TIBCS

TIBCO® Order Management

Concepts and Architecture

Version 6.1.0 | October 2024

@ CLOUd | Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

2 | Contents

Contents

Contents . 2
Introduction ... 4
About TIBCO Order Management ... 4
TIBCO Fulfillment Orchestration Suite Overview ... 4
TIBCO Fulfillment Orchestration Suite Components ..., 5
User Interface Integration 7
TIBCO® Order Management OVerview ... 9
Required ProdUCtS 10
Basic Order Management Concepts ... 11
Ordr 11
Characteristics 13
PrOdUCt 15
P AN 15
Plan oM 16
MileStONe 16
DEPENAENCY . . 17
Plan Fragment 20
Error Handling ... 21
SLA Notification ... 22
Plan Development 24
LI ECY Tl 25
O T 26
Order LiNe o 27
Order Amendment ... 27
PlaN 29
Plan e 30

TIBCO® Order Management Concepts and Architecture

3| Contents

MIleS O L 31

D P ENAENCY .o 32
Architecture ... 33
Orchestrator ... 51
Automated Order Plan Development ... 55
Process COMPONENTS 60
Feasibility Provider ... 61
Key Functionality 61
TIBCO Documentation and Support Services ... 62
Legal and Third-Party Notices 64

TIBCO® Order Management Concepts and Architecture

4 | Introduction

Introduction

This chapter gives an overview of the TIBCO Fulfillment Orchestration™ Suite, its internal
components, and infrastructure software. This includes information regarding all the TIBCO
Fulfillment Orchestration Suite components, user interface integration for the suite
components, and TIBCO Order Management components.

About TIBCO Order Management

TIBCO Order Management is a metadata driven order management and fulfillment system.
TIBCO Order Management is a component of the TIBCO Fulfillment Orchestration Suite.

TIBCO Fulfillment Orchestration Suite Overview

New technologies and network architectures enable communications service providers
(CSP) to create innovative converged product and service offerings, which are introduced
to have faster and shorter life cycles than previous service offerings to address a very
changing and competitive market.

In view of the rapid pace of change in technology, the industry is evolving to become a
contributor and not remain a mere consumer of technology. In this environment,
communications service providers face the challenge of defining, managing, and delivering
numerous complex products and variations to the market in the most effective way to
differentiate themselves. TIBCO has concentrated and structured its services around the
following points:

» New product offerings are designed and rolled out in a few weeks, including
implementation in the entire fulfillment chain.

e Customer orders are instantly fulfilled and provisioned in the network to maximize
customer experience.

e Customer orders come from a large variety of order entries such as customer self-
care portals, customer sales representative desks, or even network elements

TIBCO® Order Management Concepts and Architecture

5 | Introduction

detecting service access to apply fulfillment chain investment and support hardware
rationalization.

TIBCO provides communications service providers with a comprehensive and integrated
solution ready for complete end-to-end fulfillment automation. The TIBCO Fulfillment
Orchestration Suite defines new product and service offerings, associated fulfillment rules
and processes, and automates the delivery from order capture down to the service
activation in the network.

TIBCO Fulfillment Orchestration™ Architecture

Customers Order Entry Systems Enterprise Catalog
P = £
o 1 = £
i = =
| . .k g 5 z iy
Giiais E 3 \ E‘ 5 = O g
“1E = - 2q
055/B55 Systems customer order catoleg synchronization
TIBCO Fuitment i
- 4
— ™\ 7 Y
= §§ 5 Order Management 1
W px 1
E g \ -/) Catalog
B g
= : g 4)
&8¢ B o ,
™ Provisianing)
: L N\)
w; q i 3
=B E gstigtian commands Network & Service Elements
o =
20 ,‘/P"\\ 1 ; f-\\ r/"%s\‘
] [ey I""/érnadbanah { Mobile™y,
& \ \ nemens,) 'L,\"EtWDF'G.)

TIBCO Fulfillment Orchestration Suite Components

The TIBCO Fulfillment Orchestration Suite solution supports end-to-end order fulfillment
with order management, provisioning, and catalog.

The following are the constituents of the TIBCO Fulfillment Orchestration Suite:

e TIBCO® Order Management: TIBCO® Order Management is a metadata-driven order
management and fulfillment system, which allows the development of fulfillment

TIBCO® Order Management Concepts and Architecture

6 | Introduction

plans based on meta-data specified in product catalogs. Order fulfillment and service
provisioning are no longer a simple single-service or product workflow. The dynamic
bundled offerings along with the explosion of devices, applications, real-time
inventory management, and third-party content providers require a complex order
fulfillment system, which can adapt to the changes in processes, and metadata. The
traditional Operation Support System or Business Support System approach with the
data silos fails to provide a dynamic and agile solution.

TIBCO® Fulfillment Provisioning: TIBCO Fulfillment Provisioning is a provisioning
component that automates the activation of the underlying network services and
allocation of all the network resources. This provisioning element implements service
order management and resource order management TAM applications, aligns to
service and resource activator Operation Support System order management
components, uses eTOM service configuration and activation, and implements
resource provisioning processes and functions.

TIBCO® Product and Service Catalog: TIBCO Product and Service Catalog is a
catalog function that defines and manages the life cycles of commercial and
technical offerings.

TIBCO® Fulfillment Subscriber Inventory: TIBCO Product and Service Inventory
maintains a current image of customer products at any given point in time that
supports fast concurrent read or write access while ensuring data consistency. TIBCO
Product and Service Inventory also provides a rich, user-friendly web interface that
can be used to explore and modify the contents of the system in a safe and secure
manner.

Provisioning in the Orchestration Suite

Customers Order Entry Systems Enterprise Catalog

055/B55 Systems custmerorer cotsiog synemrEnRoton
TIBCO Fulfiment Orchestration Suite

Provisioning Element

QOrder Management Senice Order Management

eTOM = Service Configuration & Activation
0554 Order Management - Service Activator

Resource Order Management

eTOM- Resource Provisioning
0554 Order Management - Resource Activator

e Network & Sarvice Elements

- .
o) I\ I\

] o™y, [(Brondtardy, Moty

> natworks \ networls | networs
— | » - | ~ \ i,_

To enable TIBCO Fulfillment Orchestration Suite to provide a truly unified and cohesive
solution suite, different components of the suite have been integrated. For instance, the

TIBCO® Order Management Concepts and Architecture

7 | Introduction

suite provides predefined inter-connectivity between TIBCO Fulfillment Provisioning,
TIBCO® Order Management, and TIBCO Product and Service Catalog, a catalog concept,
alignment between TIBCO Product and Service Catalog and TIBCO Fulfillment Provisioning
through the data synchronization process, and a GUI integration for a similar look-and-feel.

User Interface Integration

TIBCO Order Management, and TIBCO Product and Service Catalog interact with each
other to provide a complete fulfillment solution. TIBCO Fulfillment Provisioning, another
optional component, enhances the overall fulfillment capability by providing a network
provisioning system capable of connecting directly to network elements.

The interaction among the three components is fully configurable through the user
interface to maintain their anonymity and to ensure that they can work independently.

Component Integration

I —
Order —

2| TIBCO Product
and Service

S Catalog
'“'-.______'_____..-"'

Management

Fulfillment
Provisioning

TIBCO Fulfillment Provisioning configuration is done through editable files including script
files, such as data mappers, cartridge configuration files, and routing services. The catalog
configuration allows you to define all the product catalog-related concepts, service catalog-

TIBCO® Order Management Concepts and Architecture

8 | Introduction

related concepts, and both depending on what catalog components are deployed. The
service catalog determines services and orders associated with a rendering process.

The BPMN standard is used for process modeling. It provides a single and standard process
modeling interface for both TIBCO Order Management and TIBCO Fulfillment Provisioning.

TIBCO Order Management and TIBCO Product and Service Inventory
Integration

TIBCO Product and Service Inventory component allows external users to assign inventory
for customers against orders. These inventories are stored in the TIBCO Product and
Service Inventory store. When an order for the same customer and product is made again,
the TIBCO Order Management Automated Order Plan Development engine synchronizes the
inventories for the customer from TIBCO Product and Service Inventory and generates the
plan accordingly. The TIBCO Order Management interface supplies the inventory to
Automated Order Plan Development to be considered when the plan generation occurs or
when a request is made for an execution plan. For more information, see the TIBCO Product
and Service Inventory User Guide.

TIBCO Product and Service Catalog and TIBCO Fulfillment Provisioning
Integration

The TIBCO Product and Service Catalog and TIBCO Fulfillment Provisioning component
integration help synchronize the TIBCO Fulfillment Provisioning service orders data into the
fulfillment catalog with a defined ownership. For more details, see the TIBCO Order
Management User Guide.

TIBCO Order Management and TIBCO Fulfillment Provisioning
Integration

The TIBCO Fulfillment Provisioning deployment and configuration with TIBCO Order
Management adds another distinct feature to the TIBCO Order Management (Orchestrator)
are routed to TIBCO Fulfillment Provisioning or a user-defined process component. The
routing is automated by using the message owner information. Based on the owner name,
a fulfillment request is sent to a particular component. For example, a fulfillment request is
sent to the TIBCO Fulfillment Provisioning component for all the orders with the owner
name 'FP".

TIBCO® Order Management Concepts and Architecture

9 | Introduction

TIBCO Order Management-TIBCO Fulfillment Provisioning- TIBCO Product and Service
Catalog Integration

Process
Component

Order Owner = 'Fulfillment Provisioning' Fulfillment
Management - - - - - - Provisioning

[]
1
1
JMS Queue
Data Model

: Crwner = 'FF'

\“h-. S — I
o - |
% ‘
User Input
Product and Owrar ==
Service Catalog 6

The user interface invokes the following TIBCO Fulfillment Provisioning features:
e Service Order Tracking
e Service Catalog Editor

 Interface Management

See the TIBCO® Fulfillment Provisioning User Guide for more details.

TIBCO® Order Management Overview

TIBCO® Order Management is a metadata-driven order management and fulfillment system,
which allows the development of fulfillment plans based on meta-data specified in product
catalogs. Order fulfillment and service provisioning are no longer a simple single-service or

TIBCO® Order Management Concepts and Architecture

10 | Introduction

product workflow. The dynamic bundled offerings along with the explosion of devices,
applications, and third-party content providers require a complex order fulfillment system,
which can adapt to the changes in processes and metadata. The traditional Operation
Support System or Business Support System approach with their data silos fails to provide
a dynamic and agile solution. An end-to-end order management system based on product
and service catalogs is a key differentiator of TIBCO® Order Management.

TIBCO® Order Management is a comprehensive software solution to design, deploy, and
maintain high-performance scalable enterprise-level business processes for advanced and
dynamic order fulfillment. TIBCO® Order Management enables companies to introduce
quickly new product offerings and in most cases requiring little or no change to fulfillment
processes. The product bundles are decomposed into existing products to automatically
generate a plan specific to the order.

TIBCO® Order Management also enables companies to manage efficiently changes to the
existing business process to meet the rapidly changing business environment.

Product model can be defined following SID 9 guidelines by using TIBCO Product and
Service Catalog or any other catalog management system and imported into TIBCO® Order
Management.

Required Products

TIBCO Order Management is designed based on generally available products supplied by
TIBCO. TIBCO Order Management bundles the following software together. See licensing
terms and the Installation Guide for more details.

TIBCO Enterprise Message Service™ (EMS)

TIBCO Enterprise Message Service™ provided the messaging backbone for the system. It
provides reliable and persistent messaging to distribute the load, decouple components
and to support high available and fault tolerance.

TIBCO® Order Management Concepts and Architecture

11 | Basic Order Management Concepts

Basic Order Management Concepts

In order to understand how TIBCO Order Management works and how to use it, it is
important to understand the key concepts. Those concepts are generic and are used
extensively through the documentation.

Order

In Order Management, the order is a key concept. The TIBCO Order Management fulfills
orders. Typically, an order lists products or services that must be fulfilled. External systems
might submit updates to the order but the components within TIBCO Order Management
might not change an order.

In the context of TIBCO Order Management as an order is composed of one or more order
lines. Each order line corresponds to a requested product.

TIBCO Order Management creates an execution plan for each order received. The plan is
computed by using a product model that is stored in a Product Catalog. The plan is
composed of one or more plan items.

Object Model

Qrder An Crvier is composed of 1.° Order Line An Crder Line dedivers a Product
Ordar Linas Prochus
A Order Ling may be fulliad
by 0™ Plan Items A Product i fuifiled by & Flan
An Onder gual:-.ﬁ::lgﬁ Fragment far a particular
e A Flan e may fullid 1. Action
Qrcdar Lires
Plan
Plan Plan ltem
& Plan ts composed of 1. Fragment
Flan ltams

& Plan Item is fulfiled by a
Process. Companer

A Process Comporenl is
desrribesd by a Flan
Fragmer

Process
Companant

TIBCO® Order Management Concepts and Architecture

12 | Basic Order Management Concepts

Plan fragment, plan item, and process component are all inter-related concepts. To clarify:

e Plan Item is one step in a plan that must be executed to reach the goal of fulfilling an
order. The plan item is configured with the name of the process component that
must be invoked to fulfill a product. The name of the process component is provided
by Automated Order Plan Development during plan development and gathered from
the product catalog by using the name of the product.

* Plan fragment is the model definition of a process component that fulfills a particular
product. The products are linked to plan fragments in the product catalog. The name
of a plan fragment is the same as the name of the process component that it
describes.

* Process component is the physical implementation of the tasks required to fulfill a
product. It is described by a plan fragment and invoked as a plan item step in a plan.

The logical relationship between order and order lines is shown in the following diagram:

TIBCO® Order Management Concepts and Architecture

13 | Basic Order Management Concepts

Order Logical Components

Order

QOrder Line 1
Product A

Order Line 2
Product B

Order Line 3
Product C

Order Line 4
Product D

Order Line 5
Product E

Characteristics

Characteristics might be of the following common predefined types:

» Feature: A distinct feature or capability of a product. In general, features distinguish
a product from other products of the same class. For example features of a mobile
device might include: SMS, Voice, MMS, 4G, Stereo Wireless Headset, Keyboard, and
so on. Features could also be chargeable or non-chargeable, for example. For billing
purposes a device that provides SMS capability could mean it might need an SMS
capable billing plan.

* Instance: Instance characteristics are similar to Features. The feature in question has

TIBCO® Order Management Concepts and Architecture

14 | Basic Order Management Concepts

a measurable quantity that is defined for each related product. An example would be
a discrete "Free 500 SMS Package" product could have an “Instance” characteristic
called “Free SMS”. This characteristic would have a relationship value = 500. Another
similar product could be created called “Free 1000 SMS Package”. It would have the
same “Free SMS” characteristic associated with it but have a relationship value =
1000.

e Input: These characteristics represent information values that have to be captured
and associated with the product at the time of order/order fulfillment. They generally
represent information that needs to be propagated to other systems or impacts the
fulfillment process. Input characteristics generally have no values until the order is
placed/fulfilled. An example of an Input characteristic could be a Mobile Station
International Subscriber Directory Number (phone number) allocated to a mobile
device, or a “Contact Address” captured for a business internet product at the time of
order.

e Shared: Indicates that the attribute is shared.
Identifying Common Characteristics

The common characteristics/udf in a plan item can be identified in two ways. You can also
switch between these two syntaxes by using a global variable EnableAffinityUDFParent in
the Automated Order Plan Development component.

1. One way to identify the common characteristics/udf in a plan item is explained as
follows:

For example, consider a scenario where there is an affinity between the two plan
items with User-Defined Fields sharing name but different values and they have plan
items decomposed from the same orderline. It was difficult to identify which plan
item the characteristic belongs to with the previous syntax. In the new syntax, the
value at the end of the last colon (:) is always comma-separated line numbers and it
becomes easier to correlate the characteristic on the basis of affinityProductID
and parentProductID. The changed User-Defined Field syntax is as follows:

<name:parentProductID:affnityProductID:linenumber>

Where:
e name = Name of the User-Defined Field.
* parentProductID = Parent of the affinity product ID.

e affnityProductID = Affinity product ID.

TIBCO® Order Management Concepts and Architecture

15 | Basic Order Management Concepts

e lineNumber = Comma-separated line numbers to denote from which order lines
these characteristics appeared.

This functionality can be enabled by setting the value of a global variable
EnableAffinityUDFParent to true. By default, this behavior is disabled.

2. The other way to identify the common characteristics/udf in a plan item is:

<UDF>:<0rderLineNumber>

Where:
UDF = Name of User-Defined Field OrderLineNumber = Comma-separated line
numbers to denote from which order lines these characteristics appeared

Product

A product is modeled in TIBCO Product and Service Catalog. Orders are composed of order
lines, with each order line corresponding to a particular product that is requested by a
customer.

For each product that a customer orders, a series of plan items must be completed for the
product to be provided. The link between product and plan item is maintained in the
TIBCO Product and Service Catalog. The rules defining how different products depend on
one another is also maintained in the TIBCO Product and Service Catalog. This then
translates into dependencies between plan items in the overall execution plan.

Plan

A plan represents the tasks to be completed to reach the fulfillment goal. An order only
ever has one plan associated with it, and one plan is only ever associated with a single
order.

To fulfill an order, a series of tasks must be executed in a defined sequence and on a
defined schedule. Sequencing and scheduling are modeled by dependencies between
tasks. Once all dependencies for a task have been satisfied, then that task might be run,
with the net result being the order is fulfilled by following the required steps in the correct
order.

Within this software, the series of tasks is represented by a plan object. The plan defines
how to fulfill an order as a series of tasks, or plan items. Plan items are the smallest units of
work recognized within this software; however, they might be composed of a series of

TIBCO® Order Management Concepts and Architecture

16 | Basic Order Management Concepts

subtasks that actually implement the work required. This can take the form of automated
back-end system invocations, manual tasks, or any other unit of work that might be
required.

Plan Item

As an order consists of order lines, a plan consists of plan items. Each plan item represents
a set of work that must be performed to fulfill an order. Order lines might map onto plan
items, but not necessarily. However, plan items always map onto at least one order line.
One order line might require multiple plan items to be fulfilled, and likewise, multiple order
lines might be fulfilled by a single plan item. An order line that does not require the
completion of any physical tasks is classified as non-executing and does not require a plan
item. The abstraction and logic required to map order lines into plan items is implemented
in Automated Order Plan Development as part of core TIBCO Order Management.

Milestone

Plan items are composed of a series of milestones, which represent critical points of
execution. All plan items have start and end milestones and might have zero to many
intermediate milestones. This is shown in the following diagram:

Plan items are composed of a series of milestones, which represent critical points of
execution. All plan items have start and end milestones. This is shown in the following
diagram:

Plan Item Milestones

<> Plan tem EP_B1 <>

START END
Milestone Milestone

0 <> Plan tem EP_B2 <> O

START MILE1 MILEZ ‘END
Milestone Milestone Milestone Milestone

TIBCO® Order Management Concepts and Architecture

17 | Basic Order Management Concepts

Plan Item Milestones

<> Plan ltem EP_B1 <>

START END
Milestone Milestone

In this example, plan item EP_B1 has only start and end milestones. This represents the
basic set of milestones that all plan items contain. Plan item EP_B2 has start milestone,
end milestone, and two intermediate milestones MILE1 and MILE2.

In this example, plan item EP_B1 has only start and end milestones. This represents the
basic set of milestones that all plan items contain.

Milestones represent the critical points during execution of a plan item and represent the
points where the Orchestrator can control execution of the plan item. Milestones are points
where dependencies might be attached to a plan item. Dependencies might be attached
only to start and intermediate milestones and might not be attached to any other point on
a plan item.

Milestones represent the critical points during execution of a plan item and represent the
points where the Orchestrator can control execution of the plan item. Milestones are points
where dependencies might be attached to a plan item. Dependencies might be attached
only to start and might not be attached to any other point on a plan item.

Dependency

Dependencies are conditions that must be satisfied before a milestone can be considered
ready. If a milestone is not yet ready, then execution might not proceed past the milestone.
In the case of a start milestone, the Orchestrator does not request execution of the
associated plan item until all attached dependencies are satisfied. In the case of an
intermediate milestone, the Process Component must halt execution at the milestone point
within its internal process model until notified by the Orchestrator that a milestone is
ready to fire. At that point the Process Component might continue execution. This
notification might occur while the Process Component is waiting at the milestone, or at
any point before execution reaches the milestone.

Dependencies are conditions that must be satisfied before a milestone can be considered
ready. If a milestone is not yet ready, then execution might not proceed past the milestone.
In the case of a start milestone, the Orchestrator does not request execution of the
associated plan item until all attached dependencies are satisfied. In the case of a

TIBCO® Order Management Concepts and Architecture

18 | Basic Order Management Concepts

milestone, the Process Component must halt execution at the milestone point within its
internal process model until notified by the Orchestrator that a milestone is ready to fire.
At that point the Process Component might continue execution. This notification might
occur while the Process Component is waiting at the milestone, or at any point before
execution reaches the milestone.

The dependency type is as follows:

» Time - satisfied when a certain time period has elapsed, or a certain absolute date
and time has been reached.

e Point - this dependency is satisfied by some milestone in another plan item that is

ready.

Time

Point

Time dependencies might take the form of an absolute date time, or a relative time
delta. If an absolute date and time is specified then this is translated into a time
delta from the point where plan execution begins. The time delta is specified in
milliseconds. Once the time delta period has passed, then the dependency is
considered satisfied.

Point dependencies rely on the execution sequence of other plan items to be
satisfied. When a parent plan item reaches a certain intermediate or end milestone,
then the dependency is satisfied. Point dependencies might use parent plan items
in the current plan or in a completely different plan. If a milestone is not specified,
then it is assumed that the end milestone must be made ready for the dependency
to be satisfied.

Some common point dependency scenarios are shown in the following diagram:

TIBCO® Order Management Concepts and Architecture

19 | Basic Order Management Concepts

Point Dependencies

Q

Plan Item EP_B1

EP_B1 begins execution immediately.

EP_B2 may only begin execution once
EP_B1 completes.

Plan Item EP_B2

Plan ltem EP_B1

MILE1 MILE2

EP_B1 begins execution immediately.

EP_B2 begins execution immediately
but may only proceed past MILE1 once
EP_B1 completes.

Q 5O

Plan ltem EP_B2 <> <>

MILE1

MILE2

Plan ttem EP_B1 <>_ <> EP_B1 begins execution immediately.
MILES MILES EP_B2 may only begin execution once
MILES on EP_B1 completes.
—)<> <> Plan ltem EP_B2
MILE1 MILE2
EP_B1 begins execution immediately
e >/> but may not proceed past MILE9 until
EP_B2 has completed MILEZ2.
MILES MILE9
EP_B2 may only begin execution once
MILES on EP_B1 completes.
H<> Plan ltem EP_B2
MILE1 MILE2

A milestone might have zero to many dependencies attached and dependency types might
be mixed between external, time, and point. A milestone might have multiple external and

TIBCO® Order Management Concepts and Architecture

20 | Basic Order Management Concepts

point dependencies, but only one time dependency is permitted. If a milestone does not
have any dependencies then it is made ready immediately. Otherwise the milestone is only
made ready once all dependencies are satisfied.

A milestone might have zero to many dependencies attached and dependency type is
Point. If a milestone does not have any dependencies then it is made ready immediately.
Otherwise the milestone is only made ready once all dependencies are satisfied.

Plan Fragment

A plan fragment is an abstraction of a process component that contains configuration
information that the orchestrator requires to handle errors and SLA notifications. Plan
fragments are optional. If no plan fragment is defined for a particular process component,
then the Orchestrator uses engine defaults to handle errors, and no SLA notifications occur.

During the evolution of a system it might be necessary to deploy multiple versions of a
process component simultaneously. To support this plan fragments might be versioned.
The relationship between plan fragments, versions, and process components is shown in
the following diagram:

Plan Fragment and Process Component Logical Components

Plan Fragment
PC_1000
Plan Fragment Version 1 F’rﬂ(;ﬁg;%%rgmnent
Plan Fragment Version 2 meg;%%’g%‘;"e"t
Plan Fragment Version 3 meg;%%’g%‘;"e"t

TIBCO® Order Management Concepts and Architecture

21 | Basic Order Management Concepts

Plan Fragment and Process Component Logical Components

Plan Fragment
PC_1000
‘_ . Process Component
Plan Fragment Version PC_1000

In this example plan fragment PC_1000 describes Process Component PC_1000. This
Process Component might be invoked by a plan item by using different versions. Therefore
plan fragment PC_1000 has Version 1 that maps the Process Component of the same
version. The base plan fragment always defines the currently active Process Component
version.

o Note: The jeopardy detection and rules for consequential action are not applied
for any execution containing process component mapping with no valid plan
fragment model.

Error Handling

In the event that a Process Component returns a failed or incomplete execution response,
the Orchestrator handles the error by using engine default configurations. Standard error
handling functionality is to retry the plan item for a defined number of times, with a
defined delay interval between invocations before referring it to the Plan Item Error
Handler with the name of a default error handler for manual intervention. If a plan
fragment is defined for a process component, these error handling properties might be
overridden.

If the retry override flag is set to true, then the plan fragment configuration for retry is used
instead of the engine configuration. The following parameters might be set:

* Retry count: the number of times to retry the plan item on failure before referring it
to the Plan Item Error Handler.

» Retry delay: the delay in msec to wait between plan item retries.

When invoking the Plan Item Error Handler, the Orchestrator specifies the error handling
module that is relevant for the plan item being submitted. Generally, this is a default error
handler, but the name of the error handler might be overridden by specifying it in the plan
fragment.

TIBCO® Order Management Concepts and Architecture

22 | Basic Order Management Concepts

For more information on how the Orchestrator manages the Plan Item Internal Error
Handler or External Error Handler component, see the "Plan Item Execute Response Event"
topic in the TIBCO® Order Management User Guide.

SLA Notification

SLA notifications are sent out by the Orchestrator when plan items exceed the expected
typical, threshold [specific percentage of maximum duration] and maximum execution
durations. These typical and maximum durations are modeled on plan fragment sections,
which represent the part of a plan item that runs between two milestones. For example:

Plan Fragment Sections

Plan Item EP_B1

END

Plan item EP_B2

MILE1

MILE2

END

Plan Fragment Section START > END

| Plan Fragment Section START > END

Plan Fragment Section
START > MILE1
Plan Fragment Section
MILE2 > END
Plan Fragment Section
MILE1 > MILE2

In this example plan item EP_B1 has an associated plan fragment with a single plan
fragment section that defines the typical and maximum execution duration between the
start and end milestones.

Plan item EP_B2 has an associated plan fragment also with a plan fragment section that
defines the typical and maximum execution duration between the start and end
milestones. But it also has three other sections that define typical and maximum execution
durations between start and milel, milel and mile2, and mile2 and end.

Plan fragment sections are also versioned, so they exist within the plan fragment hierarchy

as follows:

TIBCO® Order Management Concepts and Architecture

23 | Basic Order Management Concepts

Plan Fragment
PC_1000

— Plan Fragment Version 1

Plan Fragment Section
START > MILE1

Plan Fragment Section
MILE1 > MILE2

Plan Fragment Section
MILE2 > END

—— Plan Fragment Version 2

Plan Fragment Section
START > MILE1

Plan Fragment Section
MILE1 > MILE2

Plan Fragment Section
MILE2 > END

—— Plan Fragment Version 2

Plan Fragment Section
START > MILE1

Plan Fragment Section
MILE1 > MILE2

Plan Fragment Section
MILE2 > END

TIBCO® Order Management Concepts and Architecture

24 | Basic Order Management Concepts

Plan Development

During order plan development, the Orchestrator calls out to Automated Order Plan
Development to design the plan of action to fulfill an order. Automated Order Plan
Development analyzes the order and the Product Catalog and determine what plan items
must be executed and in what sequence to fulfill an order.

Automated Order Plan Development looks at the product on an order line and determines
one of the following scenarios:

The product is non-executing, in which case no plan item is required, and the order
line is marked as complete.

The product requires a single plan item. When this plan item completes then the
order line is marked as complete.

The product requires multiple plan items to be executed in a defined sequence. The
final plan item in the sequence is flagged as end-of-line (EOL). When this plan item
completes then the order line is marked as complete.

The product has previously been provisioned. The plan item or items is created as
above, but the status is set immediately to complete. The order line is also marked
as complete.

Plan item dependencies are determined by rules and the configuration of the product
model hierarchy

The logical relationship between order, order lines, plan, and plan items are shown in the
following diagram:

Order and Plan Logical Components

Order ‘ Plan
Order Line 1
— Product A Plan ltem EP_B1
| | Order Line 2
Product B

Product C

’ Plan Item EP_B3

Order Line 4

Product D Plan ltem EP_B4

Order Line 5
Product E

Plan Item EP_B5

TIBCO® Order Management Concepts and Architecture

25 | Basic Order Management Concepts

In this example, Automated Order Plan Development has analyzed the order and
determined the following:

1.

Order Line 1 orders Product A. This product is fulfilled by Process Component EP_B1.
This component has no dependencies so it begins execution immediately.

Order Line 2 orders Product B. This is a non-executing product because there is no
associated plan item and no execution occurs.

Order Line 3 orders Product C. This product is fulfilled by two process components
that execute in series EP_B2 followed by EP_B3. Component EP_B2 might only begin
execution once EP_B1 completes, and component EP_B3 might only begin execution
on EP_B2 completes.

Order Line 4 orders Product D. This product is fulfilled by Process Component EP_B4.
This component might only begin execution once EP_B1 completes.

Order Line 5 orders Product E. This product is fulfilled by Process Component EP_B5.
This component might only begin execution once both EP_B3 and EP_B4 are
complete.

Lifecycle

During fulfillment, the different entities managed by the Orchestrator go through a defined
status lifecycle.

TIBCO® Order Management Concepts and Architecture

26 | Basic Order Management Concepts

Order

The order lifecycle is shown in the following diagram:

Blocked Yes.

is order in
play for
customerKey

WITHDRAW G4 ErorHandler™, RETRYOPD

Order Stays in blocked til it s picked
once previous orders reaches final
state

Is Order

Enabled?,

Pending

Is
feasibility
enabled?

Send plan
generation
request to
AOPD

Reply Action

Is

OPDERROR

Plan
Generation
request sent
to AOPD

Is Plan

OPD Error
Handler

enabled?

Withdraw

Continue
Plan
Execution

Successful?

Start Plan
Execution

Sequencing

Send
feasibilty
request to
Feasibility
Provider

Feasibility

Is Order
Cancelled?

Cancelled

Is
feasibility

complotod? feasibility retry

done?

is
feasibility
error handiing
enabled?

No

Send Pre
Qualification failed
request to Feasiblity
Provider

RETRYOPD WITHDRAW

PQF
reply action

RETRYFEASIBILITY

Execution

Are all
planitems
completed or
Cancelled?

Plan Item Execute
Request dispatched for
all plan items in
Execution

Order Suspend
Request Recieved by
Orchestrator

v
Suspending

Plan Item Activate
Request dispatched
for all Plan items in

Suspended state

Plan Item Execute
Response or Plan item
suspend response
Received

No

Are all
plan items
suspended

Activate
order

Request
Received by
Orchestrator

TIBCO® Order Management Concepts and Architecture

27 | Basic Order Management Concepts

Order Line

The order line lifecycle is shown in the following diagram:

Order cancel
reguest

Cancelled

arrives in
Orchestrator

Start
\i
Once plan

execution
starts

y All plan items

associated
Pending

with order
lines are
completed

Yes—»{ Complete

Order Amendment

The order amendment lifecycle only occurs for orders that are currently executed. For
amendments that occur before execution, then any previous plan is simply discarded and
recreated by using the new order.

TIBCO® Order Management Concepts and Architecture

28 | Basic Order Management Concepts

For amendments during execution the order amendment lifecycle is shown in the following
diagram:

Order is reset to
Pending with
AmendOrderRequest.
In other words,
AmendOrderRequest
is considered as
SubmitOrderRequest

Does
order
already has a
plan?

Send
Planitem Is plan
Submitted }«—{ Suspend already
request for all Suspended
plan items in
Execution

Yes

Process component
Is
sends either suspend -
feasibility Ye:

Send
FeasibilityRequest
to Feasibility
Provider

reply or complete reply
for all plan item in
execution

enabled?

No

Is
Eeasibility

completed

Send plan
generation
request to

AOPD

Is
feasibility
passed?

No

RETRYOPD

OpdErrorHandler
Reply Action

is feasibility
error handling
enabled?

WITHDRAW

0———————{ Withdraw

Send Pre Qualification
failed request to
Feasiblity Provider

Is Plan
Generation
Successful?

Is
OpdErrorHandling
enabled?

OPDERROR Request to Yes.
OPD Error

Handler

PreQualificationFailed

No Yes

!

j RETRYFEASIBILITY
Withdraw Amending
PQF

reply action

'WITHDRAW

RETRYOPD

Amendment
is completed.
Order

execution
continues

TIBCO® Order Management Concepts and Architecture

29 | Basic Order Management Concepts

Plan

The overall plan lifecycle is shown in the following diagram:

Plan ltem
Suspend
reply

recieved for
all such plan
items

)

N

Plan ltem
Suspend
Request is
sent for all
such Plan
Items

l«—Yes.

Plan
execution

starts

Is any of the
plan item is in

Once all plan
items are

Suspen
_

Y

Plan Execution resumes.

Once all plan items are in

(PENDING, EXECUTION,
COMPLETE)

Execution, Error or
Error_Handler?

completed

comeee

TIBCO® Order Management Concepts and Architecture

30 | Basic Order Management Concepts

Plan Item

The overall plan item lifecycle is shown in the following diagram:

Plan Item
Suspend
Reply or Plan
Item execute Suspending
reply
Received by
Orchestrator

Suspend
completed?

suspend
success?

|

Executes
plan fragment
based retry

Pending >

v

Plan ltem
execution
st

tarts

Isitanon
executing plan
item?

Plan liem Execute Request
is sent to Process
Component

Plan Suspend request
received. Orchestrator
sends Suspend
Request for all plan
items in execution.

v

Plan tem
Execution)| EXecutereply
) receivedby |
A orchestrator

Is
complete =
true?

Is

. No
Executes
plan fragment
based retry

Orchestrator

Orchestrator

Component

Yes

No

Is extemal ™\

Is
‘max retries

request to
Process
Component

Is external
plan handler?

plan handler? g

Plan Item
Failed
Request sent
to External
Error
Handler

{ Error_Handler

Error

Plan ltem

Plan Item failed reply

sent by External Error
Handler

Plan Item is coming from
suspension path. Plan Item
Activate Request would be
sent to Process Component

failed reply
{ sent over rest
Plan Item
Failed Reply
Received by
Orchestrator

RESUME

Plan Item is coming from

PlanitemFailedReply™, RETRY Execution Path. Plan ltem

Action Execution Request sent to
Process Component

COMPLETE

TIBCO® Order Management Concepts and Architecture

31 | Basic Order Management Concepts

Milestone

The overall milestone lifecycle is show in the following diagram:

Is an
intermidiate
milestone?

No

MilestoneReleaseRequest
is sent to Process
component

/

A

NOTIFYPENDING

Milestone
notification
received by

Qrchestrator

TIBCO® Order Management Concepts and Architecture

32 | Basic Order Management Concepts

Dependency

The overall dependency lifecycle is show in the following diagram:

Pending

\i

If a plan item B's milestone has a
dependency of plan item A's milestone, so
when A's milestone is completed, the
dependency is also completed

Y

Complete

TIBCO® Order Management Concepts and Architecture

33 | Architecture

Architecture

TIBCO Order Management is made of several components. Each component has a
particular role.

The major components of TIBCO Order Management include:

e Orchestrator: The Orchestrator exposes SOAP over HTTP, SOAP over JMS, and
RESTful API services that can be used to submit the orders. The Orchestrator sends a
request for plan development to AOPD for each incoming order. It invokes micro-
level process plan fragments to initiate tasks within the operator's operational
ecosystem, enabling appropriate actions in a variety of back-end systems (for
example, billing systems, network systems, scheduling systems). The orchestrator
tracks statuses and manages exceptions. The orchestrator has its own database.

e Automatic Order Plan Development (AOPD): AOPD is stateless, it does not have any
database. It develops the plan as per the incoming order. There are various rules that
AOPD considers while generating the plan. Valid orders accepted by the Order
Management System are decomposed into their individual products, services, and
resources. An optimized order plan workflow process is then generated based on
those basic building blocks to ensure an accurate order fulfillment. Optimization
based on product rules and customer inventory is used to arrive at the final order
plan.

o Jeopardy: It monitors the orders or plans that come into the system. It sends out
notifications on EMS channels whenever any plans or orders miss their timelines.

» Authentication: This microservice implements OAuth2 specifications and generates a
OAuth2 JWT (JSON Web Token). This microservice supports GRANT-TYPE as
PASSWORD. User authentication is managed by this microservice and user
authorization is managed by all the Order Management microservices. The generated
token is used to access the resources exposed by any APl from Order Management
microservices. The following are some of the features of the authentication service:

Tenant Registration: Register a tenant, set the identity provider type to any one of
the following: Oracle, PostgreSQL, LDAP, or External. Separate databases are created
for each registered tenant’s user.

If you set the identity provider as "Oracle" or "PostgreSQL", then you have to create
separate databases for each tenant. When you have set the identity provider as

TIBCO® Order Management Concepts and Architecture

34 | Architecture

"LDAP", all the users and their roles are maintained in some Directory service. When
you have set the identity provider as "External", it means that you do not have to use
the Order Management's Authentication service for user authentication and token
generation. As of now, we support Microsoft Azure Active-Directory as an external
authentication service. Even when you have set the identity provider as "External”,
the tenant information is still stored in the Order Management's Authentication
service relational database.

o Note:

° Authentication service is a primary service that does not depend on
any other service to start.

° The Order Management System Ul and Configurator Ul require the
authentication service to always be up and running. The credentials
entered on the Ul by users are validated by the authentication
service. On successful validation, tokens are generated. These tokens
are then used by the Order Management System Ul and Configurator
Ul to initiate the login process.

» Data Service: Data Service is used to add, update, or modify the User-Defined Fields
at the plan and plan items level. This is helpful when you do not want to perform an
order amendment and want to update UDFs. There are two types of data services.

o Set plan or set plan items: This service is used to add, update, or modify the
User-Defined Fields at the set plan or set plan items level.

° Get plan or get plan items: Through this service, a user receives the updated
User-Defined Fields at the get plan or get plan items level.

e Catalog Service: This microservice supports catalog loading using JMS channels and
the RESTFul API.

TIBCO® Order Management Concepts and Architecture

35 | Architecture

Offline Model Publishing - Catalog-Service(over HTTP) Offline Model Publishing - Catalog-Service(over JMS)

| |
save the published save the published
models mo

dels
3 atalog
i individual model Al Senice
. - on IMS Queue

reads ProductModels Servic
and publishes

) — >
individual model
00 on RESTIul endpoint
rea —

Queue

reads ProductModels
nd publishes

ProductModel ProductModel

Ml Catalog
Servi
Catalog
Service

(RN extract ProductModel

Service I Models Catalog

and republish to a s
e

each Catalog-Service

Rl
s s W25
8 33 | 38

The catalog created in the TIBCO® Product and Service Catalog is published over EMS
topics. A bridge is created on the topic and the messages are listened on queues. You
can configure the listeners for the Catalog service. For HTTP, a load balancer can be
used for scaling.

You can publish over HTTP for online models and can also use a catalog client for
offline models.

Catalog Client is a sample microservice provided along with TIBCO® Order
Management. Catalog Client publishes catalogs through JMS or HTTP. To achieve
better performance while loading a catalog in Order Management, the catalog-client
reads an offline published catalog file and publishes it to the catalog service over the
JMS or RESTful interface.

For example: One product model catalog contains the ProductModels XML tag, this
contains multiple ProductModel XML tags. Catalog service can read the
ProductModels XML and republish each of the ProductModel to its own JMS or
RESTful interface. This behavior of a catalog service enables it to tackle the excess
load on an instance and redistribute the load in the cluster of multiple catalog
service instances.

There are multiple APIs exposed for the Catalog services. For more information, see
the "Catalog Services APl samples" section in the TIBCO® Order Management Web
Services Guide.

» Configurator: It exposes APIs to add, view, update, and delete configurations for all

TIBCO® Order Management Concepts and Architecture

OM_6.0.0 - catalog publishing.png

36 | Architecture

the services except Authorization, Configurator, and Configurator Ul microservices.

e Configurator Ul: User Interface to perform all the operations exposed by
Configurator microservice.

e TM Forum Adapter Service: TM Forum Adapter is an implementation for the TMF622
API specification. It acts as a bridge between the TM Forum specification and the
TIBCO Order Management system. TM Forum Adapter Service exposes REST over
HTTP/HTTPS services, which can be used to query productOrder. TM Forum Adapter
Service captures the productOrder and submits it to the Order Management System
as an order request.

There are additional components, which are explained in more detail in the T/IBCO Order
Management User Guide. Here are a few of those additional components:

* Order Management System User Interface (OMSUI): Provides operators a GUI to
manage and track orders. Archival service persists order data and operators can use
OMSUI to search, view, track, and trace orders. The users can act on order or order
lines such as bulk action, amendment action. For any plan item in an error state, you
can take corrective actions.

e Common Logging: All TIBCO Order Management components report to a common
logging component for the ease of maintenance and operations management of the
system.

» Archival Service: It acts as the data backup for the orchestrator and it uses EMS
messages to achieve this. For every status change in the order, the Orchestrator
sends an EMS message. Archival receives that message and save the required
information in a database. After the order reaches its final state, it gets entire order
information (such as order data, plan data, audit data) and saves it in the database.
It exposes REST HTTP GET services to read this information. The Order Management
System Ul contacts Archival to get the information it requires.

» Broker Service: The Broker service enhances the reliability and availability of the
orchestrator instances. In the event of an instance failure, the Broker service redirects
orders from the failed instance to all other active instances, ensuring seamless
operation and minimal disruption to users.

Each the orchestrator instance registers itself with the Broker service when it starts
up. Subsequently, instances regularly send status updates to the Broker service. The
Broker service monitors the health of every instance through this ping mechanism.

TIBCO® Order Management Concepts and Architecture

37 | Architecture

TIBCO Order Management Architecture

rder Man men
Order Management Broker
Service
RESTful API
] o
Jeopardy g
7 pa Orchestrator = Archival Configurator
Service %
w
[i4
o
a < —
|:| 2l IE| Iz e RESTful API RESTRIAPI | [RESTHulAPI
20 [T |< 0 —
ol 2] |® o
Northbound <| (%] |4 Catalo & Configurator
System gl I8] = o = oMs-UI g
7] Service = Ul
w
x
L L E— RESTful API
. AuthService
DataService
APIs exposed to update the
user-defined-fields(UDFs)
g J
[IMS |
[RESTful AP |
Southbound
System
Order Redis caching - Catalog Redis caching -
Database Order Database Catalog
Admin Archival Broker Jeopardy User Database
Database Database Database Database
«Order and Catalog backing store we have a
. . option between Redis cache and relational.
Different Backing stores for Order Management «In relational database we have 3 options -
Database Oracle, Postgres, Microsoft SQL Server

N J

TIBCO® Order Management Concepts and Architecture

38 | Architecture

Submit Order

SOAP over HTTP /.
RESTful APIs
Northbound

Northbound

i
|
|
'
'
'
'
i
'
|
i
i
'
'
' System
i
'
i
'
|
i
|
'
'
'
'
'
i System
'

Broker Service Instance

*Recovery APIs

+ Register new Orchestrator instance
«no-originator header in the southbound
reply

« Active/Inactive instance monitoring

AOPD Service Cluster

Instance-1 Instance-2 Instance-3 e
i
'
'

! 1

‘Instance Specific Order:

Processing
Instance-n

'
'
'
'
'
'
1§
B
1
'
'
'
'
'
'
'

Restful APIs
[m]
1\)Load Balancer
oog,

Orchestrator Service Cluster

i '
' '
' '
Instance-1 Instance-2 Instance-3 i '
' '
' '
RESTHul ' o I
APIs 5 £ 8
Orchestrator i :
directly listens : o
toall ' B:fwd Southbound '
southbound ' lancer System u
Insiance:n replies with not ! :
NULL originator H '
= ' '
e JMS message: I
' ']
! ' [
-------------------------- : : —= .
' '
' '
' '
'
'
H
o (e TiBCO EMS ' '
' '
RESTIUI APIS X Ldad |
messages ! Balancer!
' '
________________________________ . | '

Broker Service Cluster

IMS messages
-——————
Broker listens o
allsouthbound
repies wih NULL
orignator

Instance-1 Instance-2 Instance-3
L, RESTHul
————APIs

=

TIBCO® Order Management Concepts and Architecture

39 | Architecture

Database Diagram PostgreSQL - Jeopardy

plan_item_instance_abstract milestone_abstract
creation_date* date creation_date* |date
PK |planid* character varying(255) PK [planid* character varying(255)
PK character varying(255) PK character varying(255)
PK |tenantid* character varying(22) PK [milestoneid* character varying(255)
plan_item_detail text release_map text
risk_region character varying(22) status character varying(22)
status character varying(22) is_virtual boolean
actual_start_time numeric PK |tenantid* character varying(22)
actual_end_time numeric predicted_release [numeric
is_virtual boolean actual_release [numeric
planfragmentid character varying(255)
under_processing boolean
expected_end_timemap [text
previous_status character varying(22)
last_change_timestamp |numeric
total_suspension_time |numeric
plan_instance_abstract actual_suspension_time |numeric
creation_date* date action character varying(22)
PK [planid* character varying(255)
orderid character varying(255)
orderref character varying(255) plan_adjacency_abstract plan_path_abstract | | plan_critical_path_abstract
fiskthreshold numeric Creation_date” date Creation_date® |date Creation_date* |date
outofscopethreshold numeric PK i character varying(255) PK |planid* character varying(255) PK |id* character varying(255)
startnotificationreceived boolean planid character varying(255) PK |pathid character varying(22) planid character varying(255)
status character varying(22) planitemid character varying(255) path_detail |text type character varying(22)
currentriskregion character varying(50) tenantid character varying(22) PK |tenantid* character varying(22) pathid character varying(22)
expectedtimemap text section_detail text tenantid character varying(22)
isunderamendment boolean previous_section_status |character varying(22)
PK | tenantid character varying(22) section_status character varying(22)
planstartime numeric start_milestone character varying(255)
predictedstarttime numeric end_milestone character varying(255)
numeric tisk_region character varying(22)
actualstarttime numeric actual start time umeric
actualendtime numeric actual end time umeric
laststatuschangetime numeric suspension. time numeric
plan_detail text last_status_change_time |numeric
is_short_lived boolean
originalexpectedtimemap text
jeopardy_alert
PK [id* numeric
submitted_date |timestamp without time zone
alert_msg character varying(1024)
PK |tenantid* character varying(255)
orderid character varying(255)
planid character varying(255)
plaitemid character varying(255)
milestoneid character varying(255)
alert_type character varying(255)
pending_jeopardy_events process_component rule time_window
PK |eventid* char_acler Pk lig* chavgcter PK |ruleid* chargcter PK [timewindowid* numeric
varying(255) varying(255) varying(255) character
planid char_acler processcomponent [text rulename* charfic!er orderid* varying(255)
varying(255) " character varying(255) character
‘enantid character PK|tenantid varying(255) ruledesc character startmilestoneid varying(255)
varying(22) varying(255) . . character
character character endmilestoneid varying(255)
notificationtype varying(256) status Varying(255)

" character
notification text PK |tenantia* chargcter planid varying(255)
notificationtime [numeric varying(255) planitemid character

createts [Imestamp with tme varying(255)
itk 44 tenantid* Char.a cter
with time varying(255)
zone . character
condition text detection_type varying(100)
action text expected_time numeric
eventtype character varying(25) status numeric
lastchangetimestamp numeric

TIBCO® Order Management Concepts and Architecture

40 | Architecture

Database Diagram PostgreSQL - Admin

app_properties app_properties_events application_metadata
PK |key* character varying(4096) key* character varying(4096) PK |applicationid* character varying(255)
value character varying(4096) value* character varying(4096) applicationdescription* |character varying(255)
PK |application* character varying(128) application* character varying(128) applicationpropertiesfile* |character varying(255)
propertydescription |text valuetype* character varying(128) configurationfiles character varying(255)
category text propertydescription |text
istenantproperty boolean category* character varying(4096)
appdescription text istenantproperty boolean
valuetype character varying(128) appdescription text
allowedvalues text allowedvalues text
lastmodifiedbyuser |character varying(255) event* character varying(20)
timestamp numeric
lastmodifiedbyuser |character varying(255)

configuration 1 tenant_info

PK |filename character varying(100) PK |tenantid* character varying(128)
PK |application |character varying(128) clientid* character varying(128)
content text clientsecret character varying(128)
version double precision identityprovidertype* character varying(128)
supportalgorithm* character varying(128)
signingkey character varying(128)
jwkseturl character varying(128)
issuer character varying(128)

identityproviderschema* |text

TIBCO® Order Management Concepts and Architecture

41 | Architecture

Database Diagram PostgreSQL - Catalog

| action_model | | category_model | | discount_ledger discount_model
PK [id* character varying(255) PK [id* character varying(255) PK [id* character varying(255) PK [id* character varying(255)
model text model text score numeric model text
PK |tenantid* character varying(255) PK |tenantid* | character varying(255) PK |tenantid* | character varying(255) PK |tenantid* (character varying(255)
score double precision

filter_product | | offerids_model | | planfragment_model price_maodel
PK |id* numeric PK |id* character varying(255) PK |id* character varying(255) PK |id* character varying(255)
filteric™ character varying(255) model |text model |text model [text
productid* | character varying(255) PK |tenantid* | character varying(255) PK |tenantid* |character varying(255) PK |tenantid* (character varying(255)
tenantid* |character varying(255) score double precision
product_ledger | product_model | product_relationship
PK [id* character varying(255) PK [id* character varying(255) PK [childid* |character varying(255)
score numeric model text PK | parentid* |character varying(255)
PK |tenantid* [character varying(255) PK |tenantid* | character varying(255) PK |tenantid* |character varying(255)
score double precision

rule_model | segment_product | | top_level_product
PK |id* character varying(255) PK |id* numeric PK |id* numeric
model text segmentid* | character varying(255) productid* |character varying(255)
PK [tenantid* | character varying(255) productid* | character varying(255) tenantid* [character varying(255)
PK |ruleid* character varying(255) tenantid* character varying(255)

top_level_product

PK |id numeric
productid | character varying(255)

tenantid | character varying(255)

Database Diagram PostgreSQL - Users

users

PK |username* | character varying(45s)
password* |character varying(60)

enabled* |boolean

roles* character varying(45)

TIBCO® Order Management Concepts and Architecture

42 | Architecture

Database Diagram PostgreSQL - Broker

- N
instance_ledger
PK |instance_id* numeric
ip_address* character varying(250)
status character varying(20)
port* numeric
service _name character varying(50)
last_updated_timestamp |numeric
J
Database Diagram PostgreSQL - Order
plan_item_data_abstract order_messages_abstract
partitiondate* date partitiondate* |date
PK |id* character varying(524) PK |orderid* character varying(128)
orderid* character varying(256) PK |tenantid* character varying(128)
tenantid* character varying(256) messages [text
planitemid* character varying(256)
data text
dependentplanitemids text
status character varying(256)
execute_request_retry_count |integer
suspend_request_retry_count |integer
order_data_abstract
partitiondate* date
PK |orderid* character varying(128)
orderref character varying(128) order_amendment_abstract order_in_play order_in_sequence
order_ser text partitiondate* |date PK |customerkey* | character varying(128) PK [id* numeric
plan_ser text PK [seq* character varying(128) PK |tenantid* character varying(128) customerkey* character varying(128)
org_order_ser text PK |orderid* character varying(128) partitiondate* |date tenantid* character varying(128)
PK | tenantid* character varying(128) order_ser text orderid character varying(128) orderid* character varying(128)
planid character varying(123) PK |tenantid* character varying(128) createdtimestamp |numeric
status character varying(128)
data text
instance_id character varying(250)
pre_amendment_sexml | text order_event time_scheduler time_scheduler_error
sequencing_enabled boolean PK [tasktrackingid |character varying(250) PK [id* numeric PK [id* numeric
customer_key character varying(255) originator character varying(250) eventid character varying(100) eventid character varying(100)
feasibility_req_retry_count |integer orderid character varying(250) orderid character varying(200) orderid character varying(200)
businesstransactionid character varying(128) tenantid character varying(250) i i without time zone i i without time zone
is_out_of_sync boolean creationtime [numeric tenantid* |character varying(255) tenantid* |character varying(255)
nodeid character varying(250) instance_id |character varying(250) instance_id |character varying(250)
status character varying(10) planitemid* | character varying(256) planitemid* |character varying(256)
message text

notification_abstract

partitiondate* | date

PK |id* character varying(512)
orderid* character varying(128)
key* character varying(64)
value* text

PK |tenantid* |character varying(128)

TIBCO® Order Management Concepts and Architecture

43 | Architecture

Archival Database Diagram_PostgreSQL - Order Relationship

bulk_action_abstract

actiontype
planitemid

partitiondate” |date

PK |id* numeric
jobid character varying(255)
action character varying(126)
f————<| FK tenantid |character varying(255)
L | K [orderid character varying(255)

requestedby | character varying(255)

creationdate [timestamp without time zone,

character varying(128)

character varying(255)

orders_abstract order_line_abstract order_line_char_abstract | (order_line_char_value_abstract
partitiondate* date partitiondate™ date partiiondate” _|date partitiondate™ date
PK |orderid* character varying(255) |+—— < PK,F [orderia* character PK | characteristicsid [numeric PK |orderlinecharvaluesid |numeric
PK [tenant_id* character varying(255) |+ <| PKFK [tenant_id* character varying(255) FK [orderid* character varying(255) tenant_id* character varying(255)
orderref* character varying(125) PK [inenumber character varying(32) FK character varying(32) FK |characteristicsid® [numeric
customerid character varying(64) subscriberid character varying(64) FK {tenant_id* character varying(255) valuename* character varying(4s)
bscriberid haract 6 productid character varying(255) name* character varying(255) type* character varying(45)
subscribert character varying(64) productversion character varying(32) description character varying(255) value character varying(45)
requiredbydate Qz‘neestamp without time quantity humeric Valuefrom character varying(19)
uom character varying(45) valueto character varying(19)
timestamp without time
time zone
requiredondate zone " order_line_sla_data_abstract
X requiredondate {imestamp without time zone . .
notes character varying(100) linkid character varying(4s) partitiondate’ late
PK |orderlineslasid* | numeric
description character varying(100) inventoryid character varying(50)
. FK [orderid* character varying(255)
id [character 9(64) customeritemid character varying(64)
n at haracter varying(32) K character varying(32)
status character varying|
submitteddate imestamp without time FK {tenant_id* character varying(255)
zone » time zone e parctervaryng(s2)
slai character varyin
invoicelocality character varying(45) notes. character varying(100) e
invoiceaddrl character varying(100) action character varying(32)
i character varying(100 eraciervaing'=s)
e ., Vi 9(100) deliverylocalty character varying(4s) order_line_udf_data_abstract
invoiceaddr. character varying(100) deliveryadarl character varying(100) partitiondate* date
invoiceaddrregion character varying(45) olvaryedie2 charactervarying(100) ok |orderiineudtdatasid? |numeric
invoiceaddrcountry character varying(45) deliveryaddra character varying(100) FK [orderir character varying(255)
invoiceaddrzip character varying(20) deliveryaddrregion |character varying(45) FK character varying(32)
invoiceaddrsupploc character varying(45) deliveryaddrcountry | character varying(45) name* character varying(255)
deliverylocality character varying(45) deliveryaddrzip character varying(20) value character varying(4000)
. X deliveryaddrsupploc | character varying(45) FK [tenantid* character varying(255)
deliveryaddrl character varying(100)
X . sequencenumber [numeric
deliveryaddr2 character varying(100)
deliveryaddr3 character varying(100)
deliveryaddrregion character varying(45) ord ato_abstract
deliveryaddrcountry character varying(45) partitiondate* |date
deliveryaddrzip character varying(20) PK |slasid numeric:
deliveryaddrsupploc character varying(45) [| K |orderid” character varying(255)
. f————<| FK [tenant_id* |character varying(255)
planid character varying(255) - 1ying(255)
slaid* character varying(32)
orderpriority numeric
timestamp without tim
statuschanged Lone P e
order_udf_data_abstract
status character varying(22) e [de
sequencenumber numeric PK |orderudfdatasid® | numeric
isamendmentinprogress boolean f———<| K |orderiar character varying(255)
lastamendment character varying(255) f<| FK [tenant_id* character varying(255)
name* character varying(255)
value character varying(4000)
originalvalue |character varying(4000)
flavor character varying(125)
type character varying(125)
evaluationpriority |character varying(125)
user_search
audit_trail_abstract
PK [name* character varying(256)
crteria ot partitiondate™ date
sty character varying(20) PK |auditirailid character varying(255)
o |owner character varying(40) f——<| PKFK |orderid character varying(255)
PK |tenant character varying(128) planid character varying(255)
created_timestamp |timestamp without time zone planitemid text
orderlineid character varying(255)
message* character varying(255)
haracter
origin character varying(255)
createddatetimestamp [numeric
<| PKFK |tenantid character varying(255)

TIBCO® Order Management Concepts and Architecture

44 | Architecture

Archival Database Diagram_PostgreSQL - Order Plan Relationship

orders_abstract plan_abstract ‘ plan_item_abstract plan_fragment_abstract ‘section_abstract
e Eraare E i o
PK |tenan_id* ol | Pk [orderias character varying(255) PKFK |tenant_id® 19(255) - <| FK | planid 5 < FK [planfragmentsia® [numeric.
orderret: character varying(125) orderret character varying(125) PK [planemid® eharacter varying(255) I < £ |planitemia* [eharacter varying(255) 19(255)
i e vnnaion recpossaion [sooan
9(action |character varying(12)
invoiceaddrzip | character varying(20) status |character varying(19)
deliverylocality | character varyng(45) perequesttype. |character varying(19) [Trartivondate [date:
deliveryadcr2 character varying(100) - <] FK |plania |character varying(255)
soaaia ———] enan T
9 linenumber* |character varying(32)
! plan_udf_data_abstract eol” [poctesn
a9 prtiendus " [awe
[em——" et
5 [
 status | character varying(22) s L e charactar vanying(255) planitem_udf_data_abstract
e vz
— et ErT
isamendmentinprogress boolean e character vaning(4000) P [planitem_udf_data_sid* [numeric:
J— s vnn99
|type character varying(125) B
o name |character varying(255)
e -
ope -
o
CITe T e
<] FK | planid* character varying(255) dependencyid* character varying(50)
o e [erracrvanzss s s vanzss)
oot s vaningisy s ot vagtzss
e [smesamp ot ore e st vt
[——— o oo
e ey vt ome o caime s irouc o zne
e s e ———
-
eventname character varying(45)
eventid character varying(45)
ends. character varying(45)
orders_absiract orders_amendment_abstract order_line_history_abstract order_line_char_history_abstract | | order_line_char_value_history_abstract
P [orderid* character varying(255) [3 o <| PreK 2 H— PK |characterstiesia® numeric N PK |orderlinecharvaluesic® Inumeric:
i L i S B) g rotoso Y D D o o [—— [e
ot I [R P e I N o A O ekl e crmcer v
[cmecr e ottt [dvenctr o B [N cecr 2= ot ———
notes. character varying(100) requiredondate |timestamp without time zone: quantity Inumeric. valueto |character varying(19)
description character varying(100) notes character varying(100) uom |character varying(45)
mokesdan st et ks racor s et [eenctr vy o
e vaeation mocesdan rarmcarvaggtcn o Jx \
invoiceaddra character varying(100) invoiceaddr2 character varying(100) status. |character varying(32) K |orderid* cheracter varying(25s)
- .) otes chavacter verying(100) FK [tenant_id* |character varying(255)
invoiceaddrzip. character varying(20)) action |character varying(32)
slaid* |character varying(32)
o invoiceaddrzip character varying(20) actionmode |character varying(32)
deliverylocality character varying(4s) deliverylocality |character varying(4s)
consian o vaeation sty st oot [eactrvaioton
sonsia P civersiat [R—, sivonasars [anctrvaoton
deiveryadrs character varying(100) deiveryadir2 character varying(100) deiveryaciara [character varying(100) [ordor et detm tivory_sbsvect |
. civereias cecerseicn o e e
) PK [orderlineudfdatasid* |numeric.
stveyasrep ooz vy [acr vy " .
deliveryaddrzip character varying(20) orderid® |character varying(zs5)
j— o - -,
i [—— iy e s,
. A s —— 3 Y -
e crecor sz
isamendmentinprogress boolean sequencenumber numeric. order_udt_daia_history_abstract
i
B o I
e
-
|character varying(4000)
originalvalue |character varying(4000)
e arscrvaning26,
ore -
0
e
i)
D 1] armcr vt
slaid* character varying(32)

TIBCO® Order Management Concepts and Architecture

45 |

Architecture

Database Diagram Oracle - Jeopardy

plan_item_instance milestone
creation_date* timestamp creation_date* |timestamp
PK |planid* varchar2(255) PK |planid* varchar2(255)
PK varchar2(255) PK har2(255)
PK |tenantid* varchar2(22) PK | milestoneid* varchar2(255)
plan_item_detail clob release_map clob
risk_region varchar2(22) status varchar2(22)
status varchar2(22) is_virtual number(1,0)
actual_start_time number(19,0) PK |tenantid* varchar2(22)
actual_end_time number(19,0) predicted_release |number(19,0)
is_virtual number(1,0) actual_release [number(19,0)
rchar2(255)
under_processing number(1,0)
expected_end_timemap |clob
previous_status varchar2(22)
last_change_timestamp |number(19,0)
total_suspension_time [number(19,0)
plan_instance actual_suspension_time |number(19,0)
creation_date* timestamp action varchar2(22)
PK | planid* varchar2(255)
orderid varchar2(255)
orderref varchar2(255) plan_adjacency plan_path | plan_critical_path
tiskthreshold number(19,0) creation_date” timestamp creation_date” |timestamp creation_date* [imestamp
outofscopethreshold number(19,0) PK |id* varchar2(255) PK | planid* varchar2(255) PK |id* varchar2(255)
startnotificationreceived number(1,0) planid Varchar2(255) PK |pathia* varchar2(22) planid varchar2(255)
stats varchar2(22) planitemid Varchar2(255) path_detail |clob type varchar2(22)
currentriskregion varchar2(50) tenantid varchar2(22) PK |tenantid* varchar2(22) pathid varchar2(22)
expectedtimemap clob section_detail clob tenantid varchar2(22)
isunderamendment number(1,0) previous_section_status
PK | tenantid® varchar2(22) section_status varchar2(22)
planstartime number(19,0) start_milestone varchar2(255)
predictedstarttime number(19,0) end_milestone varchar2(255)
4 i number(19,0) risk_region varchar2(22)
actualstarttime number(19,0) actual_start_time umber(19,0)
actualendtime number(19,0) actual_end_time umber(19.0)
laststatuschangetime number(19,0) suspension_time umber(19,0)
plan_detail clob last_status_change_time |number(19,0)
is_short_lived number(1,0)
originalexpectedtimemap clob
Jeopardy_alert
PK [ia* number
submitted_date |timestamp
alert_msg varchar2(1024)
PK |tenantid* varchar2(255)
orderid varchar2(255)
planid varchar2(255)
plaitemid varchar2(255)
milestoneid varchar2(255)
alert_type varchar2(255)
pending_jeopardy_events process_component rule time_window
PK |eventid* varchar2(255) PK |id* varchar2(255) PK |ruleid* varchar2(255) PK | timewindowid* number
planid varchar2(255) processcomponent |clob rulename* |varchar2(255) orderid* varchar2(255)
tenantid varchar2(22) PK |tenantid* varchar2(255) ruledesc varchar2(255) startmilestoneid varchar2(255)
notificationtype [varchar2(256) status varchar2(255) endmilestoneid varchar2(255)
notification clob PK |tenantid* varchar2(255) planid* varchar2(255)
notificationtime |number(19,0) createts* timestamp with time zone planitemid varchar2(255)
modifiedts* [timestamp with time zone tenantid* varchar2(255)
condition clob detection_type varchar2(100)
action clob expected_time number(19,0)
eventtype varchar2(25) status number(1,0)
lastct i P n 0)

TIBCO® Order Management Concepts and Architecture

46 | Architecture

Database Diagram Oracle - Admin

app_properties app_properties_events application_metadata
PK [key* varchar2(4096) key* varchar2(4096) PK |applicationid* varchar2(255)
value varchar2(4096) value* varchar2(4096) applicationdescription* |varchar2(255)
PK |application* varchar2(128) application* varchar2(128) applicationpropertiesfile* |varchar2(255)
propertydescription |clob valuetype* varchar2(128) configurationfiles varchar2(255)
category clob propertydescription |clob
istenantproperty number(1,0) category* varchar2(4096)
appdescription clob istenantproperty number(1,0)
valuetype varchar2(128) appdescription clob
allowedvalues clob allowedvalues clob
lastmodifiedbyuser |varchar2(255) event* varchar2(20)
timestamp number(25,0)
lastmodifiedbyuser |varchar2(255)

configuration 1 tenant_info

PK |filename varchar2(100) PK |tenantid* varchar2(128)
PK |application |varchar2(128) clientid* varchar2(128)
content clob clientsecret varchar2(128)
version double precision identityprovidertype* varchar2(128)
supportalgorithm* varchar2(128)
signingkey varchar2(128)
jwkseturl varchar2(128)
issuer varchar2(128)

identityproviderschema* |clob

TIBCO® Order Management Concepts and Architecture

47 | Architecture

Database Diagram Oracle - Catalog

| action_model | | category_model | | discount_ledger discount_model
PK [id* varchar2(255) PK [id* varchar2(255) PK [id* varchar2(255) PK [id* varchar2(255)
model clob model clob score number model clob
PK |tenantid* | varchar2(255) PK [tenantid* | varchar2(255) PK [tenantid* | varchar2(255) PK |tenantid* |varchar2(255)
score double precision

filter_product | | offerids_model | | planfragment_model price_maodel
PK |id* varchar2(255) PK |id* varchar2(255) PK |id* varchar2(255) PK |id* varchar2(255)
filterici* varchar2(255) model clob model clob model clob
productid* |varchar2(255) PK [tenantid* |varchar2(255) PK |tenantid* |varchar2(255) PK |tenantid* |varchar2(255)
tenantid* |varchar2(255) score double precision
product_ledger | | product_model | | product_relationship
PK [id* varchar2(255) PK [id* varchar2(255) PK [childid* |varchar2(255)
score number model clob PK | parentid* |varchar2(255)
PK |tenantid* |varchar2(255) PK |tenantid* |varchar2(255) PK |tenantid* |varchar2(255)
score double precision

rule_model | | segment_product | | top_level_product

PK |id* varchar2(255) PK [id* varchar2(255) PK |[id* number(5,0)

model clob segmentid* | varchar2(255) productid* [varchar2(255)

PK [tenantid* |varchar2(255) productid* |varchar2(255) tenantid* [varchar2(255)
PK |ruleid* varchar2(255) tenantid* varchar2(255)

top_level_product

PK |id number
productid |varchar2(255)
tenantid |varchar2(255)

Database Diagram Oracle - Users

users

PK |username*|varchar2(45)
password* |varchar2(60)
enabled* |[number(1,0)

roles* varchar2(45)

TIBCO® Order Management Concepts and Architecture

48 | Architecture

Database Diagram Oracle - Broker

- N
instance_ledger
PK |instance_id* number(20,0)
ip_address* varchar2(250)
status varchar2(20)
port* number(10,0)
service _name varchar2(50)
last_updated_timestamp |number(20,0)
Database Diagram Oracle - Order
plan_item_data order_messages
PK |id* varchar2(524) PK |orderid* varchar2(128)
orderid* varchar2(256) PK |tenantid* varchar2(128)
tenantid* varchar2(256) messages |clob
planitemid* varchar2(256)
data clob
dependentplanitemids clob
status varchar2(256)
execute_request_retry_count [number
suspend_request_retry_count |number

order_data
partitiondate* timestamp
PK |orderid* varchar2(128)
orderref varchar2(128) order_amendment order_in_play order_in_sequence
order_ser clob PK [customerkey*|varchar2(128) PK [id* number’
plan_ser clob PK |seq* varchar2(128) PK |tenantid* varchar2(128) customerkey* varchar2(128)
org_order_ser clob PK |orderid* varchar2(128) partitiondate* |timestamp tenantid* varchar2(128)
PK tenantid* varchar2(128) order_ser |clob orderid varchar2(128) orderid* varchar2(128)
planid varchar2(123) PK |tenantid* varchar2(128) createdtimestamp [number(38)
status varchar2(128)
data clob
instance_id varchar2(250)
pre_amendment_scxml | clob order_event time_scheduler time_scheduler_error
sequencing_enabled number(1,0) PK [tasktrackingid |varchar2(250) PK [id* number PK [id* number
customer_key varchar2(255) originator varchar2(250) eventid varchar2(100) eventid varchar2(100)
feasibility_req_retry_count | number orderid varchar2(250) orderid varchar2(200) orderid varchar2(200)
businesstransactionid varchar2(128) tenantid varchar2(250) i i i i
is_out_of_sync number(1,0) creationtime | number(19,0) tenantid* |varchar2(255) tenantid* |varchar2(255)
nodeid varchar2(250) instance_id [varchar2(250) instance_id [varchar2(250)
status varchar2(10) planitemid* [varchar2(256) planitemid* ~[varchar2(256)
message clob
notification
partitiondate* |timestamp
PK |id* varchar2(512)
orderid* varchar2(128)
key* varchar2(64)
value* clob
PK |tenantid* varchar2(128)

TIBCO® Order Management Concepts and Architecture

49 | Architecture

Archival Database Diagram_Oracle - Order Relationship

orders order_line order_line_char | (order_line_char_value
partitiondate* timestamp partitiondate* imestamp partiiondate” | timestamp partitiondate” [imestamp
PK |orderid* varchar2(255) | PKFK |orderiar L PK | characteristicsid* |number(19,0) PK |orderlinecharvaluesid* [number(19,0)
PK |tenant_id* varchar2(255) [— <] PKFK [tenant_id* varchar2(255) — FK | orderig varchar2(255) LL tenant_id* varchar2(255)
orderref* varchar2(125) PK |linenumber* har2(3: b FK varchar2(32) -| FK |characteristicsid* number(19,0)
customerid varchar2(64) £K [tenant_ide \archar2(255)
subscriberid varchar2(64) productid varchar2(255) name* varchar2(255) type* varchar2(4s)
requiredbydate timestamp har2(3: description varchar2(255) value varchar2(45)
requiredondate imestamp quantity humber(10,0) valuefrom varchar2(19)
notes varchar2(100) uom varchar2(45) valueto varchar2(19)
description varchar2(100) requiredbydate imestamp
order_line_sla_data
requiredondate imestamp
submitteddate imestamp linkid varchar2(45) partitiondate* timestamp
invoicelocality Varchar2(45) nventonyid archara(s0) PK |orderlineslasid* | number(19,0)
invoiceaddrl varchar2(100) FK | orderid* varchar2(255)
invoiceaddr2 varchar2(100) status \archar2(32) FK
invoiceaddrs \archar2(100) catuschanged |timestamp FKC | enant id* varchar2(255)
invoiceaddrregion varchar2(45) notes varchar2(100) slaid* varchar2(32)
invoiceaddreountry varchar2(45) action \archar2(32)
invoiceaddrzip varchar2(20)
invoiceaddrsupploc varchar2(4s) order_line_udt_data
deliverylocality varchar2(4s) deliveryaddry \archar2(100) partiondate” imestamp
deliveryaddrl varchar2(100) deliveryaddr2 varchar2(100) PK |orderlineudfdatasid* [number(19,0)
deliveryaddr2 varchar2(100) deliveryaddr3 varchar2(100) FK [orderid* varchar2(255)
deliveryaddr3 varchar2(100) ®
deliveryaddrregion varchar2(45) name* varchar2(255)
deliveryaddrcountry varchar2(45) value varchar2(4000)
deliveryaddrzip varchar2(20) < FK |tenant_id* varchar2(255)
deliveryaddrsupploc varchar2(45) sequencenumber |number(s.0)
planid varchar2(255)
orderpriority number(3,0)
statuschanged timestamp
slaws partitiondate” |tmestamp
sequencenumber number(s,0) oic | sasic mber(19.0)
isamendmentinprogress number(1) £ |orcrice archar255)
lastamendment varchar2(255) > .
f—<| K |enant i |varchar2(255)
slaid* varchar2(32)
order_udf_data
parliiondate” _|timestamp.
PK |orderudfdatasid* | number(19,0)
| FK |orderid varchar2(255)
[FK |tenant_ig* varchar2(255)
name* varchar2(255)
value varchar2(4000)
flavor varchar2(125)
type varchar2(125)
evaluationpriority |varchar2(125)
user_search
PK [name* varchar2(256) cut el
crteria ob partitiondate™ fimestamp
sty archar2(20) PK |auditirailid* varchar2(255)
o |owner archara(ao) <] PKFK |orderiar varchar2(255)
PK [tenant varchar2(128) planid varchar2(255)
created_timestamp |timestamp planitemid clob
orderlineid varchar2(255)
message* varchar2(255)
origin varchar2(255)
<| PKFK |tenantid varchar2(255)
bulk_action
partitiondate” [timestamp
PK [id number(19,0)
jobid varchar2(255)
action varchar2(128)
< K |tenant id |varchar2(255)
<| P |orderid varchar2(255)
creationdate [timestamp
actiontype [varchar2(128)
planitemid [varchar2(255)

TIBCO® Order Management Concepts and Architecture

50 | Architecture

Archival Database Diagram_Oracle - Order Plan Relationship

crdars pan pan_fem plan_fragment <ecton
paritondeie” imestamp partondate” [imesiamp pertiondate? [mestamp paritondeie” imesiamp perttondater [imesiamp
P [orderid® varchar2(255) P [panice [vareharz(2ss) P K [plaics archarz(zss) b— P [planfragmensia: [number b— P [sectonsia* [number(19,0)
P [tenant e varchar2(255) P forderat archarz(2s5) PRFK [ienant i archarz(zs5) | Fi [planic archar2(zss) L 7 [planragmentsid [rumber(19,0)
orcerret varchar2(125) oreret [varcharz(125) P [planemia- varchar22se) < ¥ |paniemioe varchar2(zss) starmiestoneid.[varchar2(zs5)
customerd varcharz(ed) PREK fenantidt [varcharz(ass) plantername [varchar2(a00) < K | enant it archarz(zss) varchar22s6)
subscrberd archar2(oe) orginator archarz(as) descripion archar2(300) plnragmentas varchar2(255) picatduration ~{umber(19,0)
requiredbydate imestamp plancrestondate [imesamp plnfregmenturiaueidlvarchar2(255) plnfragmentname varchar2(300) 19.0)
reciredondate imestamp staus fvareharz(22) parentias i lanfragmentersion|varchar2(300)
notes varchar2(100) stauschanged [umestamp cticias ciob ovmer varchar2(zss)
desciipton varchar2(100) desoripion[vachar2(100) siingias oo recordype verchar2(zss)
exemabusinesstransactonid.[varchar2(64) planstandate [imasiamp dependenids [clob errormandier varchar2(zss)
submiteddate imestamp plansarnils [number(190) startmestamp [number(15,0 reryoverride rumbera)
invcicelocaity verchar2(45) isemendment [rumber(t) endimestamp [number(19.0 revyted numbertt)
invciceaddrl varehar2(100) s cancelied umber(t) rerycount number(s0
invoiceaddr2 varchar2(100) snonexecuing {umberct) reydelay umber(19.0)
invciceacdrs varchar2(100) snoreciprocalacion” number(t)
inviceaddnegion varcharz(es) orderines i
invoiceaddreountry varchar2(45) acton archarz(1z)
inveiceacirzip verchar2(20) staus varchar2(19)
invciceaddrsuppios varcharz(es) staschanged [tmestamp plan_item_reaion
deliveryiociy varchar2(45) prequestiype [varcharz(19) [[patordaier
aeiveryacort varchar2(100) sequencenumber_|numbers.0) P |plantem_orcerine_re_sid"
dctvoryacarz varehar2(100) — < [pania
delveryacrs varchar2(100) | i [tenant
detivryacaregion varcher2(es) f| i | paniemic
dolvryaddreounty. varchar2(45) inenumoer
detveryacaizp varchar2(z0) ErT [Jeor
detivryecrsuppios varcher2(es) T mesny
piaria varchar2(255)
PK |plan_ud_data s |number(19.0)
orcerprioty number3.0)
<| i praniar archar2255)
stauschanged imesiamp
st varchar2(z2) s R e erchar22ss) paniem_uol_data
seuencenumber number(s.0) g | ercher2(2ss) partiondaie” fimestary
vae varchar2(4000)
samendmentoprogress [namber(1) P [planitem_udt_dta_sid [rumber(19.0
astamendment varchar2255) cranabale ercharzton) < ¥ |pamiar varchar22ss)
favor varcharz(125)
] | planiemice varchar2zse)
P erche2(t29) U e fenantior archarz(zss)
evatsationprioty | varchar2126) -
name. varchar22se)
vaie varchar2¢4000)
orginaivalue varchar2(4000)
favor varchar2(125)
vpe varchar2(125)
evatuatonprorty |varcharz(125)
missiona miestene_dopendency
parstonaate [imestamp pariondate” fimestamp
oK [miestonesia: | number(19.0) N £K | miestonedependencysi |number(19.0)
miestoneid: varchar2(258) S Y [— umber(19.0)
< P |plania varchar2(255) dependencyid- Jarcharz(so)
o ok [panitemict |varcharagass) plarid [varchar2(zss)
#K [tenant id+ archar2(255) planiermid archarz(255)
descrpton|varchar2(200) mestoneid archarz(255)
reacy number(t) tenant i archar2(255)
readyime imestamp upe archarz(as)
staus varchar2(19) reacy rumber(t)
sauschanged [mestamo readyime imestamp
sequencenumber_[number(s.0) s archarz(19)
statuschanged imestamp
timedeta number(15.0)
dependencyype archarz(as)
everiname archarz(es)
cvenia [archara(as)
eventime imestamp
ends archarz(es)
absalutetime jimestamp

Archival Database Diagram_Oracle - Order Amendment Relationship

<] F |amendmentnumber |varchar2(255)
varchar2(2ss)
archar2(2s5)
varchara(ass)
[varcharz(aoo0)

<] 7 [orderiar

orginalvalue [varcharz(a000)
favor varchar2(125)
lope varchar2(125)
evalvatonpriorty _|varchar2(125)

order_sla_data_hstory

paritondate” [imesiamp

oK sasic number(1.0)

<] P |amendmentumber |varcharz(255)
L] i orderir lvarcharz(255)
L] i renant i [varcharz(255)
siaice archarz(a2)

oo s amonament e ey oo ey I (o e s v oy
fhoiel ot iz el i i s 1] e Vi . hoaits
notes. varchar2(100) requiredondate [timestamp quantity |number(10,0) valueto |varchar2(19)
description varchar2(100) notes. |varchar2(100) uom |varchar2(45)
invoicelocaly archar2(as) subniteddate imestamp. inkic varchar2(és) o sy
invoiceaddrz varchar2(100) invoiceaddrl. [varcharz(100) customertemia |varchara(oa) 5 g e, erchorzess)
invoiceaddr3 varchar2(100) invoiceaddr2 |varchar2(100) status. |varchar2(32) |
[P fsiosd oo ST e el e
(e i (iR ool o mwrion B 1 ez
invicesddrzip archar2(20) invaiceaddreountry [varcharz(as) acion varcher2(32) e archarz(sz)
deliverylocality varchar2(as) invoiceaddrsupplac. |varchar2(45) deliverylocality |varcharz(as)

e e PR o e e

pdorh faion pion i s |roaion

delveryaddrregion varchar2(45) delveryaddra [varcharz(100) deliveryaciregion [varcher2(ds) oA omestamy

s o e "

statuschanged timestamp. orderpriority number(3.0) \value |varchar2(4000)

s ons i B i
number(s,0) status. |varchar2(22)

isamendmentinprogress number(1) sequencenumber [number(s.0) order i data_pistory

TIBCO® Order Management Concepts and Architecture

51 | Architecture

Note: All Order Management services support the default time format used in

PostgreSQL and Oracle databases.

Orchestrator

The Orchestrator provides an input interface for external systems.

Orchestrator

External
System

webservices

Orchestrator

The Orchestrator exposes Web service that can be used by external systems to submit

orders to the TIBCO® Order Management.

The Orchestrator hosts the following web services:

e AmendOrder

e GetAuditrail

e Feasibility Reply
e GetOrderDetails
e Submit Order

e Withdraw Order
e Suspend Order

e Cancel Order

TIBCO® Order Management Concepts and Architecture

52 | Architecture

Activate Order

PreQualification Failed Reply

Bulk Action

Purge Order

Get Order State Machine XML

GetOrder Messages Order Event APIs

Trigger Pending Order By Order Id List

Get Order Execution Plan

Submit Order Execution Plan

OPD Error Handler Reply

Submit Plan Error Notification Plan Item APIs
Plan Item Suspend Reply

Milestone Notify

Planltem run Reply

Planltem Error Handler Reply
PlanltemBulkErrorHandlerReply Read Plan Fragment Cache

Get plan fragment

See the TIBCO® Order Management Web Services Guide for more details on the Web Services
definitions.

The Orchestrator receives order and runs a series of tasks in defined order.

The Orchestrator interacts with several other components to store orders, to create plan
specifications. The Orchestrator is also responsible to communicate with external systems
(process components).

TIBCO® Order Management Concepts and Architecture

53 | Architecture

Orchestrator
p
Automated

Order Plan > QOrchestrator

Development L
]
Process
Component

The Orchestrator is responsible for the following:

1. Manage the overall order lifecycle.
2. Store the order in cache.

3. Develop a plan for fulfilling the order by sending the order to Automated Order Plan
Development that returns the plan specification.

4. Use this plan specification to create the execution plan for an order.
5. Store the plan in cache.

6. Interpret the execution plan and coordinate order fulfillment by invoking the correct
Process Components in the correct order.

7. Update the order status to complete in the cache at the end of the order lifecycle.
When the Orchestrator receives an order, it might refer to several products.

For each ordered product, a series of plan items must be completed sequentially for that
product to be provided. The Product Catalog maintains the link between product and plan
item. The Orchestrator receives the requests for order fulfillment. The Orchestrator
component in turn sends the order to Automated Order Plan Development to analyze the
order and the Product Catalog, and determines the plan of action to fulfill the order. The
Orchestrator then uses this plan to reach the goal by invoking the process component
associated with each plan item in the defined sequence to fulfill an order. For details, see
the TIBCO® Order Management Administration Guide.

The actual fulfillment of the product happens by invoking the process component -
typically implemented as Fulfillment Provisioning cartridges or the BPM workflow
processes - described by the plan fragment assigned to the product in the Product Catalog.

TIBCO® Order Management Concepts and Architecture

54 | Architecture

The invocation of the process components in a specific sequence and at specific time is
known as the order orchestration, which is done by the Orchestrator.

The management orchestrator receives Automated Order Plan Development-generated
execution plan for order orchestration. It has one to many interdependent plan items,
which typically maps to the order lines in the order.

Order and Execution Plan

Order Plan

Order Line 1
Praoduct A

G e 0>

Order Line 2
Product B

Gy

Order Line 3
Praduet C

Plan lieen EP_B3

Order Line 4 \>

Product D Plan ltem EP_Bd

Order Line 5
Product E

[

SRR

There can be one-to-one, one-to-many, or many-to-one relationships between the order
lines and the plan items based on the Product Catalog modeling.

* In case of Affinity between two products, the two order lines requesting these two
products have a single plan item in the execution plan, to fulfill the products
simultaneously.

* In case of a bundled product comprising subproducts and services, the order line
requesting this product have multiple plan items in the execution plan, one
corresponding to each subproduct or service.

A plan item contains the process component, which has to be invoked for the fulfillment of
a particular product. Order management the Orchestrator invokes the process components
and starts running the plan contained in the plan items according to the dependencies
between them. The execution plan, and hence the order is considered to be COMPLETE or
FULFILLED once all the process components corresponding to the plan items are run
successfully.

The high-level relationships between the order and plan entities are shown in the following
figure:

TIBCO® Order Management Concepts and Architecture

55 | Architecture

Order, Plan, Plan Fragment, and Process Component

wn Ordar goal is fulfilled

der rddar Line Product
G' An Order is composad of 1..° G #un Orodar Line dalvars &
Crkar Linas Proouc
& Orober Line may be: fulfilied
L 0..° Flan lams. A Product i Tulfilled by a Flan
X Fragmen: for a particular
by 2 Fian A Plan It may fulid 1. Action
Chrosar Liras
Flan
Plan Plan ltam
A Plan is cernpased of 1.° Fragment
Plan lems

A Plan loem e fullilked by a
Frocass Gompanant

A Procass Companeil &
Procass descrined by & Plan

Con et Fragmen:

Plan item, Plan fragment, and Process Component are inter-related concepts.

Here is the brief description of each of these concepts:

Plan Item is one of the steps in a plan that must be ran to reach the goal of fulfilling
an order line, and eventually the order. The plan item is configured with the name of
the Process Component, which must be invoked to fulfill a product. The name of the
Process Component is provided by TIBCO® Order Management Automated Order Plan
Development during plan development, and gathered from the Product Catalog by
using the name of the product.

Plan Fragment is the model definition of a Process Component, which fulfills a
particular product. Products are linked to plan fragments in the Product Catalog. The
name of a plan fragment is the same as the name of the Process Component that it
describes.

Process Component is the physical implementation of the tasks required to fulfill a
product. It is described by a plan fragment and invoked as a plan item step in a plan.

Automated Order Plan Development

In the TIBCO® Order Management context, an order and the corresponding execution plan
respectively represent the following:

TIBCO® Order Management Concepts and Architecture

56 | Architecture

» What (goal) to fulfill/achieve, and

» How to fulfill/achieve that particular goal.

Automated Order Plan Development is the core component of TIBCO® Order Management,
which transforms the What part that is order into How - the execution plan.

Automated Order Plan Development receives orders from the Orchestrator. Automated
Order Plan Development decomposes an order into a plan. The plan is used to fulfill the
corresponding order.

Automated Order Plan Development considers the specifications of the required products
and the products currently provided to a customer.

Automated Order Plan Development uses a Product Catalog to decompose the orders.
Typically, the Product Catalog can be TIBCO Product and Service Catalog.

Automated Order Plan Development

Automated Order
Plan Development Orchestrator

TIBCO Product
and Service Catalog

When an order is received, its order lines are decomposed by using a Product model.

A Product Model contains Bundles and Products Services. A product model also contains
concepts such as sequencing and dependencies.

The product specification for each order line is extracted from a product catalog by the
decomposition component.

The product specification is required to create execution plan fragments. These execution
plan fragments define the services, products, and resources required. For example, an order
line might contain a bundle, which might be composed of several products and services.

TIBCO® Order Management Concepts and Architecture

57 | Architecture

Considering factors such as sequencing and dependencies, these execution plan fragments
are then combined to create a single execution plan.

An incoming order to TIBCO® Order Management consists of one to many order lines, with
each line requesting a product or service to be fulfilled. The Orchestrator sends the orders
received from the Order Management System component to Automated Order Plan
Development for the execution plan generation. Automated Order Plan Development
component has the active reference of the product and the customer catalog.

Automated Order Plan Development generates the execution plan by applying rules on the
incoming order against the product, and customer catalogs for the customer coming along
with the order in execution plan generation request. See figure Plan Generation by
Automated Order Plan Development Inputs and Outputs.

Note:
1. Plan development performance is related to the size of the catalog and the

order being decomposed. Where possible, the size of both must be
reduced to improve performance.

2. Plan Fragments must not be modeled that do not do anything at execution
time. Only plan items that do useful work must go into the plan.

3. Milestones and overlapping sequencing must be used instead of empty
plan items for dependencies.

For a product requested in an order line, Automated Order Plan Development creates a
plan item and assigns the plan fragment corresponding to the action specified in the order
line from the product catalog. All such plan items are added into the execution plan. The
plan is further optimized by applying rules for features such as Affinity and Single Use. On
completion, the generated execution plan is sent back to the TIBCO® Order Management
Orchestrator for the order orchestration process.

TIBCO® Order Management Concepts and Architecture

58 | Architecture

Plan Generation by Automated Order Plan Development Inputs and Outputs

Product
Catalogue

Automated Order

' Plan Development

Execution Plan

Customer
Catalogue

The typical order fulfillment flow in TIBCO® Order Management is represented by the
following sequence diagram:

TIBCO® Order Management Concepts and Architecture

59 | Architecture

Plan Generation and Execution Sequence

Order M T
rder Managemen Automated Order Orchestrator Process
Server Plan Development Components
T T T
Input Order : :
—_—

| |
| |
| |
| |

Order Message |

i

AOPD Reuest |

Plan Generation Request

Pian Generalion Repanaa

|____

AOPD Rasponas |
1

|
Plan Ssane Request

1
Plan Stare Rasponss

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

——————————————) |

|
|

1

1t many exscution requests

1
|
|
|

I_L EXRCIS0N MSpONsas

Status Matincat

U % S

Error Messages and Handling

Automated Order Plan Development provides error handling and returns meaningful
responses in case of errors detected during the stages of plan development. During plan
generation if any errors are reported, Automated Order Plan Development stops the plan
generation immediately and returns an error response. The error handling also takes care
of circular dependency in the plan and returns an appropriate response.

TIBCO® Order Management Concepts and Architecture

60 | Architecture

Process Components

This component can be implemented in a variety of technologies depending on the
required functionality. Typically this is TIBCO Fulfillment Provisioning.

All Process Components must adhere to the REST service contract specified by the
Orchestrator to be considered a valid Process Component. Process Components
standalone rest service can be implemented using the following mentioned rest
documentation. For details, see "Process Component Technology Selection" in the TIBCO®
Order Management User Guide.

Individual Process Components must be stand-alone components, which allows for
changing the Process Component collection dynamically in real time without requiring an
order management outage.

All external component integrations are through the Process Components component.
These integrations are generally either service calls to perform automated tasks or callouts
to start a manual workflow.

The integration pattern for automated service calls takes the form of Process Components
sending out the REST call to an adapter layer that includes relevant order and order line
data as requested from the cache. This adapter layer then transforms the data into the
format required by the back-end service and then invoke that service. When it has
completed, it sends a response back to Process Components to complete the step in the
flow.

Process Components are responsible for the following:

1. Implement the tasks required to fulfill a particular product on an order. This might be
done in any REST Web Service-enabled technology provided the interface
specification for a Process Component is satisfied. For details, see "Process
Component Technology Selection" in the TIBCO® Order Management User Guide.

2. Accept Post planltemExecuteRequest from Orchestrator to start running a new
fulfillment process.

3. Request the required information from the cache that is required as part of a
fulfillment process.

4. Run the required business process for fulfilling a particular product that a customer
might order. This might take the form of invoking back-end service calls, business
process management, or manual tasks as appropriate for the implementing
technology.

TIBCO® Order Management Concepts and Architecture

61 | Architecture

5. Update information in the cache as part of the fulfillment process if required.

6. Return the execution results to the Orchestrator.

Feasibility Provider

This component can be implemented in a variety of technologies depending on the
required functionality provided it meets the interface specification requirements for a
Feasibility Provider.

Feasibility checking is an optional step in the order lifecycle that analyzes the order to
determine if it can be fulfilled. Feasibility checking might involve validating the order
contains the required products, physical network capacity checking, or inventory stock
level check. The Feasibility Provider is a customer-implemented component because
feasibility checking is highly customized to the requirements of a particular customer.

It is accessed through a JMS event interface.

Key Functionality

TIBCO Order Management provides the following functionalities:

Order Management Configurator Graphical User Interface (GUI) - configures the
settings for TIBCO Order Management system by using GUI mode.

Attribute-based Decomposition - filters execution plan depending on the orderline
attributes of the products ordered.

Affinity - allows different plan fragment types to be grouped together in the same
order.

Dependent and Sibling Product - enables grouping products on requests allowing
for sibling products and their children products to be sent to a dependent product.
The ability is built in the Product Model to indicate that a product is dependent on its
peer or peer's hierarchy.

Shared Attributes - used when two Products (parent to child and sibling) share the
same attribute and its corresponding value, and an update in the value of one needs
to be reflected in the other.

TIBCO® Order Management Concepts and Architecture

62 | TIBCO Documentation and Support Services

TIBCO Documentation and Support Services

For information about this product, you can read the documentation, contact TIBCO
Support, and join TIBCO Community.

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the Product Documentation website,
mainly in HTML and PDF formats.

The Product Documentation website is updated frequently and is more current than any
other documentation included with the product.

Product-Specific Documentation

The documentation for this product is available on the TIBCO® Order Management Product
Documentation page.

How to Contact Support for TIBCO Products

You can contact the Support team in the following ways:

» To access the Support Knowledge Base and getting personalized content about
products you are interested in, visit our product Support website.

e To create a Support case, you must have a valid maintenance or support contract
with a Cloud Software Group entity. You also need a username and password to log
in to the product Support website. If you do not have a username, you can request
one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee
subject matter experts to share and access their collective experience. TIBCO Community
offers access to Q&A forums, product wikis, and best practices. It also offers access to
extensions, adapters, solution accelerators, and tools that extend and enable customers to
gain full value from TIBCO products. In addition, users can submit and vote on feature

TIBCO® Order Management Concepts and Architecture

https://docs.tibco.com/
https://docs.tibco.com/
https://docs.tibco.com/products/tibco-order-management
https://docs.tibco.com/products/tibco-order-management
https://support.tibco.com/
https://support.tibco.com/

63 | TIBCO Documentation and Support Services

requests from within the TIBCO Ideas Portal. For a free registration, go to
TIBCO Community.

TIBCO® Order Management Concepts and Architecture

https://ideas.tibco.com/
https://community.tibco.com/

64 | Legal and Third-Party Notices

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. (“CLOUD SG”) SOFTWARE AND CLOUD SERVICES EMBED,
BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER CLOUD SG SOFTWARE
(COLLECTIVELY, “INCLUDED SOFTWARE”). USE OF INCLUDED SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED CLOUD SG
SOFTWARE AND/OR CLOUD SERVICES. THE INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR
ACCESSED BY ANY OTHER CLOUD SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER
PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS AND CONDITIONS
OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED AGREEMENT, OR, IF THERE IS NO
SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER AGREEMENT WHICH IS DISPLAYED WHEN
ACCESSING, DOWNLOADING, OR INSTALLING THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS
DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP
END USER AGREEMENT, THE LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE
OF THIS DOCUMENT IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF
SHALL CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written authorization of Cloud Software
Group, Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, ActiveMatrix BusinessWorks, TIBCO Runtime Agent, TIBCO
Administrator, and Enterprise Message Service are either registered trademarks or trademarks of
Cloud Software Group, Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only. You acknowledge that all
rights to these third party marks are the exclusive property of their respective owners. Please refer to
Cloud SG’s Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the SIL Open Font License, Version 1.1, which is
available at: https://scripts.sil.org/OFL

Copyright (c) Paul D. Hunt, with Reserved Font Name Source Sans Pro and Source Code Pro.

Cloud SG software may be available on multiple operating systems. However, not all operating
system platforms for a specific software version are released at the same time. See the “readme” file
for the availability of a specific version of Cloud SG software on a specific operating system platform.

TIBCO® Order Management Concepts and Architecture

https://www.cloud.com/legal
https://scripts.sil.org/OFL

65 | Legal and Third-Party Notices

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED
IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S), THE PROGRAM(S), AND/OR THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY
TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING BUT
NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer
to the Virtual Patent Marking document located at https://www.cloud.com/legal.

Copyright © 2010-2024. Cloud Software Group, Inc. All Rights Reserved.

TIBCO® Order Management Concepts and Architecture

https://www.cloud.com/legal

	Contents
	Introduction
	About TIBCO Order Management
	TIBCO Fulfillment Orchestration Suite Overview
	TIBCO Fulfillment Orchestration Suite Components
	User Interface Integration

	TIBCO® Order Management Overview
	Required Products
	TIBCO Enterprise Message Service™ (EMS)

	Basic Order Management Concepts
	Order
	Characteristics
	Product
	Plan
	Plan Item
	Milestone
	Dependency

	Plan Fragment
	Error Handling
	SLA Notification

	Plan Development
	Lifecycle
	Order
	Order Line
	Order Amendment
	Plan
	Plan Item
	Milestone
	Dependency

	Architecture
	Orchestrator
	Automated Order Plan Development
	Process Components
	Feasibility Provider
	Key Functionality

	TIBCO Documentation and Support Services
	Legal and Third-Party Notices

