
TIBCO Spotfire® Clinical Graphics

GOM User’s Guide

Software Release 2.2
August 2012

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH SOFTWARE
LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE LICENSE(S) LOCATED
IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS SUBJECT TO THOSE TERMS
AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND AN
AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
EJB, J2EE, and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. SEE THE README FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON A SPECIFIC
OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 1999-2012 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information
The correct bibliographical reference for this document is as follows:
TIBCO Spotfire ® Clinical Graphics 2.2 GOM User’s Guide, TIBCO Software Inc.
For technical support, please visit http://spotfire.tibco.com/support and register for a support account.

Contents
Chapter 1 TIBCO Spotfire Clinical Graphics
Introduction 1

Overview 2

Getting Started 3

Introduction to the GOM 4

Chapter 2 The GOM 13

The Graphics Object Model 14

Chapter 3 TIBCO Spotfire Clinical Graphics 39

How TSCG Uses the GOM 40

The TSCG Graph Definition 41

Chapter 4 Graphic Elements 43

Introduction 44

Creating Graphic Elements 47

Arguments 53

Passing Data Around 55

Index 59

CONTENTS
iii

Contents
iv

Overview 2

Getting Started 3

Introduction to the GOM 4
Graphics Elements 5
Groups 6
Trellis 7
Row, Column, and Matrix Plots 8
Graphics Elements by Panel 12

TIBCO SPOTFIRE CLINICAL
GRAPHICS INTRODUCTION 1
1

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
OVERVIEW

This document provides details about using the Spotfire S+ Graphics
Object Model (the GOM). The examples and code contained in this
PDF provide a starting point for developing your own scripts, or for
interpreting scripts produced by the point-and-click TIBCO Spotfire
Clinical Graphics (TSCG) Client.

For Help with the GOM functions, see the CHM (on Windows) or
the HTML help files for the functions.

Note

When we refer to the object model, we refer to it as the GOM; however, the package, and the
object are lower case (that is, gom), and the fuction is lower-case (that is, gom).
2

Getting Started
GETTING STARTED

The Graphics Object Model library (gom) is provided as a Spotfire S+
package. To load and use it, from Spotfire S+, type the following:

library(gom)

The gom library always positions itself at the top of the search list.

search()

[1] "C:\\\MYDOCU~1\\SPOTFI~2\\Project1"
[2] "gom"
. . .

Use the gom() function to create all graphs. Although all code
produces graphs in any device, it was designed for the graphlet()
device supplied with TIBCO Spotfire Clinical Graphics.

To get help with the gom package, at the Spotfire S+ command
prompt, type:

?gom
3

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
INTRODUCTION TO THE GOM

The gom() function is a model interface to the underlying Graphic
Object Model. The gom() design centers around the following
concepts:

• Model statement: a variable formula for positions, conditioning
and grouping.

• Data statement: the data frame that holds the values to be
graphed.

• Panel statement: the graphic elements such as points, lines or
bars to be used.

The gom() function creates graphs using expressions such as:

gom(conc ~ time, data = Indometh)

In this expression, Indometh is the data that holds the variables conc
and time, and the model formula conc ~ time is the expression that
specifies plotting conc as a model of time.

Figure 1.1: Scatter plot example.

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

time

co
nc
4

Introduction to the GOM
Spotfire S+ Trellis and R lattice users are familiar with this type of
formula via the plot-specific interfaces xyplot(conc ~ time, data =
Indometh). By plot-specific, we mean that the two frameworks contain
functions indicating specific plots (for example, dotplot() creates a
dot plot and histogram() produces a histogram). By contrast, the
gom() function is plot-type agnostic.

Graphics
Elements

Using gom(), you can draw a particular plot type by providing a single
graphic element or a combination of graphic elements. For example,
you can draw a scatter plot by specifying in gom() the default
ge.points graphic element. For example:

gom(conc ~ round(time), data = Indometh, panel = ge.points)

You can draw a box plot by specifying the ge.boxplot element:

gom(conc ~ round(time), data = Indometh,
panel = ge.boxplot)

Combining ge.points and ge.boxplots in a list() draws a boxplot
with points superposed:

gom(conc ~ round(time),
data = Indometh,
panel = list(ge.boxplot, ge.points)

)

5

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
As gom() building blocks, the graphics elements contain much of the
logic and behavior. You can reuse, combine, and develop new graph
types using graphics elements.

Groups Using groups, you can stratify within the plot region. For example,
you can separate points by applying a new style for each group level:

gom(conc ~ time,
groups = ~ Subject,

Figure 1.2: Combining graphics elements.
6

Introduction to the GOM
data = Indometh,
page=list(

legend = list(numberOfColumns = 3))
)

Trellis Formulas of the type y ~ x | g repeat the graph in panels. Each panel
corresponds to a unique value of g and the values plotted to the subset
corresponding to g. You can interpret this as conditioning. That is, y is a
model of x given g.

For example, you can condition a time concentration profile on
subjects, obtaining a concentration profile for each individual:

gom(conc ~ time | Subject,data = Indometh)

Figure 1.3: Grouped scatter plot example.

Subject
1
4

2
5

6
3

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

time

co
nc

Note

The legend is displayed in three columns to preserve space. For more information about legend,
see the section The Page Object on page 15.
7

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
Note that the rows and columns have identical scales and are exactly
identical to the unconditioned graph. This design is one of the key
principles in the Trellis methodology.

Row, Column,
and Matrix
Plots

You can bind panels by variable with gom(). This feature is similar to
Trellis, but the panels display different information. For example,
using Row plots, you can stack plots. The following example
demonstrates stock quotes on top of volume, using a common time x-
axis, or measurements with a common x-axis:

gom(glyco + conc ~ time, data = Quinidine)

Figure 1.4: Trellis scatter plot example.

1 4
0 2 4 6 8

2

0.0
0.5
1.0
1.5
2.0
2.5

5

0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5

6 3

0 2 4 6 8

time

co
nc
8

Introduction to the GOM
Column plots, or side-by-side plots, are useful when the y-axis is
categorical, and you want to display different summaries in the
panels. The Adverse Event Double Dot Plot is a good example of this
plot type, where you can display the incidence rate in the first panel
and the relative risk with confidence intervals in the next panel.
Column plots are created using expressions such as:

gom(Type ~ Fuel + Weight + Disp., data = fuel.frame,
scales = list(

x = list(majorTickLabelSrt=90),
y = list(enableMajorGrid = TRUE)

)
)

Figure 1.5: Row plot example.

0 2000 4000 6000 8000
0.5

1.0
1.5

2.0

2.5

3.0
0

2

4

6

8

10

time

gl
yc

o
co

nc
9

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
While combining Row and Column plots is a rarer scenario, you can
use gom() to do so. For example:

gom(Mileage + Disp. ~ Fuel + Weight , data = fuel.frame)

Figure 1.6: Column plot example.
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Small

Sporty

Compact

Medium

Large

Van

5
5

2000

2500

3000

3500

4000
4000

50 100

150

200

250

300

Fuel Weight Disp.

Ty
pe
10

Introduction to the GOM
You can create matrix plots using expressions such as:

gom(~ Weight + Mileage + Disp., data = fuel.frame)

Figure 1.7: Row-column plot.

Figure 1.8: Matrix plot example.

2.5 3.0 3.5 4.0 4.5 5.0 5.5

20

25

30

35

2000 2500 3000 3500 4000

50

100

150

200

250

300

Fuel Weight

M
ile

ag
e

D
is

p.

2000 2500 3000 3500 4000
50

100

150

200

250

300

0

20 25 30 3520
20

25

30

35

Weight Mileage

D
is

p.
M

ile
ag

e

11

Chapter 1 TIBCO Spotfire Clinical Graphics Introduction
Graphics
Elements by
Panel

You can use different graphic elements in the panels. For example:

gom(Disp. ~ Mileage + "TOTAL", data = fuel.frame,
panel = list (list(ge.points) , list(ge.boxplot)),
graphTable = list(columnRatio = c(.9,.1)),
scales = list(alternating = 1)

)

This produces a column plot where the first panel is equivalent to
Disp. ~ Time and the second equivalent to plotting Disp. ~ "TOTAL".

The panel statement

panel = list (list(ge.points) , list(ge.boxplot)),

specifies including points in the first panel and a boxplot in the next.

Note that "TOTAL" is just a shortcut to include a constant (intercept).
The columnRatio = c(.9,.1) is used to allocate 90% space to the first
column and 10% space to the 2nd column, obtaining a wide panel for
Disp. ~ Time points panel, and a skinny boxplot summary Disp. ~
"TOTAL" panel.

Figure 1.9: Column plot with varying plot elements.

20 25 30 35
50

100

150

200

250

300

TOTAL

Mileage TOTAL

D
is

p.
12

The Graphics Object Model 14
The Page Object 15
GraphTable Object 20
Scale Object 28
Sort, Filter and Bin Specifications 35

THE GOM 2
13

Chapter 2 The GOM
THE GRAPHICS OBJECT MODEL

This chapter describes the objects and their parameters that comprise

the TIBCO Spotfire® Graphics Object Model (GOM). The following
provides an illustration how these objects are presented in a graphic.

Figure 2.1: The GOM, illustrated.

Header Area

Main Title Area

Footer Area

Sub Title Area

Axis

A
xi

s

Axis

Strip

Plot Area

Plot Margin

Page Outer Margin

GraphTable Outer Margin

B
in

di
n

g
M

ar
g

in

A
xi

s
Legend Area

Page Outer Margin
14

The Graphics Object Model
 The Page
Object

The page argument in gom() parameterizes the Page() creator. The
most common settings include the outer margins, headers, footers,
and other page annotations.
Table 2.1: Page parameters.

Parameter Description

alternate Indicates if binding margin should be alternated
between pages. A logical. The default is FALSE.

annotation A list of objects. In the GOM Help files, see
gom.segments, gom.arrow, and MultiLineTextBox.

bindingMargin Sets the the binding margin to be used with a Margin
object. The default is:

bindingMargin = Margin(Size(0, "inch"), "left")

footer Sets the page footers with a PageTitle object. For
example:

footer = PageTitle(text="Footer", side="bottom")

The side default for footer is bottom.

header Sets the page headers with a PageTitle object. The
default is PageTitle(...). For example:

header = PageTitle(text="Header", side="top")

The side default for header is top.

Headers and titles

height Sets the page height with a Size object. For example:

height = Size(11, "inch")

Layout

legend A list of arguments passed to the setupGomLegend()
function.

Legend and Annotation
15

Chapter 2 The GOM
Example

To illustrate the Page object depicted in Figure 2.2:

1. Provide arguments to the layout and titles.

2. Specify a grey background and a black border.

3. Position the legend inside the graph table area.

gom(conc ~ time, groups = ~ Subject, data = Indometh,
page = list(

mainTitle Sets the page headers. The default is PageTitle(...).
For example:

mainTitle = PageTitle(text="MainTitle",
side="top").

The side default for mainTitle is top.

outerMargin Sets the outer margin that bounds header and footer
with a Margin object. By default, the outer margin is
specified as follows:

outerMargin = Margin(Size(c(0.2,0.2,0.2,0.2),
"inch"))

pageStyle Sets the color style of the page with a list. For more
information, see the Help topic for FrameStyle in the
GOM reference. For example:

pageStyle = FrameStyle(backgroundColor =
"lightgrey")

subTitle Sets the page headers. The default is PageTitle(...).
For example:

subTitle = PageTitle(text="subtitle", side="top")

The side default for subTitle is bottom.

width Sets the page width with a Size object. For example:

width = Size(8.5, "inch")

Table 2.1: Page parameters. (Continued)

Parameter Description
16

The Graphics Object Model
#Set the page margins
outerMargin = Margin(Size(c(.1,0,.1,0),"inch")),

#Set the binding margin
bindingMargin = Margin(Size(.5,"cm"),

side = "left"),

#Include a multiline header
header = PageTitle(text = c("Header1",

"Header2","Header3"),
side="top"),

#include a main title and set font size
mainTitle = PageTitle(text="Title1", side="top",

fontSize=Size(18,"pt")),

#include a subtitle at the bottom of page
subTitle = PageTitle(text = "SubTitle",

side = "bottom"),

#include a footer at the bottom of page
footer = PageTitle(text = "Header1",

side = "bottom"),

#Change the legends to inside and place it top right
legend = list(numberOfColumns = 3,

 insideLegend = TRUE,
 legendLocation = "top right",

backgroundColor = "lightgrey",
 border = "grey"),

#Finally, color the background and include a border
pageStyle = FrameStyle(backgroundColor = "lightgrey",
17

Chapter 2 The GOM
borderColor = "black")
)
)

The PageTitle
Object

The page footers and other titles are handled using the PageTitle()
creator. A PageTitle can include multiple lines. You can position it at
the top or at the bottom of the page, and you can specify its style.

Figure 2.2: Page parameters example.

Header1
Header2
Header3

Title1

Header1
SubTitle

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

time

co
nc

Subject
1
4

2
5

6
3

Note

Currently, line styling for individual page titles is not supported.
18

The Graphics Object Model
The following table displays the argument available in PageTitle():

Example

To illustrate the PageTitle() creator:

1. Specify the mainTitle slot of the Page object, but set the side
argument to bottom.

2. Specify titles in red text, with line spacing set to 2, relative to
the specified font size of 16 pt.

gom(conc ~ time, data = Indometh,
page =list(

mainTitle = PageTitle(side = "bottom",
text=c("header 1","header 2","header 3"),
lineSpacing = 1.2,
titleAdjustment = 1,
fontSize = Size (16, "pt") ,
styles=list(col=c("red"))

)
)

Table 2.2: PageTitle parameters.

Parameter Description

fontSize Specifies the font size. If NULL,
gomOptions("fontSize") is used. A Size object.

lineSpacing Specifies the line spacing. A numeric.

side Specifies the side of the page for the page title.
Can be "top" or "bottom".

styles Specifies the style of the text. Can be a list or
Style object.

text Specifies the page title’s text contents. Can be a
character or a MultiLineText object.

titleAdjustment Specifies the adjustment. 0 sets left justify, 1 sets
right justify, .5 sets centered text (the default).
19

Chapter 2 The GOM
)

GraphTable
Object

The graph table holds the plot or trellis of panels. It controls the
number of columns and rows and the column and row spacing. It also
controls the plot aspect ratio. The GraphTable object is constructed by
passing arguments to it using the graphTable argument of gom().

The following table lists the available GraphTable parameters:

Figure 2.3: PageTitle example.

header 1
header 2
header 3

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

2.5

time

co
nc

Table 2.3: GraphTable parameters.

Parameter Description

axesMargins Specifies the margins for the graph table’s axes.
Default is c(0, 0, 0, 0).

columnRatio The ratio column width. A numeric. Default is 1.

columnSpacing Spacing between columns. A Size object. Default is
Size(2, "pt").
20

The Graphics Object Model
height Specifies the height of the graph table. Can be a
Size object or a numeric in inches. The default fills
the graph table area.

labelMargins Specifies the margins for the graph table’s labels.
Default is c(0, 0, 0, 0).

layoutType Sets the numberOfRows and numberOfColumns
calculation method. Applies when numberOfRows or
numberOfColumns are not given.

By default, numberOfColumns is determined by the
number of levels in the first given variable;
numberOfRows is the number of levels of the second
given variable.

• table (default): The layout is calculated
using good.layout. If the page ratio is larger
than 1, then numberOfRows is set to the first
element and numberOfColumns to the
second. The revese is true if ratio is less
than 1.

• row: sets numberOfRows = 1.

• col: sets numberOfColumns = 1.

• matrix: computes numberOfRows =
numberOfCells =
ceiling(sqrt(numberOfCells)).

numberOfColumns Number of columns to use. The default is
determined by layoutType.

numberOfPages The number of pages the graph table spans.

You can use numberOfPages to plot only a limited
number of pages, where the numberOfRows and
numberOfColumns and given values might imply
more.

Table 2.3: GraphTable parameters. (Continued)

Parameter Description
21

Chapter 2 The GOM
Examples

#Example 1: Set the graph table layout as a row table.
gom(conc ~ time | Subject, data = Indometh,

graphTable = list(
layoutType="row", outerMargins=c(0,2.5,0,2.5)
)

)

numberOfRows Number of rows to use. The default is determined
by layoutType.

outerMargins Specifies the outer margins of the graph table. Can
be vector of a Size objects or a numeric in inches.
The default is c(0.2, 0.2, 0.2, 0.2).

plotAreaStyle Set the style of the plot area. A list or FrameStyle
object. For more information, see the Help topic for
FrameStyle in the GOM reference.

plotAspectRatio The aspect ratio of the plot region. A numeric.
Default uses the maximum space available in the
plot area.

plotInnerMargins Specifies the inner plot margins of the graph table
plot region. Can be be vector of Size objects or a
numeric in inches. The default is c(0, 0, 0, 0).

rowRatio The ratio row heights. A numeric. Default is 1.

rowSpacing Spacing between rows. A Size object. Default is
Size(2, "pt").

width Specifies the width of the graph table. Can be a Size
object or a numeric in inches. The default fills the
graph table area.

Table 2.3: GraphTable parameters. (Continued)

Parameter Description
22

The Graphics Object Model
#Example 2: Set the plot aspect ratio.
gom(conc ~ time | Subject, data = Indometh,

graphTable=list(plotAspectRatio=2)
)

Figure 2.4: Setting graph table layout.

0 2 4 6 8
0.0
1.5

1
0.0
1.5

4
0.0
1.5

2
0.0
1.5

5
0.0
1.5

6
0.0
1.5

3

co
n

c

time
23

Chapter 2 The GOM
#Example 3: Style the graph.
gom(conc ~ time | Subject, data = Indometh,

graphTable = list(
rowSpacing =1,
columnSpacing =1,
plotAreaStyle =
FrameStyle(backgroundColor="lightgrey",

borderColor=gomCol("border"))
),

scales = list(enableMajorGrid=TRUE,
 majorGridStyle=list(col="white")

)
)

Figure 2.5: Setting the plot aspect ratio.

1 4
0 2 4 6 8

2

0.0
0.5
1.0
1.5
2.0
2.5

5

0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5

6
0.0

3

0 2 4 6 8

time

co
nc
24

The Graphics Object Model
Strip Object You can control the panel strip labels using the strips argument to
gom(). The value for this parameter is passed down to the Strip()
creator. You can control these strip features, among others:

• If the name of the given variable should be displayed.

• If the strip should be on the right-hand side of the panel.

• If the strip should be inside or outside the axis.

• How the strip should be styled.

Figure 2.6: Styling the graph table.

1 4
0 2 4 6 8

2

0.0
0.5
1.0
1.5
2.0
2.5

5

0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5

6 3

0 2 4 6 8

time

co
nc
25

Chapter 2 The GOM
The following table displays the Strip parameters available.
Table 2.4: Strip arguments.

Parameter Description

enabled Indicates if the strip should be
included. A logical. The default is
TRUE.

fontSize Specifies the size of the font used in
the strip label.

format Specifies parameters in name =
value to be passed down to
gom.formatCharacter with x set to
labels. A list.

frameStyle Specifies the style of the strip
frame. For more information, see
the Help topic for FrameStyle in
the GOM reference.

labelRotation Specifies the rotation of the label.
The default is determined by side:

• top = 0

• bottom = 0

• left = 90

• right = -90

labelStyle Specifies the style of the strip label.
A list.
26

The Graphics Object Model
Example

gom(conc ~ time | Subject, data = Indometh,
graphTable=list(layoutType="row",

outerMargins=c(0,1,0,1)),
scales = list(alternating =1, mirrorTicks = FALSE),
#include right sided strips,
#showing the given label on a white background
strips = list(text="[label]: [value]",

outerStrip=TRUE,
side = "right",
frameStyle=FrameStyle(backgroundColor="white")

)
)

outerStrips Indicates that the strip should be
rendered outside of the axis. A
logical. The default is FALSE.

side Indicates the side of the plot for the
axis (bottom, left, top (the default),
or right). A character.

text Indicates that the strip label has
optional string field parameters.
The default is [value].

• To display the label and
the value, specify
[label]: [value].

• To display no text in the
strip, specify text="".

Table 2.4: Strip arguments. (Continued)

Parameter Description
27

Chapter 2 The GOM
Scale Object The GOM attempts to find appropriate scales for the x and y axis.
You can specify scale settings providing parameters to the scales
argument of gom() in the form of named lists to the x and y axis. For
example:

scales = list (
x = list(from = 0) ,

 y = list(logTransform = 0)
)

Figure 2.7: Styling the strip label.

Subject: 1

0 2 4 6 8
0.0
0.5
1.0
1.5
2.0
2.5

Subject: 4

0.0
0.5
1.0
1.5
2.0
2.5

Subject: 2

0.0
0.5
1.0
1.5
2.0
2.5

Subject: 5

0.0
0.5
1.0
1.5
2.0
2.5

Subject: 6

0.0
0.5
1.0
1.5
2.0
2.5

Subject: 3

0.0
0.5
1.0
1.5
2.0
2.5

time

co
nc
28

The Graphics Object Model
The x list controls the x-axis, and the y list controls the y-axis.

The GOM supports fine control of independent axes. For example,
for a Trellis plot with free scales, you can get fine control by nesting
the scales arguments to a deeper level. For example, to set three free
x-axis to start from 0, 1 and 3, use the following:

scales = list (
x = list(

list(from = 0),
list(from = 1),
list(from = 3)

)
)

Table 2.5: Scale parameters.

Parameter Description

alternating Determines whether axes alternate from
one side of the group of panels to the other.
A numeric. Using the default alternating
= 1 can save space if long tick labels are
used. For more precise control,
alternating can be a vector specifying the
side of the plot on which each axis is
drawn:

• alternating=1 specifies bottom or
left only.

• alternating=2 specifies top or
right only.

• alternating=0 specifies do not
draw.

• alternating=c(1,2) specifies
bottom-top (the default) or left-
right alternation.

• alternating=c(2,1) specifies top-
bottom or right-left alternation.

alternatingTicks Indicates whether ticks should be
alternated. A logical. The default is TRUE.
29

Chapter 2 The GOM
at The numeric vector of positions at which
the ticks and tick labels are plotted.

If at is omitted, gom.prettyValues (if linear)
or gom.prettyLogValues (if log scale) is
used to calculate at values.

axisLineCol Specifies the color base line that the tick
rests on. A numeric.

clipMajorLabels Indicates if a major label should be clipped
or skipped so the labels fit within the room
allocated to the axis. A logical. The default
is FALSE.

enabled Indicates whether the axis should be
visible. A logical. The default is TRUE.

enableMajorGrid Indicates if the grid at major tick marks
should be visible. A logical. The default is
FALSE.

enableMajorLabels Indicates if labels are visible. A logical. The
default is TRUE.

enableMajorTicks Indicates if major tick marks are visible. A
logical. The default is TRUE.

enableMinorGrid Indicates if the grid at minor tick marks
should be visible. A logical. The default is
FALSE.

enableMinorTicks Indicates if minor tick marks should be
visible. A logical. The default is FALSE.

Table 2.5: Scale parameters. (Continued)

Parameter Description
30

The Graphics Object Model
extensionFactor Extends the data limits by extensionFactor
on each end, and then labels the axis
internally. A non-negative numeric. The
default is 0.04, or 4% extension.

firstMajorTick Sets the first tick mark position. A numeric.

Note: For log scales, firstMajorTick is the
lower bound of major ticks.

from Specifies the lower scale limit. A numeric.
If omitted, from is equal to the minimum of
limits.

lastMajorTick Sets the last tick mark position. A numeric.

Note: For log scales, lastMajorTick is the
upper bound of major ticks.

limits A numeric vector of length two, specifying
the lower and upper data limits. Defaults to
the data range and what is returned by the
graphic element prerendering (if anything
is returned).

Note: The limits setting is conditioned to
the largest of the setting and the data and
prerender ranges. To truncate the scale
range, see to and from parameters.

logTransform Indicates if the scale should be log or linear.
A logical. The default is FALSE, indicating
linear.

logTransformBase The base of the log transform. A numeric.
Typically, this is 2,exp(1) or 10. This
parameter has an effect only when
logTransform = TRUE.

Table 2.5: Scale parameters. (Continued)

Parameter Description
31

Chapter 2 The GOM
majorGridStyle Specifies the style of the major grid. A list
of parameters of the name = value form,
where valid parameters are col, lty, and
lwd. This parameter has an effect only
when enableMajorGrid = TRUE. Default is
lightgrey thin solid lines.

For example:

majorGridStyle=list(col=”blue”, lty=2,
 lwd=3)

majorTickLabel Specifies the tick label. If you set this value,
you must specify at. A character.

majorTickLabelAdj Specifies the tick label justification. A non-
negative numeric typically less than 1.

majorTickLabelCol Specifies the major tick label color. A
numeric or character.

majorTickLabelFontSize Specifies the font size. A Size object.

majorTickLabelFormat If type is numeric, then the list of
arguments is passed to gom.formatNumeric;
otherwise, the list of arguments is passed to
gom.formatCharacter.

majorTickLabelSrt Specifies major tick label rotation in
degrees measured clockwise (between 90
and -90). A numeric. The default is 0.

majorTickSize Specifies the size of major tick marks. If the
value is positive, tick marks are drawn
outside of the plot area. If the value is
negative, the tick marks are drawn inside
the plot area. A numeric. The default is 1.

Table 2.5: Scale parameters. (Continued)

Parameter Description
32

The Graphics Object Model
majorTickUnit Specifies the unit interval for major tick
marks. A numeric.

minorGridStyle Specifies the style of the minor grid. A list
of parameters of the name = value form,
where valid parameters are col, lty, and
lwd.

This parameter has an effect only when
enableMinorGrid = TRUE.

Default is lightgrey thin dotted lines.

minorTickSize Specifies the size of minor tick marks. If the
value is positive, tick marks are drawn
outside of the plot area. If the value is
negative, the tick marks are drawn inside
the plot area. A numeric. The default is 0.5.

minorTicksUnit Specifies the unit interval for minor tick
marks. A numeric.

mirrorLabels Indicates whether tick mark labels should
be mirrored. A logical. The default is FALSE.

mirrorTicks Indicates whether tick marks (both major
and minor) should be mirrored. A logical.
The default is TRUE.

numberOfMajorTicks Specifies the approximate number of major
tick marks desired. An integer.

numberOfMinorTicks Specifies the number of minor tick marks
within major tick marks. An integer.

Table 2.5: Scale parameters. (Continued)

Parameter Description
33

Chapter 2 The GOM
relation Controls the relationship between axes on
the same side:

• relation = "same" (default) gives
identical vertical or horizontal axes
on each panel. The axis is drawn in
rows and columns.

• relation = "free" gives
independent vertical or horizontal
axes on each panel. Each panel cell
has an axis.

symmetricLimits Specifies whether the scale limits should be
symmetric around symmetricLimitsBase. A
logical.

symmetricLimitsBase Specifies the base of symmetry. A numeric.
The default is 0 if logTransform = FALSE,
and 1 if logTransform = TRUE. Use this
setting only if you set symmetricLimits =
TRUE.

tickCol Specifies the color for all ticks. A numeric
or character.

title Specifies the title placeholder of the axis. A
character string.

to Specifies the upper scale limit. If omitted,
to is equal to maximum of limits. A
numeric.

type The default is the data-class of the axis
variable (numeric or factor).

Table 2.5: Scale parameters. (Continued)

Parameter Description
34

The Graphics Object Model
Sort, Filter
and Bin
Specifications

The gom() function has built in data operations for sorting labels and
binning and filtering of data prior to any graphing. Each data
operation specification takes the form of the nested lists-of-lists. For
example, the arguments are of the following form:

sortSpec = list (
list(targetColumn = "year", sortBy="yield"),
list(targetColumn = "site", sortBy="yield")

)

sortSpec The following table describes the parameters in name-value form that
are passed down to the sorting procedure for sorting the levels of
factors.
Table 2.6: Data specifiations for sortSpec.

Parameter Description

smallToLarge The sort direction. Default is TRUE. A logical.

sortByColumn Column name. The values to sort the levels of
targetColumn by. Default is unspecified NULL, in
which case it is the alphabetic order of
targetColumn that is used.

summaryFunction A summary function to choose order. Default is
max. Available are mean, min, max, median, and
gom.count

targetColumn Column name. The factor for which levels are
sorted.

withinColumn Column name. The column to sort within.
(Default is NULL.)

withinColumnLevel The level of withinColumn to sort within (required
if withinColumn is set). A character.
35

Chapter 2 The GOM
filterSpec The following table describes the parameters in name-value form to
be passed down to the filtering procedure. These are not exposed in
the TSCG client.
Table 2.7: Data specifications for filterSpec.

Parameter Description

direction Sets the direction to either "top" or "bottom". The
Default is unspecified NULL. A character string.

directionN Sets the number of rows to select (For example, select
the top 10). The default is 10. An integer.

filterByColumn The column name specifying the values to filter by.

includeLower If FALSE (the default), it is greater than lowerValue. If
TRUE, greater than or equal to lowerValue. A logical.

includeUpper If FALSE (the default), less than upperValue. If TRUE,
less than or equal to upperValue. A logical.

lowerValue The lower cutoff of filterByColumn. The default is
unspecified NULL. Applies only if direction is
unspecified NULL. A numeric.

targetColumn Factor to select levels to filter by.

upperValue The upper cutoff of filterByColumn. The default is
unspecified NULL. Applies only if direction is
unspecified NULL.
36

The Graphics Object Model
binSpec The following table describes the parameters in name-value form to
be passed down to the binning procedure. These are not exposed in
the TSCG client.
Table 2.8: Data specifications for binSpec.

Parameter Description

binmethod Sets the method for determining the number of bins to
use. A character string. Options include:

• "scott" specifies the Scott method.

• "sturges" specifies the Sturges method.

• "fd" specifies the Freedman-Diaconis
method.

• "pretty" specifies dividing the numeric in to
pretty bins.

binunit Sets the binning unit. A numeric. The default is NULL
for unspecified. If specified, nbins and binmethod are
ignored.

breaks A vector defining the bin ranges. A numeric.

equalwidth If TRUE (the default), bins are defined by equal ranges.
If FALSE, bins are defined by equal counts. A logical.

nbins Sets the number of bins. An integer. The default is 8.

replace If TRUE (the default), the new bin column replaces the
existing column. If FALSE, the new bin column is
appended to the dataset. A logical.

suffix If replace is FALSE, suffix is appended to the
targetColumn name. A character string.

targetColumn The numeric column to be binned. A character string.
37

Chapter 2 The GOM
38

How TSCG Uses the GOM 40

The TSCG Graph Definition 41
Creating a Graph Using the TSCG Client 41
Automated Graph Creation in SAS Production Mode 42

TIBCO SPOTFIRE CLINICAL
GRAPHICS 3
39

Chapter 3 TIBCO Spotfire Clinical Graphics
HOW TSCG USES THE GOM

This section discusses the TIBCO Spotfire Clinical Graphics (TSCG)
application, the graphical user interface (GUI) designed to provide
nonprogrammers the tools to create graphs.

The following workflows help introduce using TSCG:

• TSCG Graph Definition: A user defines a graph, and then the
end users reuse the graph with the TSCG client.

• TSCG Production Run: SAS specifies graph output in a
production system, supplying the override parameters at run-
time (automated graph production).

Both work flows use a common process to generate graph files on the
server, and then render the graphs either in the TSCG client (Graph
Definition) or on the server (Production) as part of the production
process. See Generating a Graph File from a Graph Definition in the
PDF Working in Production Mode Using TSCG and the Spotfire Statistics
Services for more information about this process.
40

The TSCG Graph Definition
THE TSCG GRAPH DEFINITION

Users need no knowledge of the S-PLUS programming language to
create graphs with TSCG. Using the GUI, users can select the data,
the graph type, and the plot elements for graphing.

Creating a
Graph Using
the TSCG
Client

Creating a graph in TSCG involves three steps:

• Defining the graph.

• Generating the graph.

• Rendering the graph.

The three steps of this process are detailed below the figure.

1. Defining a graph: Using the TSCG client, select the data, the
graph type (dot, histogram, Kaplan-Meier, and so on), and the
optional and common graphic elements (smoothers, axis
scale, line style, color, and so on). After you select these items,
you can use TSCG to save the data path and graph

Figure 3.1: Creating a grasph using the TSCG Client
41

Chapter 3 TIBCO Spotfire Clinical Graphics
information to a file (with an .igd file extension). Use this file
for production or open it with TSCG to edit the original
selections.

2. Generating a graph: The server transforms the .igd file into an
SPJ file.

3. Rendering a graph: The TSCG client reads the SPJ file and
renders it in an interactive graphlet viewer in the TSCG user
interface. You can continue editing the file, or you can save an
output file, save the graph definition, or define a template
graph definition.

Automated
Graph Creation
in SAS
Production
Mode

Follow the same three steps as described in the section Creating a
Graph Using the TSCG Client: Define the workflow, generate the
graph, and render the graph in this workflow.

For more information about working in the production mode and
generating a graph file from a graph defintion, see the PDF Working in
Production Mode included in the documentation.

Notes

The PDF Working in Production Mode also contains sample graph definition documents and the
Graphlet (SPJ) file .
42

Introduction 44

Creating Graphic Elements 47

Arguments 53

Passing Data Around 55

GRAPHIC ELEMENTS 4
43

Chapter 4 Graphic Elements
INTRODUCTION

Graphic elements are essentially the same as Trellis panel functions:
low level S graphics functions wrapped in a function. The wrapper
here is the Groto object. (Groto is short for "Graphic Prototype", like
Proto is often used for prototype object programing.) The object
wrapper makes it structured and manageable. We include more
information about its behavior, metadata, and templates for default
arguments. This is not possible with S functions.

class(ge.points)

[1] "Groto"

All Groto objects can be listed by using ls.groto():

ls.groto()

 data.class dataset.date
 ge.areaBars Groto 2008.12.04 21:44
 ge.areas Groto 2008.12.04 21:44
 ge.axisLabel Groto 2008.12.04 21:44
 ge.bars Groto 2008.12.04 21:44
 ge.blank Groto 2008.12.04 21:44
 ge.boxplot Groto 2008.12.04 21:44
 ge.bubbles Groto 2008.12.04 21:44
 ge.cifit Groto 2008.12.04 21:44
 ge.contour Groto 2008.12.04 21:44
 ge.delta Groto 2008.12.04 21:44
 ge.density Groto 2008.12.04 21:44
 ge.dots Groto 2008.12.04 21:44
 ge.duration Groto 2008.12.04 21:44
. . .

nrow(ls.groto())

[1] 66

You can find help for each groto by typing ?grotoname; for example,
?ge.points in the command line. Arguments and defaults are
displayed when you print a Groto object:

ge.points
44

Introduction
object of class Groto:
call:
function(pointsPointStyle = pointStyle(col =

gomCol("normal"), cex = 0.8, pch = gomPch("default"),
type = "p"),

pointsSortOnX = TRUE,
pointsJitterX = FALSE,
pointsJitterY = FALSE,
pointsDoGroup = TRUE,
pointsId = NULL,
pointsSubset = NULL,
pointsPageAction = NULL)

NULL

The Groto object extends functions and returns a Groto clone with
new defaults. You create new Groto objects with each gom() call, as is
shown by the following creations and reuse:

#set color
ge.myPoints <- ge.points(pointsPointStyle =

pointStyle(col= gomCol("spectral")))
#set size
ge.myPoints <- ge.myPoints(pointsPointStyle =

pointStyle(cex=seq(.2,2,length=8)))
#set symbol
ge.myPoints <- ge.myPoints(pointsPointStyle =

pointStyle(pch = 16))

gom(Fuel ~ Weight, groups = ~Disp., data = fuel.frame,
panel = ge.myPoints,
page= list(legend = list(legendLocation="right top"))

)

45

Chapter 4 Graphic Elements
Figure 4.1: Bubble plot with color scale.

Disp.
[73; 98)
[98;114)
[114;135)
[135;146)
[146;153)
[153;181)
[181;231)

[231;305]

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
46

Creating Graphic Elements
CREATING GRAPHIC ELEMENTS

You can create new elements using the GraphicElement() creator
with name and render as required arguments.

ge.helloworld <- GraphicElement(name = "Hello World",
render = function(...)
{

text(3000, 4, "hello world")
}
)

gom(Fuel ~ Weight, data = fuel.frame,
panel = ge.helloworld

)

The scales in Figure 4.2 are driven by the input Weight and Fuel
variables. That is the default behavior. You can override the limits by
including a preRender function. In the following example, set the
limits to 0 1 and print text in the center of the graph.

Figure 4.2: Hello World Example.

hello world

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
47

Chapter 4 Graphic Elements
ge.helloworld <- GraphicElement(name = "Hello World",
render = function(...)
{

text(.5, .5, "hello world")
},
preRender = function(...)
{

list(xlim = c(0,1), ylim=c(0,1))
}

)

gom(Fuel ~ Weight, data = fuel.frame,
panel = ge.helloworld)

The GOM needs a preRender function to calculate scales before it
can render the plot. If several graphic elements are combined, and all
are setting their own ranges, the range of these ranges is used. This
design is illustrated as follows:

gom(Fuel ~ Weight, data = fuel.frame,
panel = list(ge.points, ge.helloworld)

)

Figure 4.3: Hello World, rescaled.

hello world

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Weight

Fu
el
48

Creating Graphic Elements
The above example is trivial and does not use the input data;
however, it is general enough to classify as an annotation element,
which is useful for including a stamp or a tag on a graph. Usually, you
would want data-driven elements. Points, lines, and box-whisker
symbols are all driven by input data (x and y). The above
ge.helloworld example uses the ellipsis argument (…). As with any S
function, this ellipsis just means “pass it on.” You can print the
contents of the ellipsis as follows.

ge.printArguments <- GraphicElement(name = "Hello World",
render = function(...)
{

print("RENDER")
print(names(list(...)))

}
, preRender = function(...)
{

print("PRERENDER")
print(names(list(...)))

}
)
gom(Fuel ~ Weight, data = fuel.frame,

panel = ge.printArguments
)

[1] "PRERENDER"
 [1] "x"
 [2] "y"
 [3] "subscripts"
 [4] "groups"
 [5] "ggp"
 [6] "horizontal"
 [7] "xLogTransform"
 [8] "xLogTransformBase"
 [9] "yLogTransform"
[10] "yLogTransformBase"
[11] "isXSideBlank"
[12] "isYSideBlank"
[13] "inputData"

[1] "RENDER"
 [1] "x"
 [2] "y"
 [3] "subscripts"
49

Chapter 4 Graphic Elements
 [4] "groups"
 [5] "ggp"
 [6] "horizontal"
 [7] "xLogTransform"
 [8] "xLogTransformBase"
 [9] "yLogTransform"
[10] "yLogTransformBase"
[11] "isXSideBlank"
[12] "isYSideBlank"

In the above example, the most important are the x and y. These
correspond to the formula y ~ x. Also, you can call the position
vectors, illustrated by the following:

ge.helloworld <- GraphicElement(name = "xy Hello World",
render = function(x,y, ...)
{

text(x,y, "Hello World")
}

)

50

Creating Graphic Elements
gom(Fuel ~ Weight, data = fuel.frame,
panel = ge.helloworld

)

The groups can be used as in the following:

ge.helloworld <- GraphicElement(name = "xy Hello World",
render = function(x,y,groups, ...)
{

text(x,y, as.character(groups), col = groups)
}

)

gom(Fuel ~ Weight, groups = ~Type, data = fuel.frame,
panel = ge.helloworld

)

Figure 4.4: Position driven by data.

Hello WorldHello World

Hello World

Hello WorldHello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World

Hello World
Hello World

Hello World

Hello World
Hello World

Hello World

Hello World

Hello World
Hello World

Hello WorldHello World

Hello World
Hello World

Hello World

Hello World

Hello World

Hello World
Hello World

Hello World Hello WorldHello WorldHello World
Hello WorldHello World

Hello World
Hello World

Hello World Hello World

Hello WorldHello World

Hello World

Hello World

Hello World Hello WorldHello World

Hello World
Hello WorldHello World

Hello World

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
51

Chapter 4 Graphic Elements
Note that the legend is not included automatically. You can specify
that option and use a style argument. This task is out of the scope for
this document. For more information, see the Help file for
GraphicElement.

Figure 4.5: Label and color driven by groups.

SmallSmall

Small

SmallSmall

Small

Small

Small

Small

Small

Small

Small

Small

Sporty

Sporty

Sporty

Sporty

Sporty

Sporty

Sporty

Sporty

Sporty
Compact

Compact

Compact
Compact

Compact

Compact

Compact
Compact

CompactCompact

Compact
Compact

Compact

Compact

Compact

Medium
Medium

Medium MediumMediumMedium
MediumMedium

Medium
Medium

Medium Medium

MediumLarge

Large

Large

Van VanVan

Van
VanVan

Van

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
52

Arguments
ARGUMENTS

This section illustrates passing arguments to a graphic element.

Start by revisiting the "Hello World" example, described in the
section Creating Graphic Elements, except this time, pass in the
label, col and cex to text():

ge.helloworld <- GraphicElement(name = "Hello World",
render = function(helloworldText = "Hello World",

col = "blue", cex = 1, ...)
{

text(0.5, 0.5, label = helloworldText, col = col,
cex = cex)

},
preRender = function(...)
{

list(xlim = c(0, 1), ylim = c(0, 1))
}

)

Printing ge.helloworld displays arguments and their defaults. Note
that the ellipsis (…) is not included.

ge.helloworld()

object of class Groto:
call:
function(helloworldText = "Hello World", col = "blue",

cex = 1)
NULL

You can use it with defaults or set arguments, as you would with any
built-in graphic element:

ge.helloworld(helloworldText = "Hello GOM", col = "red",
cex = 5)

object of class Groto:
call:
function(helloworldText = "Hello GOM", col = "red", cex = 5

)
NULL
53

Chapter 4 Graphic Elements
gom(Fuel ~ Weight, data = fuel.frame,
panel = ge.helloworld(

helloworldText = "Hello GOM", col = "red", cex = 5)
)

Arguments must contain a default value. Arguments with missing
values are considered “private” and cannot be set by users. For
example, x and y are private, as are subscripts. An argument can
always be given the value NULL. The next section provides an
example.

Figure 4.6: Passing on parameters.

Hello GOM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Weight

Fu
el
54

Passing Data Around
PASSING DATA AROUND

Using variables in the data set, we can create multi-dimensional plots,
include labels, and include other annotation tasks. The data are
passed to the preRender function using the inputData argument. Use
the subscript argument to slice the data down to the specified panel.

You can use the utility function preRenderVariableValues() to
extract variables contained in the inputData data.frame. For
example:

ge.helloworld <- GraphicElement(name = "Hello World",
render = function(x, y, helloworldTextColumn = NULL,
col = "blue", cex = 1, ...)
{

text(x, y, label = helloworldTextColumn, col = col,
cex = cex)

},
preRender = function(x, y, inputData, subscripts,

 helloworldTextColumn = NULL, ...)
{

#extract values
values = preRenderVariableValues(

variable = helloworldTextColumn,
inputData = inputData,
subscripts = subscripts)

#pass it on
list(xlim = range(x), ylim = range(y),

helloworldTextColumn = values)
}

)

55

Chapter 4 Graphic Elements
gom(Fuel ~ Weight, data = fuel.frame,
panel = ge.helloworld(

helloworldTextColumn = "Disp.", col = 1:16,
cex = 0.8)

)

In the above example, you extract data from inputData, and then
pass the extracted data on to the render step. You can set or change all
parameters in the render step in the preRender step. This practice is
used often in the built-in graphic elements, such as ge.loessfit. In
that element, we compute loess curves that might exceed the data
range; therefore, we must compute the loess fit in the preRender step.
We just pass on the lines to the render step, where we can avoid
refitting the curve.

The communication between the preRender and render step is global
within the panel. That is, graphic element 1 can override (or pass on)
arguments in element 2. This design highlights the importance of
careful argument naming, but it also introduces flexibility and reuse
of data.

Figure 4.7: Using input variables as labels.

97114

81

91 113

97

97

98

109

73

97

89

109

305

153

302

133

97

125

146

107

109
121

151

133
181

141

132

133
122

181146

151
116

135

122

141

163

151
153 202180182

232143

180
180

151 189

180231

305

302

151 202182

181

143146

146

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
56

Passing Data Around
ge.helloworld1 <- GraphicElement(name = "Hello World",
render = function(x, y, helloworldTextColumn = NULL,
col = "blue", cex = 1, ...)
{

Do nothing
},
preRender = function(x, y, inputData, subscripts,

 helloworldTextColumn = NULL, ...)
{

#Get the data and pass it on
values = preRenderVariableValues(variable =

helloworldTextColumn,
inputData = inputData,
subscripts = subscripts)

list(xlim = range(x), ylim = range(y),
 helloworldTextColumn = values)

}
)

ge.helloworld2 <- GraphicElement(name = "Hello World",
render = function(x, y, helloworldTextColumn = NULL,

col = "blue", cex = 1, ...)
{

#Render but have no preRender
text(x, y, label = helloworldTextColumn, col = col,
cex = cex)

}
)

gom(Fuel ~ Weight, data = fuel.frame,
panel = list(

ge.helloworld1(helloworldTextColumn = "Disp."),
ge.helloworld2)

)

57

Chapter 4 Graphic Elements
Using the preRenderVariableValues() function, you have the
advantage of specifying a variable argument as either a character or a
formula. If you specify a formula, you can pass on expressions, such
as ~ log(Disp.). If you specify a character, the name is case
insensitive and the match is done after removing non-character
symbols. For example, the variable name can be "DISP." =
"dIsP."="DISP_" . The preRenderVariableValues() also includes
type checking (for example, factor or numeric) and an argument to
stop on error.

Figure 4.8: Passing on arguments from one element to another.

12

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25
26

27

28

29
30

3132

33
34

35

36

37

38
39

40 414243
4445

46
47

48 49

5051

52

53

54 5556

57
5859

60

2000 2500 3000 3500 4000
2.5

3.0

3.5

4.0

4.5

5.0

5.5

Weight

Fu
el
58

Index
A
Adverse Event Double Dot Plot 9
alternate 15
alternating 29
alternatingTicks 29
annotation 15
at 30

B
bindingMargin 15
binmethod 37
binning 37
binSpec 37
binunit 37
breaks 37

C
cex 53
clipMajorLabels 30
col 53
columnRatio 20
columns 8
columnSpacing 20
conditioning 7

D
data statement

 4
direction 36
directionN 36

E
ellipsis argument (…) 49
enabled 26, 30
enableMajorGrid 30
enableMajorLabels 30
enableMajorTicks 30
enableMinorGrid 30
enableMinorTicks 30
equalwidth 37
extensionFactor 31

F
fd 37
filterByColumn 36
filtering 36
filterSpec 36
firstMajorTick 31
fontSize 19
footer 15
format 26
FrameStyle 22
frameStyle 26
from 31

G
ge.boxplots 5
ge.loessfit 56
ge.points 5, 44
GOM 2, 14
gom() function 3
gom library 3

INDEX
59

Index
good.layout 21
graph element 5
GraphicElement 47
Graphic Prototype 44
GraphTable 20
graphTable 20
Groto 44

H
header 15
height 15, 21

I
includeLower 36
includeUpper 36
inputData 55

L
label 53
labelStyle 26
lastMajorTick 31
layoutType 21
legend 15
limits 31
lineSpacing 19
logTransform 31
logTransformBase 31
lowerValue 36
ls.groto 44

M
mainTitle 16, 19
majorGridStyle 32
majorTickLabel 32
majorTickLabelAdj 32
majorTickLabelCol 32
majorTickLabelFontSize 32
majorTickLabelFormat 32
majorTickLabelSrt 32
majorTickSize 32
majorTickUnit 33
minorGridStyle 33

minorTickSize 33
minorTicksUnit 33
mirrorLabels 33
mirrorTicks 33
model statement 4
multi-dimensional plots 55

N
name 47
nbins 37
numberOfColumns 21
numberOfMajorTicks 33
numberOfMinorTicks 33
numberOfPages 21
numberOfRows 21, 22

O
outerMargin 16
outerMargins 22
outerStrips 27

P
Page 15
pageStyle 16
PageTitle 18
panel statement

 4
plotAreaStyle 22
plotAspectRatio 22
plotInnerMargins 22
preRender 47, 48, 55, 56
preRenderVariableValues 58
preRenderVariableValues() 55
pretty 37
prettyLogValues 30
prettyValues 30

R
relation 34
render 47
replace 37
rowRatio 22
60

Index
rows 8
rowSpacing 22

S
Scale 29
scales 28
scott 37
side 19, 27
smallToLarge 35
sortByColumn 35
sorting 35
sortSpec 35
Strip 25
strips 25
sturges 37
style 52
styles 19
subtitle 16
suffix 37
summaryFunction 35
symmetricLimits 34
symmetricLimitsBase 34

T
table 21
targetColumn 35, 36, 37
text 19, 27
text() 53
tickCol 34
title 34
titleAdjustment 19
to 34
TSCG application 40
TSCG Graph Definition 40
TSCG Production Run 40
type 34

U
upperValue 36

W
width 16, 22
withinColumn 35
withinColumnLevel 35
61

Index
62

	TIBCO Spotfire® Clinical Graphics
	TIBCO Spotfire Clinical Graphics Introduction
	Overview
	Getting Started
	Introduction to the GOM
	Graphics Elements
	Groups
	Trellis
	Row, Column, and Matrix Plots
	Graphics Elements by Panel

	The GOM
	The Graphics Object Model
	The Page Object
	GraphTable Object
	Scale Object
	Sort, Filter and Bin Specifications

	TIBCO Spotfire Clinical Graphics
	How TSCG Uses the GOM
	The TSCG Graph Definition
	Creating a Graph Using the TSCG Client
	Automated Graph Creation in SAS Production Mode

	Graphic Elements
	Introduction
	Creating Graphic Elements
	Arguments
	Passing Data Around
	Index

