TIBCO Cloud™ Integration - Flogo®
(PAYG)
User's Guide

Version 2.11.0
January 2021

Copyright © 2016-2021. TIBCO Software Inc. All Rights Reserved.

Contents
U ES . o e 7
TIBCO Documentation and SUPPOIT SEIVICES .o vvu ittt ettt tett et nerenesennesoanssoassosnnsanns 8
180T 18 T 1 T o 9
(0] o T01= o) PPt 9
Creating YoUr FIrSt RE ST APl ..ottt e e et e et e e ettt ettt et e e e et e e et 10
F AN o] €I B L=] (o] o g =T o | PP 24
Creating and Managing a FIogo App in the Web Ul e e e 24
Creating @ TIBCO FIOGO® ADD vttt e 24
Creating an App from a Saved SpecifiCationt e e e e 24
RV 11T F= L4 o [LU T AN o] o 1P 25
=T [T To I T 1 21 @@ 2 o T T 1Y o 25
=T =T a 1o = 1 A o] o AP 25
Editing the VErSion Of @GN APttt et e ettt et e e e e e e e e 25
REVEIMING CaNgES 10 AN A « ettt ettt ettt et ettt et e e e e ettt et et et e e e e e e e e 26
Switching Between Display VIiews 0N the APP Paget 26
[T 1= v To =T Y o) PP 27
EXPOrting and IMPOrting @ A DD ... v ettt et et ettt e et e e e e e e e e e 28
[T q o] 11T =T A o o J P 28
EXPorting an ApP'S JSON FilE ...ttt e e e e et et e ettt e e e e 28
[aT oo T i1 T = T 1A o o S 29
Resolving Missing ActiVitiesS and TrHGQEISttt et e e e e e et 33
PN o) oI 1= T £ 1] 1= o= P 34
Creating FIOWS @nd Trig0erS ...ttt ettt ettt et et ettt e et e e e e e e et e et e ettt et e e e e e e e e 36
IO S e e e e 36
(O =T 11T = T 0 36
Selecting a Trigger When Creating @ NewW FIOWot e e e e e e e e i ieens 38
Starting With @ THIGQET . . .o ettt et et ettt ettt e e e e e ettt 39
Creating a Flow Attached to a REST (Receive HTTP Message) Trigger . ..oovvnrireeienaennannannns 39
Creating a Flow attached to the GraphQL Triggerottt e e e e e i eianens 41
Creating a Flow Attached to Other TrgOersottt et 41
Creating a Flow Attached t0 @ gRP C Trig0er .o uut ittt ettt e e e et aeaneananns 42
Creating a Blank Flow (FIOW WIithOUt @ TrHQOEN) « ..ot ntt ettt et e et e e e e e e e e e e 42
Flow INput & OULPUL Tab ... e ettt e 44
Attaching a FIOW t0 ONE OF MOTE TrigOEIS ..ttt ittt ettt ettt et et e e e ettt eeaeneaneanens 44
(O 1 (od a1 To T =15 o £ PP 45
Creating An Error Handler FIOWottt e e e e e e e 45

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Viewing Errors and WarningSttt ettt e et e et e 47
USING SUDTIOWS . . .ttt ettt e e e e e e e e 48
Creating SUDTIOWS ..ot e e e e e e e 49
Creating a FIow EXecUtion BranCho . e e et et et e 50
Types of Branch CONGItIONSt et e e e ettt e e e e e 51
Order in which Branches Get EXECULEAiuiii ittt et 52
Setting Branch CONAItIONSottt e et e et e 53
Deleting @ BranCho 54

[10 o [T g T = B 01 55
EItING @ FIOW « .o e ettt e e e e e 55
Reverting Changes to @ FIOWttt ettt e e e e e 55
SWItChiNg BetWEEN FIOWS 1N @N A ettt ittt ettt et e e e et et e et et e e e e ae i aennanns 55
Deleting @ FIOW . ..ot e e e 56
AAING BN ACHIVITY ettt ettt ettt et e e e e e e e e e e e e e e 56
Searching for @ Category OF ACHVITY .. vu ittt e e e et ettt et et et e e e et e i eaeneeneans 57
(0] 0110 T8 15T T = T I AN ox 11V, 1 Y/ 57
(D0 o] o= Vil gTo =T o AN o1 1Y/ 58
Using the LOOp Feature in an ACHIVItYttt et e e ettt ettt ettt e e e e e ieaeaannans 59
Accumulating the Activity Output for All Iterations e 60
Accessing the Activity Outputs in Repeat While Tru@ LOOPttt eeeaeeaes 61
(D=1 a o =T Y 1Y/ 62
110 o = £ AP 62
Creating a Trigger WithOUL @ FlOWt e e et e et et et e e ettt eaeaeanens 62
(1= 1=« o - 4T [T P 62
Synchronizing Schema Between Trigger and FIOW e e e e 62
[7= 7= B 1Y/ =] 11 o A 62
Data Mappings INIEr aCe . ..ottt e e e et et e et ettt e e e e 63
SCOPES IN DAtA MaAPPINGS - . ettt ettt et ettt e e e e e e e e e e e e 64
Reserved Keywords to be Avoided in SChemasouiiiii i e e e et ettt ettt e e e 65
Mapping Different TYPES Of Dataottt e e e e e e et et e e e e e 66
Mapping a Single Element of Primitive Data TYPEottt et 68
/= 1] o1 o =T I o] 1Yo A 69
= T o1 o A 1 = Y2 Pt 70
Mapping an Array of Primitive Data TYPESttt ettt 70

Mapping Complex Arrays - Using the array.forEach() FUNCLION ...t 72
Understanding array.ForEach() Function with an Example oo, 72

Mapping Identical Arrays Of ODJECESottt e 75

Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-Matching Array 76

VE= o] o] o T AN TS (=0 AN £ - V£ 78

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Mapping Child Elements within a Nested Array SCOPEcuvririn it 81
Mapping a Nested Array Child Element outside the Nested Array Scopec.coeeiean... 82
Mapping an Element from a Parent Array to a Child Element in a Nested Array within the Parent ...

83
Filtering Array Elements to Map Based on a Conditionoiiiiiiiii i 84
Mapping JSON Data with the json.path() FUNCLON it e et et e e 85
Constructing the any, param, or object Data Type in Mappervvn ittt e e e e aeaeenns 87
Coercing of Activity Input, Output, and Trigger Reply Fieldso et 90
Clear Mapping of Child Elements in Objects and Arraysuuueiriit it i ettt ee e eaaneanens 91
Ignoring Missing Object Properties when Mapping ObJectS ...t e et eeee e 92
LSV TN U o 1o 92
Using the array.forEach() FUNCHONo e e e e et e e e ettt e e enaanens 93
Using the json.path() FUNCHON e e e e e et et e e e e e iaenenees 93
USING EXPrESSIONS . . ettt ettt e et et et et et e e e ettt e e et e e e e e 93
YU o] oo (=10 I @] o 1T =1 (] =S 94
[o] o 1T Y £ PP 94
Using an OpenAPI SPeCIfiCAtION et et ettt e e e e e 94
CoNfigUNNG the REST REPIY .« .ttt e e e ettt et et et ettt et e e e e i eneanas 96
TEStING the DEPIOYEA AP .« ettt ettt et e e e e e e et e et e e e e e e 98
Downloading the API Specification USEd e e ettt 98
USING GraphQL SCNEMa . ..ottt e e ettt ettt e e e e et ettt et et e e et 98
USING GRP C ottt ettt e e e e e e 100
Using App Properties and SChEMASottt et et e e e e e et e et 103
Y o) 0 I8 2 (] 0 1= 1= 103
(=T (] T Y o] oI o (0] 0= o 1=t 104
AppP Properties DIalog VIBWSttt ettt e e e e e e 104
Creating a Standalone APP PrOPeItYttt e e e e e ettt e e e e e 105
(O3 (=T 1] T = T o 11 o T 107
Deleting @ GroUP OF PrOPEITY . ..ottt ettt ettt e e e e e e e e e e e e et e e e 107
USIiNg APP Properties iN @ FlOWt e e e e ettt et e ettt 108
Using App Properties in the MapPert et 109
Unlinking an App Property from a Field Valueo e 109
UsiNg APP Properties iN CONNECHONSttt ettt ettt et e et e e et et et et e a et ae e eeeieanannannans 110
Editing @n AP PrOPEItY . .ottt e e e e e et 112
Changing the Default Value of a Property from the App Properties Dialogc..ccoiiiiiiiiiiiiinan... 112
Changing the Name or Data Type of an App Property afterUsing It ... 112
VAV 1= T L aT oo il T = a1 o P 112
EXporting App PropertiesS t0 @ File e e e 112
Y o] & IR X 1= 0 - T 113

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Defining an App-Level SChEmM@ot e e 113

Editing an App-Level SChema e e 113

Deleting an App-Level SChemao e e e e e e e e e e e 114

UsiNg an App-Level SChEmMa e e e e e et e e e e 114

Flow INput & OULPUL Tab ... e e e e e 114

Input or Output Settings Tab of an ACHIVILYttt e e e e e et e et it ieeiaaas 115

Output or Reply Settings Tab Of @ THgQErttt e e e 115

L0V I O0] o [T ox (o] £ 116
(@12 11T @0 o o= Tox 1T0] o1 AP 116
o 101 o T @0 o g =) 1o g 116
Deleting CONNECLIONSttt et e e e et e e e et et et e e e e e e e e e e e e e e 117
L8]] (o = o 1 ol =04 £=T 1S3 (o 0 = 117
Pulling Extensions from an Open Source Public Git REPOSItOrYttt e 120
Adding Custom Golang Code or Dependenci€s t0 the APt e e eeas 121
Deleting EXtensions Or EXIENSION Cat@gOriES ... vttt ettt ettt et ettt et et et e e et e et a e enneneaneanens 122
(0= (T 123
Testing FIOWS from the Ul ettt e e e e ettt et 123
What is @ Launch Configuration?ue ittt e et ettt ettt e e et et eaeanannans 123
Creating and Using a Launch Configurationo.uitt ittt et e et 124
Creating Subsequent Launch Configurationsou oottt 126

What can you do USINg the FIOW TS er? ...ttt e e e e e e e e e e et e e e eieanes 126
Configuring a Launch Configurationottt e et e e e 128
Exporting a Launch Configurationc. ittt e e e e e e 130
Importing a Launch Configurationo.uinu it e e et e e ettt et e e e e e e aanns 131

Cloning a Launch Configurationttt e et e e e e e i e e 132

Deleting a Launch ConfiguIationttt e e ettt et e e e ettt a e eaeanns 133
Deployment and ConfigUIationttt ittt it ettt tte e eneenneeneeneoneenesnesnseansaneanns 134
BUIIING 8N AP BINAIY ..ottt ettt ettt e e e e e et 134
BUIIAING T AP . e e e e e et e e e e e e e 134
ENVIronment Variables e e e 135
App Configuration Man@gemMENTttt ettt et ettt e e e et e e e e e e e e 136
CONSU et e e e e 136
Using Consul with TIBCO Cloud Integration - FIOgo (PAYG) ...ttt et e e e ee e aeens 137

Consul CoNNECHION PArAMELEISttt ettt ettt ettt et e e e e aeaeaens 137

Setting the Consul CoNNECHION PArametersttt ettt ettt e e e ieens 139

AWS Systems Manager Parameter STOIottt e e ettt et et et e e et et 141
Using the Parameter Store with TIBCO Cloud Integration - FIogo (PAYG) ..ottt 141
Parameter Store CONNECHION PAramMetersttt et et a e 142

Setting the Parameter Store ConNection Parametersvuiiniie ittt ettt e e e eaeneanans 143

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Environment Variables e 145

Using Environment Variables to Override App Property Valueso et 145

ENCrypting PasSWOId VaAlUESttt ettt ettt ettt et et e e e ettt et et et e e e e aeeneaannans 146
Container Deployments for AWS MarketplacCettt et e aeaeas 147
Build the Flogo Application DOCKEr IMageottt e ettt 147

ADbOUt AWS DepPloymMeENt TEMPIALES . ..ottt ettt ettt ettt ettt et et et e et e et 148
Example: Deploying a FIogo App 0N AWS EKSt 148

L (=T (=T U LS = 148

Deploying a FIogo APp 0N AW S EKS ..ottt e e e ettt et ettt ettt e e e aeeneans 149
TrOUDIESNOOTING . . . ettt et e e e e e e e 152

Serverless DepPIOYMENTSttt ettt e e e e e e e e e e 152
Calling Lambda FUNCHONSttt ettt e ettt ettt ettt e e e e et e et e et et et e e e aaeneeneaneananns 152
Creating a Connection with the AWS CONNECIONottt e et e aeens 152

AWS CoNNECHION DELAIISttt e e e e 153

1Y/ oY a1 €] o | o PSPPI 154
Y o &I =T (o 154
ENabIiNG APP MELIICS . . oottt e e et e et e e e e e e e e e e e e e e e e 155
Enabling statistics collection using environment variablesttt 155

(oo T [T aTo A o) € JN 1Y/ 1= £ s PP 155

Fields returned in the reSPONSE et e e e e e ettt 156
PrOMEtNEUS . . .o e e e 157

Using Prometheus to Analyze FIOgo APP MELIICS . ..ottt e et e e e ieaens 159

(@10 o B0 LY =To I @ 1= = 160

Y o) & T 1= 1o 1 o PP 162

(@ 07T 11 7= o] o N 162

T2 1T T PN 162

Best Practices in TIBCO Cloud Integration - FIOgO (PAYG) . i v vtitiitii it ittt tteieeetneenaanaenannns 165
Legal and Third-Party NOtiCES .. v ittt ittt ittt it ttetne e eaeenneaeeeneoneeneensenssaneansnnnns 168

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Figures
B0 0 =T Y= 26
L1 YT 27

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

TIBCO Documentation and Support Services

How to Access TIBCO Documentation

Documentation for TIBCO products is available on the TIBCO Product Documentation website, mainly in
HTML and PDF formats.

The TIBCO Product Documentation website is updated frequently and is more current than any other

documentation included with the product. To access the latest documentation, visit https://docs.tibco.com.

Product-Specific Documentation

Documentation for TIBCO Cloud™ Integration - Flogo® (PAYG) is available on the TIBCO Cloud
Integration - Flogo (PAYG) Product Documentation page.

The following documents can be found on the TIBCO Documentation site:

« TIBCO Cloud™ Integration - Flogo" (PAYG) Release Notes

o TIBCO Cloud™ Integration - Flogo" (PAYG) Getting Started

« TIBCO Cloud™ Integration - Flogo" (PAYG) User’s Guide

e TIBCO Cloud™ Integration - I-“logo® (PAYG) Activities and Triggers Guide

How to Contact TIBCO Support

You can contact TIBCO Support in the following ways:

e For an overview of TIBCO Support, visit http://www.tibco.com/services/support.

o For accessing the Support Knowledge Base and getting personalized content about products you are
interested in, visit the TIBCO Support portal at https://support.tibco.com.

» For creating a Support case, you must have a valid maintenance or support contract with TIBCO. You
also need a user name and password to log in to https://support.tibco.com. If you do not have a user
name, you can request one by clicking Register on the website.

How to Join TIBCO Community

TIBCO Community is the official channel for TIBCO customers, partners, and employee subject matter
experts to share and access their collective experience. TIBCO Community offers access to Q&A forums,
product wikis, and best practices. It also offers access to extensions, adapters, solution accelerators, and
tools that extend and enable customers to gain full value from TIBCO products. In addition, users can
submit and vote on feature requests from within the TIBCO Ideas Portal. For a free registration, go to
https://community.tibco.com.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://docs.tibco.com
https://docs.tibco.com/products/tibco-cloud-integration-flogo-payg
https://docs.tibco.com/products/tibco-cloud-integration-flogo-payg
http://www.tibco.com/services/support
https://support.tibco.com
https://support.tibco.com
https://ideas.tibco.com/
https://community.tibco.com

Introduction

Concepts
This section describes the main concepts used in the TIBCO Cloud Integration - Flogo (PAYG) environment.

Apps
Flogo apps are developed as event-driven apps using triggers and actions and contain the logic to process
incoming events. A Flogo app consists of one or more triggers and one or more flows.

Trigger

Triggers receive events from external sources such as Kafka, Salesforce, GraphQL and so on. Handlers
residing in the triggers, dispatch events to flows. TIBCO Cloud Integration - Flogo (PAYG) provides a set
of out-of-the-box triggers as well as a range of connectors for receiving events from a variety of external
systems.

Flow

The flow allows you to implement the business logic as a process. You can visually design and test the
flows using the Web UI. A flow can consist of one or more activities that perform a specific task. Activities
are linked in order to facilitate flow of data between them and can contain conditional logic for branching.
Each flow is also connected to a default error handler. A Flogo app can have one or more flows. A flow
can be activated by one or more Triggers within the app.

Activity
Activities perform specific tasks within the flow. A flow typically contains multiple activities.

How TIBCO Cloud Integration - Flogo (PAYG) Works

The trigger consists of one or more handlers that serve as the means of communication between the trigger
and the flow. When the trigger receives an event, the trigger uses the respective flow handlers to pass the
data from the event on to the flow in the form of flow input. The business logic in the flow then can use the
event data coming in through the flow input. When the trigger expects a reply from the flow, the data from
the flow is passed on to the trigger in the form of flow output. A flow can contain one or more conditional
branches.

Flow
z Activity > ‘} Activity >) Activity >z Activity >
Flow

Events _ z Activity ») Activity > ‘) Activity >z Activity >

Flow
2 Activity >z Activity >) Activity >2 Activity >

A
LPP

In a nutshell, to use TIBCO Cloud Integration - Flogo (PAYG), you have to follow these steps:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

10

Create an app.
Create a flow in your app.
Add one or more activities to the flow and configure them.

L

Optionally, add a trigger to your flow. You can add one or more triggers to a flow as and when you need
them.

5. Build your app.

Creating your First REST API

This tutorial walks you through building a simple REST service in TIBCO Cloud™ Integration - Flogo®
(PAYG). It walks you through creating a basic airlines flight reservation app which takes input from a user
(a potential passenger), checks to see if the passenger's last name is "Jones" and for passengers with last
name "Jones" upgrades them to Business Class.

The app contains a REST flow, FlightBookings, which implements the POST HTTP operation to book a seat
on the flight for the passenger requesting it. The flow is triggered by the Receive HTTPMessage REST
trigger which listens for a request to book a seat that comes in from a passenger. The flow contains a
LogMessage activity that you configure to log a custom message when a request has been received
successfully. The LogMessage activity has two branches. Each branch must have its own Return activity as
the last activity in the branch.

[LogMessage

|:'.|‘ Return

=
o
=]
=
S
o
=
@
=
o
c
ot
T
c
@

|;| Returnl

When a request comes in:

1. The first branch accepts requests with any last name that appears in the REST request.

2. The second branch then checks to see if the last name in the request is "Jones". You configure this check
(condition) in the Branch Mapping Settings for this branch. If the last name is "Jones" then the flow
outputs the passenger details with the Class element automatically set to Business Class meaning that
the passenger's seat has been booked in Business Class. You configure this action of automatically
setting the Class element to BusinessClass for passengers with last name "Jones" in the Return activity
for this branch.

3. If the last name received is not "Jones" the control is transferred to the first branch whose flow outputs
the details of the request as received with the Class to Economy.

Creating the JSON Schema for REST Request and Response

In this tutorial, a simple JSON schema is created for the REST request that the service receives and the
response that the service sends back. The following is the structure of the JSON schema used in this tutorial.
This JSON message is converted internally into a JSON schema:

{
"Class" : "string",
"Cost" : O,
"DepartureDate"” : "2017-05-27",

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

11

"DeparturePoint"” : "string",
"Destination" : "string",
"FirstName" : "string",

"Id" : 0,

"LastName" : "string"

3
High-level Steps in the Tutorial

The high-level steps for creating and configuring the airline flight reservation service REST app in this
tutorial are as follows:

1. Create a New TIBCO Flogo@\’ App

2. Create a Flow in the App with a REST Trigger

3. Map Trigger Output to Flow Input. This is the bridge between the trigger and the flow where the trigger
passes on the request data to the flow input.

4. Map Flow Output to Trigger Reply. This is the bridge between the flow output and the response that the
trigger sends back to the HTTP request it received. After the flow has finished executing, the output of
the flow execution is passed back to the trigger by the Return activity. Hence, we map the flow output to
the trigger reply. This mapping is done in the trigger configuration.

5. Add a Log Message Activity to the Flow and configure a message that the activity must log in the logs
for the app as soon as it receives a request.

6. Add the First Branch and Configure It to accept any last name that appears in the REST request.

7. Add a Second Branch to Check for Last Name "Jones". If the last name of the passenger is "Jones", this
branch is executed and the passenger is placed in Business Class.

8. Validate the App to make sure that there are no errors or warnings in any flows or activities.
9. Build the App
10. Test the App

Step 1: Create a New TIBCO Flogo® App
Create a new TIBCO Flogo® App in TIBCO Cloud Integration - Flogo (PAYG).

Follow these steps to create a new app:

1. Open the Apps tab in TIBCO Cloud Integration - Flogo (PAYG).
2. Click Create/Import app.

3. By default, a Flogo app is named New_Flogo_App_<sequential-number> where the sequential-number is
the next number of a new app being created. Click the default app name next to the Flogo app icon to
make it editable. Edit the app name to FlightApp and click anywhere outside the name to persist your
change.

Step 2: Create a Flow in the App with the REST Trigger (Receive HTTP Message)

Every app must have at least one flow. Create a new flow with the REST trigger. The
ReceiveHTTPMessage REST trigger listens for an incoming REST request that contains the details of the
passenger who wants to book a flight. You configure the expected fields for the request in the REST trigger
in JSON schema format.

Follow these steps to create a flow:

1. Click Create. The Flow option is selected by default in the Add triggers and flows dialog.

2. Enter FlightBookings in the Name text box and optionally a description for the flow in the
Description text box and click Create.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

12

Add triggers and flows

Create new Flow details
Name *
FlightBookin
S Flow & 9 gs
@ Trigaer Description
ex: Run this at the end of each pay period
Start with

{...} Swagger Specification
@ GraphQL Schema

Gee gRPC Protobuf

/

3. Click Start with a trigger.

How can | help you get started? —

o, -
& -l
Start with a trigger Configure flow inputs and outputs

4. Click the Receive HTTP Message card in the Triggers catalog.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Select existing trigger

Add new trigger

Triggers catalog

Q, Search trigge

Receive HTTP Message
1) Aug 11, 2020, 2:21:22 PM

TIBCO Software Inc.

Receive Salesforce Message

May 20, 2020, 10:26:41 AM

TIBCO Software Inc

{f Receive SugarCRM Message
é Feb 19, 2020, 11:58:20 PM

Cancel

13

5. In the Configure trigger: ReceiveHTTPMessage dialog, do the following:

Select existing trigger

Add new trigger

Configure trigger |__T;| ReceiveHTTPMessage

Step 1
Configure Using API Specs
True Q) False
Method
POST

Resource Path

/FlightBookings
Request Schema

(@)
3 |["Cost™ . @,

4 | "DepartureDate" :
5 | "DeparturePoint” :

"2017-85-27",
"string",

< Back

Select POST as the Method.

b. Enter /FlightBookings in the Resource path text box.

re
K Receive Lambda Invocation
{j Aug 4, 2020, 2:58:16 AM
1.2.0 TIBCO Software Inc.
l»l.«. Receive SQS Message
% may 14, 2020, 1:32:48 PM
1.0.0 TIBCO Software Inc
K 53 Bucket Event Lambda Trigger
{j Aug 4, 2020, 2:58:16 AM v
Step 1 of
FS
v
‘ﬁ
-~
-

c. Enter the following schema that an incoming request must adhere to in the Enter a JSON Schema
or an example of your JSON message box:

{
"Class" "string",
"Cost" : O,
"DepartureDate" "2017-05-27",
"DeparturePoint" "string",
"Destination" "string",
"FirstName" "string",
"Id" : 0,
"LastName" "string"

}

‘ Make sure to use straight quotes when entering the schema elements and values.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

d. Click Continue.

14

6. Select Copy Schema when prompted as shown below.

Copy schema

Just add the trigger

The schema that you entered when creating the trigger automatically gets copied to the following
locations when the trigger is added:

« Flow input in the Input Settings tab of the Flow Inputs & Outputs accordion tab.

o Itis displayed in a tree format in the Map to Flow Inputs tab of the trigger. This allows you to map
the elements from the trigger output to flow input elements, such that the trigger output feeds into

the flow input.

o The Reply Settings tab of the trigger, if the trigger has a reply. In the next step, you map the flow
output schema elements to the trigger reply. By doing so, you send the output from the flow back to
the trigger such that it becomes the trigger reply.

A new flow is created attached to a REST trigger.

Your flow should look similar to the following:

FlightApp

FlightBookings

Schemas

@ Properties

Input

Define Params for Input

JSON Schema View List View

Output

9
18
11

13
14
15

17
18
19

21
22
23

25
26

ML

1
2
3
4
o
6
7
3

12 -
16 -
28 -

24 -

"type"”: "object",
"title": "ReceiveHTTPMessage”,
"properties”: {
“headers": {
"type": “"object”,
"properties”: {
“"Accept”: {
“type": "string"”,
"visible": false
Iy
"Accept-Charset™: {
“type”: "string”,
“visible": false
s
"Accept-Encoding”: {
“type": "string”,
“visible": false
}s
"Content-Type": {
“type": "string”,
"visible™: false
IS
"Content-Length™: {
“type": "string"”,

<
|
=)
=
=
b=
c
2
o
Q
=
o
c
&

7. Collapse the Flow Inputs & Outputs accordion tab by clicking the left-facing arrow above the tab name

in the blue vertical bar.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

15

Step 3: Map Trigger Output to Flow Input

When TIBCO Cloud Integration - Flogo (PAYG) receives a flight booking request from a passenger (a REST
request), the data from the request is output by the ReceiveHTTPMessage REST trigger. For the request to
be processed, this output must be consumed by the flow in the form of flow input. Hence, you must map
the trigger output to the flow input.

To do so, follow these steps:

1. Click the REST trigger on the top left corner of the flow to open its configuration dialog.

2. Click the Map to Flow Inputs tab.

3. Click headers under Flow Input, then click $trigger > headers under Trigger Output to map the
headers.

4. Click body under Flow Input, then click $trigger > body to map the elements under body.
5. Click Save.

Step 4: Map Flow Output to Trigger Reply

When the flow has finished executing, its output must be sent back to the trigger for the trigger to send a
reply to the REST request initiator. Hence, the flow output data must be mapped to the trigger reply which
returns the result of the flow execution to the REST request initiator.

To map the flow output to the trigger reply:

1. Click the Map from Flow Outputs tab.

a. Click the code under Trigger Reply to open the mapper.
b. Click $flow > code under Flow Output.

c. Click data under Trigger Reply.

d. Click $flow > data under Flow Output.

e. Click Save to save your changes.

f. Click x to close the dialog.

The flow should look like the following:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

16

FlightApp
FlightBookings © Properties

‘ Schemas

=
hut
o
=
3
s
=
&
=
o
<
s
o
£
&

Step 5: Add a Log Message Activity to the Flow

The flow uses the LogMessage activity to log an entry in the app logs when the trigger receives a request
from the passenger that reaches the trigger in the form of a REST request.

Follow these steps to add a LogMessage activity:

1. Add anew LogMessage activity from the General tab and configure it. To do so,

a. Hover your mouse cursor to the right of the Flow Inputs & Outputs tab and click i + i

Ll

FlightBookings

in FlightApp

sinding g sindujmold 1]

b. Inthe Add Activity dialog, click General, then click Log Message.

c. Configure the LogMessage activity with a message to log when it receives an incoming request
from the ReceiveHTTPMessage trigger. To do so:

a.
b.

C.

Click the Input tab.
Click message to open the mapper to the right.

Configure a message to be logged by the LogMessage activity when the flow receives the input
from the request that the trigger received and passed on to the flow. To configure the message,
expand the string category under Functions and click concat(str, str2) to add this function to
the message text box.

Select str in the and replace it by entering "We have received a message from " (include
the quotes too).

Replace str2 with the last name of the passenger who booked the flight. The last name of the
passenger is passed on from the trigger to the flow. We had mapped this trigger output to flow
input in step 3 above. Hence it is now available for mapping under $flow in Upstream Output.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

To map the LastName do the following:

1. Select str2.
2. Expand $flow > body under Upstream Output.
3. Click LastName.
4. Click Save to save your changes.
General/tibco-wi-log

LogMessage

Simple Log Message Activity

17

Settings Activity Input Q a. message
1 string.concat("We have a message from ",

Input a. * message
Loop Upstream Output Q Functions
» {} headers » array
+ {2} body b boolean
a. Class » coerce
1. Ccost '
a. DepartureDate g
3 json
a. DeparturePoint
number
a. Destination »
string
a. FirstName baseB4ToString(baseBdstr)
1. 1d concat(str, str2)
a. LastName contains(str1, str2}

5flow. body. LastName)

base64ToString(base64str)

Decodes a base64 encoded string
baseddstr and returns the decode
d string.

For example:
string.base64ToString("SGVsbGas|
Fdvemxk") == Hello, World

d. Click the x on the upper right side of the LogMessage box to close it. The LogMessage activity is

added to the right of the Flow Inputs & Outputs tab.

Your flow should now look like the following;:

FlightApp

@q Properties ‘ Schemas

FlightBookings

[togMesssge

—
i
a
=
=
o
=
&
-
o
=
5
o
=
&

Step 6: Add the First Branch and Configure It

We want the flight seat booking to be based on the last name of the passenger. If the last name is "Jones" we
want to book the passenger in the Business Class. If the passenger's last name is anything other than
"Jones", we want the passenger's seat to be booked in the Economy class. To accomplish this, use the
conditional branching feature in TIBCO Cloud Integration - Flogo (PAYG). Add a branch from the

LogMessage activity.

Do the following to add a branch and configure its condition to accept any last name:

1. Hover your mouse cursor over the LogMessage activity and click ¢_°.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

18

LogMessage
%‘Cf
Add Branch
The branch gets added with the Add Activity dialog open.
. Click the x on the upper right corner of the Add Activity dialog to close it.
. Add a Return activity to the branch. To do so,

Hover your mouse cursor to the end of the branch and click the (i + i) icon.

a.

b. Scroll to the Default category and click it.

c. Click the Return card to add the activity.

d. Click the x to close the configuration dialog. You must now configure the Return activity with a

condition to read the last name of the passenger.

. Hover your mouse cursor to the end of the branch until you see a button with three dots placed
horizontally.

LogMessage

Click the button to expose the following options:

E
i

Click (¢). The Branch Mapping Settings dialog opens.

Select the Success with condition branch condition.

1. Click condition to open the mapper on the right.
2. Configure the branch condition with a regular expression that accepts all last names.
1. Expand the string category under Functions and click regex(pattern, str) to add this function to
the condition text box.
2. Replace pattern in the expression by manually entering " . *" (include the quotes too).

3. Replace str in the function with the last name that is mapped from the flow output under
Upstream Output. To do so, expand $flow > body and click on LastName.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Branch Mapping Settings
LogMessagetoReturn

Select a condition type for this branch:

19

‘ ° Success g: Success with condition v ° Error
Activity Input Q @ condition <
1 string.regex(".*", $flow.body.LastName) B
@D * condition
stream Outr T
Upstream Qutput Functions Q regex(pattern, str)

s whether a regular expre
pattern matches a string.
For example:

string.regex(

= "seafood")
=> frue

infeger(strl
- {} body gerstri)
astindex(str, substr)
a. Class
len(strl)
1. Cost
length(str)
a. DepartureDate lowerCase(str)
. DeparturePoint matchRegEx(expression, str)
a. Destination gex(pattern, str)
a. FirstName repeat(str, count)
1. Id replace(str, old, new, count)
cebllistr o |
a. LastName replacedll(str, old, new)

4. Click Save.

5. Configure the Return activity for the branch to output the flow results if this branch executes (when the
passenger's last name is anything but Jones). To configure the activity, follow these steps:

@R L=

Click on the Return activity to open its configuration.
Expand data under Flow Outputs.

Click code to open the mapper and enter 200 in the text box.
Expand data under Flow Outputs.

Click Class and enter "Economy".

I__l Default/floge-return
Jes Return

Simple Return Activity

Map Outputs Flow Outputs Q {} data a. Class

y Economy™

1. code
® {} data Upstream Output
a. Class
» {3 $flow
1. Cost

a. DepartureDate

a.. DeparturePoint

o

.. Destination

Expand $flow > body under Upstream Output.

Q Functions

b array

» boolean
b coerce

» datetime
» float

» json

» number

s chinn

One by one, map all remaining elements of the flow outputs under data (Cost, DepartureDate,
DeparturePoint, Destination, FirstName, and LastName) except Id, by first clicking on them under
data and then clicking on the corresponding element under body. Do not map Id.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

20

8. Click Id under data to configure it.
9. Expand the number category under Functions and click random().

10. Enter 999999 as an input parameter to the random() function.

E‘ Default/flogo-return - x
~+m Return

Simple Return Activity

Map Outputs Flow Outputs Q o
1. code
= {} data
U Functions -
Q Q len(input)
a. Class
v {} sflow array Return length of string
1. Cost For example:
» {3} headers agisan number.len("123") => 3
a. DepartureDate L5 {} body coerce

a. DeparturePoi i float

»
»
»
» datetime
»
. Cost
»

Json

o
o
@
a
=
=3

- DepartureDate

number
- DeparturePoint

popopop o

intB4(input)

- Destination len{input)

)

. FirstName andom()

a. LastName

| ot

. 1d

string

a. LastName » utility
> utlls
11. Click Save.
12. Click x to close the dialog.
Your flow should continue to look like this:
FightBookings (e roperis | [srems | 3

1
H
<
&
1S
2
&

Step 7: Add a Second Branch to Check for Last Name "Jones"
The second branch you add from the LogMessage activity checks the LastName element in the incoming

request to see if it is "Jones". If the passenger's last name is "Jones", the passenger's seat is automatically
upgraded to Business Class.

The string for the last name is case sensitive. So, "Jones" is viewed as different from "jones".

To add a second branch from the LogMessage activity, follow these steps:

1. Hover your mouse cursor over the LogMessage activity and click ¢_¢.

I:E LogMessage

%ﬁ

Add Branch

The branch gets added with the Add Activity dialog open.

2. Click the x on the upper right corner of the Add Activity dialog to close it.
3. Add a Return activity. To do so,

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

21

a. Hover your mouse cursor to the end of the branch and click the (é S E) icon.

b. Scroll to the Default category and click it. o

c. Click the Return card to add the activity.

d. Click the x to close the configuration dialog. You must now configure this branch with a condition

to read the last name of the passenger and check to see if it is "Jones".

Hover your mouse cursor to the end of the branch until you see a button with three dots placed
horizontally.

Click the button to expose the following options:

|
f o |
|
|

Click (¢). The Branch Mapping Settings dialog opens.
Select the Success with condition branch condition.

Configure the condition for the branch to check if the last name ends with "Jones".

&

‘ The string for the last name is case sensitive. So, "Jones" is considered different from "jones".

1. Click condition to open the mapper.

2. Expand $flow > body under Upstream Output.

3. Expand the string function group and click endsWith(str, substr).
4. Replace str by manually typing "Jones" (include the quotes).

&

5. Select substr, then click LastName under body. This replaces the str with the last name extracted
from the output of the ReceiveHTTPMessage trigger.

‘ The string for the last name is case sensitive. So, "Jones" is viewed as different from "jones".

Branch Mapping Settings

LogMessagetoReturni

Select a condition type for this branch:

° Success

Success with no matchin
9 Success with condition v @ . 9
o @~ condition

‘ ‘ ° Error

Activity Input

Q

@ condition s
1 string.endsWith("Jones”, $flow.body.LastMame}

@D ~ condition

Upstream Output

» {} body
a. Class
.. Cost
- DepartureDate

- DeparturePoint

. FirstName

1

a

a

a.. Destination
a

1. id

a

- LastNare

ngfions
contains(strl, str2)
containsAny{str, substr)
countfstr, substr)
dateFormat()
datetimeFormat()
EndsWith(str, substr)
equals(str1, str2)
equalsignoreCasefstrl, str2)
flaat(str], 16)

index(str, substr)

equalslgnoreCase(str1, str2)

check if two strings are equa

ignoring case

== fr

signoreCase("Hello","hello")

Caqze‘ E

TIBCO Cloud™ Integration -

Flogo® (PAYG) User's Guide

6. Click Save.

22

6. Configure the Returnl activity to send the flow results back to the trigger if the second branch executes
(it executes when the passenger's last name is Jones).

Click Return1 to open its configuration dialog.

a
b. Expand data under Flow Outputs.

n

&

L—I Default/flogo-return
<o Returnl

Simple Return Activity

Click code and enter 200 in its text box.

Click Class under data and enter "Business Class" (include the surrounding double quotes).

a.

1s

a.

a.

a.

Map Outputs Flow Qutputs

1. code

@ {3 data

Class

Cost

DepartureDate

DeparturePoint

.. Destination

.. FirstName

. Id

LastName

{} data a. Class
1_''Business Class"

Upstream Output Q Functions
« {3 sflow b array
» {} headers » boolean
%0} booy » coerce
b datetime
a. Class
» float
1. Cost
» json
a. DepartureDate
] b number
a. DeparturePoint b string
a. Destination b utility
a. FirstName b utils
1t
a. LastName

e. Expand $flow > body under Upstream Output.

f. Map all remaining elements under data (Cost, DepartureDate, DeparturePoint, Destination,
FirstName, and LastName) except Id, by clicking on them one at a time and then clicking on the

corresponding element under body. Do not map Id.

aq

Click Id under data to configure it.

h. Expand the number function and click random().

i. Enter 999999 as the input to the random() function.

ri Default/flogo-retumn
= Returnl

Simple Return Activity

j. Click Save.

Map Outputs Flow Outputs

a.

1.

a.

o

1. code

@- {} data

Class

Cost

DepartureDate

- LastName

Q

{} data 1 d

1 number. random(399999)

Functions

v {3} stlow » array
v {3 headers » boolean
v {} body » coerce
a. Class b datetime
» float
1. Cost
b json

a. DepartureDate
£ number

a. DeparturePoint intB4(input)

a. Destination len(input)

a. FirstName random()
1. id » string
a. LastName L

b utils

len(input)

Return length of string
For example:
number.len("123")=>3

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

23

k. Click x to close the dialog.
Your flow should look like the following:

FlightApp

l Schemas

FlightBookings © Properties

=
- [T LogMessage
=
=
Qo
=
&
%
=} =
E- -.-l Return
©
=
&
== Returnl

Step 8: Validate the App

Your app is now ready. Before you push the app to the cloud, be sure to validate all the flows to confirm
that there are no errors or warnings. To do so click the Validate button. TIBCO Cloud Integration - Flogo
(PAYG) validates each flow and activity within the flow. If there are any errors or warnings, you see the
respective icons next to the flow name or activity tab which contains the error or warning.

On successful validation, you get the following message:

V The validation was completed successfully

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

App Development

24

TIBCO Cloud Integration - Flogo (PAYG) offers a wizard driven approach to app development. You can
create apps in TIBCO Cloud Integration - Flogo (PAYG) using only a browser. It is powered by Project
Flogo™, a lightweight integration engine.

For more information about Project Flogo™, go to http://flogo.io.

‘ Editing the same app in two browser tabs is not supported.

Creating and Managing a Flogo App in the Web Ul

This section describes how to create and manage Flogo apps.

Creating a TIBCO Flogo® App

You can create a Flogo® App from the Apps page.

Procedure

1. Open the Apps page.
2. Click Create/Import app.

The app details page opens. By default, the app is named in a sequential order in the format
New_Flogo_App_<sequential_ number>. For example, if you created three apps without renaming
them, then the first one has a default name of New_Flogo_App_1, the second one is called

New_Flogo_App_2 and the third one is called New_Flogo_App_3. The version of a newly-created app is
1.0.0 and is displayed as v: 1.0.0 beside the name of the app. You can edit the version of the app. For

more information, refer to Editing the Version of an App.

3. Edit the app name to a meaningful string. To do so, click anywhere within the app name and edit it,
then click anywhere outside the text box to persist your change.

& The app name must not contain any spaces. It must start with a letter or underscore and can

contain letters, digits, periods, dashes, and underscores.
4. Click Create.

The card for an app type is disabled if the plan you purchased does not entitle you to create

& certain types of apps such as BusinessWorks app, Flogo app, Mock app, or Node.js app, or use

certain capabilities within an app type.

You can now create one or more flows for the app. See the Creating a Flow topic and its sub-topics for

details on creating a flow.

Creating an App from a Saved Specification

If you have an existing specification saved in either the TIBCO Cloud™ Integration - API Modeler or on
your local machine, you can use the specification to create a Flogo App. Currently, TIBCO Cloud

Integration - Flogo (PAYG) supports app creation using a Swagger Specification 2.0, OpenAPI Specification

3.0, GraphQL Schema, or gRPC Protobuf.
The specification must exist prior to creating the Flogo App.

Refer to the appropriate topics under the Building APIs section for information on how to create a Flogo
App using the specification:

Using an OpenAPI Specification
Using GraphQL Schema

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

http://flogo.io

25

Using gRPC

Validating your App

After you have created the flows in your app, you must validate the app before you push it to the cloud.
To validate your app, click the Validate button on the app details page. This validates each flow and

activity. If a flow or activity has an error, it displays an error or warning icon on the top right corner of the
flow or activity.

TIBCO Cloud Integration - Flogo (PAYG) does not retain the results of the previous validation if you
navigate into a flow after you have validated the app. For example, if two of your flows have errors, and

& you navigate into one of those flows to fix the error, when you get back to the app detail page, the results of
the second flow validation are lost. If you navigate into a flow after you have validated the app, you must
validate the app again irrespective of whether you have made changes to the flow or not.

Refer to Viewing Errors and Warnings section for more details.

Editing a TIBCO Flogo App
You can edit your Flogo® App from the Apps page. You can edit flows, triggers, and so on.

o ‘ Editing the same app in two browser tabs is not supported.

Renaming an App
You can rename an existing app.
To rename an existing app, do the following:

Procedure

1. Open the app details page by clicking the app name.

2. Click anywhere in the app name and edit the name.

Q'.. | BrandNewApp |

b e Ao] L A
DEVELOF Last modified at 22 Ap:

3. Click away from the app name to persist your changes.

Editing the Version of an App

When you create an app, the default version of the app is 1.0.0. You can edit the version of an app.
The format of a valid app version is:

XXX . XXX .XXX

& ‘ Alphabets or special characters are not allowed in an app version.

Some examples of valid app versions are:

1.1.1
11.22.13
111.222.333

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

26

Procedure

1. Open the app details page.
Beside the name of the app, the version of the app is displayed as follows:

New_Flogo_App_<sequential_ number> v: 1.0.0
For a newly-created app, the version is 1.0.0.

2. To edit the version of the app, click on the version number and specify the new version.
The new version of the app is reflected everywhere. For example, in runtime logs.

Reverting Changes to an App
After editing an existing app, as long as you have not the app, you can revert the app to the state that it was
in after the latest . This reverts the changes you just made.
To revert your edits to an existing app before it:

Procedure

1. On the app details page, click the (3) icon to reveal the options.

2. Click . The is enabled only if you have made edits to the app after the last, but have not the app with
those edits.

Switching Between Display Views on the App Page
When you click an app name on the Apps page, the app details page opens. The flows in the app are listed
on the app details page. You have the option to view this page in the Trigger View or Flow View. By
default, it opens in the Trigger View. Click Trigger View and select Flow View from the drop-down menu
to switch to the flow view. When you are in the flow view, click Flow View and select Trigger View from
the drop-down menu to go back to the trigger view.
Trigger View

In this view, the flows are displayed attached to the trigger(s) that they use. If a flow is attached to multiple
triggers, it is attached to each trigger separately. So, you can see it multiple times on the page but attached
to different triggers. Flows that are not attached to any trigger display No trigger in place of the trigger
name.

Trigger View

Schemas

@© TimerTrigger MyFlow

Trigger View v ‘ © Properties

Impart
Exportapp »

Revert to last build
MyRESTFlow2

1 ReceiveHT... MyRESTFlow2

MyRESTFlow1

©® TimerTrigg.. MyTimerFlow

In the image above, MyRESTFlow?2 is attached to both TimerTrigger and ReceiveHTTPMessage trigger as
shown, hence it appears twice. The MyTimerTrigger flow was created with a new Timer trigger, hence it is

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

27

not attached to the top Timer trigger which has two flows attached to it and TimerTrigger appears twice on
the page.

Hovering on a trigger displays the New flow option. Click the New flow option to create a new flow to
attach the newly created flow to that trigger.

C'-) TimerTrigg...

+ New flow

Delete

Hovering over No trigger displays the Add trigger option which takes you to the triggers catalog.

@ No trigger

+ Add trigger

Flow View

In this view, each flow is shown separately and the trigger that it is attached to is shown on the extreme left
of the flow. Shown below is a Flow View representation of the Trigger View image above:

Flow View

MyFlow

§ 0O

MyRESTFlow1

)

MyTimerFlow

§ 0

MyRESTFlow2

(2]

Notice that MyRESTFlow2 shows two triggers. That is because this flow is attached to two triggers as you
can see in the Trigger View. A blank flow shows 0 triggers against it as it is not attached to any triggers.

Deleting an App
You can delete an app using the Delete app icon which appears when you hover your mouse cursor to the
end of the app row.
To delete an app:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

28

Procedure

2.
3.

On the Apps page, hover your mouse cursor to the end of the app row until the Delete app icon ()
appears.

Click the Delete app icon.
On the confirmation dialog box, click Delete app.

Result

The selected app is deleted.

Exporting and Importing an App
You can export and import apps and use them as templates to quick start development, or simply put them
in a version control system such as GitHub.

Exporting an App

Here are a few things to keep in mind before you export an app:

When you export an app, all flows in your app get exported. You cannot pick and choose flows to
export.

Passwords configured in any activity within any flow or connection in the app to be exported are
removed in the exported app. You must manually configure the credentials in the flows after importing
such apps.

Some apps created in Project Flogo™ use the any data type. The any data type is not supported in
TIBCO Cloud Integration - Flogo (PAYG). Such apps get imported successfully, but the element of type
any gets converted into an empty object. You must explicitly use the mapper to populate the empty
object with member elements.

To export an app, follow these steps:

Procedure

1. On the Apps page, click the app to open the app details page.
2. Click the hamburger menu (3).

3. Click Export.

Exporting an App's JSON File

\'r

When an App's binary is built, the . json file is embedded within the binary file. To export the . json file
from the binary file to the disk, use the following command.

. /<app-binary-name> --export app

The . json is exported as <app-binary-name>. json.

To provide a different file name to the exported . json, use the following command:

. /<app-binary-name> --export -o <new-app-binary-name>.json app

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

29

Importing an App

You can import the triggers and flows from an exported app into an existing app or into a new app. The
target app into which you want to import must exist. You can import an app by dragging and dropping
its . json file into the Web UL

& Flogo apps that are exported from TIBCO Cloud Integration - Flogo (PAYG) 2.5.0 and later cannot be
imported into previous versions of TIBCO Cloud Integration - Flogo (PAYG).

Here are a few things to keep in mind before you import an app:

If any flow in the app uses extensions developed by the community, those extensions must be available
to the target app into which you are importing, at the time of the import. Flows that make use of
extensions that are not available to the target app are not imported.

Passwords configured in any activity within any flow or connection in the app to be exported are
removed in the exported app. You must manually configure the credentials in the flows after importing
such apps.

Some apps created in Project Flogo™ use the any data type. The any data type is not supported in
TIBCO Cloud Integration - Flogo (PAYG). Such apps get imported successfully, but the element of type
any gets converted into an empty object. You must explicitly use the mapper to populate the empty
object with member elements.

When importing an app, be aware that the 1ong and double data types get converted to the number data
type.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

30

The suffixes used in the Mapper have undergone some changes, because of which you may receive a
mapper-related warning in the Import app dialog when importing an existing app. Click Continue and the
app imports successfully. After the import completes, be sure to re-map the properties in the activities that
show errors. This ensures that they switch to the new suffix format. The following table shows you the

changes in the suffixes:

Original suffix

appearing in New suffix used by the Used when
imported apps Mapper (after you re-map) For example... mapping...
activity_id.activity_par $activity[activity_id].activity ~ Old suffix: When mapping to a
ameter —paraneler $InvokeRESTService.re pa{agu#erinthe
sponseBody.userId activity's output.
Used to resolve
New suffix after re- activity params.
mapping property:
$activity[InvokeRESTS
ervice] .responseBody.
userld
$TriggerData $trigger Old suffix: When mapping from
$Tri Dat P the output of the
rregeTiata-queryrar trigger to flow input
ams.title
New suffix after re-
mapping property:
$trigger.queryParams.
title
N/A $flow is a newly

$tlow.headers.parameter
There was no
equivalent for this in
the old mapper

$tlow.body.parameter

introduced suffix which
did not have an
equivalent suffix in the
old mapper.

When mapping to
any parameter in the
flow's header or
input schema
(schema entered in
the Input tab of
Flow Inputs &
Outputs dialog)
which is the same as
the output of the
trigger, since the
output of the trigger
is mapped to the
input of the flow.

Used to resolve
parameters from
within the current
flow. If a flow has a
single trigger and no
input parameters
defined, then the
output of the trigger
is made available via
$flow.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

31

In imported apps, the passwords and secrets for any connections configured in the app do not get
imported. You must reconfigure any password or secret for the connection after the app has been
imported.

When you import an app which does not have a Return activity in any flow (main or branched flow),
the Return activity is not added automatically by default. However, if an existing app already has
Return activities in main or branched flows, the app is imported as expected.

Importing into a new or empty app

1.

Create a new app if you do not already have one. See Creating a Flogo App for details on creating an
empty app.

On the app details page, select Import app.

Navigate to or drag and drop the . json file for the app that you want to import.

Click Upload. The Import app dialog displays some generic errors and warnings as well as any specific
errors or warnings pertaining to the app you are importing. It validates whether all the activities and
triggers used in the app are available in the Extensions tab.

You have the option to import all flows from the source app or selectively import flows.

o Import all - To import all the triggers and flows in the app, select Import All If any activities or
triggers are missing in the Extensions tab, the import process ignores the flows that contain those
activities resulting in those flows not being imported. If the existing app already has activities or
triggers with the same name as the ones you are importing, you see a warning that they will be
overwritten. If you do not want to overwrite the flows, you can click Back and clear the selection
then click Next. If you do so, the duplicate flows that you de-selected will not get imported. You
have the option to rename the flows in the Web Ul and export the app and re-import it.

e Selective import - Select Selective Import, to import only specific triggers and flows from the app.
The Import app dialog displays a list of triggers with a check box next to each one. If any activities
or triggers are missing in the Extensions tab, the activities or triggers missing in the Extensions tab
are not listed in the Import app dialog, hence you will not be able to select them to import. By
default, all check boxes are selected. Clear the check box next to the triggers that you do not want to
import. All flows associated with the selected trigger(s) get imported by default. If you do not select
a trigger, the flows and their subflows associated with the unselected trigger(s) are listed in the next
screen.

Click Next.

If you had not selected a trigger in the previous dialog, the flows associated with that trigger are
displayed. You have the option to select one or more of these flows such that the flows get imported as
blank flows that are not attached to any trigger. By default, all flows are selected. Clear the check box for
the flows that you do not want to import. If your flows have subflows, and you select only the main flow
but do not select the subflow, the main flow gets imported without the subflow. Click Next.

Importing into an app that has existing flows

When importing the app into another app that has existing flows, keep the following in mind:

If the existing app already has flows, activities or triggers with the same name as the ones you are
importing, a warning is displayed. You can opt not to import those flows, activities, or triggers. You can
go back and rename them in the Web UI and export the app again and re-import it.

If any of the flows that were imported with the app had credentials such as a password or a connection,
be sure to re-configure them.

Open the app details page by clicking the app name.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

32

2. Click the hamburger menu ($) and select Import.
3. Navigate to or drag and drop the . json file for the app that you want to import.

4. Click Upload. The Import app dialog displays some generic errors and warnings as well as any specific
errors or warnings pertaining to the app you are importing. It validates whether all the activities and
triggers used in the app are available in the Extensions tab.

5. You have the option to import all flows from the source app or selectively import flows.

o Import all - To import all the triggers and flows in the app, select Import All If any activities or
triggers are missing in the Extensions tab, the import process ignores the flows that contain those
activities resulting in those flows not being imported. If the existing app already has activities or
triggers with the same name as the ones you are importing, you see a warning that they will be
overwritten. If you do not want to overwrite the flows, you can click Back and clear the selection
then click Next. If you do so, the duplicate flows that you de-selected will not get imported. You
have the option to rename the flows in the Web UI and export the app and re-import it.

o Selective import - Select Selective Import, to import only specific triggers and flows from the app.
The Import app dialog displays a list of triggers with a check box next to each one. If any activities
or triggers are missing in the Extensions tab, the activities or triggers missing in the Extensions tab
are not listed in the Import app dialog, hence you will not be able to select them to import. By
default, all check boxes are selected. Clear the check box next to the triggers that you do not want to
import. All flows associated with the selected trigger(s) get imported by default. If you do not select
a trigger, the flows and their subflows associated with the unselected trigger(s) are listed in the next
screen.

6. Click Next.

If you had not selected a trigger in the previous dialog, the flows associated with that trigger are
displayed. You have the option to select one or more of these flows such that the flows get imported as
blank flows that are not attached to any trigger. By default, all flows are selected. Clear the check box for
the flows that you do not want to import. If your flows have subflows, and you select only the main flow
but do not select the subflow, the main flow gets imported without the subflow.

7. Click Next.

Importing flows without importing the triggers that they are attached to

1. Select Selective Import when importing the app.

2. Clear the check box for the triggers that you do not want to import.
3. Click Next. A list of flows is displayed.
4

. Select the flows that you would like to import and click Next. The flows are imported as blank flows
without being attached to a trigger.

Handling connections when importing an app

Each connection in TIBCO Cloud Integration - Flogo (PAYG) contains a unique internal ID. The IDs are not
exposed in the Web UI and are unique based on the user who created them.

When TIBCO Cloud Integration - Flogo (PAYG) compares connections, it does so by comparing their
internal IDs. It considers two connections identical if they have the same connection type and same
connection ID. It considers two connections as similar if they have the same connection type, but different
connection ID.

Hence, if the app you are importing was not created by you, then any connections used in that app can not
have the same ID as any existing connection of the same type that you might already have in your
installation of TIBCO Cloud Integration - Flogo (PAYG). For example, if you import an app created by some
other user that has some Salesforce connections, even though your installation of TIBCO Cloud Integration
- Flogo (PAYG) might already have some existing Salesforce connections, the connections are considered

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

33

similar, because they are of the same type (Salesforce) but not identical because they do not have the same
ID because they were not created by the same user.

When importing an app containing a connection, if your target app has an existing connection with an
identical internal ID as the connection in the app being imported, a new connection does not get created.
The imported app uses the existing connection in such a case. The connection credentials do not get
exported with the app. If a new connection gets created, you must re-configure the connection credentials
after the app has been imported.

Keep the following in mind when you import an app with connections:
Import all
If you had selected Import all when importing the app, you have the following options:

o If you are the owner who created the app to be imported, if identical connections exist in your
environment, the existing connections are automatically re-used.

o If identical connections do not exist, then new connections get created without passwords. You must set
the password for such connections after the app has been imported.

o If there are similar connections (same type but different IDs) in the host app, TIBCO Cloud Integration -
Flogo (PAYG) does not re-use those connections. It creates new connections without passwords. You
must set the password for such connections after the app has been imported.

Selective import

If you chose to do a selective import when importing an app, the Import app dialog lists the connections
that are used in the flows and triggers that you selected for import in the app to be imported. It displays a
drop-down menu next to each connection. You have the following options:

» If you have any existing identical connections (same connection type and same connection ID) in the
host app, that connection is automatically selected in the drop-down menu next to the connection. You
have the option to re-use the existing identical connection by leaving it pre-selected.

o If there are any similar connections in the host app (same connection type but different connection ID),
you can select the similar connection from the drop-down menu next to it.

* You always have the option to select Create new connection from the drop-down menus for any of the
connections. TIBCO Cloud Integration - Flogo (PAYG) creates new connections with no passwords. You
must manually create a password for the new connection after importing the app.

Resolving Missing Activities and Triggers

When you import an app that contains one or more activities or triggers that are not installed in your
environment, you see a warning in the Import App dialog.

When importing an app that has a connection configured in it, but the connector is not installed in your
environment, after you install the connector, the connection configuration field values of type SECRETS are
& retained post installation as long as they were not configured using application properties. If you had
configured your SECRETS as application properties, you will need to reconfigure them after installing the
missing connector. This is because all application properties in the app are wiped out when the app is
imported.

To resolve missing activities or triggers for which TIBCO provides connectors

When an activity or trigger used in an app being imported is missing from your TIBCO Cloud Integration -
Flogo (PAYG) environment, the flows in the app get imported, but you see a warning in the Import App
dialog.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

34

Errors and warnings

The Connector AWSKINESIS iz used in your application but not installed. Some activities and/or trigger
from this connector used in flows. The application will be imported but will not work until you install the
required Tibco extension. Check connector installation guide.

When you validate your app by clicking on the Validate button in the app details dialog, you see an error

marker (%3) next to the flow name. This indicates that one or more activities or triggers are missing. The
number next to it indicates how many activities or triggers that are missing appear in the flow. When you
click on the missing activities or triggers, you are prompted to refer to connector installation guide.

3 Do not upload a TIBCO connector using Upload Extension. For more information on how to install a
TIBCO connector, refer to connector installation guide.

This is also true when you copy an app into the designated folder (the folder you specified when you
started your Web UI) for your apps on your local machine.

To resolve your custom activities or triggers that are missing

When one or more of your custom activities or triggers used in the app being imported are missing from
your TIBCO Cloud Integration - Flogo (PAYG) installation, you see a warning in your Import App dialog
similar to the following:

Errors and warnings

Custom extension github.com/project-flogo/contrib/activity/xml2json is used in your application
but not installed. The application will be imported but will not work until you install the required custom
extension.

Once the app is imported, you see an error marker (5) next to the flow name. After you install the
missing activity of trigger, this marker goes away. The number next to the error indicates how many
activities or triggers are missing in the flow.

To install the missing custom activities or triggers, do the following:

1. Click the flow name to open the flow details page. The Upload an extension dialog opens. You upload
custom activity or trigger from the Git repository, hence only the From Git repository option is enabled.

2. Click From Git repository. The Git repository URL text box is pre-populated.

3. Click Import. TIBCO Cloud Integration - Flogo (PAYG) downloads the activity or trigger from the Git
repository and uploads it into your Extensions tab. Refer to the section, Uploading Extensions for
details on this option.

App File Persistence
Your Flogo app files get persisted to the directory that you specify on your local machine. You can use an
external source control system such as Git or SVN to store your apps. You can then check in and check out
your apps locally from the remote repository. This makes it possible for you to implement the Continuous
Integration/Continuous Deployment (CI/CD) pipeline by leveraging any tool available in the market to
integrate your app development with the app deployment.

When you start the Flogo Web U, you are prompted to point to the directory where you have checked out
your apps. If you do not provide any path, the apps are stored in the default directory which is:
<FLOGO_HOME>/data/localstack/apps.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

35

If you restart your Web U], at the Web Ul restart, if you want to continue using the same directory that you
had specified, click Enter on your keyboard when it prompts you to set the path. It stores your path
preference that you set the last time.

After the Ul starts, you should be able to see all your apps on the app list page in the UL From this point on,
when you create a new app or make a change to an existing app, the changes are saved to the directory
location that you provided when starting TIBCO Cloud Integration - Flogo (PAYG).

Each app that you store on your local machine has its own folder and the folder name must be identical to
the app name. If another user makes changes to your app, you must sync your local repository with the
remote repository (do a pull) in order to get the changes made by that user.

o The app file name must be called flogo. json.

» The folder name containing the app must be identical to the app name appearing in the flogo. json file
for the app.

Loading new apps from the disk - When a new app is added to the directory, refreshing the browser loads
the app into the Web UI. You do not need to restart the Web UL

Loading updated app from the disk - In case the flogo. json on the disk is updated (due to minor changes
or checkout newer version from the source control system), click the Reload from Disk to load updated
app into the Web UL Be aware that this action overrides existing changes in the app. Reload from Disk
option is available under the hamburger menu that is next to the other buttons on the app page.

If another user adds a new app to your remote repository, the app gets downloaded to your local repository
when you do a pull from the remote repository. For the new app to display in your TIBCO Cloud
Integration - Flogo (PAYG) Web UlI, you must refresh your browser. You do not need to restart either the
browser or TIBCO Cloud Integration - Flogo (PAYG).

You can import any exported app to TIBCO Cloud Integration - Flogo (PAYG). To do so, create a folder with
an identical name as the app name in your local repository, then copy the flogo. json file for the app to the
folder. For apps that are created in the Web UI, TIBCO Cloud Integration - Flogo (PAYG) automatically
generates a unique ID for each app. But, if you load an existing flogo. json file, the app may or may not
have an app ID defined in it. TIBCO Cloud Integration - Flogo (PAYG) checks to see if an ID exists in the
flogo. json file for the app. If an ID does not exist for the app, TIBCO Cloud Integration - Flogo (PAYG)
generates a unique ID and adds an ID attribute in the flogo. json file before loading the app.

Note the following:
» If you change the ID of the app in your flogo.json file, you see a duplicate app in the Web UI. Refresh

your browser to fix this issue. If you continue to work on the app with old app ID, your changes are lost
when you restart the Web UL

o All apps that exist in the path that you provided during TIBCO Cloud Integration - Flogo (PAYG)
installation get loaded in the Web UI You cannot selectively choose the apps to be loaded in the Web UL

» Any Launch Configurations (containing your test data for the app) associated with the app are stored in
the <app_folder> > test folder along with the flogo. json file for the app.

» File permissions - You must have "write" permission for the app directory on your local machine.
Otherwise, the app is not loaded and displayed in the Ul. An error is displayed in the log located in
<FLOGO_HOME>/<FLOGO_VERSION>/logs/studio.logs.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

36

» When importing an app, if any extensions are missing, a broken plug-in icon is displayed on the missing
activity.

» If the app has any missing extension or if a connector uses the associated connection, you see the
connection post installation of the missing extension or connector.

e If you add an app to your local application repository, if that app has any missing extension, after
uploading the missing extension, the connection in the extension maintains the secrets and passwords
that were already configured in the connection for the app. Refer to Resolving Missing Extensions
section for details on how to resolve missing extensions in an app.

* You may notice change in secret encrypted values in flogo. json after opening the apps in Web UL This
does not affect the run time.

e We recommend that you do not modify flogo. json manually to avoid any mishaps.

e When upgrading to TIBCO Cloud Integration - Flogo (PAYG) the current version from an older TIBCO
Cloud Integration - Flogo (PAYG) version, the existing apps automatically get migrated to the directory
that you have created on your local disk. You do not need to migrate them manually.

» If your application repository gets deleted while in use, you must restart the Flogo Web UI and set a
new application repository. Do not continue to work with the deleted repository. Also keep in mind that
even if you recreate a directory with the same name, your changes do not take effect until you restart the
Web UL

Creating Flows and Triggers

Flows

An app can have one or more flows and a flow can be attached to one or more triggers.
Flows

Each flow represents specific business logic in an app. A flow contains one or more activities. The flow
execution is started by a trigger. A new flow can be created only from the app details page.

Triggers

You have the option to create a trigger without creating a flow. You can create a trigger from an existing
specification that you have saved in either the TIBCO Cloud™ Integration - API Modeler or on your local
machine. Optionally, you can create a trigger when creating a flow by selecting the Start with a trigger
option during flow creation. A trigger can have multiple flows attached to it.

This section contains information on creating and managing flows in your app.

Creating a Flow

Every app has at least one flow. Each flow can be attached to one or more triggers. You have the option to
begin by creating a blank flow (flow without a trigger) too and attaching the flow to one or more triggers at
a later time. Use the Create link on the app details page to create the first flow in an app. If there are
existing flows in an app, click the Create button to create additional flows.

Prerequisites
Before creating a flow that uses connectors, make sure that you have created the necessary connections.

If an app has multiple triggers that require a port to be specified, for example, REST and/or GraphQL
triggers, make sure that the port number is unique for each trigger. Two triggers in the same app cannot run
on the same port.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

37

For flows that are attached to multiple triggers, you cannot disable a trigger, specify a particular trigger to
execute, or specify the order in which the triggers execute. When a flow executes, all triggers get initialized
in the order that they appear within the flow.

The output of a trigger provides the input to the flow. Hence, it must be mapped to the flow input. When
creating a flow without a trigger, there must be a well-defined contract within the flow which specifies the
input to the flow and the output expected after the flow completes execution. You define this contract in the
Flow Inputs & Outputs dialog. The Flow Inputs & Outputs contract works as a bridge between the flow
and the trigger, hence every trigger has to be configured to map its output to the Input parameters defined
in Flow Inputs & Outputs. You do this in the Map to Flow Inputs tab of the trigger.

Likewise, for triggers such as the ReceiveHTTPMessage REST trigger that send back a reply to the caller,
the trigger reply must be mapped to the flow outputs (parameters configured in the Output tab of the Flow
Inputs & Outputs accordion tab). You do this mapping in the Map from Flow Outputs tab of the trigger.

A Return activity is not added by default. Depending on your requirements, you must add and configure
the Return activity manually. For example, if any trigger needs to send a response back to a server, its
output must be mapped to the output of the Return activity in the flow.

The Map Outputs tab of the Return activity displays the flow output schema that you configured in the
Output tab of the Flow Inputs & Outputs accordion tab. The Map from Flow Output tab of the trigger
constitutes the trigger reply. This tab also displays the flow output schema that you configured in the
Output tab of the Flow Inputs & Outputs accordion tab.

You must do the following when using a ReceiveHTTPMessage REST trigger:
* Add a Return activity at the end of the flow.

e In the Map Outputs tab of the Return activity, map the elements in the schema to the data coming from
the upstream activities.

e In the Map from Flow Output tab of the trigger, map the trigger reply elements to the flow output
elements.

Follow these steps to create a flow:

Procedure

1. Click an app name on the Apps page in TIBCO Cloud Integration - Flogo (PAYG) to open its page.

2. Click the Create link if this is the first flow in the app. If one or more flows exist, click the Create button.
The Add triggers and flows dialog opens.

3. Enter a name for the flow in the Name text box.
Flow names within an app must be unique. An app cannot contain two flows with the same name.

4. Optionally, enter a brief description of what the flow does in the Description text box. The Flow option
is selected by default.

To create a flow from a specification, select the specification under Start with and refer to the
appropriate section under Building APIs.

5. Click Create.
You will be prompted to select one of the following options:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

38

How can | help you get started? —

o

",
& i)
Start with a trigger Configure flow inputs and outputs

o Start with a trigger - If you know the trigger with which you want to activate the flow, select this
option. If this is the first flow, the Trigger catalog opens. Select a trigger from the catalog. Refer to the
appropriate section under Starting with a Trigger for more details on the type of trigger that you
want to create. If there are existing flows attached to triggers, you get a dialog that gives you an
option to either use an existing trigger or use a new trigger that has not been used in an existing flow
within the app.

o Configure flow inputs and outputs - Select this option if you know the algorithm for the flow, but
do not yet know the circumstances that will cause the flow to execute. It will create a blank flow that
is not attached to any trigger. Flow inputs and outputs create a contract between the trigger and the
flow. When you create a trigger, you must map the output of the trigger to the input of the flow. This
contract serves as a bridge between the trigger and the flow. You have the option to attach your flow
to one or more triggers at any later time after the flow has been created.

A flow gets created. If you selected Start with a trigger, the flow is attached to the trigger you selected.
If you selected Configure flow inputs and outputs, a blank flow without a trigger gets created.

Selecting a Trigger When Creating a New Flow

When creating a new flow, you have the option to either select an existing trigger or select one from the
triggers catalog.

Trigger configuration fields are categorized into two groups as explained below. A single trigger can be
associated with multiple handlers.

o Trigger Settings - these settings are common to the trigger across all flows that use that trigger. If and
when a flow attached to the trigger changes any Trigger Settings field, the change gets propagated to all
flows attached to the trigger. A warning message gets displayed saying so and asking you to confirm
before the changes are committed.

o Handler Settings - these settings are applicable to a specific flow attached to the trigger. Hence, each
flow can set its own values for the Handler Settings fields in the trigger. To do so, open the flow and
click on the trigger to open its configuration dialog. Click the Settings tab and edit the fields in the
Handler Settings section.

Deciding when to create a new trigger when there is an existing trigger of the same type

There may be cases when a specific type of trigger already exists, for example, there might be a REST
trigger that already exists. When creating a new REST flow, you will be prompted to select the existing
REST trigger or create a new trigger by selecting it from the triggers catalog. If you want a REST trigger
with a different trigger setting than the one that already exists, maybe a different port or different security
options, you must select the Create new option and select the trigger from the ensuing trigger catalog. This
will create a new REST trigger and attach your new flow to it.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

39

Starting with a Trigger

@

When creating a new flow, if you know the circumstances under which you want the flow to activate, select
Start with a trigger option and select an available trigger that will activate the flow.

If an app has multiple triggers that require a port to be specified, for example, REST and/or GraphQL
triggers, make sure that the port number is unique for each trigger. Two triggers in the same app cannot run
on the same port.

If you are unsure of the circumstances under which the flow should be activated, or if you want the flow to
be activated under more than one situation, use the Configure flow inputs and outputs option and attach
the flow to the trigger(s) at a later time as needed. See Creating a Flow without a Trigger for more details on
this.

Refer to the following sections for more details:
Creating a Flow Attached to a REST Trigger
Ceating a Flow Attached to a GraphQL Trigger
Creating a Flow Attached to the gRPC Trigger
Creating a Flow Attached to Other Triggers

Creating a Flow Attached to a REST (Receive HTTP Message) Trigger

When creating a flow with a REST trigger, you have the option to either enter the schema in the Configure
trigger dialog during flow creation, or you can use a Swagger 2.0 or OpenAPI 3.0 specification file that you
have saved either in TIBCO Cloud™ Integration - API Modeler or on your local machine.

If you want to use a specification file, refer to the Using an OpenAPI Specification section for details.
You can create a REST flow by entering a JSON schema or dragging and dropping an API specification
JSON file. See Using an OpenAPI Specification section for how to use a specification file.

If you modify the Reply Settings tab of a ReceiveHTTPMessage trigger, the corresponding
ConfigureHTTPResponse activities within that flow do not change appropriately. This happens specifically
when removing fields from the Reply Settings tab. Redo the mappings for the ConfigureHTTPResponse
activity.

To create a REST flow by entering the schema, do the following:

Procedure

1. Click an app name on the Apps page in TIBCO Cloud Integration - Flogo (PAYG) to open its page.

2. Click Create.
The Add triggers and flows dialog opens.

3. Enter a name for the flow in the Name text box.

Flow names within an app must be unique. An app cannot contain two flows with the same name.
4. Optionally, enter a brief description of what the flow does in the Description text box.
5. New flow is selected by default. Click Create.

6. Select Start with a trigger.
The triggers catalog opens with all the available triggers showing.

7. Click Receive HTTP Message card to create a REST trigger.
The trigger configuration dialog opens.

8. Select the REST operation under Method that you want to implement by clicking it.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

9.

10.

11.
12.

13.

14.

40

A flow can have multiple REST triggers. Two REST triggers cannot have an identical port,
& path, and method combination. Each REST trigger needs to differ from the other REST triggers
for the same flow with either a unique port, path, or operation (GET, PUT, POST, DELETE).

Enter a resource path in the Resource Path text box.

Enter the JSON schema or JSON sample data for the operation in the Enter a JSON Schema or an
example of your JSON message text box. This will be the schema for both input and output.

Click Continue.

Select one of the following dialog:

Do you want to copy this trigger's Output Schema into the Flow's Inputs?

Just add the trigger

If you select Copy Schema, the schema that you entered in this step above automatically gets copied or
displayed in a tree format to the following locations when the trigger gets added:

o Trigger output, in the Map to Flow Inputs tab of the trigger

o Flow input, in the Input Settings tab of the Flow Inputs & Outputs accordion tab.

o Trigger reply (If the trigger has a reply), in the Reply Settings of the trigger.

Refer to the "REST Trigger" section in the TIBCO Flogo® Activities and Triggers Guide for details on
configuration parameters.

If you select Just add the trigger, a REST trigger gets added to the flow without any configuration. You
can configure this REST trigger by clicking on the trigger from the app details page at a later time. Any
changes made to the trigger must be explicitly saved by clicking Save.

The flow page opens.

Map the trigger output to the flow input.
a) Open the trigger configuration dialog by clicking on the trigger:

=
o |
2
=
=
#
=
=]
c
€
c
{73

b) Open the Map to Flow Inputs tab.

¢) Map the elements under Flow input to their corresponding elements under Trigger Output one at a
time.

Map the flow output to the trigger reply as follows:

a) In the trigger configuration dialog, click the Map from Flow Outputs tab.
b) Map the elements under Trigger Reply to their corresponding elements under Flow Output.
c) Close the dialog by clicking on the x at its top right corner.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

15. Click Save to save your changes.

16. Add activities to the flow by hovering your mouse cursor next to the Flow Inputs & Outputs tab and
clicking the plus sign.

(|
1
1

o
sinding g sinduymoly 1]

Creating a Flow attached to the GraphQL Trigger

You create GraphQL flows by uploading a GraphQL schema file with an extension . gql or . graphql.
TIBCO Cloud Integration - Flogo (PAYG) creates the appropriate flows based on your schema. When the
flow gets created, a GraphQL trigger automatically gets generated and attached to each flow that gets
created.

41

Refer to the section, Using GraphQL Schema on how to create a flow using a GraphQL schema. Also, refer

to the "GraphQL Trigger" section in the TIBCO Flogo® Activities and Triggers Guide for details on the
GraphQL trigger.

Creating a Flow Attached to Other Triggers

This section applies to triggers that are not REST, gRPC or GraphQL triggers.
To create a flow with such a trigger, follow these steps:

Procedure

1. Click an app name in the Apps page in TIBCO Cloud Integration - Flogo (PAYG) to open its page.

2. If this is the first flow in the app, click the Create link, or if another flow exists in the app, click the
Create button.
The Add triggers and flows dialog opens.

3. Enter a name for the flow in the Name text box.
Flow names within an app must be unique. An app cannot contain two flows with the same name.

4. Optionally, enter a brief description of what the flow does in the Description text box and click Create.

5. Select Start with a trigger.
The triggers catalog opens. If there are existing triggers in the app, they are displayed in the Select
existing trigger tab.

6. To create a new trigger, click Add new trigger.

7. Click the trigger that you want to add.
The flow details page is displayed with the trigger.

8. Click the trigger to display its properties. For example, the image below shows the Timer trigger.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

42

sindyng 3 sinduymoly 1]

9. Configure the properties for the trigger. See the respective trigger section in the TIBCO Flogo® Activities
and Triggers Guide for details.

10. Add activities to the flow by clicking the + icon next to the Flow Inputs & Outputs tab:

C,

sinding g sinduymoly 1l

Creating a Flow Attached to a gRPC Trigger

You create gRPC flows by uploading a gRPC Protobuf file with an extension, . proto. TIBCO Cloud
Integration - Flogo (PAYG) creates the appropriate flows based on your methods. It implements one flow
per method. A gRPC trigger automatically gets generated and the flows are attached to the trigger.

See Using gRPC for information on how to create a flow using a gRPC Protobuf. Also, refer to the "gRPC
Trigger" section in the TIBCO Flogo® Activities and Triggers Guide for details on the gRPC trigger.

Creating a Blank Flow (Flow without a Trigger)

You can create a flow in the Flogo App without attaching it to a trigger. This method of creating a blank
flow is useful when the logic for the flow is available, but you do not know the condition under which the
flow should activate. You can start by creating a flow with the logic and attach it to one or more triggers at a
later time.

Follow these steps to create a flow without a trigger:
Procedure

Click an app name on the Apps page in TIBCO Cloud Integration - Flogo (PAYG) to open its page.

2. If this is the first flow in the app, click the Create link. If one or more flows exist in the app, click the

Create button.
The Add triggers and flows dialog opens.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

10.

11.

12.

13.

43

Enter a name for the flow in the Name text box.

Flow names within an app must be unique.

Optionally, enter a brief description of what the flow does in the Description text box. The Flow button
is selected by default.

Click Create.
You will be prompted to select one of the following options:

How can | help you get started? —

i)
Start with a trigger Configure flow inputs and outputs

@ G

Select Configure flow inputs and outputs.
The flow gets created with the flow details page open displaying the Input tab of the Flow Inputs &
Outputs tab.

You can configure the inputs and/or outputs to the flow in the Input or Output tab respectively. See
Flow Inputs & Outputs Tab.

Mapping trigger outputs to flow inputs and flow outputs to trigger reply creates a contract between the
trigger and the flow. Hence, when you attach the flow to a trigger later, you must map the output of the
trigger to the flow input. You have the option to attach your flow to one or more triggers at a later time
after the flow has been created. See Attaching a Flow to One or More Triggers for details.

Enter a JSON schema containing the input fields to the flow in the Input Settings tab and click Save.
Enter the JSON schema containing the flow output fields in the Output Settings tab and click Save.

Click the left facing arrow on top of the blue label when done to retract the Flow Inputs & Outputs
page.

Add a Return activity (from the Default category) to the flow if you want the flow to return some data.
Click and drag the Return activity to the right to make room to add other activities.

Hover your mouse over the shaded square to expose the add activity button (; =+ i). Click the add
activity button to add an activity. o

After adding an activity, be sure to configure its properties by clicking on the activity tile. If there are
any errors in the activity, fix the errors before proceeding. See Errors and Warnings section for more
details.

Continue adding activities by clicking the successive (: + I) buttons. To add an activity between two
existing activities, you can drag the activities to the right to make room for the new activity, then click

the i + E button to add the new activity.

If you added a Return activity, click the Return activity to configure the parameters that the flow
outputs after completing execution. The Return activity displays the parameters that you had
configured in the Output Settings tab of the Flow Inputs & Outputs dialog.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

44

Anything that the flow outputs after execution must be mapped into the Return activity of the flow. If
any trigger needs to send a response back to a server, its output must be mapped to the output of the
Return activity. This is done in the Map from Flow Outputs tab of the trigger.

14. When you are ready to add a trigger, refer to Adding Triggers to a Flow to add one or more triggers to
the flow. For triggers that need to send back a response to the server, you must map the flow output
(elements in the Return activity) to the reply of the trigger (Map from Flow Outputs tab in the trigger
configuration dialog).

Flow Input & Output Tab

Use these tabs to configure the input to the flow and the flow output. These tabs are particularly useful
when you create blank flows that are not attached to any triggers.

& The schemas for input and output to a flow can be entered or modified only in this Flow Inputs & Outputs
accordion tab. You cannot coerce the flow input or output from outside this accordion tab.

Both these tabs (the Input tab and the Output tab) have two views:

e JSON schema view:

You can enter either the JSON data or JSON schema in this view. You must click Save to save your
changes or Discard to revert the changes. If you entered JSON data, the data is converted to a JSON
schema automatically when you click Save.

o List view: This view allows you to view the data that you entered in the JSON schema view in a list
format. In this view, you can:

— Enter your data directly by adding parameters one at a time
— Mark parameters as required by selecting its check box.

— When creating a parameter, if you select its data type as an array or an object, an ellipsis (...)
appears to the right of the data type. Click the ellipsis to provide a schema for the object or array.

— Use an app-level schema by selecting the Use an app-level schema button. On the Schemas page
that appears, click Select beside the schema that you want to use. The name of the schema is
displayed beside the Use an app-level schema button and the schema is displayed in a read-only
mode.

You cannot edit an app-level schema in the List View if the Use an app-level schema
button is selected. To edit an app-level schema, follow the instructions in the section
Editing an App-level Schema. You can, however, switch to another app-level schema by
& clicking Change and selecting another app-level schema. You can also unbind the app-
level schema (by deselecting the Use an app-level schema button) from a trigger, activity,
or the input and output of a flow. After you unbind the app-level schema, you can make
changes to it using the schema editor in the List View.

— Click Save to save the changes or Discard to discard your changes.

Attaching a Flow to One or More Triggers

If you had created a blank flow without attaching it to a trigger, you can attach it to an existing trigger that
is being used by another flow in the same app.

A flow that was created without being attached to a trigger has its input and output parameters defined in
the Flow Inputs & Outputs accordion tab. You can access it by clicking the blue bar with the same label.
The output from the trigger is the input to the flow. So, you must map the input parameters defined in the
Input tab of this dialog to the trigger output parameters. This mapping must be done in the trigger. The
mapping creates a contract between the trigger and the flow and is mandatory for the flow and the trigger
to interact with each other.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

45

Procedure

1.

5.

You can use one of these methods to attach a flow to a trigger:

e From the app details page:

1. Open the app details page by clicking on the app.
2. Hover over No trigger, then click Add trigger.
e From the flow details page:

1. Open the flow details page by clicking the flow name on the app details page.

2. Click the Add a new trigger icon ().

If there are existing triggers in the app, the Select existing trigger tab displays the existing triggers. To
use an existing trigger, click Select existing trigger, then click the trigger you want to use in the right
pane. You also have the option to create a new trigger by selecting the Add new trigger tab and
selecting a new trigger to create from the Triggers catalog. If there are no existing triggers in the app,
you only see the Add new trigger tab. Select a trigger from the Triggers catalog.

For REST and GraphQL triggers, you will be prompted to enter additional handler setting details. Refer
to the "REST Trigger" section in the TIBCO Flogo® Activities and Triggers Guide. Refer to the "GraphQL
Trigger" section in the TIBCO Flogo® Activities and Triggers Guide.

The trigger is created and you see its icon to the left of the Flow Inputs & Outputs accordion tab.

Click the trigger icon to configure the trigger as needed. For REST and GraphQL triggers, be sure to
map the trigger outputs to flow inputs and the flow outputs to the trigger reply.

Optionally, attach the flow to additional triggers by clicking the icon and following the steps above.

Catching Errors

You can configure a flow to catch errors at two levels:

At the flow level by configuring the Error Handler in the flow. Refer to the section, Creating an Error
Handler Flow for more details on configuring the Error Handler in the flow.

At the activity level by creating an error branch from an activity. Refer to the Types of Branch
Conditions subsection under the section, Creating a Flow Execution Branch for details on how to create
an error branch from an activity.

Creating An Error Handler Flow

Use the error handler to catch exceptions that occur when executing a flow. The error handler is designed to
catch exceptions in any or all activities within a flow. If there are multiple flows in an app, the error handler
must be configured for each flow separately. Branching is supported for error handler flows similar to the
other flows.

To configure the error handler, follow these steps:

Procedure

1.
2.

Click an existing activity in a flow.

Click the Error handler tab.
The error handler opens with the error activity displayed.

a |i| error

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

46

Clicking the error activity exposes the fields that you can configure for an error that will be thrown by
the activity.

u errcr
i General/tibco-wi-error
L=l error

Flow Error Handler

Map to Flow | t ivi
ap to Flow Inputs a. activity

a. message
* aata

The Map to Flow Inputs tab of the error activity has three elements, activity, message, and data. The
activity element is used to output the name of the activity that is throwing the error, the message
element is used to output the error message string, and the data element can be configured to output
any data related to the error. The message element in the Input tab of any activity in the Error Handler
flow can be configured to output one or all of these three elements.

Hover your mouse next to the error activity to expose the | =+ | button.

Click the + button to add an activity for which you want to configure the error message.
The Input tab of that activity displays message in its input schema. This is a required element which
you must mandatorily map.

8 A Return activity is not added by default. Depending on your requirements, you must add the
Return activity manually.

Click message in the input schema to open its mapper.

2t General/tibco-wi-log
J LogMessage

Simple Log Message Activity

Settings Activity Input Q a. message
1
Input a. * message

Loop Upstream Output

- {} Serror
a. activity
a. message
* data

v {3} Sflow

Expand {} $error to expose the activity, message, and data elements that you can configure for the error
message.

To map the message element under Activity Input, you can either manually type in the error string
enclosed in double quotes or use the concat function under string in the mapper to output the activity
name along with a message. See Using Functions for more details.

Continue configuring the error message for each activity in the flow.

The error for any activity in any flow in the app, if any, is output in the log for the app when the app is .

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

47

Result

Here is an example of how an error handler flow looks after it is configured:

E ! error E] SendMail Ej LogMezzage '_'_’I Returnl

. LogMeszage p
P4 sendmailL @ ¢ = == Returnl

. LogMeszage -
E SendMailz E:l - = - Return3
2

Viewing Errors and Warnings

TIBCO Cloud Integration - Flogo (PAYG) uses distinct icons to display errors and warnings within an app.

The following icons are used:

@ - Error icon. You must resolve the errors before building the app. Errors should not be ignored.

- Warning icon. Warnings are thrown to alert you of something that might need to change in the entity
where the warning icon is displayed. You have the option to ignore the warning and move on.

Here is the hierarchy of errors and warnings reporting in TIBCO Cloud Integration - Flogo (PAYG):

Flow level reporting - When you click on an app name, the app details page opens displaying the list of
flows in the app. If there are errors or warnings in a flow, appropriate icons are displayed next to the flow
name along with a number, where the number indicates an aggregate number of errors or warnings in the
flow. If there are no errors or warning these icons do not display. In the image below, BlankFlow flow has
three errors and MyFlow1 has 4 errors that should be resolved and 4 warnings that can be ignored.

BlankFlow @ 3

MyFlow1l + 94

Activity and Trigger level reporting - When you click on a flow name, the flow details page opens
displaying the implementation of the flow. This page displays errors if any at the activity level. For instance,
the LogMessage activity below displays an error symbol within the activity configuration. You should
resolve the error before proceeding.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

48

>
[T8 LogMessage

g w

Activity and Trigger configuration tab level reporting - When you click on an activity or a trigger in the
flow, its configuration page opens, displaying the various tabs. Click a tab to see the errors or warnings in

the configuration within that tab.

Settings @

Output Settings @
Map to Flow Inputs
Reply Settings @

Map from Flow Qutputs

Blank space between activities - If there are empty spaces between the activities, you see an error message
as shown below. For example, the following image shows a blank space between the LogMessage activity
and the Return activity. Resolve this by clicking and dragging the Return activity to the left such that there
are no blank spaces in the flow.

Flow output is defined but not
configured. To set flow output,
add Return activity from Default
category.

)
4

T Logmessage =1 Return

sindino g sindui moly |

Using Subflows

TIBCO Cloud Integration - Flogo (PAYG) provides the ability to call any flow from another flow in the same
app. The flow being called becomes the subflow of the caller flow. This helps in separating the common app
logic by extracting the reusable components in the app and creating standalone flows for them within the
app. Any flow in the app can become a subflow for another flow within the same app. Also, there are no
restrictions on how many subflows a flow can have or how many times the same subflow can be called or
iterated in another flow. Hence, subflows are useful when you want to iterate a piece of app logic more than
once or have the same piece of logic repeat in multiple locations within the app.

Here are a few points to keep in mind when creating and using subflows:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

49

The subflow and its calling flow must both reside within the same app. You cannot call a flow from
another app as a subflow in your app.

Since you can call any flow from any other flow within the app, you must be careful not to create
cyclical dependency where a flow calls a subflow and the subflow in turn calls its calling flow. This will
result in an infinite calling cycle and you will receive an error "Cyclic dependency detected in the
subflow".

Important!! You can delete any flow in an app even though the flow might be in use as a subflow within
another flow. You will not receive any error messages at the time of deletion, but when you run the app,
its execution fails with an error.

You can configure the iteration details in the Loop tab of the Start a SubFlow activity. The Start a
SubFlow activity iterates multiple times, resulting in the subflow being called multiple times.

Creating Subflows

You create a subflow exactly like you would create any other blank flow.
To create a subflow, do the following:

Procedure

1. Identify the piece of logic in your app that you want to reuse elsewhere in the app or iterate multiple
times.

2. Create a flow without a trigger for that logic. See the Creating a flow without a trigger section for details
on how to create such a flow.

3. To use this flow as a subflow within another flow, you must add a Start a SubFlow activity at the

location in the calling flow from where you want to call the subflow. For example, if you want to call a
subflow after the third activity in your calling flow, insert a Start a SubFlow activity as the fourth
activity in the calling flow. To do so, follow these steps:

1. Open the calling flow.

2. On the flow details page, click the (é + E) button in the location within the flow from where you want
to call the subflow. The Add Activity dialog opens.

3. Click the Default tab and select the Start a SubFlow activity.

4. Configure the StartaSubFlow activity to point to the subflow you want to call by selecting the
subflow from the Select flow dropdown list in the Settings tab.

The schemas that you had configured in the Input Settings and Output Settings of the Flow
Inputs&Outputs tab in the selected subflow appear in the Input and Output tabs of the
StartaSubFlow activity.

You can now configure the input and output for the subflow in the StartaSubFlow activity. If you
add additional input and/or output parameters in the Flow Inputs & Outputs tab of your subflow,
they become available to configure from the Input and/or Output tabs of the StartaSubFlow activity.
The output from the StartaSubFlow activity is available for use as input in all activities that appear
after it.

At app runtime, the StartaSubFlow activity in the calling flow calls the selected subflow.

5. If you want your subflow to iterate multiple times, be sure to configure the iteration details in the
Loop tab of the StartaSubFlow activity. Refer to Using the Loop section for details on how to
configure the Loop tab.

6. Build the app. See Building the App section for details on how to build the app.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

50

Creating a Flow Execution Branch

Activities in a flow can have one or more branches. If you specify a condition for a branch, the branch
executes only when the condition is met. You also have the option to create an error branch from an activity.
The purpose of the error branch is to catch any errors that might occur during the execution of the activity.
Branching is also supported for Error Handler flows, which serve the purpose of catching all errors at the
flow level.

You cannot create a branch from a trigger or a Return activity.

A Return activity ends the flow execution. So, regardless of whether the flow execution encounters a
Return activity in a branch or at the end of the flow itself, as soon as the flow execution encounters a
Return activity anywhere, it exits the flow from that location.

A Return activity is not added by default. Depending on your requirements, you must add the Return
activity manually. For example, if any trigger needs to send a response back to a server, its output must be
mapped to the output of the Return activity in the flow.

To create a flow execution branch, follow these steps:

Procedure

1. From the Apps page, click the app name then click the flow name to open the flow details page.

2. Hover your mouse cursor over the activity to expose the icons for adding a branch and deleting the
activity in the bottom right of the tile.

LogMessage
w g

3. Click the Add Branch icon (7).
A branch gets created and the Add Activity dialog opens.

Each branch has a label associated with it. The label has the following format:

o When branching to an empty activity:

<Name of activity in main flow>to

For example, LogMessageto.
e When branching to a specific activity:

<Name of activity in main flow>to<Name of activity in branch>

For example, LogMessagetoInvokeRESTService.

4. Add activities to the branch flow as you would do to any other flow by clicking on the i + E button.

5. If you want the flow execution to terminate after this branch executes successfully, be sure to add and
configure the Return activity at the end of the branch. If you do not want the flow execution to
terminate, do not add a Return activity at the end of the branch.

6. Hover your mouse cursor to the end of the branch until you see a button with three dots placed
horizontally.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

10.
11.

51

LogMessage

Click the button to expose the following options:

Click the branch settings button (3).
The Branch Mapping Settings dialog opens.

Select a branch condition: Success, Success with condition, Success with no matching condition, or
Error.
See the section, Types of Branch Conditions, for details on the three conditions.

Click Save.

Add condition to a branch as need be. See Setting Branch Conditions for details.

Types of Branch Conditions

TIBCO Cloud Integration - Flogo (PAYG) supports multiple types of branch conditions.

You must select one of the following conditions during branch creation:

Success

A success branch gets executed whenever an activity executes successfully. If there is an error in the
activity execution, this branch does not execute. The branch has no conditions set in it.

Success with condition

Select this condition if you want a branch to execute only when a particular condition is met. If you
select this condition and do not provide the condition, the branch never gets executed.

You can form an expression using anything available under upstream activity outputs and available
functions which should evaluate to a boolean result value.

Success with no matching condition

This branch condition is displayed only when you already have an existing Success with condition
branch.

Error

A branch with this condition executes if there are errors in the execution of the activity. An activity can
have only one Error branch.

Details of the error, such as the activity and the type of the error message, are returned in $error. For
example:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

52

sindang s sndu weld 1

LogMessagel

Sertings ACUNTY Input Q a. message
1 Serror [MwsEC2]. message
Input a. message *

array

Loap

baoiean
b coeme

» dstetime

v float

b Json

¥ number

v sting
¥ wility

v utils

The Error branch flow differs from the error handler flow in that the error branch is designed to catch
exceptions at the activity level from which the error branch originates, whereas the error handler flow is
designed to catch exceptions that occur in any activity within the flow. So, if you handle the errors by
creating an error branch at the activity level, the flow execution control never transfers to the error
handler flow.

Order in which Branches Get Executed

When an activity has multiple branches, regardless of the number of branches or the order in which the
branches appear in the Web Ul, the branch execution follows a pre-defined order.

3 The flow execution will terminate if it encounters a Return activity at the end of any branch. In such
situations, the activities that are placed after the branched activity in the main flow do not get executed.

The order in which the branches get executed is as follows:

1. Success branch and Success with condition branch

When an activity has both Success and Success with condition branches, the order of execution
depends on the order in which each branch was created. The branch that was created last gets executed
first. All Success branches get executed unconditionally, but a Success with condition branch gets
executed only if its branch condition is met.

2. Success with no matching condition branch

This branch condition is displayed only when there is at least one existing Success with condition
branch for the activity. The Success with no matching condition branch is typically used when you
want a specific outcome in the event that none of the Success with condition branches meet their
condition.

» The Success with no matching condition branch executes only if none of the Success with
condition branches execute. If the Success with condition branch executes and it does not have a
Return activity at the end of the branch, the flow execution control gets passed to the main flow. If
the Success with condition has a Return activity, the flow execution gets terminated after the
Success with condition branch executes.

» If an activity has one or more Success with condition branches but does not have any Success with
no matching condition branch, if no matching condition is found, none of the Success with
condition branches get executed. But, since there is no Success with no matching condition branch,

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

53

the flow execution control gets passed back to the main flow and the activity next to the branched
activity gets executed.

o If you delete all Success with condition branches without deleting the Success with no matching
condition branch, you receive a warning informing you that the Success with no matching
condition branch is orphaned.

The Error branch gets executed as soon as the flow execution encounters an error.

Setting Branch Conditions

You can set conditions on a branch such that only if the condition is met the branch will execute.

To set conditions on a branch, follow these steps:

Procedure

1. Hover your mouse cursor to the end of the branch until you see a button with three dots placed
horizontally.

LogMessage

2. Click the button to expose the following options:

=
¥

3. Click (¢3).
The Branch Mapping Settings dialog opens.

4. Select a branch condition: Success, Success with condition, or Error. If you already have a Success with
condition branch present, you will also see Success with no matching condition.
See the section, Types of Branch Conditions, for details on the three conditions.

5. Click Save.

6. If you selected Success with condition, the mapper opens for you to set the condition. Click condition.
The mapper is exposed to the right of the dialog. The functions that you can use to form the condition
are shown under Functions.

7. Enter an expression with the condition or click a field from the output of a preceding activity to use it.
The output from preceding activities appears under the left Upstream Output in a tree format.

o ‘ The condition must resolve to a boolean type.

The following image shows how the branches appear based on the branch condition:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

54

] LogMessage

Success with Condition, when condition is
provided

Success with Condition, when condition is not
provided

o
—

®

Deleting a Branch

You can delete a branch at any time after creating it.
To delete a branch:

Procedure

1. Hover your mouse cursor to the end of the branch until you see a button with three dots placed
horizontally.

[l LogMessage

N

2. Click the button to expose the following options:

[|
L

3. Click (=).

If the branch to be deleted contains a sub-task located under branches or sub-branches, the following
confirmation dialog is displayed.

4. On the confirmation dialog, click Delete branch.
Result

The selected branch is deleted.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

55

Duplicating a Flow

You can duplicate an existing flow in an app. All activities in the flow along with their existing
configurations get duplicated to a new flow in the app and the duplicate of the original flow gets created
with a default name beginning with "Copy of" in the same app. You can rename the flow by clicking on the
flow name on the top left corner of the flow details page. Duplicating a flow saves you time and effort in
situations when you want to create a flow with similar or same activities as an existing flow in the app.
After you have duplicated the flow, you can add more activities, rearrange existing activities by dragging
and dropping them in the desired location, or delete activities from the flow duplicate.

& The triggers in the flow do not get duplicated. Also, if a flow has subflows, the subflows do not get
duplicated.

To duplicate a flow, follow these steps:

Procedure

1. Open the Apps page and click on the app to open the app details page.

2. Hover your mouse to the extreme right of the flow that you want to duplicate until the Duplicate flow
icon (7)) displays.

3. Click the Duplicate flow icon. A duplicate of the flow gets created in the app.

4. Edit the duplicated flow as needed to add, rearrange, or delete activities in the flow and rebuild the app.

Editing a Flow

You can edit the flow name or its description after creating the flow. You can also add more activities,
rearrange existing activities by dragging and dropping them in the desired location, or delete activities
from the flow.

To edit a flow, follow these steps:

Procedure

1. On the Apps page, click the app name to open the app details page.

2. Click the flow name which opens the flow page. You must rebuild the app after making the required
changes.
To edit the flow name click anywhere in the flow name and edit the name. To add a new activity
between two existing activities, you must make space for the new activity by dragging each of the
activities one space to its right starting with the last activity in the flow. Once the space is made, click the

E + i button in the blank space that you just created to add a new activity.

Reverting Changes to a Flow

If you have multiple flows in an app, you cannot revert changes made to a single flow. However, you can
click the option under the hamburger menu (;) that is next to the other buttons on the app page, to revert all

changes made to the app and revert the app to the state that it was in after the last . All changes made to the
app will be lost. This can be done as long as you have not the app after making the changes.

Switching Between Flows in an App

If an app has multiple flows, you can switch between the flows within an app.
When you have one flow open, to switch to another flow within the app, do the following;:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

56

Procedure

1. Click the down arrow to the right of the flow name and select the flow page you want to open from the
drop down list.

TestApp includes 2 flows {J

4 AnotherFlow

The Select to view other flows in <appname> panel opens with all the flows in the app listed and the
currently open flow selected.

2. Click the flow to which you want to switch.

Deleting a Flow

You can delete a flow from the app details page.
To delete a flow:

Procedure

1. On the Apps page, click the app name to open its app details page.

2. Hover your mouse cursor to the extreme right of the flow name that you want to delete until the Delete

flow icon ([[I]) displays.
3. Click the Delete flow icon.

On the confirmation dialog, click Delete.

Result
The selected flow is deleted.

If multiple flows are attached to a trigger only the specific flow gets deleted, but if the flow you are deletin
%% P 28 y p g y g
is the only flow attached to the trigger, the trigger gets deleted as well.

Adding an Activity
After a flow is created, you must add activities to the flow.

Procedure

1. From the Apps page, click the app name then click the flow name to open the flow details page.

2. Hover your mouse cursor to the right of the Flow Inputs and Outputs accordion tab to expose the

(i + E) buttons.

3. Click the (=+ }) button,

In the Add Activity dialog, click the category tab from which you want to add an activity. For example,
to add a general activity such as Log Message, click the General tab.

5. Select the activity you want to add by clicking it.
The activity gets added to the flow.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

57

6. To rearrange the order in which the activities appear in the flow, click the activity and drag and drop it

to the required location within the flow.

7. Click the activity to open its configuration dialog and configure it.

Searching for a Category or Activity

You can search for an activity or category by entering the activity name or category name in the Search
activity and category box in the Add Activity dialog.

You can enter either the full name of the activity or category or you can enter its partial name (a string of
characters appearing in the name) in the Search activity and category box.

All categories whose names either wholly match the search string or contain the partial search string in
their name get displayed.

When a category displays in the search result, only those activities in the category whose name contain
the search string get displayed. If the category also contains other activities whose names do not match
or contain the search string, such activities are not displayed.

For any activity whose name wholly or partially matches the search string, the category that contains
that activity is displayed. For example, if you enter "delete" in the search box, since there are activities
whose name contains the string "delete" in Marketo, Salesforce, Zoho-CRM, and so on, all these
categories are displayed, even though the category names themselves do not contain the string "delete".

Configuring an Activity

After adding an activity, you must configure it with any input data that the activity might need and the
output schema for activities that generate an output.
There are three ways to configure data for an activity:

Configuring static data where you manually type the data in the mapper for the field, for example, type
in a string that you want to output. Strings must be enclosed in double quotes. Numbers must be typed
in without quotes.

Mapping an activity input to the output from one of the activities preceding it in the flow, provided that
the previous activities have some output.

Using functions, for example, the concat function to concatenate two strings. Nested functions are
currently not supported.

To configure an activity, do the following:

Procedure

1.

On the flow details page, click an activity.
The configuration box opens beneath the activity.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

58

a P4 sendmail V [Fl LogMessage
H I —
5
g, General/tibco-wi-log
= LogMessage
s
¥
73 Settings Log Level
INFO v
Input

Add Flow Details

L
oop True o False

2. Click on each tab in the configuration box under the activity name and either manually enter the
required value, use a function, or in the Input tab, map the output from the trigger or a preceding
activity using the mapper. Refer to the Mapper section for details on mapping.

If one or more activities are not configured properly in a flow, the error or warning icon is displayed on
its upper right corner. Click the activity whose tab contains the error or warning. Refer to Errors and
Warnings section for more details.

Duplicating an Activity

You can duplicate an activity within the same flow. The activity along with the existing configuration is
duplicated to a new activity. The duplicate of the original activity is created with a default name beginning
with CopyO£. You can rename the activity by clicking on the activity name. Duplicating an activity saves
you time and effort in situations when you want to create an activity with similar or same configurations as
an existing activity in the flow. After you duplicate the activity, you can change the configuration, move it
around in the flow by dragging and dropping it to the required location, or delete it from the flow.

3 A trigger within a flow cannot be
duplicated.

Procedure
1. From the Apps page, click the app name, and then click the flow name to open the flow details page.

2. Hover your mouse cursor over the activity that you want to copy and click [7].

For example, in the following screenshot, the LogMessage activity is duplicated and added to the flow.
The duplicate activity is called CopyOfLogMessage:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

59

- ¥)
n EE LogMessage Eﬁ (eigsp;ygifLogM Return
2) _
2 <Blo/
= A
o
a_ General/tibco-wi-log
& = CopyOfLogMessage
c
§ Simple Log Message Activity
o
Settings Log Level
INFO

3. Configure the duplicated activity as required.

Using the Loop Feature in an Activity

When creating a flow, you may want to iterate a certain piece of logic multiple times. For example, you may
want to send an email to multiple people based on the output of a certain activity (let's call it activity1) in
your flow. You can do this by adding a SendMail activity following activityl in your flow and configure the
SendMail activity to iterate multiple times when activityl outputs the desired result. Each iteration of the
SendMail activity is used to send an email to one recipient. This saves you the effort of creating multiple
SendMail activities.

Keep the following in mind when using the Loop feature:

Iteration is supported for an activity only. You configure the iteration details in the Loop tab of the
activity.

There are certain activities that do not require iteration, for example, the Return activity, whose purpose
is to exit the flow execution and return data to the trigger. The Loop tab is not available in such
activities.

You cannot iterate through a trigger.

For apps that were created in Project Flogo™ and imported into TIBCO Cloud Integration - Flogo
(PAYG), the key type in the Loop tab is converted from string to the relevant data type of value in
TIBCO Cloud Integration - Flogo (PAYG).

To configure multiple iterations of an activity, do the following:

Procedure

1. Click the activity in the flow to expose its configuration tabs.
2. Click the Loop tab.

3. Select a type of iteration from the Type menu.

The default type is None, which means the activity will not iterate.
Iterate

This type allows you to enter a number that represents the number of times you would like the activity
to iterate without taking into account any condition for iterating.

Click iterator to open the mapper to its right. You can either enter a number (integer) to specify the
number of times the activity must iterate or you can set an expression for the loop by either entering the
expression manually or mapping the output from the preceding activities or trigger. You can also use

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

60

available functions along with the output from previous activities and/or manually entered values to
form the loop expression. The loop expression determines the number of times the activity iterates.

The loop expression must either return a number or an array. The array can be of any data
type. If your loop expression returns a number, for example 3, your activity will iterate three
0 times. If your loop expression returns an array, the activity will iterate as many times as the
length of the array. You can hover over the expression after entering the expression to make
sure that the expression is valid. If the expression is not valid, you will see a validation error
pop up-
If you select this type, the Input tab of the activity displays the $iteration scope in the output area of
the mapper. $iteration contains three properties, key, index, and value. index is used to hold the
index of the current iteration and value holds the value that exists at the index location of the current
iteration if the loop expression evaluates to an array. If the loop expression evaluates to an array of
objects, value also displays the schema of the object. If the loop expression evaluates to a number, the
value will contain the same integer as the index for each iteration. To examine the result of each
iteration of the activity, you can map index and value to the message input property in the LogMessage
activity and print them. key is used to hold the element name when configuring a condition if the value
evaluates to an object. However, you can map only to the output of the last iteration if you did not set
the Accumulate Output check box to Yes. See Accumulating the Activity Output for All Iterations
section for more details on this.

Repeat while true

Refer to https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/loops.sample for an
example of how to use this feature.

Select this type if you want to set up a condition for the iteration. This acts like the do-while loop where
the first iteration is executed without checking the condition and the subsequent iterations exit the loop
or continue after checking the condition. You set the condition under which you want the activity to
iterate by setting the condition element. The condition gets evaluated before the next iteration of the
activity. The activity iterates only if the condition evaluates to true. It stops iterating once the condition
evaluates to false. Click condition, and manually enter an expression for the condition. For example,
$iteration[index] > 5.

Keep in mind that even though the index for the Repeat while true iteration begins at zero, it does not
iterate n+1 times. If you enter 4 as the iterator value then it will execute as the following iterations:
0,1,2,3.

By default, the results of only the final iteration are saved and available. All previous iteration results
are ignored. If you would like the results of all iterations to be stored and available, set Accumulate to
Yes.

You have the option to set a time interval (in ms) between each iteration, which can help you manage
the throughput for your machine. To spread the iterations out, set the Delay element. Default delay time
is 0 ms, which results in no delay.

Result

After you enter the loop expression, the loop icon appears on the top right corner of the activity leaf as
follows:

W LogMessage

i

" —
Accumulating the Activity Output for All Iterations

When using the Loop tab to iterate over an activity, you have the option to specify if you want the Loop to
output the cumulative data from all iterations. You can do so by setting the Accumulate check box to Yes. If

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/loops.sample

61

the Accumulate check box is not selected, only the output from the last iteration is retained and available
for mapping in the downstream activities.

When the Accumulate check box is set to Yes, the activity accumulates the data from each iteration and
outputs that collective data as an array of objects, where each object contains the output from the
corresponding iteration. The accumulated results will be displayed as an array in the downstream activities
in the mapper and be available for mapping.

When mapping to an element within an object in the output array of the activity, you must provide the
index of the element to which you want to map. For instance, when you click on a property within the
object under responseBody, the expression displayed in the mapper will be $activity [<activity-
name>] [<<index>>].responseBody.<property-name>. You must replace <<index>> with the actual
index of the object to whose property you want to map.

When the Accumulate check box is not selected, the output of the Loop displays an object that contains
only the data from the last iteration. Data from all previous iterations is ignored. When mapping to an
element in the output object of the activity, when you click on a property within the object under
responseBody, the expression displayed in the mapper will be $activity [<activity-

name>] .responseBody. <property-name>

The Output tab of the activity changes based on your selection of the Accumulate check box. The parent
element (the name of the activity and the data type of the iteration output) is displayed regardless of your
selection. If you set the Accumulate check box to Yes, the data type of the parent element is an array of
objects. If you did not select the check box, the data type of the parent element is an object. The Output tab
contents will also be available in the mapper allowing for the downstream activities to map to them.

Accessing the Activity Outputs in Repeat While True Loop

This feature is useful when an activity needs to use the loop feature to do batch processing or fetch multiple
records by executing the activity multiple times. With each iteration of the activity, its output will available
for mapping to the activity input.

For example, if a Salesforce query returns 200 records and a locator, the locator can be used by the next
batch query. This locator can be mapped into the activity input by mapping the activity output from the
previous iteration which contains the locator for the next record set or query. Hence when the next iteration
of the activity runs, it fetches the next record indicated by the locator that was mapped to the activity input.

This feature is available in all activities that generate an output (have an Output tab).

To use this feature, follow these steps:

Procedure

1. Inthe Loops tab, set the Type to Repeat while true.

2. Set the Access output in input mappings to Yes. This allows the output of the activity iteration to be
available in the Upstream Output for mapping. Now you can map your activity output to the activity
input parameter.

3. Enter a condition in its text box. The activity evaluates this condition before each run. If the condition
evaluates to true the activity executes. Note that the output is only available in subsequent iterations
after the first iteration. Since the activity output is not available for the first iteration, your condition
must perform a check to see if it is the first iteration of the activity. For example, use
$iteration[index]> 0 && isdefined($activity[SFQuery].output.locator)tobegthour
condition. The $iteration[index]> 0 checks to make sure that it is not the first run of the activity. The
isdefined($activity[SFQuery].output.locator) function checks whether the output field exists.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

62

Deleting an Activity
You can delete an activity in a flow from the flow details page.

Procedure

1. On the Apps page, click the app name then click the flow name to open the flow details page.

2. Hover your mouse cursor over the activity you want to delete and click v

Triggers
Triggers are used to activate flows. This section contains information on creating and managing triggers in
your app.

Creating a Trigger without a Flow

You have the option to either create a trigger as a part of the process of creating a flow or you can create a
trigger without creating a flow.

Refer to the section, Creating a Flow, to create a trigger during the flow creation process.

To create a trigger without creating a flow, follow the steps below:

Procedure

1. On the app details page, click Create.
The Add Triggers and Flows dialog opens.

2. Under Create new, click Trigger to select it.
The triggers catalog opens to the right.

3. Select the trigger you want to create in the triggers catalog.
The trigger gets created with a placeholder for a flow attached to it.

Deleting a Trigger

You can delete a trigger from the app details page by hovering over the trigger and clicking Delete.

Synchronizing Schema Between Trigger and Flow

If you make any changes to the schema that you entered when creating the trigger, you must explicitly save
any changes you make, then propagate the changes to the flow input and flow output. This is done by
synchronizing the schemas.

To synchronize the schema between the trigger and the flow, do the following;:

Procedure

Click the trigger to open its configuration details.

2. Make your changes and click Save. If you do not click Save, you will see a warning message asking you
to first save your changes before the schema can be synchronized.

3. Click the Sync button on the top right corner.
The trigger output schema is copied to flow inputs and trigger reply schema is copied to flow outputs.

Data Mappings

TIBCO Cloud Integration - Flogo (PAYG) provides a graphical data mapper to map data between the
activities within a flow, and between the trigger and the flows attached to the trigger within an app. Use the

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

63

mapper to enter the flow or activity input values manually or map the input schema elements to output
data of the same data type from preceding activities, trigger, or the flow itself.

Data Mappings Interface

An activity has access to the output data from the trigger to which the flow is attached in addition to the
output from any of the activities that precede it in the same flow provided that the trigger or activity has an
output. This data is displayed in a tree structure under Upstream Output in the Mapper. The input schema
for the activity is displayed in the pane to the left of the Upstream Output pane. You can map data coming
from the upstream output to the input fields of the activity. Activities also have access to the input fields of
a flow to which the activity belongs. You enter the flow input schema in the Input Settings tab of the Flow
Inputs and Outputs accordion tab.

When you click an activity or trigger on the flow details page, the configuration page for that activity or
trigger opens. The following image is an example of the configuration page that opens if you clicked on the
InvokeRESTService activity. The image describes the areas of the Mapper.

General/tibco-wi-restinvoke
PR - Name of the current Text editor where the
1%
I InvokeRESTService I clement being mapped ?apepaerd values of a field
Simple REST Activity pp

Input Settings I ~ {3} queryParams
Input aQ
@ Q2
Output Settings
o a a
Output
v {3} headers ~ {3 $flow b array
Loop = - » boolean
{ uzen Output from ot Functions grouped by categories.
a. namel | peeceding activities if 7 GEED Expand a category to view the
Tabs into which activity I : ;i . 1. any and frigger output » float functions under it. Use these
nput for this activity, in this aget y 99 P
or trigger configuration D 4 _| if any_ In addition it b number functions when mapping
example, the input for a. gender
fields are grouped InvokeRESTSenvice displays flow input of » string
+ [customer1| the flow to which this b utily
1101 activity belongs
a. CustomerName?
» {} contactl The entire shaded area is the Mapper
a. ModifiedDateTime?

The left most pane displays the tabs for the configuration fields for that activity or trigger. Each activity or
trigger has one or more of the following tabs:
o Settings

For triggers, this tab displays the Trigger settings and Handler settings. Trigger settings are specific to
that particular trigger and Handler settings are settings applicable to a specific flow attached to that
trigger. Each flow attached to that trigger can have its own handler settings.

¢ Input Settings
This tab allows you to enter the schema for the flow or activity input.
¢ Input

This tab displays the schema you entered in the Input Settings tab in a tree format. You can manually
enter values for any elements in the input schema or map any input element to the output from
previous activities or triggers in this tab.

e Output Settings
This tab allows you to enter the schema for the flow or activity output.
¢ Output

This tab displays the schema you entered in the Output Settings tab in a tree format. The schema
displayed in this tab is set to read-only as it is for informational purposes only.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

64

* Reply Settings

This tab is applicable only to triggers that send replies back to the caller, such as the REST or GraphQL
triggers. You enter the trigger reply schema in this tab.

» Map to Flow Inputs

This tab is applicable only to triggers that have an output, such as the REST or GraphQL triggers. You
manually enter or map the elements from the trigger output (schema set in Output Settings tab) to the
flow input elements (schema entered in Input Settings tab of the Flow Inputs & Outputs accordion
tab). This allows the output from the trigger to become the input to the flow.

» Map from Flow Outputs

This tab is specific to triggers that need to send a reply to the caller, such as the REST or GraphQL
triggers. You manually enter or map the elements from the output of the flow (schema set in Reply
Settings tab) to the flow output elements (schema entered in Output Settings tab of the Flow Inputs &
Outputs). This allows the output of the flow to become the reply that the trigger sends back to the
request that it receives.

e Loop
Use this tab to enter the iteration details for activities that you want to iterate.

When mapping, you can use data from the following sources:

 Literal values - Literal values can be strings or numeric values. These values can either be manually
typed in or mapped to a value from the output of the trigger or a preceding activity in the same flow. To
specify a string, enclose the string in double quotes. To specify a number, type the number into the text
box for the field. Constants and literal values can also be used as input to functions and expressions.

o Direct mapping of an input element to an element of the same type in the Upstream Output.

» Mapping using functions - The mapper provides commonly used functions that you can use in
conjunction with the data to be mapped. The functions are categorized into groups. Click a function to
use its output in your input data. When you use a function, placeholders are displayed for the function
parameters. You click a placeholder parameter within the function, then click an element from the
Upstream Output to replace the placeholder. Functions are grouped into logical categories. Refer to
Using Functions section for more details.

» Expressions - You can enter an expression whose evaluated value will be mapped to the input field.
Refer to Using Expressions for more details.

Scopes in Data Mappings

The Upstream Output area in the mapper displays the output data from preceding activities, trigger,
and/or flow inputs. This area groups the output elements based on a scope. A scope represents a boundary
in the Upstream Output within which an input element can be mapped. For example, when mapping an
input element to an element from the output of a trigger, the scope of the input element is represented in
Upstream Output as $trigger. The following scopes are currently supported by the mapper.

Scope Name Used to... Available in...
$trigger Map flow input to trigger Trigger (Map to Flow Inputs tab) to map flow
output. inputs to trigger outputs.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Scope Name

Used to...

65

Available in...

$flow Map flow output to trigger .
reply. e Trigger (Map to Flow Outputs tab) to map
flow output to trigger reply.

o Activities (Input tab) to map activity input to
flow input.

o Return activity (Map Output tab) to map
flow output to flow input.

$activity.[activity- Map input elements of the $activity represents the scope of an activity.

name] activity to elements from the [activity-name] indicates the activity whose scope
output of previous activities. you are defining. Each preceding activity has its

own scope in the mapper.

$iteration Keep track of the current Input tab of an activity that has Loop enabled.
iteration and is available only Displays only when the Loop for the activity is
when iterator is enabled for an enabled. Two elements are displayed under
activity in the Loop tab of the $iteration:
activity.

» key - This element represents the iteration
index, hence it is always of type number. For
example, if the Loop expression is set to an
array, the key element will represent the
array index of the current iteration.

o value - the value can be of any type
depending on what is being iterated. For
example, if you are iterating through an array
of strings, the value is of type string.

$property Map to app properties that are ~ As long as there are app properties defined in

[property-name]

defined in the app.

the app, this scope is available for mapping from
any activity that allows mapping.

$loop

Map elements within an array.

$loop is prefixed to the element name when
mapping an element that is within an array. The
scope of $loop is the current array that you are
iterating through.

Reserved Keywords to be Avoided in Schemas

TIBCO Cloud Integration - Flogo (PAYG) uses some words as keywords or reserved names. Do not use such
words in your schema. When you import an app, if the schema entered in the Input or Output tab of an
activity or trigger contains reserved names, after the app is imported, such attributes get treated as special
characters which results in runtime errors.

Avoid using the keywords listed below in your schema:

break
case
catch

class

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

66

e const

e continue

o debugger
o default
o delete

« do

o else

e enum

e export
e extends
o false

o finally

o for

e function

e get
o if
e import

¢ instanceof

e in

e new

e null

e return
o set

e super
e switch
e this

e throw
e frue

o try

o typeof
e var

e void

o while
o with

Mapping Different Types of Data

The mapper opens when you click any element in the input schema tree in an activity configuration tab.

Mapping for the following is supported:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

67

A single element from the input to another single element in the output.

& If the single element comes from an array in the output, then you must manually add the array
index to use. For example, $flow.body.Account. Address[0].city

A standalone object (an object that is not in an array)
An array of primitive data type to another array of primitive data type.

An array of non-primitive data types (object data type or a nested array) to another array of the same
non-primitive data type.

Be sure to keep the following in mind when using the mapper:

Make sure that you map all elements that are marked as required (have a red asterisk against them),
whether they are standalone primitive types, within an object, or within an array. When mapping
identical objects or arrays, such elements get automatically mapped, but if you are mapping non-
identical objects or arrays, be sure to map the elements marked as required individually.

The in and new attributes are treated as special characters if you use them in the schema that you enter
in the REST activity or trigger. For example, mappings such as $flow.body ["in"] and $flow.body
["new"] are not supported. If an imported app contains these attributes after the app is imported into
TIBCO Cloud Integration - Flogo (PAYG), it results in runtime errors.

Use of anonymous array is not supported in the Flow Input & Output tab and the Return activity
configurations. To map to an anonymous array, you must create a top level object or a root element and
render that.

You can not use a scope (identified with a beginning $ sign) in an expression, for example
renderJSON($flow, true).You can use an object or element under it for example,
renderJSON($flow.input, true).

You can only map one element at a time.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

68

If the output element names contain special characters other than an underscore (_), they appear in bracket
notation in the mapping text box. In the example below, in the upper image, name under Upstream Output
does not contain any special characters, hence it is displayed in dot notation. In the lower image name 1
contains a space, hence it appears in the bracket notation.

Flow Outputs Q a. namel

1} 5flow. name

a. namel

2] strarray1 Upstream Qutput

[l-] numArray

{3 stlow
[#] boolarray name
.;:E:;. [] objarray1 [:a.] StrArry

[1] numarray

% [Zl] boolArray

» [] objArray

Flow Outputs Q a. namel

1isflow["name 1"]

a. namel

[2] strarray1 Upstream Output

|:1-:| numArray

{3 silow

[] boolarray name 1

() [] objArray1 B2
[1] numarray
[[:-] boolArray

» [] objArray

Mapping a Single Element of Primitive Data Type

You can map a single element of a primitive data type to a single element of the same type in the output
schema under Upstream Output.

Click the element to be mapped (destination element) first, then click the element under Upstream Output
(source from which the data comes in) to which you want to map it. In the example below, click user
(destination), then click name (source) to map the name to user.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

69

Flow Outputs Q a. user
1 %flow.name
a. user
1. id Upstream Oufput
« {} sflo
a. name
1. age

Mapping an Object

Functions

v v w w

array
boolean
datetime
float
number
string

utility

Standalone objects (objects not within an array) whose property data types match, can be mapped at the
root level. If the destination object is identical to the source object under Upstream Output (both, the names
of the properties as well as their data types match exactly), you need not match the elements in the object
individually. If the property names are not identical, then you must map each property individually within

the object.

For example, in the image below the Person objects are identical. So, you can map Person to Person. You

need not map name and age individually.

Flow Qutputs Q {3} Person

1 sflow.Person

- {} Person

a. name Upstream Qutput

1. age

{3} sflow

Functions

array

boolean

- w v

datetime
float
number

string

v v w w

utility

In the following image, the data types match but the property names do not match. In such a case, you

must map each property individually in addition to mapping the object root.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

70

Flow Outputs

{} User 1. age
1 &flow.User.age

= {3} user
a- name Upstream Qutput Fos fen
-oeee « {3} sflow b array
« {} User b boolean
a. firstname b datetime
1. age b float
» number
b string
b utility

Mapping Arrays
When mapping arrays, you must first map their array root before you can map their child elements.

The following mappings are supported when mapping arrays.
» Mapping arrays of primitive data types

» Mapping an array of objects
» Mapping nested arrays

Mapping an Array of Primitive Data Types

To map arrays of the same primitive data type, you only need to map the array root. You need not map the
array elements.
Here is an example of mapping arrays of primitive data types:

Flow Qutputs Q [1] numArray
1 §sTlow. numArray

a. name

[a-] strArray

Scope of this Upstream Output Q Functions

numArray

[1-:-] numArra

« {} sflow » array
EZ'] boolArray a. name b boolean
» coerce
—) 1. age
v L1 objarray » datetime
[1] numArray
b float
[D] boolArray
[] b json
» AnotheObjArra
: ! } number
p string
b utility
b utils

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

71

The array names need not match, but their data types must match. In Upstream Output, $flow points to
numArray in Upstream Output which is the scope for numArray in the input.

When you do not have a matching data type array in your output

If you want to map an array of primitive data types, but you do not have an array of the same data type in
your Upstream Output, you can create an array using the array. create(item) function.

array.create(item) can only be used to create an array of primitive data types. You cannot use it to
create an array of objects.

To do so, follow these steps:

1. Click the array for which you want to do the mapping in the input schema. The mapper opens to its
right.

Under Functions, click array to expand it.
Click create(item). It appears in the text box above.

Click item to replace it with the output element to use to create the array.

AR

Click the element in the Upstream Output with which you want to replace item. In the following image,
to map strArray, you would need to create an array since there is no array of strings under Upstream
Output. So, you map strArray by creating an array. The array. create() function accepts any of the
following: a hardcoded string, an element from Upstream Output, an expression, or a function as
shown below as long as they all evaluate to the appropriate data type.

Flow Outputs Q [] strArray

array.create("varl", Sflow.name, string.tostring($flow.age})
a. name 1"/

[=] strArray

[1-] numArray
No
[boolarray matching Upstream Output Funcibas Q
arrays in
» L[] objarray Upstream « {} sflow egex(pattern, str)
Qutput
a. name lepeat(inputstring)
eplace(inputstring, old, new)
1. age

eolaceAll(inputstring, old)
1] numArra
[] Y Y rgplaceRegEx(expression, inputstring)
[boolarray

» [] objarray

solit{inputstring)
sfartsWith(str, substr)
siringToBasef4(str)
sibstring(str, start, end)
substringAfter(input, afterstr)

substringBefore(input, befarestr)

imeFormat(}
tollower()

tolpper()

tostringlinput)
trim{inputstring)
trimLeft{inputstring)
trimPrefix(inputstring)
trimRight(inputstring)
trimSuffix(inputstring)
upperCase(str)

b utility

b utils

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

72

Mapping Complex Arrays - Using the array.forEach() Function

Complex arrays are arrays of objects that can optionally contain nested arrays. Complex arrays are mapped
using the array. forEach() function. The array. forEach() function can be used with or without
arguments.

& ‘ The array. forEach() function cannot be used within any other function or expression.

For examples, refer to https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/
array.forEach.sample.

When you use array. forEach() without any arguments, you define an implicit scope comprising of
everything available in the Upstream Output. It is equivalent to creating an implicit array with a single
object element comprising of everything in the Upstream Output. Hence, the resulting length of the array is
always one element.

To create a confined scope within the Upstream Output, use array.forEach() with arguments. You can
do so by entering the mapping manually or by selecting the forEach() function under the array category
under Functions. The forEach() function can accept three arguments. When mapping identical arrays, the
array.forEach() function gets inserted with the first two arguments by default.

The first argument defines the scope within the Upstream Output. Simply put, the input object or array can
only be mapped to elements in the Upstream Output that fall within the boundary indicated by its scope.

The second argument is a scoping variable given to the scope that you have defined in the first argument.
The scoping variable name by default, is the same as the input element name for which you are defining the
scope. By doing so, the mapper associates the input object to its scope by the scoping variable. Once there is
a scoping variable for the scope, the mapper uses that scoping variable to refer to the scope in future
mappings. You can edit the scoping variable to any string that might be more meaningful to you. The
scoping variable is particularly useful when mapping the child elements in nested arrays.

The third argument is optional. When iterating through an upstream output array, you can enter a filter to
specify a particular condition for mapping as the third argument. When using the filter as the third
argument, you must mandatorily enter the scoping variable as the second argument. Only array elements
that match the filter get mapped. For instance, if you are iterating through an array, array1, in the upstream
output with a filter that says $1oop.name=="Jane" as the third argument, if array1 has ten elements and
only four out of them match the condition of the filter, only those four elements will be mapped to the input
array and the remaining six will be skipped. This results in the size of the input array to be only four
elements, even though array1 has ten elements. See the section, Filtering Array Elements to Map Based on
a Condition for more details.

If you have used the array. forEach() in a legacy app, to update your app with the current changes in the
array.forEach() function, delete the old mapping and remap the elements. A scoping variable is now

0 included in the mapping. For example, if the old mapping is: array. forEach($flow.body.Book), after the
remap, the mapping should be: array. forEach($flow.body.Book, "Book") where "Book" is the scoping
variable.

Understanding array.ForEach() Function with an Example
The example in this section illustrates an array, cakes.

Consider the example below which is available for you to experiment with at https://github.com/
TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/array.forEach.sample.

{
"cakes": [
{
"id":"0001",
"type":"donut",
"name" : "Bundt Cake",
"ppu":0.55,
"batters":{
"batter":[

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/array.forEach.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/array.forEach.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/array.forEach.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/array.forEach.sample

{
"id":"1001",
"type":"Regular"
}’
{
"id":"1002",
"type":"Chocolate"
3,
{
"id":"1003",
"type" :"Blueberry"
Bo
{
"id":"1004",
"type":"Devil's Food"
}
1
}!
"topping": [
{
"id":"5001",
"type":"None"
}!
{
"id":"5002",
"type":"Glazed"
},
{
"id":"5005",
"type":"Sugar"
Bo
{
"id":"5007",
"type" :"Powdered Sugar"
}!
{
"id":"5006",
"type":"Chocolate with Sprinkles
},
{
"id":"5003",
"type" :"Chocolate"
Bo
{
"id":"5004",
"type":"Maple"
¥
]

"id":"0002",
"type":"Butter Cake",
"name" : "Raised",
"ppu":0.55,
"batters":{
"batter":[

{
"id":"1001",
"type" :"Regular"
}
1
¥o
"topping": [
{
"id":"5001",
"type":"None"
¥o
{
"id":"5002",
"type":"Glazed"
}!
{

73

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

74

"id":"5005",
"type":"Sugar"
},
{
"id":"5003",
"type" :"Chocolate"
Bo
{
"id":"5004",
"type":"Maple"
¥
]
}1
{
"id":"0003",
"type":"Biscuit Cake",
"name" :"0ld Fashioned",
"ppu":0.55,
"batters":{
"batter":[
{
"id":"1001",
"type" :"Regular"
Bo
{
"id":"1002",
"type" :"Chocolate"
}
1
}!
"topping": [
{
"id":"5001",
"type" :"None"
}!
{
"id":"5002",
"type":"Glazed"
},
{
"id":"5003",
"type" :"Chocolate"
Bo
{
"id":"5004",
"type":"Maple"
¥
]
}

3

In the above example, the cakes array has two nested arrays called topping and batter. You can use
array.forEach() function to iterate the cakes array or you can also iterate its nested arrays, topping or
batter while iterating the cakes array. Basically, you can iterate through nested arrays while iterating
through the parent array.

The array. forEach() function can take three arguments:

The first argument is the source array to iterate over.

2. The second argument is the scope, which typically consists of the array you are iterating over and so has
the same name as that array.

3. The third optional argument is the condition to use to pull information when looping through the array.

For example, if you want to filter the cakes array based on type "donut", you would use the following
expression:
array.forEach($flow.body.cakes, "cakes", $loop.type=="donut")

where

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

75

$ flow.body.cakes is the source array to iterate over.

"cakes" is the scope name. This is the scope for your mapping. Each scope has a name to it. By default,
the scope name is the same as the name of the source array, in this case "cakes".

$loop.type=="donut" is the condition to filter the array elements.

To filter the cakes array based on type "donut", you would use the following:

array.forEach($flow.body.cakes, "cakes", $1loop.type=="donut")

To filter the batter array inside cakes array based on its type "Regular", use:

array.forEach($loop[cakes].batters.batter, "batter", $loop.type=="Regular")

Here, $1oop[cakes] indicates that the cakes parent array is being iterated over and during each iteration
of the cakes array, the batter array is also being iterated.

To filter the topping array inside cakes array based on its type "Powdered Sugar", use:

array.forEach($loop[cakes].topping, "topping", $loop.type=="Powdered Sugar")

Here, while iterating the cakes parent array, we are also iterating over the topping array.

Mapping Identical Arrays of Objects
When mapping an array of objects in the input to an identical array of objects (matching property names
and data types) in the Upstream Output, keep the following in mind:

Map the array at the root level. The array. forEach() function automatically gets inserted with the
array scope and a scoping variable for the scope as its arguments. You need not map the array object
properties individually if you want all properties to be mapped and if the object property names are
identical. The properties get automatically mapped.

If you do not want all the properties within the object to be mapped or if the names of object properties
do not match, you must map the object properties individually too after mapping the root. If you do not
do the child mapping individually, the mismatched properties in the objects remain unmapped if the
properties are not marked as required (marked with a red asterisk). If such a property is marked as
required, then you see a warning.

The size of the input array is determined by the size of the array in the Upstream Output to which you
are mapping.

To map identical arrays of objects, follow these steps:

Procedure

Click on the input array root (objArrayl in the example image below).

Click the array you want to map to in Upstream Output (objArray in the image below). The
array.forEach() function appears in the text box. If the names of all the child elements match, the
child elements get mapped automatically. You need not match each child element individually. In this
example, none of the child names match, so you would need to do the individual mapping otherwise
none of the elements get mapped.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

76

Flow Outputs Q [] objArrayl
1 array.forEach($flow.objArray, "objArrayl")

a. namel

[2] strarray1 Default alias
given to the

(2] numArray1 objArray1 scope

|:CI:| boolArrayl

Upstream Output Functions

=) [] objArray1

« {3} silow b array
a. user] a. name » boolean
. [2] strarray J EEEEE
L [] numacfy » datetime
=) [] address1 (] boolfrray > Tloat
» json
a. street] v [J oviray » number
1. zip! & .user » string
1. id Scope for » utility
1. code objArray1 » utils
v [] address
a. street
1. zip

Shown below is the syntax of array. forEach() in the image above :

array.forEach({sflow.objArray, "objArrayl")

The "objArrayl" in red font is the scoping variable which constitutes the scope of the current input
array. Basically, this means that you can map any element in objArrayl with an element of same data
type in flow.objArray in the Upstream Output. So, you are defining the scope of objArray1 to be all the
elements within objArray.

Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-Matching Array
There may be situations when you want to map an element within an array of objects to an output element
that is not in an array or belongs to a non-matching array in the Upstream Output. In such a situation, you
must create an array with a single element. You do this by using the array. forEach() function without
any arguments. When you use array. forEach() function without arguments, it creates an array with a
single object element. The single object element treats everything in the Upstream Output as the children of
the newly created array object element. This allows you to map to any of the Upstream Output elements as
they are now treated as if they were within an array.

When using array. forEach() without arguments, be sure to map the child elements individually too in
0 addition to setting the array root to array. forEach() without arguments. If you do not map the child

elements individually, no child elements get mapped. Only elements that you have specifically mapped
acquire the mapped values.

& Keep in mind that in this scenario, the resulting length of the array is always one element.

Mapping an array child element to a non-array element is a two step process:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

77

Procedure

1. Click the input array root (objArray in the example below) and either manually enter array. forEach()
without arguments or select the function from the array category under Functions and delete the place
holder arguments.

This creates an array of objects with a single element in it. The element contains everything under
Upstream Output, hence allowing you to map to any element in the Upstream Output. The element
you are mapping to can be a non-array element or reside within a nested array.

Flow Outputs Q [] objArra

1larray.forEach il]

a. name
[a-] strArray

[1-] numaArray

= -
B boolarray Upstream Output Q Functions
) [] objarray
- + {3 sflow - array
a. user a. name append(items, item)

L [a_] strArray contains(array, item)
i

count{items;

[2] numaArray123 untd !

(&) dd create(item)
— [] aadress E-] boolArray
delete(items, index)

a. street » objArra!
[] g ¥ IforEach{input, loop alias, filter)l

1. zip get(items, index)
» boolean

» datetime

» float

» number

b string

b utility

2. Map each element in the input array individually to any element of the same data type under Upstream
Output.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

78

Flow Outputs

a. name

[a.] strArray

[1-] numArray

|:D:| boolArray
= [] objarray

a. user

Q [] objarray 1. id

1 sflow.objArray[2].address[3].zip

1. id

(= [] address
a. street

1. zip

Upstream Qutput Q ENnenans
+ {2} sflow b array
’ = a. name » boolean
[2] strarray b datetime
float
[1] numarray123 4
b number
E-] boolArray
» string
+ L[] objarray -
b utility
a. user

1. id
+ [] address
a. street

1. zip

In case you are mapping to an element inside an array, you must provide the index of the array. If you
are mapping to an element in a nested array, you must provide the index for both the parent and the

nested array as shown above.

Mapping Nested Arrays

Before you map a nested array, you must map its parent root. The scoping variable is particularly useful
when mapping the child elements in nested arrays.
The example below is that of a nested array, where Address is a nested array whose parent is Customer:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

79

Flow Outputs Q [] Customer [] Address

b {} User

array.forEach{sloop["Customer"].Addressl, "Address™)

.:i:. [] customer

1. 1D
a. CustomerName
» {} PersonMName

+ [] Addres

a.

a.

a.

a.

a.

a. ModifiedDateTIme

Upstream Output

- {} InvokeREST Service

1. statusCode

¥ {3} responseBody

AddressTy|

b {} headers
Street v {3} sflow
City r {3} usert

« [] customeri
State

1. ID1

PostalCode a. CustomerNamel

{} PersonName1
Addressi

- AddressTypel
- Street!

. City1

. Statel

L

- PostalCodel

a. ModifiedDateTImel

To map Address, do the following:

Procedure

Functions

b array

» boolean
b datetime
p float

» number
¥ string

»utility

1. Map its parent, Customer. When you map Customer, you automatically set the scope of Customer.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

80

Flow Qutputs

» {3} User
« [] customer

1 D

a. CustomerName

3 {} PersonMName
+ [] Address

a. AddressType

a. Street

a. City

a. State

a. PostalCode

a. ModifiedDateTIime

[] Customer

‘_| array.forEach{sflow.Customerl, "Customer") |

Upstream Output Q Functions
- {} InvokeREST Service b array
1. statusCode » boolean
v {} responseBody b datetime
» {} headers b float
» number
{3 sflow)
b string
User1
} < » utility

a. CustomerNamel

» {3} PersonName1
+ [] Addressi

a.. AddressTypel
a. Streetl

a. Cityl

a. Statel

a. PostalCodel

a. ModifiedDateTImel

In the image above, Customer is mapped to Customerl. The first argument, $flow.Customerl is the
source array (from which Customer gets the data) that you are mapping to. This defines the scope
(boundary) in the Upstream Output within which you can map Customer. So, this is the scope of
Customer. The second argument, "Customer", is the scoping variable given to this scope - the loop here
refers to the iteration of Customer. By default, the scoping variable has the same name as the loop for
which the scope is being defined (in this case Customer). You can edit the scoping variable to any string
that might be more meaningful to you. This is equivalent to saying that mapping of a child element of
Customer can happen only to children of Customerl in Upstream Output.

2. Map Address. Now the scope of Address gets defined.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

81

Flow Outputs Q [] Customer []1 Address
I'_ array.forEach{Sloop["Customer"].Addressl, "Address)
» {} User
& [] customer
1L 1D
a. CustomerName Upstream Output Functions
3 PersonMame
{} - {} InvokeREST Service b array
« [] addres 1. statusCode b boolsan
» {} responseBody p datetime
a. AddressTy| b float
» {} headers
b number
a. Street - {} Slow
b string
; » User1
a.. City O b utility
« [] customer1
a. State 4
a. PostalCode a. CustomerMamel

. {} PersonName1
a. ModifiedDateTIime
Address1

a.. AddressTypel
a. Street]

a. Cityl

a. Statel

a. PostalCodel

a. ModifiedDateTIimel

Notice that the mapping for Address:

» contains the parent scope as well. The parent scope is referred to by its scoping variable,
"Customer". Remember that the scope of Customer was set when you mapped Customer to
Customerl in the first step above, so we can now simply refer to the parent scope by its scoping
variable, "Customer".

o $loop["Customer"] refers to the iteration of the Customerl array. $1oop represents the memory
address of the Customer1 (the scope for Customer) in Upstream Output.

e $loop["Customer"].Addressl is the scope of Address. This scope is denoted by the scoping
variable "Address", which is the second variable in this mapping. Since Address is a nested array of
Customer, when you map to Address or its child elements, its mapping includes the scope of
Customer as well.

Mapping Child Elements within a Nested Array Scope
A child element in the input array can be directly mapped to a child element of the same data type within
the array scope. Since mapping is done within the nested array scope, you do not need to explicitly state the
scoping variable for the nested array scope. The mapping appears as $1oop. <element>.

To map a nested array child element, follow these steps:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

82

Procedure

1. Map the parent of the nested array.
2. Map the nested array itself.

3. Map the nested array child elements if the names are not identical or if you do not want to map all
elements in the nested array.

In the following example, since street is within the scope of addressl, streetl is directly mapped to
street. $1oop in the following example implicitly points to address which is the scope for address1 in
the input schema.

Flow Qutputs Q [] objArrayl [] addressl a. streetl
1 3loop.street

a. namel
[a-] strArray

[l-] numArray1

=] boolarrayt Upstream Qutput Q Functions
(=) L1 objarray « O $tow -
a. userl a. name » boolean
. [2] strarray b coerce
L. id1 » datetime
[1-] numaArray
() » float
(=) I:] address] [“] boalArray
» json
a. streetle, | = L[] objrray » number
1. zip1 a- user p string
.z
i 1. id b utilit
Y
« LJ address » utils
a. street
1. zip

Mapping a Nested Array Child Element outside the Nested Array Scope
To map a nested array child element outside the nested array scope but within its parent array, you must
use the scoping variable of the parent array.
To do so, follow these steps:

Procedure

1. Map the parent array root.
2. Map the nested array root.
3. Map the nested array child element.

In the example below, $1oop implicitly points to address. In addition, the mapping also explicitly
specifies the scope of the parent, "objArrayl". This is because zip1 is mapped to code which is outside
the scope of address1, but within the scope of its parent array, objArray1.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

83

Flow Outputs Q [] objarrayl [] addressi 1. zipl
1 Sloop["objArrayl”].code
a. namel

[a-] strarrayl

[1] numaArray1

=] boolarray1 Upstream Qutput Q Eunctions
= L] objarray v O sfow » array
a. userl a. name b boolean
. [2] strarray b coerce
1. id1 b datetime
[1-] numArray
® E] address] 8] boolrray b Tloat
» json
a. street] v [] - Gl > Jr'number
L. ZiDT s— > -user b string
-\-_____F- 1 id b utility
1. code b utils
v [] address
a. street
1. zip

Mapping an Element from a Parent Array to a Child Element in a Nested Array within the Parent
When mapping a primitive data type child element of the parent array to a child element of its nested array,
the scope in the mapping is implicitly set to the scope of the parent array. In addition, you must provide the
index of the nested array element whose variable you want to map to.
To do so, follow these steps:

Procedure

1. Map the parent array root.
2. Map the nested array root.
3. Map the parent array element.

In the example below, $1oop is implicitly set to the scope of Customer which is MyCustomer. Notice
that you must provide the index of the object in the MyAddress array whose MyCountry element you
want to map to.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

84

Flow Outputs Q [] Customer a. CountryQfCrigin

1 S$loop.MyAddress[8].MyCountry
& L[] customer

1.1D

a. CustomerMame

a. CountryOfOrigin Upstream Output Q Functions
= [] Address v {3} Sfiow —
a. AddressType + [] MyCustomer ¥ boolsan
1. MyID » coerce
3 Street a. MyCustomerMame L
a. City a. MyCountryOfQrigin ’ Tmt
» Json
a. State v [] MyAddress . number
1. PostalCode & Myhddresevpe > string
a. MyStreet » utility
a. Country a. MyCity » utils
2. Phone a. MyState
. MyPostalCode
a. email as MyCountry
a. MyPhone
a. Myemail

Filtering Array Elements to Map Based on a Condition
When mapping arrays of objects, you can filter the objects that gets mapped by specifying a filter in the
mapper.
You specify this filter as the third argument in the array. forEach() function, the first argument being the
scope of the element being mapped and the second argument being the scoping variable.

Prerequisites

To specify the filter as the third argument, you must mandatorily specify both the first two arguments in
array.forEach() - the scope as well as the scoping variable.

Here's an example that contains a filter as the third argument:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

85

Flow Outputs Q [] objArrayl
1 array.forEach({$flow.objArray, "objArrayl",

Slpop.user == "Jlane")

a. namel

|:-i-2| strarrayl

$loop

[1] numArray1 specifies
[#] boolArray1 Upstream Qutput Q
= [J objarray1 « {3 sfiow N
a. userl a. name » boolean
_] stearray » coerce
1. id b datetime
[l-:| numArray
— » float
=) [] address1 [] boolArray .
» ison
a. streetl [] D » number
. p string
1. zZip1
P 1. id » utility
1. code b utils
v [] address
a. street
1. zip

The above example indicates the following;:

e objArrayl is being mapped to objArray in Upstream Output

o when iterating through objArray in the Upstream Output, only the array elements in objArray whose
child element, user, is "Jane" get mapped. If user is not equal to "Jane" the iteration for that object is
skipped and objArrayl does not acquire that object.

» $loop here specifies the scope of the current loop that is being iterated, in this case objArray, whose
scope is objArrayl in Upstream Output.

Mapping JSON Data with the json.path() Function

Use the json.path() function to query an element within JSON data. The JSON data being queried can
come from the output of an activity or trigger. In the mapper, you can use the json.path() function by
itself when providing value to an input parameter or use it within expressions to refer to data within a
JSON structure.

This function takes two arguments:

 the search path to the element within the JSON data
» the JSON object that contains the JSON data you are searching

You can specify a filter to be used by the json.path() function to narrow down the results returned by the
json.path() function.

In order to reach the desired node or a specific field in the node in a JSON data, you must follow a specific
notation defined in the JsonPath specification. Refer to https://github.com/oliveagle/jsonpath for details on
the notation to be used and specific examples of using the notation.

Consider the example below which is available for you to experiment with at https://github.com/
TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/json.path.sample.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

HTTPS://GITHUB.COM/OLIVEAGLE/JSONPATH
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/json.path.sample
https://github.com/TIBCOSoftware/tci-flogo/tree/master/samples/app-dev/json.path.sample

86

Examples

The following is an example of how to use the function:
json.path("$.store.book[?(@.price > 10)].title", $flow.body)

In this example, $.store.book[?(@.price > 10)].title is the query path. [?(@.price > 10)]isa
filter used to narrow down the query results. $flow.body is the JSON object against which the query is run
(in this case the JSON object comes from the flow input, hence $flow). So, this query basically says 'search
the books array within $flow.body JSON object and return the title of the books whose price is more than

$10'.
Consider the following sample JSON data:
{

"store": {
"book": [
{
"category": "reference",
"author": "Nigel Rees",
"title": "Sayings of the Century",
"Availability": [
{
"Country": "India",
"Quantity": 4000,
"Address": [

{
"city": "houston"
¥
1
¥
]l
"price": 8.95
}1
{
"category": "fiction2",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"Availability": [
{
"Country": "USA",
"Quantity": 5000,
"Address": [
{
"city": "sugarland"
¥
1
¥
]l
"price": 12.99
}1
{
"category": "fiction3",
"author": "Herman Melville",
"title": "Moby Dick",
"isbn": "0-553-21311-3",
"Availability": [
{
"Country": "UK",
"Quantity": 7000,
"Address": [
{
"city": "stafford"
}
1
}
i
"price": 8.99
Fq
{

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

87

"category": "fiction4",
"author": "J. R. R. Tolkien",
"title": "The Lord of the Rings",
"isbn": "0-395-19395-8",
"Availability": [
{

"Country": "Australia",

"Quantity": 2000,

"Address": [

{

}
]
}

"city": "aaaaa"

1,
"price": 22.99
3
] ’
"bicycle": {
"color": "red",
"price": 19.95
b
} ’
"expensive": 10
¥
The following are examples of some J[SON query paths that search the JSON data above and return the
category of the book. In the examples below, the second input parameter for this function, data is the

name of the file that contains the above JSON code.
e json.path("$.store.book[?(@.Availability[?(@.Quantity >= 6000)])].category"”,
$flow.data)

In the example above, the query scope is the entire book array. The filter used to query this array is the
condition, [?(@.Availability[?(@.Quantity >= 6000)])]. Only the category values for the book
elements that have Quantity >= 6000 is returned. So, this query returns fiction3.

e json.path("$.store.book[?(@.author == 'Nigel Rees')].category", $flow.data)

returns reference since it uses the filter [?(@.author == 'Nigel Rees')] and the only book
authored by Nigel Rees in this array of books has its category as reference.

e json.path("$.store.book[?(@.Availability[?(@.Address[?(@.city ==
'sugarland')])])].category"”, $flow.data)

This query is an example of a nested filter where [?(@.Availability[?(@.Address[?(@.city ==
"sugarland')])])] is the outer filter and the nested filter within itis [?(@.city == 'sugarland')].
It returns reference.

e json.path("$.store.book[0].category", $flow.data)

This query does not use a filter. It returns reference, since your query scope is limited to the book[0]
element only within the store object and your request is to return the value of categoy.

Constructing the any, param, Or object Data Type in Mapper

When mapping values for data type any or object, you must manually enter the values in the mapper text
box.
Below are some examples of how to construct the data type any:

Assigning a literal value to data type any

To assign literal values to the any data type, you click on the element of type any, then simply enter the
values you want to assign to it in the mapper text box. For example, to assign the string Hello! enter:

"Hello!"

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

88

Assigning an object value to an object or element of data type any

Here is an example of how to assign literal values to an object:

{
"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

¥

where "Author", "ISBN", and "Price" are the object properties. You can use a function instead of a literal
value when assigning values for each element. See the "Using a function" section below for details on how
to use a function.

Assigning an array value to an object or data type any

Here is an example of how to assign an array value to an array of objects or to an element of data type any:
[

{
"Author": "Martin Fowler",
"ISBN": "0-321-12742-0",
"Price": "$45"

¥

]

You can use a function instead of a literal value when assigning values for each element. See the "Using a
function” section below for details on how to use a function.

Assigning a value from the upstream output

When mapping to an element from the upstream output, the data type of the source element whose value
you are assigning determines the data type of the destination element. For example, if you assign the value
of an array, then the target element (the element of data type any) will be treated as an array, likewise for a
string, number, boolean, or object. For example, if you are mapping $flow.Author which is an array, then
the Author object in the input (destination object) would also be an array. In other words, there will be
direct assignment from the source to the destination.

o Single Element of Primitive Data Type: To assign the value of a single element of a primitive data type
that belongs to the output of the trigger, a preceding activity, or the flow input, you must enter the
expression for it. For example to assign the value of isbn which comes from the flow input, enter the
expression:

"=$flow.isbn"
where $£low is the scope within which isbn falls.

* An object: When assigning an object, you must create a mapping node within the object. The mapping
node is used to define how the object should be constructed and the various fields within the object
mapped. For example, to assign the bookDetails object, enter:

{

"mapping": {

"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": 20,

"BestSeller": true

}

b

You can use a function instead of a literal value when assigning values for each element. See the "Using
a function" section below for details on how to use a function.

» An array of objects: The following two examples show you how to assign values to arrays:

— Building a new array

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

89

To provide values for an array that has a fixed size (where the number of elements are declared),
you must provide the values for each array element. For example, if the array has two elements, you
must provide the values for each property of the object for both objects. Here is an example of how
to do that:

{
"mapping": {
"books": [
{
"author": "=$loop.author",
"title": "=$loop.title",
"price": "=$loop.price"
¥o
{
"author": "Author2",
"title": "BookTile",
"price": 19.8
}
1
}
¥

In the example above books is an array of two elements. The values for each property for both
elements are provided.

You can use a function instead of a literal value when assigning values for each element. See the
"Using a function" section below for details on how to use a function.

Building an Array from an upstream output array
In the following example, books is an array of books coming from the upstream output. To iterate

over the array, $fow. store.books in upstream output, and assign its values to the input array, you
would enter the following in the mapper text box:

{
"mapping": {
"@foreach($flow.store.books)": {
"author": "=$loop.author",
"title": "=$loop.title",
"price": "=$loop.price"
}
}
¥

The "@foreach($flow.store.books)" indicates that you are iterating an array of objects where
the $flow. store.books is the array. $flow is the scope within which store.books falls and $1oop
represents the scope for each property within the object. Refer to the following section for details on
the forEach() function.

Using a function: The following example leverages the output of a REST Invoke activity to get a pet
from the public petstore service. The mapper uses the string.concat() function and assigns the
function return value to the description field in the data structure:

"mapping": {
"data.description": "=string.concat(\"The pet category name is:

\",$activityl[rest_3].result.category.name)"

}

Assigning Values to the param Data Type

When you import an app that was originally created in Project Flogo, the app could contain elements that

are of data type param. The param data type is similar to the object data type in that it consists of key-

value pairs. The difference between an object and a param is that the object can contain values of any

data type whereas the values for elements in the param data type must be of data type string only.

Here's an example of assigning values to a param data type element:
{

"mapping": {

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

90

"Author": "=$flow.author",
"ISBN": "=$flow.name",
"Price": "$20"

}
3

Coercing of Activity Input, Output, and Trigger Reply Fields

In the OSS marked activity input, output, or trigger reply configuration, if you have defined a parameter,
but have not defined or cannot define a schema for the parameter, you can coerce the parameter to take the
value from a schema that you dynamically define during design time. This feature is particularly useful for
apps that were created in Project Flogo and imported to TIBCO Cloud Integration - Flogo (PAYG). Such
apps will likely have activities for which input parameters or output are not defined with a schema.
Currently, coercion of parameters is supported only for the following data types:

e array
e object
e param
e any

After you enter the schema, it is displayed in a tree format under Activity Input, Output tab, or Trigger
Reply in the mapper. All subsequent activities will also display the elements of the schema under the
activity in the Upstream Output. The schema elements will now be available for you to map.

Note the following:

o Coercing is supported only in the Default category activities which are the activities marked as OSS,
except for the Return and Start a SubFlow activities. These two activities display flow-level data. The
flow-level inputs and outputs can be entered or modified only in the Flow Inputs & Outputs accordion
tab, hence they cannot be coerced from within the Input tab of the activity itself.

o Currently, coercion is supported only for top-level parameters. Nested coercion (for example, an object
within an object) is not supported.

» Currently, coercing a schema for trigger input is not supported. The coercing option is not available in
the Map to Flow Inputs tab in the trigger configuration. This is because the parameters you see in this
tab are flow input parameters and are not related to the trigger. You have the option to coerce these
parameters in the Input tab of the Flow Inputs & Outputs accordion tab.

o After you have mapped a child element within a parameter, if you change the name of the parent or the
child, your mapping will be lost. However, if you change the data type of the element, the mapping is
preserved, but you see an error related to the mismatch in data type.

o The schema you enter is preserved when you export and import the app.

o If you edit the schema at a later time, as long as you click the Apply button after editing, your edits will
display in the mapper. You must then click Save in the mapper to persist your schema changes.

* You cannot coerce a parameter or edit its schema in any activity appearing in a subflow. For example, if
the OracleDatabaseQuery activity appears in both the main flow and the subflow, you cannot edit the
schema of any of its parameters in the subflow. But you can edit the schema of the
OracleDatabaseQuery activity in the main flow. This is because the subflow activity input and output
schemas are inherited from the main flow. There is a possibility that the same subflow could be used in
multiple main flows, so if you edit an activity in the subflow it could break another main flow that uses
the subflow.

To provide the schema for coercion, do the following:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

91

Procedure

1. On the flow details page, click on the activity or trigger as the case may be, to open its configuration.

2. Click any of the following that what you want to configure:

e Input tab to configure a parameter in the activity input
e Output tab to configure the schema for the activity output
¢ Map from Flow Outputs tab if configuring the trigger reply

3. To configure a schema

 for a parameter in activity input, hover your mouse cursor over the parameter name for which you
want to configure the schema under Activity Input.

 for the activity output, hover your mouse cursor over the parameter name for which you want to
configure the schema.

o for a parameter in the trigger reply, hover your mouse cursor over the parameter name.

The Coerce with schema icon () that appears next to it.

LA

4. Click the Coerce with schema icon.

The Coerce with schema icon appears against the parameter name for only those parameters

& that do not have a schema defined in the Input Settings tab (or a schema cannot be defined
because the activity does not have an Input Settings tab, for example, the OSS-marked
activities) and whose data type is one of the following: array, param, object, or any.

5. Enter the schema for the parameter or activity output and click Apply. The mapper validates that the
data type of the schema you entered matches the data type of the parameter being coerced. If the data
types do not match, the Apply button remains disabled and you see an error.

» For activity input and trigger reply, the schema you enter displays in a tree format under the
parameter name in the mapper.

» For the activity output, the schema is displayed in a tree format in the Output tab of the activity.
Upstream Output displays the output of the preceding activities.

6. Click Save to persist the schema into the database or Discard to discard the schema.
Now you can map the child elements within the parameter. In the case of the activity Output tab, the
output tree does not display in the current activity, but will display in the mapper for subsequent
activities only. Once persisted in the database, these schema trees get displayed in the Upstream Output
area of the mapper for subsequent activities. This allows you to map to them in subsequent activities.

Clear Mapping of Child Elements in Objects and Arrays

After mapping an array or an object, you can clear the mapping of all the child elements within that array
or object with one click. The mapping is cleared at the root level and mapping for everything under that
root gets cleared, even the nested arrays and objects, should there be any. To clear mapping for individual
elements in an array or object selectively, click on that element and delete the mapping for it.

To clear the mappings for all child elements of an array or object, do the following;:

Procedure

1. In the mapper, click on the array or object root element to select it.

2. Hover your mouse cursor to the right end of the root name until the Clear Mapping icon (7) appears.

3. Click the Clear Mapping icon.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

92

Ignoring Missing Object Properties when Mapping Objects

There may be instances when you map objects where one or more object properties might be missing in the
source or target object. The mapper can be set to ignore such cases.

If you want the mapper to ignore such cases, you must set the FLOGO_MAPPING_SKIP_MISSING engine
variable to true. The mapper will ignore the missing mapping as long as the element is optional (not
marked as mandatory with a red asterisk against it). Elements marked as mandatory must be mapped. For
more details, see the section on Environment Variables.

Using Functions

You can use a function from the list of functions available under Functions in the mapper. Input parameters
to the function can either be mapped from an element under Upstream Output, a literal value, or an
expression that evaluates to the appropriate data type or any combination of them.

The procedure below illustrates an example that concatenates two strings and assigns the concatenated
value to message. We manually enter a value for the first string (strl) and map the second string to
FirstName under body. The value for FirstName comes from the flow input.

Procedure

1. Click message to open the mapper to the right.

2. Expand the string function group in the right column and click concat(strl, str2).

=
& - 4y IMOKERESTS & 1 | oguessage Return
H A
s
H General/tibco-wi-log * x
S g LogMessage
& Settings ty Input Q a. message
1 string.concat("We have received a message from ", $flow.body.FirstName) [
Input a. message *
Upstream Output Functions
Loop P Q " Q concat(strl, str2)
" Returns the concatenation of the arguments. You can
~ {} sflow » array b 8!
ool concatenate two or more strings.
» {3 headers b = For example:
« () body > datetime string.concat{"Hello"; , "World") Returns Hello World
» float
a. Class
» number
1. Cost
-~ string
a. DepartureDat
R base64ToString(base6astr)
& e concat(strl, str2)
£ B containsstr, substr)
a. FirstName dateFormat()
1 i

3. Select strl in the function and type "We have received a message from " (be sure to include the
double quotes as shown below) to replace strl with it.

& | s hd
~ | . 4y IMOKERESTS N I oguassage Rewrn 1. Click strt
g 2.Type in a string as shown below or map
¥ =) A str1 to an element under Upstream Output
3 by clicking on the element
E General/tibco-wi-log -
S LogMessage
& Settings 1error a. message
Activity Input Q 1 string.concat('We have received a message from "} str2) 1
Input
. a. message Upstream Output Q Functions Q e e)
oop 3
0 srow 5 ey Returns the concatenation of the arguments. You can
ool concatenate two or more strings.
» {3} headers b boolean Forexample:
« {3 body b datetime string.concat("Hello"} |, “World") Returns Hello World
) float
a. Class
> number
1. Cost
~ string
a. DepartureDate
P baseB4ToString(baseB4str)
a. DeparturePaint concatiatr, atr2)
Epoesinat ol contains(str, substr)
a. FirstName dateFormat()
1n

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

93

4. Select str2 and click FirstName under body.

=
= = 4} IMOKERESTS)\ [LogMessage Return
2 "N / [4. Select str2 |
5 2. Click FirstName under body to map str2
H General/tibco-wi-log tonefirstname "
8 g LogMessage
& Settings Activity Inps Q a. message
1 string.concat("We have received a message from ", $flow.body.FirstName) 7
Input a. message *
Upstream Output 5
Loop. pstream Q Q base64Tostring(basesastr)
. {}‘;”m Decodes a base64 encoded string base6dstr and retur
ns the decoded string.
» {3 headers Forexample:
- {3 boay string base64ToString("SGVsbGas| Fdvemxk") Returns
Hello, World
a. Class
number
1. Cost
~ string
a. DepartureDat
Gt baseB4ToString(baseBastr)
C BEITein concat(str, str2)
£ iy contains(str, substr)
Tn

At runtime, the output from the concat function gets mapped to message.

Using the array.forEach() Function

Refer to the section, Mapping Complex Arrays, for a detailed explanation on using the array. forEach()
function.

Using the json.path() Function

Refer to the section, Mapping JSON Data with the json.path() Function, for a detailed explanation on using
the json.path() function.

Using Expressions

You can use two categories of data mapping expressions in TIBCO Cloud Integration - Flogo (PAYG).

Basic Expression

Basic expressions can be written using any combination of the following by using operators:

o literal values

e functions

e previous activity or trigger output

Refer to Supported Operators for details on the operators that can be used within a basic expression.

Here are some examples of basic expressions:

string.concat("Rest Invoke response status
code:",$activity[InvokeRESTService].statusCode)

string.length($activity[InvokeRESTService].responseBody.data) >=7

$activity[InvokeRESTService].statusCode == 200 &&
$activity[InvokeRESTService].responseBody.data == "Success"

Ternary Expression

Ternary expressions are assembled as follows: expression ? boolean true : boolean false

Here is an example of basic ternary expression:

$activity[InvokeRESTService].statusCode == 200 ? "Response successfully":"Response
failed, status code not 200"

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

94

In the above example $activity[InvokeRESTService].statusCode == 200 is the expression to be
evaluated. If the expression evaluates to true (meaning statusCode equals 200), it returns Response
successfully. If the expression evaluates to false (meaning statusCode does not equal 200), it returns
"Response failed, status code not 200".

Here is an example of a nested ternary expression:

$activity[InvokeRESTService].statusCode == 200 ?
$activity[InvokeRESTService].responseBody.data == "Success" ? "Response with correct
data" : "Status ok but data unexpected" : "Response failed, status code not 200"

The example above checks first to see if statusCode equals 200. If the statusCode does not equal 200, it
outputs Response failed, status code not 200.If the statusCode equals 200, only then it checks to
see if the responseBody . data is equal to "Success". If the responseBody .data is equal to "Success", it
outputs Response with correct data.lf the responseBody.data is not equal to "Success", it outputs
Status ok but data unexpected.

Supported Operators

TIBCO Cloud Integration - Flogo (PAYG) supports the operators that are listed below.

¢ &&
o I=

« >

o <

o >=

o« <=
o +

o /

e %

o Ternary operators - nested ternary operators are supported. For example,
$activity[InvokeRESTService].statusCode==2007
($activity[InvokeRESTService].statusCode==2007true:false):false

Developing APIs

TIBCO Cloud Integration - Flogo (PAYG) lets you take an API-first development approach to implementing
APIs from a Swagger Specification 2.0, OpenAPI Specification 3.0, or GraphQL schema. After you upload
an API specification file or a GraphQL schema, TIBCO Cloud Integration - Flogo (PAYG) validates the file
and if the validation passes, it automatically creates the Flogo flows and triggers for you.

Using an OpenAPI Specification
TIBCO Cloud Integration - Flogo (PAYG) gives you an option to create the Flogo app logic (flows) by
importing an API specification file. You can simply drag a specification file to the TIBCO Cloud Integration
- Flogo (PAYG) Ul or navigate to it. If you have an existing specification file stored in the TIBCO Cloud™
Integration - API Modeler, select it when creating the flow. The flows for your app are automatically created
based on the definitions in the specification file that you uploaded.

When you create an app from a specification, the ConfigureHTTPResponse and Return activities are
automatically added in the flow. The mappings from trigger output to flow inputs get configured for you
based on the definitions in the specification. The output of the ConfigureHTTPResponse activity is
automatically mapped to the Return activity input. However, you must configure the input to the

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

95

ConfigureHTTPResponse activity manually. If you have multiple response codes configured in the REST
trigger, the first response code is configured in the ConfigureHTTPResponse activity by default. The only
exception to this is if you have a response code of 200 configured. In that case, the 200 response code is
configured in the ConfigureHTTPResponse activity by default.

Before the TIBCO Flogo® App is created, a validation process ensures that the features defined in the
specification are supported in TIBCO Cloud Integration - Flogo (PAYG).

Considerations when using an API specification file to create a Flogo App:

o TIBCO Cloud Integration - Flogo (PAYG) supports Swagger Specification 2.0 and OpenAP]I Specification
3.0.

e Currently, TIBCO Cloud Integration - Flogo (PAYG) supports only the JSON format.

e Cyclic dependency is not supported when creating flows from specifications. For example, if you have a
type Book that contains an object element of type, Author. The type Author in turn contains an element
of type Book which represents the books written by the author. To retrieve the Author, it creates a cyclic
dependency where the Author object contains the Book object and the Book type in turn contains the
Author object.

» Not all data types are supported in TIBCO Cloud Integration - Flogo (PAYG). A data type that appears
in your specification but is not supported in TIBCO Cloud Integration - Flogo (PAYG) will result in an
error being displayed.

e Schema references within schemas are not supported.

o If the specification has a response code other than 200 (OK) or 500 (Error), the method that contains the
unsupported response code are not created.

* You can enter a schema for the response code 200, but the 500 response code must be a string.
» Basepath element in the schema is not supported.

If you get a validation error, you can either cancel the process of generating the app or click Continue. If
you opt to continue, TIBCO Cloud Integration - Flogo (PAYG) continues with the app creation and ignores
the parts of the specification that did not pass the validation.

The REST reply data type is by default set to any data type. To configure the reply to an explicit data type,
see Configuring the REST Reply section.

To create an app using an API specification, follow these steps:

To upload your specification file, follow these steps:

Procedure

1. Open the app details page and click Create.
The Add triggers and flows dialog opens.

2. Click Swagger Specification under Start with.
3. You have two options:
» Create a flow using an API specification that exists in TIBCO Cloud™ Integration-API Modeler. In
the API Specs tab, select the specification that you want to use.

e Use an API specification saved locally on your computer by uploading it to TIBCO Cloud
Integration - Flogo (PAYG). Click Upload file to open the tab. Browse to the saved API specification
on your local machine or drag and drop your saved API specification to the Add triggers and flows
dialog.

TIBCO Cloud Integration - Flogo (PAYG) validates your file extension. If your file extension is . json,

you see a green check mark and the Upload button appears.

TIBCO Cloud Integration - Flogo (PAYG) validates the contents of your file and if it passes the
validation, it creates the flows based on the definitions in the file. One flow gets created for each method

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

96

and path combination defined in the file. If there are errors in your file, you get warning messages
saying so, but you have the option to continue with creating the flows. If you click Continue, the flows
get created for supported methods only. Other issues must be fixed before you can upload the file again.

Currently, the following are not supported:

o PATCH method
& e Form data content type

e Same root having a static path and a parameterised path in the file, for example, /foo/bar
and /foo/{id}. But having two static paths are supported, for example, /foo/bar
and /foo/barl

The Flogo App gets created and the flow details page opens with the flows created. Each flow
corresponds to a method defined in the specification that passed the validation. These flows are
automatically created based on the specification that you used to create the app. The flows are created
with a REST trigger (ReceiveHTTPMessage) and have a REST Return activity appended to them by
default.

4. In each flow, do the following:
a) Open the flow by clicking on its name.
b) Click the trigger to open its configuration dialog.
c) Map the following;:
e Inthe Map to Flow Inputs tab, map the Trigger Output to Flow Input.
e Inthe Map from Flow Outputs tab, map the Flow Output to Trigger Reply.
To test the deployed app, follow the procedure in Testing the Deployed App section.

You can also download the specification used to create the app by following the procedure in
Downloading the API Specification Used section.

You also have the option to copy the Endpoint URL from the Endpoints tab by clicking Copy spec URL.
Or you can click the ([7]) icon next to the Endpoint URL itself.

Configuring the REST Reply

When creating a REST app from a Swagger 2.0 or OpenAPI 3.0 API specification, the
ReceiveHTTPMessage reply data type is set to any by default. You must explicitly configure the reply type.

To explicitly configure the reply type, add a ConfigureHTTPResponse activity in the flow. This activity
must immediately precede the Return activity in the flow.

2l

3 ParselSONA ConfigureHT
3 - .
ctivity [LogMessage ft3 TPResponse Return

2l

ainding 3 sinduj mol 1]

You can configure custom codes that you want to use in the HTTP reply in the Reply Settings tab of the
ReceiveHTTPMessage trigger.

Follow these steps to configure your HTTP reply:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

97

Procedure

1.
2.

3.
4.

5.

6.
7.

8.

Open the REST trigger configuration pane by clicking on it.

In the Reply Settings tab of the Receive HTTPMessage REST trigger, configure the custom codes that
you want to use. Refer to the section, "REST Trigger" in the Activities and Triggers Guide.

Add a ConfigureHTTPResponse activity immediately preceding the Return activity in the flow.

Open the ConfigureHTTPResponse activity by clicking on it and configure it as follows:
a) In the Settings tab:

1. If your flow is attached to multiple REST triggers, select the trigger in which you have configured
the code you want to use from the Trigger Name drop-down menu. The Trigger Name field does
not display if your flow is attached to only one REST trigger.

2. Select a response code from the Code field menu. Only the codes configured in the selected
trigger are displayed in the menu.

b) The Input tab displays the schema for the response code. Map the elements or manually enter a
value for the elements.

¢) Click Save.
Configure the Return activity by mapping the code and body (which is currently of data type any).

Map Outputs Flow Outputs Q 1. code
1 Sactivity[ConfigureHTTPResponse].code

1. code

~ {} responseod Upstream Output Q Functions Q

¥ bod
¥ e {} ConfigureHTTPResponse array

{3} headers boolean

»
»

« {3} response } coerce

a. body p datetime

- {} Slow b float

Click Save.

In the Map from Flow Outputs tab in the Receive HTTPMessage trigger, map the code and body to the
corresponding elements from the flow output.

General/tibco-wi-rest
5 ReceiveHTTPMessage

Simple REST Trigger

Trigger Settings Trigger Reply Q| O responseBody % body
1 sflow.responseBody. body
Output Settings 1. code

Map to Flow Inputs

Flow Output Q Functions Q

Sflow

Reply Settings
{} headers ey

1* code boolean

Map from Flow Outputs

{3} responseBody coerce

datetime

v v v w W

body
float

{} headers

Click Save.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

98

Testing the Deployed App

The deployed app can be tested using its own API specification.
To test the deployed app, do the following;:

Procedure
1. Open the app.
2. Click Endpoints to open its tab.

Flows Endpoints Monitoring Environment controls Logs History

Endpoints ruic

Endpoint URL Actions

tion.tci-devops.eu-west-1.tibcoapp: wxcnxkeh6 ly i Test PublishtoMashery i

3. Click Test.

Downloading the API Specification Used

You can download the API specification used to create the app.
To download the specification, follow these steps:

Procedure

1. Open the app.
2. Click Endpoints to open its tab.

3. Click the shortcut menu (z) to the extreme right of the Endpoint URL.

4. Click Download spec.
The downloaded specification may not be exactly the same as the original specification that was used to
create the app. This could happen because TIBCO Cloud Integration - Flogo (PAYG) follows its own
convention when generating a specification from its apps. Also, any changes that you might have made
after creating the app, will be reflected in the downloaded specification, but will not change the original
specification from which you created the app. The original specification will remain untouched. Use the
downloaded specification only for testing the app.

Using GraphQL Schema

&

GraphQL provides a powerful query language for your APIs enabling clients to get the exact data that they
need. It has the ability to get data from multiple resources in a single request by aggregating the requested
data to form one result set. GraphQL provides a single endpoint for accessing data in terms of types and
fields.

TIBCO Cloud Integration - Flogo (PAYG) provides an out-of-the-box GraphQL trigger which turns your
Flogo app into a GraphQL server implementation. Each Flogo flow in the app acts like a GraphQL field
resolver. So, the output of the flow must match the return type of the field in the schema.

TIBCO Cloud Integration - Flogo (PAYG) allows you to create GraphQL triggers by dragging and dropping
your GraphQL schema file into the Web UI or by navigating to the file. A flow gets automatically created
for every query and mutation type in your schema. You must then open the flow and define what kind of
data you want the flow to return. This saves you the time and effort to programmatically define data
structures on the server.

This section assumes that you are familiar with GraphQL. To learn about GraphQL, refer to the GraphQL
documentation.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

¢ ©

\'r

99

GraphQL server implementation in TIBCO Cloud Integration - Flogo (PAYG)

To obtain samples of GraphQL schemas and app JSON files, go to https://github.com/project-flogo/graphql.

To use GraphQL in TIBCO Cloud Integration - Flogo (PAYG), you must create a GraphQL trigger. Use one
of the methods below to create a GraphQL trigger.

The implementation of GraphQL server in TIBCO Cloud Integration - Flogo (PAYG) currently does not
return the specified field ordering in a query when a request is received. It does not affect the correctness of
the response returned, but affects the readability and is non-compliant to current specification.

The GraphQL schema must have either . gql or . graphgl extension.

For details on the GraphQL trigger refer to the "GraphQL Trigger" section in the TIBCO Flogo® Activities and
Triggers Guide.

Creating a new GraphQL trigger

To create a new GraphQL trigger, follow these steps:

Open the app details page.

Click Create. The Add triggers and flows dialog opens.

Under Create new, select Trigger.

Select the GraphQL Trigger card.

Click Browse and navigate to your locally stored GraphQL schema file to upload it.

S

Click Create. The new GraphQL trigger gets created with a placeholder for a flow attached to it.

Once the trigger is created from the wizard, the trigger configuration is fixed and the Operation Field and
Resolver For cannot be changed.

For more information, see the "GraphQL Trigger" section in the TIBCO Flogo® Activities and Triggers Guide.
To implement a single method in your . gq1 file
To implement a single method, follow these steps:

1. In TIBCO Cloud Integration - Flogo (PAYG), open the app details page and click Create.
2. Inthe Add triggers and flows dialog, click Flow under the Create new.

w

Enter a name for the flow in the Name text box. Optionally, enter a description for the flow in the
Description text box.

Click Create.
Select Start with a trigger.
In the Triggers catalog, select the GraphQL Trigger card.

NS e

Follow the on screen prompts to configure the trigger. See the section, "GraphQL Trigger", in the
Activities and Triggers Guide for details on configuring the trigger. A flow with the name you specified
gets created and attached to the newly created GraphQL trigger. This flow implements the method that
you selected.

If needed, you can later make changes to the GraphQL schema file and upload it using the GraphQL trigger
without creating a new flow. For more information, see the "GraphQL Trigger" section in the TIBCO Flogo®
Activities and Triggers Guide.

To implement all methods defined in your . gql file

You can create flows to implement all methods defined in your . gq1 file. To do so follow these steps:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://github.com/project-flogo/graphql

100

In the app details page, click Create. The Add triggers and flows dialog opens.
Select Flow under Create new.
Click GraphQL Schema under Start with.

L

Click GraphQL Schema and upload your <name>. gql file by either dragging and dropping it to the
Add triggers and flows dialog or navigating to it using the browse to upload link. TIBCO Cloud
Integration - Flogo (PAYG) validates the file extension. You see a green check mark and the Upload
button appears.

5. Click Upload. TIBCO Cloud Integration - Flogo (PAYG) validates the contents of your schema and if it
passes the validation, it creates the flows based on the methods defined in your schema file. One flow is
created for each method in your schema. All the flows are attached the same trigger.

Manually attaching a flow to an existing GraphQL trigger in the app

If you have an existing flow in an app, you can manually attach it to a GraphQL trigger. To do so, follow
these steps:

1. Click the flow name to open the flow details page.

2. Click the icon to the left of your flow. The existing GraphQL triggers in the app display by default.

3. Select one of the existing GraphQL triggers and follow the on-screen directions.
Limitations on constructs in a GraphQL schema

TIBCO Cloud Integration - Flogo (PAYG) currently does not support the following GraphQL constructs:

o Custom scalar types
o Custom directives
e Subscription type

e Cyclic dependency in schema. For example, if you have a type Book which contains an object element of
type, Author. The type Author in turn contains an element of type Book which represents the books
written by the author. To retrieve the Author, it creates a cyclic dependency where the Author object
contains the Book object and the Book type in turn contains the Author object.

Using gRPC
The out-of-the-box gRPC trigger in TIBCO Cloud Integration - Flogo (PAYG) uses a . proto file to define
one or more services and the various Remote Procedure Calls (methods) under the service. For an
understanding of gRPC concepts, refer to the gRPC documentation.

e In TIBCO Cloud Integration - Flogo (PAYG), the gRPC Trigger supports only protocol buffers (. proto)
as the Interface Definition Language (IDL) for describing both the service interface and the structure of
the payload messages.

o Currently, TIBCO Cloud Integration - Flogo (PAYG) only supports the proto3 version of the protocol
buffer. Refer to the Creating a Flow Attached to a gRPC Trigger section for details on flow and gRPC
& trigger creation.

e While creating the .proto file, consider the limitations in section "Limitations when creating the .proto
file".

* You must not use the same gRPC . proto file for a gRPC trigger and gRPC activities in the same app.
The package names for the gRPC trigger and gRPC activities must be unique.

o The gRPC trigger and gRPC activity do not support options in the .proto file. If your .proto file
contains any options, be sure to remove the options in . proto file before using it.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

101

Creating a new gRPC trigger

To create a new gRPC trigger, follow these steps:

S

6.

Open the app details page.

Click Create. The Add triggers and flows dialog opens.
Under Create new, select Trigger.

Select the gRPC Trigger card.

Follow the on-screen prompts to configure the trigger. See the section, "gRPC Trigger", in the Activities
and Triggers Guide for details on configuring the trigger.

Click Create. The new gRPC trigger gets created with a placeholder for a flow attached to it.

To implement a single method in your .proto file

You can implement only a single method from your .proto file. To do so, follow these steps:

1.
2.

«»

N o o

In TIBCO Cloud Integration - Flogo (PAYG), open the Apps page and click Create.
In the Add triggers and flows dialog, click Flow under the Create new.

Enter a name for the flow in the Name text box. Optionally, enter a description for the flow in the
Description text box.

Click Create.
Select Start with a trigger.
In the Triggers catalog, select the gRPC Trigger card.

Follow the on-screen prompts to configure the trigger. See the section, "gRPC Trigger", in the Activities
and Triggers Guide for details on configuring the trigger. A flow with the name you specified gets created
and attached to the newly created gRPC trigger.

To implement all methods defined in your .proto file

You can generate the gRPC trigger along with implementing one flow per method defined in your .proto
file. The flows will all be attached to the same trigger. To do so follow these steps:

1. On the app details page, click Create. The Add triggers and flows dialog opens.
2. Select Flow under Create new.

3.
4

Click gRPC Protobuf under Start with.

. Click gRPC Protobuf and upload your <name>.proto file by either dragging and dropping it to the

Add triggers and flows dialog or navigating to it using the browse to upload link. TIBCO Cloud
Integration - Flogo (PAYG) validates the file extension. You see a green check mark and the Upload
button appears.

Click Upload. TIBCO Cloud Integration - Flogo (PAYG) validates the contents of your schema and if it
passes the validation, it creates the flows based on the methods defined in your schema file. One flow is
created for each method in your schema. All the flows are attached to the same trigger.

Manually adding an existing flow to the trigger

If you have an existing flow, you can manually add the flow to a gRPC trigger. To do so:

1.

2.

Open the flow details page by clicking on the flow name.

Click the icon to the left of your flow.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

102

You have the option to either select an existing gRPC trigger that is used in another flow in the same app
or you can create a new gRPC trigger and attach this flow to the new trigger.

o To select an existing gRPC trigger already used in the app, click gRPC Trigger. The Port field is
disabled, as this trigger is already in use by other flows. Refer to the "gRPC Trigger" section in the
TIBCO Cloud™ Integration - Flogo™ (PAYG) Activities and Triggers Guide for details on the other fields.

o To create a new gRPC trigger and attach the flow to it, click Add new trigger and click on the gRPC
Trigger from the Triggers catalog. Refer to the "gRPC Trigger" section in the TIBCO Cloud™
Integration - Flogo® (PAYG) Activities and Triggers Guide for details on the other fields.

3. Click Finish.

Limitations when creating the .proto file

You must adhere to the following limitations when creating your .proto file:

o Currently, importing a . proto file into another . proto file is not supported. Hence, you cannot use
import statements in a . proto file.

o Streaming is not supported in either the request or the response.

» Since import statements are not supported in .proto files, you cannot use data types that need to be
imported from other .proto files, such as google.protobuf.Timestamp and google.protobuf.Any.

e Cyclic dependency in request or response messages is not supported.
» Setting a default value to a blank field within a message is not supported.
» Maps for data definition are not supported.

» Oneof - gRPC mandates that you enter a value for only one field. TIBCO Cloud Integration - Flogo
(PAYG) considers all fields optional in order to allow you to select any field and enter a value for it. If
you enter a value for multiple fields, only the value you entered for the last field displayed will be
accepted and the remaining field values above it will be ignored.

Building the App Binary for an App Containing gRPC Trigger from the CLI

To build an app that contains a gRPC trigger from the CLL

1. Install protoc and protoc-gen-go libraries.

The minimum supported versions are:
& | protoc380
protoc-gen-go 1.3.2
Refer to the gRPC.io documentation for details on installing the libraries.
2. Make sure the two libraries are included in your system PATH.

3. Build the app binary. For more information, refer to Building the App.
Conversion of Data Types in Protocol Buffer to JSON Data Types

JSON does not support all data types supported in protobuf. Hence, TIBCO Cloud Integration - Flogo
(PAYG) converts some of the data types to an equivalent data type in JSON. Here is a list of data types
supported by protobuf and their representation in TIBCO Cloud Integration - Flogo (PAYG).

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

103

This data

type

supported

in protocol

buffer... ...is converted to this JSON data type in TIBCO Cloud Integration - Flogo (PAYG)
int32 number
int64 number
double number
float number
uint32 number
uint64 number
sint32 number
sint64 number
fixed32 number
fixed64 number
bool boolean
byte string
string string

Using App Properties and Schemas

This section discusses how to create app properties, which you can use when populating field values. It also
describes how to create a schema that can be reused in your app.

App Properties
You can configure some supported fields with app properties when configuring triggers and activities.
Connection-related app properties cannot be used for configuration anywhere within an app. Their only
purpose is to allow you to change a connection value if need be during runtime. Configuration fields in
your flow that require their values to be changed when the app goes from a testing stage to production are
best configured using app properties instead of hard coding their values. App properties for triggers and
activities reside within the app. App properties for connections are not modifiable from the App Properties
dialog in the app.

The URL field in an activity is a good example of a field for which you would want different values —
maybe an internal URL when testing the app and an external URL when the app goes into production. You
may want the URL used in the activity to change when the app goes from a test environment to production.
In such a case, it is best to configure the URL field in the activity with an app property instead of
hardcoding the URL. This way, you can change the URL by changing the value of the app property used to
configure the URL field.

An app property value can have one of the following data types:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

104

e string
e boolean
¢ number

e password
Values for the password data type is encrypted and will not be visible by default. But when configuring the

password value, you can click on the Show/Hide password property value icon () to see the value
temporarily in order to verify that it has been entered correctly.

App properties are saved within the app, so when you export or import an app, app properties configured
in the app also get exported or imported with the app. Properties of data type password do not retain their
values when an app is exported. So, you must reconfigure the password after importing the app.

Creating App Properties

You can create an app property as a standalone property or as a part of a group. Use a group to organize
app properties under a parent. A parent acts as an umbrella to hold related app properties and is basically a
label with a meaningful name. A parent does not have a data type associated with it. For instance, if you
want to group all app properties associated with a particular activity, you can create a group with a parent
that has the activity name and create all that activity-related app properties under that parent.

As an example, you can create LOG_LEVEL as a standalone app property without a parent. Or you can
create it as a part of a hierarchy such as LOG.LOG_LEVEL with the parent of the hierarchy being LOG and
LOG_LEVEL being the app property under LOG. Keep in mind that if you group properties, you must refer
to them using the dot notation starting from the parent. For example, the LOG_LEVEL property must be
referred to as LOG.LOG_LEVEL. You can nest a group within a group.

N Once you create an app property either as a standalone property or under a group, you cannot move the
property around to another location in the properties list.

The App Properties dialog allows you to view your app properties in two formats (views). Refer to App

Properties Dialog Views for details.

App Properties Dialog Views

You can view existing app properties for an app in the App Properties dialog. The App Properties dialog
lets you view the properties in two formats (views), the list view format and the tree view format. By
default, the App Properties dialog opens in the tree view. To toggle between views click Switch view
mode.

Tree view

The tree view is the default view in which the App Properties dialog opens. In this view, you can add a
new property, delete an existing property as well as edit the data type and value of a property.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

105

© App Properties

Expand All | Collapsa All

Close

!g Switch view mode

* Application Properties
NewProperty string

- MewGroup

ChildPropertyt number
ChildProperty2 boaolean
AnotherMewProperty string

-

AnotherGroup
Child string
Child2 password
* | SubGroup
Child string

Child2 numoer

List view

ar

SomeString

1234

true

SomeString

SomeString

SomeString

-

BG44

+ Add

&

In the list view, you can edit the data type and value of a property but cannot add a new property or delete
an existing property. The image below shows you how the properties in the above tree view image are

presented in the list view.

Creating a Standalone App Property

&

To create a standalone app property for your app, follow the steps below.

© App Properties e - |
:

MNewProperty string s SomeString

MNewGroup.ChildProperty1 number : 1234

MewGroup ChildProperty2 boolean ¥ true ¥

AnatherNewProperty string v SomeString

AnatherGroup. Child string : SomeString

AnatherGroup.Child2 password B T L]

AnatherGroup. SubGraup.Child string : SomeString

AnatherGroup. SubGraup.Child2 number ¥ BE44

Once you create an app property either as a standalone property or under a group, you cannot move the
property around to another location in the properties list.

To create a group, see Creating a Group.

No two standalone properties (properties that are not in a group) can have identical names. Also, property

names within the same group must be unique.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

106

Procedure

1. If your app does not exist, create a new app, and click the Properties button shown on the screen below.

’ Schemas l @. Properties

©)

)

g

You don’t have any flows yet.

m lmport e

If your app already exists, then open the app details page and click Properties.

The App Properties dialog opens.

© App Properties = -

Expand All | Callapse Al fg Switch view moda

* Application Pri + Add

| NE'\.‘-‘ name |

If you already have existing properties, they will be displayed. Click Add to add another property.

2. Enter a meaningful name for the property you want to create.

8 The property name must not contain any spaces or special characters other than a dash (-) or
an underscore (_).

3. Click Add property to create a standalone property.
The property gets created. When you create a property, by default, the property list is presented in a tree
view. To view the properties in a list view mode, click Switch view mode.

4. Select the data type for the new property from its drop-down list.
5. Enter a default value for the property in the text box next to the property.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

107

6. Click Save.

TIBCO Cloud Integration - Flogo (PAYG) runs validation in the background as you create a property.
The validation takes into consideration the property type and default value of the property that you
entered. The Save button gets enabled only when the validation is successful. Make sure you do not
skip this step of saving your newly created property or group.

Creating a Group

& ©

You can create one or more standalone app properties or group app properties such that they show up in a
hierarchy. A group (or hierarchy) consists of a parent node, which is just a label and does not have a data
type associated with it. You must create properties within the parent. You can do so in the Application
Properties dialog. When creating a group you must add the parent first then create the app properties
under the parent.

Once you create an app property either as a standalone property or under a group, you cannot move the
property around to another location in the properties list.

Group names within an app must be unique. Also, property names within a group must be unique.

Procedure

Open the app details page and click App Properties.
Click Add on the upper right corner to add the group.

Enter a meaningful name for the group and click Add group.
The group gets created. The group is simply a label and cannot be used by itself. So, you must add
properties within the group.

To add a property within the group, hover your mouse cursor to the extreme right of the group until the
Add button appears in the group row.

@ App Properties Cancel “

| Collapse All Tz Switch view mode
¥ Application Properties + Add
w Group + a\&cgi ‘ %l Delete

Click the Add button and enter a name for the property and click Add property.

Select a data type for the property and enter a value. Entering a value and selecting a data type are
mandatory. The Save button will remain disabled without them.

Click Save.
The property gets created under the parent.

Deleting a Group or Property

An existing property must be deleted from the tree view only in the App Properties dialog. The list view
does not allow you to add or delete properties. Deleting a child property does not delete its parent, but
deleting a parent will delete all properties under it.

To delete a property, follow these steps:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

108

Procedure

1. Open the App Properties dialog from the app details page.

2. Hover your mouse cursor to the extreme right end of the property and click Delete. To delete a parent,
hover your mouse cursor to the extreme right end of the parent and click Delete.

<O a L
2. App Properties S

Collapse All %g Switch view mode

¥ Application Properties + Add

NewProperty string B SomeString

NewProp number 5 6586798 = D?@E

3. Click Save.

Using App Properties in a Flow

Configuring a field with an app property is recommended for fields that require their values to be
overridden when the app goes into production. Hence, the decision as to which fields in an activity should
support app properties (which fields can be configured using an app property) must be decided at the time
when the extension for the category is being developed. The fields that can be configured using an app
property display a slider button against their names in the Ul

Connection-specific app properties are visible in the App Properties dialog after you select a connection
when configuring the activity or trigger, but they appear in read-only mode. This is because connections are
reusable across apps and connection-related app properties are managed (refreshed) automatically.
Connection-related app properties cannot be used for configuration anywhere within an app. Their only
purpose is to allow you to change a connection value if need be during runtime. For more details on how
the connection properties get created and used, see Using App Properties in Connections.

To configure a field with an app property, follow these steps:

Procedure

1. Open the flow details page.

2. Click the activity whose field you want to configure with an app property.
This opens the configuration pane for the activity.

3. Click the slider () against the name of the field you want to configure with an app property. If the
field does not display a slider, the field can not be configured with an app property.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

109

General/tibco-wi-log

L LogMessage

Bind an Application Property B

Settings Log Level

INFO v
Input J

Add Flow Details
Loop
True o False

The App Properties dialog opens. Only those app properties whose data type match the data type of
the field are displayed.

4. Click the property you want to configure for the field.

The property name appears in the text box for the field and the default value of the property gets
implicitly assigned to the field.

After configuring the property, if you want to change a field to use a different property, hover your
mouse cursor over the end of the text box for the field until the Select another property value icon
appears. Click the Select another property value icon.

General/tibco-wi-log

LogMessage

Settings Log Level

[©)
- [INFO @J

Select another property value

Add Flow Details

True o False

Loop

For a field that has been configured with an app property, you can unlink the property from the field.
Refer to Unlinking an App Property from a Field Value for more details.

Using App Properties in the Mapper

You can use app properties when mapping an input field. The app properties available for mapping are
grouped under the $property domain-specific scope in the mapper. All mapper rules and conditions apply
to the use of app properties as well. For example, the data type of the app property value must match with
the input field data type when mapping. Connection-related app properties that are used by any
connection field in an activity do not appear under $property since they cannot be accessed. Connection-
related app properties cannot be used for configuration anywhere within an app. Their only purpose is to

allow you to change a connection value if need be during runtime. Hence, they cannot be used to map input
fields.

Refer to the section on Mapper for details on how to use the mapper.

Unlinking an App Property from a Field Value
For a field that has been configured with an app property, if you decide at a later time not to use the app

property, you can click and slide its slider ball ()) to the left. This will remove the app property from the
field (unlink it from the field) but will leave the field configured with the default value of the app property.
The field retains the default value of the app property, but it gets be disassociated from the app property

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

110

and will appear as a manually entered value. Hence, if you change the default value of the app property
beyond this point, it will not affect the value of the field.

Using App Properties in Connections

Connection-related app properties cannot be used for configuration anywhere within an app. Their only
purpose is to allow you to change a connection value if need be during runtime. Hence, you cannot use
connection-related app properties to map an input field as these properties are not visible in the mapper.
You can only view them in the App Properties dialog, but cannot edit, update, or delete them. Before you
your app, their values can only be edited in the connection details dialog, the dialog where you provided
the credentials for the connection. You can open this dialog by editing the connection from the Connections
page in the UL Connection-related properties are useful when you want to change the value for one of the
connection fields, for example a URL, when an app goes from the testing stage to production.

How the connection-related app properties get created

You cannot explicitly create connection-related properties. When you select a connection in the Connection
field of an activity, the supported properties associated with that connection automatically get created and
populated in the App Properties dialog.

While creating a connection, the fields in the connection details dialog that support app properties are

marked with 2 icon. One property gets created for each field that is marked with & in the connection
details dialog The values you enter for such fields in the connection details dialog become the default
values for the connection properties. The properties take their name from the connection field they
represent in the connection details dialog.

You begin by creating a connection. In the example below, only the Connection URL and Authentication

Key fields support app properties. These are the only two fields that display 2 against them.

TIBCO Cloud Messaging Connector x

Connection Name

MyTCMConnection

Description

Connection URL @

http:/fgoogle.com

Authentication Key @

Once the connection is created, you can use it to configure the Connection field in an activity. In the
example below, the connection created above is being used to configure the Connection field of the
TCMMessagePublisher activity.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

111

Messaging/tibco-messaging-tem-pu b

I® TCMMessagePublisher

Settings Connection

Input Settings | B
Input

Laep

After configuring the Connection field with the connection, if you open the App Properties dialog, you
should see the connection properties for the field (enclosed in the red box in the image below) displayed.
Notice that only the supported properties (Connection URL and Authentication Key) are displayed in a
read-only mode.

© App Properties Clase BE

Expand All Collapse All EE Switch view mode
NewProperty string ¥ SomaString
AnotherPropartuy numbear : 12351

* MewGroup

Child1 string - SomeString
Child2 number ¥ 6543
w AnogtherGroup
Child number B 767578
Childz string ¥ SomeString
Child3 password]| [[F——— &
+ SubGroup
SubGroupChild string ¥ App Pushed Successfully
SubGroupChild2 numbear B 437885
LOG_LEVEL string * DEBUG
- Massaging

+ | MyTCMConnection

A

Connection_URL string hitp://google.com

Authentication_Key password | srsssssssssnsssses &

The properties that get displayed in the App Properties dialog change dynamically based on your selection
of the connection to use. You can only view the connection properties. You cannot edit or delete them from
the App Properties dialog. Deleting the activity that uses the connection will automatically remove the
associated connection properties that the activity used from the App Properties dialog.

Using connection-related app properties

Connection-related app properties are not available for use from the mapper. You can use these properties
to change a connection value (for example, a URL or password) just before an app goes from a testing stage
to production. Their values cannot be changed from the App Properties dialog. Change their values in the
connection details dialog before the app.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

112

Editing an App Property

You can change the default value or data type of an app property at any time.

Changing the Default Value of a Property from the App Properties Dialog
You can change the default value of an existing app property at any time after creating the property. Before
you, you can change the default value in the App Properties dialog.
To change the default value of an existing app property, follow these steps:

Procedure

1. Open the App Properties dialog by clicking the Properties button on the app details page.
2. Click inside the text box for the property value you want to change.

3. Edit the value.

4. Click Save.

Changing the Name or Data Type of an App Property after Using It

If you change either the name of an app property or its data type after you have used the property to
configure a field in an activity or trigger, the field displays an error message. You must explicitly
reconfigure the field to use the modified property by deleting the property from the text box for the field
and adding the modified property.

When Importing an App

An app being imported could have its own app properties. The app properties get imported along with the
app. If an app property in the app being imported has a name that is identical to a property in the host app,
you will see a warning message saying so with a choice to either overwrite the existing host property (by
clicking Continue) with the property definition from the imported app or cancel the import process
altogether.

App properties of type password do not retain their values when the app is exported, hence you must
reconfigure the default values of all app properties of data type password after you import the app.

Exporting App Properties to a File

You can export the app properties to a JSON file or a . properties file. The exported JSON file can be used
to override app property values. When using the exported properties file, the values in the properties file
get validated by the app during runtime. If a property value in the file is invalid, you get an error saying so
and the app proceeds to use the default value for that property instead.

Exporting the app properties to a JSON file

Exporting the app properties to a JSON file allows you to override the default app property values during
app runtime. It is useful if you want to test your app by plugging in different test data with successive test
runs of your app. You can set the app properties in the exported file to a different value during each run of
the app. The default app property values get overridden with their values that you set in the exported file.

To export the app properties to a JSON file, run the following command from the directory where your app
resides:

./<app-binary-name> -exXxport props-json

The properties get exported to <app-binary-name>-props. json file.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

113

Exporting app properties to a .properties file

You cannot use a . properties file format to override the app properties that were externalized using
environment variables. To export the app properties to a . properties file, run the following command
from the directory where your app resides:

./<app-binary-name> -exXport props-env

The properties get exported to <app-binary-name>-env.properties file. The names of the app properties
appear in all uppercase in the exported env.properties file. For example, a property named Message will
appear as MESSAGE. A hierarcy such as x.y.z will appear as X_Y_Z.

App Schemas

You can define a JSON or Avro schema such that it is available for reuse across an app. Creating an app-
level schema saves you time and effort of entering the same schema multiple times. An app-level schema
can be used in any flow, activity, or trigger configuration where a schema editor is provided. You can
simply pick an existing schema from a list. For example, app-level schemas are available from the following
locations:

e Inputs or Outputs tab of a flow (including Error Handler flows and subflows)

e Input or Output Settings tab of an activity

o Output or Reply Settings tab of a trigger

App-level schemas are filtered based on the type of the activity or trigger. For example, only JSON schemas
are displayed in a REST trigger or activity configuration.

Currently, TIBCO Cloud Integration - Flogo (PAYG) only supports the JSON and Avro types of schemas.

Defining an App-Level Schema

Procedure

1. On the App Details page, click Schemas.
The Schemas page opens.

Click +Schema.
In the Schema Name field, enter a schema name.

Select the type of schema. You can select either JSON or Avro schema. The default is JSON schema.

AT R N

Enter the schema in the schema editor.
% ‘ If you enter JSON data in the editor, it is automatically converted to JSON schema.

6. Click Save.

Result

After the schema is defined, it can be used in any activity or trigger configuration by using the Use an app-
level schema button in the schema editor of the activity or trigger.

Editing an App-Level Schema

When you make changes to an app-level schema, the changes are automatically reflected everywhere the
schema is used.

To edit an app-level schema, follow these steps:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

114

Procedure

1. On the App Details page, click Schemas.
The Schemas page opens.

Expand the schema to be edited.
Edit the schema name or the schema in the editor, as required.

Click Save.
If the app-level schema is used in any flow, activity, or trigger, a warning is displayed.

Deleting an App-Level Schema

A Deleting a schema removes its reference from all the places where it is used, but it retains a copy of the
schema in the fields that use the schema.

Procedure
1. On the App Details page, click Schemas.

The Schemas page opens.
2. Click the Delete icon beside the schema to be deleted.

Result

After confirmation, the selected schema is deleted.

Using an App-Level Schema

You can use an app-level schema from a flow, trigger, or activity from the following tabs:

e Inputs or Outputs tab of a flow
o Input or Output Settings tab of an activity
e Output or Reply Settings tab of a trigger

Flow Input & Output Tab

Use these tabs to configure the input to the flow and the flow output. These tabs are particularly useful
when you create blank flows that are not attached to any triggers.

& The schemas for input and output to a flow can be entered or modified only in this Flow Inputs & Outputs
accordion tab. You cannot coerce the flow input or output from outside this accordion tab.

Both these tabs (the Input tab and the Output tab) have two views:

¢ JSON schema view:

You can enter either the JSON data or JSON schema in this view. You must click Save to save your
changes or Discard to revert the changes. If you entered JSON data, the data is converted to a JSON
schema automatically when you click Save.

o List view: This view allows you to view the data that you entered in the JSON schema view in a list
format. In this view, you can:
— Enter your data directly by adding parameters one at a time
— Mark parameters as required by selecting its check box.

— When creating a parameter, if you select its data type as an array or an object, an ellipsis (...)
appears to the right of the data type. Click the ellipsis to provide a schema for the object or array.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

115

— Use an app-level schema by selecting the Use an app-level schema button. On the Schemas page
that appears, click Select beside the schema that you want to use. The name of the schema is
displayed beside the Use an app-level schema button and the schema is displayed in a read-only

mode.
You cannot edit an app-level schema in the List View if the Use an app-level schema
button is selected. To edit an app-level schema, follow the instructions in the section
Editing an App-level Schema. You can, however, switch to another app-level schema by
& clicking Change and selecting another app-level schema. You can also unbind the app-

changes to it using the schema editor in the List View.

— Click Save to save the changes or Discard to discard your changes.

Input or Output Settings Tab of an Activity

level schema (by deselecting the Use an app-level schema button) from a trigger, activity,
or the input and output of a flow. After you unbind the app-level schema, you can make

When configuring an activity, you can select an app-level schema in its Input or Output Settings Tab. For
example, the following screenshot shows an app-level schema selected in the Response Schema field of the

Output Settings tab of an InvokeRESTService activity.

General/tibco-wi-restinvoke
InvokeRESTService

Simple REST Activity

Settings

Input Settings

Input

Configure Response Codes
True Q) False
Response Type

application/isen M

Response Schema @© shared-schema Change
1-|{
Output 2 "gschema”: "http://json-schema.org/draft-04/schema#”,
3 "type": "object",
4~ “properties”: {
"firstName": {

Output Settings

Loop

“type": “"object",
“properties”: {
8~ "tvoe": {

Retry on Error

Response Headers

ow @

Output or Reply Settings Tab of a Trigger

ﬂ

When configuring a trigger, you can select an app-level schema in its Output or Reply Settings Tab. For
example, the following screenshot shows an app-level schema selected in the Reply Data Schema field of

the Reply Settings tab of a ReceiveHTTPMessage trigger.

General/tibco-wi-rest
5 ReceiveHTTPMessage

Simple REST Trigger

G- R

Configure Response Codes
True Q) False

Reply Data Schema o shared-schema Change

Trigger Settings

Qutput Settings

Map to Flow Inputs 1~

2 “$schema”: “http://json-schema.org/draft-04/schema#",
Reply Settings = "type g .Ob‘jlect .

4~ properties™: {

59 “firstName": {

Map from Flow Outputs “type": “"object™,
7~ “properties™: {
A "tvne": {

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

&

116

If there is change in the schema attached to a trigger, click Sync to synchronize it with the input and/or
output of the flow.

Using Connectors

&

TIBCO Cloud Integration - Flogo (PAYG) offers the ability to use connectors that have enterprise support
and also connectors that are custom developed extensions.

This section is applicable only if you have uploaded custom extensions for connectors. The Extensions tab
displays your uploaded extensions.

To use the TIBCO Flogo connectors, follow these steps:

Create one or more connections.
If you do not already have an app, create an app.
Create a flow.

Add the activities pertaining to the connector you use as needed.

S N

Build the app.

Creating Connections

You must create connections before using the connectors in a flow. TIBCO Cloud Integration - Flogo (PAYG)
uses the configuration provided in these connections to connect to the respective app, data sources,
systems, or SaaS.

Prerequisites

You must have valid accounts for the SaaS apps to which you want to connect.

To create a connection, click the Connections tab on the TIBCO Cloud Integration - Flogo (PAYG) page.

To create a connection using a connector tile:

1. If this is the first connection you are creating, click the Create connection link. For subsequent
connections, click the Create button on the Connections page.

2. Click the connector tile for which you want to create a connection.

3. Follow the instructions to configure the connection when prompted.

Make sure that the pop-up blocker in your browser is configured to always allow pop-ups from an app site.

On MacOS, clicking the link to the site will result in the connection details page hanging, so make sure to
select the radio button for "Always allow pop-ups from <site>."

Editing Connections

You can edit the name and other settings of your connection.
To edit an existing connection:

Procedure

1. In TIBCO Cloud Integration - Flogo (PAYG), click the Connections tab to open its page.

2. In the list of existing connections, click the connection that you want to edit. Edit the connection details
in the connection details dialog that opens.

3. Click Save.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

117

Deleting Connections
You can delete an existing connection.

Procedure

1. In TIBCO Cloud Integration - Flogo (PAYG), click the Connections tab to open its page.

2. In the list of existing connections, hover over the connection name that you want to delete until you see
the Delete connection icon ({fj) appear at the end of the row.
If the connection is being used by an app, you can see a blue icon in the Usage column. Hover over the
icon to see which apps use the connection.
& ‘ You cannot delete such connections.

3. Click the Delete connection icon.

4. On the confirmation dialog, click Delete connection.

Result

The selected connection is deleted.

Uploading Extensions
TIBCO Cloud Integration - Flogo (PAYG) gives you the ability to make use of your own extensions.

You can create extensions for TIBCO Cloud Integration - Flogo (PAYG) or you can upload a Project Flogo™
extension into TIBCO Cloud Integration - Flogo (PAYG).

Uploading TIBCO Cloud Integration - Flogo (PAYG) Extensions

You can create and contribute extensions for the following:

activities
triggers (you can define custom triggers that you can upload and use to create a flow)

connectors (a connector provides configuration details to connect external apps, for example,
Salesforce)

functions (to be used inside the mapper when mapping elements)

After creating your extension, you upload its . zip file using the upload dialog.

The extension you upload must follow the guidelines found on the GitHub page, https://
tibcosoftware.github.io/tci-flogo/.

Before you Upload

Keep the following in mind before you upload your extension:

When uploading your activity or trigger extension, by default TIBCO Cloud Integration - Flogo (PAYG)
compiles your extension before uploading it. If you would like to skip the compilation process, make
sure to compile all the * . ts files in your extension and generate a . js file for each . ts file. The . js file
must have an identical name as its corresponding . ts file.

You will be responsible for the lifecycle (uploading, updating, deleting) of the extension that you
contribute. Any extension that you contribute will be visible and available for use only to you.

When creating your activity or trigger extension, if you did not specify a category for the extension, the
extension will be placed in the Default category.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://tibcosoftware.github.io/tci-flogo/
https://tibcosoftware.github.io/tci-flogo/

&

118

o The category name for an extension must be unique. If a category by the name already exists, the upload
will completely overwrite the category. Out-of-the-box contributions cannot be overwritten.

» Special characters are not supported in activity and trigger names. You will get a validation error while
uploading, if any names contain special characters.

» Uploading new extension(s) to an existing category will overwrite the entire category and all its
contents. So, in order to add a new extension to an existing category while keeping the extension(s) that
already exist in that category, be sure to include the existing extension(s) along with the new activity,
connection, or trigger when creating the . zip file to be uploaded.

* You cannot delete a single extension from any category other than the Default category. To delete a
single trigger, activity, or connector from a category, you must re-upload the whole category which
includes all the extensions you want to keep minus the extension you want to delete. The same applies
when editing an extension within a category - after editing an extension on your local machine, make
sure to re-upload the whole category, the edited extension plus all the existing extensions in the
category. Uploading only the edited extension will overwrite the category causing you to lose the other
extensions in the category.

An extension that you upload to TIBCO Cloud Integration - Flogo (PAYG) is available for use in any flow
that currently exists in your app or a flow that you will create in future.

To upload an extension, follow these steps:

‘ This procedure assumes that you have the . zip file for your extension available for upload.

1. On the Apps page, click Environment and Tools tab.
2. Under Connector Management & Extensions, click Extensions.
3. If this is the first extension, click the Upload an extension button.

If there are existing extensions, click the Upload button on the upper right corner:

Extensions ‘ @ Upload

The Upload an extension dialog opens. If you want to upload from the Git repository select From Git
repository. See the section, Pulling Extensions from an Open Source Public Git Repository for more
details on this.

To upload an extension residing in a .zip file locally, click From a Zip file.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

119

Upload an extension

*

From Git repository

v
From a Zip file

skip Compilation

Drag and Drop

your zip file here

or browse to uplocad

4. Click the browse to upload link an

d navigate to your extension . zip file. Alternatively, drag and drop

the . zip file from your local machine to the area defined by a dotted line in the Upload an extension

dialog.

5. If you would like to skip the compilation process, select the Skip Compilation check box. If the check
box is selected, TIBCO Cloud Integration - Flogo (PAYG) performs a check before uploading to make
sure that every . ts file has a corresponding . js file present. If a .ts file does not have a js file, the

validation fails and your extension

6. Click Upload and compile.

does not upload.

TIBCO Cloud Integration - Flogo (PAYG) validates the contents in the . zip file. If the . zip file contains
a valid folder structure, it compiles the extension code. Once the code is compiled successfully, it
uploads the extension to TIBCO Cloud Integration - Flogo (PAYG). You can view the progress of the
upload or any errors that occur in the logs:

Upload an extension

TOT 2

61b7-3a4b-4d83-bfce-aale8243a55a/abc/activity/log/index.js

Completed uploading to s3

Writing => /opt/ipaas/wi-studio/sdk/src/app/ xohecyibucvf46gjw7mijx/7799
61b7-3a4b-4d83-bfce-aale8243a55a/abc/activity/log/index.js.map

Writing => /opt/ip: i-studi /app/ hecyibucvf46gjw7mijx/7799

Writing => /opt/ipaas/wi-studio/sdk/src/app/ xohecyibucvf46gjw7mijx/7799
61b7-3a4b-4d83-bfce-aale8243a55a/abc/activity/log/log.activity.spec.js.map

Writing => /opt/ip: i-studi /app/ hecyibucvf46gjw7mjx/7799
61b7-3a4b-4d83-bfce-aale8243a55a/abc/activity/log/log.activity.spec.js

° Complete

You will see a Complete message after the extension is successfully uploaded. If there were any

compilation errors during the uplo
paste the error message if need be.

7. Click Done to close the dialog.

ad, you see an error message and the upload exits. You can copy-

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

120

You can view your extension on the Extensions page. The newly added extension appears under the
category that you specified. If you had not specified a category for the extension, it appears in the

Default category. The activities are denoted by the symbol and the connectors have the ﬂ
symbol next to them.

The new extension displays the following:

o timestamp when the extension was loaded
o name of the extension contributor
e version of the extension

The Search field that appears above the category searches within the categories for the activity, trigger,
or connector you specified in the search text box. You can filter the displayed extensions by clicking the
Triggers, Connectors, or Activities buttons.

The extension is now available for you to use. If you uploaded an activity, the activity will be available
for use when creating a flow or editing an existing flow. The activity will appear under the category you
defined for it when creating the extension. The output of the activity will be available in the mapper just
as it is for any default activities that come with the TIBCO Cloud Integration - Flogo (PAYG).

If you uploaded a connector, the connector will be available for creating new connections on the Add
Connections > Select connection type dialog.

If you uploaded a trigger, the trigger will be available for you to select in the Create a Flow dialog,
which when selected will create the flow with your trigger.

Uploading Project Flogo™ Extension

You can upload the following extensions created in Project Flogo™ to TIBCO Cloud Integration - Flogo
(PAYG):

e activities

e triggers

» functions

To use an extension created in Project Flogo™, get the GitHub URL for the extension and upload it using
the method described in Pulling Extensions from an Open Source Public Git Repository.

Changing Log Levels

When uploading an extension, you can see the logs on the screen. You can set the FLOGO_LOG_LEVEL engine
variable to alter the log level at runtime. Be sure to do so before you begin uploading your extension. For
details on the FLOGO_LOG_LEVEL engine variable, see the Environment Variables section.

Pulling Extensions from an Open Source Public Git Repository
You can upload extensions that are available from an open source public Git repository by pulling them
directly into TIBCO Cloud Integration - Flogo (PAYG). This section describes how to pull the Default
category Project Flogo™ extensions directly from an external public Git repository and upload it to TIBCO
Cloud Integration - Flogo (PAYG). Pulling from private Git repositories is currently not supported.
Keep the following in mind when pulling the contribution:

* You can download only from public repositories. Accessing private Git repositories is not supported.

o The Git repository link should be the reference of the activity and not the URL.

e The repository link needs to be a reference of the contribution and must not begin with http:// or
https://, for example to pull the LogMessage activity from Project Flogo™ Git repository, use
github.com/project-flogo/contrib/activity/log

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

121

e Any new default category contribution that you pull from the Git repository get appended to the ones
that already exist for the category in TIBCO Cloud Integration - Flogo (PAYG). Contributions pulled and
uploaded to other categories in TIBCO Cloud Integration - Flogo (PAYG), overwrites the category itself.
Hence, if there are any existing activities in the category, they get deleted when the category is
overwritten.

o Default category extensions can only be downloaded one at a time.

To pull an extension from a public Git repository, follow these steps:

Procedure

1. On the Extensions page, click Upload.
The Upload an extension dialog opens.

2. Click From Git repository.
When you select this option you are prompted to enter the location of the Git repository from which
you want to pull the extension.

3. Enter the reference to the extension in the Git repository.
o ‘ Make sure you do not enter the initial http://.

4. Click Import.
TIBCO Cloud Integration - Flogo (PAYG) validates the format of the reference you entered in the Git
repository URL text box. The Import button remains disabled until you enter a valid reference format.
A . zip file for the activity gets generated and uploaded to the Default category on the Extensions page
in TIBCO Cloud Integration - Flogo (PAYG). Once you start the process of downloading the contribution
from the Git repository, you cannot cancel the process or switch to the process of uploading From a Zip
file. You must wait for the upload process to complete, then click Done.

5. Click Done.
The extension you uploaded appears on the Extensions page.

Adding Custom Golang Code or Dependencies to the App
You can use custom Golang code with your extensions. You can also use custom Golang code in your Flogo
apps directly without using it in any extension. Your custom extensions and apps may also have
dependencies. In the case of both, the custom Golang code and the dependencies, you have the option to
either dynamically pull the latest version of the packages from github.com during build time, or to pull a
specific version of the package and store it locally in <FLOGO_HOME>/1ib/ext/src folder ahead of time.
Storing a specific version of the package locally reduces your build time. Since the packages will be
available locally, the build process saves the time it takes to pull them from an external source. Keep in
mind that when the packages are pulled from the github.com repository during build time, the absolute
latest version of the packages get pulled. So, if you want a specific version of the package, you must pull the
package ahead of time and store it locally.

When you build the app binary, the build process first searches for the packages locally. If it does not find a
package locally, it attempts to pull the package from github.com repository.

Adding custom Golang code to your app

Once the custom Golang code is placed in the <FLOGO_HOME>/1ib/ext/src folder, it will be a part of all
apps built from that environment.

& ‘ Using custom Golang code is not supported in TIBCO Cloud™ Integration - Flog0®.

If you want to plug in a custom Golang code and include it as a part of your engine binary or Flogo app,
you can use one of the following two methods:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

122

e Pull and place the package in <FLOGO_HOME>/1ib/ext/src directory
Or
e Add the package to deps. go
To incorporate it into your build environment, do the following;:
1. Pull the package from the Git repository ahead of time. This is not required if you want the package
pulled dynamically during build time.
Pull the package from the external Git repository (github.com) to your local environment.
b. Place the package in <FLOGO_HOME>/1ib/ext/src folder.

c. Copy any dependent Golang packages required by your custom code into
<FLOGO_HOME>/lib/ext/src folder.

& ‘ Skipping this step will pull the latest versions of the dependencies at build time.
2. Create a deps. go file under <FLOGO_HOME>/1ib/ext/src folder if it does not already exist, and add an
entry for the package pointing to its public URL.

Here are two examples of the deps. go file content:

package main

import _ "github.com/<username>/contrib/eventlistener"”

package main

import (
_ "github.com/<username>/contrib/eventlistener"
_ "github.com/<username>/contrib/example"

)
Add the public github.com URLs for all your custom Golang code packages here.

& ‘ The package name must be main.

The build process uses the package URL stated in the deps. go file to look for the package on
github. comif the package is not found locally. Once the code package is pulled, deps. go initializes the
package.

Adding versioned dependencies to your custom extension

If your custom extension uses a third party library over which you have no control, you might want the
extension to always use a specific version of the library. You can download the specific version of the library
and place it under <FLOGO_HOME>/1ib/ext/src folder. You must not add an entry in the deps. go file for
dependency packages. Build the app binary.

Deleting Extensions or Extension Categories

You can delete an existing extension or extension category from the Apps page.
To delete an extension or extension category:

Procedure
1. On the Apps page, click Environment and Tools tab.

2. Under Connector Management & Extensions, click Extensions.

3. Hover your mouse cursor on the extension or extension category that you want to delete until the
Delete Extension icon () displays.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

123

4. Click _.
5. On the confirmation dialog, click Delete.

Result

The selected extension or extension category is deleted.

Flow Tester
After you design a flow, use the Flow Tester to test the flow.

When designing a flow, runtime errors can go undetected until you build the app to execute the flow. It can
become particularly cumbersome to test flows that start with a trigger, since the triggers activate based on
an external event. So, before you can test the flow, you need to configure the external app to send a message
to the trigger in order to activate the trigger and consequently execute the flow. The Flow Tester eliminates
the need to activate the trigger in order to execute the flow.

You provide the input to the flow in the Flow Tester. The Flow Tester executes the flow on demand without
using a trigger. Each activity executes independently and displays its logs. This lets you detect errors in the
flow upfront without actually building the app.

& The Flow Tester is disabled when activity type contributions are missing in the flow execution.

You can run the Flow Tester in the debug mode with the following features only:

o Test run the flow

» See the flow execution

& » Select an activity which is executed and see the inputs and outputs

o Change the inputs to other valid values and start the activity from that point onwards
You cannot:

» Insert a debug point and stop the flow execution at a tile

 Skip a tile from test execution

Testing Flows from the Ul

You can use the Flow Tester from the TIBCO Cloud Integration - Flogo (PAYG) Web UI or you can use the
CLI to run the test command in the Flow Tester. This section describes how to use the Flow Tester from the
Web UL

When using the Flow Tester from the Web Ul, you must populate your test data in the Launch
Configuration. Launch Configuration is a mechanism used by the Flow Tester in the Web Ul to store your
test data.

What is a Launch Configuration?

A Launch Configuration is a test configuration that contains a set of data with which to test the flow. Create
a Launch Configuration to hold the test data that you want to use as input to the flow. Launch
Configurations allow you to save and use your input data without having to enter it every time you want to
test or retest the flow.

Blank flows use data configured in the Input Settings tab of the Flow Inputs & Outputs accordion tab as
the input to the flow. Flows created with a trigger use the output of the trigger as input to the flow.

Launch Configurations are particularly useful when you want to test the flow multiple times with complex
data or multiple sets of data. Create a Launch Configuration once with the data and use the Launch
Configuration as input to the flow instead of manually entering the data every time you want to execute the
flow. You can create multiple Launch Configurations, each containing a different set of data. A Launch

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

124

Configuration can contain only one set of data. To test a flow with multiple sets of data, create multiple
Launch Configurations for a flow with each containing one set of data, then test the flow with one Launch
Configuration at a time.

Once you create a Launch Configuration, it automatically gets saved and is available to you until you
explicitly delete it.

0 When exporting an app, if the app contains Launch Configurations, the Launch Configurations do not get
exported with the app. Launch Configurations in an app must be exported independent of the app export.

Creating and Using a Launch Configuration

Launch Configurations need not be explicitly saved. They persist even after you exit TIBCO Cloud
Integration - Flogo (PAYG) and log back in later.

Creating your first Launch Configuration

To create the very first Launch Configuration in a flow:

1. On the flow details page, click Test .

You can either start a new Launch Configuration by clicking Create a Launch Configuration or use an
existing Launch Configuration that you had exported from another flow by clicking Import a Launch
Configuration.

/ Choose an option to start <« x
—

-

Flogo Launch Configurations

f, @

Create a Launch Import a Launch
Configuration Configuration

£ Cancel

2. Click Create a Launch Configuration.

The Flow Tester opens with the left pane displaying the Launch Configuration name. By default, a new
Launch Configuration is named "Launch Configuration x" where x stands for a number. For example,
since this is the first Launch Configuration that you are creating, the name of the Launch Configuration
displays as Launch Configuration 1.The next Launch Configuration you create will be named
Launch Configuration 2. You can edit the name in the right pane. The right pane opens the mapper
which displays the flow input tree.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

/ Setting up Launch Configuration for flow MyRESTFlow2
—

Launch Configuration name *
-

Flogo Launch Configurations Launch Configuration 2

Launch Configurations & Import | 4 New Log Level

f 7Laurn[h> VCﬂornyﬂgu‘ratlon 1 INFO
May 5, 2020, 6:28:31 PM
+ Launch Configuration 2 Mapping settings
May 5, 2020, 6:32:02 PM
Activity Input Q
w {2} flowinputs
a. name
1. age
a. gender
< Cancel

Next ¥

Optionally, enter a meaningful string to replace the default name in the Launch Configuration name

Select the log level from the Log Level drop down menu.

Enter the values for the elements in the input tree. Refer to Configuring a Launch Configuration for

If your flow does not require an input, for example, if your flow was created with a Timer

125

& trigger which does not have an output (consequently no input to the flow), you can continue

testing the flow without using the mapper in the Flow Tester.

3.
text box.
4.
5.
details on entering values.
6. Click Next.

The input values you entered are displayed and validated. If no errors are found you get the message,

Input settings are alright.

/ validating Launch Configuration for flow MyRESTFlow2
e

Input settings are alright
-

Flogo Launch Configurations You can proceed with launch configuration Launch Configuration 2

Launch Configurations &> Import | 4 New

« Launch Configuration 1

May 5, 2020, 6:28:31 P : "Jane Doe”,

o Launch Configuration 2 "gender": "female"
May 5, 2020, 6:32:02 PM }

< Back

v

Run b

7. Click Run to execute the flow with the input data you provided in the step above.

All the activities in the flow are executed. For details, see What can you do using the Flow Tester?.

8. Click Stop Testing.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

126

Creating Subsequent Launch Configurations

If you have an existing Launch Configuration:

Procedure

1. Click New to create another Launch Configuration.

Flogo Launch Configurations

Launch Configurations & Import | 4 New

« Launch Configuration 1

2. Follow the procedure from step 3 onwards in Creating your first Launch Configuration.

What can you do using the Flow Tester?

When you use the Flow Tester to test a flow, all the activities in the flow are executed. While the flow tester
is active, you cannot add or delete an activity in the flow.

When an activity is being executed, a blue animation is displayed around it. When the execution of the
activity is completed, the activity is highlighted in the flow and the blue animation moves to the next
activity. Activities that have not completed execution are greyed out. This helps you see the progress made
in the execution of the flow.

It is a good practice to stop testing by clicking Stop Testing when you finish running a flow in the Flow
Tester, as the login session remains active for the entire time that you are in the testing mode.

TIBC® Flogo Enterpris

W Stop testing

Flow logs -

Logs output

pp [MutiFlow] with version [1.6.8]

382 INFO [flogo]
INFO [flogo]
382 INFO [flogo.engine]
8387 INFO [flogo.engine]

Handling errors

If the activity encounters an error, a red error icon is displayed on the activity and also on the Error handler
tab (if the error handler is run in the background). You can click the Error handler tab to find out till where
the execution took place successfully. Note that when you navigate back to the Main flow, the red error icon
is not displayed on the Error handler tab.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

127

TIBC® Flogo Enterprise

Exten

BranchingInErrorHander includes 3

MainFlow
o o New test W Stop testing

Main flow Error handler®
——

Flow logs & -

Logs output

£uz0-1u-2o1u3 1T LEI3I0L INPU L1 WYY

2026-10-28785:18:11.3562 INFO [flogo.eng
INFO [flogo. eng
INFO [flogo

o If you start the execution from the Error handler tab, execution is moved on to the Main flow tab (as an
error handler is always a part of the main flow).

You can, however, start a test from a tile in the Error Handler tab. In this case, the execution starts from
the Error Handler tab.

o If the execution is started from a sub-flow, the execution does not move to the Main flow and acts as a

normal tile execution (as a sub-flow is an independent flow).

Executing the flow from a specific activity onwards

You can debug a specific activity in the Main flow or Error Handler flow. If it is successful, the output is
shown in the Output tab. If an activity does not have any output (for example, the Return activity), it shows
the Output tab as blank. If the activity is erroneous, the error is shown in the Errors tab.

To execute the flow from a specific activity (and not from the beginning of the flow) with different input
data, perform the following steps.

» This can be done only after the entire flow has been executed at least once.

» When you start the execution of a flow from a specific activity in the flow, you cannot start the execution
again from any activity prior to the current activity. If you need to do that, you must launch a new test.

For example, a flow includes Al -> A2 -> A3 -> A4 -> A5 activities and execution is started from the A3
activity onwards. In subsequent executions, you cannot start the execution from any activity prior to A3;
execution always starts from A3 onwards. If you want to run the flow from an activity prior to A3, you
must launch a new test.

1. Select the activity from which you want to run the flow.

The activity is highlighted in blue. The activity data is displayed in the Inputs and Outputs tab. If an
error is returned, an Error tab is displayed in place of the Outputs tab.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

128

Apps Connections Extensions

MultiFlow includes 6 flows ~

mainflow
Add flow's description
Main flow Error handler
—_—
sl om IS0 o o s
Activity data Flow logs

= StartaSubFlowl
nple SubFlow Acti

Inputs

"subflinp": "Hello Flogo"

of New test I Stop testing

essage g Stansubtow
= [logMessage = [J SLrtsub

10utputlog

-

Run test from this activity

{
"subf2opt": "The value input into the subflow was: Hello Flogo"
}

2. In the Inputs tab, change the input values as required. You can do dynamic mappings here.

3. Click Run test from this activity.

The execution begins from the current activity. The logs are also displayed only for the current activity and

subsequent activities in the flow.

Once the execution starts from a tile, you cannot access preceding tasks executed in the previous runs. The
& previous activities are greyed out. If you want to run the flow from a previous activity, you must launch a

new test.

Logging information

As the activities are executed, the runtime engine logs for the activities are displayed in the Logs output
window. The format of the logs is similar to the logs displayed while running an app binary.

To copy these logs, you can click Copy logs.

You can also switch from the Flow logs view to the activity data view by clicking Activity data.

Configuring a Launch Configuration

When you click a Launch Configuration name, its mapper opens to its right. The mapper displays the input

tree in the left pane.

Setting up Launch Configuration for flo

Launch Configuration name *
-

Flogo Launch Configurations Launch Configuration 2

Launch Configurations ¢ Import | 4 New Log Level

-f _Lau_nch. _CAunf\ggrat\oﬂ 1 INFO
May 5, 2020, 6:28:31 PM
< Launch Configuration 2 Mapping settings

May 5, 2020, 6:32:02 PM
Activity Input Q

- {} flowlnputs
a. name
1. age

a. gender

< Cancel

Next 2

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Procedure

1. Expand the input tree.

129

Click an element to add a value for the element.

Enter the value for that element in the text box to its right.

When entering values for the elements, be aware of the following:

The input tree for a Launch Configuration mapper displays the input you configured in the Flow
Inputs & Outputs accordian tab for blank flows. For flows created with a trigger, it displays the

output schema of the trigger.

For flow inputs that contain only single objects, you must enter the input values at the root level. The
example below shows how to enter the values for a single object, Customer:

A

N Launch Configuration name *

Flogo Launch Launch Configuration 2

Configurations Log Level

- INFO
Configurations & Import | 4 New

o Launch Configuration 1 Mapping settings
May 5 Activity Input

of Launch Configuration 2 -
May 5, 2020, 6:32:02 PM ® {3 flowinputs

v {3} customer
1D
1. Phone

a. Name

MyRESTFlow2 A%

flowlnputs {3} Customer

1 {
2

Sow~aun

"Customer™: [
"ID": 234,

"Phone": 574996,
“Name”: “Jane Doe"

< Cancel Next >

When mapping an array of objects, the input must be provided at the array root level, which means
that you must provide input for all objects in the array by clicking on the root of the array. You
cannot configure the input at the array element level. In the example below, Customer is an array of
objects. Each object within the Customer array contains ID, Phone, and Name elements. When
providing values for Customer, you cannot give the input at the element (ID, Phone, or Name) level.

Doing so does not specify the index of the Customer object for which you are assigning the value(s).

Hence, you must assign the value to the whole Customer object. Since the Customer array has

multiple objects, assign values to each object in the Customer array by separating the objects with a

comma delimiter. The array size will be determined based on the number of objects for which you

provide values. In the example below, the array size is two since there are two objects for which
values have been provided.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

130

/ Setting up Launch Configuration for flow MyRESTFlow?2
"—-i'-

- Launch Configuration name *

Flogo Launch Launch Configuration 2
Configurations Log Level
Launch - INFO
Configurations &> Import | # New
of Launch Configuration 1 Mapping settings
May 5, 2020, 6:28:31 PM P N
N Activity Input Q {} flowlnputs [] Customer
of Launch Configuration 2 10
May 5, 2020, 6:32:02 PM @ {} flowinputs 2 {
3 "ID": 1234,
» [customer 4 "Phone": 47566869,
5 “Name": "Jane Doe"
1.0 6 1
7
1. Phone 8 "ID": 9754
9 "Phone": 37957544,
a. name " " “ "
10 Name”: "John Doe

Click Next.

The mapper performs validations to ensure the validity of the JSON structure and also validates that
you have entered values for all elements that are marked as required in the schema. If there are any
errors in your input, when you click Next, the mapper displays a list of errors.

In your test environment, only the validation errors related to invalid JSON structure will prevent you
from proceeding with your testing. Errors pertaining to missing values for required elements serve as a
warning, but allow you to proceed with your testing. This is because it is possible that an element that is
marked as a required field in the schema may not have been used in the activity at the time of testing. In
that case, the element is not needed for the flow to run. But in the production environment, your app
will not run successfully until you provide input values for all elements marked as required in your
schema.

Exporting a Launch Configuration

There may be occasions when you want to use the same test data configurations for testing multiple flows.
You have the option to create a Launch Configuration that contains this data in one flow, export the Launch
Configuration, then import it into each of the other flows. The ability to export a Launch Configuration is
particularly useful when the data set is very complex. In such a scenario, you can export a Launch
Configuration, import it into another flow and test the flow with the imported Launch Configuration.
Reusing a Launch Configuration by exporting and importing it saves you the time and effort needed to
create a separate Launch Configuration for each flow.

To export a Launch Configuration, follow these steps:

Procedure

1.

In the Flow Tester, hover your mouse cursor to the extreme right of the Launch Configuration name that
you want to export.

Click the Export Launch Configuration (2,) icon.

A file with the name <flow-name>_<Launch Configuration-name>.json gets downloaded to your
Downloads directory. You can import this file into another flow and use the Launch Configuration that
you just exported. Refer to Importing a Launch Configuration for details on how to import a Launch
Configuration.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

131

The Launch Configuration name is not preserved, so the imported Launch Configuration is
given a default name of "Launch Configuration x" where x stands for the next number in the
& series of existing Launch Configurations. For example, if you have two existing Launch
Configurations in the flow, the imported Launch Configuration is named Launch
Configuration 3. You have the option to edit the name to make it more meaningful.

Importing a Launch Configuration

Launch Configurations are stored as JSON files, so when you export a Launch Configuration, you export its
JSON file. You import the Launch Configuration that was exported from another flow by importing the
JSON file of the Launch Configuration into the flow.

The Launch Configuration name is not preserved, so the imported Launch Configuration is given a default
name of "Launch Configuration x" where x stands for the next number in the series of existing Launch

& Configurations. For example, if you have two existing Launch Configurations in the flow, the imported
Launch Configuration is named Launch Configuration 3. You have the option to edit the name to make it
more meaningful.

To import a Launch Configuration, follow this procedure:

Prerequisites

You must export the Launch Configuration you want to import and have its JSON file accessible before you
follow the procedure below.

If this is the first Launch Configuration

1. If this is the first Launch Configuration in the flow (no existing Launch Configurations), click Test on the
flow details page.

2. Click Import a Launch Configuration.

3. You have the option to either drag and drop the JSON file of the Launch Configuration you want to
import, or navigate to the file using the browse to upload link.

4. Click Import. Data in the Launch Configuration being imported gets validated. In case there are any
errors, they are displayed in the Import dialog.

When there are existing Launch Configurations

If there are existing Launch Configurations in the flow, click Import in the Flow Tester and either drag and
drop the JSON file that was exported from another flow, or navigate to the file using the browse to upload
link, then click Import.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

132

Choose an option to start
Flogo Launch
Configurations
Launch Configurations &> Import | + New

« Launch Configuration 1 Import a Launeh Configuration
Aug 11, 2018, 8:04:48 AM l

«f Launch Configuration 2
Aug 11, 2018, 8:17:49 AM

Create a Launch Import a Launch
Configuration Configuration

£ Cancel

Cloning a Launch Configuration

Whereas exporting-and-importing a Launch Configuration is useful for using the same set of data in two or
more flows, cloning a Launch Configuration is useful when you want to test the same flow with two sets of
data that have only minor differences.

A good use case for cloning

Clone a Launch Configuration when you need to test a flow multiple times using the same input schema,
but different values for one or more element in the schema during each round of testing. You can start by
creating a Launch Configuration, then cloning it, then editing the cloned Launch Configuration. You can
create as many clones as needed. Each clone is a separate Launch Configuration having the same input
schema. You can change the values for the elements in each cloned Launch Configuration as required. Use
the original Launch Configuration for one round of testing and the cloned Launch Configuration(s) for the
subsequent round(s). This saves you the effort of editing a single Launch Configuration.

To clone an existing Launch Configuration, follow these steps:

Procedure

1. In the Flow Tester, hover your mouse cursor to the extreme right of the Launch Configuration name that
you want to clone.

2. Click the Clone Launch Configuration (]) icon. The cloned Launch Configuration will be named
Copy <name-of-the-original-Launch Configuration> by default. You can edit the name of the
Launch Configuration in the Launch Configuration name text box.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

/ Choose an option to start
—e

Flogo Launch
Configurations

Launch Configurations ¢ Import | + New

«f Launch Configuration 1 3 -
Aug 11, 2018, 8:04:48 AM [@a" Y

" . Clone Launch Configuration
o Launch Configuration 2 3
Aug 11, 2018, 8:17:49 AM

£ Cancel

7, &

Create a Launch Import a Launch
Configuration Configuration

Deleting a Launch Configuration

When you create a Launch Configuration, it automatically gets saved until you explicitly delete it.
To delete a Launch Configuration, follow these steps:

Procedure

1.

133

In the Flow Tester, hover your mouse cursor to the extreme right of the Launch Configuration name that

you want to delete.

2. Click the Delete Launch Configuration (%) icon.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

134

Deployment and Configuration

After you have created and validated your app, you must build the app binary. You can optionally push the
app to TIBCO Cloud Integration.

Building an App Binary

This section instructs you on how to build an app binary.

Building the App
After you have created your app, you have the option to either export the app (without building it) or build
it. Exporting an app allows you to import it elsewhere, for example in TIBCO Cloud™ Integration - Flogo®.
When you build the app, its deployable artifact gets created and downloaded to your local machine. Each
operating system has its own build target. You must select the right target for your operating system when
building the app. You can use the built artifact to run the app in TIBCO Cloud Integration - Flogo (PAYG).

3 Be sure that you have Docker installed on your machine. Refer to the product Readme for the supported
versions of Docker.

Follow these steps to build an app:

For app binaries that were created in TIBCO Cloud Integration - Flogo (PAYG) 2.5 or older versions, if the
0 app binary was created using an <app>. json file and contains a flow starting with a trigger and the app

binary was created from the CLI using the build tool, the app gets successfully built but throws an error at
runtime.

Procedure

1. Open the Apps page in TIBCO Cloud Integration - Flogo (PAYG).
2. Click the app that you want to build to open the page for that app.

3. Click the Validate button to explicitly validate the flows and activities in the app. Fix any errors before
pushing the app.

4. Click Build.

5. Click the build target option that is compatible with your operating system.
The app begins to build. When done, the deployable artifact gets downloaded to your local machine. In
the case of Docker, a Docker image gets created in your Docker storage area.

Any uppercase letters in your app name get converted to lowercase in the Docker image name.
%{5 For instance, if your app is named MyApp, the Docker image that gets generated will be named
myapp.

6. To run the app, follow these steps:
On Linux
1. Open a terminal.
2. Run: chmod +x <app-file-name>
3. Run: ./<app-file-name>

For Docker Image

Any uppercase letters in your app name get converted to lowercase in the Docker image name.
%% For instance, if your app is named MyApp, the Docker image that gets generated will be named
myapp. So be sure to use all lowercase letters in the app-file-name in the command below.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

135

1. Open a terminal.

2. Run: docker run -p <<host-port-number>>:<port-on-docker> flogo/<app-file-name>

Environment Variables

This section lists the environment variables that are associated with the TIBCO Cloud Integration - Flogo
(PAYG) runtime environment.

Environment Variable

Name Default Values Description
FLOGO_RUNNER_QUEU 50 The maximum number of events from all triggers
E that can be queued by the app engine.
FLOGO_RUNNER_WORK 5 The maximum number of concurrent events that
ERS can be executed by the app engine from the
queue.
FLOGO_HTTP_SERVICE_ N/A Used to set the port number to enable runtime
PORT HTTP service which provides APIs for
healthcheck and statistics.
FLOGO_LOG_LEVEL INFO Used to set a log level for the Flogo App.
Supported values are:
« INFO
+ DEBUG
« WARN
+ ERROR
FLOGO_LOG_FORMAT TEXT Used to switch logging format between text and

JSON. For example, to use the JSON format, set
FLOGO_LOG_FORMAT=JSON ./<app-name>

FLOGO_MAPPING_SKIP_ False When mapping objects, if one or more elements

MISSING is missing in either the source or target object, the
mapper throws an error when
FLOGO_MAPPING_SKIP_MISSING is set to false.

Set this environment variable to true, if you
would like to return a null instead of receiving

an error.
FLOGO_APP_METRICS_L False If you set this property to True, the app metrics
OG_EMITTER_ENABLE are displayed in the logs with the values set in

FLOGO_APP_METRICS_LOG_EMMITTER_CO
NFIG. App metrics are not displayed in the logs
if this environment variable is set to False. To set
it to True, run: export
FLOGO_APP_METRICS_LOG_EMITTER_ENABLE=tru
e

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

136

Environment Variable

Name Default Values Description
FLOGO_APP_METRICS_L Both flow and This property can be set to either flow level or
OG_EMITTER_CONFIG activity activity level. Depending on which level you set,

the app metrics will display only for that level.
Also, you can provide an (interval in seconds) at
which to display the app metrics.

For example to set the interval to 30 seconds and
get the app metrics for flow, run:

export
FLOGO_APP_METRICS_LOG_EMITTER_CONFIG=‘{"“
interval”:“30s”,“type”:[“flow”]1}’

To set the interval for 10 seconds and get the app
metrics for both flow and activities, run:

export
FLOGO_APP_METRICS_LOG_EMITTER_CONFIG=‘{"“

interval”:“30s”,“type”:[“flow”,
“activity”1}’

App Configuration Management

TIBCO Cloud Integration - Flogo (PAYG) allows you to externalize app configuration using app properties,
so that you can run the same app binary in different environments without making changes to your app. It
integrates with configuration management systems such as Consul and AWS Systems Manager Parameter
Store to get the values of app properties at runtime.

You can switch between configuration management systems without making changes to your app. You can
do this by running the command to set the configuration-management-system-specific environment
variable from the command line. Since the environment variables are set for the specific configuration
management system, at runtime the app connects to that specific configuration management system to pull
the values for the app properties.

Consul

The Consul provides a key/value store for managing app configuration externally. TIBCO Cloud Integration
- Flogo (PAYG) allows you to fetch values for app properties from Consul and override them at runtime.

& This document assumes that you have set up Consul and know how Consul is used to store service
configuration. Refer to the Consul documentation for Consul specific information.

A Flogo app connects to the Consul server as its client by setting the environment variable,
FLOG_APPS_PROPS_CONSUL. At runtime, you must provide the Consul server endpoint in order for your app
to connect to a Consul server. You have the option to enter the values for the Consul connection parameters
either by typing in their values as JSON strings, or creating a file that contains the values and using the file
as input.

Consul can be started with or without ac1_token. If using ACL token, make sure to have ACL configured
in Consul.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

137

Using Consul with TIBCO Cloud Integration - Flogo (PAYG)

Below is a high-level workflow for using Consul with your Flogo app.

Prerequisites

You must have access to Consul before following this procedure. This document assumes that you have set
up Consul and know how Consul is used to store service configuration. For information on Consul, refer to
the Consul documentation.

At a high level, to use Consul to override app properties in your app (properties that were set in TIBCO
Cloud Integration - Flogo (PAYG)), do the following:

Procedure

1. Export your app binary from TIBCO Cloud Integration - Flogo (PAYG). Refer to Exporting and
Importing an App for details on how to export the app.

2. Configure key/value pairs in Consul for the app properties whose values you want to override. At
runtime, the app fetches these values from the Consul and uses them to replace their default values that
were set in the app.

When setting up the Key in Consul, make sure that the Key name matches exactly with the
corresponding app property name in the Application Properties dialog in TIBCO Cloud

0 Integration - Flogo (PAYG). If the property name does not match exactly, you will receive a
warning message and the app will use the default value for the property that you configured
in TIBCO Cloud Integration - Flogo (PAYG).

3. Set the FLOGO_APP_PROPS_CONSUL environment variable to set the Consul server connection parameters.
See Setting the Consul Connection Parameters for details.

Consul Connection Parameters

Provide the following configuration information during runtime to connect to the Consul server.

Property Name Required Description

server_address Yes Address of the Consul server which could be run
locally or elsewhere in the cloud.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

138

Property Name Required Description

key_prefix No Prefix to be prepended to the lookup key. This is
essentially the hierarchy that your app follows to get
to the Key location in the Consul. This is helpful in
case key hierarchy is not fixed and may change
based on the environment during runtime. It is also
helpful in case you want to switch to a different
configuration service such as AWS param store.
Although it is a good idea to include the app name
in the key_prefix, it is not required. key_prefix
can be any hierarchy that is meaningful to you.

As an example of a key_prefix, if you have an app
property (for example, Message) which has two
different values depending on the environment from
which it is being accessed (for example, dev or test
environment), your <key_prefix> for the two
values can be /dev/<APPNAME>/ and /test/
<APPNAME>/. At run time, the right value for
Message will be picked up depending on which
<key_prefix> you specify in the
FLOGO_APP_PROPS_CONSUL environment variable.
Hence, setting a <key_prefix> allows you to change
the values of the app properties at runtime without
modifying your app.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

139

Property Name Required Description

acl_token No Use this parameter if you have key access protected
by ACL. Tokens specify which keys can be accessed
from the Consul. You create the token on the ACL
tab in Consul.

During runtime, if you use the acl_token
parameter, Key access to your app will be based on
the token you specify.

To protect the token, encrypt the token for the
key_prefix where your Key resides and provide the
encrypted value of that token by prefixing the
acl_token parameter with SECRET. For example,
"acl_token":

"SECRET :QZLOrtN3gOEpXgUuud6jprgo/WzLR7]j
+Twv28/4KCp7573snZWo+hGuQauuR20/7TJ+ZLQ=="".
Note that the encrypted value follows the
key_prefix format.

Provide the encrypted value of the token as the
SECRET. SECRETS get decrypted at runtime. To
encrypt the token, you obtain the token from the
Consul and encrypt it using the app binary by
running the following command from the directory
in which your app binary is located:

./<app_binary> --encryptsecret
<token_copied_from Consul>

The command outputs the encrypted token which
you can use as the SECRET.

Since special characters (such as *! | <> &
") are shell command directives, if they

& appear in the token string, when
encrypting the token, you must use a back
slash (\) to escape such characters.

insecure_connection No By default, set to False. Set to True if you want to
connect to a secure Consul server without specifying
client certificates. This should only be used in test
environments.

Setting the Consul Connection Parameters

You set the values for app properties that you want to override by creating a Key/Value pair for each
property in Consul. You can create a standalone property or a hierarchy that groups multiple related
properties.

Prerequisites

This document assumes that you have access to Consul and are familiar with its use.

To create a standalone property (without hierarchy), you simply enter the property name as the name of the
Key when creating the Key in Consul. To create a property within a hierarchy enter the hierarchy in the
following format in the Create Key field in Consul: <key_prefix>/<key_name> where <key_prefix>isa
meaningful string or hierarchy that serves as a path to the key in Consul and <key_name> is the name of the

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

140

app property whose value you want to override. For example, in dev/Timer/Message and test/Timer/
Message, dev/Timer and test/Timer are the <key_ prefix> which could stand for the dev and test
environments and Message is the key name. During runtime, you provide the <key_prefix> value which
tells your app the location in Consul from where to access the property values.

The Key name in Consule must be identical to its counterpart in the Application Properties dialog in
TIBCO Cloud Integration - Flogo (PAYG). If the key name does not match exactly, you will receive a
warning message and the app will use the default value that you configured for the property in TIBCO
Cloud Integration - Flogo (PAYG).

A single app property, for example Message, will be looked up by your app as either Message or
<key_prefix>/Message in Consul. An app property within a hierarchy such as x.y. z will be looked up as
x/y/z or <key_prefix>/x/y/zin Consul. Note that the dot in the hierarchy is represented by a forward
slash (/) in Consul.

After you have configured the app properties in Consul, you need to set the environment variable,
FLOGO_APP_PROPS_CONSUL, with the Consul connection parameters in order for your app to connect to the
Consul. When you set the environment variable, it triggers the app to run, which connects to the Consul
using the Consul connection parameters you provided and pulls the app property values from the
key_prefix location you set by matching the app property name with the key_name. Hence, it is
mandatory for the Key names to be identical to the app property names defined in the Application
Properties dialog in TIBCO Cloud Integration - Flogo (PAYG).

You can set the FLOGO_APP_PROPS_CONSUL environment variable either by directly entering the values as a
JSON string on the command line or placing the properties in a file and using the file as input to the
FLOGO_APP_PROPS_CONSUL environment variable.

Entering the Consul Parameter Values as a JSON String

To enter the Consul parameters as a JSON string, enter the parameters as key/value pairs using the comma
delimiter. The following examples illustrate how to set the values as JSON strings. You would run the
following from the location where your app resides:

An example when not using security without tokens enabled:

FLOGO_APP_PROPS_CONSUL="{\"server_address\":\"http:\/\/127.0.0.1:8500\"}" ./Timer-
darwin-amd64

where Timer-darwin-amd64 is the name of the app binary.

An example when tokens are enabled and app properties are within a hierarchy:

FLOGO_APP_PROPS_CONSUL="{"server_address":"http://127.0.0.1:8500", "key_prefix":"/dev/
Timer","acl_token":"SECRET:b0UaK3bTyD9wN+ZJIkmlKRmojhAv+"3}"

where /dev/Timer is the path and SECRET is the encrypted value of the token obtained from the Consul.

This command directs your app to connect to the Consul at the server_address and pull the values for the
properties from the Consul and run your app with those values.

Refer to Consul Connection Parameters section for a description of the parameters. Refer to Encrypting
Password Values for details on how to encrypt a value.

Setting the Consul Parameter Values Using a File

To set the parameter values in a file, create a . json file, for example, consul_config. json containing the
parameter values in key/value pairs. Here's an example:

{
"server_address": "http://127.0.0.1:32819",
"key_prefix": "/dev/<APPNAME>/",
"acl_ token": "SECRET:b0UaK3bTyDOwN+ZJkmlKRmojhAv+"
¥

You would place the consul_config. json file in the same directory which contains your app binary.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

141

You would then run the following from the location where your app binary resides to set the
FLOGO_APP_PROPS_CONSUL environment variable. For example, to use the consul_config. json file from
the example above, you would run:

FLOGO_APP_PROPS_CONSUL=consul_config.json ./<app_ binary_name>

The command extracts the Consul server connection parameters from the file and connects to the Consul to
pull the app properties values from the Consul and run your app with those values.

Consul properties can also be run using docker by passing the same arguments for the docker image of a
binary app.

AWS Systems Manager Parameter Store

AWS Systems Manager Parameter Store is a capability provided by AWS Systems Manager for managing
configuration data. You can use the Parameter Store to centrally store configuration parameters for your

apps.

Your Flogo app connects to the AWS Systems Manager Parameter Store server as its client. At runtime, you
are required to provide the Parameter Store server connection details by setting the FLOGO_APP_PROPS_AWS
environment variable in order for your app to connect to the Parameter Store server. You have the option to
enter the values for the Parameter Store connection parameters either by typing in their values as JSON
strings, or creating a file that contains the values and using the file as input.

Using the Parameter Store with TIBCO Cloud Integration - Flogo (PAYG)
Below is a high-level workflow for using AWS Systems Manager Parameter Store with your Flogo app.
Prerequisites

This document assumes that you have an AWS account, have access to the AWS Systems Manager and
know how to use the AWS Systems Manager Parameter Store. Refer to the AWS documentation for the
information on the AWS Systems Manager Parameter Store.

Overview

To use the Parameter Store to override app properties set in TIBCO Cloud Integration - Flogo (PAYG), do
the following;:

1. Build an app binary which has the app properties already configured in TIBCO Cloud Integration -
Flogo (PAYG). Refer to Building the App for details on how to build the app.

2. Configure the app properties that you want to override in the Parameter Store. At runtime, the app
fetches these values from the Parameter Store and uses them to replace their default values that were set
in the app.

3. Set the FLOGO_APP_PROPS_AWS environment variable to set the Parameter Store connection parameters
from the command line.

When you run the command for setting the FLOGO_APP_PROPS_AWS environment variable, it runs your
app, connects to the Parameter Store, and fetches the overridden values for the app properties from the
Parameter Store. Only the values for properties that were configured in the Parameter Store will be
overridden. The remaining app properties will get their values from the Application Properties dialog.

See the Setting the Parameter Store Connection Parameters and Parameter Store Connection Parameters
sections for details.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Parameter Store Connection Parameters

142

To connect to AWS Systems Manager Parameter Store, provide the configuration below at runtime.

Property Name

Required

Data
Type

Description

access_key_id

Yes

String

Access ID for your AWS account. To protect
access key, an encrypted value can be
provided in this configuration. See
Encrypting Password Values section for
information on how to encrypt a string.

The encrypted value must be
& prefixed with SECRET: e.g.

SECRET:b0UaK3bTyD9wN

+Z]JkmlKRmojhAv+

This configuration is optional if
use_iam_role is set to true.

secret_access_key

Yes

String

Secret access key for your AWS account. This
account must have access to the Parameter
Store. To protect secret access key, an
encrypted value can be provided in this
configuration. See the Encrypting Password
Values section for information on how to
encrypt a string.

The encrypted value must be

& prefixed with SECRET: for
example, SECRET: b0UaK3bTyD9wN
+ZJkmlKRmojhAv+

This configuration is optional if
use_iam_role is set to true.

region

Yes

String

Select a geographic area where your
Parameter Store is located. This configuration
is optional if use_iam_role is set to true and
your Parameter Store is configured in the
same region as the running service. When
running in AWS services (for example, EC2,
ECS, EKS), this configuration is optional if
the Parameter Store is in the same region as
these services.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

143

Data

Property Name Required Type Description

param_prefix No String This is essentially the hierarchy that your app
follows to get to the app property location in
the Parameter Store. It is the prefix to be
prepended to the lookup parameter. This is
helpful in case the parameter hierarchy is not
fixed and may change based on the
environment during runtime.

This is also helpful in case you want to switch
to a different configuration service such as
the Consul KV store.

As an example of a param_prefix, if you
have an app property (for example, Message)
which has two different values depending on
the environment from which it is being
accessed (for example dev or test
environment), your param_prefix for the
two values can be /dev/<APPNAME/ and /
test/<APPNAME/. At run time, the right value
for Message will be picked up depending on
which param_prefix you specify in the
FLOGO_APP_PROPS_AWS environment
variable. Hence, setting a param_prefix
allows you to change the values of the app
properties at runtime without modifying

your app.

use_iam_role No Boolean Set to true if the Flogo app is running in the
AWS services (such as EC2, ECS, EKS) and
you want to leverage IAM role (such as
instance role or task role) to fetch parameters
from the Parameter Store. In that case,
access_key_id, and secret_access_key
are not required.

Setting the Parameter Store Connection Parameters

You can use the AWS Systems Manager Parameter Store to override the property value set in your Flogo
app. You do so by creating the property in the Parameter Store and assigning it the value with which to
override the default value set in the app. You can create a standalone property or a hierarchy (group) in
which your property resides.

Prerequisites

This document assumes that you have an AWS account and the Parameter Store and are familiar with its
use. Refer to the AWS documentation for more information on the Parameter Store.

To create a standalone property (without hierarchy), you simply enter the property name when creating it.
To create a property within a hierarchy enter the hierarchy in the following format when creating the
property: <param_prefix>/<property_name>, where <param_prefix> is a meaningful string or hierarchy
that serves as a path to the property name in Parameter Store and <property_name> is the name of the app
property whose value you want to override. For example, in dev/Timer/Message and test/Timer/
Message /dev/Timer and test/Timer are the <param_prefix> which could stand for the dev and test

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

144

environments respectively, and Message is the key name. During runtime, you provide the
<param_prefix> value which tells your app the location in Parameter Store from where to access the
property values.

The parameter name in Parameter Store must be identical to its counterpart (app property) in the
Application Properties dialog in TIBCO Cloud Integration - Flogo (PAYG). If the parameter names do not
match exactly, you will receive a warning message and the app will use the default value that you
configured for the property in TIBCO Cloud Integration - Flogo (PAYG).

A single app property, for example Message, will be looked up by your app as either Message or
<param_prefix>/Message in Parameter Store. An app property within a hierarchy such as x.y.z will be
looked up as x/y/z or <param_prefix>/x/y/z in Parameter Store. Note that the dot in the hierarchy is
represented by a forward slash (/) in the Parameter Store.

After you have configured the app properties in the Parameter Store, you need to set the environment
variable, FLOGO_APP_PROPS_AWS, with the Parameter Store connection parameters in order for your app to
connect to the Parameter Store. When you set the environment variable, it triggers your app to run, which
connects to the Parameter Store using the Parameter Store connection parameters you provided and pulls
the app property values from the param_prefix location you set by matching the app property name with
the param_name. Hence, it is mandatory for the property names to be identical to the app property names
defined in the Application Properties dialog in TIBCO Cloud Integration - Flogo (PAYG).

You can set the FLOGO_APP_PROPS_AWS environment variable either by manually entering the values as a
JSON string on the command line or placing the properties in a file and using the file as input to the
FLOGO_APP_PROPS_AWS environment variable.

If your Container is Not Running on ECS or EKS

If the container in which your app resides is running external to ECS, you must enter the values for
access_key_id and secret_access_key parameters when setting the FLOGO_APP_PROPS_AWS
environment variable.

Entering the Parameter Store Values as a JSON String

To enter the Parameter Store connection parameters as a JSON string, enter the parameters and their value
using the comma delimiter. The following example illustrates how to set the values as JSON strings. This
would be run from the location where your app resides:

FLOGO_APP_PROPS_AWS="{"access_key_id":"SECRET :: XXXXXXXXXXXXX" , "secret_access_key":"SECRE
T : XXXXXXXXXXX" , "region":"us-west-2", "param_prefix":"/MyFlogoApp/Dev/"}"

where /MyFlogoApp/Dev/ is the param_prefix (path to the properties) and SECRET is the encrypted version
of the key or key_id obtained from the Parameter Store.

This will connect to the Parameter Store and pull the values for the properties and override their default
values that were set in the app.

Refer to Parameter Store Connection Parameters section for a description of the parameters.
Setting the Parameter Store Values Using a File

To set the parameter values in a file, create a . json file, for example, aws_config. json containing the
parameter values. Here's an example:

{
"access_key id": "SECRET:b0UaK3bTyDO9wN+ZJkmlKRmojhAv+",
"param_prefix": "/MyFlogoApp/dev/",
"secret_access_key": "SECRET:b0UaK3bTyD9wN+ZJkmlKRmojhAv+",
"region": "us-west-2",

}

Place the aws_config. json file in the same directory which contains your app binary.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

145

You would then run the following from the location where your app binary resides to set the
FLOGO_APP_PROPS_AWS environment variable. For example, to use the aws_config. json file from the
example above, run:

FLOGO_APP_PROPS_AWS=aws_config.json ./<app_ binary_name>
This will connect to the Parameter Store to pull the overridden app properties values from the Parameter
Store and run your app with those values.

If your Container is Running on ECS or EKS

In case your Flogo apps are running in ECS and intend to leverage the EC2 instance credentials, set
use_iam_role to true . The values for access_key_id and secret_access_key will be gathered from the
running container. Ensure that the ECS task has the permission to access the param store.

The IAM role that you use must have permissions to access parameter(s) from the AWS Systems Manager
Parameter Store. The following policy must be configured for IAM role:

{
"Version":"2012-10-17",
"Statement": [
{

"Action": [
"ssm:GetParamaters",
"ssm:GetParamatersByPath",

i

"Effect":"Allow",

"Resource":"*"

¥
]
¥

The following is an example of how to set the FLOGO_APP_PROPS_AWS environment variable when your
container is running on ECS. Notice that the values for access_key_id and secret_access_key are
omitted:

FLOGO_APP_PROPS_AWS="{\"use_iam role\":true, \"region\":\"us-west-2\"}" ./Timer-darwin-
amd64

Environment Variables

TIBCO Cloud Integration - Flogo (PAYG) allows you to externalize the configuration of app properties
using environment variables.

Using environment variables with app properties is a two-step process:

1. Create one environment variable per app property.

2. Set the FLOGO_APP_PROPS_ENV=auto environment variable, which directs it to fetch the values of the
app properties for which you have created environment variables.

App binaries that were generated from a version of TIBCO Cloud Integration - Flogo (PAYG) older than
2.4.0 do not support app properties override using environment variables. For example, if you attempt to

& run an older app binary from TIBCO Cloud Integration - Flogo (PAYG) 2.4.0 (which supports the
environment variable functionality) and override app properties in the app using environment variables,
the binary runs normally but the app property override gets ignored.

Using Environment Variables to Override App Property Values

The use of environment variables to assign new values to your app properties at runtime is a handy method
that you can use to test your app with multiple data sets.

Follow these two steps to set up the environment variables and use them during app runtime.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

146

Step 1: Create environment variables for your app properties

You start by creating one environment variable for each app property that you want to externalize. To do so,
run:

export <app-property-name>="<value>"

For example, if your app property name is username, run export username="abc@xyz.com" Or export
USERNAME="abc@xyz.com"

A few things to note about this command:
» Since special characters (such as '! | < > &@) are shell command directives, if they appear in

value, enclosing the value in double quotes tells the system to treat such characters as literal values
instead of shell command directives.

o The app-property-name must match the app property exactly or it can use all uppercase letters. For
example, the app property, Message, can either be entered as Message or MESSAGE, but not as message.

» If you want to use a hierarchy for your app property, be sure to use underscores (_) between each level
instead of the dot notation. For example, for an app property named x.y .z, the environment variable
name should be either x_y_z or X_Y_7.

Step 2: Set FLOGO_APP_PROPS_ENV=auto environment variable
To use the environment variables during app runtime, set the FLOGO_APP_PROPS_ENV=auto environment

variable.

To do so, run:
FLOGO_APP_PROPS_ENV=auto ./<app-binary>
Forexanqﬂe,FLOGO_APP_PROPS_ENV:auto MESSAGE="This is variable 1." LOGLEVEL=DEBUG ./

Timer-darwin-amd64

& When setting variables of type password be sure to encrypt its value for security reasons. See the section,
Encrypting Password Values, for more details.

Setting the FLOGO_APP_PROPS_ENV=auto directs your app to search the list of environment variables for
each app property by matching the environment variable name to the app property name. When it finds a
matching environment variable for a property, the app pulls the value for the property from the
environment variable and runs the app with those values. Hence, it is mandatory that the app property
name exactly match the environment variable name for the property.

App properties that were not set as environment variables will pick up the default values set for them in the
app. You will see a warning message similar to the following in the output: <property_name> could not
be resolved. Using default values.

Encrypting Password Values
When entering passwords on command line or in a file, it is always a good idea to encrypt their values for
security reasons. TIBCO Cloud Integration - Flogo (PAYG) has a utility that you can use to encrypt
passwords.

Prerequisites

You must have the password to be encrypted handy in order to run the utility.

To encrypt a password, run the following:

Procedure

1. Open a command prompt or a terminal.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

147

2. Navigate to the location of the app binary and run the following command:

./<app_binary> --encryptsecret <value_to_be_encrypted>

The command outputs the encrypted value which you can use when setting the password in a file or
setting the password from the command line or using environment variables. For example, export
PASSWORD="SECRET:t90Ixj+QYCMFbgCEo/UnEL1PPhrCIiMzv".

Note that the password value is enclosed in double quotes. Since special characters (such as *! | < >
& °) are shell command directives, if such characters appear in the encrypted string, using double
quotes around the encrypted value will direct your system to treat them as literal characters. Also, the
encrypted value must be preceded by SECRET:

Keep in mind that when you run the env command to list the environment variables, the command
does not output the environment variable for the password.

Container Deployments for AWS Marketplace
Once your app is ready, you must build a docker image for the app which you then upload to AWS.

Build the Flogo Application Docker Image

Build the application docker image by extending the runtime base docker image and copying the app
binary into it.
To do this, follow the steps below:

Procedure

1. Tag the Flogo Runtime Docker Image. For example, use flogo-runtime: <version>

2. Create a Docker file in the directory containing the Flogo app binary and add the following commands
to the Docker file.

FROM <FLOGO_RUNTIME_IMAGE>: <TAG>
ADD <FLOGO_APP_BINARY_NAME> flogoapp

& ‘ You must configure the application binary as flogoapp before you can run it.

For example:

FROM flogo-runtime:latest
ADD hello_world-linux_amd64 flogoapp

FROM flogo-runtime:2.7.0
ADD hello_world-linux_amd64 flogoapp

3. Run the docker build command to build the app docker image.
docker build -t <APP_IMAGE_NAME>:<TAG>

4. Tag the image using the Docker tag command:

docker tag application_name:latest
<AWS_account_id>.dkr.ecr.<region_name>.amazonaws.com/application_name:latest

5. Push the app docker image to the newly created AWS repository using the Docker push command:

docker push <AWS_account_id>.dkr.ecr.<region_name>.amazonaws.com/
application_name:latest

For more information about ECR, see the ECR documentation.

6. Run the app container in ECS using Fargate.
a) Download the following deployment templates:

» Set up a Fargate Stack for Flogo app deployment
* Run Flogo app on Fargate

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://docs.aws.amazon/ecr/index.html

148

For more information about deployment templates, refer to About AWS Deployment Templates.
b) On AWS, navigate to CloudFormation in Services.
¢) Using the Create Stack option, create a stack for the Set up a Fargate Stack for Flogo app
deployment template. Upload the Set up a Fargate Stack for Flogo app deployment template.
Provide a unique name for the stack, continue clicking Next, and then click Create Stack.

d) Using the Create Stack option, create another stack for the Run Flogo app on Fargate template.
Upload the Run Flogo app on Fargate template. Provide a unique name for the stack in the Stack
name field. Provide the ECR image URL in the ImageURL field. In the StackName field, use the
same name that was used in step c (for Set up a Fargate Stack for Flogo app deployment template).
Continue clicking Next and click Create Stack.

e) On AWS, navigate to ECS in Services. The cluster you created is displayed.

f) Navigate to the service in the cluster. After the service is successfully running, you can access the
load balancer URL.

7. For ECS and ECR, while configuring the task definition, set and attach the following policy to the IAM
role configured for the task. Otherwise, the app will not start:

{
"Version":"2012-10-17",
"Statement": [
{
"Action": [
"aws-marketplace:RegisterUsage"

15
"Effect":"Allow",

nonmgn

"Resource":

}
}

See the Amazon website for more information regarding the use and licensing of the Amazon Linux
Docker Image.

About AWS Deployment Templates
TIBCO provides templates to jumpstart your development and let you get started quickly.

Templates for ECS and Fargate

Under Container Images > Deployment template, click Set up a Fargate Stack for Flogo app deployment
to download the template and run it automatically to set up the application for you.

Example: Deploying a Flogo App on AWS EKS

This example guides you through deploying a Flogo app on Amazon Elastic Kubernetes Service (Amazon
EKS).

Prerequisites

e Build a Docker image of the Flogo app which you want to upload to the AWS ECR repository. For more
information, refer to Build the Flogo App Docker Image.

¢ Create an AWS account.

e Create an AWS ECR Repository. Push the Flogo app image from the local repository to the AWS ECR
repository.

o Install the latest version of AWS CLI using the following command:
pip install awscli

o Configure the AWS CLI credentials using the following command:

aws configure

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://hub.docker.com/amazonlinux/

149

o Install eksctl, a command-line utility for creating and managing Kubernetes clusters on Amazon EKS.
For example, on Linux, use the following command:

curl --silent --location
"https://github.com/weaveworks/eksctl/releases/download/latest_release/eksctl_$(uname
-s)_amd64.tar.gz" | tar xz -C /tmp

sudo mv /tmp/eksctl /usr/local/bin
eksctl version

e Install and configure kubectl for Amazon EKS. Kubernetes uses the kubectl command-line utility for
communicating with the cluster API server.

For more information on installing and configuring eksctl and kubectl, refer to the section "Getting
Started with eksctleksctl" in the Amazon EKS documentation.

Deploying a Flogo App on AWS EKS

Procedure

1. Create a new EKS cluster using the following command:
eksctl create cluster <cluster name>
For example:
eksctl create cluster flogoDemo
By default, the kubeconfig configuration file is created at the default kubeconfig path

& (.kube/config) in your home directory or merged with an existing kubeconfig at that
location.

2. Setup the OIDC ID provider (IdP) in AWS. This enables the IAM role for service accounts on EKS
cluster:

eksctl utils associate-iam-oidc-provider --name <cluster name> --approve
For example:
eksctl utils associate-iam-oidc-provider --name flogoDemo --approve

3. Create a new policy which allows you to access to AWS Marketplace Metering.
The JSON policy looks as follows:

{
"Version": "2012-10-17",
"Statement": [
{
"Action": [
"aws-marketplace:RegisterUsage"
] ’
"Effect": "Allow",
"Resource": "*"
¥
1
¥

4. Add this policy to the role created in step # 1.

Create a Kubernetes service account, set up the IAM role that defines access to the targeted services
(such as AWS Marketplace Metering), specify the IAM trust policy that allows the specified Kubernetes
service account to assume the IAM role:

eksctl create iamserviceaccount --name

<Name of service account> --namespace default --cluster <cluster
name> --attach-policy-arn <Policy ARN> --approve

Where:

<Name of service account> is the identity of your app towards the Kubernetes API server. The pod
that hosts your app uses this service account.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

150

<Policy ARN> is the policy created in step # 3.

For example:

eksctl create iamserviceaccount --name my-serviceaccount --namespace default --
cluster flogoDemo --attach-policy-arn arn:aws:iam::338799163723:policy/
marketPlaceRegisterUsage --approve

Set up a pod:

a)

b)

Set up a pod to use the service account created in the previous step. Add the details to a pod spec,
forexanqﬂe,pod—definition—sample.yaml:

kind: Pod
apiVersion: vl
metadata:
name: sample-pod
spec:
containers:
- image: <Flogo application image from ECR>
name: sample-pod
stdin: true
tty: true
serviceAccountName: <Name of service account>

Where <Flogo application image from ECR> is the URI of the image pushed to the AWS ECR
Repository or the name of the image from the public Docker hub repository.

Create the pod and deploy the app:

kubectl apply -f pod-definition-sample.yaml

A pod is created.

The kubectl get pods command returns the following;:
NAME READY STATUS RESTARTS AGE
sample-pod 1/1 Running 0 7s

The kubectl logs <pod name> command returns the following logs (as an example):

HUH# BB BHH# R B HH#H# BB H# SRS ###H Starting Flogo Application ##########BRHH##RBH#HRHH
TIBCO Flogo® Runtime - 2.7.0 (Powered by Project Flogo™ - v0.9.3)
TIBCO Flogo® connector for General - 1.1.0.251
2019-09-15T06:59:52.007Z INFO [flogo] - AWS region environment variable not
present, obtaining via ec2 instance metadata.
2019-09-15T06:59:53.288Z INFO [flogo] - Product usage is registered with AWS
metering service.
2019-09-15T06:59:53.288Z INFO [flogo] - Standard TIBCO connectors used in the app
%%;%%

Starting TIBCO Flogo® Runtime
%6%6%%6%6%6%%%6%6%%%67%6%6%%%67%6%%%%6%6%%%67%6%%%6%6%6%%%6%6%%%6%6%%%%6%6%%%%6%
2019-09-15T06:59:53.289Z WARN [flogo] - unable to create child logger named:
ReceiveHTITPMessage - unable to create child logger
2019-09-15T06:59:53.289Z INFO [general-trigger-rest] - Name: ReceiveHTTPMessage,
Port: 9999
2019-09-15T06:59:53.289Z INFO [general-trigger-rest] - ReceiveHTTPMessage:
Registered handler [Method: GET, Path: /books]
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Starting app [fe-270-payg-rest]
with version [1.1.0]
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Engine Starting...
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Starting Services...
2019-09-15T06:59:53.289Z INFO [flogo] - ActionRunner Service: Started
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Started Services
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Starting Application...
2019-09-15T06:59:53.289Z INFO [flogo] - Starting Triggers...
2019-09-15T06:59:53.289Z INFO [general-trigger-rest] - Starting
ReceiveHTITPMessage. . .
2019-09-15T06:59:53.289Z INFO [general-trigger-rest] - Started ReceiveHTTPMessage
2019-09-15T06:59:53.289Z INFO [flogo] - Trigger [ReceiveHTTPMessage]: Started
2019-09-15T06:59:53.289Z INFO [flogo] - Triggers Started
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Application Started
2019-09-15T06:59:53.289Z INFO [flogo.engine] - Engine Started
%6%6%6%6%6%6%%%6%6%%%67%6%6%%%6%6%%%%6%6%%%676%%%%6%6%%%6%6%%%6%6%%%%6%6%%%%%

Runtime started in 1.767401lms

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

7.

151

%6%6%%6%6%6%%%6%6%%%67%6%6%%%6%6%%%%6%6%%%676%%%%6%6%%%6%6%%%%6%6%%%6%6%%%%6%
2019-09-15T06:59:53.290Z INFO [flogo] - Management Service started successfully
on Port[7777]

If you want to deploy a Flogo App with a REST endpoint:

a)

b)

d)

Create a Service in Kubernetes using a YAML file. For example, service-definition-
sample.yaml:

apiVersion: vl
kind: Service

metadata:
name: flogo-rest
labels:
app: flogo-rest
spec:
type: LoadBalancer
ports:
- port: 9999

targetPort: 9999
name: app
selector:
app: flogo-rest
apiVersion: apps/vl
kind: Deployment
metadata:
name: flogo-rest
spec:
replicas: 1
selector:
matchLabels:
app: flogo-rest
template:
metadata:
name: flogo-rest
labels:
app: flogo-rest
spec:
containers:
- name: flogo-rest
image: <Flogo application image from ECR>
imagePullPolicy: Always
ports:
- containerPort: 9999
serviceAccountName: <Name of service account>

Create a service using the following command:

kubectl apply -f service-definition-sample.yaml
You can get service information, such as External-IP/PORT, using the following command:

kubectl get svc <name of service>

For example, the command returns:

ThinkPad-T480:~/Work/FE-EKSS kubectl get svc
TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

LoadBalancer 10.100.89.34 ae73978dcd85b11e9bd4b0as85130452b-1549541974. eu-west-1.elb.amazonaws.com 80:31725/TCP 73s
kubernetes ClusterIP 10.100.0.1 <none> 443/TCP 129m

Access the REST endpoint of the Flogo app as follows:
http://<EXTERNAL-IP>:PORT/<Resource name defined in Flogo app>

For example:

http://a8674b572d7a811e99b4206034ad335a-1518682477.eu-
west-1.elb.amazonaws.com:9999/books

(Optional) Deploy the Kubernetes Web Ul (Dashboard) to your EKS cluster. For more information, refer
to https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial. html.

To clean up all the Kubernetes resources (such deployments, pods, replica sets, services, secrets, and so
on), run the following command:
kubectl delete all --all

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html

152

Troubleshooting

Issue Resolution

While running a Flogo application on a pod or Make sure you have created a policy with the
running it as a Kubernetes service, the following specified JSON and attached the policy to the
error is displayed. Kubernetes service account as described in step # 5

of section "Deploying a Flogo App on AWS EKS.

Can not start application

due to permission issue with current
task role. Below policy must

be configured for the task IAM role.

{
"Version":"2012-10-17",
"Statement": [
{
"Action":[
"aws-

marketplace:RegisterUsage"”

] ’

"Effect":"Allow",

nonmgn

"Resource":

While running the kubectl get pods or kubectl Make sure the kubeconfig configuration file is
get svc commands, the following error is created at the default kubeconfig path (.kube/
displayed. config) in the home directory and it has user

TR information in it.

logged in to the server (Unauthorized)

For more troubleshooting information, see the Amazon EKS Documentation.

Serverless Deployments

Calling Lambda Functions
AWS Lambda is a serverless compute service provided by Amazon Web Services (AWS). Lambda functions
automatically run pieces of code in response to specific events while also managing the resources that the
code requires to run. Refer to the AWS documentation for more details on AWS Lambda.

Creating a Connection with the AWS Connector
You must create AWS connections before you use the Lambda trigger or activity in a flow.
& ‘ AWS Lambda is supported on the Linux platform only.
To create an AWS connection, do the following:

1. In TIBCO Cloud Integration - Flogo (PAYG), click Connections to open its page.
2. Click the AWS Connector card.

3. Enter the connection details. Refer to the section, AWS Connection Details for details on the connection
parameters.

4. Click Save.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://docs.aws.amazon.com/eks/latest/userguide/troubleshooting.html

153

Your connection gets created and will be available for you to select in the drop down menu when adding a
Lambda activity or trigger.

AWS Connection Details

To establish the connection to the Amazon Kinesis connector, you must specify the following configurations
in the AWS Connector dialog box.

The AWS Connector dialog box contains the following fields:

Field Description

Name Specify a unique name for the connection that you are creating. This is displayed in
the Connection Name drop-down list for all the Amazon Kinesis activities.

Description A short description of the connection.

Custom (Optional) To enable the AWS connection to an AWS or AWS compatible service

Endpoint running at the URL specified in the Endpoint field, set this field to True.

Endpoint This field is available only when Custom Endpoint is set to True.
Enter the service endpoint URL in the following format: <protocol>://<host>:<port>.
For example, you can configure a MinlO cloud storage server endpoint.

Region Region for the Amazon connection.

Access key ID Access key ID of the AWS account (from the Security Credentials field of IAM

Management Console). For details, see the AWS documentation.

Secret access key

Enter the secret access key. This is the access key ID that is associated with your
AWS account. For details, see the AWS documentation.

Use Assume Role

This enables you to assume a role from another AWS account. By default, it is set to
False (indicating that you cannot assume a role from another AWS account).

When set to True, provide the following information:

* Role ARN - Amazon Resource Name of the role to be assumed
* Role Session Name - Any string used to identify the assumed role session

o External ID - A unique identifier that might be required when you assume a role
in another account

o Expiration Duration - The duration in seconds of the role session. The value can
range from 900 seconds (15 minutes) to the maximum session duration setting
that you specify for the role.

For details, see the AWS documentation.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Monitoring

154

This section contains information about how to monitor your apps.

App Metrics

For REST APIs, the following methods can be used to enable and disable app metrics at runtime.

Method

POST /app/metrics

Description

Enable instrumentation metrics
collection

Status Code

200 - If successfully enabled

409 - If the metrics collection is
already enabled

DELETE /app/metrics

Disable metrics collection

200 - If successfully disabled

404 - If metrics collection is not
enabled

GET /app/metrics/flows

Retrieve metrics for all flows

200 - Successfully returned
metrics data

404 - If the metrics collection is
not enabled

500 - If there is an issue when
returning metrics data

GET /app/metrics/flow/
<flowname>

Retrieve metrics for a given flow

200 - Successfully returned
metrics data

400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue
returning metrics data

GET /app/metrics/flow/
<flowname>/activities

Retrieve metrics for all activities
in a given flow

200 - Successfully returned
metrics data

400 - If the flow name is
incorrect

404 - If the metrics collection is
not enabled

500 - If there is an issue
returning the metrics data

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

155

Enabling App Metrics

Set the FLOGO_HTTP_SERVICE_PORT environment variable to point to the port number of the HTTP service
that provides APIs for collecting app metrics. This enables the runtime HTTP service.

Procedure

1. Run the following:
FLOGO_HTTP_SERVICE_PORT=<port> ./<app-binary>

2. Run the curl command for the appropriate REST method. Refer to App Statistics for details on each
method. Some examples are:

curl -X POST http://localhost:7777/app/metrics
curl -X GET http://localhost:7777/app/metrics/flows
curl -X DELETE http://localhost:7777/app/metrics

Enabling statistics collection using environment variables

To enable metrics collection through environment variable, do the following:

Procedure

1. Run the following:
FLOGO_HTTP_SERVICE_PORT=<port> FLOGO_APP_METRICS=true ./<appname>

2. Run the curl command for the appropriate REST method. Refer to App Statistics for details on each
method. Some examples are:
curl -X GET http://localhost:7777/app/metrics/flows

curl -X DELETE http://localhost:7777/app/metrics/flows
Example: retrieve specific metrics for an app

The following is an example of how you would run the above steps for a fictitious app named
REST_Echo.

FLOGO_HTTP_SERVICE_ PORT=7777 FLOGO_APP_METRICS=true ./REST_Echo-darwin-amd64

curl -X GET http://localhost:7777/app/metrics/flows

{"app_name":"REST_Echo", "app_version":"1.0.0","flows":
[{"started":127639, "completed":126784,"failed":0, "avg_exec_time":0, "min_exec_time
":0,"max_exec_time":4,"flow_name":"PostBooks"}]}

curl -X GET http://localhost:7777/app/metrics/flow/PostBooks/activities
{"app_name":"REST_Echo","app_version":"1.0.0","tasks":

[{"started":127389, "completed":126908,"failed":0, "avg_exec_time":0, "min_exec_time
":0,"max_exec_time":4,"flow_name":"PostBooks", "task_name":"Return"}]}

Logging App Metrics

You can record app metrics of flows and activities to the console logs. To enable the logging of app metrics,
use the following environment variables:

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

156

Environment Variable

Name Default Values Description

FLOGO_APP_METRICS_L False This property can be set to either True or False:

OG_EMITTER_ENABLE
* True: App metrics are displayed in the logs

with the values set in
FLOGO_APP_METRICS LOG_EMMITTER _
CONFIG.

* False: App metrics are not displayed in the
logs.

If this variable is not provided, the default values
are used.

FLOGO_APP_METRICS_L Both flow and This property can be set to either flow level or
OG_EMITTER_CONFIG activity activity level. The format for setting the
property is:

{"interval":"<interval_in_seconds>",
e":["flow","activity"]}

typ

where:

¢ interval is the time interval (in seconds)
after which the app metrics are displayed in
the console.

e type is the level at which the app metrics are
to be displayed - flow or activity.
Depending on which level you set, the app
metrics are displayed only for that level.

For example:

{"interval":"1s", "type":
["flow", "activity"]1}

For a list of list of fields or app metrics returned in the response, refer to Fields returned in the response.

Fields returned in the response
The following table describes the fields that can be returned in the response.

Flow
app_name Name of the app
app_version Version of the app
flow_name Name of the flow
started Total number of times a given flow is started
completed Total number of times a given flow is completed

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

157

Name Description

failed Total number of times a given flow has failed
avg_exec_time Average execution time of a given flow for successfully completed executions
min_exec_time Minimum execution time for a given flow
max_exec_time Maximum execution time for a given flow
Activity
app_name Name of the app
app_version Version of the app
flow_name Name of the flow
activity_name Name of the activity
started Total number of times a given activity is started
completed Total number of times a given activity is completed
failed Total number of times a given activity has failed
avg_exec_time Average execution time of a given activity for successfully completed
executions
min_exec_time Minimum execution time for a given activity
max_exec_time Maximum execution time for a given activity
Prometheus

TIBCO Cloud Integration - Flogo (PAYG) supports integration with Prometheus for app metrics
monitoring. Prometheus is a monitoring tool which helps in analyzing the app metrics for flows and
activities.

Prometheus servers scrape data from the HTTP /metrics endpoint of the apps.
Prometheus integrates with Grafana which provides better visual anlytics.

Flogo apps expose the following flow and activity metrics to Prometheus. These metrics are measured in
milliseconds:

Labels Description

flogo_flow_execution_count: Total number of times the flow is started, completed, or failed

ApplicationName Name of app

ApplicationVersion Version of app

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

158

Labels Description

FlowName Name of flow
State State of the flow. One of the following states:
o Started

o Completed
o Failed

flogo_flow_duration_msec: Total time (in ms) taken by the flow for successful completion or failure

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

State State of the flow. One of the following states:

¢ Completed
¢ Failed

flogo_activity_execution_count: Total number of times the activity is started, completed, or failed

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of activity

State State of the activity. One of the following states:
o Started

o Completed
o Failed

flogo_activity_execution_duration_msec: Total time (in ms) taken by the activity for successful
completion or failure

ApplicationName Name of app
ApplicationVersion Version of app
FlowName Name of flow
ActivityName Name of activity

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

159

Labels Description

State State of the activity. One of the following states:

o Completed
o Failed

& ‘ Deprecated in TIBCO Cloud Integration - Flogo (PAYG) 2.10.0.

flogo_flow_metrics: Used for flow-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

Started Total number of times flow is started
Completed Total number of times flow is completed
Failed Total number of times flow is failed

& ‘ Deprecated in TIBCO Cloud Integration - Flogo (PAYG) 2.10.0.

flogo_activity_metrics: Used for activity-level queries

ApplicationName Name of app

ApplicationVersion Version of app

FlowName Name of flow

ActivityName Name of Activity

Started Total number of times activity is started in given flow
Completed Total number of times activity is completed in given flow
Failed Total number of times activity is failed in given flow

For a list of some often-used flow-level queries, refer to the section, Often-Used Queries.

Using Prometheus to Analyze Flogo App Metrics
To enable Prometheus monitoring of Flogo apps, run the following:
FLOGO_HTTP_SERVICE_PORT=7779 FLOGO_APP_METRICS_PROMETHEUS=true ./<app-binary>

Setting FLOGO_APP_METRICS_PROMETHEUS variable to true enables Prometheus monitoring of Flogo apps.
The variable, FLOGO_HTTP_SERVICE_PORT, is used to set the port number on which the Prometheus
endpoint is available.

Use the following endpoint URL in Prometheus server configuration: http://
<APP_HOST_IP>:<FLOGO_HTTP_SERVICE_PORT>/metrics

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

160

for example, http:// 192.0.2.0:7779/metrics

Often-Used Queries

Prometheus uses the PromQL query language. This section lists some of the most commonly and often-
used queries at the flow-level.

Flow-level Queries

To Get this Metric Use this Query

Total number of flows that got count (flogo_flow_execution_count{State="Completed"}
successfully executed per app) by (ApplicationName, FlowName)

Total number of flows that failed per count (flogo_flow_execution_count{State="Failed"})
app by (ApplicationName, FlowName)

Total number of flows that executed count(flogo_flow_execution_count{State="Completed"}
successfully across all apps)

(when you are collecting metrics for

multiple apps)

Total number of flows that failed count (flogo_flow_execution_count{State="Failed"})

across all apps

(when you are collecting metrics for

multiple apps)
Total time taken by flows which got sum(flogo_flow_execution_duration_msec{State="Compl
executed successfully eted"}) by (ApplicationName, FlowName)

Total time taken by flows which failed sum(flogo_flow_execution_duration_msec{State="Faile
d"}) by (ApplicationName, FlowName)

Minimum time taken by the flows that min(flogo_flow_execution_duration msec{State="Compl
got executed successfully eted"}) by (ApplicationName)

(what was the minimum time taken by
a flow from amongst the flows that
executed successfully)

Minimum time taken by flows which min(flogo_flow_execution_duration_msec{State="Faile
failed d"}) by (ApplicationName)

Maximum time taken by flows which min(flogo_flow_execution_duration_msec{State="Compl
executed successfully eted"}) by (ApplicationName)

Maximum time taken by flows which max(flogo_flow_execution_duration_msec{State="Faile

failed d"}) by (ApplicationName)

Average time taken by flows which avg(flogo_flow_execution_duration_msec{State="Compl
executed successfully eted"}) by (ApplicationName, FlowName)

Average time taken by flows which avg(flogo_flow_execution_duration_msec{State="Faile
failed d"}) by (ApplicationName, FlowName)

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

Activity-level Queries

To Get this Metric Use this Query

Total number of activities that got
successfully executed per flow and

app

count(flogo_activity_execution_count{State="Complet
ed"}) by (ApplicationName, FlowName,ActivityName)

161

Total number of activities that failed
per flow and app

count(flogo_activity_execution_count{State="Failed"
}) by (ApplicationName, FlowName,ActivityName)

Total number of activities that
executed successfully across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_activity_execution_count{State="Complet

ed"})

Total number of activities that failed
across all apps

(when you are collecting metrics for
multiple apps)

count(flogo_activity_execution_count{State="Failed"

1))

Individual time taken by activities
which got executed successfully per
app and flow

sum(flogo_activity_execution_duration_msec{State="F

ailed"}) by (ApplicationName,
FlowName,ActivityName)

Individual time taken by activities
which failed per app and flow

sum(flogo_activity_execution_duration_msec{State="F

ailed"}) by (ApplicationName,
FlowName,ActivityName)

Minimum time taken by the activity
that got executed successfully within a
given flow and app

min(flogo_activity_execution_duration msec{State="C

ompleted"}) by (ApplicationName,
FlowName,ActivityName)

Minimum time taken by a failed
activity within a given flow and app

min(flogo_activity_execution_duration _msec{State="F

ailed"}) by (ApplicationName,
FlowName,ActivityName)

Maximum time taken by an activity
which executed successfully within a
given flow and app

max(flogo_activity_execution_duration_msec{State="C

ompleted"}) by (ApplicationName,
FlowName,ActivityName)

Maximum time taken by an activity
which failed within a given flow and

app

max(flogo_activity_execution_duration_msec{State="F

ailed"}) by (ApplicationName,
FlowName,ActivityName)

Average time taken by an activity
which executed successfully within a
given flow and app

avg(flogo_activity_execution_duration_msec{State="C

ompleted"}) by (ApplicationName,
FlowName,ActivityName)

Average time taken by an activity
which failed within a given flow and

app

avg(flogo_activity_execution_duration msec{State="F

ailed"}) by (ApplicationName,
FlowName,ActivityName)

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

162

App Tracing

App tracing allows you to log information when a program is executing. The trace log can then be used for
diagnostic purposes such as debugging failures in the program execution.

Tracing is used to help you identify issues with your app (performance of the app or simply debugging an
issue) instead of going through stack traces. The use of tracing is particularly useful in a distributed
microservice architecture environment where all the apps are instrumented by some kind of tracing
framework and while the tracing framework runs in the background, you can monitor each trace in the UL
You can use that to track any abnormalities or issues to identify the location of the problem.

Some Considerations
Keep the following in mind when using the tracing capability in TIBCO Cloud Integration - Flogo (PAYG):

e Atany given point of time only one tracer can be registered - if you try to register multiple tracers, only
the first one that you register is accepted and used at run time to trace all the activities of the flow.

o All the traces start at the flow level. There are two relations between spans - a span is either the child of
a parent span or the span is a span that follows (comes after) another span. You should be able to see all
the operations and the traces for the flows and activities that are part of an app.

o Tracing can be done across apps by passing the tracing context from one app to another. To trace across
multiple apps, you must make sure that all apps are instrumented with similar sort of tracing
frameworks, such as OpenTracing semantics, so that they understand the framework language.
Otherwise it will not be possible for you to get a holistic following of the entire trace through multiple
services.

* When looping is enabled for an activity, each loop is considered one span, since each loop calls the
server which triggers a server flow.

o If aspanis passed on to the trigger, that span becomes the parent span. You should be able to see how
much time is taken between the time the event is received by the trigger and the time the trigger replies
back. This only works for triggers that support the extraction of the context from the underlying
technology, for instance triggers that support HTTP headers.

The ReceiveHTTPMessage REST trigger and InvokeRESTService activity are supported for this release
where the REST trigger is able to extract the context from the request and InvokeRESTService activity
is able to inject the context into the request. If two Flogo apps are both Opentracing-enabled, when one
app calls the other, you can see the chain of events (invocation and how much time is taken by each
invocation) in the Jaeger UL If app A is calling app B, the total request time taken by app A is the
cumulative of the time taken by all activities in app A plus the time taken by the service that it calls. If
you open up each invocation separately, you can see the details of how much time was taken by each
activity in that invocation.

» Triggers that support span (for instance the REST trigger) are always the parent, so any flows that are
attached to that trigger are always the child of the trigger span. Trigger span is completed only after the
request goes to the flow and the flow returns.

» A subflow becomes a child of the activity from which it is called.

OpenTracing

Jaeger

TIBCO Cloud Integration - Flogo (PAYG) supports OpenTracing for app tracing.

TIBCO Cloud Integration - Flogo (PAYG) provides an implementation of the OpenTracing framework using
the Jaeger backend. In TIBCO Cloud Integration - Flogo (PAYG), the Flogo App binary is built with Jaeger
implementation and can be enabled by setting the FLOGO_APP_MONITORING_OT_JAEGER environment
variable to true. You can track how the flow went through, execution time for each activity, or in case of
failure, the cause of the failure.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

163

Each app is displayed as a service in the Jaeger UL In TIBCO Cloud Integration - Flogo (PAYG), each flow is
one operation (trace) and each activity in the flow is a span of the trace. A trace is the complete lifecycle of a
group of spans. The flow is the root span and its activities are its child spans.

Pre-requisites The following pre-requisites must be met before using the tracing capability in TIBCO

Cloud Integration - Flogo (PAYG):

e By default, Jaeger is not enabled in Flogo, hence tracing is not enabled. To enable Jaeger, set the
FLOGO_APP_MONITORING_OT_JAEGER environment variable to true.

o Ensure that the Jaeger server is installed, running, and accessible to TIBCO Cloud Integration - Flogo

(PAYG).

o If your Jaegar server is running on a machine other than the machine on which your app resides, be sure
to set the JAEGER_AGENT_HOST and the JAEGER_AGENT_PORT JAEGER_ENDPOINT=http://
<JAEGER_HOST> : <HTTP_TRACE_COLLECTOR_PORT>/api/traces environment variables. Refer to the
https://github.com/jaegertracing/jaeger-client-go#environment-variables page for the environment

variables that you can set.

TIBCO Cloud Integration - Flogo (PAYG)-Related Tags in Jaegar

In OpenTracing, each trace and span have their own tags. Tags are useful for filtering traces, for example if

you want to search for a specific trace or time interval.

Adding your own custom tags for any one span (activity) only is currently not supported. Any custom tags

that you create will be added to all spans and traces.

TIBCO Cloud Integration - Flogo (PAYG) introduces the following Flogo-specific tags:

For flows

flow_name

Name of the flow

flow_id

Unique instance IDs that are generated by the
Flogo engine. They are used to identify specific
instances of a flow (such as when the same flow is
triggered multiple times)

For activities

flow_name

Name of the flow

flow_id

Unique instance IDs that are generated by the
Flogo engine. They are used to identify specific
instances of a flow (such as when the same flow is
triggered multiple times)

task name

Name of activity

taskInstance_id

Unique instance ID that are generated by the Flogo
engine. This identity is used to identify the specific
instance of an activity when an activity is iterated
multiple times. This ID is used in looping
contructs such as iterator or Repeat while true.

For subflows

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

HTTPS://GITHUB.COM/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES

164

parent_flow Name of the parent flow

parent_flow_id Unique ID of the parent flow

flow_name Name of the subflow

flow_id Unique instance IDs that are generated by the

Flogo engine. They are used to identify specific
instances of a flow (such as when the same flow is
triggered multiple times)

The tag values are automatically generated by the TIBCO Cloud Integration - Flogo (PAYG) runtime. You
cannot override the default values. You have the option to set custom tags by setting them in the
environment variable JAEGER_TAGS as key/value pair. Keep in mind that these tags will be added to all
spans and traces.

Refer to the https://github.com/jaegertracing/jaeger-client-go#environment-variables page for the
environment variables that you can set.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

HTTPS://GITHUB.COM/JAEGERTRACING/JAEGER-CLIENT-GO#ENVIRONMENT-VARIABLES

165

Best Practices in TIBCO Cloud Integration - Flogo (PAYG)

TIBCO recommends some best practices stated below for efficient development of Flogo apps.

Development

Flow Design

Re-use with subflows

If you are executing the same set of activities within multiple flows of the Flogo app, you should put
them in a subflow instead of adding the same logic in multiple flows again and again. For example,
error handling and common logging logic.

Sub-flows can be called from other flows, thus enabling the logic to be reused. A subflow does not have
a trigger associated with it. It always gets triggered from another flow within the same app.

Terminate the flow execution using a Return activity

Add a Return activity at the end of the flow, when you want to terminate the flow execution and the
flow has some output which needs to be returned to either the trigger (in case of REST flows) or the
parent flow (in the case of a branch flow). An Error Handler flow must also have a Return activity at the
end.

Copying a flow or an activity

In scenarios where you want to create a flow or an activity that is very similar to an existing flow in your
app, you can do so by duplicating the existing flow then making your minimal changes to the flow
duplicate. You need not create a new flow. For details on how to duplicate a flow, see Duplicating a
Flow. You can also copy activities. For details on how to copy an activity, see Duplicating an Activity.

Use of ConfigureHTTPResponse activity

If you define a response code in your REST trigger, ReceiveHTTPMessage, configure the return value
for the response code in the ConfigureHTTPResponse activity.

The Return activity is a generic activity to return data to a trigger. However, when developing a REST/
HTTP AP], you may need to use different schema for different HTTP response codes. You can configure
the ReceiveHTTPMessage trigger to use different schema for different response codes by either using
the Swagger 2.0 or OpenAPI 3.0 specification, or manually adding them on the trigger configuration.

In such a scenario, you should add the ConfigureHTTPResponse activity in the flow before the Return
activity, in order to construct the response data for a specific response code. ConfigureHTTPResponse
activity allows you to select a response code, generate the input based on the schema defined on the
trigger for that code and map data from the upstream activities to the input.

You can then map output of the ConfigureHTTPResponse activity to the Return activity to return the
data and response code.

When you call a REST API from a Flow using the InvokeRESTService activity, you can enable the
'‘Configure Response Codes' option to handle the response codes returned by the API. You can add
specific codes. for example 200, 404, and define a schema for each of them using this option. You can
also define status code range in a format such as 2xx if the same schema is being used for all codes in
that range.

Reserved keywords

TIBCO Cloud Integration - Flogo (PAYG) uses some words as keywords or reserved names. Do not use
these words in your schema. For a complete list of the keywords to be avoided, see the section, Reserved
Keywords to be Avoided in Schemas.

Mapper

Synchronizing schema

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

166

If you make any changes to the trigger configuration after the trigger was created, you must click the
Sync button in order for the schema changes to be propagated to the flow parameters. Refer to the
section, Synchronizing Schema Between Trigger and Flow for more details.

Using Expressions and Functions

Within any one flow, use the mapper to pass data between the activities, between the trigger and the
activities, or the trigger and the flow. When mapping, you can use data from the following sources:

o Literal values - Literal values can be strings or numeric values. These values can either be manually
typed in, or mapped to a value from the output of the trigger or a preceding activity in the same
flow. To specify a string, enclose the string in double quotes. To specify a number, type the number
into the text box for the field. Constants and literal values can also be used as input to functions and
expressions.

» Direct mapping of an input element to an element of the same type in the Upstream Output.

» Mapping using functions - The mapper provides commonly used functions that you can use in
conjunction with the data to be mapped. The functions are categorized into groups. Click a function
to use its output in your input data. When you use a function, placeholders are displayed for the
function parameters. You click a placeholder parameter within the function, then click an element
from the Upstream Output to replace the placeholder. Functions are grouped into logical categories.
Refer to the Using Functions section for more details

» Expressions - You can enter an expression whose evaluated value will be mapped to the input field.
Refer to the section, Using Expressions for more details.

Complex data mappings

— Using the array. forEach() mapper function, you can map complex nested arrays, filter elements
of an array based on a condition, map array elements to non-array elements or elements of another
array with a different structure. See the following sections for details:
— Mapping complex arrays - Using the array.forEach() Function

— Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-Matching
Array

— Filtering Array Elements to Map Based on a Condition
— Mapping an Identical Array of Objects

— You can extract a particular element from a complex JSON object. The json.path() function takes
JSONPath expression as an argument. JSONPath is an XPATH like query language for querying an
element from JSON data. Refer to Using the json.path() function for more details.

Branches

Branch conditions

You can design conditional flows by creating one or more branches from an activity and defining the
branch types as well as the conditions for executing these branches. Refer to the Creating a Flow
Execution Branch section for details on how to create branches, the type of branches you can create, and
the order in which the branches get executed in a flow.

Error handling

Errors can be handled at the activity level or at the flow level. To catch errors at the activity level, use an
error branch. In this case, the flow control transfers to the main branch when there is an error during
activity execution. Refer to the section, Catching Errors for more details on error handling. To catch errors
at the flow level (when you want to catch all errors during the flow execution regardless of the activities
from which the errors are thrown), use the Error Handler at the bottom left on the flow page to create an
error flow. Since this flow must have a Return activity in the end, the flow execution gets terminated after
the Error Handler flow executes. The control never goes back to the main flow. Refer to the section,
Catching Errors, for more details.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

167

In order to handle network faults TIBCO Cloud Integration - Flogo (PAYG) provides ability to configure the
Timeout and Retry on Error settings for some specific activities such as InvokeRESTService and
TCMMessagePublisher. Refer to the TIBCO Flogo® Activities and Triggers Guide for details on each General
category activity and trigger.

Deployment and Configuration

Using environment variables

When deploying a Flogo app, you can override values of the app properties using environment variables.
For details on using environment variables, see the section on Environment Variables.

Externalize configuration using app properties

When developing Cloud-Native microservices, we recommend that you separate the configuration from the
app logic. You should avoid hard-coding values for configuration parameters in the Flogo app and use the
app properties instead.

The use of app properties allows you to externalize the app configuration. Externalizing the configuration
in turn allows you to change the value for any property without having to update the app. This is
particularly useful when testing your app with different configurations and automating deployments
across multiple environments as part of the CI/CD strategy configurations and automating deployments
across multiple environments as part of the CI/CD strategy. For details on using app properties, see the
section, App Properties.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

168

Legal and Third-Party Notices

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR
PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE
EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY
OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS
OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN THE LICENSE FILE) OR IF THERE IS NO SUCH
SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE “LICENSE” FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document is subject to U.S. and international copyright laws and treaties. No part of this document
may be reproduced in any form without the written authorization of TIBCO Software Inc.

TIBCO, the TIBCO logo, the TIBCO O logo, and Flogo are either registered trademarks or trademarks of
TIBCO Software Inc. in the United States and/or other countries.

All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system platforms
for a specific software version are released at the same time. Please see the readme.txt file for the availability
of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL
BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS DOCUMENT AT ANY TIME.

THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.

This and other products of TIBCO Software Inc. may be covered by registered patents. Please refer to
TIBCO's Virtual Patent Marking document (https://www.tibco.com/patents) for details.

Copyright © 2016-2021. TIBCO Software Inc. All Rights Reserved.

TIBCO Cloud™ Integration - Flogo® (PAYG) User's Guide

https://www.tibco.com/patents

	Contents
	Figures
	TIBCO Documentation and Support Services
	Introduction
	Concepts
	Creating your First REST API

	App Development
	Creating and Managing a Flogo App in the Web UI
	Creating a TIBCO Flogo® App
	Creating an App from a Saved Specification
	Validating your App

	Editing a TIBCO Flogo App
	Renaming an App
	Editing the Version of an App
	Reverting Changes to an App
	Switching Between Display Views on the App Page
	Deleting an App
	Exporting and Importing an App
	Exporting an App
	Exporting an App's JSON File

	Importing an App
	Resolving Missing Activities and Triggers

	App File Persistence

	Creating Flows and Triggers
	Flows
	Creating a Flow
	Selecting a Trigger When Creating a New Flow
	Starting with a Trigger
	Creating a Flow Attached to a REST (Receive HTTP Message) Trigger
	Creating a Flow attached to the GraphQL Trigger
	Creating a Flow Attached to Other Triggers
	Creating a Flow Attached to a gRPC Trigger

	Creating a Blank Flow (Flow without a Trigger)
	Flow Input & Output Tab
	Attaching a Flow to One or More Triggers

	Catching Errors
	Creating An Error Handler Flow
	Viewing Errors and Warnings

	Using Subflows
	Creating Subflows

	Creating a Flow Execution Branch
	Types of Branch Conditions
	Order in which Branches Get Executed
	Setting Branch Conditions
	Deleting a Branch

	Duplicating a Flow
	Editing a Flow
	Reverting Changes to a Flow
	Switching Between Flows in an App
	Deleting a Flow
	Adding an Activity
	Searching for a Category or Activity
	Configuring an Activity
	Duplicating an Activity
	Using the Loop Feature in an Activity
	Accumulating the Activity Output for All Iterations
	Accessing the Activity Outputs in Repeat While True Loop

	Deleting an Activity

	Triggers
	Creating a Trigger without a Flow
	Deleting a Trigger

	Synchronizing Schema Between Trigger and Flow
	Data Mappings
	Data Mappings Interface
	Scopes in Data Mappings
	Reserved Keywords to be Avoided in Schemas
	Mapping Different Types of Data
	Mapping a Single Element of Primitive Data Type
	Mapping an Object
	Mapping Arrays
	Mapping an Array of Primitive Data Types
	Mapping Complex Arrays - Using the array.forEach() Function
	Understanding array.ForEach() Function with an Example
	Mapping Identical Arrays of Objects
	Mapping Array Child Elements to Non-Array Elements or to an Element in a Non-Matching Array
	Mapping Nested Arrays
	Mapping Child Elements within a Nested Array Scope
	Mapping a Nested Array Child Element outside the Nested Array Scope
	Mapping an Element from a Parent Array to a Child Element in a Nested Array within the Parent

	Filtering Array Elements to Map Based on a Condition

	Mapping JSON Data with the json.path() Function
	Constructing the any, param, or object Data Type in Mapper
	Coercing of Activity Input, Output, and Trigger Reply Fields
	Clear Mapping of Child Elements in Objects and Arrays
	Ignoring Missing Object Properties when Mapping Objects

	Using Functions
	Using the array.forEach() Function
	Using the json.path() Function

	Using Expressions
	Supported Operators

	Developing APIs
	Using an OpenAPI Specification
	Configuring the REST Reply
	Testing the Deployed App
	Downloading the API Specification Used

	Using GraphQL Schema
	Using gRPC

	Using App Properties and Schemas
	App Properties
	Creating App Properties
	App Properties Dialog Views
	Creating a Standalone App Property
	Creating a Group

	Deleting a Group or Property
	Using App Properties in a Flow
	Using App Properties in the Mapper
	Unlinking an App Property from a Field Value

	Using App Properties in Connections
	Editing an App Property
	Changing the Default Value of a Property from the App Properties Dialog
	Changing the Name or Data Type of an App Property after Using It

	When Importing an App
	Exporting App Properties to a File

	App Schemas
	Defining an App-Level Schema
	Editing an App-Level Schema
	Deleting an App-Level Schema
	Using an App-Level Schema
	Flow Input & Output Tab
	Input or Output Settings Tab of an Activity
	Output or Reply Settings Tab of a Trigger

	Using Connectors
	Creating Connections
	Editing Connections
	Deleting Connections

	Uploading Extensions
	Pulling Extensions from an Open Source Public Git Repository
	Adding Custom Golang Code or Dependencies to the App
	Deleting Extensions or Extension Categories

	Flow Tester
	Testing Flows from the UI
	What is a Launch Configuration?
	Creating and Using a Launch Configuration
	Creating Subsequent Launch Configurations
	What can you do using the Flow Tester?
	Configuring a Launch Configuration
	Exporting a Launch Configuration
	Importing a Launch Configuration
	Cloning a Launch Configuration
	Deleting a Launch Configuration

	Deployment and Configuration
	Building an App Binary
	Building the App

	Environment Variables
	App Configuration Management
	Consul
	Using Consul with TIBCO Cloud Integration - Flogo (PAYG)
	Consul Connection Parameters
	Setting the Consul Connection Parameters

	AWS Systems Manager Parameter Store
	Using the Parameter Store with TIBCO Cloud Integration - Flogo (PAYG)
	Parameter Store Connection Parameters
	Setting the Parameter Store Connection Parameters

	Environment Variables
	Using Environment Variables to Override App Property Values

	Encrypting Password Values

	Container Deployments for AWS Marketplace
	Build the Flogo Application Docker Image
	About AWS Deployment Templates
	Example: Deploying a Flogo App on AWS EKS
	Prerequisites
	Deploying a Flogo App on AWS EKS
	Troubleshooting

	Serverless Deployments
	Calling Lambda Functions
	Creating a Connection with the AWS Connector
	AWS Connection Details

	Monitoring
	App Metrics
	Enabling App Metrics
	Enabling statistics collection using environment variables

	Logging App Metrics
	Fields returned in the response
	Prometheus
	Using Prometheus to Analyze Flogo App Metrics
	Often-Used Queries

	App Tracing
	OpenTracing
	Jaeger

	Best Practices in TIBCO Cloud Integration - Flogo (PAYG)
	Legal and Third-Party Notices

