Cross-spectrum Analysis - General Introduction
Cross-spectrum analysis is an extension of Single Spectrum (Fourier) Analysis to the simultaneous analysis of two series. In the following paragraphs, we will assume that you have already read the Introduction to single spectrum analysis. Detailed discussions of this technique can be found in Bloomfield (1976), Jenkins and Watts (1968), Brillinger (1975), Brigham (1974), Elliott and Rao (1982), Priestley (1981), Shumway (1988), or Wei (1989).
The purpose of cross-spectrum analysis is to uncover the correlations between two series at different frequencies. For example, sun spot activity may be related to weather phenomena here on earth. If so, then if we were to record those phenomena (e.g., yearly average temperature) and submit the resulting series to a cross-spectrum analysis together with the sun spot data, we may find that the weather indeed correlates with the sunspot activity at the 11 year cycle. That is, we may find a periodicity in the weather data that is "in-sync" with the sun spot cycles. One can easily think of other areas of research where such knowledge could be very useful; for example, various economic indicators may show similar (correlated) cyclical behavior; various physiological measures likely will also display "coordinated" (i.e., correlated) cyclical behavior, and so on.