
Spotfire Service for Python Installation and
Administration
Software Release 1.21.2

ii

Contents

The Spotfire® Service for Python. 4

System Requirements. 4

Limiting exposure of your deployment. 4

Containerized Service. 6

Configuring a custom Docker image on a node with internet access. 7

Configuring a custom Docker image on a node with no internet access. 8

Configuring a custom startup script to build a custom Docker image. 10

Pulling a custom Docker image from an authenticated repository. 12

Installing the Service on a Node Manager for a Spotfire Server. 15

Configuring the Service. 17

Custom configuration properties. 18

Allowed engines. 18

Compressed job contents and results. 19

Custom Python interpreter. 19

Disable warnings. 20

Docker container built for no internet access. 20

Engine pruning. 20

Engine timeout. 21

File size upload limit. 21

Logging level. 21

Manage Java options. 22

Package library location. 23

Safeguarding your environment. 24

Startup script. 24

engine ports. 25

JMX monitoring. 25

Containerized configuration. 25

Package Management for the Spotfire Service for Python. 27

Find help. 28

Using an Alternative Python Package Repository. 28

Included Packages. 29

The Spotfire Package (SPK). 31

SPK Versioning. 31

Spotfire Service for Python Installation and Administration

iii

Distribute Python Packages. 32

Installing Python Packages Manually. 34

Creating a Spotfire Package for Python Packages on the Node Manager. 35

Creating a Spotfire Package for Python Packages from a Windows Computer. 38

Build a Spotfire Package for Spotfire Service for Python (Linux). 41

Use an Alternative Python Interpreter. 43

Creating a Spotfire Package for an Alternative Python Interpreter (for Windows). 44

Build a Suitable Python Interpreter for Spotfire Service for Python (for Linux). 46

Service resource management scenarios. 48

Service Logs. 50

Monitoring the Service using JMX. 51

Troubleshooting the Service. 53

Spotfire Documentation and Support Services. 55

Legal and Third-Party Notices. 56

Index. 60

Spotfire Service for Python Installation and Administration

4

The Spotfire® Service for Python

The Spotfire® Service for Python extends access to the Python language from the installed Spotfire
client to Spotfire web client users.

The Spotfire® Service for Python provides predictive and computational detail to users who access
Spotfire analyses through the Spotfire web client.

The Spotfire Service for Python is provided to Spotfire® Server administrators as a set of Spotfire SPK
packages in one SDN distribution file. Spotfire Server administrators can install and configure the
Spotfire Service for Python on a node manager that is available to the Spotfire Server.

This document is meant for Spotfire Server administrators who need to install and configure the
Spotfire Service for Python, to install Python packages for data functions and analyses that use them,
and to review logs and troubleshoot the Spotfire Service for Python.

System Requirements

Your deployment must meet certain requirements to run the Spotfire Service for Python.

See the system requirements for this version of the Spotfire Service for Python.

Limiting exposure of your deployment

The Spotfire Service for Python is installed on a Spotfire Server node running under Linux or
Windows. The Linux installation provides the option of running the Spotfire Service for Python in a
containerization platform.

When you install the Spotfire Service for Python and run the Python engine, you can take steps to
protect the server deployment, to minimize the risk of unauthorized access, and to minimize the
possibility of malicious acts.

Statistical engines such as Python provide functions to access data and packages on the internet.
Additionally, they have functions that access the host computer system, such as those for executing
system commands, and those for reading and writing files. By their very design, these languages
can expose computer systems to risk from bad actors, unless the deployer takes steps to secure the
environments in which they run. We strongly recommend reviewing and implementing the practices
described here.

The Spotfire Service for Python installed on a Spotfire Server node running under Windows
does not have a containerized installation available.

Restricting user access

● Run the Spotfire Service for Python using an account that limits network access to required external
data sources and services only. (Note that taking this step can limit availability to data and package
updates.)

● Always run the node manager containing the Spotfire Service for Python as a non-root user. (That is,
not as root or under an Administrative account.)

● If you are running a system where other servers have access to computers running the Spotfire
Service for Python, disable passwordless access between the server and other servers.

Configuring for tighter engine control

● If your deployment is on a Linux server, then the default configuration for the Spotfire Service for
Python is to use containers (the property use.engine.containers: TRUE). Running the Spotfire

Spotfire Service for Python Installation and Administration

https://spotfi.re/pysrv-sys-reqs

5

Service for Python with containers enabled prevents the engines from having access to the host
system. See Containerized Service on page 6 for more information.

Docker is available under separate software license terms and is not part of the Spotfire
Server or the Spotfire Service for Python. As such, Docker is not within the scope of your
license for Spotfire Server or the Spotfire Service for Python. Docker is not supported,
maintained, or warranted in any way by Cloud Software Group, Inc. Download and use of
Docker is solely at your own discretion and subject to license terms applicable to Docker.

Spotfire Service for Python Installation and Administration

6

Containerized Service

When you install the Spotfire Service for Python on a Linux computer, by default, it is configured
to use a Docker® container. A containerized Spotfire Service for Python is available only for Linux
installations.

To use a containerized Spotfire Service for Python on a Linux system, download and install Docker.

● If you have not yet installed the Spotfire Service for Python, install Docker first, and then install the
Spotfire Service for Python.

● If you have already installed the Spotfire Service for Python before installing Docker, then stop the
Spotfire Service for Python, install Docker, set the configuration to use Docker, and then restart the
Spotfire Service for Python.

The version of Docker you use depends on your Linux system. See the system requirements for the
recommended version. See www.docker.com for more information about Docker.

The primary benefit of installing and using the Spotfire Service for Python in a container is that it
operates the service in a "sandbox", so the Python engine does not have access to the host file system.
(For more information about script and data function trust, see the Spotfire client user guide). Running
the Spotfire Service for Python in a container results in negligible performance impact.

Containerization of the engines does not, by default, limit access to the network. If your
system supports untrusted or public users creating data functions, consider additional firewall
configuration on the host system to limit container exposure to the network or internet to only
necessary sites and servers. Consult your OS or Docker documentation for further guidance.

The only container framework with which we developed and tested the Spotfire Service for Python
is Docker. We do not provide Docker with the base installation; however, you must have Docker
installed for the Spotfire Service for Python to work properly. The service downloads and builds
a default Docker image based on debian:12-slim from Docker Hub. While you cannot modify
the image we provide, you can build and use a different Docker image if you have different
configuration requirements. This section contains a few examples of specifying different Docker
images. Alternatively, check Docker Hub for an image that might work for you.

Docker is available under separate software license terms and is not part of the Spotfire Server
or the Spotfire Service for Python. As such, Docker is not within the scope of your license for
Spotfire Server or the Spotfire Service for Python. Docker is not supported, maintained, or
warranted in any way by Cloud Software Group, Inc. Download and use of Docker is solely at
your own discretion and subject to license terms applicable to Docker.

You can export and change the configuration options to build and install a customized image.
See Configuring the Service on page 17 for more information. The properties to change in the
configuration are the following:

● docker.image.name

● startup.hook.script

Important After you install Docker, you must create the docker group and then add the
spotfire user to the docker group. For more information about setting up this group, see https://
docs.docker.com/engine/install/linux-postinstall/.

After you install and configure both the container and the Spotfire Service for Python, you can start the
service. When the service starts, containers are created as needed.

Optionally, you can set the configuration option use.engine.containers to FALSE to disable
the container option.

Spotfire Service for Python Installation and Administration

https://spotfi.re/sr
http://www.docker.com/
https://docs.tibco.com/pub/sfire-analyst/latest/doc/html/en-US/TIB_sfire_client/client/topics/en-US/usage_of_scripts_and_data_functions.html
https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

7

Configuring a custom Docker image on a node with internet access

If you have access to the internet, then you can build a Docker image for your Spotfire Service for
Python, referencing it by its name and tag.

Perform this task from the command line on the computer where your Spotfire Server is installed. Some
steps are performed on the computer where the node manager is installed. (This can be a different
computer.)

You can create the custom configuration before installing the Spotfire Service for Python.

Prerequisites

● You must have Docker installed on the computer running the node manager. If you install and start
the service before you install Docker, then exceptions are written to the log.

● You must have a Linux computer where the node manager is installed. (Your node manager and the
Spotfire Server are usually on different computers).

● If you are using the script to build the base Docker image, you must have a connection to the
internet. (A connection to the internet is not required if you are using a locally-available Docker
image.)

Procedure

1. If you have already installed the service from the Spotfire Server Nodes & Services administration
page, and if it is running, then stop the service.

2. On the node manager computer, create a new directory called docker. Inside that directory, create
your Dockerfile.

Important Remember that for any script you write, the line endings must be appropriate
for the operating system where the service runs. Many text editors can perform end-of-line
(EOL) conversion.

###
A sample Dockerfile for installing JDK.
###
FROM debian:12-slim
install openjdk
RUN apt-get install openjdk-17-jdk && apt-get clean
set JAVA_HOME variable
ENV JAVA_HOME=/usr/lib/jvm/java-17-openjdk-amd64

For more information, see https://docs.docker.com/engine/reference/builder/.

3. Install Python and pip.

#install the Debian-included Python and the pip package.
RUN apt-get update && apt-get install python-is-python3 python3 python3-pip && apt-get
 clean

4. Install the spotfire package.

RUN pip install spotfire --break-system-packages

5. Optional: If you need or want to use a Python interpreter that is not bundled with the Spotfire
Service for Python, then update the following in the Dockerfile.

a) Install a compatible Python interpreter. See Custom Python interpreter on page 19 for more
information.

b) Set the environment variable SPOTFIRE_PYTHON_HOME to the path to the directory for the
installed Python interpreter that you want to use.

c) Using pip, install the spotfire Python package (available at https://pypi.org/project/spotfire/).

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/builder/
https://pypi.org/project/spotfire/

8

6. On the computer running the node manager, build the image with the name and tag.
The name and tag are comprised as <name:version>, as follows:

docker build -t pysrv:258 .

For more information, see https://docs.docker.com/engine/reference/commandline/build/.

7. On the computer running the Spotfire Server, export the custom.properties.

8. Edit the settings in the file custom.properties, specifying the name and tag of your custom image.

use.engine.containers: TRUE
docker.image.name: <name:version>

9. On the computer running the Spotfire Server, import the custom.properties.

10. From the Spotfire Server Nodes & Services administration page, install the service, specifying the
configuration to use, and then start the service.

If you have already installed the service, then, under the node manager, select the service and click
Edit. From the Configuration drop-down list, select the new configuration.

If problems occur, troubleshoot by examining the Dockerfile that the service writes. After the
service runs, this Dockerfile is available at the root service directory on the computer running the
node manager. For example, /opt/nodemanager/<version>/nm/services/<language>-service-
linux-<version_#_ID>/dockerfile/Dockerfile.

Configuring a custom Docker image on a node with no internet access

If your node manager does not have external access to the internet, then you can create a Docker image
on an internet-enabled computer, and then transfer it to your node manager.

Perform the first three steps of this task from the command line on a computer with internet access.
Perform the rest of the task from the command line on the computer where your node manager is
installed.

Prerequisites

● If you are using the script to build the base Docker image, you must have a connection to the
internet. (A connection to the internet is not required if you are using a locally-available Docker
image.)

● You must have a Linux computer where the node manager is installed. (Your node manager and the
Spotfire Server are usually on different computers).

● You must have Docker installed on the computer running the node manager. If you install and start
the service before you install Docker, then exceptions are written to the log.

Custom docker images for the service must contain the following.

● The Java 17 Runtime.

● The JAVA_HOME environmental variable, correctly defined.

ENV JAVA_HOME=</correct/path/to/java>

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/commandline/build/

9

Procedure

1. On a computer with internet access, create the Dockerfile.

Important Remember that for any script you write, the line endings must be appropriate
for the operating system where the service runs. Many text editors can perform end-of-line
(EOL) conversion.

###
A sample Dockerfile for installing JDK.
###
FROM debian:12-slim
install openjdk
RUN apt-get install openjdk-17-jdk && apt-get clean
set JAVA_HOME variable
ENV JAVA_HOME=/usr/lib/jvm/java-17-openjdk-amd64

For more information, see https://docs.docker.com/engine/reference/builder/.

2. Install Python and pip.

#install the Debian-included Python and the pip package.
RUN apt-get update && apt-get install python-is-python3 python3 python3-pip && apt-get
 clean

3. Install the spotfire package.

RUN pip install spotfire --break-system-packages

4. Optional: If you need or want to use a Python interpreter that is not bundled with Spotfire Service
for Python, then update the following in the Dockerfile.

a) Install a compatible Python interpreter. See Custom Python interpreter on page 19 for more
information.

b) Set the environment variable SPOTFIRE_PYTHON_HOME to the path to the directory for the
installed Python interpreter that you want to use.

c) Using pip, install the spotfire Python package (available at https://pypi.org/project/spotfire/).

5. Build the image specifying the name and tag.
Use the command docker build -t <name:version>, as follows:

docker build -t pysrv:258 .

For more information, see https://docs.docker.com/engine/reference/commandline/build/.

6. Save the image to a .tar file.
Use the command docker save -o <name-version>.tar <name:version>, as follows:

docker save -o pysrv-258.tar pysrv:258

For more information, see https://docs.docker.com/engine/reference/commandline/save/.

7. If you have already installed the service from the Spotfire Server Nodes & Services administration
page, and if it is running, then stop the service.

8. Transfer the .tar file to the target computer (where the node manager is running).

9. Load the .tar file into the node manager.
Use the command docker load -i <name-version>.tar, as follows:

$ sudo docker load -i pysrv-258.tar
f2419d350464: Loading layer [==>]
 329.5MB/329.5MB
Loaded image: pysrv:258
$ docker images

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/builder/
https://pypi.org/project/spotfire/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/save/

10

REPOSITORY TAG IMAGE ID CREATED SIZE
pysrv 258 9941b68e7f65 17 hours ago 517MB

For more information, see https://docs.docker.com/engine/reference/commandline/load/.

10. On the computer running the Spotfire Server, export the custom.properties.

11. Edit the settings in the file custom.properties, specifying the name and tag of your custom image,
and indicating that the docker image identifier should be used directly, without building an image
on top of it.

use.engine.containers: TRUE
docker.image.name: <name:version>
use.immutable.container=true

See Docker container built for no internet access on page 20 for more information.

12. On the computer running the Spotfire Server, import the custom.properties.

13. From the Spotfire Server Nodes & Services administration page, install the service, specifying the
configuration to use, and then start the service.

If you have already installed the service, then, under the node manager, select the service and click
Edit. From the Configuration drop-down list, select the new configuration.

See Installing the Service on a Node Manager for a Spotfire Server on page 15 and Configuring the
Service on page 17 for more information.

Configuring a custom startup script to build a custom Docker image

You can provide a startup script that is installed and configured on your Spotfire Server build a custom
Docker image for your Spotfire Service for Python.

Perform this task from the command line on the computer where your Spotfire Server is installed, and
on the computer where your node manager is installed. For more information about the startup script,
see Startup script on page 24.

Prerequisites

● You must have Docker installed on the computer running the node manager. If you install and start
the service before you install Docker, then exceptions are written to the log.

● You must have a Linux computer where the node manager is installed. (Your node manager and the
Spotfire Server are usually on different computers).

● If you are using the script to build the base Docker image, you must have a connection to the
internet. (A connection to the internet is not required if you are using a locally-available Docker
image.)

Custom docker images for the Spotfire Service for Python must contain the following.

● The Java 17 Runtime.

● The JAVA_HOME environmental variable, correctly defined.

ENV JAVA_HOME=</correct/path/to/java>

Procedure

1. If you have already installed the service from the Spotfire Server Nodes & Services administration
page, and if it is running, then stop the service.

2. On the computer running the Spotfire Server, export the custom.properties.

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/commandline/load/

11

3. On computer running Spotfire Server, create a file called Dockerfile, and then save it to your custom
configuration directory.

Important Remember that for any script you write, the line endings must be appropriate
for the operating system where the service runs. Many text editors can perform end-of-line
(EOL) conversion.

###
A sample Dockerfile for installing JDK.
###
FROM debian:12-slim
install openjdk
RUN apt-get install openjdk-17-jdk && apt-get clean
set JAVA_HOME variable
ENV JAVA_HOME=/usr/lib/jvm/java-17-openjdk-amd64

For more information, see https://docs.docker.com/engine/reference/builder/.

4. Install Python and pip.

#install the Debian-included Python and the pip package.
RUN apt-get update && apt-get install python-is-python3 python3 python3-pip && apt-get
 clean

5. Install the spotfire package.

RUN pip install spotfire --break-system-packages

6. Optional: If you need or want to use a Python interpreter that is not bundled with Spotfire Service
for Python, then update the following in the Dockerfile.

a) Install a compatible Python interpreter. See Custom Python interpreter on page 19 for more
information.

b) Set the environment variable SPOTFIRE_PYTHON_HOME to the path to the directory for the
installed Python interpreter that you want to use.

c) Using pip, install the spotfire Python package (available at https://pypi.org/project/spotfire/).

7. On the computer running Spotfire Server, create a custom script to build the Dockerfile, and then
save it to your custom configuration directory.

(By default, <server-installation-dir>/tomcat/spotfire-bin/config/root/conf.)

The following example file is named customScript.sh.

#!/bin/bash

 # Define the image name and tag
IMAGE_NAME="pysrv:customScript"
 # Custom configuration files are at relative path conf/FILE
DOCKERFILE_NAME="conf/Dockerfile"
 # Command to check if image exists
COMMAND="docker inspect ${IMAGE_NAME}"

 # Run the command then check the status code
$COMMAND
RESULT=$?
if [$RESULT -ne 0]; then
 # Image did not exist
 echo ${IMAGE_NAME} does not exist. Building now...
 COMMAND="docker build -f ${DOCKERFILE_NAME} -t ${IMAGE_NAME} ."
 echo ${COMMAND}
 echo "Building the custom docker image ${IMAGE_NAME} for the python-
service"
 $COMMAND
 echo "Completed building ${IMAGE_NAME}"
else
 # Image exists already
 echo The requested image ${IMAGE_NAME} already exists.
fi

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/builder/
https://pypi.org/project/spotfire/

12

8. Edit the relevant properties in the file custom.properties, specifying using the custom script.

use.engine.containers: TRUE
docker.image.name: pysrv:customScript
startup.hook.script: conf/customScript.sh

9. On the computer running the Spotfire Server, import the custom.properties.

10. From the Spotfire Server Nodes & Services administration page, install the service, specifying the
configuration to use, and then start the service.

If you have already installed the service, then, under the node manager, select the service and click
Edit. From the Configuration drop-down list, select the new configuration.

If problems occur, troubleshoot by examining the Dockerfile that the service writes. After the
service runs, this Dockerfile is available at the root service directory on the computer running the
node manager. For example, /opt/nodemanager/<version>/nm/services/<language>-service-
linux-<version_#_ID>/dockerfile/Dockerfile.

Pulling a custom Docker image from an authenticated repository

You can create a custom start script to configure the Spotfire Service for Python to log in to a remote
authenticated repository and pull a custom Docker image.

This option is available if you want to specify a base image for the docker container, but it is in a
repository that requires authentication to access. To set the appropriate authentication credentials,
you can execute a Docker login command when you start the service, but before starting the Docker
container, as part of a startup hook script.

This task demonstrates accessing a Docker image stored in the AWS Elastic container Registry, which is
an authenticated repository.

Prerequisites

● You must have a Linux computer where the node manager is installed. (Your node manager and
Spotfire Server are usually on different computers).

Custom docker images for the service must contain the following.

● The Java 17 Runtime.

● The JAVA_HOME environmental variable, correctly defined.

ENV JAVA_HOME=</correct/path/to/java>

Procedure

1. If you have already installed the service from the Spotfire Server Nodes & Services administration
page, and if it is running, then stop the service.

2. Install the AWS command-line interface (CLI) tool on the computer running the node manager.
See https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-bundle.html for more
information.

a) Run the command aws configure, and then connect to your account using your AWS Access
Key and AWS Secret Access Key.

b) Verify that the user running the Spotfire Service for Python can run the aws process.

Spotfire Service for Python Installation and Administration

https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-bundle.html

13

3. Determine your docker.image.name property.

a) In your AWS account, navigate to Amazon ECR > Respositories.
The docker image name is listed after Repository URI, and the tag is listed after Image Tags.

Repository URI 123456.dkr.ecr.us-west-2.amazonaws.com/python/pysrv-sample
Image Tags: latest

The docker.image.name property is a concatenation of those two values.

docker.image.name: 123456.dkr.ecr.us-west-2.amazonaws.com/python/pysrv-sample:latest

4. On the computer running the Spotfire Server, export the custom.properties.

5. On the computer running the Spotfire Server, create a custom script and save it to your custom
configuration directory <server installation dir>/tomcat/spotfire-bin/config/root/
conf/.
The script uses the AWS get-login command to fetch the docker login command. See the
following links for more information:

● https://docs.aws.amazon.com/cli/latest/reference/ecr/get-login.html

● https://docs.docker.com/engine/reference/commandline/login/
In the script, use the absolute path to the aws command (usr/local/bin/aws).

We named this sample script awsScript.sh.

If saved to a custom configuration, it resides at the relative path conf/awsScript.sh.

Important Remember that for any script you write, the line endings must be appropriate
for the operating system where the service runs. Many text editors can perform end-of-line
(EOL) conversion.

#!/bin/bash
 # Request a login from AWS
 # The command will return a 'docker login' string
DOCKER_LOGIN=`/usr/local/bin/aws ecr get-login --no-include-email --region us-west-2`
echo Retrieved the command ${DOCKER_LOGIN}
 # Execute that 'docker login'
${DOCKER_LOGIN}
echo docker login authentication completed.

6. From the command line, manually test your script at this stage to ensure that everything works
correctly.

7. Edit the relevant properties in the file custom.properties with the appropriate values.

docker.image.name: 123456.dkr.ecr.us-west-2.amazonaws.com/python/pysrv-sample:latest
use.engine.containers: TRUE
startup.hook.script: conf/awsScript.sh

8. From the command line, manually test the script again to make sure that it works correctly.

9. On the computer running the Spotfire Server, import the custom.properties.

10. From the Spotfire Server Nodes & Services administration page, install the service, specifying the
configuration to use, and then start the service.

If you have already installed the service, then, under the node manager, select the service and click
Edit. From the Configuration drop-down list, select the new configuration.

What to do next

If problems occur, troubleshoot by examining the Dockerfile that the service writes. After the
service runs, this Dockerfile is available at the root service directory on the computer running the

Spotfire Service for Python Installation and Administration

https://docs.aws.amazon.com/cli/latest/reference/ecr/get-login.html
https://docs.docker.com/engine/reference/commandline/login/

14

node manager. For example, /opt/nodemanager/<version>/nm/services/<language>-service-
linux-<version_#_ID>/dockerfile/Dockerfile.

Spotfire Service for Python Installation and Administration

15

Installing the Service on a Node Manager for a Spotfire
Server

After installing and authorizing a node manager, you can install the Spotfire Service for Python.

Prerequisites

● You have installed and authorized a node manager. See the topics Node manager installation and
Trusting a node in the Spotfire® Server Installation and Administration user guide.

● The Spotfire Server and the node manager are up and running.

● You have deployed the operating-system-specific SDN for the Spotfire Service for Python into a
deployment area of your Spotfire Server. For information about deploying the SDN, see the topic
Adding software packages to a deployment area in the Spotfire® Server Installation and Administration
user guide.

Important
● You can install the Spotfire Service for Python on a node manager running on a computer

with an operating system (OS) that is different from that of your Spotfire Server.

● All services belonging to the same Spotfire deployment area must run on node managers
with the same OS.

● Optional: You have created and imported a custom configuration for the Spotfire Service for Python.

Procedure

1. Log in to the Spotfire Server and click Nodes & Services.

2. Under Node managers, select the node to which you want to add the Spotfire Service for Python.
A running service shows a green circle with a check mark next to the selected node manager.
In the Services area, the names of the current services are shown in the lower-right pane of the
window.

3. Click Create new service.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/node_manager_installation.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/trusting_a_node.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html

16

4. Make your selections in the Create new service dialog:

a) Under Deployment area, select the area where you deployed the Spotfire Service for Python.

Administrators often create a Test deployment area to use as a staging server.

b) Under Capability, select PYTHON.

c) Under Configuration, select the service configuration to apply to the service.

In most cases, this is the default configuration, unless you have created a custom
configuration. See the Spotfire® Server Installation and Administration user guide for more
information on creating a custom configuration.

d) Under Service name, provide a display name for the service.

e) Under Add instances, specify the number of instances.

f) Under Instances name, provide a name for the instances.

g) Under Number of instances, leave the option set to 1.
The Spotfire Service for Python can have only one instance per node. If you set it to a value
other than 1, the service does not work as expected.

One Spotfire Service for Python instance can serve multiple users simultaneously. See the
Custom configuration properties for more information.

h) Under Port, you can change the default as needed.

5. Click Create service.
To view the progress of the installation, click the Activity tab.

Result

The service is installed and starts.

If you experience errors, click View logs for more information.

What to do next

For information on the remaining setup tasks, see the topic Post-installation steps in the Spotfire® Server
Installation and Administration user guide.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/post-installation_steps.html
https://docs.tibco.com/products/tibco-spotfire-server

17

Configuring the Service

You can customize certain behaviors for the Spotfire Service for Python by exporting the service
properties, editing the file, importing service properties, and then applying the new configuration.

Perform this task on the computer where you have installed Spotfire Server.

For general information about configuring services for Spotfire Server, see the Spotfire® Server
Installation and Administration user guide.

Prerequisites

● You must have completed the steps outlined in Installing the Service on a Node Manager for a
Spotfire Server on page 15.

● You must have administrative read-write privileges to save the changed configuration file.

Procedure

1. Open a command line as administrator and change the directory to the location of the command-
line config tool (on Windows, config.bat; on Linux, config.sh).
The default location is <server installation dir>/tomcat/spotfire-bin.

2. On the command line, issue the following command:

config export-service-config --capability=Python --deployment-area=<your deployment area
 name>

If you already have a configuration name from previously editing the configuration, and
you want to change that configuration, provide the configuration name using the --config-
name=<configuration name> option.
The file named custom.properties is exported and written to the directory <server
installation dir>/tomcat/spotfire-bin/config/root/conf.

3. When prompted, provide the password for the config tool.

4. Using a text editor, open and edit the file <server installation dir>/tomcat/spotfire-bin/
config/root/conf/custom.properties.
The text file contains comments to provide you with information about each property. Alternatively
see the individual reference topics for the properties for more information.

5. Save the changes, and then close the text editor.

6. Optional: Copy any additional files to add to the configuration into the directory <server
installation dir>/tomcat/spotfire-bin/config/root/conf/.
For example, you can add a configuration script. (Configuration scripts must be specified in the
custom property startup.hook.script. See Startup script on page 24 for more information.).
For a Linux OS deployment, you can add a Dockerfile.

7. From a command line, return to the directory for the command-line config tool.
The default location is <server installation dir>/tomcat/spotfire-bin.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/products/tibco-spotfire-server
https://docs.tibco.com/products/tibco-spotfire-server

18

8. On the command line, issue the following command:

config import-service-config --config-name=<new-config-name>

The config-name you specify identifies this configuration, so provide a name that is meaningful for
the change. For example, if you create a configuration with a specific debugging level, you might
name the configuration Debugging.

You cannot overwrite the default configuration. You must provide a configuration name
when you import the custom configuration.

See the reference topic for import-service-config in the Spotfire Server and Environment Installation
and Administration user guide for information about additional options.

9. Open a web browser and log in to the administration console for Spotfire Server.

10. Click Nodes & Services.

11. Under Network, select Node managers, and then select the Spotfire Service for Python.

12. Click Edit.
The Edit service dialog is displayed.

13. In the Configuration drop-down list box, select the configuration name to apply, and then click
Save.

Result

The service is stopped, and then Spotfire Server restarts the service and applies the new configuration.
The Spotfire Service for Python begins recording information to the Service Logs. For more information,
see Service Logs.

To change the new configuration, export it again, specifying its name. If you do not specify the
name, the default configuration is exported.

Custom configuration properties

You can fine tune the behavior of the Spotfire Service for Python by setting custom configuration
properties.

Allowed engines

You can specify the number of Python engines that can run concurrently, and the number of Python
engines that are allocated in the Spotfire Service for Python queue.

Configuration property Default setting Description

engine.session.max <one less than
the number of
logical processors
available on the
node>

The maximum number of Python engine sessions that are allowed
to run concurrently in the Spotfire Service for Python. Each user
running data functions in a Spotfire analysis uses its own session.

The default is one less than the number of logical processors on
the host.

engine.queue.size <one quarter of the
number of logical
processors on the
host, constrained
to a minimum of 1
and a maximum of
10. >

The number of Python engines preallocated and available for
new sessions in the Spotfire Service for Python queue. The service
always starts enough engines to keep the queue at the requested
level.

The total number of engines that can run at the same time is the
sum of engine.session.max + engine.queue.size.

This number can be set manually to a value higher than 10.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/products/tibco-spotfire-server

19

For more information on how engine resources can be managed, see Service resource management
scenarios on page 48.

Compressed job contents and results

You can compress large data sets sent to Python. You can also compress returned results for Python
data functions that are then sent to the Spotfire Service for Python.

Configuration property
Default
setting Description

jetty.gzip.compression-

level

4 Set to a value from 1 to 9, inclusive. 1 offers the fastest compression speed
but at a lower ratio. 9 offers the highest compression ratio but at a lower
speed.

jetty.gzip.min-gzip-size 32 The minimum size in bytes before the response is compressed.

jetty.gzip.inflate-buffer-

size

2048 The size, in bytes, of the buffer to inflate a compressed request. Set to -1
to disable compression uploads.

Custom Python interpreter

You can specify a Python interpreter that is different from the interpreter that is bundled with the
distribution.

For example, due to constraints or requirements of some Linux operating systems, you might
need to use the version of Python that is installed on your system. For more information about
system requirements and their installed Python versions, see the Spotfire Service for Python system
requirements.

If you want to use the system-installed Python interpreter in a containerized system, see Configuring a
custom Docker image on a node with internet access on page 7.

To use the system-installed Python interpreter, or another compatible Python interpreter that is
different from the interpreter bundled with the Spotfire Service for Python, you must meet the
following prerequisites.

Prerequisites for using a custom Python interpreter

● Ensure that Python version 3.7.x or higher is installed on the system.

● Set the environment variable SPOTFIRE_PYTHON_HOME to the path to the directory for the installed
Python interpreter that you want to use.

— On Linux, the Spotfire Service for Python uses and searches for <SPOTFIRE_PYTHON_HOME>/
bin/python3.

— On Windows, the Spotfire Service for Python searches for <SPOTFIRE_PYTHON_HOME>/bin/
python.exe

● Install the spotfire Python package (available at https://pypi.org/project/spotfire/).

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire/general/sr/sr/topics/tibco_spotfire_service_for_python.html
https://docs.tibco.com/pub/spotfire/general/sr/sr/topics/tibco_spotfire_service_for_python.html
https://pypi.org/project/spotfire/

20

The environment variable SPOTFIRE_PYTHON_HOME must be accessible to the running node
manager.
● For Linux, you can establish this connection with the file start-python-service.sh

(located at /opt/spotfire/nodemanager/<version>/nm/services/python-service-
linux-<guid>/python/start-python-service.sh).

● For Windows, you can set this connection with the file startPython.bat (located at C:/
spotfire/nodemanager/<version>/nm/services/Python Service Windows-<guid>/

python/startPython.bat).

Disable warnings

By default, warnings from the data function (or included packages) are sent to the client when
executing a data function through the service. It is possible to suppress warnings by disabling the
warning alert.

Configuration property Default setting Description

disable.warning.alert false Set to true to disable sending warnings from the data function to
the client when executing a data function.

Docker container built for no internet access

If you are deploying a Spotfire Service for Python to use in a system with no internet access, you must
configure the container image so that it does not try to build an image on top of the one that you have
initially built in a system with internet access.

Configuration property Default setting Description

use.immutable.container false Set to true to indicate to the service that the image identifier (
name:tag) that is given in the docker.image.name is immutable,
 and should be used directly without building an image on top of
it. The default is false.

This property is required only for containers that are used in
Spotfire Server deployments that do not have access to the
internet.

To use an immutable container, you must have installed
JDK version 17 in the container.

For more information, see Configuring a custom Docker image on a node with no internet access on
page 8.

Engine pruning

When the Spotfire Service for Python reaches a certain percentage of capacity of usage, then the
Spotfire Service for Python begins pruning Python engines to free service resources.

Configuration property Default setting Description

engine.prune 10 The time, in seconds, that a Python engine can be idle before the
Spotfire Service for Python prunes it.

Spotfire Service for Python Installation and Administration

21

Configuration property Default setting Description

dynamic.prune.threshold 60 The Spotfire Service for Python capacity at which idle pruning is
engaged, as a percentage value.

By default, when the Spotfire Service for Python reaches 60%
 capacity of usage, then it begins the idle-pruning process as
specified by engine.prune.

● Set to 0 to always prune when a Python engine is idle.

● Set to 100 to never prune when a Python engine is idle.

For more information, see Service resource management scenarios on page 48.

Engine timeout

You can specify the length of time a Python engine runs to complete a task before failing with a timeout
error. You can also specify the length of time for a Python session to exist.

Configuration property
Default
setting Description

engine.execution.timeout 600 The length of time, in seconds, that the Spotfire Service for Python
allows the Python engine to execute a request before stopping the
execution with a timeout error.

engine.session.maxtime 1800 The length of time, in seconds, that the Spotfire Service for Python
allows the Python engine session to exist before killing it.

To disable session pruning, set this value to -1.

File size upload limit

When planning for uploading files for the Spotfire Service for Python, you can set the file size limit
for uploading using the properties setting for the Spring Boot framework. If you change this setting,
consider how the file size might affect the speed at which files can be uploaded.

Configuration property Default setting Description

spring.servlet.multipart.max-

file-size

100 MB The total file size for upload cannot exceed the value for this
setting.

spring.servlet.multipart.max-

request-size

100 MB The total request size for a multipart file upload cannot
exceed the value for this setting.

Logging level

By default, the logging level is set for the Spotfire Service for Python to provide informational progress.

In the custom.properties file, you can set the logging level through the property loggingLevel. The
Spotfire Service for Python uses Log4J2-defined logging levels.

Level Description

ALL All levels are reported.

TRACE Reports a finer-grained level of events than the DEBUG level.

Spotfire Service for Python Installation and Administration

22

Level Description

DEBUG Reports a fine-grained level of events. This setting is most useful when you are debugging problems
with the service.

INFO The default. Reports informational messages that highlight the progress of the Spotfire Service for
Python, but at coarse-grained level.

WARN Reports potentially harmful situations.

ERROR Reports errors. These errors might still allow the Spotfire Service for Python to continue running.

FATAL Reports only very severe errors that cause the Spotfire Service for Python to stop.

OFF Turns off logging.

Manage Java options

You can set certain Java command-line options for the Spotfire Service for Python for managing such
settings as the Java heap size.

Configuration property
Default
setting Description

disable.java.core.dump TRUE By default, when the JVM stops responding, it does not write
full core dumps to the temp directory. Set this value to FALSE to
enable full core dumps.

Setting this value to FALSE can potentially cause the
core dump to fill all available disk space. Use with
caution.

Spotfire Service for Python Installation and Administration

23

Configuration property
Default
setting Description

javaOptions none In systems with a lot of memory, administrators might want to
limit the initial or maximum heap size that the Spotfire Service
for Python can use.

In the following example, the custom property sets the Java
initial heap size to 1GB.

javaOptions:-Xms1g

In the following example, the custom property sets the Java
initial heap size to 2GB and the maximum heap size to 4GB.

javaOptions:-Xms2g,-Xmx4g

The javaOptions setting controls Java memory only,
 and does not control memory allocated in the Python
runtime. (Memory allocated by Java is typically very
small, which makes it possible to set a very low value
for the initial heap size, such as Xms64M.)

To include multiple java options, delimit the options with a
comma and no space. The following examples demonstrate
setting an empty property, setting one property, setting two
properties, and setting three properties.

javaOptions:
javaOptions:-Xms2g
javaOptions:-Xms2g,-Xmx4g
javaOptions:-Dfoo="foobar",-Xms2g,-Xmx4g

The javaOptions property cannot contain spaces. For
example, -Dfoo="foo bar" is not a valid property
setting.

For other Java command line options, see the Java
documentation.

Package library location

You can set the location of packages that Python can use in the Spotfire Service for Python
configuration settings.

Configuration property Default setting Description

packagePath none The absolute path to the shared package library location. When specifying
the path, you must use a forward slash regardless of operating system.

● If you install packages into your Spotfire® deployment using the SPK
process, then this setting is not required.

● If you install packages onto the server using pip install
<packagename>, then set this path to the package installation location.

Example

packagePath: /opt/python/library
packagePath: C:/Python/Lib

Spotfire Service for Python Installation and Administration

24

Safeguarding your environment

This custom property setting helps minimize the risk of malicious acts in your environment.

Configuration property Default setting Description

disable.spotfire.trust.checks FALSE By default, the Spotfire Service for Python checks whether a data
function has come from a trusted source.

Set to TRUE to not check for the data function trust status of any
data function run on the Spotfire Service for Python.

Setting this value to TRUE results in all Spotfire
data functions executing unrestricted. We strongly
recommend that you ensure that your service is fully
secured, that engine containers are enabled, and that
network access from the containers is limited (using a
firewall) to only necessary servers and ports.

For more information about script and data function trust, see
the Spotfire® Analyst User'Guide and the Spotfire® Administration
Manager User'Guide.

Startup script

You can specify a script to run before a container or Python engine is started.

Configuration property
Default
setting Description

startup.hook.script none The path and name of a startup hook script that runs before any container
or Python engine is started. This value can be empty (for no script) or a
relative path from the Spotfire Service for Python working directory.

Place the startup script in the directory with the custom.properties
file (by default <server-installation-dir>/tomcat/spotfire-bin/
config/root/conf/).

To specify the path, you must use forward slash (/) regardless of
the host operating system.

The Spotfire Service for Python can run either a .bat or a .sh file format,
 depending on the host operating system.

On a Linux system, the script must have appropriate permissions before
the Spotfire Service for Python executes it.

Important Remember that for any script you write, the line
endings must be appropriate for the operating system where the
service runs. Many text editors can perform end-of-line (EOL)
 conversion.

You can use the startup script to set environment variables, create
directories, download files, or prepare the file system settings in other
ways before the service starts. (For example, you can perform Docker
commands in the script for a Linux deployment area, or you can run
another script. See Containerized Service on page 6 for more information.)

Example

● Relative path for a Linux deployment area: conf/mystartupscript.sh

● Relative path for a Windows deployment area: conf/mystartupscript.bat

Spotfire Service for Python Installation and Administration

25

engine ports

Python engines running under the Spotfire Service for Python require open ports to communicate. The
first available port, and the range to the last available port, are determined by these two settings.

The defaults specify a range between 62001 and 63000.

Configuration property Default setting Description

engine.port.min 62001 The first specified available port set for a Python engine.

engine.port.range 1000 This value, added to the value specified in engine.port.
min, indicates the range of the ports available for the Python
engines.

JMX monitoring

You can use an installation of Java Management Extensions (JMX) and the Remote Method Invocation
(RMI) connector to monitor the Spotfire Service for Python.

Remove the comment marker and set the properties to connect to JMX using RMI in the custom
properties file. To use JMX monitoring, you must provide valid settings for all five of these properties.

Important Because JMX monitoring requires connecting to the specific IP address of the node,
you must create a custom configuration for each node to monitor.

Configuration property Default setting Description

jmx.rmi.username None Set this value to the JMX user name.

jmx.rmi.password None Set this value to the JMX password.

jmx.rmi.host None Set this value to the IP address of the host computer (that is, the
computer where the node manager and the Spotfire Service for
Python are installed.)

jmx.rmi.port 1099 Set this value to an available port for the RMI connection with
JMX.

jmx.active None Set this value to TRUE to activate JMX.

For more information, see Monitoring the Service using JMX on page 51.

Containerized configuration

The Spotfire Service for Python provides custom properties that are specific to the Linux operating
system.

Configuration property Default setting Description

use.engine.containers TRUE Runs the Python engine inside a container when this value is
set to TRUE (the default).

ram.limit 1000 The amount of RAM and SWAP memory to which the Python
engine containers are constrained, in megabytes.

Spotfire Service for Python Installation and Administration

26

Configuration property Default setting Description

docker.image.name debian:12-slim When you use containers, the Spotfire Service for Python
builds a custom image based on a starting image.

This property is used by the Dockerfile as the FROM line.

See https://docs.docker.com/engine/reference/builder/#from for
more information.

The Spotfire Service for Python default is debian:12-slim.

For more information, see Containerized Service on page 6.

Spotfire Service for Python Installation and Administration

https://docs.docker.com/engine/reference/builder/#from

27

Package Management for the Spotfire Service for Python

Spotfire Service for Python programmers in your organization can develop their own packages or take
advantage of some of the thousands of compatible packages developed by other Python programmers,
and then share the analyses that use those functions with Spotfire users in your organization.

The largest and most commonly-used curated repository for Python packages is the Python Package
Index (PyPI). Administrators should check with authors to make sure they know the location for
needed packages.

Spotfire analysts can create data functions that use these packages, and then share them with either
other analysts using the installed Spotfire client, or with Spotfire web client users.

Important Packages must be installed in the same type of environment as where they are
executed. For example, if you built the debian:12-slim Docker image for your containerized
Spotfire Service for Python, make sure the packages are installed on a node manager running
the same operating system as the containerized engines. If this is not possible, then see the
workaround options in Troubleshooting the Service on page 53.

● To share a collection of Python packages and data functions that use them with Spotfire Analyst
installations connected to your Spotfire Server, create the Spotfire package (SPK) containing the
Python packages, and use the --analyst flag. For more information, see the instructions in the
guide Python Data Functions in Spotfire®, provided with the Spotfire Analyst documentation.
Packages deployed in this manner are distributed to all Spotfire Analyst installations in your
organization when they connect to the Spotfire Server where the packages are deployed.

● To enable data functions that use the code in the Python packages for web client users, see
Distribute Python Packages on page 32. Packages deployed in this manner are available on the
Spotfire Server node manager where the Spotfire Service for Python is installed.

A Spotfire package must be created using the same operating system as that of the node manager
running the Spotfire Service for Python.

The exception to this rule is if you use the provided Docker containers to bundle Python
packages for a Linux node manager: you can create this SPK for a Linux deployment on either a
Linux computer or on a Windows computer. See Build a Spotfire Package for Spotfire Service for
Python (Linux) on page 41.

● If your node manager is running on a Windows server, then you can create the SPK either from a
Windows computer running Spotfire Analyst, or you can create the SPK from the computer running
the node manager where the Spotfire Service for Python is installed.

● If your node manager is running on a Linux server, then you can create the SPK using the provided
Docker containers from your desktop computer, or you can create the SPK from the computer
running the node manager where the Spotfire Service for Python is installed.

The following image shows the workflow for creating an SPK to share Python packages with other
analysts, or to enable data functions for Spotfire web client users (Spotfire Business Author and
Consumer).

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/products/spotfire-analyst

28

Find help

Spotfire includes many avenues to help with packages, whether they are Python language packages to
use with the Spotfire Service for Python or Spotfire packages (SPKs).

Task Help resource

Deploying a package using the
Spotfire package mechanism.

Spotfire® Server Installation and Administration at https://docs.tibco.com/products/
spotfire-server

Using an Alternative Python Package Repository

If your company keeps an internal repository for approved Python packages, you can set a preference
using the Spotfire Administration Manager to point to the URL for the internal repository.

Changing this preference applies only to installing packages using the Spotfire Analyst feature Tools
> Python Tools > Package Management. If you are installing packages using the pip command, and
you want to use your internal repository, then pass the URL for your internal repository in the pip
command parameter --index-url.

Packages that are provided with the Spotfire Service for Python are not affected by this setting.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/products/spotfire-server
https://docs.tibco.com/products/spotfire-server

29

Prerequisites

You must have a Spotfire Administration license to access the Administration Manager tool.

Procedure

1. In Spotfire Analyst, click Tools > Administration manager.

2. In the Administration Manager, click the Preferences tab.

3. From the Selected group list, click the name of the group for which to set the property.
For example, from the list select Script Author to set the preference for any user in the Script
Author group. To change the value for all users, select Everyone.

4. In the Preferences list for the selected group, expand DataFunctions, and then click
DataFunctionsPreferences.

5. Click Edit.
The properties for DataFunctionsPreferences are now editable.

6. From the property list, select PythonPackageRepositoryIndexURL and then, in the right column
for this property, provide the URL for your internal repository.

Result

The custom URL overrides the default Python package index (PyPI) and accesses only the packages
available in the specified custom internal repository.

What to do next

Repeat this process for any other groups that author data functions using the Spotfire Service for
Python. For more information, see the help for Administration Manager.

Included Packages

Your installation of Spotfire includes version 3.11.9 of the Python interpreter and several packages it
needs to run under Spotfire.

Important The packages listed in this table are required for the Spotfire Service for Python
and the Python interpreter to work together. Removing any of these packages can cause your
Spotfire Service for Python data functions to fail.

If you create and distribute an SPK containing a different Python interpreter, and the interpreter
specifies different packages or package versions than those listed here, your data functions could fail to
work as expected. Python package authors strive for backward compatibility, but if you encounter such
an issue, Spotfire Support can help you.

To help protect against this sort of issue, your distribution of the Spotfire Service for Python includes
the PIP constraints file interpreter-contraints.txt. If you create an SPK for distribution that
contains a different version of the Python interpreter, specify the --constraints option. Any
dependency on an included package is "constrained" and the included version is used instead.

Spotfire Service for Python Installation and Administration

30

See Creating a Spotfire Package for an Alternative Python Interpreter (for Windows) on page 44 for
an example of using the constraints file.

Package name Version Description More information

numpy * 1.26.4 Provides the following.

● An N-dimensional array object.

● Broadcasting functions.

● Tools for integrating C/C++ and
Fortran code.

● Linear algebra, Fourier transform,
 and random number capabilities.

numpy version 1.19.4 has
known incompatibilities
when it is run on certain
more recent versions
of Windows 10. These
compatibilities can cause
Python to fail when it is used
with Spotfire. If you build
custom packages SPK on
Windows, ensure the SPK
does not include numpy
version 1.19.4.

https://pypi.org/project/numpy/1.26.4/

pandas * 2.2.2 Provides data structures and data
analysis tools for dealing with tabular
data, ordered and unordered time
series data, matrix data, and other
types of data sets.

https://pypi.org/project/pandas/2.2.2/

pip 24.0 Provides support for installing
packages.

https://pypi.org/project/pip/24.0

python-dateutil 2.9.0.post0 Provides extensions to the datetime
module in Python.

https://pypi.org/project/python-dateutil/2.9.0.
post0

pytz 2024.1 Provides a platform for cross-platform
time zone calculations.

https://pypi.org/project/pytz/2024.1/

setuptools 75.0.0 Provides tools for building, installing,
 upgrading, and uninstalling Python
packages.

https://pypi.org/project/setuptools/75.0.0/

spotfire 2.1.2 Provides functions for integrating
Python with Spotfire.

https://pypi.org/project/spotfire/2.1.2

six 1.16.0 Provides utility functions for
smoothing over the differences
between the Python versions 2 and 3.

https://pypi.org/project/six/1.16.0/

tzdata 2024.1 Provides zic-compiled binaries for the
IANA time zone database, intended
to be a fallback for systems that do not
have system time zone data installed (
or do not have it installed in a standard
location).

https://pypi.org/project/tzdata/2024.1/

Spotfire Service for Python Installation and Administration

https://pypi.org/project/numpy/1.26.4/
https://pypi.org/project/pandas/2.2.2/
https://pypi.org/project/pip/24.0
https://pypi.org/project/python-dateutil/2.9.0.post0/
https://pypi.org/project/python-dateutil/2.9.0.post0/
https://pypi.org/project/pytz/2024.1/
https://pypi.org/project/setuptools/75.0.0/
https://pypi.org/project/spotfire/2.1.2
https://pypi.org/project/six/1.16.0/
https://pypi.org/project/tzdata/2024.1/

31

Package name Version Description More information

wheel 0.43.0 The reference implementation of the
Python wheel packaging standard, as
defined in PEP 427.

https://pypi.org/project/wheel/0.43.0/

* Exporting an SBDF that contains empty String columns causes an error with pandas and
numpy. See Troubleshooting the Service on page 53 for more information.

The Spotfire Package (SPK)

A Spotfire SPK is usually created and tested by developers to package and deploy third-party
extensions to the Spotfire Server, which can then be distributed to the Spotfire Server node for use by
another service (and in some cases, distributed to Spotfire clients).

Even though they are both called “packages”, the Python package and the Spotfire package
(SPK) are different.
● The Python library (PyPI) contains Python modules.

● The Spotfire package is a means to deploy extensions to the Spotfire Server, which either
distributes its contents to Spotfire Analyst users, or installs a service, such as the Spotfire
Service for Python or an alternative Python interpreter, to use from the Spotfire Server node.

This Spotfire installation provides a specialized Python package, called 'spotfire', that creates an SPK to
hold packages or an alternative Python interpreter. The 'spotfire' package is also available for download
from PyPI.

SPK Versioning

To share packages among data function authors in your organization, you can create the file <your-
filename>.spk containing the packages to distribute to others. You might need to change or update
the packages or package versions that you distribute, which requires changing the version of the SPK
containing the packages.

You can create or change a Spotfire SPK using the steps described in Creating a Spotfire Package for
Python Packages from a Windows Computer on page 38. The package spotfire.spk creates a new
SPK using the versioning rule details for the following tasks.

● Python package versions shared among team members must be kept synchronized.

● You can install multiple SPKs containing Python packages on the Spotfire Server, as long as
each SPK has a unique name and ID.

● Uploading a new SPK overwrites any older version of that same SPK that was previously
deployed.

Table

Task Procedure Version result
Version
example Comment

Generating a new
requirements.

txt.

Pass the new
requirements.

txt to the Python
script.

The version is
always set to 1.0.0.
0 by default.

1.0.0.0 The script overwrites the old
SPK, and the list contains only
the packages you provide in
requirements.txt.

Spotfire Service for Python Installation and Administration

https://www.python.org/dev/peps/pep-0427/
https://pypi.org/project/wheel/0.43.0/

32

Task Procedure Version result
Version
example Comment

Recreating a new
requirements.

txt using the
same version. (
That is, you do not
need to increment
or keep the older
requirements.

txt.)

Regenerate
the SPK,
 passing the new
requirements.

txt to the Python
script.

The version is
always set to 1.0.0.
0 by default.

1.0.0.0 Spotfire Server does not register the
package as a new one, so it does not
distribute the package to the users.

Adding package
names to
an existing
requirements.

txt.

Edit the
requirements.

txt, and then pass
it to the Python
script.

The version is
incremented to
a minor version
number.

1.1.0.0 The script overwrites the old
SPK, and the list contains only
the packages you provide in
requirements.txt.

Spotfire Server registers the SPK
as changed and distributes it to the
users.

Removing
package names
from an existing
requirements.

txt.

Edit the
requirements.

txt, and then pass
it to the Python
script.

The version is
incremented to
a major version
number.

2.0.0.0 The script overwrites the old
SPK, and the list contains only
the packages you provide in
requirements.txt.

Spotfire Server registers the SPK
as changed and distributes it to the
users.

Assigning a
specific version
number to a
requirements.

txt.

Run the Python
script and
pass in the
requirements.

txt in the
command, along
with the version,
 setting it to the
version you want.

The version number
is set to the value
provided in the
argument

1.2.3.4 The version argument must be
passed as a string containing four
components (for example, "--
version = 1.2.3.4" or "-v 1.2.
3.4").

Distribute Python Packages

You can distribute Python packages by using the Spotfire package (SPK) mechanism for either a
Spotfire Server installation with a node manager running on Windows OS, or for a Spotfire Server
installation running a node manager on a supported Linux OS.

● If your node manager is running on a Windows server, then you can create the SPK containing
Python packages from a Windows computer. You can specify whether the packages are installed
only on the node manager or are also distributed to Spotfire Analyst users connected to the Spotfire
Server.

● If your node manager is running on a Linux server, then you can do one of the following.

— Use the provided Docker container and the SPK mechanism.

— Create the SPK containing Python packages from the Linux computer that is running the
node manager where the Spotfire Service for Python is installed. (This option requires login
credentials to that computer.)

The following image shows the options for deciding the best way to distribute Python packages.

Spotfire Service for Python Installation and Administration

33

Spotfire Service for Python Installation and Administration

34

Installing Python Packages Manually

If you have a small Spotfire Server deployment, and you do not need to manage packages across
several nodes or servers, then you can install packages directly on the computer running the node
manager, rather than creating an SPK.

Perform this task on the computer hosting the Spotfire Service for Python (in the directory where
Python is installed), and then on the computer where Spotfire Server is installed.

Any time you install additional packages or update existing packages, be sure to install them in the
directory you specified for your packagePath. You can have only one package path for the Spotfire
Service for Python installation. See packagePath for more information.

Avoid installing packages that are included in the Spotfire Service for Python. Installing a different
version of an included package can cause unexpected results. For a list of these packages, see Included
Packages on page 29.

When you update your Python installation, be sure to update your package installations, too.

Prerequisites

● You must have administrative privileges to edit files on the computer running the node manager.

● You must have administrative privileges and the tools password to update the custom.properties
file.

Procedure

1. Create the directory to store the Python packages.
This directory is specified as the path to use to install Python packages, and to set the Spotfire
Service for Python custom property, packagePath.

2. From the command prompt, browse to the directory where the Python interpreter for your Spotfire
Service for Python is installed.
By default, this directory is /nodemanager/services/<spotfire-service-for-python-name>/
python.

3. Run the following command to install the needed package.

python -m pip install --target=<packagePath> <packagename>

Define the target location to install packages to the value you provided in the packagePath
custom configuration setting.

The package and its dependent packages are installed.

Spotfire Service for Python Installation and Administration

35

4. Update the Spotfire Service for Python configuration to specify the package path.
You need to export, edit, and reimport the custom.properties file only the first time to set the
package path.

Remember that when you change the custom.properties, you must restart the Spotfire
Service for Python to have it take effect.

a) Follow steps 1-3 in Configuring the Service on page 17 to export the service configuration file
custom.properties.

b) In the exported custom.properties file, locate the entry for packagePath.

c) Provide the path that you specified for the installed packages.

The configuration setting packagePath requires forward slashes (/) regardless of
operating system.

d) Complete the steps to save and import the changed service configuration file, as described in
Configuring the Service on page 17.

Creating a Spotfire Package for Python Packages on the Node Manager

An installation of Spotfire Service for Python on the node manager includes a Python interpreter and a
set of packages to enable using Python in Spotfire.

The package named 'spotfire' provides tools for building SPKs to share Python packages with other
data function authors in an organization, or to enable Spotfire Business Authors and Consumers to use
Python-enabled analyses in a web browser.

Important You must build a package for the operating system on which your Spotfire Server
node manager is installed. You can build the SPK from either a Linux or a Windows computer
running the node manager. This topic describes building the SPK using the spotfire package that
is included in the download bundle.
● If you are building an SPK for Linux only, then the SPK is deployed to the node manager.

The packages it contains are used by data functions in analyses accessed through a web
browser by Business Author and Consumer users.

● If you are building an SPK for Windows only, then the SPK can be deployed to the node
manager, to other Spotfire Analyst users, or to both. Packages deployed to the node manager
are used by data functions in analyses accessed through a web browser by Business Author
and Consumer users. (Alternatively, you can build the SPK from an installation of Spotfire
Analyst. For those details, see Creating a Spotfire Package for Python Packages from a
Windows Computer on page 38.)

The package builder relies on pip, the Python command-line application to install Python packages.
The package builder uses a requirements.txt file to specify the packages to include in your SPK.

By default, the file requirements.txt searches the PyPI package site for the specified package and
version.

● To include a package from a different repository or in a local file path, in the requirements.txt file,
use the option -i or --index-url, followed by the location URL.

#example
#
mylib -i http://my.domain.org/lib/1.0.0/mylib/

● To include a .whl package, in the requirements.txt file, provide the relative path to the package
from the current working directory.

#simple-example
#

Spotfire Service for Python Installation and Administration

36

./my_path/my_package.whl
packaging==1.0.0

If you are building an SPK intended for the Spotfire Service for Python, then you must avoid installing
packages that are already included in the installation. Installing a different version of a package that is
included in the service installation can cause unexpected errors. If a package you are installing depends
on or requires one of the included packages, then it is filtered out when the SPK is built. For a list of
included packages, see Included Packages on page 29.

For more information about creating a requirements.txt file for your package list, see its
documentation at the following location.

The PIP packaging system might deliver a specious warning in the following form:

WARNING: Target directory <<temporary location>>/<<package>> already exists. Specify
 --upgrade to force replacement.

The text of the warning can vary depending on the contents of the third-party wheel packages
and operating system. This warning is from the PIP system; for our purposes, it is of no
importance and can be disregarded.

● https://pip.readthedocs.io/en/stable/user_guide/#requirements-files

● https://pip.readthedocs.io/en/stable/reference/pip_install/#requirements-file-format

This task creates an SPK for the Spotfire Service for Python, running on a node available to Spotfire
Server. If you need to build a package to distribute to Spotfire Analyst users, see Python Data Functions
in Spotfire®.

Perform this task from a command prompt on the Linux or Windows computer where the installed
node manager includes the installation of the Spotfire Service for Python.

Prerequisites

● You must have write access to the computer running the node manager where the Spotfire Service
for Python is installed.

● You must have created the file requirements.txt containing the list of packages to include in your
SPK.

The following example specifies these packages and versions from PyPI.

####### example-requirements.txt ######
#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0

Procedure

1. From the command line, type the command to create the SPK.

"%python_service_home%/python/python" -m spotfire.spk packages
[--name "<package-name>"]
<name.spk>
<path-to>requirements.txt

"%python_service_home% is the Python Service installation location. On Linux, this is usually /
opt/nodemanager/<server-version#>/nm/services/python-service-linux-<installed-

service-guid>. Specify the values for the installed Python Interpreter <version#>, the package-

Spotfire Service for Python Installation and Administration

https://pip.readthedocs.io/en/stable/user_guide/#requirements-files
https://pip.readthedocs.io/en/stable/reference/pip_install/#requirements-file-format
https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf
https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf

37

name, name.spk, and the path to the requirements.txt file. See the Options table for more
information.

Remember that the path to the Python interpreter has spaces in it, so you must quote the
path string.

Option Description

spotfire.spk The package containing the Python code to download and bundle the
needed packages specified in requirements.txt.

From the command prompt, you can view help for the
spotfire package by typing the following command:

"<path-to-python-interpreter>\python\python.exe" -

m spotfire.spk packages --help

packages The subcommand that creates the package bundle.

--name A string that sets the internal name of the generated package (for
deploying multiple SPK files).

If you do not specify the --name argument, then the package
builder reverts to the package name that is embedded in
the spotfire.spk stamp in the requirements file (located
beneath "BuiltName"), to match the previous version of the
package. If the package name is missing entirely, it reverts to
"Python Packages Linux" for server packages.

--analyst This option is available, but it is not used in this example.

This option specifies that the Spotfire Server should distribute the
packages in the SPK to other Spotfire Analyst clients connected to
the Spotfire Server. For more information about using this option, see
Python Data Functions in Spotfire®.

Everyone should use the same packages and package
versions as those deployed on Spotfire Server.

name.spk The name of the SPK file that is created by this task.

requirements.txt The full path to the file requirements.txt.

The following example creates an SPK named my_pkgs.spk, containing the packages specified in
requirements.txt.

"%Python_Service_Home%/python/python"
-m spotfire.spk packages
--name "example-packages"
my-pkgs.spk opt/files/requirements.txt

The packages and all of their dependencies are written to the SPK named my-pkgs.spk in the
current working directory where the command was run, and the version information is recorded in
the file opt/files/requirements.txt. For example:

####### example-requirements.txt ######
#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0
spotfire.spk: {"BrandVersion":2,"Analyst":{"BuiltBy":"3.11.9 (tags/v3
spotfire.spk: .11.3:f3909b8, Apr 4 2023, 23:49:59) [MSC v.1934 64 bi
spotfire.spk: t (AMD64)]","BuiltAt":"Mon Aug 21 11:52:29 2023","Built
spotfire.spk: File":"approved-packages.spk","BuiltName":"Approved Pac
spotfire.spk: kages","BuiltId":"d9310771-b10a-4395-ac46-1c9f344c2c89"
spotfire.spk: ,"BuiltVersion":"1.0.0.0","BuiltPackages":{"contourpy":
spotfire.spk: "1.1.0","cycler":"0.11.0","fonttools":"4.42.1","kiwisol

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf

38

spotfire.spk: ver":"1.4.4","matplotlib":"3.7.2","packaging":"23.1","p
spotfire.spk: atsy":"0.5.3","Pillow":"10.0.0","pyparsing":"3.0.9","sc
spotfire.spk: ipy":"1.11.2","statsmodels":"0.14.0","tzdata":"2023.3"}
spotfire.spk: },"Server":{}}

2. Locate the SPK you created in the working directory where you ran the command.

3. Add the SPK to the Spotfire Server Deployment area, and then validate and save the area.

Result

The packages are added to the Spotfire Server node manager, where Spotfire users can access analyses
that use the functions in the packages from their web browsers.

For an overview of the entire process, see Spotfire Server.

Creating a Spotfire Package for Python Packages from a Windows Computer

An installation of Spotfire Analyst includes a Python interpreter and a set of packages to enable using
Python in Spotfire.

One of these packages, 'spotfire', provides tools for building SPKs to share Python packages with other
data function authors in an organization, or to enable Spotfire Business Author and Consumer users
to see Python-enabled analyses in a web browser. For more information about package workflow, see
Package Management for the Spotfire Service for Python on page 27. If you are using a Python
interpreter other than the one provided with your Spotfire installation, then you must first run the
following command:

-m pip install spotfire

Important You must build a package for the operating system on which your Spotfire Server
node manager is installed. This topic describes building the SPK using the spotfire package
supplied with your Windows installation of Spotfire Analyst. If you are installing the SPK on a
Linux node, see Creating a Spotfire Package for Python Packages on the Node Manager on page
35.

Spotfire Analyst relies on pip, the Python command-line application for Python package installation.
Spotfire Analyst uses a requirements.txt file to specify the packages to include in your SPK. By
default, the file requirements.txt searches the PyPI package site for the specified package and
version.

● To include a package from a different repository or in a local file path, in the requirements.txt file,
use the option -i or --index-url, followed by the location URL.

#example
#
mylib -i http://my.domain.org/lib/1.0.0/mylib/

● To include a .whl package, in the requirements.txt file, provide the relative path to the package
from the current working directory.

#simple-example
#
./my_path/my_package.whl
packaging==1.0.0

An installation of Spotfire Analyst relies on the Python packages included in the installation. Removing
any of these packages causes your Spotfire Analyst installation to not work with the included Python
interpreter. For a list of included packages, see Included Packages on page 29.

If you are building an SPK intended for the Spotfire Service for Python, then avoid specifying packages
that are included with the service installation. Installing a different version of one of these packages

Spotfire Service for Python Installation and Administration

39

can cause unexpected errors. If a package you are installing depends on or requires one of the included
packages, then it is filtered out when the SPK is built.

The PIP packaging system might deliver a specious warning in the following form:

WARNING: Target directory <<temporary location>>\<<package>> already exists. Specify
 --upgrade to force replacement.

The text of the warning can vary depending on the contents of the third-party wheel packages
and operating system. This warning is from the PIP system; for our purposes, it is of no
importance and can be disregarded.

For more information about creating a requirements.txt file for your package list, see its
documentation at the following location.

● https://pip.readthedocs.io/en/stable/user_guide/#requirements-files

● https://pip.readthedocs.io/en/stable/reference/pip_install/#requirements-file-format

This task creates an SPK for the Spotfire Service for Python, running on a node available to Spotfire
Server. If you need to build a package to distribute to Spotfire Analyst users, see Python Data Functions
in Spotfire®.

Perform this task from a command prompt on the Windows computer where Spotfire Analyst is
installed.

Prerequisites

● You must have the appropriate Spotfire license for authoring data functions.

● You must have created the file requirements.txt containing the list of packages to include in your
SPK.

The following example specifies these packages and specified versions from PyPI.

####### example-requirements.txt ######
#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0

Procedure

1. From the command line, type the command to create the SPK.
For our example, use the following command, specifying values for the installed Python Interpreter
<version#>, the package-name, name.spk, and the path to the requirements.txt file. See the
Options table for more information.

"%SPOTFIRE_HOME/Modules/Python Interpreter_<version#>/python/python.exe"
-m spotfire.spk packages
[--name "<package-name>"]
<name.spk>

Spotfire Service for Python Installation and Administration

https://pip.readthedocs.io/en/stable/user_guide/#requirements-files
https://pip.readthedocs.io/en/stable/reference/pip_install/#requirements-file-format
https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf
https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf

40

<path-to>/requirements.txt

Remember that the path to the Python interpreter has spaces in it, so you must quote the
path string.

Table

Option Description

spotfire.spk The package containing the Python code to download and bundle the needed
packages specified in requirements.txt.

From the command prompt, you can view help for the spotfire package
by typing the following command:

"<path-to-python-interpreter>\python\python.exe" -m

spotfire.spk packages --help

packages The subcommand that creates the package bundle.

--name A string that sets the internal name of the generated package (for deploying
multiple SPK files).

If you do not specify the --name argument, then the package builder
reverts to the package name that is embedded in the spotfire.spk
stamp in the requirements file (located beneath "BuiltName"), to match
the previous version of the package. If the package name is missing
entirely, it reverts to "Python Packages Windows" for server packages.

--analyst This option is available, but it is not used in this example.

This option specifies that the Spotfire Server should distribute the packages in the
SPK to other Spotfire Analyst clients connected to the Spotfire Server. For more
information about using this option, see Python Data Functions in Spotfire®.

Everyone should use the same packages and package versions as those
deployed on the Spotfire Server.

name.spk The name of the SPK file that is created by this task.

<path-to>/requirements.txt The full path to the file requirements.txt.

The following example creates an SPK named my_pkgs.spk, containing the packages specified in
the example requirements.txt.

"%SPOTFIRE_HOME%\Modules\Python Interpreter_3.11.9.xx\python\python.exe" -m spotfire.spk
 packages --name "example-packages" my-pkgs.spk c:\files\requirements.txt

The packages and all of their dependencies are written to the SPK named my-pkgs.spk in the
current working directory where the command was run, and the version information is recorded in
the file requirements.txt. For example:

####### example-requirements.txt ######
#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0
spotfire.spk: {"BrandVersion":2,"Analyst":{"BuiltBy":"3.11.9 (tags/v3
spotfire.spk: .11.3:f3909b8, Apr 4 2023, 23:49:59) [MSC v.1934 64 bi
spotfire.spk: t (AMD64)]","BuiltAt":"Mon Aug 21 11:52:29 2023","Built
spotfire.spk: File":"approved-packages.spk","BuiltName":"Approved Pac
spotfire.spk: kages","BuiltId":"d9310771-b10a-4395-ac46-1c9f344c2c89"
spotfire.spk: ,"BuiltVersion":"1.0.0.0","BuiltPackages":{"contourpy":
spotfire.spk: "1.1.0","cycler":"0.11.0","fonttools":"4.42.1","kiwisol
spotfire.spk: ver":"1.4.4","matplotlib":"3.7.2","packaging":"23.1","p
spotfire.spk: atsy":"0.5.3","Pillow":"10.0.0","pyparsing":"3.0.9","sc
spotfire.spk: ipy":"1.11.2","statsmodels":"0.14.0","tzdata":"2023.3"}

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/sfire-analyst/latest/doc/pdf/TIB_sfire-analyst_python-packages.pdf

41

spotfire.spk: },"Server":{}}

2. Locate the SPK you created in the working directory where you ran the command.

3. Add the SPK to the Spotfire Server Deployment area, and then validate and save the area.

Result

The packages are added to the Spotfire Server node manager, where Spotfire users can access analyses
that use the functions in the packages from their web browsers.

For an overview of the entire process, see Package Management for the Spotfire Service for Python on
page 27.

Build a Spotfire Package for Spotfire Service for Python (Linux)

The installation of the Spotfire Service for Python on your Spotfire Server includes a dockerfile that you
can use to deploy a collection of Python packages to a Spotfire Server and node manager running on
the Linux operating system.

If you do not have login credentials for the Spotfire Server running on Linux, or if you have a large
deployment of node managers running the Spotfire Service for Python on Linux, then it might not be
possible to install packages directly on the server. In this case, you can build your Spotfire package
(SPK) containing the packages to distribute using a Docker container.

debian:12-slim is our preferred Linux distribution for use with the Spotfire Service for Python.

This version of the Spotfire Service for Python includes dockerfiles that you can use to build an SPK for
packages to use with the Spotfire Service for Python. You can build the SPK from either Windows or
Linux.

Table

Tool Description

python-build-base Contains a full Python build environment including all necessary dependencies.

spotfire-spk Used to call the python-build-base container to build the interpreter or the SPKs
containing the packages for the Spotfire Service for Python.

Building a Spotfire Package (SPK) for Python Packages from a Docker Image on Windows

You can build a Spotfire package (SPK) using a Docker image on Windows, and then place the SPK on a
Spotfire Server running on Linux.

Perform this task from the command line on a Windows computer.

Prerequisites

Before you begin, complete the following tasks.

1. Locate and download Spotfire® Statistics Services for your operating system on the Spotfire
Download site (license and account required). The product Spotfire® Statistics Services includes the
Spotfire Service for Python.

2. In the Spotfire Statistics Services download bundle, find the component Spotfire Service for Python.

3. Extract the contents of the Spotfire Service for Python installation archive.

Spotfire Service for Python Installation and Administration

https://spotfi.re/download
https://spotfi.re/download

42

Procedure

1. Create the file requirements.txt and place it in the same directory from where you are running
the spotfire-spk script.
The file requirements.txt contains a list of packages, with their version numbers, that are
included in the SPK. For example:

####### example-requirements.txt ######
#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0

2. Call the following commands:

set PYTHON_VERSION=3.11.9
docker build --build-arg PYTHON_VERSION -t python-build-base:%PYTHON_VERSION% python-
build-base

3. Build the SPK.

spotfire-spk <python-build-base-tag> [arguments to spotfire.spk module]
spotfire-spk 3.11.9 packages python-packages.spk requirements.txt

The file python-packages.spk containing the packages specified in requirements.txt is created.

What to do next

Add the SPK to the Spotfire Server Deployment area, and then validate and save the area. See Adding
Software Packages to a Deployment Area and Updating Services in the Spotfire® Server Installation and
Administration guide for more information. If you have specified the --analyst flag in the arguments
to the spotfire.spk module, then the next time the Spotfire Analyst users connect to the Spotfire
Server, they are prompted to update their installations with the new packages. Business authors and
consumers connecting to Spotfire from a web browser can use analyses with data functions that use the
functions in the packages.

Building a Spotfire Package (SPK) for Python Packages with a Docker Image on Linux

You can build a Spotfire package (SPK) using a Docker image on Linux, and then place the SPK on a
Spotfire Server running on Linux.

Perform this task from the command line on a Linux computer.

Prerequisites

Before you begin, complete the following tasks.

1. Locate and download Spotfire® Statistics Services for your operating system on the Spotfire
Download site (license and account required). The product Spotfire® Statistics Services includes the
Spotfire Service for Python.

2. In the Spotfire Statistics Services download bundle, find the component Spotfire Service for Python.

3. Extract the contents of the Spotfire Service for Python installation archive.

Procedure

1. Create the file requirements.txt and place it in the same directory from where you are running
the spotfire-spk script.
The file requirements.txt contains a list of packages, with their version numbers, that are
included in the SPK. For example:

####### example-requirements.txt ######

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/updating_services.html
https://spotfi.re/download
https://spotfi.re/download

43

#
scipy == 1.11.2
matplotlib == 3.7.2
statsmodels == 0.14.0

2. Call the following commands:

export PYTHON_VERSION=3.11.9
docker build --build-arg PYTHON_VERSION -t python-build-base:${PYTHON_VERSION} python-
build-base

3. Build the SPK using the following commands.

./spotfire-spk <python-build-base-tag> [arguments to spotfire.spk module]

EXAMPLE:
./spotfire-spk 3.11.9 packages python-packages.spk requirements.txt

The file python-packages.spk containing the packages specified in requirements.txt is created.

What to do next

Add the SPK to the Spotfire Server Deployment area, and then validate and save the area. See Adding
Software Packages to a Deployment Area and Updating Services in the Spotfire® Server Installation and
Administration guide for more information. If you have specified the --analyst flag in the arguments
to the spotfire.spk module, then the next time the Spotfire Analyst users connect to the Spotfire
Server, they are prompted to update their installations with the new packages. Business authors and
consumers connecting to Spotfire from a web browser can use analyses with data functions that use the
functions in the packages.

Use an Alternative Python Interpreter

You can use a Python interpreter that is different from the one provided with your Spotfire installation
by uploading it in a Spotfire package.

You can create a Spotfire package (SPK) containing an alternative Python interpreter from either
a Windows computer or a Linux computer. You can then upload the SPK to the Spotfire Server
deployment area for distribution to the computers running the node managers, or for distribution to
users connected to the Spotfire Server running Spotfire Analyst.

● If your node manager is running on a Windows server, then you can create an SPK containing the
Python interpreter from a Windows computer where the alternative Python interpreter is installed.

● If your node manager is running on a Windows server, but you want to keep your installation of
Python "pristine", then you can create a virtual environment where you can create the SPK for the
alternative interpreter.

● If your node manager is running on a Linux server, then you can create the SPK containing the
alternative Python interpreter from the Linux computer that is running the node manager, and
where both the default Python interpreter and the alternative Python interpreter are installed. You
can also create the SPK from a Windows computer and then deploy it to your Spotfire Server for
distribution to your node manager running on Linux.

This section provides instruction for packaging and uploading the alternative Python interpreter for all
of those cases.

Each Help reference is a link to the topic. Click the square to see more information.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/updating_services.html

44

Creating a Spotfire Package for an Alternative Python Interpreter (for Windows)

The installation of the Spotfire Service for Python on your Spotfire Server includes a Python interpreter
and a set of packages to enable using Python. An installation of Spotfire Analyst that connects to the
Spotfire Server also includes the same version of a Python interpreter. You can provide a different
version of the Python interpreter, if needed, on both the Spotfire Server and Spotfire Analyst.

To install an alternative version of the Python interpreter on both the Spotfire Server and in the Spotfire
Analyst client, create a Spotfire package (SPK) containing the Python interpreter for each of the
installations, and then upload the SPKs to the Spotfire Server.

Remember that the same version of the Python interpreter must run on both the Spotfire Server
and the Spotfire Analyst computers that connect to it.

Perform this task on a Windows computer where the Python interpreter that you want to distribute is
installed.

Building an SPK on a Windows computer creates an SPK that works only on a Spotfire Server node
manager installed on a Windows server. If you are running a Spotfire Server node manager on a Linux
server, see Build a Suitable Python Interpreter for Spotfire Service for Python (for Linux) on page 46

This procedure describes installing the 'spotfire' package into the Python interpreter that you want
to distribute. Alternatively, you can create a virtual environment to keep your installation of Python
pristine, in the case where you either do not want to (or cannot) install the 'spotfire' package into the
Python interpreter. See Creating a Virtual Environment for an Alternative Python Interpreter (Spotfire
Analyst Computer) for those instructions.

Spotfire Service for Python Installation and Administration

45

Prerequisites

Before you begin, complete the following tasks.

1. Download and install a suitable 64-bit interpreter. Python 3.7 or higher is required. Make sure it
is configured to work correctly with your system. (The steps in this task demonstrate building the
Python interpreter using Python version 3.11.9.)

2. Locate and download Spotfire® Statistics Services for your operating system on the Spotfire
Download site (license and account required). The product Spotfire® Statistics Services includes the
Spotfire Service for Python.

3. In the Spotfire Statistics Services downloaded bundle, find the component Spotfire Service for
Python.

4. Extract the contents of the Spotfire Service for Python installation archive.

Procedure

1. Install the 'spotfire' package into your Python interpreter.

path/to/python/to/package/ python -m pip install spotfire

Where path/to/python/to/package is the path to the Python interpreter to include in the
package.

This also downloads and installs the other packages required by the Spotfire Service for
Python.

2. Build the Python interpreter SPK for the Spotfire Server.

path/to/python/to/package/python -m spotfire.spk python name1.spk

This command creates an SPK to install the Spotfire Service for Python on the node manager. See
the table in Step 3 for more information about the options.

Provide a meaningful name for the .spk file so you can find it easily and distinguish it from
the one you create in Step 3.

3. Build the Python interpreter SPK for the Spotfire Analyst clients.

path/to/python/to/package/python -m spotfire.spk python --analyst name2.spk

Provide a meaningful name for the .spk file so you can find it easily and distinguish it from
the one you create in Step 2.

Option Description

spotfire.spk The package containing the Python code to download and bundle the Python
interpreter.

From the command prompt, you can view help for the spotfire package by
typing the following command:

"<path-to-python-interpreter>\python\python.exe"
 -m spotfire.spk packages --help

python Specifies that the SPK contains the Python interpreter from which you issued the
command.

--analyst Specifies that the Spotfire Server should distribute the Python interpreter in the SPK to
other Spotfire Analyst clients connected to the Spotfire Server.

Spotfire Service for Python Installation and Administration

https://spotfi.re/download
https://spotfi.re/download

46

Option Description

nameX.spk The name of the SPK file that is created by this task.

--constraints Optional. Constrains the required package versions to those listed in the file
interpreter-constraints.txt, which is included with your distribution of Spotfire
Service for Python. Provide the complete path to the file. For example:

--constraints C:/files/interpreter-constraint.txt

Important If you omit this option, the required packages included might be
updated to versions newer than the ones included with the Spotfire Service
for Python. The included package versions are tested with Spotfire. While
typically Python package authors take care for backwards compatibility, it
is possible that a change to one of these packages could result in your data
functions failing to work correctly. Spotfire Support can help you if you
encounter such a breaking issue. See Included Packages on page 29 for
more information.

Result

The packages containing the Python interpreter to upload to the Spotfire Server can be found in the
.spk files that you created.

What to do next

Add the SPKs to the Spotfire Server Deployment area, and then validate and save the area. See Adding
Software Packages to a Deployment Area and Updating Services in the Spotfire® Server Installation and
Administration guide for more information. The next time the Spotfire Analyst users connect to the
Spotfire Server, they are prompted to update their installations with the new Python Interpreter and
packages.

Build a Suitable Python Interpreter for Spotfire Service for Python (for Linux)

The installation of theSpotfire Service for Python on your Spotfire Server includes a Python interpreter
and a set of packages to enable using Python. An installation of Spotfire Analyst also includes the same
version of a Python interpreter. You can provide a different version of the Python interpreter, if needed,
on both the Spotfire Server and Spotfire Analyst.

Most OS-provided Python interpreters on Linux are not well-suited to use with the Spotfire Service for
Python. If you want to use another Python interpreter on your Spotfire Server node manager on Linux,
then for best compatibility and results, build your Python interpreter from source using a Docker image
that closely reflects the runtime environment of the Spotfire Service for Python.

debian:12-slim is our preferred Linux distribution for use with the Spotfire Service for Python.

This version of the Spotfire Service for Python includes dockerfiles that you can use to build a fully-
compatible Python interpreter, or you can build an SPK for packages to use with the Spotfire Service for
Python. You can build the Python interpreter from either Windows or Linux.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/adding_software_packages_to_a_deployment_area.html
https://docs.tibco.com/pub/spotfire_server/latest/doc/html/TIB_sfire_server_tsas_admin_help/server/topics/updating_services.html

47

Important When you build the SPK containing a different Python interpreter, include the --
constraints option to use the packages specified in the file interpreter-constraints.txt,
which is included with your distribution of the Spotfire Service for Python. Provide the
complete path to the file. For example:

--constraints /opt/files/interpreter-constraint.txt

If you omit this option, the required packages might be updated to versions newer than the
ones included with the Spotfire Service for Python. The included package versions are tested
with Spotfire. While typically Python package authors take care for backwards compatibility, it
is possible that a change to one of these packages could result in your data functions failing to
work correctly. Spotfire Support can help you if you encounter such a breaking issue.

Table

Tool Description

python-build-base Contains a full Python build environment including all necessary dependencies.

python-base Contains all runtime libraries required to support Python packages.

spotfire-spk Used to call the python-build-base container to build the SPK containing the Python
interpreter, and to build the SPK containing the required packages for the Spotfire
Service for Python.

Spotfire Service for Python Installation and Administration

48

Service resource management scenarios

You can use a combination of the Spotfire Service for Python custom properties, including the pruning
properties engine.prune and dynamic.prune.threshold, to ensure the best usage of the Python
engines that the Spotfire Service for Python allocates.

The custom properties engine.session.max and engine.queue.size determine the number of
engines that are available, and the number of engines allowed in the queue, respectively. These values
are determined by the number of logical processors available on the node where the Spotfire Service
for Python is running. Additionally, you might want to set properties that control how long a Python
engine in a session can remain idle, how long to run an execution before timing out, or the percentage
of engines that can run in a session before pruning is triggered.

The following two configuration examples, and their associated scenarios, demonstrate the resource
management for different combinations of custom properties. These non-exhaustive usage scenarios
are provided only to give two of many configurations for engine pruning and engine idle timeout. Your
needs can vary, depending on your job sizes, the number of users, and the number of available logical
processors.

Configuration A

Assume the following configuration values, where three engines are created and waiting in the queue
for jobs.

#Configuration A
engine.execution.timeout: 60
engine.session.maxtime: 120
by default, these are set to number of logical processors, minus 1, on the system
engine.session.max: 3
engine.queue.size: 3
the idle timeout
engine.prune: 10
The service capacity at which idle pruning is engaged, as a percentage value.
0 = always idle prune.
100 = never idle prune.
dynamic.prune.threshold: 100

The following three scenarios show how this configuration affects the jobs that users submit.

Scenario Result

1A: A single user submits a
job that runs for more than
60 seconds

Because this job runs for longer than the value set for engine.execution.timeout, the
execution is halted and the engine is destroyed. Results for this long job are not returned.
 When the user submits another job, a new engine is provided from the queue.

2A: A single user submits a
job that runs for 5 seconds

The job completes and returns results, and the engine persists.

The capacity of the service is equal to the number of engines in use divided by the maximum
sessions. In this case, the capacity is 1/3, or 33%, which is below the dynamic.prune.
threshold value of 100. The user can access this same engine for up to engine.session.
maxtime (in this case 120 seconds).

3A: Four users submit jobs
that execute for 5 seconds
each

The first three user jobs get engines, and the fourth user job must wait for an engine to become
available, because the engine.session.max has been reached.

Because dynamic.prune.threshold is set to 100, which specifies never idle prune, the first
three users claim their engines for the duration of the value of the engine.session.maxtime
of 120 seconds. At this point, the engines are destroyed and new engines are made available
on a first-come-first-served basis.

Spotfire Service for Python Installation and Administration

49

Configuration B

Change the configuration as follows, where only the dynamic.prune.threshold has been changed
from 100 to 0.

#Configuration B
engine.execution.timeout: 60
engine.session.maxtime: 120
by default, these are set to number of logical processors on the system
engine.session.max: 3
engine.queue.size: 3
the idle timeout
engine.prune: 10
The service capacity at which idle pruning is engaged, as a percentage value.
0 = always idle prune.
100 = never idle prune.
dynamic.prune.threshold: 0

The same user scenarios show how this changed configuration affects the jobs that users submit.

Scenario Result

1B: A single user submits a
job that runs for more than
60 seconds

No change in behavior from Configuration A.

2B: A single user submits a
job that runs for 5 seconds

The job completes and return results.

The capacity is at 33 which is now higher than the dynamic.prune.threshold of 0, so the
engine is destroyed after the engine.prune (idle timeout) of 10 seconds. If the user submits a
new job, a new engine is created from the queue.

3B: Four users submit jobs
that execute for 5 seconds
each

The first three user jobs get engines, and the fourth user job must wait for an engine to become
available, because the engine.session.max has been reached.

However, dynamic.prune.threshold is set to always idle prune (0), so after submitting a job
and getting results, if a user sits idle for longer than engine.prune of 10 seconds, the engine is
destroyed. More engines are created and made available to the fourth user.

Conclusion

In scenario 3A (where four users submit jobs, and the dynamic.prune.threshold is set
to 100), the fourth user might have to wait for up to 2 minutes for an available engine (the
engine.session.maxtime), whereas in scenario 3B (where four users submit jobs, and the
dynamic.prune.threshold is set to 0), the fourth user could wait for just 15 seconds (job run of 5
seconds and engine.prune idle timeout of 10 seconds).

By default, the dynamic.prune.threshold is set to 60, because this setting balances both access for
a high volume of users and faster response times for a lower volume of users. The default values for
engine.execution.timeout and engine.session.maxtime are set to balance security and availability.
For your on-premises usage, you might find it useful to increase execution timeouts or disable idle
timeouts altogether.

See Engine pruning on page 20 for more information about these custom properties. See Configuring
the Service on page 17 for information about setting all custom properties.

Spotfire Service for Python Installation and Administration

50

Service Logs

After the Spotfire Service for Python is installed and started, it begins writing to the logs. These logs are
stored in the directory <node manager installation>/logs.

Log name Description

service-<instanceid>-stdout.log Prints INFO-level information about the service startup, shut down, and any
exceptions. It also prints the Jetty component to the standard log files.

To set Jetty logging to DEBUG level, in the startup script (start-py-
service.sh for Linux nodes, startPy.bat for Windows nodes)
, uncomment the command SET JETTY_DEBUG=-Dorg.eclipse.
jetty.LEVEL=DEBUG.

Python-service-<instanceid>.log Prints configuration options that the Spotfire Service for Python starts with.
 Provides granular level of the individual engines, job execution details.

Spotfire Service for Python Installation and Administration

51

Monitoring the Service using JMX

The Spotfire Service for Python supports JMX monitoring integration. JMX monitoring is turned off by
default.

Prerequisites

You can install and use JConsole for monitoring the Spotfire Service for Python using JMX. JConsole
is provided as part of the Java SE Development Kit. (See Using JConsole from the Oracle Java
documentation site.) Alternatively, you can install and use VisualVM to monitor the Spotfire Service for
Python using JMX.

Important Because JMX monitoring requires connecting to the specific IP address of the node,
you must create a custom configuration for each node to monitor.

Procedure

1. Stop the Spotfire Service for Python.

2. Export and edit the custom.properties, setting the following properties:

jmx.rmi.username: username
jmx.rmi.password: password
jmx.rmi.host: <IP address of the Node Manager running Spotfire Service for R>
jmx.rmi.port: 1099
jmx.active: TRUE

See Configuring the Service on page 17 for detailed instructions.

3. Start the Spotfire Service for Python.

4. Check the INFO logs for the connection string.
If the setup and connection are successful, a JMX connection string is printed to logs at the INFO
level.

2022-06-09T21:03:11,520 | INFO | [main] c.s.s.t.ServiceConfig: Service configured JMX Connection
 string: service:jmx:rmi://10.10.100.60:1099/jndi/rmi://10.10.100.60:1099/jmxrmi

● If jmx.rmi.username, jmx.rmi.password, or jmx.rmi.host are blank, then a log message is
printed indicating that the property is blank, and that the JMX connection is not created.

● If jmx.rmi.port is blank or undefined, then the port value defaults to 1099.

● If the jmx.rmi.host is configured incorrectly, the connection times out and the service fails to
start. An error message is printed to the admin UI and the logs.

A successful client connection is printed to logs at the DEBUG level. An unsuccessful client
connection attempt due to bad or missing username or password is printed at the ERROR level.

If you are connecting to a remote host, the port must be opened in the firewall to allow the
connection.

5. Open JConsole, and in the remote process field, provide the JMX connection string provided by the
logs as shown:

service:jmx:rmi://10.10.100.60:1099/jndi/rmi://10.10.100.60:1099/jmxrmi

6. Provide the user name and password that you set in custom.properties.

If a message is shown indicating the connection could not be made using SSL. Would
you like to try without SSL?, then click Insecure connection.

JConsole should now show information from the service.

Spotfire Service for Python Installation and Administration

https://docs.oracle.com/en/java/javase/17/management/using-jconsole.html
https://docs.oracle.com/en/java/index.html
https://docs.oracle.com/en/java/index.html

52

7. To view metrics specific to the Spotfire Service for Python, click the tab MBeans.

8. In the left panel, expand the group labeled metrics.
Metrics are listed, including many JVM metrics. Some of the metrics specific for Python are as
follows:

serviceQueueCurrentSize - total number of engines currently waiting in the queue
serviceQueueEnginesDestroyed - total number of engines destroyed after successful use
serviceQueueEnginesFailed - total number of engines that failed on startup due to
 configuration, environmental, or other exceptions
serviceQueueEnginesInUse - total number of engines currently executing
serviceQueueEnginesStarted - total number of successful engines started
serviceQueueEnginesStarting - total number of engines currently initializing
serviceQueueIdealSize - the ideal queue size as defined by engine.queue.size in
 custom.properties
serviceQueueLastPortSelected - the last port chosen for engine creation
serviceUsageBytesDownloaded - total bytes downloaded through the service
serviceUsageBytesUploaded - total bytes uploaded through the service
serviceUsageCapacity - the current capacity of the service as a percentage: current
 session over maximum allowed concurrent sessions
serviceUsageJobs - total number of jobs the service has created and run
serviceUsageSessions - total number of sessions the service has created
serviceUsageMillisInUse - total time spent executing successful jobs, in milliseconds

Spotfire Service for Python Installation and Administration

53

Troubleshooting the Service

If you have problems with the service, review these tips.

Problems with the startup script
Check your script line endings.
Important Remember that for any script you write, the line endings must be appropriate for
the operating system where the service runs. Many text editors can perform end-of-line (EOL)
conversion.

Packages installed on a node manager running a different operating system than the engine
This unlikely case can happen if, for example, you are running the debian:12-slim Docker image for
your Spotfire Service for Python, but your node manager computer is running Red Hat Enterprise
Linux (RHEL) 9. Because of symbol version issues, packages must be installed in an equivalent OS to
the execution environment. If this is not possible, try one of the following workarounds:

● Install the packages on a computer running the same operating system as your execution
environment, and then copy those packages to the node manager running the other operating
system. Provide the path in custom.properties file for the configuration packagepath.

● Create a customized image with debian:12-slim, and then install the required packages in the
image. Provide the image name in the custom.properties file in the configuration setting
docker.image.name.

Empty String columns in exported SBDF causes an error
When you export an SBDF from Python (for example, as an output for a data function), and your
output contains an empty column, you can encounter the following error:
spotfire.sbdf.SBDFError: cannot determine type for column 'EmptyString'; all values are
 missing

This error occurs because the Spotfire data function environment cannot determine the proper
Spotfire type to export the data as if all values in the column are missing (in other words, Python's
None, NumPy's nan, or Panda's NA or NaT values).
To resolve this issue, edit your data function to use the helper function set_spotfire_types.
Example
In the following example, the variable name EmptyString refers to a string column that contains
no values. (For your export, use the actual empty column name.) In this example, the function
spotfire.set_spotfire_types sets the column specifically to the Spotfire data type String.
import pandas as pd
import spotfire

outp = pd.DataFrame(inp)
spotfire.set_spotfire_types(outp, {'EmptyString': 'String'})

Memory usage
The maximum memory needed to run a Python script can exceed the javaOptions setting, depending
on the size of the data, the Python packages used, and how the Python script is written.

The javaOptions setting controls Java memory only, and does not control memory allocated
in the Python runtime. (Memory allocated by Java is typically very small, which makes it
possible to set a very low value for the initial heap size, such as Xms64M.)
If you encounter memory issues:

● Try running your script using a stand-alone Python engine to gauge its memory usage. You should
see no difference between the memory needed for running your script in a stand-alone Python
engine and running under the Spotfire Service for Python.

● If you are running a containerized service, you can set a limit on the memory usage for the engine
process. See the example under ram.limit in Containerized configuration on page 25.

Spotfire Service for Python Installation and Administration

54

● Use utility functions such as memAvailable to find, report, and then reallocate available memory.

Spotfire Service for Python Installation and Administration

55

Spotfire Documentation and Support Services

For information about the Spotfire® products, you can read the documentation, contact Spotfire
Support, and join the Spotfire Community.

How to Access Spotfire Documentation

Documentation for Spotfire and TIBCO products is available on the TIBCO Product Documentation
website, mainly in HTML and PDF formats.

The website is updated frequently and is more current than any other documentation included with the
product.

Spotfire Documentation

The documentation for all Spotfire products is available on the Spotfire Documentation page. This page
takes you directly to the latest version of each document.

To see documents for a specific Spotfire product or version, click the link of the product under 'Other
versions', and on the product page, choose your version from the top right selector.

Release Version Support

Some release versions of Spotfire products are designated as long-term support (LTS) versions. LTS
versions are typically supported for up to 36 months from release. Defect corrections will typically be
delivered in a new release version and as hotfixes or service packs to one or more LTS versions. See also
https://spotfi.re/lts.

How to Contact Support for Spotfire Products

You can contact the Support team in the following ways:

● For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the support portal at https://spotfi.re/support.

● For creating a Support case, you must have a valid maintenance or support contract with Cloud
Software Group, Inc. You also need a user name and password to log in to https://spotfi.re/support.
If you do not have a user name, you can request one by clicking Register on the website.

System Requirements for Spotfire Products

For information about the system requirements for Spotfire products, visit https://spotfi.re/sr.

How to join the Spotfire Community

The Spotfire Community is the official channel for Spotfire customers, partners, and employee
subject matter experts to share and access their collective experience. The Community offers access to
Q&A forums, product wikis, and best practices. It also offers access to extensions, adapters, solution
accelerators, and tools that extend and enable customers to gain full value from Spotfire products.
In addition, users can submit and vote on feature requests from within the Ideas Portal. For a free
registration, go to https://spotfi.re/community.

Spotfire Service for Python Installation and Administration

https://docs.tibco.com
https://spotfi.re/docs
https://spotfi.re/lts
https://spotfi.re/support
https://spotfi.re/support
https://spotfi.re/sr
https://spotfi.re/ideas
https://spotfi.re/community

56

Legal and Third-Party Notices

SOME CLOUD SOFTWARE GROUP, INC. ("CLOUD SG") SOFTWARE AND CLOUD SERVICES
EMBED, BUNDLE, OR OTHERWISE INCLUDE OTHER SOFTWARE, INCLUDING OTHER
CLOUD SG SOFTWARE (COLLECTIVELY, "INCLUDED SOFTWARE"). USE OF INCLUDED
SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED CLOUD SG SOFTWARE AND/OR CLOUD SERVICES. THE
INCLUDED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER CLOUD
SG SOFTWARE AND/OR CLOUD SERVICES OR FOR ANY OTHER PURPOSE.

USE OF CLOUD SG SOFTWARE AND CLOUD SERVICES IS SUBJECT TO THE TERMS
AND CONDITIONS OF AN AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
AGREEMENT WHICH IS DISPLAYED WHEN ACCESSING, DOWNLOADING, OR INSTALLING
THE SOFTWARE OR CLOUD SERVICES (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR
IF THERE IS NO SUCH LICENSE AGREEMENT OR CLICKWRAP END USER AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT
IS SUBJECT TO THOSE SAME TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of Cloud Software Group, Inc.

Spotfire, the Spotfire logo, TERR, and TIBCO are either registered trademarks or trademarks of Cloud
Software Group, Inc. in the United States and/or other countries. A list of Cloud SG's trademarks and
trademark guidelines is available at https://www.cloud.com/legal.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only. You acknowledge that all rights
to these third party marks are the exclusive property of their respective owners. Please refer to Cloud
SG's Third Party Trademark Notices (https://www.cloud.com/legal) for more information.

This document includes fonts that are licensed under the Apache License, Version 2.0, which is
available at https://www.apache.org/licenses/LICENSE-2.0 and reprinted in the Addendum below.

Copyright (c) Christian Robertson / Google, Roboto font.

Cloud SG software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. See the "readme" file for the
availability of a specific version of Cloud SG software on a specific operating system platform.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. CLOUD SG MAY
MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S), THE PROGRAM(S), AND/OR
THE SERVICES DESCRIBED IN THIS DOCUMENT AT ANY TIME WITHOUT NOTICE.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY
OR INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE,
INCLUDING BUT NOT LIMITED TO ANY RELEASE NOTES AND "README" FILES.

This and other products of Cloud SG may be covered by registered patents. For details, please refer to
the Virtual Patent Marking document located at https://www.tibco.com/patents.

Copyright © 2017-2025 Cloud Software Group, Inc. All Rights Reserved.

Spotfire Service for Python Installation and Administration

https://www.cloud.com/legal
https://www.cloud.com/legal
https://www.apache.org/licenses/LICENSE-2.0
https://www.tibco.com/patents

57

Addendum to Legal and Third-Party Notices

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the
 purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control
 systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

Spotfire Service for Python Installation and Administration

58

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions

Spotfire Service for Python Installation and Administration

59

 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Spotfire Service for Python Installation and Administration

60

Index

C

compression 19
configuration 17
container 6
custom package list 28

D

data function 6, 19
disable.spotfire.trust.checks 24
disable.warning.alert 20
Docker 6
docker.image.name 20, 25
documentation 28
dynamic.prune.threshold 20

E

engine.execution.timeout 21
engine.port.min 25
engine.port.range 25
engine.prune 20
engine.queue.size 18
engine.session.max 18
engine.session.maxtime 21
environment variable for Python home 19
error 53

F

file size 21

H

hard disk 4
help 28

J

javaOptions 22
Jetty logging 50
jetty.gzip.comression-level 19
jetty.gzip.inflate-buffer-size 19
jetty.gzip.min-gzip-size 19
JMX 25, 48, 51
jmx.active 25, 48
jmx.rmi.host 25, 48
jmx.rmi.password 25, 48
jmx.rmi.port 25, 48
jmx.rmi.username 25, 48

L

Linux system Python, using 19
Linux versions 4
logging 50
loggingLevel 21

M

memory 53
monitoring 51

O

options 17

P

packagePath 23
packages 27
PyPI 27

R

ram.limit 25
RMI 25, 48

S

service-<guid>-stdout.log 50
service-<service-ID>-stdout.log 50
SPK 31
SPOTFIRE_PYTHON_HOME environment variable 19
Spring 21
spring.servlet.multipart.max-file-size 21
spring.servlet.multipart.max-request-size 21
startup.hook.script 24
system Python 19

T

timeout 21
troubleshooting 50

U

upload file 21
use.engine.containers 6, 25
use.immutable.container 20

Spotfire Service for Python Installation and Administration

61

W

Windows version 4

Spotfire Service for Python Installation and Administration

	Contents
	The Spotfire® Service for Python
	System Requirements
	Limiting exposure of your deployment

	Containerized Service
	Configuring a custom Docker image on a node with internet access
	Configuring a custom Docker image on a node with no internet access
	Configuring a custom startup script to build a custom Docker image
	Pulling a custom Docker image from an authenticated repository

	Installing the Service on a Node Manager for a Spotfire Server
	Configuring the Service
	Custom configuration properties
	Allowed engines
	Compressed job contents and results
	Custom Python interpreter
	Disable warnings
	Docker container built for no internet access
	Engine pruning
	Engine timeout
	File size upload limit
	Logging level
	Manage Java options
	Package library location
	Safeguarding your environment
	Startup script
	engine ports
	JMX monitoring
	Containerized configuration

	Package Management for the Spotfire Service for Python
	Find help
	Using an Alternative Python Package Repository
	Included Packages
	The Spotfire Package (SPK)
	SPK Versioning

	Distribute Python Packages
	Installing Python Packages Manually
	Creating a Spotfire Package for Python Packages on the Node Manager
	Creating a Spotfire Package for Python Packages from a Windows Computer
	Build a Spotfire Package for Spotfire Service for Python (Linux)
	Building a Spotfire Package (SPK) for Python Packages from a Docker Image on Windows
	Building a Spotfire Package (SPK) for Python Packages with a Docker Image on Linux

	Use an Alternative Python Interpreter
	Creating a Spotfire Package for an Alternative Python Interpreter (for Windows)
	Build a Suitable Python Interpreter for Spotfire Service for Python (for Linux)

	Service resource management scenarios
	Service Logs
	Monitoring the Service using JMX
	Troubleshooting the Service
	Spotfire Documentation and Support Services
	Legal and Third-Party Notices
	Index

