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TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other
documentation included with the product. To access the latest documentation, visit https://docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO Statistica® is available on the TIBCO Statistica® Product Documentation page.

The following documents for this product can be found on the TIBCO Documentation site:

e TIBCO Statistica® Release Notes

» TIBCO Statistica® Installation

e TIBCO Statistica® Quick Reference

e TIBCO Statistica® Product Traceability

e TIBCO Statistica® Configuration for Windows Server 2019

» TIBCO Statistica® Data Entry Administration

» TIBCO Statistica® Server Administrator’s Guide

» TIBCO Statistica® Options Configuration

o TIBCO Statistica® R Integration: Features and Options

o TIBCO Statistica® Security Guide

e TIBCO Statistica® User’s Guide

e TIBCO Statistica® Enterprise Manager Guide

o TIBCO Statistica® Statistica Object Model Guide

o TIBCO Statistica® Logistic Regression Formula Guide

» TIBCO Statistica® Stability Analysis Formula Guide

o TIBCO Statistica® Stepwise Model Builder Formula Guide

e« TIBCO Statistica® Weight of Evidence Formula Guide

The following documents for TIBCO® Data Science for TIBCO Spotfire® Analyst can be found on the
TIBCO Documentation site:

e TIBCO® Data Science for TIBCO Spotfire® Analyst Release Notes
e TIBCO® Data Science for TIBCO Spotfire® Analyst User Guide

The following documents for TIBCO® Data Science Service for TIBCO Spotfire® can be found on the TIBCO
Documentation site:

e TIBCO® Data Science Service for TIBCO Spotfire® Release Notes
e TIBCO® Data Science Service for TIBCO Spotfire® Installation and Configuration Guide
e TIBCO® Data Science Service for TIBCO Spotfire® User Guide
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How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

e For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

o For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

o For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to https://support.tibco.com. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.
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Overview

Logistic regression is used for modeling binary outcome variables such as credit default or warranty claims.

It is assumed that the binary response, Y, takes on the values of 0 and 1 with 0 representing failure and 1
representing success.

Overview of Logistic Regression Model

The logistic regression function models the probability that the binary response is as a function of a set of

predictor variables x - (x, x,, ..., x,17 and regression coefficients g = (g, 6,,..., pp1T as given by:

ePo+brXy+foXo++PpXp

X) =
7(X) 1 + ePotPrXi+foXot+fpXp

In practice, the regression coefficients are unknown and are estimated by maximizing the likelihood
function. Note that the w; below are case weights and are assumed to be positive. All observations that have
a case weight less than or equal to zero are excluded from the analysis and all subsequent results.

L=TI, i (X) 91 (1 - 7 (X)) @i =)

where,
m;(X) = probability for i?" case

The maximization of the likelihood is achieved by an iterative method called Fisher scoring. Fisher scoring
is similar to the Newton-Raphson procedure except that the hessian matrix (matrix of second order partial
derivatives) is replaced with its expected value.

The Fisher scoring update formula for the regression coefficients is given by:
a - PR TS EA
Biv1 =P+ [I(ﬁk)] s(Bx)

where,
B = estimate of f based on k*" iteration

The algorithm completes when the convergence criterion is satisfied or when the maximum number of
iterations has been reached. Convergence is obtained when the difference between the log-likelihood
function from one iteration to the next is small. By default, the convergence criterion is 1le-7, thus
convergence is obtained when:

[In Ly —InLi<le—7

where,
Lj. = likelihood evaluated at ﬁ k

In the equations below:

7t; = estimated probability of i h case

The score vector is given by:
YN wilyi—#i)
ool | ZN wilyi-#) X

YN wilyi - ) Xip
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The information matrix is given by:

YN wi@)A-#) o EN wid)(-7)Xip
% E[ 021 TN wi@E) A -A X - TN wiG) (- 7) X Xip
- opiop; | : :
YN wid)A =) Xip - XN wi@) (-7 XipXip

The asymptotic estimated covariance matrix of the estimated coefficients is given by:

~ L A -1
$5=1p)
Dispersion

The default dispersion parameter for logistic regression is 1.

However, this may not be adequate for the given data. Statistica® offers two methods of estimating the
dispersion parameter, d) .

o The dispersion parameter can be estimated using the deviance goodness of fit statistic, D (see Deviance
in Goodness of Fit).

P

¢p=D /(N - p)

where,
N = Number of observations
p = Number of parameters

2 2
o The dispersion parameter can be estimated using the Pearson X goodness of fit statistic, Pearson X
(see Pearson in Goodness of Fit).

Pearson y°

P =
¢ (N-p)
where,
N = Number of observations
p = Number of parameters

Parameterization

Effects of categorical predictor variables can be coded in the design matrix using different types of
Parameterization, specifically overparameterized, sigma-restricted, or reference coding.

Sigma-Restricted Model

In a sigma-restricted model, the categories can be assigned any values corresponding to group membership
to facilitate interpretation of the regression coefficient associated with the single categorical predictor
variable. The values on the resulting predictor variable represent a quantitative contrast between the
categories.

For a categorical variable with k levels, Statistica® creates k-1 indicator variables with the reference level
coded as -1. For example, if the categorical variable has 3 levels, say, X, Y, and Z, with Z being the reference
level, then the indicator variable would be coded as follows:
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Column X ColumnY
X 1 0
Y 0 1
V4 -1 -1

The values used to represent group membership, that is, 1 and -1, sum to zero. This parameterization leads
to the interpretation that each coefficient estimates the difference between each level and the average of the
other 2 levels, that is, the coefficient for X is the estimate of the difference between level X and the average
of levels of Y and Z.

Overparameterized Model

An overparameterized model uses the indicator variable approach to represent the effects for categorical
predictor variables. In this method, a separate predictor variable is coded for each group identified by a
categorical predictor variable.

For a categorical variable with k levels, Statistica® creates k indicator variables. For example, if the
categorical variable has 3 levels, X, Y, and Z, then the indicator variables would be as follows:

Column X Column'Y Column z
X 1 0 0
Y 0 1 0
Z 0 0 1

Reference Coding

The Ref option is selected to compute the design matrix for categorical predictors in the models using
reference coding. For a categorical variable with k levels, Statistica® creates k-1 indicator variables with the
reference level coded as 0. The parameter estimates of the reference-coded categorical predictor estimates
the difference of effect between the specific level and the reference level. For example, for a categorical
variable with 3 levels, X, Y and Z, with Z being the reference level, the indicator variable would be as
follows:

X 1 0
Y 0 1
Z 0 0
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Model Summary - Wald Statistic

The Wald statistic is used to test the linear hypotheses about the regression coefficients, and it is based on
large sample sizes, like the large-sample normality of parameter estimates.

Testing for Single Parameter Bk

To test the null hypothesis that the single parameter estimate equals 0, the Wald statistic is given by:

A2
Wald —(i)

Tpi

where,
c“rfj, = Estimated standard error of the i estimated coefficient
i

The Wald statistic is asymptotically distributed as x* with 1 degree of freedom. The estimated standard
error of the i estimated coefficient, o By is the square root of the it" diagonal element of the estimated
covariance matrix 3 B thatis, & i

Testing for several gk

When { is k-dimensional, and asymptotic is normal, the hypothesis test is given by the following quadratic
form:

Wald = (B-Bo)"2;' (B Bo)

where,
2 p= Estimated variance-covariance matrix of

This statistic is asymptotically distributed as x* with degrees of freedom equal to the number of parameters
estimated for a given effect and can be used to test the hypothesis that all parameters estimated for a given
effect are equal to 0.

Likelihood Ratio Test

In general, the likelihood ratio test is used to compare the fit of two models, one of which is nested within
the other.

This is typically performed to determine if a simpler model can be used to adequately model the data. The
test is based on a comparison of full and reduced models where both models are fitted to the data and their
log-likelihoods are calculated.

Let the full model (F) have p parameters and the reduced model (R) have q parameters such that q <p.

Full Model

m(X)

Logit[n(X)] = IH(T[X)

) = PotPr1 Xa+ - +PBg-2Xg-2+Pg-1Xg-1+Pg Xg+Bg+1+ - +Pp-1
Reduced Model

n(X)

Logit [7(X)] = In| ———
ogit [ (X)] m(l—n(X)

] =Po+p1Xi+ -+ Pg2Xg-2+PBg-1X51
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Let L(F) denote the maximized log-likelihood of the full model and L(R) represent the maximized log-
likelihood of the reduced model. The null and alternative hypotheses with respect to this test are shown

below.
H05ﬁq=ﬁq+l = =)8,0—1 =0

The test statistic is given by:
LR = -2[L(F) - L(R)]

This LR statistic is asymptotically distributed as x* with p-q degrees of freedom.

Type 1 Likelihood Ratio Test
The Type 1 Likelihood Ratio (LR) test provides sequential tests for the effects in the model.

Specifically, the Type 1 LR test reports the log-likelihood for the model that includes a particular effect
(shown in the respective row of the spreadsheet) and all effects that precede it (shown in the previous rows

of the spreadsheet). The incremental x* statistic then provides a test of the increment in the log-likelihood,
attributable to the respective (current) effect.

Type 3 Likelihood Ratio Test

The Type 3 Likelihood Ratio test reports the log-likelihood for the model that includes all effects except for
the current effect (shown in the respective row of the spreadsheet).

The incremental x* statistic for that model, and the full model (that includes all effects), then provides a test
of the increment in the log-likelihood, attributable to the respective (current) effect, while controlling for all
other effects.

When the model is not full-rank, that is, redundant columns are detected during the evaluation of the
design matrix, some difficulties arise when computing the Wald statistic for the overall model, and when
attempting to compute Type 3 LR test of effects.

Specifically, because of the redundancy of some of the parameters in the model, independent tests of effects,
controlling for all other parameters in the model (not belonging to the effect under consideration), cannot
be computed. Therefore, the Summary of all effects and Type 3 LR test buttons are not available in that case.
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Cell Statistics

Mean

The Cell statistics output gives basic statistics at each level of the selected grouping factors.

The basic mean, standard deviation, standard error, and confidence limits are computed for each covariate
at each level of the factors in the model. An additional output spreadsheet gives the frequency of each level
of Y, broken down by the factors in the model.

The Mean is computed for each covariate over the total data set and broken down by levels of each factor
and combinations of factors depending on the effects specified in the model.

The mean for a covariate, x, is given by:

1
_ ) _
X= N Zi=l W; X;
where,
x; = i"" observation

w; = Weight for i’ observation
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations

Standard Deviation

Standard deviation is computed for each covariate over the total data set and broken down by levels of each
factor in the model.

The standard deviation for the covariate, X, is given by:

\/Z?Llwf(xi_i]z
Sy =
N-1

where,
x; = i'" observation of the covariate
w; = Weight of the i'"* observation
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations
X = Mean of covariate as calculated above.

Standard Error

Standard error is the standard deviation of the sampling distribution of a statistic, in this case the mean,
and is computed for each covariate over the total data set and broken down by levels of each factor in the
model.

The standard error for the covariate, X, is given by:

Sx
Sy = —
N
where,

sy = Standard deviation of covariate
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations
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Upper/Lower Confidence Limits for the Mean

The confidence limits for the covariate, x, are given by:
X+ La/2,N-1)S%

where,
X = Mean of the covariate
La/2,N-1) = 1 — a/2 quantile from Student t distribution with N-1 degrees of freedom
sy = Standard deviation of the covariate
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations

Estimated Variance-Covariance Matrix

The asymptotic estimated covariance matrix for parameter estimates is obtained from the Fisher scoring
estimation method. Specifically, the asymptotic covariance matrix is given by the inverse of the information
matrix. For more information, see Overview of Logistic Regression Model.

Estimated Correlation Matrix

The estimated correlation matrix is the normalized covariance matrix, like each element &;; of the

estimated variance-covariance matrix Z j, is divided by the product of &;; and G ; .

Parameter Estimates

Estimate

The maximum likelihood estimate j is the value of g that maximizes the likelihood function over a valid
range of parameter values. The computation of the maximum likelihood estimate requires an iterative
computational procedure. The Fisher scoring algorithm is used, and the parameter estimates are the values
obtained from the last iteration of the algorithm. For more information, see Overview of Logistic Regression
Model.

Standard Error

The standard error estimates are the square roots of the diagonals of the estimated variance-covariance
matrix. For more information, see Estimated Variance-Covariance Matrix.

Wald Statistic

For each parameter estimate, the Wald statistic is computed as the square of the ratio of the parameter
estimate over the estimated standard error of the estimated coefficient.

A 12
Wald = ﬁ !

T4
where,

o) B = Estimated standard error of the i‘"" estimated coefficient
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The Wald statistic is asymptotically distributed as x* with one degree of freedom and can be used to test the
hypothesis that the parameter is equal to 0. The estimated standard error of the i estimated coefficient, & B
is the square root of the jth diagonal element of the estimated covariance matrix, £ 4 that is, i

Upper and Lower Confidence Limit for the Estimate
The confidence limits for an individual parameter are given by:

Bit Zas20 g

where,
Zyy2 = Z-value from the standard normal distribution beyond which
the area in the tail is equal to /2
o2 b= Estimated standard error of the i ‘" estimated coefficient

Odds Ratio

The odds ratio for a continuous predictor or categorical predictor with reference or overparameterized
coding is obtained by exponentiating the parameter estimate:

odds ratio = ePi
The odds ratio gives the relative amount by which the odds of the outcome increase (if odds ratio >1) or
decrease (if odds ratio <1) when the value of predictor is increased by 1 unit.

The odds ratio for a sigma-restricted coded categorical variable is given by:

ok a
odds ratio = ¢ T xi=1Fi

where,
k = Number of levels of effect - 1

Confidence Limits for Odds Ratios
The confidence limits for the odds ratio for a continuous predictor or categorical predictor with reference or

overparameterized coding are given by:

eﬁiizafzi}ﬁi
where,
Zg12 = Z-value from the standard normal distribution beyond which
the area in the tail is equal to a/2

o B = Estimated standard error of the i*” estimated coefficient

The confidence limits for the odds ratio of a sigma-restricted coded categorical variable are given by:

TIBCO Statistica® Logistic Regression Formula Guide
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eﬁf +Zf=1 Bj£01noRr) Zai2

where,
Ginory =/ 1" 41
) p= Estimated covariance matrix of parameter estimates
I = p by 1 vector of 1’s with a 2 in the i*/* position

Classification of Cases and Odds Ratio

A classification matrix displays the frequencies of the predicted and observed classification of cases and
percentage of correct predictions based on the logistic regression model.

An observation is predicted as 1 if the predicted probability is greater than 0.5 else it is predicted as 0. The
format of the classification matrix is as follows:

Predicted Predicted
0 1
Observed: fo,0 foa
0
Observed: f10 f11
1
where,
fij = Frequency of those cases observed as i and predicted by the model as j
i=0,1;j=0,1
The odds ratio of the classification matrix is given by:

Odds ratio = (_fo.o *ful ]

Joa* fio

The log odds ratio is the natural log of the odds ratio as defined above.
The Percent correct is given as the percentage correct for a given observed category i and predicted category
j-

fii

* 100)
fiit fij

Percent correct = (

Iteration Results

Iteration results show the parameter estimates and the model log-likelihood at each iteration during
Maximum Likelihood Estimation using the Fisher Scoring update formula described in the Overview of
Logistic Regression Model. Specifically, each column of the spreadsheet represents one iteration, and the
rows show the respective parameter estimates and model log-likelihood at that iteration.

TIBCO Statistica® Logistic Regression Formula Guide
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Goodness of Fit

Deviance

The deviance goodness of fit test is based on the likelihood ratio test of the current model against a full or

2
saturated model. The statistic has an asymptotic X distribution with degrees of freedom equal to the
number of observations minus the number of parameters estimated.

Yi 1-yi
D=2zl o n[)+ 0o 1m0

where,
#t = Predicted probability of the i’ case
w; = Weight for i*"* case

Scaled Deviance

The scaled deviance statistic is the respective statistic divided by the current estimate of the dispersion

2
parameter. The statistic has an asymptotic X distribution with degrees of freedom equal to the number of
observations minus the number of parameters estimated.

D
Dscaled = =

<

where,
¢ = Current estimate of dispersion parameter

For a review of how the dispersion parameter is estimated see Dispersion.

2
Pearson X

2 2
The Pearson X statistic has an asymptotic X distribution with degrees of freedom equal to the number of
observations minus the number of parameters estimated.

wi(y; — ft)?

Pearson y*> =Y, (=77
I 1

where,
#t; = Predicted probability of the i’ case
w; = Weight for i*" case

TIBCO Statistica® Logistic Regression Formula Guide
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2
Scaled Pearson X

2
The scaled Pearson X = statistic is the respective statistic divided by the current estimate of the dispersion

2
parameter. The statistic has an asymptotic X distribution with degrees of freedom equal to the number of
observations minus the number of parameters estimated.

) Pearson y?
Pearson Y. ,.0=——

é

where,
¢ = Current estimate of dispersion parameter

For a review of how the dispersion parameter is estimated see Dispersion.

Akaike Information Criterion (AIC)

AIC=-21 +2p

where,
| = Log-likelihood of model
p = Number of parameters in the model

Bayesian Information Criterion (BIC)

BIC=-2] + pxln(n)

where,

| = Log-likelihood of model

p = Number of parameters in the model

n = Number of observations
Cox-Snell R2
In linear regression using ordinary least squares, a measure of goodness of fit is R?, which represents the
proportion of variance explained by the model. Using logistic regression, an equivalent statistic does not
exist, and therefore several pseudo-R? statistics have been developed. The Cox-Snell R? is a pseudo-R?

statistic, and the ratio of the likelihoods reflects the improvement of the full model over the intercept only
model with a smaller ratio reflecting greater improvement. It is given by:

2IN
L(F) ]

Cox-Snell R =1 - [@

where,
L(R) = Likelihood of intercept only model
L(F) = Likelihood of specified model
N = Number of observations
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Nagelkerke R?

The Nagelkerke R? adjusts the Cox-Snell R? so the range of possible values extends to one.

—l“m 2IN
2 _ L(F)
Nagelkerke R- = TRV
where,

L(R) = Likelihood of intercept only model
L(F) = Likelihood of specified model
N = Number of observations

Log-Likelihood

The first spreadsheet generated from Statistica® when clicking the Goodness of fit button from the GLZ
Results dialog box contains, in addition to the above, the Log-likelihood statistic as shown in the Overview.

TIBCO Statistica® Logistic Regression Formula Guide
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Testing Global Null Hypothesis

The second spreadsheet generated from the Goodness of fit button from the GLZ Results dialog box is for
global null hypothesis tests, which are used to test whether the parameter estimates are significantly

2
different from zero. Each statistic is assumed to have a X  asymptotic distribution with degrees of freedom
equal to the number of restrictions imposed on the model under the null hypothesis.

Likelihood Ratio Test

o [um
LRT =2 % [ﬁ]

where,
L(R) = Model where all coefficients are set to 0, except for the estimated intercept
L(F) = Specified model including all selected predictors and the estimated intercept

Score Test

The general form of the Score test is given by:
Score =" (B) I (By) s (Bo)

where,
s = the score vector
I = the information matrix.
s and I are evaluated at the null hypothesized values of the parameters.

Specifically for testing the global null hypothesis the parameter vector is set to

7
ln( 0 ],0,0,.--,0}

1—-my

Po =

1
A N .
o= I, iy,

N = Number of observations

Wald Test
The general form of the Wald Test is given by:

TIBCO Statistica® Logistic Regression Formula Guide



19

wald = (B fo) 1 (5 (B~ o)

where,
p = Maximum likelihood estimates of the parameters
I = Information matrix evaluated at the maximum likelihood estimates of the parameters

Specifically for testing the global null hypothesis the parameter vector is set to

2 T
In( o ],0.0,---,0
1-7g

Po =

1y
frg = ﬁzi:, w;iYi

N = Number of observations

Hosmer-Lemeshow Test

To calculate the Hosmer-Lemeshow goodness of fit test, the data are sorted first in their increasing order of
predicted probability. The observations are divided into groups using the setting for HL Groups, with a
default of 10 groups. The groups are constructed based on the percentiles of the estimated probabilities. See
Hosmer and Lemeshow (2000) for details.

2
The Hosmer-Lemeshow statistic is distributed as a X distribution with g-2 degrees of freedom given the
null hypothesis.

The Hosmer-Lemeshow goodness of fit test statistic is given by:

(0,-N;7;)?
Vi =2 N (=7))

where,
g = Number of groups
N;j = Number of observations in the jth group
0; = Number of responses in the jth group
7 j = Average of the predicted probability for the jth group

Aggregation

When the Aggregation option is selected, the statistics are computed in terms of predicted frequencies. In
models with categorical response variables, statistics can be computed in terms of the raw data or for
aggregated frequency counts. In the binomial case, the response variable has two possible values: 0 or 1.
Accordingly, predicted values should be computed that fall in the range from 0 to 1. If the Aggregation
check box is selected, Statistica® considers the aggregated (tabulated) data set. In that case, the response
variable is a frequency count, reflecting the number of observations that fall into the respective categories.
As an example consider the following data:

x1 x2 Y

1.5 2 1
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25 1 0
25 1 1
1.5 2 0
25 1 1
1.5 2 1

After aggregation, the data is represented as follows:

x1 x2 yl y0 total
1.5 2 2 1 3
2.5 1 2 1 3

Selecting the Aggregation check box also affects the computation (and display) of predicted and residual
values.

Overdispersion

In models with binary response variables as in logistic regression, the default dispersion parameter (1.0) for
the model may not be adequate. You can select the Overdispersion check box and then select either the
Pearson or deviance option button as the estimate of the dispersion parameter.

If you specify deviance, the dispersion parameter is estimated by the deviance divided by its degrees of
2 2
freedom. If you specify Pearson X , the dispersion parameter is estimated by the Pearson X = statistic

divided by its degrees of freedom. The adjustment is reflected in the scale parameter as it is proportional to
the dispersion parameter.

Changing the overdispersion parameter affects the computational values of the parameter variances and
covariances and the model likelihood, and all related statistics (for example, standard errors, prediction
errors).
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Residuals

In linear regression, residual analysis is utilized to see if the linear fit of the model is appropriate through
identifying poorly fitted values, with a large number of poorly fitted values indicating poor fit of the model.
The benefit of residual analysis is instrumental in assessing model fit, and this benefit is needed in logistic
regression. However, residuals are not normally distributed and require a more careful analysis. Forms of
residuals specific to logistic regression are included in Statistica® and are described below.

Basic Residuals

Raw
ri=Yyi—fi
where,

yi = Observed binary response of the i'" case
ft; = Predicted probability for the i’ case

th

Pearson

where,
w; = Weight for the i’ case
y; = Observed binary response of the i’ case
#t; = Predicted probability for the ‘" case

Deviance

ria = wilsign(yi = #)\/=2 [yilnt) + (1 - ypln(1 - ;)]

where,
1, if x>1
sign(x) =4 —1, if x<0
0, otherwise
w; = Weight for the i'" case
yi = Observed binary response of the i*" case

ft; = Predicted probability for the i*"

case
Predicted Values

Response

The response of the ih case is the observed value of y;.
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Predicted Value

The predicted value of the i" case is the predicted probability calculated using the specified model.
T -~
A et
i X) = |———=
xI'p
1+evi

where,
x; = vector of predictors for i‘"* case
Linear Predictor

The linear predictor of the ith case is given by:

h

where x; = vector of predictors for i!" case

Standard Error of Linear Predictor

The standard error of the linear predictor of the it" case, x! p is given by:

x.Tiﬁxi

1

where,
x; = Vector of predictors for i™" case
)" » = Estimated variance-covariance matrix of the estimated coefficients
p

Upper/Lower Confidence Limits
The 100*(1-c)% confidence limits for the predicted probability for the it case is given by:

TR 5
T'g+7, .
x; P+ mgox;:rﬁ

TBs 7000 14
1+e" Pzartry

where,
Zqs2 = 1-a/2 quantile of the standard normal distribution

5 o= p-l.,2 ;2 pP=2¢p-l o o
TxlB= \/Zjo Xij%, 22 jmo Lew ji1 X1k fy

Leverage

Leverage values can detect outliers in the design space. Let h; denote the leverage of the i"* case.

Leverage; = h; = /'h diagonal element of "Hat Matrix"

where,
Hat Matrix= V72X (xTvx)~1y!/2
V = Diagonal matrix with elements 7 (1 — )
X = Design matrix
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Studentized Pearson Residual

VWi (yi—#;)
#i(1-#)(1=h;)d

Fisp =

where,
w; = Weight for the i'" case
yi = Observed binary response of the i ‘" case
#; = Predicted probability for the i*"* case
h; = i'"" diagonal element of hat matrix
¢ = Estimate of dispersion parameter

Studentized Deviance Residual

id . -
Tisd = Wi ? sign (y; — ;)

where,
1, ifx>1
sign(x) =4 -1, if x<0
0, otherwise
w; = Weight for the i*" case
y; = Observed binary response of the i'"* case

ft; = Predicted probability for the i*" case
¢ = Estimate of dispersion parameter

Likelihood Residual

riL= sign(yg—ﬁrg)\/(l —hi)rﬁd"'hirip

where,
1, ifx>l
sign(x) =< -1, if x<0
0, otherwise
r; 4 = Deviance residual for i'" case
ri,p = Pearson residual for i th case
#t; = Predicted probability for i’ case
h; = Leverage of the i’" case

23
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Other Obs. Stats

General Cook’s Distance

General Cook’s Distance (D) measures the difference in the residuals of all cases due to removing the ‘"
observation. Cook’s D for the i observation is given by:

1 h; 5
Cook’s D; = [—] (—1) rf“
pI\Q-hp)2p)

where,

p = Number of parameters

h; = Leverage of the i’ h case

ri,sp = Studentized Pearson residual of the i'" case
¢ = Estimate of dispersion parameter

2
Differential X

2 2
The differential X  residual measures the difference in the Pearson X statistic due to removing the ith
observation.

L2
TI"DXZ = r!-lsp

where,
ri,sp = Studentized Pearson residual of the i'" case

Differential Deviance

The differential deviance residuals measure the difference in the deviance statistic due to removing the it
observation.

, — 2 12
thD - ri,d+(lbrj'sp

where,
¢ = Dispersion estimate
ri,sp = Studentized Pearson residual for i'h case
ri,a = Deviance residual for i'" case

Differential Likelihood

The differential likelihood residuals measure the difference in the likelihood due to removing the i*"

observation.

ri,pL =Tipy2hi+ 1 —hiripp

where,
ri pyz = Differential ¥ residual of the i’ case
h; = Leverage of the i'" case

ri pp = Differential deviance residual of the i th case
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ROC Curve

The ROC curve is often used as a measure of goodness-of-fit to evaluate the fit of a logistic regression model
with a binary classifier. The plot is constructed using the true positive rate (rate of events that are correctly
predicted as events and also called Sensitivity) on the y- axis against the false positive rate (rate of non-
events predicted to be events also called 1- Specificity) on the x-axis for the different possible cutoff points

based on the model .. , ..
i (x)

The range of values for the predicted probabilities 4(xy Sensitivity and 1-Specificity, is provided in the
corresponding spreadsheet. For each i predicted probability, the algorithm iterates through each case to
classify it as events or non-events using the predicted probability as the threshold value. The Sensitivity and
1-Specificity are calculated by:

. TP
Sensitivity = —————
TP+FN
TN
1-Specificity=1- ————
eISEy TN+ FP
where,

TP (True Positives) = Number of correctly predicted events

FP (False Positives) = Number of Non-events predicted as event
FN (False Negatives) = Number of events predicted as non-events
TN (True Negatives) = Number of correctly predicted events

The area under the ROC curve, sometimes also referred as Area Under Curve (AUC), gives a summary
measure of the predictive power of the model, that is, the larger the AUC value (closer to 1), the better is the
overall performance of the model to correctly classify the cases.

The AUC is computed using a nonparametric approach known as the trapezoidal rule. The area bounded
by the curve and the baseline is divided into a series of trapezoidal regions (intervals) based on (1-Specifity,
Sensitivity) points. The area is calculated for each region, and by summing the areas of the region, the total
area under the ROC curve is computed.

Lift Chart

The lift chart provides a visual summary of the usefulness of the information provided by the logistic
model for predicting a binomial dependent variable. The chart summarizes the utility (gain) that you can
expect by using the respective predictive model shown by the Model curve as compared to using baseline
information only.

Analogous lift values (Y-coordinate) that are calculated as the ratio between the results obtained with and
without the predicted model can be computed for each percentile of the population sorted in descending
order by the predicted value, that is, cases classified into the respective category with the highest
classification probability. Each lift value indicates the effectiveness of a predictive model, that is, how many
times it is better to use the model than not using one.

Let n be the number of true positives that appear in the top k% of the sorted list.

Let r be the number of true positives that appear if we sort randomly, which is equal to the product of the
total number of true positives and k.

Then,

n
Lift Value = —; for top k% of the cases
r

The values for different percentiles can be connected by a line that typically descend slowly and merge with
the baseline.
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Observed, Unweighted Means

Means of Groups

Observed, unweighted means are available for full factorial designs involving effects of 2 or more
categorical factors. When cell frequencies in a multi-factor ANOVA design are equal, no difference exists
between weighted and unweighted means. When cell frequencies are unequal, the unweighted means are
calculated without adjusting for the differences between the sub-group frequencies. These are computed by
averaging the means across the levels and combinations of levels of the factors not used in the marginal
means table (or plot), and then dividing by the number of means in the average.

Let k = Number of factors in the model
Without loss of generality, let the given effect consist of the first  factors

Let f;; denote the i'" level of the j" factor

Then, the unweighted mean is computed as
i, 1 i
Xfiyofigiify = 7 LjeF X

where,

F = Set of all unique combinations of all k factors
that include levels f;,, fi,,"*+, fj,
r = Cardinality of F

Observed, Weighted Means

Means of Groups

The mean of the dependent variable, y, for the j level of the selected factor is given by:
1y
y= ]_V Zi:l Wi yi

where,
yi = i'" observation
w; = Weight for i** observation
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations

Standard Error

The standard error of the mean of the dependent variable, y for the j level of the selected factor is given by:
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1 \/Zf\il w;(yi — )?
S5 =
YU UN N-1

where,
y; = i'" observed response
w; = Weight of the i** observation
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations
¥ = Mean of response as calculated above.
L

Upper and Lower Confidence Limits of the Mean

V£ tar2,N-1)Sy

where,
¥ = Mean of the response
tas2,N-1) = 1 —a/2 quantile from Student t distribution with N-1 degrees of freedom
sy = Standard error of the mean
N = Sample size over the appropriate set of cases,
i.e. entire dataset or subset defined by specific factor combinations

Predicted Means

The predicted means are the expected value for the generalized linear model. When covariates are present
in the model, predicted means are computed from the value of those covariates as set in the Covariate
values group box. By default, covariates are set to their respective means.

The computation of the predicted means for each effect in the model is constructed by first generating the L
matrix for the given effect. The L matrix is generated exactly in the same manner as in the General Linear
Models (GLM) module when computing least square means which is also equivalent to how SAS computes
the L matrix. The vector of means on the logit scale for a given effect is then computed as i
For a given level of an effect, the corresponding row vector / from the matrix L is used to compute the
predicted mean as given by:

_ o1"P)
Predicted Mean = -
(75)

Standard Error

The standard error of ;7 for a given level of an effect is given by:

Grp=/1"Z51

p

where,
2 p= Covariance matrix of parameter estimates

Upper and Lower Confidence Limits of the Mean

The confidence limits of the predicted mean are given by:
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elrﬁiﬁ'ﬁﬁzmz

1+ efrﬁiﬁ,rﬁzmz

where,
" _ TS .
?’Irﬁ = ) Zﬁl
b p= Estimated covariance matrix of parameter estimates
Zq2 = The 1-a/2 quantile of a standard normal distribution
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Model Building Summary

In addition to All Effects, different techniques for automatic model building are available for logistic
regression. Specifically, forward stepwise, backward stepwise, forward entry, backward removal, and best-
subset search procedures are available in Statistica® and are described below.

Stepwise Logistic Regression

Stepwise Logistic Regression methods, specifically the Forward Stepwise and Backward Stepwise methods,
are used to perform a stepwise selection of predictor variables.

During the forward step of stepwise model building, if two or more effects have p-values that are so small
as to be virtually indistinguishable from 0, Statistica® selects the effect with the largest score statistic if the
degrees of freedom for all effects in question are equal. If the effects differ with respect to the degrees of
freedom, the Score statistics are normalized using the Wilson-Hilferty transformation, and the effect with
the largest transformed value is entered into the model. For the backward step, if the p-values for two or
more effects are virtually indistinguishable from 1, Statistica® removes the effect with the smallest Wald
statistic in the case of equal degrees of freedom and the smallest normalized value in the case of unequal
degrees of freedom.

Forward Stepwise Method

Let p be the number of total effects considered for the model. Let k be the number of effects currently in the
model. Let p1, enter and p2, remove be specified by the user. The Forward Stepwise Method starts with no
effects in the model and consists of two alternating steps.

1. Entry step: For each of the remaining p-k effects not in the model, construct the p-k score statistics. See
Testing Global Null Hypothesis, for a description of the score statistic. Enter the effect with the smallest
p-value less than p1, enter.

2. Removal step: For all of the effects in the model compute the Wald statistic. See Testing Global Null
Hypothesis, for a description of the score statistic. The effect with the largest p-value greater than p2,
remove is removed from the model.

The procedure continues alternating between both steps until no further effects can either be added or
removed or until the maximum number of steps (see the Max. steps option on the Advanced tab of the GLZ
General Custom Design dialog box) has been reached.

Backward Stepwise Method

The Backward Stepwise Method is analogous to the Forward Stepwise Method; the only difference is that
the initial model contains all the potential effects and begins attempting to remove effects and then
subsequently attempts to enter them.

Forward Entry Method

The Forward Entry Method is the simplified version of Forward Stepwise Method. In this method, the step
to test whether a variable already entered into the model should be removed is omitted. Specifically, the
Forward Entry Method only allows for effects to be entered into the model and does not allow for the
removal of the variable after it is added to the model.

Backward Entry Method

The Backward Entry Method is the simplified version of the Backward Stepwise Method. It is the exact
opposite of the Forward Entry Method.

As in the Backward Stepwise Method, this method begins with the model containing all potential
predictors. It identifies the variable with the largest p-value, and if the p-value is greater than the p2,
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remove, the variable is dropped. This method eliminates the step of forward entering, or re-entering of the
variable once it has been removed.
Wilson-Hilferty transformation

The Wilson-Hilferty transformation method transforms a variable to the Z-scale so that their p-values are
closely approximated. This transformation, therefore, enables the comparison of the statistical significance
of the values with different degrees of freedom. The transformation is given by:

(-
(53

Y = x? statistic
n = Degrees of freedom

Best Subsets

The best subsets search method can be based on three different test statistics: the score statistic, the model
likelihood, and the AIC. Note that, since the score statistic does not require iterative computations, best
subset selection based on the score statistic is computationally fastest, while selection based on the other
two statistics usually provides more accurate results.

Wi(y) =

In general, a model containing p possible predictors has 2p-1 possible subsets of predictors available for
model consideration. In the best subsets method, one of the aforementioned three test statistics is computed
for every possible predictor subset and a spreadsheet is generated such that the subsets are sorted from best
to worst by test statistic. Due to the number of possible subsets to consider as they grow exponentially with
increasing number of effects, Statistica® only performs a best subset search when the number of effects in
the model is 13 or fewer.
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Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, Statistica, Spotfire, Process Tree Viewer, Process Data Explorer,
Predictive Claims Flow, Making the World More Productive, Live Score, Electronic Statistics Textbook,
Decisioning Platform, Data Health Check, and Better Decisioning are either registered trademarks or
trademarks of TIBCO Software Inc. and/or its subsidiaries in the United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. Please see the readme.txt file for the availability
of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 1995-2020. TIBCO Software Inc. All Rights Reserved.
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