $0OM_HOME/db/dbscripts/sqlServer/admin/bin
directory:
db-setup.sh

seed_common_authConfig_db_setup.sh
Archival Database

Procedure
1. Open the $0M_HOME/db/dbscripts/sqlServer/archival/bin/sqlserver_archival_
db.properties file in a suitable editor and update the values.

2. Run the following script from the $0M_HOME /db/dbscripts/sqlServer/archival/bin
directory:

db-setup.sh
Catalog Database

Procedure

1. Open the $0M_HOME/db/dbscripts/sqlServer/catalog/bin/sqlserver_catalog_
db.properties file in a suitable editor and update the values.

2. Run the following script from the $0M_HOME /db/dbscripts/sqlServer/catalog/bin
directory:

db-setup.sh
Jeopardy Database

Procedure

1. Open the $OM_HOME/db/dbscripts/sqlServer/jeopardy/bin/sqlserver_jeopardy_
db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/jeopardy/bin
directory:

db-setup.sh

TIBCO® Order Management Administration



85 | Configuration

Order Database

Procedure
1. Open the $0M_HOME/db/dbscripts/sqlServer/order/bin/sqlserver_order_
db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/order/bin
directory:

db-setup.sh
User Database

Procedure
1. Open the $0M_HOME/db/dbscripts/sqlServer/user/bin/sqlserver_user_
db.properties file in a suitable editor and update the values.

2. Run the following script from the $OM_HOME/db/dbscripts/sqlServer/user/bin
directory:

db-setup.sh

Provide the SQL Server details in each of the configuration files. For more details, see the
$OM_HOME /samples/sqlServer-sample-property/sample_sqlServer_
properties.properties file.

Configuring an External Identity Provider

Before you begin

You must have registered an application in the external authentication provider such as
Azure Active-Directory(ADD) or Google Identity with all the required details for the
application role assignment to the user.

Registering a Tenant

You can configure an external authentication provider with TIBCO® Order Management. See
the "Multitenancy" topic in the TIBCO® Order Management Administration guide.

TIBCO® Order Management Administration



86 | Configuration

Register a tenant in the Authorization service using the POST method of the /v1/tenant
APl with the following sample payload, which shows all the mandatory fields.

"tenantId": "cde6fa59-abb3-471-be0®1-2443c417cbda",
"clientId": "ddaf41fb-3aef-4e30-879f-al88bal3labf",
"clientSecret": "DI68Q~t1ljTkT4ABi71ZVztaz5AUN6AGr.CGIHbwd",
"identityProviderType": "EXTERNAL",
"supportAlgorithm": "RS256",
"jwkSetUrl": "https://login.microsoftonline.com/cd-abb3-4971-be01-
244bda/discovery/v2.0/keys",
"issuer": "https://sts.windows.net/cde6fa59-abb3-4971-be01-
2443c417cbda/",
"oidcSchema": {
"authUrl": "https://login.microsoftonline.com/cd-abb3-4971-be0@1-
244bda/oauth2/v2.0/authorize",
"accessTokenUr1l": "https://login.microsoftonline.com/cd-abb3-4971-
be01-244bda/ocauth2/v2.0/token",
"scope": "ddaf4lfb-3aef-4e30-879f-al88bal3labf-
serviceB/fosApplicationConsent"
}
}

Mapping of Keys from External OAuth2 Token

In the $OM_HOME /seed-data\app-properties/ConfigValues_Common.json file, update the
following properties. These are the properties that need to be mapped to the KEY of
CLAIMS in an externally generated OAuth2 token.

{

"propName": "tenantIdMapping",

"propDescription": "key in the token claims that refers to
tenantId",

"propValue": "TENANTID",

"valueType": "string",

"JsTenantProperty": "false"
b
{

"propName": "userNameMapping",

"propDescription": "key in the token claims that refers to
userName",

"propValue": "user_name",

"valueType": "string",

"JsTenantProperty": "false"
b

TIBCO® Order Management Administration



87 | Configuration

{

"propName": "userRoleMapping",

"propDescription": "key in the token claims that refers to
userRole",

"propValue": "authorities",

"valueType": "string",

"isTenantProperty": "false"
}

Role-Based Access Configurations

Irrespective of whether you want to use an external or Order Management's authentication
provider, you have to modify the authorization for each API in Order Management.

Each API in Order Management has role-based access. API-related role mapping is available
in the respective microservice’s configuration. To configure API-specific roles, you must
modify the following configurations for each of the mentioned microservices:

e Authorization service:

File name: $OM_HOME/roles/authorization-
service/standalone/config/application.properties

Property name: allowedUserRoles

Description: All the user roles (comma separated) have access to the APIs exposed in
the authorization service. This is not considered when you have used
identityProviderType as EXTERNAL while registering the tenant. When
identityProviderType is set as EXTERNAL, the authorization service is not used to
generate the token.

e Configurator:

File name: $om_
HOME/roles/configurator/standalone/config/application.properties

Property name: configuratorAccessRoles

Description: All the user roles (comma separated) have access to the APIs exposed as
part of the configurator microservice.

e OMS Ul:
File name: $OM_HOME/seed-data/config-files/ConfigValues_OMSUI.json

Property name: com. tibco.fom.orch.roles.piExecutionToComplete

TIBCO® Order Management Administration



88 | Configuration

Description: To force completing plan items in execution status on the basis of role.

¢ Archival service:

File name: $OM_HOME/seed-data/config-files/ConfigValues_

ArchivalService.json

Under the Application Security Configurations category name, update the

following properties:

Property Name

operation.roles.orderSummary

operation.roles.ordersByCriteria

operation.roles.auditTrail

operation.roles.planByCriteria

operation.roles.purgeOrders

Description

User Role for
orderSummary API

User Role for
ordersByCriteria API

User Role for
auditTrailForPlan
API

User Role for
planByCriteria API

User Role for
purgeOrders API

Once you configure these mentioned properties, replies from all the above APIs
would only be received if the user accessing the resource belongs to one of the user

groups that have access to the specified resource.

e Orchestrator:

File name: $OM_HOME/seed-data/config-files/ConfigValues_OrchService.json

Under the Application Security Configurations category name, update the

following properties:

TIBCO® Order Management Administration



89 | Configuration

Property Name

operation.roles.submitOrder

operation.roles.orderExecutionPlan

operation.roles.getOrderDetails

operation.roles.executePlanltemReply

operation.roles.orderWithdraw

operation.roles.submitOrderExecutionPlan

operation.roles.milestoneNotifyRequest

operation.roles.planlitemSuspendResponse

operation.roles.amendOrder

operation.roles.purgeOrder

operation.roles.orderSuspend

Description

User Role for submitOrder
Service

User Role for
getOrderExecutionPlan
Service

User Role for getOrderDetails
Service

User Role for
planltemExecuteResponse
Service

User Role for orderWithdraw
Service

User Role for
submitOrderExecutionPlan
Service

User Role for
milestoneNotifyRequest
Service

User Role for
planltemSuspendResponse

Service

User Role for amendOrder
Service

User Role for purgeOrder
Service

User Role for orderSuspend

TIBCO® Order Management Administration



90 | Configuration

Property Name

operation.roles.orderActivate

operation.roles.planitemErrorHandler

operation.roles.planlitemBulkErrorHandler

operation.roles.preQualificationFailedReply

operation.roles.feasibilityReply

operation.roles.orderCancel

operation.roles.performBulkOrderAction

operation.roles.orderScXml

operation.roles.planFragments

operation.roles.submitPlanErrorNotification

operation.roles.opdErrorHandlerReply

Description
Service

User Role for orderActivate
Service

User Role for
planltemErrorHandler Service

User Role for
planitemBulkErrorHandler
Service

User Role for
preQualificationFailedReply
Service

User Role for feasibilityReply
Service

User Role for orderCancel
Service

User Role for
performBulkOrderAction
Service

User Role for orderScXml
Service

Roles of the user used by
getPlanFragments

Roles of the user used by
planErrorNotification

Roles of the user used by
opdErrorHandlerReply

TIBCO® Order Management Administration



91 | Configuration

e Catalog service:

File name: $OM_HOME/seed-data/config-files/ConfigValues_

CatalogService.json

Under the Application Security Configurations category name, update the

following properties:

Property Name

operation.roles.submitPlanFragmentModel

operation.roles.submitProductModel

operation.roles.submitActionModel

operation.roles.purgePlanFragmentModel

operation.roles.purgeProductModel

operation.roles.purgeActionModel User

operation.roles.getProductModelRoles

operation.roles.getPlanFragmentModelRoles

operation.roles.getActionModelRoles

Description

User Role to access
submitPlanFragmentModel
Service

User Role to access
submitProductModel Service

User Role to access
submitActionModel Service

User Role to access
purgePlanFragmentModel Service

User Role to access
purgeProductModel Service

Role to access purgeActionModel
Service

User Role to access
getProductModelRoles Service

User Role to access
getPlanFragmentModelRoles
Service

User Role to access
getActionModelRoles Service

TIBCO® Order Management Administration



92 | Configuration

Property Name

operation.roles.getAllActionModelRoles

operation.roles.getAllPriceModelRoles

operation.roles.getAllOfferldsModelRoles

operation.roles.getAllDiscountModelRoles

operation.roles.getAllProductModelRoles

operation.roles.getAllPlanFragmentModelRoles

operation.roles.getAllCategoryModelRoles

operation.roles.submitPriceModel

operation.roles.submitDiscountModel

operation.roles.submitOfferldsModel

operation.roles.submitCategoryModel

operation.roles.submitRuleModel

Description

User Role to access
getAllActionModelRoles Service

User Role to access
getAllPriceModelRoles Service

User Role to access
getAllOfferldsModelRoles Service

User Role to access
getAllDiscountModelRoles Service

User Role to access
getAllProductModelRoles Service

User Role to access
getAllPlanFragmentModelRoles
Service

User Role to access
getAllCategoryModelRoles Service
User Role to access

submitPriceModel Service

User Role to access
submitDiscountModel Service

User Role to access
submitOfferldsModel Service

User Role to access
submitCategoryModel Service

User Role to access

TIBCO® Order Management Administration



93 | Configuration

Property Name

operation.roles.purgePriceModel

operation.roles.purgeDiscountModel

operation.roles.purgeCategoryModel

operation.roles.purgeOfferld

operation.roles.purgeRuleModel

e Broker service:

Description
submitRuleModel Service

User Role to access
purgePriceModel Service

User Role to access
purgeDiscountModel Service

User Role to access
purgeCategoryModel Service

User Role to access purgeOfferld
Service

User Role to access
purgeRuleModel Service

File name: $OM_HOME/seed-data/config-files/ConfigValues_BrokerService.json

Under the Application Security Configurations category name, update the

following properties:

Property Name

operation.roles.getPendingNotifications

operation.roles.resumePendingNotifications

operation.roles.resumeAllPendingNotifications

Description

User Role to access the
getPendingNotifications Service

User Role to access the
resumePendingNotifications
Service

User Role to access the
resumeAllPendingNotifications
Service

TIBCO® Order Management Administration



94 | Administration Tasks

Administration Tasks

This section covers all the administration tasks for TIBCO Order Management.

Swagger API Reference

Swagger version: Open API - 3.0.1

URL to access the Swagger Ul: scheme://host[:port]/swagger-ui/index.html

o Note: To disable the Swagger Ul, expose the following property either via an
environment variable or configurator: springdoc.api-docs.enabled=false

Docker

You can containerize TIBCO Order Management components and run them on hosts that
support the Docker environment. The Docker files are delivered as part of the TIBCO Order
Management installer. You can build images using those Docker files and then run them as
containers.

This feature of TIBCO Order Management requires Docker version 25.0.x and Docker-
Compose version 1.29.0 (or later).

It is required to have an internet connection on the machine where you install and run
Docker.

Note: The term Docker Context refers to the directory where the Dockerfile is
available. For example, the Docker context for the Order Management Server is
$OM_HOME /docker /orchestrator/6.1.0.

Depending on your system configuration, you might need the following Docker containers:

TIBCO® Order Management Administration



95 | Administration Tasks

Configurator Service - through the Configurator-Ul to make the configuration-related
changes

Authorization Service - to generate the token and this token is used across all Order
Management Services to authorize and authenticate the users

Catalog Service - API to load Product and Plan Fragment models

Orchestrator Service - order-related APIs

Automated Order Plan Development Service - API to generate plans for each order
Data Service - API to modify User-Defined Fields at Plan or Plan Item level

TM Forum Adapter Service - APl to map TM Forum API to Order Management API

Order Migration Service - to migrate the orders to the 6.1.0 version of Order
Management

Order Management System Ul - provides operators a GUI to manage and track orders.
Order Management System persists order data and allows operators to search, view,
track, and trace orders.

Archival Service - acts as the data backup for the Orchestrator and it uses messages
to achieve this. For every status change in the order, the Orchestrator sends a JMS
message.

Broker Service: to resend pending notifications of an order.

After installation, all Docker-related files are located in the $0M_HOME /docker directory
when the user's PWD is SOM_HOME/docker.

Before you start using the Docker feature in TIBCO Order Management, you must be
familiar with the following Docker concepts:

Docker architecture

Using Docker in production
Using Docker Volumes
Docker commands
Docker-Compose

Using Docker-Compose in production

TIBCO® Order Management Administration



96 | Administration Tasks

Building a Docker Image Without an Internet
Connection

Download and install wget and unzip utilities to build a Docker image without an internet
connection.

In $OM_HOME /docker /base/1.0/Dockerfile, the "FROM
registry.access.redhat.com/ubi8/ubi-minimal" instruction initializes a new build stage and
sets the base image for subsequent instructions. You can accept the default base image or
you can change the instruction and provide a valid source for a different base image. You
can pull a valid base image from the Docker's public repository or you can create your base
image, push it to a public or private Docker registry, and then use the newly created image
as a base image. For more information about creating your base Docker image, see the
Docker documentation related to Creating a Base Image.

In $OM_HOME /docker/base/1.0/Dockerfile, you can find instructions for downloading wget
and unzip utilities. These instructions can be modified to pick up the installers of the
utilities from the Docker context and install them in the image.

Note: In this case, the Docker context for $0M_
HOME /docker/base/1.0/Dockerfile is $OM_HOME/docker/base/1.0.

Copying Files to Docker Context

It is required to copy files to the Docker context before building the required Docker
images.

Procedure
1. Install Docker 25.x (or later), Docker-Compose 1.29 (or later), and TIBCO Order
Management on the host machine.

2. Run the $OM_HOME/roles/copyLib.sh script. For more information, refer to the "Post-
Installation Task: Copying Dependencies" topic in the TIBCO Order Management and
Configuration guide.

3. Go to the $0M_HOME/docker directory and run copy-required-files.sh script.

This shell script copies all the required directories from OM_HOME to a specific Docker
context. These files are required to build Docker images. This script works on OM_

TIBCO® Order Management Administration


https://docs.docker.com/

97 | Administration Tasks

HOME set in the environment or takes the value of OM_HOME as user input.

Building Docker Images

After the required files are copied at the Docker context, you can build the Docker images.
Use Docker-Compose for building the Docker images.

Procedure
1. Go to the $OM_HOME/docker/base/1.0 directory and execute the following command:

docker build -t tibco/base:1.0 --rm=true

2. Go to the $OM_HOME/docker directory and execute the following command:

docker-compose --file docker-compose-build-complete.yml build

3. Run the following command to check the images that are created:

$] docker images

You might get the following output:

REPOSITORY IMAGE ID CREATED SIZE

tibco/base 78745cb206c85 weeks 637MB
1bd76c5c9a54 weeks 714MB
16eab77f5574 weeks 758MB
@babbl7ae86f weeks 798MB
298896cc1698 weeks 721MB
f5c7de7fe8d4 weeks 724MB
a64e23b78572 weeks 758MB

=
tibco/authorization-service 5
5
5
=
=
=
0d6927fce027 5 weeks 755MB
=
=
5
5
=
=
8

tibco/dataservice
tibco/aopd
tibco/configurator
tibco/tmf-om-adapter
tibco/catalog-service
tibco/processcomponent
tibco/broker
tibco/orchestrator
tibco/jeopardy
tibco/configurator-ui

89936c29baaf weeks 758MB
ff65b877f462 weeks 7860MB
d56f8bb14df3 weeks 801MB
1lelc71795258 weeks 692MB
tibco/archival-service 1d7cfe285633 weeks 770MB
tibco/omsui e1285958f064 weeks 716MB
registry.redhat.io/ubi8/ubi-minimal 12c4198317ec weeks 92 .5MB

LT T TS T SRS T (T (S T s O s (Y
R R RRRRRRRRPRRRPEQ®
00 00 00 0000 0 ®

iy
®

TIBCO® Order Management Administration



98 | Administration Tasks

Setting Up the .env File

Set the required variables, which varies according to the user's environment. All of these
variables are required to be changed according to the user's environment.

All of these variables are in the .env file located in the $0OM_HOME /docker directory.

Configuring for Order Management Server Docker
Containers

When you run the Order Management Server or the Order Management Server Ul as Docker
containers, you have to make configuration changes using the Configurator Ul.

Procedure
1. Start TIBCO Order Management configurator Ul as a Docker container by running the
following command:

$] docker-compose --file docker-compose-run-configurator-ui.yml up
-d

You can access the Configurator Ul on the port, which you had set for the HOST_
CONFIGURATOR_UI_PORT variable in the .env file.

2. On the TIBCO Order Management Configurator Ul, make the configuration changes
according to your environment. For example, make related configuration for Order
Management Server, Automated Order Plan Development, and other related
configurations.

All the changes that you do in the Configurator Ul are uploaded to the database so
other containers can read from it.

Running the Docker Containers

After building the Docker images, you can run the images as containers to start
containerized TIBCO Order Management.

TIBCO® Order Management Administration



99 | Administration Tasks

Running Different Containers for TIBCO Order Management Components

Start the Docker container by using the specific docker-compose file.

Procedure
1. Start the Configurator Docker container.

$> docker-compose --file docker-compose-run-configurator.yml up -d

2. Start the Configurator Ul Docker container.

$> docker-compose --file docker-compose-run-configurator-ui.yml up
-d

3. Access the configurator Ul and configure according to your environment and
requirement.

4. Start the authorization service to fetch the token, which is then used across all order
management services to authorize and authenticate the user.

$> docker-compose --file docker-compose-run-authorization-
service.yml up -d

You can start any of the Docker services by using the following compose commands.

a. Start Catalog Service container.

$> docker-compose --file docker-compose-run-catalog-
service.yml up -d

b. Start Automated Order Plan Development Service container.

$> docker-compose --file docker-compose-run-aopd.yml up -d

c. Start Orchestrator Service container.

$> docker-compose --file docker-compose-run-orchestrator-
service.yml up -d

d. Start Data Service container.

TIBCO® Order Management Administration



100 | Administration Tasks

$> docker-compose --file docker-compose-run-dataservice.yml up
-d

e. Start Archival Service container.

$> docker-compose --file docker-compose-run-archival-
service.yml up -d

f. Start Migration Service container.

$> docker-compose --file docker-compose-run-migration-
service.yml up -d

g. Start jeopardy Service container.

$> docker-compose --file docker-compose-run-jeopardy.yml up -d

h. Start the omsui Service container.

$> docker-compose --file docker-compose-run-omsui.yml up -d

i. Start the Broker Service.

$> docker-compose --file docker-compose-run-broker-service.yml
up -d

j. Start tmf-om adapter container. $> docker-compose --file docker-compose-

run-tmf-adapter-service.yml up.

k. Run $] docker ps -ato check the containers that are started.

Extend Docker-Compose Files

You can extend the Docker-Compose files provided as part of the TIBCO Order Management
installation.

This is mainly done to handle different environments. For example, this is done in case you
required a separate parameters for the containers based on your environment, such as a
testing or production environment.

TIBCO® Order Management Administration



101 | Administration Tasks

The suggested way to do this is to have multiple Docker compose files for each
environment. For more information, see the Docker documentation on Multiple Compose
Files.

Modifying a Container Time-Zone

The default time-zone for any Docker container is UTC. In the case where you want the
Docker container's time-zone to be in sync with the host machine's time-zone, you can
apply these changes either in the Docker file or in the Docker-Compose YAML file.

Docker containers always use the system clock of the host machine but it sets its time-zone
as UTC.

The following steps are an example of changing the time zone for an Order Management
Server container.

Procedure
1. You can modify a container's time zone with either of the following two ways:

e This approach can be applied when you have not created any images. Open the
$OM_HOME /docker /orchestrator-service-context/6.1.0/Dockerfilein a
suitable editor and modify the file as shown:

FROM tibco/base:1.0
COPY orchestrator $OM_HOME/orchestrator
ENV TZ-Asia/Kolkata
RUN 1n -snf /user/share/zoneinfo/$TZ etc/localtime "echo $TZ >
/etc/timezone
RUN chmod 777 $OM_HOME/orchestrator/standalone/bin/x \
&& chmod -R a+w $SOM_HOME/orchestrator/standalone/logs \

&& chmod -R a+w S$OM_HOME/orchestrator/standalone/config
USER root
ENTRYPOINT ["sh","-c", "$OM_
HOME /orchestrator/standalone/bin/start.sh -
XX:MinRAMPercentage=$min_ram_percentage -
XX :MaxRAMPercentage=$max_ram_percentage --run=FG"]

EXPOSE 9093

In this example, the following has been modified:

TIBCO® Order Management Administration


https://docs.docker.com/

102 | Administration Tasks

ENV TZ=Asia/Kolkata

RUN 1n -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo S$TZ
/etc/timezone

Here you have to change the value of the Tz variable as per your time zone (in
the example, the time zone is Asia/Kolkata).

» This approach can be applied if your images are already created and now you
want to change the container time zone at runtime. Open $0M_
HOME /docker /docker-compose-run-orchestrator-service.yml in a suitable
editor and modify the file as shown:

version: "3"

services:
tibco-orchestrator:
image: "tibco/orchestrator:${OM_VERSION_TAG}"
environment:
min_ram_percentage: ${min_ram_percentage}
max_ram_percentage: ${max_ram_percentage}
ports:
- "${HOST_ORCHESTRATOR_SERVICE_PORT}:9093"
volumes:
- "S{HOST_LOG_ROOT_LOCATION_DIR_
PATH}: /home/tibuser/tibco/
om/6.1/orchestrator/standalone/logs"
deploy:
resources:
limits:
cpus: '4'
memory: 4G
reservations:
cpus: '0.2'
memory: 512M
environment:
- "TZ=Asia/Kolkata"
command: sh -c "ln -snf /user/share/zoneinfor/$TZ
/etc/localtime && echo $TZ > /etc/timezone"

In this example, the following has been modified:

TIBCO® Order Management Administration



103 | Administration Tasks

environment:
- "TZ=Asia/Kolkata"

command: >
sh -c "1ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo
STZ > /etc/timezone"

Here you have to change the value of the Tz variable as per your time zone (in
the example, the time zone is Asia/Kolkata).

Reading Container Logs

When all the desired containers are up and running, it is best practice to check the logs for
all the running services.

Logs for all the started and exited containers are available at the path you have mentioned
for the LOG_ROOT_LOCATION_DIR_PATH variable in the .env file. So all the logs are preserved
on your host machine.

Troubleshooting Error from Building Docker Images

Troubleshoot an error when building Docker images with the following steps.

Complete the following step if the following error occurs when building Docker images:
rm: cannot remove '/home/tibuser/tibco/om/6.1/configurator/standalone/config/backup':
Directory not empty

Procedure
1. Run the following command on the host machine:

$] docker info | grep 'Storage Driver' | awk -F':' '{print $2}'
overlay

$1

2. If the output is overlay, then apply the following workaround:

a. Stop the Docker engine.

TIBCO® Order Management Administration



104 | Administration Tasks

b. Changed DOCKER_OPTS to set storage-driver value to device mapper, edit
/etc/docker/daemon.json, and add "storage-driver" : "devicemapper" at
the end of existing keys.

c. Start the Docker engine.

Note: You can lose the existing Docker images due to the above
change.

d. Verify the fix by running the following command:

$1 docker info | grep 'Storage Driver' | awk -F':' '{print

$2}!
devicemapper

$]

Order Sequencing

By default Order Sequencing feature is disabled. When Order Sequencing is disabled, all
the incoming orders are processed in parallel. After the Order Sequencing is enabled, only
a single order is processed at a time and any other incoming order by the same customer
is stored in the ORDER_IN_SEQUENCE database table till the previous one is processed.

The order of a customer is processed in the sequence of order submission. Each order
request has an element or a tag (called as custom property) in the request body, which is
common into all the requests for a customer. Orders from one customer are processed in
the sequence of order submission.

The following configuration properties are related to Order Sequencing:

Configuration Configuration Property Value Description
Variable Name

Custom property com. tibco.fom.orch.sequencing.customerJsonPath Custom
JsonPath property
expression for JsonPath for
order sequencing order
sequencing

TIBCO® Order Management Administration



105 | Administration Tasks

Configuration Configuration Property Value Description
Variable Name

that points to
a unique
customer
identifier

Flag to enable or com.tibco.fom.orch.enableOrderSequencing Options to

disable the Order enable (for all

Sequencing or with a udf)
or disable
order
sequencing

Enabling or Disabling Order Sequencing

Procedure
1. Define an JsonPath in com.tibco.fom.orch.sequencing.customerJsonPath, which
points to a unique customer identifier in the order request.

2. Set the below are the enum values for
com.tibco.fom.orch.enableOrderSequencing:

* Disable: To disable order sequencing for all the orders.
e EnableForAll: To enable order sequencing for all the orders.

e EnableWithudf: For the selected user-defined fields for which you want to
enable order sequencing.

Bulk Order Actions

Operations on an order are performed depending on the requirement. Performing the same
action on individual orders are difficult and time-consuming. You can apply actions to the
group of orders simultaneously using Bulk Order action.

The following operations can be performed on the group of orders:

TIBCO® Order Management Administration



106 | Administration Tasks

SUSPEND

RESUME

WITHDRAW

CANCEL

These operations are exposed by the Order Management Service.

Bulk Actions

The bulk order actions let administrators to cancel, suspend, sesume, or withdraw a group
of orders in a single invocation of a web service. This is useful:

» To perform a specific action on all orders in a particular region.
e To prevent repetitive intervention to perform similar actions.

The bulk order actions are based on the existing Order Management Server order service.
This operation is called BulkAction.

The existing Order Management Server order service is modified to include a new
operation. You can use this operation to specify the type of action to be performed along
with the group of orders on which the action must be performed.

You can monitor the request status through:
e Event log - contains information about the status of the request.
» Order lists - show the change in the order status when refreshed.
e REST call - bulk order action can be made through BulkAction request.

* In progress jobs - contains bulk action performed tasks where each job contains job
id, created date, action requested, total orders and processed orders along with the
order IDs

All the errors that occur during this process are logged and handled individually.

WSDL Location

This is the default location where all the WSDL files are copied after the installation.

TIBCO® Order Management Administration



107 | Administration Tasks

e SOM_HOME/schemas/wsdl/orchestrator/OrderService.wsdl

e SOM_HOME/schemas/wsdl/orchestrator/OrderServiceJms.wsdl

e SOM_HOME/schemas/wsdl/aopd/AOPDService.wsdl

Error Codes

The following table lists the error codes:

Error Code

TIBCO-AFF-OMS-100046:
INVALID_ACTION

TIBCO-AFF-OMS-100047: NO
ORDERS FOUND

TIBCO-AFF-OMS-100048: BOTH
ORDERID AND ORDERREF
FOUND

TIBCO-AFF-OMS-100020:

ORDER {ORDERREF} NOT
FOUND / ORDER {ORDERID}
NOT FOUND

Description

Web service fault code for invalid values of action.
Web service fault code when neither order id nor order
reference is present in the request.

Web service fault code when both order id and order

reference are present in the request.

This exception is logged if an order to be canceled or
withdrawn is not present in the Order Management Server
component.

Invoke Bulk Order Operation

The BulkAction bulk order operation requires the following input parameters to perform
the selected action on all the orders contained in the request:

e Action type

e List of order IDs or order refs

The BulkAction order operation is an asynchronous operation and the consumer of the
operation receives an acknowledgement immediately after the submission of the request.
This acknowledgement is not an indication that the process is complete. This indicates that

TIBCO® Order Management Administration



108 | Administration Tasks

the request is under process by the Order Management Server component. The operation
can be invoked by a user with ADMIN role only.

Tracking the Request Status

The request status for the invoked bulk order action can be tracked using:
e TIBCO Order Management Ul (Dashboard, Order Screen and Activity logs)

* Logs in the Order Management Server and Orchestrator components

Logging

TIBCO Order Management provides detailed logging and auditing capabilities to identify
the system errors and key errors that can be gracefully handled by the calling system.

For bulk order actions, the logging is done using the AFFLogger APIs and the log file
(orchestrator.log) is created in the corresponding location based on the configured
Appender. The log location is $OM_HOME/roles/orchestrator/standalone/logs. The
incoming bulk order request is validated and an INFO level log is generated. The log
contains the action to be performed along with the number of orders in the request.

For all bulk order actions, if a particular order is not found in the Order Management Server
component, an 'ERROR' level log is generated indicating that the order was not found.

Schema

A schema is an organization or structure for the PerformBulkOrderAction bulk order
actions web service.

Bulk Order Schema

The following figure depicts the action for a bulk order added to the Order Management
Server order service.

TIBCO® Order Management Administration



109 | Administration Tasks

Action for a bulk order added to the service of the Order Management Server.

&% OrderService

[ performbulkorderactionreqparameters | [€] PerformBulkOrderActionRequest

[ performbulkorderactionresparameters [8] PerfermBulkOrderActionResponse

25 OrderService D
= OrderServicePort & PerformBulkOrderfAction
http://localhost:8080/ ... Cxlinput
1 output
[ fault [ parameters

[] resultFault

Bulk Orders Operation Request Schema

The following figure depicts the bulk operation request schema.

Request schema for bulk operation

[e] PerformBulkOrderActionRequest

(PerformBulkOrderActicnRequestType)

businessTransactionID string

=

[2] action (actionType)
[2] orderID [1.*] string
[2] orderRef [1.*] string

Bulk Orders Operation Response Schema

The following figure depicts the bulk operation response schema.

Response schema for bulk operation

(e] PerformBulkOrderActicnResponse

(PerformBulkCrderActionResponzeType)

(@ businessTransactonID  string

[e timestamp datzTime
[& message string
(e noOiOrder: integer

TIBCO® Order Management Administration




110 | Administration Tasks

Sample Request

The sample request applicable to the bulk operation is as follows:

<soapenv:Envelope xmlns:soapenv="http://www.w3.0rg/2003/05/soap-
envelope" xmlns:ord="http://www.tibco.com/aff/orderservice">
<soapenv:Header/>

<soapenv:Body>

<ord:PerformBulkOrderActionRequest

businessTransactionID="bTranID">

<ord:action>SUSPEND</ord:action>

<ord
<ord
<ord
<ord
<ord
<ord
<ord
<ord
<ord
<ord

:orderID>74</ord
:orderID>56</ord
:orderID>26</ord
:orderID>30</ord
:orderID>37</ord
:orderID>88</ord
:orderID>57</ord
:orderID>27</ord
:orderID>67</ord
:orderID>35</ord

:orderID>
:orderID>
:orderID>
:orderID>
:orderID>
:orderID>
:orderID>
:orderID>
:orderID>
:orderID>

</ord:PerformBulkOrderActionRequest>
</soapenv:Body>
</soapenv:Envelope>

Sample Response

The sample response that is applicable to the bulk operation is as follows:

<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope">
<soap:Body>

<ns3:PerformBulkOrderActionResponse

xmlns="http://www.tibco.com/aff/order"

xmlns:
xmlns:

xmlns

xmlns:
xmlns:

ns2="http://www.
ns3="http://www.
:ns4="http://www.
ns5="http://www.
ns6="http://www.

tibco.
tibco.

tibco

com/aff/commontypes"
com/aff/orderservice"

.com/aff/orderservice/result"
tibco.
tibco.

com/aff/plan"
com/aff/planfragments">

<ns3:timestamp>2012-08-01T15:36:54.166+05:30</ns3:timestamp>

<ns3:message>Request Submitted Successfully</ns3:message>

<ns3:no0f0rders>10</ns3:no0f0rders>
</ns3:PerformBulkOrderActionResponse>

TIBCO® Order Management Administration



111 | Administration Tasks

</soap:Body>
</soap:Envelope>

Performing Bulk Actions On error Plans Items

You can select a group of plan items on the error state and apply a bulk action on them
simultaneously. The operations that can be performed are as follows:

e Retry
e Resume

e Complete

Note: This functionality is applicable only for handler type internal error

handlers.

Procedure
1. On Order Management System Ul, filter error-based plans in Dashboard > Search

Orders > V' on the top-right corner of the Find orders table.

Find the orders table's filter drawer

TIBCO® Order Management Administration



112 | Administration Tasks

Filters planitemstatuslist sremr1 @ (®) (@) Order @ Plan APPLY FILTER!

Plan

EEEEEEEEEE

Pending

Suspended [ | Cancelled

2. To filter out the plans in the Find order table, switch the top-right available toggle
button to 'Plan' and from the left section of the Filter drawer, select the Filter by
status option.

3. Once the Filter by status section is visible, select the Error status checkbox under
the Plan items section, and click the 'Apply Filters' button to get orders whose plan
items are in the error state.

4. Select more than one order in the Find orders table, which comes after filtering.
Selected orders are now added in the worktray. In the worktray, click the Continue
button to move towards the bulk action screen with the selected orders. At the
bottom of the page, the Plan items section must be visible.

5. Select the checkbox named Show error based to get the plan items, which are in
error. Once the checkbox is selected, a Take an action dropdown populates next to
it. From the Take an action dropdown, select the action that needs to be taken.

TIBCO® Order Management Administration



113 | Administration Tasks

TIBCS < = Order Management P

ashboard > Selected orders

ssssss

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Resume

After the request is submitted, the list is cleared and closed.

Multitenancy

The term multitenancy indicates an architecture in which a single running instance of an
application simultaneously serves multiple clients or "tenants".

Isolating information, such as data and customizations, about the tenants is a particular
challenge in these systems. This includes the data owned by each tenant. A single instance
of the application can now support multiple tenants. Order Management Server REST API
like catalog services, Automated Order Plan Development, data services, process
component, and TM Forum adapter service can talk to the same TIBCO Order Management
instance for processing and viewing the orders based on the tenant context. A default
tenant "TIBCO" is supported by TIBCO Order Management without any configuration
changes.

Multitenancy for TIBCO Order Management can be configured through the following steps.

1. Creating and Configuring a Tenant

2. Authorizing a Tenant

Creating and Configuring a Tenant

Procedure

TIBCO® Order Management Administration



114 | Administration Tasks

1.

Register a tenant by using the POST method </v1/tenant> and create a user with
that tenant by using the </v1/user> API from the Authorization service. For more
information, see Create User.

Log in to the Configurator Ul with the newly created tenant.
In the Tenant Replication window, enter the Source TenantID and click REPLICATE.

Here Source TenantlID is a tenant ID that exists and you want to copy its properties
to the current tenant.

o Note: When you log in with the default tenant or any other tenant with no
data on the database, the data seeding option is enabled. When you log in
with a non-default tenant and the database is not empty, the tenant
replicate option is visible.

Alternatively, you can use the http://<host_address>:<port_
address>/v1l/configuration/replicateTenantProperties endpoint from the
configuration service to replicate tenant properties by using the REST service.

Create an entry for the new tenant in the order_lock table in the Orders database by
running the following query from the database client: SELECT oms_seed_orderlock
(10, "new_tenant_1id")

This function accepts integers and tenantld. The integer value can be 7 to 12. The
tenantld is the one that you want to create in Order Management.

Authorizing a Tenant

Token-based authentication is used to authorize a tenant.

Procedure
1. To authorize a tenant, generate token-based authentication. See Generating an

authorization token.

2. Pass the token-based authentication in the request header.

TIBCO® Order Management Administration



115 | Administration Tasks

Managing Health Check Endpoint

The TIBCO Order Management supports the health check endpoint to check the overall
health status of the application resources like the EMS, Database, and Diskspace. You can
check the health status of any service by putting the respective host and port number of
that service in the following format.

You can find the number of database connection objects being used from the pool. You can
set the getTotalDsConnection flag as true to enable the enhanced health check where you
can see the number of database connections in the output.

For Authorization service, the getTotalDsConnection flag can be set in the $oM_
HOME/roles/authorization-service/standalone/config/application.properties file.

For all other services, the getTotalDsConnection flag can be set in the $OM_HOME /seed-
data\app-properties/ConfigValues_Common.json file.

The following list shows the health check endpoints:
e http://<host>:<port>/management/health/readiness

e http://<host>:<port>/management/health/liveness

Example of health check response:

{"status":"UP","details":{"db":{"status":"UP","details":
{"name":"Configurator",
"status":"RUNNING","database":"PostgreSQL"}},"diskSpace": {"status":"UP",
"details":
{"total":254720077824,"free":93111214080,"threshold":10485760}}1}}

Implementation of LDAP

LDAP is a protocol through which Directory Service is connected. In Directory Service, the
user’s information is stored in a hierarchical structure.

The following properties are added in the $OM_HOME/roles/authorization-
service/standalone/config/application.properties file to configure Directory Service:

e directoryServiceDomainName=test

e directoryServiceRootDistinguishedName=DC=testad,DC=com

TIBCO® Order Management Administration



116 | Administration Tasks

e ldapURLForDirectoryService=1dap://localhost:389

Authentication and Authorization

In TIBCO Order Management, support for authentication and authorization of all the
available microservices is added. Authentication is used to authenticate someone's
identity, whereas authorization is a way to permit someone to access a particular resource.

Authentication Factors

Based on the security levels and the type of security that the application requires, there are
different types of authentication factors. TIBCO Order Management supports Single-Factor
authentication. This authentication mechanism requires users to provide a user name and
password to access the system.

Authorization Technique

The role-based access control technique is used to give users access to the TIBCO Order
Management resources.

Authorization Service

Authorization Service is a microservice available as part of TIBCO Order Management 6.1.0
This microservice has the following key features:

 This service generates JWT tokens based on OAuth2 specifications.
e Grant_Type used is password

e User credentials are entered in the request body when generating the OAuth2 token.

This service accepts encrypted passwords.

Once a user generates the token, it has to be entered as part of the header in each request
(SOAP or REST). This token is used to verify the user's identity and authority.

Resource Server

As per OAuth2 specification, a resource server is a server that hosts the protected resources
and can accept and respond to protected resource requests by using access tokens.

Each TIBCO Order Management microservice is embedded with a resource-server library
with the following capabilities:

 Verify token validity by using the same signing that was used to sign the token when
it was generated by Authorization Service.

TIBCO® Order Management Administration



117 | Administration Tasks

e Check token expiry.
e Extract claims from the token and set Tenantld and authorities for the user.

 As part of the microservices configuration in TIBCO Order Management, each API
exposed for the user has been protected with configurable role restrictions.

Example: The Orchestrator microservice uses the operation.roles.submitOrder
property and ROLE_ADMIN property as the default values. It means that the users with
a role as ROLE_ADMIN can access the submit-order API.

o Note: The role-based access is a fully configurable feature and can be modified.

Generating User Token

The following methods describe the steps to generate a token if the user's information is
stored with Authorization Service, in an external directory, or using a third-party external
service:

e Information stored with Authorization Service
e Information stored in External Directory

e Using a third-party external service

Information stored with Authorization Service

Customers can choose to store Order Management user information in the Admin data
store created and managed by Order Management.

The user credentials are encrypted and stored in the backing datastore.

TIBCO® Order Management Administration



118 | Administration Tasks

The following sequence diagram illustrates token generation when the user’s information is
available in the Admin datastore:

OM Authentication

Generating OAuth2 Token when User Information is with OM

heSetvi Admin
Backingstore
Customer
i i
| | |
| | ‘
I I
I
OAuth2 token request ‘
with user credentials e user info.
user validation
. o failed
failed validation
enormessage . user validated
. .generate JWT token
return valid oauth2 .set Tenant id and user role

[
[

\

|

\

[

|

JWT token and in claims }
refresh token 4.sign the token \

|

|

[

[

|

\

\

[

[

Information stored in External Directory

Customers can choose to use the preexisting Directory Service(DS) which stores all the user
information rather than replicating it in the Admin datastore.

Authorization Service can communicate with any external DS over LDAP or secured LDAP.
Here, Directory Service acts as an IdP. The following sequence diagram illustrates token

TIBCO® Order Management Administration



119 | Administration Tasks

generation when the user’s information is available in an external Directory Service:

Generating OAuth2 Token when User Information is with Directory-Server

: Directory Server
Auth:Service Directory Server
SIS (1dP)
Customer
I i
| I |
i | ‘
| I
| . I
OAuth2 token request . 1
with user credentials | user info over
secured LDAP
user validation
. o failed
failed validation
errermessage 1. user validated
. .generate JWT token
return valid oauth2 | .set Tenant id and user role

<«—— JWT token and
refresh token

in claims
4. sign the token

Using a third-party external service

Customers might have an existing token generation mechanism (or service) and they might
prefer using it for TIBCO Order Management 6.1.0

The Resource-Server library embedded in every microservice of Order Management expects
OAuth2 JWT token must have a payload containing the following information:

o user_name

e TENANTID

 an array of authorities containing roles of the user for whom this token was
generated and these roles must have been configured for the API.

» The token must be signed with the secret string configured as a value of property
authentication.token.signing.key

TIBCO® Order Management Administration



120 | Administration Tasks

If the token follows all the above rules, then all the microservices in Order Management
accept the token even if it is generated from a third-party service.

Sample Token

eyJhbGci0iJIUzIINiIsINR5cCI6IkpXVCI9.eyJ1lc2VyX25hbWUi0iJhZG1lpbiIsITRFTKF
oV
ELEIjoiVELCQO8iLCIzY29wZSI6WYJyZWFkIiwid3JIpdGUiXSwiZXhwIjoxNjQ2MDcOMjY3L
CIhdXRob3JpdGllcyI6WyISTOXFXOFETULOI1O0sImpOaSI6IjViZDIhZmEXLTIjZGEtNDZj0
SO5NGIjLTUONMVKNj LhNjc4ZiIsImNsaWVudF9pZCI6Im9yZGVyLW1hbmFnZW1lbnQtY
2XpZW50INn0O. tkbrHUFBvBo8N7Tshp4uXLxhjaYjBfWCoPccpCJItilxU

When you read the token, it displays the following payload.

{

"header": {

"alg": "HS256",

lltypll : HJWTH

b

"payload": {
"user_name": "admin",
"TENANTID": "TIBCO",
"scope": [

"read",

"write"

1,

"exp": 1646074267,
"authorities": [
"ROLE_ADMIN"

1,

"jti": "5bd9afal-2cda-46c9-94bc-
546ed69a678f",
"client_id": "order-management-client"
}

}

User Mapping from Directory Service to Order
Management service

In $SOPE_HOME_ roles/authorization-
service/standalone/config/application.properties file, amPluggableCache has the
following flags:

TIBCO® Order Management Administration



121 | Administration Tasks

Ds_ActiveDirectory_Relational

Ds_OpenLdap_Relational

Ds_ActiveDirectory

Ds_OpenLdap

You need to map the Directory Service user with the Order Management user. You need to
create the user in Order Management with at least tenant Id, valid roles, and userName

as the mandatory fields. Leave the password field blank. The user name must match with
the name provided in the ActiveDirectory.

You can use the Create User API (http://<host_address>:<port_address>/vl/user) to
create users who need to be mapped with the Directory Service users. This user roles must
be same as the group roles present in Directory Service.

While creating an authorization token, the user name and password are validated by
Directory Service. After successful validation, it checks the users table in the Order
Management database, and an authorization token is generated as per the tenant Id that
the user belongs.

Here, Directory Service is used for authentication and Order Management service is used
for authorization.

Types of retries

The following types of retries are supported in TIBCO Order Management:

* Messaging level

Feasibility retry

Plan fragment based retry

Plan Item failure retry configurations

Web client retry

Messaging level

Messaging level retries are applicable wherever JMS is used. In the Archival, Data service,
Orchestrator, Catalog, Jeopardy, and Migration services JMS is used. In case of any error,
the retry mechanism is triggered as per the configuration.

TIBCO® Order Management Administration



122 | Administration Tasks

Feasibility retry

Feasibility retry takes place when com. tibco.fom.orch.feasibilityRequired and
retryFailedFeasibility flags from the orchestrator application are set to true.

When an error occurred, it retries for a specified number of times (feasibilityRetries) in a
specified interval (feasibilityRetryInterval) before the order goes in to the
preQualificationFailedReply.

Plan fragment based retry

Plan fragment based retry takes place when the retryoverride flag from the process
component model is set to true.

When an error occurred, it retries for a specified number of times (retryCount) in a
specified interval (retryDelay) before the plan item goes in to the ERRORHANDLER/ERROR
state.

Plan Item failure retry configurations

This is a backup of Plan fragment based retry. Plan Item failure retry configurations take
place when the retryoverride flag from the plan fragment model is set to false.

When an error occurred, it retries for a specified number of times (maxRetryCount) in a
specified interval (retrylnterval) before the plan item goes in to the ERRORHANDLER/ERROR
state. The system uses the default properties configured in the Orchestrator under the
"Plan Item Failure Retry Configurations" category.

Web client retry

TIBCO Order Management uses Spring's WebClient for inter-service communication on
HTTP.

When an error occurred, it retries for a specified number of times (*RetryCount) in a
specified interval (*RedeliveryDelay) before the HTTP communication failed.

TIBCO® Order Management Administration



123 | Administration Tasks

APl Monitoring

Only some limited information is available through the existing monitoring systems.
However with APl monitoring, you can access more information.

Through the APl monitoring system, you can access service level metrics, such as
throughput, error and success rate, and response time for each API. You can also view the
resource level metrics such as memory usage and CPU consumption. APl monitoring is
implemented for Catalog service, AOPD, Orchestrator, Data service, and Jeopardy.

You can use any of the following types of APl monitoring tools:

JMX MBeans

Prometheus

Elasticsearch

Dynatrace

o Note: For more information about these monitoring tools, you can visit the
documentation pages of the respective tool.

JMX MBeans

Before you begin
Install visualVM tool and MBeans plug-in on your machine.

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description
monitoringSystem JMX The monitoring system to view the application
metrics.

TIBCO® Order Management Administration



124 | Administration Tasks

Property Name Value Description

(Default: Null)

Set the value (such as JMX, prometheus, elastic,
dynatrace) as per the required tool. You can also set
multiple values here by comma separating them.

2. Open the MBeans tab in the VisualVM tool to view the metrics.

3. For the remote connection, you can add the following values in the start.sh script
of OM services:

Dcom.sun.management.jmxremote=true
Dcom.sun.management.jmxremote.port=port_no
Dcom.sun.management.jmxremote.authenticate=false
Dcom.sun.management.jmxremote.ssl=false
Djava.rmi.server.hostname=<hostname> or <host_ip>

Dcom.sun.management.jmxremote.rmi.port=port_no

Prometheus

Procedure

1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description
monitoringSystem prometheus The monitoring system to view the application
metrics.

(Default: Null)

Set the value (such as JMX, prometheus,
elastic, dynatrace) as per the required tool.

TIBCO® Order Management Administration



125 | Administration Tasks

Property Name Value Description

You can also set multiple values here by
comma separating them.

2. Add prometheus in the management.endpoints.web.exposure.include property
value in the ConfigValues_Common.json file.

3. Open the OM management prometheus
http://<host>:<port>/management/prometheus endpoint to view the metrics. You
can also install the Prometheus application to view the prometheus metrics in a
graphical representation.

Elasticsearch

Before you begin
Install the Kibana tool on your machine.

Procedure
1. Set the following config values in the ConfigValues_Common.json file:

Property Name Value Description
monitoringSystem elastic The
monitoring

system to view
the application
metrics.

(Default: Null)

Set the value
(such as JMX,
prometheus,
elastic,

TIBCO® Order Management Administration



126 | Administration Tasks

Property Name Value Description

dynatrace) as
per the
required tool.
You can also
set multiple
values here by
comma
separating
them.

management.metrics.export.elastic.enabled true Determines
whether to
enable the
Elastic metrics
or not

management.metrics.export.elastic.host http://localhost:9200 Elastic search
Url

management.metrics.export.elastic.index micrometer-metrics Management
Metrics Elastic
Index

management.metrics.export.elastic.step 1m Time interval
for sending
metrics

management.metrics.export.elastic.userName client's ElasticSearch ~ ElasticSearch
User name (Default =  User name
"NULL")

management.metrics.export.elastic.password  client's ElasticSearch ~ Encrypted

Password (Default = ElasticSearch
"NULL") Password

TIBCO® Order Management Administration



127 | Administration Tasks

Property Name

management.endpoints.jmx.exposure.include

management.endpoint.loggers.enabled

management.endpoints.jolokia.enabled

2. Open the Kibana tool to view the metrics.

Dynatrace

Before you begin
Install the Dynatrace tool on your machine.

Value

*

true

true

Description

Specifies the
resource
metric
endpoints to
expose, such
as health and
loggers.

Specifies
whether to
enable the
loggers
endpoint. This
is a Boolean
property; it
can be either
true or false.

Specifies
whether to
enable the
Jolokia
endpoint. This
is a Boolean
property; it
can be either
true or false.

TIBCO® Order Management Administration



128 | Administration Tasks

Procedure

1. Set the following config values in the ConfigVvalues_Common.json file:

Property Name

monitoringSystem

management.metrics.export.dynatrace.uri

management.metrics.export.dynatrace.api-token

management.metrics.export.dynatrace.device-id

Value

dynatrace

The host on
which the
Dynatrace
tool is
installed

Access token
generated
from the
Dynatrace
tool

The Id of the
device on
which the
Dynatrace
tool is

Description

The monitoring
system to view the
application metrics.

(Default: Null)

Set the value (such
as JMX,
prometheus, elastic,
dynatrace) as per
the required tool.
You can also set
multiple values
here by comma
separating them.

The host on which
the Dynatrace tool
is installed

Access token
generated from the
Dynatrace tool

The Id of the device
on which the
Dynatrace tool is
installed

TIBCO® Order Management Administration



129 | Administration Tasks

Property Name

management.metrics.export.dynatrace.step

management.metrics.export.dynatrace.enabled

2. Add "dynatrace" as value for Dynatrace in the

Value Description
installed
im Time interval for

sending metrics

true Determines whether
to enable the
dynatrace metrics
or not.

(Default: false)

management.endpoints.web.exposure.include property value in the Configvalues_

Common. json file.

3. Open the Dynatrace tool to view the metrics.

Debugging tools for production

Read BLOB data from Database

To read the binary large object (BLOB) data from the database, perform the following

procedures:

Procedure
1. For PostgreSQL, run the following command:

select encode(<column name>, 'escape') from <table name>;

2. For Oracle, perform the following steps:

a) Run the upgrade script which creates a function used to read BLOB data.

b) Run the following command to read the BLOB data:

select blob_to_clob(<column name>) from<table name> where

TIBCO® Order Management Administration



130 | Administration Tasks

filename="'<file name>'

GET REST APIs in Catalog Service and AOPD

Through these APIs, you can verify the models that you have published.
GET APIs in Catalog: Fetch data from the database (Relational)

Endpoint: http://<host_address>:<port_address>/vl/<actionModel>/bulk or
<planFragmentModel>/bulk or <productModel>/bulk

Method: GET

Fill the actionModelidList, planFragmentModelldList, or productModelldList fields and
click Execute.

All the models are retrieved from the database (Redis or Relational) that are published.
GET APIs in AOPD: Fetch data from the in-memory cache.

Endpoint: http://<host_address>:<port_address>/<actionModels> or
<productModels>

Method: GET

Fill the actionModelldList or productModelldList fields and click Execute.
All the models are retrieved from the in-memory cache and displayed.

GET API in Orchestrator: Fetch data from the in-memory cache.
Endpoint: http://<host_address>:<port_address>/<planFragments>
Method: GET

Fill the planFragmentldList field and click Execute. All the models are retrieved from the
in-memory cache and displayed.

Note: If the enableProductModelGlobalCache, enableActionModelGlobalCache,
and enablePlanFragmentGlobalCache flag values are true, then only this GET
API works.

TIBCO® Order Management Administration



131 | Administration Tasks

Scaling of Order Management microservices

Previously, till the TIBCO® Order Management - Long Running 5.0.0 release, for each order
management microservice node, member IDs were required to be registered in the domain
member tables. The major drawback of this approach is that, whenever a new node is
added to the existing cluster, you must restart the existing microservice nodes.

Now, you can scale any of the microservices as per the incoming load without restarting or
configuring a separate new member. Any deployment topology can be used to and order
management microservices can be started behind an external load balancer (when you
choose to use SOAP over HTTP or RESTful interfaces). You can replicate microservice nodes
at run time without the need to restart any of the existing microservices.

The following examples show the scaling of microservices:

Cloud Platform
Kubernetes Cluster

Zone: 1-a Zone: 1-b Zone: 1-c
x seme el s s s s s B S w & API Requests

Q - 0w —€)-
@ : Cloud Cloud Cloud —

: Namespace-1

00

Load External DNS
Balancing IP
Addresses

Kubernetes Cluster

Zone: 1-a Zone: 1-b Zone: 1-c

o Namespace-1

00
oo

AOPD Service

similar deployment for other OM services - catalog-service, authorization-service, data-service, archival-service

TIBCO® Order Management Administration



132 | Administration Tasks

On-Premises Deployment of Order-Management Microservices

Orchestrator Cluster AOPD Cluster

©0
©0
©0
©0
©0
©0

Orchestrator Services . : AOPD Services

API Requests

<———request to the loadbalancer o0
) ]

Catalog Cluster Archival Cluster

00
00
00
|
00
00
00

Catalog Services i 3 Archival Services

similar deployment for other OM services - catalog-service, authorization-service, data-service, archival-service

orderPriority

This section describes the orderPriority process.

orderPriority enables the user to set priority on submitted orders. This information is then
used by the JMS broker to deliver the high priority orders to downstream components.
orderPriority is also propagated to downstream process components. The priority value
ranges from 0 to 9. The priority information or priority value to process any given order is
set in the JMSHeader field of the JMS message that is sent to the Orchestrator Engine in
Fulfillment Order Management.

The JMS broker then delivers the order based on a priority. The process of order
prioritization works at a queue level and can be controlled by the JMS broker.

TIBCO® Order Management Administration



133 | Administration Tasks

Note: The orderPriority process or order prioritization cannot be controlled once
the message is delivered to the orchestrator engine. The priority value can be
changed before the JMS broker sends the order request to the engines.

Order Schema Changes

You can use the order schema to submit the orderPriority information with the order. The
orderPriority is at the orderHeader level and the same priority is applied to all the
orderLines.

The schema snippet is as follows:

<xs:element name="orderPriority" minOccurs="0" default="4">
<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0" />

<xs:maxInclusive value="9" />

</xs:restriction>

</xs:simpleType>

</xs:element>

The orderPriority can take values ranging from 0 to 9 to make them consistent and map
with JMSPriority message header values.

o Note: The default value of the orderPriority field is 4.

Lower Priority Orders

When any order is processed based on the given priority, it results in a situation where a
lower priority order may never be processed because of high priority orders.

The orders with a lower priority can be processed by a mechanism known as Flow Control.

You can use Enterprise messaging Service (EMS) to control the flow of messages to a
destination. Each destination can specify a maximum target size for storing all the pending
messages. When the target is reached, EMS blocks message producers when new messages

TIBCO® Order Management Administration



134 | Administration Tasks

are sent. This effectively slows down message producers until the message consumers can
receive the pending messages.

Tuning Data Source

You can use data source tuning to boost the performance of the relational data source in
the server application. Allocating and deallocating resources for data sources is not so easy
in terms of time and system resources. During the application startup, you can create a
pool of database connections in advance and make these connections available to the
application.

For TIBCO Order Management, you can configure the following properties for data source
tuning as per your requirements. For description and more information about the
properties, see the Tomcat JDBC Connection Pool documentation.

Microservice Property Description

AOPD catalogDsTestOnBorrow Enables
connection
validation

before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation
interval in
milliseconds

catalogDsTestWhileldle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction

TIBCO® Order Management Administration


https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html

135 | Administration Tasks

Microservice Property Description
interval in
milliseconds

catalogDsMinEvictableldleTimeMillis Minimum time

in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per
eviction run

catalogDsDefaultAutoCommit Default auto-
commit state
of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the

TIBCO® Order Management Administration



136 | Administration Tasks

Microservice Property

catalogDsCustomProperty

Orchestrator catalogDslnitializeSize

catalogDsMaxldle

catalogDsMaxActive

catalogDsMaxWait

catalogDsTestOnBorrow

Description
pool

Database
custom

property

Number of
connections
established
when the
connection
pool starts

Maximum
number of
connections to
keep in the
idle pool

Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

Maximum time
in milliseconds
the pool will
wait when
there are no
available
connections

Enables

TIBCO® Order Management Administration



137 | Administration Tasks

Microservice Property Description

connection
validation
before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation
interval in
milliseconds

catalogDsTestWhileldle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction
interval in
milliseconds

catalogDsMinEvictableldleTimeMillis Minimum time
in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per

eviction run

catalogDsDefaultAutoCommit Default auto-
commit state

TIBCO® Order Management Administration



138 | Administration Tasks

Microservice Property Description

of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the

pool
catalogDsCustomProperty Database
custom
property
Archival archivalHibernateShowSql Enables

Hibernate to
show queries

archivalDslInitialSize Number of
connections
established
when the
connection
pool starts

TIBCO® Order Management Administration



139 | Administration Tasks

Microservice Property

archivalDsMaxWait

archivalDsMaxActive

archivalDsMaxIdle

archivalDsMinldle

archivalDsTestOnBorrow

Description

Maximum time
in milliseconds
the pool waits
for a
connection to
be returned
before
throwing an
exception

Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

Maximum
number of
connections to
keep in the
idle pool

Minimum
number of
established
connections to
keep in the
pool at all
times

Pooled data
source test on
borrow

TIBCO® Order Management Administration



140 | Administration Tasks

Microservice Property Description

archivalDsValidationInterval Pooled data
source
validation
interval

Catalog catalogDsMaxldle Maximum
number of
connections to
keep in the
idle pool

catalogDsMaxActive Maximum
number of
active
connections
that can be
allocated from
this pool at
the same time

catalogDsMaxWait Maximum time
in milliseconds
the pool will
wait when
there are no
available
connections

catalogDsTestOnBorrow Enables
connection
validation
before being
borrowed from
the pool

catalogDsValidationInterval Data source
validation

TIBCO® Order Management Administration



141 | Administration Tasks

Microservice Property Description

interval in
milliseconds

catalogDsTestWhileldle Enables
connection
validation
while idle in
the connection
pool

catalogDsTimeBetweenEvictionRunsMillis Data source
eviction
interval in
milliseconds

catalogDsMinEvictableldleTimeMillis Minimum time
in milliseconds
an object must
sit idle in the
pool before it
is eligible for
eviction

catalogDsNumTestsPerEvictionRun Data source
tests per
eviction run

catalogDsDefaultAutoCommit Default auto-
commit state
of connections
created by this
pool

catalogDsRollbackOnReturn Enables
rollback of any
pending
transaction

TIBCO® Order Management Administration



142 | Administration Tasks

Microservice Property Description

when a
connection is
returned to the
pool

catalogDsCommitOnReturn Enables
commit of any
pending
transaction
when a
connection is
returned to the
pool

catalogDsCustomProperty Database
custom

property

Catalog Caching

Catalog caching improves the performance and scalability of applications by reducing the
need to repeatedly fetch the same data from the database. You can configure the following
properties for catalog caching according to your requirements:

Microservice Property Description

AOPD maxNoProductcached Maximum number of product
catalogs stored in cache

enableProductModelGlobalCache Enables global caching for the
product catalog

productCacheExpiryPeriod Product catalog cache expiry period
in seconds

TIBCO® Order Management Administration



143 | Administration Tasks

Microservice

Orchestrator

Common

Property

maxNoActioncached

enableActionModelGlobalCache

actionCacheExpiryPeriod

enablePlanFragmentGlobalCache

maxNoPlanFragmentcached

planFragmentCacheExpiryPeriod

globalCacheCleanupTopicName

enableProductScoringAndLedger

cmPluggableCache

enablePriceScoringAndLedger

enableDiscountScoringAndLedger

Description

Maximum number of action catalogs
stored in cache

Enables global caching for the
action catalog

Action catalog cache expiry period
in seconds

Enables global caching for the plan-
fragment catalog

Maximum number of plan-fragment
catalogs stored in cache

Plan-fragment catalog cache expiry
period in seconds

Global cache cleanup topic name

Enables product scoring To enable
model scoring and ledger, set the
enableProductScoringAndLedger
value to true for the product model
in the ConfigValues_Common.xml file

Decides whether to use Redis or
Relational in the application

Enables price scoring. To enable
model scoring and ledger, set the
enablePriceScoringAndLedger
value to true for the price model in
the ConfigValues_Common.xml file.

Enables discount scoring. To enable
model scoring and ledger, set the

TIBCO® Order Management Administration



144 | Administration Tasks

Microservice Property Description
enableDiscountScoringAndLedger
value to true for the discount model
in the ConfigValues_Common.xml
file.

Catalog globalCacheCleanNotificationTopic The name of the global cache

cleaning topic, used for sending
notifications about the model that
has been modified or purged.

Integrate Inventory Information in AOPD Plan

Generation

In the Automated Order Plan Development (AOPD), integrating inventory information into
plan generation is a critical process. The following properties determine how inventory

information is integrated into the plans.

Property

mergelnventory

inventoryUsername

inventoryPassword

Description

Determines whether the functionality for
merging inventory is activated during plan
generation.

Possible values: true or false
Default: false
Username used for authentication with the

services of TIBCO Product Service and
Inventory.

Password used for authentication with the

services of TIBCO Product Service and
Inventory.

TIBCO® Order Management Administration



145 | Administration Tasks

Property Description

inventoryBaseUrl Base URL containing the host and port for
accessing TIBCO Product Service and
Inventory.

When submitting an order request, including PartyId is mandatory. This identifier can be
provided as either CustomerId or SubscriberId. TIBCO Order Management evaluates the
mergeInventory property to decide on the integration of inventory information into plan
generation.

e When mergeInventory is true

Order management retrieves inventory information from Product Service and
Inventory using the credentials and base URL specified by inventoryUsername,
inventoryPassword, and inventoryBaseUrl. The system integrates the retrieved
inventory data into the plan, customizing it according to the specifics of the order
request.

e When mergeInventory is false

The inventory merging process is skipped. Plan generation continues without
incorporating live inventory data, relying on the information available at the request
time.

Integrate TIBCO OPE with Order Submission
Process

Activating the isEnableOfferValidation property integrates TIBCO Offer and Price Engine
with the order submission process. This ensures integration so that the order adheres to
specified criteria before completion.

With isEnableOfferVvalidation set to true, Offer and Price Engine initiates the validation
process. The process examines the order ID to verify the validity of the offer associated
with the order.

e Valid orders: Orders that meet the validation criteria are submitted.

 Invalid orders: For orders that do not meet the criteria, the system takes actions as
defined by the validation failure handling protocol.

TIBCO® Order Management Administration



146 | Schema References

Schema References

You can find JSON schema definitions on the following URL for all the respective services.

http://<host>:<port>/v3/api-docs (Example: If the Orchestrator is running on localhost
and port 9093(default), then the API doc is available on http://localhost:9093/v3/api-

docs).

The following list represents the common schema definition present in Order Management
services:

e Plan Item

e Product Model

e Result Status

e Message

e Order Request

e Order Request Header
e Order Request Line

* Process Component Model

TIBCO® Order Management Administration



147 | Schema References

Plan Item

Plan Item
& Planitem PlanFragmentModel
[e] planltemld string [l planFragmentid string
[€] planltemMame [0.1] string [e] planFragmentName string
[e] description [0.1] string [ planFragmentVersion [0.1] string
[€] planFragmentUniqueld string [el owner [0.1] string
[e] planFragment [0.1] PlanFragmentModel [&l record_Type [0.1] string
[€] orderLine [1.*]1 (orderLineType) [l errorHandler string
[e] action string [l retry [0.1] (retryType)
[e] status string [#] section [1.%] Section
[e] statusChanged dateTime
[€] pcRequestType [0.1] string (orderLineType)
[ milestone [0.5] PlanitemMilestone [l orderlineNumber  string
[e] parentld [0.] string [2] eol boolean
[e] childld [0.%] string
@ siblingld [0.4] string PlanitemMilestone
[€ dependentld [0.5] string [] milestoneld string
[&] startTimestamp [0.1] long (€l description [0.1] string
[l endTimestamp [0.1] long (€] ready boolean
[€] cancelled [0.1] boolean 8] readyTime [0.1] dateTime
[&] isNonExecuting [0.1] boolean (&) status string
[] isNoReciprocalAction  [0.1] boolean (€] statusChanged dateTime
[E udf [0.3] Udf [e] dependency [0.%] Dependency
udf
[E] name (nameType)
[e] value string
[e] extension [0.1] Extension
Element Type Cardinality  Description
planltem/planitemID String Required A unique identifier for
the plan item within the
plan to be executed.
planltem/description String Optional Description for the plan
item to be executed.
planitem/processComponentID String Required A unique identifier for

TIBCO® Order Management Administration



148 | Schema References

Element Type Cardinality  Description

the Process Component
to be executed.

planltem/processComponentName String Required Process component
name for the Process
Component to be
executed.

planitem/processComponentVersion String Optional Process component
version for the Process
Component to be
executed.

planitem/processComponentType String Optional Process component type
for the Process
Component to be

executed.
planitem/processComponentRecordTy  String Optional Class of
pe processComponentType.
planitem/orderLine Type 1-M Order line type for the
plan item to be
executed.
planitem/orderLine/orderLineNumber String Required Order line number for

the order line of the
plan item to be
executed.

planitem/orderLine/productID String Required Product ID for the order
line of the plan item to
be executed.

planltem/orderLine/productVersion String Optional Product version for the

order line of the plan
item to be executed.

TIBCO® Order Management Administration



149 | Schema References

Element Type Cardinality  Description

planltem/orderLine/action String Required Order line action for the
order line of the plan
item to be executed.

planltem/orderLine/actionMode String Optional Order line action mode
for the order line of the
plan item to be
executed.

planitem/orderLine/quantity Long Required Quantity for the order
line of the plan item to
be executed.

planitem/orderLine/uom String Required Unit of measure for the
order line of the plan
item to be executed.

planitem/orderLine/subscriberlD String Optional Subscriber ID for the
order line of the plan
item to be executed.

planitem/orderLine/linkID String Optional Link ID for the order line
of the plan item to be
executed.

planitem/orderLine/inventoryID String Optional Inventory ID for the

order line of the plan
item to be executed.

planitem/orderLine/eol Boolean Required End of line flag for the
order line of the plan
item to be executed.
This indicates that this
plan item is the final
plan item for the order
line.

TIBCO® Order Management Administration



150 | Schema References

Element Type Cardinality  Description

planltem/action String Required Plan item action for the
plan item to be
executed.

planltem/actionMode String Optional Plan item action mode

for the plan item to be
executed.

TIBCO® Order Management Administration



151 | Schema References

Product Model

ProductModel

[e] ItemSpecs. [0.5]
[e] Product [0.1]
[&] affinityActionGroup [0.11
[e] affinityActionValue [0.1]
[€] affinityCondition [0.1]
[ affinityCorrelation [0.1]
[e] affinityParentGroup [0.1]
== [€] affinityPlanFragments [0.11
[ affinityType [0.1]
[e] characteristics [0.%]
[€] endDate [0.1]
[e] incompatibleWithProduct [0.%]
[€ plan [0.%]
[ planFragments [0.11
[e] startDate [0.1]

ItemSpecification
Product
boolean
string

string

string
boolean
PlanFragment
string
Characteristic
dateTime
Product

Plan
PlanFragment
dateTime

ItemSpecification
[E affinityGroup [0.%1 AffinityGroup
(2] characteristics [0.7] Characteristic
[2] dependentOnProduct [0.#] DependentOnProduct
[ endDate [0.1] dateTime
[e] incompatibleWithProduct [0.*] IncompatibleWithProduct
[ itemSpecs [0.%] ItemSpecification
[&] mustComplete [0.1] boolean
[e] planfragments [0.1]1 PlanFragment
[ product [0.1] Product
[#] singleUse [0.1] boolean
[e] startDate [0.1] dateTime
Product
[ description [0.1] string
(2] lastModifiedOn [0.1] dateTime
[e] owner [0.1] string
[ productld string
PlanFragment

[e] planFragmentiD string
[ planFragmentUniqueld_CANCEL [0.1] PlanFragmentUniqueldCANCEL
[l planFragmentUniqueld_CEASE [0.1] PlanFragmentUniqueldCEASE
[®] planfragmentUniqueld_PROVIDE [0.1] PlanFragmentUniqueldPROVIDE
[#] planFragmentUnigueld_UPDATE  [0.1] PlanFragmentUnigueldUPDATE
[#] planFragmentName string
[e] planfFragmentVersion [0.1] string
[El owner [0.1] string
[ record_Type [0.1] string
[e] errorHandler string
[El retry [0.1] PlanFragmentModelRetry
[e] section [0.%] Section

Characteristic
[&] actionlD [0.1] string
[l conditional [0.1]) string
[e] description [0.1] string
[ evaluationPriority [0.1] string
[#] instanceCeaseSequence  [0.1] string
[e] instanceMax [0.1] int
[ instanceMin [0.1] int
[#] instanceOptional [0.1] string
[e] instanceSequence [0.1] string
[l instanceUpdateSequence [0.1] string
(2] name [0.1] string
[e] simpleRule [0.7] SimpleRule
(& value [0.7] Values

Plan
[e] action [0.1] string
[2] actionMode [0.1] string
[#] affinity [0.1] boolean
[ affinityActionGroup [0.1] boolean
[E affinityActionValue [0.1] string
[ affinityCondition [0.1] string
[e] affinityCorrelation  [0.1] string
[#] affinityParentGroup [0.1] boolean
[ affinityType [0.1] string
[2] description [0.1] string
[l milestone [0.%] Milestone
{2l name [0.1] string

TIBCO® Order Management Administration



152 | Schema References

Element Type Cardinality  Description

ItemSpecs Item Specification Optional Relationship
information tag.

Product Product Mandatory product
information tag.

affinityActionGroup Boolean Optional Valid for
Conditional type
only. A Boolean
field containing
the value true or
false.

affinityActionValue String Optional AffinityActionValue
is considered for
grouping when
AffinityActionGrou
p is set to true.
This is valid for
Conditional type
only.

affinityCondition String Optional Valid for
Conditional type
only. A String field
containing an
XPATH expression
that evaluates to
true or false based
on data is in the
order.

affinityCorrelation String Optional Valid for
Conditional type
only. The XPATH is
evaluated on the
Plan data and the

TIBCO® Order Management Administration



153 | Schema References

Element

affinityParentGroup

affinityPlanFragments

affinityType

characteristics

endDate

incompatibleWithProdu
ct

plan

planFragments

startDate

Type

Boolean

Plan Fragment

String

Characteristic

Date Time

Product

Plan

Plan Fragment

Date Time

Cardinality

Optional

Optional

Optional

Mandatory

Optional

Optional

Optional

Optional

Optional

Description
order data.

Valid for
Conditional type
only. A Boolean
field containing
the value true or
false.

Affinity plan
fragment.

For a plan this is
the type of affinity
grouping required.

Characteristic type.

End Date for the
record to be
effective.

Incompatible
relationship

Planfragment
relationship tag.

It provides
configuration
information for a
Process
Component/Plan
Fragment.

start Date

TIBCO® Order Management Administration



154 | Schema References

Element
affinityGroup

dependentOnProduct

mustComplete

singleUse

description

lastModifiedOn

owner

productld

planFragmentID

planFragmentUniqueld_
CANCEL

planFragmentUniqueld_
CEASE

planFragmentUniqueld_
PROVIDE

Type
Affinity Group

Dependent On Product

Boolean

Boolean

String

String

String

String

String

planFragmentUniqueldCANCE
L

planFragmentUniqueldCEASE

planFragmentUniqueldPROVI
DE

Cardinality
Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Description
Affinity Group

Reverse
relationship

Must complete flag
for provisioning

Single use flag for
provisioning

Description of the
product model

Last modified date
of the record

owner

Identifier of
product record

Identifier of
planFragment
record

Planfragment
identifier for
CANCEL action

Planfragment
identifier for
CEASE action

Planfragment
identifier for
PROVIDE action

TIBCO® Order Management Administration



155 | Schema References

Element Type Cardinality  Description
planFragmentUniqueld_  planFragmentUniqueldUPDAT  Optional Planfragment
UPDATE E identifier for

UPDATE action

planFragmentName String Optional Name of process
component

planFragmentVersion String Optional Version of process
component

record_Type String Optional Record type

errorHandler String Optional Error handler to
use in case of
failure

retry PlanFragmentModelRetry Optional Retry type.

section String Optional Product model

section type.

actionlID String Optional Unique identifier of
Action record

conditional String Optional conditional
evaluationPriority String Optional Evaluation Priority
name String Optional Name of the

product model.

action String Mandatory Action for the plan
Item. Valid values
are:

* PROVIDE
e UPDATE

TIBCO® Order Management Administration



156 | Schema References

Element Type
actionMode String
affinity Boolean
milestone Milestone

Result Status

Result Status

I ResultStatus

[e] deployment string

[€] service string
[e] operation string

[e] component [0.1] string

[e] severity string
[e] code string
[e] message string

Cardinality  Description

e CEASE
e CANCEL

Optional Action mode. This
is optional
supplemental
information to go
with
OrderLineAction.
Valid value is:

MOVE

Optional Affinity value true
or false

Optional Milestone of the
plan

TIBCO® Order Management Administration



157 | Schema References

Element Type Cardinality Description

deployment String Required Engine deployment that returned this result.

service String Required Service name that returned this result

operation String Required Operation within the service that returned this
result.

component String Optional Component within the operation and service

that returned this result.

severity String Required Severity result. Valid values are:

1. S - Success

2. W-Warning
3. E-Error
code String Required Message code for this result.
message String Required Message details for this result.
Message
IMessage (udfType)
[e] lineNumber [0.1] string
[e] type string
[e] code string
[e] description string
[e] udf [0.*] (udfType)

TIBCO® Order Management Administration



158 | Schema References

Element Type Cardinality Description
lineNumber String Optional Order line number that this message refers to.
type String Required Message type. Valid values are:

1. Information

2. Warning

3. Error
Code String Required Message code for this message.
Description String Required Message text for this message.
udf Type 0-M User defined field type.
udf/name String Required User defined field name.
udf/value String Required User defined field value.

TIBCO® Order Management Administration



159 | Schema References

Order Request
Order Request

rdérRequest =l (orderReflType)

[e] orderRef (orderRefType)
[€] header HeaderRequest Sl
- Ellina [1.4] LineRequest [e] description [0.1] (descriptionType)

[e] orderPriority [0.1] (orderPriorityType)
[8l invoiceAddress [0.1] Address
[e] deliveryAddress [0.1] Address

[e] extension [0.1] Extension

[e] notes [0.1] {(notesType)
[el slald [0.%] string
[e] udf [0.7] Udf
[e] extension [0..1] Extension
[€] customerld [0.1] (customerldType)
[e] subscriberld [0.1] (subscriberldType)

[e] requiredByDate [0.1] dateTime
[e] requiredOnDate [0.1] dateTime

LineReguest

[E] lineMumber (lineMumberType)

[e]l subscriberld [0..1]1 (subscriberldType)

[e] productld (productldType)

[e] productVersion [0.1] (productVersionType)

[e] quantity long

&l uom (uomType)

[e] deliveryAddress [0.1] Address

[e] action string

[e] actionMode [0.1] (actionModeType)
===—[€] linkld [0.1] (linkldType)

[e] inventoryld [0.1] (inventoryldType)

[e] notes [0.1] (notesType)

[e] slald [0.#] string

[e] udf [0.%] Udf

[e] characteristic [0.*] OrderCharacteristic
[e] customerltemld [0.1] (customerltemldType)
[e] extension [0..1]1 Extension

[e] requiredByDate [0.1] dateTime

[e] requiredOnDate [0.1] dateTime

Extension

(€] element [0.*] string

TIBCO® Order Management Administration



160 | Schema References

Element
orderRef

header

line

extension

extension/#any

Type

String

Type

Type

Type

Any

Cardinality
Required

Required

1-M

Optional

Required

Description
External unique identifier for an order.

Order request header type. Refer to the
Order Request Header definition for details.

Order request line type. Refer to the Order
Request Line definition for details.

Extension attributes for user-defined fields.

Any data

TIBCO® Order Management Administration



161 | Schema References

Order Request Header

Order Request Header

HeaderReqguest (descriptionType)
[e] description [0.1] (descriptionType)
[e] orderPriority [0.1] (orderPriorityType) [@
[e]l invoiceAddress [0.1] Address
Address
[e] deliveryAddress [0.1] Address
[e] line1 (line1Type)
[e] notes [0.1] (notesType)
= o [&] line2 [0.1] (lineZType)
[l slald [0.#] string o i S
_ i e . I|ne ; [0.11 (Ilne I_y;;e)
3
[5] extension [0.1] Extension = OC&_“W i (oc? lty-frype)
e
[ customerld [0.1] (customerldType) e DA Siegionlips)
i 2 [l country (countryType)
[e] subscriberld [0.1] (subscriberldType) |
- S [e] postCode (postCodeType)
[e] requiredByDate [0.1] dateTime - : T . o I PoTTS——
e t 1 5
gl requedtnite: 00 -daistime ‘ supplementaryLocation [0.1] (supplementarylocationType)
=l (notesType)
' udf
[& name (nameType)
[e] value string
[e] extension [0.1] Extension
Extension
[el element [0.*] string
(customerldType)
= (subscriberldType)
Element Type Cardinality Description
description String Optional Description for the order.
customerlD String Required Unique identifier for the
customer for this order.
subscriberID String Required Unique identifier for the
subscriber for this order.
requiredByDate DateTime Optional, Date and time when this order
Choice is required to start.

TIBCO® Order Management Administration




162 | Schema References

Element

requiredOnDate

invoiceAddress
invoiceAddress/linel
invoiceAddress/line2
invoiceAddress/line3
invoiceAddress/locality
invoiceAddress/region
invoiceAddress/country
invoiceAddress/postcode

invoiceAddress/
supplementaryLocation

deliveryAddress
deliveryAddress/linel
deliveryAddress/line2
deliveryAddress/line3
deliveryAddress/locality
deliveryAddress/region
deliveryAddress/country

deliveryAddress/postcode

Type

DateTime

Type

String
String
String
String
String
String
String

String

Type

String
String
String
String
String
String

String

Cardinality

Optional,
Choice

Required
Required
Optional
Optional
Required
Optional
Required
Required

Optional

Required
Required
Optional
Optional
Required
Optional
Required

Required

Description

Date and time by which this
order is required to complete.

Invoice address type.
Invoice address line 1.
Invoice address line 2.
Invoice address line 3.
Invoice address locality.
Invoice address region.
Invoice address country.
Invoice address post code.

Invoice address supplementary
location.

Delivery address type.
Delivery address line 1.
Delivery address line 2.
Delivery address line 3.
Delivery address locality.
Delivery address region.
Delivery address country.

Delivery address post code.

TIBCO® Order Management Administration



163 | Schema References

Element

delivery address/
supplementaryLocation

notes

slalD

udf
udf/name
udf/value

udf/extension

udf/extension/#any

extension

extension/#any

Type

String

String

String

Type
String

String

Type

Any

Type

Any

Cardinality

Optional

Optional

0-M

0-M
Required
Required

Optional

Required

Optional

Required

Description

Delivery address
supplementary location.

Order notes.

Unique identifier for an SLA
that is applied to this order.

User defined field type.
User defined field name.
User defined field value.

Extension attributes for user-
defined fields.

Any data

Extension attributes for user-
defined fields.

Any data

TIBCO® Order Management Administration



164 | Schema References

Order Request Line

Order Request Line

[e] characteristic [0.%]
[e] customerltemld  [0.1]
[e] extension [0.1]
[€] requiredByDate [0..1]
[e] requiredOnDate [0..1]

= LineRequest
[e] lineNumber {lineNumberType)
[e] subscriberld [0.1] (subscriberldType)
[e] productld (productldType)
[e] productVersion  [0.1] (productVersionType)
[e] quantity long
[e] uom (uomType)
[e] deliveryAddress [0.1] Address
[e] action string
[e] actionMode [0.1] (actionModeType)
[&] linkld [0.1] (linkldType)
[e] inventoryld [0.1] (inventoryldType)
(8] notes [0.1] (notesType)
[e] slald [0.#] string
[l udf [0.%] Udf

OrderCharacteristic
(customerltemldType)
Extension

dateTime

dateTime

= (lineMumberType)
(subscriberldType)
=l (productldType)

[EI {product\.’ersionTypej]

El (uomType)

Address
[e] line1 (line1Type)
[e] line2 [0.1] (line2Type)
[e] line3 [0.1] (line3Type)
[e] locality (localityType)
[€] region [0.1] (regionType)
[e] country (countryType)
[e] postCode (postCodeType)
[e] supplementarylocation [0.1] (supplementarylocationType)

= (actionModeType)
= (linkldType)
= (inventoryldType)
= (notesType)

udf
[e] name (nameType)
[€] value string
[e] extension [0.1] Extension

OrderCharacteristic

[e] name (nameType)
[€] description (descriptionType)
[e] value [0.%] (valueType)

[e] extension  [0.1] Extension

LEI {customerltemldType)]

Extension

[e] element [0.*] string

TIBCO® Order Management Administration




165 | Schema References

Order Line Characteristics

[t/ Ordercharacteristic =l (nameType)
[e] name (nameType)
ipti il
[e] description (descriptionType) R
[e] val 0.% lueT
value [0.7] (valueType) TaagTyod]

[el extension  [0.1] Extension
[el name (nameType)
El type (typeType)

[el value [0.1] (valueType)

(el valueFrom [0.1] (valueFromType)
ElvalueTo  [0.1] (valueToType)
[el extension [0.1] Extension

Extension

el element [0.%] string

Element Type Cardinality Description

lineNumber String Required Unique identifier
for this order line
within this order.

subscriberlD String Optional Unique identifier
for the subscriber
for this order

line.
productID String Required Product identifier
for this order
line.
productVersion String Optional Product version

for the product
for this order
line.

quantity Integer Required Quantity of the

product being
ordered.

TIBCO® Order Management Administration



166 | Schema References

Element Type Cardinality Description

uom String Required Unit of measure
of the product
being ordered.

deliveryAddress Type Required Delivery address
type.
deliveryAddress/linel String Required Delivery address
line 1.
deliveryAddress/line2 String Optional Delivery address
line 2.
deliveryAddress/line3 String Optional Delivery address
line 3.
deliveryAddress/locality String Required Delivery address
locality.
deliveryAddress/region String Optional Delivery address
region.
deliveryAddress/country String Required Delivery address
country.
deliveryAddress/postcode String Required Delivery address
post code.
deliveryAddress/supplementarylLocation String Optional Delivery address
supplementary
location.
action String Required Action for this
order line. Valid
values are:
1. Provide

TIBCO® Order Management Administration



167 | Schema References

Element

actionMode

requiredByDate

requiredOnDate

linkID

inventoryID

notes

slalD

Type

String

DateTime

DateTime

String

String

String

String

Cardinality

Optional

Optional,
Choice

Optional,
Choice

Optional

Optional

Optional

0-M

Description

2. Update

3. Cease

Supplementary
action mode for
the action.

Date and time by
which this order
line is required to
start.

Date and time by
which this order
line is required to
complete.

Unique identifier
used to link
across order lines
on this order.

Unique identifier
that identifies
this order line
product with an
entry in an
external
inventory
management
system.

Order line notes.
Unique identifier

for an SLA that is
applied to this

TIBCO® Order Management Administration



168 | Schema References

Element Type Cardinality Description
order line.

udf Type 0-M User defined field
type.

udf/name String Required User defined field
name.

udf/value String Required User defined field
value.

udf/extension Type Optional Extension

attributes for
user-defined

fields.
udf/extension/#any Any Required Any data
characteristic Type Required Characteristic
type.
characteristic/name String Required Characteristic
name.
characteristic/description String Required Characteristic
description.
characteristic/value Type 0-M Characteristic
value type.
characteristic/value/name String Required Characteristic
value name.
characteristic/value/type String Required Characteristic
value type.
characteristic/value/value String Optional Characteristic

TIBCO® Order Management Administration



169 | Schema References

Element

characteristic/value/valueFrom

characteristic/value/valueTo

characteristic/value/extension

characteristic/value/extension/#any

characteristic/extension

characteristic/extension/#any

customerltemID

extension

extension/#any

Type

String

String

Type

Any

Type

Any

String

Type

Any

Cardinality

Optional

Optional

Optional

Required

Optional

Required

Optional

Optional

Required

Description
value.

Characteristic
value from.

Characteristic
value to.

Extension
attributes for
user-defined
fields.

Any data

Extension
attributes for
user-defined
fields.

Any data

Customer item
unique identifier.

Extension
attributes for
user-defined
fields.

Any data

TIBCO® Order Management Administration



170 | Schema References

Process Component Model

Process Component Model

ProcessComponenfﬁode'l (retryType)
[€] processComponentID [0..1] string [€] retryFailed [0.1] boolean
[&] processComponentMame string [€l retryCount [0.1] integer
[e] processComponentVersion [0.1] string [ retryDelay [0.1] long
[e] processComponentType [0.1] string
[¢] processComponentRecordType [0.1] string Section
[e] errorHandler string [e] startMilestonelD string
[¢] retry [0.1] (retryType) [e] endMilestonelD string
[e] section [1.%] Section [€] riskRegion [0.1] (riskRegionType)
[€] typicalDuration [0.1] long
[e] maximumDuration [0.1] long
[e] actualDuration [0.1] long
Element Type Cardinality Description
processComponentID String Required A unique identifier for the
Process Component to be
executed.
processComponentName String Optional Process component name
for the Process Component
to be executed.
processComponentVersion String Optional Process component
version for the Process
Component to be
executed.
processComponentType String Optional Process component type
for the Process Component
to be executed.
processComponentRecordType String Optional Class of
processComponentType.

TIBCO® Order Management Administration



171 | Schema References

Element Type Cardinality Description

errorHandler String Optional Error handler to use in the
event of the Process
Component returning an
incomplete or unsuccessful
execution response

message.
retry Type Optional Retry type.
retry/retryFailed Boolean Required The flag indicating that the

orchestrator might retry
failed plan items.

retry/retryCount Integer Required Number of times the
Orchestrator might retry
the failed plan item before
referring it to the Plan Item
Failed Handler for manual
intervention.

retry/retryDelay Long Required Delay in msec between
calls to the Process
Component if the plan
item is retired.

section Type 1-M Process component model
section type.

section/startMilestonelD String Required Unique identifier for the
start milestone that
describes this section.

section/endMilestonelD String Required Unique identifier for the
end milestone that

describes this section.

section/typicalDuration Long Required Typical duration for this

TIBCO® Order Management Administration



172 | Schema References

Element Type Cardinality Description

section is in msec.

section/maximumDuration Long Required Maximum duration for this
section is in msec.

TIBCO® Order Management Administration



173 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO® Order Management Product
Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

» To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

e To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

TIBCO® Order Management Administration


https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-order-management
https://docs.tibco.com/products/tibco-order-management
https://support.tibco.com/
https://support.tibco.com/

174 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO® Order Management Administration


https://ideas.tibco.com/
https://community.tibco.com/

175 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, TIBCO Runtime Agent, TIBCO
Administrator, and Enterprise Message Service are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO® Order Management Administration


https://www.cloud.com/legal
https://scripts.sil.org/OFL

176 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Order Management Administration


https://www.cloud.com/legal

	Contents
	Deployment
	Recommended Setup for a TIBCO Order Management Development Environment
	Microservices
	Connecting TIBCO Order Management to TIBCO® EMS Server with SSL Enabled
	Configuring SSL for TIBCO® Order Management
	Configuring on the Cloud
	Enabling SSL for TIBCO® Order Management

	Configuring on-premises

	HTTP Connection Pool Configuration
	Configuring Authorization Server
	Inter-service Communication

	Configuration
	Queue Management
	Data Models
	Model Loading Process
	Online Model Loading
	Catalog Web Service Model Loading
	Offline Model Loading
	Setting up Catalog Client
	General Configuration Properties
	Authorization Properties
	JMS Configurations



	WebClient Configuration
	Order Management System Configuration
	User Interface Configuration
	URL to Access Order Management System UI Component
	Side Navigation for Order Management System UI
	Filtration of orders in Order Management System UI

	Override Planfragment Destination
	Managing Application Security
	Managing Users and Roles
	Changing the Default Roles of a User


	Authorization Service
	Registering a Tenant
	Update tenant information
	Get tenant information
	Delete tenant
	Create User
	Update User
	Get User
	Delete User
	Generating an authorization token
	Authorization Token APIs
	Generate OAuth Token



	Audit Trail
	Enabling Internal Error Handler Support

	Logging
	How Logging Works
	Contents of the Log Message

	APIs for Changing log-level
	Configuring Logging for Java Components


	Configuring Redis
	Configuring Microsoft SQL Server
	Configuring an External Identity Provider

	Administration Tasks
	Swagger API Reference
	Docker
	Building a Docker Image Without an Internet Connection
	Copying Files to Docker Context
	Building Docker Images
	Setting Up the .env File
	Configuring for Order Management Server Docker Containers
	Running the Docker Containers
	Extend Docker-Compose Files
	Modifying a Container Time-Zone
	Reading Container Logs
	Troubleshooting Error from Building Docker Images

	Order Sequencing
	Enabling or Disabling Order Sequencing

	Bulk Order Actions
	Bulk Actions
	WSDL Location
	Error Codes
	Invoke Bulk Order Operation
	Tracking the Request Status
	Logging
	Schema
	Bulk Order Schema
	Bulk Orders Operation Request Schema
	Bulk Orders Operation Response Schema

	Sample Request
	Sample Response

	Performing Bulk Actions On error Plans Items
	Multitenancy
	Creating and Configuring a Tenant
	Authorizing a Tenant

	Managing Health Check Endpoint
	Implementation of LDAP
	User Mapping from Directory Service to Order Management service

	Types of retries
	Messaging level
	Feasibility retry
	Plan fragment based retry
	Plan Item failure retry configurations
	Web client retry

	API Monitoring
	JMX MBeans
	Prometheus
	Elasticsearch
	Dynatrace
	Debugging tools for production
	Read BLOB data from Database
	GET REST APIs in Catalog Service and AOPD

	Scaling of Order Management microservices
	orderPriority
	Order Schema Changes
	Lower Priority Orders

	Tuning Data Source
	Catalog Caching
	Integrate Inventory Information in AOPD Plan Generation
	Integrate TIBCO OPE with Order Submission Process

	Schema References
	Plan Item
	Product Model
	Result Status
	Message
	Order Request
	Order Request Header
	Order Request Line
	Process Component Model

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

