W)

TIBCO SPOTFIRE S+ 8.2
Application Developer’s
Guide

November 2010

TIBCO Software Inc.

IMPORTANT INFORMATION

ii

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER
TIBCO SOFTWARE. USE OF SUCH EMBEDDED OR
BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE
FUNCTIONALITY (OR PROVIDE LIMITED ADD-ON
FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT
LICENSED TO BE USED OR ACCESSED BY ANY OTHER
TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS
SUBJECT TO THE TERMS AND CONDITIONS OF A LICENSE
AGREEMENT FOUND IN EITHER A SEPARATELY
EXECUTED SOFTWARE LICENSE AGREEMENT, OR, IF
THERE IS NO SUCH SEPARATE AGREEMENT, THE
CLICKWRAP END USER LICENSE AGREEMENT WHICH IS
DISPLAYED DURING DOWNLOAD OR INSTALLATION OF
THE SOFTWARE (AND WHICH IS DUPLICATED IN 7/BCO
SPOTFIRE S+® LICENSES). USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR
USE HEREOF SHALL CONSTITUTE ACCEPTANCE OF AND
AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to
U.S. and international copyright laws and treaties. No part of this
document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIBCO Software Inc., TIBCO, Spotfire, TIBCO Spotfire S+,
Insightful, the Insightful logo, the tagline "the Knowledge to Act,"
Insightful Miner, S+, S-PLUS, TIBCO Spotfire Axum,
S+ArrayAnalyzer, S+EnvironmentalStats, S+FinMetrics, S+NuOpt,
S+SeqTrial, S+SpatialStats, S+Wavelets, S-PLUS Graphlets,
Graphlet, Spotfire S+ FlexBayes, Spotfire S+ Resample, TIBCO
Spotfire Miner, TIBCO Spotfire S+ Server, TIBCO Spotfire Statistics
Services, and TIBCO Spotfire Clinical Graphics are either registered
trademarks or trademarks of TIBCO Software Inc. and/or
subsidiaries of TIBCO Software Inc. in the United States and/or
other countries. All other product and company names and marks
mentioned in this document are the property of their respective
owners and are mentioned for identification purposes only. This

Reference

Technical
Support

Important Information

software may be available on multiple operating systems. However,
not all operating system platforms for a specific software version are
released at the same time. Please see the readme.txt file for the
availability of this software version on a specific operating system
platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
DOCUMENT COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE
INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

Copyright © 1996-2010 TIBCO Software Inc. ALL RIGHTS
RESERVED. THE CONTENTS OF THIS DOCUMENT MAY BE
MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH
ACCOMPANIES THIS SOFTWARE, INCLUDING BUT NOT
LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

TIBCO Software Inc. Confidential Information

The correct bibliographic reference for this document is as follows:

TIBCO Spotfire S+® 8.2 Application Developer’s Guide, TIBCO

Software Inc.

For technical support, please visit http://spotfire.tibco.com/support
and register for a support account.

ii

TIBCO SPOTFIRE S+ BOOKS

Note about Naming

Throughout the documentation, we have attempted to distinguish between the language
(S-PLUS) and the product (Spotfire S+).

* “S-PLUS” refers to the engine, the language, and its constituents (that is objects, functions,
expressions, and so forth).

* “Spotfire S+” refers to all and any parts of the product beyond the language, including the
product user interfaces, libraries, and documentation, as well as general product and
language behavior.

The TIBCO Spotfire S+® documentation includes books to address
your focus and knowledge level. Review the following table to help
you choose the Spotfire S+ book that meets your needs. These books
are available in PDF format in the following locations:

+ In your Spotfire S+ installation directory (SHOME\help on
Windows, SHOME/doc on UNIX/Linux).

* In the Spotfire S+ Workbench, from the Help » Spotfire S+
Manuals menu item.

+ In Microsoft® Windows®, in the Spotfire S+ GUI, from the
Help » Online Manuals menu item.

Spotfire S+ documentation.

Information you need if you... See the...

Must install or configure your current installation | Installtion and
of Spotfire S+; review system requirements. Administration Guide

Want to review the third-party products included | Licenses
in Spotfire S+, along with their legal notices and
licenses.

iv

TIBCO Spotfire S+ Books

Spotfire S+ documentation. (Continued)

Information you need if you... See the...
Are new to the S language and the Spotfire S+ | Getting Started
GUI and you want an introduction to importing | Guide

data, producing simple graphs, applying statistical

models, and viewing data in Microsoft Excel®.

Are a new Spotfire S+ user and need how to use
Spotfire S+, primarily through the GUIL

User’s Guide

Are familiar with the S language and Spotfire S+,
and you want to use the Spotfire S+ plug-in, or
customization, of the Eclipse Integrated
Development Environment (IDE).

Spotfire S+ Workbench
User’s Guide

Have used the S language and Spotfire S+, and
you want to know how to write, debug, and
program functions from the Commands window.

Programmer’s Guide

Are familiar with the S language and Spotfire S+,
and you want to extend its functionality in your
own application or within Spotfire S+.

Application
Developer’s Guide

Are familiar with the S language and Spotfire S+,
and you are looking for information about creating
or editing graphics, either from a Commands
window or the Windows GUI, or using Spotfire
S+ supported graphics devices.

Guide to Graphics

Are familiar with the S language and Spotfire S+,
and you want to use the Big Data library to import
and manipulate very large data sets.

Big Data
User’s Guide

Want to download or create Spotfire S+ packages
for submission to the Comprehensive S-PLUS
Archive Network (CSAN) site, and need to know
the steps.

Guide to Packages

vi

Spotfire S+ documentation. (Continued)

Information you need if you...

See the...

Are looking for categorized information about
individual S-PLUS functions.

Function Guide

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 1 includes
information on specifying models in Spotfire S+,
on probability, on estimation and inference, on
regression and smoothing, and on analysis of
variance.

Guide to Statistics,
Vol. 7

If you are familiar with the S language and
Spotfire S+, and you need a reference for the
range of statistical modelling and analysis
techniques in Spotfire S+. Volume 2 includes
information on multivariate techniques, time series
analysis, survival analysis, resampling techniques,
and mathematical computing in Spotfire S+.

Guide to Statistics,
Vol. 2

CONTENTS

Chapter 1 Introduction to the Application
Developer’s Guide

Developing Applications
Chapter 2 The Spotfire S+ Command Line
and the System Interface
Using the Command Line
Command Line Parsing
Working With Projects
Enhancing Spotfire S+
The System Interface

Chapter 3 CONNECT/C++
Introduction
Examples: An Application and a Called Routine
CONNECT/C++ Class Overview
CONNECT/C++ Architectural Features
A Simple Spotfire S+ Interface in Windows

Chapter 4 CONNECT/Java
Introduction
Calling Java from Spotfire S+
Calling Spotfire S+ from Java Applications

24
26
28

35
36
38
46
49
60

65
66
67
81

vii

Contents

Chapter 5 Interfacing with C and FORTRAN

Code 97
Overview 99
When to Use the C and Fortran Interfaces 100

Using C and Fortran Code with Spotfire S+
for Windows 102

Calling C Routines from Spotfire S+ for Windows 109
Writing C and Fortran Routines Suitable for Use

with Spotfire S+ for Windows 114
Common Concerns in Writing C and Fortran

Code for Use with Spotfire S+ for Windows 119
Using C Functions Built into Spotfire S+

for Windows 134
Calling Spotfire S+ Functions from C Code

(Windows) 138
The .Cal1 Interface (Windows) 146
Debugging Loaded Code (Windows) 151
A Simple Example: Filtering Data (Unix) 155
Calling C or Fortran Routines From Spotfire S+

for Unix 157
Writing C and Fortran Routines Suitable for Use

in Spotfire S+ for Unix 161
Compiling and Dynamically Linking your Code

(Unix) 162
Common Concerns in Writing C and Fortran Code

for Use with Spotfire S+ for Unix 166
Using C Functions Built into Spotfire S+ for Unix 177
Calling S-PLUS Functions From C Code (Unix) 180
The .Cal1 Interface (Unix) 187
Debugging Loaded Code (Unix) 192

A Note on StatLib (Windows and Unix) 195

viii

Contents

Chapter 6 Automation 197
Introduction 198
Using Spotfire S+ as an Automation Server 199
Using Spotfire S+ as an Automation Client 224
Automation Examples 235

Chapter 7 Calling Spotfire S+ Using DDE 241
Introduction 242
Working With DDE 243

Chapter 8 Extending the User Interface 251
Overview 253
Menus 255
Toolbars and Palettes 264
Dialogs 276
Dialog Controls 290
Callback Functions 327
Class Information 333
Style Guidelines 341

Chapter 9 Libraries 369
Introduction 370
Creating a Library 372
Distributing the Library 379

Chapter 10 Spotfire S+ Dialogs in Java 381
Overview 383
Classes 387
Layout 391

Actions 394

ix

Contents

Calling The Function
Modifying Menus

Style Guidelines

Example: Correlations Dialog

Example: Linear Regression Dialog

Chapter 11 User-Defined Help

Introduction to Creating Help Files in Windows

Creating, Editing, and Distributing a Help File
in Windows

Introduction to Creating Help Files in UNIX

Creating, Editing, and Distributing a Help File
in UNIX

Common Text Formats

Contents of Help Files

Chapter 12 Globalization

Introduction
Working With Locales
Using Extended Characters

Importing, Exporting, and Displaying Numeric
Data

Chapter 13 Verbose Logging

Overview
Verbose Batch Execution

Example

Chapter 14 XML Generation

XML Overview
XML and SPXML Library Overview

397
399
402
423
427

439
440

444
451

453
458
460

477
478
479
484

486

491
492
494
501

507
508
509

The SPXML Library

Reading and Writing XML Using the SPXML
Library

Examples of XSL Transformations

Chapter 15 XML Reporting
Overview
What is XSL?
Custom Reports
Summary Reports

Character Substitutions

Index

Contents

510

511
512

525
526
527
529
533
545

45

xi

Contents

Xii

INTRODUCTION TO THE
APPLICATION DEVELOPER’S
GUIDE

Developing Applications

Chapter T Introduction to the Application Developer’s Guide

DEVELOPING APPLICATIONS

As an application developer, you can use Spotfire S+® for the
following three scenarios:

Customizing the Spotfire S+ user interface.

Embedding Spotfire S+ functionality (that is, the Spotfire S+
engine and libraries) in your application, so your users can
call S-PLUS functions from within your application.

Creating your own S-PLUS functions, methods, classes,
libraries, and help files.

TIBCO Software Inc. offers a package for creating customized or
embedded OEM applications for the first two scenarios described
above. For more information about the OEM kit, contact TIBCO.

A Spotfire S+ application developer’s interest can include:

Extending the functionality of Spotfire S+ by creating
libraries and graphical objects.

Automating Spotfire S+ routines to be called from the system
interface.

Calling S-PLUS functions to or from other languages.

Customizing the graphical user interface (GUI) and other
aspects of the Spotfire S+ environment.

Writing scripts and validation routines.

Creating logs and reports.

This guide provides guidance in these areas.

THE SPOTFIRE S+
COMMAND LINE AND THE
SYSTEM INTERFACE

Using the Command Line

Command Line Parsing
Variables
Switches
Checking Default Environment Settings

Working With Projects

The Preferences Directory
The Data Directory

Enhancing Spotfire S+
Adding Functions and Data Sets to Your System

The System Interface
Using the Windows Interface
Using the DOS Interface

18
22

24
24
25

26
26

28
28
32

Chapter 2 The Spotfire S+ Command Line and the System Interface

USING THE COMMAND LINE

Spotfire S+ accepts a number of optional commands on the
splus.exe executable’s command line that allow users significant
control over the operation of Spotfire S+.

These facilitate running Spotfire S+ in an automated or batch
environment. They also make it possible to readily alter the behavior
of Spotfire S+ on a session by session basis. Some users may find it
handy to have several shortcuts (or program manager icons if running
older versions of Windows), each of which starts Spotfire S+ with
specific projects and options selected by default. Figure 2.1 shows an
example of the command line with the optional /BATCH switch.

[5'] TIBCO Spotfire S+ Properties &J
Security Details Previous Versions
Shortcut Compatibility

@ TIBCO Spatfire S+

Target type: Application

Target location: cmd

Target: plus82'cmd \SPLUS exe" /BATCH fuelin fuel out

L

t

Start in: f
Shorteut key: Mone :

Run: INorrnaI window 'I W
Comment: TIBCO Spotfire S+ program :
Open File Location I I Change Icon... I I Advanced... I :

t t
i L
i N
i N
U |
i L
| o) (G) oy |

Figure 2.1: Example of a command line with optional / BATCH switch. You can
save the settings on the Target field and run the shortcut without starting up Spotfire
S+ from your desktop.

Using the Command Line

Note

This chapter refers to the splus.exe command line that is used to start execution of Spotfire S+,
not the Commands window that is used to enter commands once Spotfire S+ has started. The
Spotfire S+ command line refers to anything that follows the name of the executable (splus.exe
by default) in the shortcut, program manager icon, or batch file from which Spotfire S+ may be
started. On the Spotfire S+ command line only certain switches are permitted and have their
own syntax as discussed in this section.

Command line processing of variables is implemented in both
splus.exe and sqpe.exe, although variables that apply to the
Commands window or Commands history (S_CMDFILE,
S_CMDLINEBUF, S_CMDSAVE, S_PRINT_COMMAND, and
S_SCRSAVE) are ignored in sqpe.exe. Command line processing of
switches is only implemented for splus.exe, not for sqpe.exe.

Filenames that follow a @ symbol on the command line are
expanded in place. The command line is then tokenized, with the
following classes of tokens identified:

* Variables: Any environment variable is identified by the
trailing equal sign and uses a Variable=Value syntax. Spotfire
S+ recognizes certain variables (Table 2.1), and user-written
routines might also query and react to these.

* Switches: The predefined switches listed below can be
specified on the command line. They use a /Switch [Valuel
[Value2 [Value3 [...]]]] syntax and are parsed based on
the leading symbol (/ or -).

* Script Files: Remaining tokens are considered script files to be
run by the Spotfire S+ interpreter.

An example command line might be:

SPLUS.EXE ScriptFilel /REGKEY SPLUS1 S_PROJ=c:\Projectl

Most options set on the command line are for advanced users. Some
more generally useful options are the BATCH switch, Script file
processing, and for intermediate users, S_TMP, S_FIRST, and the

Chapter 2 The Spotfire S+ Command Line and the System Interface

ability to set up Spotfire S+ to run with different project directories
using the S_PRQJ variable. See the following section for more
information about using multiple projects.

Command Line Parsing

COMMAND LINE PARSING

The operating system passes the command line unaltered to Spotfire
S+.

File Expansion

Spotfire S+ expands files specified in the command line. Anything
between an '@' character and the first subsequent delimiter (@ sign,
double quote, single quote, or the standard delimiters: space, tab,
newline, linefeed) is considered a filename and the entire file will be
expanded in place.

The @ token can be escaped by placing a backslash before it, for
example, in “EnvVarl=EnvValueWith@Filename” the @ sign will
be active, and in “EnvVar2=EnvValueWith\@NoFilename" it will be
ignored. The escape character is removed during this stage.

Multiple file names in the command line are fine, as are further
filenames embedded within a file. Files that use a relative path are
normally located relative to the current working directorys; if they are
not found, the search will continue in the same directory where
splus.exe is found.

There is no way to specify a filename with spaces in it, nor to avoid a
trailing delimiter after the filename, nor to avoid a trailing delimiter
after the expanded file contents. As a result, keep the filenames as
simple and intuitive before the expansion.

Tokenizing

The command line is then broken into tokens. Standard command
line delimiters are space, tab, newline, and linefeed and any
combination of these are ignored at the start of the command line,
and between tokens.

If the first character of a token is a single or double quote then it will
be matched with another of the same type of quote, and anything
between will be considered part of the token but nothing thereafter.

Otherwise, a token begins with any non-delimiter and goes to the first
delimiter or equal sign (the only way to "escape" a delimiter or equal
sign is to place the entire token in quotes).

Chapter 2 The Spotfire S+ Command Line and the System Interface

Variables

Table 2.1: TVariables.

Variables

If the token is followed by an equal sign, it is considered to be part of
a variable-value pair. (This is true even if the token begins with a "-"
or "/".) If a delimiter is found trailing the equal sign, the variable is
assigned an empty string for the value. (This can be used to cancel or
override environment variables in the process environment.)
Variables are then assigned the specified value.

Switches

Any token (not followed by an equal sign) that has either "-" or "/" as
its first character is considered a switch. Each switch takes a variable
number of successive tokens. Switches are evaluated in a case-
insensitive manner. Switches are separated from successive tokens by
the normal delimiters. Unknown switches are ignored.

Script Files

Remaining tokens are then considered script files and their contents
sent to the Spotfire S+ interpreter. (Also see the /BATCH switch for
an alternative mechanism for automating Spotfire S+ sessions.)

The following is a list of the variables recognized by Spotfire S+. You
are not required to set them.

Variable Description
HOME Deprecated, replaced by the synonymous S_PROJ.
S_CMDFILE

Name of the file used to initialize, and optionally append to,
the Commands History window.

S_CMDLINEBUF

Sets the maximum number of characters that can be entered to
specify a command in the Commands window. By default,
this is 32767.

S_CMDSAVE

Number of commands to save for Commands History recall.

Table 2.1: TVariables.

Command Line Parsing

S_CWD Directs Spotfire S+ to set the current working directory to this
directory at startup. Subsequent file I/O will be done relative
to this directory.

S_DATA

A series of semicolon-separated directory paths, which is
searched for a suitable database 1 (which stores user Spotfire
S+ functions and data sets).

S_DISPLAY_MODE

Specifies whether Spotfire S+ is running in the graphical user
interface (“s+qui”), the Spotfire S+ Console (“console”) or the
Spotfire S+ Workbench (“s+java”).

(The interactive() function can address this query as well.)

S_ECLIPSE

Specifies whether Spotfire S+ is running as the Spotfire S+
Workbench (an Eclipse plug-in) or in BATCH (local).

S_ENGINE_LOCATION No longer supported.

S_FIRST S-PLUS function evaluated at start-up. See section
S_FIRST=function (page 14).

SHOME

Specifies the directory where Spotfire S+ is installed.

S_INTERACTIVE_STATES

Has the value "yes" in all contexts except BATCH (TIBCO
Spotfire Statistics Services).

S_LOAD_BIGDATA

Specifies that the bigdata library should be loaded.

S_NOAUDIT

Tells Spotfire S+ not to write the audit file. Set by default in
splus.exe. Not set by default in sqpe.exe.

S_NO_RECLAIM

No longer supported.

S_NOSYMLOOK

No longer supported.

S_PATH

No longer supported; see SV4_SEARCH_PATH.

Chapter 2 The Spotfire S+ Command Line and the System Interface

Table 2.1: TVariables.

S_PREFS Directory to use for storing user preferences.

S_PRINT_COMMAND Windows command to use for printing the Commands
window. By default, the command is “Notepad /p”.

S_PROJ Sets default values for S_.CWD, S_DATA, and S_PREFS. See
the section Working With Projects (page 24).

S_PS2_FORMAT Tells Spotfire S+ to put a CTRL-D at the end of any PostScript
file it generates. By default, Spotfire S+ does not do this.

S_SCRSAVE KB of Commands window output to save for scrollback.

S_SILENT_STARTUP Disable printing of copyright/version messages.

S_TMP Specifies the directory where Spotfire S+ creates temporary

scratch files.

S_USER_APPDATA_DIR A version-, platform-, and user-specific directory, where you
can keep platform-dependent and version-dependent data for
a specific user.

S_WORK Deprecated; replaced by S_DATA.

SV4_SEARCH_PATH A list of semicolon-separated directories used for the initial
Spotfire S+ search path, set by default to the Spotfire S+
system databases.

Many of the variables in this section take effect if you set them to any
value, and do not take effect if you do not set them, so you may leave
them unset without harm. For example, to set S_ZNOAUDIT you can
enter:

SPLUS.EXE S_NOAUDIT=X

on the command line and Spotfire S+ will not write an audit file,
because the variable S_NOAUDIT has a value (any value); this is the
default for that variable in splus.exe. If you want Spotfire S+ to begin

10

Command Line Parsing

writing the audit file again during your next Spotfire S+ session, unset
S_NOAUDIT on the command line. To unset a variable that has
previously been set in some way, enter no value (or a space) after

typing the equal sign:
SPLUS.EXE S_NOAUDIT=
Now, S_NOAUDIT is not set, and Spotfire S+ writes the audit file.

Variables are currently implemented using environment variables.
Therefore, advanced users can specify these variables by altering
their system or process environment variables using standard
operating system specific techniques (for example, via the Control
Panel’s System applet). Variables specified on the command line are
placed in the process environment at start-up and hence take
precedence over any previously defined for the process.

User code can check the current values for these variables by using
getenv from C or S code.

Note

We recommend placing variables on the command line. If you want to have multiple shortcuts
use some of the same variables or switches, we recommend you place those common settings in
a file and place the file name on the command line preceded with the @ sign. For specifics, see
the File Expansion section above.

S_CMDFILE=filePath

By using the S_CMDFILE variable you can initialize the
Commands History dialog to contain the commands found in a
named text file. Optionally, the commands from your current session
are appended to this file. Below are several examples illustrating the
use of the S_CMDFILE variable. These lines would be placed on the
Spotfire S+ start-up command line.

S_CMDFILE=d:\splus\cmdhist.q
S_CMDFILE=d:\splus\cmdhist.q+
S_CMDFILE=+d:\splus\cmdhist.q
S_CMDFILE=thistory.q

In all cases, a path and filename are specified, and any commands
found in the named file are placed in the Commands History dialog
at startup. In the first example, new commands from the current

11

Chapter 2 The Spotfire S+ Command Line and the System Interface

session will not be appended to the file. Placing a "+" immediately
after the path and filename, as in the second example, causes the
commands from the current session to be appended to the named file.
Placing a "+" immediately before the path and filename, as in the
third example, causes the commands from the current session to be
appended to the named file and causes Spotfire S+ to create a new
file if the named file does not exist. (The directory must already exist;
only the file is created automatically.) In the final case, Spotfire S+
uses the file history.q in the start-up directory; it creates the file if it
does not already exist. If you later change your start-up directory,
another history.q will be created in that directory. You can also use
the auditing facility in Spotfire S+ to automatically save your
commands history. For this to work, you must turn on auditing and
set the S_CMDFILE variable to .AUDIT by placing the following on
the Spotfire S+ start-up command line:

SPLUS.EXE S_NOAUDIT= S_CMDFILE=+.AUDIT

You need the "+" to avoid an error message when you start up in a
new working directory. When you use auditing, Spotfire S+ saves
more than commands in the .audit file. However, the Commands
History window will show you only the Spotfire S+ commands when
you use the auditing facility for your commands history. The .audit
file used by the auditing facility is found in the data directory. The
Commands History window will look in that directory for .audit
when the variable S CMDFILE is set to .AAUDIT.

S_CMDLINEBUF=integer

Set the S CMDLINEBUF variable to increase or decrease the
maximum number of characters that can be entered for any one
command in the Commands window. The default is 32767.

S_CMDSAVE=integer

12

Set the S_CMDSAVE variable if you want to limit the number of
commands saved for command line/Commands History recall. For
example, to limit the number of commands stored to the most recent
100, set this variable as follows:

S_CMDSAVE~=100

Command Line Parsing

S_CWD=directoryPath

Every operating system process, including Spotfire S+, has a current
working directory that determines where file input/output occurs (or is
relative to). The Spotfire S+ process is assigned a directory when it is
started from a shortcut (or a program manager icon in earlier versions
of Windows) or from a batch file or DOS prompt. Specifying the
S_CWD variable causes Spotfire S+ to ignore the default directory
assigned by the parent process and use a specific one instead. Note

that S_CWD defaults to S_PRQOJ.

Note

Previous versions of Spotfire S+ used the S_WORK variable to refer to the “working directory.”
To avoid confusion with the term “current working directory,” the terminology has changed and
now we use the S_DATA variable to refer to the “data directory.”

S_DATA=directoryPath[;directoryPath[...]]

S_DATA specifies a list of semicolon-separated directories that is
searched for a suitable database 1. Thus the first valid directory in the
list is used by Spotfire S+ to store user data and functions. It
traditionally is named .Data.

S_DATA defaults to .Data;%S_PRQOJ%\.Data, so Spotfire S+ seeks a
.Data directory under the current working directory (see S_CWD),
and otherwise seek a .Data directory under the project directory. If
that then fails, a dialog will ask the user for the directory path.
S_DATA replaces S_WORK that was used in previous versions of
Spotfire S+.

S_DISPLAY_MODE=mode

S_DISPLAY_MODE can specify either the Windows GUI, the
console (for BATCH), or the Spotfire S+ Workbench.

* The setting “s+gui” is useful if you need to run code that
requires the Spotfire S+ GUI, such as displaying plots in a
graphsheet device or if you are creating and accessing menu
items and toolbar buttons.

13

Chapter 2 The Spotfire S+ Command Line and the System Interface

S_ECLIPSE=[value]

S_FIRST=function

* The setting “console” is useful if you are running a script in
BATCH mode using TIBCO Spotfire Statistics Services, and
you need to write graphic files to disk or write data to a
database.

* The setting “s+java” is useful if you need to run code that
requires the Spotfire S+ Workbench.

This variable is useful for working with sample code or libraries that
include calls that work only in the Spotfire S+ Workbench or only in
the Spotfire S+ GUL

If you develop code in the Spotfire S+ Workbench and deploy to
other than BATCH (local), you can use this variable to distinguish test
and production modes. (See S_INTERACTIVE_STATES.)

If you develop code for the Spotfire S+ GUI, you can use this to
determine the environment. For example, the nSurvival library
includes calls to guiCreate and guiRemove functions in their
.First.1ib and .Last.1ib objects, respectively. You can wrap these
functions in conditional statements that check whether Spotfire S+
Workbench is running, and then behave appropriately. See Chapter 5
of the Spotfire S+ Workbench User’s Guide for more information.

S_FIRST specifies a function that will be executed upon start-up,
immediately after Spotfire S+ finishes its initialization. It can be used
to execute routine tasks related to setting up your work environment,
for department wide functions or other initialization. If set, it
overrides . First. See the section Enhancing Spotfire S+ (page 26) for
specifics.

SHOME=directoryPath

14

SHOME refers to the directory where Spotfire S+ is installed, which
contains the Spotfire S+ application files. Spotfire S+ libraries, data
sets, and other related files are stored in subdirectories under the top-
level directory specified by SHOME. Spotfire S+ determines the
location of the Spotfire S+ installation by referring to the parent

Command Line Parsing

directory where the executable is stored. You should never need to
change SHOME in Spotfire S+ but expert users can explicitly define
it if they move their Spotfire S+ files to another directory.

S_INTERACTIVE_STATES=[value]

Has the value "yes" in all contexts except BATCH (TIBCO Spotfire
Statistics Services).

You might have routines that access different data or acquire different
parameter inputs in test mode versus production mode, where
production mode is BATCH (TIBCO Spotfire Statistics Services). In
this case, the logic of the routines could determine whether to access
test or production data and parameters, and the same code could be
used in both test and production modes.

S_NOAUDIT=[value]

If you set this variable (to any value), Spotfire S+ does not write an
audit file. This is useful if you do not need a record of the commands
you've typed into Spotfire S+. (In splus.exe, the default is to not
write an audit file.) If this variable is not set, Spotfire S+ maintains a
record of your Spotfire S+ commands (and other information) in a file
called .Audit in your data directory. The audit file accumulates the
commands from each Spotfire S+ session, so it may naturally grow
large. The following setting causes Spotfire S+ not to maintain this
record:

S_NOAUDIT=YES

If S_NOAUDIT is set to any value, the .Audit file will not be opened
or written into.

If you keep an audit file, it can grow very large. To reduce the size of
the audit file, use the /TRUNC_AUDIT command line switch. See
Page 21 for details.

S_PATH=directoryPath[;directoryPath[...]]

No longer supported; see SV4_SEARCH_PATH.

15

Chapter 2 The Spotfire S+ Command Line and the System Interface

S_PREFS=directoryPath

Directory to use for storing user preferences. It defaults to
%S_PROJ%\.Prefs. See the section Working With Projects (page 24).

S_PRINT_COMMAND=WindowsCommand

Windows command to use for printing the Commands window. By
default, the command is “Notepad /p”.

S_PROJ=directoryPath

S_PROJ sets the defaults for S_PREFS, S_DATA, and S_CWD. By
default, S_PRQOJ is set as follows:

On Microsoft® Windows XP®:

C:\Documents and Settings\username\
My Documents\Spotfire S+ Projects\Project1.

On Microsoft Vista™:

C:\Users\username\Documents\
Spotfire S+ Projects\Projectl

You can change S_PROJ if you want to move your Spotfire S+ data
files to another directory, or if you begin a new project. For example,
if your name is Jay and you want to create a home directory for your
personal use, you could create the directory C:\JAY, and then set
S_PROJ to C:\JAY by setting it as a command line variation:

SPLUS.EXE S_PRQOJ=C:\JAY

Note

S_PROJ has replaced the HOME variable used in previous versions of Spotfire S+. Internally
HOME remains a synonym for S_PRQJ for compatibility with previous versions.

S_PS2_FORMAT=[value]

If you set the S_PS2_FORMAT variable, to any value, Spotfire S+
puts a CTRL-D character at the end of any PostScript file it generates.
This is for compatibility with older PostScript formats. By default,
Spotfire S+ does not put the CTRL-D character in the file.

16

S_SCRSAVE=integer

Command Line Parsing

Set the S_SCRSAVE variable if you want to limit the amount of
output saved for scrollback in the Commands window. For example,
to limit the number of characters saved to a maximum of 100KB, set
this variable as follows:

S_SCRSAVE=100

Note

This variable also imposes a limit on the number of commands available for recall.

S_SILENT_STARTUP=value

If you set the S_SILENT_STARTUP variable (to any value), the
Spotfire S+ copyright and version information are displayed, and the
location of S_DATA is not displayed when the Commands window is
opened. The Spotfire S+ Commands window then appears with a
prompt.

S_TMP=directoryPath

Set the S_TMP variable to the name of the directory where you want
Spotfire S+ to create temporary scratch files. By default S_TMP is
unset, so temporary files are created in S_CWD, the process current
working directory.

If the directory specified by S_TMP does not exist or cannot be
accessed, it will be ignored. If you want Spotfire S+ to create
temporary scratch files in the C\TEMP directory, first create the
directory C\TEMP. Then, set S_TMP to CATEMP:

SPLUS.EXE S_TMP=C:\TEMP

S_USER_APPDATA_DIR=[directory]

Under interactive and BATCH cases, S_USER_APPDATA_DIR points to
%APPDATA%\TIBCO\splus major/minor version _ platform.

Under server cases (that is, TIBCO Spotfire Statistics Services and
TIBCO Spotfire Statistics Services Local Adapter), it points to the
appdata directory inside the data directory. In both cases, it specifies

17

Chapter 2 The Spotfire S+ Command Line and the System Interface

the location containing the library directory, where binary packages
are found by default when you invoke the Tibrary() and module()
functions.

For example, you can use this variable to specify a binary package
build target when you run a batch script inside the Spotfire S+
Workbench to automate building a user's binary packages.

SV4_SEARCH_PATH=directoryPath[;directoryPath[...]]

Switches

Set the SV4_SEARCH_PATH variable only if you want to override
the standard Spotfire S+ search list every time you start Spotfire S+.
By default, SV4_SEARCH_PATH is set by Spotfire S+, and it
includes the built-in Spotfire S+ functions and data set libraries. You
can display these libraries using the S command search. As with
other variables and their values, enclose the value with matched
quotes if the directory paths include spaces.

Note

Unlike variables, switches do not use equal signs between the switch and any necessary values. If
you need to include an equals sign, use quotes around the entire token.

IBATCH stdin [stdout [stderr]]

18

BATCH may be followed with one, two, or three file names
indicating where stdin, stdout, and stderr, respectively, should be
redirected. Specify “stdin,” “stdout,” or “stderr” to maintain the
default input and output processing for any of these values. stdin is
typically the name of a text file containing valid Spotfire S+
commands.

When Spotfire S+ is run in batch mode, a small dialog appears to
notify the user that it is running rather than the normal Spotfire S+
window. Once completed running a BATCH session, Spotfire S+
automatically terminates. Use a script file for running Spotfire S+
commands automatically without automatically terminating Spotfire
S+ when done, although that does not allow one to redirect stdin,
stdout, or stderr.

IBATCH_PROMPTS

Command Line Parsing

For example, save the Spotfire S+ function

test.splus.func()

to a file named test. Now, simply create a shortcut and specify the
SHOME and S_PROJ settings and the input/output names in the start-up
command line (in the Target field):

C:\Program Files\TIBCO\splus82\cmd\splus.exe
SHOME="C:\Program Files\TIBCO\splus82”
S_PROJ="C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl”

/BATCH
“C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl\test”
“C:\Documents and Settings\username\My Documents\
S-PLUS Projects\Projectl\testout”

Note that test is not limited to a single line. It could include a
number of functions to run in the background.

BATCH_PROMPTS specifies whether any progress, non-fatal
warning or error, and/or exit status dialog should be displayed. By
default, whenever Spotfire S+ runs in batch mode, it displays a “Pre-
processing” and then a “thermometer” dialog to indicate the batch
session’s progress. When batch mode is completed, the progress
dialogs disappear, but no completion dialog is displayed to indicate
the batch session’s success or failure. Also, if a non-fatal warning or
error occurs that would have displayed a dialog in interactive mode,
that dialog is suppressed and its message (and default response) is
written to the batch output file. Use the /BATCH_PROMPTS switch
to change this default behavior. The value “Yes” turns on all dialogs,
“No” turns off all dialogs. To apply these values to a particular dialog,
use the prefixes “progress:”; “non-fatal:”; and “exitstatus:”. For
example, to display the exit status dialog but suppress the progress
dialogs, use the following switch:

/BATCH_PROMPTS progress:no,exitstatus:yes

(132

When specifying the prefix/word pairs, use either “,” or “;”, but no
spaces, to separate them.

19

Chapter 2 The Spotfire S+ Command Line and the System Interface

If an error occurs in one of the batch files while Spotfire S+ is in batch
mode, a dialog is displayed indicating the error, unless both progress
and exitstatus dialogs are suppressed.

/COMMANDS_WINDOW_ONLY

Starts Spotfire S+ with only the Commands window displayed,
overriding any “Open at Startup” preferences.

Note

The next two switches below provide a convenient mechanism for developers to run the utility
file of the same name (/CHAPTER runs CHAPTER.EXE and so on). All values that follow the
command line switch are passed directly to the batch file, once the SHOME environment
variable is set in the spawned process.

ICHAPTER [-b] [-d directoryPath] [-m] [-o] [-r filePath] [-s] [-u]

20

Creates a Spotfire S+ chapter, optionally compiling and linking C/
C++ and/or FORTRAN code to be dynamically loaded, and
optionally sourcing S code. This is the standard way to compile and
link your C/C++ and/or FORTRAN code for use with Spotfire S+.
The following additional switches are recognized by the CHAPTER
utility:

-b
A shortcut for specifying both the -m and -s switches.
-d directoryPath

Specifies the directory in which to create the Spotfire S+ chapter.
Remember to enclose directoryPath in quotes if it contains spaces.
By default, the Spotfire S+ chapter is created in the Spotfire S+
startup directory, which can be set with S_CWD.

-m

Makes an S.dll in the chapter directory, which is loaded
automatically when the chapter is attached by Spotfire S+. Any file
with a .c, .cxx, .cpp, .f, or .for extension will be compiled if it does
not have (or is newer than) an associated .obj file. The associated .obj

files will be linked with the module definition file S.def (which will be
created from the .obj files if it does not exist) to create S.dll

Command Line Parsing

Creates a single file (__objects) containing all the S objects that
are to be part of the Spotfire S+ chapter. This is an alternative to the
typical user-created Spotfire S+ chapter in which each S object is
contained in its own separate file. Note that if additional objects are
assigned to the chapter in subsequent sessions of Spotfire S+, they
cannot be contained in the __objects file. The files all.Sdata and
meta.Sdata must have been previously created, using the function
dumpForObjects in the chapter directory; if the chapter already
contains a .Data directory, that directory must not contain any
objects or meta data.

-r filePath

Specifies the rules for creating S.dll. By default, this is
SHOME\cmd\mrules.mak; the default can be changed in the
Splus.ini file, located in the SHOME\cmd directory.

-S

Starts up Spotfire S+ to source any files with a .q, .s, or .ssc
extension (S source code files) and assign the resulting objects to the
chapter.

-u

Creates the necessary subdirectories that allow the Spotfire S+
function undo to operate on the chapter.

ITRUNC_AUDIT integer

Spawns the TRUNC_AUDIT program that truncates the .Audit file
(found in the data directory), removing the oldest part of the file. The
integer argument specifies the maximum size (in characters) to keep
in the audit file and defaults to 100,000; TRUNC_AUDIT only

removes entire commands, not partial commands.
/MULTIPLEINSTANCES

Specifies that multiple instances of Spotfire S+ are allowed. For
example, more than one session of Spotfire S+ or different versions of
Spotfire S+ can be run at once if this is enabled; however, you must
specify different working databases when using multiple instances.

21

Chapter 2 The Spotfire S+ Command Line and the System Interface

Q
Causes Spotfire S+ to automatically quit after any script file
processing. This is automatically set when the /BATCH switch is
specified.

/IREGISTEROLEOBJECTS

Registers Spotfire S+’s Automation components in the registry. This
permits other programs to access Spotfire S+ functions
programmatically via ActiveX Automation (previously known as
OLE Automation). See Chapter 6, Automation, for more information.

IREGKEY KeyName

Specify alternative registry key under:
HKEY CURRENT USER\Software\TIBCO.

This is useful for expert users who wish to maintain multiple versions
of Spotfire S+ on one system. KeyName defaults to Spotfire S+.

/UNREGISTEROLEOBJECTS

Removes the Automation components (installed by

/REGISTEROLEOBJECTS) from the registry.
IUTILITY ProgramName values

Runs the specified ProgramName, passing it all values that follow,
once the SHOME environment variable is set in the spawned

process.
Script Files
See the Windows version of User’s Guide, Chapter 9, for information
about using script files.
Checking The following table describes six environments in which you can run
Default Spotfire S+, and describes the combination of environment settings
. they return. To see these result, at the command prompt, type:
Environment y promps P
. getenv(c("S_DISPLAY_MODE"™, "S_ECLIPSE",
Settings

"S_INTERACTIVE_STATES", "S_USER_APPDATA_DIR™))

22

Table 2.2: Default environment settings for six possible Spotfire S+ environment.

Command Line Parsing

S_DISPLAY S_INTERACTIVE | S_USER_APPDATA
Environmen = ECLIPSE P = —
t | MODE S_ECLIPSE | “grargs _DIR
Spotﬁre S+ "s+java" "T" "yes" "%APPDATA%\TIBCO\
Workbench <splus major
/minor version_
platform”
Spotﬁre S+ s+gui " "yes" "%APPDATA%\TIBCO\
GUI <splus major
/minor version_
platform"
TIBCO “st+java” " "yes" SPSERVER_HOME/data/
Spotfire appdata
Statistics
Services
TIBCO “s+java” " "yes" "%APPDATA%Z\TIBCO\
Spotﬁre Spotfire Statistics
Statisti Services Local
& 1§ 168 Adapter/version/
Services Local data/appdata”
Adapter
BATCH aocaD “s+java” "y "yes" "%APPDATA%\TIBCO\
splus major
/minor version_
platform"
BATCH “console” " " "%AppData%\Local\TIB
(TIBCO CO\splus major
Spotfi /minor version_
po. 1¥e platform"”
Statistics
Services)

23

Chapter 2 The Spotfire S+ Command Line and the System Interface

WORKING WITH PROJECTS

This section illustrates ways intermediate users can use the various
switches discussed above to customize Spotfire S+ on a project by
project basis.

Spotfire S+ now makes it quite easy to maintain distinct data and
preferences directories for each of your projects. For each project:

1. Make a copy of the Spotfire S+ desktop shortcut by holding
the CTRL key down as you drag a copy of the shortcut to its
new location,

2. Edit the command line (right-click, or, for older versions of
Windows, select it and press ALT-ENTER) to set S_PROJ:

SPLUS.EXE S_PROJ=c:\Banana\Survey

When you wuse the new shortcut, Spotfire S+ will use
c:\Banana\Survey\.Data for = the project data and
c:\Banana\Survey\.Prefs for the project preferences.

There are many ways to customize this to fit your particular needs.
For instance you may want to use various .Data directories and a
common .Prefs directory.

S_PROJ is used to set the default values for S_CWD (to
%S_PROJ%), S_PREFS (to %S_PROJ%\.Prefs), and S_DATA (to
%S_CWD%\.Data;%S_PROJ%\.Data).

The Spotfire S+ is very customizable. Your preferences are all stored in a
Preferences variety of files in a directory with the name .Prefs.
Directory

Note

The only exception to this is that the Options object is stored in the S_DATA directory for
backward compatibility reasons.

24

The Data
Directory

Working With Projects

Upon creation of a new .Prefs directory, it is populated with
“template” preference files from the %SHOME%\MasterPrefs
directory, so expert users who wish to permanently set a particular
preference may edit the templates. You should make a copy of the
original templates for future reference.

Whenever you assign the results of a Spotfire S+ expression to an
object, using the <- operator within a Spotfire S+ session, Spotfire S+
creates the named object in your data directory. The data directory
occupies position 1 in your Spotfire S+ search list, so it is also the first
place Spotfire S+ looks for a Spotfire S+ object. You specify the data
directory with the variable S_DATA, which can specify one directory
or a colon-separated list of directories. The first valid directory in the
list is used as the data directory, and the others are placed behind it in
the search list.

Like other variables, S_DATA is referenced only at the start of a
Spotfire S+ session. To change the data directory during a session, use
the attach function with the optional argument pos=1, as in the
following example that specifies MYSPLUS\FUNCS as the data
directory:

attach("C:\MYSPLUS\FUNCS", pos=1)

If S_DATA is not set, Spotfire S+ sets the data directory, to one of two
directories according to the following rules:

1. If a subdirectory named .Data exists in S_CWD, the current
working directory, Spotfire S+ sets the data directory to this
.Data subdirectory.

2. Otherwise Spotfire S+ checks to see if the %S_PRO]J%\.Data
directory exists. If so, it will be used as the default location for
objects created in Spotfire S+. If not, it will be created.

Note

Although S_DATA may be used to provide alternative directory names (other than .Data), in
practice some code depends on this being set to .Data. Therefore it is recommended that
S_DATA be used primarily to set the path to a particular directory named .Data, and not to
change the name of the directory itself.

25

Chapter 2 The Spotfire S+ Command Line and the System Interface

ENHANCING SPOTFIRE S+

With the instructions in this section, you can:

* Add functions or modify system functions to change default
values or use different algorithms.

Note

Keep a careful log of how you modify Spotfire S+, so that you can restore your changes when
you receive the next update.

Adding You may need to add or modify Spotfire S+ functions. This section
Functions and describes how to add or modify functions.

Data Sets to 1. Start Spotfire S+.

Your System 2. Create a version of the function or data set you want to add or

modify with a command such as the one below, where
my.function is the name of the function or data set you want to
modify:

> fix(my. function)

3. Run my.function to make sure that it works properly (you don’t
want to install a bad version).

4. Create a directory for your new and modified functions:

new.database ("modfuncs")
where modfuncs is the name of your directory.
5. Use the search command to see a list of available Spotfire S+
system directories:
> search()

The position of a directory in this list is called its index. Each
row in the list displays the index of the first directory in the
TOW.

6. Create a function .First.local in the directory in search
position 2, as follows:

26

Enhancing Spotfire S+

> setDBStatus(2,T)

> assign(" .First.local", function()
+ attach(modfuncs, pos = 2),
+ where=2)

Each time you start Spotfire S+, Spotfire S+ executes
.First.local ifit exists. This .First.local attaches your
new and modified functions directory ahead of all built-in
Spotfire S+ functions, but behind your data.

7. Attach your modfuncs directory to your current session:

> attach("modfuncs", pos=2)

8. Assign your new or modified function to its permanent home:

> assign("my.function™, my.function, where=2)

Warning

Be careful when you modify system functions, because you may have to repeat the installation
procedure if you make a mistake. You should keep a careful change log, both to guide your own
troubleshooting and to assist support staff in solving any problems you report.

27

Chapter 2 The Spotfire S+ Command Line and the System Interface

THE SYSTEM INTERFACE

Using the
Windows
Interface

28

Using the Spotfire S+ interfaces to Windows”® and DOS, you can run
your favorite Windows and DOS applications from the Spotfire S+
prompt, or incorporate those applications in your Spotfire S+
functions. For example, the fix and edit functions use the Windows
interface to start an editor on a file containing a Spotfire S+ object to
be edited. Similarly, the objdiff function uses the DOS interface to
run the fc command on ASCII dumps of two Spotfire S+ objects to
be compared.

This chapter describes the DOS and Windows interfaces and
provides several examples of Spotfire S+ functions you can write to
incorporate spreadsheets, databases, and word processors into your
Spotfire S+ programming environment.

To run a Windows application from Spotfire S+, use the system,
systemOpen, or systemPrint functions, which all require one
argument: for system, a character string containing a command
suitable for the Windows “Run” command line, and for systemOpen
or systemPrint, a character string containing a filename or URL. For
example, to run the Windows Calculator, you could call system as
follows:

> system("calc")

The Windows Calculator accessory pops up on your screen, ready for
your calculations. By default, Spotfire S+ waits for the Windows
application to complete before returning a Spotfire S+ prompt. To
return to Spotfire S+, close the application window.

To run Windows applications concurrently with Spotfire S+, so that
you can type Spotfire S+ expressions while the Windows applications
are running, use system with the multi=T argument:

> system("calc", multi=T)

The Windows Calculator accessory pops up on your screen, and the
Spotfire S+ prompt immediately appears in your Spotfire S+
Commands window. (You can, of course, always start Windows
applications as usual.)

Commonly used calls should be written into function definitions:

The System Interface

calc <- function() { system("calc", multi=T) }
notepad <- function() {system("notepad”, multi=T) }

The command argument to system can be generated using the paste
and cat functions. For example, the ed function, used by both fix
and edit to actually call an editor, pastes together the name of an
editor and the name of a file to create the command used by system.
(The ed function distributed with Spotfire S+ actually uses win3, a
wrapper for system, instead of calling system directly. The win3
function is now deprecated, but it predates system on the Windows
platform):

ed <- function(data, file=tempfile("ed."), editor="ed",
error.expr)

{
system(paste(editor, file), trans = T)

}

The argument trans=T is useful for converting strings containing
UNIX-type directory names (e.g., “/betty/users/rich”) to strings
containing DOS-type directory names (e.g., “\\betty\\users\\rich”).
It can also save you typing, since it allows you to substitute forward
slashes for the double backslashes required to represent a single
backslash in Spotfire S+. If trans=T, literal forward slashes must be
enclosed in single quotes. For example, Notepad uses the flag /p to
print a file. To print a file in infile.txt in the directory c:\rich, you
could use system as follows:

> system("notepad ’/p’ c:/rich/infile.txt™, trans = T)

Note that the single quotes can surround the entire flag, not just the
forward slash; in fact, one set of quotes can surround all necessary

flags.

If you try the above example on one of your own files, you will notice
that the Notepad window appears on your screen with the text of the
file while Notepad is printing. You can force Notepad to run in a
minimized window by using the minimize=T argument:

29

Chapter 2 The Spotfire S+ Command Line and the System Interface

30

> system("notepad ’/p’ c:/rich/infile.txt™, trans=T,
minimize=T)

There are two arguments to system that control how it behaves when
an error occurs in starting or exiting the application. The more
commonly used is the on.exec.status argument, which controls how
system behaves when an error occurs in starting the application. If
the application specified in the command argument could not be
started, Spotfire S+ queries the operating system for a character string
that briefly describes the error that occurred. It then calls the function
specified (as a character string) in the on.exec.status argument,
passing it the error string. The default for the argument is “stop”, so
that all current Spotfire S+ expressions are terminated. For example,
if you wanted to run the Wordpad application, but the directory in
which it resides is not in your PATH environment variable, you would
get the following result:

> system(“wordpad”)

Problem in eval(expression(system("wordpad™))): Unable to
execute 'wordpad', exec.status = 2 (The system cannot find
the file specified. Full path needed?)

Use traceback() to see the call stack

Specifying the full path to the Wordpad application successfully starts

1t:

> system("\\Program Files\\Accessories\\wordpad")

You may substitute the name of another function for the
on.exec.status argument, so long as the function’s only required
argument is a character string. For example, suppose you wanted to
open a file for jotting down some notes in an ASCII editor, but you
weren’t particular as to which editor you opened. You could write a
whiteboard function to call Wordpad, but use on.exec.status to try
Notepad if Wordpad wasn’t available, as follows:

> whiteboard
function()
{
system("wordpad”, multi =T,
on.exec.status = "trying.notepad")

}

The trying.notepad function is defined as follows:

The System Interface

> trying.notepad
function(message = NULL)
{
print(message)
print("Trying to start notepad.\n")
system("notepad", multi =T,
on.exec.status = "trying.edit")

}

As in the initial whiteboard function, trying.notepad calls system
with an alternative function as its on.exec.status argument. The
trying.edit function uses a call to the dos function to start the MS-
DOS editor, and uses the default on.exec.status behavior, that is, if
you can’t find any of Wordpad, Notepad or MS-DOS editor,
whiteboard fails.

A less commonly wused argument, because most Windows
applications do not return a useful or documented exit status, is
on.exit.status, which controls how system behaves when the
application returns a non-zero exit status. The default for this
argument is "", so that no action is taken by system; you may
substitute the name of any function for this argument, again so long as
its only required argument is a character string. For example, if you
had knowledge that a particular application returned a non-zero exit
status when some condition was (or was not) met, you could have this
condition reported as follows:

> system("myapp", on.exit.status="my.report")

If myapp returned a non-zero exit status, the function my . report would
be called with the argument "‘myapp’ returned with
exit.status=n", where n is the exit status value.

The .16.bit argument, which was useful when Spotfire S+ supported
the Win32s API, is now deprecated.

To automatically run the application associated with a particular file
type or URL, use the systemOpen or systemPrint functions. For
example, to display a web page in your default browser, you could
call systemOpen as follows:

> systemOpen(“http://www.tibco.com”)

31

Chapter 2 The Spotfire S+ Command Line and the System Interface

Using the DOS
Interface

32

The arguments available to the system function (other than the
deprecated olb.bit) are also available to the systemOpen and
systemPrint functions.

The argument with is also available to the systemOpen and
systemPrint functions; this allows you to temporarily override the
association for the particular file type or URL and run the application
specified by with instead.

While the Windows interface allows you to run Windows applications
from Spotfire S+, it cannot be used to run internal DOS commands
(such as dir and copy), nor can it return a command’s output as a
Spotfire S+ vector. The DOS interface provides a way to perform
these tasks.

To run internal DOS commands from Spotfire S+, use the dos
function. For example, to get a listing of files in your home directory,
use dos with the dir command as follows:

> dos("dir")

(1] »»

[2] "™ Volume in drive C has no label"”
[3] " Volume Serial Number is 6146-07CB"
[4] " Directory of C:\\RICH"

[51 ""

[61 ". <DIR> 12-07-92 5:01p"
[71 ".. <DIR> 12-07-92 5:01p"
[8] "__DATA" <DIR> 12-07-92 5:02p"
[91 "DuMP Q 74 01-14-93 2:51p"

[10] "WINWORK TEX 10053 12-13-92 4:08p"

By default, the output from the DOS command is returned to Spotfire
S+ as a character vector, one element per line of output. In the case
of the dir command, the first five to seven lines of output will seldom
change. A Spotfire S+ function that strips off this repetitive
information may be of more use than the simple call to dos:

dir <- function(directory="") {
dos(paste("dir", directory))[-(1:5)]
}

Including the directory argument allows using the function to get a
listing of an arbitrary directory.

The System Interface

If you don’t want the output from the DOS command returned to
Spotfire S+, use the argument output.to.S=F in the call to dos:

> dos("copy filel b:", output = F)

The output from the DOS command is displayed in a “DOS box”,
which in this example will close automatically when the DOS
command is completed. As with the system function, you can specify
minimize=T to force the DOS box to run minimized. You can run
DOS applications concurrently with Spotfire S+ by combining
output=F with the mu1ti=T argument. For example, to open the DOS
text editor concurrently with Spotfire S+, use dos as follows:

> dos("edit", output = F, multi =T)
A DOS box opens on your screen with the DOS text editor loaded.

Warning

When you use dos with mu1ti=T, you must explicitly close the DOS box when you’re done with
it. It does not close when the DOS command finishes executing.

Forward slashes can be translated to backslashes using the trans=T
argument; this can save you typing (since one forward slash equals
two backslashes), and is also useful if you are sharing files on a UNIX
file system:

> dos("edit c:/rich/infile.txt", output = F, trans =T)

Two other arguments to dos are used less frequently-—-input and
redirection. The input argument can be used to write data to a file
that can then be passed as input to the DOS command. More often,
however, such data is simply pasted into the command specified by
the command argument. The redirection argument is a flag that can
be used with input; if redirection=T, the input is passed to the
command using the DOS redirection operator <, otherwise the input
is passed as an argument to command. See the dos help file for more
information.

33

Chapter 2 The Spotfire S+ Command Line and the System Interface

34

CONNECT/C++

Introduction
Resources

Examples: An Application and a Called Routine
Creating a Simple Application
Example of Calling a C Function Via .Call
Compiling and Executing C++ on UNIX
Compiling and Executing C++ on Windows

CONNECT/C++ Class Overview
Data Object Classes
Function Evaluation Classes
Client-to-Engine Connection Classes
Evaluator Classes

CONNECT/C++ Architectural Features
CSPobject
Constructors and Generating Functions
Constructing From an Existing Object
Assignment Operators
Overloading Operators
Converting C++ Objects to S-PLUS Objects
Subscripting Operators
Subscript and Replacement Operations
Subscript and Arithmetic Operations
Matrix Computations
Printing to Standard Output
Named Persistent Objects
Storage Frames For Unnamed Objects

A Simple Spotfire S+ Interface in Windows
Creating a Dialog-Based Application
Connecting to Spotfire S+

36
36

38
38
41
44
45

46
46
46
47
47

49
49
49
50
51
51
52
53
54
54
55
56
56
58

60
60
61

35

Chapter 3 CONNECT/C++

INTRODUCTION

Resources

36

CONNECT/C++ is a tool used for interfacing C++ with the S
language. It is a convenient tool for integrating the S-PLUS engine
inside other programs written in C++, but it can also be used for
integrating C++ code into the Spotfire S+ environment.

To enable communication between the GUI (Graphical User
Interface) and Spotfire S+, CONNECT/C++ was developed to
provide a framework for the S language version 4-based engine used

in Spotfire S+ for Windows". In fact, the Spotfire S+ GUI provides
the most comprehensive example of using CONNECT/C++ to
integrate the S-PLUS engine with C++ applications. Similarly, C++
developers could create their own GUI to interface with Spotfire S+
using the same technique.

CONNECT/C++ is a class library providing C++ classes with
member functions that operate on S-PLUS objects similar to S
methods in the S language. Users can use these classes and their
member functions to create and manipulate persistent as well as local

S objects.

CONNECT/C++ provides various mechanisms for evaluating S
expressions inside a C++ program and module. Spotfire S+ ships
with several examples that illustrate how to use this library. Some of
these examples contain pairs of equivalent S and C++ functions that
perform the same tasks. The speed of the C++ functions can be many
times faster than the S code depending on the code’s complexity and
the data sizes. The examples are located in the SHOME/sconnect
directory, where SHOME is your Spotfire S+ installation directory.

For more information on CONNECT/C++:

- On Windows": go to SHOME/help/ConnectC++ Class
library.htm.

- On Linux" or Solaris”: go to SHOME/sconnect/help/
ConnectC++.Class.library.htm.

Introduction

This HTML file is a guide to the CONNECT/C++ class library for
C++ developers, and it discusses how to connect to the S-PLUS
engine, how to create data objects, call S-PLUS functions, and
evaluate S-PLUS syntax.

37

Chapter 3 CONNECT/C++

EXAMPLES: AN APPLICATION AND A CALLED ROUTINE

Creating a
Simple
Application

38

CONNECT/C++ can be used for two distinct purposes: to create
C++ applications that can access Spotfire S+ functionality, and to
create C++ functions that can be called via the S-PLUS .Cal1
interface. We begin our investigation of CONNECT/C++ with a
simple example of each.

The CONNECT/C++ application used in this example is a console
application that creates two S-PLUS vectors. It then uses Spotfire S+
to compute a linear model relating the two vectors.

The code begins with the inclusion of sconnect.h, the CONNECT/
C++ library which all CONNECT/C++ code must reference at the
start. It then declares a global S-PLUS connection object, with the
CONNECT/C++ class CSPengineConnect, before beginning the
main application function. The CSPengineConnect class generates a
connection between the client application and Spotfire S+, allowing
you to create S-PLUS objects in the permanent frame, notifying you
when the databases are attached or detached to the client, and
evaluating S language expressions. Here’s what the code looks like so
far:

f##include "sconnect.h"

// A global connection object
CSPengineConnect g_engineConnect;

int main(int argc, char* argv[])

{

The first step in the main function is to create the actual connection
object, which opens a connection to Spotfire S+:

// Create the connection to Spotfire S+
g_engineConnect.Create(argc, argv);

We then create the variables x and y to use in the regression. The
CONNECT/C++ class CSPnumeric is used to store S-PLUS numeric
vectors. The CSPnumeric class is one of many in CONNECT/C++
that are used to represent S-PLUS objects within C++. Similar classes

Examples: An Application and a Called Routine

exist for most of the standard atomic objects in Spotfire S+ (see Table
3.1). The Create method creates instances of the class; the Assign
method assigns the class to a Spotfire S+ database:

// Create S object with name "x" in the current database.
// Same as x<-1:10 at the command Tine.

CSPnumeric sx;

sx.Create("1:10","x");

// Squaring sx, which is the same as S expression
// sy <- x*x in a local frame, but here we set it to local
// C++ variable sy.

CSPnumeric sy = sx * sx;

// Assign the result as S object with name "y" in the
// current database.
sy.Assign("y");

Finally, we fit the linear model, passing the appropriate call to
Spotfire S+ via the CONNECT/C++ method SyncParseEval:

// Evaluate z<-Tm(y~x)
g_engineConnect.SyncParseEval("z<-Tm(y~x)");

return 1;
}

The complete code for this example is in the directory SHOME/
samples/spllm (Windows) and SHOME/sconnect/samples/splm
(UNIX). The C++ code for both platforms is in the file spllm.cxx.

To run the application, open a Command Prompt or MS-DOS
window (Windows) or compile (UNIX):

1. Change the current directory to the directory containing the
code:

cd SHOME/samples/spllm
if you are on Windows or
cd /sconnect/samples/splm

on UNIX, where SHOME is your Spotfire S+ installation directory.

39

Chapter 3 CONNECT/C++

2. Build the program:
devenv spllim.dsp /make
on Windows or

Splus CHAPTER -sconnectapp *.cxx
Splus make

on UNIX.

Note

If you are using Microsoft Visual Studio Express on Windows, the build command is vcbuild.

40

3. If your are on Windows, check the PATH environment
variable to make sure it includes %SHOME%\cmd, and that
it follows %SHOME%. This path is not added by default to
the Spotfire S+ installer. You must add it before running the
next step.

4. Run the program:
splim.exe S_PROJ=.
on Windows or
Splus EXEC S.app
on UNIX.

To verify the results, start the Spotfire S+ console version in the same
directory (Windows) or start Spotfire S+ (UNIX):

sqpe.exe S_PROJ=.
on Windows and Spotfire S+ returns the following:

S-PLUS : Copyright (c) 1988, 2010 TIBCO Spotfire Inc.
S: Copyright TIBCO Spotfire Inc.
Version 8.2.0 for Microsoft Windows : 2010

Working data will be in C:/Program Files/splus82/users/
username

or enter
Splus
on UNIX to return this:
S-PLUS : Copyright (c) 1988, 2010 TIBCO Spotfire Inc.

Examples: An Application and a Called Routine

Version 8.2.0 for Sun SPARC, Sun0OS 5.8 : 2010
Working data will be in .Data

and look at the objects x, y, and z:

> X

[11 1 2 3 4 5 6 7 8 9 10

>y

[11 1 4 9 16 25 36 49 64 81 100
>z

Call:

Im(formula =y ~ Xx)

Coefficients:
(Intercept) x
-22 11

Degrees of freedom: 10 total; 8 residual
Residual standard error: 8.124038

Example of The Gauss-Seidel method is a familiar technique for solving systems
Calling a C of linear equations. The algorithm is straightforward and easy to

Function Via implement in Spotfire S+:

.Call gaussSeidel<-
gaussSeidel solves a linear system using Gauss-Seidel
iterative method.
REQUIRED ARGUMENTS:

i# A and b are numeric matrix and vector respectively.
VALUE:

i a vector x, solution of A x = b

#

Usage:

A<-matrix(rnorm(100),nrow=10)

diag(A)<-seq(ncol(A),ncol(A)) #Make it diagonally

dominant

b<-rnorm(ncol(A))

sys.time({x1<-gaussSeidel(A,b)})

function(A,b)

{
Hard-coded relative tolerance and max iterations
tol<-1.0e-4

41

Chapter 3 CONNECT/C++

42

maxItr<-le4

Validating

A <- as.matrix(A)

b <- as.numeric(b)

if(nrow(A)!=ncol(A) || ncol(A)!=Tength(b))
stop("nrow(A)!=ncol(A) || ncol(A)!=length(b)")

Begin Gauss-Seidel step

x<-b
for(k in 1l:maxItr)
{
x01d<-x
for(i in l:nrow(A))
{
s<- A[i,i]*x[i]
for(j in l:ncol(A))
s <- s - A[i,j1*x[J]
x[i] <- (b[il+s)/AL[1,1]
}

Check convergence; continue if necessary
if(max(abs((x-x01d)/x)) < tol)
return(x);
}
warning("Solution does not converge\n")
return(x)

}

This code, which involves a nested loop, could be made more
efficient, but the intention is to illustrate the Gauss-Seidel iteration in
its most familiar form. An example including the implementation of
CONNECT/C++ is shown below, and notice that by using the
classes and methods of CONNECT/C++, this code closely
resembles the equivalent computation in Spotfire S+.

The code begins by including the sconnect.h header file to give us
access to the CONNECT/C++ library. Next, it includes the header
file required for the Gauss-Seidel code itself:

include "sconnect.h"
include "gausssdl.h"

Examples: An Application and a Called Routine

We then declare the gaussSeidel object as an object of class
s_object, as required by the .Ca11 interface:

s_object* gaussSeidel(s_object* ps_A, s_object* ps_b)

As is typical for S-PLUS code, we declare the S_EVALUATOR and then
embed the implementation in a try-catch block. Within the try
block, the tolerances are hard-coded. We then construct the C++
equivalents to the S-PLUS objects A and b:

{
S_EVALUATOR
try
{
// Hard-coded relative tolerance and max iterations
double tol =le-4;
long maxItr = 1000;

// Constructing and validating C++ objects

CSPnumericMatrix A(ps_A);

CSPnumeric b(ps_b);

if(A.nrow()!=A.ncol() || A.ncol()!=b.Tength())
PROBLEM "A.nrow()!=A.ncol() || A.ncol()!=b.Tlength()"
ERROR;

The actual Gauss-Seidel step follows:

// Begin Gauss-Seidel step
CSPnumeric x=b;
for(long k =1; k<= maxItr; k++)
{
CSPnumeric x01d = x;
for(long i= 1; i <= A.nrow(); i++)
{
double s = A(i,i) * x(i);
for(long j = 1; j <= A.ncol(); j++)
s =5 - A(i,J) * x(J);
x(1) (b(i)+s)/ACi,i);
}
// Check convergence; continue if necessary
if(Max(abs((x-x01d)/x)) < tol)
return(x);

43

Chapter 3 CONNECT/C++

PROBLEM "Solution does not converge" WARN;

return(x);
}
catch(...)
{
}

return(blt_in_NULL); // return the built-in NULL object

Compiling and The complete code for this example is in the directory SHOME/
Executing C++ samples/gausssdl, with the C++ code in the file gausssdl.cxx.

on UNIX To compile and execute the C++ code:
1. Change the current directory to the directory containing the
code:
cd SHOME/samples/gausssdl
2. Build the share library:

Splus CHAPTER -sconnectlib *.cxx
Splus make

3. Run Spotfire S+:
Splus

With the makefile created by CHAPTER, compiling your code is simple:
just run the make command as a Spotfire S+ utility as shown in step 2.

The Splus in front of make allows Spotfire S+ to set its environment
variables appropriately before calling the standard make utility; in
particular it defines the SHOME environment variable used in the
makefile.

The make utility executes the necessary commands to compile and
link the C++ code into the shared object S.so. Note that
-sconnect1ib is required to include the CONNECT/C++ library.

CONNECT/C++ called via .Cal1 runs considerably faster than the
Spotfire S+ code. The following is a comparison for a 100 column by
100 row matrix A using a Pentium IIT with 512MB of RAM on
Windows:

> A<-matrix(rnorm(10000),nrow=100); diag(A)<-seq(ncol(A),
+ ncol(A)) # Make it diagonally dominant
> b<-rnorm(100);

44

Compiling and
Executing C++
on Windows

Examples: An Application and a Called Routine

> sys.time({x1<-gaussSeidel(A,b)})
[17 19.328 19.354

Here is a comparison for a matrix A with 100 columns and 100 rows
on a Solaris machine:

[1] 37.00 39.35
If we compare sys.time on both platforms:
> sys.time({x2<-.Call('gaussSeidel"',A,b)})
[1] 0.07 0.07
is the Windows output, while
[1] 0.04 0.04

is the UNIX output.

The CONNECT/C++ version ran over 250 times faster in Windows
and about 1000 times in UNIX than the pure Spotfire S+ version!

1. Browse to the folder SHOME/samples. This directory
contains all samples and solutions for building them.

2. Read and follow the instructions in the file readme.txt.

3. Browse to the folder SHOME/samples/GaussSDL and read
the readme.txt for more information about using the
interfaces with the Connect C++ classes.

45

Chapter 3 CONNECT/C++

CONNECT/C++ CLASS OVERVIEW

Data Object
Classes

Function
Evaluation
Classes

46

The class library provides a set of classes that can be used to create
and manipulate persistent data objects, run S-PLUS functions, parse
and evaluate S-PLUS expressions, and receive output and notification
when objects are changed or when databases are attached and

detached.

The following sections provide an overview of specific categories of
classes used to accomplish these operations.

Data object classes provide methods to create and operate on arrays,
matrices, and vectors. To use these classes to create a data object,
simply call the object constructor or call the Create() method. For a
persistent object, specify the name of the object and an S language
expression you want to parse, evaluate, and assign the result in order
to initialize it with data. Alternatively, a data object can be
constructed using a form of the constructor that takes an optional S
language expression as an argument. This is useful if named
(persistent) objects are not required, but initialization is required.
Once the object is created, methods can be used to operate on the
object.

To receive notification in a client application when a data object
changes, create a new class in the client application derived from the
appropriate base class and override the virtual methods for handling
object notification. When a named object is modified or removed,
those virtual methods in the client are called.

The cSPcall class allows S-PLUS functions to be evaluated with
arguments passed to the function. Arguments are any S_object as
well as objects derived from CSPobject, which may include data
objects and other S-PLUS objects. Results are returned as a
CSPobject to the client. To use this class, simply call the object
constructor with the name of the function to run and any arguments
you wish to pass from the client to the function.

Client-to-
Engine
Connection
Classes

Evaluator
Classes

CONNECT/C++ Class Overview

The CSPengineConnect class creates a connection between the client
and the S-PLUS engine. This connection permits creation of objects
in the permanent frame, creation of persistent unnamed objects
outside of .Ca11 routines, notification in the client when databases are
attached or detached, output routing to the client, and evaluation of S
language expressions.

To use CSPengineConnect, create a new class derived from
CSPengineConnect in the client, override the virtual methods for
receiving database attach/detach notification, and output notification,
and add a member variable to the client application class object to
record a reference to a single instance of this derived class.

Use of the CSPengineConnect class is only necessary when one or
more of the following features is desired in the client program:

+ Integrate S+ engine DLLs (Windows) or the shared library
libSqpe.so (UNIX) with another application (client).

* Notification in the client when databases are attached or
detached and when changes are made in persistent objects.

* Output redirected to the client.

For more information on using CSPengineConnect, please see the
section on this class by going to SHOME/help/Connect/C++
Library Help in Windows, or SHOME/sconnect/help/
ConnectC++.Class.library.htm in UNIX.

The CSPevaluator class manages memory resources, errors, the top-
evaluation frame, and a set of local evaluation frames. Although it is
optional, instantiating an object of CSPevaluator class at the top of a
try block can speed up the code, and the corresponding catch block

receives an exception error when an unexpected error occurs in the
S-PLUS engine.

To use CSPevaluator, create an instance of this class at the top of a
try block as shown below:

double minValue = 0;

try

{
// Open top-Tevel-evalutor (frame 1) if it is closed
CSPevaluator sEvaluator;
CSPnumeric myNumeric = sEvaluator.eval("1:10");

47

Chapter 3 CONNECT/C++

48

minValue = myNumeric.Min(); //minValue =1

} // Close top-level evaluator when sEvaluator is out of
// scope
catch(...)
{
// Unexpected error occurred in the engine

}

For more information on using CSPevaluator, please see the section
on this class, please see the section on this class by going to SHOME/
help/Connect/C++ Library Help in Windows, or SHOME/
sconnect/help/ConnectC++.Class.library.htm in UNIX.

CONNECT/C++ Architectural Features

CONNECT/C++ ARCHITECTURAL FEATURES

CSPobject

Constructors
and
Generating
Functions

The following sections describe the basic architectural features in the
class library and some of the specific programming features available
in the library that make it possible to perform S-PLUS operations
efficiently in client programs and modules written in C++. Classes
and methods discussed in this section are fully documented in the
reference sections for the classes in the online help for CONNECT/
C++.

CSPobject is the base class of most of the classes that represent S-
PLUS classes. It provides common functionality to its derived classes,
and its most important data member is:

s_object* CSPobject::m_ps_object

A class that represents a S-PLUS class inherits m_ps_object because
CSPobject is its base class. As a smart pointer, a derived class of
CSPobject provides safer methods to manipulate the data pointed by
m_ps_object as compared to using global C functions. For example,
the constructor, the destructor, and the assignment operators
automatically increment and decrement reference counts whenever
appropriate to provide the same data sharing mechanism as that of
the SV4 language.

All cSPobject-derived classes have a method called IsValid() which
allows you to test whether the member m_ps_object is valid or not.

Often, S generating functions are more convenient than the S method
new. Similarly, constructors of CONNECT/C++ classes can provide
the same convenience. They have the following form:

CSPclass::CSPclass(const char* pszExpression);
// pszExpression is a string representing valid S code.

where class is a CSPobject-derived object.

This form of the object constructor parses and evaluates
pszExpression and uses the resultant S-PLUS object as its value.
Normally, pszExpression should contain a S-PLUS expression that
calls to an appropriate generating function. However, it works for any
S-PLUS expression that returns a valid S-PLUS object, and the

49

Chapter 3 CONNECT/C++

Constructing
From an
Existing Object

50

constructor automatically coerces the returned object to the class that
it represents. It increments the reference count upon cornpletion, as
well. In case of errors, the constructor throws an exception in the
client application.

For example:

CSPevaluator s;

CSPinteger x("1:4"); /] x<-1:4
CSPnumeric y("fuel.frame[,1]"); // y<-as(fuel.frame[,1],
// 'numeric')

CSPnumeric z("new('numeric')"); // z<- new('numeric')
CSPmatrix A("matrix(1l:4, nrow=2)"); // A<-matrix(1l:4,

// nrow=2)
CSPmatrix B("1:4"); // B<-as(l:4,'matrix")

// Do something with x,y,z,A, and B

You can construct new objects from existing objects using one of the
following forms:

CSPclass::CSPclass(const CSPclass& sObject);//copy
//constructor

CSPclass::CSPclass(s_object* ps_object); //construct
//from s_object

where class is a CSPobject-derived object.

The copy constructor of a CONNECT/C++ class behaves like a S-
PLUS assignment operator when the S-PLUS object name is first
used. They both share the same data with the object names used to
construct them. However, for the CONNECT/C++ classes, sharing
is not possible if the classes are incompatible. It increments the
reference count upon completion.

An example of creating new objects from existing objects follows:

CSPevaluator s;

CSPnumeric x("1:4"); // x<-1:4
CSPnumeric u(x); // u<-x #f u shares data with x
CSPmatrix A(x); // A<-as(x,'matrix') # A shares data with x

Assignment
Operators

Overloading
Operators

CONNECT/C++ Architectural Features
CSPcharacter v(x); // v<-as(x,'character') # no sharing

s_object* ps_object = x.GetPtr();//Get pointer to s_object*
CSPnumeric U(ps_object); // U shares data with x
CSPmatrix a(ps_object); // a shares data with x

The assignment operator of an CONNECT/C++ class behaves like a
S-PLUS assignment operator when the S-PLUS object name is
already used. However, the left-hand-side object of the operator = is
an existing and valid object. The assignment operator decrements the
reference count on the old object and increments the reference count
on the new object before swapping the two object pointers:

CSPclass& CSPclass::operator=(const CSPclass& sObject);
where class is a CSPobject-derived object.

An example of the assignment operator follows:

CSPevaluator s;

CSPnumeric x("1:4™); // x<-1:4

CSPnumeric u = x; // u<-new('numeric'); u<-x # u shares
// data with x

CSPmatrix A = x; // A<-new('matrix'); A<-as(x,'matrix')
// # no sharing

CSPnumeric y; // y<-new("numeric")
u=y: // u<-y #f u switches to share data with y
A =y;//A<-as(y,'matrix"') # A switches to share data with y

CONNECT/C++ contains some useful overloading operators such
as +, -, * and /. These operators perform element-by-element
operations in the same way as in the S language. However, for the
matrix class, the * operator is different. The operator for CSPmatrix is
a real matrix multiplication operator equivalent to the S %*% operator.

CSPclass& CSPclass::operator+(const CSPclass& sObject);
CSPclass& CSPclass::operator-(const CSPclass& sObject);
CSPclass& CSPclass::operator*(const CSPclass& sObject);
CSPclass& CSPclass::operator/(const CSPclass& sObject);

where class is a CSPobject-derived object.

51

Chapter 3 CONNECT/C++

Converting
C++ Objects
to S-PLUS
Objects

52

An example using the CSPmatrix follows:

CSPevaluator s;

CSPnumeric x("1:4"); // x<-1:4
CSPnumeric y ("4:1"); // y<-4:1
Yy = y+x*x; /1 y<-y+x*x

CSPmatrix A("matrix(l:4,nrow=2)");//A <- matrix(l:4,nrow=2)
CSPmatrix B("matrix(4:1,nrow=2)");//B <- matrix(4:1,nrow=2)
CSPmatrix D = A*A + B*B; //D <- A %*% A+ B %*% B

Objects derived from class CSPobject are C++ representations of S-
PLUS objects; within Spotfire S+, S-PLUS objects are represented as
C objects of type s_object*. Sometimes, an application needs to
access the s_object* directly. For example, the arguments and the
return value of all .Ca11 interfaces must be of type s_object*.

The CSPobject class provides a convenient way to automatically
convert to s_object*. Simply use a CSPobject wherever a s_object*
is required. It automatically invokes a conversion operator that
returns the s_object* as appropriate.

s_object* CSPobject::operator*();
s_object* CSPobject::operator&();

For example:

s_object* myCall()

{
CSPnumeric x("1:10");
return x;

}

s_object *pReturn = myCall();

The return statement, return x, first typecasts x to type s_object*.
This invokes the conversion operator s_object *() of the
CSPnumeric class (derived from CSPobject) which ensures that the
destructor of x does not delete the object, even if the reference count
drops to zero.

CONNECT/C++ Architectural Features

Subscripting CONNECT/C++ contains some useful overloading subscripting

Operators operators () for the derived classes of CSPvector and CSParray such
as CSPnumeric and CSPmatrix. The proxy class of the returned object
provides supports for read/write and mixed-mode operations:

const double CSPnumeric::operator()(long 1Index); const
// Fortran style indexing starting from index 1
// rvalue only

CSPproxy CSPnumeric::operator()(Tong 1Index);
// Fortran style indexing and ordering
// lvalue and rvalue

An example using the subscripting operators:

CSPevaluator s;

CSPnumeric x("c(0.1, 0.2, 0.8, 0.9)"); // x<- c¢(0.1, 0.2,
// 0.8, 0.9)

double d = x(1); // d <-x[1] # d is 0.1

d=4d+ x(2); // d<- d+x[1] # d is 0.3

double e = (long) x(1); // e<-as.integer(x[2]) # e is 0

long n = x(1); // n <-as.integer(x[1]) # n is 0

n=n+ x(2); // n <- n+as.integer(x[2]) # n is still 0

The following is another example using the subscripting operator for
a matrix:

CSPevaluator s;

CSPmatrix A(™matrix(c(0.1, 0.2, 0.8, 0.9), 2)™);
// A<- matrix(c(0.1, 0.2, 0.8, 0.9), 2)

double d = A(1,1); // d <-A[1,1] # d is 0.1
d=d+ A(2,1); // d<- d+A[2,1] # d is 0.3
long e = (long) A(2,1); // e<-as.integer(A[2,1]) # e is O
long n = A(1,1); // n <-as.integer(A[1,1]) # n is O

n=n+ A(2,1); //n <- n+as.integer(A[2,1]) # n is still O

53

Chapter 3 CONNECT/C++

Subscript and
Replacement
Operations

Subscript and
Arithmetic
Operations

54

If a subscript operator of a CSPobject-derived class returns an Tvalue
object of CSPproxy, the operation involves replacing an element of the
S-PLUS object. Since writing data is not possible for a shared S-PLUS
object, CSPproxy must determine whether to copy data before
replacing its elements. This action occurs in one of its overloaded
assignment operations:

CSPproxy& CSPproxy::operator=(long);
CSPproxy& CSPproxy::operator=(double);
CSPproxy& CSPproxy::operator=(const CSPproxy&);

For example:

CSPevaluator s;

CSPnumeric x("1:4"); /] x<- 1:4

x(1) = 0.0; // x[11<- 0 # x is not share,
// simply set x[1] to 0.0

X(2) = x(1); // x[2]1<- x[1] # x is not share, simply

// set x[2] to 0.0
CSPnumeric y(x); // y<- x # y shares data with x
y(1)= 10.0; // y[11<- 10 {copy and replace:
// y[1] is 10 and x[1] is O

Some overloaded operators are available to support mixed-mode
arithmetic operations involving subscripting objects of classes derived
from CSPobject. These operators, +, -, * and /, perform mixed-mode
operations following the same rules as Spotfire S+:

long CSPproxy::operator+(long)
double CSPproxy::operator+(double)

An example using the arithmetic operators:

CSPevaluator s;

CSPnumeric x("1:4"); // x<- 1:4

CSPnumeric y(x); // y<- x # y shares data with x
// A <- matrix(l:4,nrow=2)

CSPmatrix A("matrix(l:4,nrow=2)");

Matrix
Computations

CONNECT/C++ Architectural Features

// e <- A[1,1] + A[1,2]

double e = A(1,1)+A(1,2);

// A[1,2] <- e*(A[1,1]+A[2,1])
A(Ll,2) = e*(A(L,1)+A(2,1));

// A[2,2] <- x[11*A[1,1]+y[2]*A[2,1]
A(2,2) = x(1)*A(1,1)+y(2)*A(2,1);

// X<-array(l:16, c(2,2,2,2))
CSParray X("array(l:16, c(2,2,2,2))");
// X[1,1,1,1] <- X[2,1,1,1]+e;
X(1,1,1,1) = X(2,1,1,1) + e;

// X[2,1,1,11 <- y[1] - X[2,1,1,17;
X(2,1,1,1) = y(1) - X(2,1,1,1);

// X[1,2,1,1] = A[1,1] * X[2,1,1,17;
X(1,2,1,1) = A(1,1) * X(2,1,1,1);

Some overloaded functions are available for matrix computations,
such as the example below (in UNIX). These computations are multi-

threaded on some platforms (currently Windows 2000®, NT, and XP
on Intel multi-processor machines).

double CSPmatrix::ConditionNumber(void);

CSPmatrix SPL_Multiply(const CSPmatrix& A,
const CSPmatrix& B);

CSPnumeric SPL_Multiply(const CSPmatrix& A,
const CSPnumeric& x);

For example:

CSPevaluator s;

CSPmatrix A("matrix(5:8, nrow=2)");

// A<- matrix(5:8, nrow=2)

CSPmatrix B(A); // B<- A
CSPmatrix D = SPL_Multiply(A, B); // D<-A %*% B

CSPnumeric x("1:2"); // x<- rnorm(2)
CSPnumeric y = SPL_Multiply(A, x); // y<- A %*% x

55

Chapter 3 CONNECT/C++

Printing to You can use the following CONNECT/C++ method to print to the S-
Standard PLUS standard output stream:
output void CSPobject::Print(void);

For example:

CSPevaluator s;

CSPcharacter message("'hello'"); //message <- 'hello'
message.Print(); //print(message)

CSPmatrix M("matrix(l:4,nrow=2)");//M<-matrix(1l:4, nrow=2)

M.Print(); //print(M)
Named All CsPobject-derived objects are placeholders for an s_object that
Persistent exists in the engine. So, this C++ object can reference an s_object or

none at all, depending on whether the member s_object pointer
points to a valid s_object. All CSPobject-derived classes have a
method called IsValid() which allows you to test whether it is
pointing to a valid s_object or not.

Objects

All named objects are created in a permanent frame associated with a
Spotfire S+ database, and are thus persistent between calls and
between sessions in the S engine. When you create a new CSPobject
in your client program, a new s_object is created in the S engine.
When you delete this CSPobject, the s_object is also released in the
engine. However, when you execute S-PLUS expressions to remove
the s_object that your CSPobject points to, such as by using
rm(myObject), or you call the Remove () method on the object, the
CSPobject is not deleted in your client. The OnRemove () method of
the CSPobject in your client is called and the base class version of this
method “disconnects” your CSPobject from the now released
s_object by setting the member s_object pointer to NULL. After this
event, calling Isvalid() on the CSPobject returns FALSE.

Deleting the CSPobject in your client program does not automatically
remove the permanent frame s_object in the S-PLUS engine that
this CSPobject refers to. You must call the method Remove() to
remove the s_object from the engine.

You can create named objects using the Create() method of the
various object classes derived from CSPobject, such as CSPnumeric.
Whenever these objects are modified, the OnModi fy () method is

56

CONNECT/C++ Architectural Features

called in your client program. Whenever these objects are removed,
the OnRemove () method is called in your client program. Only named
objects support this kind of client program notification.

To create a named object in your client, first derive a new class from
the appropriate CSPobject-derived class, such as CSPnumeric. Then,
construct an instance of this derived class using the constructor, then
call the Create() method to specify the name you wish to give the
object. It is important to derive a new class from the CSPobject-
derived class instead of just using the base class directly in your client
because the OnModify () and OnRemove () methods are virtual and
must be overridden in your derived class in the client in order to be
notified when these events occur.

A CSPobject can be modified in one of two ways. It can be modified
in the client program by using the operators available for the object to
assign and operate on the elements of the object. When this kind of
modification is done, it is necessary to call the Commit () method on
the object to commit it to the S-PLUS engine before any changes to
the object are reflected in the persistent s_object that is referenced
by the object in the client.

Another way it can be modified is by evaluating S-PLUS expressions,
such as by using CSPengineConnect: :SyncParseEval (). When this
kind of modification is done, it is not necessary to call Commit() on
the object, as the s_object is automatically updated by the S-PLUS
engine. For both kinds of modification, the OnModify () method of the
CSPobject is called in the client program. It is important to call the
base class OnModify () in your override of OnModify (). This allows the
base class to update the member s_object pointer to point to the
newly modified s_object in the engine.

The s_object member of a CSPobject can be removed (invalidated)
in one of two ways:

1. It can be removed in the client program by calling the
Remove () method on the CSPobject. This method removes
the s_object from the permanent frame and triggers a call to
the OnRemove () method of the CSPobject in the client
program. The base class version of OnRemove (), which should
be called at the end of the overridden version in the client,
releases the member s_object from the CSPobject.

57

Chapter 3 CONNECT/C++

Storage
Frames For
Unnamed
Objects

58

2. It can be removed by evaluating S-PLUS expressions, such as
by calling CSPengineConnect: :SyncParseEval (). This also
triggers a call to the OnRemove () method of the CSPobject in
the client program.

In Windows, for examples of using CSPobject-derived classes in a
client program and responding to OnModify() and OnRemove()
notifications, see the example C++ client program called SSC
located in SHOME/samples/SSC in the subdirectory.

Normally, when you create an unnamed CSPobject in a client routine
that you call via .Ca11, the s_object corresponding to this CSPobject
is “alive” or is valid until the routine ends and scope changes out of
the routine.

If you create an unnamed CSPobject when the S-PLUS evaluator is
not open, the s_object corresponding to this CSPobject may not be
valid. For most client applications, this is usually inadequate.
Therefore, you need to do the following to ensure that an unnamed
CSPobject created in a client application does not get released until
the end of the client routine:

* Create an instance of a CSPevaluator at the top of the scope

“{.77

* Create and use any unnamed CSPobject-derived objects in
the client.

For example:

{
CSPevaluator s;
CSPnumeric x(“1:10”);

}

For named objects, you do not have to use the above approach:
simply create named CSPobject-derived objects using the constructor
and a call to CSPobject::Create(). For further information, see the
online help for the classes CSPengineConnect::OpenTopLevelEval(),
CSPengineConnect::CloseToplLevelEval(), and the Create() method
for the object type to be created.

CONNECT/C++ Architectural Features

Table 3.1: CONNECT/C++ classes and their S-PLUS counterparts.

S-PLUS CONNECT/C++

Class Class Example

any CSPobject CSPobject x("2")

numeric CSPnumeric CSPnumeric x("2.32")

integer CSPinteger CSPinteger x("2")

logical CSPlogical CSPlogical x("c(T,F")

character CSPcharacter CSPcharacter("abcd")

named CSPnamed CSPnamed("c(a=1,b=2, d=3)")

matrix CSPmatrix CSPmatrix A("matrix(1l:4,2)")
CSPnumericMatrix CSPnumericMatrix A("matrix(rnorm(12,6")
CSPcharacterMatrix CSPcharacterMatrix A("matrix(letters[1:12],6)")

array CSParray CSParray B(“array(l1:8,c(2,2,2))"

list CSPlist CSPTist("1ist(1:2,6:700)™)

function CSPfunction CSPfunction ("function(x) x*2")

call CSPcall CSPcall("Im")

59

Chapter 3 CONNECT/C++

A SIMPLE SPOTFIRE S+ INTERFACE IN WINDOWS

In this section, we build a small client application to accept S-PLUS
expressions, send these expressions to Spotfire S+ for evaluation, and
then return the output from Spotfire S+. As part of this process, we
use numerous features of CONNECT/C++.

Before continuing, you must perform the steps described in the file
SHOME\samples\readme.txt.

Warning

Most of this example was generated automatically using Visual C++, and it uses Microsoft
Foundation Classes (MFC). If you are not familiar with MFC, you can ignore the uses of MFC
where they occur.

Creating a To keep the example application as simple as possible, create it as a
Dia|og_Based dialog-based application in Visual C++.

Application Create the basic interface:

1. Open Microsoft Visual Studio®.
2. From the menu, click File > New > Project.

@

Under Project types, expand Other Languages and, from
the list, click Visual C++.

In the Templates pane, click MFC Application.
For Name, provide the project name spint.
Click OK. The MFC Application Wizard appears.

In the dialog Application Type, select Dialog based. You
can accept all other defaults.

NS s

8. Click Finish to create the application skeleton.

The Solution Explorer displays the project’s header files, resource
files, and source files, along with a ReadMe.txt, which contains a
brief description of the other files in the skeleton. For this example,

60

Connecting to
Spotfire S+

A Simple Spotfire S+ Interface in Windows

we work with the files spint.rc, spint.cpp, spint.h, spintDlg.cpp,
and spintDIg.h. First, edit spint.rc, the dialog resource displayed for
editing when you created the application skeleton.

L.

Delete the TODO static text displayed in the skeleton dialog

resource.

Open the Toolbox palette and drag two Static Text fields
and two Edit Controls onto the dialog.

Rename the Static Text fields to S-PLUS Commands and S-
PLUS Output, respectively. (Hint: You can edit these names
in the Properties dialog in the controls’ Caption fields. The
Properties dialog is available from the right-click menu.)

In the Properties dialog for the S-PLUS Output edit control,
set the Read Only property to True.

Rename the OK button to Run Commands.

Reposition and resize the controls in the dialog to resemble
Figure 3.1.

A spint 3

S-PLUS Commands
Sample edit box
| concel |

S-PLUS Output

Sample edit box

Figure 3.1: Our simple Spotfire S+ interface.

To establish a connection between Spotfire S+ and the dialog, you
must edit the main header file, spint.h, and the main source file,

spint.cpp.

61

Chapter 3 CONNECT/C++

Change spint.h

At the top of the file, include the header file sconnect.h
immediately after the resource header file:

// spint.h : main header file for the
// PROJECT_NAME application

//

f#fpragma once

fifndef _ AFXWIN_H__
f#ferror "include 'stdafx.h' before including
f#ithis file for PCH"

ffendif

f##include "resource.h" // main symbols
f#finclude "sconnect.h"
Change spint.cpp
1. Add the following code immediately affer the line reading
CspintApp theApp:

// The S-PLUS Engine Connection object
CSPengineConnect g_engineConnect;

In the section of the code titled CSpintApp initialization, add the
following code immediately before the line reading CSpintD1g dl1g;:

// Create and connect to S+ engine
int argc =1;

char *argv[1];

argv[0]="spint";

g_engineConnect.Create(argc, argv);

Now you have an interface and a connection to the engine. All that
remains is to define the code that reads the input from the S-PLUS
Commands edit control and writes the output to the S-PLUS
Output edit control. The following sections address this task.

Add and edit an event handler to the Run Commands button

1. Reopen the dialog resource spint.rc.

62

A Simple Spotfire S+ Interface in Windows

Right click the button Run Command and, from the menu,
click Add Event Handler.

Make sure the message type is BN_CLICKED, the classed used is
CspintD1g and the function handler name is OnBnC1ickedOk.

Click Add and Edit. The function skeleton appears.
Change the function to the following:

void CspintDlg::0nBnClickedOk()

{
CWnd* pEdit = GetDIgItem(IDC_EDIT1);
CString Commandsl;
pEdit->GetWindowText(Commandsl);
CSPevaluator sEvaluator;

CSPobject returnVals =
sEvaluator.Eval((LPCTSTR)Commandsl);

CSPcharacter outputText = returnVals.Deparse();
CString outputText2 = outputText[0];
CWnd* pEdit2 = GetD1gItem(IDC_EDIT2);
pEdit2->SetWindowText (outputText?2);

}

This function:
a. Takes the input
b. Reads it into a CString object

o

Sends it to Spotfire S+ for evaluation

&

Returns the output as an array of character strings

e. Takes the first output string and puts it into the output
field.

For the project to compile, you must change the character set used by
the project.

Set the project Properties page

L.

Click Configuration Properties > General and change the
Character Set option to Use Multi-Byte Character Set.

Click Linker > Input and, in the field Additional
Dependencies, add sconnect.lib.

63

Chapter 3 CONNECT/C++

64

3. Click C/C++ > General, and to the field Additional
Include Directories, add [SHOME]\sconnect and
[SHOME\include

This implementation has one significant limitation: we get only the
first string in the array of strings that forms the return value. That is,
the output pane displays only the first line of output.

A solution to this problem is provided by defining a new class derived
from CSPengineConnect that includes a new method for OnOutput.
You can view this solution by exploring the code in SHOME/
samples/ssc, a more sophisticated "simple" interface to Spotfire S+.

CONNECT/JAVA

Introduction
Java Tools
Example Files

Calling Java from Spotfire S+
Static Fields
Static Methods
Class Files
Instance Methods
Managing Java Object Instances

Calling Spotfire S+ from Java Applications
Running the Java Program
Evaluating S-PLUS Commands
Using SplusDataResult Objects
Example Applications

66
66
66

67
67
70
72
73
74

81
81
82
83
86

65

Chapter 4 CONNECT/Java

INTRODUCTION

Java Tools

Example Files

66

CONNECT/]Java is a powerful programming language with a variety
of attractive features. Its strengths include a clean object-oriented
design, a rich set of class libraries, and cross-platform capabilities.

Spotfire S+ may be used with Java in a variety of ways. Just as
Spotfire S+ can call C and Fortran routines, it can call Java methods
to perform computations. Alternatively, a Java program can call
Spotfire S+ to perform computations and create graphs.

The Spotfire S+ installation includes a copy of the Java 2 Runtime
Environment (JRE). This runtime environment includes the Java
Virtual Machine and related classes necessary to run any Java 2-
compliant compiled Java code. Users with compiled Java code need
no additional tools to use their code with Spotfire S+.

Users writing new code need a Java 2 development environment such

as the Java 2 JDK. For Spotfire S+, the desired JDK is version 1.6.
This is freely available from Sun® for Solaris®, Linux®, and

Windows® platforms, and from other vendors on other platforms.
Licensing restrictions prevent TIBCO Software Inc. from
redistributing the Java 2 JDK with Spotfire S+.

In Windows, the Java code samples for the examples discussed in this
chapter are included in *.java files in the
SHOME\library\winjava\examples directory. In UNIX, these
files are located in the SHOME/library/example5/java directory.

The java directory distributed as part of the example5/java library
in UNIX contains the file examples.jar. This file includes the byte-
compiled *.class files for all of the *.java files. As these classes are
available to Java by default, it is not necessary to compile or install the
Java code to run the examples.

Calling Java from Spotfire S+

CALLING JAVA FROM SPOTFIRE S+

Static Fields

Field Descriptors

Spotfire S+ can exchange information with Java via static fields and
static methods. Currently, Spotfire S+ does not have a way to directly
call non-static methods, which would require the S-PLUS engine to
keep track of references to particular instances of Java objects.

Functionality that is available through instance methods (non-static
methods) may be accessed by creating static Java methods that take
care of the details of creating Java instances, tracking them, and
calling methods on them. These static methods may then be called
from Spotfire S+.

Java objects may be passed from Java to Spotfire S+ through static
fields. The S-PLUS function .JavaField returns a field value given
the following information:

* The name of the Java class containing the field. The package
name may be forward slash or period delimited.

* The name of the field.
* The Java Native Interface (JNI) field descriptor for the field.
* The optional client argument.

For example, the following call will return the value of PI:

> .JavafField("java/lang/Math", "PI"™, "D")

The .JavaField function is the primary mechanism for transferring
values from Java into Spotfire S+.

The JNI is the standard interface for passing information between

ava and native C code. In JNI the type of a field is declared using a
J ypP g
field descriptor. For example, an int field is represented with "I", a
float field with "F", a double field with "D", a boolean field with "7",
and so on.

The descriptor for a reference type such as java.lang.String begins
with the letter "L", is followed by the class descriptor, and is terminated
by a semicolon. (The class descriptor is typically the class name
delimited with slashes.) The field descriptor for a string is "Ljava/
lang/String;".

67

Chapter 4 CONNECT/Java

Descriptors for array types consist of the "[" character, followed by
the descriptor of the component type of the array. For example, "[1"
is the descriptor for the int[] field type.

Spotfire S+ uses the field descriptors to communicate field types to
Java. Spotfire S+ can access values of type void, int, short, Tong,
boolean, float, double, byte, char, and String. It can also access
arrays of these types. Table 4.1 presents each supported Java type, the
JNT field descriptor, and the corresponding S-PLUS type. All S-PLUS

atomic types except complex havejava equivalents.

The latest version of Spotfire S+ extends the connection to allow
access of any Java object. If the object is an array of objects or an
object whose class implements java.util.Collection (such as
Vector or ArrayList), then the result will be a S-PLUS list. For any
other type of object, the toString() method will be used to return a
string.

Table 4.1: JNI Field Descriptors

JNI Field Descriptor Java Type Spotfire S+ Type
v void NULL

I int integer

S short integer

J Tong integer

z boolean logical

F float single

D double double (numeric)
B byte raw

c char character
Ljava/lang/String; String character

68

Integer
Conversions

Special Values

Client Argument

Calling Java from Spotfire S+

The javap utility included with the Java 2 SDK will print out the JNI
field descriptors for a class. For example:

% javap -s -p java.lang.Math
Compiled from Math.java
public final class java.lang.Math extends java.lang.Object
{
public static final double E;

/* D */
public static final double PI;
/* D */

private static java.util.Random randomNumberGenerator;
/* Ljava/util/Random; */
private static Tong negativeZeroFloatBits;

/* J */
private static Tong negativeZeroDoubleBits;
/* J */

S-PLUS integers are equivalent to C longs. They are either 32 bit or
64 bit in size depending upon whether the operating system is 32 bit
or 64 bit. In Java, shorts are 16 bit, ints are 32 bit, and longs are 64 bit.
All three of these types are converted to S-PLUS integers.

Spotfire S+ has special values NA, Inf, and - Inf to represent missing
values, positive infinity, and negative infinity, respectively. Java has
special values NaN, POSITIVE_INFINITY, and NEGATIVE_INFINITY for
these cases. These special values are mapped appropriately when
values are transferred.

Within a Java virtual machine (JVM) process, a static field will have a
uniquely determined value. In client/server mode, we have two
separate JVMs available. Sometimes we will be interested in
determining the field value for the server JVM that shares a process
with the S-PLUS engine, while at other times we are interested in
getting the field value from the client JVM.

The cT1ient argument to .JavaField() is used to specify the JVM to
use. The default is c1ient=F, which means to use the server JVM.
Specify c1ient=T to use the client JVM.

If client=T, the Java object returned must be serializable.

69

Chapter 4 CONNECT/Java

Field Examples

The java.lang.Math class contains a few interesting static fields that
we can access from Spotfire S+:

> .JavaField("java/lang/Math™, "PI", "D")
[1] 3.141593

> .JavafField("java/lang/Math", "E", "D")
[1] 2.718282

> .JavafField("java/Tang/Double™, "NaN", "D")
[1] NA

Static Methods Scalars and arrays of primitives may be passed from Spotfire S+ to a

Method
Descriptors

70

static Java method, and a Java object may be returned from the Java
method to Spotfire S+. The S-PLUS function .JavaMethod takes the
following arguments:

* The name of the Java class. The package name may be
forward slash (/) or period (.) delimited.

* The name of the method.

* The JNI method descriptor indicating the types of the
arguments.

+ Optionally, one or more values used as the arguments to the
method.

+ Optional client argument, which is used similarly to the
argument in .JavaField().

For example, the following call will return 2 to the power of 10:

> .JavaMethod("java/lang/Math™, "pow", "(DD)D", 2, 10)
[1] 1024

Note that .JavaMethod automatically converts the values to doubles
based on the signature of the method. Unlike with the S-PLUS
functions .C and .Fortran, the programmer does not need to assure
that the values are of a particular type via calls to as.double().

The JNI method descriptors are formed from the field descriptors for
each method argument and the field descriptor for the return value.
The argument types appear first and are surrounded by one pair of
parentheses. Argument types are listed in the order in which they

Client Argument

Simple Examples

Calling Java from Spotfire S+

appear in the method declaration. If a method takes no arguments,
this is represented by empty parentheses. The method’s return type is
placed immediately after the right closing parenthesis.

For example, "(1)V" denotes a method that takes an int argument
and has return type void, which is returned in Spotfire S+ as a NULL.

A method that takes a String argument and returns a String is
denoted by "(Ljava/lang/String;)Ljava/lang/String;".

Arrays are again indicated with "[" character, followed by the
descriptor of the array element type. A method that takes a String
array and returns void has the method descriptor "([Ljava/lang/
String;)V'".

The javap utility included with the Java 2 SDK will print out the JNI
method descriptors for a class. For example:

% javap -s -p java.lang.Math
Compiled from Math.java

public final class java.lang.Math extends java.lang.Object
{

public static double toDegrees(double);
/* (D)D */
public static double toRadians(double);
/* (D)D */
}

In client/server mode, we have two separate JVMs available.
Sometimes we will need to call a Java method on the server, and at
other times we will want to call the method on the client.

The c1ient argument to .JavaMethod() is used to specify the JVM to
use. The default is c1ient=F, which means to use the server JVM.
Specify c1ient=T to use the client JVM.

If client=T, the Java object returned must be serializable.

Here are some examples using .JavaMethod:

> .JavaMethod("java/lang/Math"™, "round", "(D)J", pi)
[11 3
> .JavaMethod("java/lang/Math", "round", "(F)I", pi)
[1]1 3

71

Chapter 4 CONNECT/Java

Class Files

Java Classpath

72

> .JavaMethod("java/lang/Math", "random™, "()D")

[1] 0.6300195

> .JavaMethod("java.lang.System", "getProperty",

+ "(Ljava/Tang/String;)Ljava/Tang/String;", "os.name")
[1] "SunOS"

The StaticMethodsExample class provides various examples of how
to retrieve values from Java. In Windows, the Java code for this
class is in $SHOME/library/winjava/examples, and for UNIX, it
is in $SHOME/library/example5/java.

In order for the Java virtual machine to find Java classes, the class files
must be in one of the locations where Java looks for files. The
location may be specified using either the Java classpath, or the Java
extensions mechanism.

The main difference between these two approaches appears to be a
difference in strictness of security such that any extension class can be
instantiated via reflection, while objects in the classpath may not
always be instantiated with reflection. This is unlikely to be an issue
for most users. However, if you get a “Class Not Found” exception
when using the classpath mechanism and reflection, you may want to
try the extension mechanism instead.

Java finds class files that are in a location specified in the Java
classpath. If the class files are in a jar file, the location will be the full
path to the jar file including the name of the file. If the class files are
in a directory, the location will be the full path to the directory.

Two locations you should always specify in your classpath are the
Splus.jar file, located in $SHOME/java/jre/lib/ext (Windows and
UNIX), and your current directory (or the directory in which you
create your Java code).

The classpath may be modified from the UNIX shell by setting the
CLASSPATH environment variable. An item may be added to the
CLASSPATH using syntax such as the following at a UNIX prompt:

setenv CLASSPATH {$CLASSPATH}:/homes/user/examples
for csh and tcsh, and

CLASSPATH = {$CLASSPATH}:/homes/user/examples
export CLASSPATH

Calling Java from Spotfire S+

for sh, ksh, and bash.

The classpath may be specified in Windows by setting the CLASSPATH
environment variable or using the -classpath argument to Java. As a
general rule, avoid spaces in the classpath on Windows.

Java Extensions Java will automatically find any jar files placed in the java/jre/lib/
ext. This is the default location for Java extensions.

Other directories may be added to the list of extension directories
with the -Djava.ext.dirs argument to Java. If this is specified it
must be a path which also lists the standard java/jre/lib/ext

directory.
Instance Instance methods are methods that reference a particular Java object
Methods rather than static class information. Instance methods may be called

by writing static methods that manage creation and tracking of the
necessary instances.

Random Numbers The class java.util.Random provides objects that represent

Example pseudorandom number streams. We can obtain random numbers
from Java by creating a class that instantiates a java.util.Random
object and provides methods for getting values from the stream.

import java.util.Random;
public class RandomWrapperExample {
static Random ran = new Random();

public static double nextDouble()({
return ran.nextDouble();

public static int nextInt(){
return ran.nextInt();

}

After compiling this class (typically by invoking javac on the Java
source file) and adding its location to the classpath, we can call these
methods from Spotfire S+:

> .JavaMethod("RandomWrapperExample", "nextDouble", "()D")
[1] 0.9606592

73

Chapter 4 CONNECT/Java

File Chooser
Example

Managing Java
Object
Instances

74

> .JavaMethod("RandomWrapperExample™, "nextInt™, "()I")
[1] 4026360078

The JFileChooser class provides a file chooser dialog that is useful for
locating and selecting a file. We can create a Java class that launches
this dialog and returns the path to the selected file. The S-PLUS
function for invoking the file chooser will let the user specify the
starting location for the browser.

The S-PLUS function is:

fileChooserExample <- function(startPath = getenv("PWD")){
.JavaMethod("FileChooserExample™, "showFileChooser",
"(Ljava/Tang/String;)Ljava/lang/String;",
startPath, client = T)
}

Note the use of the c1ient = T argument to show the JFiTleChooser is
on the client side.

The Java class definition is:

import javax.swing.JFileChooser;

public class FileChooserExample {
public static String showFileChooser(String startPath)({
JFileChooser fileChooser = new JFileChooser(startPath);
fileChooser.setDialogTitle("Select File™);
int exitStatus = fileChooser.showDialog(null, "OK");

String selectedFileName = "";
if (exitStatus == JFileChooser.APPROVE_OPTION)
selectedFileName =
fileChooser.getSelectedFile().getAbsolutePath();

return selectedFileName;

Spotfire S+ does not directly attempt to track instances of Java
objects. However, instances may be created using Java code, and
identifiers to these instances may be passed back to Spotfire S+ for
use in tracking the objects for further manipulation.

Calling Java from Spotfire S+

The basic technique is to use a static Vector, HashTabTe, or other type
of collection in the Java class. When a new instance is created, it is
placed in the collection and a key into the table is passed back to
Spotfire S+. This key may be passed into a static method that then
finds the object in the table and applies the relevant method to the
object.

In this example, we will create a Java class representing a person and
family relationship information about the person. When we create an
object for the person, we specify the person’s first and last name. We
then have methods to indicate family relationships between
individuals. In particular, we can indicate an individual’s mother and
father using setMother () and setFather() methods. These methods
modify the individual to note the parenting information and also
modify the parent’s object to note that the individual is their child.
We can retrieve information about the individual using the getInfo()
method.

Before showing the Java code, let’s see how these methods would be
used from within Spotfire S+. In this example, we will use
.JavaMethod() directly at the Spotfire S+ prompt. We could create
S-PLUS functions to call these routines in order to avoid having to
specify the class name and method signature each time we want to
use a method.

First we will create three FamilyMember objects representing a mother,
father, and son. The new FamilyMember() method creates an object
in Java and returns an integer ID, which we can use to refer to the
object.

> momId <- .JavaMethod("FamilyMember", "newFamilyMember",

"(Ljava/Tang/String;Ljava/lang/String;)I",
"Skip"™, "Jones"™)

+ "(Ljava/Tang/String;Ljava/lang/String;)I",

+ "Sue"™, "Jones")

> dadId <- .JavaMethod("FamilyMember"™, "newFamilyMember",
+ "(Ljava/lang/String;Ljava/lang/String;)I",

+ "Tom", "Jones")

> sonld <- .JavaMethod("FamilyMember", "newFamilyMember",
+

+

Next we will use the setMother() and setFather() methods to
establish the relationship between the parents and the son. Note that
we are using the identifiers returned above.

75

Chapter 4 CONNECT/Java

76

> .JavaMethod("FamilyMember", "setMother", "(II)Z",
+ sonld, momId)

[11 7T

> .JavaMethod("FamilyMember", "setFather", "(II)Z",
+ sonld, dadId)

(11T

Now that we have created the objects and specified their relationship,
we can use getInfo() to examine the objects. The getInfo()
method uses the family relationship information to determine the
names of parents and children for the individual.

> .JavaMethod("FamilyMember"™, "getInfo",

+ "(I)[Ljava/lang/String;", sonlId)

[1] "Name: Skip Jones" "Mother: Sue Jones"
[3] "Father: Tom Jones"

> .JavaMethod("FamilyMember", "getInfo",

+ "(I)[Ljava/lang/String;", dadId)

[1] "Name: Tom Jones™ "Mother: Unknown"
[3] "Father: Unknown™ "Child: Skip Jones"

The Java code for the FamilyMember class is straightforward. We
present it here with comments describing the key points.

import java.util.Vector;

public class FamilyMember {
/* This class is an example of creating and modifying a
dynamic collection of instances using static methods.
*/

// Track instances by keeping a static Vector of

// instances. We will add each FamilyMember object to
// this Vector when it is created, and return its index
// in this Vector as the key for accessing the object.

static Vector members = new Vector();

// Instance variables. We get each person’s first and

// Tast name when the object is created. Methods are then
// used to specify their mother and father. When the

// person is specified as a mother or father, we know

// they have a child, which we also track.

Calling Java from Spotfire S+

String firstName, lastName;
FamilyMember mother, father;
Vector children = new Vector();

/* Constructor */
public FamilyMember (String first, String last){

firstName = first;
lastName = Tlast;

/* Instance methods */

/* Java routines would call these */
// public methods to get names
public String getFirstName(){

return firstName;

public String getLastName(){
return lastName;

// public methods to set and get parents
public void setMother(FamilyMember mom){

mother = mom;
mother.addChild(this);

public void setFather(FamilyMember dad){
father = dad;
father.addChild(this);

public FamilyMember getMother()({
return mother;

77

Chapter 4 CONNECT/Java

public FamilyMember getFather()({
return father;

// private method to add child when parent set

private void addChild(FamilyMember kid){
children.add(kid);

// public method to get children

public Vector getChildren(){
return children;

/* Static methods */

/* S-PLUS would call these */

// static method to create a family member and return
// an ID to track them

public static int newFamilyMember(String first,
String Tast){

FamilyMember newMember = new FamilyMember(first, last);

// Add new instance to 1ist of members
members.add(newMember) ;

// Use the position in the members vector as an ID
return (members.size() -1);
// private method to check that ID in legal range

private static boolean checkId(int id){
boolean status = true;

if (id < 0 || id > (members.size()-1)){

// Could throw exception. we’11 just print a message
System.out.printin("Error: ID out of range™);

78

Calling Java from Spotfire S+

status = false;

}
return status;

// static methods to specify mother and father based on ID

// The basic steps in these methods are:

// 1) Check that the ID is within the range of ID’s.

// 2) Get the object from the members Vector.

// 3) Cast the object to a FamilyMember object.

// 4) Apply the relevant non-static method to the object
//

// If the ID is out of range we return false. Otherwise
// we return true.

public static boolean setMother(int personld, int momId){
boolean status = true;
if (checkId(personId) && checkId(momId)){
FamilyMember person =
(FamilyMember) members.get(personld);
FamilyMember mom = (FamilyMember) members.get(momId);
person.setMother(mom);
}
else
status = false;
return status;

public static boolean setFather(int personld, int dadId){
boolean status = true;
if (checkId(personId) && checkId(dadId)){
FamilyMember person =
(FamilyMember) members.get(personld);
FamilyMember dad = (FamilyMember) members.get(dadId);
person.setFather(dad);
}
else
status = false;
return status;

79

Chapter 4 CONNECT/Java

// static method to get information about a family member

public static String [] getInfo(int id){
if (lcheckId(id))
return new String [] {"Name: Unknown",
"Mother: Unknown", "Father: Unknown"};

FamilyMember person = (FamilyMember) members.get(id);
FamilyMember mom = person.getMother();

FamilyMember dad = person.getFather();

Vector kids = person.getChildren();

String [] info = new String [3 + kids.size()];

info[0] = "Name: " + person.getFirstName() + " " +
person.getLastName();

if (mom==null)
info[1l] = "Mother: Unknown";
else
info[l] = "Mother: " + mom.getFirstName() + " " +
mom.getLastName();

if (dad==null)
info[2] = "Father: Unknown";
else
info[2] = "Father: " + dad.getFirstName() + " " +
dad.getLastName();

for (int i = 0; i < kids.size(); i++){
FamilyMember aKid = (FamilyMember) kids.get(i);
if (!(aKid==nul1)){
info[3+i] = "Child: " + aKid.getFirstName() + " " +
aKid.getLastName();

return info;

80

Calling Spotfire S+ from Java Applications

CALLING SPOTFIRE S+ FROM JAVA APPLICATIONS

Running the
Java Program

UNIX

Spotfire S+ can be called from Java to perform computations and
create graphics. This section describes the primary Java classes for
communicating between Java and Spotfire S+. The discussion of
classes is followed by examples.

The SplusUserApp class provides a simple way for a Java application
to connect to Spotfire S+. It contains static methods that Java
applications can call to generate results and graphics. Spotfire S+
graphs created with the java.graph graphics device can be
embedded within Java application windows. This section describes
using SplusUserApp to call Spotfire S+ locally.

The SplusSession interface provides another way for a Java
application to connect to Spotfire S+. Developers can program
directly to this interface when they need more control than the
SplusUserApp class provides.

Documentation on SplusUserApp, SplusSession, and all the other
Java classes used by Spotfire S+ can be found at $SSHOME/java/
javadoc/index.html on both Windows and UNIX.

The Java program is invoked in different ways on UNIX and
Windows

As various environment variables must be set at start-up for the
S-PLUS engine to function properly, the Splus or SplusClient script
must be used to run the Java program. These scripts set various
environment variables and then use the Java virtual machine
included with Spotfire S+ to run the Java program.

Use the -userapp flag to indicate that Spotfire S+ is being run as part
of a user-written Java application. This flag should be followed by the
full name of the directory containing the class file, and the class name.
For example:

Splus -userapp /homes/user/examples TextOutputExample

81

Chapter 4 CONNECT/Java

Windows

Evaluating
S-PLUS
Commands

Connection
Threads

82

You should only access methods from user applications started as
above with the -userapp option. They should not be called when
running with the -g or -j option. Attempting to do so throws a Java
exception.

To run a Java program in Microsoft Windows, specify the full path to
the java executable and the name of the Java class. This may be done
at a Windows Command prompt or in a Windows shortcut.

To call Spotfire S+, the location of SHOME must also be specified
using the Java property splus.shome. For example:

"D:\Program Files\TIBCO\splus82\javaljre\bin\java"
-Dsplus.shome="D:\Program Files\TIBCO\splus82"
TextOutputExample

S-PLUS expressions can be evaluated with the following
SplusUserApp methods:

public static SplusDataResult eval(String cmd);

public static SplusDataResult eval(String cmd,
boolean Output, boolean Result, boolean Errors,
boolean Warnings, boolean Expr);

The cmd parameter contains an expression to be evaluated by Spotfire
S+. The resulting SplusDataResult object contains the result of
evaluating this expression.

The expression should be a syntactically complete S-PLUS
expression. An SplusIncompleteExpressionException is thrown if
the expression is not complete.

The additional parameters Output, Result, Errors, Warnings, and
Expr allow the user to specify what elements to include in the
SplusDataResult. These may be specified as false to avoid the
overhead of passing unnecessary elements of the output over the data
channel. The default is to include the Result, Errors, and Warnings.

The first time SpTlusUserApp.eval() is called, it starts the S-PLUS
engine process and several Java threads. It takes approximately 10
seconds for the process to complete.

Using
SPLUSDATARESULT
Objects

Calling Spotfire S+ from Java Applications

These Java threads remain active until the S-PLUS engine is shut
down, so it is typically necessary to call System.exit(0) to exit the
user Java application. Even if the application’s main thread is
finished, Java will wait forever for the S-PLUS connection threads to
finish.

An object deriving from SplusDataResult is produced by a call to
evalDataQuery() when using the SplusSession interface, described
later in this chapter.

The results of a query are formalized to have the following fields:

* expression:a string representing the query that was
processed.

* output: a string representing the output that the query
produced. This is the output that would be printed if the
command were evaluated as standard input. This output may be
printed to standard out or to a Java text area.

* error:a string representing the error output that the query
produced.

* warning: an array of strings representing warnings that the
query produced.

If the query produced a data result, it will have an additional field:

* result: an array of values of some primitive type determined
by the query. This will be an array of a standard atomic type, for
example, boolean, byte, double, float, Tong, or String. This is
the mechanism for passing results of computations back to Java.

The SplusDataResult parent class contains the first four fields but
lacks the result field. The following classes inherit from the
SplusDataResult class and contain a result field that is an array of
the appropriate type:

SplusBooleanDataResult
SplusByteDataResult
SplusDoubleDataResult
SplusFloatDataResult
SplusLongDataResult
SplusStringDataResult

These are the only types presently supported in accessing the S-PLUS

83

Chapter 4 CONNECT/Java

analytic engine from Java. The correspondence between Java types
and S-PLUS types is as follows:

Table 4.2: Java and S-PLUS correspondence.

Java S-PLUS
boolean logical
byte raw
double numeric
float single
lTong integer
string character

You must ensure that queries produce only a single vector of one of
these primitive types. The analytic engine then automatically
constructs a data result object with a class that matches the query
result type.

If the query fails to produce a result, an SplusDataResult object is
returned that does not contain a result field. If the query returns a
more complex object than a vector, a warning message is printed to
the engine’s standard output stream and an SpTusDataResult object is
returned that does not contain a result field.

The fields in data result objects are private and are available only via
accessor methods. Hence, all data result objects include the following
methods:

public String getExpression();
public String getOutput();
public String getError();
public String []1 getWarning();

public Object getData();

public boolean [] getBooleanData() throws
SplusBadDataException;

84

Calling Spotfire S+ from Java Applications

public byte [] getByteData() throws
SplusBadDataException;

public double [] getDoubleData() throws
SplusBadDataException;

public float [] getFloatData() throws
SplusBadDataException;

public Tong [] getLongData() throws
SplusBadDataException;

public String [] getStringData() throws
SplusBadDataException;

Usually, only one of the getxxxData methods returns correct data,
depending on the type of the data result that is available. If the type
of the data result available does not match the type of data requested
in the get operation, an SplusBadDataException is thrown with a
string describing the condition. For instance, suppose you are
expecting a vector of Tongs as the result of a query. Thenina
simplified situation, you would use the code:

SplusDataResult result = evalDataQuery("/* some query */");
long [] values = result.getlLongData();

Now suppose further that by some mistake your query produced a
vector of doubles instead of a vector of Tongs. Then at runtime, the
call to result.getLongData would generate an
SplusBadDataException with the string:

"long" data was requested, but existing data is "double"”

Under some circumstances, you may not care initially about the type
of return data. For example, you may be constructing a collection of
result vectors which you want to store as a hash-table of Java objects.
The actual type of the data would be handled at a later time, using
Java’s instanceof operator.

For such situations, the SplusDataResult class (and its derivatives)
have the method

public Object getData();

which returns the result vector as a generic Java Object. The
getData() method returns nul1 if the object has no data and an array
of primitives otherwise. This is useful when you intend to put the
result in a Java collection object such as a Vector, rather than
immediately using the result as a primitive array of a known type.

85

Chapter 4 CONNECT/Java

Graph
Components

Example
Applications

86

In addition to the methods discussed above, the following boolean
methods are available to determine whether the fields of the
SplusDataResult object have non-null entries:

public boolean hasExpression();
pubTic boolean hasOutput();
public boolean hasError();
public boolean hasWarning();

The SplusDataResult class and the classes that inherit from it are
intended to form a complete set of result classes reflecting the
capabilities currently offered in interacting with the S-PLUS analytic
engine.

The S-PLUS java.graph() device displays Spotfire S+ graphics
within a Java component. By calling SpTusUserApp methods, a Java
application can embed a java.graph() display component within a
Java window. Spotfire S+ graphs are then displayed in this
component by evaluating Spotfire S+ graphics commands.

Typically, Spotfire S+ allows multiple graphics devices to be open at
once, and multiple graphics devices can be opened while evaluating a
single expression. When you run the Spotfire S+ graphical user
interface, notice that these appear in different windows. Currently,
SplusUserApp only supports a single graph window embedded in a
specific JComponent.

The following SpTusUserApp method returns the JComponent
containing the graph window:
public static JComponent getGraph();

This component contains a multi-page graph display than can be
embedded within another window. The component corresponds to
the last java.graph() device that was opened. When a new
Jjava.graph() device is opened, this graph is cleared and no longer
has any association with the previous device.

In each of the following examples we create a simple Java class that
communicates with Spotfire S+ using SplusUserApp.

In Windows, the Java code for these examples is in

$SHOME/library/winjava/examples

Text Output

Calling Spotfire S+ from Java Applications

and in UNIX, it is located at
$SHOME/library/example5/java

This UNIX directory also contains the file examples.jar. This file
includes the *.class files for all of the *.java files other than those that
are copies of the files for the Correlations dialog and Linear
Regression dialog in the standard Spotfire S+ Java GUI.

Java requires that each class be stored in a file named by appending
.java to the class name. To run each example, perform the following
steps:

1. Create a text file containing the example. Name the file based
on the class, for example, TextOutputExample.java.

2. Compile the file using a Java compiler such as javac. This will
create a file TextOutputExample.class.

3. Start the Java application.

On UNIX, use the Splus or SplusClient script to start the
application, specifying the directory containing the class file (which
will be added to the Java classpath) and the name of the class:

Splus -userapp /user/examples TextOutputExample

SplusClient -userapp /user/examples TextOutputExample

On Windows, place the class file in a location that Java can find, as
described in section “Class Files” on page 72. Then use the java
executable to start the application:

"D:\Program Files\TIBCO\Splus82\java\jre\bin\java"
-Dsplus.client.mode=true
-Dsplus.shome="D:\Program Files\TIBCO\Splus82"
TextOutputExample

The TextOutputExample application generates the numbers 1 to 100
and returns them formatted for printing.

import com.insightful.splus.*;

public class TextOutputExample {
public static void main(String [] args){
try {
String expression = "1:100";

87

Chapter 4 CONNECT/Java

System.out.printin("Sending expression "™ +
expression);

// Get just the text output back
SplusDataResult result =
SplusUserApp.eval(expression + "\n",
true, false, false, false, false);

System.out.printin("Result from S-PLUS:");

System.out.printin(result.getOutput());
}

catch (Exception e){

System.out.printin(e);
}

System.exit(0);
}

Returning Values The RandomNormalExample application generates 100 random normal

values and passes them back to Java. It then prints the number of
values, first value, and last value.

import com.insightful.splus.*;

public class RandomNormalExample {
public static void main(String [] args){
try {

String expression = "rnorm(100)";

// Get just the result output back
SplusDataResult result =

SplusUserApp.eval(expression + "\n",
false, true, false, false, false);

// Get the double values. We know the S-PLUS function
// rnorm() returns doubles. If it did not, the

// try/catch mechanism would catch the

// SplusBadDataException.

double [] randomValues = result.getDoubleData();

88

Calling Spotfire S+ from Java Applications

System.out.printin("Generated " +
randomValues.length +
" random normal values.");
System.out.printin("First value: " + randomValues[0]);
System.out.printin("Last value: " +
randomValues[randomValues.length - 11);
}
catch (Exception e){
System.out.printin(e);
}

System.exit(0);

}

Passing Values to The SplusDataResult class provides a way to get values from Spotfire

Spotfire S+

S+. We can pass values needed for a computation from Java to
Spotfire S+ in two ways.

The first way is to include the values in the string passed to
SplusUserApp.eval(). This is the simplest approach when we are
specifying a few parameters to a function, as in the previous
examples.

The other way is to store the values in static fields and have the
S-PLUS function query the values of these fields. The .JavaField()
function will access the field value directly. Alternatively, we might
use a .JavaMethod() call to a static method that extracts the field
value. The CorrelationExample application uses the .JavaField()
approach.

import com.insightful.splus.*;
public class CorrelationExample {

// static fields to pass values to S-PLUS
static double [] xValue;
static double [] yValue;

// Java function calling S-PLUS to

// compute correlation of two double arrays.
// This can be called from other

// classes.

89

Chapter 4 CONNECT/Java

90

//

// Throw an I1legalArgumentException if x or y
// inappropriate.

// Pass on other exceptions if they are thrown.

public static double getCorrelation(double [] x,
double []1 y) throws IllegalArgumentException,
SplusBadDataException {

if (x == null || x.length = 0 ||
y == null || y.length == 0)
throw (new ITlegalArgumentException(
"Argument is null or length zero."));

xValue = x;
yValue Yy

// Define the S-PLUS expression to use.
// Note we use \" for quotes within the expression.

String expression = "cor(" +
".JavaField(\"CorrelationExample\", " +
"\"xValue\"™, \"[D\", client = T)," +
".JavaField(\"CorrelationExample\", " +

"\"yValue\", \"[D\", client =T))";

SplusDataResult result =
SplusUserApp.eval(expression + "\n");

return result.getDoubleData()[0];
}

public static void main(String [] args){
// Create some double arrays and get their correlations.

double [] a =
double [1 b

|
~ o~
N
o0}

~N o1

e}
o =
w W
w W
o o
(&)
(S)

System.out.printin(
"Getting correlation of two double arrays.");

Calling Spotfire S+ from Java Applications

try {
doubTe d = CorrelationExample.getCorrelation(a, b);
System.out.printin("Correlation is: " + d);

}

catch (Exception e){
System.out.printin(e);

}
System.exit(0);
}
}
Embedding The GraphButtonsExample application launches a window containing
Graphs in a a graph region and buttons that generate graphs when pressed.

Custom GUI) o
import com.insightful.splus.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GraphButtonsExample {
static ActionlListener buttonActionListener;
public static void main(String [] args){

// Get the graph component
JComponent splusGraph = SplusUserApp.getGraph();

// Create the window
JFrame window = new JFrame("Graph Buttons Example™);

// Create buttons which query Spotfire S+ to
// produce graphs

buttonActionListener = new ActionlListener(){
public void actionPerformed(ActionEvent e){
String cmd = e.getActionCommand() + "\n";
try {
SplusUserApp.eval(cmd, false, false,
false, false, false);

91

Chapter 4 CONNECT/Java

92

catch (Exception ex) {
System.out.printin(ex);

}
}s

JPanel buttonPanel = new JPanel();
buttonPanel.setlLayout(new BoxLayout(buttonPanel,
BoxLayout.Y_AXIS));
buttonPanel.add(makeButton("plot(sin(1:10))"));
buttonPanel.add(makeButton("plot(rnorm(100))"));
buttonPanel.add(makeButton(
"print(example.normal.qq())"));
buttonPanel.add(makeButton("show colors, Tinetypes",
"{image(matrix(data=1:100,nrow=10,nco1=10));" +
"for (a in 1:50) { ang <- a*0.06; " +
"lines(c(5,5+10*cos(ang))," +
"c(5,5+10*sin(ang)), col=a) };for (a in 1:50) { " +
"ang <- -a*0.06; lines(c(5,5+10*cos(ang)), " +
"c(5,5+10*sin(ang)), Tty=a) }}"));
buttonPanel.add(makeButton(
"for (x in 1:10) plot(1l:x)"));

// Create an Exit button

JButton exitButton = new JButton("Exit");
exitButton.addActionlListener(new ActionListener() {
public void actionPerformed(ActionEvent ae)({
System.exit(0);
}
IO

// Also exit if the window is closed by the user

window.addWindowListener(new WindowAdapter(){
public void windowClosing(WindowEvent e){
System.exit(0);
}
1)

// Add the elements to the content pane

Sending a JDBC
ResultSet to
Spotfire S+

Calling Spotfire S+ from Java Applications

Container contentPane = window.getContentPane();
contentPane.setlLayout(new BorderLayout());

contentPane.add(splusGraph, BorderlLayout.CENTER);
contentPane.add(buttonPanel, BorderlLayout.EAST);
contentPane.add(exitButton, BorderLayout.SOUTH);

// Show the window
window.setSize(600, 400);
window.show();

// Utility methods to create a button

private static JButton makeButton(String splusCode){
return makeButton(splusCode, splusCode);

}

private static JButton makeButton(String buttonName,
String splusCode){
JButton b = new JButton(buttonName);
b.setActionCommand(splusCode);
b.addActionlListener(buttonActionListener);
return b;

Java provides the JDBC standard for accessing data from a database.
In JDBC, a ResultSet represents data returned from doing a
particular query to a particular database. The ResultSetUtilities
class in the com.insightful.splus.util package provides support
for creating a S-PLUS data.frame from a ResultSet.

This class is used by registering a ResultSet under a particular name.
The S-PLUS function javaGetResultSet("name") function can then
create a data.frame containing the values in the ResultSet.

The ResuTtSetExample shows how to register and access a
ResultSet. In this example, we use a LocalResultSet object. This
is an inner class defined to make the example self-contained and is
not presented here.

import com.insightful.splus.*;
import com.insightful.splus.util.ResultSetUtilities;

93

Chapter 4 CONNECT/Java

import java.sql.*;
import java.io.*;
import java.math.BigDecimal;

public class ResultSetExample {
public ResultSetExample() {

LocalResultSet theSet = new LocalResultSet();

// Register the ResultSet with ResultSetUtilities.
ResultSetUtilities.register("mySetId"”, theSet);

// Save ResultSet data in Spotfire S+ as "test.df".

String expr = "assign(\"test.df\",
javaGetResultSet(\"mySetId\", client =T),
where = 1)\n";

SplusDataResult result = SplusUserApp.eval(expr);

// Query Spotfire S+ to print test.df to show
// it’s there

System.out.printin("Printing test.df in
Spotfire S+.");

expr = "if (exists(\"test.df\")) print(test.df) else
print(\"test.df does not exist\")\n";

result = SplusUserApp.eval(expr, true, false, false,
false, false);
System.out.printin(result.getOutput());

public static void main(String [] args) {
new ResultSetExample();
System.exit(0);

}

Sending Multiple The SplusDataResult mechanism provides access to a single vector
Columns to Java of values. Multiple calls to eval() can be used to retrieve multiple
columns of data from a data.frame.

94

Transferring a
Graph to the
Client

A Simple
Application

Calling Spotfire S+ from Java Applications

Java has no direct equivalent to a data.frame. However, a collection
such as a Vector or ArraylList is available for storing multiple arrays
of data. These arrays can then be used in other Java routines, such as
writing to a database via JDBC.

The DataFrameArraylListExample shows how to create an ArraylList
containing the columns of a data.frame.

All of the file operations performed by Spotfire S+ are done on the
server file system. Often it is desirable to have a file saved on the
client file system. The FileUtilities classin
com.insightful.splus.util provides a transferBytes() function
that is useful for passing a file over file streams. Typically one file
stream will be created in the client JVM, and the other will be
obtained from the SplusSession using getFileInputStream() or
getFileQutputStream().

The TransferGraphExample shows how to create a graph on the
server and transfer it to the client.

The examples above use specific methods for the given application.
The ImageCalculatorExample combines various techniques presented
above to create an application that lets the user type in S-PLUS
expressions that are executed to create text and graphics output.

95

Chapter 4 CONNECT/Java

96

INTERFACING WITH C AND
FORTRAN CODE

Overview

When to Use the C and Fortran Interfaces
When Should You Consider the C or Fortran
Interface?
Reasons for Avoiding C or Fortran

Using C and Fortran Code with Spotfire S+
for Windows
Calling Simple C Code from Spotfire S+
Calling Simple Fortran Code from Spotfire S+

Calling C Routines from Spotfire S+ for Windows
Calling Fortran Routines from Spotfire S+

Writing C and Fortran Routines Suitable for
Use with Spotfire S+ for Windows
Exporting Symbols
Modifying Header Files
Building a Chapter with WatcomC/Fortran
Dynamically Linking Your Code

Common Concerns in Writing C and Fortran
Code for Use with Spotfire S+ for Windows
Changes in S.h
Handling IEEE Special Values
1/0 in C Functions
1/0 in Fortran Subroutines
Reporting Errors and Warnings
Calling Fortran From C
Calling C From Fortran
Calling Functions in the S-PLUS Engine DLL

99
100

100
100

102
102
105

109
111

114
114
115
117
118

119
119
121
124
124
125
130
132
132

97

Chapter 5 Interfacing with C and FORTRAN Code

Using C Functions Built into Spotfire S+ for
Windows
Allocating Memory
Generating Random Numbers

Calling Spotfire S+ Functions from C Code
(Windows)

The .Call Interface (Windows)
Requirements
Returning Variable-Length Output Vectors
S Object Macros

Debugging Loaded Code (Windows)
Debugging C Code

A Simple Example: Filtering Data (Unix)

Calling C or Fortran Routines From Spotfire S+
for Unix

Writing C and Fortran Routines Suitable for Use
in Spotfire S+ for Unix

Compiling and Dynamically Linking your
Code (Unix)

Common Concerns in Writing C and Fortran Code
for Use with Spotfire S+ for Unix

Using C Functions Built into Spotfire S+ for Unix
Calling S-PLUS Functions From C Code (Unix)
The .Call Interface (Unix)

Debugging Loaded Code (Unix)

A Note on StatLib (Windows and Unix)

98

134
134
136

138

146
146
147
148

151
151

155

157

161

162

166
177
180
187
192
195

OVERVIEW

Overview

A powerful feature of Spotfire S+ is the ability to extend its
functionality, enabling you to interface with compiled languages,
including C, Fortran, and C++. Interfaces to these languages allow
you to combine the speed and efficiency of compiled code with the
robust, flexible programming environment of Spotfire S+. Your
compiled routines are loaded into Spotfire S+ via dynamic loading,
that is, your compiled code, in the form of a dynamic link library

(DLL) on Windows” or a shared library on Unix, is loaded while
Spotfire S+ is running.

After you load the compiled routines, the .C, .Cal1, and .Fortran
functions are used to call compiled routines directly from Spotfire S+.

This chapter describes how to do the following tasks:
* Decide when and where to use compiled code.

* Write C, C++, and Fortran routines suitable for use in
Spotfire S+.

+ Create aloadable object (DLL or shared library) as part of an
S-PLUS chapter.

* Load the object in a Spotfire S+ session.

* Troubleshoot problems you may encounter with dynamic
loading.

* Debug your compiled code.

Each of these tasks can become quite complicated, so we begin with
an overview of when to use them and provide a simple example that
shows the basic flavor of writing, compiling, and using compiled
code.

Note

Spotfire S+ for Windows is compiled with Microsoft Visual C++ 6.0 and Compaq (formerly
Digital) Visual Fortran 6.0. TIBCO Software Inc. provides several useful enhancements that
make compiling C, C++, and Fortran code quite simple in the Visual Studio environment, so
our examples use that environment for simplicity. However, any C, C++, or Fortran compiler
capable of creating a fully relocatable DLL can be used to compile code for use with Spotfire S+.

99

Chapter 5 Interfacing with C and FORTRAN Code

WHEN TO USE THE C AND FORTRAN INTERFACES

When Should
You Consider
the C or
Fortran
Interface?

Reasons for
Avoiding C or
Fortran

100

The key to effective use of compiled code is knowing when and
where not to use such code. The following subsections provide some
criteria for deciding whether compiled code is the right choice for
your situation, and outline the basic procedure for using compiled
code in Spotfire S+.

Compiled C or Fortran code runs faster than interpreted Spotfire S+
code, but is neither as flexible nor as resilient as equivalent Spotfire
S+ code. Mismatching data types and overrunning arrays are just two
types of errors that can occur in compiled code but do not occur in
Spotfire S+ code. The best time to use compiled code is when you
have such code already written and tested. Another good time to use
compiled code is when you cannot use S-PLUS vectorized functions
to solve your problem without explicit loops or recursion. Recursion
in S tends to be very memory intensive; simulations that work for
small cases may fail as the number of iterations rises. If the iterated
computation is trivial, you can realize huge performance gains by
moving that portion of the calculation to compiled code.

Except via the .Ca11 interface, compiled code deals only with data
types fixed when the code is compiled. The C and Fortran interfaces
expect only the most basic data types, which correspond in Spotfire
S+ to storage modes, which underlie the S-PLUS class structure and
determine how data is actually stored. In general, there is a mode
corresponding to all the basic classes, such as Togical, character,
integer, single, numeric, and complex. If your code does something
numerical, it may be fine to convert all the inputs to double precision
(class numeric) and return double precision results.

If your code rearranges data, however, you probably do not want to
change the modes of the data, so Spotfire S+ code would be better
than compiled code. The C and Fortran interfaces ignore the class of
data sets, so they are not object oriented. To work on more general
types of S-PLUS data objects, you can still use C code, but via the
.Cal1l interface, discussed later in this chapter. Even with .Ca11,

working with objects other than those of the simple vector types is
difficult.

When to Use the C and Fortran Interfaces

It is usually harder to develop and debug compiled code than S-
PLUS functions. With compiled code, you must make sure not only
that the compiled code works, but also that the S-PLUS function that
calls it works and is compatible with the compiled code.

Compiled code is usually not as portable as Spotfire S+ code. Other

users who would like to use your code may not have the appropriate
compilers or the compilers on other machines may not be compatible
with one another. Your code may also depend upon certain libraries

that others may not have.

A good strategy is to do as much as possible in Spotfire S+ code,
including error checking, data rearrangements, selections and
conversions, storage allocation, and input/output, and use compiled
code to do only the numerical or character string calculations
required. When developing new functions in Spotfire S+, you should
probably write the entire function in Spotfire S+ code first. Then, if
the pure Spotfire S+ version is too slow or memory intensive (and
you expect it to be used a lot), look for bottlenecks and rewrite those
parts in C.

101

Chapter 5 Interfacing with C and FORTRAN Code

USING C AND FORTRAN CODE WITH SPOTFIRE S+
FOR WINDOWS

Calling Simple
C Code from
Spotfire S+

102

Spotfire S+ for Windows is compiled with Microsoft Visual C++ 6.0
and Compaq (formerly Digital) Visual Fortran 6.0. TIBCO Software
Inc. provides several useful enhancements that make compiling C,
C++, and Fortran code quite simple in the Visual Studio
environment. Our examples will use that environment for simplicity.
However, any C, C++, or Fortran compiler capable of creating a fully
relocatable DLL can be used to compile code for use with Spotfire
S+. Later in the chapter, there is an example using the Watcom
compiler.

The basic steps for interfacing C code with Spotfire S+ using the
Visual Studio/C++ Environment on Windows are as follows:

1. Obtain C source code (write it, get someone else to write it for
you, download it from the Internet, and so on).

2. Create Visual Studio project for the source code.

3. Build the Visual Studio project to create dynamic link library
(DLL) that can be loaded into Spotfire S+.

4. Load the DLL into Spotfire S+.

5. Write a Spotfire S+ function that calls your C code via the
.Cal1 function.

6. Run your S-PLUS function.

The steps for calling Fortran code are essentially the same, but you
use the Visual Fortran compiler within Visual Studio.

To illustrate the steps we show how to create a function to apply a
first-order linear recursive filter to a vector of data. A pure Spotfire
S+ version of the function is seen in the following example:

Ar <- function(x, phi)
{
n <- length(x)
if (n>1)
for (i in 2:n)

Using C and Fortran Code with Spotfire S+ for Windows
x[1] <- phi * x[i - 1] + x[1i]

}

Looping is one area where Spotfire S+ tends to be significantly slower
than compiled code, so this is a good candidate for implementation in
C. (Note that the S-PLUS filter function computes a recursive filter
efficiently, but for the sake of the example we ignore that).

A C function for the filter is

void arsim(double *x, long *n, double *phi)
{
long i;
for (i=1; i<*n; i++)
x[i] = *phi * x[i-11 + x[i] ;
}
This code is purely C language code; there are no dependencies on C
libraries, Spotfire S+, or the Windows API. Such code should be

portable to most operating systems and most Windows compilers. It

is quite simple to create a DLL from this code using Visual C++ 6.0®:

1. Start Visual C++ 6.0, and from the File menu, select New.
2. From the New dialog, select the Projects tab.

3. In the Project Workspace dialog, specify ar as the name for
the project and for Project Type choose S-PLUS Chapter
DLL (.C and .Call) (not MFCAppWizard (dll)). Press OK
to create the project.

4. In the dialog that pops up, enter the full path to the file
Sqgpe.dll which is typically C:\Program
Files\TIBCO\splus82\cmd\Sqpe.dll then click the
Finished button. (The C:\Program Files\TIBCO\splus82
part of the path is the location where you installed Spotfire
S+). A New Project information dialog pops up. Note the
Project directory, ending with ar, listed at the bottom. Click
OK to close it.

5. In the left pane of Visual C++, click the File View tab (at the
bottom) and then expand the ar files folder and then the
Source Files folder.

6. Double click the ar.cxx file icon to open up the sample C++
code in the right panel.

103

Chapter 5 Interfacing with C and FORTRAN Code

104

7. Select all the code ar.cxx and delete it. Replace it with the
code for the arsim function written above.

8. Double-click the ar.def file to open up the module definitions
file in the right panel.

9. Replace the comments under the section labeled EXPORTS
with arsim and press return.

10. Save the ar.def file by selecting Save from the File menu in
Visual C++.

11. From the Build menu, choose the Rebuild All selection.
This will compile the arsim function and create a dynamic
link library (DLL) called S.dll in the project directory.

The next step is load the S.dll into Spotfire S+. There are several
ways to load the DLL. After starting Spotfire S+ you can do one of
the following:

+ Explicitly load the S.dll with the dyn.open function:
dyn.open(“__path__to__ar__/ar/S.d11”)

or declare the ar project directory a Spotfire S+ chapter and
attach it, as follows:

* Open the dialog from File » Chapters » Attach/Create
Chapter and then use the Browse button to navigate to your
ar project directory. Click the OK button. This will create a
.Data subdirectory in ar, attach the directory, and load the
S.dll into Spotfire S+.

You now need an S-PLUS function that calls the arsim C function.
Here is the basic version:

arC <- function(x, phi)

{

.C("arsim",
as.numeric(x),
length(x),
as.numeric(phi))[[1]]

}

We are passing in three arguments to the arsim C function and we use
as.numeric to coerce the arguments to the correct type that the C
code is expecting (the length function returns an integer).

Define the function in a Spotfire S+ Script window by pressing F10.

Using C and Fortran Code with Spotfire S+ for Windows

Try running arC at the Spotfire S+ command line:
> arC(1:8, .25)

[1I] 1.000000 2.250000 3.562500 4.890625 6.222656
7.555664 8.888916 10.222229

You lose some flexibility in the function by writing it in C. Our arcC
function converts all input data to double precision, so it will not work
correctly for complex data sets or objects with special arithmetic
methods. The pure Spotfire S+ version works for all these cases. If
complex data is important for your application, you could write C
code for the complex case and have the Spotfire S+ code decide
which C function to call. Similarly, to make arC work for data in
classes with special arithmetic methods, you could have it call the C
code only after coercing the data to class numeric, so that it could not
invoke special arithmetic methods. This might be too conservative,
however, as there could be many classes of data without arithmetic
methods which could use the fast C code.

Another approach would be to make arC a generic function for which
the default method calls the C code for numeric data. For classes with
special arithmetic methods, pure Spotfire S+ code could be
dispatched. Those classes of data without special arithmetic methods
could include a class method for arC that would coerce the data to
class numeric and invoke the default method on the now numeric
data, thus using the fast compiled code, then post-process the result if
needed (perhaps just restoring the class). Using the object-oriented
approach is more work to set up, but gives you the chance to combine
the speed of compiled code with the flexibility of Spotfire S+ code.

Note

In order to recompile an existing S.dll, detach the Spotfire S+ chapter containing the S.dll,
recompile, then reattach after the DLL is compiled. Or if you use dyn.open(), call dyn.close()
prior to compiling the code.

Calling Simple
Fortran Code
from Spotfire
S+

The basic steps for interfacing Fortran code with Spotfire S+ for
Windows are essentially the same as the steps for interfacing with C
code with Spotfire S+, but you use the Visual Fortran compiler within
Visual Studio. For the sake of consistency, we will translate the C
example in the previous section to it's Fortran equivalent.

105

Chapter 5 Interfacing with C and FORTRAN Code

The basics steps for Fortran are the same as the steps for C code:

L.

6.

Obtain Fortran source code (write it, get someone else to
write it for you, download it from the Internet, etc.).

Create a Visual Fortran project for the source code.

Build the Visual Fortran project to create dynamic link library
(DLL) that can be loaded into Spotfire S+.

Load the DLL into Spotfire S+.

Write an S-PLUS function that calls your Fortran code via the
.C function.

Run your S-PLUS function.

We will the same first-order linear recursive filter as we used for
above for C for implementation in Fortran. An example of Fortran
implementation for the filter is the following:

subroutine arsim(x, n, phi)

¢ inputs:
double precision x(1), phi
integer n
integer i
do 10 i =2, n
x(1) = phi * x(i-1) + x(i)
10 continue
return

end

To create a DLL from this code using Visual Fortran 6:

L.
2.
3.

106

Start Visual Fortran 6.0, and from the File menu, select New.
From the New dialog, select the Projects tab.

In the Project Workspace dialog, specify ar as the name for
the project and for Project Type choose S-PLUS Chapter
DLL (.Fortran) (not MFCAppWizard (dll)). Press OK to

create the project.

In the dialog that pops up, enter the full path to the file
Sqpe.dll which is typically

C:\Program Files\TIBCO\splus82\cmd\Sqpe.dll

10.
11.

12.

Using C and Fortran Code with Spotfire S+ for Windows

then click the Finished button. (The C:\Program
Files\TIBCO\splus82 part of the path is the location where
you installed Spotfire S+). A New Project information dialog
pops up. Note the Project directory, ending with ar, listed at
the bottom. Click OK to close it.

In the left pane of Visual Fortran, click the File View tab (at
the bottom) and then expand the ar files folder.

Double-click the ar.f file icon in the Resource files folder to
open up the sample Fortran code in the right panel.

Select all the code ar.f and delete it. Replace it with the code
for the arsim routine written above.

From the Project menu choose Settings.

Select the Pre-link step tab (you may have to use the arrow
keys at the right-hand side of the dialog to navigate to the
appropriate tab).

Under Pre-link command(s), click inside the outlined box.

Type the full path to spexport.exe in your SHOME\cmd
directory, specify ar.f as the output file with the -o flag, and
specify the object files for which you want symbols exported.

An example (the following should be typed on a single line):

C:\Program Files\TIBCO\splus82\cmd\spexport.exe

-0 ar.def *.obj
From the Build menu, choose the Build S.dll selection. This
will compile the arsim function and create a dynamic link
library (DLL) called S.dll in the project directory.

The next step is load the S.dll into Spotfire S+, and there are several
ways to load it. After starting Spotfire S+, you can do the following:

Explicitly load the S.dll with the dyn.open function:

dyn.open(“__path__to__ar__/ar/S.d11”)

or declare the ar project directory a Spotfire S+ chapter and
attach it:

107

Chapter 5 Interfacing with C and FORTRAN Code

108

Open the dialog from File » Chapters » Attach/Create
Chapter and then use the Browse button to navigate to your
ar project directory. Click the OK button, which creates a
.Data subdirectory in ar, attach the directory, and load the
S.dll into Spotfire S+.

You now need an S-PLUS function that calls the arsim Fortran
function. Here is the basic version:

arFor <- function(x, phi) {
.Fortran(“arsim”,
as.numeric(x),
length(x),
as.numeric(phi))[[1]]
}

We are passing in three arguments to the arsim Fortran function and
we use as.numeric to coerce the arguments to the correct type that
the Fortran code is expecting (the lengthb function returns an
integer).

Trying out the arFor:

> arFor(1:8, .25)

[1I] 1.000000 2.250000 3.562500 4.890625 6.222656
7.555664 8.888916 10.222229

The rest of this chapter includes more details on using C and Fortran
code with Spotfire S+.

Calling C Routines from Spotfire S+ for Windows

CALLING C ROUTINES FROM SPOTFIRE S+ FOR WINDOWS

To call a C function, use the S-PLUS function .C, giving it the name of
the function (as a character string) and one S-PLUS argument for
each C argument. For example, a typical “vectorized” calculation,
such as sin, requires you to pass an S-PLUS data object x and its
length n to the C function performing the calculation:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

we will define the C routine my_sin_vec in the section Writing C and
Fortran Routines Suitable for Use with Spotfire S+ for Windows on
page 114.

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .C function is a list with each component
matching one argument to the C function. If you name these
arguments, as we did in the preceding example, the return list has
named components. Your S-PLUS function can use the returned list
for further computations or to construct its own return value, which
generally omits those arguments which are not altered by the C code.
Thus, if we wanted to just use the returned value of x, we could call .C
as follows:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))$x.

All arguments to C routines called via .C must be pointers. All such
routines should be void functions; if the routine does return a value, it
could cause Spotfire S+ to crash. Spotfire S+ has many classes that
are not immediately representable in C. To simplify the interface
between Spotfire S+ and C, the types of data that Spotfire S+ can pass
to C code are restricted to the following S-PLUS classes: single,
integer, double, complex, logical, character, raw, and 1ist.

109

Chapter 5 Interfacing with C and FORTRAN Code

Table 5.1shows the correspondence between Spotfire S+ modes and

C types.

Table 5.1: Correspondence between S-PLUS classes and C types.
Spotfire S+ Storage Mode Corresponding C Type
“lTogical” long*

“integer” long**
“single” float**
“double” double*
“complex” s_complex*
“character” char**
“raw” char*
“Tist” S_object**

Warning

Do not declare integer data as C ints, particularly if you want your code to be portable among
machines that Spotfire S+ supports. While there is currently no difference on Windows, there is

a distinction on other platforms.

The include file S.h described later in this chapter contains the
typedef for the type s_complex that defines it as the struct composed

of two doubles, re and im.

Calling C++ To call a C++ function, you also use the .C function (or, alternatively,
the .Ca11 or Connect C++ interface, mentioned later in this chapter).
Using .C is not a direct C++ interface, and hence Spotfire S+ will
have no understanding of C++ name mangling. Thus, to call a C++
function, you must declare it inside an extern "C" braced expression.
For example, here is some simple code to compute squares:

#include "S.h"
extern "C" {

110

Calling Fortran
Routines from
Spotfire S+

Calling C Routines from Spotfire S+ for Windows

void squareC(double* pdX, double* pdY, long* pllLen)
{

S_EVALUATOR

//Validate the input arguments

if((pdX == NULL) || (pdY == NULL) || plLen == NULL)
PROBLEM "Invalid input" ERROR;

//Perform element-by-element operation

//to square each element of input

for(long n=0; n< *pllLen; n++)
pdY[n]l = pdX[n]l * pdX[n];

return;

}

In the above code, the macro S_EVALUATOR is required because we are
using the macros PROBLEM and ERROR; all three macros are discussed
later in the chapter.

We can call this with . C using the simple Spotfire S+ code shown
below:

square <- function(x){
len = length(x)
y = .C("squareC",
as.double(x),
y = double(len),
len)$y

To call a Fortran subroutine, use the S-PLUS function .Fortran,
giving it the name of the subroutine (as a character string) and one S-
PLUS argument for each Fortran argument. For example, a typical
“vectorized” calculation, such as sine, requires you to pass an S-PLUS
data object x and its length n to the Fortran subroutine performing the
calculation:

111

Chapter 5 Interfacing with C and FORTRAN Code

.Fortran("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

Note

You can call only Fortran subroutines from Spotfire S+; you cannot call Fortran functions.

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .Fortran function is a list with each
component matching one argument to the Fortran subroutine. If you
name these arguments, as we did in the preceding example, the
return list has named components. Your S-PLUS function can use the
returned list for further computations or to construct its own return
value, which generally omits those arguments which are not altered
by the Fortran code. Thus, if we wanted to return just the object x, we
could call .Fortran as follows:

.Fortran("my_sin_vec", x = as.double(x), n =
as.integer(length(x)))$x

Spotfire S+ has many data classes that are not representable
immediately in Fortran. To simplify the interface between Spotfire S+
and Fortran, the types of data that Spotfire S+ can pass to Fortran
code are restricted to the following Spotfire S+ storage modes:
single, integer, double, complex, logical, and character. The
following table shows the correspondence between Spotfire S+
modes and Fortran types.

Table 5.2: Correspondence between S-PLUS classes and C types.

Spotfire S+ Storage Mode Corresponding Fortran Type
“lTogical” LOGICAL

“integer” INTEGER

“single” REAL

112

Calling C Routines from Spotfire S+ for Windows

Table 5.2: Correspondence between S-PLUS classes and C types.

Spotfire S+ Storage Mode Corresponding Fortran Type
“double” DOUBLE PRECISION

“complex” DOUBLE COMPLEX

“character” CHARACTER(*)

Warnings

Spotfire S+ will not pass arrays of character strings to Fortran routines; only the first element.

The Fortran type DOUBLE COMPLEX (or COMPLEX*16) is a complex number made of double
precision parts; it may not be available with all Fortran compilers. It is available in the Compaq
(formerly Digital) Visual Fortran and Watcom Fortran compilers.

When passing character data to Fortran routines, the compiled code should be expecting two
arguments for each character argument passed; one for the data itself and another integer
argument giving the number of characters in the previous argument. If your compiler cannot
generate code to do this, do not pass character data to Fortran routines.

113

Chapter 5 Interfacing with C and FORTRAN Code

WRITING C AND FORTRAN ROUTINES SUITABLE FOR USE
WITH SPOTFIRE S+ FOR WINDOWS

Exporting
Symbols

114

If you have a routine for which some of the arguments are not
pointers, or which returns a value, you must write a wrapper routine
which passes all data via pointer arguments, does not return a value,
and calls the routine of interest. For example, we might have a sin
function routine written in C and declared as follows:

double sin(double x)

You cannot call this via the .C interface, because it both takes a
double-precision argument by value and returns a value. You must
write an Spotfire S+-compatible wrapper for sin() as follows, and then
load both procedures:

extern double sin() ;
void my_sin (double *x)
{
*x = sin(*x) ;
}
Since sin() does not take a vector argument, you probably want to
use the wrapper function to provide a vectorized form of it:

#include <S.h>
#include <math.h> /* to declare extern double sin() */
void my_sin_vec(double *x,Tong *n)
{
long i
for (i=0 ; 1 < *n ; i++)
x[1] = sin(x[i]) ;

For C and C++ code, there are two ways to ensure your symbols are
exported correctly: either via header files or through the module
definition file. Your code will generally be considered cleaner if your
header files are correctly coded; use the module definition file for
compiling code without header files (often, simple C routines that are
passed around just as . c files).

Writing C and Fortran Routines Suitable for Use with Spotfire S+ for Windows

For Fortran code, which does not have header files, you must use the
module definition file to ensure your symbols are exported correctly.
We discuss both ways to ensure symbols are exported correctly.

Note

When building a chapter with Watcom C or Fortran using CHAPTER or createChapter, all
globally accessible symbols are automatically exported.

Modifying
Header Files

In general, C and C++ functions are declared in header files. If a
project includes header files that declare, appropriately exported, all
the routines it intends to call, the built application automatically
exports all the symbols it needs.

If you change or modify a function’s definition, you also need to
update its declaration in the header file. For example, when you
create a new Spotfire S+ Chapter DLL, both a source file and its
associated header file are created for you. If you modify the template
function itself, particularly if you modify the template’s parameter
list,you need to also modify the associated header file.

Specifically, consider our ar example. When we originally create the
project, it includes a source file ar.cxx containing the function arC
function as follows:

[ILTTTTTEETTT 00077 i 7 i i rir77 7707007770710 1107777717
// ar.cxx: Implementation of ar2C and ar2Call

[ILTTTTTEET0T T 0077 i i riri7i 7007777070077 707701070777777
#include "S.h"

f##include "sconnect.h”

f#include "ar.h"

[ILTTTTTEET0 707077 i i ir77 7707007770710 1707777717
// arC() - SPLUS-interface via .C()

//

// See Chapter 16 of the "Spotfire S+ Programmer’s Guide"
// for details on how the interface works.

// See ar.ssc for implementation of the S function

// that calls ar2C()

[ILTTTTTEETT T D707 i 77 i i rii777 7107007770710 10707777717

void arC(double* pdX, double* pdY, long* pllLen)

115

Chapter 5 Interfacing with C and FORTRAN Code

Using a Module
Definition File

116

{

S_EVALUATOR

// TODO: Replace the example codes below with your own

// code.

//Validate the input arguments

if((pdX == NULL) || (pdY == NULL) || plLen == NULL)
PROBLEM "Invalid input"™ ERROR;

//Perform element by element operation

for(long n=0; n< *pllLen; n++)
pdY[n] = pdX[n] * pdX[nl; //

//The output = the input squared

return;

}

When we pull out the definition of arC and replace it with the
definition of arsim, we need to modify the header file ar.h to remove
the reference to arC and replace it with the reference to arsim. That
is, we need to change the line in ar.c reading:

AR_DLL_API(void) arC(double*, double*, long*);
to:
AR_DLL_API(void) arsim(double*, Tong*, double*);

Updating the header file’s declarations guarantees that the compiler
and linker will export the appropriate symbols.

When you create a Visual Studio project for your C, C++, or Fortran
code, a module definition file is created automatically as part of the
process. However, the created file is typically just a stub, with no real
information about exported symbols.

To create a useful module definition file, use the program
spexport.exe included with Spotfire S+ in the cmd subdirectory of
your SHOME directory. The simplest way to do this is to make it a
standard part of your build process by including it as a pre-link step in
your project settings, as follows:

1. From the Project menu in Visual Studio, choose Settings.

2. Select the Pre-link step tab (you might have to use the arrow
keys at the right-hand side of the dialog to navigate to the
appropriate tab).

Building a
Chapter with
Watcom(/
Fortran

Writing C and Fortran Routines Suitable for Use with Spotfire S+ for Windows

3. Under Pre-link command(s), click inside the outlined box.

4. Type the full path to spexport.exe, specify an output file
using the -o flag, and specify the object files for which you
want symbols exported.

For example (the following should be typed on a single line):

c:\Program Files\TIBCO\splus82\cmd\spexport.exe -o ar.def
*.0bj

You can also create your own module definition file by hand. To get a
list of symbols from a DLL, use the DUMPBIN utility described in the
section Listing Symbols Using DUMPBIN on page 132.

To create a module definition file for use with the Watcom compiler,
use the spexport.exe program as shown in Step 4 of the above
example, but add the -w flag. Watcom Version 11 is assumed; if you
have version 10.x, specify -w10.

If you are using Watcom C or Fortran, you can build a new chapter
for Spotfire S+ very easily as follows:

1. Ensure that the directories containing your compiler, linker,
and make utility are included in your PATH environment
variable. Ensure that your WATCOM environment variable is set
to the directory containing your Watcom compiler.

2. Ensure that the Splus.ini file located in the cmd directory
under your Spotfire S+ installation directory refers to the
correct files. The contents of the file should read as follows:

[chapter]
rules = wrules.mak
make = wmake.exe

3. From a Commands Prompt or DOS window, call the CHAPTER
utility as follows:

splus CHAPTER -d c:\myproj -m
or, from within Spotfire S+, call the createChapter function:

> createChapter("c:\\myproj", T)

117

Chapter 5 Interfacing with C and FORTRAN Code

Dynamically
Linking Your
Code

118

Whenever you attach a Spotfire S+ chapter containing a shared
object S.dll, including whenever you start up Spotfire S+ in such a
chapter, the shared object is opened and the code it contains is loaded
into Spotfire S+.

You can open shared objects without attaching a chapter by using the
dyn.open function. For example, if your colleague Fred has C code
you want to access from your own set of S-PLUS functions, you might
open Fred’s S.dll shared object as follows (assuming his files are
mapped to your H: drive):

> dyn.open("H:/mysplus/S.d11")
You can close previously opened shared objects using dyn.close:
> dyn.close("H:/mysplus/S.d11™)

If you are actively developing code, you may want to load, test,
rebuild, unload, and reload your code repeatedly during a given
Spotfire S+ session. To do this, you could use the dyn.open and
dyn.close functions described above, but you may find, especially if
you initially loaded your code automatically on startup, that
dyn.close does not completely remove the DLL from your session. A
safer and surer way to ensure that the old DLL (and all its symbols)
are unloaded before the new DLL is loaded is to call synchronize
after rebuilding the DLL. For example, if you are developing your
code in your current working chapter, you could unload and reload
the DLL with the following call:

> synchronize(l)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

COMMON CONCERNS IN WRITING C AND FORTRAN CODE
FOR USE WITH SPOTFIRE S+ FOR WINDOWS

Changes in S.h

While the actual calls to .C and .Fortran are straightforward, you
may encounter problems loading new compiled code into Spotfire S+
and we will discuss some common problems. We also describe some
C procedures and macros which you may use to write more portable
code, to generate random numbers from C code, to call S-PLUS
functions from your C code, to report errors, to allocate memory, and
to call Fortran procedures from C code.

In order to have access in C to most functions and macros described
below, you will have to include the header file S.h in your source
files:

fHinclude <S.h>

and make sure that you specify the %SHOME%\include include
directory in your compiler directives. That directory is specified
automatically when you create your projects using Visual C++. If you
will be using any Windows API calls in your code, so that you need to
include windows.h, include windows.h first, then S.h and any other
include files you need.

The file S.h has changed significantly since S-PLUS 2000; if you have
existing code that includes S.h, you may have to modify your calls to
the internal Spotfire S+ routines. In particular, most of the calls now
require the use of the macro S_EVALUATOR and an additional
argument, S_evaluator. For examples of using the newer macro and
the new argument, see the following:

+ section Using C Functions Built into Spotfire S+ for Windows
on page 134

or

+ section Using C Functions Built into Spotfire S+ for Unix on
page 177

In addition, some variables have been renamed and some routines
which previously had declarations in S.h have had their declarations
moved elsewhere. In general, these changes affect only variables and

119

Chapter 5 Interfacing with C and FORTRAN Code

routines which were previously undocumented. A new variable,
S_COMPATIBILITY, allows you to compile code that uses some of the
redefined variables. If you define S_COMPATIBILITY (before including
S.h) as follows:

ftdefine S_COMPATIBILITY 1

120

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

you obtain the old definitions of the following variables:
* TRUE, FALSE, and MAYBE (now S_TRUE, S_FALSE, and S_MAYBE);
* complex (now s_complex);
* NULL_MODE (now S_MODE_NULL);
e LGL, INT, REAL, DOUBLE, CHAR, LIST, COMPLEX, RAW;

e ANY, STRUCTURE, MAX_ATOMIC, atomic_type (IlOW S_MODE_LGL,
and so on).

Defining S_COMPATIBILITY as 10 instead of 1 adds the following old
definitions:

vector, boolean, void_fun, fun_ptr (now s_object, s_boolean,
s_void_fun, and s_fun_ptr respectively)

We recommend that you migrate any code that uses the old variable
names to use the new names, because of potential conflicts with other
applications, particularly under the Windows operating systems.

Handling IEEE Spotfire S+ handles IEEE special values such as NaN, Inf or - Inf, for
Special Values all supported numeric classes (integer, single or double).

* NaN represents the number you obtain when you divide 0 by

0.

* Inf represents the number you obtain when you divide 1 by
0.

* -Inf represents the number you obtain when you divide -1 by
0.

In addition, Spotfire S+ supports NA, which represents a missing
value: that is, a value to use when none is available. S-PLUS functions
attempt to handle properly computations when missing values are
present in the data. Both NaN and NA are displayed as NA, but the data
values are properly kept as different values.

The .C and .Fortran functions have two arguments, the NAOK and the
specialsok argument, that you can use to specify whether your code
can handle missing values or IEEE special values (Inf and NaN),
respectively. Their default value is FALSE: if any argument to .C or
.Fortran contains an NA (or Inf or NaN), you get an error message and

121

Chapter 5 Interfacing with C and FORTRAN Code

your code is not called. To specify these arguments, you must use
their complete names, and you cannot use these names for the
arguments passed to your C or Fortran code.

Warning

The NAOK and specialsok arguments refer to all of the arguments to your compiled code. You
can allow NAs or IEEE special values in all of the arguments or none of them. Because typically
you do not want NAs for certain arguments, such as the length of a data set, you must specially
check those arguments if you use NAOK=T (or specialsok=T).

122

Dealing with IEEE special values is easily done in C as long as you
use the macros described below. It is possible, yet undocumented
here, to do the same in Fortran, but refer to your Fortran compiler
documentation for details.

It is often simplest to remove NAs from your data in the Spotfire S+
code, but is sometimes better done in C. If you allow NAs, you should
deal with them using the C macros is_na() and na_set() described
below. The arguments to.C and . Fortran cannot contain any NAs
unless the special argument NAOK is T. The following macros test for
and set NAs in your C code:

is_na(x,mode)
na_set(x,mode)

The argument x must be a pointer to a numeric type and the
argument mode must be one of the symbolic constants S_MODE_LGL (S-
PLUS class "Togical"), S_MODE_INT (S-PLUS class "integer"),
S_MODE_REAL (S-PLUS class "single"), S_MODE_DOUBLE, or
S_MODE_COMPLEX, corresponding to the type x points to: Tong, Tong,
float, double, or complex, respectively. For example, the following C
code sums a vector of double precision numbers, setting the sum to NA
if any addends are NA:

f#finclude <S.h>
void my_sum(double *x, long *n, double *sum) {
long i;
*sum = 0 ;
for (i =0 ; i < *n ; i++)
if (is_na(&x[i], S_MODE_DOUBLE)) {
na_set(sum, S_MODE_DOUBLE);

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

break;
}
else
*sum += x[1];
}

Use the following S-PLUS function to call this routine:

> my.sum <- function(x) .C("my_sum", as.double(x),
as.integer(length(x)), double(1), NAOK = T)[[3]]

Call this from Spotfire S+ as follows:
> my.sum(c(1,NA,2))

[11 NA

> my.sum(1l:4)

[1] 10

If you omit the argument NAOK=T in the call to .C, you get the
following message:

> my.sum <- function(x)

.C("my_sum", as.double(x), as.integer(length(x)),
double(1))[[3]]

> my.sum(c(1,NA,2))

Problem in .C("my_sum",: subroutine my_sum: 1 missing
value(s) in argument 1

Use traceback() to see the call stack

Warning

Both is_na() and na_set() have arguments that might be evaluated several times; therefore, do
not use expressions with side effects in them, such as na_set (&x[i++], S_MODE_DOUBLE).
Otherwise, the side effects may occur several times. The call is_na(x,mode) returns 0 if *x is not
an NA and nonzero otherwise (the nonzero value is not necessarily 1). The return value tells what
sort of value *x is: Is_NA meaning a true NA and Is_NaN meaning an IEEE not-a-number. To
assign a NaN to a value, use the alternative macro na_set3(x,mode, type), where type is either
Is_NA or Is_NaN. The macro na_set(x,mode) is defined as na_set3(x,mode,Is_NA).

123

Chapter 5 Interfacing with C and FORTRAN Code

1/0 in C
Functions

1/0 in Fortran
Subroutines

124

You can use the macros is_inf(x,mode) and inf_set(x,mode,sign)
to deal with IEEE infinities. If you allow IEEE special values, your
code should be aware that x != x is TRUE if x is a NaN. On machines
supporting IEEE arithmetic (including most common workstations),
1/0 is Inf and 0/0 is NaN without any warnings given. You must set
the .C argument specialsok to T if you want to let Spotfire S+ pass
NaNs or Infs to your C code. The call is_inf(x,mode) returns 0 if *x
is not infinite and +1 if *x is + ?, respectively. The call
set_inf(x,mode,sign) sets *x to an infinity of the given mode and
sign, where the sign is specified by the integer +1 for positive infinities
and -1 for negative infinities. Similarly, the call is_nan(x, mode)
returns 0 if *x is not a NaN and 1 if it is.

File input and output is fully supported in C code called from Spotfire
S+, but input and output directed to the standard streams STDIN,
STDOUT, and STDERR requires special handling. This special handling is
provided by the header file newredef.h, which is included when you
include S.h. For example, if you use the printf() function to add
debugging statements to your code, you must include S.h, which
includes newredef.h, to ensure that your messages appear in a
Spotfire S+ GUI window rather than simply disappear. The
newredef.h file does not support scanf(); to read user input from
the Spotfire S+ GUI, use fgets() to read a line, and then use

sscanf () to interpret the line.

Fortran users cannot use Fortran WRITE or PRINT statements because
they conflict with the I/O in Spotfire S+. Therefore, Spotfire S+
provides the following three subroutines as analogs of the S-PLUS
cat function:

* DBLEPR Prints a double precision variable.
* REALPR Prints a real variable.
* INTPR Prints an integer variable

As an example of how to use them, here is a short Fortran subroutine
for computing the net resistance of 3 resistors connected in parallel:

SUBROUTINE RESIS1(R1, R2, R3, RC)
o COMPUTE RESISTANCES
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR('First Resistance', -1, R1,1)

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

Reporting
Errors and
Warnings

C Functions

RETURN
END

The second argument to REALPR specifies the number of characters in
the first argument; the -1 can be used if your Fortran compiler inserts
null bytes at the end of character strings. The fourth argument is the
number of values to be printed.

Here is a S-PLUS function that calls RESIS1:

> parallel<-function(rl,r2,r3) {
.Fortran("resisl",as.single(rl),as.single(r2),
as.single(r3),as.single(0))[[4]]
}

Running parallel produces the following:

> parallel(25,35,75)

First Resistance
[1] 25
[1] 12.2093

Spotfire S+ provides two functions, stop and warning, for detecting
and reporting error and warning conditions. In most cases, you
should try to detect errors in your Spotfire S+ code, before calling
your compiled code. However, Spotfire S+ does provide several tools
to aid error reporting in your compiled code.

The include file S.h defines macros that make it easy for your C code
to generate error and warning messages. The PROBLEM and ERROR
macros together work like the S-PLUS function stop:

PROBLEM "format string"”, argl, ..., argn
ERROR

The PROBLEM and WARN macros together work like the warning
function:

PROBLEM "format string”, argl, ..., argn
WARN

125

Chapter 5 Interfacing with C and FORTRAN Code

The odd syntax in these macros arises because they are wrappers for
the C library function sprintf(); the PROBLEM macro contains the
opening parenthesis and the ERROR and WARN macros both start with
the closing parenthesis. The format string and the other arguments
must be arguments suitable for the printf() family of functions. For
example, the following C code fragment:

#include <S.h>
double x ;
S_EVALUATOR

if (x <= 0)

PROBLEM "x should be positive, it is %g", x
ERROR ;

is equivalent to the Spotfire S+ code:
> if (x<=0) stop(paste("x should be positive, it is", x))

Both print the message and exit all of the currently active S-PLUS

functions calls. Spotfire S+ then prompts you to try again. Similarly,
the C code:

f#include <S.h>
double x ;
S_EVALUATOR

if (x <= 0)

PROBLEM "x should be positive, it is %g", x
WARN;

is equivalent to the Spotfire S+ code:

> if (x<=0) warning(paste("x should be positive, it is",
X))

Warning

The messages are stored in a fixed length buffer before printing, so your message must not
overflow this buffer. The buffer length is given by ERROR_BUF_LENGTH in S.h and is currently
4096 bytes. If your message exceeds this length, Spotfire S+ is likely to crash.

126

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

Fortran
Subroutines

Many of the I/0O statements encountered in a typical Fortran routine
arise in error handling-when the routine encounters a problem, it
writes a message.

A previous section proposed using DBLEPR, REALPR, and INTPR for any
necessary printing. An alternative approach in Spotfire S+ is to use
the Fortran routines XERROR and XERRWV for error reporting, in place of
explicit WRITE statements. For example, consider again the Fortran
routine RESIS1, which computes the net resistance of 3 resistors
connected in parallel. A check for division by 0 is appropriate, using
XERROR:

SUBROUTINE RESIS1(R1, R2, R3, RC)

C COMPUTE RESISTANCES
IF (Rl .EQ. 0 .OR. R2 .EQ. 0 .OR. R3 .EQ. 0) THEN
CALL XERROR(’Error : division by 0’
+LEN(’Error : division by 0°),99,2)
RETURN
END IF
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR(’First Resistance’, -1, R1,1)

RETURN
END

XERROR takes four arguments: a character string message, an integer
giving the length of the string in message, an error number (which
must be unique within the routine), and an error level. If message is a
quoted string, the length-of-message argument can be given as
LEN(message).

The XERRWV routine acts like XERROR but also allows you to print two
integer values, two real values, or both.

The first four arguments to XERRWV, like the first four arguments to
XERROR, are the message, the message length, the error ID, and the
error level. The fifth and eighth arguments are integers in the range 0-
2 that indicate, respectively, the number of integer values to be
reported and the number of real (single precision) values to be
reported. The sixth and seventh arguments hold the integer values to
be reported, the ninth and tenth arguments hold the real values to be
reported.

127

Chapter 5 Interfacing with C and FORTRAN Code

In the following call to XERRWV, the fifth argument is 1, to indicate that
one integer value is to be reported. The sixth argument says that n is
the integer to be reported:

XERRWV(MSG, LMSG,1,1,1,n,0,0,0.0,0.0)

The following Fortran subroutine, test.f, shows a practical
application of XERRWV:

subroutine test(x, n, ierr)

real*8 x(1)

integer n, ierr, LMSG

character*100 MSG

ierr =0

if (n.1t.3) then
MSG ="'Integer (I1) should be greater than 2°'
LMSG = len('Integer (I1) should be greater than 2°'
CALL XERRWV(MSG,LMSG,1,1,1,n,0,0,0.0,0.0)
ierr =1
return

endif

do 10 i =2, n

10 x(1) = x(1) + x(i)
return
end

> .Fortran("test", as.double(1:2), length(1l:2),
as.integer(l))

[[11]:
[111 2
[C[21]:
[1] 2

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test",

2: in message above, il=2 in:
.Fortran("test",

The error message is duplicated because our Spotfire S+ code
interprets the error status from the Fortran. The messages issued by
XERROR and XERRWV are stored in an internal message table. Spotfire

128

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

S+ provides several functions you can use to manipulate this message
table within functions that call Fortran routines using XERROR and
XERRWV:

* xerror.summary prints out the current state of the internal
message summary table, listing the initial segment of the
message, the error number, the severity level, and the
repetition count for each message.

* xerror.clear clears the message table. This function takes an
optional argument, doprint. If doprint=T, the message table
is printed before it is cleared.

* xerror.maxpr limits the number of times any one message is
queued or printed. The default is 10.

For example, we can write a S-PLUS test function to take advantage
of these functions as follows:

test <- function(x)
{
xerror.clear()
val <- .Fortran("test",
as.double(x),
length(x),
ierr = integer(1))
if(options()$warn == 0)
xerror.summary ()
val[[1]]1[1]
}

Calling it as before (after setting the option warn to 0) yields the
following result:

> test(1:2)

error message summary

message start nerr level count
Integer (I1) should be greater than 2 1 1 1
other errors not individually tabulated = 0

[1]11

Warning messages:
1: Integer (I1) should be greater than 2 in:
.Fortran("test",

129

Chapter 5 Interfacing with C and FORTRAN Code

Calling Fortran
From C

130

2: in message above, il = 2 in:
.Fortran("test",

See the xerror help file for more information on the S-PLUS
functions used with XERROR, and the XERROR help file for more
information on XERROR and XERRWV.

Spotfire S+ contains a few C preprocessor macros to help smooth
over differences between machines in how to call C code from
Fortran and vice versa. The following macros are needed to allow
distinctions between the declaration, definition, and invocation of a
Fortran common block or Fortran subroutine (coded in either C or
Fortran):

Table 5.3: Fortran macros to call from C.

Macro Name Description

F77_NAME Declaration of a Fortran subroutine.
F77_SUB Definition of a Fortran subroutine.
F77_CALL Invocation of a Fortran subroutine.
F77_COMDECL Declaration of a Fortran common block.
F77_COM Usage of a Fortran common block.

As an example of the proper use of the F77 macros, consider the
following example C code fragment:

/* declaration of a common block defined in Fortran */
extern long F77_COMDECL(Forblock)[100];

/* declaration of a subroutine defined in Fortran */
void F77_NAME(Forfun)(double *, Tong *, double *);

/* declaration of a function defined in C, callable by
* Fortran */
double F77_NAME(Cfun)(double *, Tong *);

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

/* usage of the above common block */
for (i = 0; i < 100; i++) F77_COM(Forblock)[i]l = 0;

/* invocation of the above functions */
F77_CALL(Forfun)(sl, nl, result);
if (F77_CALL(Cfun)(s2, n2) < 0.0)

/* definition of the above ’callable by Fortran’ function
*/

double F77_SUB(Cfun)(double *weights, long
*number_of_weights);

If you are loading code originally written for a specific UNIX
compiler (including some submissions to StatLib), you may find that
that code does not compile correctly in Windows because not all of
these macros are used. Usually, such code does not use the F77_CALL
macro to invoke the functions (using F77_SUB instead), does not use
the F77_COMDECL macro to declare the Fortran common block (using
F77_COM instead), and leaves out the F77_NAME macro altogether. If
you attempt to load such code without substituting F77_CALL for
F77_SUB at the appropriate places, you get compilation errors such as
the following:

xxx.c(54): Error! E1063: Missing operand
xxx.c(54): Warning! W11l: Meaningless use of an expression
xxx.c(54): Error! E1009: Expecting ’;’ but found ’fortran’

Similarly, if you attempt to statically load code without substituting
F77_COMDECL for F77_COM where appropriate, you get a link error such
as the following:

file xxx.obj(xxx.c): undefined symbol Forblock

Finally, if you attempt to statically load code without using F77_NAME
to declare the subroutine, you get a link error of the following form:

file xxx.obj(xxx.c): undefined symbol Cfun

131

Chapter 5 Interfacing with C and FORTRAN Code

Fortran passes all arguments by reference, so a C routine calling
Fortran must pass the address of all the arguments.

Warning

Fortran character arguments are passed in many ways, depending on the Fortran compiler. It is
impossible to cover up the differences with C preprocessor macros. Thus, to be portable, avoid
using character and logical arguments to Fortran routines which you would like to call from C.

Calling C From
Fortran

Calling
Functions in
the S-PLUS
Engine DLL

Listing Symbols
in Your DLL

Listing Symbols
Using DUMPBIN

132

You cannot portably call C from Fortran without running the Fortran
though a macro processor. You need a powerful macro processor like
m4 (and even m4 cannot do all that is needed) and then your code
does not look like Fortran any more. We can give some guidelines:

+ Try not to do it.

+ To be portable, do not use logical or character arguments (this
applies to C-to-Fortran calls as well) because C and Fortran
often represent them differently.

If your DLL calls internal S-PLUS functions, you will need an import
library from the S-PLUS engine, Sqpe.dll, to resolve those calls.
When you install Spotfire S+, you install import libraries, all named
Sqpe.lib created with Microsoft Visual C++ Version 6 and Watcom
10.5. If you are using one of these compilers, you are all set. If you are
not using one of those compilers, the import libraries might not work
with your compiler.

When you load a DLL with dyn.open or by attaching the chapter that
contains it, all its exported symbols are immediately accessible via the
functions .C, .Fortran, and .Ca11. If Spotfire S+ complains that a
symbol is not in its load table, most likely the symbol is not properly
exported (for instance, because it includes C++ name mangling). To
help solve such problems, many compilers offer utilities to help you
list symbols exported from a DLL.

If you have Visual C++, you can use the DUMPBIN utility to view a list
of exported symbols in your DLL. You run the DUMPBIN utility from a
command prompt, as follows:

DUMPBIN /exports [/out:filename] dlTname

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Windows

The /exports switch tells DUMPBIN to report all exported symbols; the
optional /out switch allows you to specify a file name for DUMPBIN’s
output. (This is very useful if your DLL exports a lot of symbols.)

For example, to view the symbols exported from the S.dll in our
examples directory, we can use DUMPBIN as follows:

E:\splus6\library\examples\>dumpbin /exports S.d11
Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. Al11 rights
reserved.

Dump of file S.dl1
File Type: DLL
Section contains the following exports for S.d11

0 characteristics
3B385498 time date stamp Tue Jun 26 02:23:36 2001
0.00 version

1 ordinal base

3 number of functions

3 number of names 0 3

number of functions
3 number of names

ordinal hint RVA name
1 0 00001000 quantum
2 1 000010E0Q randu
3 2 00001130 zero_find
Summary
1000 .data
1000 .rdata
1000 .reloc
5000 .text

As expected, there are only three exported symbols in this DLL. If we
are obtaining a DLL compiled by someone else, DUMPBIN /exports
might be an essential part of using the DLL.

133

Chapter 5 Interfacing with C and FORTRAN Code

USING C FUNCTIONS BUILT INTO SPOTFIRE S+ FOR
WINDOWS

In the previous section, we introduced a number of routines built into
Spotfire S+ with the purpose of avoiding certain difficulties in
compiling code and generating useful output. This section describes
some more generally useful routines that can help you allocate
memory as Spotfire S+ does or generate random numbers.

For a more general interface to Spotfire S+ routines and objects, see

Chapter 3, CONNECT/C++.

Allocating Spotfire S+ includes two families of C routines for storage allocation

M emory and reallocation. You can use either of these families, or use the
standard library functions malloc(), calloc(), realloc(), and
free().

However, be very careful to use only one family for any particular
allocation; mixing calls using the same pointer variable can be
disastrous. The first Spotfire S+ family consists of the two routines
S_alloc() and S_realloc(), which may be used instead of the
standard malloc() and realloc(). The storage they allocate lasts
until the current evaluation frame goes away (at the end of the
function calling . C). If space cannot be allocated, S_alloc() and
S_realloc() perform their own error handling; they will not return a
NULL pointer. You cannot explicitly free storage allocated by
S_alloc() and S_realloc(), but you are guaranteed that the storage
is freed by the end of the current evaluation frame. (There is no
S_free() function, and using free() to release storage allocated by
S_alloc() might cause Spotfire S+ to crash.) S_alloc() and
S_realloc() are declared a bit differently from malloc() and
realloc(). (However, S_alloc has many similarities to calloc(). For
example, it zeroes storage and has two sizing arguments). S_alloc()
is declared as follows in S.h:

char * S_alloc(long n, int size);
Similarly, S_realloc() is declared as follows in S.h:
char * S_realloc(char *p, long new, long old, int size,

s_evaluator *S_evaluator);

134

Using C Functions Built into Spotfire S+ for Windows

S_alloc() allocates (and fills with Os) enough space for an array of n
items, each taking up size bytes. For example, the following call
allocates enough space for ten doubles:

S_EVALUATOR

S_alloc(10, sizeof(double), S_evaluator)

The macro S_EVALUATOR is required to properly declare the
S_evaluator argument. S_realloc() takes a pointer, p, to space
allocated by S_alloc() along with its original length, old, and size,
size, and returns a pointer to space enough for new items of the same
size. For example, the following expands the memory block size
pointed to by p from 10 doubles to 11 doubles, zeroing the 11th
double location:

S_EVALUATOR

S_realloc(p,11,10, sizeof(double), S_evaluator)

The contents of the original vector are copied into the beginning of
the new one and the trailing new entries are filled with zeros. You
must ensure that old and size were the arguments given in the call to
S_alloc()(or a previous call to S_realloc()) that returned the
pointer p. The new length should be longer than the old. As a special
case, if p is a NULL pointer (in which case o1d must be 0L), then
S_realloc() acts just like S_alloc().

The second Spotfire S+ family of allocation routines consists of the
three macros Calloc(), Realloc(), and Free(). (Note the
capitalization.)

Calloc() and Realloc() are simple wrappers for calloc() and
realloc() that do their own error handling if space can not be
allocated (they will not return if the corresponding wrapped function
returns a NULL pointer). Free() is a simple wrapper for free() that

135

Chapter 5 Interfacing with C and FORTRAN Code

sets its argument to NULL. As with calloc(), realloc(), and free(),
memory remains allocated until freed. This may be before or after the
end of the current frame.

Warning

If youuse malloc() or realloc() directly, you must free the allocated space with free().
Similarly, when using Calloc() or Realloc(), you must free the allocated space with Free().
Otherwise, memory will build up, possibly causing Spotfire S+ to run out of memory
unnecessarily. However, be aware that because S processing may be interrupted at any time (for
example, when the user presses the interrupt key, or if further computations encounter an error
and dump), it is sometimes difficult to guarantee that the memory allocated with malloc() or
realloc() (or Calloc() or Realloc()) is freed.

Note

If, in a call to S_alloc(), S_realloc(), Calloc() or Realloc(), the requested memory allocation
cannot be obtained, those routines call ERROR. See the section Reporting Errors and Warnings on
page 125 for more information on the ERROR macro.

Generating Spotfire S+ includes user-callable C routines for generating standard
Random uniform and normal pseudo-random numbers. It also includes
procedures to get and set the permanent copy of the random number
generator’s seed value. The following routines each return one
pseudo-random number:

Numbers

double unif_rand(S_evaluator *S_evaluator);
double norm_rand(S_evaluator *S_evaluator);

Before calling either function, you must get the permanent copy of
the random seed from disk into Spotfire S+ (which converts it to a
convenient internal format) by calling seed_in((Tong *)NULL,
S_evaluator *S_evaluator). You can specify a particular seed using
setseed(long *seed, S_evaluator *S_evaluator), which is
equivalent to the S-PLUS function set.seed. When you are finished
generating random numbers, you must push the permanent copy of
the random seed out to disk by calling seed_out((1ong *)NULL,
S_evaluator *S_evaluator). If you do not call seed_in() before the

136

Using C Functions Built into Spotfire S+ for Windows

random number generators, they fail with an error message. If you do
not call seed_out() after a series of calls to unif_rand() or
norm_rand(), the next call to seed_in() retrieves the same seed as the
last call and you get the same sequence of random numbers again.

The seed manipulation routines take some time so we recommend
calling seed_in() once, then calling unif_rand() or norm_rand() as
many times as you need to, then calling seed_out () before returning
from your C function. A simple C function to calculate a vector of
standard normals is implemented as follows:

f#include <S.h>

my_norm(double *x, long *n) {

S_EVALUATOR

long i;

seed_in((long *) NULL, S_evaluator);

for (i=0 ; i<*n ; i++)

x[i 1 = S_DOUBLEVAL(norm_rand(S_evaluator));
seed_out((long *) NULL, S_evaluator);

}

To call it from Spotfire S+, define the function my.norm as follows:

> my.norm <- function(n)
.C("my_norm"™, double(n), as.integer(n))[[1]]

Of course, it is simpler and safer to use the S-PLUS function rnorm to
generate a fixed number of normal variates to pass into an analysis
function. We recommend that you generate the random variates in C
code only when you cannot tell how many random variates you need,
as when using a rejection method of generating nonuniform random
numbers.

Warning

Because of possible differences in the way Microsoft Visual C++ and other compilers
(particularly Watcom C/C++) handle return values from floating point functions, the example
above uses the S_DOUBLEVAL macro (defined when S.h is included). The S_DOUBLEVAL or
S_FLOATVAL macros, defined in compiler.h, may be needed when calling floating point
functions internal to Spotfire S+ from DLLs compiled with other non-Microsoft compilers; see
the section Calling Functions in the S-PLUS Engine DLL on page 132.

137

Chapter 5 Interfacing with C and FORTRAN Code

CALLING SPOTFIRE S+ FUNCTIONS FROM C CODE

(WINDOWS)

138

To this point, we have shown how to call C and Fortran routines from
S-PLUS functions. You can also call S-PLUS functions from C code,
using the supplied C routine ca11_S(). The cal1_S() routine is useful
as an interface to numerical routines which operate on C or Fortran
functions, but it is not a general purpose way to call S-PLUS
functions. The C routine calling cal1_5S() must be loaded into
Spotfire S+, the arguments to the function must be simple, and the
nature of the output must be known ahead of time. Because of these
restrictions, cal1_S() cannot be used to call S-PLUS functions from
an independent C application, as you might call functions from a
subroutine library.

For a more general interface to Spotfire S+ routines and objects, see

Chapter 3, CONNECT/C++.

The C function cal1_S() calls a S-PLUS function from C, but
cal1_S() must be called by C code called from Spotfire S+ via .C.
The cal1_S() function has the following calling sequence:

call_S(void *func, Tong nargs, void **arguments,
char **modes, Tong *lengths, char **names,
long nres, void **results);

where:

* func is a pointer to a list containing one S-PLUS function.
This should have been passed via an argumentina .C call, as
follows:

.C("my_c_code",list(myfun))
This calls C code starting with the following lines:

my_c_code(void **Sfunc) {

call_S(*Sfunc, ...);

Calling Spotfire S+ Functions from C Code (Windows)

The S-PLUS function must return an atomic vector or list of
atomic vectors.

* nargs is the number of arguments to give to the S-PLUS
function func.

* arguments is an array of nargs pointers to the data being
passed to func. These can point to any atomic type of data,
but must be cast to type void* when put into arguments.

* modes is an array of nargs character strings giving the S-PLUS
names, for example, "double” or "integer", of the modes of
the arguments given to func.

* lengths is an array of nargs longs, giving the lengths of the
arguments.

* names is an array of nargs strings, giving the names to be used
for the arguments in the call to func. If you do not want to call
any arguments by name, names may be (char **)NULL; if you
do not want to call the ith argument by name, names[i] may
be (char *)NULL.

* nres is the maximum number of components expected in the
list returned by func (if func is expected to return an atomic
vector, then nres should be 1).

* resultsisfilled in by cal1_S(); it contains generic pointers to
the components of the list returned by func (or a pointer to
the value returned by func if the value were atomic).

Your C code calling cal1_5S() should cast the generic pointers to
pointers to some concrete type, like f1oat or int, before using them.
If func returns a list with fewer components than nres, the extra
elements of results are filled with NULLs. Notice that cal1_S() does not
report the lengths or modes of the data pointed to by results; you
must know this a priori.

To illustrate the use of cal1_S(), we construct (in Fortran) a general
purpose differential equation solver, heun(), to solve systems of
differential equations specified by a S-PLUS function. Other common
applications involve function optimization, numerical integration,
and root finding.

The heun() routine does all its computations in single precision and
expects to be given a subroutine of the following form:

139

Chapter 5 Interfacing with C and FORTRAN Code

140

f(t, y, dydt)

where the scalar t and vector y are given, and the vector dydt, the
derivative, is returned. Because the f() subroutine calls the S-PLUS
function, it must translate the function’s argument list into one that
call_S() expects. Because not all the data needed by cal1_S can be
passed into f() via an argument list of the required form, we must
have it refer to global data items for things like the pointer to the S-
PLUS function and the modes and lengths of its arguments. The
following file of C code, dfeq.c, contains a C function () to feed to
the solver heun(). It also contains a C function dfeq() which
initializes data that f () uses and then calls heun() (which repeatedly
calls f()):

f#include <S.h>
extern void F77_NAME(heun)();
/* pointer to Splus function to be filled in */
static void *Sdydt ;
/* descriptions of the functions’s two arguments */
static char *modes[] = {"single", "single" };
static long lengths[] = {1, 0 };

/* neqn = lengths[1] to be filled in */
static char *names[] = { "t", "y" };

/*
t [inputl: 1 long ; y [input]: negn long ;
yp [output]: negn Tong
*/
static void f(float *t, float *y, float *yp) {
void *in[2] ; /* for two inputs to Splus function,
t and y */
void *out[l] ; /* for one output vector of
Splus function */

int i;

in[0] = (void *)t;

in[1] = (void *)y;

call_S(Sdydt, 2L,
in, modes, lengths, names, /* 2 arguments */
1L, out/* 1 result */);

/* the return value out must be 1 Tong - i.e., Splus

Calling Spotfire S+ Functions from C Code (Windows)

function must return an atomic vector or a list of one
atomic vector. We can check that it is at least 1 long. */
if (lout[0])
PROBLEM
"Splus function returned a 0 long Tist"
RECOVER(NULL_ENTRY);

/* Assume out[0] points to Tengths[1] single precision
numbers. We cannot check this assumption here. */
for(i=0;i<lengths[1];i++)
yp[il = ((float *)out[0I)[i] ;
return ;
}

/* called via .C() by the Splus function dfeq(): */
void dfeq(void **Sdydtp, float *y, long *neqgn,
float *t_start, float *t_end, float *step,
float *work) {
/* Store pointer to Splus function and
number of equations */
Sdydt = *Sdydtp ;

/* call Fortran differential equation solver */
F77_CALL(heun)(f, neqn, y, t_start, t_end, step, work);

Warning

In the C code, the value of the S-PLUS function was either atomic or was a list with at least one
atomic component. To make sure there was no more than one component, you could look for
two values in results and make sure that the second is a null pointer.

The following S-PLUS function, dfeq, does some of the consistency
tests that our C code could not do (because cal1_s did not supply
enough information about the output of the S-PLUS function). It also
allocates the storage for the scratch vector. Then it repeatedly calls the
C routine, dfeq(), to have it integrate to the next time point that we
are interested in:

> dfeq <- function(func, y , t0 =10, t1 =1, nstep = 100,
stepsize = (t1-t0)/nstep)

141

Chapter 5 Interfacing with C and FORTRAN Code

142

{

}

if (length(func) !=3 ||
any(names(func) !I= c("t","y", "")))
stop("arguments of func must be called t and y")
y <- as.single(y)
t0 <- as.single(t0)
neqn <- length(y)
test.val <- func(t = t0, y =y)
stop("y and func(t0,y) must be same Tength")
if(storage.mode(test.val) != "single")
stop("func must return single precision vector™)
val <- matrix(as.single(NA), nrow = nstep + 1,
ncol = neqn)
val[l, 1 <-y
time <- as.single(t0 + seq(0, nstep) * stepsize)
for(i in l:nstep) {
valli + 1, 1 <- .C("dfeq"™, list(func), y=valli, 1,
neqn=as.integer(neqn),
t.start=as.single(time[i]),
t.end=as.single(time[i + 1]),
step=as.single(stepsize),
work=single(3 * neqgn))s$y
}
lTist(time=time, y=val)

The following subroutine is the Fortran code, heun.f, for Heun’s
method of numerically solving a differential equation. It is a first
order Runge-Kutta method. Production quality differential equation
solvers let you specify a desired local accuracy rather than step size,
but the code that follows does not:

OO OO0

Heun’s method for solving dy/dt=f(t,y),
using step size h :

kl =h f(t,y)

k2 = h f(t+h,y+kl)

ynext =y + (kl+k2)/2

subroutine heun(f, neqgn, y, tstart, tend, step, work
integer neqgn

real*4 f, y(neqn), tstart, tend, step, work(neqgn,3)
work(1l,1) is k1, work(1l,2) is k2, work(1l,3) is y+kl

Calling Spotfire S+ Functions from C Code (Windows)

integer i, nstep, istep
real*4 t
external f
nstep = max((tend - tstart) / step, 1.0)
step = (tend - tstart) / nstep
do 30 istep = 1, nstep
t = tstart + (istep-1)*step
call f(t, y, work(1,1))
do 10 i = 1, negn
work(i,1l) = step * work(i,l)
work(i,3) = y(i) + work(i,1)
10 continue
call f(t+step, work(1l,3), work(1l,2))
do 20 i = 1, negn
work(i,2) = step * work(i,2)
y(i) = y(@i) + 0.5 * (work(i,1) + work(i,2))
20 continue
30 continue
return
end

To try out this example of cal1_S, exercise it on a simple one
dimensional problem as follows:

> graphsheet()

> a <- dfeq(function(t,y)t”2, t0=0, t1=10, y=1)

> plot(a$time,asy)

> lines(a$time, a$time~3/3+1) # compare to
fitheoretical solution

You can increase nstep to see how decreasing the step size increases

the accuracy of the solution. The local error should be proportional to
the square of the step size and when you change the number of steps
from 100 to 500 (over the same time span) the error does go down by
a factor of about 25. An interesting three-dimensional example is the

Lorenz equations, which have a strange attractor:

> chaos.func<-function(t, y) {
as.single(c(10 * (y[2] - y[1D),
- y[11 * y[31 + 28 * y[1]1 - y[2],
y[1] * y[2] - 8/3 * y[31))

143

Chapter 5 Interfacing with C and FORTRAN Code

> b <- dfeq(chaos.func, y=c(5,7,19), t0=1, tl=10,
nstep=300)

> b.df <- data.frame(b$time,b$y)

> pairs(b.df)

246 810
-20 0 10 20
The resulting plot is shown in Figure 5.1.

Y v v v cu ou @y
L n n n s

820
B @Bl o@eg@%&o@o Qof ©
02080 0,0 00 D@
a2 080 e’ Lo
i o
b.time <
g 00 0.8 0% 60 @b 0w ooof ¥
A8 Soo® Bl 08 © 8 00
4 SR> @08 a0 oy
%&9@ %‘%’Bosm

40
A

30
f

SBED

L2508
e

0B 0 8 0@0

110
%‘%

o850

20
@oo

N}
~ 4
o
I
o

Figure 5.1: Viewing the Lorenz equations, as solved by dfreq.

144

Calling Spotfire S+ Functions from C Code (Windows)

Warnings

Because cal1_S does not describe the output of the S-PLUS function it calls, you must know
about it ahead of time. You can test the function for a variety of values before calling cal1_S to
check for gross errors, but you cannot ensure that the function will not return an unacceptable
value for certain values of its arguments.

The cal1_S function expects that the output of the function given to it has no attributes. If it
does have attributes, such as dimensions or names, they are stripped.

145

Chapter 5 Interfacing with C and FORTRAN Code

THE .CALL INTERFACE (WINDOWS)

Requirements

146

The .Cal11 interface is a powerful interface that allows you to
manipulate S-PLUS objects from C code. It is more efficient than the
standard . C interface, but because it allows you to work directly with
S-PLUS objects, without the usual Spotfire S+ protection
mechanisms, you must be careful in programming with it to avoid
memory faults and corrupted data.

The .Cal11 interface provides you with several capabilities the
standard . C interface lacks, including the following:

* The ability to create variable-length output variables, as
opposed to the pre-allocated objects the .C interface expects
to write to.

* A simpler mechanism for evaluating S-PLUS expressions
within C.

* The ability to establish direct correspondence between C
pointers and S-PLUS objects.

The .Ca11 interface is also the point of departure for using
CONNECT/C++, a powerful suite of C++ classes and methods to

give C++ programmers access to S-PLUS objects and methods. See
Chapter 3, CONNECT/C++, for more information.

To use the .Cal1 interface, you must ensure your code meets the

following requirements L

* The return value and all arguments have C type
"s_object *".

* The code must include the standard Spotfire S+ header file
S.h.

+ If the routine deals with S-PLUS objects, it must include a
declaration of the evaluator using the macro S_EVALUATOR,
appearing in the declaration part of the routine and not
followed by a semicolon.

1. Chambers, .M. (1998) Programming with Data. New York:
Springer-Verlag. p. 429.

Returning
Variable-
Length Output
Vectors

The . Call Interface (Windows)

As with .C, the required arguments to .Ca11 include the name of the
C routine being called and one argument for each argument to the C
routine.

Occasionally, we do not know how long the output vector of a
procedure is until we have done quite a bit of processing of the data.
For example, we might want to read all the data in a file and produce
a summary of each line. Until we have counted the lines in the file, we
do not know how much space to allocate for a summary vector.
Generally, .C passes your C procedure a pointer to a data vector
allocated by your S-PLUS function so you must know the length
ahead of time. You could write two C procedures: one to examine the
data to see how much output there is and one to create the output.
Then you could call the first in one call to .C, allocate the correct
amount of space, and call the second in another call to .C. The first
could even allocate space for the output vector as it is processing the
input and have the second simply copy that to the vector allocated by
your S-PLUS function.

With the .Ca11 interface, however, you can create the desired S-
PLUS object directly from your C code.

Here is an example which takes a vector x of integers and returns a
sequence of integers, of length max(x):

f#include "S.h"
s_object *makeseq(s_object *sobjX)
{
S_EVALUATOR
long i, n, xmax, *seq, *Xx ;
s_object *sobjSeq ;

/* Convert the s_objects into C data types: */
sobjX = AS_INTEGER(sobjX) ;
x = INTEGER_POINTER(sobjX) ;
n = GET_LENGTH(sobjX) ;

/* Compute max value: */
xmax = x[0] ;
if(n > 1) {
for(i=l; i<n; i++) {
if(xmax < x[i1]) xmax = x[i] ;

147

Chapter 5 Interfacing with C and FORTRAN Code

}
}
if(xmax < 0)
PROBLEM "The maximum value (%1d) is
negative.", xmax ERROR ;

/* Create a new s_object, set its length and get a C integer
pointer to it */

sobjSeq = NEW_INTEGER(OQ) ;

SET_LENGTH(sobjSeq, xmax) ;

seq = INTEGER_POINTER(sobjSeq) ;

for(i=0; i<xmax; i++) {
seq[il =i + 1 ;

return(sobjSeq) ;

Use the following Spotfire S+ code to call makeseq():

"makeseq" <-
function(x)
{
x <- as.integer(x)
.Call("makeseq™, x)

}
i e makeseq example has several interesting features, but perhaps the
S Object The mak pleh l interesting features, but perhaps th
Macros most useful is its extensive use of S object macros. These macros are

defined when you include S.h, and allow you to create, modify, and
manipulate actual S-PLUS structures from within your C code. There
are five basic macros, each of which is implemented particularly for
the basic data types listed in Table 5.1. These macros are described in
Table 5.4. To obtain the full name of the desired macro, just substitute
the basic data type from Table 5.1 in ALLCAPS for the word type in
the macro name given in Table 5.4. Thus, to create a new numeric S-
PLUS object, use the macro NEW_NUMERIC.

148

Evaluating
S-PLUS
Expressions from
C

The . Call Interface (Windows)

Table 5.4: S object macros

Macro Description

NEW_type(n) Create a pointer to an S object of class fype and
length n.

AS_type(obj) Coerce obj to an S object of class Zype.

IS_type(obj) Test whether obj is an S object of class #ype.

type_POINTER(obj) | Create a pointer of type #ypeto the data part of
obj.

type_VALUE(obj) Returns the value of obj, which should have
length 1.

The makeseq code uses the AS_INTEGER macro to coerce the sobjX
object to type INTEGER; the NEW_INTEGER macro to create the returned
sequence object; and the INTEGER_POINTER macro to access the data
within those objects.

The makeseq code also uses built-in macros for getting and setting
basic information about the S objects: in addition to the GET_LENGTH
and SET_LENGTH macros used in makeseq, there are also GET_CLASS
and SET_CLASS macros to allow you to obtain class information about
the various S objects passed into your code.

You can evaluate a S-PLUS expression from C using the macros EVAL
and EVAL_IN_FRAME. Both take as their first argument a S-PLUS object
representing the expression to be evaluated; EVAL_IN_FRAME takes a
second argument, n, representing the S-PLUS frame in which the
evaluation is to take place.

For example, consider the internal C code for the Tapply function,
which was first implemented by John Chambers in his book
Programming with Data:

f#Hinclude "S_engine.h"
/* See Green Book (Programing with Data by J.M. Chambers)
appendix A-2 */

149

Chapter 5 Interfacing with C and FORTRAN Code

s_object *
S_qapply(s_object *x, s_object *expr, s_object *name_obj,
s_object *frame_obj)
{
S_EVALUATOR
long frame, n, 1i;
char *name;
s_object **els;
X = AS_LIST(x) ;
els = LIST_POINTER(x);
n = LENGTH(x);
frame = INTEGER_VALUE(frame_obj) ;
name = CHARACTER_VALUE(name_obj) ;
for(i=0;i<n;i++) {
ASSIGN_IN_FRAME(name, els[i], frame) ;
SET_ELEMENT(x, i, EVAL_IN_FRAME(expr,
frame)) ;
}
return x;

}

This uses the more general macro EVAL_IN_FRAME to specify the
specific frame in which to evaluate the specified expression. Note also
the SET_ELEMENT macro; this must always be used to perform
assignments into S-PLUS list-like objects from C.

150

Debugging Loaded Code (Windows)

DEBUGGING LOADED CODE (WINDOWS)

Debugging C
Code

Debugging C
Code Using a
Wrapper
Function

Frequently the code you are dynamically linking is known, tested,
and reliable. But what if you are writing new code, perhaps as a more
efficient engine for a routine developed in Spotfire S+? You may well
need to debug both the C or Fortran code and the S-PLUS function
that calls it. The first step in debugging C and Fortran routines for use
in Spotfire S+ is to make sure that the C function or Fortran
subroutine is of the proper form, so that all data transfer from Spotfire
S+ to C or Fortran occurs through arguments. Both the input from
Spotfire S+ and the expected output need to be arguments to the C or
Fortran code. The next step is to ensure that the classes of all variables
are consistent. This often requires that you add a call such as
as(variable, "single") in the call to .C or .Fortran. If the Spotfire
S+ code and the compiled code disagree on the number, classes, or
lengths of the argument vectors, Spotfire S+’s internal data might be
corrupted and it will probably crash. By using .C or .Fortran you are
trading the speed of compiled code for the safety of Spotfire S+ code.
In this case, you usually get an application error message before your
Spotfire S+ session crashes. Once you have verified that your use of
the interface is correct, and you have determined there is a problem
in the C or Fortran code, you can use an analog of the cat statement
to trace the evaluation of your routine.

If you are a C user, you can use C I/O routines, provided you include
S.h. Thus, you can casually sprinkle printf statements through your
C code just as you would use cat or print statements within a S-
PLUS function. (If your code is causing Spotfire S+ to crash, call
fflush() after each call to printf() to force the output to be printed
immediately.)

If you cannot uncover the problem with generous use of printf(),
the following function, .Cdebug, (a wrapper function for .C) can
sometimes find cases where your compiled code writes off the end of
an argument vector. It extends the length of every argument given to
it and fills in the space with a flag value. Then it runs .C and checks
that the flag values have not been changed. If any have been changed,
it prints a description of the problem. Finally, it shortens the
arguments down to their original size so its value is the same as the
value of the corresponding . C call.

151

Chapter 5 Interfacing with C and FORTRAN Code

152

.Cdebug <- function(NAME, ..., NAOK = F, specialsok = F,
ADD = 500, ADD.VALUE = -666)
{

args <- Tist(...)

tail <- rep(as.integer(ADD.VALUE), ADD)

for(i in seq(along = args))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
args[[i]] <- c(args[[il], tmp)

}

args <- c(NAME = NAME, args, NAOK = NAOK,
specialsok = specialsok)

val <- do.call(".C", args)

for(i in seq(along = val))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
taili <- val[[ill[seq(to = length(val[[i11),
length = ADD)]
if((s <- sum(taili != tmp)) > 0) {
cat("Argument ", i, "(", names(val)[i],
") to ", NAME, " has ", s, " altered
values after end of array\n ",
sep = "")
}
length(val[[i]]) <- length(val[[i]]) - ADD
}
}
val
}

For example, consider the following C procedure, oops():

oops(double *x, long* n)
{
long i;
for (i=0 ; i <= *n ; i++) /* should be <, not <= */
x[i1] = x[i] + 10 ;
}

Source-Level
Debugging

Debugging Loaded Code (Windows)

Because of the misused <=, this function runs off the end of the array
x. If you call oops () using .C as follows, you get an Application Error
General Protection Fault that crashes your Spotfire S+ session:

> .C("oops", x=as.double(l:66), n=as.integer(66))

If you use .Cdebug instead, you get some information about the
problem:

> .Cdebug("oops", x=as.double(1l:66), n=as.integer(66))

Argument 1(x) to oops has 1 altered values after end of
array

X:

[1] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[19] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[37]1 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[55] 65 66 67 68 69 70 71 72 73 74 75 76

n:

[1] 66

The .Cdebug function cannot tell when you run off the beginning of
an argument vector or when you write anywhere else in memory. If
inspecting your source code and using S-PLUS functions like .Cdebug
is not enough to pinpoint a problem, try the following:

1. Write a short main program that calls your procedure.

2. Compile and link the main program and your procedure for

debugging.

If your compiled routines are fairly complicated, you may want more
help in debugging than can be provided by simple print statements.
Microsoft Visual C++ and Compaq Visual Fortran come with
sophisticated visual debuggers.

If you are using Microsoft Visual C++, you can easily do source-level
debugging of your code. Simply follow the instructions for creating a
DLL as outlined in the section Using C and Fortran Code with
Spotfire S+ for Windows on page 102.

Before creating the DLL, you should ensure that the default project
configuration (under Build P Set Active Configuration) is set to
Win32 Debug. You must also specify the executable to be used for

your debug session. To do this, select Project » Settings to display

153

Chapter 5 Interfacing with C and FORTRAN Code

154

the Project Settings dialog box, and then select the Debug tab.
Under Settings For, select Win32 Debug, and for Executable for
debug session, provide the full path to the Spotfire S+ executable
(SPLUS.EXE in the XMA subdirectory of your Spotfire S+
installation). You should also set your S_PROJ directory to the
current project chapter in Program arguments as follows:

S_PROJ=.

(The period says to use the current directory.) When you have started
your debug session, remember that the DLL will have been created in
the Debug subdirectory of your project directory.

A Simple Example: Filtering Data (Unix)

A SIMPLE EXAMPLE: FILTERING DATA (UNIX)

In this section, we develop a function to apply a first order linear recursive
filter to a vector of data. The S-PLUS function filter does what we want,
but we'll ignore it for now in favor of the following pure S code:

Ar <- function(x, phi)

{
n <- length(x)
if (n>1)
for (i in 2:n)
x[i] <- phi * x[i - 1] + x[i]
X
}

Looping is traditionally one area where Spotfire S+ tends to be significantly
slower than compiled code, so we can rewrite the above code in C as follows,
creating a file Ar.c:

void arsim(double *x, long *n, double *phi)

{
long 1i;
for (i=1; i<*n; i++)
x[1] = *phi * x[i-11 + x[i] ;
}

This code is purely C language code; there are no dependencies on C
libraries, or on Spotfire S+. Such code should be portable to most operating
systems. It is quite simple to create a shared object from this code:

1. Create the file Ar.c shown above.

2. Run the Spotfire S+ CHAPTER utility with Ar.c as a parameter:
Splus CHAPTER Ar.c
The CHAPTER utility creates a makefile for use with the make
utility.

3. Run the Spotfire S+ make utility:
Splus make
The result is a shared object file, S.so.

If you've done the above three steps from within Spotfire S+, you can open
the file S.so simply by calling dyn.open("S.so"). If you performed them
outside of Spotfire S+, simply start Spotfire S+ within the current Spotfire S+
chapter, and the S.so file will be opened automatically.

155

Chapter 5 Interfacing with C and FORTRAN Code

156

To run the filtering code, we can either call .C directly, or we can write a
simple S function to do it for us. If we want to use our loaded call very often,
it will save us time to define the function:

ar.compiled <-
function(x, phi)

{

.C("arsim",
as.double(x),
length(x),
as.double(phi))[[1]1]

}

Trying the code with a call to ar.compiled yields the following:

> ar.compiled(1:20, .75)

[1] 1.000000 2.750000 5.062500 7.796875 10.847656
[6] 14.135742 17.601807 21.201355 24.901016 28.675762
[11] 32.506822 36.380116 40.285087 44.213815 48.160362
[16] 52.120271 56.090203 60.067653 64.050739 68.038055

You lose some flexibility in the function by writing it in C. Our
ar.compiled function converts all input data to double precision, so it won't
work correctly for complex data sets nor objects with special arithmetic
methods. The pure Spotfire S+ version works for all these cases. If complex
data is important for your application, you could write C code for the
complex case and have the Spotfire S+ code decide which C function to call.
Similarly, to make ar.compiled work for data in classes with special
arithmetic methods, you could have it call the C code only after coercing the
data to class "numeric”, so that it could not invoke special arithmetic
methods. This might be too conservative, however, as there could be many
classes of data without arithmetic methods which could use the fast C code.

Another approach would be to make ar.compiled a generic function, for
which the default method calls the C code for numeric data. For classes with
special arithmetic methods, pure Spotfire S+ code could be dispatched.
Those classes of data without special arithmetic methods could include a c/ass
method for ar.compiled that would coerce the data to class "numeric" and
invoke the default method on the now numeric data, thus using the fast
compiled code, then post-process the result if needed (perhaps just restoring
the class). Using the object-oriented approach is more work to set up, but
gives you the chance to combine the speed of compiled code with the
flexibility of Spotfire S+ code.

Calling C or Fortran Routines From Spotfire S+ for Unix

CALLING C OR FORTRAN ROUTINES FROM SPOTFIRE S+

FOR UNIX

Calling C

To call a C function, use the S-PLUS function .C(), giving it the name of
the C function (as a character string) and one S-PLUS argument for each C
argument. For example, a typical “vectorized” calculation, such as sine,
requires you to pass a S-PLUS data object x and its length n to the C
function performing the calculation:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

(We'll define the C routine my_sin_vec in the section Writing C and
Fortran Routines Suitable for Use in Spotfire S+ for Unix (page 161).)

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .C() function is a list with each component
matching one argument to the C function. If you name these arguments, as
we did in the preceding example, the return list has named components. Your
S-PLUS function can use the returned list for further computations or to
construct its own return value, which generally omits those arguments which
are not altered by the C code. Thus, if we wanted to just use the returned
value of x, we could call .C() as follows:

.C("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))$x.

All arguments to C routines called via .C() must be pointers. All such
routines should be void functions; if the routine does return a value, it could
cause Spotfire S+ to crash. Spotfire S+ has many classes that are not
immediately representable in C. To simplify the interface between Spotfire
S+ and C, the types of data that Spotfire S+ can pass to C code are restricted
to the following S-PLUS classes: "single™, "integer”, "numeric",
"complex”, "logical”, and "character”. Table5.5 shows the
correspondence between S-PLUS classes and C types.

Table 5.5: Correspondence between S-PLUS classes and C types.

S-PLUS classes Corresponding C type
“logical” long *
“integer” long *

157

Chapter 5 Interfacing with C and FORTRAN Code

Table 5.5: Correspondence between S-PLUS classes and C types.

“single” float *
“numeric” double *
“complex” s_complex *
“character” char **
“raw” char *
“list” s_object **

‘Warning

Do not declare integer data as C ints, particularly if you want your code to be portable among machines
that Spotfire S+ supports. While there is currently no difference on Windows, there is a distinction on

other platforms.

Calling C++

158

The include file S.h described later in this chapter contains the typedef for
the type s_complex that defines it as the struct composed of two doubTes,
reand im.

To call a C++ function, you also use the .C function (or, alternatively, the
.Call function discussed later in this chapter). There is no direct C++
interface, and hence Spotfire S+ has no understanding of C++ name
mangling. Thus, to call a C++ function, you must declare it inside an extern
"C" braced expression. For example, here is some simple code to compute
squares:

f#ginclude "S.h"
extern "C" {

void squareC(double* pdX, double* pdY, long* pllLen)
{
S_EVALUATOR
//Validate the input arguments
if((pdX == NULL) || (pdY == NULL) || plLen == NULL))
PROBLEM "Invalid input™ ERROR;
//Perform element-by-element operation
//to square each element of input

Calling C or Fortran Routines From Spotfire S+ for Unix

for(long n=0; n< *plLen; n++)
pdY[n] = pdX[n] * pdX[n];
return;
}
}

We can call this with . C using the simple Spotfire S+ code shown below:

square <- function(x)

{
len = Tength(x)
y = .C("squareC",
as.double(x),
y = double(len),
len)$y
Yy
}

Calling Fortran To call a Fortran subroutine, use the S-PLUS function .Fortran(), giving it
the name of the subroutine (as a character string) and one S-PLUS argument
for each Fortran argument. For example, a typical “vectorized” calculation,
such as sine, requires you to pass a S-PLUS data object x and its length n to
the Fortran subroutine performing the calculation:

.Fortran("my_sin_vec", x = as.double(x),
n = as.integer(length(x)))

Note

You can call only Fortran subroutines from Spotfire S+; you cannot call Fortran functions.

To return results to Spotfire S+, modify the data pointed to by the
arguments. The value of the .Fortran() function is a list with each
component matching one argument to the Fortran subroutine. If you name
these arguments, as we did in the preceding example, the return list has
named components. Your S-PLUS function can use the returned list for
further computations or to construct its own return value, which generally
omits those arguments which are not altered by the Fortran code. Thus, if we
wanted to return just the object x, we could call . Fortran() as follows:

159

Chapter 5 Interfacing with C and FORTRAN Code

.Fortran("my_sin_vec", x = as.double(x), n =
as.integer(length(x)))$x

Spotfire S+ has many data classes that are not immediately representable in
Fortran. To simplify the interface between Spotfire S+ and Fortran, the types
of data that Spotfire S+ can pass to Fortran code are restricted to the
following S-PLUS classes: "single", "integer", "numeric", "complex",

"Togical™, and “character”. The following table shows the
correspondence between S-PLUS classes and Fortran types.

S-PLUS classes Corresponding FORTRAN type
“logical” LOGICAL

“integer” INTEGER

“single” REAL

“numeric” DOUBLE PRECISION
“complex” DOUBLE COMPLEX
“character” CHARACTER(*)

‘Warnings

Spotfire S+ will not pass arrays of character strings to Fortran routines; only the first element.

The Fortran type DOUBLE COMPLEX (or COMPLEX*16) is a complex number made of double precision
parts; it may not be available with all Fortran compilers.

160

Writing C and Fortran Routines Suitable for Use in Spotfire S+ for Unix

WRITING C AND FORTRAN ROUTINES SUITABLE FOR USE
IN SPOTFIRE S+ FOR UNIX

If you have a routine for which some of the arguments are not pointers, or
which returns a value, you must write a wrapper routine which passes all data
via pointer arguments, does not return a value, and calls the routine of
interest. For example, we might have a sine function routine written in C and
declared as follows:

double sin(double x)

You cannot call this via the .C interface, because it both takes a double-
precision argument by value and returns a value. You must write a Spotfire
S+-compatible wrapper for sin() as follows, and then load both procedures:

extern double sin() ;
void my_sin (double *x)
{

*X = sin(*x) ;

}

Since sin() does not take a vector argument, you probably want to use the
wrapper function to provide a vectorized form of it:

f##include <S.h>
f##include <math.h> /* to declare extern double sin() */
void my_sin_vec(double *x,Tong *n)
{
long i ;
for (i=0 ; i < *n ; i++)
x[i1] = sin(x[i]1) ;

}

(To work along with the following section, you might want to save the above
vectorized code in a file mysin.c in an existing Spotfire S+ chapter.)

161

Chapter 5 Interfacing with C and FORTRAN Code

COMPILING AND DYNAMICALLY LINKING YOUR CODE

(UNIX)

Using the
CHAPTER
Utility with
Source Code

162

S-PLUS 5.x and later abandon the old Spotfire S+ techniques of static and
dynamic loading in favor of a dynamic linking process using shared objects or
libraries (.so files). In practice, this new process is generally more convenient
than the old, and involves only four steps:

1. Create your C or Fortran code, as in mysin.c, in a Spotfire S+
chapter.

2. Call the Spotfire S+ CHAPTER utility with your code files as
parameters.

CHAPTER creates a makefile for use with the make utilicy. This
makefile sets flags appropriate for code to be used with Spotfire S+.

3. Call the make utility as a Spotfire S+ utility.

The make utility compiles the code according to the rules specified
in the makefile, and links the code into a shared object, by default
named S.so.

4. Attach the chapter in a Spotfire S+ session (for example, by starting
Spotfire S+ from the chapter). Spotfire S+ automatically opens the
file S.so, if it exists, and loads all the symbols contained therein into
the Spotfire S+ load table, so your C and Fortran routines are
instantly available for your use.

You can, of course, perform at least steps 2 and 3 from within Spotfire S+. In
that case, you don’t need to stop your Spotfire S+ session and restart; instead,
you can use the dyn.open function to open your newly compiled S.so file. (If
you've just recompiled an existing S.so, you should use dyn.close to close
the shared object before calling dyn.open to reopen it.)

You've seen several examples of writing C code for use with Spotfire S+; now
let’s take a closer look at steps 2—4.

You've probably used the CHAPTER utility often to create new Spotfire S+
work directories or projects. You may have also used it to add help files for
your own S-PLUS functions to the system help. Using CHAPTER with
source code is similar to using it with help files.

Compiling and Dynamically Linking your Code (Unix)

CHAPTER creates a makefile for all the source files (C, C++, Fortran, Ratfor
[a structured form of Fortran], Spotfire S+, or SGML help) found in the
specified chapter, with rules for turning your source code into a shared object
that Spotfire S+ can use. The makefile includes compiler flags compatible
with those used by the code already in Spotfire S+, and on various platforms
may include flags that, for example, specify the way Fortran character strings
are passed or specify which memory model is used.

For example, suppose you have the file mysin.c shown in the previous section.
You can create a makefile including this file (or modify an existing makefile)
by calling CHAPTER as follows from the directory containing mysin.c:

Splus CHAPTER mysin.c

If you've created mysin.c in a new directory, CHAPTER will both create the
appropriate makefile and initialize the directory as a valid Spotfire S+ chapter.
If you add mysin.c to an existing Spotfire S+ chapter, CHAPTER will leave
the previously initialized database alone, and only create or modify the
makefile. To use the resulting makefile, your system must have the
appropriate compiler (C, C++, and/or Fortran) and libraries.

You can, if you need to, modify the makefile created by CHAPTER. Below is
the makefile created by the above call to CHAPTER:

J# makefile for local CHAPTER
SHELL=/bin/sh

SRC= mysin.c
0BJ= mysin.o
FUN=
HELPSGML=

Use LOCAL_CFLAGS to add arguments for the C compiler
LOCAL_CFLAGS=

Use LOCAL_CXXFLAGS to add arguments for the C++ compiler
LOCAL_CXXFLAGS=

Use LOCAL_FFLAGS to add arguments for the FORTRAN

compiler

LOCAL_FFLAGS=

Use LOCAL_LIBS to add arguments or additional libraries
to the linker

LOCAL_LIBS="-1f2c"

LOCAL_LIBS=

163

Chapter 5 Interfacing with C and FORTRAN Code

164

include $(SHOME)/1ibrary/S_FLAGS
all: install.funs S.so install.help

install.funs: $(FUN)
@if [X$(FUN) != X 1 ; then \
cat $(FUN) | $(SHOME)/cmd/Splus ; \
fi

install.help: $(HELPSGML)
@if [X$(HELPSGML) != X 1 ; then \
$ (SHOME) /cmd/Splus HINSTALL ./.Data $(HELPSGML) ; \
$ (SHOME) /cmd/Splus BUILD_JHELP ; \
fi

S.so: $(0BJ)
@if [X$(0BJ) != X 1; then \
$ (SHOME) /cmd/Splus LIBRARY S.so $(0BJ) \
$(LOCAL_LIBS) ; \

fi
dump:
@if test -d ./.Data; then Splus dumpChapter $(SRC);\
fi
boot:
@if test -s all.Sdata; \
then (BOOTING_S="TRUE"™ export BOOTING_S; echo \
"terminate(should have been booting S)"| \
$ (SHOME) /cmd/Splus); \
fi
clean:
-rm $(0BJ)

This makefile includes three primary targets: install.funs, S.so, and
install.help. For the purposes of this chapter, the most importantis S. so,
which causes your code to be compiled and linked into the shared object S.so.
Do not attempt to modify $SHOME/library/S_FLAGS; this will probably
make your code incompatible with Spotfire S+.

Compiling and Dynamically Linking your Code (Unix)

Compiling Your With the makefile created by CHAPTER, compiling your code is simple: just

Code

Dynamically
Linking Your
Code

run the make command as a Spotfire S+ utility as follows:

Splus make

The “Splus” in front of make allows Spotfire S+ to set its environment
variables appropriately before calling the standard make utility; in particular
it defines the SHOME environment variable used in the makefile.

The make utility executes the necessary commands to compile your code into
the shared object S.so.

Whenever you attach a Spotfire S+ chapter containing a shared object S.so,
including whenever you start up Spotfire S+ in such a chapter, the shared
object is opened and the code it contains is loaded into Spotfire S+.

You can open shared objects without attaching a chapter by using the
dyn.open function. For example, if your colleague Fred has C code you want
to access from your own set of S-PLUS functions, you might open his S.so
shared object as follows:

> dyn.open("/users/fred/mysplus/S.so")

You can close previously opened shared objects using dyn.close:

> dyn.close("/users/fred/mysplus/S.so")

165

Chapter 5 Interfacing with C and FORTRAN Code

COMMON CONCERNS IN WRITING C AND FORTRAN CODE
FOR USE WITH SPOTFIRE S+ FOR UNIX

166

While the actual calls to .C() and .Fortran() are straightforward, you may
encounter problems loading new compiled code into Spotfire S+ and we will
discuss some common problems. We also describe some C procedures and
macros which you may use to write more portable code, to generate random
numbers from C code, to call S-PLUS functions from your C code, to report
errors, to allocate memory, and to call Fortran procedures from C code.

In order to have access in C to most functions and macros described below,
you will have to include the header file S.h in your source files:

#include <S.h>

and make sure that you specify the $SHOME/include include directory in
your compiler directives. That directory is specified automatically by the
makefile created by the CHAPTER utility (as part of $SHOME/library/
S_FLAGS).

The file S.h has changed significantly since S-PLUS 5.1; some variables have
been renamed, some routines which previously had headers in S.h have had
their headers moved elsewhere. In general, these changes affected only
variables and routines which were undocumented. @A new variable,
S_COMPATIBILITY, allows you to compile code that uses some of the
redefined variables. If you define S_COMPATIBILITY (before including S.h)
as follows:

jfdefine S_COMPATIBILITY 1
you obtain the old definitions of the following variables:

TRUE, FALSE, and MAYBE (now S_TRUE, S_FALSE, and S_MAYBE)
complex (now s_complex)

NULL_MODE (now S_MODE_NULL)

LGL, INT, REAL, DOUBLE, CHAR, LIST, COMPLEX, RAW

ANY, STRUCTURE, MAX_ATOMIC, atomic_type (now S_MODE_LGL, etc.)

Defining S_COMPATIBILITY as 10 instead of 1 adds the following old
definitions:

vector, boolean, void_fun, fun_ptr (now s_object, s_boolean,
s_void_fun, and s_fun_ptr, respectively)

We recommend that you migrate any code that uses the old variable names to
use the new names, because of potential conflicts with other applications,
particularly under the Windows operating systems.

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

If you have code that still won’t compile after defining S_COMPATIBILITY
because of routines with missing headers, you can try including the header
file S_engine.h instead of S.h.

‘Warning:

The routines with headers in S_engine.h are used and needed by Spotfire S+, but they are NOT
RECOMMENDED for use by programmers outside TIBCO Software Inc. Such use is not
supported, and may fail with catastrophic results. All risks associated with such unsupported use
are the programmer’s responsibility.

Handling IEEE Spotfire S+ handles IEEE special values such as NaN, Inf, or -Inf, for all

Special Values supported numeric classes (integer, single or numeric). NaN represents the
number your obtain when you divide 0 by 0. Inf represents the number your
obtain when you divide 1 by 0. -Inf represents the number your obtain
when you divide -1 by 0. In addition, Spotfire S+ supports NA, which
represents a missing value, i.e., a value to use when none is available. Spotfire
S+ functions attempt to properly handle computations when missing values
are present in the data. Both NaN and NA are displayed as NA, but the data
values are properly kept as different values.

The .C() and .Fortran() functions have two arguments, the NAOK and the
specialsok argument, that you can use to specify whether your code can
handle missing values or IEEE special values (Inf and NaN), respectively.
Their default value is FALSE: if any argument to .C() or .Fortran()
contains an NA (or Inf or NaN), you get an error message and your code is not
called. To specify these arguments, you must use their complete names, and
you cannot use these names for the arguments passed to your C or Fortran
code.

‘Warning

The NAOK and specialsok arguments refer to all of the arguments to your compiled code—you can
allow NAs or IEEE special values in all of the arguments or none of them. Since typically you don’t want
NAs for certain arguments, such as the length of a data set, you must specially check those arguments if you
use NAOK=T (or specialsok=T).

167

Chapter 5 Interfacing with C and FORTRAN Code

168

Dealing with IEEE special values is easily done in C as long as you use the
macros described below. It is possible, yet undocumented here, to do the
same in Fortran, but refer to your Fortran compiler documentation for
details.

It is often simplest to remove NA's from your data in the Spotfire S+ code, but
is sometimes better done in C. If you allow NAs, you should deal with them
using the C macros is_na() and na_set () described below. The arguments
to .C() and .Fortran() cannot contain any NAs unless the special argument
NAOK is T. The following macros test for and set NA’s in your C code:

is_na(x,mode)
na_set(x,mode)

The argument x must be a pointer to a numeric type and the argument mode
must be one of the symbolic constants S_MODE_LGL (S-PLUS class
"logical™), S_MODE_INT (S-PLUS class "integer"), S_MODE_REAL (S-
PLUS class "single”), S_MODE_DOUBLE, or S_MODE_COMPLEX,
corresponding to the type x points to: Tong, long, float, double, or
s_complex, respectively. For example, the following C code sums a vector of
double precision numbers, setting the sum to NA if any addends are NA:

#Hinclude <S.h>
void my_sum(double *x, Tong *n, double *sum) {
long i;
*sum = 0 ;
for (i =0 ; i < *n ; i++)
if (is_na(&x[i], S_MODE_DOUBLE)) {
na_set(sum, S_MODE_DOUBLE);
break;
}
else
*sum += x[1];

}

Use the following S-PLUS function to call this routine:

> my.sum <- function(x) .C("my_sum", as.double(x),
as.integer(length(x)),
double(1l), NAOK = T)[[3]]

Call this from Spotfire S+ as follows:

> my.sum(c(1,NA,2))
[1] NA

> my.sum(1l:4)

[1] 10

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

If you omit the argument NAOK=T in the call to .C(), you get the following
message:

> my.sum2 <- function(x)
.C("my_sum", as.double(x),
as.integer(length(x)), double(1))[[3]]
> my.sum2(c(1,NA,2))
Problem in .C("my_sum",: subroutine my_sum: Missing values
in argument 1
Use traceback() to see the call stack

‘Warning

Both is_na() and na_set () have arguments that may be evaluated several times. Therefore don’t use
expressions with side effects in them, such as na_set (&x[i++], S_MODE_DOUBLE). Otherwise, the
side effects may occur several times. The call is_na(x,mode) returns O if *x is not an NA and non-zero
otherwise—the non-zero value is not necessarily 1. The return value tells what sort of value *x is: Is_NA
meaning a true NA and Is_NaN meaning an IEEE not-a-number. To assign a NaN to a value, use the
alternative macro na_set3(x,mode, type), where type is either Is_NA or Is_NaN. The macro
na_set(x,mode) is defined as na_set3(x,mode, Is_NA).

1/0 in C
Functions

You can use the macros is_inf(x,mode) and inf_set(x,mode,sign) to
deal with IEEE infinities. If you allow IEEE special values, your code should
be aware that x != x is TRUE if x is a NaN. In any case you should be aware
that on machines supporting IEEE arithmetic (that includes most common
workstations), 1/0 is Inf and 0/0 is NaN without any warnings given. You
must set the .C() argument specialsok to T if you want to let Spotfire S+
pass NaN’s or Inf’s to your C code. The call is_inf(x,mode) returns O if *x
is not infinite and #1 if *x is & oo, respectively. The call
set_inf(x,mode,sign) sets *x to an infinity of the given mode and sign,
where the sign is specified by the integer +1 for positive infinities and -1 for
negative infinities. Similarly, the call is_nan(x,mode) returns 0 if *x is not a
NaN, and 1 if it is.

File input and output is fully supported in C code called from Spotfire S+,
but input and output directed to the standard streams STDIN, STDOUT,
and STDERR require special handling. This special handling is provided by
the header files S_newio.h and newredef.h, which are included automatically
when you include S.h. This allows you, for example, to use the printf()
function to add debugging statements to your code.

You can override the special handling by using the define NO_NEWIO in your
code before including S.h. For example:

169

Chapter 5 Interfacing with C and FORTRAN Code

1/0 in Fortran
Subroutines

170

f#fdefine NO_NEWIO
#include <S.h>

The special handling does not support scanf(); if you need to read user
input from the GUI, use fgets() to read a line then use sscanf() to
interpret the line.

Fortran users cannot use any Fortran WRITE or PRINT statements since they
conflict with the I/O in Spotfire S+. Therefore, Spotfire S+ provides the
following three subroutines as analogs of the S-PLUS cat function:

DBLEPR Prints a double precision variable
REALPR Prints a real variable
INTPR Prints an integer variable

As an example of how to use them, here is a short Fortran subroutine for
computing the net resistance of 3 resistors connected in parallel:

SUBROUTINE RESISI1(R1, R2, R3, RC)
C COMPUTE RESISTANCES
RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)
CALL REALPR(’First Resistance’, -1, R1,1)
RETURN
END

The second argument to REALPR specifies the number of characters in the
first argument; the -1 can be used if your Fortran compiler inserts null bytes
at the end of character strings. The fourth argument is the number of values
to be printed.

Here is a S-PLUS function that calls RESIS1:

> parallel.resistance<-function(rl,r2,r3) {
.Fortran("resisl™,as.single(rl),as.single(r2),
as.single(r3),as.single(0))[[4]]

}

Running parallel produces the following:

> parallel(25,35,75)
First Resistance
[1] 25

[1] 12.2093

Reporting
Errors and
Warnings

C Functions

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

Spotfire S+ provides two functions, stop and warning, for detecting and
reporting error and warning conditions. In most cases, you should try to
detect errors in your Spotfire S+ code, before calling your compiled code.
However, Spotfire S+ does provide several tools to aid error reporting in your
compiled code.

The include file S.h defines macros that make it easy for your C code to
generate error and warning messages. The PROBLEM and RECOVER macros

together work like the S-PLUS function stop:

PROBLEM "format string"™, argl, ..., argn
RECOVER(NULL_ENTRY)

The PROBLEM and WARNING macros together work like the warning function:

PROBLEM "format string", argl, ..., argn
WARNING(NULL_ENTRY)

The odd syntax in these macros arises because they are wrappers for the C
library function sprintf(); the PROBLEM macro contains the opening
parenthesis and the RECOVER and WARNING macros both start with the closing
parenthesis. The format string and the other arguments must be arguments
suitable for the printf() family of functions. For example, the following C
code fragment:

JHinclude <S.h>
double x ;

if (x <= 0)
PROBLEM "x should be positive, it is %g", x
RECOVER(NULL_ENTRY) ;

is equivalent to the Spotfire S+ code:

if (x<=0) stop(paste("x should be positive, it is", x))

Both print the message and exit all of the currently active S-PLUS functions
calls. Spotfire S+ then prompts you to try again. Similarly, the C code:

f#include <S.h>
double x ;

P (x <= 0)

PROBLEM "x should be positive, it is %g", x
WARNING(NULL_ENTRY) ;

is equivalent to the Spotfire S+ code:

if (x<=0) warning(paste("x should be positive, it is", x))

171

Chapter 5 Interfacing with C and FORTRAN Code

Fortran
Subroutines

172

Many of the I/O statements encountered in a typical Fortran routine arise in
error handling—when the routine encounters a problem, it writes a message.

A previous section proposed using DBLEPR, REALPR, and INTPR for any
necessary printing. An alternative approach in Spotfire S+ is to use the
Fortran routines XERROR and XERRWV for error reporting, in place of explicit
WRITE statements. For example, consider again the Fortran routine RESISI,
which computes the net resistance of 3 resistors connected in parallel. A
check for division by 0 is appropriate, using XERROR:

SUBROUTINE RESISI(R1, R2, R3, RC)

(@]

COMPUTE RESISTANCES

IF (R1 .EQ. O .OR. R2 .EQ. O .OR. R3 .EQ. 0) THEN
CALL XERROR("Error : division by 0",

+ LEN("Error : division by 0"),99,2)

RETURN

END IF

RC =1.0/(1.0/R1 + 1.0/R2 + 1.0/R3)

CALL REALPR("First Resistance", -1, R1,1)

RETURN

END

XERROR takes four arguments: a character string message, an integer giving
the length of the string in message, an error number (which must be unique
within the routine), and an error level. If message is a quoted string, the
length-of-message argument can be given as LEN(message).

The XERRWV routine acts like XERROR but also allows you to print two integer
values, two real values, or both.

The first four arguments to XERRWY, like the first four arguments to XERROR,
are the message, the message length, the error ID, and the error level. The
fifth and eighth arguments are integers in the range 0-2 that indicate,
respectively, the number of integer values to be reported and the number of
real (single precision) values to be reported. The sixth and seventh arguments
hold the integer values to be reported, the ninth and tenth arguments hold
the real values to be reported.

In the following call to XERRWY, the fifth argument is 1, to indicate that one
integer value is to be reported. The sixth argument says that n is the integer to
be reported:

XERRWV(MSG, LMSG,1,1,1,n,0,0,0.0,0.0)

The following Fortran subroutine, test.f, shows a practical application of
XERRWV:

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

subroutine test(x, n, ierr)

real*8 x(1)

integer n, ierr, LMSG

character*100 MSG

ierr = 0

if (n.1t.3) then
MSG ="Integer (I1) should be greater than 2"
LMSG = len("Integer (I1) should be greater than 2")
CALL XERRWV(MSG,LMSG,1,1,1,n,0,0,0.0,0.0)
ierr =1
return

endif

do 10 i =2, n

10 x(1) = x(1) + x(i)
return
end

> .Fortran("test™, as.double(1:2), Tength(1l:2), integer(1l))
[[11]:
[1] 12

[C[21]:
[1] 2

[[3]1]:
[17 1

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test",

2: in message above, il=2 in:
.Fortran("test",

The error message is duplicated because our Spotfire S+ code interprets the
error status from the Fortran code. The messages issued by XERROR and
XERRWV are stored in an internal message table. Spotfire S+ provides several
functions for manipulating the message table within functions that call
Fortran routines using XERROR and XERRWV:

xerror.summary Prints out the current state of the internal message
summary table. Lists the initial segment of the message,
the error number, the severity level, and the repetition
count for each message.

xerror.clear Clears the message table. Takes an optional argument
doprint: if doprint=T, the message table is printed
before it is cleared.

173

Chapter 5 Interfacing with C and FORTRAN Code

Xerror.maxpr Limits the number of times any one message is queued
or printed. The default is 10.

For example, we can rewrite our S-PLUS test function to take advantage of
these functions as follows:

test <- function(x)
{
xerror.clear()
val <- .Fortran("test",
as.double(x),
length(x),
integer(1l))
if(options()$warn == 0)
xerror.summary ()
val[[1]11[1]
}

Calling it as before (after setting the option warn to 0) yields the following
result:

> test(1:2)

error message summary
message start nerr level count
Integer (I1) should be greater than 2 1 1 1
other errors not individually tabulated = 0

[1]11

Warning messages:

1: Integer (I1) should be greater than 2 in:
.Fortran("test", .

2: in message above, il = 2 in:
.Fortran("test",

See the xerror help file for more information on the S-PLUS functions
used with XERROR, and the XERROR help file for more information on XERROR
and XERRWV.

Calling Fortran Spotfire S+ contains a few C preprocessor macros to help smooth over

From C differences between machines in how to call C code from Fortran and vice
versa. The following macros are needed to allow distinctions between the
declaration, definition, and invocation of a Fortran common block or
Fortran subroutine (coded in either C or Fortran):

F77_NAME declaration of a Fortran subroutine.

F77_SUB definition of a Fortran subroutine.

174

Common Concerns in Writing C and Fortran Code for Use with Spotfire S+ for Unix

F77_CALL invocation of a Fortran subroutine.
F77_COMDECL declaration of a Fortran common block.
F77_COM usage of a Fortran common block.

As an example of the proper use of the F77 macros, consider the following
example C code fragment:

/* declaration of a common block defined in Fortran */
extern long F77_COMDECL(Forblock)[100];

/* declaration of a subroutine defined in Fortran */
void F77_NAME(Forfun)(double *, Tong *, double *);

/* declaration of a function defined in C, callable by
* Fortran */
double F77_NAME(Cfun)(double *, long *);

/* usage of the above common block */
for (i = 0; i < 100; i++) F77_COM(Forblock)[i] = 0;

/* invocation of the above functions */
F77_CALL(Forfun)(sl, nl, result);
if (F77_CALL(Cfun)(s2, n2) < 0.0)

/* definition of the above ’callable by Fortran’ function
*/

double F77_SUB(Cfun)(double *weights, long
*number_of_weights);

If you are loading code originally written for a specific UNIX compiler
(including some submissions to StatLib), you may find that code does not
compile correctly in Windows because not all of these macros are used.
Usually, such code does not use the F77_CALL macro to invoke the functions
(using F77_SUB instead), does not use the F77_COMDECL macro to declare the
Fortran common block (using F77_COM instead), and leaves out the
F77_NAME macro altogether. If you attempt to load such code without
substituting F77_CALL for F77_SUB at the appropriate places, you get
compilation errors such as the following:

xxx.c(54): Error! E1063: Missing operand
xxx.c(54): Warning! W111l: Meaningless use of an expression

Xxxx.c(54): Error! E1009: Expecting ’;’ but found ’fortran’

175

Chapter 5 Interfacing with C and FORTRAN Code

Similarly, if you attempt to statically load code without substituting
F77_COMDECL for F77_COM where appropriate, you get a link error such as
the following:

file xxx.obj(xxx.c): undefined symbol Forblock

Finally, if you attempt to statically load code without using F77_NAME to
declare the subroutine, you get a link error of the following form:

file xxx.obj(xxx.c): undefined symbol Cfun

Fortran passes all arguments by reference, so a C routine calling Fortran must
pass the address of all the arguments.

‘Warning

Fortran character arguments are passed in many ways, depending on the Fortran compiler. It is impossible
to cover up the differences with C preprocessor macros. Thus, to be portable, avoid using character and
logical arguments to Fortran routines which you would like to call from C.

CaIIing C From You cannot portably call C from Fortran without running the Fortran

Fortran

176

though a macro processor. You need a powerful macro processor like m4
(even it cannot do all that is needed) and then your code doesn't look like
Fortran any more.

We can give some guidelines:

* Try not to do it.

* To be portable, do not use logical or character arguments (this
applies to C-to-Fortran calls as well) because C and Fortran often
represent them differently.

Using C Functions Built into Spotfire S+ for Unix

USING C FUNCTIONS BUILT INTO SPOTFIRE S+ FOR UNIX

Allocating
Memory

In the previous section, we introduced a number of routines built into
Spotfire S+ with the purpose of avoiding certain difficulties in compiling
code and generating useful output. This section describes some more
generally useful routines that can help you allocate memory as Spotfire S+
does or generate random numbers.

Spotfire S+ includes two families of C routines for storage allocation and
reallocation. You can use either of these families, or use the standard library
functions malloc(), calloc(), realloc(), and free(). However, be very
careful to use only one family for any particular allocation; mixing calls using
the same pointer variable can be disastrous. The first Spotfire S+ family
consists of the two routines S_alloc() and S_realloc(), which may be
used instead of the standard malloc() and realloc(). The storage they
allocate lasts until the current evaluation frame goes away (at the end of the
function calling .C()) or until memory compaction in a Spotfire S+ loop
reclaims it. If space cannot be allocated, S_alloc() and S_realloc()
perform their own error handling; they will not return a NULL pointer. You
cannot explicitly free storage allocated by S_alloc() and S_realloc(), but
you are guaranteed that the storage is freed by the end of the current
evaluation frame. (There is no S_free() function, and using free() to
release storage allocated by S_alloc() will cause Spotfire S+ to crash.)
S_alloc() and S_realloc() are declared a bit differently from malloc()
and realloc() (although S_alloc has many similarities to calloc()—for
example, it zeroes storage and has two arguments). S_alloc() is declared as
follows in S.h:

void * S_alloc(long n, size_t size, s_evaluator
*S_evaluator);

Similarly, S_realloc() is declared as follows in S.h:

void * S_realloc(void *p, Tong New, long old, size_t size,
s_evaluator *S_evaluator);

S_alloc() allocates (and fills with 0’s) enough space for an array of n items,
each taking up size bytes. For example, the following call allocates enough
space for ten doubles:

S_alloc(10, sizeof(double), S_evaluator)

177

Chapter 5 Interfacing with C and FORTRAN Code

S_realloc() takes a pointer, p, to space allocated by S_alloc() along with
its original length, 01d, and size, size, and returns a pointer to space enough
for New items of the same size. For example, the following expands the
memory block size pointed to by p from 10 doubles to 11 doubles, zeroing
the 11th double location:

S_realloc(p,11,10, sizeof(double), S_evaluator)

The contents of the original vector are copied into the beginning of the new
one and the trailing new entries are filled with zeros. You must ensure that
old and size were the arguments given in the call to S_alloc()(or a
previous call to S_realloc()) that returned the pointer p. The new length
should be longer than the old. As a special case, if p is a NULL pointer (in
which case 01d must be 0L), then S_realloc() acts just like S_alloc().

The second Spotfire S+ family of allocation routines consists of the three
macros Calloc(), Realloc(), and Free(); note the capitalization.
Calloc() and Realloc() are simple wrappers for calloc() and
realloc() that do their own error handling if space can not be allocated
(they will not return if the corresponding wrapped function returns a NULL
pointer). Free() is a simple wrapper for free() that sets its argument to
NULL. As with calloc(), realloc(), and free(), memory remains
allocated until freed—this may be before or after the end of the current
frame.

Warning

If you use malloc() or realloc() directly, you must free the allocated space with free(). Similarly,
when using Calloc() or Realloc(), you must free the allocated space with Free(). Otherwise,
memory will build up, possibly causing Spotfire S+ to run out of memory unnecessarily. However, be
aware that because S processing may be interrupted at any time (e.g., when the user hits the interrupt key
or if further computations encounter an error and dump), it is sometimes difficult to guarantee that the
memory allocated with malloc() or realloc() (orCalloc() or Realloc()) is freed.

Note

If,inacall to S_alloc(), S_realloc(), Calloc() or Realloc(), the requested memory allocation
cannot be obtained, those routines call RECOVER (). See the section Reporting Errors and Warnings (page
171) for more information on the RECOVER () macro.

178

Generating
Random
Numbers

Using C Functions Built into Spotfire S+ for Unix

Spotfire S+ includes user-callable C routines for generating standard uniform
and normal pseudo-random numbers. It also includes procedures to get and
set the permanent copy of the random number generator’s seed value. The
following routines (which have no arguments) each return one pseudo-
random number:

double unif_rand(void);

double norm_rand(void);

Before calling either function, you must get the permanent copy of the
random seed from disk into Spotfire S+ (which converts it to a convenient
internal format) by calling seed_in((lTong *)NULL, S_evaluator). You
can specify a particular seed using setseed(long *seed), which is
equivalent to the S-PLUS function set.seed. When you are finished
generating random numbers, you must push the permanent copy of the
random seed out to disk by calling seed_out((long *)NULL,
S_evaluator). If you do not call seed_in() before the random number
generators, they fail with an error message. If you do not call seed_out()
after a series of calls to unif_rand() or norm_rand(), the next call to
seed_in() retrieves the same seed as the last call and you get the same
sequence of random numbers again. The seed manipulation routines take
some time so we recommend calling seed_in() once, then calling
unif_rand() or norm_rand() as many times as you wish, then calling
seed_out () before returning from your C function. A simple C function to
calculate a vector of standard normals is implemented as follows:

#Finclude <S.h>
void my_norm(double *x, Tong *n_p) {
long i, n = *n_p ;
seed_in((Tong *) NULL, S_evaluator);
for (i=0 ; i<n ; i++)
x[i] = norm_rand(S_evaluator);
seed_out((Tong *) NULL, S_evaluator);
}

To call it from Spotfire S+, define the function my .norm as follows:

my.norm <- function(n)
.C("my_norm", double(n), as.integer(n))[[1]]

Of course it is simpler and safer to use the S-PLUS function rnorm to
generate a fixed number of normal variates to pass into an analysis function.
We recommend that you generate the random variates in C code only when
you cannot tell how many random variates you will need, as when using a
rejection method of generating non-uniform random numbers.

179

Chapter 5 Interfacing with C and FORTRAN Code

CALLING S-PLUS FUNCTIONS FROM C CODE (UNIX)

To this point, we have shown how to call C and Fortran routines from S-
PLUS functions. You can also call S-PLUS functions from C code, using
the supplied C routine cal1_S(). The cal1_S() routine is useful as an
interface to numerical routines which operate on C or Fortran functions, but
it is not a general purpose way to call S-PLUS functions. The C routine
calling cal1_S() must be loaded into Spotfire S+, the arguments to the
function must be simple, and the nature of the output must be known ahead
of time. Because of these restrictions, call1_S() cannot be used to call S-
PLUS functions from an independent C application, as you might call
functions from a subroutine library.

The C function cal1_S() calls a S-PLUS function from C, but cal1_S()
must be called by C code called from Spotfire S+ via .C(). The cal1_S()
function has the following calling sequence:

call_S(void *func, Tong nargs, void **arguments,
char **modes, long *lengths, char **names,
long nres, void **results);

where:

func is a pointer to a list containing one S-PLUS function.
This should have been passed via an argument in a .C
call, as follows:
.C("my_c_code”,1ist(myfun))
This calls C code starting with the following lines:
my_c_code(void **Sfunc) {

call_S(*Sfunc, ...);

}
The S-PLUS function must return an atomic vector or
list of atomic vectors.

nargs is the number of arguments to give to the S-PLUS
function func.

arguments is an array of nargs pointers to the data being passed to
func. These can point to any atomic type of data, but
must be cast to type void* when put into arguments.

modes is an array of nargs character strings giving the Spotfire
S+ names, e.g., "double™ or "integer", of the modes
of the arguments given to func.

180

Calling S-PLUS Functions From C Code (Unix)

lengths is an array of nargs longs, giving the lengths of the
arguments.
names is an array of nargs strings, giving the names to be used

for the arguments in the call to func. If you don’t want
to call any arguments by name, names may be (char
**)NULL; if you don’t want to call the ith argument by
name, names[i] may be (char *)NULL.

nres is the maximum number of components expected in
the list returned by func (if func is expected to return
an atomic vector, then nres should be 1).

results is filled in by cal1_S(); it contains generic pointers to
the components of the list returned by func (or a
pointer to the value returned by func if the value were
atomic).

Your C code calling cal1_S() should cast the generic pointers to pointers to
some concrete type, like float or int, before using them. If func returns a
list with fewer components than nres, the extra elements of results are filled
with NULLs. Notice that cal1_S() does not report the lengths or modes of
the data pointed to by results; you must know this a priori.

To illustrate the use of cal1_S(), we construct (in Fortran) a general purpose
differential equation solver, heun (), to solve systems of differential equations
specified by a S-PLUS function. Other common applications involve
function optimization, numerical integration, and root finding.

The heun() routine does all its computations in single precision and expects
to be given a subroutine of the following form:

f(t, y, dydt)

where the scalar t and vector y are given and the vector dydt, the derivative,
is returned. Because the f() subroutine calls the S-PLUS function, it must
translate the function’s argument list into one that cal1_S() expects. Since
not all the data needed by ca11_S can be passed into f () via an argument list
of the required form, we must have it refer to global data items for things like
the pointer to the S-PLUS function and the modes and lengths of its
arguments. The following file of C code, dfeq.c, contains a C function f() to
feed to the solver heun(). It also contains a C function dfeq() which
initializes data that f() uses and then calls heun() (which repeatedly calls
f()):

#include <S.h>

extern void F77_NAME(heun)();
/* pointer to Splus function to be filled in */

181

Chapter 5 Interfacing with C and FORTRAN Code

182

static void *Sdydt ;

/* descriptions of the functions’s two arguments */
static char *modes[] = {"single", "single" };
static long Tengths[] = {1, 0 };

/* neqn = lengths[1] to be filled in */
static char *names[] = { "t", "y" };

/*
t [input]: 1 long ; y [input]l: negn long ;
yp [output]l: negn Tlong
*/
static void f(float *t, float *y, float *yp) {
char *in[2] ; /* for two inputs to Splus function,
t and y */
char *out[1l] ; /* for one output vector of
Splus function */
int i;
in[0] = (void *)t;
in[l1] = (void *)y;
call_S(Sdydt, 2L,
in, modes, lengths, names, /* 2 arguments */
1L, out/* 1 result */);

/* the return value out must be 1 Tong - i.e., Splus
function must return an atomic vector or a list of one

atomic vector. We can check that it is at least 1 Tlong.

if (lout[01)
PROBLEM
"Splus function returned a 0 long 1ist"
RECOVER(NULL_ENTRY);

/* Assume out[0] points to lengths[1l] single precision
numbers. We cannot check this assumption here. */

for(i=0;i<lengths[1];i++)
yp[il = ((float *)out[01)[i] ;
return ;

}

/* called via .C() by the Splus function dfeq(): */
void dfeq(void **Sdydtp, float *y, long *neqn,

float *t_start, float *t_end, float *step,

float *work) {

/* Store pointer to Splus function and
number of equations */
Sdydt = *Sdydtp ;
lengths[1] = *neqn ;

*/

Calling S-PLUS Functions From C Code (Unix)

/* call Fortran differential equation solver */

F77_CALL(heun)(f, negn, y, t_start, t_end, step, work);
}

‘Warning

In the C code, the value of the S-PLUS function was either atomic or was a list with at least one atomic

component. To make sure there was no more than one component, you could look for 2 values in
results and make sure that the second is a null pointer.

The following S-PLUS function, dfeq, does some of the consistency tests
that our C code could not do (because call_S did not supply enough
information about the output of the S-PLUS function). It also allocates the
storage for the scratch vector. Then it repeatedly calls the C routine, dfeq(),
to have it integrate to the next time point that we are interested in:

> dfeq <- function(func, y , t0 =0, t1 =1, nstep = 100,
stepsize = (t1-t0)/nstep)
{

if (length(func) =3 ||
any(names(func) != c("t","y", "")))
stop("arguments of func must be called t and y")
y <- as.single(y)
t0 <- as.single(t0)
neqn <- length(y)
test.val <- func(t = t0, y =y)
if(negn != Tength(test.val))
stop("y and func(tO,y) must be same length™)
if(storage.mode(test.val) != "single")
stop("func must return single precision vector™)
val <- matrix(as.single(NA), nrow = nstep + 1, ncol =
neqn)
vall[l, 1 <-y
time <- as.single(t0 + seq(0, nstep) * stepsize)
for(i in l:nstep) {
val[i + 1,] <- .C("dfeq"™, list(func), y=valli, 1,
negn=as.integer(neqn),
t.start=as.single(time[i]),
t.end=as.single(time[i + 1]),
step=as.single(stepsize),
work=single(3 * neqgn))s$y
}
Tist(time=time, y=val)

183

Chapter 5 Interfacing with C and FORTRAN Code

184

The following subroutine is the Fortran code, heun. f, for Heun’s method of
numerically solving a differential equation. It is a first order Runge-Kutta
method. Production quality differential equation solvers let you specify a
desired local accuracy rather than step size, but the code that follows does
not:

Heun’s method for solving dy/dt=f(t,y),
using step size h :

ki1 =h f(t,y)

k2 = h f(t+h,y+kl)

ynext =y + (kl+k2)/2

OO OO

subroutine heun(f, negn, y, tstart, tend, step, work)
integer neqgn
real*4 f, y(neqn), tstart, tend, step, work(neqgn,3)
C work(1l,1) is k1, work(1l,2) is k2, work(l,3) is y+kl
integer i, nstep, istep
real*4 t
external f
nstep = max((tend - tstart) / step, 1.0)
step = (tend - tstart) / nstep
do 30 istep = 1, nstep
t = tstart + (istep-1)*step
call f(t, y, work(1l,1))
do 10 i = 1, negn
work(i,1l) = step * work(i,1l)
work(i,3) = y(i) + work(i,1)
10 continue
call f(t+step, work(1,3), work(1,2))
do 20 i = 1, negn
work(i,2) = step * work(i,2)
y(i) = y(i) + 0.5 * (work(i,1) + work(i,2))

20 continue
30 continue
return
end

To try out this example of cal1_S, exercise it on a simple one-dimensional
problem as follows:

> a <- dfeq(function(t,y)t”2, t0=0, t1=10, y=1)

> plot(a$time,as$y)

> lines(a$time, a$time~3/3+1) # compare to
fitheoretical solution

Calling S-PLUS Functions From C Code (Unix)

You can increase nstep to see how decreasing the step size increases the
accuracy of the solution. The local error should be proportional to the square
of the step size and when you change the number of steps from 100 to 500
(over the same time span) the error does go down by a factor of about 25. An
interesting three-dimensional example is the Lorenz equations, which have a
strange attractor:

> chaos.func<-function(t, y) {
as.single(c(10 * (y[2] - y[11),
- y[11 * y[3]1 + 28 * y[1] - y[2],
y[1] * y[2] - 8/3 * y[31))
}
> b <- dfeq(chaos.func, y=c(5,7,19), t0=1, t1=10,
nstep=300)
> b.df <- data.frame(b$time,bs$y))
> pairs(b.df)

The resulting plot is shown in Figure 5.2.

185

Chapter 5 Interfacing with C and FORTRAN Code

10 20 30 40

L n n s L n n h

@8 0(9@@ I

90 0 ® 0 0l ﬁe‘55(900000 @of ®
DD BBy °°° © Q0 000 Q@
@

OF 000 L
% %O@@)
0 ©0® ooof ¥

00 CB808 0% 00 Oemeooo% o@o
8 SoR® SafkoR0e® °°° 050 s Soo
R SR

]) 8&m

b.time

0 10 20

-20

Figure 5.2: Viewing the Lorenz equations, as solved by dfeq.

‘Warnings

Since cal1_S doesn’t describe the output of the S-PLUS function it calls, you must “know” about it ahead
of time. You can test the function for a variety of values before calling cal1_S to check for gross errors, but
you cannot ensure that the function won't return an unacceptable value for certain values of its arguments.

The cal1_S function expects that the output of the function given to it has no attributes. If it does have
attributes, such as dimensions or names, they are stripped.

186

The . Call Interface (Unix)

THE .CALL INTERFACE (UNIX)

The .Cal1 interface is a powerful, yet dangerous, interface that allows you to
manipulate S-PLUS objects from C code. It is more efficient than the
standard .C interface, but because it allows you to work directly with S-
PLUS objects, without the usual Spotfire S+ protection mechanisms, it also
allows you to create a variety of bugs, including memory faults and corrupted
data.

The .Call interface provides you with several capabilities the standard .C
interface lacks, including the following

* the ability to create variable-length output variables, as opposed to
the preallocated objects the . C interface expects to write to.

* asimpler mechanism for evaluating S-PLUS expressions within C.

* the ability to establish direct correspondence between C pointers and

S-PLUS objects.

Requirements To use the .Call interface, you must ensure your code meets the following
requirements L
1. The return value and all arguments have C type "s_object *".
2. The code must include the standard Spotfire S+ header file S.h.

3. If the routine deals with S-PLUS objects, it must include a
declaration of the evaluator using the macro S_EVALUATOR,
appearing in the declaration part of the routine and 7o followed by a
semicolon.

As with .C, the required arguments to .Call include the name of the C
routine being called and one argument for each argument to the C routine.

1. Chambers, J.M. (1998) Programming with Data. New York: Springer-
Verlag. p. 429.

187

Chapter 5 Interfacing with C and FORTRAN Code

Returning Occasionally, we do not know how long the output vector of a procedure is
until we have done quite a bit of processing of the data. For example, we
might want to read all the data in a file and produce a summary of each line.
Length OUtPUt Until we have counted the lines in the file, we don’t know how much space to
Vectors allocate for a summary vector. Generally, .C passes your C procedure a
pointer to a data vector allocated by your S-PLUS function so you must
know the length ahead of time. You could write two C procedures: one to
examine the data to see how much output there is and one to create the
output. Then you could call the first in one call to .C, allocate the correct
amount of space, and call the second in another call to .C. The first could
even allocate space for the output vector as it is processing the input and have
the second simply copy that to the vector allocated by your S-PLUS

Variable-

function.

With the .Call interface, however, you can create the desired S-PLUS

object directly from your C code.

Here is an example which takes a vector x of integers and returns a sequence

of integers, of length max(x):

##include "S.h"
s_object *makeseq(s_object *sobjX)
{
S_EVALUATOR
long i, n, xmax, *seq, *x ;
s_object *sobjSeq ;

/* Convert the s_objects into C data types:

sobjX = AS_INTEGER(sobjX)
x = INTEGER_POINTER(sobjX) ;
n = GET_LENGTH(sobjX) ;

/* Compute max value: */
xmax = x[0] ;
if(n > 1) {
for(i=1; i<n; i++) {

if(xmax < x[i]) xmax

if(xmax < 0)

PROBLEM "The maximum value (%1d) is

negative.", xmax ERROR ;

188

*/

The . Call Interface (Unix)

/* Create a new s_object, set its length and get a C integer

pointer to it */
sobjSeq

NEW_INTEGER(O) ;

SET_LENGTH(sobjSeq, xmax) ;
seq = INTEGER_POINTER(sobjSeq) ;

for(i=0; i<xmax; i++) {
seqli] =1 + 1 ;

}

return(sobjSeq) ;

}

Use the following Spotfire S+ code to call makeseq():

"makeseq" <-
function(x)
{

x <- as.integer(x)
.Call("makeseq", x)

S Object
Macros

The makeseq example has several interesting features, but perhaps the most
useful is its extensive use of S object macros. These macros are defined when

you include S.h, and allow you to create, modify, and manipulate actual S-
PLUS structures from within your C code. There are five basic macros, each
of which is implemented particularly for the basic data types listed in
Table 5.5. These macros are described in Table 5.6. To obtain the full name

Table 5.6: S object macros.

Macro

Description

NEW_gpe(n)

AS_zype(obj)

IS_zype(ob)

Create a pointer to an S object of class zype and
length n.

Coerce 0bj to an S object of class #ype.

Test whether 0bj is an S object of class zype.

189

Chapter 5 Interfacing with C and FORTRAN Code

Evaluating
S-PLUS
Expressions
from C

190

Table 5.6: S object macros.

Macro Description

type_POINTER(obj) Create a pointer of type #ype to the data part of 0bj.

type_VALUE (obj) Returns the value of obj, which should have length
1.

of the desired macro, just substitute the basic data type from Table 5.5 in
ALLCAPS for the word #ype in the macro name given in Table 5.6. Thus, to
create a new numeric S-PLUS object, use the macro NEW_NUMERIC.

The makeseq code uses the AS_INTEGER macro to coerce the sobjX object
to type INTEGER; the NEW_INTEGER macro to create the returned sequence
object; and the INTEGER_POINTER macro to access the data within those
objects.

The makeseq code also uses built-in macros for getting and setting basic
information about the S objects: in addition to the GET_LENGTH and
SET_LENGTH macros used in makeseq, there are also GET_CLASS and
SET_CLASS macros to allow you to obtain class information about the
various S objects passed into your code.

You can evaluate a S-PLUS expression from C using the macros EVAL and
EVAL_IN_FRAME. Both take as their first argument a S-PLUS object
representing the expression to be evaluated; EVAL_IN_FRAME takes a second
argument, n, representing the Spotfire S+ frame in which the evaluation is to

take place.

For example, consider the internal C code for the Tapply function, which
was first implemented by John Chambers in his book Programming with
Data:

#include "S_engine.h"

/* See Green Book (Programing with Data by J.M. Chambers)
appendix A-2 */

S_object *
S_qapply(s_object *x, s_object *expr, s_object *name_obj,

s_object *frame_obj)

S_EVALUATOR

}

The . Call Interface (Unix)

long frame, n, i;

char *name;

s_object **els;

X = AS_LIST(x)

els = LIST_POINTER(x);

n = LENGTH(x);

frame = INTEGER_VALUE(frame_obj) ;

name = CHARACTER_VALUE(name_obj) ;

for(i=0;i<n;i++) {
ASSIGN_IN_FRAME(name, els[i], frame)
SET_ELEMENT(x, i, EVAL_IN_FRAME(expr,

frame)) ;
}

return Xx;

This uses the more general macro EVAL_IN_FRAME to specify the specific
frame in which to evaluate the specified expression. Note also the
SET_ELEMENT macro; this must a/ways be used to perform assignments into

S-PLUS list-like objects from C.

191

Chapter 5 Interfacing with C and FORTRAN Code

DEBUGGING LOADED CODE (UNIX)

Debugging C
Code

Debugging C
Code Using a
Wrapper
Function

192

Frequently the code you are dynamically linking is known, tested, and
reliable. But what if you are writing new code, perhaps as a more efficient
engine for a routine developed in Spotfire S+? You may well need to debug
both the C or Fortran code and the S-PLUS function that calls it. The first
step in debugging C and Fortran routines for use in Spotfire S+ is to make
sure that the C function or Fortran subroutine is of the proper form, so that
all data transfer from Spotfire S+ to C or Fortran occurs through arguments.
Both the input from Spotfire S+ and the expected output need to be
arguments to the C or Fortran code. The next step is to ensure that the classes
of all variables are consistent. This often requires that you add a call such as
as.single(variable) in the call to .C or .Fortran. If the Spotfire S+
code and the compiled code disagree on the number, classes, or lengths of the
argument vectors, Spotfire S+’s internal data may be corrupted and it will
probably crash—by using .C or .Fortran you are trading the speed of
compiled code for the safety of Spotfire S+ code. In this case, you usually get
an application error message before your Spotfire S+ session crashes. Once
you've verified that your use of the interface is correct, and you've determined
there’s a problem in the C or Fortran code, you can use an analog of the cat
statement to trace the evaluation of your routine.

If you are a C user, you can use C I/O routines, provided you include S.h.
Thus, you can casually sprinkle printf statements through your C code just
as you would use cat or print statements within a S-PLUS function. (If
your code is causing Spotfire S+ to crash, call fflush() after each call to
printf() to force the output to be printed immediately.)

If you cannot uncover the problem with generous use of printf(), the
following function, .Cdebug, (a wrapper function for .C) can sometimes
find cases where your compiled code writes off the end of an argument
vector. It extends the length of every argument given to it and fills in the
space with a flag value. Then it runs . C and checks that the flag values have
not been changed. If any have been changed, it prints a description of the
problem. Finally, it shortens the arguments down to their original size so its
value is the same as the value of the corresponding . C call.

.Cdebug <- function(NAME, ..., NAOK = F, specialsok = F,
ADD = 500, ADD.VALUE = -666)
{

args <- Tlist(...)

Debugging Loaded Code (Unix)

tail <- rep(as.integer(ADD.VALUE), ADD)
for(i in seq(along = args))
{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
args[[i]1] <- c(args[[i]], tmp)
}
args <- c(NAME = NAME, args, NAOK = NAOK,
specialsok = specialsok)
val <- do.call(".C", args)
for(i in seq(along = val))

{
tmp <- tail
storage.mode(tmp) <- storage.mode(args[[i]])
taili <- val[[ill[seq(to = length(val[[i11),
length = ADD)]
if((s <- sum(taili != tmp)) > 0) {
cat("Argument ", i, "(", names(val)[i],
") to ", NAME, " has ", s, " altered
values after end of array\n ",
sep ="")
}
length(val[[i]]) <- length(val[[i]]) - ADD
}
val

}

For example, consider the following C procedure, oops ():

oops(double *x, Tong* n)

{

long i;

for (i=0 ; i <= *n ; i++) /* should be <, not <= */
x[i] = x[i] + 10 ;

}

Because of the misused <=, this function runs off the end of the array x. If
you call oops () using .C as follows, you crash your Spotfire S+ session:

> .C("oops", x=as.double(l:66), n=as.integer(66))

If you use .Cdebug instead, you get some information about the problem:

> .Cdebug("oops", x=as.double(l:66), n=as.integer(66))
Argument 1(x) to oops has 1 altered values after end of
array

X:

193

Chapter 5 Interfacing with C and FORTRAN Code

194

[1] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[19] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[37] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[55] 65 66 67 68 69 70 71 72 73 74 75 76

n:

[1] 66

The .Cdebug function cannot tell when you run off the beginning of an
argument vector or when you write anywhere else in memory. If inspecting
your source code and using S-PLUS functions like .Cdebug is not enough
to pinpoint a problem, try the following:

1. Write a short main program that calls your procedure.

2. Compile and link the main program and your procedure for

debugging.

A Note on StatLib (Windows and Unix)

A NOTE ON STATLIB (WINDOWS AND UNIX)

StatLib is a system for distributing statistical software, data sets, and
information by electronic mail, FTP, and the World Wide Web. It
contains a wealth of user-contributed S-PLUS functions, many of
which rely upon C and Fortran code that is also provided. Much of
this code has been precompiled for use with Spotfire S+ for Windows.

To access StatLib by FTP, open a connection to:
lib.stat.cmu.edu. Login as anonymous and send your e-mail
address as your password. The FAQ (frequently asked
questions) is in /S/FAQ, or in HTML format at
http://www.stat.math.ethz.ch/S-FAQ.

To access StatLib with a web browser, visit
http://lib.stat.cmu.edu/.

To access StatLib by e-mail, send the message: send index
from S to statlib@lib.stat.cmu.edu. You can then request any
item in StatLib with the request send item from S where
item is the name of the item.

If you find a module you want, check to see if it is pure S code or if it
requires C or Fortran code. If it does require C or Fortran code, see if
there is a precompiled Windows version-look in the /DOS/S
directories. The precompiled versions generally require you to do
nothing more than install the code.

195

Chapter 5 Interfacing with C and FORTRAN Code

196

AUTOMATION

Introduction 198
Using Spotfire S+ as an Automation Server 199
A Simple Example 199
Exposing Objects to Client Applications 205
Exploring Properties and Methods 207
Programming With Object Methods 209
Programming With Object Properties 219
Passing Data to Functions 220
Automating Embedded Spotfire S+ Graph Sheets 223
Using Spotfire S+ as an Automation Client 224
A Simple Example 224
High-Level Automation Functions 230
Reference Counting Issues 232
Automation Examples 235
Server Examples 235
Client Examples 239

197

Chapter 6 Automation

INTRODUCTION

Automation, formerly known as OLE automation, makes it possible for
one application, known as the automation client, to directly access the
objects and functionality of another application, the automation
server. The server application exposes its functionality through a type
library of objects, properties, and methods, which can then be
manipulated programmatically by a client application. Automation
thus provides a handy way for programs and applications to share
their functionality.

In this chapter, we explore the procedures for using Spotfire S+ as
both an automation server and an automation client. We begin by
showing you how to expose S-PLUS objects and functions and how
to use them as building blocks in the program code of client
applications. Later in the chapter, we examine the functions provided
in the S-PLUS programming language for accessing and
manipulating the automation objects exposed by server applications.

Note

This chapter is dedicated to Microsoft Windows® users running the Spotfire S+ GUI. You must
call all automation client functions from the Spotfire S+ GUIL If you call the automation
functions from the Console program, they generate errors.

198

Using Spotfire S+ as an Automation Server

USING SPOTFIRE S+ AS AN AUTOMATION SERVER

A Simple
Example

Programs and applications supporting automation client features can
access all the functionality of Spotfire S+ by referring to the S-PLUS
type library or the HTML-based object help system. The type library
is a disk file containing information about S-PLUS objects and
functions, as well as help and syntax information. The object help
system is a set of HTML files with an index.htm showing the object
hierarchy of objects exposed by Spotfire S+ via automation and how
to use them in a Visual Basic script.

Before explaining in detail how to program with S-PLUS automation
objects, let’s first take a look at a simple example.

To demonstrate how to use Spotfire S+ as an automation server, we
present a simple example using automation to pass data from an
Excel worksheet to Spotfire S+, which then performs a covariance
estimation on the data and returns the resulting covariance matrix to
Excel.

Consider the sample data shown in Figure 6.1. Sheetl of the Excel
workbook Book1.xls contains data in 4 columns of 39 rows (not all
rows are shown in Figure 6.1).

(i Book1.xls H=]1E3
A B © D E g
|1 8.80 471 5.82 1297
| 2 | 8.79 470 5.83 1297
| 3 | 8.79 4.69 5.83 12958
EN 5.581 4.69 5.84 12958
hi] 5.581 464 5.85 12958
| 6 | 5.9 4.63 5.86 1299
| 7 8.94 4.62 5.88 1299
| 8 | 8.95 4.62 5.90 1299
EN 8.95 461 5.93 13.00
| 10| 9.0 461 5.94 13.00
111 | 9.03 4.60 5.95 13.01
| 12 | 9.0v 469 5.96 13.02
| 13 | 9.06 468 5.95 13.02
| 14 | 91 469 6.00 13.03
| 15| 9.13 468 6.03 13.04
16 (= b AET [=ue] 1204 r
144 [» [p]sSheet1 / shestz 7 1] »ll

Figure 6.1: Sample data in Book1.xls.

199

Chapter 6 Automation

Note

The sample data in Bookl.xls are taken from the freeny.x matrix included with Spotfire S+.
You can recreate this example by exporting the data into a new Excel worksheet and following
the steps outlined below.

By writing a program in Visual Basic for Applications (Office 97), we
can automate a conversation between Excel and Spotfire S+ to
perform our task. The complete code for one such program is shown
in Figure 6.2.

§; Book1_xls - Sheet1 [Code) I [=]

I(General} =l |Runnutomationc0\r =l
=

Sub RunlutomationCovi()
Dim pDataValues As Variant
Convert3heetRangeToArray pDataValues, Sheets ("2heetl"”) . Range ("A1:D39™)
Dim automationCoV As Object
Set automationCOV = Createdbject ("S-PLUS.automationCov™)
automationCiWV.x = phataValues
automat ionCovV. Fun
Dim pCovarianceDataFrame As Obhject
Set pCovarianceDataFrame = GetDataFrame ("CovDF™
ConvertiArrayToZheetRange "A", "1", "Zheetz", _
pCovariancebataFrame.Datalsirray
End Sub
Sub ConvertZheetRangeTolArray (pArray As Variant, _
EvRef rangeToConvert Ls Range)
phrray = rangeToConvert.Value
End Sub
Function GetDataFrame (sDataFramelName As String) As Chiject
Dim plpp As Object
Set plipp = CreateChject ("3-PLU3.Application™)
SGet GetDataFrame = plpp.Getlbject ("DataFrame®, sDataFramelName)
End Function
Sub ConvertiArrayToSheetRange (s3tartCol As S3tring, s3tartRow As String,
s3heetName As S3tring, plrray As Variant)
UpperBoundl = UBound (phrray, 1)
UpperBoundZ = UBound (phrray, 2)
sRangeToFill = Trim§(sStartCol] + Trim§(sStartRow) + ":" +
Chr (Asc (UCase§ (s3tartCol)) + (Trim(3tr (UpperBound2)) - 1)) + _
Trim(3tr (UpperBoundl))
Sheets (s3heetName) . RBange (sRangeToFill) .Walue = plrray
End Sub

Figure 6.2: Complete code for our VBA program.

Hint

The example shown in Figure 6.2 can be found in samples/oleauto/vba/excel/Bookl.xls in
the Spotfire S+ program folder.

200

Using Spotfire S+ as an Automation Server

Before we examine the VBA code in detail, let’s first define a new S-
PLUS function and register it for use as an automation object.

1. Open a new Script window in Spotfire S+ and enter the code
shown in Figure 6.3.

Q Scriptl - program H=]1E3
1 1 v

automationCOV <- function(x)

i

assigm("new”, cov.wt(x, wt = rep(l, nrow(x)), cor = F, center = T), where = 1)
assigm("CovDF", data.frame (newicov), where = 1)
'

register.ole.object("autonationCOv™)

Figure 6.3: Defining and registering a new S-PLUS function.

Our new function, automationC0V, calls the built-in S-PLUS function
cov.wt to perform a weighted covariance estimation on the data
received from Excel and extracts the cov component of the resulting
list for return to Excel. After defining the new function, we use the
register.ole.object command to make it available to Excel.

2. Click the Run button “* on the Script window toolbar. As

shown in Figure 6.4, automationCOV is now defined and
registered as an automation object.

201

Chapter 6 Automation

Q Scriptl - program H=]1E3
1 1 v

automationCOV <- function(x)

i

assigm("new”, cov.wt(x, wt = rep(l, nrow(x)), cor = F, center = T), where = 1)
assigm("CovDF", data.frame (newicov), where = 1)
'

register.ole.object("autonationCOv™)

» automationCOV <- function(x)
i
assigm("new”, cov.wt(X, wt = rep(l, nrow(x)), cor = F, center = T),
where = 1)
assigm("CovDF", data.frame (newicov), where = 1)
'
» register.ole.object("autonationCOv™)
[1] T

Figure 6.4: Running the script.

3. Close the Script window. At the prompt to save the scriptin a
file, click No.

Note

If you prefer, you can define and register automationCoV directly from the Commands window.

Now that we have defined and registered our S-PLUS function, the
next step is to write the module in Visual Basic.

4. With Bookl.xls open in Excel, choose Tools » Macro »
Visual Basic Editor from the main menu.

5. If the Project Explorer window is not open, open it by
choosing View P Project Explorer.

6. Double-click Sheetl under the Book1.xls project to open the
code window for Sheetl.

7. Enter the code for the first procedure in the module,
RunAutomationCOV, as shown in Figure 6.5.

202

Using Spotfire S+ as an Automation Server

§; Book1_xls - Sheet1 [Code) I [=] F3
I(General} =l |Runnutomationc0\r =l
Sub RunlutomationCovi() -

Dim pDataValues As Variant
Convert3heetRangeToArray pDataValues, Sheets ("2heetl"”) . Range ("A1:D39™)

Dim automationCoV As Object

Set automationCOV = Createdbject ("S-PLUS.automationCov™)
automationCiWV.x = phataValues

automat ionCovV. Fun

Dim pCovarianceDataFrame As Obhject

Set pCovarianceDataFrame = GetDataFrame ("CovDF™

ConvertiArrayToZheetRange "A", "1", "Zheetz", _
pCovariancebataFrame.Datalsirray

End Sub -
JE0 Y[

Figure 6.5: The RunAutomationCOV procedure.

RunAutomationCOV represents the central task we want to automate. In
the first section of code, we declare a variable, pDataValues, in which
to store the data on Sheetl. A call to the next procedure we will
write, ConvertSheetRangeToArray, converts the range data into an
array.

8. Enter the code for ConvertSheetRangeToArray, as shown in

Figure 6.6.
54 Book1_xls - Sheetl (Code] 18 [=] e
I(General} j IConuertSheetRangeToArray j
Sub ConvertZheetRangeTolArray (pArray As Variant, _ -

EvRef rangeToConvert Ls Range)

phrray = rangeToConvert.Value —
End Sub -
=|= <| | vz

Figure 6.6: The ConvertSheetRangeToArray procedure.
In the next section of code in RunAutomationCOV (see Figure 6.5), we

declare a variable to capture our automationCOV function, pass the
Excel data as a parameter to the function, and then run the function.

203

Chapter 6 Automation

In the final section of code in RunAutomationCOV (see Figure 6.5), we
declare a variable, pCovarianceDataFrame, in which to store our
results and call the GetDataFrame function, the next procedure we will
write, to return the results to Excel.

9. Enter the code for GetDataFrame, as shown in Figure 6.7.

§; Book1_xls - Sheet1 [Code) I [=] F3

I(General} j IGetDataFrame j

Function GetDataFrame (sDataFramelName As String) As Chiject -

Dim plpp As Object
Set plipp = CreateChject ("3-PLU3.Application™)

SGet GetDataFrame = plpp.Getlbject ("DataFrame®, sDataFramelName) _I
End Function -|
=|= <| | vz

Figure 6.7: The GetDataFrame function.

The last procedure we will write, ConvertArrayToSheetRange, is
called in the last line of RunAutomationCOV and returns the covariance
matrix to Sheet2 in Book1.xls.

10. Enter the code for ConvertArrayToSheetRange, as shown in
Figure 6.8.

§; Book1_xls - Sheet1 [Code) I [=] F3

I(General} j IConuertArrayToSheetRange j

Sub ConvertiArrayToZheetRange (s3tartCol As 3tring, s3tartRow As 3tring, _ j
s3heetName As S3tring, plrray As Variant)

UpperBoundl UBound (phrray, 1)
UpperBoundz2 UBound (phrray, 2)
sRangeToFill = Trim§(sStartCol] + Trim§(sStartRow) + ":" +
Chr (Asc (UCase§ (s3tartCol)) + (Trim(3tr (UpperBound2)) - 1)) + _ J

Trim(3tr (UpperBoundl))
Sheets (s3heetName) . RBange (sRangeToFill) .Walue = plrray

End Sub -

= SN — 1p7

Figure 6.8: The ConvertArrayToSheetRange procedure.

With all the coding complete, it’s time to run the module.

204

Using Spotfire S+ as an Automation Server

11. Click the Run Sub/User Form button "* on the Visual

Basic toolbar. The results are shown in Figure 6.9.

‘@l Book1.xls H=]1E3
A B © D E g
LI 0.095968 -0.04056 0.036343 0.019772
| 2 | 004056 0017323 -0.01493 -0.00329 J
| 3 | 0.036343 -0.01493 0.014135 0.007352
| 4 | 009772 -0.00523 0007332 0.004054
5
6
? -
[[4]0 Ml Shesti Sheetz /4| | Il

Figure 6.9: The covariance matrix returned to Excel.

Exposing When you start Spotfire S+ for the first time, the single automation
Objects to object S-PLUS.Application is exposed for use by automation client
Client programs. By default, no other objects are exposed.

Applications There are a number of ways in which S-PLUS automation objects can

be exposed to, or hidden from, client applications. Table 6.1 lists the

S-PLUS functions that you can use at any time to register or
unregister automation objects.

Table 6.1: S-PLUS functions for exposing and hiding automation objects.

Function

Description

register.all.ole.objects

This function registers all S-PLUS objects with the system
registry and builds or rebuilds the type library file.

Returns T for success or F for failure.

unregister.all.ole.objects

This function unregisters all S-PLUS objects and removes
the type library file.

Returns T for success or F for failure.

register.ole.object

This function registers one or more S-PLUS objects with
the system registry and builds or rebuilds the type library
file.

Returns T for success or F for failure.

205

Chapter 6 Automation

Table 6.1: S-PLUS functions for exposing and hiding automation objects. (Continued)

Function Description
unregister.ole.object This function unregisters one or more S-PLUS objects and
rebuilds the type library file.
Returns T for success or F for failure.
With the exception of functions, all the built-in S-PLUS objects can
be exposed simultaneously with a call to:
register.all.ole.objects()
Due to their large number, function objects are not exposed at one
time because it would be too time-consuming. Instead, to expose any
of the built-in functions, or any of those that you have defined, call:
register.ole.object(names)
where names is a character vector of the function names you want to
expose. You can also use this function to register one or more
particular S-PLUS objects.
To unregister all your S-PLUS objects, making them no longer
available to automation clients, call:
unregister.all.ole.objects()
To unregister one or more particular S-PLUS objects, call:
unregister.ole.object(names)
with the desired names argument.
Caution

Unregistering your S-PLUS objects means that no automation client will be able to access those
objects, which could potentially cause a client program to fail.

206

When you expose S-PLUS objects for use in automation, several
entries are added to your Windows system registry. Automation client
programs use these entries to identify what objects can be automated

Using Spotfire S+ as an Automation Server

and which application to use to automate them. When you hide your
S-PLUS objects, these registry entries are removed so that client

programs can no longer find them.

Note

Among these registry entries, the ProgID (program identifier) entry or human-readable name of
the object (for example, S-PLUS.Application or S-PLUS.GraphSheet) is what you refer to in your
client program script. This ProgID entry is mapped to a universally unique number entry called
a UUID (universally unique identifier) in the Windows system registry. Under this UUID entry
is stored the pathname on your system to the Spotfire S+ program, which is used by your client
program to create and automate the object.

Exploring To start a conversation with Spotfire S+ from a client application, you
Properties and must first create or get a S-PLUS object. Once an instance of the
Methods object has been created, it can be manipulated through its properties

and methods.

The S-PLUS type library (installed by default to cmd\Sp6obj.tlb in
the Spotfire S+ program folder) is useful for knowing what methods
and properties are available for particular S-PLUS objects when
programming in an automation client such as Visual Basic. However,
the type library does not reveal the object hierarchy or how objects
are related in Spotfire S+, nor does it provide much information on
how to use the properties of S-PLUS objects.

Note

Although Spotfire S+ has an automation type library, it does not support “early binding” in an
automation client such as Visual Basic. The types listed in the type library file are listed for
informational purposes only. When you declare a S-PLUS variable in a client, you must declare
it as the generic “object” type. Spotfire S+ supports only the “IDispatch” interface and “late
binding” for all objects that are automatable.

For an easier way of seeing how to program S-PLUS objects, use the
HTML-based object help system. In the help\AutomationObjects
folder of the Spotfire S+ program folder, you will find a complete set
of HTML files documenting the S-PLUS object hierarchy as
distributed with the program, including an index.htm file displaying
the entire S-PLUS object hierarchy. These files provide detailed

207

Chapter 6 Automation

programming information, listing, for each automation object, not
only its properties and methods, but also its possible containment
paths, possible container objects, and possible child objects.

You can update the object help system at any time to reflect the
complete object hierarchy for all objects currently registered,
including any S-PLUS functions you write and expose using
register.ole.object. If you choose, you can also create a new set of
HTML files in a different folder on your system.

Table 6.2 lists the S-PLUS functions you can use to refresh or remove
the type library or to refresh the object help system.

Table 6.2: S-PLUS functions for documenting automation objects.

Function

Description

rebuild.type.library

This function removes and then rebuilds the type library
file with all currently registered S-PLUS objects.

Returns T for success or F for failure.

destroy.type.library

This function removes the type library file from disk. Note
that executing this command does not unregister any
objects but simply removes the type library.

Returns T for success or F for failure.

rebuild.html.library(html.path,
method.language.type = "basic"

Argument html.path specifies the path, including drive
letter, where you want the set of HTML files to be saved to
disk. Optional argument method.language.type specifies
the language used to write out the example syntax for
methods in the HTML files; the default value for this
argument is basic, but ¢ or c++ can also be used.

This function creates the htm1.path specified, if it does not
already exist, and writes an index.htm file that shows the
complete object hierarchy for the automatable S-PLUS
object system.

Returns T for success or F for failure.

208

Using Spotfire S+ as an Automation Server

Note

The function rebuild.html.Tibrary uses only the currently registered objects to form the
hierarchy and list of objects. Therefore, be sure to run register.all.ole.objects prior to calling
this function to ensure that all objects appear in the help files.

Programming S-PLUS automation objects are owned by Spotfire S+ but can be
With Object created and manipulated remotely through their properties and
Method methods. For example, to start Spotfire S+ from a client application,

ethods simply call the CreateObject method on the S-PLUS application
object. In automation terminology, Spotfire S+ is said to be
instantiated.

Since, by default, only the S-PLUS.Application object is exposed,
how then do you create, for example, an S-PLUS.GraphSheet object in
your client program? If you try to do so directly, you will get an error
in your client program indicating that the S-PLUS.GraphSheet object
cannot be found. The following example in Visual Basic illustrates the
point.

Dim pApplication As Object

Set pApplication = CreateObject("S-PLUS.Application™)
"The above CreateObject succeeds because the Application
>object is exposed by S-PLUS.

Dim pGraphSheet As Object

Set pGraphSheet = CreateObject("S-PLUS.GraphSheet")
"The above CreateObject fails because the GraphSheet
’object has not yet been exposed by S-PLUS.

There are two ways in which you can create unexposed objects in an
automation client program:

1. Call the S-PLUS function register.all.ole.objects to
simultaneously expose all the built-in objects (and any
function objects you have previously registered with
register.ole.object). Once all your objects are registered,
you can simply create an object directly in the client program.

209

Chapter 6 Automation

2. TFollow the object hierarchy shown in the index.htm file of
the object help system to see how to create one object from
another parent object until you get to the object you desire.
This approach can be used, for example, to automate
functions that you have not yet exposed wusing
register.ole.object.

As an example of the second approach, consider again our question
of how to create an S-PLUS.GraphSheet object in a client program.
The object hierarchy shows that a GraphSheet object is a child of the
Application object. To create a GraphSheet object, you must first
create the Application object and then use the CreateObject method
of the Application object to create the GraphSheet, as shown in the
following Visual Basic script.

Dim pApplication As Object

Set pApplication = CreateObject("S-PLUS.Application™)
>The above CreateObject succeeds because the Application
*object is exposed by S-PLUS.

Dim pGraphSheet As Object

Set pGraphSheet = pApplication.CreateObject("S-PLUS.GraphSheet")
>The above CreateObject succeeds because S-PLUS
automatically exposes the GraphSheet object when you
’create it as a child of the Application object.

Because a GraphSheet object is recognized as a child of the
Application object, Spotfire S+ automatically exposes the
GraphSheet object once you create it for the first time by calling the
CreateObject method of the Application object. Once you create a
child object in this way, you can create the child object type directly,

as in the following Visual Basic script.

Dim pGraphSheet As Object

Set pGraphSheet = CreateObject("S-PLUS.GraphSheet™)
>The above CreateObject now succeeds because you
"previously created a GraphSheet object as a child
*of the Application object.

210

Using Spotfire S+ as an Automation Server

The following example in Visual Basic shows you how to create a
GraphSheet object and then add an arrow to it using the
CreateObject method.

Function CreateArrowInSPlus () As Integer
Dim mySplus As Object
Dim myGS As Object
Dim myArrow As Object

'Instantiate the Application object

Set mySplus

'Instantiate the GraphSheet object
Set myGS = mySplus.CreateObject("GraphSheet")

'Add an arrow to this GraphSheet object

Set myArrow
End Function

CreateObject("S-PLUS.Application™)

myGS.CreateObject("S-PLUS.Arrow")

Common Object
Methods

Notice the form in which Create0Object is used in its third occurrence.
Here, CreateObject is called as a method of the GraphSheet object
and so creates the arrow as a child object of the GraphSheet container.
Had we instead used

CreateObject("S-PLUS.Arrow")

a new GraphSheet object would have been created with the arrow
added to that one.

Another method common to most S-PLUS automation objects is the
GetObject function. You can use GetObject to get a reference to an
object that already exists in Spotfire S+. In the next section, we list the
common methods available for most automation objects.

Except for function objects, all S-PLUS automation objects have a set
of common methods, listed in Table 6.3. Once an object has been
created using CreateObject or GetObject, the other methods can be

called. Consult the HTML files discussed on page 207 for detailed
information concerning parameters for these methods.

211

Chapter 6 Automation

Table 6.3: Common object methods.

Method

Description

BeginTransaction

Starts remembering property set calls so that all changes can
be applied at once when CommitTransaction is called.

CancelTransaction

Cancels remembering property set calls made after the last call
to BeginTransaction.

ClassName

Returns a string representing this object’s class name.

CommitTransaction

Commits all property changes made since the last call to
BeginTransaction.

Containees

Returns an array of objects contained by this object. Returns
an array of containee objects of the class name specified or an
empty array if none are found.

Container

Returns the object that is the container of this object.

CreateObject

Creates an object or child object of a particular type.

GetMethodArgumentNames

Returns a string array of argument names that can be used
with the specified method for this object.

GetMethodArgumentTypes

Returns a string array of argument data types that must be
passed as parameters to the specified method for this object.
Data types returned depend on the language type specified.

GetMethodHelpString Returns a string containing a description of the method
specified for this object.
GetObject Gets an object or child object of the type specified, identified

by an object path name.

GetObjectPicture

Returns an array of byte values in a variant representing the
Windows metafile format picture of this object. If unsuccessful,
returns an empty variant.

212

Using Spotfire S+ as an Automation Server

Table 6.3: Common object methods. (Continued)

Method Description

GetObjectRectangle Returns the rectangular coordinates (client or screen,
depending on the input parameter) in a variant that contains
this object. If unsuccessful, returns an empty variant.

GetPropertyAllowedValues Returns a string array of allowable values or allowable range of
values for the specified property for this object.

GetPropertyInformation Returns a string array of information about the specified
property for this object.

GetSelectedObjects Returns an array of currently selected objects that are
contained in this object.

GetSelectedText Returns a string containing the currently selected text in this
object. If no selected text is found, returns an empty string.

Methods Returns a comma-delimited string listing all allowable
methods for this object.

MethodsList Returns a string array of method names that can be called on
this object.

Objects Called with Containees parameter, returns a comma-delimited
string listing all allowable child objects for this object. Called
with Containers parameter, returns a list of objects that could
contain this object.

ObjectsList Depending on the parameter specified, returns a string array of
class names for objects that can be valid children or parents of
this object.

PathName Returns a string representing this object’s path name in
Spotfire S+.
Properties Returns a comma-delimited string listing all the properties for

this object.

213

Chapter 6 Automation

Table 6.3: Common object methods. (Continued)

Method

Description

PropertiesList

Returns a string array of property names that can be used with
this object to set or get values.

RemoveObject

Removes a child object from this container object.

SelectObject

Selects this object in all views, returning TRUE if successful or
FALSE if not.

ShowDialog

Displays a modal property dialog for this object that allows
you to change any or all of its properties, pausing the client
program until OK or Cancel is pressed in the dialog.

ShowDialogInParent

Displays a modal property dialog for this object in the client
program, pausing the program while the dialog is displayed.
Returns TRUE if successful or FALSE if not.

ShowDialogInParentModeless Displays a modeless property dialog for the object in the client

program, which continues executing while the dialog is
displayed. Returns TRUE if successful or FALSE if not.

Additional
Methods for the
Application
Object

The Spotfire S+ “application” object is used to instantiate a Spotfire
S+ session within a client application. All the common object
methods can be applied to the application object. In addition, it has a
number of specific methods, listed in Table 6.4. For detailed
information concerning parameters for these methods, consult the
HTML files discussed on page 207.

Table 6.4: Methods for the application object.

Method

Description

ChooseGraphAndPTlotType Displays the graph gallery dialog similar to that displayed

by the CreatePlotsGallery function. The dialog allows the
selection of axis and plot types and returns the axis and
plot type strings selected when the dialog is accepted.

214

Using Spotfire S+ as an Automation Server

Table 6.4: Methods for the application object. (Continued)

Method

Description

ChooseGraphAndP1otTypeModeless

Displays the graph gallery dialog similar to that displayed
by the ChooseGraphAndPlotType function except that it is
modeless and allows the client program to continue
running while the dialog is displayed. Returns a dialog
handle that can be wused in the functions
GetHwndForModelessDialog and CloseModelessDialog.

CloseModelessDialog

Closes and destroys the dialog specified by the dialog
handle. Returns FALSE on failure.

ExecuteString

Executes a string representing any valid S-PLUS syntax.

ExecuteStringResult

Returns a string representing the output from executing
the string passed in. The format of the return string
depends on the setting of the second parameter. If TRUE,
the older S-PLUS 3.3 output formatting is applied. If
FALSE, the new format is used.

GetHwndForModelessDialog

Gets the window handle (identifier) for a dialog handle as
returned by the ChooseGraphAndPlotTypeModeless
function.

GetOptionValue

Gets the current setting for an option (as in the Options P
General Settings dialog).

GetSAPIObject

Returns a binary SAPI object into a variant byte array
given the name of the object in Spotfire S+. If no object is
found, returns an empty variant.

GetSelectedGraphAndPlotType

Returns the selected graph and plot type as strings from
the dialog handle specified. (An empty variant is returned
for no selection.) Use the function
ChooseGraphAndPlotTypeModeless to get the dialog handle
to use in this function.

SetOptionValue

Sets an option value in the program (as in the Options P>
General Settings dialog).

215

Chapter 6 Automation

Table 6.4: Methods for the application object. (Continued)

Method Description

SetSAPIObject Sets a binary SAPI object created in the client program
into Spotfire S+, making it available to other Spotfire S+
operations. Returns TRUE if successful or FALSE if not.

Additional In addition to the common object methods listed in Table 6.3, Table
Methods for 6.5 lists a number of methods available specifically for creating
Graph Objects graphs and plots. Consult the HTML files discussed on page 207 for

detailed information concerning parameters for these methods.

Table 6.5: Methods for graph objects.

Method Description

ChooseGraphAndP1otType Displays the graph gallery dialog similar to
that displayed by the CreatePlotsGallery
function. The dialog allows the selection of
axis and plot types and returns the axis and
plot type strings selected when the dialog is

accepted.
CreateConditionedPlots Returns TRUE if successful or FALSE if not.
CreateConditionedPlotsGallery Returns TRUE if successful or FALSE if not.
CreateConditionedPlotsSeparateData Returns TRUE if successful or FALSE if not.

CreateConditionedPlotsSeparateDataGallery Returns TRUE if successful or FALSE if not.

CreatePlots Returns TRUE if successful or FALSE if not.

CreatePlotsGallery Returns TRUE if successful or FALSE if not.

216

Using Spotfire S+ as an Automation Server

Table 6.5: Methods for graph objects. (Continued)

Method Description

ExecuteStringResult Takes in a string representing any valid S-
PLUS syntax and a boolean parameter
indicating how the result should be formatted.
Returns a string representing the result of
executing the syntax passed in. (You can use
%GSNAME% in the syntax string to get the
GraphSheet object name substituted in the
command.)

Methods for Function objects differ from other S-PLUS objects in that they do not

Function Objects have all the same methods as other automation objects. The methods
available for functions are listed Table 6.6. For detailed information
concerning parameters for these methods, consult the HTML files
discussed on page 207.

Table 6.6: Methods for function objects.

Method Description
ClassName Returns a string representing this object’s class name.
GetMethodArgumentNames Returns a string array of argument names that can be used

with a specified method for this object.

GetMethodArgumentTypes Returns a string array of argument data types that must be
passed as parameters to the specified method for this object.
Data types returned depend on the language type specified.

GetMethodHelpString Returns a string containing a description of the method
specified for this object.

GetParameterClasses Returns an array of strings representing the class names of the
return value followed by each of the parameters of this
function.

GetPropertyAllowedValues Returns a string array of allowable values or range of values for

the specified property for this object.

217

Chapter 6 Automation

Table 6.6: Methods for function objects. (Continued)

Method

Description

GetPropertyInformation

Returns a string array of information about the specified
property for this object.

Methods Returns a comma-delimited string listing all allowable
methods for this function.

MethodsList Returns a string array of method names that can be called on
this object.

PathName

Returns a string representing this object’s path name in
Spotfire S+.

Properties

Returns a comma-delimited string listing all allowable
arguments (parameters) for this function.

PropertieslList

Returns a string array of property names that can be used with
this object to set or get values.

Run

Runs this function using the arguments (properties) most
recently set.

SetParameterClasses

Specifies the class of function parameters. Returns TRUE if
successful or FALSE if not.

ShowDialog

Displays a dialog for this function that allows you to change
any or all of the function’s arguments, pausing the client
program until OK or Cancel is pressed in the dialog.

ShowDialogInParent

Displays a modal property dialog for this object in the client
program, pausing the program while the dialog is displayed.
Returns TRUE if successful or FALSE if not.

ShowDialogInParentModeless

Displays a modeless property dialog for this object in the client
program, which continues executing while the dialog is
displayed. Returns TRUE if successful for FALSE if not.

218

Programming
With Object
Properties

Using Spotfire S+ as an Automation Server

You can set and get the properties of an automation object to modify
its appearance or behavior. For example, a property of the
application object called Visible controls whether the Spotfire S+
main window will be visible in the client application.

When setting a series of properties for an object, you can use the
BeginTransaction and CommitTransaction methods in a block to
apply the changes all at once. The following example in Visual Basic
illustrates how to use BeginTransaction and CommitTransaction to
set color properties for an arrow on a GraphSheet object.

Sub ChangeArrowPropertiesInSPlus()
Dim myGS As Object

Dim myArrow As Object

Set myGS = CreateObject("S-PLUS.GraphSheet™)
Set myArrow = myGS.CreateObject("S-PLUS.Arrow")

‘Set properties for the Arrow object

End Sub

myArrow.BeginTransaction
myArrow.LineColor = "Green"
myArrow.HeadColor = "Green"
myArrow.CommitTransaction

sLineColor

= myArrow.LineColor

Because an object updates itself whenever a property is set, using a
BeginTransaction/CommitTransaction block can save you time and
speed up your client program.

Unlike other S-PLUS objects, function objects only update when the
Run method is called. Therefore, the BeginTransaction and
CommitTransaction (and CancelTransaction) methods are not
supported, or even needed, for function objects.

As an example, suppose the following function has been defined and
registered in a Spotfire S+ script as follows:

myFunction <- function(a,b) {return(a)}
register.ole.object("myFunction™)

219

Chapter 6 Automation

The following Visual Basic example illustrates how to set a series of
properties, or parameters, for the function object defined above.

End Sub

Sub RunSPlusFunction()
Dim mySFunction As Object
Set mySFunction = CreateObject("S-PLUS.myFunction")

‘Set properties for the function object

mySFunction.a = "1"
mySFunction.b = "2"
mySFunction.ReturnValue = "myVariable"

mySFunction.Run

Passing Data
to Functions

220

The parameters, or arguments, of a function (and the function’s return
value) are properties of the function object and can be passed by
value or by reference. When the data already exist in Spotfire S+,
passing by reference is faster because the data do not have to be
copied into the client before they can be used. However, when the
data to be passed are from a variable defined in the client, the data
should be passed by value. Note that the return value must not be
passed by reference.

By default, all parameter data are passed by value as a data frame.
This default behavior could cause errors if the function expects a data
type other than a data frame. You can control the data types used in a
function object in one of two ways:

* By calling the SetParameterClasses method of the function
with a comma-delimited string specifying the data types (or
class names) for each of the parameters and the return value
of the function.

* By setting the ArgumentClassList property of the
FunctionInfo object with a comma-delimited string
specifying the data types (or class names) for each of the
parameters and the return value of the function.

For any parameter you want to pass by reference instead of by value,
place an ampersand character (&) at the beginning of its class name in
the string.

Using Spotfire S+ as an Automation Server

We can use the following Spotfire S+ script to define and register a
function called MyFunction:

MyFunction <- function(a) {return(as.data.frame(a))}
register.ole.object("MyFunction")

and then use SetParameterClasses to adjust how the data from
Visual Basic are interpreted by MyFunction.

Dim pArray(l to 3) as double
pArray (1)
pArray(2)
pArray(3)

1.
2.
3.

o O O

Dim pMyFunction as Object
Set pMyFunction = CreateObject("S-PLUS.MyFunction")

if (pMyFunction.SetParameterClasses("data.frame,vector™) = TRUE) then
pMyFunction.a = pArray
pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue
end if

The following example shows how a vector in Spotfire S+ can be
passed by reference to MyFunction in Spotfire S+, instead of passing
data from variables in Visual Basic.

221

Chapter 6 Automation

Dim pApp as 0bj
Set pApp = Crea

Dim pMyVectorIn
Set pMyVectorlIn

Dim pMyFunction
Set pMyFunction

if (pMyFunctio
Set pMyFuncti

Dim pReturnAr
pReturnArray
end if

pMyFunction.Run

ect
teObject ("S-PLUS.Application™)

SPLUS as Object
SPLUS = pApp.GetObject("vector", "MyVector™)

as Object
= pApp.CreateObject("MyFunction")

n.SetParameterClasses("data.frame,&vector”™) = TRUE) then

on.a = pMyVectorInSPLUS

ray as Variant
= pMyFunction.ReturnValue

222

Notice how the vector object MyVector is obtained from Spotfire S+
using GetObject and assigned directly to pMyFunction.a to avoid
having to get the data from MyVector into a variant and then assign
that variant data to pMyFunction.a. This is possible when you specify
the & before a class name in SetParameterClasses.

As an alternative to using SetParameterClasses in the client, you can
define the parameter classes using the ArgumentClassList property
when you define the FunctionInfo object to represent the function in
Spotfire S+. This approach has the advantage of simplifying the
automation client program code but does require some additional
steps in Spotfire S+ when defining the function.

Consider the following Spotfire S+ script to define the function
MyFunction and a FunctionInfo object for this function:

MyFunction <- function(a)

{
return(a)

guiCreate(
"FunctionInfo", Function = "MyFunction",
ArgumentClassList = "vector, vector")

Using Spotfire S+ as an Automation Server

The script sets ArgumentClassList to the string "vector, vector"”
indicating that data passed into and out of MyFunction via automation
will be done using S-PLUS vectors. When this approach is used, the
corresponding client code becomes simpler because we no longer
need to set the parameter classes for the function before it is used.

Dim pArray(l to 3) as double

pArray(l) = 1.0
pArray(2) = 2.0
pArray(3) = 3.0

Dim pMyFunction as Object

Set pMyFunction = CreateObject("S-PLUS.MyFunction")
pMyFunction.a = pArray

pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue

Automating With Spotfire S+ automation support, it is easy to embed Graph

Embedded Sheets in any automation client, such as Visual Basic, Excel, Word,

Spotfire S+ and others. You can create, modify, and save an embedded Graph

Gpo I:r:h Sheet with plotted data without ever leaving your client program.
rap eets

The vbembed example that ships with Spotfire S+ demonstrates how
to embed a Spotfire S+ Graph Sheet, add objects to it, modify these
objects by displaying their property dialogs in the client program,
delete objects from it, and save a document containing the embedded
Graph Sheet. The vcembed example is a Visual C++/MFC
application that shows how to embed and automate a Spotfire S+
Graph Sheet in a C++ automation client. The PlotData.xls
example illustrates how to embed a Spotfire S+ Graph Sheet, add a
plot to it, send data from an Excel worksheet to be graphed in the
plot, and modify the plot’s properties using property dialogs. See
Table 6.9 on page 235 for help in locating these examples.

223

Chapter 6 Automation

USING SPOTFIRE S+ AS AN AUTOMATION CLIENT

A Simple
Example

224

In addition to being used as an automation server, Spotfire S+ can
also function as an automation client. A program in the S-PLUS
programming language can create and manipulate the automation
objects exposed by other applications through their type libraries.
Spotfire S+ provides a number of functions that allow you to create
objects, set and get properties, call methods, and manage reference
counting. Before discussing these functions in detail, let’s take a look
at a simple example.

To demonstrate how to use Spotfire S+ as an automation client, we
revisit the simple example presented on page 199, this time reversing
the roles of Spotfire S+ and Excel. In this scenario, S-PLUS functions
as the client application, retrieving data from an Excel worksheet,
performing a covariance estimation on the data, and returning the
resulting covariance matrix to Excel.

Consider again the sample data of Figure 6.1, reproduced in Figure
6.10. Sheetl of the Excel workbook Bookl.xls contains data in 4
columns of 39 rows (not all rows are shown in Figure 6.10).

‘@l Book1.xls =]

A B © D E j
| 1] .80 471 582 12.97
| 2 | 8.79 470 583 12.97
| 3 | 8.79 459 583 12.98
| 4 | 8.51 459 5.84 12.98
1 5 | 8.51 464 585 12.98
| 6 | 8.91 4563 5.86 12.93
| 7 | 5.94 452 5.8 12.93
| 5 | 5.96 452 590 12.93
| 9 | 5.96 4561 593 13.00
| 10| 3.01 4561 5.94 13.00
| 11] 3.03 460 595 13.01
|12 | 3.07 459 596 13.02
| 13| 3.06 458 598 13.02
| 14 | 3.11 459 £.00 13.03
| 15 | 3.13 458 .03 13.04

16 (= b AET [=ue] 1204 r

144 [» [p]sSheet1 / shestz 7 1] »ll

Figure 6.10: Sample data in Book1.xls.

Using Spotfire S+ as an Automation Client

Note

The sample data in Bookl.xls are taken from the freeny.x matrix included with Spotfire S+.
You can recreate this example by exporting the data into a new Excel worksheet and following
the steps outlined below.

By writing a script in the S-PLUS programming language, we can
automate a conversation between Spotfire S+ and Excel to perform

our task. The complete code of one such script is shown in Figure
6.11.

.$SC - program 9 =] B
1 1 A

pExcel <- create.ole.object("Excel.ipplication™) I
ExcelVisible <- get.ole.property(pExcel, "Visible™)§Viszible
if ['ExcelVisible) set.ole.property(pExcel, list(Visible=T))
pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[1]]
pBookl <- call.ole.method|
pWorkbooks,
"Open”,
paste (getenv ("3 _HOME™), "™\‘\samples)ioleautolysplusyy™, "CliTestI.xls™, sep=""),
Readlnly=F)
pSheets <- get.ole.property(pBookl, "Sheets")[[1]]
pSheetl <- call.ole.nmethod(pSheets, "Iten”, "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range™, "41:D397)
phata «<- as.data.frawme(get.ole.propertyipRangel, "Value™)iValue)
CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))fcov
CovDF <- data.frame (CovMatrix)
pSheetZ <- call.ole.nethod(pSheets, "Iten”, "Sheet2™)
pRangeZ <- call.ole.nmethod(pSheetZ, "Range™, "41:D4")
bResults <- set.ole.property(pRangez, list(Value=CovDF))
bNewBookl <- call.ole.method(pBookl, "Sawve™)
GameOver <- call.ole.method(pExcel, "Quit™)

release.ole.object (pRange2)
release.ole.object(pSheet?)
release.ole.object (pRangel)
release.ole.object(pSheetl)
release.ole.object(pSheets)
release.ole.object(pBookl)
release.ole.object (pWorkbooks)
release.ole.object(pExcel)

ruw(pExcel, ExcelVisible, pWorkbooks, pBookl, pSheets, pSheetl, pRangel,
phata, CovMatrix, CovDF, pSheetZ, pRangeZ, bResults, bNewBookl, GameOwer)

| ja|

Figure 6.11: Complete code for our Spotfire S+ script.

225

Chapter 6 Automation

Hint

The example shown in Figure 6.11 can be found in samples/oleauto/splus/Clitesti.ssc in the
Spotfire S+ program folder.

1. Open a new Script window in Spotfire S+ and enter the first
block of code, as shown in Figure 6.12.

Q Clitesti.ssc - program H=]1E3
i

pExcel <- create.ole.object("Excel.ipplication™)
ExcelVisible <- get.ole.property(pExcel, "Visible™)§Viszible
if ['ExcelVisible) set.ole.property(pExcel, list(Visible=T))
pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[1]]
pBookl <- call.ole.method|
pWorkbooks,
"Open”,
paste (getenv("3_HOME™), "\ysamples)ioleautolysplusyy™, "CliTestI.xls™, sep=""],
Readlnly=F)
pSheets <- get.ole.property(pBookl, "Sheets")[[1]]
pSheetl <- call.ole.nmethod(pSheets, "Iten”, "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range™, "41:D397)
phata «<- as.data.frawme(get.ole.propertyipRangel, "Value™)iValue)
CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))fcov
CovDF <- data.frame (CovMatrix)
pSheetZ <- call.ole.nethod(pSheets, "Iten”, "Sheet2™)
pRangeZ <- call.ole.nmethod(pSheetZ, "Range™, "41:D4")
bResults <- set.ole.property(pRangez, list(Value=CovDF))
bNewBookl <- call.ole.method(pBookl, "Sawve™)
GameOver <- call.ole.method(pExcel, "Quit™) -
P

1

-

Figure 6.12: The core code for our Spotfire S+ script.

The code in Figure 6.12 represents the central task we want to
automate. Let’s examine each line in detail.

We start a conversation with Excel from Spotfire S+ by creating an
instance of Excel using the S-PLUS function create.ole.object:

pExcel <- create.ole.object("Excel.Application™)

226

Using Spotfire S+ as an Automation Client

To see what’s happening in Excel as the script runs, we can set the
Visible property of the Excel application object to True. To do so,
we first capture the value of the Visible property using the
get.ole.property function:

ExcelVisible <- get.ole.property(pExcel,"Visible")$Visible

Note

The get.ole.property function returns a list of properties. Use the $ or [[]] operator to extract
the value of an individual component of the list.

We then test the value of the Visible property and set it to True using
the set.ole.property function:

if (!ExcelVisible) set.ole.property(pExcel,Tist(Visible=T))

Note

The set.ole.property function expects a list of properties to set.

To open the Bookl.xls workbook, we first get the value of the
Workbooks property of the Excel application object:

pWorkbooks <- get.ole.property(pExcel, "Workbooks")[[1]]
and then call the Open method on the pWorkbooks object using the S-
PLUS function call.ole.method:

pBookl <- call.ole.method(pWorkbooks, "Open",
paste(getenv("SHOME"), "\\samples\\oleauto\\splus\\",
"CliTestI.xIs", sep=""), ReadOnly=F)

Note

When using call.ole.method to call a method on an automation object, consult the type library
of the server application for a list of arguments relevant to the method you are calling.

When using call.ole.method to call a method on an automation object, you can specify the
parameters as nul11 if you do not want to specify a parameter in the method you are calling.

227

Chapter 6 Automation

In this example, we are automating a conversation with Excel;
therefore, we must follow the Excel object model and navigate
through Excel’s object hierarchy in order to access a range of cells:

pSheets <- get.ole.property(pBookl, "Sheets")[[1]1]
pSheetl <- call.ole.method(pSheets, "Item", "Sheetl™)
pRangel <- call.ole.method(pSheetl, "Range", "A1:D39")

Having arrived at the level of actual cell contents, we can now capture

our data with the following statement:

pData <- as.data.frame(get.ole.property(pRangel,
"Value™)$Value)

In the next two statements, we use standard S-PLUS functions to
perform the covariance estimation and convert the resulting matrix
into a data frame:

CovMatrix <- cov.wt(pData, wt=rep(l, nrow(pData)))$cov
CovDF <- data.frame(CovMatrix)

With the results now stored in a S-PLUS variable, we again navigate
through the Excel object hierarchy to the target range of cells on
Sheet2:

pSheet2 <- call.ole.method(pSheets, "Item"™, "Sheet2")
pRange2 <- call.ole.method(pSheet2, "Range"™, "Al:D4")

and place the results in the target range:

bResults <- set.ole.property(pRange2, Tist(Value=CovDF))
Finally, the last two statements save the workbook and close the Excel
application:

bNewBookl <- call.ole.method(pBookl, "Save")

GameOver <- call.ole.method(pExcel, "Quit")

2. Now add the second block of code to the script, as shown in
Figure 6.13.

228

Using Spotfire S+ as an Automation Client

Q Clitesti.ssc - program H=]1E3
22 1 G
release.ole.object (pRange2) ;I

1

releasze.
releasze.
releasze.
releasze.
releasze.
releasze.
releasze.

ole.
ole.
ole.
ole.
ole.
ole.
ole.

object(pSheetl)
object (pRangel)
object(pSheetl)
object(pSheets)
object(pBookl)

object (pWorkbooks)

object(pExcel)

Figure 6.13: Code for releasing all OLE objects.

As we will see in Reference Counting Issues on page 232, objects that
are created directly or indirectly during program execution must be
released at program end to allow the server application to close. This
is accomplished in the our second block of code.

After releasing all the OLE objects, the last thing to do is to clean up
our working data by deleting all the data objects created during
execution of the script.

3. Add the last block of code to the script, as shown in Figure

Q Clitesti.ssc - program H=]1E3
A 1 b
ruw(pExcel, ExcelVisible, pWorkbooks, pBookl, pSheets, pSheetl, pRangel, ;I
phata, CovMatrix, CovDF, pSheetZ, pRangeZ, bResults, bNewBookl, GameOwer)

-
4| |_’|:I

Figure 6.14: Code for removing all data objects.

With all the coding complete, it’s time to run the script.

4. Click the Run button “* on the Script window toolbar.

229

Chapter 6 Automation

High-Level
Automation
Functions

230

5. After the script finishes running, start Excel, open the
CliTestl.xls workbook (saved in your default folder), and
click the tab for Sheet2. The results are shown in Figure 6.15.

A E B D E -

0.096965 -0.04056 0.036343 0.018772
-0.04056 0.017328 -0.01493 -0.00529
0.036343 -0.01453 0.014135 0.007392
0.019772 -0.00829 0.007352 0.004054

L llx]

o e

-

14 [4> [»[Shest1 %, sheetz i shee |4 | | »ll

Figure 6.15: The covariance matrix sent to Excel.

As demonstrated in the last section, you can use Spotfire S+ as an
automation client by writing a program in the S-PLUS programming
language to create and manipulate the automation objects of other
applications.

Spotfire S+ provides the functions listed in Table 6.7 for creating
objects, setting and getting properties, and calling methods. The
automation objects of the server application are passed as arguments
to these functions. In addition, Spotfire S+ provides several other
functions for managing reference counting; see page 232 for details.

For each of the functions listed in Table 6.7, two optional character
vector attributes called “error” and “warning” may be returned with
each return value. These attributes can be used to stop the program
and display warnings, errors, etc.

Table 6.7: High-level automation functions.

Using Spotfire S+ as an Automation Client

Function

Description

create.ole.object(name)

The name argument is the name of the instance,
a character vector of length 1.

This function returns a character vector of
class OLECTient, representing the particular
instance. The first string in the vector is the
instance ID of the object, stored in Spotfire S+.
The other strings are various pieces of
information about the instance (such as server
name). On error, NULL is returned.

set.ole.property(instance, properties)

The instance argument is an object previously
created within the same session. The
properties argument is a list of elements, each
element being a property name set to a desired

value, which must be an atomic type of length
L.

This function returns a vector of logicals, with
T for each property successfully set and F
otherwise.

get.ole.property(instance, property.names)

The instance argument is an object previously
created within the same session. The
property.names argument is a character vector
of property names appropriate to the instance,
as specified in the type library of the server
application.

This function returns a list of the values of the
properties specified in the property.names
argument. NULL is returned for a property that
cannot be fetched.

231

Chapter 6 Automation

Table 6.7: High-level automation functions. (Continued)

Function

Description

call.ole.method(instance, method.name, ...) | The instance argument is an object previously

created within the same session. The
method.name argument is the name of the
method to be invoked on the instance object.
“...” represents the arguments to be passed as
arguments to the method. You can pass null
arguments to the automation server object if
you do not want to specify its parameters.
Otherwise, only supported types may be
passed. That is, at this point, atomic types
(character, single, integer, numeric Vectors) of
length 1. Methods for particular objects and
arguments to specific methods can be found in
the type library of the server application.

This function returns a S-PLUS object
containing the result of calling the method on
the particular instance. On error, NULL is
returned.

Reference
Counting
Issues

232

When you create an object using create.ole.object, or when an
object is created indirectly from the return of a property using
get.ole.property or call.ole.method, the object is given a
reference count of one. This means that your Spotfire S+ program has
a lock on the object and the server application that created the object
for your program cannot close until you release the references to it by
reducing the reference count to zero.

If you assign the variable that represents one of these objects to
another object, you should increment the object’s reference count by
one to indicate that an additional variable now has a lock on the
object. If you remove a variable or a variable that represents an
automation object goes out of scope, you should decrement the
reference count of the object the variable being destroyed represents.

To help you manage reference counting on automation objects,
Spotfire S+ provides the four functions listed in Table 6.8. For each of
these functions, two optional character vector attributes called “error”

Using Spotfire S+ as an Automation Client

and “warning” may be returned with each return value. These
attributes can be used to stop the program and display warnings,

errors, etc.

Table 6.8: Functions for managing reference counting.

Function

Description

ole.reference.count(instance)

The instance argument is an object previously created within
the same session.

This function returns the value of the reference count for the
instance. On error, -1 is returned.

add.ole.reference(instance)

The instance argument is an object previously created within
the same session.

This function increments the reference count for the instance
by 1 and returns the new value. On error, -1 is returned.

release.ole.object(instance)

The instance argument is an object previously created within
the same session.

This function decrements the reference count for the instance
by 1 and returns the new value. On error, -1 is returned.

is.ole.object.valid(instance)

The instance argument is an object previously created within
the same session.

This function returns T if the instance is valid or F otherwise.

Although reference counting must be handled manually, Spotfire S+
guards against the two major types of reference counting bugs:
resource leaks and freezing due to using an invalid object handle.

If you release all reference counts on an object and then attempt to set
or get a property or call a method on this object, Spotfire S+ gives
you an error that the object is no longer valid. You can check the
validity of any automation object by using the S-PLUS function
is.ole.object.valid.

233

Chapter 6 Automation

234

If you fail to release all references to objects you create during a
Spotfire S+ session, the server application owning the objects will
remain loaded and running. However, exiting Spotfire S+
automatically releases all objects, reduces all reference counts to zero,
and closes all server applications.

Automation Examples

AUTOMATION EXAMPLES

Spotfire S+ ships with a number of examples that illustrate how to use
Spotfire S+ as both an automation server and an automation client.

Server The examples listed in Table 6.9 can be found in the samples/
Examples oleauto folder in the Spotfire S+ program folder.

Table 6.9: Automation server examples.

Name Client Application | Description
vb/ChoosePt Visual Basic 6 Project showing how to use the
ChooseGraphAndPlotType automation

method to display the Insert Graph dialog
and allow a user select the graph and plot

type.

vb/CreatePt Visual Basic 6 Project showing how to use the following
automation methods:

* CreatePlots
* CreateConditionedPlots

* CreateConditionedPlotsSeparateData

vb/Dialogs Visual Basic 6 Project showing how to use the following
automation methods:

* ShowDialog
* ShowDialogInParent

* ShowDialogInParentModeless

vb/gspages Visual Basic 6 Project showing how to embed a Graph
Sheet with multiple pages, set up a tab
control that has tabs for each page, and
support changing active pages in the
embedded Graph Sheet by clicking on
tabs in the tab control.

235

Chapter 6 Automation

Table 6.9: Automation server examples. (Continued)

Name

Client Application

Description

vb/mixeddf

Visual Basic 6

Project showing how to create a two-
dimensional array of mixed data (that is,
columns of different data types) and send it
to a data.frame object in Spotfire S+ and
also how to retrieve the data from the
data.frame object into Visual Basic for

display.

vb/objects

Visual Basic 6

Project showing how to use the following
automation methods:

* ObjectContainees
* ObjectContainer
* ClassName

* PathName

vb/vbclient

Visual Basic 6

Project showing how to create a Graph
Sheet, add an arrow to it, change the
properties of the arrow, show a dialog for
the arrow, execute S-PLUS commands,
modify option values, get an object, and
send and receive data.

vb/vbembed

Visual Basic 6

Project showing how to embed a Spotfire
S+ Graph Sheet, modify it, save it, and
delete objects in it, and how to display an
object dialog.

vb/vbrunfns

Visual Basic 6

Project showing how to register a S-PLUS
function, pass binary data to the function,
and receive the result back into Visual
Basic.

vba/excel/auto_VBA.xls

Visual
Applications
Excel 97

Basic for
with

Example showing how to send and receive
data and convert Excel ranges to arrays.

236

Table 6.9: Automation server examples. (Continued)

Automation Examples

Name

Client Application

Description

vb/mixeddf

Visual Basic 6

Project showing how to create a two-
dimensional array of mixed data (that is,
columns of different data types) and send it
to a data.frame object in Spotfire S+ and
also how to retrieve the data from the
data.frame object into Visual Basic for

display.

vb/objects

Visual Basic 6

Project showing how to use the following
automation methods:

* ObjectContainees
* ObjectContainer
* ClassName

* PathName

vb/vbclient

Visual Basic 6

Project showing how to create a Graph
Sheet, add an arrow to it, change the
properties of the arrow, show a dialog for
the arrow, execute S-PLUS commands,
modify option values, get an object, and
send and receive data.

vb/vbembed

Visual Basic 6

Project showing how to embed a Spotfire
S+ Graph Sheet, modify it, save it, and
delete objects in it, and how to display an
object dialog.

vb/vbrunfns

Visual Basic 6

Project showing how to register a S-PLUS
function, pass binary data to the function,
and receive the result back into Visual
Basic.

vba/excel/auto_VBA.xls

Visual
Applications
Excel 97

Basic for
with

Example showing how to send and receive
data and convert Excel ranges to arrays.

237

Chapter 6 Automation

Table 6.9: Automation server examples. (Continued)

Name Client Application | Description
vba/excel/Book1.xls Visual Basic for | Example showing how to pass data from an
Applications with | Excel worksheet to Spotfire S+, which then
Excel 97 performs a covariance estimation on the
data and returns the resulting covariance
matrix to Excel.
vba/excel/PlotData.xls | Visual Basic for | Example showing how to embed a Graph
Applications with | Sheet and add and modify a plot in it.
Excel 97
vba/excel/XferToDF.xls | Visual Basic for | Example showing how to transfer Excel
Applications with | ranges to S-PLUS data frames and back to
Excel 97 Excel ranges.
visualc/autoclnt Visual C++ 6.0 Non-MFC based C++ project showing how
to use automation to access the Spotfire S+
command line.
visualc/vcembed Visual C++ 6.0 Project showing how to create and

manipulate an embedded Graph Sheet in
an MFC application.

This example uses several MFC classes that
make interacting with automation objects
from Spotfire S+ much easier in MFC code.
See the readme.txt in the vcembed
directory for more information.

238

Client
Examples

Automation Examples

The examples listed in Table 6.10 can be found in the samples/
oleauto/splus folder in the Spotfire S+ program folder.

Table 6.10: Automation client examples.

Name

Server Application

Description

Clitesta.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
start Excel and call method of Excel to convert inches
to points and return the result in Spotfire S+.

Clitestb.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
start Excel, set a property, and get a property.

Clitestc.ssc

Excel 97

Script showing how to use Spotfire S+ commands to
set a range of data in an Excel worksheet with data
from a S-PLUS vector and then how to get the data
back from Excel into another vector.

Clitestd.ssc

Excel 97

Script showing how to get a property value from
Excel.

Cliteste.ssc

Excel 97

Script showing how to send a vector from Spotfire S+
to Excel and transpose it to a row in Excel.

Clitestf.ssc

Excel 97

Script showing how to send a vector from Spotfire S+
to Excel and transpose it to a row in Excel using a
different set of steps than in Cliteste.ssc.

Clitestg.ssc

Excel 97

Script showing how to send the data from a data frame
in Spotfire S+ into a new worksheet and range in
Excel and then how to get the range data from Excel
back into a new data frame in Spotfire S+.

239

Chapter 6 Automation

Table 6.10: Automation client examples. (Continued)

Name

Server Application

Description

clitesth.ssc

Visual Basic 6

Example combining a Visual Basic automation server
project called GetArray with a Spotfire S+
automation client script that calls it to retrieve data
into a data frame (used in conjunction with the VB
automation server in the Getarray folder). The
automation server exposes an object type called
MyArrayObject having a method called GetArray that
gets a randomly generated, two-dimensional array of
mixed data (that is, columns having different data
types). The Spotfire S+ script uses this method to get
the array and then set it into a newly created data
frame.

Clitesti.ssc

Excel 97

Script showing how to retrieve data from an Excel
worksheet, perform a covariance estimation on the
data, and return the resulting covariance matrix to
Excel.

240

CALLING SPOTFIRE S+
USING DDE

Introduction 242
Working With DDE 243
Starting a DDE Conversation 244
Executing Spotfire S+ Commands 246
Sending Data to Spotfire S+ 246
Getting Data From Spotfire S+ 248
Enabling and Disabling Response to DDE Requests 250

241

Chapter 7 Calling Spotfire S+ Using DDE

INTRODUCTION

Communications between programs can take place in a number of
ways. For example, data can be passed between programs by having
one program write an ASCII file to disk and having another program
read that file. It is also possible for programs to exchange data by

using the Windows” clipboard. In each of these methods, the process
is sequential and normally requires human intervention to coordinate
the action.

Dynamic Data Exchange (DDE), on the other hand, is a mechanism
supported by Microsoft Windows that permits two different programs
running under Windows to communicate in real time without outside
intervention. This communication can take the form of two programs
passing data back and forth or it can take the form of one program
requesting another program to take specific action. It can also take
place under program control (without human intervention) and as
often as required.

In this chapter, we explain how to communicate with Spotfire S+
using DDE and provide some example code.

Note

This chapter is dedicated to Windows users.

242

Working With DDE

WORKING WITH DDE

DDE uses the metaphor of a conversation. In a DDE conversation,
one program initiates the conversation and another program
responds. The program initiating the conversation is called the
destination program, or client, while the responding program is called
the source program, or server.

Spotfire S+ can function as a DDE server, although not as a DDE
client (except via the Windows clipboard). Any application that
supports DDE client functions, such as Visual Basic, Visual C++,
Excel, Lotus 12-3, and PowerBuilder, can initiate a DDE
conversation with Spotfire S+. Spotfire S+ supports the basic DDE
functions Connect, Execute, Poke, Request, Advise, Unadvise, and
Terminate.

Note

Spotfire S+ can function as a DDE server or a DDE client via the clipboard by using Copy Paste

Link:

You can copy data from a S-PLUS data object, such as a data frame or vector, into the
clipboard and then paste the data into another OLE- or DDE-supporting program as a
DDE link to the data in Spotfire S+. This connection is a hot link between a block of
cells in the S-PLUS data object and a block in the document of the other program. If
DDE server support is enabled in Spotfire S+, whenever you copy data from a data
object to the clipboard, DDE link information is transferred at the same time. Then
when you paste into another program, the Paste Special or Paste Link option will be
enabled if that client program supports DDE linking.

You can copy data from a server program that supports DDE linking into the clipboard
and then choose Paste Link from the Edit menu when a S-PLUS data object, such as a
data frame or vector, is in focus. (Note that string data will always be represented in S-
PLUS as character, not factor, data when you Paste Link from a DDE server
application.) This will paste the link into the data object that currently has the focus,
starting the pasted block at the current cell location. This tells Spotfire S+ to request a
DDE link to the data specified in the server program’s document. Then whenever the
data change in the server document, the changes are automatically updated in the S-
PLUS data object where you pasted the linked data.

243

Chapter 7 Calling Spotfire S+ Using DDE

Starting a DDE
Conversation

Spotfire S+ supports DDE conversations in the Microsoft CF_TEXT
format, which is simply an array of text characters terminated by a
null character and with each line ending with a carriage return—
linefeed (CR-LF) pair. Binary transfers are not supported.

The three steps of a DDE conversation are as follows:
1. Initiate the conversation.
2. Issue one or more DDE commands.
3. Terminate the conversation.

A DDE client application opens a conversation with a particular
server. Each server has a server name to which it will respond; the
server name for Spotfire S+ is Spotfire S+

Because an application can have multiple DDE conversations open at
the same time, it is necessary to have an identifier, called the channel
number, for each conversation. A channel number is established when
the DDE conversation is initiated.

A DDE conversation must also have a topic. Table 7.1 lists the DDE
conversation topics supported by Spotfire S+.

Table 7.1: Supported topics for DDE conversations.

Topic Description Example in Visual Basic for Applications

System
[System]

The System topic is used to
request special information
from Spotfire S+. This
information includes the
names of data objects (such
as data frames and vectors)
that can be wused in
conversations, allowable
conversation topic names,
and other information.

Channel = Application.DDEInitiate(_
"Spotfire S+", "System")
Info = Application.DDERequest(_
Channel, "Topics")
Application.DDETerminate Channel
Info = {

"System"”

"[DataSheet]",

"[Executel™,

"SCommand" }

244

Working With DDE

Table 7.1: Supported topics for DDE conversations. (Continued)

Topic Description Example in Visual Basic for Applications
[DataSheet] The [DataSheet] topic is an | Channel = Application.DDEInitiate(_
identifier used to specify that | "Spotfire S+, "[Datasheetlexsurf”)
. . Info = Application.DDERequest(_
the conversation is about a Channel. “rlcl:r3c2™)
block of data from a data Application.DDETerminate Channel
object. This topic is optional; | Info = {
you can simply specify the -2.00, -2.00;
name of the data object as -1.87, -2.00;
. . -1.74, -2.00 }
the conversation topic.
Any data | Same as the [DataSheet] | Channel = Application.DDEInitiate(_
object name | topic above. Spotfire S+", "exsurf®)
(such as the Info = Application.DDERequest(_
Channel, "rlcl:r3c2")
name of a Application.DDETerminate Channel
data frame or Info = {
vector) -2.00, -2.00;
-1.87, -2.00;
-1.74, -2.00 }
SCommand SCommand or [Execute] | Channel = Application.DDEInitiate(_
[Execute] identifies that the "Spotfire S+", "SCommand"™)
conversation contains strings Info = Application.DDERequest(_
. . 85 | Channel, "objects(0)")
of wvalid Spotfire S+ | Appiication.DDETerminate Channel
commands or expressions to | Info = {
be executed by Spotfire S+. ".Copyright .Options .Program version" }

The following example illustrates a simple DDERequest conversation
in which Visual Basic for Applications (VBA), as used by Microsoft
Word or Excel, is the client and Spotfire S+ is the server.

exec_channel
ReturnResult
Application.DDETerminate exec_channel

Application.DDEInitiate("Spotfire S+", "SCommand™)
Application.DDERequest(exec_channel, "summary(corn.rain)")

Note

A sample Visual Basic DDE client program called vbclient, as well as example Excel
spreadsheets with VBA and macro scripts demonstrating connection to Spotfire S+ via DDE,
can be found in the samples/dde folder of the Spotfire S+ program folder.

245

Chapter 7 Calling Spotfire S+ Using DDE

Executing
Spotfire S+
Commands

The first statement initiates a conversation with Spotfire S+ using the
topic SCommand. (You can use either SCommand or [Execute] for
executing a Spotfire S+ command and requesting the result via
DDERequest.) This statement returns the channel number for the
conversation and assigns it to exec_channel, which is then used in the
DDERequest statement. The DDERequest statement executes the
command summary(corn.rain) in Spotfire S+ and returns the result
of the execution in an array called ReturnResult. Finally, the
conversation is ended by calling DDETerminate.

The DDEExecute command executes a command in Spotfire S+ but
does not return the output from the execution. You can use either
SCommand or [Execute] as the topic of a DDEExecute conversation.

Consider the following example of DDEExecute, written in VBA.

exec_channel = Application.DDEInitiate("Spotfire S+", "SCommand")
Application.DDEExecute exec_channel, "summary(corn.rain)"
Application.DDETerminate exec_channel

Sending Data
to Spotfire S+

246

First, a conversation is initiated with the DDEInitiate command.
Next, DDEExecute is used to execute the Spotfire S+ command
summary (corn.rain). The output from this command will go either to
the Commands window, if open, or to a Report window in Spotfire
S+. No output is returned to the calling program. Finally, the
conversation is ended with a call to DDETerminate.

The exact format of the DDEExecute command will vary from
program to program; that is, Excel has its own format, as does Lotus
1-2-3 and Visual Basic. The essential requirements, however, are the
same—a channel number and a command string.

A client program can issue multiple DDE commands, including
DDEExecute, DDEPoke, and DDERequest, to Spotfire S+ as long as the
DDE conversation with the topic SCommand or [Execute] is open.

When used in a conversation with the topic SCommand or [Execute],
the DDEPoke command behaves in the same way as the DDEExecute
command; that is, it executes the commands you poke but does not
return any results.

Working With DDE

Consider the following VBA script in Excel using DDEPoke.

Channel = Application.DDEInitiate("Spotfire S+", "SCommand")
Application.DDEPoke Channel, "", Sheets("Sheetl").Range("Al")
Application.DDETerminate Channel

First, DDEInitiate is used to open an SCommand conversation with
Spotfire S+. Next, DDEPoke is used to send the string located in the cell
at Al in Sheetl of the current workbook from Excel to Spotfire S+.
Spotfire S+ then executes this string, sending any output from the
command either to the Commands window, if open, or to a Report
window in Spotfire S+. Finally, the conversation is terminated using
the DDETerminate command.

Like DDEExecute, DDEPoke must have a channel number specifying the
conversation. The second parameter, called the item text, is ignored by
Spotfire S+ when poking commands using an SCommand or [Execute]
conversation. The item text parameter can be set to any value; VBA
requires that it be set to some value. The third parameter is a cell
reference telling Excel where to find the string representing the
commands to send to Spotfire S+. Whatever is in that cell will be
executed.

You can also use DDEPoke to send data from a DDE client program
into an existing S-PLUS data object, such as a data frame or vector,
when used in a conversation with the topic [DataSheet] or the name
of the data object in which you want to change the data.

Consider the following example of DDEPoke in a VBA script in Excel.

Channel = Application.DDEInitiate("Spotfire S+", "exsurf™)
Application.DDEPoke Channel,"rlcl:r3c2", Sheets("Sheetl").Range("Al:B3")
Application.DDETerminate Channel

First, a conversation is initiated with the topic name set to the name of
an existing S-PLUS data object, in this case, the data frame exsurf.
Next, the data in Sheetl in the range Al through B3 of the current
workbook in Excel are sent to the cells ricl:r3c2 in exsurf, thatis, to
the cells starting at row 1, column 1 and extending to row 3, column
2. The statement Sheets("Sheetl").Range("Al1:B3") is the Excel
syntax for specifying the data for Excel to send to Spotfire S+; the

247

Chapter 7 Calling Spotfire S+ Using DDE

Getting Data
From Spotfire
S+

rlcl:r3c2 string specifies the item string of the DDEPoke command
and tells Excel where to put the data in the exsurf data frame.
Finally, the conversation is ended with a call to DDETerminate.

DDEExecute and DDEPoke let you send commands and data to Spotfire
S+; with DDERequest, you can ask Spotfire S+ to send data back to the
calling program.

When used in a conversation with the topic SCommand or [Execute],
the DDERequest command behaves in the same way as the DDEExecute
command except that any output from the execution is sent back to
the calling application; that is, it executes the commands specified
and returns the result of the execution to the variable assigned to the
DDERequest call.

Consider the following VBA script in Excel using DDERequest to
execute commands in Spotfire S+ and return the results.

Channel = Application.DDEInitiate("Spotfire S+", "SCommand")
ReturnData = Application.DDERequest(Channel, "summary(corn.rain)™)
Application.DDETerminate Channel

stringRangeToFil1Spec = "A1" + ":" + "A" + Trim(Str(UBound(ReturnData)))
Sheets("Sheetl").Range(stringRangeToFillSpec).Value = _
Application.Transpose(ReturnData)

248

First, DDEInitiate is used to open an SCommand conversation with
Spotfire S+. Next, DDERequest is used to send the string
summary(corn.rain) to Spotfire S+ for execution. The output from
this command is passed back to Excel to the array ReturnData.
Finally, the conversation is terminated using the DDETerminate
command.

The string variable stringRangeToFi11Spec is created using the upper
bound of the ReturnData array (the call to Ubound(ReturnData)) to
specify the range of cells in Sheetl of the current workbook to
receive the returned data. The ReturnData array is then transposed so
that each element of the array is in a row of column A in Sheetl.
Sheetl, column A now contains the summary data for the data frame
corn.rain.

Working With DDE

Note

The format of the text in an array returned by DDERequest in an SCommand or [Execute]
conversation can be controlled via an option in Spotfire S+. By default, output is sent back using
a method of most S-PLUS objects called print, which provides the best general purpose
formatting for returned results. However, if you depend on the format as returned in earlier
versions of S-PLUS, you can set this option to use the older formatting style. To do so, choose
Options » General Settings from the main menu. In the DDE Server Support group, select
the Old Format for DDE Request check box.

Like DDEExecute and DDEPoke, DDERequest must have a channel
number specifying the conversation. The item text parameter
specifies the commands to execute in Spotfire S+ when using an
SCommand or [Execute] conversation.

You can also use DDERequest to transfer data from an existing S-PLUS
data object, such as a data frame or vector, into a DDE client program
when used in a conversation with the topic [DataSheet] or the name
of the data object from which you want to transfer the data.

Consider the following example of DDERequest in a VBA script in
Excel.

Channel = Application.DDEInitiate("Spotfire S+", "exsurf")
ReturnData = Application.DDERequest(Channel, "rlcl:r3c2")
Application.DDETerminate Channel

sStartCell = "Al1"
sSheetName = "Sheetl"
sRangeToFill = sStartCell + ":" + _

Chr(Asc("A™) + (Trim(Str(UBound(ReturnData, 2))) - 1)) + _
Trim(Str(UBound(ReturnData, 1)))
Sheets(sSheetName).Range(sRangeToFil1).Value = ReturnData

First, a conversation is initiated with the topic name set to the name of
an existing S-PLUS data object, in this case, the data frame exsurf.
Next, the data in the cells ricl:r3c2 in exsurf, that is, in the cells
starting at row 1, column 1 and extending to row 3, column 2, are sent
to Excel into the array ReturnData. The rlcl:r3c2 string specifies the

249

Chapter 7 Calling Spotfire S+ Using DDE

Enabling and
Disabling
Response to
DDE Requests

250

item string of the DDERequest command and tells Spotfire S+ which
cells from the data frame exsurf to send back to Excel. Finally, the
conversation is ended with a call to DDETerminate.

Two strings are assigned values specifying the starting cell (A1) and
the sheet (Sheetl) where the subsequent commands are to copy the
data in the ReturnData array. Using the upper bounds of the
ReturnData array (calls to UBound), the array of data is copied into the
cells of the desired sheet.

At any time during a Spotfire S+ session, you can suspend Spotfire
S+’s response to messages sent from DDE client applications.

To temporarily suspend all links to any S-PLUS data objects, do the
following:

1. From the main menu, choose Options » General Settings
to open the General Settings dialog with the General page
in focus, as shown in Figure 7.1.

| o] x|

General Settings

General | [rata | Startup | Computations |

DDE Server Support
V¥ BRespond to DDE Requests

r%gld Format for DDE Regquest

— Prompts Closing Documents
V' Prompt to Save Graph Sheets

™ Prompt to Save Data Files

Bemove Data from Database

I Mever Remove l

™ Show Commit Dialog on Esit

V¥ Enable ToolTips
V' Color Toolbar

™ Large Buttons
— Automation

¥ Echo ExecuteSting) V¥ Enable Graph DataTips

¥ | Show ErecuteStingl] output

IV Send Missings as%T_ERROR

Cancel | Help |

Figure 7.1: The General page of the General Settings dialog.

2. Inthe DDE Server Support group, deselect the Respond to
DDE Requests check box.

EXTENDING THE USER
INTERFACE

Overview 253
Motivation 253
Approaches 253
Architecture 254

Menus 255
Creating Menu Items 255
Menu Item Properties 256
Modifying Menu Items 260
Displaying Menus 262
Saving and Opening Menus 263

Toolbars and Palettes 264
Creating Toolbars 264
Toolbar Object Properties 265
Modifying Toolbars 267
Creating Toolbar Buttons 268
ToolbarButton Object Properties 269
Modifying Toolbar Buttons 271
Displaying Toolbars 273
Saving and Opening Toolbars 274

Dialogs 276
Creating Dialogs 278
Creating Property Objects 279
Property Object Properties 280
Modifying Property Objects 282
Creating FunctionInfo Objects 282
FunctionInfo Object Properties 284
Modifying FunctionInfo Objects 285
Displaying Dialogs 286
Example: The Contingency Table Dialog 287

Dialog Controls 290
Control Types 290

251

Chapter 8 Extending the User Interface

Copying Properties
ActiveX Controls in Spotfire S+ dialogs
Callback Functions

Interdialog Communication
Example: Callback Functions

Class Information
Creating ClassInfo Objects
ClassInfo Object Properties
Modifying ClassInfo Objects

Example: Customizing the Context Menu

Style Guidelines
Basic Issues
Basic Dialogs
Modeling Dialogs
Modeling Dialog Functions
Class Information
Dialog Help

252

303
307

327
329
329

333
333
334
336
336

341
341
342
351
357
364
366

OVERVIEW

Overview

In Spotfire S+, it is easy to create customized dialogs and invoke them
with toolbar buttons and menu items. Similarly, menus and toolbars
can be created and modified by the user. This chapter describes in
detail how to create and modify the dialogs, menus, and toolbars
which make up the interface.

Note

This chapter is dedicated to Windows® users.

Motivation

Approaches

Users may be interested in customizing and extending the user
interface to varying degrees. Possible needs include:

* Removing menu items and toolbars to simplify the interface.
+ Changing menu item and toolbar layout.

* Creating new menu items or toolbars to launch scripts for
repetitive analyses.

* Developing menus and dialogs for new statistical functions,
either for personal use or for distribution to colleagues.

The tools for creating menus, toolbars, and dialogs in Spotfire S+ are
quite flexible and powerful. In fact, all of the built-in statistical
dialogs in Spotfire S+ are constructed using the tools described in this
chapter. Thus, users have the ability to create interfaces every bit as
sophisticated as those used for built-in functionality.

This chapter discusses both point-and-click and command-based
approaches for modifying the user interface. The point-and-click
approach may be preferable for individual interface customizations,
such as adding and removing toolbars. Programmers interested in
sharing their interface extensions with others will probably prefer
using commands, as this enables easier tracking and distribution of
interface modifications.

253

Chapter 8 Extending the User Interface

Architecture

254

The Spotfire S+ graphical user interface is constructed from interface
objects. Menu items, toolbars, toolbar buttons, and dialog controls are
all objects. The user modifies the interface by creating, modifying,
and removing these objects.

The two components of extending the interface are:
+ Creating user interface objects.

* Creating functions to perform actions in response to the
interface.

The user interface objects discussed here are:
* Menultem objects used to construct menus.
* Toolbar objects defining toolbars.
* ToolbarButton objects defining the buttons on toolbars.
* Property objects defining dialog controls, groups, and pages.

* FunctionInfo objects connecting dialog information to
functions.

* ClassInfo objects describing right-click and context menu
actions for objects in the Object Explorer.

The two types of functions used with the user interface are:

* Callback functions which modify dialog properties based on
user actions within a dialog.

* Functions executed when OK or Apply is pressed in a dialog.
While any standard S-PLUS function may be called from a
dialog, we provide style guidelines describing the conventions
used in the built-in statistical dialogs.

The following sections discuss these topics from both command and
user interface perspectives.

MENUS

Creating Menu
Items

Using Commands

Menus

Menus are represented as a hierarchy of Menultem objects. Each
object has a type of Menu, MenuItem, or Separator:

* Menu creates a submenu.
e Menultem causes an action to occur when selected.

* Separator displays a horizontal bar in the menu, visually
separating two group of menu items.

Different menus may be created by modifying MenuItem objects. By
default, the main menu in Spotfire S+ is SPTusMenuBar. A Menultem
may be added to or deleted from this menu to modify the interface.
Alternately, users may create whole new menus which may be saved,
opened, and used as the default menu.

A Menultem is also used to construct context menus. These are the
menus displayed when a user right-clicks on an object in the Object
Explorer. Context menus are discussed in detail in the section
Context Menu (page 365).

A Menultem may be created using commands or from within the
Object Explorer.

To create a menu item, use the guiCreate function with
classname="Menultem”. The name of the object will specify the
location of the menu item in the menu hierarchy. Specify
Type="Menu” for a menu item which will be the “parent” for another
menu item, Type="Menultem” for a menu item which performs an
action upon select, or Type="Separator” for a separator bar.

The following commands will create a new top-level menu item with
two child menu items launching dialogs for the sqrt and Tme
functions:

guiCreate(classname="Menultem",
Name="$$SPTusMenuBar$MyStats",
Type="Menu", MenultemText="&My Stats", Index="11",
StatusBarText="My Statistical Routines")

guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$MyStats$Sqrt",

255

Chapter 8 Extending the User Interface

Using the Object
Explorer

Menu Item
Properties

256

Type="Menultem", MenultemText="&Square Root...",
Action="Function"”, Command="sqrt")

guiCreate(classname="Menultem",
Name="$$SPlusMenuBar$MyStats$Lme",
Type="Menultem", MenultemText="Linear &Mixed Effects...",
Action="Function", Command="Tme")

See the section Menu Item Properties (page 256) for details regarding
property names and values.

To create a menu item, first open the Object Explorer and filter by
Menultem to see the hierarchy of menu items. Navigate to the menu
item above where the new menu item should appear. Right-click on
this menu item, and select Insert Menultem from the context menu.
The Menultem Object dialog shown in Figure 8.1 appears.

Menultem Obiject [11] M= E |

b enultem | Command |

M amne: Im benultem Text: ||'~-1_I,I Stats
Type: I|‘--'|er‘|u "I StatuzBar Text: IM_I,I Statiztic:al Fouti

Docurment Tupe(s]: I.-i‘-.nj,I D ocuments j

Action; I Mone * I

™ Hide
v Deletable
[V Enable Menultem

0K | cancel | ool ||] cument Help |

Figure 8.1: The Menultem page of the Menultem Object property dialog.

The properties of a MenuItem object determine characteristics such as
the prompt for the menu item and the action performed when the
menu item is selected. These properties may be specified and
modified using the property dialog for the Menultem object, or
programmatically via the commands guiCreate and guiModify. See
the guiCreate("Menultem") help file in the Language Reference help
for syntax details.

Menus

The following properties are specified on the first tab of the
Menultem Object property dialog, shown in Figure 8.1:

Name The name of the MenuItem object. The name determines the
menu to which the menu item belongs, and the position within the
menu hierarchy.

Type The type of MenuItem object.
Menu creates a submenu.
Menultem causes an action to occur when selected.

* Separator displays a horizontal bar in the menu, visually
separating two group of menu items.

Document Type Depending on the type of document window
type—Graph Sheet, Commands window, etc.—which has the focus,
the item may or may not be visible. Document Type specifies the
document types for which the item should be visible in the menu
system. Selecting All Documents causes the item to be always
visible. Selecting No Documents ensures that the item will be visible
when no document window has the focus; for example, when no
document window is open.

Action The following options apply to Menultem objects of type
Menultem:

* None. No action is performed when the item is selected. This
is useful when designing a menu system. It is not necessary to
specify commands to execute when the type is set to None.

* BuiltIn. One of the actions associated with the default menus
or toolbars is performed when the item is selected. These are
listed on the Command page in the Built-In Operation
dropdown box. This option allows you to use any of the
“intrinsic” menu actions in a customized dialog, such as
Window P Cascade.

* Function. Under this option, a S-PLUS function, either built-
in or user-created, is executed when the item is selected.

* Open. The file specified on the Command page is opened
when this item is selected. The file will be opened by the
application associated to it by the operating system.

257

Chapter 8 Extending the User Interface

258

+ Print. The file specified on the Command page is printed
when this item is selected. The file will be printed from the
application currently associated to it by the operating system.

* Run. The file specified on the Command page is opened and
run as a script by Spotfire S+ when this item is selected.

Menultem Text The text which will represent the item in the menu
system. This does not apply to Separator items. Include an
ampersand (&) to specify the keyboard accelerator value.

StatusBar Text The text which will appear in the status bar when the
item has the focus in the menu.

Hide Logical value indicating whether to make the item invisible.
When the item is hidden, its icon in the Object Explorer appears
grayed out. This can also be specified through the context menu.

Deletable Logical values indicating whether to allow the item to be
deleted.

The rest of the properties are found on the Command page, as
shown in Figure 8.2.

Menultem Obiject [25] M= B |

tenultem | Command |

— Command Options
Built-In Dperation: I j

Command; I

Browee.. |

Parameters: I

[| Shave ialag Ha B

¥ | &lways Use Diefauls

Eancell I<| >| cument Help |

Figure 8.2: The Menultem Object property dialog for a MenuItem object,
Command page.

Menus

Built-In Operation desired when Action is set to BuiltIn. Built-in
actions are actions performed by the interface such as launching the

Open File dialog.

Command The name of a S-PLUS function, or a path and filename.
This field is enabled when Action is set to Function, Open, Print, or
Run on the Menultem page. Use the Object Explorer to identify the
folder.

Parameters This is relevant when Action is set to Function. This
property specifies the arguments for the function which will execute
when the item is selected. The easiest way to specify these arguments
is to work through the Customize dialog available through the
context menu for the Menultem in the Object Explorer. For details
on doing this, see the section Using the Context Menu (page 261)
below.

Show Dialog On Run This is relevant when Action is set to
Function on the Command page. It is a logical value which indicates
whether the dialog associated to the function should open when the
item is selected. This can also be specified through the context menu.

Always Use Defaults This is relevant when Action is set to
Function on the Command page. Logical value indicating whether to
force the use of the default values when the function executes. This
can also be specified through the context menu.

Spotfire S+ makes a distinction between the default argument values
for a function as defined in the function’s dialog (via the
FunctionInfo object) and as defined by the function itself. Always
Use Defaults refers to the “dialog” defaults. Table 8.1 summarizes
how Show Dialog On Run and Always Use Defaults work
together. In it, “function” refers to the S-PLUS function associated to
the menu item, and “dialog” refers to the dialog associated to that

259

Chapter 8 Extending the User Interface

function.

Table 8.1: Summary of Show Dialog On Run and Always Use Defaults.

IS{}:I)IW Dialog On gle‘;’:zlstsuse Action when the menu item is selected.
checked checked The dialog always opens in its default state when the
menu item is selected. Changes are accepted, but do
not persist as dialog defaults.
checked unchecked The dialog always opens when the menu item is
selected. Changes are accepted and persist as dialog
defaults.
unchecked checked The dialog does not appear and the function executes
using the current dialog defaults.
unchecked unchecked The dialog will appear once; either when the menu
item is selected or when Customize is selected from
the menu item’s context menu in the Object
Explorer. After that, the dialog does not appear and
the function executes using the current dialog
defaults.
odifyin Menultem objects can be modified using either programmin
Modify bj b dified g either progr g
Menu ltems commands, their property dialogs, or their context menus.

Using Commands

260

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing menu item.
Specify the name of the MenuItem to modify, and the properties to
modify with their new values.

The following command will add status bar text for the “Square Root”
dialog created in the section Creating Menu Items (page 255).

guiModify(classname="Menultem",
Name="$$SPTusMenuBar$MyStats$Sqrt",
StatusBarText="Calculate a square root.")

Using the
Property Dialog

Using the
Context Menu

Menus

MenuItem objects can be modified through the same property dialogs
which are used to create them. To modify a MenuItem object, open the
Object Explorer to a page with filtering set to Menultem. Right-click
on the Menultem object’s icon in the right pane and choose
Menultem from the context menu. See the previous sections for
details on using the property dialog.

MenuItem objects can be modified with their context menus which are
accessible through the Object Explorer. The following choices appear
after right-clicking on a MenuItem object in the Object Explorer.

Insert Menultem Select this to create a new MenuItem object.

Customize This appears when Action is set to Function. Select this
to open the dialog associated to the function. Any changes to the
dialog persist as dialog defaults.

Show Dialog On Run This appears when Action is set to
Function. Check this to cause the dialog associated to the function to
open when the item is selected. See Table 8.1 for details.

Always Use Defaults This appears when Action is set to Function.
Check this to force the use of the default values when the function
executes. See Table 8.1 for details. Spotfire S+ makes a distinction
between the default argument values for a function as defined in the
function’s dialog (via the FunctionInfo object) and as defined by the
function itself. Always Use Defaults refers to the “dialog” defaults.

Hide Select this to hide the menu item. It will not appear in the
menu system and the MenuItem object icon will appear grayed out.

Delete Select this to delete the MenuItem object. The menu item will
no longer be available.

Save Select this to save the MenuItem object (and any other MenuItem
it contains in the menu hierarchy) to a file.

Save As Similar to Save, but this allows you to save a copy of the
MenuItem object to a different filename.

Menultem Select this to access the Menultem page of the MenuItem
object’s property dialog.

Command Select this to access the Command page of the MenuItem
object’s property dialog.

261

Chapter 8 Extending the User Interface

Manipulating
Menu Items in
the Object
Explorer

Displaying
Menus

262

Show Menu In Spotfire S+ Select this to cause the menu to be
displayed in the main Spotfire S+ menu bar. This choice is available
only for MenuItem objects having Type Menu.

Restore Default Menus Select this to restore the default Spotfire S+
menus in the main menu bar. For example, this will undo the effect of
selecting Show Menu In Spotfire S+. This choice is available only for
MenuItem objects having type Menu.

Save Menultem Object as default Select this to make the
MenuItem object the default. When a new MenuItem object is created,
its property dialog will initially resemble that of the default object,
except in the Name field.

Help Select this to open a help page describing MenuItem objects.
Menu items are easily copied, moved, and deleted through the Object
Explorer.

Moving Menu Items

To move a menu item into a different menu, locate the menu item
icon in the Object Explorer. Select the icon, hold down the ALT key,
and drag it onto the menu where it will be added.

To move the menu item within its current menu, hold down the SHIFT
key and drag the menu item icon to the desired location.

Copying Menu Items

To copy a menu item into a different menu, hold down the CTRL key
and drag its icon onto the menu to which it is to be added.

To copy a menu item within its current menu, hold down the SHIFT
and CTRL keys and drag the menu item icon to the desired location.

Deleting Menu Items

To delete a menu item, right-click on the menu item in the Object
Explorer and select Delete from the context menu.

If the user modifies the default menu, which by default is named
SPlusMenuBar, the modifications will be displayed upon changing
the window in focus. If the user creates a new menu, the menu must
be explicitly displayed in Spotfire S+. This may be done
programmatically or in the Object Explorer.

Using Commands

Using the Object
Explorer

Saving and
Opening Menus

Using Commands

Using the Object
Explorer

Menus

The function guiDisplayMenu will display the specified menu as the
main menu in Spotfire S+. As a simple example, we can set the
context-menu for Tm to be the main menu bar, and then restore the
menus to the default of SPTusMenuBar:

guiDisplayMenu("1m™)
guiDisplayMenu("SPlusMenuBar")

After creating a menu system, right-click on the MenuItem object in
the Object Explorer that you want used as the main menu. Select
Show Menu In Spotfire S+ from the context menu to display the
menu system.

To restore the default Spotfire S+ menus, select Restore Default
Menus in the context menu for that same Menultem object.
Alternatively, select Show Menu In Spotfire S+ in the context
menu for the MenuItem object which represents the default Spotfire
S+ menus.

Menus may be saved as external files. These files may be opened at a
later time to recreate the menu in Spotfire S+.

The guiSave command is used to save a menu as an external file:

guiSave(classname="Menultem", Name="SPlusMenuBar",
FileName="MyMenu.smn")

The guiOpen command is used to open a menu file:
guiOpen(classname="Menultem", FileName="MyMenu.smn")

To save a menu to an external file, right-click on the MenuItem object
in the Object Explorer and select Save As in the context menu. Enter
a filename in the Save As dialog and click OK. The extension .smn
is added to the filename.

To open a menu which has been saved in an external file, right-click
on the default MenuItem object and select Open from the context
menu. In the Open dialog, navigate to the desired file, select it, and
click OK. The new menu is visible in the Object Explorer. Its name is
the name of the external file, without the extension .smn.

263

Chapter 8 Extending the User Interface

TOOLBARS AND PALETTES

Creating
Toolbars

Using Commands

Using the Object
Explorer

264

In Spotfire S+, toolbars and palettes represent the same type of
object. When a toolbar is dragged into the client area below the other
toolbars, it is displayed there as a palette. When a palette is dragged
to the non-client area, close to a toolbar or menu bar, it “docks” there
as a toolbar.

Toolbars are represented in the Object Explorer as Toolbar objects.
These contain ToolbarButton objects which represent their buttons.

While it is not hard to create or modify toolbars through the user
interface (as shown in this section), it is sometimes easier to work with
toolbars programmatically using the guiCreate and guiModify
commands. For details on the syntax, see the guiCreate(“Toolbar”)
and guiCreate(“ToolbarButton”) help files in the Language
Reference help.

Toolbars may be created using commands or from within the Object
Explorer.

To create a menu item, use the guiCreate function with
classname="Toolbar”.

The following command will create a new toolbar:

guiCreate(classname="Toolbar", Name="My Toolbar"™)

This will add a small empty toolbar which by default will be docked
below the active document toolbar. Until we add buttons, the toolbar
is not particularly interesting or useful.

To create a Toolbar object, first open the Object Explorer and filter
by Toolbar to see the toolbars and toolbar buttons. To create a new
toolbar, right-click on the default object icon (labeled Toolbar) in the
left pane of the Object Explorer. Select New Toolbar from the
context menu. (Alternatively, right-click in the Spotfire S+ application
window, outside of any open document window, and choose New
Toolbar from the context menu.) The New Toolbar dialog appears,

Toolbar Object
Properties

Toolbars and Palettes

as shown in Figure 8.3.
New Toolbar E

Toolbar Name:

Make Toolbar far this Folder;

I Browse... |

Document Type:
IAII Documents j

“ou can make a new toolbar from an existing folder, or create a blank one

from scratch.
0] I Cancel

Figure 8.3: New Toolbar dialog.

To modify the default settings that appear in this property dialog in
the future, right-click on the default object icon, choose Properties
from the context menu, fill out the dialog with the desired defaults,

and click OK.

Toolbar Name Enter a name for the new toolbar.

Make Toolbar for this Folder Enter a path for a folder (directory).
The new toolbar will contain a toolbar button for each file in the
indicated folder. Use the Browse button, if desired, to identify the
folder. If no folder is specified, the toolbar will contain a single button
with the ToolbarButton defaults.

Document Type Select the document types which will, when in
focus, allow the toolbar to be visible.

Click OK and a new Toolbar object appears in the Object Explorer.

The properties of a TooTbar object determine characteristics such as
the name and location of the toolbar. These properties may be
specified and modified using the property dialog for the Toolbar
object, or programmatically via the commands guiCreate and
guiModify. See the guiCreate(“Toolbar”) help file in the Language
Reference help for syntax details.

265

Chapter 8 Extending the User Interface

266

The following properties are specified in the Toolbar property dialog,
shown in Figure 8.4.

Toolbar Obiject (Toolbar1) [16] M|E E3 |
Hame: ITl:n:uII:uar1
Document Tope: I.-‘-‘-.n_l,l D ocuments j

— Toolbar Lapaut Optians
Docked To TOP -

Toolbar Top: I.ﬁ.utu:u "I
Toolbar Left; I.ﬁ.utn vI
™ Hide
Button Rows: |1 vI
W Deletable

I:anc:ell [« =] current Help |

Figure 8.4: Toolbar Object properties dialog.

¥ ColorButtons
¥ ToolTips

[LargeButtons

Document Type Depending on the type of document
window—Graph Sheet, Commands window, etc.--which has the focus,
a toolbar may or may not be visible. Specify the document types for
which the toolbar should be visible. Selecting All Documents causes
the toolbar to be always visible. Selecting No Documents ensures
that the toolbar will be visible when no document window has the
focus; for example, when no window is open.

ColorButtons Logical value indicating whether to display button
images in color.

ToolTips Logical value indicating whether to enable tool tips for the
toolbar.

LargeButtons Logical value indicating whether to display large-
sized buttons.

Hide Logical value indicating whether to hide the toolbar.

Deletable Logical value indicating whether to allow permanent
deletion of the toolbar.

Docked To The side of the Spotfire S+ window to which the toolbar
will be docked, or None to float the toolbar as a palette.

Toolbar Top The top coordinate of the toolbar in pixels.

Modifying
Toolbars

Using Commands

Using the
Property Dialog

Using the
Context Menu

Toolbars and Palettes

Toolbar Left The left coordinate of the toolbar in pixels.

Button Rows The number of rows of buttons in the toolbar.

Toolbar objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUIL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing Toolbar.
Specify the name of the Toolbar to modify and the properties to
modify with their new values.

The position of the Toolbar on the screen is specified by the pixel
location of the Top and Left corners of the Toolbar. The following
command will automatically set these values so that the Toolbar is
placed in the upper left corner of the screen:

guiModify(classname="Toolbar", Name="My Toolbar",
Top="Auto", Left="Auto")

Toolbar objects can be modified through the same property dialogs
which are used to create them. To modify a Toolbar object, open the
Object Explorer to a page with filtering set to Toolbar. Right-click on
the Toolbar object’s icon in the right pane and choose Properties
from the context menu. See the previous sections for details on using
the property dialog.

Toolbar objects can be modified with their context menus which are
accessible through the Object Explorer. The following choices appear
after right-clicking on a Toolbar object in the Object Explorer.

New Toolbar Select this to open a new toolbar.

New Button Select this to add a new button to the toolbar.
Hide Select this to hide the toolbar.

Delete Select this to delete the toolbar.

Open Select this to open a toolbar that has been saved in an external
file.

Save Select this to save a toolbar to its external file, when one exists.

267

Chapter 8 Extending the User Interface

Creating
Toolbar
Buttons

Using Commands

268

Save As Select this to save a toolbar to an external file.

Unload Select this to unload a toolbar from memory. The toolbar is
no longer available for display. To reload a built-in toolbar, restart
Spotfire S+. To reload a toolbar that has been saved to an external
file, open that file.

Restore Default Toolbar Select this to restore a built-in toolbar to
its default state after it has been modified.

Properties Select this to display the property dialog for the Toolbar
object.

Buttons Select this to display a dialog used for displaying or hiding
different buttons on the toolbar.

Refresh Icons Select this to refresh the icon images on the toolbar
buttons after they may have been modified.

Save Toolbar Object as default Save a modified version of a
toolbar as the default for that toolbar.

Help Select this to display a help page on toolbars.

A Toolbar generally contains multiple toolbar buttons, each of which
performs an action when pressed. Toolbar buttons may be created
using commands or from within the Object Explorer.

To create a ToolbarButton, use the guiCreate function with
classname="ToolbarButton”. The name of the button determines the
toolbar upon which it is placed.

The following command creates a toolbar button which launches the
Linear Regression dialog:

guiCreate("ToolbarButton™, Name = "My Toolbar$Linreg",
Action="Function", Command="menulLm")

Creating sophisticated dialogs such as the Linear Regression dialog is
discussed later in the section Dialogs (page 276) and the section Style
Guidelines (page 341).

Toolbar buttons can also be used to call built-in Windows interface
commands. The following command will create a toolbar button
which launches the standard file Open dialog:

Using the Object
Explorer

ToolbarButton
Object
Properties

Toolbars and Palettes

guiCreate("ToolbarButton", Name = "My Toolbar$Open",
Action="BuiltIn",
BuiltInOperation="$$SPlusMenuBar$No_Documents$File$0Open")

To add a button to an existing toolbar, right-click on the
corresponding Toolbar object in the Object Explorer and select New
Button from the context menu. The ToolbarButton property dialog
appears, as in Figure 8.5.

ToolbarButton Dbject [1] I S
Buttan | Command | Image |
Marme: Editable Graphs [~ Hide

Tvpe: IBLITTEIN vI ¥ Deletable
Achiar: IBuiItIn "I ¥ Enable Button

Docurment Tupe(s]: I.-i‘-.nj,I D ocuments j

Tip Test: IEl:IitaI:uIe Graphs

0k | cancel | cpcl ||] sument Help |

Figure 8.5: ToolbarButton property dialog.

The properties of a ToolbarButton object determine characteristics
such as the button image for the menu item and the action performed
when the button is selected. These properties may be specified and
modified using the property dialog for the ToolbarButton object, or
programmatically via the commands guiCreate and guiModify. See
the guiCreate(“ToolbarButton”) help file in the Language Reference
help for syntax details.

The following properties are specified on the Button page of the
ToolbarButton property dialog, shown in Figure 8.5:

Name The name of the button.

Type Select BUTTON to create a button, or select SEPARATOR to
create a gap between buttons in the toolbar.

269

Chapter 8 Extending the User Interface

270

Action This applies to ToolbarButton objects of type BUTTON.
* None. No action is performed when the button is clicked.

e BuiltIn. One of the actions associated with the default menus
or toolbars is performed when the item is selected. These are
listed on the Command page in the Built-In Operation
dropdown box. This option allows you to use in a customized
toolbar any of the "intrinsic" menu or toolbar actions, such as
Window P Cascade.

* Function. An S-PLUS function is executed when the button is
clicked. Optionally, the dialog for the function can be made to

appear.

* Open. The file specified on the Command page is opened
when the button is clicked. The file will be opened by the
application associated to it by the operating system.

+ Print. The file specified on the Command page is printed
when the button is clicked. The file will be printed by the
application currently associated to it by the operating system.

* Run. The file specified on the Command page is opened and
run as a script by Spotfire S+ when the button is clicked.

* Expression. Enter a valid S-PLUS expression in the
Command tab, and this expression is executed when the
button is pressed.

Tip Text The tool tip text for the button.

Hide Logical value indicating whether to make the button invisible.
When the item is hidden, its icon in the Object Explorer appears
grayed out. This can also be specified through the context menu.

Deletable Logical value indicating whether to allow the item to be
deleted.

The next set of properties are found on the Command page of the
ToolbarButton property dialog.

Built-In Operation Type of action to perform when the button is
selected.

Command The name of an S-PLUS function, or path and filename.
This field is enabled when Action is set to Function, Open, Print, or
Run on the button page. Use the Browse button to identify the folder.

Modifying
Toolbar
Buttons

Using Commands

Toolbars and Palettes

Parameters This is relevant when Action is set to Function. This
property specifies the arguments for the function which will execute
when the item is selected. The easiest way to specify these arguments
is to work through the Customize dialog available through the
context menu for the ToolbarButton in the Object Explorer. For
details on doing this, see the section Using the Context Menu (page
272) below.

Show Dialog On Run This is relevant when Action is set to
Function. Logical value indicating whether to display the dialog
associated with the specified function when the button is selected.

Always Use Defaults This is relevant when Action is set to
Function. Logical value indicating whether to force the use of the
default values when the function executes.

Spotfire S+ makes a distinction between the default argument values
for a function as defined in the function’s dialog (via the
FunctionInfo object) and as defined by the function itself. Always
Use Defaults refers to the dialog defaults. Table 8.1 above
summarizes how Show Dialog On Run and Always Use Defaults
work together.

The next set of properties are found on the Image page of the
ToolbarButton property dialog.

Image FileName The path and filename of a bitmap file whose
image will be displayed on the toolbar button. Use the Browse
button, if desired, to identify the file.

To modify a ToolbarButton object, use either the ToolbarButton
property dialog described above or the context menu, described
below.

ToolbarButton objects can be modified using either programming
commands, their property dialogs or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUL If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing toolbar
button. Specify the name of the ToolbarButton to modify, and the
properties to modify with their new values.

271

Chapter 8 Extending the User Interface

Using the
Property Dialog

Using the
Context Menu

Manipulating
Toolbars in the
Object Explorer

272

The following command will specify a new value for the tooltip text,
which is the text displayed when the mouse is hovered over the
button:

guiModify("ToolbarButton", Name = "My Toolbar$Open",
TipText="0pen Document")

ToolbarButton objects can be modified through the same property
dialogs which are used to create them. To modify a ToolbarButton
object, open the Object Explorer to a page with filtering set to
Toolbar. Right-click on the ToolbarButton object’s icon in the right
pane and choose Button from the context menu. See the previous
sections for details on using the property dialog.

ToolbarButton objects can be modified with their context menus
which are accessible through the Object Explorer. The following
choices appear after right-clicking on a ToolbarButton object in the
Object Explorer.

Insert Button Select this to insert a new toolbar button next to the
current one.

Customize This appears when Action is set to Function. Select this
to open the dialog associated to the function. Any changes to the
dialog persist as dialog defaults.

Hide Select this to hide the toolbar button.

Delete Select this to delete the toolbar button.

Edit Image Select this to open the bitmap file, using the operating
systems default bitmap editor, which contains the icon image of the
toolbar button.

Button. Select this to open the Button page of the property dialog for
the toolbar button.

Command Select this to open the Command page of the property
dialog for the toolbar button.

Image Select this to open the Image page of the property dialog for
the toolbar button.

Save ToolbarButton Object as default Select this to save a copy of
the ToolbarButton object as the default ToolbarButton object.

Help Select this to open a help page on toolbar buttons.

Toolbar buttons are easily copied, moved, and deleted through the
Object Explorer.

Displaying
Toolbars

Using Commands

Using the
Toolbars Dialog

Toolbars and Palettes

The Hide property of a toolbar determines whether or not it is
displayed. To display a toolbar, set this property to false:

guiModify(classname="Toolbar", Name="My Toolbar", Hide=F)

To hide the toolbar, set this property to true:

guiModify(classname="Toolbar", Name="My Toolbar"™, Hide=T)

To hide (or unhide) a toolbar, right-click on the Toolbar object and
select Hide (or Unhide) from the context menu. To selectively hide
or display toolbars, right-click outside of any open windows or
toolbars and select Toolbars from the context menu. A dialog like

that shown in Figure 8.6 appears. Use the checkboxes to specify
which toolbars will be visible.

Toaolbars

Toolbars:

Standard
[]Graph
[0 ataSet
[IScript
[w]ObjectE =plarer
[]0utpLtafindow
[CICammandwindow
[CIReportfindow
[IPlot=20

[Plats30

[

¥ Color Buttons
[T Large Buttons

¥ Show ToolTips

Figure 8.6: The Toolbar dialog.
To hide (or unhide) a toolbar button, right-click on the ToolbarButton

object and select Hide (or Unhide) from the context menu. To
selectively hide or display the buttons in a toolbar, right-click the

273

Chapter 8 Extending the User Interface

Toolbar object and select Buttons from the context menu. A dialog
similar to that shown in Figure 8.7 appears. Use the checkboxes to
specify which buttons will be visible in the toolbar.

Standard Buttons

Buttamnz:

[w]Open

[w]Save

WI[SEFPARATOR] Mew...

[w#] Pririk

WI[SEFPARATOR] Delete |
[Cuat

[w|Copy

[w]Paste

WIISEPARATOR] hd

Figure 8.7: The Buttons dialog.

Saving and A toolbar and the related toolbar buttons may be saved to an external
Opening file. This file may be opened at a later time to restore the toolbar and

the toolbar buttons.
Toolbars

Using Commands The guiSave command is used to save a toolbar as an external file:

guiSave(classname="Toolbar", Name="My Toolbar",
FileName="MyToolbar.stb")

The guiOpen command is used to open a toolbar file:

guiOpen(classname="Toolbar", FileName="MyToolbar.stb™)

Note

Do not try to open a toolbar file while the toolbar it represents is loaded into Spotfire S+; this
results in an error message. You can see which toolbars are currently loaded by right-clicking in
the Spotfire S+ window outside of any open document windows. To unload a toolbar, go to the
Object Explorer, right-click on the toolbar item, and choose Unload.

Using the Object To save a toolbar to an external file, right-click on the Toolbar object
Explorer in the Object Explorer and select Save As in the context menu. Enter

274

Toolbars and Palettes

a filename in the Save As dialog and click OK. The extension .STB
is added to the filename.

To open a toolbar which has been saved in an external file, right-click
on the default Toolbar object and select Open from the context
menu. In the Open dialog, navigate to the desired file, select it, and
click OK. The new toolbar is visible in the Object Explorer. Its name
is the name of the external file, without the extension .STB.

275

Chapter 8 Extending the User Interface

DIALOGS

276

Almost all of the dialogs in Spotfire S+ have either a corresponding
graphical user interface object or a corresponding function.

The dialog for a GUI object such as a BoxP1ot displays the properties
of the object, and allows the modification of these properties. When
Apply or OK is pressed, the object is then modified to have the
newly specified properties. While these dialogs are created using the
same infrastructure as is discussed here, they are not generally
modified by the user.

The dialog for a function allows the user to specify the arguments to
the function. The function is then called with these arguments when
Apply or OK is pressed. In Spotfire S+, users may write their own
functions and create customized dialogs corresponding to the
functions. This section discusses the creation of such dialogs.

Think of a function dialog as the visual version of some S-PLUS
function. For every function dialog there is one S-PLUS function, and
for every S-PLUS function there is a dialog. The dialog controls in the
dialog correspond to arguments in the function, and vice versa. In
addition, all function dialogs are displayed with OK, Cancel, Apply
(modeless) buttons that do not have any corresponding arguments in
the functions. When the OK or Apply button is pressed, the function
is executed with argument values taken from the current values of the
dialog controls.

A dialog typically consists of one to five tabbed pages, each
containing groups of controls. The characteristics of the controls in
the dialog are defined by Property objects. Properties may be of
type Page, Group, or Normal. A Page will contain Groups which
in turn contain Normal properties. The primary information
regarding Pages and Groups is their name, prompt, and what other
properties they contain. Normal properties have far more
characteristics describing features such as the type of control to use,
default values, option lists, and whether to quote the field’s value
when providing it in the function call. Together the Property objects
determine the look of the dialog and its controls.

Dialogs

Filter by Property in the Object Explorer (Figure 8.8) to see objects

of this type.

= Object Explorer

Cartents of: |Property

- - Data

- J Graphs
=
..... |_ Hepn:lrtS
& Scripts

I Y SearchPath

M[=]

Object | Foz | Data Class I Dimenzions +

% alphaPowerSeqStat 905 Property b
%.ﬁ.ltEnnfLevel 1053 Property
%.ﬁ.ltlzwerage 1035 Property
%.ﬁ.ltlzwerageﬁ 1036 Property
%.ﬁ.ltEnxphT ermsButto... 981 Property
%.ﬁ.ltlzrnss‘afalue 1033 Property
%f-‘«lt[ﬁl ataFrames 1031 Property
52 AIE ditButton 1039 Property
B2 AlFit 1028 Property
%.&Itﬁraph\-"iewpairs 1249 Property
%ﬂltﬁraph\-"iewplut 1248 Property
%.ﬁ.ltﬁrnupEDmbinedL... 1244 Property
%.ﬁ.ltﬁrnupEutPDintD n.. 1241 Property
%.ﬁ.ltﬁrnupEutF‘Dints 1240 Property
1234 Pranertu

%' AlH=rannl atalalme
4

| of”

Figure 8.8: The Object Explorer showing all Property objects

While the Property objects define the controls in a dialog, they do
not contain information on which Property objects relate to each of
the arguments in the function. This information is contained in a
FunctionInfo object. Each function for which a dialog is constructed
needs a FunctionInfo object describing what Property objects to use
when constructing the dialog for the function, as well as other related
information. If a function does not have a FunctionInfo object and
its dialog is requested by a Menultem or ToolbarButton, a simple
default dialog will be launched in which an edit field is present for
each argument to the function.

277

Chapter 8 Extending the User Interface

Filter by FunctionInfo in the Object Explorer (Figure 8.9) to see

objects of this type.
= Object Explorer M=l E3
Cantents af: [Functionlnfo
l - Data Object | Foz | Data Class | Dimensions &

blp.cbPathConfigure 223 Functionlkfo |
clear.col 43 Functionlnfo
clear. o 43 Functionlnfo
corvert.col lype 115 Functionlnfo
copy. ol 44 Furictionlnfo
COp. IO) Furictionlnfo
dialogTimeSenesPlot: 167 Functionlnfo
Functionlnfo 1 Functionlnfo
qui. append. ol 189 Functionlnfo
qui. clear. block 170 Functionlnfo
qui. clear. col 168 Functionlnfo
qui. clear. row 169 Functionlnfo
qui. copy. block 176 Functionlnfo
qui. copy. col 174 Functionlnfo

AL Cnrg o 177 Fuartinnl nfo I _ILI
3

Figure 8.9: The Object Explorer showing all FunctionInfo objects.

=
LI Eraphs
----- |_ Reports
- ! Scripts
I @ SearchPath

< iR R R s e R R R 8

While it is not hard to create or modify Property and FunctionInfo
objects through the user interface, as shown in this section, it is
usually preferable to work with them programmatically using the
guiCreate and guiModify commands. For details on the syntax, see
the guiCreate(“Property”) and guiCreate(“FunctionInfo”) help
files in the Language Reference help.

Creating To create a dialog in Spotfire S+, follow these steps:

Dialogs 1. Identify the S-PLUS function which will be called by the
dialog. This can be either a built-in or a user-created function.

2. Create the “Property” objects, such as pages, group boxes, list
boxes, and check boxes, which will populate the dialog.

278

Creating
Property
Objects

Using Commands

Using the Object
Explorer

Dialogs

3. Create a FunctionInfo object having the same name as the
function in step 1. The FunctionInfo object holds the layout
information of the dialog, associates the values of the Property
objects in the dialog with values for the arguments of the
S-PLUS function, and causes the S-PLUS function to execute.

Property objects may be created using commands or from within the

Object Explorer.

To create a Property object, wuse guiCreate with
classname="Property”. The following command creates a list box:

guiCreate(classname="Property", Name="MyListProperty",
Type="Normal"™, DialogControl="List Box",
DialogPrompt="Method", OptionlList=c("MVE"™, "MLE",
"Robust™), DefaultValue="MLE")

To create a Property object, open the Object Explorer to a page with
filtering set to Property. Right-click on any property in the right pane
and choose Create Property from the context menu. The property
dialog shown in Figure 8.10 appears.

Property Object [1903] [_ |
Name: stProperty LCopy From: I—
Type: INc-rmaI VI DOption List D elim: I
Default ' alue: MLE Help String: I—
Earent Froperty l— Save [n File: I—
Dialog Prompt: W [|5 Required
Dialog Contral: lm [Use Quates
[Eartiol Braald; l— [Mo Quotes
[Eartrol Eathiy anmes l— ™ ls List
Hatiae: l— ™ Mo Function Arg
Option Ligt: lm [Disable
Eroperty (st l— [IsFead Orly

[Mo Ship Spaces
(0] I Caticel | Sppl | I<| >| curent Help |

Figure 8.10: The property dialog for a Property object.

279

Chapter 8 Extending the User Interface

Property
Object
Properties

280

The properties of a Property object determine characteristics such as
the prompt text, control type, and default value. These properties
may be specified and modified using the property dialog for the
Property object, or programmatically via the commands guiCreate
and guiModify. See the guiCreate(“Property”) help file in the
Language Reference help for syntax details.

The following properties are specified in the Property object property
dialog, shown in Figure 8.10.

Name The name of the Property object. To create a Property object,
a name must be specified.

Type The type of property. Group or WideGroup creates a group
box. Page creates a tabbed page. Normal to creates any other type of
Property object.

Default Value The default value for the Property object. This will
be displayed when the dialog opens.

Parent Property The name of a parent property, if any. This is used
by certain internal Property objects.

Dialog Prompt The text for the label which will appear next to the
control in the dialog.

Dialog Control The type of control to use. Examples are Button,
Check Box, List Box, and Combo Box. Control types are described
in the section Dialog Controls (page 290).

Range The range of acceptable values for the function argument
associated with this property. For instance, if the values must be
between 1 and 10, enter 1:10.

Option List A comma-separated list. The elements of the list are
used, for example, as the labels of Radio Buttons or as the choices in
the dropdown box of a String List Box. A property may have either a
range or an option list, but not both. Ranges are appropriate for
continuous variables. Option lists are appropriate where there is a
finite list of allowable values.

Dialogs

Property List A comma-separated list of the Property objects
included in the Group box or on the Page. This applies to Property
objects having Type Page or Group.

Tip...

A Property object may only be called once by a given FunctionInfo object.

Copy From The name of a Property object to be used as a template.
The current Property object will differ from the template only where
specified in the property dialog. See the section Dialog Controls (page
290) for lists of internal and standard Property objects that can be
used in dialogs via Copy From.

Option List Delim A character used as the delimiter for Option
List, such as comma, colon or semi-colon. Comma is the default.

Help String The text of the tool tip for this Property object.

Save in File The name of the file in which to save the Property
definition.

Is Required Logical value indicating whether to require the
Property object to have a value when OK or Apply is clicked in the
dialog.

Use Quotes Logical value indicating whether to force quotes to be
placed around the value of the Property object when the value is
passed to the S-PLUS function.

No Quotes Logical value indicating whether to prohibit quotes from
being placed around the value of the Property object when the value
is passed to the S-PLUS function. This option is ignored when Is List
(described below) is not checked.

Is List Logical value indicating whether to cause a multiple selection
in a drop-down list to be passed as an S-PLUS list object to the
S-PLUS function.

No Function Arg Logical value indicating whether to not pass the
value of this Property object as an argument to the S-PLUS function.
The Property object must still be referenced by the FunctionInfo
object.

281

Chapter 8 Extending the User Interface

Modifying
Property
Objects

Using Commands

Using the
Property Dialog

Using the
Context Menu

Creating
Functioninfo
Objects

Using Commands

282

Disable Logical value indicating whether to cause the Property
object to be disabled when the dialog starts up.

Is Read Only Logical value indicating whether the corresponding
control is for read only.

No Strip Spaces Logical value indicating whether to include or
remove spaces between elements in the Option List.

Property objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUI If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing Property
object. Specify the Name of the Property object to modify, and the
properties to modify with their new values.

guiModify(classname="Property", Name="MyListProperty",
DefaultValue="Robust")

Property objects may be modified through the Property object
property dialog.

To modify a Property object, open the Object Explorer to a page with
filtering set to Property. Right click on the Property object’s icon in
the right pane and choose Properties from the context menu. Refer
to the previous sections for details on using the property dialog.

Property objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

FunctionInfo objects may be created using commands or from
within the Object Explorer.

To create a FunctionInfo object, use the guiCreate command with
classname="FunctionInfo”.

Dialogs

As a simple example, we will create a function my.sqrt which
calculates and prints the square root of a number. We will create a
dialog for this function and add a menu item to the Data menu which
launches the dialog. We will create a property MySqrtInput
specifying the input value, and since we don’t want to store the result,
we will use the standard property SPropInvisibleReturnObject for
the result.

my.sqrt <- function(x){
y <- sqrt(x)
cat("\nThe square root of ",x,

.is ll’y’ u.\n",sep="n)

invisible(y)

guiCreate(classname="Property"™, Name="MySqrtInput",
DialogControl="String", UseQuotes=F,
DialogPrompt="Input Value")

guiCreate(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Calculate Square Root",
PropertyList="SPropInvisibleReturnObject, MySqrtInput”,
ArgumentList="#0=SPropInvisibleReturnObject,

#1=MySqrtInput")

guiCreate(classname="Menultem",
Name="$$SPTusMenuBar$Data$MySqrt",
Type="Menultem" ,MenultemText="Square Root...",
Action="Function"”, Command="my.sqrt")

283

Chapter 8 Extending the User Interface

Using the Object Open the Object Explorer to a page with filtering set to

Explorer

Functioninfo
Object
Properties

284

FunctionInfo. Right-click on any FunctionInfo object in the right
pane and choose Create FunctionInfo from the context menu. The
property dialog shown in Figure 8.11 appears.

Function nformation 115 MBI
Function: :arvvert. col ype FPrompt Lizt: I—
Dialog Header: Im Defaultyalue List: I—
Status String: I— CallBack Function: m
FProperty List: Im Help Command: I—
Argument List; Im Save In File: I—
Argument Clazses: I— ¥ wiite Arg Mames

[Display
0k | cancel | cpcl ||] sument Help |

Figure 8.11: The property dialog for a FunctionInfo object.

The properties of a FunctionInfo object describe how the properties
in a dialog correspond to the related function. These properties may
be specified and modified using the property dialog for the
FunctionInfo object, or programmatically via the commands
guiCreate and guiModify. See the guiCreate(“FunctionInfo”) help
file in the Language Reference help for syntax details.

The following properties are specified in the FunctionInfo object
property dialog, shown in Figure 8.11.

Function The name of the S-PLUS function which will execute
when OK or Apply is clicked in the dialog. This is also the name of
the FunctionInfo object.

Dialog Header The text that will appear at the top of the dialog.
Status String The string displayed when you move the mouse over
the property in the dialog.

Property List A comma-separated list of Property objects to be
displayed in the dialog. A given Property object can only occur once
in this list. If pages or group boxes are specified, it is not necessary to

Modifying
Functioninfo
Objects

Dialogs

specify the Property objects that they comprise. Property objects in
the list will be displayed in two columns, moving in order from top to
bottom, first in the left-hand column and next in the right-hand
column.

Argument List A comma-separated list in the form #0 =
PropNamel, #1 = PropName2, Here PropNamel, PropName2, ..., are
names of Property objects, not including page and group objects, and
#1, ..., refer in order to the arguments of the function indicated in
Function Name. The argument names may used in place of #1, #2,
... . The first item, #0, refers to the returned value of the function. Use
Argument List if the order of the Property objects in the dialog
differs from the order of the corresponding arguments of the S-PLUS
function.

Argument Classes A comma-separated list of classes that are used in
in the dialog.

Prompt List A comma-separated list of labels for the Property
objects in the dialog. These will override the default labels. The
syntax for this list is the same as that for Argument List.

Default Value List A comma-separated list of default values for the
Property objects. These will override the default values of the
Property objects. The syntax for this list is the same as that for
Argument List.

CallBack Function The name of a function which will be executed
on exit of any Property object in the dialog. CallBack Functions are
described in detail in the section Callback Functions (page 327).

Help Command The command to be executed when the Help
button is pushed. This is a Spotfire S+ expression such as
“help(my.function)”.

Save in File The function information can be written to a file, which
can be edited in the Command line or in the GUL

Write Argument Names Logical value indicating whether to have
argument names written when the function call is made.

Display Logical value indicating whether to cause information about
the FunctionInfo object to be written in a message window (or in the
output pane of a script window when the dialog is launched by a
script). This debugging tool is turned off after OK or Apply is clicked
in the dialog.

FunctionInfo objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUL If

285

Chapter 8 Extending the User Interface

Using Commands

Using the
Property Dialog

Using the
Context Menu

Displaying
Dialogs

286

you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing FunctionInfo
object. Specify the Name of the FunctionInfo object to modify, and
the properties to modify with their new values.

guiModify(classname="FunctionInfo", Name="my.sqrt",
DialogHeader="Compute Square Root")

FunctionInfo objects may be modified through the FunctionInfo
object property dialog.

To modify a FunctionInfo object, open the Object Explorer to a page
with filtering set to FunctionInfo. Right click on the FunctionInfo
object’s icon in the right pane and choose Properties from the context
menu. Refer to the previous sections for details on using the dialog.

FunctionInfo objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

There are several ways to display a dialog in Spotfire S+.

* Locate the associated function in the Object Explorer and
double-click on its icon. If a function is not associated with a
FunctionInfo object, then double-clicking on its icon will
cause a default dialog to be displayed.

* Click on a toolbar button which is linked to the associated
function.

* Select a menu item which is linked to the associated function.

* Use the function guiDisplayDialog in a Script or
Commands window:

guiDisplayDialog("Function",Name="menulLm")

* Write the name of the function in a Script window, double-
click on the name to select it, right-click to get a menu, and
choose Show Dialog.

Dialogs

Example: The This example looks into the structure behind the Contingency Table
Contingency dialog. The Contingency Table dialog in Spotfire S+ (Figure 8.12) is

. found under Statistics > Data Summaries » Crosstabulations.
Table Dialog

Crozstabulations [_ (]
todel | Options |
—Data Rezults

Data Set; I VI Save Az I

IV Print Fesults

Wariables:

LCounts Yariable: I vl
Subsget Bows with: I

tethod to Handle Missing Yalues:

IFaiI vl
(0] I Can-:ell Applyl I<| >| curent Help |

Figure 8.12: The Contingency Table dialog.

It has two tabbed pages named Model and Options. On the Model
page are two group boxes, named Data and Results.

The FunctionInfo object for this dialog is called menuCrosstabs; its
property dialog is shown in Figure 8.13 and is described below.

Function Information [28] I [E]=]
Function: menuCrosstabs Prompt List: I—
Dialog Header: IW Defaultyalue List: I—
Status String: l— LallB ack Function: W
Property List; lSF'ropCrom Help Command: I—
Argument List: lm Save [n File: I—
Argument Clazses: l— [V wiite Arg Mames

[Display
Ok I Cancell .t’-‘«pplyl |<| >| current Help |

Figure 8.13: The property dialog for the FunctionInfo object menuCrosstabs.

Function Notice that this value is also menuCrosstabs; the S-PLUS
function associated with this dialog has the same name as the
FunctionInfo object. To look at the code behind the function

287

Chapter 8 Extending the User Interface

288

menuCrosstabs, type menuCrosstabs, or page(menuCrosstabs) at the
prompt in the Commands window.

Dialog Header This is the header which appears at the top of the
Contingency Table dialog. Try changing this and opening the dialog.
The dialog will reflect the change. This change persists when Spotfire
S+ is exited and restarted.

Status String This is currently empty. Try entering text here (do not
forget to click Apply or OK) and opening the dialog.

Property List This shows only the Property objects for the two
tabbed pages: SPropCrosstabsDataPage and
SPropCrosstabsOptionsPage. To more easily see these values, right-
click in the edit field and select Zoom. The zoom box shown in
Figure 8.14 appears.

Zoom (Edit Box) K|

|

Figure 8.14: The Zoom box shows the Property List.

Dialogs

Using the Object Explorer, open the property dialog for the first of
these. This is shown in Figure 8.15.

Property Object [155] M= E

[EapEy Eran: I—
o st e i I—
Helm St I—
Barent Bropert; I— Save In Eile: I—
Dialog Frompt: W = [Fequited

[l mE Eamtial: Im = e Guntes

[Cantral Eroald: I— = Ko Buntes

[Cattie] Bathi ame: I— = [LLigt

Hatae: I— = W Functian A

[it s I— = igatile

Property List: Im = [Bead i

Qg I Eancell Applyl I<| >l cument Help |

Figure 8.15: The Property dialog for the SPropCrosstabsDataPage Property object.

Marme:

Tupe:

[Vefault balie:

Argument List Use zoom, if desired, to view the assignments of
Property object values to arguments of the function menuCrosstabs.
Notice in Figure 8.13 that the return value is set to SPropSaveObj.
This has been done consistently throughout the user interface.
Prompt List Since this is empty, fields in the dialog will have their
default prompts (labels) as specified in their corresponding property
objects.

Default Value List Since this is empty, fields in the dialog will have
the default values as specified in their corresponding property objects.
Call Back Function The S-PLUS function backCrosstabs is
executed each time a control in the dialog is exited. To look at the
code behind the function, type

> backCrosstabs

at the prompt in the Commands window. Callback functions are
discussed in the section Callback Functions (page 327).

Write Arg Names This is currently empty.

Display This is not checked, so debugging messages will not be
shown when the dialog is displayed.

289

Chapter 8 Extending the User Interface

DIALOG CONTROLS

Control Types

290

Spotfire S+ has a variety of dialog controls that can be used to
represent the properties of an object (such as a user-defined function)
in a dialog, which are described in Table 8.2. Note that the control
type (first column) and the DialogControl (in the Example column)
in Table 8.2 must be exactly the same when you use them in the
guiCreate function. For more information on dialog controls, see the
guiCreate("Property") help file in the Language Reference help.

Table 8.2: Dialog control types.

Dialog Controls

where one state is checked and the
other is unchecked.

The “DefaultValue” subcommand
is used to set the state of the check
box. If set to “0” or “F”, the box
will be unchecked. If “1” or “T”,
the box will be checked.

Control s
Description Example
Type
Invisible A control which does not appear guiCreate("Property”,
on the dialog. Name = "ReturnValue",
Type = "Normal",
DialogControl = "Invisible")
Button A push-button control. guiCreate("Property",
Name = "myButton",
The “DialogPrompt” subcommand g¥p$ =P"N0r[€a]""'&M Button®
. . ialogPrompt = yButton",
is used to set the text inside the DialogControl = "Button”)
button.
Check Box A two-state check box control guiCreate("Property",

Name = "myCheckBox",

Type = "Normal",

DefaultValue = "T",
DialogPrompt = "&My CheckBox",
DialogControl ="Check Box")

Static Text

A text field that is not editable usu-
ally used before other controls to
title them.

The “DialogPrompt” subcommand
is used to specify the text of this
static text field.

guiCreate("Property",

Name = "myStaticText",

Type = "Normal",

DialogPrompt = "MyStaticText",
DialogControl = "Static Text")

String

An editable field used to enter text.

If the subcommand “UseQuotes” is
set to TRUE, the string returned to
the user function from this dialog
has quotes around it. If not speci-
fied, no quotes are added.

guiCreate("Property",

Name = "myString",

Type = "Normal",
DialogControl = "String",
DialogPrompt = "&My String",
UseQuotes=T)

201

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

ontrol A
Contr Description Example
Type
Hidden Same as “String” except that this guiCreate("Property",
String control is hidden. Name = "myHiddenString",

Type = "Normal",

DialogControl = "Hidden String",
DialogPrompt = "&My Hidden String",
UseQuotes=T)

Wide String

Same as “String” except that this
control takes up two dialog col-
umns.

guiCreate("Property",

Name = "myWideString",

Type = "Normal",

DialogControl = "Wide String",
DialogPrompt = "&My String”,
UseQuotes=T)

line String

that this control takes up two dia-
log columns.

Multi-line Same as “String” except that this guiCreate("Property",
String control can accept strings with Name = "myMulti-line String",
multiple lines. Type = "Normal™, o]

DialogControl = "Multi-1ine String",
DialogPrompt = "&My Multi-line
String"”,
UseQuotes=T)

Wide Multi- Same as “Multi-line String” except | guiCreate("Property",

Name = "myWide Multi-Tine String",
Type = "Normal",

DialogControl = "Wide Multi-Tline
String"”,

DialogPrompt = "&My Wide Multi-line
String",

UseQuotes=T)

292

Table 8.2: Dialog control types.

Dialog Controls

umns.

Control Description Example

Type

List Box A drop-list of strings. Only one guiCreate("Property",
string can be selected at a time. Name = "myListBox",
The selected string is not editable. | Type = "Normal®,
The “DefaultValue” is used to spec- B?:?? tValue _ Jopta”,

gPrompt A ListBox",

ify the string from the list that is DialogControl = "List Box",
selected by default. The list of OptionList = "Optl, Opt2,
strings is specified as a comma- Opt3™,
delimited list in “OptionList”. An | OptionListDelimiter = ™,")
optional subcommand “Option-
ListDelimiter” can be used to spec-
ify the delimiter.

Wide List Same as “List Box” except that this | guiCreate("Property"”,

Box control takes up two dialog col- Name = "myWidelListBox",

Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =

"Wide ListBox",
DialogControl =

"Wide List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Sorted Wide Same as “Wide List Box” except
List Box that this control sorts columns.

guiCreate("Property",
Name = "mySortedWidelListBox",
Type = "Normal",
DefaultValue "Opt2",
DialogPrompt =

"SortedWide ListBox",
DialogControl =

"Sorted Wide List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

293

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

be made from the string list.

Control -
Description Example
Type
Multi-select Similar to the “List Box” control guiCreate("Property",
List Box except that multiple selections can | Name = "myMultiSellistBox",

Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =

"MultiSel ListBox",
DialogControl =

"Multi-select List Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Wide Multi- Similar to the “Multi-select List

guiCreate("Property",

except that the selected string is
editable. This allows the user to
enter a string which is not part of
the drop-list. Only one string can
be selected at a time.

select List Box” control except this control Name = "myWideMultiSelListBox",
Box takes up two dialog columns. Type = "Normal™,
DefaultValue = "Opt2",
DialogPrompt =
"Wide MultiSel ListBox",
DialogControl =
"Wide Multi-select List Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")
Combo Box Similar to a “List Box” control guiCreate("Property",

Name = "myComboBox",
Type = "Normal",
DefaultValue = "0Opt3",
DialogPrompt "A ComboBox",
DialogControl = "Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

Wide Combo | Same as “Combo Box” except that
Box this control takes up two dialog col-
umns.

guiCreate("Property",
Name = "myWideComboBox",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =
"Wide Combo Box",
DialogControl =
"Wide Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

294

Table 8.2: Dialog control types.

Dialog Controls

Combo Box trol except that multiple selections
can be made from the drop-list of
strings.

Control -
Description Example
Type
Sorted Wide Same as “Wide Combo Box” guiCreate("Property",
Combo Box except that this control sorts col- Name = "mySortedWideComboBox",
ummns. Type = "Normal",
DefaultValue = "Opt2",
DialogPrompt =
"Sorted Wide Combo Box",
DialogControl =
"Sorted Wide Combo Box",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")
Multi-select Similar to the “Combo Box” con- guiCreate("Property",

Name = "myMultiSelCombo",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =

"MultiSel Combo",
DialogControl =

"Multi-select Combo Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Wide Multi- Similar to the “Multi-select Combo
select Combo | Box” control except this control
Box takes up two dialog columns.

guiCreate("Property",
Name = "myWideMultiSelCombo",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =
"Wide MultiSel Combo™,
DialogControl =
"Wide Multi-select Combo Box"
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

295

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

Control

Type

Description

Example

Sorted Multi- | Similar to the “Multi-select Combo
select Combo | Box” control except this control
Box sorts columns .

guiCreate("Property",
Name = "mySortedMultiSelComboBox",
Type = "Normal",
DefaultValue = "0Opt3",
DialogPrompt =

"Sorted Multi-Select Combo Box",
DialogControl =

"Sorted Multi-select Combo Box",

OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Sorted Wide Similar to the “Wide Multi-select
Multi-select Combo Box” control except this
Combo Box control sorts columns.

guiCreate("Property",
Name =
"mySortedWideMultiSelComboBox",
Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt =

"Sorted Wide MultiSel Combo Box",
DialogControl =

"Sorted Wide Multi-select Combo

Box",
OptionList = "Optl, Opt2,

Opt3",
OptionListDelimiter = ",")

Float Similar to a String control. This
control accepts floating point num-
bers.

guiCreate("Property",
Name = "myFloat",

Type = "Normal",
DefaultValue = "2.54",
DialogPrompt = "A Float",
DialogControl = "Float")

Float Auto Similar to a ComboBox except that
there is only one string “Auto” in
the drop-list. You can enter a float-
ing point number or select “Auto”
from the drop list.

guiCreate("Property",

Name = "myFloatAuto",

Type = "Normal",

DefaultValue = "2.54",
DialogPrompt = "A FloatAuto",
DialogControl = "Float Auto")

296

Table 8.2: Dialog control types.

Dialog Controls

control accepts integer whole num-
bers.

Control R
Description Example
Type
Float Range Similar to the Float control except | guiCreate("Property",
that a range of values can be speci- | Name = "myFloatRange™,
fied using the “Range” subcom- Type = “Normal™,
. DefaultValue = "2.54",
mand. If the value entered is ; o "
. DialogPrompt = "A Float Range",
outside of the range, then an error | pia10gControl = "Float Range",
will be displayed and the dialog Range = "1.00:3.00")
will remain open.
Integer Similar to the Float control. This guiCreate("Property",

Name = "myInteger",

Type = "Normal",
DefaultValue = "2",
DialogPrompt = "An Int",
DialogControl = "Integer")

Wide Integer

Same as “Integer” except this dia-
log control takes up two columns.

guiCreate("Property",

Name = "myInteger",

Type = "Normal",

DefaultValue = "2",

DialogPrompt = "An Int",
DialogControl = "Wide Integer")

gers.

Integer Auto | Similar to a “Float Auto” control guiCreate("Property",
except this control accepts inte- Name = "myIntAuto",
Type = "Normal",
gers.
DefaultValue = "2",
DialogPrompt = "An IntAuto",
DialogControl = "Integer Auto")
Integer Similar to a “Float Range” control guiCreate("Property",
Range except this control accepts inte- Name = "myIntRange”,

Type = "Normal",
DefaultValue = "2",
DialogPrompt = "An IntRange",
DialogControl =

"Integer Range",
Range = "1:3")

297

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

of controls to a dialog. You must
have at least one group of controls
on a page before the page will dis-

play.

Control -
Description Example
Type
Color List A drop-list that allows selection of | guiCreate("Property",
one element from a list of strings Name = "myColorList",
representing colors (i.e. Red, Type = "Normal™,
G . DefaultValue = "Red",
reen, etc.) Each list element has ; e e
o DialogPrompt = "A ColorList",
drawn a color sample next to it if DialogControl = "Color List",
the string represents a valid color OptionList = "Blue, Red,
name. Use the “OptionList” sub- Green")
command to specify colors in the
list.
New Line Inserts an empty area the height of | guiCreate("Property"”,
a single control between controls. Name = "xLINEFEED",
Useful for inserting space in the Type = "Normal™,)
. . DialogPrompt = "A New Line",
second column of controls in a dia- . o .
. DialogControl = "New Line")
log so that a wide control can be
used in the first column without guiCreate("FunctionInfo"”,
overlapping controls in the second | Function = "TestFn",
column. The “DialogPrompt” sub- | DialogHeader = "Test",
. PropertyList = c(
command is not used. " "
ReturnValue",
"aStringl",
As an example, suppose you have "aWideString",
six controls (not counting the invis- | "aString2",
ible ReturnValue). The first is a "ai %;EEEED
String, the second is a Wide String, ")a(Stri rean
and all others are non-Wide con- "aStrings"
trols. If you want to lay out the),
controls so that no overlap occurs
in the second column from the sec-
ond Wide String in the first col-
umn, you could insert a New Line
control in the PropertyList sub-
command for the FunctionInfo
object.
Page Tab Adds a page of controls and groups | guiCreate("Property",

Name = "myPageOne",

Type = "Page",
DialogPrompt = "Page 1",
PropertylList =

c("myGroupl™, "myString™))

298

Table 8.2: Dialog control types.

Dialog Controls

selected. The buttons are exclu-
sive which means that if one button
is selected and another is clicked
on, the original button is dese-
lected and the button clicked on is
selected. The “OptionList” sub-
command is used to specify the
names of the buttons in the group.
This name is returned when a but-
ton is selected, as in the other list
controls.

Control R
Description Example

Type

String List A list box of strings that allows guiCreate("Property",

Box only single selections. This control | Name = "myStringlist",
differs from the List Box and 'Dl'yge TtVN$rmal Opt3n
Combo Box controls in that the list erauftialue e pLo=,

: . o DialogPrompt = "String List",
of strings is always visible. The DialogControl =
“OptionList” subcommand is used "String List Box",
to fill the list. OptionList = "Optl, OptZ,
Opt3")
Radio But- A group of radio buttons which guiCreate("Property"”,
tons allow only one button to be Name = "myRadioButtons”,

Type = "Normal",
DefaultValue = "0pt3",
DialogPrompt = "Radio Buttons",
DialogControl =
"Radio Buttons",
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

Wide Radio Same as “Radio Buttons” except
Buttons this dialog control takes up two col-
umns.

guiCreate("Property",

Name = "myWideRadioButtons",
Type = "Normal",
DefaultValue = "0Opt3",

DialogPrompt = "Wide Radio Buttons",

DialogControl =
"Wide Radio Buttons™,
OptionList = "Optl, Opt2,
Opt3",
OptionListDelimiter = ",")

299

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

adjustment of a numeric value by
dragging a lever from one side of
the control to the other. The left
and right arrow keys can be used
to move the slider by the small
increment and the page up and
page down keys can be used to
move by the large increment. Use
the “Range” subcommand to spec-
ify the start and end of the range of
numbers allowed and to specify
the small and large increments.

%(l);;rol Description Example
Integer Spin- | An edit field with two buttons guiCreate("Property",
ner attached to increase or decrease Name = "myIntSpinner”,
the value in the edit field by some Type = "Normal .
fixed increment. Use the “Range” B?:?? tValue _ A "
gPrompt Int Spinner",
subcommand to specify the start DialogControl =
and end of the range of numbers "Integer Spinner",
allowed in the edit field and to Range = "-40:40,1,5")
specify the small and large incre-
ments. The small increment is
used when you single-click once on
the spinner arrows. The large
increment is used when you click
and hold on the spinner arrows.
Float Spinner | Similar to the Integer Spinner con- | guiCreate("Property",
trol except this control accepts Name = "myFloatSpinner™,
floating point numbers. Type = “Normal®, =
DefaultValue = "2.5",
DialogPrompt = "Float Spinner™,
DialogControl =
"Float Spinner",
Range = "-40.5:40.5,0.1,1.0")
Integer Slider | A visual slider control that allows guiCreate("Property",

Name = "myIntSlider"™,
Type = "Normal",
DefaultValue = "2",
DialogPrompt "Int Slider",
DialogControl =

"Integer Slider",
Range = "-10:10,1,2")

300

Table 8.2: Dialog control types.

Dialog Controls

dialog column which can contain a
Windows metafile picture (either
Aldus placable or enhanced).

The picture to draw in this control
is specified as a string in the
“DefaultValue” subcommand con-
taining either the pathname to the
WMTF file on disk, or a pathname
to a Windows 32-bit DLL followed
by the resource name of the meta-
file picture in this DLL.

Control Description Example
Type
Float Slider Similar to the Integer Slider con- guiCreate("Property",
trol except this control accepts Name = "myFloatSlider™,
floating point numbers and incre- | Type = "Normal™,
DefaultValue = "2.1",
ments less than 1. DialogPrompt = "Float Slider",
DialogControl = "Float Slider",
Range = "-5:5,0.1,1")
OCX String Adds any specially written ActiveX | guiCreate("Property",
control to the dialog. Use the Name = "myOCXControl™,
“ControlProgld” subcommand to | Type = "Normal™,
specify the ProgID of the ActiveX DefaultValue = "2%,

P Y & DialogPrompt = "My 0CX",
control you want to add, and use DialogControl = "0CX String",
the “ControlServerPathName” sub- | controlProgld =
command to specify the pathname "MyOCXServer.MyCtrl.1",
of the ActiveX control server pro- Contrg] ServerPathName = .

c:\\myocx\\myocx.ocx")
gram.
See the ActiveX Controls in Spot-
fire S+ dialogs on page 307 for
more information about ActiveX
controls in Spotfire S+ dialogs.
Picture A small rectangle taking up one guiCreate(

"Property",

Name = "myPicture",

DialogControl = "Picture",

DialogPrompt "My Picture",

DefaultValue =
"c:\\pics\\mypict.wmf");

301

Chapter 8 Extending the User Interface

Table 8.2: Dialog control types.

Control

Type

Description

Example

Wide Picture

Same as “Picture” except this dia-
log control takes up two columns.

guiCreate(

"Property",
Name = "myWidePicture",
DialogControl = "Wide Picture"”,

DialogPrompt = "My Wide Picture"”,

DefaultValue =
"c:\\pics\\mypict.wmf");

Wide Picture
List Box

Same as “Wide Picture” except this
dialog control is a drop-list of
strings. Only one string can be
selected at a time.

guiCreate(

"Property",
Name = "myWidePicture",
DialogControl = "Wide Picture",

DialogPrompt = "My Wide Picture"”,

DefaultValue =
"c:\\pics\\mypict.wmf");

302

Picture Controls

Copying
Properties

Dialog Controls

For both the Picture and the Picture List Box controls, you can specify
either a pathname to a Windows metafile on disk or a pathname to a
Windows 32-bit DLL and the resource name of the metafile in this
DLL to use. The syntax for each of these is specified below:

Table 8.3: Picture control pathname syntax.

DLL Pathname and
resource name of
metafile

Pathname to Windows metafile

" [pathname]" " [pathname to
Example: "c:/spluswin/home/ DLL], [metafile resource
Metal.WMF" name]

Example:
";c:/myd11/myd11.d11,
MyMetaFile"

Please note that the lead-
ing semicolon is required in
this case and the comma is
required between the DLL
pathname and the name of
the metafile resource.

Several example Spotfire S+ scripts are available on disk which
demonstrate how to use these new controls for your own dialogs. See
the files PictCtll.ssc and PictCtl2.ssc in the Samples\Documents
directory within the directory where Spotfire S+ is installed.

When creating a new dialog, it is often desirable to have controls
similar to those used in previously existing dialogs. To use a Property
already present in another dialog, simply refer to this Property when
creating the FunctionInfo object and perhaps in the group or page
containing the Property. Any of the properties used in the statistical
dialogs are directly available for use by dialog developers.

Additionally, the dialog developer may wish to have a property which
is a modified version of an existing property. One way to do so is to
refer to the Property directly, and to overload specific aspects of the
Property (such as the DialogPrompt or DefaultValue) in the
FunctionInfo object.

303

Chapter 8 Extending the User Interface

Standard
Properties

304

Another way to create a new Property based on another Property is to
specify the Property to CopyFrom when creating the new Property.
The new Property will then be based on the CopyFrom Property,
with any desired differences specified by the other properties of the
object.

In this section we mention standard properties commonly used in
Spotfire S+ dialogs, as well as internal properties useful for filling
default values and option lists based on current selections.

Any Property used in a built-in statistics dialog is available for reuse.
To find the name of a particular Property, start by looking at the
Property List in the FunctionInfo object for the dialog of interest.
This will typically list Page or Group properties used in the dialog in
order of their appearance in the dialogs (from top left to lower right).
For a single-page dialog, locate the name of the Group object
containing the Property of interest, and then examine the Property
List for that Group object to locate the name of the Property of
interest. For multi-page dialogs, find the name of the Property by
looking at the FunctionInfo object for the Page name, then the Page
object for the Group name, then the Group object for the desired
Property name.

Once you know the name of the Property object, you may include it
directly in a dialog by placing it in the Property List for the dialog or
one of its groups or pages. Alternatively, you may create a new
Property using CopyFrom to base the new Property on the existing
Property.

For easy reference, Table 8.4 lists some of the properties used in the
Linear Regression dialog which are reused in many of the other
statistical dialogs. For the names of additional properties, examine
the FunctionInfo object for menuLm and the related Property objects.
Note that the naming convention used by TIBCO Software Inc. is

Dialog Controls

generally to start property names with SProp. When creating new
properties, users may wish to use some other prefix to avoid name
conflicts.

Table 8.4: Linear Regression dialog properties.

Dialog Prompt Property Name
Data group

Data Frame SPropDataFramelist
Weights SPropWeights
Subset Rows with SPropSubset

Omit Rows with Missing Values SPropOmitMissing

Formula group

Formula SPropPFFormula
Create Formula SPropPFButton
Save Model Object group

Save As SPropReturnObject
Printed Results group

Short Output SPropPrintShort
Long Output SPropPrintlLong
Saved Results group

Save In SPropSaveResultsObject
Fitted Values SPropSaveFit
Residuals SPropSaveResid

305

Chapter 8 Extending the User Interface

Internal
Properties

306

Table 8.4: Linear Regression dialog properties.

Dialog Prompt Property Name
Predict page

New Data SPropPredictNewdata
Save In SPropSavePredictObject
Predictions SPropPredictSavePred
Confidence Intervals SPropPredictSaveCl
Standard Errors SPropPredictSaveStdErr
Confidence Level SPropConflevel

Some other widely used properties and their associated purpose are
listed below.

SProplnvisibleReturnObject

This Property object has an invisible control which does not appear in
the dialog. It is used as the return value argument for dialogs whose
results are never assigned.

SPropCurrentObject

This Property object is an invisible control whose default value is the
name of the currently selected object. It is used by method dialogs
launched from context menus, as discussed in the section Method
Dialogs (page 366).

SPropFSpacel, ..., SPropFSpace8

These Property objects have a newline control. They are used to
place spaces between groups to adjust the dialog layout.

Internal properties are specifically designed to fill the default values
and option lists based on the currently selected objects. For example,
internal properties can be used to create a list box containing the
names of the variables in the currently selected data frame.

AcTIVEX
Controls in
Spotfire S+
dialogs

Dialog Controls

If the dialog needs to fill these values in a more sophisticated way, this
may be accomplished using callback functions. See the section
Method Dialogs (page 366) for details.

Here are several internal property objects that can be used in dialogs
either alone or by means of CopyFrom.

TXPROP_DataFrames

This Property object displays a dropdown box listing all data frames
filtered to be displayed in any browser.

TXPROP_DataFrameColumns

This Property object displays a dropdown box listing all columns in
the data frame selected in TXPROP_DataFrames. If no selection in
TXPROP_DataFrames has been made, default values are supplied.

TXPROP_DataFrameColumnsND

This Property object displays a dropdown box of all columns in the
data frame selected in TXPROP_DataFrames. If no selection in
TXPROP_DataFrames has been made, default values are not supplied.

TXPROP_SplusFormula

This Property object causes a Spotfire S+ formula to be written into
an edit field when columns in a data sheet view are selected. The
response variable is the first column selected, and the predictor
variables are the other columns.

TXPROP_WideSplusFormula

This Property object differs from TXPROP_SplusFormula only in that
the formula is displayed in an edit field which spans two columns of
the dialog, instead of one column.

Spotfire S+ supports the use of ActiveX controls in dialogs for user-
defined functions created in the S-PLUS programming language.
This feature allows greater flexibility when designing a dialog to
represent a function and its parameters. Any ActiveX control can be
added to the property list for a dialog, however, most ActiveX
controls will not automatically communicate changed data back to the
Spotfire S+ dialog nor will most tell Spotfire S+ how much space to
give the control in the dialog. To fully support Spotfire S+ dialog

307

Chapter 8 Extending the User Interface

Adding an
ActiveX control
to a dialog

308

layout and data communication to and from Spotfire S+ dialogs, a
few special ActiveX methods, properties, and events need to be
implemented in the control by the control designer.

Examples of ActiveX controls which implement support for Spotfire
S+ dialog containment are provided on disk in the samples/oleauto/
visualc/vcembed directory beneath the program directory. These
examples are C++ projects in Microsoft Visual C++ 4.1 using MFC
(Microsoft Foundation Classes). Any MFC ActiveX project can be
modified to support Spotfire S+ dialogs easily, and this will be
discussed later in this section. The samples/oleauto/visualc/
vcembed directory includes example scripts which use Spotfire S+ to
test these ActiveX controls.

To use an ActiveX control for a creating a property in a dialog,
specify a “DialogControl” of type “OCX String” and specify the
program id (or PROGID) of the control using the “ControlProgld”
subcommand. Below is an example Spotfire S+ script which creates a
property that uses an ActiveX control:

guiCreate("Property",
name = "0OCXStringField",
DialogControl = "0CX String",
ControlProgld = "TXTESTCONTROL1.TxTestControllCtrl.1",
ControlServerPathName = "c:/myocx/myocx.ocx",
DialogPrompt = "&0CX String");

If you are editing or creating a property using the Object Explorer,
the Property object dialog for the property you are editing allows you
to set the dialog control type to “OCX String” from the “Dialog
Control” drop-down list. When this is done, the “Control Progld”
and “ControlServerPathName” fields become enabled, allowing you
to enter the PROGID of the ActiveX control and its location on disk,
respectively. ~ The “ControlServerPathName” value is used to
autoregister the control, if necessary, before using the control.

If you are editing or creating a property using the Object Explorer,
the Property object dialog for the property you are editing allows you
to set the dialog control type to “OCX String” from the “Dialog
Control” drop-down list. When this is done, the “Control Progld”
field becomes enabled allowing to you enter the PROGID of the
ActiveX control.

Where can the
PROGID for the
control be found?

Dialog Controls

When you add an ActiveX control to a Spotfire S+ dialog, you need
to specify its PROGID, as mentioned above. The PROGID is a
string which uniquely identifies this control on your system. If you
create controls using the ControlWizard in Developer Studio as part
of Microsoft Visual C++ 4.0 or higher, a default value for the
PROGID is created by the ControlWizard during control creation
that is based on the name of the project you use. For example, if your
ControlWizard project name is “MyOCX”, the PROGID that is
generated is “MYOCX.MyOCXCitrl.1”. The pattern takes the form
[Project name].[Control class name without the leading ‘C’|.1. You
can also find the PROGID used in an MFC ControlWizard project in
the implementation CPP file of the control class. Search for the
IMPLEMENT_OLECREATE_EX () macro in this file. The second parameter
in this macro is the PROGID string you are looking for.

If you are using the OLE ControlWizard as part of Microsoft Visual
C++ 4.0 or higher to develop your control, you can change the
PROGID string for your control before it gets created by editing the
names used for the control project. During the ControlWizard steps,
you will see a dialog with the button “Edit Names” on it:

OLE ControlWizard - Step 2 of 2 [x|

Select the control whoze ophonz you wizh to
browse or edit. “'ou may edit itz class and file
namesz if you wigh.
Blip =]
E MyProject Wwhich features would pou like this control to
File Edit Wiew hane’?
Content= X .
Fearch Far Help on... ¥ Activates when visible
How o uze Help
About MyControl... [Invisible at runtime
[Awailable in "nzert Object” dialog
W Hasz an "fbout” box
= [Acte as a simple frame contral
Which window clazz, if any, should thiz
cantrol subclazs?
I[nu:une] j
< Back || | Finizh | Cancel | Help

309

Chapter 8 Extending the User Interface

Registering an
ActiveX control

310

Click on this button and you will get another dialog allowing you to
change the names used for classes in this project. Every control
project in MFC has a class for the control and a class for the property
sheet for the control. In the control class section of this dialog you
will see the “Type ID” field. This is the PROGID for the control:

Edit Names E
Cancel |
— Contral Help |
LClazz Mame: Header File: Tvpe Hame:
CElipCtil |BIipCtI.h Bl
Implementation File:
IBIipCtI.cpp BLIF.BlipCtrl.1
— Property Fage
Clazz Mame: Header File: Tupe Mane:
CBlipPropFage IBIipF’pg.h IBIip Froperty Page
Implementation File: Twpe ID:
IBlipF'pg.c:pp IBLIF'.BIipF'ropF'age.‘I

It is important to register an ActiveX control with the operating
system at least once before using it so that whenever the PROGID of
the control is referred to (such as in the “ControlProgld”
subcommand above), the operating system can properly locate the
control on your system and run it. Registering an ActiveX control is
usually done automatically during the creation of the control, such as
in Microsoft Visual C++ 4.0 or higher. If the subcommand
“ControlServerPathName” is specified in a Spotfire S+ script using
the control, then this value will be used to register the control
automatically. A control can also be registered manually by using a
utility called RegSvr32.exe. This utility is included with
development systems that support creating ActiveX controls, such as
Microsoft Visual C++ 4.0 or higher. For your convenience, a copy of
RegSvr32.exe is located in the samples/oleauto/visualc/vcembed
directory, along with two useful batch files, RegOCX.bat and
UnRegOCX.bat, which will register and unregister a control. You
can modify these batch files for use with controls you design.

Why only “0CX
String”?

Common error
conditions when
using ActiveX
controls in
Spotfire S+

Dialog Controls

You typically do not ever need to unregister an ActiveX control,
unless you wish to remove the control permanently from your system
and no longer need to use it with any other container programs such
as Spotfire S+. If this is the case, you can use RegSvr32.exe with the
/0’ command line switch (as in UnRegOCX.bat) to unregister the
control.

In Spotfire S+, several different types of properties exist. There are
string, single-select lists, multi-select lists, numeric, and others. This
means that a property in a dialog communicates data depending on
the type of property selected. A string property communicates string
data to and from the dialog. A single-select list property
communicates a number representing the selection from the list, a
multi-select list communicates a string of selections made from the list
with delimiters separating the selections. For ActiveX controls, only
string communication has been provided in this version. This means
that the control should pass a string representing the “value” or state
of the control back to Spotfire S+. In turn, if Spotfire S+ needs to
change the state of the control, it will communicate a string back to
the control. Using a string permits the most general type of
communication between Spotfire S+ and the ActiveX control,
because so many different types of data can be represented with a
string, even for example lists. In future versions, other Spotfire S+
property types may be added for ActiveX controls.

The most common problem when using an ActiveX control in a
Spotfire S+ dialog is that the control does not appear; instead, a string
edit field shows up when the dialog is created. This is usually caused
when the ActiveX control is not registered with the operating system.
After a control is first created and before it is ever used, it must be
registered with the operating system. This usually occurs
automatically in the development system used to make the control,
such as Microsoft Visual C++. However, you can also manually
register the control by using a utility called RegSvr32.exe, located in
the samples/oleauto/visualc/vcembed directory. This utility is
included with development systems that support creating ActiveX
controls, such as Microsoft Visual C++ 4.0 or higher. You can modify
these batch files for use with controls you design. More information is
found in the section Registering an ActiveX control on page 310.

311

Chapter 8 Extending the User Interface

Designing ActiveX As mentioned earlier, examples of ActiveX controls which implement

controls that
support Spotfire
S+

312

support for Spotfire S+ are provided on disk in the
samples\oleauto\visualc\vcembed\MyOCX directory beneath the
program directory. One of the examples in this directory is called
MyOCX, and it is a C++ project in Microsoft Visual C++ 4.1 using
MFC. There is also an example Spotfire S+ script in MyOCX which
shows how to use this ActiveX control in a Spotfire S+ dialog. This
example will be used here to show how to implement ActiveX
controls for Spotfire S+. If you would rather skip this section and
simply study the changes in the source files for MyOCX, all changes
are marked in the source files with the step number (as listed below)
that the change corresponds to. Just search for the string “Spotfire S+
Dialog change (STEP” in all the files of the MyOCX project to find
these modifications.

Version 4.0 or higher of Microsoft Visual C++ is used to demonstrate
ActiveX control creation. Higher versions can also be used to create
controls for Spotfire S+ but the dialogs and screens shown may be
different.

I. Create the basic control

The first step to designing an ActiveX control in MFC should be to
use the OLE ControlWizard that is part of the Developer Studio.
Select New from the File menu in Developer Studio and then choose
Project Workspace to start a new project.

Mew

Hew: 0
Text File

aia

‘Project Workzpace Cancel
Rezource Scrpt

Rezource Template Help
Binary File

Bitmap File

Icon File

Cursor File

Test Resource

Dialog Controls

From the workspace dialog that appears, select OLE ControlWizard
from the list of workspace types available. Enter a name for the
project and specify the location, then click the Create... button.

Hew Project Workspace

Type: Narne: Create. .

~ - MpOCH
g MFC Appwizard [exe] — I Y Cancel

g [

q;_"‘ MFC Appiwizard [dll)

[
OLE Controfafizard
1

Help

ad.

| Platfarms:
Application W3z
Dynarnic-Link Library
Lozation:
Conszole Application I
j E:vMp0C Browsze. . |

After accepting this dialog, you will see a series of dialogs associated
with the OLE Control Wizard, asking questions about how you want
to implement your control. For now, you can simply accept the
defaults by clicking Next on each dialog. When you reach the last
dialog, click the Finish button. You will see a confirmation dialog
showing you the choices you selected and names of classes that are
about to be created. Click the OK button to accept and generate the
project files.

In the ClassView page of the Project Workspace window in Visual
C++, you will see the classes that the OLE ControlWizard created for
your ActiveX control:

313

Chapter 8 Extending the User Interface

314

== MyDCX claszes :

- B3 CMyOCHADD

- W2 ChMyOCxCHl

.[; Cy0CHPropPage

=129 Globals

- @ DIRegisterSener]

- @ DI rregisterS erver()
- ¢ _tid
- g _wivierd ajor
g _wWherMinor
o g 1D _DMp0Cx
o g ID_DMp0C<Events
~ § thedpp

2. Add the S-PLUS support classes

To start adding support for Spotfire S+ dialogs to your ActiveX
control, copy the following files from the samples/oleauto/visualc/
vcembed/support control example directory into the new ActiveX
control project directory you just created:

0CXUtils.cpp
0CXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SPTusOCX.cpp
SPTus0CX.h
SPTus0CX.id1

You also need to add these classes to your project before they will be
compiled and linked to your control. To do this, select Files into
Project... from the Insert menu in Visual C++. You will then see a
standard file open dialog. Use this dialog to select the following files:

0CXUtils.cpp
SPDgCInf.cpp
SPTusQOCX.cpp

To select all these files at once, hold down the CTRL key while using
the mouse to click on the filenames in the list.

Dialog Controls

Look in: I _ My0CK j gl E
M0 Cx cpp Stdéfx cpp

MyOCKCH. cpp

fed w05 Ppg.cpp

Elories

File name:

|"SF'IusD Cx.cpp" "SPDaClnf.cpp" "0CHutls.cp

Add I

Files of type: |Suurce Files [* c.* cpp:*.cxe)

j Cancel |
Help |

Add to project:

[MyDC

[

When these files

are selected, click the Add button and the classes

will appear as entries in your Project Workspace window.

..

- B2 CMyOCxapp

BE CMuOCKCH]

- B8 Chu0CxPropPage

- M2 C5PlusDialogContolinfo

- W2 CSPlusOCK,

=125 Globals

& BSTRIaCHARFTR)

@ BSTRtaCStingl)

@ CalSPlusMethod])

@ ConvertVanantTaovaidPh)
@ ConvertVoidPh T oW ariant(]
@ DIReqgisterServer]

N N

315

Chapter 8 Extending the User Interface

316

3. Modify class inheritance

Next, we need to modify the inheritance of the class representing
your ActiveX control so that it inherits from CSPlusOCX instead of
from COleControl. CSPlusOCX is a parent class from which all
ActiveX controls for which you desire support for Spotfire S+ dialogs
can inherit. CSPlusOCX inherits directly from COleControl and its
complete source code can be found in the SPlusOCX.cpp and
SPlusOCX.h files.

To do this, first double-click on the class representing your ActiveX
control in the ClassView page of the Project Workspace window to

open the header for this class into your editor. In this example that is
the CMyOCXCltrl class. Go to the top of this file in the editor.

=23 My0CX classes
M8 CMyDCHApp
o
- M2 CMy0CxPropPage

Add the following line before the class declaration line for
CMyOCXCtrl at the top of this header file:
f#include "SPTusOCX.h"

Modify the class declaration line

class CMyOCXCtrl : public COleControl

to read

class CMyOCXCtrl : public CSP1us0CX

Next, expand the class listing for CMyOCXCitrl so that all the
methods are shown. To do this, click on the ‘4’ next to
CMyOCXCtrl in the ClassView page of the Project Workspace

window.

Dialog Controls

Ela My0Cx classes
(+- M3 CMyOCHApp

|»

=8 ChyOCKCH
----- 7% AboutBox]
L R ARG

by O 0T

- % DoPropExchange)
----- % OnDraw(]

‘o 4 OnPlesetState])

-8y CMyp0C<PropPage

Then double-click on the constructor CMyOCXCtr1() to open the
implementation CPP file for this class in your editor. Go to the top of
this file. Using the find and replace function of the Developer Studio,
replace all occurrences of ColeControl base class with the new base
class name CSPlusOCX in this file:

Heplace
Find what: j ﬂ Find Mest |
Feplace with: Il:s Pz j ﬂ Replace |
™ tatch whale word orly Feplace in Replace Al |
[Match case 7] Selection =
I~ Regular expression & whale file

Help |

4. Modify your control’s type library definition file

Switch to the FssileView page in the Project Workspace window and
find the type library definition file (ODL) for your ActiveX control.
In this example it is MyOCX.odl. Double-click on this entry in the
list to open this file into your editor. Go to the top of this file.

317

Chapter 8 Extending the User Interface

=3 My0OC¥ files

o [MyOCH cpp
kA0 C def
i B2 400 ad)
----- My T 1o

[R P o T Y [,

Find the “properties” definition section for the dispatch interface
_DMyOCX in this file. It should look like:

dispinterface _DMyO0CX
{
properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}YAFX_ODL_PROP

Add the following lines at the end of this section:

ftdefine SPLUSOCX_PROPERTIES
f#finclude "SPTusOCX.id1"
ffundef SPLUSOCX_PROPERTIES

The section should now appear as follows:

dispinterface _DMy0CX
{
properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}YAFX_ODL_PROP

ffdefine SPLUSOCX_PROPERTIES
ffinclude "SPTusOCX.id1"
ffundef SPLUSOCX_PROPERTIES

318

Dialog Controls

methods:

// NOTE - ClassWizard will maintain method information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtr1)
//3}}YAFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();
}s

Now, add the following lines at the end of the “methods” section just
below the “properties” section you just modified:

#fdefine SPLUSOCX_METHODS
f#include "SPTusOCX.id1"
ffundef SPLUSOCX_METHODS

This whole section should now appear as follows:

dispinterface _DMy0CX
{
properties:

// NOTE - ClassWizard will maintain property information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrTl)
//}}YAFX_ODL_PROP

ffdefine SPLUSOCX_PROPERTIES
f#finclude "SPTusOCX.id1"
ffundef SPLUSOCX_PROPERTIES

methods:

// NOTE - ClassWizard will maintain method information
here.

// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtr1)
//3}}YAFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();
ffdefine SPLUSOCX_METHODS

f#finclude "SPTusOCX.id1"
ffundef SPLUSOCX_METHODS

319

Chapter 8 Extending the User Interface

s
Next, locate the event dispatch interface sections. In this example, it
appears as:

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information
here.
// Use extreme caution when editing this section.

//{{AFX_ODL_EVENT(CMyOCXCtrl)
//}}YAFX_ODL_EVENT
}s

Add the following lines in the “events” section:

#define SPLUSOCX_EVENTS
#include "SPlusOCX.id1"
Jfundef SPLUSOCX_EVENTS

The section should now appear as:

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information
here.
// Use extreme caution when editing this section.

//{{AFX_ODL_EVENT(CMyOCXCtrl)
//}}YAFX_ODL_EVENT

ffdefine SPLUSOCX_EVENTS
ffinclude "SPTusOCX.id1"
jfundef SPLUSOCX_EVENTS

}s

320

Dialog Controls

Do not modify any other parts of this file at this time.

5. Build the control

Now is a good time to build this project. To do this, click on the Build
toolbar button or select Build MyOCX.OCX from the Build menu in
the Developer Studio. If you receive any errors, go back through the
above steps to make sure you have completed them correctly. You
may receive warnings:

0CXutils.cpp(125) : warning C4237: nonstandard extension

used : 'bool' keyword is reserved for future use
0CXutils.cpp(216) : warning C4237: nonstandard extension
used : 'bool' keyword is reserved for future use

These warnings are normal and can be ignored.

Several overrides of CSPlusOCX virtual methods still remain to be
added to your ActiveX control class, but compiling and linking now
gives you a chance to review the changes made and ensure that
everything builds properly at this stage.

6. Add overrides of virtual methods to your control class

To support Spotfire S+ dialog layout and setting the initial value of
the control from a Spotfire S+ property value, you need to override
and implement several methods in your control class. To do this, edit
the header for your control class. In this example, edit the

MyOCXCitLh file. In the declaration of the CMyOCXCltrl class, add
the following method declarations in the “public” section:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);

virtual BOOL SPlusOnInitializeControl(const VARIANT FAR&
vinitialValue);

321

Chapter 8 Extending the User Interface

322

Next, open the implementation file for your control class. In this
example, edit the file MyOCXCtl.cpp. Add the following methods

to the class:

lTong CMyOCXCtrl::GetSPlusDialogVerticalSize()
{
return 3; // takes up 3 Tines in dialog

lTong CMyOCXCtrl::GetSPlusDialogHorizontalSize()
{
return 1; // takes up 1 column in dialog

BOOL CMyOCXCtrl::SPlusOnInitializeControl(const VARIANT
FAR& vInitialValue)

{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(
sInitialValue,
vinitialValue,
"InitialValue™))

// Set properties here

return TRUE;
}

These three methods should be implemented in the control class of
any ActiveX control supporting Spotfire S+ dialogs fully. The first
two methods support dialog layout, while the third supports setting
values for the control from Spotfire S+.

The value returned by GetSPlusDialogVerticalSize() should be a
long number representing the number of lines the control takes up in
a Spotfire S+ dialog. A line is the size of an String edit field property
in a Spotfire S+ dialog. The value returned by
GetSPlusDialogHorizontalSize() should be either 1 or 2. Returning
1 means that this control takes up only one column in a Spotfire S+
dialog. Returning 2 means the control takes up two columns. A
column in a Spotfire S+ dialog is the width of a single String property

Dialog Controls

field. There are at most two columns in a Spotfire S+ dialog. In the
example above, the MyOCX control takes up three lines and only
one column in a Spotfire S+ dialog.

SPlusOnInitializeControl() is called when the control is first
enabled in the Spotfire S+ dialog and every time the property that
this control corresponds to in Spotfire S+ is changed. It receives a
variant representing the initial value or current value (if any) for the
control. This method should return TRUE to indicate successful
completion and FALSE to indicate failure. Included in the file
OCXUtils.h (copied previously into your control project directory)
are numerous helper functions such as the one used here
GetStringFromVariant() which will convert the incoming variant
into a string if possible. You can then use this string to set one or
more properties in your control.

To use the SPTusOnInitializeControl() in this example ActiveX

control, first add a member string to the control class. Edit the
MyOCXCtLh file and add a CString member variable called
m_sValue to the CMyOCXCltrl class:

private:
CString m_sValue;

Next, initialize this value in the constructor for CMyOCXCitrl by
modifying the constructor definition in MyOCXCltl.cpp:

CMyOCXCtrl::CMy0CXCtrl1()

{
InitializelIDs(&IID_DMyOCX, &IID_DMyOCXEvents);
// TODO: Initialize your control's instance data here.

m_sValue.Empty();
}

Then, add lines to the definition of the override of
SPTusOnInitializeControl() in your control class to set this member

variable and refresh the control by modifying MyO CXCltl.cpp:

BOOL CMyOCXCtrl::SPlusOnInitializeControl

const VARIANT FAR& vInitialValue)

{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(

323

Chapter 8 Extending the User Interface

sInitialValue,
vinitialValue,
"InitialValue"))

{
// Set properties here
m_sValue = sInitialValue;
Refresh();

}

return TRUE;
}

Finally, so we can see the effects of SPTusOnInitializeControl(),
add a line to the OnDraw method of CMyOCXCtrl by editing the
definition of this method in MyO CXCltl.h:

void CMyOCXCtrl::0nDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rclnvalid)
{

// TODO: Replace the following code with your
// own drawing code.

pdc->Fil1Rect(rcBounds,
CBrush::FromHandle((HBRUSH)GetStockObject (WHITE_BRUSH)));
pdc->E1lipse(rcBounds);

// Display Tatest value
pdc->DrawText(
m_sValue, (LPRECT)&rcBounds, DT_CENTER | DT_VCENTER);

}
Rebuild the project now to test these changes.

7. Test your new control in Spotfire S+

To try out your new control in Spotfire S+ you’ll need to create a
Spotfire S+ script which creates properties and displays a dialog.
Open Spotfire S+ and open the script file from samples/oleauto/
visualc/ocx/MyOCX called MyOCX.ssc. Notice that the script
begins by creating three properties, one for the return value from a
function and the other two for the parameters of a function. The
property for MyOCX uses the type OCX String and the PROGID for

the control we just created:

324

Dialog Controls

guiCreate("Property",
name = "MyOCX",
DialogControl = "0CX String",
ControlProgId = "MYOCX.MyOCXCtrl1.1",
DialogPrompt = "My &0CX");

Run the script MyOCX.ssc and you will see a dialog containing an
edit field and the MyOCX control you just created. When the dialog
appears, the ActiveX control contains the text “He110” because this is
set as the initial value in the Spotfire S+ script callback function:

callbackMyOCXExample <- function(df)
{
if(IsInitDialogMessage(df)) # Am I called to initialize
the properties?
{
Set the initial value of the MyOCX property
df <- cbhSetCurrValue(df,"MyOCX", "\"Hello\"")

When you enter a string (use quotes around any string you enter in
these dialog fields) in the edit field, the ActiveX control updates to
show that string. When you click the OK or Apply buttons in the
dialog, you will see the values of both properties printed in a report
window.

Summary of steps to support Spotfire S+ dialogs in ActiveX controls

To summarize the above steps, the list below shows you the tasks
necessary to adapt your MFC ActiveX control project to support
Spotfire S+ dialogs:

1. Add Spotfire S+ dialog support files to your project:

0CXUtils.cpp
0CXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SPTusOCX.cpp
SPTus0CX.h
SPTusOCX.id1

2. Change the inheritance of your control class from base class

COleControl to CSPlusOCX.

325

Chapter 8 Extending the User Interface

Examples of
ACTIVEX controls
included with
Spotfire S+

326

3. Modify your control’'s ODL (type library definition file) to
include SPlusOCX.idl sections.

4. Add virtual overrides of key CSPlusOCX methods to your
control class:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);

virtual BOOL SPTusOnInitializeControl(const VARIANT
FAR& vInitialValue);

Examples of ActiveX controls which implement support for Spotfire
S+ dialog containment are provided on disk in the
samples\oleauto\visualc\vcembed directory beneath the program
directory. These examples are C++ projects in Microsoft Visual C++
4.1 using MFC (Microsoft Foundation Classes) and are intended for
developers.

samples\oleauto\visualc\vcembed

myocx Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support Spotfire S+ dialogs.

ocxl Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support Spotfire S+ dialogs.

support Microsoft Visual C++ 4.1 MFC headers and source
files necessary for making ActiveX controls that fully support Spotfire
S+ dialogs.

Callback Functions

CALLBACK FUNCTIONS

In Spotfire S+, virtually any GUI object has an associated dialog. For
example, a line plot is an object whose properties can be modified via
its associated dialog. Similarly, an S-PLUS function can have an
associated dialog. The properties of a function object are mapped to
the function arguments, which can then be modified through its
associated dialog. The function dialog can have an attached callback
Junction.

A callback function provides a mechanism for modifying and
updating properties (controls) of a live dialog. It is a tool for
developing complex dialogs whose properties are dynamically
changing based on the logic written in the callback function. The
dialog subsystem executes the callback function while its associated
dialog is up and running, in the following instances:

* Once, just before the dialog is displayed.

* When a dialog property (control) value is updated or
modified by another mechanism, such as by the user.

* A button is clicked.

The user associates a callback function with a dialog by specifying its
name in the corresponding function info object. The callback
function takes a single data frame as its argument. This data frame
argument has the dialog property names as row names. The elements
in the data frame define the present state of the dialog. The Spotfire
S+ programmer can access and modify these elements directly,
however, there is a set of utility functions that simplify this task.
Table 8.5 lists the utility functions that can be used inside a callback
function to modify a dialog state. To get more complete information
on these functions see the Language Reference help.

327

Chapter 8 Extending the User Interface

Table 8.5: Utility functions for use inside a callback function.

cbIsInitDialogMessage() Returns TRUE if the callback function is called before the dialog
window is displayed on the screen.

cbIsUpdateMessage() Returns TRUE if the callback function is called when the user
updates a property.

cbIsOkMessage() Returns TRUE if the callback function is called when the OK
button is clicked.

cbIsCancelMessage() Returns TRUE if the callback function is called when the Can-
cel button is clicked.

cbIsApplyMessage() Returns TRUE if the callback function is called when the Apply
button is clicked.

cbGetActiveProp() Gets the current active property in a dialog.

cbGetCurrvalue() Gets the current value of a property.

chSetCurrValue() Sets the current value of a property.

cbGetEnableFTag() Gets the current state of the enable/disable flag of a property.

cbSetEnableFlag() Sets the state of the enable/disable flag of a property.

chGetOptionList() Gets the list of items from list based properties, such as List-
Box, ComboBox, Multi-selected ComboBox, and so on.

cbSetOptionList() Sets the list of items from list based properties, such as ListBox,
ComboBox, Multi-selected ComboBox, and so on.

cbGetPrompt () Gets the Prompt string of a property.

cbSetPrompt() Sets the Prompt string of a property.

cbGetDialogId() Returns the unique ID of the dialog instance.

Since the usage of these functions facilitate readability and portability
of the S-PLUS callback functions, we recommend that you use them
instead of direct access to the data frame object.

328

Callback Functions

Callback functions are the most flexible way to modify dialog
properties such as default values and option lists. However, for
specific cases it may be more straightforward to use a property based
on an internal property, as described in the section Copying
Properties (page 303). In particular, this is the easiest way to fill a
field with the name of the currently selected data frame or a list of the
selected data frame’s variables.

Interdialog In some circumstances it may be useful to launch a second dialog

Communication When a dialog button is pushed. For example, the Formula dialog is
available as a child dialog launched by the Linear Regression dialog.
Information may then be communicated between dialogs using
interdialog communication.
The child dialog is launched wusing guiDisplayDialog.
Communication between the dialogs is performed by the functions
cbGetDialogld and guiModifyDialog. The script file samples/
dialogs/dlgcomm.ssc in the Spotfire S+ directory contains an
example of such communication.

Example: The example script below creates and displays a function dialog that

Callback uses a callback function to perform initialization, communication and

Functi updating properties within an active dialog. It is a complete script file

unctions (called propcomm.ssc) that can be opened into a script window and

run.

R

propcomm.ssc: creates and displays a function dialog.

i It shows how to use a dialog callback function to perform

i# initialization, communication and updating properties within an

active dialog.
A
f-------

propcomm<- function(argl, arg2) { print("0k or Apply button in simplel dialog
is pushed!™) }

329

Chapter 8 Extending the User Interface

UaREEEEE

Step 2: create individual properties that we want to use for arguments in the
function

UARERREE

guiCreate("Property"™, Name= "propcommInvisible™, DialogControl= "Invisible");

guiCreate("Property™, Name= "propcommListBox™, DialogControl= "List Box",
DialogPrompt= "&Grade",DefaultValue= "3",

OptionList= c("4™, "3", "2", "1"))
guiCreate("Property™, Name= "propcommCheckBox™, DialogControl= "Check Box",
DialogPrompt= "&Numerical Grade™);

UAREEREE

Step 3: create the function info object

foen-

guiCreate("FunctionInfo™, Function = "propcomm™, PropertylList =
c("propcommInvisible", "propcommListBox", "propcommCheckBox"),

CallBackFunction = "propcommCallBack™, Display ="T")

UAREEREE

Step 4: define a callback function to be called by an instance of the dialog.

i# This callback mechanism is used to initialize, communicate and update
properties in an active dialog.

UARERREE

propcommCallBack <- function(df)
{
if(IsInitDialogMessage(df)) # Am I called to initialize the properties?
{
override option list of a property

df <- cbSetOptionList(df, "propcommListBox", "exellent, good, fair,
poor, fail")

override default value of a property
df <- cbSetCurrValue(df,"propcommListBox™, "fair™)
df <- cbhSetOptionList(df, "propcommCheckBox™, "F™)

}
else if(cbIsOkMessage(df)) # Am I called when the Ok buttom is pushed?
{

display.messagebox("0k!")

330

Callback Functions

}
else if(cbIsCancelMessage(df)) # Am I called when the Cancel buttom is
pushed?
{
display.messagebox("Cancel!™)
}
else if(cbIsApplyMessage(df)) # Am I called when the Apply buttom is
pushed?
{
display.messagebox("Apply!™)
}
else # Am I called when a property value is updated?
{
if (cbGetActiveProp(df) =="propcommCheckBox") # the check box was
clicked?
{
change the option list
if(cbGetCurrValue(df, "propcommCheckBox") == "T")
{
df <- cbSetOptionList(df, "propcommListBox", "4.0, 3.0, 2.0, 1.0,
0.0")
df <- cbhSetCurrValue(df,"propcommListBox", "4.0")
}
else
{
df <- cbSetOptionList(df, "propcommListBox™, "exellent, good, fair,
poor, fail™)
df <- cbSetCurrValue(df,"propcommListBox™, "good™)
}
}
}
df
}
fooen e
Step 5: display the dialog
f#-------

guiDisplayDialog("Function”, Name="propcomm");

331

Chapter 8 Extending the User Interface

PropComm | _] %] |
Grade I vI W Mumerical Grade

0k | Cancel | apply | 1] [cument Help |

Figure 8.16: Selecting the Numerical Grade checkbox will illustrate the callback function working.

332

Class Information

CLASS INFORMATION

Overview

Creating
ClassInfo
Objects

Using Commands

A ClassInfo object allows information to be specified about both
user-defined and interface objects. It is similar to the FunctionInfo
object, which allows information to be specified for functions
(primarily for the purpose of defining function dialogs).

There are three main uses of the ClassInfo object:
1. Defining a context menu (right-click menu) for objects.

2. Defining the double-click action for objects. That is, you can
use it to specify what will happen when the user double-clicks
or right-clicks on an object in the Object Explorer.

3. It allows the dialog header and dialog prompts for interface
objects to be overridden.

ClassInfo objects may be created using commands or from within
the Object Explorer.

To create a Classinfo object, wuse guiCreate with
classname="ClassInfo”.

The Tmsreg robust regression function returns a model of class “1ms”.
The following commands will create a ClassInfo object indicating
that the print function should be used as the double-click action, and
define a context menu for 1ms objects:

guiCreate(classname="ClassInfo", Name="Ims",
ContextMenu="1ms",

DialogHeader="Least Median Squares Regression",
DoubTeClickAction="print"™)

guiCreate(classname="Menultem", Name="Ims", Type="Menu",
DocumentType="1ms")

guiCreate(classname="Menultem", Name="Tms$summary",
Type="Menultem", DocumentType="1Tms", Action="Function",
Command="summary", MenultemText="Summary",
ShowDialogOnRun=F)

333

Chapter 8 Extending the User Interface

Using the Object
Explorer

guiCreate(classname="Menultem", Name="Ims$plot",
Type="Menultem", DocumentType="1Tms", Action="Function",
Command="plot", MenultemText="Plot",
ShowDialogOnRun=F)

Open the Object Explorer and create a folder with filtering set to
“ClassInfo”. Right-click on a Classinfo object in the right pane, and
choose Create ClassInfo from the context menu. The property
dialog shown in Figure 8.17 appears.

Clazs Information [39] M= E

Mame: ICIaSsInfo‘I — [Double Click Action———————
tenultem/Func: I

Context Menu: I
" Show Dialag On Run

Dialog Header: I

Prampt List: I — I Show Data Members

Save InFile: I

Image FileM ame: I

Browse... |

Eancell |<| >l cLment Help |

Figure 8.17: The property dialog for a ClassInfo object.

ClassInfo
Object
Properties

334

The properties of a ClassInfo object determine characteristics such as
the double-click action and context menu for the class of interest.
These properties may be specified and modified using the property
dialog for the Menultem object, or programmatically via the
commands guiCreate and guiModify. See the
guiCreate(“ClassInfo”) help file in the Language Reference help
for syntax details.

The following properties are specified in the ClassInfo property
dialog, shown in Figure 8.17:

The subcommand names of the properties are:

Name The name of the associated class. For instance, to specify
information for the “1m” class, use this as the name. This also becomes
the name of this instance of the ClassInfo object.

ContextMenu The name of the Menultem object that defines the
context menu (right-click menu) for this object in the browser. This is

Class Information

the name of a Menultem of type “Menu”, which must have been
defined in the standard way for menus.

DoubleClickAction The name of a MenuItem of type “Menultem”
(that is, it is a single item instead of an entire menu) or a function. This
specifies the action that will happen when the user double-clicks on
the object in the browser. It allows a function to be called when the
user double-clicks.

Show Dialog On Run Logical value indicating whether the dialog
for the MenuItem or function will be displayed before execution.
DialogHeader Text specifying the dialog header for the associated
object. This is only useful for interface objects.

PromptList Allows dialog prompts to be specified (and overridden).
The syntax is the same as it is for the corresponding property of
FunctionInfo objects: #0="&My Prompt:”, #2="Another &Prompt:”,
PropertySubcommandName="L&ast Prompt:”. That is, it is a list of
assignments, in which the left-hand side denotes the property whose
prompt is going to be overridden, and the right-hand side denotes the
new prompt. There are two ways of denoting the property: by
position, starting with 0, with the number preceded by a #; and by
property subcommand name. (In the example above, “#0” denotes

the 0 property of the object; “PropertySubcommandName“ is the
subcommand name of the property to change.)

To find out the names of the properties of an object, you can use the
following script:

guiGetPropertyNames(“classname”)

Note that all objects have two properties that may or may not be
displayed on the dialog: TXPROP_ObjectName (subcommand name:
NewName, always in position #0, but usually not displayed in a
dialog) TXPROP_ObjectPosIndex (subcommand name: NewlIndex,
always in position #1, but usually not displayed in a dialog). To find
out the argument names of the properties of an object, you can use
the following script:

guiGetArgumentNames(“classname”)

The argument names are usually very similar to the corresponding
prompts, so that figuring out which dialog field corresponds to which
property should not be a problem.

335

Chapter 8 Extending the User Interface

Modifying
ClassInfo
Objects

Using Commands

Using the
Property Dialog

Using the
Context Menu

Example:
Customizing
the Context
Menu

336

ClassInfo objects can be modified using either programming
commands, their property dialogs, or their context menus.

If you are creating a GUI which you intend to distribute to others, it is
usually preferable to revise the commands used to create the GUI If
you are simply modifying the interface for your own use, using the
property dialogs and context menus may be more convenient.

The guiModify command is used to modify an existing ClassInfo
object. Specify the Name of the ClassInfo object to modify, and the
properties to modify with their new values.

guiModify(classname="ClassInfo", Name="Ims",
DoubleClickAction="plot")

ClassInfo objects may be modified through the ClassInfo object
property dialog.

To modify a ClassInfo object, open the Object Explorer to a page
with filtering set to ClassInfo. Right-click on the ClassInfo object’s
icon in the right pane and choose Properties from the context menu.
Refer to the previous sections for details on using the property dialog.

ClassInfo objects can be modified with their context menus. The
context menu for an object is launched by right-clicking on the object
in the Object Explorer. The context menu provides options such as
creating, copying, and pasting the object, as well as a way to launch
the property dialog.

This example shows how to add to the context menu for objects of
class data.frame displayed in the Object Explorer. The new item
automatically computes summary statistics for the selected data
frame. To begin, open an Object Explorer page and filter by
ClassInfo and MenulItem.

I. Creating a ClassInfo object for the Class data.frame

1. Right-click on a ClassInfo object and select Create
ClassInfo in its context menu.

2. Enter data.frame in the Name field. This represents the name
of the object class in which objects will have the context menu
item specified below.

3. Enter dfMenu in the Context Menu field. This will be the
name of the context menu.

4.

Class Information

Click OK.

2. Creating the Context Menu

L.

10.

11.

Right-click on any MenuItem object and select Insert
Menultem from its context menu.

Enter dfMenu in the Name field. This corresponds to the
Context Menu name given in to the ClassInfo object above.

Enter Menu in the Type field.
Click OK.

Right-click on dfMenu in the left pane and select Insert
Menultem from the context menu.

Enter desc in the Name field. This name is not important, as
long as it does not conflict with that of an existing object.

Select Menultem from the Type field.

Enter data.frame in the Document Type field; do not choose
from the dropdown box selections. This corresponds to the
object class which will have this context menu.

Select Function from the Action field.

Enter the text Summary.... in the Menultem Text field. This
text will appear in the context menu.

Move to the Command page of the dialog.

Tip...

A FunctionInfo object must exist for the function which is called by the context menu item. Otherwise,
the default dialog for that function will not appear.

12.

13.
14.

Enter menuDescribe in the Command field. This is the
function which is executed by the dialog which appears with
Statistics » Data Summaries » Summary Statistics. There
is a built-in FunctionInfo object by the same name.

Show Dialog On Run. This should be checked.

The MenuItem object desc is now found alongside dfMenu in
the Menultem tree. To move it underneath dfMenu, hold
down the ALT key and drag the desc icon onto the dfMenu

337

Chapter 8 Extending the User Interface

icon. To see the MenuItem object desc in its new position, click
on the dfMenu icon in the left pane and look in the right
pane.

3. Displaying and Testing the Context Menu

1. Click the Object Explorer button in the main toolbar to open
a default Object Explorer window.

2. When data frame objects are visible in the right pane, right-
click on any data frame. Choose Properties, which should
appear in the context menu, as shown in Figure 8.18.

=" Object Explorer O] =
Contents of: [Data
ED Data | | Object I Fos I Data Clags I Dimengior &
G- i it 2Bl "2det 1 integer 10
----- I capacitor2 Bl 1 integer 1|
----- I os1 £l 1 integer 1
----- I o510 | "sitherfar 1 integer 10
----- I o511 | Messages 1 character 1
----- 7 os12 A 1 integer 10
----- B os1a 28 i it 1 list 3
----- ﬂ D514 ﬂi airtemp.jit 1 nLIMENc m —_—
..... D = . - =
..... % i SObiect [0] s =

""" Ho Mame: D51 Dimenzion: |23:-:2
o

..... ﬂ O Path 051 Storage Mode: Istructure

..... ﬂ D Database: |C:\F'rc-gram Filez\nzightfulsspluzBhuzersilenk j
""" Iﬂ D Class: Idata. frame D ate: |1 0:17-26 AM 2427
..... ﬂ D

..... o Extends: Idata.hame
Eancell |<| >l cLmeht Help |

HOUS TG T TS ITamE !
----- I excel I os17 1 data frame I
----- I excel data I os1a 1 data.frame 0=0
----- I excel data.a. Fdos1a 1 data frame 1
----- IO excel datakt.... 6 Fosz 1 data. frame 343
----- I Exenvim Fosa 1 data.frame =2
----- ﬂ expotest - ﬂDSd 1 data frame 01 -

El

Figure 8.18: A context menu with the item Summary added.

By default, Data Frame is set to air in that dialog. Click OK
and the statistics are sent to a Report window, unless the
Command window is open to receive them.

338

Class Information

Instead of the built-in FunctionInfo object menuDescribe and its
associated built-in S-PLUS function, user-defined objects can also be
used. The procedure for adding a context menu option is identical.

4. Applying the Context Menu to a Class which Inherits from
data.frame

L.

Use the Select Data dialog in the Data menu to select the
catalyst data set. When it opens in the Data window, change
the upper left cell to read "180", then change it back to 160.
(This won’t change the data, but it will write it to your
working data, so it will appear in your Object Explorer.)

Right-click on the object catalyst. The context option
Summary does not appear, because the object catalyst has
class design, which inherits from data.frame. To confirm this,
you can check Data Class and Inheritance in the Right Pane
page of the Object Explorer property dialog, if this is not
already done, and view the information in the right pane of
the Object Explorer, as in Figure 8.19. Make sure that Include
Derived Classes is checked in the Object Explorer property
dialog.

= Object Explorer 1ol

Contents of: |Data

|E| Data | Object | Pos | Data Class
- 54| Graphs) 1 integer
= [E2 Reports B it 1 list | |
b Scoripts TR airtemp.jit 1 nUMEric
-3 SearchPath s 1 named
[Hﬂ bark. 1 AILIMMERS
EJ bob 1 rnatrix
ﬂ capacitar? 1 data.frame
m 4 design
EJ DataSet 1 rnatrix
ﬂ 051 1 data.frame
o510 1 data.frame
™4 1 [N T A,

Figure 8.19: The Object Explorer showing the class of the data.

3. To enable the context menu for objects in the class design,
open the property dialog for the Menultem desc.

4. Enter data.frame, design in the Document Type field.

339

Chapter 8 Extending the User Interface

5. Click OK.

6. Return to the page showing data frames and right-click on the
object catalyst. The context menu now contains Summary.

340

Style Guidelines

STYLE GUIDELINES

Basic Issues

Typically Spotfire S+ programmers will begin by writing functions for
use in scripts and at the command line. These functions will generally
fall into one of the following classes:

* Functions which compute some quantities and return a vector,
matrix, data.frame, or list. If the result is assigned these values
are stored, and if not they are printed using the standard
mechanism. Functions such as mean and cor are of this type.

* Functions which take data and produce plots. The returned
value is typically not of interest. Functions such as xypTot and
pairs are of this type.

* A set of functions including a modeling function which
produces a classed object, and method functions such as
print, summary, plot, and predict. Functions such as 1m and
tree are of this type.

The custom menu and dialog tools allow the creation of a dialog for
any function. Hence the programmer may create a dialog which
directly accesses a function developed for use at the command line.
While this may be acceptable in some cases, experience has shown
that it is generally preferable to write a wrapper function which
interfaces between the dialog and the command line function.

This section discusses the issues that arise when creating a function
for use with a dialog, and describes how these issues are handled by
the built-in statistical dialog functions. In addition, we discuss basic
design guidelines for statistical dialogs.

Most functions will perform these steps:
* Accept input regarding the data to use.

* Accept input regarding computational parameters and
options.

* Perform computations.

* Optionally print the results.
* Optionally store the results.
* Optionally produce plots.

341

Chapter 8 Extending the User Interface

Modeling functions have additional follow-on actions which are
supported at the command line by separate methods:

* Providing additional summaries.

* Producing plots.

* Returning values such as fitted values and residuals.
+ Calculating predicted values.

We will first discuss the basic steps performed by any function such as
accepting input, performing calculations, printing results, saving
results, and making plots. Then we will discuss the issues which arise
for modeling functions with methods.

Basic Dialogs We will begin by discussing the Correlations and Covariances
dialog. Exploring this dialog and the related analysis and callback
functions will display the key issues encountered when constructing
functions for dialogs.

The Dialog The Correlations and Covariances dialog is available from the
Statistics » Data Summaries » Correlations menu item.

Comelations and Covariances M= E3
—Data — Statiztic

Data Set; I vl Tupe: i Conelations

ariables: n " Covarances

Fraction to Trim: ID
1| ~PResults
Method to Handle Mizsing Yalues: Save Az I
I Fail jv v Brint Results

[l 4 I Eancell .t’-‘«pplyl I<| >| curent Help |

Figure 8.20: The Correlations and Covariances dialog.

This dialog provides access to the cor and var functions. It allows the
user to specify the data to use, computation options, a name under
which to save the results, and whether to print the results.

342

The Function

Style Guidelines

Note that the data to use is specified in the upper left corner of the
dialog. The user first specifies which Data Frame to use, and then the
variables of interest. (Some dialogs will accept matrices or vectors in
the Data Frame field, but for simplicity users are encouraged to work
with data frames.)

The Results group in the lower right corner of the dialog lets the user
specify an object name under which to store the results, and provides
a check box indicating whether the results should be printed.

Other options are placed between the Data group and the Results
group.

When OK or Apply is pressed in the dialog, the menuCor function is
called. The naming convention for functions called by dialogs is to
append menu to the command line function name, such as menulm,
menuTree, and menuCensorReg.

The menuCor function is:

> menuCor

function(data, variables = names(data), cor.p
cov.p = F, na.method = "fail"™, print.it =T,
statistic = "Correlations™)

Note cor.p and cov.p have been replaced with statistic.
They are left in solely for backwards compatibility.
data <- as.data.frame(data)
data.name <- deparse(substitute(data))
if(Imissing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]], c("<ALL>", "(A11
Variables)™))) {
if(!Tength(variables))
stop("You must select at Teast one variable\n™)
data <- datal[, variables, drop = F]
}
dropped.cols <- !sapply(data, is.numeric) | sapply(data,
is.dates)
if(all(dropped.cols))
stop("No numeric columns specified.™)
if(any(dropped.cols)) {

343

Chapter 8 Extending the User Interface

warning(paste("Dropping non-numeric column(s) ",
paste(names(data)l[

dropped.cols], collapse =", "), ".", sep =""))
data <- data[, !dropped.cols, drop = F]

}
na.method <- casefold(na.method)
if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data
in: ", data.name,
"xx*\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"xx*\n\n")
}

if(print.it) {
cat(header.txt)
print(coeff)

}

invisible(coeff)

}
Input Values The function arguments are:

function(data, variables = names(data), cor.p
cov.p = F, na.method = "fail"™, print.it =T
statistic = "Correlations™)

s

The function has one argument for each control in the dialog, with
the exception of the Save As field specifying the name to which to
assign the value returned by the function. Default values are present
for all arguments except data. A default argument value will be used
if the corresponding field in the dialog is left empty.

The first few lines in the function transform these inputs from a form
preferable for a dialog field to the format expected by cor and var.

First the data is transformed to a data frame, to allow the handling of
vectors and matrices. The name of the data is stored for use in
printing the results:

344

Style Guidelines

data <- as.data.frame(data)
data.name <- deparse(substitute(data))

Next the function constructs the names of the variables of interest.
The variables argument passed by the dialog is a single string
containing a comma delimited list of column names, and perhaps the
string “(A11 Variables)”. This string is broken into a character
vector of variable names. If it does not include “(A11 Variables)”
and is not empty, the specified columns of the data are extracted.

if(Imissing(variables))
variables <- sapply(unpaste(variables, sep = ","),
strip.blanks)
if(lis.element(variables[[1]], c("<ALL>", "(AT1
Variables)"))) {
if(!Tength(variables))
stop("You must select at Teast one variable\n™)
data <- datal[, variables, drop = F]

}
Computations After the desired set of data is constructed, the statistics are
calculated:
if(statistic == "Correlations™ || (cor.p && !cov.p)) {
coeff <- cor(data, trim = trim, na.method = na.method)
header.txt <- paste("\n\t*** Correlations for data
in: ", data.name,
"HEEX\n\n")
}
else {
coeff <- var(data, na.method = na.method)
header.txt <- paste("\n\t*** Covariances for data in:
", data.name,
"HEEX\n\n")
}

The statistic argument takes a string, either "Correlations” or
"Covariances™; cor.p and cov.p arguments are logical values
indicating whether to form the correlations or covariances which are
supported for backward compatibility. = The callback function
(discussed later) enforces the constraint that only one of these is

345

Chapter 8 Extending the User Interface

Printing Results

346

TRUE. Note that this could also have been implemented using
Radio Buttons passing a character string rather than as separate

Check Boxes.

The trim and na.method arguments are passed directly to the
computational functions.

A character string is also constructed for use as a header when
printing the results.

The standard behavior in Spotfire S+ is to either print the results from
a function or store them under a specified name using assignment.
That is, a user may either see the results printed using

> cor(swiss.x)

save the results using

> swiss.cor <- cor(swiss.x)

or do both by saving the results and then printing the object

> swiss.cor <- cor(swiss.x)
> swiss.cor

Explicitly printing the results in a function is frowned upon unless the
function is a print method for a classed object. The evaluation
mechanism determines whether to print the result.

This convention is waived for the dialog functions, as it is necessary to
provide a mechanism for both saving and printing the output within
the function.

Another difference between using a function from the command line
and from a dialog is that the command line alternates between an
expression and the output related to that expression. Hence it is clear
which expression and output go together. The output from a dialog is
not preceded by an expression (the expression evaluated will be
stored in the history log but is not printed to the output stream).
Hence it is necessary to provide a header preceding the output which
indicates the source of the output. The header lines also serve to
separate subsequent sets of output.

If the user requests printed output, the header is printed with cat, and
the result object with print:

Saving Results

Style Guidelines

header.txt <- paste("\n\t*** Covariance for data in:
", data.name, "***\n\n")

if(print.it) {
cat(header.txt)
print(coeff)

}

Generally cat is used to print character strings describing the output,
and print is used for other objects.

Note that that convention for header lines is to use a character string
of the form:

"\n\t*** Qutput Description ***\n\n"

In this dialog, the results need not be explicitly saved within the
function. The command is written such that the result is assigned to
the name specified in Save As if a name is specified.

Note that the value is returned invisibly:

invisible(coeff)

As we have already printed the result if printing is desired, it is
necessary to suppress the autoprinting which would normally occur if
the result were returned without assignment.

In some cases it is necessary to assign the result within the function. In
particular, this is required if the function is creating the data and them
displaying it in a Data window. For example, this is done in the
menuFacDesign function, which creates a data frame new.design
containing a factorial design, and displays this in a Data window.

if(missing(save.name))
return(new.design)
else {
assign(save.name, new.design, where =1,
immediate = T)
if(is.sgui.app() && show.p)
guiOpenView(classname = "data.frame",
Name = save.name)
invisible(new.design)

347

Chapter 8 Extending the User Interface

Saving Additional
Quantities

Plots

348

If save.name is not specified, the result is simply returned. Otherwise,
the result is immediately assigned to the working directory. Then the
data frame is displayed in a Data window if the Windows Spotfire S+
GUI is being run and the user specifies show.p=T by checking the
Show in Data Window box in the Factorial Design dialog.

The explicit assignment is necessary because the data frame must
exist as a persistent object on disk before it can be displayed in a Data
window.

In some cases the user may want access to other quantities which are
not part of the standard object returned by the function, such as
residuals or predicted values. At the command line these functions
can be accessed using extractor functions such as resid and predict.
In dialogs it may be preferable to save these objects into specified
data frames using the save mechanism as described above. The
section Modeling Dialog Saved Results discusses this situation.

The Windows Spotfire S+ GUI supports multiple coexisting Graph
sheets, each of which may have multiple tabbed pages. When a new
graph is created it may do one of three things:

* Replace the current graph (typically the graph most recently
created).

* Create a new tab on the current Graph sheet.
* Create a new Graph sheet.

The default behaviour is for a statistical dialog function to open a new
Graph sheet before creating graphs. If the function produces multiple
graphs, these appear on multiple tabs in the new Graph sheet.

This autocreation of new Graph sheets may annoy some users due to
the proliferation of windows. The Graphs Options dialog has a
Statistics Dialogs Graphics: Create New Graph Sheet check box
which indicates whether or not to create a new Graph sheet for each
new set of plots.

It is good form for any plots created from dialogs to follow the
dictates of this option. This is done by calling new.graphsheet before
plots are produced. This function will create a new Graph sheet if the
abovementioned option specifies to do so. The new.graphsheet

The Callback
Function

Style Guidelines

function should only be called if plots are to be produced, and should
only be called once within the function as calling it multiple times
would open multiple new Graph sheets.

The menuAcf function provides an example of the use of
new.graphsheet:

if(as.logical(plot.it)) {
new.graphsheet()
acf.plot(acf.obj)

}

Most dialogs of any real complexity will have some interactions
between the allowable argument values. In the Correlations and
Covariances dialog the Fraction to Trim is only relevant for
correlations. Hence this field should be disabled if Variance/
Covariance is checked. The callback function backCor updates the
values and enable status of controls based on actions in the dialog.

When the dialog is launched, OK or Apply is pressed, or a control is
changed, the callback function is executed. The function is passed a
data frame containing character strings reflecting dialog prompts,
values, option lists, and enable status. These strings may be accessed
and modified to make changes to the dialog.

This function starts by getting the name of the active property. This is
the property which was last modified.

backCor <- function(data)

{
activeprop <- cbGetActiveProp(data)

If the dialog has just been launched then Fraction to Trim should
only be enabled if Correlation is checked. If Correlation is checked
then Variance/Covariance should be unchecked, and vice versa. If
which check box is checked changes, the enable status of Fraction to
Trim must change. The next set of lines enforces these constraints.

if(cbIsInitDialogMessage(data) || activeprop ==

"SPropCorrP" || activeprop == "SPropCovP") {
if(activeprop == "SPropCorrP") {
if(cbGetCurrValue(data, "SPropCorrpP™) ==
IIFII) {

data <- cbSetEnableFlag(data,

349

Chapter 8 Extending the User Interface

350

"SPropTrim™, F)
data <- cbSetCurrValue(data,
"SPropCovP"™, "T™)

If the dialog has just been launched or the Data Frame has changed,
the list of variables must be created. This is done by checking that an
object of the specified name exists, and if so getting the object’s
column names and pasting them together with the (A11 Variables)
string. Note that the list of variable names is passed as a single
comma delimited string rather than as a vector of strings.

if(activeprop == "SPropDataX2" || cbIsInitDialogMessage(
data)) {
if(exists(cbGetCurrValue(data, "SPropDataX2")))
{

x.names <- names(get(cbGetCurrValue(data,
"SPropDataX2")))

x.names <- paste(c("(AT1 Variables)",
x.names), collapse = ",")

data <- cbSetOptionlList(data,
"SPropVariableX2", x.names)

Lastly, the data frame containing the dialog status information is
returned.

invisible(data)

The most common uses of callback functions are to fill variable lists
and to enable/disable properties as is done by backAcf. For further
examples, search for functions whose names start with back, or look
at the FunctionInfo for a dialog with callback behaviour of interest to
determine the name of the relevant callback function.

Modeling
Dialogs

Style Guidelines

A powerful feature of Spotfire S+ is the object-oriented nature of the
statistical modeling functions. Statistical modeling is an iterative
procedure in which the data analyst examines the data, fits a model,
examines diagnostic plots and summaries for the model, and refines
the model based on the diagnostics. Modeling is best performed
interactively, alternating between fitting a model and examining the
model.

This interactive modeling is supported in Spotfire S+ by its class and
method architecture. Generally there will be a modeling function
(such as 1m for linear regression) which fits a model, and then a set of
methods (such as print, plot, summary, and anova) which are used to
examine the model. The modeling function creates a model object
whose class indicates how it is handled by the various methods.

This differs from other statistical packages, in which all desired plots
and summaries are typically specified at the time the model is fit. If
additional diagnostic plots are desired the model must be completely
refit with options indicating that the new plots are desired. In Spotfire
S+ additional plots may be accessed by simply applying the plot
method to the model object.

In moving from a set of command line functions to dialogs for
statistical modeling, the desired level of granularity for action
specification changes. At the command line the basic strategy would
be to issue a command to fit the model, followed by separate
commands to get the desired plots and summaries. The ability to use
such follow-on methods is still desirable from a graphical user
interface, but it should be a capability rather than a requirement. The
user will generally want to specify options for fitting the model plus
desired plots and summaries in a single dialog, with all results
generated when the model is fit.

The design of the statistical modeling dialogs is such that the user may
specify the desired summaries and plots at the time the model is fit,
but it is also possible to right-click on a model object in the Object
Explorer and access summary and plot methods as a follow-on action.
Generally the Results, Plot, and Predict tabs on the modeling dialog
are also available as separate dialogs from the model object context
menu.

This section describes the general design of statistical modeling
dialogs by examining the Linear Regression dialog. The following
section describes the structure of the functions connected to the

351

Chapter 8 Extending the User Interface

Model Tab

352

modeling and follow-on method dialogs. The statistical modeling
dialogs follow the same design principles as are described here, but
details will vary.

The Model tab describes the data to use, the model to fit, the name
under which to save the model object, and various fitting options. It
is typical to have Data, Formula, and Save Model Object groups
which are similar to those in the Linear Regression dialog.

Linear Regression [_ =]
todel | Resuits I Plat | Predict I

—Data

Data Set:

Wwieights:

St e wll I Save Model Object

¥ Omit Rows with Missing Values ’755\.-.3 As: I
—Wariables
Dependent: I - I
Independent: LALL: |~
Temp
Conc
Cat Lo
"rield -
Formula: |
Create Formula |

[u]4 I Can-:ell .t’-‘«pplyl |<| >| curment Help |

Figure 8.21: The Model tab of the Linear Regression dialog.

Data Group

The Data Set property is a drop-down list of available data sets. This
list is filled with the data sets which are in the working database, or
have been displayed by filtering on other databases in the Object
Explorer. This specifies the data argument to the modeling function.

The Weights property is a list of columns in the selected data set.
The selected column will be used as weights in the model. This
specifies the weights argument to the modeling function.

The Subset Rows with property takes an expression which is used as
the subset expression in the model. This specifies the subset
argument to the modeling function.

Options Tab

Style Guidelines

The Omit Rows with Missing Values check box specifies how
missing values are handled. Checking this box is equivalent to
specifying na.action=na.omit, while leaving it unchecked is
equivalent to na.action=na.fail. Some dialogs (such as
Cor